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Select epidermal growth factor (EGF)-like (EGFL) repeats of human tenascin cytotactin can 

stimulate EGF receptor (EGFR) signaling, but activation requires micromolar concentrations of 

soluble EGFL repeats in contrast to subnanomolar concentrations of EGF. Using in silico 

homology modeling techniques, we generated a structure for one such repeat, the 14th EGFL 

repeat (Ten14). Ten14 assumes a tight EGF-like fold with truncated loops, consistent with 

circular dichroism studies. We generated bound structures for Ten14 with EGFR using two 

different approaches, resulting in two distinctly different conformations. Normal mode analysis 

of both structures indicated that the binding pocket of EGFR exhibits significantly higher 

mobility in Ten14-EGFR complex compared to the EGF-EGFR complex; we attributed this to 

loss of key high-affinity interactions within the Ten14-EGFR complex. We proved the efficacy 

of our in silico models by in vitro experiments. Surface plasmon resonance measurements 

yielded equilibrium constant KD of 74µM for Ten14, approximately three orders of magnitude 

weaker than that of EGF. In accordance with our predicted bound models, Ten14 in monomeric 

form does not bind EGFR with sufficient stability to induce degradation of receptor, or undergo 

EGFR-mediated internalization. This transient interaction of Ten14 with the receptor on the cell 

surface is in marked contrast to other EGFR ligands which cause EGFR transit through, and 

signaling from intracellular locales in addition to cell surface signaling.  

 iv 



We investigated whether Ten14-mediated surface restriction of EGFR resulted in altered 

cellular responses compared to EGF. Activation of PLCγ and m-calpain, molecules associated 

with migration, were noted even at sub-saturating doses of Ten14. However, activation of 

ERK/MAPK, p90RSK and Elk1, factors affecting proliferation, remained low even at high 

Ten14 concentrations. Similar activation profiles were observed for EGF-treated cells at 4oC, a 

maneuver that limits receptor internalization. We demonstrated a direct concurrent effect of such 

altered signaling on overall biophysical responses - sustained migration was observed at lower 

levels of Ten14 that activated PLCγ, but proliferation remained basal.  

We present a novel class of EGFR ligands that can potentially signal as a part of the 

matrix, triggering select signaling cascades leading to a directed cellular response from an 

otherwise pleiotropic receptor.  
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1.0  INTRODUCTION 

1.1 THE EXTACELLULAR MATRIX 

The extracellular environment is one of the most critical and exhaustive sources of stimuli for a 

cell. The cell receives signals for basic functions such as survival, development, proliferation, 

migration, and differentiation through myriad soluble and insoluble factors from the extracellular 

environment (Nelson and Bissell, 2006). These factors activate one or more receptors on the cell 

surface, which can be temporally and spatially modulated to achieve a specific response. 

Although considerable knowledge has been gained over the past few decades of how these 

triggers are translated to cellular responses, we still do not have a complete understanding of how 

the initiating extracellular cues are parsed so that a particular cellular behavior may be elicited 

based upon temporal and spatial considerations. 

The extracellular milieu consists of both soluble and insoluble factors that are released by 

cells due to external cues, and the action of these factors may be modulated in a manner so that 

they act either in a paracrine fashion, autocrine fashion, or both (Rozengurt, 1999). How a mode 

of action of a ligand is decided upon depends upon several factors, and the response can be 

altered based on whether the signaling occurs during physiological settings such as normal 

wound healing or pathological conditions such as tumor progression.  
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In addition to soluble factors such as chemokines, cytokines and growth factors (the latter 

including epidermal growth factor (EGF) and transforming growth factor alpha (TGFα), the 

extracellular matrix (ECM) also has an insoluble fraction of proteins that play key roles in 

supporting cells within tissues and maintaining important cellular functions. These insoluble 

matrix components are typically large proteins consisting of multi-subunit complexes, and are 

composed mainly of fibrous glycoproteins and proteoglycans, which are a subset of modified 

glycoproteins with heavy carbohydrate side-chains (Hay, 1981). ECM proteins include fibrous 

components including collagens, laminins and fibronectin and much heavier multimeric proteins 

including the tenascins and agrins (Dityatev and Schachner, 2006; Hay, 1981; Jones and Jones, 

2000a; Midwood et al., 2006; Miyazaki, 2006). The ECM proteins are secreted largely by 

fibroblasts, and the type of extracellular proteins being secreted depends upon the physio-

pathological condition around the cell (Powell et al., 1999). In some cases (as seen with 

syndecans), proteoglycans may also be inserted into the plasma membrane where they act as co-

receptors in order to facilitate the interaction of conventional cell surface receptors with other 

proteins in the ECM (Alexopoulou et al., 2007). The ECM components can potentially bind both 

soluble proteins such as growth factors and chemokines secreted into the ECM, as well as signal 

a number of different cell types via specific cell surface receptors that are specific to each family 

of ligands.  

In the past few decades, the focus of ECM research has largely been on the more 

ubiquitously expressed proteins such as collagen and fibronectin, leading to substantial 

understanding of their mode of action and decryption of intracellular signaling pathways 

triggered by these ECM proteins (Vogel et al., 2006; Yoneda et al., 2007). Recently however, 

tenascin cytotactin (tenascin C) has come to the fore as an important ECM component, mainly 
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due to its temporally and spatially restricted pattern of expression during development, 

angiogenesis and wound-healing, and dysregulated expression in pathophysiological situations 

such as cancer metastasis and in hypertropic scars (Dalkowski et al., 1999; Orend and Chiquet-

Ehrismann, 2006). Although tenascin C has been implicated in numerous other pathologies, the 

signal transduction cascades involved in its function have remained poorly characterized. In 

order to better understand how tenascin C function, the individual domains in tenascin C 

structure need to be investigated. 

1.2 TENASCIN CYTOTACTIN AND ITS EGF-LIKE REPEATS DOMAIN 

Tenascin cytotactin (known also as hexabrachion, cytotactin, neuronectin, myotendinous antigen 

and glial/mesenchymal extracellular matrix protein) is the first member of the tenascin family of 

ECM proteins that has four other members (Tenascin R, Tenascin W, Tenascin X and Tenascin 

Y). It was first discovered when investigating different aspects of cell, developmental and tumor 

biology by independent groups (Jones and Jones, 2000a). Structurally, human tenascin C (TN-C) 

is a large oligomeric glycoprotein composed of three identical subunits or multiples thereof 

covalently linked at the N-terminal end, with each subunit between 190 and 300kDa (Conway 

and Parry, 1991) (Redick and Schwarzbauer, 1995). For formation of the final multi-meric 

structure, single subunits are first arranged into trimers via formation of disulfide bonds in the 

proximal tenascin-assembly domain, followed by linkage of trimers to form hexamers directed 

by homophilic interactions at the N-terminal region, as seen in the rotary image in Figure 1A 

(Kammerer et al., 1998; Luczak et al., 1998). Each subunit of human tenascin C is composed of 

an N-terminal tenascin assembly domain, a 14.5 EGF-like (EGFL) repeat array, anywhere 
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between 11 and 18 fibronectin type III (FNIII) domains (of which up to nine may be alternatively 

spliced, and eight conserved) and a terminal fibrinogen-like globe (Figure 1C). Each of these 

domains have been implicated in several physiological and pathological conditions, influencing 

responses ranging from neuronal outgrowth, cell attachment and spreading to stimulating 

expression of matrix metalloproteinases and binding heparin. Interestingly, heterotypic hexamers 

of tenascin are also found, consisting of trimers from two different variants of TN-C with 

alternatively spliced fibronectin regions, or from trimers of different members of the tenascin 

family, adding to the functional complexity of the macromolecule (Chiquet-Ehrismann et al., 

1991). 

Since the EGFL repeats are focus of this work, it is imperative to delve into them to gain 

a better understanding of their role vis-à-vis TN-C. The EGFL repeat array of TN-C consists of 

14.5 EGFL repeats, each one 31 amino acids in length (Figure 1B). The approximate consensus 

sequence for EGFL repeats in TN-C is Cys-x-Cys-x(5)-Gly-x(2)-Cys, with ‘x’ being any residue 

with the length in brackets. However, EGFL repeats within laminin are slightly longer with an 

extra set of cysteines at the C-terminal end, and have a consensus sequence of Cys-x(1,2)-Cys-

x(5)-Gly-x(2)-Cys-x(2)-Cys-x(3,4)-[PheTyrTrp]-x(3,15)-Cys (Baumgartner et al., 1996; Engel, 

1989; Stetefeld et al., 1996). EGFL repeats form disulfide bonds between cysteines in the 1-3, 2-

4, 5-6 conformation (for longer peptides such as laminin that have additional cysteines, 7-8 are 

also bonded in addition to the first six), and this binding conformation is conserved in all 

members of EGF-like family of proteins such as EGF, TGFα and amphiregulin, thereby giving 

them a closed and tightly packed structure (Carpenter and Cohen, 1990; Cooke et al., 1987). In 

addition to TN-C and laminin, EGFL repeats are also found within other proteins such as agrin, 

perlecan and even integrins (Selander-Sunnerhagen et al., 1992; Takagi et al., 2001; Tamkun et 
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al., 1986). However, as opposed to EGFL repeats found in all these proteins and others such as 

the Notch family of receptors and coagulation factors IX and X, TN-C EGFL repeats lack the 

acidic residues that are required to bind calcium (Handford et al., 1990).  This suggests another 

function for these EGFL. 

 

 

 

 

Figure 1. Human Tenascin C and Its Structural Domains 

A. Rotary electron microscope image showing the hexabrachion structure of tenascin C. It has six identical arms 

extending radially out from a central tenascin assembly domain. 

B. CLUSTALW analysis was performed on all the 14 repeats of tenascin C. Colored bars indicate conserved 

residues among the repeats. 

C. Each lobe of tenascin C is composed of an N-terminal assembly domain, an EGFL repeat array, an alternatively 

spliced FNIII domain and a terminal fibrinogen globe. 
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During the early nineties, some postulated that EGFL repeats mediated physiological 

effects either directly or indirectly through EGFR, although no direct evidence was presented 

(Prieto et al., 1992; Spring et al., 1989; Thiery and Boyer, 1992). Interestingly, human tenascin C 

causes the clustering of EGF receptors, and also primes cells to the mitogenic effects of EGF 

(Jones et al., 1997; Jones and Jones, 2000b). In fact, in stromo-epithelial interactions, EGF 

induces the expression of tenascin C through EGFR (Sakai et al., 1995a; Sakai et al., 1995b). 

Recently, however, researchers have successfully demonstrated that select EGFL repeats of 

human tenascin C can bind and activate the EGF receptor (EGFR) (Swindle et al., 2001). Similar 

studies were performed with EGFL repeats of laminin, showing that they could be processed and 

released in vivo by matrix metalloproteinases (MMP), and could bind and activate EGFR 

(Schenk et al., 2003). Although EGFL repeats interact with EGFR, the physical binding of EGFL 

repeats with receptor and structural domains involved in this binding have not been identified 

and characterized to date. Additionally, it is also not well understood what effects such binding 

might have on the overall response in terms of modulating cell behavior. A general 

understanding of the EGF receptor and how it binds the EGF family of ligands may shed light on 

the mode of action of EGFL repeats. 

1.3 STRUCTURAL AND FUNCTIONAL OVERVIEW OF THE EPIDERMAL 

GROWTH FACTOR RECEPTOR AND ITS LIGANDS 

The epidermal growth factor family, which includes EGF, TGFα, amphiregulin, neuregulins, 

HB-EGF and betacellulin, represents one of the most important classes of receptor ligands that 

mediate numerous cellular functions including migration, proliferation, differentiation and 
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apoptosis by binding to the ErbB family of receptor tyrosine kinases (Wells, 1999). These 

ligands bind to either homo- or heterodimers of the ErbB receptors, thereby activating a number 

of signaling cascades leading to directed cellular responses. As mentioned earlier, all members of 

the EGF family of ligands contain six cysteines that are crosslinked via disulfide linkages. This 

intramolecular binding confers a closed tightly packed structure to the peptide, and is critical for 

receptor recognition and binding. 

EGFR belongs to the ErbB family of receptors that includes ErbB2 (Her2), ErbB3 and 

ErbB4. Active EGFR functions as a dimer, partnering with another subunit of EGFR or even 

with another member of the ErbB family (Schlessinger, 2000; Wells, 1999). EGF and TGFα are 

the most well characterized ligand for EGFR; they bind with extremely high affinity to the 

receptor, activating nearly seven key tyrosine residues in intracellular kinase domain of the 

receptor (Zhou et al., 1993). Upon ligand binding, inactive EGFR residing in caveolae and 

invaginated membrane microdomains dimerize and migrate into clathrin coated pits, where they 

are then internalized in an adaptin-dependent fashion. In the endosomal compartment, EGFR 

may be either degraded or recycled, depending upon ligand properties. EGF remains bound to 

EGFR even in late endosomes, earmarking the receptor for degradation. Unlike EGF however, 

TGFα dissociates from EGFR in a pH dependent manner, leading to recycling of receptor 

(French et al., 1995).  

In addition to EGF and TGFα, EGFR also binds betacellulin, amphiregulin, heparin-

binding EGF, epiregulin, and other virally encoded factors {Harris, 2003 #799(Citri and Yarden, 

2006; Jones et al., 1999). As mentioned earlier, independent researchers have shown that EGFL 

repeats of tenascin C or laminin-5 can also bind the receptor and activate it (Schenk et al., 2003; 

Swindle et al., 2001). In order to better understand the binding of such a variegated class of 
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ligands to EGFR, it is important to identify and assess the intra-molecular residue interactions 

between the receptor and its ligands, and recognize important structural binding motifs that may 

be required for ligand identification. 

As mentioned previously, both EGF and TGFα bind EGFR with affinities in the low 

nanomolar levels. Considerable work has been done in identifying important residues in EGF 

and TGFα that contribute to this high affinity. Mutational analysis indicates that His10, Tyr13, 

Leu26, Arg41 and Leu47 in EGF and corresponding residues in TGFα are extremely important 

for the binding of ligand to EGFR (Campion et al., 1993; French et al., 1995; Reddy et al., 

1996a; van de Poll et al., 1998). In addition, Tyr38, Gly40 and Arg45 seem to be important for 

endosomal binding of these ligands (French et al., 1995; Lenferink et al., 2000).  

High resolution crystal structures of both ligands bound to the extracellular domain of 

EGFR shed considerable light on critical receptor-ligand interactions (Garrett et al., 2002; Ogiso 

et al., 2002). Both EGF and TGFα have three loops, A-C, with each loop containing critical 

residues for interaction with EGFR. A number of notable residue interactions occur (for example 

Arg125 of EGFR with Glu27 of TGFα) that are specific to each ligand and contribute to overall 

binding of receptor to ligand. However, when observations from crystal structures for both 

ligands bound to EGFR are coalesced, three structurally conserved regions in EGFR that are 

crucial for ligands identification and binding can be identified that seem to be critical for high 

affinity ligands to bind EGFR (Figure 2).  
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Figure 2. Docking of EGF and TGFα onto EGFR in the ligand-binding pocket 

Stereo views show EGF (green) and TGFα (red) docked onto EGFR (yellow) at the ligand binding pocket. Important 

interactions between ligand and receptor have been indicated. Leu26 (Leu24 in TGFα) interacts with the 

hydrophobic pocket formed by Leu14, Leu69 and Leu98 of EGFR. Favorable hydrophobic interactions are also 

established between Leu47 of EGF (Leu47 in TGFα) and the pocket formed by Leu381, Val416 and Ile437 of 

EGFR. Arg41 of EGF (Arg42 in TGFα) anchors the ligand to the EGFR binding pocket by forming a high-affinity 

salt bridge with Asp354 of the receptor. 

 

 

Firstly, a hydrophobic pocket is formed in domain I by Leu14, Leu69 and Leu98 of 

EGFR that accommodates the conserved leucine in loop B of ligand (Leu26 of EGF and Leu24 

of TGFα). Secondly, another hydrophobic pocket is formed in domain III by Leu382, Phe412, 
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Val417 and Ile438 which interacts with the highly conserved leucine at the C-terminal end of the 

ligand near loop C (Leu47 in EGF; Leu48 in TGFα). Finally, a crucial and highly favorable 

hydrophilic interaction is established between Asp354 of EGFR and a highly conserved arginine 

in loop C of ligand (Arg41 in EGF; Arg42 in TGFα). These observations are well corroborated 

by numerous mutational analyses performed by researchers, a notable few of which were cited in 

the previous section, and others which were left out for brevity. We contend that the fulfillment 

of these three critical interactions with receptor would be defining factors for any peptide to 

qualify as a ligand for EGFR. Conversely, we also expect that any binding partner for EGFR 

would presumably establish at least one if not all of the aforementioned inter-residue contacts 

with the receptor.  

Although EGFL repeats of tenascin C and laminin in soluble form do have the capacity to 

bind and activate EGFR, it is not known how this interaction would occur, or what pathways 

might be triggered downstream of EGFR upon such stimulus. Since EGFL repeats of TN-C are 

significantly shorter in length as compared to prototypical ligands such as EGF, with truncations 

in loops A and B, and being part of the ECM severely restricts their mode of presentation, it is 

surprising that they even bind and activate EGFR. Also, such binding must have some 

physiological and functional relevance, given that TN-C and numerous other ECM proteins 

present these arrays of EGFL repeats that have been conserved through evolution. In this context, 

at least TN-C and few other ECM proteins have been found to exhibit expression patterns that 

coincide with EGFR production. Cutaneous wound healing is a process involving the expression 

of TN-C, laminin and EGFR, and may shed light on the physiological mode of action of EGFL 

repeats. 
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1.4 CUTANEOUS WOUND HEALING 

Cutaneous wound healing is a complex phenomenon, involving several soluble and insoluble 

factors, and requires the orchestration of distinct yet overlapping phases (Singer and Clark, 

1999). Upon wounding, the haemostatic phase initiates the healing response. A fibrin clot is 

formed by the infiltration of platelets that, in addition to forming an external covering over the 

wound area and a provisional matrix, also release a number of chemokines such as platelet 

derived growth factor (PDGF) and transforming growth factor β (TGFβ) which recruit 

macrophages and fibroblasts into the wound bed (Heldin C-H and B, 1996). Infiltrating 

neutrophils clear the wound of cellular debris and act as a non-specific antimicrobial response  

and recruit macrophages into the wound (Brown, 1995). In addition to macrophages, monocytes 

that have also arrived at the wound area transform into primary macrophages and clear the 

wound. A host of pro-inflammatory cytokines including interferon γ (INFγ), transforming 

growth factor beta (TGFβ) and chemokines such as TGFα, EGF and vascular endothelial growth 

factor (VEGF) are released that recruit fibroblasts and endothelial cells (Martin, 1997). 

Epithelialization, the next phase in wound healing, involves the involution of the epidermal 

layer, mediated by interactions between the receptors on the surface of epithelial cells and the 

provisional basement membrane made up of immature collagen (collagen I), vitronectin and 

fibronectin (Larjava et al., 1993). It is not fully understood how the involution of the epidermal 

layer occurs, but local release of growth factors (EGF, TGFα and keratinocyte growth factor) and 

increased expression of these growth factor receptors may be contributing factors (Abraham JA, 

1996; Werner et al., 1994). The granulation and neovascularization phases overlap the 

epithelialization phase, during which a huge influx of fibroblasts, macrophages and endothelial 

cells is observed in the wound bed (TK, 1980). During this phase, occurring typically between 
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days four and seven post initial injury, fibroblasts secrete ample amounts of extracellular matrix 

(ECM) components such as collagen and laminin, establishing a provisional matrix that 

facilitates fibroplasia and angiogenesis (Clark et al., 1995). Newly formed new capillaries 

invaginate the wound, providing nutrients and oxygen required for cell metabolism (Madri JA, 

1996). Growth factors continue to be expressed by macrophages, constantly stimulating 

fibroblasts to migrate and establish the growing stroma, and endothelial cells to develop mature 

blood vessels (Clark et al., 1982). During the remodeling phase, the provisional matrix is slowly 

replaced by highly collagenous scar tissue. The scar tissue is generated mainly thorough mature 

fibroblasts (myofibroblasts), which selectively produce small amounts of collagen over an 

extended period of time (Desmoulière A, 1996). In addition, myofibroblasts and endothelial cells 

release matrix proteinases that gradually degrade the provisional matrix. At the end of the 

remodeling phase, fibroblasts, endothelial cells and macrophages in the wound regress by 

undergoing apoptosis (Ilan et al., 1998). Angiogenesis ceases though the action of anti-

angiogenic factors such as angiostatin and components in the matrix such as thrombospondins 

(Folkman, 1997; Guo et al., 1997) and ELR-negative CXCR3 chemokines (Bodnar et al., 2006). 

Finally, the matrix is reorganized, leading to wound contraction and resolution. Due the 

formation of collagen bundles, the wound gradually contacts and gains tensile strength (Mignatti 

P, 1996). At the end of the resolution phase, the wound has healed completely; however it 

regains only 70-80% of the tensile strength of normal unwounded skin (Bailey et al., 1975). 

 

 

 

 12 



 

 

Figure 3. Phases in Cutaneous Wound Healing 

The schematic depicts the various overlapping phases of cutaneous wound healing. As mentioned, a number of 

growth factors, cytokines, chemokines and major ECM components. Of them, tenascin C is unique in its highly 

regulated spatiotemporal pattern of expression. Tenascin C is expressed at the leading edge of the healing wound 

during the epithelialization phase, secreted predominantly by myofibroblasts in the stroma. However, by the start of 

the remodeling phase, tenascin C is degraded, presumably through the action of various matrix metalloproteinases 

(MMPs) secreted during this phase.  

 

 

Tenascin C is interesting in that it has a unique expression pattern as compared to all the 

other major ECM components expressed during wound healing, including collagen, fibrin, 

laminin and fibronectin. In normal skin, TN-C expression is found to be at extremely low levels 

and appears diffusely through the dermal layer (Sakakura and Kusano, 1991). However, during 

wound healing, TN-C is found to be upregulated during phases requiring significant migration of 

cells, albeit it expression appears to be strictly regulated both spatially and temporally (Tran et 

 13 



al., 2004). For example, a marked increase of TN-C is observed only at the leading edge of 

migrating epithelial cells during the epithelialization phase. It is also overexpressed at the leading 

edge of infiltrating fibroblasts and endothelial cells during the initial stages of granulation and 

neovascularization (Phipps et al., 2002). However, as the remodeling phase progresses, TN-C 

levels diminish gradually, regressing to basal levels by the end of the remodeling phase (Tran et 

al., 2005). Although the functional aspect of TN-C in this context is not understood, this 

regulated expression pattern is unique as compared to other ECM molecules, and suggests a 

potential role for TN-C in regulating migratory events during its expression.    

With such a spatio-temporally regulated protein like TN-C, it would be interesting to 

delineate the role of EGFL repeats and how they modulate EGFR signal transduction pathways 

so as to contribute towards the overall effect that is observed with TN-C. Specifically, it is 

important to characterize the signal transduction pathway that could potentially contribute 

towards eliciting cell migration and proliferation through activation of EGFR via EGFL repeats. 

However, in order to do so, a complete understanding of the intracellular EGFR pathways is 

essential, and will pave the way for postulating the potential mode of action of EGFL repeats as 

part of TN-C in pathophysiological settings. 

1.5 THE EGFR SIGNAL TRANSDUCTION PATHWAY 

EGFR plays a crucial role in all the steps during cell migration and proliferation. As mentioned 

earlier, EGFR undergoes autophosphorylation upon ligand binding at various residues in the 

kinase domain causing homo or hetero-dimerization with other erbB family members (Wells, 

1989). Activated EGFR is quickly internalized into endosomes in a clathrin-dependent manner 
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(Jiang et al., 2003). The occupancy and kinase activity of the receptor are determining factors of 

whether EGFR is degraded in lysosomes or recycled to the cell surface for another round of 

activation. A myriad of signaling cascades are activated downstream of EGFR, resulting in 

migration, proliferation, cell survival, cell cycle progression and differentiation (Carpenter, 2000; 

Schlessinger, 2000; Yarden and Sliwkowski, 2001). We can compartmentalize EGF dependent 

signaling downstream of the EGFR into two major but discrete pathways – one involving signal 

transduction molecules that contribute significantly to migration and the other that leads 

predominantly to proliferation (Chen et al., 1994a; Chen et al., 1994b). This 

compartmentalization of signaling occurs because of the restricted availability of the two main 

substrates of EGFR, namely extracellular signal regulated kinse/mitogen activated protein kinase 

(ERK/MAPK) and phospholipase C gamma (PLCγ) that mediate proliferation and migration 

respectively(Chou et al., 2003; Chou et al., 2002; Haugh et al., 1999a; Xue and Lucocq, 1998) .  

1.5.1 The ‘Proliferation’ Cascade 

Mitogenesis is an important component of nearly all pathophysiological processes including 

wound healing and tumorigenesis. Growth factor mediated proliferation via EGFR occurs when 

these factors are present in the media for at least 10 hours during the G1 phase of cell division. In 

order for the cell cycle to progress into the S phase of cell division, kinase activity of EGFR is 

required (Chen et al., 1987; Glenney et al., 1988; Moolenaar et al., 1988). However, EGFR-

mediated mitogenesis seems to require only a threshold level of signaling via ERK/MAPK 

pathway downstream of EGFR over an extended period of time (Vieira et al., 1996). Although 

the sustained activation of ERK by endosomal EGFR seems to be important for potent 

mitogenesis, internalization deficient mutants of EGFR have also been shown to trigger 
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proliferation (Reddy et al., 1996a; Reddy et al., 1994; Reddy et al., 1996b). Thus, mitogenesis 

can be driven by surface or internalized EGFR.       

 

 

 

 

Figure 4. The EGFR ‘Proliferation’ Pathway 

Upon binding ligand, the intracellular kinase domain of EGFR is phosphorylated, leading to the activation of a 

number of intracellular molecules, including PLCγ1. However, PLCγ1 exerts its effects mainly through PIP2 which 

is found only at the plasma membrane. However, ERK can be phosphorylated by the Ras-Raf-MEK pathway from 

both the cell surface and via active EGFR in the endosomal compartment. Activation of intracellular ERK leads to 

robust phosphorylation of transcription factors ELK and p90RSK, which then translocate to the nucleus. Other 

transcription factors such as serum response element (SRE), c-fos, c-jun, and STATs are also activated and 

translocate to the nucleus where they initiate the process of proliferation.  
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The proliferation arm for EGFR signaling mainly includes the signaling from the 

ERK/MAPK pathway which is activated by the small GTPase p21ras through EGFR from both 

the surface and endosomal compartments (Figure 4) (Haugh et al., 1999a). Activated ERK then 

dimerizes and relocates to the nucleus phosphorylating E26-like protein 1 (Elk1), a 

transcriptional regulator belonging to the ETS family of oncogenes that influences the activation 

of c-fos and c-jun (Gille et al., 1995). In addition, active ERK also causes the phosphorylation of 

p90-subunit of the ribosomal S6 kinase protein (p90RSK), which then translocates to the nucleus 

and regulates the activity of transcription factor cAMP response element binding protein 

(CREB). Signal transducers and activators of transcription type 3 (STAT3) can be directly 

phosphorylated by EGFR and/or activated through intermediary kinases such as Src oncoprotein 

and Janus Kinase (JAK). Active STAT3 can then cause transcription of a number of cell cycle 

regulation genes including c-myc by direct translocation to the nucleus or activation of 

ERK/MAPK (Bowman et al., 2000) (Brunet et al., 1999; Hochholdinger et al., 1999; Jones and 

Kazlauskas, 2001).  

1.5.2 The ‘Migration’ Cascade 

Cell migration is a cyclic process, starting with cell polarization and protrusion in the direction of 

migration in response to a migration-promoting agent, followed by cell contraction and rear de-

adhesion (Horwitz and Webb, 2003; Ridley et al., 2003). During cell protrusion, lammelipodia 

and filopodia are stabilized by the formation of adhesion complexes via transmembrane integrin 

receptors linked to the cytoskeleton (Kamei et al., 1999). These adhesions also serve as traction 

sites for the cell as it contracts and moves forward with de-adhesion at the rear end completing 

the cycle (Friedl and Brocker, 2000). The cycle involves concerted action of a number of 
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molecules, synchronized in spatio-temporal manner. Active PLCγ1 is required for the Rho 

GTPase cell division cycle 42 (Cdc42) mediated polarization and formation of filopodium (Chou 

et al., 2003). Active Cdc42 and Rac are essential for defining the cell front (Etienne-Manneville 

and Hall, 2002; Srinivasan et al., 2003). Gelsolin, also activated by a PLCγ1 dependent pathway 

is required for cytoskeletal rearrangement and protrusion (Chen et al., 1996a; Chou et al., 2002). 

MLCK activation required for cell contraction is mediated by a protein kinase C delta (PKCδ) 

pathway (Iwabu et al., 2004). Activation of m-calpain by membrane associated ERK leads to 

cleavage of several focal adhesion proteins including focal adhesion kinase (FAK) and integrins, 

resulting in rear detachment (Glading et al., 2000b; Glading et al., 2002; Glading et al., 2001). 

The migration arm of EGFR signal transduction pathway involves PLCγ1, 

phosphotidylinositol 3-kinase (PI3K) and phosphotidyl inositol (4,5)-bisphosphate (PIP2) 

(Figure 5). Since PIP2 is restricted to the cell surface, cell motility is actuated by EGFR 

dependent mechanisms instantiated at or near the cell surface. Phosphorylated PLCγ1 hydrolyses 

PIP2 to form 2 second messengers – membrane bound diacylglycerol (DAG) and inositol 1,4,5 

triphosphate (IP3) which is released into the cytoplasm. DAG activates protein kinase C δ 

(PKCδ) which in turn activates myosin light chain kinase (MLCK) involved in cell contraction 

(Iwabu et al., 2004). PKCδ also attenuates EGFR signaling through a feedback mechanism 

(Chen et al., 1996a; Welsh et al., 1991). IP3 causes the release of intracellular calcium from the 

endoplasmic reticulum, stimulating a number of migratory pathways. PIP2 also binds to a 

number of actin modifying proteins such as profilin and gelsolin that reorganize the actin 

cytoskeleton (Carpenter and Ji, 1999; Chen et al., 1996b). PIP2 can also be activated by PI3K to 

form phosphotidyl inositol (1,4,5) trisphosphate (PIP3), which then activates a number of 

proteins that restructure the actin cytoskeleton. PI3K also regulates a number of other 

 18 



mechanisms aiding cell migration (Ridley et al., 2003). Active ERK at the cell surface 

phosphorylates m-calpain, an intracellular protease that cleaves focal adhesion at the rear of the 

cell (Glading et al., 2001).  

 

 

 

 

Figure 5. The EGFR ‘Migration’ Pathway 

The migration pathway downstream of EGFR is mainly triggered at the plasma membrane. Activated PLCγ1 

hydrolyzes surface-restricted PIP2 to release secondary messengers IP3 and DAG. PIP2 hydrolysis also releases 

several actin modifying proteins that, along with the IP3-driven calcium flux, lead to cytoskeletal reorganization. 

Also, PKC is activated which leads to cell contraction and also contributes to negatively regulate EGFR activation. 

On the other hand, pools of ERK at the cell surface are activated by Shc, leading to the activation of m-calpain. 

Active m-calpain cleaves focal adhesions that are linked to integrins, leading to rear de-adhesion.   
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The signaling pathways described above are with reference to high affinity EGFR ligands 

such as EGF and TGFα. It would be interesting to assess how these signaling pathways might be 

modulated in response to EGFL repeats of TN-C. Also, the overall biophysical response to 

EGFL repeat signaling could shed light on the possible function of these matrix-restricted 

peptides in vivo, and provide an explanation for the yet unknown role of TN-C in physiological 

and pathological scenarios that involves EGFR and its soluble ligands. 

1.6 SIGNIFICANCE - TUMOR BIOLOGY AND DEVELOPMENT 

Embryogenesis and development are processes that recapitulate some of the important cellular 

modalities that are observed during wound healing, in particular migration of different cell types 

into areas where cell involution is required (Burgess and Schroeder, 1979; Oligny, 2001). Not 

surprisingly then, an overexpression of TN-C is also observed during different phases of 

embryogenesis and organogenesis well documented in overall development, neuronal 

development in particular (Chiquet-Ehrismann et al., 1986; Porcionatto, 2006; Riou et al., 1992). 

Although the role of the FNIII repeats during organogenesis has been relatively well elucidated, 

the function of EGFL repeats has been thought to regulate interactions of other domains of TN-C 

with cell adhesion molecules (Jones and Jones, 2000a). However, given the capacity of EGFL 

repeats to bind EGFR, the EGFL repeats may very well play an alternative role by signaling 

select EGFR cascades, thus adding another dimension to their overall function and the function 

of proteins that present these repeats.  
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Migration is the most important aspect of cancer progression and metastasis. In order to 

metastasize, the primary tumor should be able to first transition from an epithelial to a 

mesenchymal phenotype, and then traverse to the destination tissue (Lee et al., 2006). In 

addition, an angiogenic response needs to be stimulated at the secondary site for the tumor to be 

established. Tenascin C has been well documented as a prognosis factor for metastatic tumors in 

a number of organs including breast, prostate, colon, etc. and has been found to be selectively 

upregulated selective at the mesenchymal margin, and has also been implicated in regulating 

epithelial-mesenchymal transitioning. Given that EGFR is upregulated in almost all metastatic 

tumors, the idea that EGFL repeats could modulate EGFR pathways in the context of metastatic 

tumorigenesis needs to be seriously considered and carefully evaluated. An elucidation of the 

binding mode of EGFL repeats and the identification of intracellular pathways that these repeats 

trigger downstream of EGFR may help in characterization of the ECM proteins that present these 

repeats in an evolutionarily conserved manner. 

1.7 SUMMARY 

Select EGFL repeats of human tenascin C and laminin have been shown to bind and activate 

EGFR. However, as compared to canonical soluble ligands such as EGF and TGFα, EGFL 

repeats are significantly truncated and probably bind as part of the extracellular matrix, thereby 

potentially restricting their mode of action. This distinguishes EGFL repeats from other ligands 

for EGFR, and these matrikines may have a mode of action that is distinct from other soluble 

ligands. Select EGFL repeats of tenascin C bind to EGFR with lower affinity, but the mode of 

action of these repeats has not been characterized. We hypothesize that 
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1. The low affinity of EGFL repeats is due primarily to an altered mode of binding to 

EGFR, driven by deletions and substitutions of key residues that bind to the receptor. 

2. This altered binding action of EGFL repeats leads to differential activation of signaling 

cascades downstream of EGFR as opposed to typical soluble ligands, leading to a 

distinct cellular response as compared to EGF.  

This work has broad implications for EGFL repeat signaling in numerous physiological and 

pathological processes that involve EGFR and tenascin C and other such ECM proteins that 

encode EGFL repeats. 
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2.1 ABSTRACT 

Select epidermal growth factor (EGF)-like (EGFL) repeats of human tenascin cytotactin 

(tenascin C) can stimulate EGF receptor (EGFR) signaling, but activation requires micromolar 

concentrations of soluble EGFL repeats in contrast to subnanomolar concentrations of classical 

growth factors such as EGF. Using in silico homology modeling techniques, we generated a 

structure for one such repeat, the 14th EGFL repeat (Ten14). Ten14 assumes a tight EGF-like 

fold with truncated loops, consistent with circular dichroism studies. We generated bound 

structures for Ten14 with EGFR using two different approaches, resulting in two distinctly 

different conformations. Normal mode analysis of both structures indicated that the binding 

pocket of EGFR exhibits a significantly higher mobility in Ten14-EGFR complex compared to 

that of the EGF-EGFR complex; we hypothesized this may be attributed to loss of key high-

affinity interactions within the Ten14-EGFR complex. We proved the efficacy of our in silico 

models by in vitro experiments. Surface plasmon resonance measurements yielded equilibrium 

constant KD of 74µM for Ten14, approximately three orders of magnitude weaker than that of 

EGF. In accordance with our predicted bound models, Ten14 in monomeric form does not bind 

EGFR with sufficient stability so as to induce degradation of receptor, or undergo EGFR-

mediated internalization over either the short (20min) or long (48h) term. This transient 

interaction with the receptor on the cell surface is in marked contrast to other EGFR ligands 

which cause EGFR transit through, and signaling from intracellular locales in addition to cell 

surface signaling.  
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2.2 INTRODUCTION 

EGFR belongs to the ErbB family of Type I receptor tyrosine kinases, and plays an integral role 

in regulating cellular functions (Wells, 1999; Wells, 2000). Active EGFR signals  from the cell 

surface and intracellularly as it is internalized; intracellular signaling is qualitatively  distinct 

from surface signaling and likely promotes proliferation over migration (Haugh et al., 1999a; 

Haugh et al., 1999b; Pennock and Wang, 2003). The activity of EGFR is shut off by 

dephosphorylation when unliganded, and over a longer term by lysosomal degradation secondary 

to internalization. Thus, persistence and subcellular localization of receptor occupancy would 

impact cellular response from EGFR activation. 

EGFR is activated by the (EGF)-like (EGFL) family of soluble ligands which includes 

EGF, transforming growth factor α (TGFα), heparin-binding EGF, amphiregulin, and a number 

of virally encoded factors (Citri and Yarden, 2006). These peptides are characterized by an 

EGFL domain consisting of a sequence distribution of six cysteines that form disulfide bridges, 

giving them a tight and closely packed structure (Carpenter and Cohen, 1990). They bind the 

extracellular (EC) domains I and III of EGFR with very high affinity (Kim et al., 2002); the 

physiological affinities of EGF and TGFα for EGFR are in the very low nanomolar range (Wells, 

1999). EGFL domains are present in other proteins families, including a number of extracellular 

matrix (ECM) proteins (tenascin, fibrillin 1, del1, laminin, thrombospondin 1), and are arranged 

typically as an array of sequential EGFL repeats  (Hohenester and Engel, 2002). These EGFL 

repeats have disulphide bonds similar to EGF, and this intra-molecular cross-linking of the 

cysteines is essential for function (Zanuttin et al., 2004). With few exceptions, little is known 

about the function of these matrix EGFL repeat domains.  
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Human tenascin C is an ECM protein re-expressed during normal tissue regeneration, and 

implicated in tumor progression (Tsunoda et al., 2003). Interestingly, its expression profile 

coincides with active cell migration and proliferation, properties similar to those elicited by 

EGFR activation (Chen et al., 1994a; Jones and Jones, 2000a). It is a hexabrachion with an array 

of 84 full and 6 half EGFL repeats, a fibronectin-type III array and a terminal fibrinogen globe 

(Jones and Jones, 2000a). Recently, we demonstrated that select EGFL repeats of human 

tenascin C (e.g. the 14th repeat, Ten14), when presented in soluble form, can signal through 

EGFR in a receptor-dependent fashion (Swindle et al., 2001). However, micromolar 

concentrations of Ten14 were required to elicit responses comparable to those observed with 

EGF in the nanomolar range. A similar function has been reported for EGFL repeats from 

laminin V (Schenk et al., 2003).  

The finding that EGFL repeats can signal through a classical receptor such as EGFR 

invited attention on a new class of receptor ligands, matrikines (Schenk and Quaranta, 2003; 

Tran et al., 2004), that are encoded as part of larger matrix components. The significantly lower 

affinities of these ligands would reflect the matrix-constrained situation of their physiological 

environment, in which limited diffusion and multimeric presentation would result in avidities 

approximately three orders of magnitude greater than individual soluble affinity constants. 

However, how this low affinity binding would be accomplished at the submolecular level has 

evaded explanation.  

We hypothesized that the low affinity of Ten14 for EGFR is driven by weak inter-residue 

contacts with the receptor due to deletions and substitutions of key residues in the EGFL –

binding domain of Ten14 required for tight binding, resulting in a more flexible mode of 

interaction that could accommodate a constraining environment. EGFR binding of ligands is 
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usually accompanied by conformational changes in the complex that accommodate/optimize the 

interactions in the bound form (De Crescenzo et al., 2000). Our postulate assumes an 

enhancement in this type of conformational flexibility and its persistence even after binding. 

Structural analysis of the complex showed that though Ten14 lacks the C-terminal loop 

present in EGF and TGFα found to be important for high affinity interaction with EGFR (Kramer 

et al., 1994), other structural contacts are established that may be sufficient for activation of 

receptor. Accordingly, a much weaker KD and increased mobility for the Ten14-EGFR 

interaction is observed as compared to EGF. As a result, Ten14 is neither internalized nor 

degraded over short and long term signaling via EGFR, and leads to compartmentalization of 

EGFR at the cell surface. This may lead to altered biochemical and biophysical signaling 

responses downstream of the receptor. An effort into characterizing the interaction of EGFL 

repeats with cell surface receptors has not been undertaken before, and elucidation of 

mechanistics of EGFL repeat-mediated signaling will allow for a more complete understanding 

of this new class of low-affinity growth factors embedded within the ECM. 

2.3 MATERIALS AND METHODS 

2.3.1 Structure Prediction for Ten14 

Homology modeling and ab initio techniques were used to predict the 3D structure of Ten14. 

The chains corresponding to the active conformations of TGFα (PDB code IMOX-chain C 

(Ogiso et al., 2002)) and EGF (PDB code 1IVO-chainC (Garrett et al., 2002)) were chosen as 

templates. Sequence analyses for Ten14, TGFα and EGF were first performed using 
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CLUSTALW (Pearson and Lipman, 1988). Model structures were obtained using three servers – 

Robetta (Kim et al., 2004), ESyPred3D (Lambert et al., 2002)and Swiss-Model (Schwede et al., 

2003). Four queries were submitted to Robetta: Ten14 without a template (ab initio), Ten14 with 

TGFα as the template, Ten14 with EGF as the template and Ten14 with TGFα-EGFR as the 

template. In all, 25 models were obtained – ten for Ten14 without template and five each for the 

other three prediction queries with templates. For predictions with ESyPred3D and Swiss-Model, 

one model was obtained from each server with TGFα as template, resulting in a total of 27 

models for Ten14. Distance root-mean-square deviations (dRMSD) between each model and the 

known TGFα and EGF structures were then calculated The Ten14 model with the lowest 

dRMSD was chosen for docking with EGFR. 

2.3.2 Circular Dichroism Measurements 

CD spectra for Ten14 were recorded in 10mM phosphate buffer, pH 7.4, using an AVIV 202 

series CD spectrophotometer (Lakewood, NJ) held at 25oC with a thermostatically controlled cell 

holder in a fused quartz cell with a path-length of 0.1cm. For protein concentration of 

0.18mg/ml, ten spectra measured every 1nm in the far UV-region (185 – 280nm) were averaged. 

CD spectra were subjected to subtraction from buffer blank, normalization and smoothing, using 

the AVIV data manipulation software. Analysis of the data was carried out with the program 

CDSSTR, which used seven reference datasets, and is available through the DICHROWEB web 

server at www.cryst.bbk.ac.uk/cdweb/html/home.html (Lobley et al., 2002; Whitmore and 

Wallace, 2004). 

 28 

http://www.cryst.bbk.ac.uk/cdweb/html/home.html


2.3.3 Docking of Ten14 with EGFR 

Ten14 was docked onto EGFR in two binding conformations. EGF-EGFR and TGFα-EGFR 

crystal structures were used as reference. For Structure I, we used the results from ‘Consensus’ 

server (Prasad et al., 2003; Prasad et al., 2004), which indicated that residues 21 through 31 in 

Ten14 had good overlap with active EGF and TGFα. Hence, we superimposed the co-ordinates 

of residues numbered 21 though 31 from Ten14 (the model with lowest dRMSD was chosen) 

onto corresponding residues in TGFα, in addition to matching the corresponding cysteines in 

Ten14 and TGFα. The remaining residues were transposed so as to maintain the overall structure 

of Ten14. For Structure II, Ten14 was docked to EGFR in a manner so as to allow for the 

anchoring interaction of Leu12 of Ten14 with the hydrophobic pocket in domain I of EGFR, 

determined by Leu14, Leu69 and Leu98 of receptor. This transposition of the entire Ten14 

structure also led to a favorable interaction between Arg19 of Ten14 and Asp354 of EGFR (a 

residue forming a key salt bridge with EGF and TGFα). Finally, with only the backbone atoms of 

Ten14 and all atoms of EGFR fixed, the docked structure was minimized using CHARMM. 

Structures I and II for Ten14-EGFR were then analyzed using the Gaussian network model 

(GNM) and ‘FastContact’.   

2.3.4 Structure Evaluation 

The binding dynamics of the ligands complexed with EGFR were analyzed using the iGNM 

database and server (http://ignm.ccbb.pitt.edu/). iGNM generates residue mobilities in different 

modes of motion accessible near native conditions. We examined the most cooperative (lowest 

frequency) modes for EGFR structure alone (chain A from 1MOX), and for the complexes of 
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EGFR with EGF (chains A and B from 1IVO), with TGFα (chains A and B from 1MOX) and 

with Ten14 (Structures I and II). The slow mode fluctuations for receptor alone and with ligand 

were visualized using both color-coded ribbon diagrams and mobility distribution curves 

(eigenvectors) as a function of residue index.  

 The key residues in ligand and receptor that contribute towards favorable and unfavorable 

interactions were identified using the software ‘FastContact’ (Camacho and Zhang, 2005). This 

software identifies interactions between ligand and receptor residues that contribute maximally 

towards overall electrostatic and desolvation energies, and total binding energy. The resulting 

high affinity interactions between both structures of Ten14-EGFR were compared against those 

occurring in the EGF-EGFR and TGFα-EGFR complexes. 

2.3.5 Surface Plasmon Resonance (SPR) Analysis  

Ten14 binding kinetics was examined by SPR using the BIAcore 3000 system. Expression and 

purification of Ten14 was performed as described previously (Swindle et al., 2001). 

Recombinant human EGF (hEGF) (BD Biosciences, Bedford, MA) was used as the control 

analyte. The Ten14 and hEGF runs were performed on separate chips; each experimental series 

was repeated. For both runs, 25µg/ml of recombinant EC domain of EGFR (EGFR-ED) 

(Research Diagnostic Inc., Flanders, NJ) in 10mM sodium acetate (pH 5.0) was cross-linked to a 

CM5 sensor chip surface using the EDC/NHS coupling method (Amine coupling kit, BIAcore 

Inc., Uppsala, Sweden), resulting in immobilizations of ~7000 resonance units (RUs) of EGFR-

ED for Ten14 studies and ~2500 RUs for hEGF studies. Separate flow cells from each chip 

derivatized without EGFR-ED were used as control. For Ten14, sterile 0.22µm filtered 

phosphate buffered saline (PBS) was used as the running buffer and 10mM Glycine-HCl, pH 3.0 
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(Regeneration kit, BIAcore Inc., Uppsala, Sweden) was used for regeneration of the chip surface. 

Increasing concentrations of Ten14 (1.88, 3.75, 7.5, 15 and 30µM) or hEGF (0.03, 0.06, 0.125, 

0.25, 0.5, 1, 3, 10µM) were then injected into their respective flow cells. For each concentration 

of Ten14, 30min of association, dissociation and regeneration cycles were used, all at a flow rate 

of 5µl/min. Increasing concentrations of human EGF was prepared in sterile HBS-EP buffer 

(BIAcore Inc., Uppasala, Sweden), and injected over the surfaces at flow rate of 30μl/min, with a 

10min association pulse and 15min of dissociation, without the need for a regeneration step. The 

sensograms obtained for each ligand concentration for all runs were graphed and analyzed for 

steady state binding using the BIAEvaluation software (BIAcore Inc., Uppsala, Sweden). 

2.3.6 Internalization and Depletion Assays 

For all in vitro experiments, NR6WT fibroblasts expressing ~100,000 human EGFR/cell were 

cultured and maintained as described previously, and quiesced in medium containing 0.5% 

dialyzed serum (Chen et al., 1994a; Wells et al., 1990). Depletion assays were performed by 

incubating quiesced NR6WT cells in medium containing various concentrations of murine EGF 

(mEGF) or Ten14. Cells were lysed and growth factor concentrations determined for time 0 and 

48h via immunoblotting using anti-Xpress™ antibody (Invitrogen, Carlsbad, CA). To measure 

ligand internalization, quiesced NR6WT cells were incubated in binding buffer at 37°C. I125-EGF 

(0.6nM) and I125-Ten14 (100nM) were introduced for varying time points at 37°C. After 

washing, cell-surface associated ligand was removed with stripping buffer (HCl, pH 2.0). Cells 

were then lysed with 1N NaOH. Internalization was measured as counts per minute (CPM) on a 

Packard 5005 Cobra Gamma Counter. To measure EGF receptor internalization and degradation, 

mEGF (1nM) and Ten14 (2µM) were introduced into the media at various time points at 37°C. 
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Samples were collected and total EGFR levels were determined using immunoblotting utilizing 

the monoclonal EGFR antibody (BD Transduction Labs, San Jose, CA). Equal loading was 

assured using the anti-GAPDH antibody (Abcam Inc. Cambridge, MA). Relative densitometric 

values were derived with NIH image shareware v1.63 and Adobe Photoshop. Each experiment 

was repeated at least twice. 

2.3.7 Immunofluorescence Assays  

To assess localization of active EGFR, 10,000 NR6WT cells quiesced on glass coverslips and 

treated with increasing concentrations of mEGF (10nM, 1nM) or Ten14 (1µM, 0.1µM, 0.01µM) 

for 30min. After washing with cold PBS, cells were fixed in 3% paraformaldehyde for 30min 

and lysed for 30min with buffer containing 1% triton X-100, 1mM PMSF and 1µg/ml aprotinin, 

followed by blocking in 5% BSA. In order to assess the localization of total versus 

phosphorylated EGFR, cells were incubated for 3h at room temperature in a mixture of rabbit 

polyclonal anti-EGFR antibody (Santa Cruz Biotech., Santa Crux, CA) and mouse monoclonal 

phospho-EGFR antibody (Upstate, Chicago, IL), both at a final concentration of 5µg/ml. After a 

brief wash in PBS containing 0.5% BSA, coverslips were incubated in a mixture of Alexa Fluor 

647 anti-mouse secondary antibody, Alexa Fluor 488 anti-rabbit secondary antibody (both at 

1µg/ml) and 25µg/ml propidium iodide at room temperature for 30min. In order to assess the co-

localization of ligand and receptor, slips treated with 1µM Ten14 or 10nM mEGF were 

incubated with a mixture of mouse monoclonal anti-Xpress™ antibody(Invitrogen, Carlsbad, CA) 

and rabbit polyclonal anti-EGFR antibody, followed by appropriate secondary antibodies. After a 

last wash, the slips were washed and mounted onto glass slides using gelvatol. After overnight 

drying, the slides were imaged using a Zeiss Axioplan confocal laser-scanning microscope, with 
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each one imaged simultaneously for all channels. Each image was scanned along the Z-axis in 7-

10 sectional planes with 0.43µm steps (512x512 pixels per sectional plane). Images were 

collected and analyzed using Adobe Photoshop ver. 6.0. All RGB images were first pasted onto a 

canvas and RGB levels were adjusted from 0 to 128 bits achieve an optimal signal to noise ratio. 

Individual channel images were then separated and pasted separately onto another canvas to 

display green, red, and composite images.  

2.4 RESULTS 

2.4.1 Predicted Structure for Ten14 Conforms to Other EGFR Ligands 

Ten14 shares low but adequate sequence homology with EGF (25%) and TGFα (32%) for 

homology modeling techniques (Figure 6A). Of the 27 models generated, the best model was 

selected from dRMSD calculations based on inter-residue distances between Cα atoms of 11 

conserved residues: Cys5, Pro6, Cys9, Gly13, Cys15, Cys20, Cys22, Gly25, Tyr26, Gly28 and 

Cys31 (numbers refer to residue number in Ten14 sequence; corresponding residues were 

selected from EGF and TGFα as shown in Figure 6A). The dRMSD value for the selected model 

was less than 1Å when compared to EGF and TGFα (Table 1). 

 

 

Table 1. dRMSD Values Between Templates and the 27 Predicted Models for Ten14 

We generated 27 models using three protein structure prediction servers – Robetta, Swiss-Model and EasyPred3D. 

In all, 27 models were obtained using either no template (ten models using Robetta), or TGFα (five models using 

Robetta and one each from Swiss-Model and EasyPred3D), or EGF (five models using Robetta), or crystal structure 
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of EGFR with bound TGFα as templates (five models using Robetta). ClustalW was first used to identify residues in 

Ten14, TGFα and EGF that were conserved based on sequence (Figure 6A). The distance Root Mean Square 

Deviation (dRMSD) analysis was performed on each model for Ten14 against both TGFα and EGF for the 11 

conserved residues. The structures were rank ordered starting with the structure that had the lowest dRMSD. The 

table shows that the Ten14 models obtained with Robetta using TGFα as template yielded the best scores, including 

four of the top five structures predicted. The EasyPred3D prediction was also consistent with this set of results, 

scoring second best overall (rank two – in italics). 

 

 

 

Ten14 
Model 
Number 

Template For 
Prediction 

RMSD 
Vs.  
TGFα 

Ten14 
Model 
Number 

Template For 
Prediction 

RMSD 
Vs. EGF 

1 TGFα 0.804 1 TGFα 0.831 
2 TGFα 1.091 2 TGFα 1.176 
3 TGFα 1.103 3 TGFα 1.230 
4 TGFα 1.576 4 TGFα 1.753 
5 TGFα 1.643 5 TGFα 1.833 
6 EGF 2.180 6 EGF 2.188 
7 EGF 3.012 7 EGF 3.125 
8 EGF 3.330 8 EGF 3.538 
9 EGF 3.479 9 EGF 3.589 
10 TGFα-EGFR 3.676 10 TGFα-EGFR 3.800 
11 EGF 3.927 11 EGF 3.923 
12 NONE 4.026 12 NONE 4.215 
13 NONE 4.036 13 NONE 4.230 
14 TGFα-EGFR 4.233 14 TGFα-EGFR 4.372 
15 NONE 4.880 15 NONE 4.983 
16 NONE 4.904 16 NONE 4.989 
17 NONE 5.018 17 NONE 5.119 
18 NONE 5.357 18 NONE 5.461 
19 NONE 5.385 19 NONE 5.506 
20 NONE 5.570 20 NONE 5.706 
21 NONE 5.821 22 TGFα-EGFR 5.818 
22 TGFα-EGFR 5.832 24 TGFα-EGFR 5.878 
23 NONE 5.860 21 NONE 5.909 
24 TGFα-EGFR 5.897 23 NONE 5.993 
25 TGFα-EGFR 6.045 25 TGFα-EGFR 6.026 
26 TGFα 8.149 26 TGFα 8.112 
27 TGFα 8.155 27 TGFα 8.122 
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Ten14 is predicted to be composed of an anti-parallel β-hairpin encompassing the six backbone 

cysteines and an N- and C-terminal loop (Figure 6B). This agrees well with the experimentally 

determined secondary structure for soluble Ten14 in CD studies, which indicates that soluble 

Ten14 is composed of 27% β-sheet and only 1% α-helix (Figure 6C). As CD is particularly 

powerful for the prediction of α-helices (Johnson, 1990), our structural predictions for Ten14 are 

very compelling for lack of helical content. Also, binding geometry of the six cysteines of Ten14 

agrees well with EGF and TGFα, in addition to residues in the beta-sheet region (Fig. 6B). As 

this binding is crucial for activity of EGFL repeats of tenascin C, we believe that the predicted 

Ten14 structure represents the functional form of the native soluble monomer (Zanuttin et al., 

2004). 
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Figure 6. Structural Modeling of Ten14 

A. Multiple sequence alignment indicates that Ten14 has 25% sequence homology with EGF and 32% with TGFα; 

EGF and TGFα have 38% sequence homology. The six cysteines of Ten14 align with those of EGF and TGFα in 

addition to Pro6, Gly13, Gly25, Tyr26 and Gly28 of Ten14. Note however that the conserved arginine (Arg42 in 

TGFα) corresponds to an oppositely charged (aspartate) residue in Ten14.  

B. Ten14 is composed of an anti-parallel β-hairpin, with six cysteines forming the disulphide bridges in 1-3 (Cys5-

Cys15), 2-4 (Cys9-Cys20), and 5-6 (Cys22-Cys31) orientation.  

C. Deletions at both N- and C-terminal regions make Ten14 significantly shorter compared to EGF and TGFα. 

Nevertheless, there is close overlap in the position of the six cysteines for all three structures.  
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D. Analysis using CDSSTR yielded a best fit (pink dotted) for averaged Ten14 CD experimental spectra (blue) with 

a NRMSD of 0.04. Ten14 is composed mainly of β-sheet and β-turn, with negligible α-helix content, in excellent 

agreement with the modeled Ten14 structure. 

 

2.4.2 Ten14 May Dock Onto EGFR in Alternative Structural Conformations 

Ten14 binds to EGFR in or near the same region as EGF since Ten14 binding was competed by 

EGF, and an antibody that blocked EGF binding also blocked Ten14 (Swindle et al., 2001). As 

such, we modeled Ten14 binding to EGF/TGFα-binding pocket of EGFR (Figure 7A). Rigid-

body docking of Ten14 was performed using two methodologies based on distinct underlying 

principles, yielding two complexes (Structures I and II, Figure 7). Structure I was generated on 

the intuitive assumption that if an unknown ligand shares sequence and structure homology with 

a known ligand in regions that directly interact with its receptor, the unknown ligand will most 

likely bind the receptor in a fashion similar to the known ligand. Hence, we first identified 

structurally conserved regions between Ten14, EGF and TGFα using the Consensus server 

(http://structure.bu.edu/cgi-bin/consensus/consensus.cgi). Consensus yields high-quality 

alignments for comparative modeling and identifies the alignment regions reliable for copying 

from a given template, even under low target-template identity. With maximum confidence on a 

scale of 0-9 (Table 2), the Cα atoms of residues 20-31 of Ten14 were superimposed onto the 

corresponding TGFα residues in the ligand-binding pocket of TGFα-EGFR structure, with 

transposition of the other residues (Figure 7B). 
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Table 2. Consensus Results for Direct Overlap of Ten14 with EGF and TGFα 

The Consensus server was used to identify the residues in Ten14 that were conserved both in sequence and structure 

as compared to EGF and TGFα. The 3-dimenisional coordinates for the selected Ten14 structure, TGFα and EGF 

(chains C of 1MOX and 1IVO, respectively).were submitted to the Consensus server. A consensus is generated for 

each residue of the query (Ten14) with the template (TGFα and EGF), and the degree of consensus both structurally 

and sequentially is graded on a scale of 0 though 9, with 0 for minimum consensus and 9 for maximum. The results 

for Ten14 are summarized in the table. As shown, residues 20 through 31 (indicated in italics with confidence level 

of 9) rank highest, and could be transposed to structurally align with the corresponding residues in TGFα and EGF. 

This allowed us to effectively dock Ten14 to EGFR in the first conformation (Structure I). Residues 17-19 in Ten14 

also had a maximum confidence level of 9 when compared to TGFα, but were not chosen because they did not rank 

as well when compared with EGF. 
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Confidence 

Level 
Confidence  

Level Ten14 TGFα  
Overlap 

EGF  
(0-9) 

Ten14 Overlap (0-9) 
G1 H4 1 D8 E5 3 
Q2 F5 1 C9 C6 3 
H3 N6 1 N10 S9 3 
S4 D7 1 N11 H10 3 
C5 C8 6 L12 D11 3 
P6 P9 6 G13 G12 3 
S7 D10 6 Q14 Y13 3 
D8 S11 6 C15 C14 3 
C9 C21 6 V16 L15 3 
N10 R22 6 S17 H16 3 
N11 F23 6 G18 D17 3 
L12 L24 6 R19 A30 6 
G13 V25 6 C20 C31 9 
Q14 Q26 6 I21 N32 9 
C15 E27 6 C22 C33 9 
V16 D28 6 N23 V34 9 
S17 K29 9 E24 V35 9 
G18 P30 9 G25 G36 9 
R19 A31 9 Y26 Y37 9 
C20 C32 9 S27 I38 9 
I21 V33 9 G28 G39 9 
C22 C34 9 E29 E40 9 
N23 H35 9 D30 R41 9 
E24 S36 9 C31 C42 9 
G25 G37 9    
Y26 Y38 9    
S27 V39 9    
G28 G40 9    
E29 A41 9    
D30 R42 9    
C31 C43 9    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We modeled Structure II based on two observations: that the leading interaction 

responsible for molecular recognition (Rajamani et al., 2004) for both EGF and TGFα ligands 

corresponds to two ligand leucines binding to the same two hydrophobic pockets in EGFR, and 

that the leading salt bridge for both ligands involves Asp354 (Figure 2). These interactions were 

missing in Structure I. In Structure II, we not only were able to accommodate the single leucine 

of Ten14 (Leu12) in one of the hydrophobic pockets in EGFR, but the model complex also 
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formed a salt bridge between Arg19 and Asp354 (Figure 7C). Hence, the binding modes of EGF, 

TGFα, and Ten14 are quite homologous. We note that Structure II does not fulfill a second salt 

bridge present in EGF and TGFα (see Table 3), thus missing at least a third of the binding energy 

relative to these complexes. 

 

 

 

 

Figure 7. Docking of Ten14 with EGFR  

A. Chain A of 1MOX shows the ligand binding pocket of active EGFR. Leucines 14, 69 and 98 form an important 

ligand-dock site in domain I and Asp354 is involved in a crucial interaction with ligand in domain III. Both EGF and 

TGFα bind the receptor in this pocket. An additional interaction between Leu47 of TGFα with receptor has been 

shown in Figure 2. 
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B. Structure I of Ten14 (blue) docks to EGFR in the binding pocket. This docking was performed by overlap of the 

C-terminal region of Ten14 with the corresponding motif in TGFα (red).  

C. Structure II represents an alternative conformation, where Leu12 and Arg19 (underlined italicized) of Ten14 

interact in a similar fashion as TGFα, forming contacts with the leucine pocket and Asp354 of EGFR respectively. 

 

2.4.3 GNM Analysis Suggests High Mobility of the EGFR-Ten14 Complexes  

GNM calculations were performed to assess the collective dynamics of the ligand-receptor 

complexes. With GNM, the complex is modeled as an elastic network, the nodes of which are 

the α-carbons and the connectors (between all pairs of residues located within a cutoff distance 

of 8Å) account for the equilibrium interactions that stabilize the native fold (Bahar, 1999; Bahar 

et al., 1997; Bahar and Jernigan, 1998; Demirel et al., 1998; Yang and Bahar, 2005). We used the 

iGNM web server for global mode analysis EGFR with or without ligand (Yang et al., 2005).  
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Figure 8. GNM Analysis for Ten14 Bound to EGFR Suggests Weak Binding 

The figure shows the distribution of fluctuations in the slowest modes for EGFR structure alone, and of the 

complexes TGFα-EGFR, Ten14-Structure I EGFR and Ten14-Structure II EGFR. The curves represent the 

normalized mobility of each residue in the complex (Y-axis) as a function of residue index (X-axis). At the ligand-

binding pocket entrance encompassing residues 10-40 (Box 1) and 350-370 (Box 2), EGFR alone (yellow) has 

considerably higher mobility than EGFR bound to TGFα (red), while the mobility in the Ten14-bound forms (blue 

and purple) is comparable to the unbound forms. This comparison confirms that these regions involve stable and 

strong contacts with EGFR in the case of TGFα binding, which are either lost or weaker in the Ten14-bound form. 

Also, Ten14 ligand in both conformations is much more mobile than TGFα (right terminal portion of the curves). 

 

 

Our analysis shows that the ligand binding pocket of EGFR between domains I and III is 

highly mobile in absence of ligand, allowing easy access and local rearrangements to 
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accommodate ligand binding, as expected from experiments (De Crescenzo et al., 2000) (Figure 

8, Figure 9). The ability of receptors to undergo conformational movements that facilitate 

substrate-binding is consistent with our recent examination of intrinsic mobilities of proteins near 

their substrate binding sites (Tobi and Bahar, 2005).GNM analysis of collective dynamic for the 

TGFα-EGFR and EGF-EGFR confirmed that a very stable interaction is established for both 

EGF and TGFα with EGFR, i.e. the mobilities of both ligands are significantly suppressed, 

indicating that both ligands bind with high affinity to the receptor as expected (Figure 8, Figures 

9B and 9C). However, in both Ten14-EGFR structures, Ten14 is found to be much more mobile 

in the bound form than classical EGFR ligands (Figure 8, Figures 9D and 9E). As evidenced by 

the mobility plots for EGFR complexed with the ligands, differences exist in the mobility of 

residues near the ligand-binding pocket (Figure 8) (Also see Movies 1 (EGFR alone), 2 (EGF-

EGFR), 3 (TGFα-EGFR), 4 (Ten14_Structure I-EGFR) and 5 (Ten14_Structure II-EGFR)).The 

curves represent the normalized distribution of mobilities in the most cooperative (slowest) 

modes of motions. Regions near the ligand-binding pocket, (Boxes 1 and 2) are much more 

mobile in the Ten14-EGFR complexes (blue and purple) compared to the TGFα- (red) bound 

forms. Likewise, the terminal portions of the curves, detailing the mobility of the ligand residues, 

clearly indicate the significantly higher flexibility of Ten14 compared to TGFα for both 

structures, albeit the binding of Structure II to EGFR is more stable than Structure I. 
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Figure 9. GNM Ribbons for Ligands Bound to EGFR  

Color-coded ribbon representations of the most cooperative (lowest frequency) modes of equilibrium fluctuations 

for EGFR in the unbound form (A), for EGF-EGFR complex (B), TGFα-EGFR complex (C), and for the predicted 

Ten14-EGFR complexes in both conformations (D&E) were generated using the internet based Gaussian Network 

Model (iGNM) server. The ribbon structures are colored coded from blue to red, with blue for regions with 

maximum stability, red for maximum mobility, and green as intermediary. EGFR alone without ligand is very 

mobile near the ligand binding pocket between domains I and III (A) , but is stabilized by a high affinity interaction 

with TGFα (B) and EGF (C) – this can be inferred by the shift from red in the ligand binding pocket of EGFR alone 

(A) to mostly blue in the bound receptor structure (B & C). Ten14 binds with a relatively lower affinity in both 

structural conformations I and II, resulting in higher mobility of the complex in the binding pocket of EGFR (green 

in D and E). Though Arg19 in Structure II seems to favorably interact with Asp354 (Box II in E), the overall 

structure is still fairly unstable, indicated by green in the structure. 
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2.4.4 Analysis of EGFR-Ten14 Interactions 

We analyzed the interface between Ten14 and EGFR using ‘FastContact’, a program that 

computes the relative free energy of receptor and ligand residue contacts by summing 

electrostatic interactions and desolvation potentials that encapsulate hydrophobic interactions, 

the self-energy change upon desolvation and side chain entropy loss. Stronger interactions 

between ligand and receptor are manifested by lower (more negative) electrostatic and 

desolvation potentials. However, FastContact only accounts for inter-molecular contacts, and 

does not estimate differences in configurational entropy.  Analysis of EGF-EGFR, TGFα-EGFR 

and Structures I and II of Ten14-EGFR complex yielded total electrostatic (ΔE) and desolvation 

energy potentials of -27.68 and -7.1 kcal/mol respectively for EGF-EGFR; -34.72 and -9.35 

kcal/mol for TGFα-EGFR; -6.72 and 1.51 kcal/mol for Structure I, and -23.58 and -1.51 kcal/mol 

for Structure II of Ten14-EGFR. We emphasize that these are only relative energies - figuring in 

the error contributions arising from conformational entropy of the ligands and errors due to 

inherent shortcomings in the computation of binding energies using FastContact would 

significantly reduce the differences we observe with in silico binding energies, especially with 

EGF and TGFα. However, these estimates strongly suggest that Structure I, the model based on 

the same binding mode as EGF-EGFR, is not a good candidate for the complex. On the other 

hand, even after accounting for the aforementioned errors, Structure II recovers only a part 

(maybe about two thirds) of the affinity observed for EGF and EGFR, which may result in about 

a significant reduction in Ten14 affinity for EGFR with respect to EGF.  
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Figure 10. Interactions between Ten14 and EGFR  

Stereo views of two important sets of interactions for both conformations of Ten14 (blue on top and purple on 

bottom) with EGFR (yellow ribbon) were generated using MOE.  

A. Interactions between Ten14-Structure I EGFR include a high-affinity salt-bridge between Lys13 of EGFR and 

Glu29 of Ten14. The side chains of the two residues are only 3 Å apart. This interaction is energetically much more 

favorable than the corresponding interaction between EGF and TGFα (See Table 3). Arg19 of Ten14 and Tyr45 and 

Gln16 of EGFR stabilize the binding of Ten14 to EGFR. This interaction buries Leu14 of EGFR and restricts it from 
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solvent accessibility. Also, a potential interaction may be possible between Leu12 of Ten14 and a pocket formed on 

the receptor by Leu324 and Leu347.  

B. For Structure II of EGFR-bound Ten14, Leu12 of Ten14 sits in the hydrophobic pocket formed by Leu14, Leu69 

and Leu98 of EGFR. This coupling leads to interaction of Arg19 with Ten14 with Asp354 of EGFR. Note also that 

Asp30 of Ten14 interacts with Arg125, a key residue for the TGFα-EGFR interaction (See Table 3). 

 

 

Detailed examination of the structures reveals that the highly attractive interactions 

between Asp345-Arg42 (Arg41 in EGF), Glu90-Lys29 (Lys28 in EGF), Lys464-Ala50 (Trp49 in 

EGF) and Arg125-Glu27 (Asp27 in EGF) between EGFR and the ligands EGF or TGFα are 

absent in the case of Ten14-Structure I (See Table 3). However, for Structure I, an important salt 

bridge between Lys13 of the receptor and Glu29 of Ten14 is formed (Figure 10A). This 

interaction is energetically more favorable for Ten14 as compared to those for EGF and TGFα 

(Table 3). Also, favorable electrostatic interactions take place between Arg19 of Ten14 and 

Gln16 and Tyr45 of EGFR, shielding the hydrophobic Leu14 of EGFR and stabilizing the 

binding of Ten14 to EGFR (Figure 10A). For Structure II, a number interactions are 

recapitulated in Ten14 that exist in EGF and TGFα, with Arg19 forming a highly favorable 

interaction with Asp354, and Glu29 interacting with Arg125, both of which lead to a tighter 

binding of Ten14 with EGFR in this conformation than Structure I (Figure 10B). However, these 

interactions are not sufficiently stable to allow for tight binding of Ten14 to EGFR, evident from 

GNM analysis of Structure II (see Figure 9E). 
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Table 3. FastContact Results for Ten14 Show Favorable Interactions with EGFR 

We used FastContact to analyze the energetics of the predicted Ten14-EGFR bound structures (Ten I and Ten II). 

The program ranks the 20 most important inter-residue interactions that contribute to overall electrostatic and 

binding free energies between two proteins in a complex. The results were generated for the Ten14-EGFR 

structures, tabulated and then compared with results for EGF-EGFR and TGFα-EGFR structures.  

(A) The most important residue pairs in Ten14-EGFR structures (Ten-I and Ten-II), TGFα-EGFR and EGF-EGFR 

that contribute most towards free energy are tabulated. As we can see, nearly all the important interactions in Ten14-

EGFR structures are electrostatic in nature.  

(B) This table identifies the residue interactions from the Ten14-EGFR structures, EGF-EGFR and TGFα-EGFR 

structures that contribute most towards the electrostatic energies of the complex. Lys13 interacts very strongly with 

Glu29 of Ten14-I (see Figure10A), forming a salt bridge and this interaction may play a key role in maintaining 

Ten14 bound to EGFR. For Ten14-II, The important interaction is between Asp354 and Arg19 of Ten14, and Leu12 

of Ten14 with the hydrophobic pocket in domain I of EGFR (see Figure 10B). 
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EGF-EGFR RESIDUE 
INTERACTION 

TGFα-EGFR RESIDUE 
INTERACTION Ten14-EGFR RESIDUE INTERACTION 

EGFR EGF 
FREE 

ENERGY 
(kcal/mol) 

EGFR TGFα 
FREE 

ENERGY 
(kcal/mol) 

EGFR Ten14-
I 

FREE 
ENERGY 
(kcal/mol) 

EGFR Ten14-
II 

FREE 
ENERGY 
(kcal/mol)

Asp354 Arg41 -10.010 Arg125 Glu27 -9.261 Lys13 Glu29 -4.908 Asp354 Arg19 -9.88 

Glu90 Lys28 -7.939 Asp354 Arg42 -9.086 Leu17 Cys22 -1.236 Arg125 Asp30 -9.281 

Lys13 Glu40 -1.802 Glu90 Lys29 -3.738 Gln16 Cys22 -0.965 Lys13 Glu29 -6.658 

Arg29 Asp46 -1.746 Lys464 Ala50 -2.457 Gln16 Ile21 -0.958 Phe356 Ile21 -1.43 

Phe257 Tyr13 -1.503 Gln16 Arg22 -1.765 Thr15 Glu29 -0.809 Leu14 Leu12 -1.1 

Lys464 Trp49 -1.342 Phe356 Phe15 -1.488 Leu14 Arg19 -0.723 Glu90 Glu29 -1.07 

Lys464 Leu47 -1.262 Phe411 Leu48 -1.446 Thr15 Cys22 -0.574 Thr15 Cys20 -0.85 

Phe411 Leu47 -1.111 Thr15 Cys32 -1.274 Asn12 Gly28 -0.533 Thr15 Cys9 -0.672 

Thr15 Cys31 -1.079 Leu17 Cys34 -1.143 Thr15 Cys20 -0.517 Gln15 Cys9 -0.527 

Leu98 Leu26 -1.074 Ile437 Leu47 -1.118 Gly18 Cys22 -0.406 Gly18 Pro6 -0.476 

Leu17 Cys33 -1.072 Ser355 Thr13 -1.086 Lys13 Asp30 -0.400 Leu14 Cys31 -0.467 

Ile437 Leu47 -1.071 Arg29 Asp47 -1.064 Arg29 Glu24 -0.399 Lys13 Asp30 -0.448 

Lys464 Asp46 -1.000 Gln16 Cys34 -1.059 Thr15 Cys31 -0.384 Gly18 Ser7 -0.441 

Leu69 Leu26 -0.922 Val349 Phe17 -0.868 Arg352 Asp8 -0.376 Arg125 Cys31 -0.439 

Gly18 Cys33 -0.898 Gln16 Val33 -0.842 Leu17 Ser27 -0.354 Leu69 Leu12 -0.393 

Leu17 Ile38 -0.862 Leu17 Val33 -0.814 Glu42 Arg19 -0.335 Leu14 Cys20 -0.382 

Gln16 Cys33 -0.834 Thr15 Ala41 -0.756 Thr15 Gly28 -0.310 Thr15 Cys15 -0.37 

Gln383 Gln43 -0.775 Leu14 Leu24 -0.696 Leu17 Tyr26 -0.298 Gln16 Ser7 -0.366 

Leu69 Ile23 -0.764 Asn12 Gly40 -0.669 Thr15 Asp30 -0.283 Glu90 Gly28 -0.352 

Val349 Leu15 -0.763 Phe411 Leu49 -0.656 Gly18 Ile21 -0.283 Tyr89 Asp30 -0.343 

 

 

 

 49 



EGF-EGFR RESIDUE 
INTERACTION 

TGFα-EGFR RESIDUE 
INTERACTION TEN14-EGFR RESIDUE INTERACTION 

EGFR EGF 
ELEC. 

ENERGY 
(kcal/mol) 

EGFR TGFα 
ELEC. 

ENERGY 
(kcal/mol) 

EGFR Ten14-
I 

ELEC. 
ENERGY 
(kcal/mol) 

EGFR Ten14-
II 

ELEC. 
ENERGY 
(kcal/mol)

Asp354 Arg41 -10.540 Arg125 Glu27 -9.835 Lys13 Glu29 -5.957 Asp354 Arg19 -10.394 

Glu90 Lys28 -8.726 Asp354 Arg42 -9.554 Leu14 Arg19 -0.808 Arg125 Asp30 -9.874 

Lys13 Glu40 -2.958 Glu90 Lys29 -4.275 Gln16 Arg19 -0.797 Lys13 Glu29 -7.696 

Lys464 Trp49 -2.052 Lys464 Ala50 -2.852 Asn12 Gly28 -0.595 Glu90 Glu29 -1.57 

Arg29 Asp46 -1.838 Gln16 Arg22 -2.582 Tyr45 Arg19 -0.466 Asn91 Glu29 -0.604 

Lys464 Leu47 -1.629 Arg29 Asp47 -1.071 Asn12 Ser27 -0.447 Tyr89 Asp30 -0.458 

Gln410 Lys48 -1.099 Ser355 Thr13 -0.843 Gln16 Cys22 -0.432 Lys13 Asp30 -0.448 

Gln16 Asn32 -1.054 Gln383 Glu44 -0.821 Thr15 Glu29 -0.412 Arg125 Cys31 -0.439 

Lys464 Asp46 -1.029 Asn128 Gln26 -0.767 Gln16 Ile21 -0.403 Tyr89 Glu29 -0.419 

His408 Lys48 -1.017 Asn12 Gly40 -0.722 Lys13 Asp30 -0.400 Glu90 Gly28 -0.403 

Gln383 Gln43 -0.952 Thr15 Cys32 -0.627 Arg29 Glu24 -0.399 Asp322 Arg19 -0.32 

Thr15 Cys31 -0.649 Gln16 Cys34 -0.615 Arg352 Asp8 -0.376 Gln16 Ser7 -0.319 

Ser467 Glu51 -0.648 Tyr45 Arg22 -0.602 Leu69 Arg19 -0.337 Gly18 Ser7 -0.267 

Gly18 Cys33 -0.615 Leu14 Arg22 -0.578 Glu42 Arg19 -0.335 Lys321 Glu29 -0.266 

Asp435 Lys48 -0.542 Arg29 Ala50 -0.546 Tyr89 Glu29 -0.289 Arg125 Glu29 -0.189 

Tyr89 Lys28 -0.504 Lys462 Ala50 -0.537 Gly18 Arg19 -0.266 Lys13 Cys31 -0.173 

Gln383 Arg45 -0.416 Gln16 Cys32 -0.459 Asn40 Glu29 -0.249 Gly18 Pro6 -0.168 

Arg125 Asp27 -0.408 Asp322 Arg42 -0.443 Leu14 Glu29 -0.199 Ser127 Asp30 -0.164 

Gln16 Cys31 -0.382 Thr15 Ala41 -0.422 Ser11 Gly28 -0.175 Thr15 Asp8 -0.146 

Asp322 Arg41 -0.355 Thr15 Gly40 -0.413 Asp102 Arg19 -0.173 Gly353 Arg19 -0.105 

 

2.4.5 Ten14 Exhibits Ultra-Low Affinity for EGFR as Compared to EGF  

Previous studies show that much higher concentrations of Ten14 are required to have 

biological and biochemical effects equivalent to EGF. This, coupled with the structural data 
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indicating very weak binding, suggests that Ten14 may activate receptor in a manner distinct 

from other classical soluble ligands. A low affinity ligand such as Ten14 would follow a staccato 

mode of signaling, whereby it binds EGFR for a period sufficient to elicit signaling, but 

dissociates from the receptor before internalization. In order to confirm this, SPR analyses were 

performed with increasing concentrations of Ten14 and human EGF on sensor surfaces 

derivatized with the EC ligand binding domain of EGFR (Figure 11). We obtained a KD of 74 

µM for Ten14, nearly a thousand-fold higher than that of EGF (~110nM), which was similar to 

published values for EGF-EGFR interactions (Brown et al., 1994; Domagala et al., 2000; Zhou et 

al., 1993). Though we could not directly determine the association/dissociation rates for the 

interaction due to technical limitations pertaining to low fidelity of Ten14 to changes in buffer 

conditions, the KD values agree well with our observations in vitro and similar experiments 

performed with EGFR-ED (see discussion below). This unprecedented high KD for an EGFR-

ligand interaction is in accordance with predictions of high mobility of Ten14 in the ligand 

binding pocket of EGFR from structural modeling of the complex (Figure 8). 
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Figure 11. Surface Plasmon Resonance Analysis of EGF/Ten14 Binding to EGFR 

A. Increasing concentrations of EGF (0.039, 0.078, 0.153, 0.31, 0.625, 1.25, 2.5, 5 and 10µM) were run over CM5 

surfaces derivatized without or with ~2500 RUs of extracellular domain (ED) of EGFR, using HBS-EP as running 

buffer. Sensograms were plotted against time using the BIAEvaluate software package after subtraction from blank.  

B. Steady state RUs were plotted against concentration for each EGF level, and curves were fit for calculating the 

equilibrium dissociation constant KD using the ‘steady state’ module in the BIAEvaluation software. We obtained a 

KD of 110nM for EGF.  

C. Increasing concentrations of Ten14 (1.88, 3.75, 7.5, 15 and 30µM) were run over surfaces derivatized without or 

with ~7000 RUs of EGFR-ED, using PBS as running buffer. Sensograms were plotted after blank subtraction.  

D. Sensograms were analyzed and a KD of 74µM was obtained for Ten14, nearly a thousand-fold higher than EGF. 
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2.4.6 Ten14 Does Not Undergo Internalization and Depletion 

The much higher ligand mobility and KD for Ten14-EGFR interaction predicts an unstable 

binding unlikely to result in either ligand or receptor internalization/degradation. Specifically, we 

determined whether Ten14 was internalized and/or depleted in a manner similar to EGF when 

presented in soluble form to NR6WT murine fibroblasts over-expressing EGFR. Over a 48h 

period, EGF concentrations of 10nM and 1nM were depleted from the medium; however, we 

saw no significant depletions of Ten14 at similar concentrations (Figure 12A). In order to 

distinguish between the possibilities of Ten14 being recycled to cell surface as in the case of 

TGFα  (French et al., 1995) versus rapid uncoupling from the receptor before internalization, we 

assessed internalization of radio-iodinated EGF and Ten14 ligand using a commonly derived 

protocol over a short time period that precludes recycling (Wiley et al., 1991). Although EGF 

was internalized dramatically, Ten14 was not (Figure 12B). We also measured EGFR 

internalization under high levels of EGF and Ten14 to ensure that Ten14-EGFR binding did not 

persist to engage internalization and subsequent degradation. As expected, no significant Ten14-

mediated degradation of EGFR was observed over extended time periods (Figure 12C). Also, 

this in vivo data corroborated by the results we obtain for the Ten14-EGFR interaction in vitro 

(Figure 11), where the high KD would drive rapid dissociation of Ten14. We conclude that Ten14 

does not undergo receptor-mediated internalization, implying a rapid dissociation from the 

receptor leading to surface restricted activation of EGFR. Accordingly, immunofluorescent 

detection of active EGFR showed that upon treatment with EGF, significant co-localization of 

total and active EGFR was observed in internal compartments of the cell in the form of punctate 

dots (Figure 12D). However, Ten14 treatment resulted in surface staining alone, with no active 

receptors in internal compartments. 
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Figure 12. Ten14 Activates EGFR on the Cell Surface without Internalization 

A. Following treatment of NR6WT cells for 48 hr with Ten14 and mEGF, concentrations of growth factors in the 

supernatant were determined using the antibodies against ligands. Ten14 is not depleted from the medium over 48 

hr, compared to murine EGF. 

B. Over 20 min, minimal internalization of 125I-Ten14 is observed as compared to 125I-EGF.  

C. As opposed to EGF, Ten14 does not lead to degradation of EGFR over a 16 hr time period.  

D. With 1nM and 10nM EGF treatment, active EGFR (phospho-tyrosyl EGFR, red) is internalized into endosomal 

compartments, appearing as punctate blobs. Staining for total EGFR (green) shows this is the fate of the majority of 

cellular receptors. Internalization of active EGFR is accompanied by EGF internalization (data not shown). On the 
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other hand, Ten14 causes localization of active EGFR solely at the cell surface with no internalization into 

intracellular compartments. All concentrations of Ten14 lead to activation and localization of EGFR into 

lammelipods (arrows). Also, Ten14 co-localizes with active receptor at the cell surface without internalization (data 

not shown). Blue stains for the nucleus. 

 

2.5 DISCUSSION 

EGF-like repeats are found in many ECM proteins and have been implicated in signaling through 

EGFR (Schenk et al., 2003; Swindle et al., 2001). This creates a conundrum in that high affinity 

binding of a concactemerized tethered ligand to a growth factor receptor, resulting in ultra-high 

avidity, would not allow for internalization-mediated attenuation that is critical to prevent excess 

signaling and aberrant cell responses (Masui et al., 1991; Wells et al., 1990). Even 

dephosphorylation attenuation would be limited as the physical constraints coupled to the high 

affinity would results in highly persistent ligandation. As an answer to this confounding aspect, 

our data indicates that Ten14 may be a low affinity ligand with altered binding dynamics as 

compared to other soluble prototypical ligands such as EGF and TGFα. Thus, signaling from the 

tethered EGFL would be attenuated by loss of ligandation and subsequent dephosphorylation. 

Although we evaluate the binding (both in silico and in vitro) of the 14th EGFL repeat of tenascin 

C, it is to be noted that at least three other repeats in the EGFL domain of tenascin C can 

potentiate signaling through EGFR (Swindle et al., 2001). We focus on Ten14 because we have 

previously optimized the purification and refolding process for Ten14 such that high yields of 

active ligand could be obtained for effective in vitro studies over a broad range of ligand 
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concentrations. Also, the folding of the EGFL repeat 14 has been previously studied (Zanuttin et 

al., 2004).  

Structural modeling of Ten14-EGFR complex was the first step towards understanding 

the basis of the low affinity of Ten14 for EGFR. Modeling was chosen over classical techniques 

such as X-ray crystallography due to limitations in the purification process of Ten14; Ten14 

undergoes non-physiological aggregation at very high concentrations that are required for 

successful protein crystallization. Ten14 is also extremely sensitive to changes in pH and buffer 

conditions. Lastly, enzymatic de-glycosylation of EGFR, a required step for co-crystallization of 

EGFR with its ligands (Ogiso et al., 2002), may drive down the affinity of Ten14 further, as seen 

previously with EGFR (Soderquist and Carpenter, 1984; Wang et al., 2001). Alternative 

purification techniques are being explored, but these efforts lie beyond the scope of this 

communication. Modeling of Ten14-EGFR complex structure offers a reasonable alternative to 

crystallography. Structural models have been generated for a number of receptor-ligand 

complexes, with good correlation between the predicted model and the actual crystal structure 

(Paas et al., 2000). Also, templates for the Ten14-EGFR complex exist in the form of EGF-

EGFR and TGFα-EGFR crystal structures (Garrett et al., 2002; Ogiso et al., 2002), an important 

consideration for structural modeling. These facts provided us with sufficient impetus to simulate 

the bound structure of Ten14 and EGFR and analyze the complex to identify important 

interactions between them. An important consideration for studying Ten14-EGFR interactions 

using structural modeling was the identification of the ligand binding region, as this would 

directly impact inferences drawn from detailed analysis of the resulting complex. We employed 

the following approaches to elucidate interactions between Ten14 and EGFR. The first approach 

relies on the fact that given sufficient sequence and structural homology, similar domains in 
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distinct ligands may bind substrate in an identical manner (Rajamani et al., 2004). This is clearly 

evident with the EGF-EGFR and TGFα-EGFR complexes, where, despite their structural 

differences, significant overlap exists in the key ligand-motifs that interact with the receptor. 

Independently, we generated homology models of Ten14 based on the EGF and TGFα structures, 

and found that the top ranked models had a striking structural homology with the previously 

identified binding motifs. Based on this homology, we modeled a bound structure in a manner so 

as to satisfy the key molecular interactions, achieved by first fulfilling the hydrophobic 

requirements, followed by coupling of hydrophilic interactions resulting from the initial dock.  

Both GNM and ‘FastContact’ analysis of the models suggests that conformation of 

Structure II of Ten14 is much more stable in the EGFR binding pocket compared to Structure I 

(lower mobility of Structure II in GNM analysis of the complex (Figure 8) and the lower ΔE of 

Structure II as compared to Structure I). Interestingly, Structure I provided us with a direct 

experimental test as it juxtaposed a non-conserved amino acid at the site of a salt bridge in EGF-

EGFR and TGF�-EGFR complexes. We replaced Asp30 of Ten14 with a positively charged 

arginine corresponding with Arg41 in EGF (Arg42 in TGFα), and assessed its affinity for EGFR. 

If Structure I represents the true binding conformation of Ten14, the restoration of an important 

salt bridge between Ten14 and EGFR (by interaction of Arg30 in a D30R mutant of Ten14 with 

Asp354 of EGFR) should result in increased affinity of D30R for EGFR. This would also be 

reflected in the ‘FastContact’ analysis of the D30R mutant complexed with EGFR, resulting in 

much lower ΔE as compared to Structure I of native Ten14, and much tighter binding. However, 

SPR measurements for the D30R mutant with EGFR-ED and ‘FastContact’ analysis of the 

modeled D30R-EGFR complex yielded results showing no increase in affinity of the mutated 

form (data not shown). ‘FastContact’ analysis suggests that Structure II loses a significant part of 

 57 



its affinity, which could result in a KD that is well within the range observed for Ten14 in vitro 

using SPR (Figure 11B). Therefore, even though there is a lack of mutations predicted to 

increase affinity empirically, we believe Structure II most likely represents the true binding 

conformation of Ten14 for EGFR. However, mutational analysis of Structure II (in a manner 

similar to that for Structure I) with substitution of the key Arg19 to decrease affinity for EGFR 

further would not be technically feasible with any level of certainty. Even with native Ten14, we 

barely register binding affinities by SPR and not at all by standard Scatchard binding assays. 

Nevertheless,  additional experiments are underway to validate the binding conformation of 

Structure II of Ten14 by assessing binding of Arg19 of Ten14 with Asp354 of EGFR using bi-

functional crosslinking followed by receptor and ligand fragmentation and affinity purification. 

These technically daunting experiments lie beyond the scope of the present communication. 

In order to assess if the low affinity is a direct result of altered binding dynamics of 

Ten14 to EGFR as compared to other soluble ligands, we performed SPR analysis using the ED 

domain of EGFR. SPR can be effectively used to predict kinetic binding parameters even in the 

micromolar levels (van der Merwe et al., 1994) as opposed to other biochemical techniques that 

are optimal only for studying high-affinity binding interactions. Our results indicate a KD of 

110nM for EGF, and though this is nearly two logs higher relative to measurements using live 

cells, it is in excellent agreement with similar experiments performed previously with EGFR-ED 

monomers (Brown et al., 1994; Domagala et al., 2000; Zhou et al., 1993). Also, the predicted KD 

for Ten14 is nearly thousand-fold higher than EGF which agrees well with concentrations of 

ligand required to stimulate equivalent levels of activation of EGFR in vitro. As we could not 

directly measure the on-off rates of binding due to limitations arising from buffer considerations 
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for Ten14, we attempted to verify our data with other independent techniques such as dynamic 

light scattering, but technical limitations hindered effective analysis of binding.  

Receptor compartmentalization and trafficking are important aspects of regulation of 

EGFR-mediated cellular responses. Proliferation and differentiation are initiated by signaling 

cascades triggered at the cell surface and are maintained by signaling cascades that are functional 

in intracellular compartments (Haugh and Meyer, 2002). Cell migration though, seems to be a 

mainly cell surface signaling mediated phenomenon, and active EGFR in endosomal 

compartments contribute minimally to triggering PLCγ1 required cell migration (Chen et al., 

1994b; Glading et al., 2001; Haugh et al., 1999a). In vitro experiments with EGF presented as a 

tethered ligand by coupling to a polymer matrix showed that EGF can promote cell migration as 

effectively as soluble EGF (Griffith, Wells, et al. personal communication). We also observe 

Ten14-mediated restriction of active EGFR at the cell surface over a range of ligand 

concentrations. We contend that Ten14, and possibly other select EGFL repeats of tenascin C, 

may play a similar role in physiological conditions, presenting itself as a two-dimensional 

matrikine ligand with low affinity for EGFR, leading to compartmentalization of receptor and 

steady activation of migratory cascades at the cell surface.  

Based on this and previous studies, we posit that multiple EGFL repeats can potentially 

bind numerous EGFR as part of a signaling complex. In this context, EGFR signaling could be 

mediated by EGFL repeats being part of an intact tenascin C, or released as aggregates 

containing multiple EGFL-repeat subunits. In fact, we previously reported that simple 

dimerization of Ten14 stabilized the Ten14 EGFL-repeat interactions with EGFR (Swindle et al., 

JCB 2001). The release of these subunits can potentially be mediated by the action of matrix 

metalloproteinases (MMPs) on tenascin C (Siri et al., 1995), and it has also been demonstrated in 
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vivo for EGFL domains of laminin (Schenk et al., 2003). Thus, while the individual affinity 

would be low, the matrix constraints would increase the avidity; a similar situation is found with 

integrin binding sites (Carman and Springer, 2003). However, overall avidity for interactions 

with EGFR via multimeric ligand domains may increase or decrease, and would be a function of 

both the intrinsic affinity of individual EGFR-EGFL repeat bonds, and the number of such 

bonds. Interestingly, we prefer Structure II binding precisely because it better allows for an 

integral EGFL repeat as part of intact tenascin C or an EGFL repeat domain to fit in the EGFR 

binding pocket.  

Receptor binding to such matrix-constrained ligands would be enabled by the greater 

motility of the receptor-ligand interaction as we note, resulting in the lessened binding affinity 

and more transient occupation and activation profile. Such signaling may be relevant from the 

ECM standpoint, where a number of proteins, particularly tenascin C are found to be up-

regulated only during wound healing or tumor progression, both of which require potent 

activation of migratory signaling cascades (Ilunga et al., 2004; Juuti et al., 2004; Zagzag et al., 

2002). Interestingly, an up-regulation of MMPs is also observed concurrently with expression of 

tenascin C during numerous patho-physiological scenarios, characterized especially by instances 

involving potent cell migration (Cai et al., 2002; Jian et al., 2001; Kalembeyi et al., 2003). EGFL 

repeats of tenascin C may thus temporally and spatially activate select pathways downstream of 

EGFR, driven primarily by the low affinity of Ten14 for the receptor. 
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3.1 ABSTRACT 

The 14th EGFL-repeat (Ten14) of human tenascin cytotactin activates the EGF receptor (EGFR) 

with micromolar affinity; however, unlike EGF, Ten14-mediated activation of EGFR does not 

lead to receptor internalization. As different signaling pathways downstream of EGFR have been 

shown to be triggered from plasma membrane and cytosolic locales, we investigated whether 

Ten14-mediated surface restriction of EGFR resulted in altered biochemical and cellular 

responses as compared to EGF. Molecules associated with migratory cascades were activated to 

a relatively greater extent in response to Ten14, with very weak activation of proliferation-

associated cascades. Activation of phospholipase C γ (PLCγ) and m-calpain, associated with 

protrusion and tail retraction respectively, were noted at even at sub-saturating doses of Ten14. 

However, activation of ERK/MAPK, p90RSK and Elk1, factors affecting proliferation, remained 

low even at high Ten14 concentrations. Similar activation profiles were observed for EGF-

treated cells at 4oC, a maneuver that limits receptor internalization. We demonstrate a concurrent 

effect of such altered signaling on biophysical responses - sustained migration was observed at 

levels of Ten14 that activated PLCγ, but did not stimulate proliferation to significant levels. 

Here, we present a novel class of EGFR ligands that can potentially signal as a part of the 

extracellular matrix, triggering specific signaling cascades leading to a directed cellular response 

from an otherwise pleiotropic receptor.     
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3.2 INTRODUCTION 

Many cell surface receptors elicit pleiotropic cellular responses when activated, although some 

of these responses might be mutually exclusive in any given or at a given time point. One prime 

example involves the epidermal growth factor receptor (EGFR), which, upon ligandation, 

triggers cell migration and proliferation, two responses that do not occur simultaneously (Wells, 

1999). How a cell distinguishes between these two outcomes likely involves differential 

activation of the myriad of intracellular signaling pathways that are activated by this receptor 

(Bhalla and Iyengar, 1999). 

We have demonstrated previously that EGFR-mediated migration and proliferation are 

distinct cell responses that negatively impact each other; i.e. when cells are driven to migrate, the 

fraction of the cell population undergoing proliferating diminishes (Chen et al., 1994a; Chen et 

al., 1996b). EGFR-induced motility requires the activation of phospholipase C-γ (PLCγ) (Chen 

et al., 1996a; Chen et al., 1996b; Polk, 1998), whose activation negatively impacts EGFR-

mediated cell proliferation. Interestingly, both proliferation and migration are downstream of 

extracellular signal-regulated kinase/mitogen activated protein kinase (ERK/MAPK); however, 

motility requires ERK to be activated at the plasma membrane (Glading et al., 2001), while 

proliferation can be triggered by ERK at either the plasma membrane or from intracellular sites 

(Chen et al., 1994a; Wang et al., 2002). Additionally, cell proliferation requires ERK 

translocation into the nucleus along with other transcription factors such as Ets-related protein 

ELK1 and the 90-kDa ribosome S6 protein kinase (p90RSK) that are activated by intracellular 

ERK (Ebisuya et al., 2005; Rocks et al., 2006). Thus, cellular responses mediated by EGFR 

signaling appear to be triggered independently by the spatial separation of these key molecules. 
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This mode of signal control adds an important dimension to controlling biophysical responses 

downstream of EGFR (Burke et al., 2001; Di Fiore and De Camilli, 2001; Ebisuya et al., 2005; 

Rocks et al., 2006). 

EGFR is activated by soluble growth factors such as EGF, TGFα, amphiregulin, heparin-

binding EGF, betacellulin and a few virally encoded factors (Citri and Yarden, 2006). These 

peptides bind with very high affinity and lead to internalization of EGFR, activating both 

motogenic and mitogenic cascades in the process (Wells, 2000). Ligand binding is key to 

internalization of EGFR – unliganded EGFR fail to internalize and activate downstream 

molecules from such locales (Haugh et al., 1999b). 

This led us to speculate that a ligand that limits EGFR activity in a manner so as to 

trigger signaling selectively from the cell surface might elicit a different spectrum of responses 

than the classical soluble EGFR ligands such as EGF and TGFα. We and others recently 

demonstrated that a new class of ligands for EGFR – EGF-like repeats (EGFL) – can activate 

EGFR with binding modes qualitatively distinct from the classical soluble peptide ligands for 

EGFR (Schenk et al., 2003; Swindle et al., 2001). EGF-like repeats of tenascin cytotactin, an 

extracellular matrix protein, bind with ultra-low affinity and a fast off-rate, leading to 

compartmentalization of active receptors at the cell surface without internalization of either 

receptor or ligand (Iyer et al., 2007). This may be characteristic of binding of EGF-like repeats in 

general (Schenk and Quaranta, 2003; Tran et al., 2004; Tran et al., 2005), allowing for a novel 

signaling mechanism distinct from classical growth factors.  

We hypothesized that compartmentalization of liganded EGFR at the cell surface would 

lead to selective activation of intracellular cascades and that this would influence the overall cell 

response. Specifically, we postulated that in response to the transient nature of binding of EGFL 
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repeats, EGFR would activate PLCγ and m-calpain at the cell surface, leading to enhanced 

migration but lacking the tonic intracellular activation of ERK that drives the cells toward 

proliferation. Our results indicate relatively robust activation of molecules associated with the 

migratory cascade downstream of EGFR in response to Ten14, leading to preferential activation 

of cell migration at concentrations of Ten14 that failed to stimulate proliferation. This work 

presents a novel mechanism by which ECM proteins containing EGFL signal EGFR, leading to a 

more selective and directed cell response from a potentially pleiotropic receptor.  
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3.3 MATERIALS AND METHODS 

3.3.1 Expression and Purification of Ten14 

Mid-log phase cultures of Escherichia coli strain BL21/DE3/pLys-S (Stratagene, La Jolla, CA) 

transformed with the individual expression plasmids were induced for recombinant protein 

expression (Ten14 or mEGF) with 1mM isopropyl-β-D-thiogalactopyranoside (IPTG) for 3h at 

37°C. Bacteria were harvested by centrifugation for 10min at 5,000 g at 4°C, and bacterial 

lysates were prepared by extraction with 0.02 culture volumes of B-PER detergent (Pierce, 

Rockford, IL).  Recombinant proteins were purified from bacterial lysates by nickel-agarose 

chromatography with imidazole elution as stated previously (Swindle et al., 2001). Purified 

protein was dialyzed against PBS, 0.25mM β-mercaptoethanol for 24h at room temperature. Each 

experiment was repeated at least twice. 

3.3.2 Mitogenesis Assays 

Cells were quiesced for 24h  in quiescence medium (serum-free growth medium supplemented 

with 0.5 % dialyzed fetal calf serum) (Swindle et al., 2001). The ligand-induced 3[H]-thymidine 

incorporation assay has been described previously (Chen et al., 1994a). In brief, after quiescence 

cells were exposed to EGF or various concentrations of EGF-like repeat proteins for 24h. 3[H]-

thymidine was added to the cells for the last 10h to determine stimulation of proliferation. 

Mitogenesis assays were performed in tandem with in vitro wound healing assays with common 

stocks of ligand.  
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3.3.3 In Vitro Wound Assay  

Basal and EGF-induced migration was assessed by the ability of the cells to move into an 

acellular area (Chen et al., 1994a). Cells were plated on a 24-well plastic dish and grown to 

confluence in DME with 7.5% FBS. After quiescence for 24h in medium with 0.5% dialyzed 

FBS, an area was denuded by a rubber policeman. The cells were then treated with or without 

ligand at 37°C. Photographs were taken at 0h and 24h, and the distance traveled by the cells at 

the acellular front was determined. Motility assays were performed in tandem with mitogenesis 

assays with common stocks of ligand. 

3.3.4 Cell-Based Calpain Assay  

NR6WT fibroblasts were plated with equal density and quiesced at 50% confluence in a Labtek 

II glass chamber (Nunc, Rochester, NY) and loaded for 20min at 37°C with 50μM Boc-LM-

CMAC (Invitrogen, Carlsbad, CA), a synthetic calpain substrate (Glading et al., 2001). After 

loading, the cells were treated with growth factor for 5min and then mounted on glass slides, and 

images of the Boc-LM-CMAC fluorescence were obtained using pre-fixed exposures to enable 

comparisons between specimens. Equal density of cells per field was obtained via inspection 

under light microscopy. The BOC substrate is designed so that calpain cleavage results in 

fluorescence. Following imaging, representative images were quantified for blue fluorescence 

(with at least 15 cells per field) and graphed using Microsoft Excel. For cells that were incubated 

at 4°C, cells were loaded with BOC-LM-CMAC, then preincubated at 4°C and ligand added at 

4°C for 5min. repeated at least twice. 
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3.3.5 Immunofluorescence Assays  

To assess localization of p90RSK, 10,000 NR6WT cells quiesced on glass coverslips and treated 

with increasing concentrations of EGF or Ten14 for 30min. After washing with cold PBS, cells 

were fixed in 4% paraformaldehyde for 30min and lysed for 30min with buffer containing 1% 

triton X-100, 1mM PMSF and 1µg/ml aprotinin, followed by blocking in 5% BSA. In order to 

assess the localization of total versus phosphorylated EGFR, cells were incubated overnight at 

4°C in rabbit polyclonal phospho-p90RSK1 antibody (Cell Signaling Tech. Danvers, MA). After 

a brief wash in PBS containing 0.5% BSA, coverslips were incubated in Alexa Fluor 488 anti-

rabbit secondary antibody (1µg/ml) and 25µg/ml propidium iodide at room temperature for 

30min. After a last wash, the slips were washed and mounted onto glass slides using gelvatol. 

After overnight drying, the slides were imaged for total fluorescence using a Zeiss Axioplan 

confocal laser-scanning microscope. Each image was scanned along the Z-axis in 7-10 sectional 

planes with 0.43µm steps (512x512 pixels per sectional plane). Following imaging, 

representative images were quantified for green fluorescence (with at least 15 cells per field) 

using Adobe Photoshop ver. 6.0 and then graphed using Microsoft Excel. 4°C for 5min. repeated 

at least twice. 

3.3.6 In Vivo MAP Kinase Luciferase Assay  

ERK/MAPK phosphorylation and activation of downstream substrate ELK1 in NR6WT murine 

fibroblasts was quantified using an MAPK in vivo kinase assay kit (Clontech, Mountain View, 

CA) according to the manufacturer's protocol. Briefly, a pTet-ELK vector (50ng/rxn) expressing 

a fusion protein with the functional domain of ELK and Tet repressor (TetR) domain and a 
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luciferase reporter vector, pTRE-Luc (0.5μg/rxn), containing a tet-responsive element (TRE) 

upstream of the luciferase gene, were transiently co-transfected into NR6WT cells seeded into 6-

well plates using Lipofectamine 2000 (Invitrogen, Carlsbad, CA) as the transfecting agent. pTet-

Neg (50ng/rxn) and pTet-Off (50ng/rxn) vectors, negative and positive control plasmids 

respectively co-transfected with pTRE-Luc, were also used in parallel. At 4h post transfection, 

cells were washed in PBS and incubated with quiescent medium containing 0.25% dialyzed FBS 

for 3h. Increasing concentrations of either EGF (10, 1 and 0.1nM) or Ten14 (1, 0.1 and 0.01μM) 

were incubated for 15min, 60min and 4h. Following incubation in serum free medium, cells were 

harvested on ice and assayed for luciferase expression using LuciferaseTM Reporter Assay 

System (Promega, Madison, WI, USA) according to the manufacturer's instructions. Light 

emission was measured for 20sec with LB Lumat 9505 luminometer (Berthold Tech., Oakridge, 

TN, USA). 

3.3.7 Phosphorylation Assay  

NR6WT cells grown to 80% confluence, quiesced for 24h and were stimulated with indicated 

doses of EGF or Ten14 alone for 5min at 37°C or to cells (preincubated at 4°C) at 4°C.  Cells 

were then lysed with sample buffer and separated on 7.5%-10% SDS-PAGE and western blotted 

for the indicated proteins - anti-phosphorylated PLCγ1 at tyrosine 783 and 1253 (Santa Cruz, 

CA, USA), anti-phosphorylated ERK/MAPK (Upstate Biotech., Boston, MA), anti-∝-actin 

(Sigma, St. Louis, MO). 
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3.4 RESULTS 

3.4.1 Ten14 Exhibits Differential Activation of Signaling Cascades Downstream of EGFR 

Due to Surface Restriction of Receptor 

We have previously demonstrated that at least some of the EGFR-mediated signaling pathways 

stimulating cell migration and proliferation are separable (Chen et al., 1994a). These diverge at 

the immediate and intermediate post-receptor stage, with motility requiring direct 

phosphorylation and activation of PLCγ (Chen et al., 1994b) and indirect activation of m-calpain 

secondary to plasma membrane-associated ERK (Glading et al., 2000a). As the low affinity and 

rapid off-rate of Ten14 detaches it prior to internalization of EGFR and restricts active EGFR to 

the cell surface (Iyer et al., 2007), we investigated whether such binding results in a biochemical 

activation profile different from that of classical soluble ligands such as EGF. Both PLCγ and 

ERK/MAPK were robustly activated and modulated in a dose dependent manner in response to 

EGF, as expected (Figure 13). For Ten 14, we observed strong activation of PLCγ as determined 

by phosphorylation at both the activation site, Y783, and the IP3 formation site, Y1254 (Kim et 

al., 1991; Nishibe et al., 1990). However, the phosphorylated, active ERK remained at near basal 

levels. Phosphorylation of the cytosolic target of ERK, p90RSK, was similarly absent. As the 

majority of active ERK derives from endosome-associated ERK (Haugh et al., 1999a), this 

dichotomy in signaling suggested that Ten14 binding leads to parsing of the signaling cascade 

downstream of EGFR. 
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Figure 13. Ten14 Stimulates PLCγ1 preferentially over ERK/MAPK 

Quiesced NR6WT cells were stimulated with indicated doses of EGF or Ten14 for 5min at 37°C.  Cells were then 

lysed, proteins separated through SDS-PAGE gels, and immunoblotted for the indicated proteins.  Shown are 

representative blots of at least four for each analysis.  

A. Both Ten14 and EGF simulate PLCγ1 to equivalent levels at comparable concentrations of ligand. However, 

ERK/MAPK is weakly phosphorylated even at the high concentrations of Ten14.  

B. PLCγ1 and SHC are robustly activated even by nanomolar levels of Ten14. However, unlike EGF, the 

phosphorylation of ERK/MAPK and p90RSK remains weak even at micromolar concentrations of Ten14.  
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We had previously demonstrated that Ten14 fails to drive internalization of EGFR even 

at high ligand concentrations (Iyer et al., 2007). Therefore, we proposed that this differential 

activation of molecules downstream of EGFR was due to pools of active EGFR 

compartmentalized at the cell surface in response to Ten14. The biochemical profile observed in 

response to Ten14 models similar ERK signaling as seen after inhibition of EGFR internalization 

via mutation of the endocytic pathway or artificial obstruction (Daaka et al., 1998; Di Fiore and 

De Camilli, 2001; Pierce et al., 2000; Tong et al., 2000; Vieira et al., 1996). Therefore, we 

assessed the signaling activation profiles in response to EGF under physical conditions that limit 

EGFR internalization (Figure 14). At 4oC, the biochemical signaling profile of EGF was 

strikingly similar to Ten14 at 37oC, with weak activation of ERK even at saturating levels of 

EGF (10nM). This difference was not a result of impaired signal transduction through EGFR as 

evinced by the phosphorylation of PLCγ and Src homologous and collagen like (SHC) protein 

which is the initial, immediate post-receptor adaptor leading to ERK activation. Thus, the 

differential signaling profile is driven primarily by the restriction of active EGFR at the cell 

surface. It is important to note that the phosphorylated form of PLCγ has been shown to associate 

mainly with surface associated EGFR (Haugh et al., 1999b; Matsuda et al., 2001). Also, we infer 

that the ERK being activated by Ten14, albeit at low levels, is part of pool of membrane-

proximal ERK, and this could result in activation of signaling cascades qualitatively distinct 

from endosomal ERK/MAPK signaling (Glading et al., 2001). 
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Figure 14. Activation Profile of Proteins Stimulated by Ten14 at 37°C is Similar to the Profile Observed with 

EGF at 4°C 

NR6WT cells were quiesced, and then stimulated with indicated doses of EGF for the set time points or 5min at 

37°C and 4°C. Cells were then lysed, proteins separated through SDS-PAGE gels, and immunoblotted for the 

indicated proteins.  Shown are representative blots of at least four for each analysis.   

A. Over a 5min period, EGF leads to robust dose-dependent activation of ERK/MAPK at 37°C, accompanied by 

phosphorylation of PLCγ1 and SHC. However, at 4°C, the activation profile for EGF-treated cells changes, with 

increased phosphorylation of PLCγ1 and SHC and very low levels of ERK/MAPK activation. This profile is 

strikingly is similar to that observed with Ten14 at 37°C (see Figure 13B).  

B. A differential activation profile is observed for EGF treated cells over a period of 30min, where the robust 

activation of ERK/MAPK seen at 37°C is lost at 4°C, but increased phosphorylation of PLCγ1 is observed.  
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3.4.2 Ten14 Differentially Activates Divergent Signaling From ERK Downstream of 

EGFR 

In order to delineate the effects of such divergent EGFR-mediated signaling at the cell surface in 

response to Ten14, we selected key downstream molecules that would transduce the differential 

signaling effects of ERK depending on signaling locale. Signaling downstream from ERK 

bifurcates with plasma membrane-associated ERK leading to activation of m-calpain (Glading et 

al., 2001) and cytosolic ERK activating p90RSK and ELK1 (Brunet et al., 1999; Gille et al., 

1995), with the latter transiting to the nucleus (Brunet et al., 1999; Hochholdinger et al., 1999). 

We assessed the activation of p90RSK and ELK1, both transcription factors that signal to 

promote cell proliferation in response to robust activation of ERK, particularly that of endosomal 

ERK (Wang et al., 2002) (Figure 15A,B). EGF resulted in strong activation of ELK1 as 

expected, as measured by the expression of the luciferase reporter that was placed under the 

action of ELK1. However, we observed only near basal levels of ELK1 activity for all 

concentrations of Ten14 over a 4 hour time period. This was also reflected in the weak activation 

of p90RSK for Ten14 as assessed by immunofluorescence and immunoblotting (see Figure 13). 

Interestingly, the motility-associated pathway downstream from ERK, m-calpain, was robustly 

activated in response to Ten14 (Figure 15C, D). That this m-calpain activity was inhibited by 

PD98059, a specific ERK inhibitor, and CI IV, a specific m-calpain inhibitor, confirms the 

signaling pathway involving EGFR-triggered ERK (data not shown). Also, increased m-calpain 

activation was observed for EGF-treated cells at 4oC (data not shown), resulting from increased 

pool of active ERK at the cell surface due to restriction of EGFR (see Figure 14). These data 

support a model of surface-restricted signaling of EGFR in response to Ten14 leading to 
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preferential activation of molecules along the motility cascade as opposed to the mitogenic 

pathways. 
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Figure 15. Differential Activation of Signaling Effectors by Ten14 Suggests a Lack of Potent Mitogenic 

Response and a Strong Motogenic Response Downstream of EGFR 

A. Quiesced NR6WT cells plated on cover-slips were assayed for phosphorylated p90RSK (green). We observe 

much lower levels of active p90RSK with Ten14 as compared to EGF. Shown are representative immunofluorescent 

images of three separate experiments. EGF increased phosphorylated p90RSK staining 5.14 ± 0.25 fold versus 3.04 

± 0.09 fold for Ten14 (P < 0.05) as determined by quantification of fluorescent intensity of 15 randomly selected 

cells in one randomly selected experiment. 
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B. .NR6WT cells transiently co-transfected with the pTet-ELK and pTRE-LUC reporter vectors were incubated with 

increasing concentrations of either EGF (10, 1, 0.1nM) or Ten14 (1, 0.1, 0.01μM) over increasing periods of time, 

with control plates receiving no ligand. Cells were harvested and assayed for luciferase expression, and data plotted 

as a value relative to basal levels. A dose response was observed over time for EGF, with even the lowest levels 

activating ELK robustly. However, Ten14 did not stimulate activation of ELK over basal levels. Shown is mean, 

normalized to luciferase activity in serum-free media for each time point, of experiments at least four time for each 

stimulation/timepoint (each in triplicate); s.e.m. is < 10% of value and are not shown to limit visual clutter. At all 

time points Ten 14 is statistically different from EGF and only at the highest concentration (1μM Ten14) is Ten14 

statistically different from background (P < 0.05). 

C & D. Cells were incubated with 50uM BOC-LM-CMAC (Molecular Probes) for 15min at 37°C.  Various 

concentrations of EGF and Ten14 were added and cells were incubated at 37°C for 15min. Calpain activity (blue) 

was assessed by fluorescence microscopy. We observe robust activation of Calpain even at 0.02μM, whereas calpain 

activity for 0.1nM is lower, suggesting sustained activation of Calpain with Ten14. Shown are representative 

immunofluorescent images of five separate experiments. (C) EGF at its highest concentration (1nM) increased BOC 

fluorescence 2.45 ± 0.09 fold which is similar to the 2.38 ± 0.08 fold for Ten14 (P is not significantly different from 

each other though P < 0.01 compared to control for both ligands) as determined by quantification of fluorescent 

intensity of 15 randomly selected cells in one randomly selected experiment. (D) However, at lower concentrations 

of each ligand, Ten14 stimulation led to greater BOC fluorescence than EGF (P < 0.01 comparing the two ligands).  

 

3.4.3 Ten14 Preferentially Activates Cell Migration over Proliferation 

The foregoing data would suggest that cell responses would be different upon EGFR activation 

by EGF or Ten14 (Figure 16). This should be most pronounced at limiting concentrations of 

ligand. As we titered out EGF, both motility and proliferation decreased in parallel. However, for 

Ten 14, motility was effected at concentrations that failed to stimulate proliferation over basal 
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levels (Figure 16B). Though ERK-mediated cell proliferation can be driven by strong endosomal 

ERK/MAPK signaling, the signals required to generate mitogenesis need only be above a 

threshold and exigent over a long period of time (Jones and Kazlauskas, 2001; Reddy et al., 

1998), and can be achieved by surface-restricted EGFR (Ebisuya et al., 2005). This would 

explain the increase in cell proliferation at higher concentrations of Ten14, where the threshold 

required for proliferation is being met more effectively than at lower levels of Ten14. 
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Figure 16. Ten14 Activates Migration at Levels That Fail to Stimulate Proliferation 

Quiesced NR6WT cells were exposed to various concentrations of EGF (A) or Ten14 (B). Proliferation (filled 

squares) and motility (open circles) were assessed as described, and values plotted. Shown are mean ± s.e.m., 

normalized to treatment with diluent alone, of experiments performed at least 5 times (in triplicate). * for 

proliferation and ** for migration denotes P < 0.05 compared to diluent alone. 
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3.5 DISCUSSION 

Herein, we presented data that activation of EGFR by an ultralow affinity matrikine signals to 

induce fibroblast motility preferentially over mitogenesis. This separation of cellular signaling is 

noted not only in the cell response but also in the biochemical switches that are key for these 

responses. What distinguishes the ultralow affinity matrikines, the EGFL in tenascin-C and 

laminin (Schenk et al., 2003; Swindle et al., 2001), from the classic high affinity soluble peptide 

ligands, EGF, TGFα and related ligands, is the mode of binding. These matrikines bind only 

transiently to the receptor, with the result that neither receptor nor ligand undergoes ligand-

induced internalization (Iyer et al., 2007). Thus, essentially all of the EGFR signaling occurs 

from the plasma membrane locale. Based on the parsing of the signaling, we propose that plasma 

membrane-associated signaling of EGFR is preferential for motility. This finding provides a new 

mechanism by which a cell can select responses from otherwise pleiotropic signals. 

The mode of binding of EGFL repeats to EGFR is akin to the interaction observed with 

other low affinity receptor classes such as the integrin family of receptors binding to fibronectin. 

Although the biophysical response elicited is adhesion (as opposed to migration with EGFL 

repeats), avidity of multiple ligand-receptor pairs rather than individual affinity is the critical 

property that drives the interaction between fibronectin and integrins (Carman and Springer, 

2003). 

It goes without saying that many other molecules such as the GTPases Rho, Rac & Cdc42 

and the protein focal adhesion kinase (FAK) may also be involved as part of the post receptor 

signal transduction pathways that contribute towards the overall response that we observe with 

EGFL repeats. The fact that we are able to account for the observed responses (Figure 16) using 
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only PLCγ and ERK qualifies these molecules as critical rate-limiting factors in EGFL repeat 

signaling via EGFR, as expected from literature (Hautaniemi et al., 2005; Kharait et al., 2006; 

Ridley et al., 2003). In support of this, pharmacological inhibitors against ERK and PLCγ were 

able to negate the effects on migration and proliferation observed in response to Ten14 (data not 

shown). However, assaying for the other aforementioned molecules may further the 

understanding of the effect of EGFL repeats, particularly in situations such as wound-healing and 

metastasis, where multiple factors influence the eventual outcome. 

While we support the postulate that it is the plasma membrane locale that is preferential 

for motility, we must note that other differences may account for this outcome preference. Non-

internalizing EGFR, due to elimination of AP-2 binding sites (Chen et al., 1989) or abrogation of 

dynamin-mediated internalization (Vieira et al., 1996), are fully capable of driving proliferation 

(Vieira et al., 1996; Wells et al., 1990), though motility could not be determined in these cells 

due to lack of activation of key molecular switches such as PLCγ (Chen et al., 1994b). Further, 

not only does the transient ligandation result in predominantly plasma membrane-associated 

signaling, but matrikines also produce a highly staccato mode of signaling with the receptor 

avoiding activation-related downregulation (Iyer et al., 2007). These latter properties may also 

channel the signaling towards specific pathways. However, we cannot distinguish between these 

properties and the plasma membrane locales at present, as ligand or receptor engineering are not 

capable of separating these ligand-receptor binding properties. Physically tethering ligand may 

address this issue and is being actively pursued. 

The mode of matrikine signaling is physiologically relevant, as the EGFL-containing 

tenascin-C displays a very discrete and transient pattern of expression during embryogenesis, 

wound healing, and tumor progression (Jones and Jones, 2000a). This pattern coincides with 
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situations of increased motility of adherent cells. In addition, EGFL-repeats of laminin are 

released as biologically relevant matrikines in vivo, where they stimulate the release of matrix 

metalloproteinases during mammary gland involution, and potently trigger EGFR-mediated cell 

migration without significant activation of ERK/MAPK (Schenk et al., 2003). Thus, the 

appearance of tenascin-C would imply enhanced migration, whether physiological during 

(neo)organogenesis or pathological during tumor invasion and dissemination (Wells, 2000). Our 

finding not only sheds light on a basic biological question of how cells respond differently via 

the same receptor but also holds promise for tissue engineering approaches to alter pathological 

wound repair and tumor invasion. 
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4.0  SUMMARY AND FUTURE PROSPECTS 

4.1 OVERALL CONCLUSIONS 

Tenascin C is and ECM protein that has gained considerable attention in the past few years, 

mainly due to its emerging status as a regulatory molecule in numerous physiological processes 

including cutaneous wound healing, angiogenesis and development of brain, bone and other 

organs, and as a prognostic factor for several conditions including tumor progression and 

metastasis (Orend and Chiquet-Ehrismann, 2006). Different functional domains of TN-C have 

been implicated in eliciting and directing select responses, either by directly triggering signal 

transduction pathways downstream of select receptor classes, or by regulating the binding of 

other soluble and insoluble ligands that bind to their respective receptors (Jones and Jones, 

2000a).  

The functional aspects of the various domains of TN-C have been well documented.  The 

EGFL domain was involved in neuronal outgrowth and counteradhesion of fibroblasts (Fischer et 

al., 1997; Gotz et al., 1996; Prieto et al., 1992; Spring et al., 1989). The fibronectin like domain 

play multiple roles in different tissues and cells. Among its many functions includes the adhesion 

and spreading of different cell types mediated by interactions with fibronectin and integrin 

receptors, induction of various matrix metalloproteinases and in tissue and ECM remodeling 

(Bell et al., 1999; Chung and Erickson, 1997; Krushel et al., 1994; Probstmeier and Pesheva, 
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1999; Tremble et al., 1994; Yokosaki et al., 1996). The terminal fibrinogen globe is also 

involved in cell elongation and spreading, mediated by interactions with heparin sulphate-

containing proteins (Chiquet-Ehrismann et al., 1988; Joshi et al., 1993; Schenk et al., 1999). In 

addition, TN-C can regulate the function of other binding partners such as annexin, syndecans 

and actin (Chung and Erickson, 1994; Jones and Rabinovitch, 1996) (Chiquet-Ehrismann and 

Chiquet, 2003). However, since the major role of TN-C in vivo has been attributed to mediating 

cell deadhesion (which is thought to be regulated mainly by the various interactions of FNIII 

domain of TN-C with integrins), focus on EGFL repeats in this context has been limited. The 

EGFL repeat array has been viewed as more of an auxiliary domain that merely augments the 

effects of the FNIII domain in select cell types. 

As mentioned earlier, the temporal and spatial pattern of TN-C expression sets it apart 

from most other ECM proteins which are found to be more ubiquitously expressed. In almost all 

situations, both physiological and pathological, TN-C expression correlates strongly with cell 

migration. Therefore, in light of our recent work with the EGFL repeats of TN-C, and work done 

by a few others with similar domains in other ECM proteins; we believe strongly that a paradigm 

shift is in order that highlights and strengthens the role of EGFL repeats in regulating cell 

responses. 

We demonstrated that select EGFL repeats of tenascin C in soluble form could bind and 

activate EGFR. Using structural bioinformatics and selecting the 14th repeat (Ten14) as a 

representative, we characterized the interaction of EGFL repeats with EGFR, and identified 

binding domains that stabilized the interaction of ligand and receptor. The ultralow affinity of 

Ten14 predicted by structural modeling was verified using surface plasmon resonance. An 

affinity in the micromolar range is not surprising; given that the presentation of these repeats as 
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part of the ECM restricts their binding, and that multiple subunits of the array can potentially 

bind a cluster of receptors, thus increasing the effective affinity in vivo. Due to their ultra-low 

affinity, EGFL repeats were unable to drive ligand-mediated internalization of EGFR; restricting 

active EGFR complexes to the cell surface, where select signal transduction pathways 

downstream of EGFR were triggered. 

An examination of the signal transduction pathway of EGFR indicated that migratory 

signals arising PLCγ and m-calpain activation were stimulated strongly, with weak activation of 

mitogenic signals mediated by active pools of intracellular ERK, p90RSK and ELK1. As a 

result, robust migration was observed for subsaturating concentrations of Ten14, levels at which 

proliferation remained basal. Mitogenesis was observed only at very high concentrations of 

Ten14, whereas motility was signaled positively in a dose dependent manner for all levels of 

ligand. 

These observations shed new light on the possible role of EGFL repeats in vivo as part of 

the ECM. It is interesting to note that for almost all physiological and pathological situations that 

tenascin C is found to be upregulated in, EGFR is also seen to be expressed. In all situations 

involving tenascin C signaling, its EGFL repeats may trigger signaling cascades similar to what 

we observe in vitro, leading to directed cell responses. As mentioned previously, tenascin C 

expression is observed under conditions that involve cell migration. EGFL repeats of tenascin C 

potently stimulate cell migration, as we have reported, and this effect must have obvious 

implications for tenascin C function. This aspect of tenascin C function has not been investigated 

so far, and in light of our recent work, sheds new light on the role of EGFL repeats from ECM 

proteins in vivo. Such signaling must have broad implications in various physiological and 

pathological settings that involve tenascin C, and an understanding of the associated pathways 
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could help identify possible targets that can potentially be exploited to generate better therapeutic 

solutions to disease. 

Here, we briefly overview of how EGFL repeats of tenascin C and other ECM proteins 

may be processed and signal in vivo, thereby regulating EGFR-mediated cell responses in 

pathophysiological scenarios.  

4.2 EGF-LIKE REPEATS - PROCESSING AND SIGNALING IN VIVO 

In order to fully appreciate the functional aspects of EGFL repeat signaling in vivo, let us 

consider wound healing as a case in point (Figure 17). As mentioned earlier, wound healing 

involves the temporal and spatial upregulation of tenascin C during phases requiring intense cell 

migration, particularly in the inflammatory phase and granulation phase, after which TN-C 

expression decreases and dissipates towards the start of the resolution phase. Interestingly, the 

granulation phase also witnesses the upregulation of matrix metalloproteinases (MMPs) such as 

gelatinases, collagenases, matrilysins, etc (Mignatti P, 1996). These MMPs typically cleave 

ECM proteins at specific sequence recognition sites, leading to either degradation of the protein 

or its processing such that an active cleavage product is obtained (Birkedal-Hansen et al., 1993). 

Finally, this phase involves active expression of EGFR by fibroblasts, epithelial and endothelial 

cells (Hudson and McCawley, 1998; McCawley et al., 1998; Tran et al., 2004).  

 

 87 



 

 

Figure 17. Tenascin C Expression Patterns during Wound Healing 

A. During the inflammatory phase, TN-C levels increase, and peak at the start of the reepithelialization phase. TN-C 

is expressed along the leading edge of the wound. EGF and TGFα are also found to be expressed. 

 B. Towards the end of the reepithelialization phase, and towards the start of remodeling phase, TN-C expression 

starts to decrease. During this period, an increase in MMPs is observed. EGFL repeats of TN-C may be potentially 

cleaved by the action of these MMPs, thereby releasing them to facilitate local interactions with EGFR. 

Additionally, the action of these MMPs on TN-C may degrade it and thus downregulate its expression.  

Figures 17A and 17B were adapted from Singer and Clark, 1999. NEJM. 341:738-746. 
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The proposed model for the action of EGFL repeats in vivo is as follows. During the 

initial part of inflammatory phase of wound healing, TN-C is expressed at the leading 

extracellular margins of keratinocytes and invading fibroblasts. EGFL repeats of TN-C and other 

matrix proteins such as laminins may bind EGFR with ultralow affinity, activating those 

receptors being expressed by the cells at their leading edge and triggering the signaling cascade 

downstream of EGFR. Alternatively, throughout the granulation phase, a number of MMPs, 

particularly MMP2, MMP3 and MMP9, are found to be overexpressed in the stroma. Previous 

studies have shown that MMP2 can cleave EGFL repeats from laminin in vivo, releasing active 

EGFL domains in soluble form (Schenk et al., 2003). Sequence analysis indicates that EGFL 

repeats of tenascin C also contain the recognition site for MMPs, and can be potentially cleaved 

so that they can be released in soluble form. 

Such activation may also lead to transient aggregation of EGFR on the cell surface into 

clathrin coated pits, increasing the effective avidity of EGFL repeats due to simultaneous binding 

of multiple EGFL domains to receptor. Upon activation, EGFR undergoes autophosphorylation 

at critical tyrosine residues in the intracellular domain that can then activate and phosphorylate a 

number of downstream substrate proteins, including PLCγ1 and the Shc/Grb2 adaptor complex. 

Cell migration is robustly triggered, influenced by the generation of DAG and IP3 through 

PLCγ1-mediated hydrolysis of membrane-bound PIP2 and release of several actin binding 

proteins such as profiling and gelsolin, whereas RAS activation though the Shc/Grb2 complex 

yields active pools of ERK at the cell surface. Pools of active ERK at the cell surface contribute 

towards cell migration via disruption of focal adhesions at the rear end of the cell via activated 

m-calpain (See Figure 18 and Movie 6).  
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Presentation of EGFL repeats as an integrated part of an ECM protein such as tenascin C 

should restrict its internalization simply on the basis of its mode of presentation. However, we 

have demonstrated that even in soluble form, EGFL repeats fail to internalize due to their weak 

affinity for EGFR; therefore, independent of their mode of presentation (i.e. both when bound to 

TN-C or when released into the stroma possibly by the action of MMPs), EGFL repeats will tend 

to undergo rapid decoupling from the receptor. Active EGFR that are now left unoccupied at the 

cell surface are quickly dephosphorylated by intracellular phosphatases, allowing for another 

round of EGFR activation (Hernandez-Sotomayor et al., 1993). 

Receptor occupation is critical for EGFR internalization, and is a key step for potent 

ERK-driven mitogenesis through endosomal EGFR signaling. Since this is lacking with EGFL 

repeat signaling, we postulate that a strong motogenic cue might be selectively established over a 

proliferative response in vivo by EGFL repeats due to constant triggering of ‘migration arm’ of 

the EGFR signal transduction machinery, propelling cells in the direction of the healing wound. 

The significance of such parsed signaling is highlighted by the fact that initial stages of wound 

healing are characterized mainly by the involution of EGFR-expressing fibroblasts and 

keratinocytes into the wound bed from the leading margin of the wound, where tenascin C is 

selectively overexpressed. Interestingly, low levels of proliferation are observed in this leading 

edge. Under these situations, EGFL repeats can selectively signal migration as we observe in 

vitro, and play an important regulatory role in mediating migration in concert with the FNIII 

domain and other such domains in ECM proteins.  

The selective activation of cell motility by EGFL repeats has broad implications in other 

pathophysiological conditions that involve EGFR signaling and migration. In order to highlight 

the potential role of EGFL repeats, a few processes have been discussed below in further detail. 
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Figure 18. Potential Signaling for Migration by EGFL Repeats of TN-C In Vivo 

When cells presenting EGFR (such as fibroblasts and keratinocytes) encounter tenascin-C during wither 

physiological or pathological conditions, EGFL repeats may bind receptor either as part of the intact proteins, or 

when released as subdomains (as shown here). These subdomains can simultaneously engage multiple receptors, but 

dissociate from the receptor due to their low affinity, thus circumventing ligand-mediated internalization of receptor. 

Active receptors at the cell surface can trigger potent activation of PLCγ, leading to hydrolysis of PIP2 and release 

of actin-modifying proteins (AMP) such as profiling and gelsolin, which can lead to cytoskeletal reorganization. 

Hydrolysis of PIP2 yields two secondary messengers, diacyl glycerol (DAG) which can activate PKCδ that causes 

cell contractility, and inositol-triphosphate that releases intracellular stores of calcium leading to actin 

reorganization. On the other hand, active ERK at the cell surface triggers m-calpain, which may then cleave focal 

adhesion complexes at the rear end of the cell. Additional factors such as RhoA, Rac and Cdc42 may also play a 

role, leading to migration of the cell towards the motogenic cue that is tenascin-C.  
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4.3 PROSPECTIVES 

4.3.1 Implications for Embryogenesis, Morphogenesis and Development 

As an organism develops from just a fertilized egg to transform into a fully developed entity, 

numerous morphological changes occur that involve tissue growth, differentiation and 

maturation of distal organs. Tenascin C is found to be intricately involved in all these processes, 

particularly during phases that require the migration and involution of cells. It has been found to 

regulate development in numerous organ systems including brain, bone, skin, digestive system, 

lung, etc (Orend and Chiquet-Ehrismann, 2006). Tenascin C is also expressed during CNS 

development in embryogenic stages, with a differential pattern of expression. The radial glial 

fibers of purkinje cells in the developing cerebellum express tenascin oriented according to the 

migratory direction of these cells (Porcionatto, 2006). In the avian embryo, TN-C is found to be 

present along neural crest cell migration pathways prior to the onset of migration (Riou et al., 

1992). TN-C is found to be overexpressed at neural stem cell margins in the sub-ventricular zone 

of the developing brain, where neural stem cells involute and differentiate into neurons and glial 

cells. Interestingly, expression of EGFR is also observed in this region of the brain during 

development. Tenascin C is essential for the timely expression of the EGFR in neural stem cells - 

TN-C knockouts show a significant delay in the onset of EGFR, which results in delayed 

neuronal and glial development (Garcion et al., 2004). EGFL repeats of TN-C may have a 

potential role here in signaling through EGFR and facilitating the maturation process of neuronal 

cells in the developing brain. In developing cartilage and bone, TN-C is expressed selectively in 

the chondrogenic mesenchyme, especially by migrating perichondrial cells and chondrocytes that 

participate in appositional growth of the cartilage (Mackie and Murphy, 1998). EGFL motifs of 
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versican contribute to the inhibitory effect of the protein on mesenchymal chondrogenesis 

(Zhang et al., 1998), suggesting that EGFL repeats may play a role in migration as well as 

differentiation of chondrocytes, possibly via signaling through EGFR. In the human gastric 

mucosa of the developing stomach, TN-C is found to be uniformly distributed throughout the 

entire mesenchymal layer at 10 weeks of gestation and increases by 20 weeks. However, in the 

adult, TN-C is expressed only at the epithelial-stromal interface, without any detectable levels in 

the connective tissue (Tremblay and Menard, 1996). Such spatiotemporal expression of TN-C is 

also found in the mesenchymal core of the developing small intestine. In both scenarios, EGFL 

repeats may act as migratory effectors, allowing for the movement of epithelial cells in regions 

undergoing morphogenesis (Beaulieu et al., 1993). 

4.3.2 Implications for EGF-Like Repeats in Tumor Growth and Metastasis 

Tenascin C was first identified in embryonic chick brain, with widespread tissue distribution, and 

shown to mediate glia-neuron adhesion in vitro (Grumet et al., 1985). Although initial studies 

with TN-C were focused on its role in brain development and morphogenesis, there were studies 

in adult mammary tumors that showed an upregulation of TN-C in the surrounding mesenchyme 

(Chiquet-Ehrismann et al., 1986). Since then, TN-C has been implicated in the progression of 

tumors in various tissues including brain, breast, prostate, liver, lung, colon, pancreas, etc. 

(Orend and Chiquet-Ehrismann, 2006). The metastatic potential of TN-C is realized by the select 

activation of signaling cascades, including the promotion of deadhesion, increase in cell 

proliferation, increase in matrix remodeling proteins and induction of epithelial-mesenchymal 

transition which then promotes tumor progression and metastasis (Chiquet-Ehrismann and 

Chiquet, 2003; Chiquet-Ehrismann et al., 1986; Huang et al., 2001; Kalembeyi et al., 2003; 
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Martin et al., 2003; Tremble et al., 1994). Most of these reports have been directed mainly 

towards unraveling the role of fibronectin repeats in promoting metastasis. However, given that 

EGFR is upregulated in almost all tumorigenic pathologies that involve TN-C, and with the 

recent discovery that EGFL repeats can signal EGFR to selectively trigger migration, a new 

dimension has been added to the mechanisms the lead to cancer progression via EGFR. 

Mechanistically, epithelial-mesenchymal transition (EMT) appears to be a critical step during 

metastatic progression of tumor cells in all tissue, and involves the downregulation of adhesion 

molecules such as E-cadherin and an upregulation of EGFR (Lee et al., 2006). Tenascin C was 

found to be expressed selectively at the invasion border of colorectal carcinoma cells that also 

expressed nuclear b-catenin, which is a marker for cells that have undergone EMT (Beiter et al., 

2005). Also, tenascin-C was found to be present breast cancer cells together with vimentin, 

another marker for mesenchymal cells which may produce a more aggressive and invasive 

phenotype (Dandachi et al., 2001). These and other studies confirm that TN-C is 

spatiotemporally regulated during EMT, and plays an important role in establishing and 

maintaining the mesenchymal phenotype of stromal cells during EMT in both normal and 

pathological settings (Orend and Chiquet-Ehrismann, 2006). Under such conditions, EGFL 

repeats of TN-C could have a pivotal role in regulating invasiveness of cancer cells. In a recent 

study where colon cancer cells were co-cultured with myofibroblasts from colon cancer tissue, 

EGFL repeats of TN-C were found to play an important regulatory role for cancer cell invasion 

in vitro. They found that neutralizing antibodies against the EGFL domain of TN-C could 

completely block the proinvasive activity of colon cancer cells that were treated with conditioned 

medium of myofibroblasts (De Wever et al., 2004). They also found that signaling of EGFL 

repeats through EGFR lead to priming of cancer cells for the proinvasive activity of hepatocyte 
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growth factor through c-Met. Such a role for EGFL repeats could be envisioned in similar 

scenarios for other tissues, and could thus be important for EGFR-mediated metastasis.   

 In addition to EMT, angiogenesis is another important aspect of cancer metastasis that 

leads to the formation of new blood vessels in order to provide oxygen and nutrients to the 

growing tumor. Tenascin C is expressed during early angiogenesis, exerting its effects on 

endothelial cells through VEGF and inducing migration possibly through regulation of focal 

adhesion kinase phosphorylation (Zagzag et al., 2002) (Tanaka et al., 2004). Tenascin C 

expression has also been shown to be correlated with the degree of tumor neovascularization in 

human gliomas (Herold-Mende et al., 2002). EGFL repeats could play an important role by 

signaling EGFR, thereby regulating endothelial cell migration, as well as mediating signaling of 

other proangiogenic factors such as VEGF.  

4.3.3 Implications for EGF-Like Repeats in Other Pathologies 

Numerous other pathologies are associated with a spatiotemporal overexpression of TN-C. 

EGFL repeats could play an important role in quite a few, especially those that involve an 

upregulation of EGFR concomitant with levels of TN-C expression.  

Keloids result from abnormal wound healing of skin, and are characterized by the 

formation of dense fibrotic tissue in the wound, and they extend beyond the confines of the 

wound, recurring even after excision (Datubo-Brown, 1990). Although the cause for keloids is 

not known, TN-C is a strong in vivo marker for keloids, and stimulated keloidal fibroblasts 

continue to produce TN-C throughout the stroma even without circulating factors (Dalkowski et 

al., 1999). Interestingly, human keloid fibroblasts also show an increased basal level of 

activation of EGFR, although EGFR numbers were comparable with adult human fibroblasts 
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(Cheng et al., 2002; Chin et al., 2000). However, in vitro, keloid fibroblasts show diminished 

EGF-mediated motility due to rapid loss of EGFR driven by EGF binding. The acuity of EGFL 

repeat signaling though EGFR comes to light under such situations, given that EGFL repeats 

bind with ultra-low affinity to the receptor, and do not lead to ligand mediated internalization or 

degradation of receptor. The fact that keloids continue to extend beyond wound margins suggests 

a dysregulation of migratory response of these fibroblasts. Given the increased phosphorylation 

potential of EGFR and the overexpression of TN-C in keloids, it is fair to postulate that the 

increased migration is caused due to hyperstimulation of EGFR by EGFL repeats without 

receptor degradation, leading to excessive migration of fibroblasts and keratinocytes across the 

wound and an extension of the wound margin as a result. Additionally, matrix metalloproteinases 

which are overexpressed in keloids could also play a role by liberating EGFL repeat domains 

from TN-C, thereby providing easier access for EGFR to EGFL repeats and increasing the 

potentiation of receptor signaling. In the heart, Its expression correlated with inflammation and 

cardiac injuries such as myocarditis and myocardial infarction (Imanaka-Yoshida et al., 2001; 

Willems et al., 1996). After myocardial infarction, TN-C appeared at the borderzone between the 

infarcted area and the intact myocardium where extensive remodeling occurred. In addition, 

Tenascin C also upregulates the production of MMP2 and MMP9, mediated by transformed 

myofibroblasts that are recruited by TN-C (Imanaka-Yoshida et al., 2001). Interestingly, 

although EGFR has a global expression pattern in the heart, it is upregulated during pathological 

situations in mesenchymal cells that closely interact with myofibroblasts(Erickson et al., 1997) 

(Jackson et al., 2003). Under such situations, in addition to stimulating migration directly via 

EGFR, EGFL repeats could also play a role in enhancing the migratory potential of other EGFR 

ligands such as HB-EGF (Nishi et al., 2001).    
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4.4 FINAL WORD 

This thesis presents not only our research but also the efforts by various investigators that have 

sought to elucidate the role of tenascin C and other such ECM proteins that express EGFL 

repeats. Our work has led to the discovery of a new mode of signaling by EGFL repeats that until 

now, although ubiquitously expressed, seemed to play more of a tertiary role as compared to the 

FNIII arrays and other such domains in ECM proteins. This work certainly adds another 

dimension to the already multifarious functions of ECM proteins, not to mention the unique 

mode of signaling of such spatially restricted peptides through receptor tyrosine kinases that 

were traditionally thought to elicit responses only to soluble cues. It is interesting to note that 

EGFL repeats can potentially exploit the effects that receptor compartmentalization has on 

cellular responses, and suggests an evolutionary selection and retention of such a mode of 

signaling so as to elicit select responses from an otherwise multifaceted receptor system.  

This work has broad implications, not only for the development of better techniques to 

address physiological outcomes such as wound healing, but also to design better therapies to 

target cancer metastasis and other such serious pathologies that involve EGFR signaling. 
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