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The understanding and modeling of multiphase flow has been a challenging research prob-

lem for many years. Among the important applications of the two-phase flow problem are

simulation of the oil recovery and environmental protection. The two-phase flow problem in

porous media is mathematically modeled by a nonlinear system of coupled partial differen-

tial equations that express the conservation laws of mass and momentum. In general, these

equations can only be solved by the use of numerical methods.

The research in the thesis mainly focuses on the numerical simulation and analysis of dif-

ferent models of incompressible two-phase flow in porous media using primal Discontinuous

Galerkin (DG) finite element methods.

First, in our work we derive sharp computable lower bounds of the penalty parameters for

stable and convergent symmetric interior penalty Galerkin methods (SIPG) applied to the

elliptic problem. In particular, we obtain the explicit dependence of the coercivity constants

with respect to the polynomial degrees and the angles of the mesh elements. These bounds

play an important role in the derivation of the stability bounds for the SIPG method applied

to the the two-phase flow problem.

Next, we consider three different implicit pressure-saturation formulations for two-phase

flow. We study both h- and p-versions, i.e. convergence is obtained by either refining the

mesh or by increasing the polynomial degree. We develop numerical analysis for one of

the pressure-saturation formulations. Numerical tests which confirm our theoretical results

are presented. Some validation of the proposed schemes, comparison between numerical

iii



solutions which are obtained by different schemes and numerical simulations of benchmark

problems are also given.
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1.0 INTRODUCTION

Accurate numerical methods for multiphase processes are of great importance in problems

related to the environment and energy. The understanding and modeling of multiphase flow

has been a challenging problem of scientific research for many years. One of the applications

of multiphase flow is the oil recovery. The oil industry is interested in the reliable numerical

methods to simulate the recovery of oil in order to exploit reservoirs in an optimal way.

The other very important application of multiphase flow is environmental protection; for

example simulation of the spread of polluted fluids in the ground water in order to opti-

mize the clean up of contaminated sites. Finally, the understanding of two-phase flow is

crucial in modeling tumor growth in the human body, which can be considered as a porous

medium. This research deals with the modeling of two-phase flow, for example the flow of

a wetting phase (such as water) and a non-wetting phase (such as dense non-aqueous phase

liquids), in a porous medium with possibly heterogeneous characteristics. This type of flow

is mathematically modeled by a nonlinear system of coupled partial differential equations

(PDEs) that express the conservation laws of mass and momentum and that in general can

only be solved by the use of numerical methods. A review on the issues arising in modeling

multiphase flow is given in [56].

In flow in porous media, traditionally very low order finite difference or finite volume meth-

ods have been used [58, 39, 55]. Affordable computing power allows oil engineers to add

complexity to their reservoir models. For instance, there is a strong interest in a better

representation of wells, faults, fractures and in use the of unstructured grids in reservoir

modeling. Local mass balance is also very important in these applications, therefore Discon-

tinuous Galerkin (DG) methods are ideal candidates. Our research [33, 32, 34, 30] has shown

that higher order DG methods are promising alternatives to low order finite difference or
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finite volume methods. Over the last few years, discontinuous finite element methods have

been shown to be competitive with respect to other standard techniques in flow and trans-

port problems [67, 63, 66, 64, 43, 5, 3, 4, 25, 27, 26].

The appeal of these methods lies in their local behavior: the mesh can be locally refined,

the degree of polynomial approximation can vary from grid cell to grid cell. This makes the

implementation of adaptivity with respect to the mesh and polynomial order (hp-adaptivity)

for DG substantially easier than conventional approaches. Furthermore, with appropriate

meshing and with varying polynomial degree, DG can yield exponential convergence rates

for smooth problems. Moreover, the mass balance equations for DG methods are satisfied

element-wise. Finally, these methods can treat rough coefficient problems and can effectively

capture discontinuities in solutions.

The research, that is presented here mainly focuses on the theory and implementation of

different models for two-phase flow problems in a porous media using DG finite element

methods. We introduce and investigate efficient implicit, fully coupled hp-DG methods for

solving incompressible two-phase flow problem [32, 33, 34, 30]. To our knowledge this is

the first study of high order p-methods (the mesh is fixed and numerical convergence is

obtained by increasing polynomial order) for complex flows in porous media. The use of

such p-methods gives an important option for engineering applications: one is able to solve

the problem accurately on a given grid that reflects geometrical properties of the physical

domain without modifying (such as refining or coarsening) the grid (usually obtained after

several months of development). The methods employed in my work are based on three

primal DG methods: the Non-symmetric Interior Penalty Galerkin (NIPG), Incomplete In-

terior Penalty Galerkin (IIPG) and Symmetric Interior Penalty Galerkin (SIPG) methods in

space introduced and analyzed in [67, 73, 7]. The backward Euler method is used for time

discretization.

In the literature, besides the mentioned work [32, 33, 34, 30] DG methods have only been ap-

plied to sequential formulations of two-phase flow. For a detailed description of fully implicit

versus sequential PDE models of multiphase flow, the reader can refer to [44, 59, 49].

We will now briefly review the literature on DG for two-phase flow. In [60, 15, 61, 53],

primal discontinuous Galerkin methods with upwinding are applied to a sequential pressure-

2



saturation formulation, in which the coefficients are evaluated at the previous time step. In

this case, unstable overshoot and undershoot occur and slope limiting postprocessing after

each saturation step is needed to remove these oscillations [20, 24]. The main drawbacks of

slope limiters are the drop of convergence of the scheme from the high order to the linear

order and the lack of theoretical convergence in two or three dimensions. It is to be noted

that without slope limiting both pressure and saturation blow up after a few time steps. A

multinumeric approach coupling DG and mixed finite elements is presented in [57]. More

recently, in [37], a sequential air-water model is numerically solved on uniform meshes us-

ing primal DG methods such as NIPG for the pressure equation and a local discontinuous

Galerkin (LDG) [23] discretization for the saturation equation. In this case, a Kirchoff trans-

formation is required to obtain a diffusive flux from the previous time step. The saturation

equation is solved explicitly in time, which is computationally appealing; however this re-

duced cost is compensated by the introduction of an additional unknown, intrinsic to the

LDG formulation.

Below is the brief description of the chapters included in this thesis.

In chapter 2 we present sharp computable lower bounds of the penalty parameters for stable

and convergent symmetric interior penalty Galerkin methods applied to the elliptic problem.

In particular, we derive the explicit dependence of the coercivity constants with respect to

the polynomial degrees and the angles of the mesh elements. Numerical examples in all

dimensions and for different polynomial degrees are presented. We show the numerical effects

of loss of coercivity. These bounds play an important role in the derivation of the stability

bounds (obtained in chapter 3) for the SIPG method applied to the pressure-saturation

formulation of the two-phase flow.

In chapter 3 we consider three different implicit pressure-saturation formulations for

two-phase flow. In the first two formulations (so called “phase-pressure, phase-saturation”

formulations), the primary variables are the pressure of the wetting phase and the satura-

tion of the non-wetting phase. In the third formulation (so called “global pressure, phase-

saturation” formulation), the primary variables are the global pressure and the saturation

of the non-wetting phase. These variables are approximated by discontinuous polynomi-

als of different degrees. The resulting finite dimensional problem is an algebraic system of
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nonlinear equations to which the Newton-Raphson iterative scheme is applied. We have

implemented all three formulations in our own code written in C. We study both h- and

p-versions, i.e.convergence is obtained by either refining the mesh uniformly or by increasing

the polynomial degree. We develop numerical analysis (existence of the discrete solution,

convergence of the schemes) for the “global pressure” formulation. Numerical tests which

confirm our theoretical results are presented. Besides, we show numerically that one of the

proposed schemes for the “phase-pressure, phase-saturation” is stable and robust even on

unstructured meshes and heterogeneous media. The number of Newton-Raphson iterations

remains low and bounded. The second proposed scheme for the “phase-pressure, phase-

saturation” formulation appears to be sensitive to the choice of the penalty parameter. In

addition, NIPG, SIPG and IIPG methods are compared and the effects of different basis

functions on the solution are studied. Some validation of the proposed schemes and some

comparison between numerical solutions obtained by “global pressure, phase-saturation” and

“phase-pressure, phase-saturation” formulations are presented.

In chapter 4 we present conclusions and future directions.
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2.0 ESTIMATION OF PENALTY PARAMETERS FOR SYMMETRIC

INTERIOR PENALTY GALERKIN METHODS

2.1 INTRODUCTION

The Symmetric Interior Penalty Galerkin (SIPG) method is an example of discontinuous

Galerkin methods, which uses penalties to enforce weakly both continuity of the solution and

the boundary conditions. For the elliptic problems, the bilinear form of the SIPG method was

first introduced by Wheeler [73] in a collocation finite element scheme. The SIPG method

was extended to parabolic problems by Arnold [6, 7]. A variation of the method was applied

to biharmonic problems by Baker [12]. Before its application to discontinuous finite element

spaces, the inclusion of penalty terms in a variational formulation for the continuous finite

element method can be found in several papers such as in [9, 11, 29].

Some of the general attractive features of the SIPG method are the local and high or-

der of approximation, the flexibility due to local mesh refinement and the ability to handle

unstructured meshes and discontinuous coefficients. More specific properties include the

optimal error estimates in both the H1 and L2 norms and the resulting symmetric linear

systems easily solved by standard solvers for symmetric matrices (such as conjugate gradi-

ent). The analysis and application of SIPG to a wide range of problems can be found in the

literature: a non-exhaustive list is given in [13, 16, 22, 40, 62, 69, 71, 52] and the references

herein.

The SIPG method is obtained by integrating by parts on each mesh element, and sum-

ming over all elements. Two stabilization terms are then added: a symmetrizing term corre-

sponding to fluxes obtained after integration by part, and a penalty term imposing a weak

continuity of the numerical solution. It is well known that there exists a threshold penalty
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above which the bilinear form is coercive and the scheme is stable and convergent. An-

other related discontinuous Galerkin method is the non-symmetric interior penalty Galerkin

(NIPG) method [68, 46]: this method differs from the SIPG method by only one sign: the

symmetrizing term is added instead of being subtracted. On one hand, the loss of symmetry

in the scheme gives an immediate coercivity of the bilinear form: the NIPG scheme is stable

and convergent for any value of the penalty. On the other hand, optimal error estimates in

the L2 norm cannot be proved via the standard Nitsche lift. As of today, this remains an

open problem.

In this chapter, we derive rigorous computable bounds of the threshold penalty that would

yield a stable and convergent SIPG. We consider a general second order elliptic problem

on a domain in any dimension, subdivided into simplices. Our main result is an improved

coercivity result. In particular, we show that the constant of coercivity depends on quantities

local to each mesh element, namely the local polynomial degree and the smallest sin θ over

all angles of the triangle in 2D or over all dihedral angles in the tetrahedron in 3D. We also

investigate the effects of the penalty numerically and exhibit unstable oscillatory solutions

for penalty values below the threshold penalty. Our results also apply to the incomplete

interior penalty Galerkin method [28], that differs from SIPG and NIPG in the fact that the

symmetrizing stabilizing term is removed. For this method, the error analysis in the energy

norm is identical to the analysis of the SIPG method.

The outline of this chapter is as follows: the model problem and scheme are presented

in Section 2.2 - Section 2.4. Section 2.5 recalls some known facts. Section 2.6 contains the

improved coercivity and continuity theorems. Section 2.7 shows numerical examples in all

dimensions that support our theoretical results.

2.2 MODEL PROBLEM AND SCHEME

Let Ω be a domain in Rd, d = 1, 2, 3. Let the boundary of the domain ∂Ω be the union of two

disjoint sets ΓD and ΓN . We denote n the unit normal vector to each edge of ∂Ω exterior

of Ω. For f given in L2(Ω), uD given in H
1
2 (ΓD) and uN given in L2(ΓN), we consider the
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following elliptic problem:

−∇ · (K∇u) + αu = f in Ω, (2.1)

u = uD on ΓD, (2.2)

K∇u · n = uN on ΓN . (2.3)

Here, the function α is a nonnegative scalar function and K is a matrix-valued function

K = (kij)1≤i,j≤d that is symmetric positive definite.

We can assume that the problem (2.1)-(2.3) has a unique solution in H1(Ω) when |ΓD| > 0

or when α 6= 0. On the other hand, when ∂Ω = ΓN and α = 0, problem (2.1)-(2.3) has a

solution in H1(Ω) which is unique up to an additive constant, provided
∫

Ω
f = − ∫

∂Ω
g.

Let Th = {E}E be a subdivision of Ω, where E is an interval if d = 1, a triangle if d = 2,

or a tetrahedron if d = 3. Let

h = max
E∈Th

hE,

where hE is the diameter of E. We assume that for each element E, there exist two positive

constants kE
0 and kE

1 such that

∀x ∈ E, kE
0 xTx ≤ xT Kx ≤ kE

1 xTx. (2.4)

We also denote by k0 (resp. k1) the minimum (resp. maximum) of kE
0 (resp. kE

1 ) over all

elements E in Th.

To each element E, we associate a polynomial degree pE, positive integer and we denote

the vector p = {pE : E ∈ Th}. The finite element subspace is taken to be

Dp(Th) = {vh ∈ L2(Ω) : ∀E ∈ Th vh|E ∈ PpE(E)},

where PpE(E) denotes the space of polynomials of total degree less than pE on the element

E. We note that there are no continuity constraints on the discontinuous finite element

spaces. In what follows, we will denote by ‖ · ‖O the L2 norm over the domain O.

We now present the scheme. For readability purposes, we separate the one-dimensional

case from the higher dimensional case.

7



2.3 SIPG IN ONE DIMENSION

Assuming that Ω = (a, b), we can write the subdivision:

Th = {In+1 = (xn, xn+1) : n = 0, . . . , N − 1} (2.5)

with x0 = a and xN = b. We allow the mesh to be non-uniform. In this one dimensional

setting, we simplify the notation and use p(n) for the polynomial degree on the interval In

and the constants k
(n)
0 , k

(n)
1 for the lower and upper bounds of K restricted to the interval

In. For simplicity, we assume that ΓD = {a, b} and thus ΓN = ∅.
If we denote v(x+

n ) = lim
ε→0+

v(xn + ε) and v(x−n ) = lim
ε→0+

v(xn− ε), we can define the jump

and average of v at the endpoints of In:

∀n = 1, . . . , N − 1, [v(xn)] = v(x−n )− v(x+
n ), {v(xn)} =

1

2
(v(x−n ) + v(x+

n )),

[v(x0)] = −v(x+
0 ), {v(x0)} = v(x+

0 ), [v(xN)] = v(x−N), {v(xN)} = v(x−N).

The SIPG finite element method for problem (2.1)-(2.3) is then : find uh in Dp(Th) such

that :

∀vh ∈ Dp(Th), A(uh, vh) = L(vh), (2.6)

where the bilinear form A and linear form L are defined by:

A(w, v) =
N−1∑
n=0

∫ xn+1

xn

(K(x)w′(x)v′(x) + αw(x)v(x))dx +
σ0

|I1| [w(x0)][v(x0)]

+
N−1∑
n=1

( σ+
n

2|In+1| +
σ−n

2|In|
)
[w(xn)][v(xn)] +

σN

|IN | [w(xN)][v(xN)]

−
N∑

n=0

{K(xn)w′(xn)}[v(xn)]−
N∑

n=0

{K(xn)v′(xn)}[w(xn)], (2.7)

L(v) =

∫ b

a

f(x)v(x)dx + K(a)v′(a)uD(a)−K(b)v′(b)uD(b)

+
σ0

|I1|v(a)uD(a) +
σN

|IN |v(b)uD(b), (2.8)
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where the penalty parameters σ0, σN , {σ+
n , σ−n }1≤n≤N−1 are positive real numbers, all bounded

below by σ > 0. The energy norm associated to A is:

∀vh ∈ Dp(Th), ‖vh‖E =
( N−1∑

n=0

∫ xn+1

xn

(K(x)
1
2 (v′h(x))2 + α(x)(vh(x))2)dx

+
σ0

|I1| [v(x0)]
2 +

N−1∑
n=1

( σ+
n

2|In+1| +
σ−n

2|In|
)
[v(xn)]2 +

σN

|IN | [v(xN)]2
)1/2

. (2.9)

2.4 SIPG IN HIGH DIMENSIONS

Let Γh be the set of interior edges in 2D (or faces in 3D) of the subdivision Th. With each

edge (or face) e, we associate a unit normal vector ne. If e is on the boundary ∂Ω, then ne

is taken to be the unit outward vector to ∂Ω.

We now define the average and the jump for w on an edge e shared by two elements E1
e

and E2
e :

∀e = ∂E1
e ∩ ∂E2

e , {w} =
1

2
(w|E1

e
) +

1

2
(w|E2

e
), [w] = (w|E1

e
)− (w|E2

e
),

For a boundary edge belonging to the boundary of E1
e , we will use the same notation:

∀e = ∂E1
e ∩ ∂Ω, {w} = w|E1

e
, [w] = w|E1

e
.

The general SIPG variational formulation of problem (2.1)-(2.3) is: find uh in Dp(Th)

such that:

∀vh ∈ Dp(Th), A(uh, vh) = L(vh), (2.10)

where the bilinear form A and linear form L are defined by:

A(w, v) =
∑
E∈Th

∫

E

K∇w · ∇v +

∫

Ω

αwv +
∑

e∈Γh∪ΓD

σe

|e|β0

∫

e

[w][v]

−
∑

e∈Γh∪ΓD

∫

e

{K∇w · ne}[v]−
∑

e∈Γh∪ΓD

∫

e

{K∇v · ne}[w], (2.11)

L(v) =

∫

Ω

fv −
∑
e∈ΓD

∫

e

(K∇v · ne)uD +
∑
e∈ΓD

∫

e

σe

|e|β0
vuD +

∑
e∈ΓN

∫

e

vuN . (2.12)
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The penalty parameter σe is a positive constant on each edge (or face) e and we denote by

σ > 0 the minimum of all σe. The parameter β0 > 0 is a global constant that, in general,

is chosen to be equal to (d − 1)−1. If β0 > (d − 1)−1, then the SIPG method is said to be

superpenalized. The energy norm associated to A is:

∀vh ∈ Dp(Th), ‖vh‖E =
( ∑

E∈Th

∫

E

K(∇vh)
2 +

∫

Ω

αv2
h +

∑
e∈Γh∪ΓD

σe

|e|β0

∫

e

[vh]
2
) 1

2
. (2.13)

2.5 ERROR ANALYSIS

We recall the well-known results about the schemes (2.6) and (2.10).

Lemma 1. Consistency. The exact solution of (2.1)-(2.3) satisfies the discrete variational

problem (2.6) in one dimension and (2.10) in two or three dimensions.

Lemma 2. Coercivity. Assume that for d = 2 or 3, the bound β0 ≥ (d− 1)−1 holds. Then,

there exists a penalty σ∗ that depends on p and β0 such that if σ > σ∗ we have

∀vh ∈ Dp(Th), A(vh, vh) ≥ C∗‖vh‖2
E ,

for some positive constant C∗ independent of h.

Lemma 3. Continuity. Assume that for d = 2 or 3, the bound β0 ≥ (d− 1)−1 holds. Then,

there exists a constant C̃ that depends on p and β0 such that

∀vh, wh ∈ Dp(Th), A(vh, wh) ≤ C̃‖vh‖E‖wh‖E .
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Theorem 1. Error estimates. Let p̃ = min{pE : E ∈ Th} and let u ∈ H p̃+1(Ω) be the exact

solution of (2.1)-(2.3). Assume that the coercivity lemma holds true. In addition, assume

that β0 = (d − 1)−1. Then, there is a constant C independent of h, but dependent of 1
C∗ ,

such that

‖u− uh‖E ≤ Chp̃|u|H p̃+1(Ω).

The condition on β0 can be relaxed to β0 ≥ (d− 1)−1 if either |ΓD| = 0 or |ΓD| > 0 and uD

can be extended by zero to a function in Dp(Th).

These results are proved by using standard trace inequalities [21] and they can be found

for example in [7, 8, 51].

The aim of this work is to determine exactly the value σ∗ that would guarantee the

coercivity and thus the convergence of the method. We also obtain a precise expression for

both coercivity and continuity constants C∗, C̃. We then show numerically that for penalty

values lower than σ∗, unstable solutions could occur.

2.6 IMPROVED COERCIVITY AND CONTINUITY LEMMAS

We will consider each dimension separately as the details of the proofs differ.

2.6.1 Estimation of σ∗ in One Dimension

We recall that N is the number of intervals in the subdivision (2.5).

Theorem 2. For any vector of positive numbers ε = (ε(n))N
n=1, define

σ∗0 =
2

ε(1)

(k
(1)
1 )

2

k
(1)
0

(p(1))2, (2.14)

σ∗N =
2

ε(N)

(k
(N)
1 )

2

k
(N)
0

(p(N))2, (2.15)

∀n = 1, . . . N − 1, σ∗n
− =

1

ε(n)

(k
(n)
1 )

2

k
(n)
0

(p(n))2, (2.16)
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∀n = 1, . . . N − 1, σ∗n
+ =

1

ε(n+1)

(k
(n+1)
1 )

2

k
(n+1)
0

(p(n+1))2. (2.17)

Then, if for all n, 0 < ε(n) < 1, σ−n > σ∗−n , σ+
n > σ∗+n and σ0 > σ∗0, σN > σ∗N , there is a

constant 0 < C∗(ε) < 1, independent of h, such that

∀vh ∈ Dp(Th), A(vh, vh) ≥ C∗(ε)‖vh‖2
E .

Moreover, an expression for C∗(ε) is:

C∗(ε) = min{ min
n=1,...,N

(1− ε(n)), 1− σ∗0
σ0

, 1− σ∗N
σN

, min
n=1,...,N−1

(1− σ∗−n
σ−n

), min
n=1,...,N−1

(1− σ∗+n

σ+
n

)}

Proof: Choosing w = v in (2.7) yields

A(v, v) =
N−1∑
n=0

∫ xn+1

xn

(K(x)v′(x)2 + α(x)v(x)2)dx− 2
N∑

n=0

{K(xn)v′(xn)}[v(xn)]

+
σ0

|I1| [v(x0)]
2 +

N−1∑
n=1

( σ+
n

2|In+1| +
σ−n

2|In|
)
[v(xn)]2 +

σN

|IN | [v(xN)]2. (2.18)

It suffices to bound the term −2
∑N

n=0{K(xn)v′(xn)}[v(xn)] and obtain some restrictions on

the penalty parameters for the coercivity to hold. Let us first consider the interior points.

By definition of the average and the property (2.4), we have for 1 ≤ n ≤ N − 1:

|{K(xn)v′(xn)}| ≤ k
(n)
1

2
|v′(x−n )|+ k

(n+1)
1

2
|v′(x+

n )|. (2.19)

For any interval I = (s, t), the following improved inverse trace inequality holds [72]:

∀vh ∈ Pp(I), |vh(s)| ≤ p + 1√
|I| ‖vh‖I . (2.20)

Hence using (2.20) we can bound |v′(x−n )| and |v′(x+
n )|:

|v′(x−n )| ≤ p(n)

√
|In|

‖v′‖In , |v′(x+
n )| ≤ p(n+1)

√
|In+1|

‖v′‖In+1 .
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Using these bounds we obtained for the interior point xn of the subdivision:

{K(xn)v′(xn)}[v(xn)] ≤ ‖v′‖In

k
(n)
1 p(n)

2
√
|In|

|[v(xn)]|+ ‖v′‖In+1

k
(n+1)
1 p(n+1)

2
√
|In+1|

|[v(xn)]|

≤
√

ε(n)

∥∥∥K
1
2 v′

∥∥∥
In

k
(n)
1 p(n)

2

√
k

(n)
0

√
ε(n)

|[v(xn)]|√
|In|

+
√

ε(n+1)

∥∥∥K
1
2 v′

∥∥∥
In+1

k
(n+1)
1 p(n+1)

2

√
k

(n+1)
0

√
ε(n+1)

|[v(xn)]|√
|In+1|

. (2.21)

Let us consider now the boundary nodes x0 and xN :

{K(x0)v
′(x0)}[v(x0)] ≤ |K(x0)v

′(x0)[v(x0)]|

≤
√

ε(1)

∥∥∥K
1
2 v′

∥∥∥
I1

k
(1)
1 p(1)

√
k

(1)
0

√
ε(1)

|[v(x0)]|√
|I1|

, (2.22)

{K(xN)v′(xN)}[v(xN)] ≤ |K(xN)v′(xN)[v(xN)]|

≤
√

ε(N)

∥∥∥K
1
2 v′

∥∥∥
IN

k
(N)
1 p(N)

√
k

(N)
0

√
ε(N)

|[v(xN)]|√
|IN |

. (2.23)

Combining the bounds above gives:

N∑
n=0

{K(xn)v′(xn)}[v(xn)] ≤
√

ε(1)

∥∥∥K
1
2 v′

∥∥∥
I1

k
(1)
1 p(1)

√
k

(1)
0

√
ε(1)

|[v(x0)]|√
|I1|

+
N−1∑
n=1

(√
ε(n)

∥∥∥K
1
2 v′

∥∥∥
In

k
(n)
1 p(n)

2

√
k

(n)
0

√
ε(n)

|[v(xn)]|√
|In|

+
√

ε(n+1)

∥∥∥K
1
2 v′

∥∥∥
In+1

k
(n+1)
1 p(n+1)

2

√
k

(n+1)
0

√
ε(n+1)

|[v(xn)]|√
|In+1|

)

+
√

ε(N)

∥∥∥K
1
2 v′

∥∥∥
IN

k
(N)
1 p(N)

√
k

(N)
0

√
ε(N)

|[v(xN)]|√
|IN |

.

After application of Cauchy-Shwarz’s inequality we have:

N∑
n=0

{K(xn)v′(xn)}[v(xn)] ≤
(
ε(1)

∥∥∥K
1
2 v′

∥∥∥
2

I1
+

N−1∑
n=1

(ε(n)
∥∥∥K

1
2 v′

∥∥∥
2

In

+ ε(n+1)
∥∥∥K

1
2 v′

∥∥∥
2

In+1

)

+ε(N)
∥∥∥K

1
2 v′

∥∥∥
2

IN

) 1
2
((k

(1)
1 p(1))2

k
(1)
0 ε(1)

|[v(x0)]|2
|I1| +

N−1∑
n=1

((k
(n)
1 p(n))2

2k
(n)
0 ε(n)

|[v(xn)]|2
2|In|

+
(k

(n+1)
1 p(n+1))2

2k
(n+1)
0 ε(n+1)

|[v(xn)]|2
2|In+1|

)
+

(k
(N)
1 p(N))2

k
(N)
0 ε(N)

|[v(xN)]|2
|IN |

) 1
2
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≤ (
N∑

n=1

ε(n)
∥∥∥K

1
2 v′

∥∥∥
2

In

)
1
2

(2(k
(1)
1 p(1))2

k
(1)
0 ε(1)

|[v(x0)]|2
|I1| +

N−1∑
n=1

((k
(n)
1 p(n))2

k
(n)
0 ε(n)

|[v(xn)]|2
2|In|

+
(k

(n+1)
1 p(n+1))2

k
(n+1)
0 ε(n+1)

|[v(xn)]|2
2|In+1|

)
+

2(k
(N)
1 p(N))2

k
(N)
0 ε(N)

|[v(xN)]|2
|IN |

) 1
2
.

Application of Young’s inequality yields:

N∑
n=0

{K(xn)v′(xn)}[v(xn)] ≤
N∑

n=1

ε(n)

2

∥∥∥K
1
2 v′

∥∥∥
2

In

+
(k

(1)
1 p(1))2

k
(1)
0 ε(1)

|[v(x0)]|2
|I1|

+
N−1∑
n=1

((k
(n)
1 p(n))2

2k
(n)
0 ε(n)

|[v(xn)]|2
2|In| +

(k
(n+1)
1 p(n+1))2

2k
(n+1)
0 ε(n+1)

|[v(xn)]|2
2|In+1|

)
+

(k
(N)
1 p(N))2

k
(N)
0 ε(N)

|[v(xN)]|2
|IN | .

Hence using the inequality above, we obtain a lower bound for the right-hand side of (2.18):

A(v, v) ≥
N∑

n=1

(1− ε(n))
∥∥∥K

1
2 v′

∥∥∥
2

In

+
N∑

n=1

‖α 1
2 v‖2

In

+
(
σ0 − 2

(k
(1)
1 p(1))2

k
(1)
0 ε(1)

) |[v(x0)]|2
|I1|

+
N−1∑
n=1

((
σ−n −

(k
(n)
1 p(n))2

k
(n)
0 ε(n)

) |[v(xn)]|2
2 |In| +

(
σ+

n −
(k

(n+1)
1 p(n+1))2

k
(n+1)
0 ε(n+1)

) |[v(xn)]|2
2|In+1|

)

+
(
σN − 2

(k
(N)
1 p(N))2

k
(N)
0 ε(N)

) |[v(xN)]|2
|IN | . (2.24)

From (2.24) the bilinear form (2.7) is coercive if :

ε(n) < 1, ∀n = 1, . . . , N, (2.25)

and 



σ0 >
2(k

(1)
1 p(1))2

k
(1)
0 ε(1)

σN >
2(k

(N)
1 p(N))2

k
(N)
0 ε(N)

σ−n >
(k

(n)
1 p(n))2

k
(n)
0 ε(n)

∀n = 1, . . . , N − 1,

σ+
n >

(k
(n+1)
1 p(n+1))2

k
(n+1)
0 ε(n+1)

∀n = 1, . . . , N − 1.

(2.26)

This concludes the proof.

Similarly, one can show the following improved continuity constant.
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Lemma 4. Under the notation of Theorem 2, the continuity constant C̃ of Lemma 3 is given

by:

C̃ = max{ max
n=1,...,N

(1 + ε(n)), 1 +
σ∗0
σ0

, 1 +
σ∗N
σN

, max
n=1,...,N−1

(1 +
σ∗−n
σ−n

, 1 +
σ∗+n

σ+
n

)}.

Corollary 1. The threshold value for the penalty parameter is obtained by taking ε(n) = 1

in (2.26) 



σ∗∗0 =
2(k

(1)
1 p(1))2

k
(1)
0

σ∗∗N =
2(k

(N)
1 p(N))2

k
(N)
0

σ∗∗−n =
(k

(n)
1 p(n))2

k
(n)
0

∀n = 1, . . . , N − 1,

σ∗∗+n =
(k

(n+1)
1 p(n+1))2

k
(n+1)
0

∀n = 1, . . . , N − 1.

(2.27)

Remark 1. A straightforward consequence is an estimate of the threshold value in the case

where the same polynomial degree p is used everywhere:





σ∗∗n = 2
k2
1

k0
p2 n = 0, N ,

σ∗∗−n = σ∗∗+n =
k2
1

k0
p2 ∀n = 1, . . . , N − 1,

(2.28)

where we recall that k0 and k1 are the global lower and upper bounds of K.

2.6.2 Estimation of σ∗ in Two Dimensions

In this section, we denote θE the smallest angle in a triangle E. This corresponds to the

smallest sin θ over all angles θ of E. We show that the penalty parameters depend on θE, pE

and the bounds kE
0 , kE

1 .

Theorem 3. Let ε = (εE)E∈Th
be a vector of positive components such that εE is associated

to the triangle E in Th. Assume that β0 = 1. For any edge e ∈ Γh shared by E1
e and E2

e ,

define

σ∗e =
3(k

E1
e

1 )2

2k
E1

e
0 εE1

e

(pE1
e )(pE1

e + 1) cot θE1
e
+

3(k
E2

e
1 )2

2k
E2

e
0 εE2

e

(pE2
e )(pE2

e + 1) cot θE2
e
. (2.29)

For any boundary edge e ∈ ΓD ∩ ∂E1
e , define

σ∗e =
6(k

E1
e

1 )2

k
E1

e
0 εE1

e

(pE1
e )(pE1

e + 1) cot θE1
e
. (2.30)

15



Then if σe > σ∗e for all e ∈ Γh ∪ ΓD, there is a constant 0 < C∗(ε) < 1, independent of h,

such that

∀vh ∈ Dp(Th), A(vh, vh) ≥ C∗(ε)‖vh‖2
E .

An expression for C∗ is:

C∗(ε) = min{min
E∈Th

(1− εE), min
e∈Γh∪ΓD

(1− σ∗e
σe

)}.

Proof:

Similarly, as in the one-dimensional case, we choose w = v in (2.11):

A(v, v) =
∑
E∈Th

∫

E

K∇v · ∇v +

∫

Ω

αv2

−2
∑

e∈Γh∪ΓD

∫

e

{K∇v · ne}[v] +
∑

e∈Γh∪ΓD

σe

|e|
∫

e

[v]2. (2.31)

In order to have coercivity of the bilinear form we need to bound the term−2
∑

e∈Γh∪ΓD

∫
e
{K∇v·

ne}[v].

Let us first consider one interior edge e shared by two triangles E1
e and E2

e . Applying

Cauchy-Schwarz inequality we have:

∫

e

{K∇v · ne}[v] ≤ ‖{K∇v · ne}‖e‖[v]‖e. (2.32)

Using the definition of the average and the property (2.4), we have

‖{K∇v · ne}‖e ≤ k
E1

e
1

2
‖∇v|E1

e
‖e +

k
E2

e
1

2
‖∇v|E2

e
‖e, (2.33)

so we obtain for the interior edge e:

∫

e

{K∇v · ne}[v] ≤
(k

E1
e

1

2
‖∇v|E1

e
‖e +

k
E2

e
1

2
‖∇v|E2

e
‖e

)
‖[v]‖e. (2.34)

Similarly, for a boundary edge e belonging to the boundary of element E1
e :

∫

e

{K∇v · ne}[v] ≤ k
E1

e
1 ‖∇v|E1

e
‖e‖[v]‖e. (2.35)
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Figure 1: Angles and edges in a generic triangle.

We now recall the inverse inequality valid on an edge of a triangle E [72]:

∀vh ∈ PpE(E), ‖vh‖e ≤
√

(pE + 1)(pE + 2)

2

|e|
|E|‖vh‖E. (2.36)

Hence in (2.36) we need to estimate the ratio |e|
|E| , where e is one edge of a triangle E. For

this, we consider a triangle with edges e1, e2 and e3. We denote by θij the interior angle

between edge ei and edge ej (see Fig. 1). Without loss of generality, we assume that e = e3.

The area of the triangle E is given by the formula:

|E| = 1

2
|ei||ej| sin θij =

1

4
|e3||e1| sin θ13 +

1

4
|e3||e2| sin θ23.

The length of the edge e in the triangle E can also be written as :

|e| = |e3| = |e1| cos θ13 + |e2| cos θ23.

Hence, using the smallest angle θE in the triangle E we have:

|e|
|E| =

4

|e|
( |e1| cos θ13 + |e2| cos θ23

|e1| sin θ13 + |e2| sin θ23

)
≤ 4

|e|
( |e1| cos θE + |e2| cos θE

|e1| sin θE + |e2| sin θE

)
.

So we obtain the following estimate :

|e|
|E| ≤

4 cot θE

|e| . (2.37)
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Then using inverse inequality (2.36), and the estimate (2.37) in (2.34) we obtain for the

interior edge e shared by the triangles E1
e and E2

e :

∫

e

{K∇v · ne}[v] ≤
√

εE1
e

∥∥∥K
1
2∇v

∥∥∥
E1

e

k
E1

e
1√

k
E1

e
0

√
εE1

e

√
pE1

e (pE1
e + 1) cot θE1

e

2

‖[v]‖e√
|e|

+
√

εE2
e

∥∥∥K
1
2∇v

∥∥∥
E2

e

k
E2

e
1√

k
E2

e
0

√
εE2

e

√
pE2

e (pE2
e + 1) cot θE2

e

2

‖[v]‖e√
|e| . (2.38)

Repeating the argument for a boundary edge that belongs to ∂E1
e , we obtain:

∫

e

{K∇v · ne}[v] ≤
√

εE1
e

∥∥∥K
1
2∇v

∥∥∥
E1

e

k
E1

e
1√

k
E1

e
0

√
εE1

e

√
2pE1

e (pE1
e + 1) cot θE1

e

‖[v]‖e√
|e| . (2.39)

Combining the bounds above and using Cauchy-Schwarz’s inequality, we obtain:

∑
e∈Γh∪ΓD

∫

e

{K∇v · ne}[v] ≤ (3
∑
E∈Eh

εE
∥∥∥K

1
2∇v

∥∥∥
2

E
)

1
2

( ∑
e∈Γh

((k
E1

e
1 )2pE1

e (pE1
e + 1) cot θE1

e

2k
E1

e
0 εE1

e

‖[v]‖2
e

|e| +
(k

E2
e

1 )2pE2
e (pE2

e + 1) cot θE2
e

2k
E2

e
0 εE2

e

‖[v]‖2
e

|e|
)

+
∑
e∈ΓD

2(k
E1

e
1 )2pE1

e (pE1
e + 1) cot θE1

e

k
E1

e
0 εE1

e

‖[v]‖2

|e|
) 1

2
. (2.40)

Therefore, by using Young’s inequality, we have:

∑
e∈Γh∪ΓD

∫

e

{K∇v · ne}[v] ≤
∑
E∈Eh

εE

2

∥∥∥K
1
2∇v

∥∥∥
2

e

+
∑
e∈Γh

(3(k
E1

e
1 )2pE1

e (pE1
e + 1) cot θE1

e

4k
E1

e
0 εE1

e

‖[v]‖2
e

|e|

+
3(k

E2
e

1 )2pE2
e (pE2

e + 1) cot θE2
e

4k
E2

e
0 εE2

e

‖[v]‖2
e

|e|
)

+
∑
e∈ΓD

3(k
E1

e
1 )2pE1

e (pE1
e + 1) cot θE1

e

k
E1

e
0 εE1

e

‖[v]‖2

|e| . (2.41)
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Therefore using the estimate (2.41) we have the following lower bound for the right-hand

side of (2.31):

A(v, v) ≥
∑
E∈Th

(1− εE)‖K 1
2∇v‖2

E +
∑
E∈Th

‖α 1
2 v‖2

E

+
∑
e∈Γh

(
σe − 3

2k
E1

e
0 εE1

e

(k
E1

e
1 )2(pE1

e )(pE1
e + 1) cot θE1

e

− 3

2k
E2

e
0 εE2

e

(k
(E2

e )
1 )2(pE2

e )(pE2
e + 1) cot θE2

e

)‖[v]‖2
e

|e|

+
∑
e∈ΓD

(
σe − 6

k
E1

e
0 εE1

e

(k
E1

e
1 )2(pE1

e )(pE1
e + 1) cot θE1

e

)‖[v]‖2
e

|e| . (2.42)

From (2.42) the bilinear form (2.11) is coercive if the following conditions hold:

∀E ∈ Th, εE < 1, (2.43)

∀e ∈ Γh, σe >
3(k

E1
e

1 )2

2k
E1

e
0 εE1

e

(pE1
e )(pE1

e + 1) cot θE1
e

+
3(k

(E2
e )

1 )2

2k
E2

e
0 εE2

e

(pE2
e )(pE2

e + 1) cot θE2
e
, (2.44)

∀e ∈ ΓD, σe >
6(k

E1
e

1 )2

k
E1

e
0 εE1

e

(pE1
e )(pE1

e + 1) cot θE1
e
. (2.45)

This concludes the proof.

Lemma 5. Under the notation of Theorem 3, the continuity constant C̃ of Lemma 3 is given

by:

C̃ = max{max
E∈Th

(1 + εE), max
e∈Γh∪ΓD

(1 +
σ∗e
σe

)}.

Corollary 2. The threshold value for the penalty parameter is obtained by taking εE = 1 in

(2.44) and (2.45).

∀e ∈ Γh, σ∗∗e =
3(k

E1
e

1 )2

2k
E1

e
0

(pE1
e )(pE1

e + 1) cot θE1
e

+
3(k

(E2
e )

1 )2

2k
E2

e
0

(pE2
e )(pE2

e + 1) cot θE2
e
, (2.46)

∀e ∈ ΓD, σ∗∗e =
6(k

E1
e

1 )2

k
E1

e
0

(pE1
e )(pE1

e + 1) cot θE1
e
. (2.47)
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Remark 2. Let θT denote the smallest angle over all triangles in the subdivision. Assume

that the same polynomial degree p is used everywhere. An estimate of the threshold value is

then:

∀e ∈ Γh, σ∗∗e =
3k2

1

k0

p(p + 1) cot θT , (2.48)

∀e ∈ ΓD, σ∗∗e =
6k2

1

k0

p(p + 1) cot θT . (2.49)

Remark 3. Similar results can be obtained in the case where superpenalization is used,

namely β0 > 1. The new values for the penalty parameters σ∗e , σ
∗∗
e are simply the ones

obtained for the case β0 = 1, times the quantity |e|β0−1.

2.6.3 Estimation of σ∗ in Three Dimensions

In this section, we denote θE the dihedral angle in the tetrahedron E such that sin θE is the

smallest value for sin θ over all dihedral angles θ of E. As in the two-dimensional case, we

show that the coercivity constant depends on θE. In Section 2.7.6, we outline an algorithm

for computing such angle.

Theorem 4. Let ε = (εE)E∈Th
be a vector of positive components such that εE is associated

to the tetrahedron E in Th. Assume that β0 = 1/2. For any face e ∈ Γh shared by E1
e and

E2
e , define

σ∗e =
3

2

(k
E1

e
1 )2

k
E1

e
0 εE1

e

pE1
e (pE1

e + 2)(cot θE1
e
)h |e|−1/2 +

3

2

(k
E2

e
1 )2

k
E2

e
0 εE2

e

pE2
e (pE2

e + 2)(cot θE2
e
)h |e|−1/2 .

For any boundary face e ∈ ΓD ∩ ∂E1
e , define

σ∗e = 6
(k

E1
e

1 )2

k
E1

e
0 εE1

e

p(E1
e )(pE1

e + 2)(cot θE1
e
)h |e|−1/2 . (2.50)

Then if σe > σ∗e for all e ∈ Γh ∪ ΓD, there is a constant 0 < C∗(ε) < 1, independent of h,

such that

∀vh ∈ Dp(Th), A(vh, vh) ≥ C∗(ε)‖vh‖2
E .

An expression for C∗ is:

C∗(ε) = min{min
E∈Th

(1− εE), min
e∈Γh∪ΓD

(1− σ∗e
σe

)}.
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Figure 2: A tetrahedral element with faces ei.

Proof: The proof is similar to the one for the two-dimensional case, and thus we will

skip some technical details. We first recall the inverse inequality in 3D for a tetrahedral

element E with face e [72]:

∀vh ∈ PpE(E), ‖vh‖e ≤
√

(pE + 1)(pE + 3)

3

|e|
|E|‖vh‖E. (2.51)

Here, |e| is the area of the face and |E| is the volume of the tetrahedral element. So as in

the case of the triangle we need to estimate the ratio |e|
|E| . For this, we fix an element E in

Th and we denote by ei, i = 1, . . . , 4 the faces of E and by dij the common edge to faces ei

and ej. We will assume that the face e is denoted by e4. We also denote by θij the dihedral

angle between faces ei and ej. A schematic is given in Fig. 2. The volume of the tetrahedron

is given by the formula [54]:

|E| = 2

3|dij| |ei||ej| sin θij, (2.52)

therefore we can rewrite the volume as:

|E| = 1

3

( 2

3|d14| |e4||e1| sin θ14 +
2

3|d24| |e4||e2| sin θ24 +
2

3|d34| |e4||e3| sin θ34

)

=
2

9
|e4|

( |e1|
d14

sin θ14 +
|e2|
d24

sin θ24 +
|e3|
d34

sin θ34

)
. (2.53)

Hence, using the fact that |dij| ≤ h, we have :

|e|
|E| =

|e4|
|E| =

|e4|
2
9
|e4|

(
|e1|
|d14| sin θ14 + |e2|

|d24| sin θ24 + |e3|
|d34| sin θ34

)
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≤ 9

2|e4|
|e4|(

|e1|
h

sin θ14 + |e2|
h

sin θ24 + |e3|
h

sin θ34

)

≤ 9

2

h

|e4|
|e4|(

|e1| sin θ14 + |e2| sin θ24 + |e3| sin θ34

) . (2.54)

The relation between areas of the faces and dihedral angles in a general tetrahedron is

given by the formula [54]:

|ek| =
4∑

i6=k
i=1

|ei| cos θki. (2.55)

Hence we have using (2.55) in (2.54) and using dihedral angle θE defined above:

|e|
|E| ≤

9

2

h

|e4|
( |e1| cos θ14 + |e2| cos θ24 + |e3| cos θ34

|e1| sin θ14 + |e2| sin θ24 + |e3| sin θ34

)

≤ 9

2

h

|e4|
( |e1|| cos θE|+ |e2|| cos θE|+ |e3|| cos θE|

|e1| sin θE + |e2| sin θE + |e3| sin θE

)
.

Therefore we obtain the following estimate for a given face e in tetrahedral element E:

|e|
|E| ≤

9

2

h| cot θE|
|e| , (2.56)

which is similar to estimate (2.37). Using a similar argument as in the triangular case, we

obtain for the interior face e shared by the tetrahedral elements E1
e and E2

e :

∫

e

{K∇v · ne}[v] ≤
√

εE1
e

∥∥∥K
1
2∇v

∥∥∥
E1

e

k
E1

e
1√

k
E1

e
0

√
εE1

e

√
3

8
pE1

e (pE1
e + 2) cot θE1

e
h
‖[v]‖e√
|e|

+
√

εE2
e

∥∥∥K
1
2∇v

∥∥∥
E2

e

k
E2

e
1√

k
E2

e
0

√
εE2

e

√
3

8
pE2

e (pE2
e + 2) cot θE2

e
h
‖[v]‖e√
|e| . (2.57)

and for a boundary face belonging to ∂E1
e , we have :

∫

e

{K∇v · ne}[v] ≤
√

εE1
e

∥∥∥K
1
2∇v

∥∥∥
E1

e

k
E1

e
1√

k
E1

e
0

√
εE1

e

√
3

2
pE1

e (pE1
e + 2) cot θE1

e
h
‖[v]‖e√
|e| . (2.58)

Therefore we can estimate now the term
∑

e∈Γh∪ΓD

∫
e
{K∇v · ne}[v]. We first apply

Cauchy-Schwarz’s inequality. It is easy to see that we obtain:

∑
e∈Γh∪ΓD

∫

e

{K∇v · ne}[v] ≤
∑
E∈Th

εE

2

∥∥∥K
1
2∇v

∥∥∥
2

E
+

∑
e∈Γh

(3

4

(k
E1

e
1 )2

k
E1

e
0 εE1

e

pE1
e (pE1

e + 2) cot θE1
e
h |e|−1/2
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+
3

4

(k
E2

e
1 )2

k
E2

e
0 εE2

e

pE2
e (pE2

e + 2) cot θE2
e
h |e|−1/2

)‖[v]‖2
e

|e|1/2

+
∑
e∈ΓD

3
(k

E1
e

1 )2

k
E1

e
0 εE1

e

pE1
e (pE1

e + 2) cot θE1
e
h |e|−1/2

)‖[v]‖2
e

|e|1/2
. (2.59)

Therefore using the estimate (2.59) we have the following bound for the right-hand side of

(2.31):

A(v, v) ≥
∑
E∈Eh

(1− εE)‖K 1
2∇v‖2

E +
∑
E∈Eh

‖α1/2v‖2
E

+
∑
e∈Γh

(
σe − 3

2

(k
E1

e
1 )2

k
E1

e
0 εE1

e

pE1
e (pE1

e + 2) cot θE1
e
h |e|−1/2

−3

2

(k
E2

e
1 )2

k
E2

e
0 εE2

e

pE2
e (pE2

e + 2) cot θE2
e
h |e|−1/2

)‖[v]‖2
e

|e|1/2

+
∑
e∈ΓD

(
σe − 6

(k
E1

e
1 )2

k
E1

e
0 εE1

e

pE1
e (pE1

e + 2) cot θE1
e
h |e|−1/2

)‖[v]‖2
e

|e|1/2
. (2.60)

Coercivity is then obtained for ε and σe satisfying the bounds:

∀E ∈ Th, εE < 1, (2.61)

∀e ∈ Γh, σe >
3

2

(k
E1

e
1 )2

k
E1

e
0 εE1

e

pE1
e (pE1

e + 2) cot θE1
e
h |e|−1/2

+
3

2

(k
E2

e
1 )2

k
E2

e
0 εE2

e

pE2
e (pE2

e + 2) cot θE2
e
h |e|−1/2 , (2.62)

∀e ∈ ΓD, σe > 6
(k

E1
e

1 )2

k
E1

e
0 εE1

e

pE1
e (pE1

e + 2) cot θE1
e
h |e|−1/2 . (2.63)

This concludes the proof.

Lemma 6. Under the notation of Theorem 4, the continuity constant C̃ of Lemma 3 is given

by:

C̃ = max{max
E∈Th

(1 + εE), max
e∈Γh∪ΓD

(1 +
σ∗e
σe

)}.
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Corollary 3. The threshold value for the penalty parameter is obtained by taking εE = 1 in

(2.62) and (2.63).

∀e ∈ Γh, σ∗∗e =
3

2

(k
E1

e
1 )2

k
E1

e
0

pE1
e (pE1

e + 2) cot θE1
e
h |e|−1/2

+
3

2

(k
E2

e
1 )2

k
E2

e
0

pE2
e (pE2

e + 2) cot θE2
e
h |e|−1/2 , (2.64)

∀e ∈ ΓD, σ∗∗e = 6
(k

E1
e

1 )2

k
E1

e
0

pE1
e (pE1

e + 2) cot θE1
e
h |e|−1/2 . (2.65)

Remark 4. Let θT denote the dihedral angle such that it gives the smallest sin θ over all

dihedral angles θ in the subdivision. Assume that the same polynomial degree p is used

everywhere. An estimate of the threshold value is then:

∀e ∈ Γh, σ∗∗e =
3k2

1

k0

p(p + 2)h|e|−1/2 cot θT , (2.66)

∀e ∈ ΓD, σ∗∗e =
6k2

1

k0

p(p + 2)h|e|−1/2 cot θT . (2.67)

Remark 5. As in the 2D case, if superpenalization is used, namely β0 > 1/2, it is easy to

show that the new values for the penalty parameters σ∗e , σ
∗∗
e are simply the ones obtained for

the case β0 = 1/2, times the quantity |e|β0−1/2.

2.7 NUMERICAL EXAMPLES

We now present simple computations obtained for the domains Ω1, Ω2, Ω3 in 1D, 2D and 3D

respectively. The exact solutions are periodic functions defined by:

u1(x) = cos(8πx) on Ω1 = (0, 1),

u2(x) = cos(8πx) + cos(8πy) on Ω2 = (0, 1)2,

u3(x) = cos(8πx) + cos(8πy) + cos(8πz) on Ω3 = (0, 1)3.

The tensor K is the identity tensor. We vary the number of elements Nh in the mesh, the

polynomial degree and the penalty value (denoted by σ) that is chosen constant over the

whole domain, unless specified otherwise. In each case, we compute the limiting penalty

value σ∗∗ given by (2.28) in 1D, (2.48)-(2.49) in 2D and (2.66)-(2.67) in 3D.
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2.7.1 One-dimensional Problem

We first consider the case of piecewise linears on several meshes containing 10, 20 and 40

intervals respectively. In all figures, the exact solution is drawn as a dashed line whereas the

numerical solution is drawn as a solid line. For a penalty value σ = 0.5 that is smaller than

σ∗∗ = 2, oscillations occur for all three meshes (see Fig. 3) and the numerical error is large.

When σ > σ∗∗, the numerical solution is accurate (see Fig. 4). The two curves coincide

with each other. The errors decrease as the mesh is refined according to the theoretical

convergence rate given in Theorem 1.

We repeat the numerical experiments with piecewise quadratics and piecewise cubics.

Unstable solutions are obtained for penalty values below the threshold value (see Fig. 5 and

Fig. 7). The stable and convergent solutions are shown in Fig. 6 and Fig. 8. It is interesting

to point that for the unstable penalty σ = 3.5832, the solution is accurate for the mesh with

20 elements; however large oscillations occur on meshes with 10 and 40 elements. Finally,

Fig. 9 corresponds to a zero penalty on a coarse mesh and a very fine mesh: as expected,

refining the mesh is not enough to recover from the loss of coercivity.

A more precise estimate of the accuracy is given in Table 2.7.1. The absolute L2 error

‖u− uh‖Ω and H1
0 error (

∑
E∈Th

‖∇(u− uh)‖2
E)1/2 are computed for each simulation. We also

indicate the limiting penalty values given by (2.28). For stable solutions, we choose penalty

values that are greater than the limiting value. It is to be noted that when σ is very close

to the threshold penalty value, the coercivity constant C∗ is very close to zero. In that case,

numerical oscillations could still occur. This poor coercivity property is discussed in detail

in [35].

Next, we numerically investigate the sharpness of the theoretical threshold values of the

penalty parameter. On a fixed mesh containing thirty intervals, we increase the penalty

parameter with a small enough step size (chosen here equal to 0.01) and we compute the

absolute L2 and H1
0 norms of the error. The results are shown in Fig. 10-Fig. 15, where the

figures to the right are close-up views of the figures to the left. The polynomial degree is

chosen to be equal to one, two or three everywhere. From these figures, we conclude that

a stable numerical bound for the penalty parameter is 2 for piecewise linear approximation,
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Table 1: Numerical errors for one-dimensional simulations.

Nh p σn σ∗∗−n = σ∗∗+n
0<n<N

σ∗∗n
n=0,N

L2 error H1
0 error

10 1 0 1 2 251.7794 89.7737
160 1 0 1 2 1.5748 2.1370
10 1 0.5 1 2 1.4784 19.1598
10 1 4.5 1 2 0.2471 11.7768
20 1 0.5 1 2 1.1143 40.2011
20 1 4.5 1 2 0.0827 6.4208
40 1 0.5 1 2 0.1334 9.7604
40 1 4.5 1 2 0.0236 3.2528
10 2 1.375 4 8 0.3166 13.8863
10 2 12 4 8 0.0507 4.0257
20 2 1.375 4 8 0.2620 22.1197
20 2 12 4 8 0.0061 1.0534
40 2 1.375 4 8 0.1265 21.1470
40 2 12 4 8 7.3194× 10−4 0.2661
10 3 3.5832 9 18 0.1111 9.4328
10 3 23 9 18 0.0072 0.8487
20 3 3.5832 9 18 0.0072 1.2450
20 3 23 9 18 5.2545× 10−4 0.1124
40 3 3.5832 9 18 1.3497 467.8889
40 3 23 9 18 3.5184× 10−5 0.0141
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Figure 3: p = 1, σ = 0.5: Nh = 10 (left), Nh = 20 (center), Nh = 40 (right).
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Figure 4: p = 1, σ = 4.5: Nh = 10 (left), Nh = 20 (center), Nh = 40 (right).
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Figure 5: p = 2, σ = 1.375: Nh = 10 (left), Nh = 20 (center), Nh = 40 (right).
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Figure 6: p = 2, σ = 12: Nh = 10 (left), Nh = 20 (center), Nh = 40 (right).
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Figure 7: p = 3, σ = 3.5832: Nh = 10 (left), Nh = 20 (center), Nh = 40 (right).
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Figure 8: p = 3, σ = 23: Nh = 10 (left), Nh = 20 (center), Nh = 40 (right).
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Figure 9: p = 1, σ = 0: coarse mesh Nh = 10 (left) and refined mesh Nh = 160 (right).

5 for piecewise quadratic approximation and 13 for piecewise cubic approximation. Those

values are close to the theoretical bounds which are 2, 8 and 18 respectively. Theoretically,

we proved that the threshold values are independent of the mesh size. We confirm this

numerically by repeating the experiments on a more refined mesh (see Fig. 16-Fig. 17). The

same numerical bounds as for the coarser mesh are obtained.

2.7.2 Two-dimensional Problem

2.7.3 Structured 2D mesh

We solve the problem on the structured mesh shown in Fig. 18. For this mesh, the smallest

angle is θT = π
4
. The exact solution for reference is shown in Fig. 19. In Fig. 20, we

first consider polynomial degree equal to one on a very fine mesh (2048 elements). The

penalty parameter is equal to either 0 or 3 everywhere. We also compute the solution with

a penalty parameter equal to σI = 8 on all interior edges and σD = 14 on all boundary

edges. From (2.46)-(2.47), the threshold value is σ∗∗I = 6 for the interior edges and σ∗∗D = 12
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Figure 10: Variation of L2 error with respect to penalty parameter: mesh with 30 elements

and piecewise linear approximation.
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Figure 11: Variation of H1
0 error with respect to penalty parameter: mesh with 30 elements

and piecewise linear approximation.
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Figure 12: Variation of L2 error with respect to penalty parameter: mesh with 30 elements

and piecewise quadratic approximation.
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Figure 13: Variation of H1
0 error with respect to penalty parameter: mesh with 30 elements

and piecewise quadratic approximation.
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Figure 14: Variation of L2 error with respect to penalty parameter: mesh with 30 elements

and piecewise cubic approximation.
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Figure 15: Variation of H1
0 error with respect to penalty parameter: mesh with 30 elements

and piecewise cubic approximation.

31



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

Figure 16: Variation of L2 error with respect to penalty parameter: mesh with 60 elements

and polynomial approximation of degree one (left), two (center) and three (right).
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Figure 17: Variation of H1
0 error with respect to penalty parameter: mesh with 60 elements

and polynomial approximation of degree one (left), two (center) and three (right).
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Figure 18: Structured mesh with 128 elements.

for the boundary edges. For a penalty value above the limiting value, no oscillations occur

whereas for a smaller penalty value, the solution is unstable. Fig. 21 shows the piecewise

quadratic solution on a mesh containing 512 elements. Finally, for the case of piecewise cubic

polynomials, the solutions are shown in Fig. 22 for a mesh containing 128 elements. We also

present the solutions obtained by SIPG with a zero penalty. In this case, the standard proof

for SIPG is not valid.

We give the error in the L2 norm and the H1
0 norm for all cases and we also give the

limiting value (σ∗∗I , σ∗∗D ) in Table 2.7.3. For a given penalty, the error decreases as the mesh is

refined. Similar conclusions as in the one-dimensional case can be made. For stable methods,

the error decreases with the right convergence rate. For unstable methods, oscillations may

occur.

We present in Fig. 23 the numerical convergence of the SIPG solution for a ”good”

penalty value (larger than σ∗∗I = 6 for the interior edges and σ∗∗D = 12 for the boundary

edges) and a ”bad” penalty value (smaller than σ∗∗I , σ∗∗D ). Piecewise linear approximation

is used. The stable solution converges with the expected convergence rate (O(h2) for the

L2 error and O(h) for the H1 error) whereas the unstable solution does not converge as the

mesh size decreases.

As in the one-dimensional case, we numerically study the bound for the penalty values

by computing the L2 and H1
0 errors for several penalty parameters on a mesh containing 128

elements. The penalty value for the boundary edges is taken equal to twice the penalty value

for the interior edges. Fig. 24 and Fig. 25 show both errors for piecewise linear approximation
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Table 2: Numerical errors for two-dimensional simulations.

Nh p σI σD σ∗∗I σ∗∗D L2 error H1
0 error

2048 1 0 0 6 12 1.6208681 7.9950783
2048 1 3 3 6 12 9.7490787× 10−1 1.8162526× 102

2048 1 8 14 6 12 4.0349201× 10−2 5.1780241
512 2 0 0 18 36 5.2324755× 10−2 4.3847913
512 2 4.5 4.5 18 36 1.7144388× 10−1 20.100636
512 2 20 38 18 36 1.3266233× 10−2 2.0443066
128 3 0 0 36 72 7.8099710× 10−3 6.0682964× 10−1

128 3 11 11 36 72 2.1133410× 10−1 25.599158
128 3 38 74 36 72 6.0859298× 10−3 4.7570410× 10−1
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Figure 19: Exact solution.
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Figure 20: Computed solution for piecewise linear approximation and Nh = 2048 elements:

σ = 0 (left), σ = 3 (center), σI = 8, σD = 14 (right).
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Figure 21: Numerical solution for piecewise quadratic approximation andNh = 512 elements:

σ = 0 (left), σ = 4.5 (center), σI = 20, σD = 38 (right).
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Figure 22: Numerical solution for piecewise cubic approximation and Nh = 128 elements:

σ = 0 (left), σ = 11 (center), σI = 38, σD = 74 (right).
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Figure 23: Numerical convergence rates for the case σ = 3 (dashed line) and σI = 8, σD = 14

(solid line): H1
0 errors (left) and L2 errors (right). The threshold penalty values are σ∗∗I =

6, σ∗∗D = 12.

whereas Fig. 26 and Fig. 27 show the errors for piecewise quadratic approximation. The

numerical bounds for the interior penalty values are equal to 4 for p = 1 and 10 for p = 2

whereas the theoretical bounds for the interior penalty values are 6 and 18 respectively.
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Figure 24: Variation of L2 error with respect to penalty parameter for the structured mesh

with 128 elements and piecewise linear approximation.
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Figure 25: Variation of H1
0 error with respect to penalty parameter for the structured mesh

with 128 elements and piecewise linear approximation.
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Figure 26: Variation of L2 error with respect to penalty parameter for the structured mesh

with 128 elements and piecewise quadratic approximation.
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Figure 27: Variation of H1
0 error with respect to penalty parameter for the structured mesh

with 128 elements and piecewise quadratic approximation.
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Figure 28: Unstructured mesh with 219 elements.

2.7.4 Unstructured 2D Mesh

We consider an unstructured triangular mesh containing 219 elements (see Fig. 28). We

present the results for the case of piecewise quadratic approximations. As before we vary

the penalty parameters σ = 0, 7.5 for the choice of bad penalty and we pick good penalty

at each edge separately using theoretical values for the threshold penalty. Here, the value

of cot θ varies between 0.5821 and 2.1578 and thus, the limiting penalty parameter takes

different values for each edge. The numerical solutions are shown in Fig. 29.

We present the numerical errors in the L2 and H1
0 norms in Table 2.7.4. Those errors

are computed on the initial mesh and a uniformly refined mesh containing 876 elements.

Fig. 30 and Fig. 31 show the effects of the penalty value on the L2 and H1
0 errors and give

Table 3: Numerical errors for two-dimensional unstructured mesh simulations.

Nh p σe L2 error H1
0 error

219 2 0 1.0262113 52.510991
219 2 7.5 6.3221136× 10−1 66.159341
219 2 σe 4.3241933× 10−2 4.7130677
876 2 0 5.5677943× 10−2 5.8047835
876 2 7.5 2.2284393× 10−2 4.3895847
876 2 σe 5.2956025× 10−3 1.2169522
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Figure 29: Numerical solution on unstructured mesh for piecewise quadratic solution: σ = 0

(left), σ = 7.5 (center), good σ = σe (right).

a numerical bound for the penalty equal to 14. We perform several simulations such that

the penalty values increases uniformly from 0.01 to 21 and such that for each simulation the

penalty parameter is constant over all edges. From (2.46), (2.47), the theoretical threshold

penalty values vary from edge to edge, with an average equal to 17.4403.

2.7.5 2D Mesh with Localized Poor Elements

In this example, we numerically investigate the influence of a local mesh singularity due

to a ”flat” triangle. The mesh is given in Fig. 32. It consists of regular triangles with

cot θE = 1 except in a small region where cot θE takes the values {1.75, 2, 3.667}. In this

experiment, we choose the penalty parameter σ constant on all interior edges except the edges

denoted e1, . . . , e6 (see Fig. 32). From the equations (2.46), (2.47), we choose σe1 = 1.5σ,

σe2 = 1.375σ, σe3 = 1.875σ, σe4 = 2.8333σ, σe5 = 2.7083σ and σe6 = 2.3333σ. The penalty

value for the boundary edges is taken equal to 2σ. We then vary σ in the interval [0, 21] and

compute the L2 and H1
0 errors. From Fig. 33 and Fig. 34, we obtain the numerical bound

σ = 13, which is close to the theoretical value equal to 18. For a penalty greater than 13,

the L2 error is constant equal to 0.250. In a second experiment, we fix the penalty value to

13 everywhere and the resulting L2 error increases to 0.856. Clearly, this shows the effect of

a few ”bad” mesh elements on the overall stability and accuracy of the solution.
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Figure 30: Variation of L2 error with respect to penalty values for piecewise quadratic

approximation
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Figure 31: Variation of H1
0 error with respect to penalty values for piecewise quadratic

approximation
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Figure 32: 2D mesh with localized poor elements (left) with close-up view (right).
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Figure 33: Variation of L2 error with respect to penalty parameter for piecewise quadratic

approximation.
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0 error with respect to penalty parameter for piecewise quadratic

approximation.

2.7.6 Three-dimensional Problem

We first explain how to obtain the angle θT . The value | cot θT | is the maximum of | cot θE|
over all mesh elements E. For a given element E, the angle θE is the one that yields the

smallest sin θE,ξ over all edges ξ of the tetrahedron. We now explain how to obtain θE,ξ for

given E and ξ.

1. Compute the equations of the planes corresponding to the two faces of E that share the

common edge ξ.

i = 1, 2, ai
E,ξx + bi

E,ξy + ci
E,ξz + di

E,ξ = 0.

2. The normal vectors to those two faces are

i = 1, 2, nei
= (ai

E,ξ, b
i
E,ξ, c

i
E,ξ).

3. Compute cos θE,ξ and sin θE,ξ:

cos θE,ξ = ne1 · ne2 , sin θE,ξ = (1− (cos θE,ξ)
2)1/2.

43



0 5 10 15 20 25 30
0

50

100

150

200

250

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

Figure 35: Variation of L2 error with respect to the penalty value for piecewise quadratic

approximation.

We now solve the problem on a mesh containing 720 tetrahedral elements such that

h cot Th = 1. We fix β0 = 1/2. Piecewise quadratic approximation is used. In Fig. 35

and Fig. 36, we plot the numerical L2 and H1
0 errors versus the penalty parameter chosen

constant over all edges. The numerical bounds for the penalty value is equal to 18, which is

close to the theoretical value 24 from (2.66).
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3.0 FULLY IMPLICIT DISCONTINUOUS FINITE ELEMENT METHODS

FOR TWO-PHASE FLOW

3.1 INTRODUCTION

The outline of this chapter is as follows. Section 3.2 contains a brief description of the three

formulations of the two-phase flow model. The fully implicit hp DG numerical schemes are

introduced in Section 3.3. In Section 3.4 the Newton-Raphson algorithm applied to the

resulted system of the nonlinear equations is considered. The detailed construction of the

jacobian is given in section A.1. Numerical analysis of one of the proposed scheme is given

in Section 3.5. Convergence with respect to the mesh refinement (h-version) or increase in

the polynomial degree (p-version) are considered. Some numerical validation and numerical

simulations for homogeneous and heterogeneous permeability fields are given in Section 3.6.

3.2 MODEL PROBLEM.

Let Ω be a polygonal porous medium in R2. The flow of the wetting phase (such as water)

and non-wetting phase (such as oil) in Ω is described by Darcy’s law and the continuity

equation for each phase. Let us denote by the subscript α = w and α = n the wetting and

non-wetting phase respectively. The Darcy velocity for each phase is given by :

uα = −λαK∇pα, α = w, n, (3.1)
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where pα is the phase pressure, and the continuity equation satisfied by the phase saturation

sα is given by
∂(ραφsα)

∂t
+∇ · (ραuα) = ραqα, α = w, n. (3.2)

The coefficients in (3.1) and (3.2) are defined below:

• The permeability K is a symmetric positive definite matrix, obtained from a macroscopic

averaging of the microscopic features of the medium. Hence, it can be discontinuous in

the space variable and can vary over several orders of magnitude.

• λw and λn are the mobilities of the wetting and non-wetting phase respectively. Mobilities

are the ratios of relative permeabilities krα by the viscosities µα

λα =
krα

µα

, α = w, n, (3.3)

and the relative permeabilities are functions that depend on the non-wetting phase satu-

ration sn in a non-linear fashion. In this work, the commonly used Brooks-Corey model

[19] is considered.

krw(s) = (1− s)
2+3θ

θ , krn(s) = s2(1− (1− s)
2+θ

θ ). (3.4)

This model introduces an additional parameter θ ∈ [0.2, 3.0], which characterizes the

inhomogeneity of the medium. We also denote λt = λw + λn the total mobility.

• ρα, φ are the phase densities and porosity respectively. The functions qα denote sources

or sinks in the medium.

• In addition to Equations (3.1) and (3.2), the following closure relations must also be

satisfied:

sw + sn = 1, (3.5)

pc = pn − pw, (3.6)

where pc is the capillary pressure given by:

pc(s) = pd(1− s)−
1
θ . (3.7)

Here, pd is a constant pressure corresponding to the capillary pressure needed to displace

the fluid from the largest pore.
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We have restricted our consideration to incompressible fluid flow, i.e. the densities ρα are

constant. Furthermore, we assume that the porosity φ is constant over the entire domain.

Under these assumptions, the continuity equation (3.2) is reduced to

φ
∂sα

∂t
+∇ · uα = qα, α = w, n. (3.8)

The continuity equation (3.8) and Darcy’s law (3.1) is the basis for the description of

incompressible multiphase flow processes. The pressure and saturation can be coupled using

the closure relations (3.5) and (3.6). In this work, we consider three formulations of the

two-phase flow problem, described below.

The first formulation of the model for the coupled pressure-saturation equations for in-

compressible two-phase flow with unknowns pw and sn can be derived by summing continuity

equations (3.8) for wetting and non-wetting phase and using (3.1), (3.5), (3.6) and continuity

equation (3.8) for wetting phase:

−∇ · (λtK∇pw + λnK∇pc) = qw + qn, (3.9)

−φ
∂sn

∂t
−∇ · (λwK∇pw) = qw. (3.10)

The second formulation of the model for the coupled pressure-saturation equations for

incompressible two-phase flow with unknowns pw and sn can be obtained by substituting

(3.1), (3.5), (3.6) into (3.8) :

−φ
∂sn

∂t
−∇ · (λwK∇pw) = qw, (3.11)

φ
∂sn

∂t
−∇ · (λnK(∇pc +∇pw)) = qn. (3.12)

Both formulations of the coupled phase pressure, phase saturation equations stated above

are subject to appropriate boundary and initial conditions. We assume that the boundary

of the domain is divided into three disjoint open sets ∂Ω = ΓN ∪ Γ+ ∪ Γ− and we denote by

n the outward normal to ∂Ω.

pw = p−dir, sn = sdir, on Γ− - the inflow boundary,

pw = p+
dir, λnK∇pc · n = 0, on Γ+ - the outflow boundary,

λwK∇pw · n = 0, λnK∇pn · n = 0, on ΓN - no-flow boundary ,
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sn(·; 0) = s0(·), saturation at time t = 0 . (3.13)

On the other hand, based on the work of Chavent and Jaffré [20], we can reformulate the

two-phase flow model problem by introducing the new variable, the global pressure defined

by:

∀(x, t) ∈ Ω× [0, T ], p(x, t) = pn(x, t) + pc(1− snr)−
∫ 1−sn(x,t)

1−snr

λw(ξ)

λt(ξ)
p′c(ξ)dξ, (3.14)

where snr (resp. swr) is the residual saturation of the non-wetting phase (resp. wetting

phase). The total mobility λt is defined as the sum of the phase mobilities (λt = λw + λn).

Mathematically, the global pressure is well-defined for all values of sn in [1 − swr, snr]. An

equivalent formulation of (3.8) can then be obtained for the primary variables (p, sn):

−∇ · (λtK∇p) = qw + qn, (3.15)

φ
∂sn

∂t
+∇ · (λwK∇p− λwλn

λt

K∇pc) = −qw, (3.16)

subject to the following boundary and initial conditions:

∀x ∈ Ω, sn(x, 0) = s0
n(x), (3.17)

∀x ∈ ΓD, sn(x, t) = sdir
n , p(x, t) = pdir, (3.18)

∀x ∈ ΓN , uw · n = un · n = 0. (3.19)

It is understood that ΓD contains both inflow and outflow boundaries, whereas ΓN corre-

sponds to the no-flow boundary.

The systems of partial differential equations for “phase-pressure, phase-saturation” for-

mulations (3.9)-(3.10) and (3.11)-(3.12) can be classified as mixed hyperbolic-parabolic

type. The systems of partial differential equations for “global pressure, phase saturation”

formulation (3.15)-(3.16) has structure of elliptic and parabolic type. The advantage of

“global pressure” approach over “phase-pressure, phase-saturation” approaches is that it

produces models of identifiable mathematical nature. The formulation (3.15)-(3.16) makes

a rigorous mathematical study possible and is well suited for numerical simulations. We

develop the numerical analysis for the “global pressure, phase-saturation” formulation and

all three formulations are numerically investigated in the rest of the work.
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3.3 FULLY IMPLICIT SCHEME

The domain Ω is subdivided into a non degenerate quasi-uniform partition Eh = {E}E

consisting of Nh elements (quadrilaterals or triangles) of maximum diameter h. For the

schemes introduced below we will use the same definition of the jump and average as it was

given in Section 2.4. For a given integer r ≥ 0, the discontinuous finite element space is

Dr(Eh) = {v ∈ L2(Ω) : v|E ∈ Pr(E) ∀E ∈ Eh}, (3.20)

where Pr(E) is the space of polynomials of total degree less than or equal to r. We ap-

proximate the pressure of the wetting phase and saturation of the non-wetting phase by

discontinuous polynomials of total degrees rp and rs respectively.

The time interval is divided into N equal subintervals of length ∆t. Let ti = i∆t and let

pi
w and si

n be the numerical solutions at time ti. We also denote λi
α = λα(si

n) and pi
c = pc(s

i
n).

Application of the backward Euler scheme for time stepping and NIPG for the space dis-

cretization to the system of PDEs for the coupled equations (3.9)-(3.10) and (3.11)-(3.12)

yields two systems of nonlinear equations.

Fully implicit scheme for first formulation (3.9)-(3.10): given (pi
w, si

n) ∈ Drp(Eh) ×
Drs(Eh), find (pi+1

w , si+1
n ) satisfying

Pressure Equation :

∑
E∈Eh

∫

E

λi+1
t K∇pi+1

w · ∇z +
∑
E∈Eh

∫

E

λi+1
n K∇pi+1

c · ∇z

−
∑

e∈Γh∪Γ+∪Γ−

∫

e

{λi+1
t K∇pi+1

w · ne}[z]−
∑

e∈Γh∪Γ−

∫

e

{λi+1
n K∇pi+1

c · ne}[z]

+
∑

e∈Γh∪Γ+∪Γ−

∫

e

{λi+1
t K∇z · ne}[pi+1

w ] +
∑

e∈Γh∪Γ−

∫

e

{λi+1
n K∇z · ne}[pi+1

c ]

+
∑

e∈Γh∪Γ+∪Γ−

σ

|e|β
∫

e

[pi+1
w ][z] +

∑
e∈Γh∪Γ−

σ

|e|β
∫

e

[pi+1
c ][z]

−
∑

e∈Γ+∪Γ−

∫

e

(λi+1
t K∇z · ne)pdir −

∑
e∈Γ+∪Γ−

σ

|e|β
∫

e

pdirz
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−
∑
e∈Γ−

∫

e

(λi+1
n K∇z·ne)pc(sdir)−

∑
e∈Γ−

σ

|e|β
∫

e

pc(sdir)z =

∫

Ω

(qw+qn)z, ∀z ∈ Drp(Eh). (3.21)

Saturation Equation :

−
∫

Ω

φ

∆t
(si+1

n − si
n)v +

∑
E∈Eh

∫

E

λi+1
w K∇pi+1

w · ∇v −
∑

e∈Γh∪Γ+∪Γ−

∫

e

{λi+1
w K∇pi+1

w · ne}[v]

+
∑

e∈Γh∪Γ+∪Γ−

∫

e

{λi+1
w K∇v · ne}[pi+1

w ] +
∑

e∈Γh∪Γ+∪Γ−

σ

|e|β
∫

e

[pi+1
w ][v]

−
∑

e∈Γ+∪Γ−

∫

e

(λi+1
w K∇v · ne)pdir −

∑
e∈Γ+∪Γ−

σ

|e|β
∫

e

pdirv =

∫

Ω

qwv, ∀v ∈ Drs(Eh), (3.22)

where β is a positive constant and σ is the penalty parameter on interior and boundary edges

penalizing the jumps of the discontinuous polynomials. As the penalty value σ increases, the

constraint on the weak continuity of the wetting phase pressure and the capillary pressure

increases. The coefficient β is in general chosen to be equal to one; if β > 1, the method is

called superpenalized, and it is known that superpenalized NIPG for elliptic problems yield

poor conditioned linear systems.

The derivation of the scheme above is standard, but for completeness, we briefly describe

the steps for obtaining (3.21). We multiply (3.9) by a test function z ∈ Drp(Eh), integrate

by parts over one mesh element E, and sum over all elements:

∑
E∈Eh

∫

E

(λtK∇pw + λnK∇pc) · ∇z −
∑

e∈Γh∪∂Ω

∫

e

[(λtK∇pw + λnK∇pc) · nez]

=

∫

Ω

(qw + qn)z.
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Using the regularity of the exact solution and the boundary condition, we can rewrite the

jump term as:

∑

e∈Γh∪∂Ω

∫

e

[(λtK∇pw + λnK∇pc) · nez] =
∑

e∈Γh∪∂Ω

∫

e

{(λtK∇pw + λnK∇pc) · ne}[z]

=
∑

e∈Γh∪Γ+∪Γ−

∫

e

{λtK∇pw · ne}[z] +
∑

e∈Γh∪Γ−

∫

e

{λnK∇pc · ne}[z].

The additional terms in (3.21) vanish for the exact solution; they are simply added to the

scheme for stabilization purposes. The equation (3.22) has been obtained in a similar fashion.

Fully implicit scheme for the second formulation (3.11)-(3.12): given (pi
w, si

n) ∈ Drp(Eh)×
Drs(Eh), find (pi+1

w , si+1
n ) satisfying

Pressure Equation :

∫

Ω

φ

∆t
(si+1

n − si
n)z +

∑
E∈Eh

∫

E

λi+1
n K(∇pi+1

w +∇pi+1
c ) · ∇z

−
∑

e∈Γh∪Γ+∪Γ−

∫

e

{λi+1
n K∇pi+1

w · ne}[z]−
∑

e∈Γh∪Γ−

∫

e

{λi+1
n K∇pi+1

c · ne}[z]

+
∑

e∈Γh∪Γ+∪Γ−

∫

e

{λi+1
n K∇z · ne}[pi+1

w ] +
∑

e∈Γh∪Γ−

∫

e

{λi+1
n K∇z · ne}[pi+1

c ]

+
∑

e∈Γh∪Γ+∪Γ−

σ

|e|β
∫

e

[pi+1
w ][z] +

∑
e∈Γh∪Γ−

σ

|e|β
∫

e

[pi+1
c ][z]

−
∑

e∈Γ+∪Γ−

∫

e

(λi+1
n K∇z · ne)pdir −

∑
e∈Γ+∪Γ−

σ

|e|β
∫

e

pdirz

−
∑
e∈Γ−

∫

e

(λi+1
n K∇z · ne)pc(sdir)−

∑
e∈Γ−

σ

|e|β
∫

e

pc(sdir)z =

∫

Ω

qwz, ∀z ∈ Drp(Eh). (3.23)

Saturation Equation :

−
∫

Ω

φ

∆t
(si+1

n − si
n)v +

∑
E∈Eh

∫

E

λi+1
w K∇pi+1

w · ∇v −
∑

e∈Γh∪Γ+∪Γ−

∫

e

{λi+1
w K∇pi+1

w · ne}[v]

+
∑

e∈Γh∪Γ+∪Γ−

∫

e

{λi+1
w K∇v · ne}[pi+1

w ] +
∑

e∈Γh∪Γ+∪Γ−

σ

|e|β
∫

e

[pi+1
w ][v]
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−
∑

e∈Γ+∪Γ−

∫

e

(λi+1
w K∇v · ne)pdir −

∑
e∈Γ+∪Γ−

σ

|e|β
∫

e

pdirv =

∫

Ω

qnv, ∀v ∈ Drs(Eh). (3.24)

Fully implicit scheme for the third formulation (“global-pressure” formulation) (3.15)-

(3.16): Let us denote by γ = λwλn

λt
p′c,

given (pi, si
n) ∈ Drp(Eh)×Drs(Eh), find (pi+1, si+1

n ) satisfying :

Pressure equation:

∑
E∈Eh

∫

E

λt(S
i+1
n )K∇P i+1 · ∇z + σp

∑
e∈Γh∪ΓD

f(rp)

|e|
∫

e

[P i+1][z]

−
∑
e∈Γh

∫

e

{λt(S
i+1
n )K∇P i+1 · ne}[z]−

∑
e∈ΓD

∫

e

(λt(s
dir
n )K∇P i+1 · ne)z

+
∑
e∈Γh

∫

e

{λt(S
i+1
n )K∇z · ne}[P i+1] +

∑
e∈ΓD

∫

e

(λt(s
dir
n )K∇z · ne)P

i+1

=
∑
e∈ΓD

∫

e

(λt(s
dir
n )K∇z ·ne)p

dir+σp

∑
e∈ΓD

f(rp)

|e|
∫

e

pdirz+

∫

Ω

(qw(ti+1)+qn(ti+1))z, ∀z ∈ Drp(Eh).

(3.25)

Saturation equation:

∫

Ω

φ

∆t
(Si+1

n − Si
n)v −

∑
E∈Eh

∫

E

λw(Si+1
n )K∇P i+1 · ∇v +

∑
E∈Eh

∫

E

γ(Si+1
n )K∇Si+1

n · ∇v

+
∑
e∈Γh

∫

e

{λw(Si+1
n )K∇P i+1 · ne}[v] +

∑
e∈ΓD

∫

e

(λw(sdir
n )K∇P i+1 · ne)v

−
∑
e∈Γh

∫

e

{γ(Si+1
n )K∇Si+1

n · ne}[v]−
∑
e∈ΓD

∫

e

(γ(sdir
n )K∇Si+1

n · ne)v

−
∑
e∈Γh

∫

e

{λw(Si+1
n )K∇v · ne}[P i+1]−

∑
e∈ΓD

∫

e

(λw(sdir
n )K∇v · ne)P

i+1
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+
∑
e∈Γh

∫

e

{γ(Si+1
n )K∇v · ne}[Si+1

n ] +
∑
e∈ΓD

∫

e

γ(sdir
n )K∇v · ne)S

i+1
n

+σs

∑
e∈Γh∪ΓD

f(rs)

|e|
∫

e

[Si+1
n ][v] = σs

∑
e∈ΓD

f(rs)

|e|
∫

e

sdir
n v

−
∑
e∈ΓD

∫

e

(λw(sdir
n )K∇v · ne)p

dir +
∑
e∈ΓD

∫

e

(γ(sdir
n )K∇v · ne)s

dir
n −

∫

Ω

qw(ti+1)v, ∀v ∈ Drs(Eh).

(3.26)

Because of the nonlinearity in equations (3.21),(3.22), (3.23), (3.24) and (3.25), (3.26),

the approximations at the next time step (pi+1
w , si+1

n ) are obtained by applying Newton-

Raphson iterative scheme [41], described in the next section.

3.4 NEWTON-RAPHSON ITERATIVE SCHEME AND CONSTRUCTION

OF THE JACOBIAN

Assume that {ϕls
E : 1 ≤ ls ≤ ms, E ∈ Eh} and {ϕlp

E : 1 ≤ lp ≤ mp, E ∈ Eh} are two bases

for the discrete spaces Drs(Eh) and Drp(Eh) respectively. It is understood that the functions

ϕi
E are identically zero outside the element E. Thus, we can write

si+1
n |E =

ms∑

ls=1

sls
Eϕls

E, pi+1
w |E =

mp∑

lp=1

p
lp
Eϕ

lp
E , ∀E ∈ Eh. (3.27)

Thus, inserting (3.27) into (3.21)-(3.24), we obtain systems of algebraic nonlinear equations

in the general form of:

G(pi+1
w , si+1

n ) = 0, (3.28)

where pi+1
w = (p

lp
E)E,lp and si+1

n = (sls
E)E,ls are vectors of unknowns for pi+1

w and si+1
n . To solve

(3.28) we apply Newton-Raphson algorithm :

JG(pi+1,r
w , si+1,r

n )δ
r+1

= −G(pi+1,r
w , si+1,r

n ),

(pi+1,r+1
w , si+1,r+1

n ) = (pi+1,r
w , si+1,r

n ) + δ
r+1

,
(3.29)

where the superscript r denotes the rth Newton-Raphson iterate and JG is the Jacobian of

the system (3.28). In order to explicitly define JG we denote by G
rp

F (resp. Grs
F ) the row of
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G corresponding to the test function ϕ
rp

F (resp. ϕrs
F ), with F ∈ Eh and 1 ≤ rp ≤ mp (resp.

1 ≤ rs ≤ ms). Then, we can write JG in a block form:

JG =




∂G
rp

F

∂p
lp
E

∂G
rp

F

∂sls
E

∂Grs
F

∂p
lp
E

∂Grs
F

∂sls
E




1 ≤ rp, lp ≤ mp

1 ≤ rs, ls ≤ ms

E, F ∈ Eh

.

The derivation of the contributions to the Jacobian is given in section A.1.

The choice of the initial guess for the Newton-Raphson algorithm (3.29) plays a crucial

role for the convergence of the Newton iterates. For i > 0, the initial guess for the time step

i + 1 is chosen as:

(pi+1,0
w , si+1,0

n ) = (pi
w, si

n).

For the first time step, we construct a special initial guess. As was stated above the model

problem with formulations (3.9)-(3.10) and (3.11)-(3.12) is subject to an initial condition on

the saturation (3.13). Therefore at time i = 0 we define

s1,0
n = s0, (3.30)

and we choose for initial guess for the pressure p1,0
w the solution to the linear system of

equations:
∑

E

∫

E

λ0
t K∇p1,0

w · ∇z −
∑

e∈Γh∪Γ+∪Γ−

∫

e

{λ0
t K∇p1,0

w · ne}[z]

+
∑

e∈Γh∪Γ+∪Γ−

∫

e

{λ0
t K∇z · ne}[p1,0

w ] +
∑

e∈Γh∪Γ+∪Γ−

σ

|e|β
∫

e

[p1,0
w ][z]

=
∑

e∈Γ+∪Γ−

∫

e

λ0
t K∇z · nepdir +

∑
e∈Γ+∪Γ−

σ

|e|β
∫

e

pdirz +
∑

E

∫

E

(qw + qn)z−
∑

E

∫

E

λ0
nK∇p0

c · ∇z

+
∑

e∈Γh∪Γ−

∫

e

{λ0
nK∇p0

c · ne}[z]−
∑

e∈Γh∪Γ−

∫

e

{λ0
nK∇z · ne}[p0

c ]

−
∑

e∈Γh∪Γ−

σ

|e|β
∫

e

[p0
c ][z] +

∑
e∈Γ−

∫

e

λ0
nK∇z · nepc(sdir) +

∑
e∈Γ−

σ

|e|β
∫

e

pc(sdir)z, ∀z ∈ Drp(Eh).
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3.5 NUMERICAL ANALYSIS OF THE SCHEME FOR THE “GLOBAL

PRESSURE, PHASE-SATURATION” FORMULATION

In the analysis that follows, we make the following assumptions on the coefficients in (3.15),

(3.16).

• Assumption H1. The function γ = λwλn

λt
p′c is Lipschitz continuous with Lipschitz constant

Cγ. It is also bounded above and below: 0 < γ ≤ γ ≤ γ.

• Assumption H2. The mobilities λt, λw are Lipschitz continuous with Lipschitz constant

Cλ. They are bounded below:

0 < λt ≤ λt ≤ λt, 0 ≤ λw ≤ λw, 0 ≤ λn ≤ λn.

• Assumption H3. The tensor K is symmetric positive definite and uniformly bounded

above and below. There are constants k > 0, k > 0 such that:

∀x, kxT x ≤ xT Kx ≤ kxT x.

• Assumption H4. The porosity is bounded above and below.

φ ≤ φ ≤ φ.

As was discussed in Section 3.3, we propose a discontinuous finite element discretization

of (3.15), (3.16), namely the scheme (3.25), (3.26). In addition to the standard notations

that were introduced for the discontinuous finite element methods in Sections 2.4 and 3.3, we

also denote by C̃ the constant that only depends on the maximum number of neighbors that

one mesh element can have so that the following inequality holds. Let A be any quantity

depending on E1
e or E2

e :

∀i = 1, 2, (
∑
e∈Γh

A(Ei
e))

1/2 ≤
√

C̃

2
(
∑
E∈Eh

A(E))1/2. (3.31)

(
∑
e∈ΓD

A(E1
e ))

1/2 ≤
√

C̃(
∑
E∈Eh

A(E))1/2. (3.32)

Let Hk(O) be the usual Sobolev space on O ⊂ Rd, d ≥ 1 with norm ‖ · ‖k,O. We now

recall well-known facts that will be used in the error analysis.
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Lemma 7. There is a constant C2 independent of h and r such that

∀v ∈ Dr(Eh), ‖v‖0,Ω ≤ C2(
∑
E∈Eh

‖∇v‖2
0,E +

∑
e∈Γh∪ΓD

1

|e|‖[v]‖2
0,e)

1/2, (3.33)

where |e| denotes the measure of e.

Lemma 8. Let γ0 and γ1 denote the usual trace operators. There is a constant Ct indepen-

dent of h such that if E is a triangle or quadrilateral:

∀v ∈ Hk(E), k ≥ 1,∀e ⊂ ∂E, ‖γ0v‖0,e ≤ Cth
−1/2(‖v‖0,E + h ‖∇v‖0,E), (3.34)

∀v ∈ Hk(E), k ≥ 2,∀e ⊂ ∂E, ‖γ1v‖0,e ≤ Cth
−1/2(‖∇v‖0,E + h

∥∥∇2v
∥∥

0,E
). (3.35)

Lemma 9. Let E be a mesh element. Let f : N → N be a function defined by f(k) =

(k+1)(k+2) if E is a triangle, and by f(k) = k2 if E is a quadrilateral. There is a constant

Ct independent of h and k such that:

∀v ∈ Pk(E),∀e ⊂ ∂E, ‖γ0v‖0,e ≤ Ct

√
f(k)

h
‖v‖0,E . (3.36)

In the case of the triangle, if θE denotes the smallest angle, an exact expression for Ct is

given by:

Ct =

√
2 cot θE

h

|e| .

The proofs of these results can be found in the literature: see Lemma 2.1 in [7] or (1.3)

in [18] for Lemma 7, see Theorem 3.10 in [2] for Lemma 8, see Theorem 3 in [72] and the

proof of Theorem 9 in the previous chapter 2 or in [31] for the case of triangle for Lemma 9

and Lemma 2.1 in [68] for the case of quadrilateral for Lemma 9.

In the next sections, Sections (3.6)-(3.8) we develop numerical analysis (existense of the

discrete solution, convergence of the numerical scheme) for the (3.25), (3.26) scheme (below

we denote by P i, Si the discrete solution at time t = i∆t and by pi, si the exact solution.)
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3.6 A PRIORI ESTIMATES

In this section, we prove existence of the numerical solution by using the Leray-Schauder

theorem [74]. For this, we first prove a priori estimates for the discrete global pressure and

non-wetting phase saturation.

Proposition 1. Assume that the penalty parameter satisfies

σp > (1− ε)2 6(λt)
2kC̃C2

t

λt

+
λtk

3
. (3.37)

Then, there is a constant C independent of h, rp, rs and ∆t such that

∀1 ≤ m ≤ N,

m−1∑
i=0

( ∑
E∈Eh

‖K1/2∇P i+1‖2
0,E +

∑
e∈Γh∪ΓD

f(rp)

|e|
∥∥[P i+1]

∥∥2

0,e

)

≤ C

m−1∑
i=0

‖qw(ti+1) + qn(ti+1)‖2
0,Ω + C

m−1∑
i=0

∑
e∈ΓD

f(rp)

|e|
∥∥pdir

∥∥2

0,e
. (3.38)

Proof 1. Let us put z = P i+1 in pressure equation (3.25) so we obtain:

∑
E∈Eh

∫

E

λt(S
i+1
n )K∇P i+1 · ∇P i+1 + σp

∑
e∈Γh∪ΓD

f(rp)

|e|
∫

e

[P i+1][P i+1]

= (1− ε)
∑
e∈Γh

∫

e

{λt(S
i+1
n )K∇P i+1 · ne}[P i+1] + (1− ε)

∑
e∈ΓD

∫

e

(λt(s
dir
n )K∇P i+1 · ne)P

i+1

+ε
∑
e∈ΓD

∫

e

(λt(s
dir
n )K∇P i+1 · ne)p

dir + σp

∑
e∈ΓD

f(rp)

|e|
∫

e

pdirP i+1 +

∫

Ω

(qw(ti+1) + qn(ti+1))P i+1

= B1 + · · ·+ B5.

We now bound each term Bi in the right-hand side of the equation above. In what follows,

the numbers εi are positive real numbers to be defined later. Using Assumption H2, H3 and

Cauchy-Schwarz inequality, we have

|B1| ≤ (1− ε)λt(k)
1
2

∑
e∈Γh

∥∥∥{K 1
2∇P i+1}

∥∥∥
0,e

∥∥[P i+1]
∥∥

0,e
.
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We now fix an interior edge e and denote by E1
e and E2

e the two elements sharing the edge

e. Using the trace inequality (3.36) and (3.31) , we have:

∑
e∈Γh

∥∥∥{K 1
2∇P i+1}

∥∥∥
0,e

∥∥[P i+1]
∥∥

0,e
≤

∑
e∈Γh

1

2
(‖K1/2∇P i+1|E1

e
‖0,e + ‖K1/2∇P i+1|E2

e
‖0,e)‖[P i+1]‖0,e

≤ 1

2
Ct

√
f(rp)

h

∑
e∈Γh

(‖K1/2∇P i+1‖0,E1
e
+ ‖K1/2∇P i+1‖0,E2

e
)‖[P i+1]‖0,e

≤ (
∑
e∈Γh

C2
t f(rp)

4h
‖[P i+1]‖2

0,e)
1/2

(
(
∑
e∈Γh

‖K1/2∇P i+1‖2
0,E1

e
)1/2 + (

∑
e∈Γh

‖K1/2∇P i+1‖2
0,E2

e
)1/2

)

≤ (
∑
e∈Γh

C̃C2
t f(rp)

4h
‖[P i+1]‖2

0,e)
1/2(

∑
E∈Eh

‖K1/2∇P i+1‖2
0,E)1/2.

Therefore, we have the following bound for B1:

|B1| ≤ ε1

2

∑
E∈Eh

∥∥∥K
1
2∇P i+1

∥∥∥
2

0,E
+ (1− ε)2 (λt)

2kC̃C2
t

8ε1

∑
e∈Γh

f(rp)

h

∥∥[P i+1]
∥∥2

0,e

≤ ε1

2

∑
E∈Eh

∥∥∥K
1
2∇P i+1

∥∥∥
2

0,E
+ (1− ε)2 (λt)

2kC̃C2
t

8ε1

∑
e∈Γh

f(rp)

|e|
∥∥[P i+1]

∥∥2

0,e
. (3.39)

Similarly, we have for B2:

|B2| ≤ ε1

2

∑
E∈Eh

∥∥∥K
1
2∇P i+1

∥∥∥
2

0,E
+ (1− ε)2 (λt)

2kC̃C2
t

2ε1

∑
e∈ΓD

f(rp)

|e|
∥∥P i+1

∥∥2

0,e
. (3.40)

Similarly, we have for B3:

|B3| ≤ ε2

2

∑
E∈Eh

∥∥∥K
1
2∇P i+1

∥∥∥
2

0,E
+

(λt)
2kC̃C2

t

2ε2

∑
e∈ΓD

f(rp)

|e|
∥∥pdir

∥∥2

0,e
. (3.41)

The term B4 is simply bounded by Cauchy-Schwarz and Young’s inequalities.

|B4| ≤ ε4

∑
e∈ΓD

f(rp)

|e|
∥∥P i+1

∥∥2

0,e
+

σp
2

4ε4

∑
e∈ΓD

f(rp)

|e|
∥∥pdir

∥∥2

0,e
. (3.42)
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Finally, the last term B5 is bounded using Cauchy-Schwarz inequality and (3.33).

|B5| ≤ ‖qw(ti+1) + qn(ti+1)‖0,Ω‖P i+1‖0,Ω

≤ C2‖qw(ti+1) + qn(ti+1)‖0,Ω(
∑
E∈Eh

‖∇P i+1‖2
0,E +

∑
e∈Γh∪ΓD

1

|e|‖[P
i+1]‖2

0,e)
1/2

≤ ε5k(
∑
E∈Eh

‖∇P i+1‖2
0,E +

∑
e∈Γh∪ΓD

1

|e|‖[P
i+1]‖2

0,e) +
C2

2

4ε5k
‖qw(ti+1) + qn(ti+1)‖2

0,Ω

≤ ε5(
∑
E∈Eh

‖K1/2∇P i+1‖2
0,E + k

∑
e∈Γh∪ΓD

1

|e|‖[P
i+1]‖2

0,e) +
C2

2

4ε5k
‖qw(ti+1) + qn(ti+1)‖2

0,Ω

≤ ε5(
∑
E∈Eh

‖K1/2∇P i+1‖2
0,E + k

∑
e∈Γh∪ΓD

f(rp)

|e| ‖[P
i+1]‖2

0,e) +
C2

2

4ε5k
‖qw(ti+1) + qn(ti+1)‖2

0,Ω.

(3.43)

Combining the bounds (3.39)-(3.43) we obtain:

(
λt − ε1 − ε2

2
− ε5

) ∑
E∈Eh

‖K1/2∇P i+1‖2
0,E

+
(
σp − (1− ε)2 (λt)

2kC̃C2
t

2ε1

− ε4 − kε5

) ∑
e∈Γh∪ΓD

f(rp)

|e|
∥∥[P i+1]

∥∥2

0,e

≤ C2
2

4ε5k
‖qw(ti+1) + qn(ti+1)‖2

0,Ω +
((λt)

2kC̃C2
t

2ε2

+
σp

2

4ε4

) ∑
e∈ΓD

f(rp)

|e|
∥∥pdir

∥∥2

0,e
. (3.44)

Thus, if we choose

ε1 =
ε2

2
= ε5 =

λt

6

and

ε4 =
σp

2

we have:

λt

2

∑
E∈Eh

‖K1/2∇P i+1‖2
0,E

+
(σp

2
− (1− ε)2 3(λt)

2kC̃C2
t

λt

− λtk

6

) ∑
e∈Γh∪ΓD

f(rp)

|e|
∥∥[P i+1]

∥∥2

0,e

≤ 3C2
2

2λtk
‖qw(ti+1) + qn(ti+1)‖2

0,Ω +
(3(λt)

2kC̃C2
t

2λt

+
σp

2

) ∑
e∈ΓD

f(rp)

|e|
∥∥pdir

∥∥2

0,e
. (3.45)

The final result is obtained by summing over i.
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Proposition 2. Assume that (3.37) holds and that

σs > (1− ε)2 12(γ)2kC̃C2
t

γ
+

kγ

6
. (3.46)

There is a constant C independent of h, rp, rs and ∆t such that:

∀1 ≤ m ≤ N,

m−1∑
i=0

∑
E∈Eh

‖K1/2∇Si+1
n ‖2

0,E +
m−1∑
i=0

∑
e∈Γh∪ΓD

f(rs)

|e| ‖[S
i+1
n ]‖2

0,e + C
φ

∆t
‖Sm

n ‖2
0,Ω

≤ C
φ

∆t
‖s0

n‖2
0,Ω + C(1 +

f(rp)

f(rs)
+

f(rs)

f(rp)
)

m−1∑
i=0

‖qw(ti+1) + qn(ti+1)‖2
0,Ω + C

m−1∑
i=0

‖qw(ti+1)‖2
0,Ω

+C
(
1 +

f(rp)

f(rs)
+

f(rs)

f(rp)

) m−1∑
i=0

∑
e∈ΓD

f(rp)

|e|
∥∥pdir

∥∥2

0,e
+ C

m−1∑
i=0

∑
e∈ΓD

f(rs)

|e|
∥∥sdir

n

∥∥2

0,e
. (3.47)

Proof 2. Choosing v = Si+1
n in (3.26) gives:

∑
E∈Eh

∫

E

γ(Si+1
n )K∇Si+1

n · ∇Si+1
n + σs

∑
e∈Γh∪ΓD

f(rs)

|e|
∫

e

[Si+1
n ]2

+

∫

Ω

φ

∆t
(Si+1

n − Si
n)Si+1

n =
∑
E∈Eh

∫

E

λw(Si+1
n )K∇P i+1 · ∇Si+1

n

−
∑
e∈Γh

∫

e

{λw(Si+1
n )K∇P i+1 · ne}[Si+1

n ]−
∑
e∈ΓD

∫

e

(λw(sdir
n )K∇P i+1 · ne)S

i+1
n

+(1− ε)
∑
e∈Γh

∫

e

{γ(Si+1
n )K∇Si+1

n · ne}[Si+1
n ] + (1− ε)

∑
e∈ΓD

∫

e

(γ(sdir
n )K∇Si+1

n · ne)S
i+1
n

+ε
∑
e∈Γh

∫

e

{λw(Si+1
n )K∇Si+1

n · ne}[P i+1] + ε
∑
e∈ΓD

∫

e

(λw(sdir
n )K∇Si+1

n · ne)P
i+1

+σs

∑
e∈ΓD

f(rs)

|e|
∫

e

sdir
n Si+1

n − ε
∑
e∈ΓD

∫

e

(λw(sdir
n )K∇Si+1

n · ne)p
dir

+ε
∑
e∈ΓD

∫

e

(γ(sdir
n )K∇Si+1

n · ne)s
dir
n −

∫

Ω

qw(ti+1)Si+1
n

= D1 + · · ·+ D11.

We now bound each term Di.

|D1| ≤ ε2

∑
E∈Eh

∥∥∥K
1
2∇Si+1

n

∥∥∥
2

0,E
+

λw
2

4ε2

∑
E∈Eh

∥∥∥K
1
2∇P i+1

∥∥∥
2

0,E
. (3.48)
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The term D2 is bounded like B1:

|D2| ≤ ε3

2

∑
E∈Eh

∥∥∥K
1
2∇P i+1

∥∥∥
2

0,E
+

(λw)2kC̃C2
t

8ε3

∑
e∈Γh

f(rp)

|e|
∥∥[Si+1

n ]
∥∥2

0,e
. (3.49)

The term D3 is bounded like B2:

|D3| ≤ ε3

2

∑
E∈Eh

∥∥∥K
1
2∇P i+1

∥∥∥
2

0,E
+

(λw)2kC̃C2
t

2ε3

∑
e∈ΓD

f(rp)

|e|
∥∥Si+1

n

∥∥2

0,e
. (3.50)

The term D4 is bounded like B1:

|D4| ≤ ε5

2

∑
E∈Eh

∥∥∥K
1
2∇Si+1

n

∥∥∥
2

0,E
+ (1− ε)2 (γ)2kC̃C2

t

8ε5

∑
e∈Γh

f(rs)

|e|
∥∥[Si+1

n ]
∥∥2

0,e
. (3.51)

The term D5 is bounded like B2:

|D5| ≤ ε5

2

∑
E∈Eh

∥∥∥K
1
2∇Si+1

n

∥∥∥
2

0,E
+ (1− ε)2 (γ)2kC̃C2

t

2ε5

∑
e∈ΓD

f(rs)

|e|
∥∥Si+1

n

∥∥2

0,e
. (3.52)

The term D6 is bounded like B1:

|D6| ≤ ε7

2

∑
E∈Eh

∥∥∥K
1
2∇Si+1

n

∥∥∥
2

0,E
+

(λw)2kC̃C2
t

8ε7

∑
e∈Γh

f(rs)

|e|
∥∥[P i+1]

∥∥2

0,e
. (3.53)

The term D7 is bounded like B2:

|D7| ≤ ε7

2

∑
E∈Eh

∥∥∥K
1
2∇Si+1

n

∥∥∥
2

0,E
+

(λw)2kC̃C2
t

2ε7

∑
e∈ΓD

f(rs)

|e|
∥∥P i+1

∥∥2

0,e
. (3.54)

The term D8 is bounded like B4:

|D8| ≤ ε9

∑
e∈ΓD

f(rs)

|e|
∥∥Si+1

n

∥∥2

0,e
+

σs
2

4ε9

∑
e∈ΓD

f(rs)

|e|
∥∥sdir

n

∥∥2

0,e
. (3.55)

The term D9 is bounded like D7:

|D9| ≤ ε10

2

∑
E∈Eh

∥∥∥K
1
2∇Si+1

n

∥∥∥
2

0,E
+

(λw)2kC̃C2
t

2ε10

∑
e∈ΓD

f(rs)

|e|
∥∥pdir

∥∥2

0,e
. (3.56)

The term D10 is bounded like D7:

|D10| ≤ ε11

2

∑
E∈Eh

∥∥∥K
1
2∇Si+1

n

∥∥∥
2

0,E
+

(γ)2kC̃C2
t

2ε11

∑
e∈ΓD

f(rs)

|e|
∥∥sdir

n

∥∥2

0,e
. (3.57)
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The term D11 is bounded like B5:

|D11| ≤ ε12(
∑
E∈Eh

‖K1/2∇Si+1
n ‖2

0,E + k
∑

e∈Γh∪ΓD

f(rs)

|e| ‖[S
i+1
n ]‖2

0,e) +
C2

2

4ε12k
‖qw(ti+1)‖2

0,Ω. (3.58)

Combining the bounds (3.48)-(3.58), we have:

(
γ − ε2 − ε5 − ε7 − ε10

2
− ε11

2
− ε12

) ∑
E∈Eh

‖K1/2∇Si+1
n ‖2

0,E

+
(
σs − (λw)2kC̃C2

t f(rp)

2ε3f(rs)
− (1− ε)2 (γ)2kC̃C2

t

2ε5

− ε9 − kε12

) ∑
e∈Γh∪ΓD

f(rs)

|e| ‖[S
i+1
n ]‖2

0,e

+

∫

Ω

φ

∆t
(Si+1

n − Si
n)Si+1

n ≤
(λw

2

4ε2

+ ε3

) ∑
E∈Eh

∥∥∥K
1
2∇P i+1

∥∥∥
2

0,E
+

(λw)2kC̃C2
t f(rs)

2ε7f(rp)

∑
e∈Γh∪ΓD

f(rp)

|e|
∥∥[P i+1]

∥∥2

0,e

+
(λw)2kC̃C2

t f(rs)

2ε10f(rp)

∑
e∈ΓD

f(rp)

|e|
∥∥pdir

∥∥2

0,e
+

(σs
2

4ε9

+
(γ)2kC̃C2

t

2ε11

) ∑
e∈ΓD

f(rs)

|e|
∥∥sdir

n

∥∥2

0,e

+
C2

2

4ε12k
‖qw(ti+1)‖2

0,Ω.

Thus, taking

ε2 = ε5 = ε7 =
ε10

2
=

ε11

2
= ε12 =

γ

12
,

and
(λw)2kC̃C2

t f(rp)

2ε3f(rs)
= ε9 =

σs

4
,

we obtain:

γ

2

∑
E∈Eh

‖K1/2∇Si+1
n ‖2

0,E

+
(σs

2
− (1− ε)2 6(γ)2kC̃C2

t

γ
− kγ

12

) ∑
e∈Γh∪ΓD

f(rs)

|e| ‖[S
i+1
n ]‖2

0,e +
φ

∆t

∫

Ω

(Si+1
n − Si

n)Si+1
n

≤
(3λw

2

γ
+

2λ
2

wkC̃C2
t f(rp)

σsf(rs)

) ∑
E∈Eh

∥∥∥K
1
2∇P i+1

∥∥∥
2

0,E
+

6(λw)2kC̃C2
t f(rs)

γf(rp)

∑
e∈Γh∪ΓD

f(rp)

|e|
∥∥[P i+1]

∥∥2

0,e

+
3(λw)2kC̃C2

t f(rs)

γf(rp)

∑
e∈ΓD

f(rp)

|e|
∥∥pdir

∥∥2

0,e
+

(
σs +

3(γ)2kC̃C2
t

γ

) ∑
e∈ΓD

f(rs)

|e|
∥∥sdir

n

∥∥2

0,e

+
3C2

2

γk
‖qw(ti+1)‖2

0,Ω.
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Therefore, if

σs > (1− ε)2 12(γ)2kC̃C2
t

γ
+

kγ

6
,

then there is a constant C independent of h, rs, rp and ∆t such that

∑
E∈Eh

‖K1/2∇Si+1
n ‖2

0,E +
∑

e∈Γh∪ΓD

f(rs)

|e| ‖[S
i+1
n ]‖2

0,e + C
φ

∆t

∫

Ω

(Si+1
n − Si

n)Si+1
n

≤ C(1 +
f(rp)

f(rs)
)

∑
E∈Eh

∥∥∥K
1
2∇P i+1

∥∥∥
2

0,E
+ C

f(rs)

f(rp)

∑
e∈Γh∪ΓD

f(rp)

|e|
∥∥[P i+1]

∥∥2

0,e

+C
f(rs)

f(rp)

∑
e∈ΓD

f(rp)

|e|
∥∥pdir

∥∥2

0,e
+ C

∑
e∈ΓD

f(rs)

|e|
∥∥sdir

n

∥∥2

0,e
+ C‖qw(ti+1)‖2

0,Ω.

We now sum over i and use the fact that ‖S0
n‖0,Ω ≤ ‖s0

n‖0,Ω (obtained from the initial

condition for the saturation ∀v ∈ Drs(Eh),
∫

Ω
S0

nv =
∫
Ω

s0
nv).

m−1∑
i=0

∑
E∈Eh

‖K1/2∇Si+1
n ‖2

0,E +
m−1∑
i=0

∑
e∈Γh∪ΓD

f(rs)

|e| ‖[S
i+1
n ]‖2

0,e + C
φ

∆t
‖Sm

n ‖2
0,Ω

≤ C
φ

∆t
‖s0

n‖2
0,Ω + C(1 +

f(rp)

f(rs)
)

m−1∑
i=0

∑
E∈Eh

∥∥∥K
1
2∇P i+1

∥∥∥
2

0,E
+ C

f(rs)

f(rp)

m−1∑
i=0

∑
e∈Γh∪ΓD

f(rp)

|e|
∥∥[P i+1]

∥∥2

0,e

+C
f(rs)

f(rp)

m−1∑
i=0

∑
e∈ΓD

f(rp)

|e|
∥∥pdir

∥∥2

0,e
+ C

m−1∑
i=0

∑
e∈ΓD

f(rs)

|e|
∥∥sdir

n

∥∥2

0,e
+ C

m−1∑
i=0

‖qw(ti+1)‖2
0,Ω. (3.59)

From (3.38) and (3.59), we have:

m−1∑
i=0

∑
E∈Eh

‖K1/2∇Si+1
n ‖2

0,E +
m−1∑
i=0

∑
e∈Γh∪ΓD

f(rs)

|e| ‖[S
i+1
n ]‖2

0,e + C
φ

∆t
‖Sm

n ‖2
0,Ω

≤ C
φ

∆t
‖s0

n‖2
0,Ω + C(1 +

f(rp)

f(rs)
+

f(rs)

f(rp)
)

m−1∑
i=0

‖qw(ti+1) + qn(ti+1)‖2
0,Ω + C

m−1∑
i=0

‖qw(ti+1)‖2
0,Ω

+C
(
1 +

f(rp)

f(rs)
+

f(rs)

f(rp)

) m−1∑
i=0

∑
e∈ΓD

f(rp)

|e|
∥∥pdir

∥∥2

0,e
+ C

m−1∑
i=0

∑
e∈ΓD

f(rs)

|e|
∥∥sdir

n

∥∥2

0,e
.

Theorem 5. There exists a solution to the scheme (3.25), (3.26).
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Proof 3. The existence of S0
n is trivial. Let P = (P i)1≤i≤N and Sn = (Si

n)1≤i≤N be the

sequences of approximations satisfying (3.25) and (3.26). Let X = Drp(Eh)
N ×Drs(Eh)

N and

let G : X → X such that G(P, Sn) = (P̂ , Ŝn) where (P̂ , Ŝn) is the solution of the following

system of linear equations:

∀v ∈ Drs(Eh),

∫

Ω

Ŝ0
nv =

∫

Ω

s0
nv. (3.60)

∀z ∈ Drp(Eh), ∀i ≥ 0,

∑
E∈Eh

∫

E

λt(S
i+1
n )K∇P̂ i+1 · ∇z + σp

∑
e∈Γh∪ΓD

f(rp)

|e|
∫

e

[P̂ i+1][z]

−
∑
e∈Γh

∫

e

{λt(S
i+1
n )K∇P̂ i+1 · ne}[z]−

∑
e∈ΓD

∫

e

(λt(s
dir
n )K∇P̂ i+1 · ne)z

+ε
∑
e∈Γh

∫

e

{λt(S
i+1
n )K∇z · ne}[P̂ i+1] + ε

∑
e∈ΓD

∫

e

(λt(s
dir
n )K∇z · ne)P̂

i+1

= ε
∑
e∈ΓD

∫

e

(λt(s
dir
n )K∇z · ne)p

dir + σp

∑
e∈ΓD

f(rp)

|e|
∫

e

pdirz +

∫

Ω

(qw(ti+1) + qn(ti+1))z. (3.61)

∀v ∈ Drs(Eh), ∀i ≥ 0,
∫

Ω

φ

∆t
(Ŝi+1

n − Ŝi
n)v −

∑
E∈Eh

∫

E

λw(Si+1
n )K∇P̂ i+1 · ∇v +

∑
E∈Eh

∫

E

γ(Si+1
n )K∇Ŝi+1

n · ∇v

+
∑
e∈Γh

∫

e

{λw(Si+1
n )K∇P̂ i+1 · ne}[v] +

∑
e∈ΓD

∫

e

(λw(sdir
n )K∇P̂ i+1 · ne)v

−
∑
e∈Γh

∫

e

{γ(Si+1
n )K∇Ŝi+1

n · ne}[v]−
∑
e∈ΓD

∫

e

(γ(sdir
n )K∇Ŝi+1

n · ne)v

−ε
∑
e∈Γh

∫

e

{λw(Si+1
n )K∇v · ne}[P̂ i+1]− ε

∑
e∈ΓD

∫

e

(λw(sdir
n )K∇v · ne)P̂

i+1

+ε
∑
e∈Γh

∫

e

{γ(Si+1
n )K∇v · ne}[Ŝi+1

n ] + ε
∑
e∈ΓD

∫

e

γ(sdir
n )K∇v · ne)Ŝ

i+1
n

+σs

∑
e∈Γh∪ΓD

f(rs)

|e|
∫

e

[Ŝi+1
n ][v] = σs

∑
e∈ΓD

f(rs)

|e|
∫

e

sdir
n v

−ε
∑
e∈ΓD

∫

e

(λw(sdir
n )K∇v · ne)p

dir + ε
∑
e∈ΓD

∫

e

(γ(sdir
n )K∇v · ne)s

dir
n −

∫

Ω

qw(ti+1)v. (3.62)
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The operator G is well-defined only if there exists a unique solution to (3.60), (3.61), (3.62).

But this system of equations is linear and can be solved sequentially at each time step. Indeed,

(3.61) corresponds to a DG discretization of an elliptic equation satisfied by P̂ and (3.62)

corresponds to a DG discretization of a parabolic equation satisfied by Ŝn. Furthermore, it

is easy to see that the operator G is continuous as this follows from the continuity of the

functions λt, λw, λn and γ. Finally, the operator G is a compact operator. Indeed, one can

show that it transforms bounded sets into bounded sets (relatively compact sets in finite-

dimensional spaces) by deriving a priori estimates similar to (3.38), (3.47) for (P̂ , Ŝn).

Now by construction, for any α ∈ [0, 1], the problem (P, Sn) = αG(P, Sn) has exactly

the same solution as the scheme (3.25)-(3.26) with αpdir, αsdir
n , αs0

n, αqw and αqn. Since we

have
∥∥αpdir

∥∥
0,e
≤

∥∥pdir
∥∥

0,e
,

∥∥αsdir
n

∥∥
0,e
≤

∥∥sdir
n

∥∥
0,e

, ‖αs0
n‖0,Ω ≤ ‖s0

n‖0,Ω, ‖αqw‖0,Ω ≤ ‖qw‖0,Ω,

and ‖αqn‖0,Ω ≤ ‖qn‖0,Ω, the a priori estimates (3.38) and (3.47) are uniformly satisfied for

any α ∈ [0, 1] and any solution of (P, Sn) = αG(P, Sn). Therefore, from Leray-Schauder’s

theorem, there exists a fixed point for G; so there exists at least one solution to (3.25)-(3.26).

3.7 ERROR ANALYSIS

We now derive a priori error estimates for (3.25), (3.26). For 1 ≤ i ≤ N , let us denote the

numerical errors by

ξi = Si
n − s̃i

n, χ
i = s̃i

n − si
n, τ

i = P i − p̃i, θi = p̃i − pi, (3.63)

where s̃n ∈ Drs(Eh) and p̃ ∈ Drp(Eh) are approximations of the exact solutions sn and p.

Here, we use the notation si
n = sn(ti), s̃i

n = s̃n(ti) and similarly for pi and p̃i. We assume

that

∀t ∈ [0, T ], p̃(t) ∈ W 1,∞(Ω), s̃(t) ∈ W 1,∞(Ω), (3.64)

and that for any E ∈ Eh and t > 0, if sn(t) ∈ Hκs(E), p(t) ∈ Hκp(E) for some κs, κp, the

following bounds hold (see [10]): there is a constant C independent of h, rs, rp and ∆t such

that

∀0 ≤ q ≤ κs, ‖sn(t)− s̃n(t)‖q,E ≤ C
hmin(rs+1,κs)

rκs−q
s

‖sn(t)‖κs,E, (3.65)
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∀0 ≤ q ≤ κp, ‖p(t)− p̃(t)‖q,E ≤ C
hmin(rp+1,κp)

r
κp−q
p

‖p(t)‖κp,E. (3.66)

We first prove two lemmas that contain bounds of the discrete errors τ i and ξi.

Lemma 10. If

σp > 8(1− ε)2 (λt)
2kC2

t C̃

λt

,

then, there is a constant M independent of h, rs, rp and ∆t such that:

∀i ≥ 0,
∑
E∈Eh

∥∥∥K
1
2∇τ i+1

∥∥∥
2

0,E
+

∑
e∈Γh∪ΓD

f(rp)

|e|
∥∥[τ i+1]

∥∥2

0,e

≤
(72λt

2
kC4

t C̃
2

λt

+ 3σpC
2
t C̃

)f(rp)

Mh2
‖θi+1‖2

0,Ω

+
1

M

(2(λt)
2k

λt

+
6λt

2
k

2
C2

t C̃

σpf(rp)
+

72λt
2
kC4

t C̃
2f(rp)

λt

+ 3σ2
pC

2
t C̃f(rp)

) ∑
E∈Eh

∥∥∇θi+1
∥∥2

0,E

+
6(λt)

2(k)2C2
t C̃

Mσp

h2

f(rp)

∑
E∈Eh

∥∥∇2θi+1
∥∥2

0,E

+
1

M

(4C2
λ ‖∇p̃i+1‖2

∞ k

λt

+
3C2

λC
2
t C̃ ‖∇p̃i+1‖2

∞ (k)2f(rs)

4σpf(rp)

)
‖ξi+1‖2

0,Ω

+
1

M

(4C2
λ ‖∇p̃i+1‖2

∞ k

λt

+
3C̃C2

λC
2
t k

2‖∇p̃i+1‖2
∞

4σpf(rp)

)
‖χi+1‖2

0,Ω

+
3C̃C2

λC
2
t k

2‖∇p̃i+1‖2
∞h2

4Mσpf(rp)

∑
E∈Eh

‖∇χi+1‖2
0,E.

An expression for M is

M = min
(λt

2
,
σp

2
− 4(1− ε)2 (λt)

2kC2
t C̃

λt

)
.

Proof 4. Using the consistency of the scheme and choosing the test function z = τ i+1, we

obtain one error equation for the global pressure:

∑
E∈Eh

∫

E

λt(S
i+1
n )K∇τ i+1 · ∇τ i+1 + σp

∑
e∈Γh∪ΓD

f(rp)

|e|
∫

e

[τ i+1]2 =

(1− ε)
∑
e∈Γh

∫

e

{λt(S
i+1
n )K∇τ i+1 · ne}[τ i+1] + (1− ε)

∑
e∈ΓD

∫

e

(λt(s
dir
n )K∇τ i+1 · ne)τ

i+1
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−
∑
E∈Eh

∫

E

λt(s
i+1
n )K∇θi+1 · ∇τ i+1

+
∑
e∈Γh

∫

e

{λt(s
i+1
n )K∇θi+1 · ne}[τ i+1] +

∑
e∈ΓD

∫

e

(λt(s
dir
n )K∇θi+1 · ne)τ

i+1

−ε
∑
e∈Γh

∫

e

{λt(s
i+1
n )K∇τ i+1 · ne}[θi+1]− ε

∑
e∈ΓD

∫

e

(λt(s
dir
n )K∇τ i+1 · ne)θ

i+1

−σp

∑
e∈Γh∪ΓD

f(rp)

|e|
∫

e

[θi+1][τ i+1]

−
∑
E∈Eh

∫

E

(λt(S
i+1
n )− λt(s

i+1
n ))K∇p̃i+1 · ∇τ i+1 (3.67)

+
∑
e∈Γh

∫

e

{(λt(S
i+1
n )− λt(s

i+1
n ))K∇p̃i+1 · ne}[τ i+1]

−ε
∑
e∈Γh

∫

e

{(λt(S
i+1
n )− λt(s

i+1
n ))K∇τ i+1 · ne}[p̃i+1]

= T1 + · · ·+ T11.

Next, we bound each term in the right-hand side of (3.67) using techniques standard to DG

methods. In what follows, the quantities εi are positive real numbers to be defined later.

Using Assumption H2, H3 and Cauchy-Schwarz inequality, we have

|T1| ≤ (1− ε)λt(k)
1
2

∑
e∈Γh

∥∥∥{K 1
2∇τ i+1}

∥∥∥
0,e

∥∥[τ i+1]
∥∥

0,e
.

We now fix an interior edge e and denote by E1
e and E2

e the two elements sharing the edge

e. Using the trace inequality (3.36) and (3.31), we have:

∑
e∈Γh

∥∥∥{K 1
2∇τ i+1}

∥∥∥
0,e

∥∥[τ i+1]
∥∥

0,e
≤

∑
e∈Γh

1

2
(‖K1/2∇τ i+1|E1

e
‖0,e + ‖K1/2∇τ i+1|E2

e
‖0,e)‖[τ i+1]‖0,e

≤ 1

2
Ct

√
f(rp)

h

∑
e∈Γh

(‖K1/2∇τ i+1‖0,E1
e
+ ‖K1/2∇τ i+1‖0,E2

e
)‖[τ i+1]‖0,e

≤ (
∑
e∈Γh

C2
t f(rp)

4h
‖[τ i+1]‖2

0,e)
1/2

(
(
∑
e∈Γh

‖K1/2∇τ i+1‖2
0,E1

e
)1/2 + (

∑
e∈Γh

‖K1/2∇τ i+1‖2
0,E2

e
)1/2

)

≤ (
∑
e∈Γh

C̃C2
t f(rp)

4h
‖[τ i+1]‖2

0,e)
1/2(

∑
E∈Eh

‖K1/2∇τ i+1‖2
0,E)1/2.

68



Therefore, we have the following bound for T1:

|T1| ≤ ε1

2

∑
E∈Eh

∥∥∥K
1
2∇τ i+1

∥∥∥
2

0,E
+ (1− ε)2 (λt)

2kC̃C2
t

8ε1

∑
e∈Γh

f(rp)

h

∥∥[τ i+1]
∥∥2

0,e

≤ ε1

2

∑
E∈Eh

∥∥∥K
1
2∇τ i+1

∥∥∥
2

0,E
+ (1− ε)2 (λt)

2kC̃C2
t

8ε1

∑
e∈Γh

f(rp)

|e|
∥∥[τ i+1]

∥∥2

0,e
. (3.68)

Similarly, we have for T2:

|T2| ≤ ε1

2

∑
E∈Eh

∥∥∥K
1
2∇τ i+1

∥∥∥
2

0,E
+ (1− ε)2 (λt)

2kC̃C2
t

2ε1

∑
e∈ΓD

f(rp)

|e|
∥∥τ i+1

∥∥2

0,e
. (3.69)

The term T3 is bounded using Assumption H2, H3, Cauchy-Schwarz and Young’s inequality.

|T3| ≤ λt(k)
1
2

∑
E∈Eh

∥∥∥K
1
2∇τ i+1

∥∥∥
0,E

∥∥∇θi+1
∥∥

0,E

≤ ε3

∑
E∈Eh

∥∥∥K
1
2∇τ i+1

∥∥∥
2

0,E
+

(λt)
2k

4ε3

∑
E∈Eh

∥∥∇θi+1
∥∥2

0,E
. (3.70)

The terms T4 and T5 are bounded in a similar way as the terms T1 and T2, except that the

trace inequality (3.35) is used instead of (3.36).

|T4| ≤ λtk
∑
e∈Γh

∥∥{∇θi+1}∥∥
0,e

∥∥[τ i+1]
∥∥

0,e

≤ (
∑
e∈Γh

C2
t C̃λt

2
k

2

4h
‖[τ i+1]‖2

0,e)
1/2

(
(
∑
E∈Eh

‖∇θi+1‖2
0,E)1/2 + (

∑
E∈Eh

h2‖∇2θi+1‖2
0,E)1/2

)

≤ ε4

∑
e∈Γh

f(rp)

|e|
∥∥[τ i+1]

∥∥2

0,e
+

C2
t C̃λt

2
k

2

8ε4f(rp)
(
∑
E∈Eh

(‖∇θi+1‖2
0,E + h2‖∇2θi+1‖2

0,E)). (3.71)

Similarly, we have for T5:

|T5| ≤ ε4

∑
e∈ΓD

f(rp)

|e|
∥∥τ i+1

∥∥2

0,e
+

C2
t C̃λt

2
k

2

2ε4f(rp)
(
∑
E∈Eh

(‖∇θi+1‖2
0,E + h2‖∇2θi+1‖2

0,E)). (3.72)

The terms T6 and T7 are handled in the same way as the terms T1 and T2, with the exception

that the trace inequality (3.34) is used to handle the approximation error term.

|T6| ≤ λt(k)
1
2

∑
e∈Γh

∥∥∥{K 1
2∇τ i+1}

∥∥∥
0,e

∥∥[θi+1]
∥∥

0,e

≤ ε6

∑
E∈Eh

‖K1/2∇τ i+1‖2
0,E +

λt
2
kC4

t C̃
2f(rp)

2ε6

(
∑
E∈Eh

(h−2‖θi+1‖2
0,E + ‖∇θi+1‖2

0,E)). (3.73)
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Similarly, for T7, we have:

|T7| ≤ ε6

∑
E∈Eh

‖K1/2∇τ i+1‖2
0,E +

λt
2
kC4

t C̃
2f(rp)

4ε6

(
∑
E∈Eh

(h−2‖θi+1‖2
0,E + ‖∇θi+1‖2

0,E)). (3.74)

Using the trace inequality (3.35), we have for the term T8:

|T8| ≤ ε5

∑
e∈Γh∪ΓD

f(rp)

|e|
∥∥[τ i+1]

∥∥2

0,e
+

σ2
pC

2
t C̃f(rp)

2ε5

(
∑
E∈Eh

(h−2‖θi+1‖2
0,E + ‖∇θi+1‖2

0,E)). (3.75)

Using Assumption H2, H3, Cauchy-Schwarz inequality and (3.64), we have:

|T9| ≤ Cλ

∥∥∇p̃i+1
∥∥
∞ (k)

1
2

∑
E∈Eh

‖Si+1
n − si+1

n ‖0,E

∥∥∥K
1
2∇τ i+1

∥∥∥
0,E

≤ Cλ

∥∥∇p̃i+1
∥∥
∞ (k)

1
2

∑
E∈Eh

(‖ξi+1‖0,E

∥∥∥K
1
2∇τ i+1

∥∥∥
0
+ ‖χi+1‖0,E

∥∥∥K
1
2∇τ i+1

∥∥∥
0,E

)

≤ 2ε9

∑
E∈Eh

∥∥∥K
1
2∇τ i+1

∥∥∥
2

0,E
+

C2
λ ‖∇p̃i+1‖2

∞ k

4ε9

‖ξi+1‖2
0,Ω +

C2
λ ‖∇p̃i+1‖2

∞ k

4ε9

‖χi+1‖2
0,Ω. (3.76)

The term T10 is a summation term over interior edges. We assume that the edge e is shared

by the elements E1
e and E2

e . Thus, we have using Assumption H2, H3, Cauchy-Schwarz

inequality and (3.64).

|T10| ≤
∥∥∇p̃i+1

∥∥
∞ k

Cλ

2

∑
e∈Γh

(
∥∥ξi+1|E1

e

∥∥
0,e

+
∥∥ξi+1|E2

e

∥∥
0,e

+
∥∥χi+1|E1

e

∥∥
0,e

+
∥∥χi+1|E2

e

∥∥
0,e

)
∥∥[τ i+1]

∥∥
0,e

.

Using the trace inequalities (3.34), (3.36), we have:

|T10| ≤ Cλ

2
k‖∇p̃i+1‖∞Ct

√
f(rs)

h

∑
e∈Γh

(‖ξi+1‖0,E1
e
+ ‖ξi+1‖0,E2

e
)‖[τ i+1]‖0,e

+
Cλ

2
k‖∇p̃i+1‖∞Cth

−1/2
∑
e∈Γh

(‖χi+1‖0,E1
e
+ ‖χi+1‖0,E2

e
+ h‖∇χi+1‖0,E1

e
+ h‖∇χi+1‖0,E2

e
)‖[τ i+1]‖0,e

≤ ε10

∑
e∈Γh

f(rs)

|e| ‖[τ
i+1]‖2

0,e +
C̃C2

λC
2
t k

2‖∇p̃i+1‖2
∞

8ε10

‖ξi+1‖2
0,Ω

+
C̃C2

λC
2
t k

2‖∇p̃i+1‖2
∞

8ε10f(rs)

∑
E∈Eh

(‖χi+1‖2
0,E + h2‖∇χi+1‖2

0,E). (3.77)
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The term T11 vanishes if the approximation p̃ is continuous. Otherwise, we can bound it

exactly like the term T6.

T11 ≤
∑
e∈Γh

∣∣∣∣
∫

e

{(λt(S
i+1
n )− λt(s

i+1
n ))K∇τ i+1 · ne}[θi+1]

∣∣∣∣

≤ ε6

∑
E∈Eh

‖K1/2∇τ i+1‖2
0,E +

2λt
2
kC4

t C̃
2f(rp)

ε6

(
∑
E∈Eh

(h−2‖θi+1‖2
0,E + ‖∇θi+1‖2

0,E)). (3.78)

Combining all the bounds (3.68)-(3.78) obtained above and choosing

ε1 = ε3 = 3ε6 = 2ε9 =
λt

8
,

and

ε4 = ε5 = ε10
f(rs)

f(rp)
=

σp

6
,

we obtain:

λt

2

∑
E∈Eh

∥∥∥K
1
2∇τ i+1

∥∥∥
2

0,E
+

(σp

2
− 4(1− ε)2 (λt)

2kC2
t C̃

λt

) ∑
e∈Γh∪ΓD

f(rp)

|e|
∥∥[τ i+1]

∥∥2

0,e

≤
(72λt

2
kC4

t C̃
2

λt

+ 3σpC
2
t C̃

)f(rp)

h2
‖θi+1‖2

0,Ω

+
(2(λt)

2k

λt

+
6λt

2
k

2
C2

t C̃

σpf(rp)
+

72λt
2
kC4

t C̃
2f(rp)

λt

+ 3σ2
pC

2
t C̃f(rp)

) ∑
E∈Eh

∥∥∇θi+1
∥∥2

0,E

+
6(λt)

2(k)2C2
t C̃

σp

h2

f(rp)

∑
E∈Eh

∥∥∇2θi+1
∥∥2

0,E

+
(4C2

λ ‖∇p̃i+1‖2
∞ k

λt

+
3C2

λC
2
t C̃ ‖∇p̃i+1‖2

∞ (k)2f(rs)

4σpf(rp)

)
‖ξi+1‖2

0,Ω

+
(4C2

λ ‖∇p̃i+1‖2
∞ k

λt

+
3C̃C2

λC
2
t k

2‖∇p̃i+1‖2
∞

4σpf(rp)

)
‖χi+1‖2

0,Ω +
3C̃C2

λC
2
t k

2‖∇p̃i+1‖2
∞h2

4σpf(rp)

∑
E∈Eh

‖∇χi+1‖2
0,E.

Lemma 11. For i ≥ 0, define

ρi+1 =
1

∆t
(
s̃i+1

n − s̃i
n

∆t
− ∂s̃i+1

n

∂t
).

Then, the following bound holds:

∀i ≥ 0,
φ

2∆t
(‖ξi+1‖2

0,Ω − ‖ξi‖2
0,Ω) +

γ

2

∑
E∈Eh

∥∥∥K
1
2∇ξi+1

∥∥∥
2

0,E
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+(
σs

2
− (1− ε)2 2γ2kC̃C2

t

γ
)

∑
e∈Γh∪ΓD

f(rs)

|e|
∥∥[ξi+1]

∥∥2

0,e

≤ (
4(λw)2

γ
+

5λ
2

wkC̃C2
t f(rp)

σsf(rs)
)

∑
E∈Eh

∥∥∥K
1
2∇τ i+1

∥∥∥
2

0,E

+
8(λw)2kC̃C2

t

γ

f(rs)

f(rp)

∑
e∈Γh∪ΓD

f(rp)

|e|
∥∥[τ i+1]

∥∥2

0,e

+
(
1 + (

2C̃C2
t k

2

5σs

+
4k

γ
)(C2

λ‖∇p̃i+1‖2
∞ + C2

γ‖∇s̃i+1
n ‖2

∞)
)
‖ξi+1‖2

0,Ω

+
φ

2
∆t2

2
‖ρi+1‖2

0,Ω +
φ

2

2
‖χi+1

t ‖2
0,Ω

+
(5σ2

sC
2
t C̃f(rs)

σsh2
+

192γ2kC4
t C̃

2f(rs)

γh2
+(

16k

γ
+

2C̃C2
t k

2

5σsf(rs)
)(C2

λ‖∇p̃i+1‖2
∞+C2

γ‖∇s̃i+1
n ‖2

∞)
)
‖χi+1‖2

0,Ω

+
160λ

2

wkC4
t C̃

2f(rs)

γh2
‖θi+1‖2

0,Ω

+
(
5σ2

sC
2
t C̃f(rs) +

4γ2k

γ
+

10C2
t C̃γ2k

2

σsf(rs)
+

192γ2kC4
t C̃

2f(rs)

γ

+
5C̃C2

t k
2
h2

2σsf(rs)
(C2

λ‖∇p̃i+1‖2
∞ + C2

γ‖∇s̃i+1
n ‖2

∞)
) ∑

E∈Eh

‖∇χi+1‖2
0,E

+
(4λ

2

wk

γ
+

10C2
t C̃λ

2

wk
2

σsf(rs)
+

160λw
2
kC4

t C̃
2f(rs)

γ

) ∑
E∈Eh

‖∇θi+1‖2
0,E

+
10C2

t C̃γ2k
2
h2

σsf(rs)

∑
E∈Eh

‖∇2χi+1‖2
0,E +

10C2
t C̃λ

2

wk
2
h2

σsf(rs)

∑
E∈Eh

‖∇2θi+1‖2
0,E.

Proof 5. Using the consistency of the scheme, choosing the test function v = ξi+1, and

defining ρi+1 = 1
∆t

( s̃i+1
n −s̃i

n

∆t
− ∂s̃i+1

n

∂t
) we obtain one error equation for the non-wetting phase

saturation:

∫

Ω

φ

∆t
(ξi+1 − ξi)ξi+1 +

∑
E∈Eh

∫

E

γ(Si+1
n )K∇ξi+1 · ∇ξi+1

+σs

∑
e∈Γh∪ΓD

f(rs)

|e|
∫

e

[ξi+1]2 =
∑
E∈Eh

∫

E

λw(Si+1
n )K∇τ i+1 · ∇ξi+1
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−
∑
e∈Γh

∫

e

{λw(Si+1
n )K∇τ i+1 · ne}[ξi+1]−

∑
e∈ΓD

∫

e

(λw(sdir
n )K∇τ i+1 · ne)ξ

i+1

+(1− ε)
∑
e∈Γh

∫

e

{γ(Si+1
n )K∇ξi+1 · ne}[ξi+1] + (1− ε)

∑
e∈ΓD

∫

e

(γ(sdir
n )K∇ξi+1 · ne)ξ

i+1

+ε
∑
e∈Γh

∫

e

{λw(Si+1
n )K∇ξi+1 · ne}[τ i+1] + ε

∑
e∈ΓD

∫

e

(λw(sdir
n )K∇ξi+1 · ne)τ

i+1

−
∫

Ω

∆tφρi+1ξi+1 −
∫

Ω

φχi+1
t ξi+1 − σs

∑
e∈Γh∪ΓD

f(rs)

|e|
∫

e

[χi+1][ξi+1]

+
∑
E∈Eh

∫

E

λw(si+1
n )K∇θi+1 · ∇ξi+1 −

∑
E∈Eh

∫

E

γ(si+1
n )K∇χi+1 · ∇ξi+1

−
∑
e∈Γh

∫

e

{λw(si+1
n )K∇θi+1 · ne}[ξi+1]−

∑
e∈ΓD

∫

e

(λw(sdir
n )K∇θi+1 · ne)ξ

i+1

+
∑
e∈Γh

∫

e

{γ(si+1
n )K∇χi+1 · ne}[ξi+1] +

∑
e∈ΓD

∫

e

(γ(sdir
n )K∇χi+1 · ne)ξ

i+1

+ε
∑
e∈Γh

∫

e

{λw(si+1
n )K∇ξi+1 · ne}[θi+1] + ε

∑
e∈∪ΓD

∫

e

(λw(sdir
n )K∇ξi+1 · ne)θ

i+1

−ε
∑
e∈Γh

∫

e

{γ(si+1
n )K∇ξi+1 · ne}[χi+1]− ε

∑
e∈ΓD

∫

e

(γ(sdir
n )K∇ξi+1 · ne)χ

i+1

+
∑
E∈Eh

∫

E

(λw(Si+1
n )− λw(si+1

n ))K∇p̃i+1 · ∇ξi+1 −
∑
E∈Eh

∫

E

(γ(Si+1
n )− γ(si+1

n ))K∇s̃i+1
n · ∇ξi+1

−
∑
e∈Γh

∫

e

{(λw(Si+1
n )−λw(si+1

n ))K∇p̃i+1·ne}[ξi+1]+
∑
e∈Γh

∫

e

{(γ(Si+1
n )−γ(si+1

n ))K∇s̃i+1
n ·ne}[ξi+1]

+ε
∑
e∈Γh

∫

e

{(λw(Si+1
n )−λw(si+1

n ))K∇ξi+1·ne}[p̃i+1]−ε
∑
e∈Γh

∫

e

{(γ(Si+1
n )−γ(si+1

n ))K∇ξi+1·ne}[s̃i+1
n ]

= A1 + · · ·+ A26.

We now bound each term in the right-hand side of the equation above. The term A1 is simply

bounded using Assumption H2 and Cauchy-Schwarz inequality

|A1| ≤ εs
1

∑
E∈Eh

∥∥∥K
1
2∇ξi+1

∥∥∥
2

0,E
+

(λw)2

4εs
1

∑
E∈Eh

∥∥∥K
1
2∇τ i+1

∥∥∥
2

0,E
. (3.79)

The term A2 is bounded in a similar way as for the term T1:

|A2| ≤ εs
2

2

∑
E∈Eh

∥∥∥K
1
2∇τ i+1

∥∥∥
2

0,E
+

(λw)2kC̃C2
t

8εs
2

∑
e∈Γh

f(rp)

|e|
∥∥[ξi+1]

∥∥2

0,e
. (3.80)
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The term A3 is bounded in a similar way as for the term T2:

|A3| ≤ εs
2

2

∑
E∈Eh

∥∥∥K
1
2∇τ i+1

∥∥∥
2

0,E
+

(λw)2kC̃C2
t

2εs
2

∑
e∈ΓD

f(rp)

|e|
∥∥ξi+1

∥∥2

0,e
. (3.81)

The term A4 is bounded in a similar way as for the term T1:

|A4| ≤ εs
4

2

∑
E∈Eh

∥∥∥K
1
2∇ξi+1

∥∥∥
2

0,E
+ (1− ε)2 (γ)2kC̃C2

t

8εs
4

∑
e∈Γh

f(rs)

|e|
∥∥[ξi+1]

∥∥2

0,e
. (3.82)

The term A5 is bounded in a similar way as for the term T2:

|A5| ≤ εs
4

2

∑
E∈Eh

∥∥∥K
1
2∇ξi+1

∥∥∥
2

0,E
+ (1− ε)2 (γ)2kC̃C2

t

2εs
4

∑
e∈ΓD

f(rs)

|e|
∥∥ξi+1

∥∥2

0,e
. (3.83)

The term A6 is bounded in a similar way as for the term T1:

|A6| ≤ εs
6

2

∑
E∈Eh

∥∥∥K
1
2∇ξi+1

∥∥∥
2

0,E
+

(λw)2kC̃C2
t

8εs
6

∑
e∈Γh

f(rs)

|e|
∥∥[τ i+1]

∥∥2

0,e
. (3.84)

The term A7 is bounded in a similar way as for the term T2:

|A7| ≤ εs
6

2

∑
E∈Eh

∥∥∥K
1
2∇ξi+1

∥∥∥
2

0,E
+

(λw)2kC̃C2
t

2εs
6

∑
e∈ΓD

f(rs)

|e|
∥∥τ i+1

∥∥2

0,e
. (3.85)

The terms A8 and A9 are simply bounded using Cauchy-Schwarz’s inequality.

|A8| ≤ εs
8‖ξi+1‖2

0,Ω +
φ

2
∆t2

4ε8
s

‖ρi+1‖2
0,Ω. (3.86)

|A9| ≤ εs
9‖ξi+1‖2

0,Ω +
φ

2

4εs
9

‖χi+1
t ‖2

0,Ω. (3.87)

The term A10 is bounded exactly like T8.

|A10| ≤ εs
10

∑
e∈Γh∪ΓD

f(rs)

|e|
∥∥[ξi+1]

∥∥2

0,e
+

σ2
sC

2
t C̃f(rs)

2εs
10

(
∑
E∈Eh

(h−2‖χi+1‖2
0,E+‖∇χi+1‖2

0,E)). (3.88)

The term A11 is bounded exactly like T3.

|A11| ≤ εs
11

∑
E∈Eh

∥∥∥K
1
2∇ξi+1

∥∥∥
2

0,E
+

(λw)2k

4εs
11

∑
E∈Eh

∥∥∇θi+1
∥∥2

0,E
. (3.89)
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The term A12 is bounded exactly like T3.

|A12| ≤ εs
12

∑
E∈Eh

∥∥∥K
1
2∇ξi+1

∥∥∥
2

0,E
+

(γ)2k

4εs
12

∑
E∈Eh

∥∥∇χi+1
∥∥2

0,E
. (3.90)

The term A13 is bounded exactly like T4.

|A13| ≤ εs
13

∑
e∈Γh

f(rs)

|e|
∥∥[ξi+1]

∥∥2

0,e
+

C2
t C̃λw

2
k

2

8εs
13f(rs)

(
∑
E∈Eh

(‖∇θi+1‖2
0,E + h2‖∇2θi+1‖2

0,E)). (3.91)

The term A14 is bounded exactly like T5.

|A14| ≤ εs
13

∑
e∈ΓD

f(rs)

|e|
∥∥ξi+1

∥∥2

0,e
+

C2
t C̃λw

2
k

2

2εs
13f(rs)

(
∑
E∈Eh

(‖∇θi+1‖2
0,E + h2‖∇2θi+1‖2

0,E)). (3.92)

The term A15 is bounded exactly like T4.

|A15| ≤ εs
15

∑
e∈Γh

f(rs)

|e|
∥∥[ξi+1]

∥∥2

0,e
+

C2
t C̃γ2k

2

8εs
15f(rs)

(
∑
E∈Eh

(‖∇χi+1‖2
0,E + h2‖∇2χi+1‖2

0,E)). (3.93)

The term A16 is bounded exactly like T5.

|A16| ≤ εs
15

∑
e∈ΓD

f(rs)

|e|
∥∥ξi+1

∥∥2

0,e
+

C2
t C̃γ2k

2

2εs
15f(rs)

(
∑
E∈Eh

(‖∇χi+1‖2
0,E + h2‖∇2χi+1‖2

0,E)). (3.94)

The term A17 is bounded exactly like T6.

|A17| ≤ εs
17

∑
E∈Eh

‖K1/2∇ξi+1‖2
0,E +

λw
2
kC4

t C̃
2f(rs)

2εs
17

(
∑
E∈Eh

(h−2‖θi+1‖2
0,E +‖∇θi+1‖2

0,E)). (3.95)

The term A18 is bounded exactly like T7.

|A18| ≤ εs
17

∑
E∈Eh

‖K1/2∇ξi+1‖2
0,E +

λw
2
kC4

t C̃
2f(rs)

4εs
17

(
∑
E∈Eh

(h−2‖θi+1‖2
0,E +‖∇θi+1‖2

0,E)). (3.96)

The term A19 is bounded exactly like T6.

|A19| ≤ εs
19

∑
E∈Eh

‖K1/2∇ξi+1‖2
0,E +

γ2kC4
t C̃

2f(rs)

2εs
19

(
∑
E∈Eh

(h−2‖χi+1‖2
0,E + ‖∇χi+1‖2

0,E)). (3.97)

The term A20 is bounded exactly like T7.

|A20| ≤ εs
19

∑
E∈Eh

‖K1/2∇ξi+1‖2
0,E +

γ2kC4
t C̃

2f(rs)

4εs
19

(
∑
E∈Eh

(h−2‖χi+1‖2
0,E + ‖∇χi+1‖2

0,E)). (3.98)
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The term A21 is bounded exactly like T9.

|A21| ≤ 2εs
21

∑
E∈Eh

∥∥∥K
1
2∇ξi+1

∥∥∥
2

0,E
+

C2
λ ‖∇p̃i+1‖2

∞ k

4εs
21

‖ξi+1‖2
0,Ω +

C2
λ ‖∇p̃i+1‖2

∞ k

4εs
21

‖χi+1‖2
0,Ω.

(3.99)

The term A22 is bounded exactly like T9.

|A22| ≤ 2εs
21

∑
E∈Eh

∥∥∥K
1
2∇ξi+1

∥∥∥
2

0,E
+

C2
γ ‖∇s̃i+1

n ‖2
∞ k

4εs
21

‖ξi+1‖2
0,Ω +

C2
γ ‖∇s̃i+1

n ‖2
∞ k

4εs
21

‖χi+1‖2
0,Ω.

(3.100)

The term A23 is bounded exactly like T10.

|A23| ≤ εs
23

∑
e∈Γh

f(rs)

|e| ‖[ξ
i+1]‖2

0,e +
C̃C2

λC
2
t k

2‖∇p̃i+1‖2
∞

8εs
23

‖ξi+1‖2
0,Ω

+
C̃C2

λC
2
t k

2‖∇p̃i+1‖2
∞

8εs
23f(rs)

∑
E∈Eh

(‖χi+1‖2
0,E + h2‖∇χi+1‖2

0,E). (3.101)

The term A24 is bounded exactly like T10.

|A24| ≤ εs
23

∑
e∈Γh

f(rs)

|e| ‖[ξ
i+1]‖2

0,e +
C̃C2

γC
2
t k

2‖∇s̃i+1
n ‖2

∞
8εs

23

‖ξi+1‖2
0,Ω

+
C̃C2

γC
2
t k

2‖∇s̃i+1
n ‖2

∞
8εs

23f(rs)

∑
E∈Eh

(‖χi+1‖2
0,E + h2‖∇χi+1‖2

0,E). (3.102)

The term A25 is bounded exactly like T11.

|A25| ≤ εs
19

∑
E∈Eh

‖K1/2∇ξi+1‖2
0,E +

2λw
2
kC4

t C̃
2f(rs)

εs
19

(
∑
E∈Eh

(h−2‖θi+1‖2
0,E + ‖∇θi+1‖2

0,E)).

(3.103)

The term A26 is bounded exactly like T11.

|A26| ≤ εs
19

∑
E∈Eh

‖K1/2∇ξi+1‖2
0,E +

2γ2kC4
t C̃

2f(rs)

εs
19

(
∑
E∈Eh

(h−2‖χi+1‖2
0,E + ‖∇χi+1‖2

0,E)).

(3.104)

Combining the bounds (3.79)-(3.104) and choosing

εs
1 = εs

4 = εs
6 = εs

11 = εs
12 = 2εs

17 = 4εs
19 = 4εs

21 =
γ

16
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and

εs
10 = εs

13 = εs
15 = 2εs

23 =
λ

2

wkC̃C2
t f(rp)

2εs
2f(rs)

=
σs

10
,

we obtain
φ

2∆t
(‖ξi+1‖2

0,Ω − ‖ξi‖2
0,Ω) +

γ

2

∑
E∈Eh

∥∥∥K
1
2∇ξi+1

∥∥∥
2

0,E

+(
σs

2
− (1− ε)2 2γ2kC̃C2

t

γ
)

∑
e∈Γh∪ΓD

f(rs)

|e|
∥∥[ξi+1]

∥∥2

0,e

≤ (
4(λw)2

γ
+

5λ
2

wkC̃C2
t f(rp)

σsf(rs)
)

∑
E∈Eh

∥∥∥K
1
2∇τ i+1

∥∥∥
2

0,E

+
8(λw)2kC̃C2

t

γ

f(rs)

f(rp)

∑
e∈Γh∪ΓD

f(rp)

|e|
∥∥[τ i+1]

∥∥2

0,e

+(εs
8 + εs

9 + (
2C̃C2

t k
2

5σs

+
4k

γ
)(C2

λ‖∇p̃i+1‖2
∞ + C2

γ‖∇s̃i+1
n ‖2

∞))‖ξi+1‖2
0,Ω

+
φ

2
∆t2

4εs
8

‖ρi+1‖2
0,Ω +

φ
2

4εs
9

‖χi+1
t ‖2

0,Ω

+
(5σ2

sC
2
t C̃f(rs)

σsh2
+

192γ2kC4
t C̃

2f(rs)

γh2
+(

16k

γ
+

2C̃C2
t k

2

5σsf(rs)
)(C2

λ‖∇p̃i+1‖2
∞+C2

γ‖∇s̃i+1
n ‖2

∞)
)
‖χi+1‖2

0,Ω

+
160λ

2

wkC4
t C̃

2f(rs)

γh2
‖θi+1‖2

0,Ω

+
(
5σ2

sC
2
t C̃f(rs) +

4γ2k

γ
+

10C2
t C̃γ2k

2

σsf(rs)
+

192γ2kC4
t C̃

2f(rs)

γ

+
5C̃C2

t k
2
h2

2σsf(rs)
(C2

λ‖∇p̃i+1‖2
∞ + C2

γ‖∇s̃i+1
n ‖2

∞)
) ∑

E∈Eh

‖∇χi+1‖2
0,E

+
(4λ

2

wk

γ
+

10C2
t C̃λ

2

wk
2

σsf(rs)
+

160λw
2
kC4

t C̃
2f(rs)

γ

) ∑
E∈Eh

‖∇θi+1‖2
0,E

+
10C2

t C̃γ2k
2
h2

σsf(rs)

∑
E∈Eh

‖∇2χi+1‖2
0,E +

10C2
t C̃λ

2

wk
2
h2

σsf(rs)

∑
E∈Eh

‖∇2θi+1‖2
0,E.

The final result is obtained by taking ε8
s = ε9

s = 0.5.

77



Theorem 6. Assume that s0
n ∈ Hrs(Ω), and for 1 ≤ i ≤ N , sn(ti) ∈ Hrs+1(Ω), p(ti) ∈

Hrp+1(Ω), (sn)t(t
i) ∈ Hrs(Ω) and (sn)tt ∈ L2([0, T ]; H1(Ω)). In addition, assume that

σp > 8(1− ε)2 (λt)
2kC2

t C̃

λt

, σs > (1− ε)2 4γ2kC̃C2
t

γ
.

Then, if ∆t is small enough, there is a constant C independent of h, rp, rs and ∆t but

dependent on the quantity max((rs/rp)
2, 1 + (rp/rs)

2) such that for any m ≥ 1:

‖ξm‖2
0,Ω + ∆t

m−1∑
i=0

∑
E∈Eh

∥∥∥K
1
2∇ξi+1

∥∥∥
2

0,E
+ ∆t

m−1∑
i=0

∑
e∈Γh∪ΓD

f(rs)

|e|
∥∥[ξi+1]

∥∥2

0,e
≤ C,

∆t

m−1∑
i=0

∑
E∈Eh

∥∥∥K
1
2∇τ i+1

∥∥∥
2

0,E
+ ∆t

m−1∑
i=0

∑
e∈Γh∪ΓD

f(rp)

|e|
∥∥[τ i+1]

∥∥2

0,e
≤ (1 +

r2
s

r2
p

)C,

with

C = C∆t2
∫ T

0

‖(sn)tt‖2
0,Ω + C

h2rs

r2rs
s

‖s0
n‖2

rs,Ω + C
h2rs

r2rs
s

∆t

N∑
i=1

‖(sn)t(t
i)‖2

rs,Ω

+C
h2rs

r2rs−2
s

(1 +
r2
p

r2
s

)∆t

N∑
i=1

‖sn(ti)‖2
rs+1,Ω + C

h2rp

r
2rp−2
p

(1 +
r2
s

r2
p

+
r2
p

r2
s

)∆t

N∑
i=1

‖p(ti)‖2
rp+1,Ω.

Proof 6. We give a detailed proof in the case of the NIPG method, namely with the choice

ε = 1. The cases corresponding to SIPG and IIPG are handled in the same way; there are

additional terms in the derivation and the penalty parameters σp, σs must be bounded below:

σp > 8(1− ε)2 (λt)
2kC2

t C̃

λt

, σs > (1− ε)2 4γ2kC̃C2
t

γ
.

The final error estimates are the same with a different constant C. From now on, let us

assume that ε = 1. We define the constant

L = max
(4λ

2

w

γ
+

5λ
2

wkC̃C2
t f(rp)

f(rs)σs

,
8λ

2

wkC̃C2
t

γ

f(rs)

f(rp)

)
.

Thus, with the constant M = 0.5 min(λt, σp), we obtain

φ

2∆t
(‖ξi+1‖2

0,Ω − ‖ξi‖2
0,Ω) +

γ

2

∑
E∈Eh

∥∥∥K
1
2∇ξi+1

∥∥∥
2

0,E
+

σs

2

∑
e∈Γh∪ΓD

f(rs)

|e|
∥∥[ξi+1]

∥∥2

0,e

≤ L

M

(4C2
λ ‖∇p̃i+1‖2

∞ k

λt

+
3C2

λC
2
t C̃ ‖∇p̃i+1‖2

∞ (k)2f(rs)

4σpf(rp)

)
‖ξi+1‖2

0,Ω
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+(1 + (
2C̃C2

t k
2

5σs

+
4k

γ
)(C2

λ‖∇p̃i+1‖2
∞ + C2

γ‖∇s̃i+1
n ‖2

∞))‖ξi+1‖2
0,Ω

+
1

4
φ

2
∆t2‖ρi+1‖2

0,Ω +
1

4
φ

2‖χi+1
t ‖2

0,Ω

+
(5σ2

sC
2
t C̃f(rs)

σsh2
+

192γ2kC4
t C̃

2f(rs)

γh2
+(

16k

γ
+

2C̃C2
t k

2

5σsf(rs)
)(C2

λ‖∇p̃i+1‖2
∞+C2

γ‖∇s̃i+1
n ‖2

∞)
)
‖χi+1‖2

0,Ω

+
L

M

(4C2
λ ‖∇p̃i+1‖2

∞ k

λt

+
3C̃C2

λC
2
t k

2‖∇p̃i+1‖2
∞

4σpf(rp)

)
‖χi+1‖2

0,Ω

+
(160λ

2

wkC4
t C̃

2f(rs)

γh2
+

L

M

(72λt
2
kC4

t C̃
2

λt

+ 3σpC
2
t C̃

)f(rp)

h2

)
‖θi+1‖2

0,Ω

+
(
5σsC

2
t C̃f(rs) +

4γ2k

γ
+

10C2
t C̃γ2k

2

σsf(rs)
+

192γ2kC4
t C̃

2f(rs)

γ

+
5C̃C2

t k
2
h2

2σsf(rs)
(C2

λ‖∇p̃i+1‖2
∞ + C2

γ‖∇s̃i+1
n ‖2

∞)

+
L

M

3h2C̃C2
λC

2
t k

2‖∇p̃i+1‖2
∞

4σpf(rp)

) ∑
E∈Eh

‖∇χi+1‖2
0,E

+
(4λ

2

wk

γ
+

10C2
t C̃λ

2

wk
2

σsf(rs)
+

160λw
2
kC4

t C̃
2f(rs)

γ

) ∑
E∈Eh

‖∇θi+1‖2
0,E

+
L

M

(2(λt)
2k

λt

+
6λt

2
k

2
C2

t C̃

σpf(rp)
+

72λt
2
kC4

t C̃
2f(rp)

λt

+ 3σpC
2
t C̃f(rp)

) ∑
E∈Eh

‖∇θi+1‖2
0,E

+
10C2

t C̃γ2k
2
h2

σsf(rs)

∑
E∈Eh

‖∇2χi+1‖2
0,E

+
(10C2

t C̃λ
2

wk
2
h2

σsf(rs)
+

L

M

6(λt)
2(k)2C2

t C̃

σp

h2

f(rp)

) ∑
E∈Eh

‖∇2θi+1‖2
0,E.

Therefore, there is a constant C independent of h, rp, rs and ∆t such that

φ

2∆t
(‖ξi+1‖2

0,Ω − ‖ξi‖2
0,Ω) +

γ

2

∑
E∈Eh

∥∥∥K
1
2∇ξi+1

∥∥∥
2

0,E
+

σs

2

∑
e∈Γh∪ΓD

f(rs)

|e|
∥∥[ξi+1]

∥∥2

0,e

≤ C
(
1 + (1 +

f(rs)

f(rp)
) max(

f(rs)

f(rp)
, 1 +

f(rp)

f(rs)
)
)
‖ξi+1‖2

0,Ω + C∆t2‖ρi+1‖2
0,Ω + C‖χi+1

t ‖2
0,Ω

+C
(
1 +

1

f(rs)
+

f(rs)

h2
+ (1 +

1

f(rp)
) max(

f(rs)

f(rp)
, 1 +

f(rp)

f(rs)
)
)
‖χi+1‖2

0,Ω

79



+C
(f(rs)

h2
+

f(rp)

h2
max(

f(rs)

f(rp)
, 1 +

f(rp)

f(rs)
)
)
‖θi+1‖2

0,Ω

+C
(
f(rs) + 1 +

1 + h2

f(rs)
+

h2

f(rp)
max(

f(rs)

f(rp)
, 1 +

f(rp)

f(rs)
)
) ∑

E∈Eh

‖∇χi+1‖2
0,E

+C
(
1 + f(rs) +

1

f(rs)
+ (1 + f(rp) +

1

f(rp)
) max(

f(rs)

f(rp)
, 1 +

f(rp)

f(rs)
)
) ∑

E∈Eh

‖∇θi+1‖2
0,E

+C
h2

f(rs)

∑
E∈Eh

‖∇2χi+1‖2
0,E + Ch2

( 1

f(rs)
+

1

f(rp)

) ∑
E∈Eh

‖∇2θi+1‖2
0,E.

Multiplying by 2∆t, summing over i = 0 to i = m − 1, using the fact that for any r ≥ 1,

1 ≤ r2 ≤ f(r) ≤ 6r2, and using Gronwall’s inequality, we obtain that there exists a constant

C that is independent of h and ∆t but depends on the quantity max((rs/rp)
2, 1 + (rp/rs)

2)

such that for ∆t small enough:

φ‖ξm‖2
0,Ω − φ‖ξ0‖2

0,Ω + γ∆t

m−1∑
i=0

∑
E∈Eh

∥∥∥K
1
2∇ξi+1

∥∥∥
2

0,E
+ σs∆t

m−1∑
i=0

∑
e∈Γh∪ΓD

f(rs)

|e|
∥∥[ξi+1]

∥∥2

0,e

≤ C∆t3
m−1∑
i=0

‖ρi+1‖2
0,Ω + C∆t

m−1∑
i=0

‖χi+1
t ‖2

0,Ω

+C
( r2

s

h2
+ max(

r2
s

r2
p

, 1 +
r2
p

r2
s

)
)
‖χi+1‖2

0,Ω

+C
r2
s

h2

(
1 + max(1,

r2
p

r2
s

+
r4
p

r4
s

))
)
‖θi+1‖2

0,Ω

+C
(
r2
s + max(

r2
s

r2
p

, 1 +
r2
p

r2
s

)
) ∑

E∈Eh

‖∇χi+1‖2
0,E

+C
(
r2
p max(

r2
s

r2
p

, 1 +
r2
p

r2
s

)
) ∑

E∈Eh

‖∇θi+1‖2
0,E

+C
h2

r2
s

∑
E∈Eh

‖∇2χi+1‖2
0,E + Ch2

( 1

r2
s

+
1

r2
p

) ∑
E∈Eh

‖∇2θi+1‖2
0,E.

We next bound the error ‖ρi+1‖0,Ω using a Taylor expansion with integral remainder:

s̃i
n = s̃i+1

n −∆t
∂s̃i+1

n

∂t
+

1

2

∫ ti+1

ti
(t− ti)

∂2s̃n

∂t2
dt,

which easily yields:

‖ρi+1‖2
0,Ω ≤

1

6∆t

∫ ti+1

ti
‖∂2s̃n

∂t2
‖2

0,Ωdt. (3.105)
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Using the approximation properties (3.65), (3.66), and the bound (3.105), we obtain:

‖ξm‖2
0,Ω + ∆t

m−1∑
i=0

∑
E∈Eh

∥∥∥K
1
2∇ξi+1

∥∥∥
2

0,E
+ ∆t

m−1∑
i=0

∑
e∈Γh∪ΓD

f(rs)

|e|
∥∥[ξi+1]

∥∥2

0,e

≤ C∆t2
∫ T

0

‖(sn)tt‖2
0,Ω + C

h2rs

r2rs
s

‖s0
n‖2

rs,Ω + C
h2rs

r2rs
s

∆t

N−1∑
i=0

‖∂si+1
n

∂t
‖2

rs,Ω

+C
h2rs

r2rs−2
s

(1 +
r2
p

r2
s

)∆t

N−1∑
i=0

‖si+1
n ‖2

rs+1,Ω + C
h2rp

r
2rp−2
p

(1 +
r2
s

r2
p

+
r2
p

r2
s

)∆t

N−1∑
i=0

‖pi+1‖2
rp+1,Ω.

To obtain the pressure error estimate, we combine Lemma 10 with the equation above. Hence,

we obtain:

∆t

m−1∑
i=0

∑
E∈Eh

∥∥∥K
1
2∇τ i+1

∥∥∥
2

0,E
+ ∆t

m−1∑
i=0

∑
e∈Γh∪ΓD

f(rp)

|e|
∥∥[τ i+1]

∥∥2

0,e

≤ C∆t2(1 +
r2
s

r2
p

)

∫ T

0

‖(sn)tt‖2
0,Ω + C

h2rs

r2rs
s

(1 +
r2
s

r2
p

)‖s0
n‖2

rs,Ω + C
h2rs

r2rs
s

(1 +
r2
s

r2
p

)∆t

N−1∑
i=0

‖∂si+1
n

∂t
‖2

rs,Ω

+C
h2rs

r2rs−2
s

(1 +
r2
p

r2
s

)(1 +
r2
s

r2
p

)∆t

N−1∑
i=0

‖si+1
n ‖2

rs+1,Ω + C
h2rp

r
2rp−2
p

(1 +
r2
s

r2
p

)(1 +
r2
s

r2
p

+
r2
p

r2
s

)∆t

N−1∑
i=0

‖pi+1‖2
rp+1,Ω.

A straightforward consequence is the following result.

Corollary 4. Assume that the ratio rp

rs
is bounded below and above:

0 < a ≤ rp

rs

≤ a.

Then, there is a constant C independent of h, rp, rs and ∆t such that for any 1 ≤ m ≤ M :

‖Sm
n − sm

n ‖2
0,Ω + ∆t

m−1∑
i=0

∑
E∈Eh

∥∥∥K
1
2∇(Si+1

n − si+1
n )

∥∥∥
2

0,E
+ ∆t

m−1∑
i=0

∑
e∈Γh∪ΓD

f(rs)

|e|
∥∥[Si+1

n − si+1
n ]

∥∥2

0,e

+∆t

m−1∑
i=0

∑
E∈Eh

∥∥∥K
1
2∇¶i+1 − pi+1

∥∥∥
2

0,E
+ ∆t

m−1∑
i=0

∑
e∈Γh∪ΓD

f(rp)

|e|
∥∥[P i+1 − pi+1]

∥∥2

0,e

≤ C∆t2 + C(
h2rs

r2rs−2
s

+
h2rp

r
2rp−2
p

).
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3.8 NUMERICAL RESULTS

We consider the simulation of two-phase flow in Ω = (0, 1)2 with the following data.





K(x, y) = 0.5I, ∀(x, y) ∈ (0, 0.5)× (0, 1),

K(x, y) = I, ∀(x, y) ∈ (0.5, 1)× (0, 1),

φ(x, y) = 1, ∀(x, y) ∈ (0, 1)2,

λw(sn) = (1− sn)
11
3 ,

λn(sn) = s2
n(1− (1− sn)

5
3 ),

pc(sn) = (1− sn)−
1
3 .

The right-hand sides for pressure and saturation equations are taken such that the exact

solution is, for t ≥ 0:





p(x, y, t) = 100(2x− 1)2e0.5x+y−t, ∀(x, y) ∈ (0, 0.5)× (0, 1),

p(x, y, t) = 100(x− 0.5)2e0.5x+y−t, ∀(x, y) ∈ (0.5, 1)× (0, 1),

sn(x, y, t) = 0.3(2x− 1)2e−1.5x+y−t, ∀(x, y) ∈ (0, 0.5)× (0, 1),

sn(x, y, t) = 0.3(x− 0.5)2e−1.5x+y−t, ∀(x, y) ∈ (0.5, 1)× (0, 1).

We first present the convergence with respect to a uniform mesh refinement. The initial

mesh contains four elements and it is successively refined. The parameters in (3.25), (3.26)

are chosen as ε = 1 and σp = σs = 10. Table 3.8 gives the numerical errors in the H1
0 norm

for the non-wetting phase saturation and the global pressure at a given time for polynomial

approximations of degree rs = rp = 1. Table 3.8 gives the numerical errors for polynomial

approximations of degree rs = rp = 2. We note that optimal convergence rates are obtained.

Second, we investigate the hp convergence of the scheme for all choices of ε ∈ {−1, 0, +1}
and for the choice σp = σs = 10. In Fig. 37, we plot the number of degrees of freedom versus

the logarithm of the relative numerical error in the H1
0 norm for both p (left figure) and sn

(right figure). We consider four different meshes that are obtained by uniformly refining a

coarse mesh: they correspond to the curves with diamonds (h = 0.5), triangles (h = 0.25),
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Table 4: Absolute numerical errors in the H1
0 norm for (p, sn) using piecewise linear approx-

imations.

h H1
0 error for sn rate H1

0 error for p rate
0.5 1.374814648× 10−01 1.266150758× 10+02

0.25 7.025355749× 10−02 0.968 6.738428728e× 10+01 0.910
0.125 3.532346005× 10−02 0.992 3.415982958× 10+01 0.980
0.0625 1.768656302× 10−02 0.998 1.707837409× 10+01 1.000
0.0312 8.846393467× 10−03 0.999 8.528880124 1.002

Table 5: Absolute numerical errors in the H1
0 norm for (p, sn) using piecewise quadratic

approximations.

h H1
0 error for sn rate H1

0 error for p rate
0.5 2.069429403× 10−02 2.741576805× 10+01

0.25 5.332099909× 10−03 1.956 7.253306154 1.918
0.125 1.343341569× 10−03 1.989 1.829505401 1.987
0.0625 3.364868585× 10−04 1.997 4.536003736× 10−01 2.012
0.0312 8.416253683× 10−05 1.999 1.125823947× 10−01 2.010
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Figure 37: hp convergence rates for the global pressure (left) and non-wetting phase satura-

tion (right). Each curve corresponds to a fixed mesh and variable polynomial degree from 1

to 6.

squares (h = 0.125) and circles (h = 0.0625). For a fixed mesh, we vary the polynomial

degrees from 1 to 6 for both global pressure and non-wetting phase saturation. We observe

exponential convergence. There is no noticeable difference between the cases ε ∈ {−1, 0, +1}
as the resulting plots coincide. However, our numerical tests show that the SIPG method

(ε = −1) is very sensitive to the choice of the penalty parameter, which is not the case for

the NIPG and IIPG methods. For instance, convergence is obtained for σp = σs = 0.5 for

NIPG and IIPG, but not for SIPG. This can be explained by our theoretical error estimates

which give a larger lower bound for the penalty parameters in the case of SIPG. As in [31],

one can derive an exact computable lower bound that would yield a stable SIPG method.
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3.9 NUMERICAL SIMULATIONS

3.9.1 Remarks on the Two-Phase Flow Software

The 2D software which is used in the thesis to simulate the two-phase flow problem was

implemented by the author of the thesis using programming language (ANSI) C under linux.

It uses three primal DG methods (NIPG, SIPG, IIPG) for the space and Backward Euler

for the time discretization. The software works on structured and unstructured meshes

(triangular, rectangular or general quadralaterals) and for any degree of the polynomial

approximations.

3.9.2 General data setting for the numerical experiments

We subdivide the domain into rectangular elements or triangular elements. Water and oil

are the wetting phase and non-wetting phase respectively. For all the examples (unless

mentioned otherwise), we assume the following:

sdir = 0.15, ρw = ρn = 1000kg/m3, φ = 0.2,

β = 1, ∆t = 1day.

We consider both homogeneous and heterogeneous porous media for a simple test problem

and a benchmark problem. In the rest of the thesis, we present pictures of the approximations

of the water pressure and water saturation. We recall that sw = 1− sn.

3.10 BUCKLEY-LEVERETT PROBLEM

Below is the brief introduction to the Buckley-Leverett problem. More details can be found

in [44]. Assume that the domain Ω is homogeneous in the y-direction. Therefore all the

porous medium properties depend only on x. That is, we consider a one-dimensional flow
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in the x-direction. In addition, if the capillary effect is ignored (namely, pw = pn = p), the

continuity equation for each phase α (3.2) becomes

φ
∂sα

∂t
+

∂uα

∂x
= 0 (3.106)

and Darcy’s law (3.1) simplifies to

uα = −Kλα
∂p

∂x
(3.107)

Let us introduce the fractional flow functions for each phase

fα =
λα

λt

(3.108)

and denote by u = uw + un the total velocity. Then it can be obtained from (3.106) and

(3.107) that

x(sw, t) =
1

φ
· dfw

dsw

∫ t

0

udt, (3.109)

from which we can find the saturation sw before water breaks through. We can validate our

method by comparing the quasianalytical solution of the Buckley-Leverett problem to our

DG solutions.

In this example, the permeability is K = kI, where k = 5.e−9m2 and the viscosities are

µn = 1.1e−2kg/ms, µw = 8.0e−4kg/ms. The Brooks-Corey parameter θ is set to 2. In

this test it takes 4 iterations for the Newton-Rapson scheme to converge. Fig.38 shows

the quasianalytical solution (solid line) and the DG solution on two meshes: mesh h2 (left

figure) and mesh h3 (right figure). The polynomial degrees for the saturation are one, two

and three. On a fixed mesh, we conclude that p refinement increases the accuracy of the

solution. As the mesh is refined and the polynomial degree kept constant, the numerical

solution is also improved. Results on Fig.38 show the convergence of the fully implicit DG

scheme to the true solution with respect to both h and p versions. Moreover, we can conclude

that high order approximations gives better resolution of the solution even with less degrees

of freedom. We observe some overshoots and undershoots but they are stable in time and

they decrease with mesh refinement and with increasing the polynomial degree.
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Figure 38: Numerical solution of the Buckley-Leverett problem on mesh h2 (left) and mesh

h3 (right) at 500 days, quasianalytical solution (solid line), rs = 1 (dotted line), rs = 2 (dash

dotted line) and rs = 3 (solid line).

3.11 TEST PROBLEMS WITH CAPILLARY PRESSURE

From now on, we consider two-phase flow models with capillary pressure. The domain is

square Ω = (0, 100)2; water is injected along the left boundary Γ− = {0}× (0, 100) and oil is

pushed out through the right boundary Γ+ = {100} × (0, 100). No flow boundary condition

is assumed on the rest of the boundary. Other characteristics are:

p−dir = 3106Pa, p+
dir = 106Pa,

µn = 10−2kg/ms, µw = 10−3kg/ms, pd = 103Pa.

3.11.1 The Heterogeneous Porous Medium

The domain is subdivided uniformly into square elements. We refer to the mesh h1 the mesh

consisting of square cells of side equal to 25m, the mesh h2 for cells of side equal to 12.5m

and the mesh h3 for cells of side equal to 6.25m. We consider a discontinuous permeability

K = kI with k = 1 × 10−8m2 in most of the domain except in an inclusion, located at
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(37.5, 75) × (25, 75) for which k = 1 × 10−12m2. The Brooks-Corey parameter θ is chosen

equal to 3.

First, on the fixed mesh h2 described above, we show the evolution of pressure and

saturation contours obtained with (3.21)-(3.22) from 150 days to 450 days in Fig. 39 and

Fig. 40. In this case, the pressure is approximated by quartic polynomials and the saturation

by quadratic polynomials. The penalty parameter is equal to 1. Both pressure and saturation

contours take into account the heterogeneity of the permeability field; the low permeability

region acts as an impermeable zone where the wetting phase does not penetrate.

Second, we show numerical convergence of (3.21)-(3.22) by increasing the polynomial

orders:

• Case 1: Piecewise cubics for pressure and piecewise linears for saturation: rp = 3, rs =

1. This yields 832 degrees of freedom.

• Case 2: Piecewise quartics for pressure and piecewise quadratics for saturation: rp =

4, rs = 2. This yields 1344 degrees of freedom.

• Case 3: Piecewise polynomials of fifth degree for pressure and piecewise cubics for satu-

ration: rp = 5, rs = 3. This yields 1984 degrees of freedom.

The pressure and saturation contours at 550 days for the p-version are shown Fig. (41) and

(42). For the first case, the water floods the domain as if it was homogeneous. The accuracy

of the solutions is greatly improved in cases 2 and 3.

We then vary the penalty value σ ∈ {0.1, 1, 10} and as in the test for the global pressure

(chapter 2), the numerical solutions are very similar. In fact, profiles obtained along the line

(0, 100)× {50} are identical.

As for the Buckley-Leverett problem, it takes only 4 newton iterations at each time step

to converge and no slope limiter techniques are applied. The DG scheme applied to the

second formulation (3.11)-(3.12) is very sensitive to the choice of the penalty parameter.

We observe numerically that approximations of pressure and saturation with polynomials

degrees higher than 1 produce an increasing number of Newton-Raphson iterations at each

time step; eventually the iterations fail to converge. If one uses linears for both saturation

and pressure spaces, one needs to use a very fine mesh in order to capture the heterogeneity
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and thus, computations become expensive. Next, we consider the same domain on mesh

h2 with heterogeneous permeability K = kI with k = 5 × 10−9m2 in most of the domain

except in an inclusion {37.5 ≤ x ≤ 100} × {37.5 ≤ y ≤ 62.5} where k = 5 × 10−13m2. We

compare the symmetric and non-symmetric formulations for the case where the pressure is

approximated by quartics and saturation by quadratics. Fig. 43 shows the pressure contours

at 600 days. The contour of the saturation along the line (0, 100)×{50} is shown in Fig. 44

at 300 and 900 days. We observe that both schemes yield the same approximate solutions.

The contours coincide with each other. This is also true for the other choices of polynomial

degrees. Next, we study the effects of different basis functions of Dr on the coarse mesh.

We compare monomial basis functions with Legendre polynomials. In Fig. 45 and Fig. 46,

the pressure and saturation contours along the line (0, 100) × {50} are shown. There is no

noticeable difference between the two simulations. The two types of basis yield comparable

numbers of Newton iterations for convergence, and also similar simulation times.

Finally, we repeat the simulations and consider the scheme (3.21)-(3.22) on a uniform

triangular mesh and with a heterogeneous permeability field (see Fig. 47). There are several

patches of permeability 104 lower than the surrounding rock matrix. The penalty value is

σ = 0.0015 and the polynomial degrees are (rp, rs) = (4, 2), which gives 2688 degrees of

freedom. The saturation and pressure contours are shown in Fig. 48-50 at 400 and 700

days. As expected, water floods the regions of high permeability. The scheme appears to be

robust and even though the saturation is not monotone, the small overshoots are stable and

bounded. The saturation does not reach unphysical values such as greater than one.

3.11.2 The Quarter-Five Spot Problem

For this benchmark problem, the domain is embedded in the square (0, 100)2; an injection

well is located at the bottom left corner of the domain with p−dir = 3 × 105Pa, and a

production well is located at the top right corner of the domain with p+
dir = 105Pa. No flow

boundary condition is assumed on the rest of the boundary. The unstructured triangular

mesh consisting of 66 triangles is given in Fig. 51. The entry pressure for the capillary

pressure is pd = 5 × 103Pa and the Brooks-Corey parameter is θ = 3. The viscosities are
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Figure 39: Evolution of the pressure contour for rp = 4, rs = 2, on mesh h2 at 150, 300 and

450 days for penalty σ = 1.0.
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Figure 40: Evolution of the saturation contour for rp = 4, rs = 2, on mesh h2 at 150, 300

and 450 days for penalty σ = 1.0.
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Figure 41: Pressure contours on mesh h2 at 550 days for penalty σ = 1.0: (rp, rs) = (3, 1)

(left), (rp, rs) = (4, 2) (center) and (rp, rs) = (5, 3) (right).
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Figure 42: Saturation contours on mesh h2 at 550 days for penalty σ = 1.0: (rp, rs) = (3, 1)

(left), (rp, rs) = (4, 2) (center) and (rp, rs) = (5, 3) (right).

Figure 43: SIPG (left) and NIPG (right) pressure contours at 600 days: kp = 4.
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Figure 44: Comparison between NIPG and SIPG saturation at 300 and 900 days: ks = 2.
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Figure 45: NIPG pressure at 200 days (dashed line) and 300 days (solid line): comparison

between monomial and Legendre basis functions: kp = 3 (left), kp = 4 (right) and kp = 5

(center).
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Figure 46: NIPG saturation at 200 days (dashed line) and 300 days (solid line): comparison

between monomial and Legendre basis functions: ks = 1 (left), ks = 2 (right) and ks = 3

(center).
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Figure 47: Uniform triangular mesh (left) and permeability field (right): k = 5 × 10−13m2

in dark regions and k = 5× 10−9m2 in rest of domain.
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Figure 48: 2D view of saturation contours on triangular mesh at 400 and 700 days.
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Figure 49: 3D view of saturation contours on triangular mesh at 400 and 700 days.
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Figure 50: 3D view of pressure contours on triangular mesh at 400 and 700 days.
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Figure 51: Quarter-five spot problem: unstructured triangular mesh.

µw = 5× 10−4 and µn = 2× 10−3. Unless specified otherwise, the numerical method used is

(3.21)-(3.22).

We first consider the homogeneous case where the permeability field is constant over the

domain, and equal to 5.e−8m2. The penalty value is σ = 0.005. We vary the polynomial

degrees uniformly by considering the cases (rp, rs) ∈ {(3, 1), (4, 2), (5, 3)}. The total number

of degrees of freedom is respectively 858, 1386 and 2046. We compare the wetting phase

pressure and saturation profiles obtained along the diagonal {(x, y) : x = y}. The profiles

are shown at 250 days and 350 days in Fig. 52 and Fig. 53. The effect of increasing the

polynomial degree are minimal on the pressure contours. However, accuracy is improved for

the saturation contours: fronts are sharper and the amount of overshoot is reduced.

We next compare the two schemes (3.21)-(3.22) and (3.23)-(3.24) in the case (rp, rs) =

(4, 2). The pressure and saturation profiles along the diagonal line {(x, y) : x = y} are shown

in Fig. 54. For the second model (3.11)-(3.12), the penalty value has an important effect

on the solution. Here, the penalty was σ = 0.001. The numerical solutions are comparable.

However, the first scheme has the advantage that it is not sensitive with respect to the choice

of penalty.

Finally, we decompose the domain Ω (see Fig.55) into two regions Ω1 and Ω2 in which

we vary the approximation degrees. For instance, we assume that in Ω1, pressure is ap-
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Figure 52: Water pressure profiles along diagonal x = y: at 250 days (left) and 350 days

(right). Polynomial degree is rp = 3 (dotted line), rp = 4 (solid line) and rp = 5 (dashed

line).
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Figure 53: Water saturation profiles along diagonal x = y: at 250 days (left) and 350 days

(right). Polynomial degree is rs = 1 (dotted line), rs = 2 (solid line) and rs = 3 (dashed

line).
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Figure 54: Solution profiles along diagonal x = y at 250 days for (rp, rs) = (4, 2): pressure

(left) and saturation (right). Solid line corresponds to scheme (3.21)-(3.22) and dashed line

corresponds to scheme (3.23)-(3.24).

proximated by polynomials of fith order (rp1 = 5) and saturation by cubic polynomials

(rs1 = 3) whereas in Ω2 pressure is approximated by cubic polynomials and saturation by

linear polynomials (rp2 = 3, rs2 = 1). The resulting number of degrees of freedom is 1448.

This test allows us to show the robustness of the method when the order of approximation

varies in space. Besides we compare the numerical solution obtained by “phase-pressure,

phase-saturation” formulation (3.9)-(3.10) and the numerical solution obtained by the global

formulation (3.15)-(3.16) on this problem.

Second, we assume that the permeability is discontinuous and 104 smaller in one patch

(see Fig. 58). Besides, we also consider the case rp1 = 4, rs1 = 2, rp2 = 3, rs2 = 1, which yields

1048 degrees of freedom. The pressure and saturation contours at 350 days are shown in

Fig. 59-61. For comparison purposes, we also present the numerical solutions obtained with

a uniform approximation (rp, rs) = (4, 2) everywhere or (rp, rs) = (5, 3) (see Fig. 62-64).

It appears that increasing the polynomial degree reduces the amount of overshoot in the

saturation approximation.
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Figure 55: Quarter-five spot problem: subdomain decomposition.

X

Y

0 20 40 60 80 100
0

20

40

60

80

100

SAT
0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
0.2

X

0

50

100

Y

0

50

100

P
R

E
S

100000

150000

200000

250000

300000

PRES

291000
281000
271000
261000
251000
241000
231000
221000
211000
201000
191000
181000
171000
161000
151000
141000
131000
121000
111000
101000

Figure 56: 2D view of saturation and 3D view of pressure contours at 250 days for homoge-

neous benchmark problem: (rp1 , rs1) = (5, 3), (rp2 , rs2) = (3, 1)
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Figure 57: Water saturations (left) and pressures (right) profiles along diagonal x = y: at

60 days. “Phase” formulation (solid line) and “Global Pressure” formulation (dashed-dotted

line). (rp1 , rs1) = (5, 3), (rp2 , rs2) = (3, 1)

Figure 58: Quarter-five spot problem: permeability field
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Figure 59: 2D view of saturation contours at 350 days for heterogeneous benchmark problem:

(rp1 , rs1) = (4, 2), (rp2 , rs2) = (3, 1) (left) and (rp1 , rs1) = (5, 3), (rp2 , rs2) = (3, 1) (right).
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Figure 60: 3D view of saturation contours at 350 days for heterogeneous benchmark problem:

(rp1 , rs1) = (4, 2), (rp2 , rs2) = (3, 1) (left) and (rp1 , rs1) = (5, 3), (rp2 , rs2) = (3, 1) (right).
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Figure 61: 3D view of pressure contours at 350 days for heterogeneous benchmark problem:

(rp1 , rs1) = (4, 2), (rp2 , rs2) = (3, 1) (left) and (rp1 , rs1) = (5, 3), (rp2 , rs2) = (3, 1) (right).
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Figure 62: 2D view of saturation contours at 350 days for heterogeneous benchmark problem:

(rp, rs) = (4, 2) (left) and (rp, rs) = (5, 3) (right).
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Figure 63: 3D view of saturation contours at 350 days for heterogeneous benchmark problem:

(rp, rs) = (4, 2) (left) and (rp, rs) = (5, 3) (right).
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Figure 64: 3D view of pressure contours at 350 days for heterogeneous benchmark problem:

(rp, rs) = (4, 2) (left) and (rp, rs) = (5, 3) (right).
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4.0 CONCLUSIONS

First, by presenting, in chapter 2, the lower bounds of the penalty parameter useful for prac-

tical computations, this work removes one known disadvantage of the symmetric interior

penalty methods, namely the fact that stability of the method is obtained for an unknown

large enough penalty value. Even though we focused on the elliptic problems, our improved

coercivity and continuity results can be applied to the analysis of the SIPG method for time-

dependent problems (in particularly, in chapter 3, in the analysis of the “global pressure”

schemes we obtain computable lower bounds on the penalty parameters). Next, in chapter

3, we introduce efficient, fully implicit, coupled hp Discontinuous Galerkin schemes to solve

the two-phase flow problem, arising in porous media. We prove the convergence of a fully

coupled DG method for two-phase flow using the global pressure variable. Our estimates

are explicit in the mesh size and the polynomial degree. We show that the non-symmetric

version of the scheme converges for any positive penalty parameter whereas the symmetric

and incomplete versions require the penalty parameter to be sufficiently large. Numerical

computations confirm the convergence of the scheme. Moreover, we consider two others

“phase-pressure, phase-saturation” formulations to describe two-phase flow problem. We

run direct numerical simulations for all three formulations and we obtain validation of the

proposed schemes. To our knowledge this was the first study of high order p-methods (the

mesh is fixed and numerical convergence is obtained by increasing polynomial order) for

complex flows in porous media. The use of such p-methods with further research can give an

important option for engineering applications: one is able to solve the problem accurately on

a given grid that reflects geometrical properties of the physical domain without modifying

(such as refining or coarsening) the grid (usually obtained after several months of develop-

ment).
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This dissertation shows that higher order DG methods are promising candidates for simu-

lating complex flows in porous media. However, there are still many questions which need

to be answered, such as consideration of different implicit time-stepping schemes, adaptive

study of hp-version of DG methods, with applications to incompressible two-phase flow and

compressible flow. This research will make computations cheaper and more accurate and will

allow to explore more the advantages and disadvantages of using higher order polynomial

approximations for complex flows in porous media. Finally, one future work is to compare

the method proposed here to other numerical methods (such as sequential DG method or

finite volume method).

4.1 REMARKS ON POSSIBLE FUTURE DIRECTIONS

4.1.1 A Posteriori Error Estimates for the Incompressible Two-Phase Flow

As was mentioned before DG methods (primal or LDG) use a weak formulation of the PDEs

to discretize them. The computational domain Ω is subdivided into a partition Eh made of

elements E (triangles, prisms ...). The weak formulation is obtained by multiplying the orig-

inal PDEs by test functions, integrating by parts over each mesh element E, summing over

all elements and adding stabilizing terms (such as symmetrizing terms and penalty terms).

For the “global-pressure, phase-saturation” model, the test functions and numerical approx-

imations of the unknowns (p, sn) belong to the discontinuous finite element spaces Drp and

Drs , where Dr(Eh) = {v ∈ L2(Ω) : ∀E ∈ Eh, v|E ∈ Pr(E)} and Pr(E) is the set of polynomi-

als of total degree r defined on each element E. The continuous in time DG approximation

(P, Sn) ∈ L2(0, T ;Drp(Eh))×H1(0, T ;Drs(Eh)) is defined for all z, v ∈ Drp(Eh)×Drs(Eh) by:

∀t > 0, ap(Sn, P, z) = Lp(S
dir
n , P dir, z),

∫

Ω

∂(φSn)

∂t
v + as(Sn, P, v) = Ls(S

dir
n , P dir, v),

∫

Ω

Sn · v =

∫

Ω

sn(·, 0)v,

where ap, as, Lp and Ls are linear forms with respect to their second and third argument.

The scheme is consistent. The existence of the solution of the discrete scheme and a priori
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error estimates are obtained in case of the fully implicit, primal hp-DG methods (NIPG,

SIPG, IIPG) chapter 3 or [30]. Unlike a priori error estimates, a posteriori error estimators

do not require knowledge of the exact unknown solution and thus are in general computable

and may be used to determine where refinement in spatial quantities or polynomial degree

may be adaptively modified. A posteriori error estimators for DG methods have focused

primarily on steady-state equations of elliptic and hyperbolic type [14, 17, 50, 45, 47, 48, 65].

However, there are fewer investigations of a posteriori error estimators for unsteady problem

[1, 38, 42, 70, 36]. Moreover, there is no rigorous derivation of a posteriori error estimates for

multiphase flow problems. There are several methods to obtain a posteriori error estimators.

One is to use explicit error estimators for the two-phase flow problem: define the errors

ξ = P − p, τ = Sn − sn, subtract the DG scheme equations from the weak formulation

(obtain error equations) and define residual quantities that only depend on the approximate

solution and data (usually interior and boundary residuals). Finally, bounds on ξ and τ in

the energy or L2 norm are obtained via residual quantities by estimating the error equations.

Another way is to use implicit estimators: one needs to state and consider a dual problem

(where the right hand side depends on the errors ξ, τ) in order to control ξ, τ in the functional,

leading to adaptivity based on more physically meaningful quantities than the energy or L2

norm. While implicit estimators attempt to compute sharp bounds on the error through

the use of dual problem, explicit estimators can be obtained efficiently directly from the

computed solution and given data. Guided by these techniques, I would like to examine the

following problem:

Establish a posteriori error estimation approach for DG (primal and LDG) methods applied

to “global-pressure, phase-saturation” model of incompressible two-phase flow problems in

porous media.

4.1.2 hp Adaptive Simulations for the Incompressible Two-Phase Flow

A posteriori error estimators can be used to determine where modifications in discretization

parameters need to be made and thus to achieve hp-adaptivity. hp-adaptivity enables to

gain more accuracy in the numerical solution at a cheaper computational cost. There is only
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one work done with adaptive h-DG simulations of two-phase flow problems (and there is no

work for adaptive hp-DG methods of complex flows). In particular, in [53] the sequential

DG approach for incompressible two-phase flow is considered and h-adaptive strategy with

error indicators based on a posteriori error estimation derived in [36] is proposed.

Furthermore, the advantages and disadvantages of using high order polynomials for reser-

voir problems are not really known. Therefore developing hp-adaptation techniques for DG

methods applied to two-phase flow problems is an important and open question. Using the a

posteriori error estimators which were described in the section 4.1.1 as the error indicators

I would like to consider the following problem:

Develop hp-adaptation strategy for DG methods applied to “global-pressure, phase-saturation”

and “phase-pressure, phase-saturation” models of the incompressible two-phase flow prob-

lems in porous media.

4.1.3 Extentions to Slightly Compressible Flows

Consider the formulation of the coupled phase-pressure, phase-saturation equations for com-

pressible two-phase flow in a domain Ω: ∂(φρnsn)
∂t

−∇·(ρnλnK∇(pc+pw)) = ρnqn,
∂(φρw(1−sn))

∂t
−

∇ · (ρwλwK∇pw) = ρwqw, sw + sn = 1, pc = pn − pw. This model is the generalization

of the incompressible two-phase flow case. Compared to incompressible case, the densities

and mobilities ρn, ρw, λw, λw depend now on the phase-pressure and the porosity φ depends

slightly on pressure intermediate between pw and pn [20]. Here again as in incompressible

case, a global pressure p can be introduced to obtain “global-pressure, phase-saturation” for-

mulation of the model. To my knowledge there is very limited work done on DG methods

for multiphase compressible flow [37]. Therefore guided by similar techniques as for incom-

pressible models (chapter 3) it would be interesting to consider the following problem:

Investigate numerically and theoretically hp-DG methods for two-phase compressible flow

problems in porous media. Extend this study to three-phase models: such as black-oil (i.e

the flow, through the porous media, of one heavy hydrocarbon component, one light hy-

drocarbon component and water) and to other compositional models (three hydrocarbon

components).
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A.1 CONSTRUCTION OF JACOBIAN FOR NEWTON-RAPHSON LOOP

In the derivation below, we separate the contributions to the Jacobian between contributions

from volume integrals, interior edges and boundary edges. For the interior edge contribution

associated to one edge e, we assume that e is shared by the elements E1 and E2 and for the

boundary edge contribution, we assume that e belongs to E1. We also use the notation ξi for

the restriction of any function ξ on the element Ei for i = 1, 2. We now give the computation

of the nonzero entries for the block diagonal Jacobian for the scheme (3.21)-(3.22). A similar

derivation can be done for the scheme (3.23)-(3.24).

Contribution from the pressure equation (3.21):

Volume integrals:

∂G
rp

E

∂p
lp
E

=

∫

E

λtK∇ϕ
lp
E · ∇ϕ

rp

E ,

∂G
rp

E

∂sls
E

=

∫

E

∂λt

∂sls
E

ϕls
EK∇pw · ∇ϕ

rp

E +

∫

E

∂λn

∂sls
E

ϕls
EK∇pc · ∇ϕ

rp

E

+

∫

E

λnK
∂2pc

∂(sls
E)2

ϕls
E∇sn · ∇ϕ

rp

E +

∫

E

λnK
∂pc

∂sls
E

∇ϕls
E · ∇ϕ

rp

E .

Interior edges :

∂G
rp

E1

∂p
lp
E1

=
1

2

∫

e

−λ1
t K

1∇ϕ
lp
E1
· neϕ

rp

E1
+ λ1

t K
1∇ϕ

rp

E1
· neϕ

lp
E1

+
σ

|e|β
∫

e

ϕ
lp
E1

ϕ
rp

E1
.

∂G
rp

E1

∂sls
E1

= −1

2

∫

e

∂λ1
t

∂sls
E1

ϕls
E1

K1∇p1
w · neϕ

rp

E1
− 1

2

∫

e

∂λ1
n

∂sls
E1

ϕls
E1

K1∇p1
c · neϕ

rp

E1

−1

2

∫

e

λ1
nK

1 ∂2p1
c

∂(sls
E1

)2
ϕls

E1
∇sE1 · neϕ

rp

E1
− 1

2

∫

e

λ1
nK1 ∂p1

c

∂sls
E1

∇ϕls
E1
· neϕ

rp

E1

+
1

2

∫

e

∂λ1
t

∂sls
E1

ϕls
E1

K1∇ϕ
rp

E1
· ne(p

1
w − p2

w) +
1

2

∫

e

∂λ1
n

∂sls
E1

ϕls
E1

K1∇ϕ
rp

E1
· ne(p

1
c − p2

c)

+
1

2

∫

e

λ1
n

∂p1
c

∂sls
E1

K1∇ϕ
rp

E1
· neϕ

ls
E1

+
σ

|e|β
∫

e

∂p1
c

∂sls
E1

ϕls
E1

ϕ
rp

E1
.

∂G
rp

E1

∂p
lp
E2

= −1

2

∫

e

λ2
t K

2∇ϕ
lp
E2
· neϕ

rp

E1
+ λ1

t K
1∇ϕ

rp

E1
· neϕ

lp
E2
− σ

|e|β
∫

e

ϕ
lp
E2

ϕ
rp

E1
.
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∂G
rp

E1

∂sls
E2

= −1

2

∫

e

∂λ2
t

∂sls
E2

ϕls
E2

K2∇p2
w · neϕ

rp

E1
− 1

2

∫

e

∂λ2
n

∂sls
E2

ϕls
E2

K2∇p2
c · neϕ

rp

E1

−1

2

∫

e

λ2
nK

2 ∂2p2
c

∂(sls
E2

)2
ϕls

E2
∇sE2 · neϕ

rp

E1
− 1

2

∫

e

λ2
nK2 ∂p2

c

∂sls
E2

∇ϕls
E2
· neϕ

rp

E1

−1

2

∫

e

λ1
n

∂p2
c

∂sls
E2

K1∇ϕ
rp

E1
· neϕ

ls
E2
− σ

|e|β
∫

e

∂p2
c

∂sls
E2

ϕls
E2

ϕ
rp

E1
.

∂G
rp

E2

∂p
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=
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2

∫

e

λ1
t K

1∇ϕ
lp
E1
· neϕ

rp

E2
+

1

2

∫

e

λ2
t K

2∇ϕ
rp

E2
· neϕ

lp
E1
− σ

|e|β
∫

e

ϕ
lp
E1

ϕ
rp

E2
.

∂G
rp

E2

∂sls
E1

=
1

2

∫

e

∂λ1
t

∂sls
E1

ϕls
E1

K1∇p1
w · neϕ

rp

E2
+

1

2

∫

e

∂λ1
n

∂sls
E1

ϕls
E1

K1∇p1
c · neϕ

rp

E2

+
1

2

∫

e

λ1
nK

1 ∂2p1
c

∂(sls
E1

)2
ϕls

E1
∇sE1 · neϕ

rp

E2
+

1

2

∫

e

λ1
nK

1 ∂p1
c

∂sls
E1

∇ϕls
E1
· neϕ

rp

E2

+
1

2

∫

e

λ2
n

∂p1
c

∂sls
E1

K2∇ϕ
rp

E2
· neϕ

ls
E1
− σ

|e|β
∫

e

∂p1
c

∂sls
E1

ϕls
E1

ϕ
rp

E2
.

∂G
rp

E2

∂p
lp
E2

=
1

2

∫

e

λ2
t K

2∇ϕ
lp
E2
· neϕ

rp

E2
− 1

2

∫

e

λ2
t K

2∇ϕ
rp

E2
· neϕ

lp
E2

+
σ

|e|β
∫

e

ϕ
lp
E2

ϕ
rp

E2

∂G
rp

E2

∂sls
E2

=
1

2

∫

e

∂λ2
t

∂sls
E2

ϕls
E2

K2∇p2
w · neϕ

rp

E2
+

1

2

∫

e

∂λ2
n

∂sls
E2

ϕls
E2

K2∇p2
c · neϕ

rp

E2

+
1

2

∫

e

λ2
nK2 ∂2p2

c

∂(sls
E2

)2
ϕls

E2
∇sE2 · ne · ϕrp

E2
+

1

2

∫

e

λ2
nK

2 ∂p2
c

∂sls
E2

∇ϕls
E2
· neϕ

rp

E2

+
1

2

∫

e

∂λ2
t

∂sls
E2

ϕls
E2

K2∇ϕ
rp

E2
· ne(p

1
w − p2

w) +
1

2

∫

e

∂λ2
n

∂sls
E2

ϕls
E2

K2∇ϕ
rp

E2
· ne(p

1
c − p2

c)

−1

2

∫

e

λ2
n

∂p2
c

∂sls
E2

K2∇ϕ
rp

E2
· neϕ

ls
E2

+
σ

|e|β
∫

e

∂p2
c

∂sls
E2

ϕls
E2

ϕ
rp

E2
.

Boundary edges :

∂G
rp

E1

∂p
lp
E1

= −
∫

e

λ1
t K

1∇ϕ
lp
E1
· neϕ

rp

E1
+

∫

e

λ1
t K

1∇ϕ
rp

E1
· neϕ

lp
E1

+
σ

|e|β
∫

e

ϕ
lp
E1

ϕ
rp

E1
.

∂G
rp

E1

∂sls
E1

= −
∫

e

∂λ1
t

∂sls
E1

ϕls
E1

K1∇p1
w · neϕ

rp

E1
−

∫

e

∂λ1
n

∂sls
E1

ϕls
E1

K1∇p1
c · neϕ

rp

E1

−
∫

e

λ1
nK1 ∂2p1

c

∂(sls
E1

)2
ϕls

E1
∇sE1 · neϕ

rp

E1
−

∫

e

λ1
nK

1 ∂p1
c

∂sls
E1

∇ϕls
E1
· neϕ

rp

E1

+

∫

e

∂λ1
t

∂sls
E1

ϕls
E1

K1∇ϕ
rp

E1
· ne(p

1
w − pdir) +

∫

e

∂λ1
n

∂sls
E1

ϕls
E1

K1∇ϕ
rp

E1
· ne(p

1
c − pc(sdir))
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+

∫

e

λ1
n

∂p1
c

∂sls
E1

K1∇ϕ
rp

E1
· neϕ

ls
E1

+
σ

|e|β
∫

e

∂p1
c

∂sls
E1

ϕls
E1

ϕ
rp

E1
.

Contribution from the saturation equation (3.22):

Volume integrals :
∂Grs

E

∂p
lp
E

=

∫

E

λwK∇ϕ
lp
E · ∇ϕrs

E .

∂Grs
E

∂sls
E

= − φ

∆t

∫

E

ϕls
Eϕrs

E +

∫

E

∂λw

∂sls
E

ϕls
EK∇pE · ∇ϕrs

E .

Interior edges :

∂Grs
E1

∂p
lp
E1

= −1

2

∫

e

λ1
wK1∇ϕ

lp
E1
· neϕ

rs
E1

+
1

2

∫

e

λ1
wK1∇ϕrs

E1
· neϕ

lp
E1

+
σ

|e|β
∫

e

ϕ
lp
E1

ϕrs
E1

.

∂Grs
E1

∂sls
E1

= −1

2

∫

e

∂λ1
w

∂sls
E1

ϕls
E1

K1∇p1
w · neϕ

rs
E1

+
1

2

∫

e

∂λ1
w

∂sls
E1

ϕls
E1

K1∇ϕrs
E1
· ne(p

1
w − p2

w).

∂Grs
E1

∂p
lp
E2

= −1

2

∫

e

λ2
wK2∇ϕ

lp
E2
· neϕ

rs
E1
− 1

2

∫

e

λ1
wK1∇ϕrs

E1
· neϕ

lp
E2
− σ

|e|β
∫

e

ϕ
lp
E2

ϕrs
E1

.

∂Grs
E1

∂sls
E2

= −1

2

∫

e

∂λ2
w

∂sls
E2

ϕls
E2

K2∇p2
w · neϕ

rs
E1

.

∂Grs
E2

∂p
lp
E1

=
1

2

∫

e

λ1
wK1∇ϕ

lp
E1
· neϕ

rs
E1

+
1

2

∫

e

λ2
wK2∇ϕrs

E2
· neϕ

lp
E1
− σ

|e|β
∫

e

ϕ
lp
E1

ϕrs
E2

.

∂Grs
E2

∂sls
E1

=
1

2

∫

e

∂λ1
w

∂sls
E1

ϕls
E1

K1∇p1
w · neϕ

rs
E2

.

∂Grs
E2

∂p
lp
E2

=
1

2

∫

e

λ2
wK2∇ϕ

lp
E2
· neϕ

rs
E2
− 1

2

∫

e

λ2
wK2∇ϕrs

E2
· neϕ

lp
E2

+
σ

|e|β
∫

e

ϕ
lp
E2

ϕrs
E2

.

∂Grs
E2

∂sls
E2

=
1

2

∫

e

∂λ2
w

∂sls
E2

ϕls
E2

K2∇p2
w · neϕ

rs
E2w +

1

2

∫

e

∂λ2
w

∂sls
E2

ϕls
E2

K2∇ϕrs
E2
· ne(p

1
w − p2

w).

Boundary edges :

∂Grs
E1

∂p
lp
E1

= −
∫

e

λ1
wK1∇ϕ

lp
E1
· neϕ

rs
E1

+

∫

e

λ1
wK1∇ϕrs

E1
· neϕ

lp
E1

+
σ

|e|β
∫

e

ϕ
lp
E1

ϕrs
E1

.

∂Grs
E1

∂sls
E1

= −
∫

e

∂λ1
w

∂sls
E1

ϕls
E1

K1∇p1
w · neϕ

rs
E1w +

∫

e

∂λ1
w

∂sls
E1

ϕls
E1

K1∇ϕrs
E1
· ne(p

1
w − pdir).
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