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Osteoporosis is a common senile condition with major public health impact in both genders of all
races. Very little is known about the natural history and etiology of bone loss, and trabecular and
cortical volumetric bone mineral density (vBMD) in men, especially in men of African heritage.

This research project was to evaluate age-related patterns and potential correlates for the
rate of decline in areal BMD (aBMD) at the proximal femur, and vBMD at the radius and tibia in
a cohort of Afro-Caribbean men aged 40 and above from the Tobago Bone Health Study. We
also investigated the genetic associations of variants in a gene involved in the bone
mineralization process, ectonucleotide pyrophosphatase/ phosphodiesterase 1 (ENPP1), with
bone loss, aBMD and vBMD.

In longitudinal analyses, a significantly greater rate of bone loss was observed in men
aged 40-45 than those aged 45-49 and 50-54. Thereafter, the rate of bone loss accelerated with
advancing age. The rate of bone loss was also comparable with those observed in Caucasian
men. Additionally, we identified low body mass index, weight loss, prostate cancer, and
treatment for prostate cancer with androgen deprivation (ADT) as potential determinants for
accelerated bone loss.

In cross-sectional analyses of vBMD, we observed an early decline of trabecular vBMD

before age 50 and with a slower decline thereafter into 7" decade. Cortical vMBD, however,
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appeared to decrease with advancing age in a linear fashion. Correlates of vBMD included
weight, diabetes, prostate cancer, ADT, cigarette smoking and bone chewing.

In genetic association study, several variants in the ENPPI gene were strongly associated
with bone loss, aBMD or vBMD. More associations were found with cortical vBMD than with
the other phenotypes.

Our findings have important public health relevance as they increase our understanding
of vBMD and age-related bone loss in an under-studied population. We have also identified a
novel association of ENPP1 gene variants with bone loss and BMD in this population of African
heritage. Additional research is needed to better understand the factors related to BMD and bone

loss in populations of African ancestry, especially the apparent early loss of bone mass.



TABLE OF CONTENTS

ACKNOWLEDGEMENT ......uuuiiiiiniiiniinininnnisssissnisssessssissssssssssssessssssssssssssssssssssssssssssssens X1
1.0 DISSERTATION OVERVIEW AND OBJECTIVES.........iiirnnennnncnnecnnes 15
2.0 INTRODUCTION . ...uciitiiiiininseinssnisecsssessssssssessssssssessssssssssssasssssssssssssssssssssssssssssssss 17
2.1 EPIDEMIOLOGY OF OSTEOPOROSIS AND OSTEOPOROTIC
FRACTURES . ...cititicttintinnnccninneisssessssisssnssssisssssssssssssssssssssssssssssssssssssssssssssssssssns 17
2.1.1 Prevalence of osteoporosis and osteoporotic fractures.........ccceeeueeececnnnns 17

2.1.2 Mortality and MoOrbidity ........ccccceeiccnissnniccsssnnicsssnsissssssssscssssssssssssssssssens 18

2.1.3 Economic Burden 19

2.2 BONE BIOLOGY ..uuucoiiiiiiniicninsnicsnensnisssnssssissssssssssssssssssssssssssssssssssssssssessasss 20
2.2.1 Osteoclasts and bone reSorption ........iccccceeiccsssnnecssssnssecssssssesssssssssssnnns 20

2.2.2 Osteoblast and bone formation...........eeecveeecseeniieeenseecsseecssneecssseecsnnees 21

2.2.3 Bone remodeling.......cueeiceiivniicinisniicsssnerecsssssscssssnssessssssssessssssssssssssssssssns 21

224 Bone COMPArtmMENTS .....ccoeveeerrercssnrcssanncssanesssssesssssssssssssssssssssssssssssssssssssnsses 22

23 PATHOGENESIS OF OSTEOPOROSIS 23
2.3.1 Peak Done Mass ...cueieiiieiineisniinseinsiinsninsecsssesseisssesssesssesssssssssssssssssessse 24

2.3.2 Age-related Done 10SS .....ccuievveieirnicisnnnssnisssnncssssnsssnnessnsssssssssssssssssssssanes 25

2.3.2.1 Hormonal factors .........eeieecseisseecsnenseessnecsecsssecssessssesssessssecssesssaeens 25

2.3.2.2 Lifestyle and anthropometric factors.......ccecceerverccsserccssnrcssarcssnnesens 27

vi



2.4

2.4.1

2.4.2

243

2.4.4

245

2.5

2.5.1

2.5.2

2.5.3

2.6

2.3.2.3  GENELIC FACLOLS uevrereererreneecerrereecerreseescrseseescssessescssessssossassssossasssssssanssses 27

AREAL BMD IN MEN .....iiiiiiinniisnissnensnisssnsssssssesssssssssssssssssssssssssssns 29
Assessment of aBMD ........ueiinuiiiiieiiiisiinnniinsneinsnecnsnecssseesssssecsssescsssnes 29
Cross-sectional StUAIes.......coeeecivereiseeinseecssnecssnnecssnnecsssnecsssnecssssecsssescsssnes 30
Longitudinal STUAIES ......cceevvvnriciissnnrensissnricssssnnrecsssnsssssssssssesssssssssssssssssans 30
Areal BMD and Fracture ........eeeecnseecsseeccsseeccsnecsseecssseecssssecssssscssees 33
Correlates of areal BMD and accelerated bone 10ss .......c.cceeeueeenneecnnee. 33

P BT - N 3RS 34

2.4.5.2 Body weight and weight change ..........ccoeeiieivvnriccsicnricnsisnniccsssnnnns 34

2.4.5.3 Physical activity and muscle strength.........cccoceeeievccneiciivsnnrcccscnnnens 35

2.4.5.4 Cigarette SMOKING .....ccoovverieissrnnrecssssnsecsssssssssssssssessssssssssssssssssssssssssss 36

2.4.5.5 Alcohol drinKing .......ccccecveeiicissnriccsssnnnecsssnsscsssssssessssssssssssssssssssssssees 37

2.4.5.6 Calcium INtAKE c...eeeeneeeiireeeiseeissnnecssnnenssneessneesssecssssecsssseessssscssssesssnes 37

2.4.5.7 MediCation ...uecceeineciseeisenssnecsnnsssesssnnsssecssnssssesssesssssssssssssssssesssssssaasss 38

2.4.5.8 Medical CONAItIONS ......cceverrreeiseisseicsueissencsunnsseecssecsessssesssesssseessesssseens 40

VOLUMETRIC BMD IN MEN ....iiiiiniinsninsnecnsnecsensssesssecssseessessssesssasssses 40
Assessment 0f VBMD ........iiiiiiiiiniinsnenneicsensninssiinensssesssissesssssssesssss 40
Results from cross-sectional and longitudinal studies.........ccceceeeevureennees 41

2.5.2.1 Cortical VBMD .......uuccuiisiiisniisninsnenssnecsnssssesssecsssecsssssssssssassssesssssssaess 42

2.5.2.2 Trabecular VBMD........cuuiiiiineiisnennsnicseissnenssecsssecssssssssssessssessssssssess 42
Volumetric BMD and fracture .........ceieeinennseecsennsnecsenssnccssessecsssecsses 43

2.5.3.1 Correlates of volumetric BMD .........ccoueenueiiuinsensseecsesssnccseecseecsanna 43

GENETICS OF OSTEOPOROSIS.....uuiiiiirinninsneisnecssecssecssnssssesssecsssecssanes 44

vil



2.6.1 Importance of genetics in 0STEOPOTOSIS ..cccevvverierssnrricsssnnrrcssssasrecsssansncssnns 44

2.6.2 Candidate gene studies 0f 0STEOPOTOSIS ..cccuvereersrnnricsssrnnrecsssnsressssnssecssnnns 44
2.6.3 Ectonucleotide pyrophosphatase / phosphodiesterase 1 (ENPP1).......... 46

2.7 LIMITATIONS OF THE EXISTING LITERATURE.............enerennee. 50
2.8 SPECIFIC AIMS ..uuoiiiiitiineininsennnsesssessssssssssssssssssssssssssssssssssssssssssssssssassns 51
3.0 DETERMINANTS OF BONE LOSS IN MEN OF AFRICAN ANCESTRY: THE
TOBAGO BONE HEALTH STUDY .ccociiniiiiiiniisninsinnsnecsnisssnsssssssessssssssssssssssssssssssssssssssses 52
3.1 ABSTRACT ...uuiiiiiiiiniineinninnntisssissseissssssssssssssssssssssssssssssssssssssssssssssssssssasss 53
3.2 INTRODUCTION ...couiiiiiiniinnenseicssessessssnsssssssssssssssssssssassssssssssssssssssssssssssasss 54
33 METHODS ...iiiiitiitiitnctiintisssesssisssesssssssstsssssssssssssssssssssssssssssssssssssssasss 55
3.3.1 Study POPUIALION .cuuueeriieiivnniiiiissnnricssssnnricssssnssecsssssssessssssssssssssssssssssssssssssans 55
3.3.2 DenSItOMELTY ..ccovcueiicrissnnrinsssnriccsssnnsecsssssssesssssssssssssssssssssssssesssssssssssssssssssans 56
333 Anthropometric and body composition asseSSMEeNts........cccceeeeeccscnseecens 57
3.34 Other MeaSUIrEMENLS.......ccovueereeisrecseissancsecsssncssnssssnsssesssssssssssssssssassssssssases 57
3.3.5 Statistical ANALYSIS ...cceeveicisricisnisssnnisssnnessssncssssnessssssssssssssssssssssssssssssssassses 58

34 RESULTS utiiiitictiintinnnintecneisnisssesssssssessssssssessssssssesssassssssssassssssssassssssssases 59
34.1 Rate of change in BMD and androgen deprivation ........c..ccceeveeeecercscnenes 60
3.4.2 Rate of change in BMD and age group .....ccccceeeueeeee. ... 61
343 Age-adjusted correlates of the rate of change in BMD ...........ccccecuvreunnees 61
344 Multiple Linear Regression.........icueicisnicssnicssancsssanesssssssssesssssssssssssssases 63

3.5 DISCUSSION ..ccuuiiiiiiiiinniiseecniinnisssesssessssesssessssesssassssssssasssssssssssssssssssssasssssss 64
3.6 REFERENCES .....uuiiiitiiiintinntinninsneisnissseissesssesssisssessssssssssssssssessssssssases 69

viil



4.0 DETERMINANTS OF TRABECULAR AND CORTICAL VOLUMETRIC

BONE MINERAL DENSITY IN MEN OF AFRICAN HERITAGE...........ienernnnnen. 78
4.1 ABSTRACT ...uuiiiiiiinniineinninnnicssissssssssesssssssssssssssssssssssssssssssssssssssssssssssasss 79

4.2 INTRODUCTION ...ccuiiiiiiiinnenniicssecssessssnssssssssssssssssssssssssssssssssssssssssssssssssasss 80

4.3 METHODS ....uiiiiitintiitncnisntisssesssissessssssssssssssssssssssssssssssssssssssssssssssssasss 81
4.3.1 SEUAY SUDJECTS . .uueiiiriirnrricssssnnrecsssnriesssssnsecssssnsssssssssssesssssssssssssssssssssssssasssssans 81

4.3.2 Anthropometric and body composition measurements: .........ccceeeeneeccens 82

4.3.3 Other MeaSUreMENTtS......uceiveeecsseeecssrencssneessseessssnessssnesssssssssssssssssssssssssssnes 82

4.3.4 Peripheral QCT .......iiiiiveiiiniisnnicssssnnnicsssssscsssssssssssssssssssssssssssssssssssssssass 84

4.3.5 Statistical ANALYSIS ...eeeicericvniicnissnniessssnricssssnnsecsssnssesssssssssssssssssssssssssasssssans 85

4.4 RESULTS eiitittitnnntintncnicntisssessssssssessssssssssssssssssssssssssssssssssssssssssssssssasss 86
4.4.1 Age-adjusted regression reSults.......ceeeiceissnricssssnnnecsssnrecsssssssscssssssssssans 87

4.4.2 Results from the multiple linear regression model...........cccccveeeeevcnereceee 88

4.5 DISCUSSION ..ccuuiiiiiiiiinniiseicssiisnisssecsessssesssessssssssassssssssasssssssssssssssssssssssssssss 89

4.6 REFERENCES .....uuuiiniiiinninntinninnnesnnissseissecssesssisssessssssssssssesssessssssssasss 94

5.0 ASSOCIATION OF COMMON ECTONUCLEOTIDE

PYROPHOSPHATASE/PHOSPHODIESTERASE 1 (ENPP1) GENE VARIANTS WITH

BONE MINERAL DENSITY .uucoviirinrinsicseissensunsssnssesssncsssssesssssssssssssssssssssssssssssssssssssssssssassssss 101
5.1 ABSTRACT .uciiiciiiinsnissnisesssicssissesssisssssssssssssssssssssssssssssssssssssssssssssssssssssaes 102

5.2 INTRODUCTION ..uucouiiniinisenssecssissesssesssssesssesssssssssssssssssssssssssssssssssssssssassass 103

53 METHODS ....uoouiiticiiiinnnissnisenssicssissssssesssssssssssssssssssssssssssssssssssssssssssssssssssssaes 104
5.3.1 Study POPUIALION c..cuuveievriicirarinisnressnrcsssnressnrssssnssssssssssssssssssssssssssasssssases 104

5.3.2 Bone Measurements.........cceeeneesseccsnecssnncssnissscsssecsssnsssessssssssessssssssssssssnne 105

X



5.3.3 NI A< U< o (1) 1 NS 106

5.3.4 GeNOLYPING..cciiirirniicrissrrecsssssrncsssssssessssssssessssssssssssssssssssssssssssssssssssssssssssssss 107

5.3.5 Statistical ANALYSIS c..ueeieeiivnriciiisniicssssnnicssssnricsssssssssssssssscssssssesssssssssssnnes 108

5.4 RESULTS citittitnntinttccninneisssesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnss 109

5.5 DISCUSSION . .ctiiiiitiitiinnensntisssesssnssssnssssssssssssesssssssssssssssssssssssssssssssssssssssss 111

5.6 REFERENCES ....cuuiiiiiitinninnneisnenntsssesnsesssisssssssssssssssssssssssssssssssssnss 115

6.0 GENERAL DISCUSSION ..uuciiiiiiiiinsniissnicssinsssisssnsssssssssssssssssssssssssssssssssssssssssssss 126
6.1 SUMMARY ..uuciiiiiiniiiininsnicninseisssisssssssssssssssssssssssssssssssssssssssssssssssssssssessssss 126

6.2 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS.................. 128

6.3 PUBLIC HEALTH SIGNIFICANCE.......ucuiiiinrrnsniisnncsnensnicssesssssssessanne 130
BIBLIOGRAPHY ..ciiiiiiiiiitintiinninnensnisssississssisssesssssssssssssssssssssssssssssasssssssssssssssssssssss 132



LIST OF TABLES

Table 2-1 Effects of hormones and cytokines on bone formation and resorption........................ 22
Table 2-2 Longitudinal studies of DXA aBMD changes with aging among older men............... 32
Table 3-1 Comparison of selected baseline characteristics among men who participated and did
not participate in the fOllOW-UpP EXAM ........ccciiiiiiiiiiiiieie et 73
Table 3-2 Correlates of the rate of change in hip BMD .........cccccoooiiiiiiiiiiiiiiiecececeee e 75

Table 3-3 Mean annualized rate of change in hip BMD by category of percent weight change and

Table 3-5 Multivariable correlates of the annualized rate of change in BMD in older Afro-

CarTbDEAN IMETI ...ttt ettt e bttt sat e e bt e et s b et ens 77
Table 4-1 Correlates of trabecular and cortical VBMD .........ccccceeiiiiiiiiiiiieieicceeeeeeeee 98
Table 4-2 Significant correlates of vBMD in stepwise multiple linear regression models. ....... 100
Table 5-1 Selected characteristics of Afro-Caribbean men (n=1139) .........ccccccevvvieeiriiicreeennnn. 120
Table 5-2 Information on the genotyped SNPs in the ENPP1 gene .......ccccooceviiviiiiniiniincnnens 121
Table 5-3 Association of ENPP1 SNPs and rate of decline in aBMD per year (%/yr)............... 123
Table 5-4 Association of ENPP1 SNPs and bone mineral density...........cccceveveevieiciienieeneennen. 125

X1



LIST OF FIGURES

Figure 2-1 Biological pathway of bone mineralization ..............cecceveeverienienienenienieceeneenee 48
Figure 3-1 Annualized rate of change in hip BMD by age group .........ccocceeveevieeiiienieeieenieenen. 74
Figure 4-1 Trabecular vBMD by age group (unadjusted) .........cccceevvierieeiiienieeiienie e 97
Figure 4-2 Cortical vBMD by age group (unadjusted).........ccceevieriieiieniieiieeieeiee e 97

Figure 5-1 Schematic of negative log 10 of p-value for 34 single SNP association tests with
longitudinal aBMD changes at the total hip and femoral neck.............cccceevvieviiniiiiieniieeen. 122
Figure 5-2 Schematic of negative log 10 of p-value for 34 single SNP association tests with
cross-sectional aBMD at the total hip and femoral neck, and trabecular and cortical vBMD at the

TAATUS QINA TIDIA. ..eeeiiiiiiieiiieiiieeieeeeeeee ettt ettt e e e e et ee e e e e e e e e e e ae e e e e e e eeeeeaaeaeeeeeeaeensanenennnnnn 124

xii



ACKNOWLEDGEMENT

I am deeply indebted to a number of significant people, without whom this work could not have
been completed.

I would first like to thank my academic advisor and dissertation committee chair, Dr.
Joseph Zmuda. I'm extremely grateful for the intellectual support and guidance he has provided,
as well as his help in my professional development. It has been a great opportunity to learn and
grow academically as part of his team. I also want to thank Dr. Clarenn Bunker for her
invaluable feedback in the development of this work, as well as her thoughtful concerns beyond
the matters of the dissertation. I am also thankful to Dr. Jane Cauley and Dr. Candace Kammerer
for their insightful critique and highly constructive suggestions in this project.

I also want to thank my family, especially my mom and dad, for their unconditional love
and support throughout these years, as well as for making my educational achievement possible
in so many ways. I’ve always felt that, despite being so far from home, you were nevertheless
always near.

I’'m also grateful to my colleagues in the Tobago Health Study for their significant
contributions to this study, as well as their wonderful friendship. To my friends in the US and

Taiwan, I thank you for your constant care that gave me the strength to contitune this process.

xiil



Finally, I deeply thank my lifetime friend and husband, Brian, for his love and sustaining
belief in me. You always encouraged me, supported me, and brought me patience and spiritual

comfort throughout this journey, and particularly when it was needed the most.

X1V



1.0 DISSERTATION OVERVIEW AND OBJECTIVES

Osteoporosis, a disease defined by low bone mineral density (BMD), has been considered
a condition that predominantly affects post-menopausal women. An abundance of
research has been conducted to better understand the etiology and prevention of
osteoporosis in women. However, men are also affected by osteoporosis and mortality
associated with osteoporosis-related hip factures appears to be higher among men than
women (1). Although researchers have recognized the need to be better understand
skeletal health in men, non-white men have been under-represented in osteoporosis-
related research.

Areal BMD (aBMD) measured by dual-energy x-ray absorptiometry (DXA) has
been widely used to quantify bone density. Unlike cross-sectional studies, there are only
a few longitudinal population-based studies that have examined the patterns and
magnitude of aBMD changes with aging as well as factors associated with these changes
in men (2-10). It is important to better understand the patterns and causes of aBMD
changes to prevent osteoporosis, especially in the less-studied African populations.

DXA provides a two-dimensional measure of aBMD that is known to be
confounded by differences in bone size. The use of quantitative computed tomography
(QCT) provides a three-dimensional measure of true volumetric BMD (vBMD) and also

enables a separate analysis of bone mass in the cortical and trabecular bone
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compartments, which were known to have different metabolic characteristics. vBMD
measures have not yet been well-characterized in the elderly or in subjects of African
origin.

Genetic susceptibility also plays a major role in determining bone density. It has
been estimated that genetic factors contribute to 50-80% of inter-individual variability in
BMD (11-13). Several candidate genes for BMD and osteoporosis have been identified,
but most of the research has been conducted in women and Caucasians and focused on
aBMD. There is substantially less known about the genetics of bone loss and vBMD.

Therefore, the objectives of this dissertation project were to determine and better
understand the potential environmental and genetic factors associated with rate of decline

in aBMD and trabecular and cortical vBMD in men of African heritage.

16



2.0 INTRODUCTION

2.1 EPIDEMIOLOGY OF OSTEOPOROSIS AND OSTEOPOROTIC

FRACTURES

2.1.1 Prevalence of osteoporosis and osteoporotic fractures

Osteoporosis is a common disorder characterized by compromised bone strength and is a
strong predictor of fracture risk (14-17). According to the World Health Organization
(WHO), osteoporosis is clinically defined by a bone mineral density (BMD) more than
2.5 standard deviations below the gender specific mean BMD of young adults (18).
Osteoporosis affects 10 million people in the US, and is projected to affect approximately
14 million adults aged 50 and older by 2020 (19).

The third National Health and Nutrition Examination Survey (NHANES III,
1998-1994) also estimated that 13-18% or 4-6 million US non-Hispanic white women 50
years and older have osteoporosis and 37-50% or 13-17 million have osteopenia (BMD
between 1 and 2.5 SD below the young adult mean) at the hip. In non-Hispanic white
men, 1-2 million (3-6%) have osteoporosis and another 8-13 million (28-47%) have
osteopenia at the hip. Despite the lower prevalence in men than women, the number of

older men with low BMD is still substantial (20). Although the prevalence of
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osteoporosis is less well-characterized in non-white populations, studies have shown that
non-Hispanic whites have a higher prevalence of hip osteoporosis than non-Hispanic
Blacks for both sexes (20). The prevalence among Mexican Americans is similar or
slightly smaller than it is in non-Hispanic white women, but is lower than in Non-
Hispanic Black men (20).

Osteoporosis or low BMD is one of the important risk factors for fractures.
Osteoporotic fractures were estimated to affect 1.7 million of the world’s population in
1990. This number is expected to rise to 6.3 million by year 2050 (21). Although the life
time risk of fracture (including hip, vertebra, and forearm) is higher among women (40%)
than in men (13%) aged 50 and older, the world wide incidence of hip fracture in men is
projected to increase by 310%, compared to 240% in women by the year 2050 (21,22).
Due to demographic changes throughout the world, the proportion of all hip fractures will
increase dramatically in areas outside of North American and Europe. In Africa, with the
increase in total population size, the number of hip fractures in men is expected to
increase by 216% by 2025 and by 698% by 2050, compared to the number of hip
fractures in 1990 (23). US Caucasians in general have a higher fracture incidence than
any other ethnic group. The lower incidence of fractures among Blacks has generally

been explained by their greater bone density (24).

2.1.2 Mortality and Morbidity

Nearly one-third of hip fractures result in nursing home admissions and one-fifth of
patients with hip fractures die within the year following their fracture (25). Fractures are

also associated with an increased incidence of morbidity including back pain, kyphosis
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and disability. Racial differences in mortality and morbidity following hip fractures are
also observed. African Americans who sustain a hip fracture have increased morbidity
and nearly twice the mortality as Caucasian Americans (26,27). Despite their lower risk
of osteoporosis and fractures, men may have a higher mortality risk following a fracture
than do women (1,27). Furthermore, black and white men have nearly identical mortality
rates whereas black women may experience a higher mortality rate following a fracture

than their white counterparts (27).

2.1.3 Economic Burden

Osteoporotic fractures cost $17-20 billion annually in the US (21,28). More than 20% of
the expenditures for treatment of osteoporosis-related fractures were due to fractures in
men (28,29). Men aged 65 and older accounted for 81% of the total medical cost among
men. By race, approximately 80% of the costs among men are attributable to fractures in
white men, who account for 80% of the fractures in men (28). The total cost for
osteoporotic fractures is projected to approach $25.3 billion by the year 2025 and $50
billion by the year 2050 (28,30). These direct medical costs represent a greater burden
than the projected annual cost of stroke, breast cancer, diabetes, or chronic lung disease
(30). A recent study reported a race-specific increasing economic burden for osteoporotic
fractures in the US (16). They projected that, by the year 2050, the total cost due to
fractures will increase 37% in whites, 79% in blacks and 175% in Hispanics from the
year 2005 (28). Worldwide, the economic burden of osteoporosis parallels that seen in

the US.
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2.2  BONE BIOLOGY

Normal bone consists of matrix (type I collagen and other noncollagenous proteins,
called osteoid) and mineral (principally an amorphous calcium phosphate) organized into
a mineralized structure. Bone is a dynamic organ, constantly being remodeled under the

actions of osteoclasts and osteoblasts.

2.2.1 Osteoclasts and bone resorption

The osteoclast arises from hematopoietic stem cells and is a bone lining cell responsible
for bone resorption. Produced by the stromal cell, macrophage colony stimulating factor
(M-CSF) is responsible for the differentiation of hematopoietic stem cells into pre-
oseteoclasts. The receptor activator of nuclear factor kappa B (RANK) receptor, and
receptor activator of nuclear factor kappa B ligand (RANKL) is required for the
differentiation of osteoclasts. When RANKL activates RANK receptors on the pre-
osteoclasts, the cells fuse and differentiate into mature multinucleared osteoclasts. The
mature osteoclasts solubilize the mineral and organic constituents of bone matrix by
synthesizing lysosomal enzymes and activating collagenase. High levels of calcium,
magnesium, phosphate and products of collagen are released into the extracellular fluid

as the osteoclasts tunnel into the mineralized bone (31).
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2.2.2 Osteoblast and bone formation

The osteoblast is the bone lining cell responsible for the production of the bone matrix
constituents (collagen and ground substance). Osteoblasts originate from mesenchymal
stem cells (or bone marrow stromal cells), which can differentiate into either adipocytes
under the influence of peroxisome proliferator-activated receptors y2 (PPARy2) or pre-
osteoblasts under the influence of the transcription factor runt-related transcription factor
2 (Runx2). The pre-osteoblasts then mature into osteoblasts. The active osteoblasts start
the bone formation process by producing layers of osteoid and slowly refilling the cavity

created by osteoclasts (31).

2.2.3 Bone remodeling

Bone remodeling is a process involving the coupling of bone resorption and bone
formation. Packets of bone that are resorbed by osteoclasts are replaced by osteoblasts
during the formation period. This coupling process is believed to be mediated by humoral
factors acting through osteoblasts and cells in the osteogenic lineage. There are many
factors involved in the resorption and formation phases including various cytokines and
hormones. The following table (Table 2-1) highlights the important factors in bone

formation and bone resorption and their effects on bone remodeling.
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Table 2-1 Effects of hormones and cytokines on bone formation and resorption

Hormones/ Cytokines Effects

RANKL Binds to its receptor RANK to stimulate the differentiation of

(Receptor Activator of Nuclear | osteoclasts.

faktor kappa B ligand)

RANK Binds to RANKL to stimulate the differentiation of osteoclasts.

(Receptor Activator of Nuclear

faktor kappa B)

OoPG Acts as a nonsignaling decoy receptor for RANKL to inhibit bone

(Osteoprotegrin) resorption. It is a strong inhibitor of osteoclast formation and may
also suppress the survival of osteoclasts.

IL-1 A stimulator of osteoclast formation. Also a mediator of bone

(Interleukin 1) resorption and increased bone turnover in osteoporosis

TNF-a Potent inhibitor of bone collagen synthesis and stimulator of

(Tumor necrosis factor-o) osteoclastic bone resorption, the net effect of which is to cause bone
loss

M-CSF Required for the formation of osteoclasts. Works with RANKL and

(Macrophage Colony Stimulating | TGF-p to cause the bone osteoclastic resorption.
Factor)

IL-6 A stimulator of bone formation. Stimulated and secreted by normal
(Interleukin 1) bone cells in response to PTH and 1,25(0OH),D5
TGF- Secreted by both osteoblasts and osteoclasts. Its action in bone

(Transforming Growth Factor-f) | remodeling is complex and is thought to be responsible for coupling
bone formation to bone resorption.

PTH Stimulates both bone formation and bone resorption. Its effects on

(Parathyroid Hormone) bone formation are stimulated by Cbfal which also regulates
RANKL expression and osteoclast formation.

1,25(OH),D; Indirectly stimulates the differentiation and fusion of osteoclast

(1,25 Dihydroxyvitamin D) progenitors and also directly activates mature osteoclasts

Calcitonin An inhibitor of osteoclastic bone resorption activity. However,

osteoclasts eventually escape from this inhibitory effect after
continued exposure of calcitonin.

Leukotrienes Have been related to osteoclastic bone resorption

Thyroid hormone Stimulates osteoclastic bone resoprtion. Increased bone loss has been
observed in patients with hyperthyroidism.

2.2.4 Bone compartments

The adult skeleton consists of cortical bone and trabecular bone with the proportion
differing by anatomical regions. The proportion of cortical and trabecular bone does not
change with age in the same way, which may explain the discrepancies in bone loss and

fracture rates at different skeletal sites (32).
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Cortical bone is dense or compact bone that comprises 85% of the total bone in
the body and is the most abundant bone in the long bone shafts of the appendicular
skeleton. The volume of cortical bone is regulated by the formation of bone on the
periosteal surface and by resorption of bone on the endosteal surface. The periosteal
formation increases the diameter of cortical bone and the endosteal resorption increases
the thinning and porosity of cortical bone. In women, the loss of cortical bone occurs
after the age of 40 and accelerates 5-10 years after menopause. This acceleration phase
continues for 15 years and gradually slows down. Fragile cortical bone is a major
predisposing factor for hip and wrist fractures (32).

Trabecular bone comprises only 15% of the adult skeleton. Declines in trabecular
bone may occur as early as 30 years of age, before the loss of cortical bone and is a major
contributor to spine osteoporosis due to the high proportion of trabecular bone in
vertebral bodies (32). The loss of trabecular bone results from not only thinning of the
bone plates, but also by the complete perforation and fragmentation of trabeculae.
Moreover, men and women appear to lose trabecular bone in different manners. In
women, the loss of trabecular bone occurs by increased resorption with loss of trabecular

numbers and connectivity, whereas it occurs by trabecular thinning in men (33).

2.3 PATHOGENESIS OF OSTEOPOROSIS

Osteoporosis results from a failure to achieve optimal peak bone mass in early adulthood

and/or from a high rate of bone loss with aging.
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2.3.1 Peak bone mass

Peak bone mass is the maximum bone density achieved at the end of the skeletal
maturity. Peak bone mass is an important predictor of postmenopausal osteoporosis
(34,35). Although peak bone mass is known to be achieved in early adulthood, both
cross-sectional and longitudinal studies suggest that peak bone mass is achieved as early
as late adolescence(36,37).

Peak bone mass accrual during adolescence or early adulthood reflects an increase
in bone size, which produces an increase in mineralized bone within the periosteal
envelop (38). Bone size is determined mostly during the pubertal growth period. Growth
velocity is high immediately after birth and it slows rapidly thereafter. At 12 months of
age, the rate of bone growth starts to accelerate due to appendicular bone growth.
Appendicular growth remains more rapid than axial growth velocity in the pre-pubertal
years. At puberty, long bone growth slows down, but axial bone growth accelerates.
Therefore, with the later onset of puberty, men appear to have longer bones than women.
Sex differences in bone width are also established during puberty. Cortical width
increases by periosteal bone formation in men, and by less periosteal bone formation but
more endocortical apposition in women. Thus, compared with women, men have larger
bones (longer and wider), which results in higher bone mineral content and aBMD, but
not vBMD, compared with women. Trabecular vBMD increases by thickening of the
trabecular plates. This increase seems to be similar in young men and women of the same
ethnic origin. But men and women of different ethnicities do not have similar trabecular

thickness. For example, African Americans have a higher trabecular volumetric BMD
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due to their greater trabecular thickness. The trabecular thickness increases similarly by
gender but differently by race during puberty (38).

Peak bone density is highly heritable with heritability estimated as high as
80%(39). Besides genetic contribution, there are many environmental factors that can
affect bone mass accrual. The most important factors for peak bone mass accrual in
adolescent and young adults include physical activity, nutrition (mostly calcium intake)

and hormonal status.

2.3.2 Age-related bone loss

Age-related bone loss is a result of an imbalance in bone remodeling where bone
formation does not replace all of the bone that is resorbed away by osteoclasts. Factors
contributing to bone loss can be broadly categorized into hormonal, anthropometric,

lifestyle and genetic factors.

2.3.2.1 Hormonal factors

Menopause affects bone mass in women due to the loss of estrogen. Estrogen reduces
bone resorption by inhibiting osteoclast function. Estrogen loss after menopause results in
more bone resorption than bone formation and thus leads to rapid bone loss. Recent
studies also suggest an important role of endogenous estrogen and bone mass in men
(40,41). For example, mutations in the gene encoding the aromatase gene, the enzyme
responsible for converting androgens to estrogens, has been linked to low BMD in men
(42). Androgens are also an important predisposing factor for osteoporosis in men. Men

treated with androgen antagonists or gonadotropin releasing hormone agonists for
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prostate cancer metastases experience rapid bone loss(43). Age-related hypogonadism is
also thought to contribute to decreased BMD in men (44).

Age-related changes in the growth hormone (GH)/insulin-like growth factor (IGF-
1) axis may also contribute to age-related bone loss (45). IGF-1 enhances the function of
mature osteoblasts, increases bone matrix synthesis and prevents osteoblast apoptosis
(45).

Parathyroid hormone (PTH) and 1,25-dihydroxy vitamin Dj; (1,25(0OH),D;) are
the principle regulators of calcium homeostasis. PTH stimulates the release of calcium
and phosphate in bone and stimulates the reabsorption of calcium and inhibits the
reabsorption of phosphate in kidney. Furthermore, PTH also enhances the synthesis of
1,25(OH),D3, which increases the intestinal absorption of calcium and phosphate. The
interactions between PTH and 1,25(OH),D; maintain the blood calcium concentration.
For example, a rise in blood calcium concentration decreases the secretion of PTH, while
a decrease in blood calcium concentration increases the secretion of PTH. In addition,
1,25(0OH),D3 and low phosphate increase blood calcium concentration thus inhibits PTH
secretion. This regulation interaction is essential for the structural integrity of the
skeleton (46).

Interlukin-6 (IL-6) produced by osteoblasts, monocytes and T cells promotes
osteoclast differentiation and activation and therefore plays a prominent role in post-
menopausal bone loss (47). Aging is associated with increasing levels of IL-6 and tumor
necrosis factor-alpha (TNF-a). In bone, genetic variants in the IL-6 gene have been
associated with IL-6 gene expression and bone resorption (48,49). TNF-a is a cytokine

that enhances osteoclast formation by upregulating the stromal cell production of
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RANKL and M-CSF (50,51). TNF-a not only stimulates osteoclast activity but also
inhibits osteoblastogenesis (52). Therefore, the effect of TNF-a drives an imbalance

between bone formation and bone resorption which may result in bone loss.

2.3.2.2 Lifestyle and anthropometric factors

Many lifestyle and anthropometric factors have been associated with bone density. It is
important to thoroughly understand the roles of these factors in order to prevent or lower
the risk of osteoporosis. The established risk factors for low BMD or osteoporosis
include: low body weight, physical inactivity, cigarette smoking, excessive alcohol
drinking, vitamin D deficiency, low calcium intake, use of glucocorticoids and certain
medical conditions. The most common medical conditions contributing to low BMD are
cystic fibrosis, muscular dystrophy, conditions that lower estrogen levels (eating
disorders, excessive physical activity, ovarian failure of any cause, and menopause),
endocrine disorders (diabetes, hyperparathyroidism, and Cushing’s syndrome),
gastrointestinal diseases (celiac disease, intestinal malabsorption, primary biliary
cirrhosis, and Crohn’s disease), blood disorders (hereditary anemias and multiple

myeloma, leukemia), rheumatoid arthritis, lupus, and depression (53).

2.3.2.3 Genetic factors

Genetic factors also play an important role in the development of osteoporosis. Twin and
family studies indicate that the heritability of aBMD ranges from 50% to 85% and that
differences in heritability exist by gender and anatomical regions examined (11-13).
Although most studies have examined the heritability of aBMD in Caucasians, men and

women of Asian (54,55) and African (56) heritage also show high heritability of aBMD.
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In contrast to the cross-sectional measures of aBMD, heritability for longitudinal aBMD
change is less well defined. A twin study with 12 monozygotic (MZ) and 19
dizygotic(DZ) twins showed that the intra-class correlation for lumber spine aBMD
change was 0.93 among MZ twins and 0.51 among DZ twins, while another study (25
MZ and 21 DZ) found that the heritability of aBMD change at the radius was 15% (57-
59). A more recent study of 388 premenopausal Caucasian women found a 38% and 35%
heritability for change in area and aBMD at the femoral neck (60). Significant heritability
of aBMD change was also reported in Mexican American families with heritability of
39%, 46% and 45% at the hip, spine and radius, respectively (61). Moreover, studies
have also suggested a strong genetic effect on the concentration of bone turnover markers
(62-64). These findings also indirectly suggest that bone loss with aging is a heritable
phenotype.

Although population-based epidemiological studies suggest that family history of
fractures is a risk factor for fractures and its association is independent of aBMD (65,66),
results from heritability studies seem to be inconsistent. Some studies reported that
susceptibility to fractures was not influenced by genetic factors (67), whereas others
suggested that about 50% of the variation of fractures at the hip and wrist may be
explained by genetic factors (68,69). Environmental factors also play an important role
in the occurrence of fractures and were often not considered in these studies.

We have recently reviewed the genetic epidemiology of osteoporosis (70). The
most widely studied candidate genes for aBMD and related phenotypes have been the
vitamin D receptor (VDR), estrogen receptor alpha (ESR1), type I collagen (COLIAL1),

transforming growth factor-f (TGF-B), and the low-density-lipoprotein receptor related
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protein-5 (LRP5) genes(70). The majority of these genetic association studies have

focused on women and Caucasians.

24  AREAL BMD IN MEN

2.4.1 Assessment of aBMD

Dual-energy X-ray absorptiometry (DXA) has been the most frequently used technique
for assessing bone density and diagnosing osteoporosis in clinical and in research
settings. DXA is a non-invasive technique with a very small radiation dose and excellent
precision. The underlying concept of the DXA technology is that photon attenuation in
vivo is a function of tissue composition. Rectilinear scanning of the supine body is
performed and divides the body into a series of pixels, within each of which the photon
attenuation is measured at two different energies. The DXA body composition
measurement assumes that the body consists of three components that are distinguishable
by X-ray attenuation properties: fat, bone mineral and fat-free or “lean” soft tissue (71).
DXA is typically used to measure aBMD, bone mineral content (BMC) and cross-
sectional area (CSA) at the lumbar spine, whole body, forearm and hip in a two-
dimensional plane. The hip measurement is further subdivided into several regions such

as femoral neck, trochanter, intertrochanter, and ward’s triangle.
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2.4.2 Cross-sectional studies

There are a few large-scale epidemiologic studies of aBMD and osteoporosis in men and
most of them were conducted in Caucasians from different continents, such as Study of
Osteoporotic Risk in Men (STORM, USA) (72), Rancho Bernardo Study (USA) (73),
Osteoporortic Fractures in Men Study (MrOS, USA) (74), Rotterdam  Study
(Netherlands) (2), TROST (Tromse Osteoporosis Study, Norway) (75), DOES (Dubbo
Osteoporosis Epidemiology Study, Australia) (76) and EVOS (European Vertebral
Osteoporosis Study, Germany) (77). The mean aBMD value among Caucasian men aged
55 and older is between 0.99 to 1.10 g/cm” at the lumbar spine, 0.73 to 0.83 g/cm” at the
femoral neck and 0.88 to 0.99 g/cm2 at the total hip (78-81). In contrast to Caucasian
men, men of other ethnicities have not been well represented in these osteoporosis-related
studies. Studies of racial differences in aBMD have shown that African American men
have 6-10% and 15-21% higher unadjusted and adjusted aBMD at the lumbar spine and
femoral their Caucasian counterparts, respectively (82-84). We also demonstrated a
higher hip aBMD in men of African descent compared to Caucasian men in the Tobago

Bone Health Study (85,86).

2.4.3 Longitudinal studies

Although men have higher aBMD at all sites compared with women, men also experience
significant aBMD decline with aging. In the Framingham study, Caucasian men aged 67-
90 had a significantly lower rate of decline in femoral neck aBMD but a similar rate of

decline in forearm and lumbar spine aBMD, compared with women (3). In the Dubbo and

30



Rancho Bernardo studies, Caucasian men and women aged 60 or above had a similar rate
of decline in hip aBMD (10,73). Table 2 summarizes the main results from several
longitudinal studies of aBMD change with aging in older men. The mean annualized rates
of decline in aBMD vary across different skeletal sites and studies. Theses discrepancies
are likely due to, in part, different study designs, follow-up duration, assessments of
aBMD, sample sizes, geographic areas, age distributions and other characteristics of the
populations studied. However, the patterns of decline in aBMD with age are mostly
consistent. Lumbar spine aBMD remained stable or increased with aging, whereas
proximal femur aBMD decreased with aging in most studies listed in Table 2-2, with a
larger decline observed at the femoral neck than the total hip. At the radius, especially at
the shaft region, the rate of decline in aBMD appears to be much higher than at any other
skeletal site. The higher rates of aBMD decline at the femoral neck and distal radius than
lumbar spine may reflect differences in bone composition and/or falsely elevated lumbar
spine aBMD due to spinal degenerative disease and osteophytosis which is know to
interfere with DXA BMD measurements. Only one of these published studies described
the magnitude of bone loss in men of African descent (87). This study found that African
American men aged >65 had a lower rate of aBMD decline at the femoral neck and total
hip than Caucasian men. However, our preliminary results comparing annualized aBMD
decline rates between older Afro-Caribbean men from the Tobago Bone Health study and
Caucasian and African American men from MrOS suggested that Afro-Caribbean men
may experience a similar rate of aBMD decline compared with Caucasian and African
American men (88). Moreover, no difference in aBMD decline rate was observed

between Caucasian and African American men in the MrOS.
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Table 2-2 Longitudinal studies of DXA aBMD changes with aging among older men

Study/ Author

Annualized rate of

Skeletal Site

Age

Population description

aBMD change
0
0.4% Spine >50
0.12% >70
0,
?0119 9{,0/ Femoral Neck z;g
0 63%0 . 50 Sample size: 348
Melton LJ, et al. (4) _(') 299 Total Hip >70 Follow-up duration: 4 years
e Z Race/country: white, USA
-1.69% Ultradistal Radius | =20
-2.26% >70
_ 0,
ppsig Midradius =0
=VU. 0 =y
0.3% Spine 65-74
0.08% >75 o
-0.17% Femoral Neck 65-74 Sample size: 297. .
Rancho Bernardo (6) 0.66% ~75 Follow-up duration: 4 years
-0. 0 = . .
0.39% Total Hip 6574 Race/country: white, USA
-0.77% >75
tae 0
]\;izéf: _12 11 2/00/ Femoral Neck Sample size: 349(white)/ 119(Black)
MOST study (87) P . >65 Follow-up duration: 1.5 years
White: -0.8% Total Hip Race/country: white/black, USA
Black: 0.05% v :
-0.09% Spine .
. -0.38% Femoral Neck Sample size: 278
Framingham Study (3) o ) . 67-90 | Follow-up duration: 4 years
-0.77% Ultradistal Radius Race/country: white. USA
-0.90% Radial Shaft 1y whte,
e - 0,
Whlte.' 0'350/0 Femoral Neck Sample size: 3585(white)/ 133(Black)
Black: -0.40% o
MrOS(88) - o >65 Follow-up duration: 4.6 years
White: -0.37% Total Hip Race/country: white/black, USA
Black: -0.44% ) ’
0.4% (over 2 yrs) Spine Sample size: 96
Warming L et al. (81) -0.7% Femoral Neck >50 Follow-up duration: 2 years
-0.6% Total Hip Race/country: white, Denmark
-0.48Y% Distal Forearm Sample size: 2197
TROST study (9) oy Ultradistal 45-84 | Follow-up duration: 5 years
-0.39% .
Forearm Race/country: white, Norway
Sample size: 470
EPIC study (5) -0.17% Total Hip 65-74 | Follow-up duration: 3 years
Race/country: white, UK
0.19% 60-64
0.64% Spine 65-69
0.22% 70-74
-0.31% 60-64 | Sample size: 173
Dennison et.al. (8) -0.30% Femoral Neck 65-69 | Follow-up duration: 4 years
-0.06% 70-74 | Race/country: white, UK
-0.31% 60-64
-0.10% Total Hip 65-69
0.23% 70-74
. Sample size: 241
()
DOES study (10) 0.56% Spine >60 Follow-up duration: 2.5 years
-0.85% Femoral Neck . .
Race/country: white, Australia
Sample size: 1856
Rotterdam Study (2) -0.28 % Femoral Neck >55 Follow-up duration: 2 years
Race/country: white, Netherland
Tobago Bone Health | -0.62% Femoral Neck ~65 Ei?;gj:_zlzflﬁ;gon. 49 vears
Study (88) -0.53% Total Hip = P s

Race/country: black, Tobago
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2.4.4 Areal BMD and Fracture

aBMD has been shown to be a strong predictor of fracture risk in women (14). The age-
adjusted relative risk of fractures increases by 1.5 to 2.5 fold with each standard deviation
decrease (SD) in aBMD (89,90). Although there are relatively fewer studies relating
aBMD to fractures in men, the findings still support a strong inverse association between
aBMD and risk of fracture. For example, in the Rotterdam study, the age-adjusted
relative risk of hip fractures increased by 3-fold with every 1 SD decrease in femoral
neck BMD among Caucasian men aged 55 years and older (91). In addition, the risk of
fractures decreased from 30% to 65% at the hip, ankle, vertebrae and rib with every 1 SD
increase in femoral neck aBMD (76). These results suggest that low BMD is an important
determinant of osteoporotic fractures risk in men. However, the relationship between

aBMD and fracture risk in men of African descent is less well defined.

2.4.5 Correlates of areal BMD and accelerated bone loss

Identifying risk factors for low aBMD or accelerated aBMD loss is important for the
prevention of osteoporosis and osteoporotic fractures. Advanced age and low body
weight have been well-established as risk factors in male osteoporosis; however, other
factors such as smoking and physical inactivity have yielded inconsistent results. The
conflicting findings may, in part, reflect the different methods used to collect information

on lifestyle factors or different sample sizes.

33



2.4.5.1 Age

Advanced age is one of the most important risk factors associated with low aBMD in
men. Age is known to be inversely correlated with aBMD at most skeletal sites. The
correlation between age and spine aBMD is less consistent (83,92,93). Unlike other
skeletal sites, spine aBMD seems to increase with age. This association most likely
reflects the confounding effect of osteoarthritis and calcification of the aorta (94). In the
third NHANES survey, by age 80-85, Caucasian men lost approximately 25% of their
femoral neck aBMD measured in the 20s (20). In the MrOS, every 5 year increase in age
was associated with a 2-3% decrease in hip BMD and 0.7-1.6% increase in spine aBMD
(79,80). In the longitudinal studies, the rate of decline in hip aBMD is significant in men
(2-4,6,10,76) and is slower in men than in women (2-4,8,9,81). Although the relationship
between age and longitudinal aBMD change in elder men and women of African heritage
is less well defined, one study showed that the rate of hip aBMD decline accelerated with
age among African American and Caucasian women after the age of 75 (African

Americans: from -0.16% to -0.70% per year (Caucasians: from -0.43% to -0.87% per

year) (95).

2.4.5.2 Body weight and weight change

Body weight is one of the strongest correlates of aBMD in men and women. A positive
association between body weight (or body mass index, BMI) and aBMD among middle-
aged and elderly men has been well documented for both Caucasians and African
Americans in cross-sectional studies (72,78,83,92,93,96). The variation in body weight

may account for 10% to 17% of the total variation in aBMD at the lumber spine and
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femoral neck (10). Body fat and lean mass, the major components of body weight, are
also known to be related to aBMD in Caucasian and Afro-Caribbean men (78,97,98).
Weight loss with aging is common among the elderly and has an important impact
on skeletal health. In the Rancho Bernardo study, weight change was an important
correlate of bone loss. For example, men who lost 2kg or more of their body weight had a
significantly lower hip aBMD than those who gained more than 2kg of their weight (92).
In addition, weight losers were twice as likely as others to lose at least 1% of their aBBMD
per year (73). Lower initial BMI was also significantly associated with greater bone loss
than higher BMI (2,6,8). In the Framingham, Rancho Bernardo, MrOS and EPIC studies,
men who lost 5% of their baseline weight had a significantly greater rate of aBMD
decline at the lumbar spine, hip and radius than those who gained 5% of their baseline
weight (3,5-7). However, the relationship between weight loss and aBMD change has not

yet been established in men of African heritage.

2.4.5.3 Physical activity and muscle strength

The skeleton responds to weight-bearing activity by increasing new bone formation and
altering the distribution of bone mass to accommodate the mechanical forces applied to it
(99). The forces applied to bone from daily activities and exercise are therefore important
for normal development and maintenance of bone mass and strength (100). The effect of
exercise on aBMD or bone loss in men is not well defined. A greater current or historical
physical activity level has been associated with higher aBMD in middle-aged and elderly
men (72,80,92). Men engaged in regular exercise also had a higher aBMD at the spine,
total hip and femoral neck (6,80). However, some studies found no significant association

between exercise and aBMD in men (79). The positive effects of exercise on aBMD are
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likely due to the beneficial effects of exercise on muscle strength (10). Muscle strength,
often defined by grip strength, has been associated with higher aBMD in several studies
of male skeletal health (72,76,80). The impact of physical activity on age-related aBMD
decline in men is not well characterized. Men engaged in intense activity had a slower
aBMD decline rate than those that did not engage in intense activity (59). Disability is
sometimes used as an indirect surrogate of physical inactivity. In the Rotterdam study,
men with lower limb disability had a greater decline in aBMD than those without
disability (2). Association between physical activity and bone loss in men has been

primarily examined in Caucasians only.

2.4.5.4 Cigarette Smoking

Smoking is an established risk factor for osteoporosis. Animal studies suggest that
exposure to nicotine impairs bone formation (101). Nicotine produces a dose- and time-
dependent reduction in DNA synthesis and cellular proliferation of osteoblast-like cells in
vitro, suggesting that nicotine may have direct toxic effects on bone cells (102). It has
also been proposed that cigarette smoking may contribute to increased bone loss and low
aBMD by accelerating normal age-related declines in androgenic hormone levels (103).
Current smokers had a lower aBMD compared with non-smokers (92,104-106), although
some studies showed no association between smoking and aBMD (72,79,80). In a meta-
analysis, male smokers had 0.3 SD lower femoral aBMD compared with nonsmokers and
the effect size was similar to that observed among women (107). In the limited
publications of longitudinal studies of aBMD changes in men, all in Caucasian men,
smokers consistently had a greater aBMD decline rate at the hip compared to nonsmokers
(2,3,6,73).
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2.4.5.5 Alcohol drinking

The mechanisms for alcohol-induced osteoporosis are not known, but evidence suggests
that impaired osteoblastic activity with normal osteoclastic activity may contribute to
reduced bone mass in alcoholic patients (108). Moderate alcohol consumption has been
associated with a higher bone density in several (92,93,109), but not all (72,76) studies of
middle-aged and elderly Caucasian men. However, the effect of moderate alcohol
drinking on aBMD may also be mediated through other confounding factors such as age
and weight (110). There have been few studies of alcohol consumption and rates of bone
loss in men. Several of them found a positive but non-significant association between
moderate alcohol consumption and the aBMD change in older Caucasian men
(2,3,6,73,76). No longitudinal study of aBMD changes has examined the relationship

between BMD changes and alcohol consumption in black men.

2.4.5.6 Calcium intake

Calcium is the major mineral component of bone. Calcium deficient diet has been linked
to decreased bone calcium content. Adequate vitamin D is essential for optimal calcium
absorption. An inadequate intake of either calcium or vitamin D results in a reduced
calcium absorption and a slightly low blood concentration of ionized calcium. In
response to this, blood PTH concentration increases and stimulates bone turnover (111).
Calcium deficiency is the most common cause of increased bone resorption in older
individuals likely due to low dietary intake, lack of sun exposure, malabsorption and
anorexia (112). Population studies have not consistently linked higher dietary calcium
intakes to higher bone density or reduced bone loss with aging in men. Positive

association between aBMD and calcium intake was observed in some (2,72,79,92), but
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not all studies (76,80). However, the effect of calcium on bone density might be site-
specific. In the Rancho Bernardo study, older men who consumed 800mg calcium per
day had a greater aBMD at the lumbar spine, but not hip, compared to those whose
calcium intake was under 800mg/day (92). Dietary calcium intake or calcium supplement
use was not significantly correlated with aBMD change in older men in most of the
longitudinal studies (5,6,73,76). The impact of calcium intake and vitamin D on aBMD
and aBMD change with aging in men of African descent is unknown. However, studies
have shown that African American women had significantly lower calcium intake and
lower serum vitamin D levels compared to their white counterparts but still maintained a

high level of aBMD (113).

2.4.5.7 Medication

Chronic use of several medications may reduce bone density and increase the risk of
fractures. The use of glucocorticoids, thiazide diuretics, and thyroid hormone are among
the most common and well-studied medications that have been known to be associated
with low aBMD, aBMD decline and osteoporotic fractures. The effect of medication use
on osteoporosis risk has not been confirmed in all population studies, most likely due to
inadequate statistical power from the low frequency of use of these medications.
Glucocorticoids, an anti-inflammatory and immunosuppressive medication, decrease
bone mass by directly inhibiting osteoblastic function and formation, decreasing
intestinal calcium absorption, and increasing urinary calcium excretion. Chronic use of
corticosteroid is linked to secondary osteoporosis among men (114). However, studies
found inconsistent effects of corticosteroids on aBMD. No significant association

between corticosteroids use and hip aBMD was observed among men in the STORM
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study (72), but a reversed association was observed in MrOS (80). Thiazide diuretics or
thiazide-like diuretics, a common hypertension medication, decrease urinary calcium
excretion and have been associated with increased aBMD in men in the cross-sectional
studies (72,80,115,116). This effect also seemed to be site-specific (115). However, a
longitudinal analysis from the same study showed no association between thiazide
diuretics use and aBMD change (6). Thyroid hormone is used chronically to treat
hypothyroidism. Use of thyroid hormone has been associated with reduced aBMD in
women (117). Due to the less common use of thyroid hormone among men, information
regarding the impact of thyroid hormone use on aBMD in men is limited. One study
found that men who reported an average of 15.5 years use of thyroid hormone had similar
levels of aBMD at multiple skeletal regions as nonusers (118).

Androgen deprivation therapy (ADT) is used to prevent the recurrence of prostate
cancer after radical prostatectomy or radiation therapy. While it suppresses tumor growth,
ADT also decreases aBMD (43). Androgens help to maintain the balance between bone
synthesis and degradation, but decrease bone resorption via the aromatization of
testosterone to estrogen. ADT disrupts this normal hormonal balance required for bone
health (119). In the MrOS study, prostate cancer was associated with low spine but not
hip BMD (80), whereas a higher hip aBMD was observed among men with prostate
cancer in Afro-Caribbean population from the Tobago prostate cancer survey study (120).
Another study also showed that men with prostate cancer may experience significant
bone loss due to the nature of the disease even before undergoing ADT (121). To our
knowledge, no study has reported the relationship between aBMD and use of

glucocorticords, thiazide diuretics, thyroid hormone and ADT in men of African descent.
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Although the Tobago study has reported the relationship between aBMD and prostate

cancer, the effect of prostate cancer treatment was not evaluated (120).

2.4.5.8 Medical conditions

Several medical conditions have been associated with aBMD in men. Secondary causes
of osteoporosis include excessive use of glucocorticoids or other immunosuppressive
drugs, hypogonadism, chronic obstructive pulmonary disease and asthma, cystic fibrosis,
gastrointestinal disease, hypercalciuria and hyperparathyroidism, and immobilization
(122). Besides these secondary causes of osteoporosis, type II diabetes has also been
related to increased aBMD independent of body weight in some (123-125), but not all
(126,127) studies. Recent longitudinal studies have shown an increased risk of hip
fractures associated with type II diabetes (128). In the Health, Aging, Body Composition
(Health ABC) study, both Caucasian and African American men and women with type II
diabetes had a significantly higher aBMD at the femoral neck and total hip compared
with those with normal glucose homeostasis. However, association between diabetes and

bone loss was only observed in women, but not in men (129).

2.5 VOLUMETRIC BMD IN MEN

2.5.1 Assessment of vBMD

Quantitative computed tomography (QCT) is an established technique for measuring

BMD in the axial spine and peripheral skeleton. In contrast to DXA measures of aBMD,
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QCT provides a three-dimensional measure of volumetric that is not confounded by
differences in bone size. In addition, QCT has the ability to distinguish trabecular and
cortical bone. Compared with DXA, QCT is more sensitive to detecting bone loss
because it selectively measures changes in the more metabolically active trabecular bone
compartment.

Peripheral QCT (pQCT) scanners have been employed for measuring the bone
mineral content and volumetric density of the appedicular skeleton in pediatrics because
of the lower radiation exposure than QCT. It also provides different skeletal quality
measures besides density for trabecular and cortical bone. The ultra-distal and shaft
regions of the radius and tibia are the common scanning sites for pQCT due to the
different amounts of trabecular and cortical bone in these regions. The ultra-distal
scanning site contains up to 80% of trabecular bone and is used for the examination of the
trabecular compartment. The shaft region contains approximately 90% of cortical bone.
The bone mineral content remains fairly constant between 10% to 90% of the radius

length, making this site preferable for measuring cortical properties (130).

2.5.2 Results from cross-sectional and longitudinal studies

Population studies of vBMD have been predominantly conducted in women. There are
few studies in men and most of them have focused on young males. There are also

limited data on the epidemiology of vBMD in men of African heritage.
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2.5.2.1 Cortical vBMD

Greater cortical bone density in Caucasian men compared with women is observed in
several cross-sectional studies (131-133). However, Riggs et al. have recently found that
young women aged 20 to 29 had about 10% higher cortical vBMD at the femoral neck,
radius and tibia than men at the same age (134). This association was reversed when
comparing men and women aged 70 to 97 years old (135). A study by Sigurdsson et al.
also reported similar cortical vBMD between elderly men and women (136).

Age-related decrease in cortical vVBMD occurs in both genders. In Caucasian men,
cortical vBMD at the femoral neck, radius and tibia decreased with age (131,134).
Studies reported that cortical vVBMD decreased slowly over the entire life span in Italian
men (131), but decreased significantly greater after middle age in American men (134).
Very few studies have measured vBMD by QCT or pQCT among men of African
descent. Taaffe et al. compared vBMD at the femoral shaft, predominantly cortical bone,
and found no significant differences in vBMD between Caucasian and African American

men aged 70-79 (133).

2.5.2.2 Trabecular vBMD

Studies have shown a greater trabecular vBMD in Caucasian men than women at the tibia
and radius (131,132,134) and hip(136). However, gender differences in trabecular vBMD
at the lumbar spine have not been consistent (134,136,137). Therefore, the gender
differences in trabecular vBMD may be site-dependent. The decrease in trabecular
vBMD seems to occur in a linear fashion starting as early as 30 years of age for both men
and women (131,134,138,139). There is a more profound decrease in trabecular vBMD

with age at the central (50%) than peripheral (25%) skeletal sites (134).
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2.5.3 Volumetric BMD and fracture

Few studies have examined pQCT or QCT measures of vBMD and its relationship with
fractures. For both men and women, those with vertebral fracture had a lower total,
cortical and trabecular vBMD compared to controls (132). A study by Jamal et al.
showed that every one SD decrease in cortical, but not trabecular, vBMD at the radius
was associated with a 16-fold risk of fractures among 52 hemodialysis patients after
adjusting for age, weight and sex (140). The relationship between vBMD and fractures in

men of African descent has not been established.

2.5.3.1 Correlates of volumetric BMD

Unlike aBMD, there are very few studies on the correlates of vBMD in men. In some
studies, a higher level of exercise was not associated with cortical vBMD (141-143). On
the other hand, exercise seemed to be associated with higher trabecular vBMD (142).
Several studies showed that physically active men have a higher trabecular vBMD than
sedentary men (141,142,144). Grip strength was also found to be positively correlated to
cortical and trabecular vBMD (132,145). Smoking is known to have a negative effect on
aBMD; however, what we knew about effect of smoking on vBMD was limited. In the
GOOD study, there was no difference in cortical vBMD between male smokers and
nonsmokers(106), where Kaji et al. also found similar cortical and trabecular vBMD in

male smokers compared with non-smokers (132).
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2.6 GENETICS OF OSTEOPOROSIS

2.6.1 Importance of genetics in osteoporosis

We have known for several decades that genetic factors and their interaction with
environmental factors have a major impact on bone mineral density and the risk of
developing osteoporosis in men and women. Understanding the genetic effects on bone
density may have a major impact on the diagnosis, treatment, and prevention of
osteoporosis. Research has clearly confirmed a strong genetic contribution to BMD.
However, the genes and allelic variants conferring susceptibility to this condition have

only more recently begun to be identified.

2.6.2 Candidate gene studies of osteoporosis

Several strategies are used to identify the genetic factors contributing to osteoporosis
related phenotypes such as genome-wide linkage mapping in families, genome-wide
linkage disequilibrium (LD) mapping, and candidate gene association studies. In brief,
genome-wide linkage mapping follows the segregation of chromosomal regions marked
by genetic variants in families in the search for regions of the genome that co-segregate
with the disease or phenotype. This approach has great potential to identify genes or
protein products with previously unknown function. For example, low density lipoprotein
receptor-relate protein 5 (LRPS), a co-receptor for the wingless-type family of growth
factor, was showed to segregate with a high aBMD phenotype and its function on bone

metabolism was unknown until its discovery using the genome-wide linkage mapping
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approach. Genome-wide LD mapping with single nucleotide polymorphisms (SNPs) in
unrelated individuals has also been proposed to localize osteoporosis susceptibility genes.
This approach tests for differences in allele frequencies between cases and controls or
tests for differences in mean values of bone related phenotypes (e.g., BMD) across
genotypes on a genome-wide basis. Candidate gene association studies rely on traditional
epidemiologic study designs to identify the relationship between alleles and/or genotypes
and phenotype. Using this approach, candidate genes are identified first according to their
established biological role in bone metabolism. Then, epidemiologic methods are used to
test whether the genotype(s) is/are associated with phenotypes. Although several
candidate genes for osteoporosis have been investigated to date, studies often yielded
inconsistent or inconclusive results due to differences in the populations being studied or
study design. The most widely studied candidate genes have been the vitamin D receptor
(VDR), estrogen receptor alpha (ESR1), type I collagen (COL1A1), and Transforming
Growth Factor-p (TFG- B) genes (70).

Most of the genetic studies of osteoporosis in humans have examined DXA
measures of aBMD. However, studies have shown that vBMD measured by QCT and
pQCT also has a high heritability. Lenchik et al. found that the heritability for vBMD at
the lumbar spine was 73% (146). In the Tobago Family Study, the estimated heritability
of cortical vBMD was 29% at the radius and 42% at the tibia, whereas the heritability of
trabecular vBMD was 70% at both the tibia and radius. In this study, the heritability of
trabecular vBMD was also higher than the heritability observed in aBMD at the whole

body, lumbar spine, total hip and femoral neck(56).
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Some recent candidate gene association studies have examined vBMD by pQCT
as the phenotype. For example, Lorentzon and colleagues examined the association of
polymorphisms in aromatase (CYP19), the key enzyme in the conversion of testosterone
to estradiol, with both aBMD and vBMD in young adult males aged 18 to 20. They
reported that a CYP19 polymorphism was independently associated with aBMD of the
radius, lumbar spine, and total body. Trabecular vBMD was not associated with CYP19
polymorphisms at the radius and tibia, whereas cortical vBMD was significantly
associated with CYP19 polymorphisms at the radius only (42). The same research team
also investigated the association of a functional polymorphism in the catechol-O-
methyltransferase (COMT) gene, involved in the degradation of estrogens, and vBMD in
young adult males (147). This polymorphism was found to associated with trabecular and
cortical vBMD at the radius(147).

There have been few other candidate gene association studies of QCT measures of
vBMD and very limited data on the genetic association of vBMD in men or women of
African heritage. In the proposed dissertation project, we will focus our attention on a
newly discovered candidate gene for vBMD: the ectonucleotide pyrophosphatase

/phosphodiesterase 1 (ENPP1) gene (148).

2.6.3 Ectonucleotide pyrophosphatase / phosphodiesterase 1 (ENPP1)

The transmembrane glycoprotein, ENPP1, also known as plasma-cell membrane
glycoprotein 1 (PC-1), plays an important role in skeletal mineralization. The initial
stages of mineralization begin in chondrocyte- and osteoblast-derived matrix vesicles
(MVs) which contain calcium and inorganic phosphate ions (Pi). Crystals of
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hydroxyapatite are formed within the MVs in growth plate cartilage and developing bone.
Crystals of hydroxyapatite grow through the MV membrane to the extracelluar
environment. Exposure of the hydroxyapatite crystals to the extracelluar milieu further
enables growth and proliferation of the crystals. Inorganic pyrophosphate (PPi) inhibits
the ability of Pi to crystallize with calcium to form hydroxyapatite and thereby suppresses
hydroxyapatite deposition. Therefore, the balance between levels of Pi and PPi is crucial
for normal mineralization to proceed (149).

The following figure showed the biological pathway of ENPP1 gene. Tissue-
nonspecific alkaline phosphatase (TNAP), nucleotide pyrophosphatase phosphodiesterase
1 (NPP1) and multiple-pass transmembrane protein ANK are three important molecules
identified as central regulators of extracelluar PPi and Pi levels. TNAP, encoded by the
Akp2 gene, plays an important role in bone matrix mineralization by hydrolyzing PPi,
whereas NPP1, encoded by ENPPI, regulates mineralization by generating PPi. The
transmembrane protein, ANK, acts as a transport channel for PPi and therefore has a

similar function to NPP1 in increasing extracelluar PPi levels (149).
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Figure 2-1 Biological pathway of bone mineralization

TNAP is an important promoter of mineralization because it catalyzes the
hydrolysis of PPi thereby decreasing the concentration of this calcification inhibitor,
while concomitantly increasing Pi levels. Mice with a deletion of the Akp2 gene (Akp™)
develop severe hypophsphatasia, a disease characterized by rickets, osteomalacia,
spontaneous bone fracture and increased PPi levels. In contrast, NPP1 serves as a
physiological inhibitor of calcification by generating PPi. In human infants, severe NPP1
deficiency was found to be associated with a syndrome of spontaneous infantile arterial
and periarticular calcification (150,151). ENPP1 knockout mice show decreased levels of
PPi and mineralization abnormalities that include osteoarthiritis and ossification of the
posterior longitudinal ligament of the spine. Studies by Suk et al found evidence for
association between ENPP1 gene variation and osteoarthiritis in Russian population
(152).
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Yerges et al. have recently identified that an intronic tagging SNP in ENPP1 is
significantly associated with vBMD at the femoral shaft using QCT in older Caucasian
men (148). We will test if tagging SNPs in ENPP1 are associated with DXA measures of
aBMD, rates of decline in BMD, and pQCT measures of vBMD in men of African

descent in the current project.
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2.7  LIMITATIONS OF THE EXISTING LITERATURE

Osteoporosis studies have historically been conducted in Caucasian women due to the
higher prevalence of this skeletal condition in this population group. However, in more
recent years there has been an increased awareness of the importance of male
osteoporosis. Longitudinal studies of bone loss with aging in men are still lacking,
especially in regard to the risk factors for accelerated bone loss. Although bone density
measured by DXA (areal BMD) has been widely used to diagnose osteoporosis, this
measure is known to be confounded by bone size, where higher areal BMD may reflect
bigger bone size, not necessarily higher bone density. Few population studies have used
QCT or pQCT to characterize the correlates of volumetric BMD. In addition, there has
been no study, to our knowledge, that thoroughly examines the potential anthropometric,
medical, and lifestyle factors that may be associated with volumetric BMD. As with
environmental factors, very few genetic association studies have assessed QCT or pQCT
measures of bone related phenotypes.

Non-white populations have also been largely under-represented in
epidemiological studies of osteoporosis, particularly in men. It is important to better
understand and confirm the potential genetic and environmental factors that are
associated with bone density and changes in bone density with aging using advanced

techniques like pQCT in non-white populations.
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2.8  SPECIFIC AIMS

The aim of Research Article 1 was to better understand the age-related patterns and
determinants of hip BMD changes (total hip and femoral neck) in men of African
descent. We evaluated the magnitude of age-related changes in hip BMD across age and
the effect of weight change on hip bone loss. We then assessed how changes in hip BMD
correlate with demographic characteristics, anthropometric and body composition
measures, lifestyle factors and medical history.

The aim of Research Article 2 was to better understand the age-related patterns in
trabecular and cortical vVBMD at the radius and tibia among men of African heritage. We
also sought to identify the correlates of vBMD, including demographic characteristics,
anthropometric and body composition measures, lifestyle factors, dietary intake, medical
history, and medication, related to trabecular and cortical vBMD at the radius and tibia,
respectively.

The aim of Research Article 3 was to examine single nucleotide polymorphism
associations in the ENPP1 gene and BMD measurements, including rate of decline in
aBMD and aBMD at the total hip and femoral neck, and trabecular and cortical vBMD at
the radius and tibia, in men of African descent.

We used longitudinal and cross-sectional data from the Tobago Bone Health
study to perform analyses for these three research articles. The Tobago Bone Health
study is a large scale population study of Afro-Caribbean men aged 40 and older on the

island of Tobago.
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3.1 ABSTRACT

Very little is known about the magnitude, pattern and determinants of bone loss with
advancing age among men, particularly among those of African descent. We examined
the rate of decline in hip bone mineral density (BMD) and indentified potential factors
associated with an accelerated loss of BMD among 1,691 men of African ancestry aged
>40 years. BMD at the proximal femur was measured at study entry and after an average
of 4.4 years by dual-energy X-ray absorptiometry. The overall rate of decline in femoral
neck BMD was 0.29+0.81%/yr in the total sample (p<0.0001). However, a U-shaped
relationship between advancing age and the rate of decline in BMD was observed. For
example, the rate of decline at the femoral neck was -0.38+0.77%/yr among men aged
40-44 years (P<0.0001), decelerated to -0.15+0.81%/yr among men aged 50-54 yrs
(P=0.0026) and then accelerated to -0.524+0.90%/yr among those aged 75+ yrs
(P<0.0001). Men who lost >5% of their initial body weight during follow-up had a
significantly greater rate of decline in BMD than those who remained weight stable or
gained weight (p<0.0001). The relationship between weight loss and bone loss was more
pronounced among men who were older and leaner at study entry (P<0.03 for
interactions). We also observed a strong impact of advanced prostate cancer and its
treatment with androgen deprivation on the rate of decline in BMD. Men of African
ancestry experience substantial bone loss with advancing age that appears to be

comparable to the rate of loss among Caucasian men in other longitudinal studies.
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Additional studies are needed to better define the natural history and factors underlying

bone loss with aging in men of African ancestry.

3.2 INTRODUCTION

Although osteoporosis is more prevalent among women than men, men also experience
substantial bone loss and an increase in fracture incidence with advancing age. However,
little information exists about the natural history, magnitude and correlates of bone loss
with aging among men, especially among men of African ancestry. Osteoporosis is a
global public health problem and as the population ages more men throughout the world
will develop osteoporosis and its associated fractures, including men of African
ancestry(1). The lower prevalence of osteoporosis in men of African ancestry compared
with other ethnic and racial groups has led to the belief that osteoporosis represents less
of a problem in this population. However, the African ancestry population is expected to
comprise a growing proportion of the incidence and economic burden of osteoporosis-
related fractures over the next 20-50 years in both the U.S. (2) and world-wide (1). These
demographic trends underscore the importance of better understanding the natural history
and determinants of bone loss and osteoporosis in men of all ages and racial/ethnic
background.

Most longitudinal studies of bone mineral density (BMD) changes with aging in
men have been conducted among Caucasian men in North America (3-8), Europe (9-11)
and Australia (12). These studies have identified body weight and changes in body

weight as the major correlates of bone loss with aging in men. Smoking has also been
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reported as a potential risk factor for bone loss in some studies (3,4,7,13,14), whereas
other lifestyle factors such as alcohol consumption, calcium intake and physical activity
have been inconsistently related to bone loss (3,4,7,12). To our knowledge, only a single
study has characterized the magnitude and correlates of bone loss in men of African
descent (14). In this study, older age, lower initial body weight and smoking were
correlated with a greater decline in BMD among 119 African American men aged >65
years. The aim of the present study was to examine further the magnitude, age-related
patterns and correlates of the decline in hip BMD with aging in a large cohort of middle-

aged and elderly men of African ancestry.

3.3 METHODS

3.3.1 Study population

The population-based Tobago Bone Health Study was first conducted on the Caribbean
island of Tobago in 2000 as described previously (15,16). In brief, recruitment was
accomplished by word of mouth, hospital flyers and radio broadcasting. To be eligible,
men had to be 40 years and older, ambulatory and not terminally ill. Questionnaires were
administered to obtain information on demographic characteristics, occupation, medical
history, and lifestyle related factors. A total of 2,652 men completed an initial dual-
energy x-ray aborptiometry (DXA) scan for assessment of BMD and body composition at
that visit. The self-reported ethnicity of the cohort is 97% African, 2% East Indian, <1%

white, and <1% "other".
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In late 2004, participants were re-contacted for a second DXA scan to assess the
rate of change in BMD. A total of 1,748 men (70% of survivors) returned for the follow-
up exam. We excluded 36 men who identified themselves with ethnicity other than Afro-
Caribbean and 21 men who had incomplete data. We also subsequently excluded 233
men with prostate cancer and/or history of androgen deprivation therapy for prostate
cancer from analysis because of their strong influence on BMD in this population.
The final study sample for the present analysis was 1,458 men. The Institutional Review
Boards of the University of Pittsburgh and the Tobago Ministry of Health and Social
Services approved this study and all participants provided written informed consent

before data collection.

3.3.2 Densitometry

BMD was measured at the proximal femur and sub-regions at both the baseline and
follow-up visits using a single Hologic QDR 4500W densitometer (Hologic, Inc.,
Bedford, MA). The left hip was scanned unless the participant had a fracture or a total hip
replacement. Trained and certified technicians performed the DXA scans and followed a
strict protocol for both visits. Longitudinal machine stability was assessed from plots of
daily spine phantom scans, and reviewed monthly. A weekly print out of QC plots was
generated to detect short-term inconsistencies and long-term drift. The scanner was stable

throughout the course of the study.
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3.3.3 Anthropometric and body composition assessments

Body weight was measured in kilograms with participants wearing light clothing and
without shoes, using a calibrated balance beam scale at both visits. Height was measured
in centimeters without shoes, using a wall-mounted height board. Whole body fat and
lean mass were also measured using DXA. Left and right grip strength was measured
with a hand-grip dynamometer as a surrogate for upper body and overall strength
(Preston Grip Dynamometer, JA Preston 136 Crop.). Average grip strength was based on

two repeated measurements from left and right hands.

3.3.4 Other measurements

Questionnaires were administered by trained interviewers and nurses to obtain
information on demographic characteristics, lifestyle factors as well as medical history.
In the current analysis, we used information from the baseline exam to assess potential
factors related to the subsequent rate of decline in BMD. Mixed African ancestry was
defined by self-report of one to three African-descent grandparents. Other factors that
were assessed included history of cigarette smoking, alcohol consumption, time spent
watching television, time spent walking, medical history of facture, hypertension,
coronary heart disease (CHD), stroke, diabetes, chronic bronchitis, and arthritis. We also
asked participants to rate their overall health status compared to others of their age.
Diagnosis of prostate cancer, advanced prostate cancer (prostate specific antigen>40 or
Gleason score >7), and androgen deprivation therapy (ADT, use of Leuprorelin or

orchiectomy) were also recorded at baseline.
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3.3.5 Statistical Analysis

The annualized rate of change in BMD during follow-up was calculated as the percent
BMD change from baseline to follow-up divided by duration in years between the two
scans. Percent change in body weight or body composition was calculated as the
difference between baseline and follow-up measures divided by baseline measures and
multiplied by 100. We also categorized percent weight change into 3 groups: weight gain
(>5% weight gain), weight stable (weight change between -5% and 5%) and weight loss
(>5% weight loss).

We first compared the baseline characteristics between men who did and did not
return for the follow-up visit, regardless of their race and ethnicity, using analysis of
covariance (ANCOVA) for continuous variables with age adjustment and Chi-square
tests for dichotomous variables. Analysis of variance (ANOVA) and ANCOVA were
used to evaluate the annualized percentage rate of change in BMD across different age
categories (e.g. 5-year age groups or greater than 55 years) and across weight change
groups. We evaluated the age-adjusted and age- and weight-adjusted contribution of each
individual variable to the annualized rate of change in BMD by using linear regression
analysis. The strength of the association is expressed as an absolute difference in units of
change chosen to approximate one standard deviation (SD) in the distribution for each
continuous variable or null category for dichotomous variables. The formula used to
calculate the absolute difference in rate of change in BMD per unit change (SD) of the
independent variable was: (B)= ((unstandardized B x unit change in independent
variable). The corresponding 95% confidence intervals were calculated using the

following formula: (((f x +1.96 x standard error) x unit change). We also evaluated the
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interactions between weight change and age as well weight change and BMI on the rate
of BMD decline using ANCOVA.

Multiple linear regression analysis was performed using a stepwise procedure to
determine the potential independent correlates of the annualized rate of change in BMD.
Variables from the age- and weight- adjusted univariate model with a P value <0.10 were
further entered in the multiple linear regression model. Age was forced into all models.
We assessed multi-collinearity by inspecting the variance inflation factor (VIF). Due to
the high correlation of body weight with lean and fat mass, we developed two different
multiple linear regression models: 1) models with body weight only; and 2) models
substituting fat and lean mass for body weight. Statistical analyses were performed using

the Statistical Analysis System (SAS, version 9.1; SAS Institute, Cary, NC).

3.4 RESULTS

Table 1 shows the baseline characteristics of men who did and did not attend the follow-
up exam. As expected, men who did not return were older, weighed less, and had lower
baseline BMI than those who participated in the follow-up exam. Non-participants also
were more likely to smoke, report poorer health status and have a greater prevalence of
hypertension, heart disease, diabetes and arthritis. Non-participants also had significantly

lower hip BMD than participants at the baseline exam.
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3.4.1 Rate of change in BMD and androgen deprivation

The average length of time between DXA scans was 4.4+0.8 years (range, 1.1 to 6.9
years). Men with advanced prostate cancer and men who had a history of androgen
deprivation therapy for prostate cancer had a significantly greater rate of decline in BMD
compared to their counterparts. For example, the average rate of decline in BMD was to
0.137+0.588 %/yr at the total hip and 0.333+0.841 %/yr at the femoral neck (data not
shown) for all men. The rate of decline in BMD was 0.78%/yr greater at the total hip and
0.58%/yr greater at the femoral neck for men with advanced prostate cancer (prevalence,
2%) compared to men without prostate cancer (both, p<0.0001). Men with non-advanced
prostate cancer (prevalence, 11%) had a 0.08% greater (p=0.08) annualized rate of
decline in BMD at the total hip and 0.15% greater (p=0.02) at the femoral neck,
compared to men without prostate cancer. Approximately 6% of the study population
reported that they had either taken Leuprorelin or underwent orchiectomy for prostate
cancer. Men on either of these treatments experienced an approximately 0.4%/yr greater
(p<0.0001) rate of decline in total hip and femoral neck BMD compared to men who had
neither of these treatments. Because prostate cancer and its treatment by androgen
deprivation had a strong impact on the rate of decline in BMD, we excluded the 233 men
with prostate cancer or who had undergone androgen deprivation from subsequent

analyses.
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3.4.2 Rate of change in BMD and age group

Total hip and femoral neck BMD declined by 0.10+0.55%/yr and 0.29+0.81%/yr among
the men who did not have prostate cancer or who had undergone ADT (p<0.0001 for
both). To examine the age-related patterns in the rate of decline in BMD among these
men, we stratified the total sample by 5 year age groups using age at study entry (Figure
1). The rate of decline in BMD across age groups appeared to have a U-shape
relationship. Men aged 40-44 years had a significantly greater rate of decline in BMD
than those aged 45-49 years and 50-54 years at both the total hip and femoral neck.
Thereafter, the rate of decline in BMD accelerated with advancing age. For example, the
rate of decline in total hip BMD was -0.10+0.55 %/yr among men aged 55-59 years
(P=0.009) and increased to -0.48+0.60 %/yr among men aged 70+ years (P<0.0001).

Similar results were observed at the femoral neck.

3.4.3 Age-adjusted correlates of the rate of change in BMD

Table 2 shows the age-adjusted association of participant characteristics with the rate of
decline in BMD at the total hip and femoral neck. Age was inversely and significantly
correlated with the decline in BMD. For example, the rate of decline in total hip BMD
increased by 0.084%/yr every 10 years.

A 10 kg increase in body weight was associated with a slower rate of decline in
total hip BMD. Body composition measures from DXA were significantly associated

with the rate of decline in hip BMD. Whole body fat, lean mass and percent body fat
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were all positively and significantly associated with the decline in hip BMD in age-
adjusted analysis. Initial BMD was not related to the subsequent rate of decline in BMD.

We also evaluated the relationship between annualized percent rate of decline in
BMD and change in body weight and body composition over the follow-up period. Men
gained an average of 0.2+6.2% body weight during follow-up (P=0.20). As expected, fat
mass increased (P<.0001) whereas lean mass decreased non-significantly (P=0.25) during
the follow-up period. In age-adjusted analysis, men who lost weight during follow-up had
a significantly greater mean rate of decline in BMD. For example, every 6% decrease in
body weight from baseline was associated with a 0.11%/yr decrease in total hip and a
0.14%/yr decrease in femoral neck BMD. Similar associations were observed for the
change in fat mass and lean mass.

None of the lifestyle related characteristics examined were significantly
associated with the annualized rate of decline in BMD including current and past
smoking history, time spent watching television, and alcohol intake. Diabetes was present
in about 11% of the cohort and was associated with a greater decline in total hip, but not
femoral neck, BMD in age-adjusted analysis. Because there appeared to be a u-shaped
relationship between age and the rate of decline in BMD, we also examined the correlates
of bone loss in stratified analyses among men aged 40-54 and 55+ and found similar
results as those in the total cohort (data not shown).

We further evaluated the association of age, BMI, weight change and the
interactions of these variables with the rate of decline in BMD in stratified analyses
(Tables 3 and 4). At both the total hip and femoral neck, men who lost 5% or more of

their baseline body weight had a significantly greater decline in BMD compared to men

62



who had remained weight stable or who gained 5% or more body weight. There was also
a significant loss of BMD among men who remained weight stable during follow-up.
However, men who gained at least 5% body weight during follow-up did not experience
a significant decline in hip BMD.

We also found a significant interaction effect of age at study entry and weight
change on the rate of decline in hip BMD (Table 3). The effect of weight loss on the
decline in BMD was significantly greater (total hip, p=0.006; femoral neck, p=0.018)
among older (age > 55 yrs) than younger (age <55 yrs) men. Finally, we also observed a
significant interaction effect of initial BMI and subsequent weight change on the rate of
decline in total hip BMD (Table 4). Although weight gain was associated with an overall
slower rate of decline in femoral neck BMD, this effect was not apparent among the
leanest men. Men with a low initial BMI (BMI < 25.0 kg/mz) experienced a more

pronounced rate of decline in BMD even if they had gained weight during follow-up.

3.4.4 Multiple Linear Regression

The results from multiple linear regression analyses of the independent correlates of the
rate of decline in decline are shown in Table 5. Age(-), BMI(+), weight change(+), and
grip strength(+) were significant correlates of the rate of decline in BMD in multiple
regression analysis. Diabetes was no longer a statistically significant correlate of the rate
of decline in total hip BMD in the multivariable model. Multivariate models only

explained 5-6% of the variance in the rate of decline in BMD.
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3.5 DISCUSSION

Compared with women, much less is known about the magnitude and correlates of bone
loss with aging in men, especially among non-white men. To our knowledge, only a
single longitudinal study to date has evaluated age-related bone loss in men of African
ancestry and that study only included 119 men aged 65 and older (14). Thus, one aim of
the current study was to examine the pattern of BMD loss at the proximal femur over 4
years in a large population sample of middle-aged and elderly men of African ancestry. A
primary finding of our study is that BMD loss at the proximal femur is substantial and
may begin early in life among men of African ancestry. This early decline in BMD may
reflect, in part, an early loss of trabecular bone mass and a later loss of cortical bone mass
from the proximal femur. Indeed, others have recently observed a loss of trabecular
BMD well before middle age among men (17,18). However, the pattern of BMD loss
with advancing age in our study appeared to be non-linear with a deceleration in the rate
of loss between ages 40-54 and an acceleration in the rate of loss thereafter that continued
unabated into the 7" decade of life. A progressive acceleration of BMD loss with
advancing age has also been observed among Caucasian men(3,13). Past epidemiologic
studies of the decline in BMD have largely focused on Caucasian men aged > 65 years
and may have thus missed this early decline in hip BMD.

In our study of Afro-Caribbean men aged 40-92 years, the overall unadjusted rate
of decline in BMD at the femoral neck was -0.29+0.81 %/yr and was -0.47+0.89%/yr
among men aged 65 years and older. These rates of decline in BMD were surprisingly
very similar to the rates of BMD decline reported in other longitudinal studies of

Caucasian men(3-5,7,9). For example, in the Framingham Osteoporosis Study, the rate of
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decline in femoral neck BMD was -0.38%/yr among 278 Caucasian American men aged
67-90(4). In the Rotterdam Study, the rate of decline in femoral neck BMD was -0.4%/yr
in 1856 Caucasian European men aged >55 yrs(3). In the Rancho Bernardo study, the rate
of bone loss at the femoral neck was -0.34 %/yr in 500 Caucasian American men aged
45-92 yrs(7). In the Network in Europe for Male Osteoporosis, the rate of decline in
BMD at the femoral neck was -0.48%/yr among ~1300 Caucasian European men aged
50-80 yrs(11). Finally, in the Baltimore Men’s Osteoporosis Study, the rate of decline in
femoral neck BMD was -2.1%/yr in 349 Caucasian American and -1.1%/yr in 119
African American men aged 60-74 yrs(14). The high rate of BMD loss in this study may
reflect the use of different densitometers at the initial and follow-up exams. Comparisons
across these studies are difficult to make and should be interpreted cautiously due to the
differences in follow-up time, densitometers used, sample sizes, geographic areas, and
age distributions of the populations studied. Nonetheless, the rate of decline in femoral
neck BMD with aging in our cohort of Afro-Caribbean men is very consistent with the
majority of these other studies of Caucasian men.

To better understand the factors that might influence the rate of BMD loss with
age in men of African ancestry, we characterized a number of anthropometric, lifestyle
and medical variables and examined the relation of these variables to the rate of BMD
loss at the proximal femur. In addition to advanced age, leanness at study entry and
weight loss during follow-up were particularly important independent correlates of an
increased rate of BMD loss with age. A positive association between body weight or BMI
and BMD among middle-aged and elderly men has been well-documented in Caucasians

and African Americans(19-24). Weight loss with aging is also a consistent predictor of
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the rate of loss in BMD (4,6-8,25). In the present study, men who lost 5% of more of
their baseline body weight had an accelerated rate of decline in BMD compared to men
who remained weight stable or gained weight. The effect of weight loss on the age-
related decline in BMD was more profound among men aged 55 and older in our study.
In the Framingham, Rancho Bernardo, Osteoporotic Fractures in Men (MrOS) and EPIC
studies, Caucasian men who lost 5% or more of their baseline weight also had a
significantly greater rate of BMD loss at the proximal femur than those who gained 5%
or more of their baseline weight(4,6-8). The importance of weight loss as a risk factor for
accelerated loss of BMD among middle-aged and elderly men may be explained by
underlying illness that results in poor health and physical inactivity(8,25), to declines in
muscle mass and strength, to decreased mechanical loading on weight-bearing skeletal
sites (26,27), to a decrease in adipose tissue mass which is an important source of
estrogens in men(28), or to a combination of these factors.

Other frequently examined predictors of the age-related loss of BMD such as
physical activity, smoking, calcium intake and medical conditions have yielded
inconsistent results across studies(3,4,7,12). We also examined several of these variables
that might affect the rate of decline in BMD with aging. Greater grip strength was
associated with a slower loss of BMD, even after adjusting for age, body weight and
weight change. The association with grip strength may be explained, in part, by increased
physical activity and lean mass.

We were unable to document an association between smoking and the rate of
BMD loss in our study. Some(22,29-31), but not all(19,32,33), studies suggest that

smokers have lower BMD than non-smokers in cross-sectional analyses. In Caucasian
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men, smokers had a greater decline in hip BMD with age compared to non-
smokers(3,4,7,25). We were also unable to document an association between alcohol
intake and the rate of decline in BMD. Moderate alcohol consumption has been
associated with greater BMD in several(22,23,34), but not all(13,19), cross-sectional
studies of middle-aged and elderly Caucasian men. Alcohol consumption was associated
with a slower rate of age-related decline in BMD in some(7,35), but not all(4,25)
longitudinal studies. The absence of a significant relationship with smoking and alcohol
drinking in the current study may be due to a low prevalence of these behaviors.

Two of the strongest contributors to the rate of decline in BMD in our
study were advanced prostate cancer and ADT for prostate cancer. The association was
independent of other covariates including body weight and weight change during follow-
up. Androgens increase bone formation and decrease bone resorption and ADT may
disrupt this balance resulting in bone loss(36). ADT has been associated with a higher
prevalence of osteoporosis among prostate cancer patients(37). Most of the longitudinal
population-based studies in men did not examine the relationship between prostate cancer
and changes in BMD with aging. Prostate cancer and its treatment might be particularly
important risk factors for bone loss in men of African descent given its higher prevalence
in men of African compared with Caucasian descent.

Our study has several limitations. The small proportion of older-aged men may
have limited our ability to estimate the rate of bone loss in these men. Although walking
is a common form of physical activity in this population, our questionnaire estimates of
walking hours might not have been an accurate reflection of total physical activity levels.

In addition, our DXA measures of areal BMD cannot provide insight on age-related loss
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of trabecular and cortical bone mass or bone geometry. Three dimensional measures of
trabecular and cortical volumetric BMD and bone structure would provide important
insight on the aging skeleton in this population.

In conclusion, although the prevalence of osteoporosis is higher among Caucasian
than African ancestry men, men of African ancestry appear to experience a substantial
loss of BMD with aging that may be comparable to the rate of loss in Caucasian men.
Advancing age, lower body weight, increased weight loss, advanced prostate cancer and
its treatment by androgen deprivation were identified as potential risk factors for
accelerated loss of BMD in our study. However, these factors only explained 6% to 7%
of the variation in the rate of decline in BMD with aging. These findings suggest that
many other undetermined variables, including inherited factors, may contribute to age-
related loss of BMD in men of African ancestry. A more complete understanding of
BMD changes with aging in men of African ancestry will require a broader examination

of the potential determinants.
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Table 3-1 Comparison of selected baseline characteristics among men who participated and did not
participate in the follow-up exam

Participants Non-participants P-value
(n=1748) (n=904)

Age (yrs) 56.4+10.5 59.1+£12.0 <.0001
Height (cm) 174.8+6.6 174.6+6.7 3810
Weight (kg) 83.6+14.2 81.2+14.6 <.0001
BMI (kg/m’) 27.3+4.1 26.5+4.2 <.0001
Grip strength (kg) 43.0+£9.8 40.6£11.1 <.0001
Whole body fat (%) 20.1£5.8 19.946.2 5877
Total hip BMD (g/cm?)* 1.150+.147 1.123+.155 <.0001
Femoral neck BMD (g/cm’)* 0.998+.147 0.961+.150 <.0001
Worse health compared to 12 months ago (%) 12.1 18.0 <.0001
Worse heath compared to men with the same age 2.5 5.5 .0001
(%)
Ever Smoker (%) 38.2 48.8 <.0001
Current smoker (%) 11.6 18.8 <.0001
Drank alcohol > 4 times a week 16.2 18.8 .0975
Fractured bone (%) 19.8 20.8 5385
Hypertension (%) 28.9 34.2 .0052
Heart Disease (%) 34 5.9 .0026
Diabetes (%) 11.2 14.8 .0084
Arthritis (%) 11.7 15.5 .0064
Prostate cancer (%) 13.8 14.2 7633
ADT treatment (%) 5.7 1.7 <.0001

* Age-adjusted
ADT, androgen deprivation treatment
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Figure 3-1 Annualized rate of change in hip BMD by age group
* Group-specific rate of change in BMD was not significantly different from zero. Rates of change in BMD
were significantly different from zero for all other groups. P-values for overall association with age was

<0.0001 for total hip and 0.0002 for femoral neck. Men with prostate cancer or who had undergone
androgen deprivation therapy were excluded from the analysis.
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Table 3-2 Correlates of the rate of change in hip BMD*

Mean + SD Age-adjusted rate of change in BMD (95%CI)
Variables (baseline) or Unit
prevalence Total Hip Femoral Neck
(%)
Demographic characteristics
Age (years) 54.8+10.0 10 -0.084 (-0.112,-0.055)  -0.053 (-0.095, -0.011)
Mixed African ancestry 11.2% Yes 0.037 (-0.052, 0.126) 0.105 (-0.028, 0.238)
Occupational history
Ever work on farm 51.1% Yes -0.009 (-0.065, 0.048) -0.023 (-0.107, 0.061)
Ever work on fishing boat 17.0% Yes -0.012 (-0.087, 0.062) -0.061 (-0.172, 0.051)
Anthropometric & DXA measures
Body weight (kg) 84.0+14.2 10 0.040 (0.020, 0.059) 0.065 (0.035, 0.094)
BMI 27.3+4.1 4.1 0.057 (0.029, 0.085) 0.094 (0.052, 0.137)
Height 175.1£6.5 6.5 0.029 (0.000, 0.058) 0.032 (-0.011, 0.075)
Grip strength 44.0£9.6 9.6 0.030 (-0.003, 0.063) 0.074 (0.025, 0.124)
Total hip BMD (g/cm?) 1.16+0.14 0.14 0.004 (-0.024, 0.032) -
Femoral neck BMD (g/cm?) 1.00£0.15 0.15 - 0.008 (-0.037, 0.052)
Fat mass (kg) 16.3+6.5 6.5 0.069 (0.041, 0.097) 0.101 (0.059, 0.143)
Lean mass (kg) 64.9+8.5 8.5 0.034 (0.005, 0.064) 0.064 (0.021, 0.108)
Body fat (%) 19.7+5.7 5.7 0.079 (0.051, 0.108) 0.104 (0.061, 0.146)
Weight change (%) 0.246.2 6.2 0.108 (0.078, 0.137) 0.158 (0.114, 0.201)
Fat mass change (%) 6.4+18.1 18.1 0.062 (0.033, 0.091) 0.101 (0.059, 0.143)
Lean mass change (%) -0.1£3.6 3.6 0.132 (0.103, 0.161) 0.136 (0.092, 0.180)
Lifestyle characteristics
Ever smoker 38.5% Yes 0.009 (-0.049, 0.066) 0.029 (-0.057, 0.115)
Current smoker 12.0% Yes -0.064 (-0.150, 0.023) -0.091 (-0.220, 0.038)
TV watching >21 hrs per week 31.1% Yes 0.036 (-0.025, 0.097) 0.027 (-0.063, 0.118)
Drink alcohol >4 times per week  15.9% Yes 0.001 (-0.078, 0.080) 0.026 (-0.093, 0.144)
Medical History
Ever fractured bone 20.2% Yes -0.015 (-0.085, 0.055) -0.007 (-0.111, 0.098)
Hypertension 27.6% Yes 0.037 (-0.027, 0.102) 0.065 (-0.031, 0.161)
Diabetes 10.7% Yes -0.102 (-0.195,-0.008)  -0.028 (-0.167, 0.111)
Arthritis 10.6% Yes 0.015 (-0.080, 0.111) 0.053 (-0.089, 0.195)

*Expressed as absolute difference in annualized rate of change in BMD change per unit of the predictor
variable. Men with prostate cancer or who had undergone androgen deprivation therapy were excluded
from the analysis

Bold: p-value<0.05
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Table 3-3 Mean annualized rate of change in hip BMD by category of percent weight change and Age

Mean annualized % change in hip BMD(95%CI)*

Category of
weight change

Overall cohort

Age

Age 40-54

Age 55+

Total hip

Weight loss(n=216)
Stable weight(n=878)
Weight gain(n=274)

Femoral neck**

Weight loss(n=220)
Stable weight(n=874)
Weight gain(n=273)

-0.340(-0.413, -0.267)
-0.062(-0.097, -0.026)
0.003(-0.031, 0.067)

-0.609(-0.716, -0.502)
-0.252(-0.305, -0.199)
-0.088(-0.182, 0.007)

n=768

-0.204(-0.325, -0.085)
-0.030(-0.077, 0.016)
0.070(-0.009, 0.149)

n=765

-0.437(-0.615, -0.259)
-0.273(-0.342, -0.204)
-0.048(-0.165, 0.069)

n=590

-0.418(-0.509, -0.326)
-0.106(-0.162, -0.051)
-0.122(-0.230, -0.015)

n=596

-0.705(-0.839, -0.572)
-0.222(-0.304, -0.141)
-0.161(-0.321, -0.002)

Weight loss was defined as a loss of 5% or more of body weight from the baseline exam.
Weight gain was defined as a gain of 5% or more of body weight from the baseline exam.

* Adjusted for BMI

**The interaction term between weight change and age categories was significant for femoral neck only
(p=0.03). Men with prostate cancer or who had undergone androgen deprivation therapy were excluded

from the analysis.

Table 3-4 Mean annualized rate of change in hip BMD by category of percent weight change and

BMI
: o in hi ) *
Category of Mean annualized % change in hip BBI,\;{;)I(% %CI)
weight change Overall cohort BMI<25kg/m’ BMI 25.0-29.9 kg/m” BMI>30kg/m’
Total hip** n=385 n=655 n=318

Weight loss(n=210)
Stable weight(n=874)
Weight gain(n=274)

Femoral neck

Weight loss(n=214)
Stable weight(n=874)
Weight gain(n=273)

-0.308(-0.381, -0.235)
-0.066(-0.102, -0.030)
-0.014(-0.078, 0.051)

-0.585(-0.692, -0.478)
-0.252(-0.305, -0.199)
-0.106(-0.201, -0.011)

-0.279(-0.447, -0.112)
-0.186(-0.253, -0.118)
-0.027(-0.132, 0.078)

n=390

-0.598(-0.841, -0.355)
-0.381(-0.481, -0.282)
-0.271(-0.427, -0.113)

-0.289(-0.393, -0.186)
-0.043(-0.093, 0.007)
-0.091(-0.190, 0.008)

n=657

-0.663(-0.816, -0.510)
-0.228(-0.303, -0.154)
-0.049(-0.196, 0.099)

-0.327(-0.458, -0.196)
0.037(-0.039, 0.113)
0.140(0.004, 0.276)

n=314

-0.436(-0.630, -0.242)
-0.146(-0.260, -0.032)
0.079(-0.125, 0.283)

Weight loss was defined as a loss of 5% or more of body weight from the baseline exam.
Weight gain was defined as a gain of 5% or more of body weight from the baseline exam.

* Adjusted for age

**The interaction term between weight change and BMI categories was significant for total hip only
(p=0.02). Men with prostate cancer or who had undergone androgen deprivation therapy were excluded

from the analysis.
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Table 3-5 Multivariable correlates of the annualized rate of change in BMD in older Afro-Caribbean

men

Rate of change in BMD (95%CI) per unit
Variable Unit Total Hip' Femoral Neck’

(n=1358) (n=1370)

Age (years)’ 10 -0.056 (-0.0856, -0.027) 0.026 (-0.025, 0.078)
BMI (kg/cm?) 4.1 0.073 (0.043, 0.102) 0.101 (0.057, 0.146)
Weight change (%) 6.2 0.112 (0.082, 0.142) 0.167 (0.123, 0.211)
Grip strength (kg) 9.6 - 0.055 (0.004, 0.106)
Model R” 0.07 0.06

'Age, BMI, weight change, grip strength, and diabetes were entered into the model
?Age, BMI, weight change and grip strength were entered into the model

3 Age was forced into the model

Bold: p-value less than 0.05

Men with prostate cancer or who had undergone androgen deprivation therapy were

excluded from the analysis.

- : variable was entered into the model but not a significant in the final model
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4.1 ABSTRACT

Quantitative computed tompgraphy (QCT) is a 3-dimensional imaging technique that is
able to distinguish trabecular and cortical bone and provide a measure of volumetric bone
mineral density (VBMD). Very few studies have examined the factors related to vBMD in
men, especially men of African heritage. The present study evaluated comprehensively
the relationship of vBMD with demographic, anthropometric, medical and behavioral
factors in a large cohort of men of African heritage (n=1,901) aged 40 years and older.
Trabecular and cortical vBMD were measured by peripheral QCT (pQCT) at the radius
and tibia. Trabecular vBMD decreased dramatically before age of 50 and then remained
similar or decreased slightly thereafter. In contrast, cortical vBMD decreased steadily
with advancing age. Step-wise multiple linear regression analysis identified, age, body
weight, cigarette smoking, and a history of type II diabetes and prostate cancer as the
major correlates of vBMD. However, different relationships between cortical and
trabecular vBMD and skeletal site were observed for several variables. Our findings
suggest that there are different age patterns and correlates for trabecular and cortical
vBMD in men of African ancestry. A better understanding of the mechanisms underlying
these differential associations may reveal new insight into the etiology of age-related

bone loss and osteoporosis.
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4.2 INTRODUCTION

Bone mineral density (BMD) measured by dual-energy x-ray absorptiometry (DXA) has
been widely used to diagnose osteoporosis and to identify subjects at risk for fracture and
factors for osteoporosis. However, DXA is a two-dimensional imaging technique that
measures areal BMD (aBMD), cannot distinguish between trabecular and cortical bone,
and is confounded by differences in bone size. Unlike DXA, quantitative computed
tomography (QCT) measures volumetric BMD (vBMD), provides a separate measure of
trabecular and cortical BMD, and is not confounded by bone size differences between
individuals.

Factors related to DXA-measured aBMD have been well-established. In contrast,
few studies have comprehensively characterized the anthropometric, medical and
behavioral factors related to trabecular and cortical vBMD. Moreover, there is limited
information available on the correlates of vBMD in populations of African descent (1-3).
In the present study, we examined the factors related to trabecular and cortical vBMD in
a large population-based study of men of African ancestry. The aim of our study was to
identify the correlates of vBMD and to compare the factors associated with cortical and

trabecular vBMD.
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43 METHODS

4.3.1 Study subjects

Between 1997 and 2003, 3,170 men were recruited for a population-based prostate cancer
screening study on the Island of Tobago, Trinidad & Tobago (4). Briefly, the Tobago
Prostate Cancer Survey is an observational cohort study of prostate cancer prevalence and
incidence in otherwise healthy men aged 40 years and older. To be eligible, men had to
be ambulatory, non-institutionalized and not terminally ill. Recruitment for the survey
was accomplished by flyers, public service announcements, posters, informing health
care workers at local hospital and health centers, and word of mouth. Approximately 60%
of all age-eligible men on the island participated and participation was representative of
the i1sland Parishes. The cohort is 97% African, 2% East Indian, <1% white, and <1%
"other" as defined by paternal and maternal grandparent's ethnicity.

Between 2004 and 2007, men were invited back for a follow-up examination and
to complete a peripheral QCT (pQCT) scan. A total of 2031 men in the prostate cohort
(70% of survivors) returned for the visit. At the follow-up visit, we also recruited 451
new participants. Of them, 2153 underwent pQCT scan at the radius and tibia. We also
excluded men with incomplete data or of non Afro-Caribbean origin. The current analysis
is limited to the 1,901 men of African descent with complete pQCT scans and available

information from questionnaire interview by the time the analysis was complete.
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4.3.2 Anthropometric and body composition measurements

Body weight (in kilograms) was measured with light clothing and without shoes using a
calibrated balance beam scale. Height (in centimeters) was measured without shoes using
a wall-mounted height board. Two height measurements were made and the average used
in analysis. Waist circumference was measured at the umbilicus with an inelastic tape
measure. Body mass index (BMI) was calculated as weight in kilograms divided by
height in meters squared. Handgrip strength was measured in kilograms for both the left
and right hands as a surrogate for upper body and overall strength using a dynamometer
(Preston Grip Dynamometer, JA Preston 136 Crop.). Body composition (bone mineral-
free lean mass and fat mass) was measured using a Hologic QDR-4500W DXA scanner
(Hologic Inc., Bedford, MA). For all participants, the same scanner was used and DXA
scans were completed using the array beam mode. Standardized positioning and
utilization of QDR software was based on the manufacturer’s recommended protocol.
Scans were analyzed with QDR software version 8.26a. To ensure consistency, the DXA
technician scanned a spine phantom daily and completed a weekly quality control whole

body air scan, prior to completing any participant scans.

4.3.3 Other measurements

Trained interviewers and nurses administered questionnaires to participants.
Questionnaires gathered information pertaining to demographic characteristics, medical
history, fracture history, physical activity, and lifestyle variables. We focused on

potential correlates of vBMD based on the body of literature for men and women.
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Ethnicity was self-reported and participants provided detailed information on the ethnic
origin of their parents and grandparents. Respondents were assigned to an ethnic group if
they reported that all four grandparents as belonging to that group. Afro-Caribbean men
who reported having less than 4 African grandparents were categorized as mixed African
ethnicity. Occupational history was measured as a dichotomous variable and included
several common occupations.

Participants were asked whether they had been diagnosed by a health care
provider with selected conditions including cardiovascular disease, diabetes, hypertension
and prostate cancer. We also obtained information on personal and parental fracture
history. Disability was assessed with questions about the degree of difficulty (no
difficulty; some difficulty; much difficulty; or unable to perform activity) in six activities
of daily living that involved the back (bending down to pick up light-weight objects,
lifting a 10-pound object from the floor, reaching for objects just above the head, putting
on socks or stockings, getting in and out of an automobile, and standing for 2 hours).
Subjects answered any difficulty or unable to perform any of the six activities due to back
pain were considered with “difficulty performing daily activity due to back pain”.

Smoking status was categorized as never, past and current by asking men whether
they had smoked at least 100 cigarettes in their lifetime. Men who smoked fewer than
100 cigarettes were considered to have never smoked. Weekly alcohol drinking in the
past 12 months was categorized as none, occasional drinking, and 1-3, 4-7, 8-14, 15-21,
22-27 and more than 28 drinks per week. Physical activity was assessed by the frequency
and duration of walking in the past 7days for exercise, to work, the store or church. We

also used hours of television watching per week as a surrogate of physical inactivity.
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Men also reported their daily consumption of coffee, tea and soda (not
decaffeinated). We assumed that one cup of coffee, tea and soda contained 95, 55 and
45mg of caffeine, respectively. Dietary calcium intake was assessed by frequency of
selected food items including fish, bone chewing, green leafy vegetables, beans, milk,
cheese, and cheese dishes that contain high dietary calcium and are frequently consumed

in the local cuisine. Supplemental intake of calcium and vitamin D was also assessed.

4.3.4 Peripheral QCT

Peripheral QCT was performed at the non-dominant forearm and left tibia (4% and 33%
of the total length of forearm and tibia), two skeletal sites that are subjected to different
weight bearing, using the Stratec XCT-2000 scanner (Stratec Medizintechnik, Pforzheim,
Germany). Technicians followed a stringent protocol for patient positioning and
scanning. A scout view was obtained prior to the pQCT scan to define an anatomic
reference line for the relative location of the subsequent scans at the radius and tibia.
Tibia length was measured from the medial malleolus to the medial condyle of the tibia,
and forearm length was measured from the olecranon to the ulna styloid process. The
scans at the 4% radius and tibia sites represent predominantly trabecular bone, whereas
the scans at the 33% sites represent predominantly cortical bone. A single axial slice of
2.5mm thickness with a voxel size of 0.5mm and a speed of 20 mm/s is taken at all
locations. Image processing was performed using the Stratec software package (Version
5.5E). To determine the total and trabecular vBMD (mg/cm3) at the 4% site of the radius
and tibia, identical parameters for contour finding and separation of tabecular and cortical
bone are: contour mode 2, Threshold=169 mg/cm3; peel mode 1, area=45%. To
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determine the total and cortical vBMD (mg/cm’) at the 33% site of the radius and tibia,
identical parameters are: mode 2, Threshold=169 mg/cm3;cortm0de 1, Threshold=710
mg/cm’. pQCT scans were stable throughout the study. The short-tern in vivo precision
of pQCT measurements was evaluated in 30 subjects. All CVs for measures of pQCT

BMD were 2.1%.

4.3.5 Statistical Analysis

Analysis of variance (ANOVA) was used to compare the unadjusted skeletal site-specific
vBMD across 5-year age groups. We also evaluated the age-adjusted, and age and
weight- adjusted (data not shown) association of each predictor with cortical and
trabecular vBMD at the radius and tibia using linear regression analysis. The
relationships between potential correlates and vBMD were expressed as a one unit
increase for categorical variables or approximately a one standard deviation (SD)
increase for continuous variables, along with 95% confidence intervals. The formula used
to calculate the percent difference in vBMD per unit change of independent variable was:
((B coefficient *unit)/ mean vBMD)*100. The corresponding confidence intervals were
calculated as: (((B coefficient + 1.96*standard error)*unit)/mean vBMD)*100. In order to
identify the independent correlates, multiple linear regression analysis was performed
separately using a stepwise procedure for trabecular and cortical vBMD at the radius and
tibia. Age was forced into each multiple linear regression model. Variables with a p-value
less than 0.10 from the age-adjusted univariate linear regression model were entered into
the multiple variable model. We also assessed the multi-collinearity of predictor variables

using the variance inflation factor (VIF). If there was evidence of collinearity, the model
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was re-evaluated. If variables were from the same domain (e.g., “ever smoked” and
“currently smoke”), we selected the variable with a stronger association with vBMD. In
addition, multiple linear regression analyses of VBMD at each skeletal site were
performed for three separate models that included anthropometric or body composition
variables: 1) using BMI; 2) using body weight and height modeled separately; and 3)
using total body fat and lean mass. Results were similar and thus only the results for BMI
are shown. All statistical analyses were performed using the Statistical Analysis System

(SAS, version 9.1; SAS Institute, Cary, NC).

44  RESULTS

The mean age of the population was 59.1+10.4 years old (range 40-92 years old).
Approximately 9% of the men reported having at least one non-African grandparent. The
mean values and standard deviation (SD) of trabecular and cortical vBMD were 206+49
and 1213423 mg/cm’ at the radius, and 228+41 and 1177424 mg/cm” at the tibia. Figure
4-1 and 4-2 shows the unadjusted age-related patterns for trabecular and cortical vBMD
at each skeletal site. The pair-wise t-test showed that the oldest age group (75+) had a
17% and 5% lower trabecular vBMD than the youngest age group (40-44) at the radius
(p<0.0001) and tibia (p=0.10), respectively. Men aged 45-49 had a 9% (p=0.01) and 4%
lower (p=0.01) trabecular vBMD than those aged 40-44 at the radius and tibia,
respectively, but trabecular vBMD did not differ substantially between the older age
groups. Cortical vBMD was 2% (p<0.0001) and 1% (p=0.0003) lower for the oldest age

group at the radius and tibia, respectively, compared to the youngest age group.
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4.4.1 Age-adjusted regression results

Each SD (4.3 kg/m®) increase in BMI was associated with a 3.0% and 4.6% higher
trabecular vBMD and 0.37% and 0.36% lower cortical vBMD at the radius and tibia,
respectively (Table 4-1). In general, the body weight and body composition related
variables were positively correlated with trabecular vBMD, whereas these variables were
negatively associated with cortical vBMD. In addition, every 6.7cm increase in height
was associated with a 4% lower trabecular vBMD at both the tibia and radius, but a 0.1%
higher cortical vBMD at the radius.

The prevalence of self-reported diabetes was 16.4% and was positively associated
with vBMD at all 4 skeletal sites with an approximately 4% and 5% higher trabecular
vBMD but only 0.4% higher cortical vBMD than men without diabetes. Mixed African
ancestry, prostate cancer history and androgen deprivation therapy (orchiectomy or
currently taking Leuprorelin) was associated with a 0.3% to 0.9% lower cortical vBMD
but these variables were not associated with trabecular vBMD. Men who had experienced
a previous fracture had lower trabecular and cortical vBMD, but the association was only
significant for trabecular vBMD at the radius and cortical vBMD at the tibia. Use of
thiazide or non-thiazide diuretics was not associated with trabecular or cortical vBMD.
Glucocorticoids use was low in this population and was not significantly associated with
vBMD at either skeletal site.

Men who smoked more than 100 cigarettes in their lifetime had a 4-5% lower
trabucular vBMD and approximately 0.2% lower cortical vBMD than nonsmokers.
Moreover, the effect of smoking on vBMD was greater for current smokers than past

smokers, compared with nonsmokers. Alcohol drinking and physical activity were not
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correlated with vBMD. Fifteen percent of the men chewed animal or fish bones at least 5
days a week. Bone chewing was associated with a 2-3% higher trabecular vBMD at both

skeletal sites but was not associated with cortical vBMD.

4.4.2 Results from the multiple linear regression model

Age(-), body weight(+), height(-), diabetes(+), personal fracture history(-), cigarette
smoking (-), and bone chewing(+) explained 6% of the variation in trabecular vBMD at
the radius (Table 4-2). These variables, except fracture history, explained 10% of the
variation in trabecular vBMD at the tibia. Multiple linear regression models explained 16
and 13% of the variation in cortical vBMD at the radius and tibia, respectively. At the
radius, age(-), body weight(-), height(+), grip strength(-), mixed African ethnicity(-),
diabetes(+), prostate cancer(-), androgen deprivation therapy(-), and smoking(-) were
significant correlates of cortical vBMD. However, for cortical vBMD at the tibia, only
age(-), weight(-), diabetes(+) and androgen deprivation therapy(-) remained in the final
model.

Multiple linear regression models substituting BMI or body fat and lean mass for
body weight yield similar results (data not shown). BMI was positively associated with
trabecular vBMD, but negatively associated with cortical vBMD. In the models that
included body fat and lean mass, lean mass was a significant positive correlate of
trabecular vBMD but negative correlate of cortical vBMD. Fat mass and vBMD were
only significantly correlated at the tibia. Fat mass was positively associated with

trabecular vBMD but was negatively associated with cortical vBMD at the tibia.
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4.5  DISCUSSION

To better understand the factors that influence bone mass in men of African heritage, we
characterized a number of anthropometric, lifestyle and medical variables and examined
the relation of these variables to BMD at the radius and tibia in a large population sample
of middle-aged and elderly men. Several features of our study were unique, including the
large sample size of Afro-Caribbean men, careful measurement of variables, focus on
both cortical and trabecular volumetric BMD, and the wealth of information available
about the study cohort. The results validate associations described previously among
Caucasian men, such as the major importance of body weight, but also illuminate
previously unrecognized relationships.

Bone mineral density decreases with advancing age in men of all race and ethnic
background, and this trend most likely contributes to the increase in fracture rates with
aging. In the current study, we observed different age-related patterns for cortical and
trabecular vBMD. Similar results have been observed in other recent studies, but these
reports have included only Caucasian men. We found that cortical vBMD appeared to
decrease more slowly with advancing age than trabecular vBMD and the age pattern
appeared to be more linear for cortical vBMD. Cross-sectionally, the largest decline in
trabecular vBMD occurred among men aged 40-44 and 45-49 years and then trabecular
vBMD appeared to decline more slowly at the radius or remained stable at the tibia.
Although our study did not include men aged 40 and below, our results among men of
African ancestry appear to be consistent with the recent observations of an early

reduction of trabecular vBMD with aging in men (5,6).
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DXA measures of areal BMD are one of the most important predictors of
osteoporotic fracture risk. Fewer studies have examined pQCT or QCT measures of
vBMD and fracture in men, particularly among men of African ancestry. Among men
and women, those with vertebral fracture have lower cortical and trabecular vBMD
compared to controls (7). Each SD decrease in cortical, but not trabecular, vBMD at the
radius was associated with a 16-fold risk of fracture among 52 hemodialysis patients (8).
In our study, men who had experienced a previous fracture had significantly lower
trabecular vBMD at the radius independent of other variables.

Previous studies using ancestry informative molecular markers in this Afro-
Caribbean population have indicated that the ancestral proportions are 94.0% African,
4% European and 1% Native American. Despite the low level of admixture in this
population, we found that mixed African ancestry was associated with lower cortical
vBMD at the radius. These results are consistent with previous studies which have
observed lower aBMD among African Americans who have greater European ancestry
(9). The high proportion of African ancestry and negative impact of admixture on vBMD
implies that the Tobago population may benefit from a greater prevalence of protective
alleles of African origin.

Previous studies have found that greater body weight is associated with higher
areal BMD in Caucasians and African Americans (10-12). In the present study, greater
body weight, fat mass and lean mass were all associated with higher trabecular vBMD.
In contrast, these variables were associated with lower cortical vBMD. Our results are
consistent with the recent findings of Lorentzon et al. who showed that greater fat mass is

associated with lower cortical vBMD at the tibia (13). Increased adipocytes in the bone
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marrow cavity among heavier subjects may suppress osteoblastogenesis and contribute to
decreased cortical vBMD by producing adipokines in the local bone micro-environment
(14).

In our study, diabetes was associated with greater cortical and trabecular vBMD
and remained a significant correlate after adjusting for age, body weight and other
covariates. A higher trabecular vBMD was observed in diabetic than non-diabetic black
women and white men in the Health, Aging, and Body Composition Study (15). A
similar association was not observed among white women or black men in the same
study. In the Diabetes Heart Study, trabecular vBMD was not associated with diabetes
independently from BMI (16).

Androgens are a strong positive regulator of bone mass in men. Several studies
have revealed that androgen deprivation for treatment of prostate cancer is associated
with a marked loss of bone mass (17-19). However, studies evaluating the effect of
androgen deprivation on bone mass in men of African descent are limited. Agarwal et al.
reported a significant loss of trabecular vBMD at the lumbar spine after orchiectomy in
Indian patients (20). We found significantly lower cortical, but not trabecular, vBMD
among men who had a history of androgen deprivation therapy in the current study.

Cigarette smoking was associated with lower trabecular but not cortical vBMD in
our study. The GOOD study also did not observe a difference in cortical vBMD between
Caucasian European men who did and did not smoke (21). The effect of smoking on
trabecular vBMD in the current study was greater for current smokers, but was also
evident among past smokers. This suggests that smoking may have a long-lasting effect

on vBMD. The association with vBMD was also observed in the multivariable model,
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indicating that the association was independent of other intervening variables such as
body weight, alcohol intake and physical activity. Nicotine may directly affect bone
metabolism and bone mass by inhibiting the proliferation of osteoprogenitor cells in a
concentration-dependent manner (22,23).

Our multivariate models explained up to 16% of the variance in cortical vBMD.
Only 10% of the variance in trabecular vBMD could be explained by the variables
studied. These estimates compare well with other reports of DXA measures of areal
BMD in men and women (24-28) and trabecular vBMD in men (3). However, these
findings raise the possibility that many other undetermined variables, including inherited
factors, contribute to cortical and trabecular vBMD in men of African heritage.

In multivariate analyses, we found no association of vBMD with several lifestyle
and behavioral variables including physical activity and intake of alcohol, caffeine and
dietary calcium. Use of diuretics was also not associated with vBMD in the current
study. Although dietary calcium intake was not associated with vBMD, we did observe
an association between chewing bones and increased trabecular vBMD in multi-variate
models. The absence of an association with some variables could reflect low statistical
power to detect an association or the inherent difficulty in quantifying some variables
with questionnaires.

This study has several potential limitations. First, the cross-sectional design limits
our ability to establish temporal relationships with trabecular and cortical vBMD.
Confirmation of our results with longitudinal evaluations would be useful, particularly for
establishing the tempo and natural history of trabecular and cortical bone loss in this

population. We also examined Afro-Caribbean men who were volunteers and their

92



characteristics may differ from those of other groups. Information collected by
questionnaires depended on participants’ recall and this may have limited our ability to
detect relationships. On the other hand, our study has several unique features including
its large size, focus on individuals of African heritage, careful delineation of trabecular
and cortical BMD with QCT, and the wealth of information available on the study cohort.

In summary, our study of a large group of older men of African ancestry supports
the importance of several factors associated with volumetric BMD. From a clinical
perspective, these findings reinforce the need to avoid excessive thinness and cigarette
smoking, a negative impact of androgen deprivation for prostate cancer, and the
importance of calcium for preserving vBMD. Our study also revealed a potentially

negative impact of increased body weight and fat mass on cortical vBMD.

93



4.6 REFERENCES

Taaffe DR, Simonsick EM, Visser M, Volpato S, Nevitt MC, Cauley JA,
Tylavsky FA, Harris TB 2003 Lower extremity physical performance and hip
bone mineral density in elderly black and white men and women: cross-sectional
associations in the Health ABC Study. J Gerontol A Biol Sci Med Sci
58(10):M934-42.

Marshall LM, Zmuda JM, Chan BK, Barrett-Connor E, Cauley JA, Ensrud KE,
Lang TF, Orwoll ES 2007 Race and Ethnic Variation in Proximal Femur
Structure and Bone Density Among Older Men. J Bone Miner Res.

Ruffing J, Cosman F, Zion M, Tendy S, Garrett P, Lindsay R, Nieves J 2006
Determinants of bone mass and bone size in a large cohort of physically active
young adult men. Nutr Metab (Lond) 3:14.

Bunker CH, Patrick AL, Konety BR, Dhir R, Brufsky AM, Vivas CA, Becich MJ,
Trump DL, Kuller LH 2002 High prevalence of screening-detected prostate
cancer among Afro-Caribbeans: the Tobago Prostate Cancer Survey. Cancer
Epidemiol Biomarkers Prev 11(8):726-9.

Russo CR, Lauretani F, Bandinelli S, Bartali B, Di lorio A, Volpato S, Guralnik
JM, Harris T, Ferrucci L 2003 Aging bone in men and women: beyond changes in
bone mineral density. Osteoporos Int 14(7):531-8.

Riggs BL, Melton Iii LJ, 3rd, Robb RA, Camp JJ, Atkinson EJ, Peterson JM,
Rouleau PA, McCollough CH, Bouxsein ML, Khosla S 2004 Population-based
study of age and sex differences in bone volumetric density, size, geometry, and
structure at different skeletal sites. J Bone Miner Res 19(12):1945-54.

Kaji H, Kosaka R, Yamauchi M, Kuno K, Chihara K, Sugimoto T 2005 Effects of
age, grip strength and smoking on forearm volumetric bone mineral density and

bone geometry by peripheral quantitative computed tomography: comparisons
between female and male. Endocr J 52(6):659-66.

Jamal SA, Gilbert J, Gordon C, Bauer DC 2006 Cortical pQCT measures are
associated with fractures in dialysis patients. J Bone Miner Res 21(4):543-8.

Shaffer JR, Kammerer CM, Reich D, McDonald G, Patterson N, Goodpaster B,
Bauer DC, Li J, Newman AB, Cauley JA, Harris TB, Tylavsky F, Ferrell RE,
Zmuda JM 2007 Genetic markers for ancestry are correlated with body
composition traits in older African Americans. Osteoporos Int 18(6):733-41.

94



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Glynn NW, Meilahn EN, Charron M, Anderson SJ, Kuller LH, Cauley JA 1995
Determinants of bone mineral density in older men. J Bone Miner Res
10(11):1769-77.

George A, Tracy JK, Meyer WA, Flores RH, Wilson PD, Hochberg MC 2003
Racial differences in bone mineral density in older men. J Bone Miner Res
18(12):2238-44.

Bendavid EJ, Shan J, Barrett-Connor E 1996 Factors associated with bone
mineral density in middle-aged men. J Bone Miner Res 11(8):1185-90.

Lorentzon M, Landin K, Mellstrom D, Ohlsson C 2006 Leptin is a negative
independent predictor of areal BMD and cortical bone size in young adult
Swedish men. J Bone Miner Res 21(12):1871-8.

Rosen CJ, Bouxsein ML 2006 Mechanisms of disease: is osteoporosis the obesity
of bone? Nat Clin Pract Rheumatol 2(1):35-43.

Strotmeyer ES, Cauley JA, Schwartz AV, Nevitt MC, Resnick HE, Zmuda JM,
Bauer DC, Tylavsky FA, de Rekeneire N, Harris TB, Newman AB 2004 Diabetes
is associated independently of body composition with BMD and bone volume in
older white and black men and women: The Health, Aging, and Body
Composition Study. J] Bone Miner Res 19(7):1084-91.

Register TC, Lenchik L, Hsu FC, Lohman KK, Freedman BI, Bowden DW, Carr
JJ 2006 Type 2 diabetes is not independently associated with spinal trabecular

volumetric bone mineral density measured by QCT in the Diabetes Heart Study.
Bone 39(3):628-33.

Conde FA, Sarna L, Oka RK, Vredevoe DL, Rettig MB, Aronson WJ 2004 Age,
body mass index, and serum prostate-specific antigen correlate with bone loss in

men with prostate cancer not receiving androgen deprivation therapy. Urology
64(2):335-40.

Kiratli BJ, Srinivas S, Perkash I, Terris MK 2001 Progressive decrease in bone
density over 10 years of androgen deprivation therapy in patients with prostate
cancer. Urology 57(1):127-32.

Preston DM, Torrens JI, Harding P, Howard RS, Duncan WE, McLeod DG 2002
Androgen deprivation in men with prostate cancer is associated with an increased
rate of bone loss. Prostate Cancer Prostatic Dis 5(4):304-10.

Agarwal MM, Mandal AK, Khandelwal N, Singh SK 2007 Need for measurement
of bone mineral density in patients of prostate cancer before and after

orchidectomy: role of quantitative computer tomography. J Assoc Physicians
India 55:486-90.

95



21.

22.

23.

24.

25.

26.

27.

28.

Lorentzon M, Mellstrom D, Haug E, Ohlsson C 2006 Smoking in young men is
associated with lower bone mineral density and reduced cortical thickness. J Clin
Endocrinol Metab.

Kamer AR, El-Ghorab N, Marzec N, Margarone JE, 3rd, Dziak R 2006 Nicotine
induced proliferation and cytokine release in osteoblastic cells. Int J Mol Med
17(1):121-7.

Liu XD, Zhu YK, Umino T, Spurzem JR, Romberger DJ, Wang H, Reed E,
Rennard SI 2001 Cigarette smoke inhibits osteogenic differentiation and
proliferation of human osteoprogenitor cells in monolayer and three-dimensional
collagen gel culture. J Lab Clin Med 137(3):208-19.

Cauley JA, Fullman RL, Stone KL, Zmuda JM, Bauer DC, Barrett-Connor E,
Ensrud K, Lau EM, Orwoll ES 2005 Factors associated with the lumbar spine and

proximal femur bone mineral density in older men. Osteoporos Int 16(12):1525-
37.

Lau EM, Leung PC, Kwok T, Woo J, Lynn H, Orwoll E, Cummings S, Cauley J
2006 The determinants of bone mineral density in Chinese men--results from Mr.

Os (Hong Kong), the first cohort study on osteoporosis in Asian men. Osteoporos
Int 17(2):297-303.

McGuigan FE, Murray L, Gallagher A, Davey-Smith G, Neville CE, Van't Hof R,
Boreham C, Ralston SH 2002 Genetic and environmental determinants of peak
bone mass in young men and women. J Bone Miner Res 17(7):1273-9.

Hill DD, Cauley JA, Sheu Y, Bunker CH, Patrick AL, Baker CE, Beckles GL,
Wheeler VW, Zmuda JM 2007 Correlates of bone mineral density in men of
African ancestry: The Tobago Bone Health Study. Osteoporos Int.

Bauer DC, Browner WS, Cauley JA, Orwoll ES, Scott JC, Black DM, Tao JL,
Cummings SR 1993 Factors associated with appendicular bone mass in older

women. The Study of Osteoporotic Fractures Research Group. Ann Intern Med
118(9):657-65.

96



1250
H Radius
KX Tibia
1225 B
)]
%oﬁ_\ 1200 4----------- Q- BB BB R
4
T =
(o]
S E NN
Sv 1175_ ...... g 8 .. .o .. XX IR XXX IErrrxo
(@)
1150_ ...... o 8 .o .o .o .o .o o .o o N\ feosoee
1125 T T T T
40- 45- 50- 55- 60- 65- 70- 75-
Age Group
(Years)

Figure 4-1 Trabecular vBMD by age group (unadjusted)
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Figure 4-2 Cortical vBMD by age group (unadjusted)
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Table 4-1 Correlates of trabecular and cortical vBMD

Mean (+SD) Unit Age- and weight- adjusted percent difference change in vBMD per unit change
or frequency (95%CI)
Variable (prevalence) Radius Tibia
Trabecular vBMD Cortical vVBMD Trabecular Cortical vBMD
vBMD

Age(yrs)® 59.1£10.4 10 -2.62(-3.65,-1.58)  -0.62(-0.70,-0.54)  -0.09(-0.88, 0.69) -0.52(-0.61, -0.43)
Body weight (kg)* 83.9+14.5 10 1.11(0.35, 1.87) -0.26(-0.31, -0.20) 2.36(1.79, 2.94) -0.32(-0.37, -0.25)
Standing height (cm) 175.0+6.7 6.7 -4.07(-5.25, -2.89) 0.11(0.02, 0.20) -4.18(-5.05, -3.30) -0.08(-0.17, 0.02)
BMI(kg/m?)* 27.4+4.3 4.3 3.00(1.93, 4.07) -0.37(-0.45, -0.28) 4.63(3.83, 5.42) -0.36(-0.45, -0.27)
Waist circumference (cm) 93.1+10.7 10.7 0.76(-1.46,2.97) 0.03(-0.13, 0.20) 2.70(1.06, 4.35) 0.15(-0.03, 0.33)"
Grip strength (kg) 42.7+10.1 10.1 0.21(-1.19, 1.60) -0.09(-0.19,0.01)"  -1.24(-2.29, -0.20 -0.12(-0.23, -0.00)
Daily dietary calcium intake (kg) 465.4+219.3 0.60(-0.48, 1.68) 0.02(-0.07, 0.10) 0.67(-0.13, 1.48) -0.00(-0.09, 0.08)
Daily caffeine intake in top quartile 364(20.0) 0.47(-2.29,3.23) -0.20(-0.41,0.00)"  0.99(-1.07, 3.05) -0.10(-0.32, 0.12)
Total body fat mass (kg)* 17.6+£6.9 6.9 1.53(0.45, 2.62) -0.30(-0.38, -0.22) 3.29(2.48, 4.11) -0.33(-0.42, -0.24)
Total body lean mass (kg)* 64.2+8.7 8.7 1.50(0.33, 2.67) -0.88(-1.09, -0.67) 6.88(4.75, 9.01) -1.16(-1.39, -0.93)
Percent fat mass (%)* 21.0+£5.9 59 5.15(1.24, 9.06) -0.36(-0.49, -0.24) 4.69(2.48, 5.90) -0.36(-0.50, -0.23)
Mixed African ancestry 170(8.9) -1.20(-4.95, 2.55) -0.37(-0.65, -0.08)  2.09(-0.70, 4.89) -0.31(-0.61, -0.01)

Diabetes 311(16.4) 3.45(0.48, 6.42) 0.40(0.18, 0.62) 5.22(3.01, 7.43) 0.37(0.13, 0.62)
Hypertension 620(32.8) 0.31(-2.09, 2.71) 0.04(-0.14, 0.22) 1.17(-0.63, 2.96) 0.10(-0.09, 0.29)
CVD 67(3.5) 2.08(-3.74,7.9) 0.20(-0.24, 0.64) 3.17(-1.30, 7.63) 0.07(-0.42, 0.55)
Prostate cancer 291(15.3) -0.25(-3.43,2.92) -0.39(-0.63, -0.15)  0.03(-2.36, 2.43) -0.33(-0.59, -0.07)
Androgen deprivation therapy 61(3.3) 2.18(-4.05, 8.41) -0.84(-1.33,-0.35)  0.64(-4.04, 5.32) -0.88(-1.42, -0.35)
Good overall health status 1718(91.3) 1.74(-2.14, 5.62) -0.04(-0.33, 0.25) 0.27(-2.65, 3.20) -0.29(-0.61, 0.02)"
Ever fracture 367(19.3) -3.24(-5.97, -0.51) -0.18(-0.39,0.02)"  -1.52(-3.55,0.51) -0.26(-0.48, -0.04)
Mother had fracture 80(4.9) -4.64(-9.98, 0.69)" 0.03(-0.37, 0.43) -1.50(-5.45, 2.46) -0.04(-0.47, 0.38)
Father had fracture 68(4.3) -0.80(-6.62, 5.02) -0.34(-0.78, 0.10) 0.50(-3.77, 4.78) -0.38(-0.84, 0.09)
Paternal or maternal fracture history 141(9.3) -2.84(-6.98, 1.30) -0.16(-0.47,0.15)  -0.54(-3.59, 2.51) -0.26(-0.59, 0.08)
Eﬁ;‘fﬁ perform daily activity dueto 769 g, 2.89(-6.77,098)  -020(-049,0.10)  -120(-4.17,1.76)  -0.11(-0.43,0.22)
Ever smoked 619(32.7) -5.16(-7.44,-2.88)  -0.19(-0.36,-0.02) -3.89(-5.59,-2.19)  -0.18(-0.36, 0.01)"

Smoking status

Past smoker vs. non smoker 420(22.2) -3.74(-6.36, -1.12) -0.16(-0.35,0.04)  -3.06(-5.02, -1.09) -0.12(-0.36, 0.06)
Current smoker vs. non smoker 199 (10.5) -8.17(-11.77,-4.58)  -0.27(-0.54,-0.00) -5.61(-8.26, -2.96) -0.23(-0.52, 0.06)
Alcohol intake>1 drink/wk 358(18.9) -1.96(-4.71, 0.79) 0.13(-0.08, 0.33) -1.47(-3.51, 0.57) 0.12(-0.10, 0.34)

TV watching > 14 hours/wk 722(38.2) 0.01(-2.21,2.22) 0.12(-0.04, 0.29) -0.58(-2.24, 1.07) 0.19(0.01, 0.37)
Walk > 3.5 hours/wk 545(29.1) -0.72(-3.11, 1.68) 0.06(-0.12, 0.24) 0.29(-1.49, 2.08) -0.00(-0.20, 0.19)
Walk > 5-7days/wk 1192(63.1) 0.18(-2.06, 2.42) -0.11(-0.28, 0.06) 1.13(-0.55, 2.79) -0.03(-0.21, 0.15)
Bone chewing > 5 days/wk 278(14.8) 3.32(0.27, 6.37) 0.01(-0.22, 0.23) 2.38(0.10, 4.65) 0.01(-0.24, 0.25)
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Table 4-1 (continued) Correlates of trabecular and cortical vVBMD

-0.02(-0.24, 0.20)
0.02(-0.15, 0.19)
0.04(-0.17, 0.26)
-0.03(-0.28, 0.22)
-0.03(-0.78, 0.72)
0.01(-0.26, 0.28)
-0.26(-1.32, 0.79)

0.73(-1.48, 2.94)
1.24(-0.50, 2.97)
-1.27(-3.40, 0.86)
1.31(-1.19, 3.80)
0.06(-6.96, 7.08)
0.61(-2.11,3.32)

-3.00(-13.99, 7.99)

0.07(-0.17, 0.31)
0.03(-0.16, 0.21)
-0.05(-0.28, 0.18)
-0.24(-0.51, 0.03)
-0.45(-1.25, 0.35)
0.07(-0.22, 0.36)
-0.12(-1.29, 1.06)

>1 glass/d milk during teens 1588(84.2) 0.57(-2.38, 3.52)
>1 glass/d milk at age 18-50 y 1260(67.0) 1.28(-1.05, 3.61)
Calcium supplement >3 times/wk 323(17.5) -1.45(-4.31, 1.41)
Vitamin D supplement >3 times/wk 221(12.1) 0.66(-2.68, 3.99)
Use of nonthiadize diuretics 26 (1.4) -1.65(-11.11, 7.80)
Use of thiadize diuretics 195 (10.5) 1.20(-2.40, 4.80)
Use of glucocorticoid 12 (0.64) -2.60(-16.14, 10.9)

¥ Unadjusted

* Age adjusted only

IVariables with p-value between 0.05 and 0.10
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Table 4-2 Significant correlates of vBMD in stepwise multiple linear regression models.

Percent change in vBMD per unit change (95%CI)

Variables Unit Radius Tibia

Trabecular vBMD' Cortical vVBMD? Trabecular vBMD® Cortical vVBMD*
N 1868 1805 1828 1801
Age (yrs) 10 -3.30 (-4.42,-2.17) -0.70 (-0.81 , -0.60) -0.44 (-1.27,0.39)*  -0.63 (-0.72,-0.54)
Weight (kg) 10 1.83 (1.00, 2.65) -0.28 (-0.34, -0.22) 4.52 (3.63, 5.40) -0.31 (-0.38 , -0.25)
Height (cm) 6.7 -3.87 (-5.06 , -2.68) 0.15(0.05, 0.24) -3.96 (-4.83 ,-3.07) -
Grip strength (kg) 10.1 - -0.13 (-0.24, -0.02) -
Mixed African ancestry -0.37 (-0.66 , -0.09) -
Diabetes 0.39(0.16, 0.61) 0.41 (0.17, 0.65)

Prostate cancer
Prostate cancer treatment
Any fracture
Smoking
Past smoker vs. nonsmoker
Current smoker vs. nonsmoker
Chew bones >5 days/wk

3.40(0.46, 6.35)

-3.01 (-5.71 , -0.30)

-2.95(-5.57,-0.33)
-7.30 (-10.89 , -3.72)
3.25 (0.25 , 6.25)

-0.26(-0.52, -0.01)
-0.68(-1.19 , -0.18)

-0.20 (-0.40 , -0.002)
-0.28 (-0.55 , -0.004)

5.18 (3.02, 7.35)

-2.48 (-4.40 , -0.55)
-4.84 (-7.43 ,-2.24)
2.32(0.11,4.53)

-0.86 (-1.40 , -0.33)

RZ

0.06

0.16

0.10

0.13

" Age, weight, height, diabetes, prostate cancer treatment, any fracture, smoking status, and bone chewing were enter into the model

? Age, weight height, grip strength, caffeine intake (dichotomous), mixed African ancestry, reported/diagnosed prostate cancer, diabetes, prostate

cancer treatment and smoking (past and current smoker vs. non smoker) were entered into the model

3 Age, weigh, height, grip strength, diabetes, systolic blood pressure, daily calcium intake (continuous), smoking (past and current smoker vs. non

smoker), and bone chewing were entered into the model

* Age, weight, grip strength, diabetes, mixed African ancestry, reported/diagnosed prostate cancer, prostate cancer treatment, any fracture, ever

smoked (dichotomous), and good overall health were entered into the model.
* P-value> 0.5 (Age was forced into the multiple linear regression model)
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5.1 ABSTRACT

Bone mineralization is a tightly controlled process that determines the quality of bone. The
ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPPI) gene product plays an important
role in this process. However, very little is known about the potential effect of common variation
in this gene on bone mineral density (BMD) in humans. The present study aimed to examine the
associations of 34 single nucleotide polymorphism (SNP) in the ENPPI gene region with several
BMD measures in 1,139 Afro-Caribbean men aged >40. Phenotypes included areal BMD
(aBMD) at the proximal femur and the rate of proximal femur bone loss determined over an
average of 4.4 years by dual-energy X-ray absorptiometry and trabecular and cortical volumetric
BMD (vBMD) at the radius and tibia, measured by quantitative computed tomography. The 34
SNPs captured 77% of the common genetic variation in the ENPPI gene region. We found that
SNPs 1rs6936129 and rs9398995 were associated with accelerated areal bone loss at the femoral
neck and areal BMD at the total hip (p <0.01). Significant associations (p<0.05) were also
observed between several SNPs (rs13211931, rs6939185, rs703184, rs7775386, rs9493110,
rs7769993 and rs9373000, rs1830971, rs858339 and rs7749493) and cortical vBMD. Our
findings suggest a strong association between common variation in ENPPI gene and the rate of
bone loss and BMD in men of African heritage. More studies are needed to confirm and explore

these relationships in greater detail.

102



5.2 INTRODUCTION

Osteoblasts mineralize bone matrix by promoting hydroxyapatite crystal formation and growth,
which provides collagen with structural rigidity and load-bearing strength. Bone mineralization
is a tightly regulated process that occurs initially in matrix vesicles (MVs) that contain calcium
and inorganic phosphate ions(Pi)(1,2). Pi crystallizes with calcium to form hydroxyapatite within
the MVs (3,4). Inorganic pyrophosphate (PPi) determines the rate of hydroxyapatite crystal
formation in bone by inhibiting the ability of Pi to crystallize. Thus, the balance between levels
of Pi and PPi is important for normal bone mineralization to proceed(5). Nucleotide
pyrophosphatase /phosphodiesterase 1, encoded by the ectonucleotide pyrophosphatase
/phosphodiesterase 1 (ENPP1) gene, is a central regulator of the extracelluar PPi pool and Pi
level. ENPPI1 regulates bone mineralization by generating PPi from nucleotide triphosphates,
which serves as a source of Pi. The PPi serves further to antagonize the ability of Pi to crystallize
with calcium to form hydroxyapatite and thereby reduces hydroxyapatite deposition in bone
matrix (5).

ENPP] has been intensively studied as a candidate gene for diabetes, obesity and insulin
resistance(6-13) due to its ability to inhibit insulin signaling(7). Two meta-analyses have
reported that individuals who were homozygous for the minor allele of the K121Q
polymorphism (rs1044498) were more likely to be diabetic(11,14). Recently, studies have
examined the effect of ENPP1 on bone mineralization in animal models (5,15-20). These studies
observed hypermineralization and low PPi levels in ENPP1 knockout mice(5,15,19,20). Another

study found that ENPP1 deficiency effects on mineral deposition might be skeletal site-specific
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and observed a lower BMD level in the long bones of ENPPI knockout mice compared to wild-
type mice(20). In the present study, we examined the association between common single
nucleotide polymorphisms (SNPs) in the human ENPPI gene and measures of bone mineral

density and bone loss in a large population of men of African heritage.

5.3 METHODS

5.3.1 Study population

All men were participants in the Tobago Bone Health Study, a study of 2652 community-
dwelling men aged 40 years and older who resided on the island of Tobago. Men who were
ambulatory, not terminally ill and who had not undergone a bilateral hip replacement were
recruited between 2000 and 2004 and completed an areal BMD (aBMD) assessment using dual-
energy X-ray absorptiometry (DXA). Details of this study have been described elsewhere(21). In
2004, participants were asked to return for a follow-up exam and to have a second measure of
aBMD by DXA. Approximatley 70% of survivors returned for the follow-up exam and 434 new
participants were also recruited. At this exam, men also completed a peripheral quantitative
computed tomography (pQCT) scan of the tibia and radius. Blood samples and anthropometric
measures were also collected and questionnaires about lifestyle and medical factors were
completed. Samples were batch shipped from Tobago to Pittsburgh for long-term storage by
overnight shipment with packed dry ice. Genomic DNA was extracted from 5Sml frozen blood
clots (baseline sample) or whole blood (follow-up) using the Qiagen DNA Blood Kit (Qiagen,

Inc., Valencia, CA). Written informed consent was obtained from each participant using forms
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and procedures approved by the University of Pittsburgh Institutional Review Board, the U.S.

Surgeon General’s Human Use Review Board, and the Tobago Ministry of Health.

5.3.2 Bone Measurements

Areal BMD (aBMD) at the proximal femur and its subregions was measured by DXA at both the
baseline and follow-up visits using the same Hologic QDR-4500W densitometer (Hologic Inc.,
Bedford, MA). Technicians followed the same DXA scanning protocol at both visits. The left hip
was scanned unless fractured or a hip replacement had occurred. Quality control assessments
were performed weekly to ensure that the scanner was stable throughout the study.

Volumetric BMD (vBMD) was measured using pQCT (XCT-2000, Stratec
Medizintechnik, Pforzheim, Germany). pQCT scans were performed at 2 skeletal sites (4% and
33%) at the non-dominant forearm and left tibia. The scans at the ultra-distal region of radius and
tibia sites represent predominantly trabecular bone, whereas the scans at the shaft regions
represent predominantly cortical bone.(22). The radius and tibia were scanned because these two
skeletal sites are subjected to different weight bearing.

Technicians followed stringent protocols for patient positioning and scanning. A scout
view was obtained prior to the pQCT scan to define an anatomic reference line for the relative
location of the subsequent scans (4% and 33% of the total length) at the radius and tibia. Tibia
length was measured from the medial malleolus to the medial condyle of the tibia, and forearm
length was measured from the olecranon to the ulna styloid process. A single axial slice of
2.5mm thickness with a voxel size of 0.5mm and a speed of 20 mm/s is taken at all locations.
Image processing was performed using the Stratec software package (Version 5.5E). To
determine the trabecular vBMD (mg/cm3) at the 4% site of the radius and tibia, identical
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parameters for contour finding and separation of tabecular and cortical bone were: contour mode
2, Threshold=169 mg/cm3; peel mode 1, area=45%. To determine the cortical vBMD (mg/cm3)
at the 33% site of the radius and tibia, identical parameters were: mode 2, Threshold=169

mg/cm3;cortmode 1, Threshold=710 mg/cm3

5.3.3 SNP selection

The ENPP1 gene is located on Chromosome 6 (position 132,170,849-132,257,988) with a size of
87,140 bps. We used a two-stage strategy to prioritize SNPs for genotyping. First, we employed
a tagging SNP approach to capture common genetic variation across the ENPP1 gene region. We
initially identified 149 SNPs across the ENPP1 gene region (including 10kb downstream and

10kb upstream of the transcript) using publicly available SNP data from Phase II of the

International HapMap project (http://www.hapmap.org) that were obtained using samples from
the African Yoruban (YRI) population in Ibadan, Nigeria. A subset of informative SNPs was
then selected from this larger reference SNP panel using a pair-wise correlation method with r*
>0.80 and minor allele frequency (MAF)>0.05 using the program HClust (23,24). In brief,
HClust identifies clusters of correlated SNPs. For each cluster, the SNP that is most correlated
with all other SNPs in the same cluster is then identified as a tag SNP for that particular cluster.
Using this approach, we identified 52 SNPs (36 singletons and 16 tag SNPs) from the 91 SNPs in
the reference SNP panel that had a MAF>0.05.

We then used the Function Analysis and Selection Tool for Single Nucleotide

Polymorphisms (FASTSNP)(http://fastsnp.ibms.sinica.edu.tw)(25) and the ElDorado tool

(version 4.5) from the Genomatix software package (Genomatix Suite release

3.4; http://www.genomatix.de ) to prioritize the 36 singleton SNPs for genotyping based on their
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predicted functional effects. FASTSNP identifies SNPs that may alter: 1) the amino acid in the
encoded protein to one with different structural characteristics or create a premature termination
of an amino-acid sequence; 2) an exonic splicing enhancer/silencer binding site in a coding
sequence that may affect splicing regulation; 3) a consensus splicing site sequence; 4) a putative
binding site for a transcription factor in the promoter or an intronic region; or 5) a 3’ untranslated
region motif likely to be involved in post-transcriptional regulation. ElDorado identifies SNPs
that may create or abolish a putative transcription factor binding site in the promoter/regulatory
region of genes by using a large library of weight matrices(26) and was used to analyze 7 SNPs
that could not be analyzed by FASTSNP. Potentially non-functional singleton SNPs were not
selected for genotyping leaving 31 SNPs in the panel of tag SNPs. In addition to these 31 SNPs,
we also included SNPs that were previously identified to be significantly associated (nominal
p<0.05) with vBMD in Caucasian men aged >65 years in the Osteoporotic Fractures in Men
Study (MrOS) (27,28). The 6 SNPs that were significantly associated with vBMD in MrOS and
that had a MAF > 0.05 and that were not monomorphic in YRI samples were selected. The final

SNP panel included a total of 37 SNPs of interest.

5.3.4 Genotyping

Genotyping was performed using pre-designed TagMan SNP genotyping assays (Applied
Biosystems). Genotyping was completed according to the manufacture’s protocol on a 7900HT
Fast Real-Time PCR system (Foster City, CA). The reactions were cycled with standard TagMan
conditions (50°C for 2 min hold, 95°C for 10 min hold, 95°C for 15 sec and 60°C for 1 min for
40 cycles and then cool down to 4°C). The genotypes were called with the Applied Biosystems
SDS 2.2.2 software package. SNP rs9493119 failed to be manufactured and was replaced by
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1s9493118 from the same tag SNP cluster. Each SNP was tested for Hardy-Weinberg equilibrium
(HWE) using a chi-square goodness-of-fit test. Three SNPs (rs9493105, rs7773477 and
rs9493116) were not in Hardy-Weinberg Equilibrium (p< 0.001) and were dropped from further
analysis. Two of these SNPs (rs9493105 and rs7773477) had no replacement and one SNP
(rs9493116) was replaced by rs7769712 from the same cluster. SNP rs9402345 had a MAF <
0.05 in our population and was removed from the analysis. Our final working genotype set
consisted of 34 SNPs. The average genotyping completeness rate was 95.9%. The average
genotyping consensus rate among the 5% blind replicate samples was 99.4% with individual
consensus rates for all SNPs >97.2%. We estimated using the program Tagger

(http://www.broad.mit.edu/mpg/haploview (29) that the 34 genotyped SNPs captured 77% of the

common variation in the ENPP1 gene region .

5.3.5 Statistical analysis

All single SNP associations were tested assuming additive, dominant and recessive inheritance
models using linear regression or analysis of covariance (ANCOVA). For the additive model, a
linear regression model was constructed to test whether carrying 0, 1, or 2 minor alleles had a
linear effect on the bone related trait. The continuous phenotypes were regressed on the allele
count (0, 1, 2). For dominant (AA vs. AB+BB) and recessive (AA+AB vs. BB) inheritance
models, ANCOVA was used to test the association between genotype and phenotype. All models
were adjusted for age, weight and height. We also performed multiple-testing correction of p-

values with permutation using R project (http://www.r-project.org). Study-wise p-values were

obtained empirically for each phenotype with the consideration of the best inheritance models
associated with each SNP. This p-value represented the overall impact of the 34 genotyped SNPs
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on the selected phenotype, rather than any particular SNP. Statistical analysis was performed

using the Statistical Analysis System (SAS, version 9.1; SAS Institute, Cary, NC).

5.4  RESULTS

The population sample consisted of 1,139 Afro-Caribbean men aged 40 and older who self-
reported non-mixed African ancestry. Their mean (+ SD) age was 58.7 + 10.1 years (Table 5-1).
Information on the 34 genotyped ENPP1 SNPs, including NCBI dbSNP reference number,
chromosome position, major and minor alleles, minor allele frequencies in Tobago and Yoruban
(YRI) population from Ibadan, Nigeria from Phase II of the International HapMap project

(www.hapmap.org) and number of subjects with each genotype in current study, and tests of

HWE are shown in Table 5-2. Minor allele frequencies were very comparable to those in the
YRI sample from the HapMap project and all SNPs were in HWE in the current study (P>0.01).

The results of single SNP association analyses and rate of change in aBMD during the 4.4 years
of follow-up are shown in Figure 5-1 and Table 5-3. We plotted the transformed (-logl0) p-
values from the best fitting model for each SNP. We further summarized the results for SNPs
that were significantly associated with the rate of change in aBMD (nominal p<0.05). Of the 34
SNPs tested, only one SNPs(rs9398995) was associated with bone loss at the total hip (nominal
p< 0.05). For this SNP, men who were homozygous for the minor allele experienced twice the
rate of decline in aBMD than those who were homozygous for the major allele. At the femoral
neck, there were five additional SNPs that showed a significant association with the rate of
decline in aBMD with a nominal p <0.05. Except for 152021966, the minor alleles for all the

other 4 SNPs were associated with a greater decline in aBMD. The strongest SNP association
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was for rs6936129, where the best fitting model was additive (p=0.0035). Men who where
homozygous for the minor allele of this SNP experienced a 2.5-fold greater rate of decline in
aBMD compared to those who were homozygous for the major allele, whereas men who were
heterozygous experienced a more intermediate rate of bone loss.

The SNP association results with cross-sectional areal and volumetric BMD measures are
presented in the same format in Figure 5-2 and Table 5-4. For the aBMD measures, nominally
significant associations were only observed at the total hip, but not femoral neck. Three SNPs
achieved nominal significance for aBMD at the total hip with rs9398995 showing to strongest
evidence of association in the recessive inheritance model (p=0.0063). Men who were
homozygous for the minor allele had approximately 0.05 g/cm” lower hip aBBMD than those who
were homozygous for the major allele. Similar to the results for the decline in aBMD, SNPs
associated with total hip BMD in cross-sectional analyses were largely concentrated in the 5’
flanking region and intron 1 of ENPP1.

Significant associations between vBMD were more likely to be observed in cortical than
trabecular vBMD (Figure 5-2 and Table 5-4). For cortical vBMD, 7 SNPs (rs13211931,
rs6939185, rs703184, rs7775386, 19493110, rs7769993 and rs9373000) at the radius and 4
SNPs (rs13211931, rs1830971, rs858339 and rs7749493) at the tibia were significant at p<0.05.
SNP rs13211931 showed the strongest association with cortical vBMD at the tibia and was the
only SNP with a significant association with cortical vBMD at both the radius and tibia. For
example, men who had two copies of the minor allele had 12 mg/cm® or approximately %
standard deviation lower cortical vBMD at the radius compared to men who were homozygous

for the major allele.
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The associations between ENPP1 SNPs and trabecular vBMD were not as strong as they
were for cortical vBMD. Similar to rs13211931, rs6916495 was associated with trabecular
vBMD at both the radius and tibia. The effect of this SNP on trabecular vBMD appeared to be
best modeled as a recessive mode of inheritance. For instance, men who were homozygous for
the minor allele had an approximately 12-13% and 8-9% or approximately > standard deviation
lower trabecular vBMD at the radius and tibia, respectively, than those with the other genotypes.

Nine of the SNPs that showed significant results among Caucasians in the MrOS study
(nominal p <0.05) did not seem to have very strong associations with any of the BMD measures
in the Afro-Caribbean men. Four of the 9 SNPs (rs6939185, rs858339, rs6916495 and
rs7768480) had a nominal p<0.05.

The study-wise empirical p-value generated from the permutation test for each phenotype
was between 0.0014 and 0.0017. Thus, none of our single SNP associations with bone loss or

BMD remained significant after the correction for multiple testing.

5.5  DISCUSSION

Osteoporosis is a common disorder characterized by a loss of bone mineral and structure leading
to compromised bone strength. Despite the lower prevalence of osteoporosis in men than
women, the number of older men with low BMD is still substantial(30). Evidence from twin and
family studies indicates that the heritability for aBMD ranges from 50% to 85% (31-33).
Although most of the heritability studies for aBMD were in Caucasians, men and women of
African heritage also have a high heritability of aBMD (34). In contrast to the heritability of

cross-sectional measures of aBMD, the heritability of bone loss is less well defined. Nonetheless,
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heritability estimates for bone loss with age range from 15% to 45% (35-38). Although previous
studies have demonstrated an important role of ENPP1 in bone mineralization in animal models,
the effect of ENPP1 gene variation on aBMD and bone loss in humans is unknown. Our results
suggest a novel association between common ENPP1 allelic variation and aBMD and the rate of
bone loss in men of African heritage.

Most association and linkage studies of BMD in humans have relied solely on DXA
measures of areal BMD as the phenotype. DXA provides a two-dimensional measure of BMD
and is known to be confounded by bone size. Furthermore, DXA yields a measure of integral
BMD - trabecular and cortical BMD combined. On the other hand, 3-dimensional QCT enables
a separate measure of volumetric BMD in the trabecular and cortical bone compartments.
Although less well studied than DXA measures of aBMD, a high heritability has been
demonstrated for trabecular vBMD (~70%) (34,39) and there is evidence for both shared and
unique loci for cortical and trabecular vBMD (34). However, the genetic variants contributing to
vBMD variation remain poorly defined. Results from the current study suggest a role of genetic
variation in ENPP1 in determining vBMD with more consistent effects on cortical than
trabecular vBMD.

Although our study is the first, to our knowledge, to investigate ENPP1 and measures of
bone health, other studies have investigated this gene in relation to other disease related end-
points. In studies of humans, SNP rs1044498 which creates a missense substitution was found to
be related to arterial calcification (40-42), osteoarthritis(18) and ossification of posterior
longitudinal ligament of the spine(43). This SNP has also been associated with diabetes (6,10-
14). In the current study, we have found no significant association between this particular amino

acid substitution and measures of aBMD, vBMD or the rate of hip bone loss.
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SNP 156936129 in the promoter region was highly and significantly associated with
femoral neck bone loss with evidence of an additive mode of inheritance. Although there were
only 13 men homozygous for the minor allele of rs6936129, the 180 men who were
heterozygous for this variant also experienced 55% greater bone loss than those who were
homozygous for the major allele. This SNP is predicted in silico by FASTSNP to create a
putative binding site for the pro-inflammatory transcription factor, STAT, which may regulate
expression of ENPP1 in response to cytokines.

Only one SNP, rs9398995, showed a strong association with aBMD at the total hip. This
SNP is located in intron 1 and is predicted to generate a putative binding site for the homeobox
transcription factor, CDXA, which is not known to regulate ENPP1 gene expression. There were
five SNPs that were associated with cortical vBMD at p<0.01 (rs13211931, rs7749493,
1s703184, rs9493110 and rs9373000). None of these five SNPs were in the same linkage
disequilibrium (LD) blocks defined by using a solid spline approach (D’>0.80) to analyze Phase
I HapMap SNPs in the Yoruban population from Nigeria, Africa. SNPs rs13211931 and
rs7749493 were associated with cortical vBMD at the tibia, whereas rs703184, rs9493110 and
1s9373000 had strong associations with cortical vBMD at the radius. SNP rs7749493 lies in
intron 5 of ENPP1 and is predicted to create a putative biding site for the transcription factor,
RUNXI1/CBFA2/AMLI1, which is involved in skeletal development. SNP rs703184 lies in intron
1 of ENPP1 and is predicted to create a putative binding site for the SRY-related high-mobility-
group box (SOX) family of transcription factors. The SOX family controls cell fate and
differentiation and plays a role in skeletogenesis (44).

Although a high heritability of trabecular vBMD was observed in previous studies

(34,39), no SNP in ENPP1 appeared to be associated with trabecular vBMD at a p<0.01. Among
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the 9 SNPs that showed a statistically significant association with vBMD (p<0.05) at the femoral
shaft among Caucasian men in the MrOS study, only 4 were associated with aBMD or vBMD in
our study of Afro-Caribbean men. However, none of these SNPs were associated at p<0.01. The
low level of concordance between SNPs and BMD between two studies may be explained by the
different linkage disequilibrium patterns Caucasian and African individuals, different skeletal
sites studied or differences in the characteristics of the cohorts. Nonetheless, our results suggest a
“gene level” replication of associations between common genetic in ENPP1 and BMD in men of
diverse ethnicity/race.

Our study has several notable strengths including its large cohort of middle- and older-
aged men who were recruited from a relatively homogeneous population. In addition, we
identified and genotyped 34 SNPs across the gene region which provide good coverage of the
common genetic variation in the ENPP1 gene. Our study also had limitations. We evaluated a
large number of SNPs, several skeletal phenotypes and tested for 3 models of inheritance for
each SNP and phenotype. None of our SNPs achieved statistical significance after controlling for
multiple comparisons and our results will require replication and further evaluation in a larger
sample size and in additional populations.

In conclusion, our study suggests a possible novel role of common genetic variation in
ENPP1 and several measures of bone health including areal BMD, volumetric BMD and the rate
of bone loss in a large male cohort of African ancestry. This is the first study to examine the
association between ENPP1 gene variation and BMD in humans. Additional studies are needed

to explore the association between ENPP1 gene variants, bone mineralization and BMD.
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Table 5-1 Selected characteristics of Afro-Caribbean men (n=1139)

Characteristics Mean + SD
Age (yrs) 58.7+10.1
Height (cm) 1752+ 6.8
Weight (kg) 84.0+14.4
BMI (kg/m’) 273+42
Annualized rate of change in BMD (%/yr)

Total hip BMD -0.118 £ 0.562
Femoral neck BMD -0.296 + 0.823
Proximal femur area BMD (g/cmz)

Total hip BMD (g/cm?) 1.157 £0.145
Femoral neck BMD (g/cm?) 1.000 £ 0.149
Trabecular volumetric BMD (mg/cm?)

Radius 207.2+£49.2
Tibia 229.4+40.4
Cortical volumetric BMD (mg/cm)

Radius 1214.8 £22.6
Tibia 1179.0 +£23.1
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Table 5-2 Information on the genotyped SNPs in the ENPP1 gene

dbSNP rs M‘ajor/ Chr.o‘m. MAF N in each genotype* HWE
number minor Position Afro- YRI NN Nn Nn  p-value
allele (bp) Caribbean
187773292 C/T 132141454 0.22 0.19 681 349 60 0.069
156925433 A/G 132161059 0.19 0.21 713 309 46 0.071
rs13211931 G/T 132165417 0.09 0.09 897 177 12 0.328
1$6935458 A/G 132168013 0.43 0.43 373 501 223 0.021
1s6936129 G/C 132168133 0.09 0.07 875 168 13 0.130
1s6569759 G/A 132174809 0.23 0.28 658 378 71 0.095
rs6939185 G/A 132180880 0.09 0.11 917 180 14 0.131
rs9398995 T/C 132181896 0.21 0.18 702 337 55 0.065
1s943004 G/A 132182569 0.23 0.13 656 405 49 0.174
rs1830971 T/C 132190046 0.25 0.23 615 412 72 0.714
rs1409181 C/G 132190993 0.29 0.30 560 457 97 0.729
152021966 T/C 132192132 0.29 0.28 556 452 100 0.546
rs7771841 G/A 132192798 0.21 0.20 678 366 51 0.773
1s9372999 C/A 132194845 0.27 0.29 575 411 79 0.631
rs858338 G/T 132194900 0.13 0.12 843 240 20 0.542
rs858339 T/A 132195590 0.32 0.24 521 473 124 0.261
rs703184 G/C 132196688 0.10 0.09 898 187 12 0.540
187775386 C/T 132198842 0.49 0.44 296 528 270 0.246
1s6916495 C/T 132201958 0.11 0.09 867 210 16 0.421
rs9493110 C/T 132203671 0.24 0.32 620 423 58 0.197
rs858345 G/A 132205310 0.35 0.34 458 475 141 0.301
rs4141767 A/G 132206700 0.41 0.41 389 521 183 0.687
1$6926970 A/C 132208983 0.19 0.15 729 321 55 0.013
rs1044498 C/A 132214061 0.13 0.08 856 205 29 0.483
187749493 G/T 132216752 0.23 0.19 665 362 69 0.032
rs17060836 T/C 132230641 0.23 0.25 630 395 53 0.379
187769712 A/C 132235088 0.32 0.32 478 463 99 0.397
rs7768480 G/A 132245125 0.46 0.42 339 522 251 0.062
rs12202373 T/C 132251394 0.08 0.10 916 151 12 0.045
1s9493118 C/T 132253058 0.32 0.31 518 455 124 0.112
rs1804025 A/G 132253227 0.23 0.20 669 366 73 0.019
rs7754561 G/A 132254387 0.11 0.07 851 207 20 0.078
1$7769993 A/G? 132262945 0.43 0.47 371 520 210 0.240
1s9373000 A/G 132263399 0.38 0.44 433 508 163 0.471

¥ The major allele in YRI population was G allele

*NN/Nn/nn: N=major allele; n=minor allele

Chrom indicates position on chromosome 6 from NCBI Genome Build 36; MAF, minor allele frequency; YRI,
Yoruban population from Ibadan, Nigiria; HWE; Hardy-Weinberg Equilibrium.
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Figure 5-1 Schematic of negative log 10 of p-value for 34 single SNP association tests with longitudinal aBMD changes at the total hip and femoral neck.
ENPP1 SNPs are represented on the X axis according to their positions in the gene from 5’ to 3’ direction. Dotted lines represent p-value thresholds of 0.05, 0.01
and 0.001. The smallest p-value for each SNP is plotted. Models were adjusted for age, weight and height. THABC: Total hip annualized aBMD change rate; and
FNABC: Femoral neck annualized aBMD change rate.
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Table 5-3 Association of ENPP1 SNPs and rate of decline in aBMD per year (%/yr)

Genotype mean(standard error) Best fitting
SNP 1/1 12 2 pvalue o odel

Total hip

rs9398995 -0.100(0.021) -0.125(0.030) -0.262(0.074) 0.0423 Recessive
Femoral neck

rs7773292 -0.291(0.031) -0.288(0.043) -0.514(0.104) 0.0366 Recessive

rs6935458 -0.253(0.042) -0.290(0.036) -0.379(0.054) 0.0383 Additive

rs6936129 -0.269(0.027) -0.417(0.062) -0.679(0.223) 0.0035 Additive

rs2021966 -0.308(0.034) -0.326(0.038) -0.115(0.081) 0.0177 Recessive

rs858338 -0.279(0.028) -0.312(0.052) -0.727(0.180) 0.0156 Recessive
Genotype-specific means were adjusted for age, weight and height.

1 indicates major allele; 2 minor allele.
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Figure 5-2 Schematic of negative log 10 of p-value for 34 single SNP association tests with cross-sectional aBMD at the total hip and femoral neck, and
trabecular and cortical vBMD at the radius and tibia.

ENPP1 SNPs are represented on the X axis according to their positions in the gene from 5’ to 3’. Dotted lines represent p-value thresholds of 0.05, 0.01 and
0.001. The smallest p-value for each SNP is plotted. Models were adjusted for age, weight and height. THBMD: Total hip aBMD; FNBMD: femoral neck
aBMD; RTRBD: trabecular vBMD at the radius; RCRTD: cortical vBMD at the radius; TTRBD: trabecular vBMD at the tibia; and TCRTD: cortical vBMD at

the tibia.
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Table 5-4 Association of ENPP1 SNPs and bone mineral density

Genotype Mean(standard error) Best fitting
SNP 11 12 20 pvalue  odel

Total hip aBMD (g/cm®)

rs6925433 1.156(0.005) 1.156(0.007) 1.198(0.019) 0.0338 Recessive

rs9398995 1.159(0.005) 1.160(0.007) 1.110(0.018) 0.0063 Recessive

rs1830971 1.159(0.005) 1.159(0.006) 1.128(0.015) 0.0470 Recessive
Radius trabecular vBMD (mg/cm®)

rs6916495 208.1(1.635) 207.4(3.324) 181.6(12.040) 0.0294 Recessive

rs7769993 207.4(2.489) 205.9(2.102) 213.9(3.309) 0.0460 Recessive
Radius cortical vBMD (mg/cm3)

rs13211931 1214.0(0.704) 1217.4(1.586) 1225.4(6.084) 0.0147 Additive

rs6939185 1215.3(0.694) 1213.5(1.57) 1203.8(5.619) 0.0380 Additive

rs703184 1215.5(0.703) 1213.8(1.544) 1203.3(6.078) 0.0049 Additive

rs7775386 1216.3(1.224) 1215.5(0.916) 1212.4(1.282) 0.0201 Recessive

rs9493110 1213.2(0.847) 1216.9(1.025) 1216.5(2.782) 0.0046 Dominant

rs7769993 1213.0(1.095) 1216.5(0.925) 1215.1(1.456) 0.0215 Dominant

rs9373000 1212.6(1.009) 1216.4(0.931) 1215.9(1.643) 0.0047 Dominant
Tibia trabecular vBMD (mg/cm3)

rs6935458 232.7(2.011) 228.0(1.736) 226.8(2.608) 0.0416 Dominant

rs6916495 230.2(1.323) 227.2(2.689) 209.8(9.741) 0.0429 Recessive

rs7768480 228.3(2.104) 227.6(1.695) 234.8(2.445) 0.0137 Recessive
Tibia cortical vVBMD (mg/cm’)

rs13211931 1178.1(0.730) 1183.2(1.646) 1185.6(6.314) 0.0026 Additive

rs1830971 1180.2(0.876) 1177.7(1.071) 1176.7(2.558) 0.0492 Dominant

rs858339 1177.9(0.950) 1180.8(0.997) 1179.6(1.941) 0.0450 Dominant

rs7749493 1179.1(0.845) 1177.8(1.144) 1186.2(2.627) 0.0055 Recessive

Genotype-specific means were adjusted for age, weight and height.

1 indicates major allele; 2, minor allele; aBMD, areal BMD; vBMD, volumetric BMD
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6.0 GENERAL DISCUSSION

6.1 SUMMARY

Osteoporosis is a growing public health problem in men of all races and ethnicities. Much less is
known about age-related bone loss and osteoporosis in men relative to women, especially in men
of African heritage. This dissertation investigated the determinants of bone mineral density in a
large cohort of Afro-Caribbean men aged 40 and older from the Tobago Bone Health Study.
Three broad aims of this dissertation project were to: 1) examine the patterns and determinants of
longitudinal age-related hip bone loss measured by DXA; 2) examine the age-related pattern and
correlates of volumetric BMD and to compare and contrast findings for trabecular and cortical
vBMD measured by pQCT;, and 3) evaluate the relationship of polymorphisms in the ENPPI
gene with bone loss and BMD.

In the bone loss analyses, we observed that men of African descent had a comparable rate
of decline in hip BMD to published data in Caucasian men (2-4,6,8) and the rate of bone loss
across S-year age groups appeared to have a U-shape relationship. Men aged 40-44 had a
significantly greater rate of decline in BMD than those aged 45-49 and 50-54 at both the total hip
and femoral neck. Thereafter, the rate of decline in BMD accelerated with advancing age through
the 7" decade. We also identified low body weight, weight loss, prostate cancer and androgen

deprivation treatment for prostate cancer as potential determinants of accelerated bone loss in
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this population. However, the variation in rate of bone loss explained by these factors was only
6% to 7%. Our study also confirmed the modulating effects of weight loss and older age on
bone loss that has been observed in previous studies of Caucasian men (3,5-7,73).

In the analysis of vBMD, we observed a non-linear reduction of trabecular vBMD with
aging where a larger decline was found among men aged 40-44 and 45-49 years, compared with
those aged 50 and older. This finding is consistent with the recent observation of an early
reduction of trabecular vBMD with aging in Caucasian men (131,134). In contrast, cortical
vBMD appeared to decline more slowly and steadily with aging than trabecular vBMD, which
was also observed in another study (131). Body weight appeared to be a protective factor for
trabecular vBMD but a risk factor for cortical vBMD. The reverse relationship between body
weight and cortical vBMD is consistent with another recent study (153). Diabetes and bone
chewing were also identified as beneficial correlates of vBMD, whereas cigarette smoking,
prostate cancer and treatment for prostate cancer with androgen deprivation were identified as
potential risk factors for lower vBMD. Moreover, these determinants did not have the same
effects on vBMD across different skeletal sites and only explained 6% to 16% variation in
vBMD.

In the genetic analysis, several polymorphisms in the ENPPI gene were found to be
associated with bone loss and areal and volumetric BMD independent of age, weight and height.
For femoral neck bone loss, total hip BMD and trabecular vBMD, only one SNP was associated
with each of these phenotypes with a nominal p-value<0.01. However, there were 4 SNPs that
appeared to have strong association with cortical vBMD at P<(0.01. The commonly tested

missense SNP in ENPPI (rs1044498) that has been associated with insulin resistance and
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abnormal calcification (150,151,154-158) was not associated with any BMD measures in our

study.

6.2 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

Our study sought to determine potential demographic, anthropometric, medical, behavioral and
genetic factors associated with bone loss and BMD in a large cohort of men with a high African
ancestral proportion. Our study also used a unique imaging scan data obtained by pQCT that
provided a true measure of volumetric BMD for cortical and trabecular bone. To our knowledge,
this is first study to examine the age-related patterns and determinants of trabecular and cortical
vBMD, and the second and largest study to examine age-related bone loss and its determinants in
a group of middle- and older age men of African descent. This is also the first study, to our
knowledge, to examine the relationship between ENPPI gene variants and vBMD in men of
African descent.

Indeed, we were able to demonstrate a significant rate of decline in BMD among this
population despite their high BMD and low osteoporosis risk. We also identified several
anthropometric, behavioral and medical factors that may be associated with accelerated bone loss
and lower vBMD. However, these factors only account for a small proportion of the variation in
age-related bone loss and vBMD. This suggests that many other underdetrtmined variables,
including inherited factors, may contribute to age-related bone loss and vBMD. We were also
able to establish an association of SNPs in the ENPP gene with bone density, especially cortical

vBMD, and the rate of hip bone loss in this cohort.
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Our study had several potential limitations including: 1) a small proportion of older-aged men
that may have limited our ability to estimate age-related patterns in vBMD and the rate of bone
loss among these older men; 2) DXA measures of bone loss that are unable to provide insight on
age-related loss of trabecular and cortical bone; 3) questionnaire assessments of medical and
behavioral history that may be subject to recall bias and misclassification; 4) cross-sectional
measures of vBMD that limits our ability to establish temporal relationships with trabecular and
cortical vBMD; and 5) the use of multiple SNPs and inheritance models to test the association
between ENPPI gene variants and bone measures generates issues of multiple comparisons and
possible false positive findings;However, our study also had notable strengths including: 1) its
large sample size and focus on men of African descent with low Caucasian admixture; 2) careful
measurement of variables; 3) focus on both cortical and trabecular volumetric BMD; and 4) the
wealth of information available about the study cohort. Our results validated associations
described previously among Caucasian men, such as the major importance of body weight in
determining BMD and bone loss, but also illuminate several previously unrecognized
relationships.

Additional longitudinal studies are needed to confirm our findings of a non-linear
relationship of age and bone loss in men of African heritage. Specially, the impact of aging on
trabecular and cortical volumetric BMD in this population deserves further investigation.
Although osteoporosis largely occurs later in life, there is a need to recruit younger adults for
longitudinal studies of bone loss. With the increasing body of evidence showing that
development of osteoporosis and osteoporotic factures is due to factors other than or in addition

to low bone density, it will be important to characterize other bone health parameters, such as
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cortical and trabecular thickness and bone structural geometry and to identify the behavioral and
genetic determinants of these parameters. In addition, more studies are also needed to understand
the differences in trabecular and cortical bone loss with aging and the correlates of this loss
including behavioral/lifestyle and medical characteristics, and hormonal and genetic factors.

This information will ultimately help us to better understand the natural history and
etiology of osteoporosis and osteoporotic fractures as well as the underlying factors for racial

differences in male skeletal health.

6.3 PUBLIC HEALTH SIGNIFICANCE

Osteoporosis, an important risk factor of osteoporotic fractures, is a public health problem that is
not only prevalent in women but also in men. In the US alone, 1-2 million Caucasian men are
affected with osteoporosis, and another 8-13 million are affected with osteopenia (20). As
lifespan increases worldwide in the next several decades, the prevalence of osteoporosis and its
associated fractures is expected to increase significantly not only among Caucasians, but also
among people of African descent (21-23). In addition, despite the lower prevalence of
osteoporosis and fractures in people of African ancestry, a higher mortality after a fracture has
been observed among African Americans and men, compared to Caucasians and women
(1,26,27). Moreover, the direct medical costs for osteoporotic fractures is greater than the
projected annual cost of stroke, breast cancer, diabetes, or chronic lung disease (30) and the total
cost due to osteoporotic fractures is predicted to increase more in African Americans than

Caucasians (28).
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Identifying factors associated with the rate of bone loss and low BMD may facilitate the
development of strategies to better prevent osteoporosis. Our study revealed that men of African
descent may have a comparable rate of hip bone loss with Caucasian men, and also confirmed an
important role of low body weight and its weight loss in accelerated bone loss with age which
are both potentially modifiable risk factors.

We reported in our study that behavioral factors only account for a small proportion of
the variation in vBMD and rate of decline in aBMD. With the high heritability observed in BMD
(11-13), it is likely that genetic factors contribute greatly to the remaining unexplained variation.
The present study also demonstrated a relationship of allelic variants in ENPPI, a gene involved
in bone mineralization, with BMD and bone loss. Further research on the genetic susceptibility to
low bone density and accelerated bone loss may help to identify new therapeutic targets to treat

or prevent osteoporosis.

131



BIBLIOGRAPHY

Poor G, Atkinson EJ, O'Fallon WM, Melton LJ, 3rd 1995 Determinants of reduced
survival following hip fractures in men. Clin Orthop Relat Res (319):260-5.

Burger H, de Laet CE, van Daele PL, Weel AE, Witteman JC, Hofman A, Pols HA 1998
Risk factors for increased bone loss in an elderly population: the Rotterdam Study. Am J
Epidemiol 147(9):871-9.

Hannan MT, Felson DT, Dawson-Hughes B, Tucker KL, Cupples LA, Wilson PW, Kiel
DP 2000 Risk factors for longitudinal bone loss in elderly men and women: the
Framingham Osteoporosis Study. J Bone Miner Res 15(4):710-20.

Melton LJ, 3rd, Khosla S, Atkinson EJ, Oconnor MK, Ofallon WM, Riggs BL 2000
Cross-sectional versus longitudinal evaluation of bone loss in men and women.
Osteoporos Int 11(7):592-9.

Kaptoge S, Welch A, McTaggart A, Mulligan A, Dalzell N, Day NE, Bingham S, Khaw
KT, Reeve J 2003 Effects of dietary nutrients and food groups on bone loss from the
proximal femur in men and women in the 7th and 8th decades of age. Osteoporos Int
14(5):418-28.

Bakhireva LN, Barrett-Connor E, Kritz-Silverstein D, Morton DJ 2004 Modifiable
predictors of bone loss in older men: a prospective study. Am J Prev Med 26(5):436-42.

Ensrud KE, Fullman RL, Barrett-Connor E, Cauley JA, Stefanick ML, Fink HA, Lewis
CE, Orwoll E 2005 Voluntary weight reduction in older men increases hip bone loss: the
osteoporotic fractures in men study. J Clin Endocrinol Metab 90(4):1998-2004.

Dennison E, Eastell R, Fall CH, Kellingray S, Wood PJ, Cooper C 1999 Determinants of
bone loss in elderly men and women: a prospective population-based study. Osteoporos
Int 10(5):384-91.

Emaus N, Berntsen GK, Joakimsen R, Fonnebo V 2006 Longitudinal changes in forearm

bone mineral density in women and men aged 45-84 years: the Tromso Study, a
population-based study. Am J Epidemiol 163(5):441-9.

132



10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Jones G, Nguyen T, Sambrook P, Kelly PJ, Eisman JA 1994 Progressive loss of bone in
the femoral neck in elderly people: longitudinal findings from the Dubbo osteoporosis
epidemiology study. Bmj 309(6956):691-5.

Arden NK, Baker J, Hogg C, Baan K, Spector TD 1996 The heritability of bone mineral
density, ultrasound of the calcaneus and hip axis length: a study of postmenopausal twins.
J Bone Miner Res 11(4):530-4.

Pocock NA, Eisman JA, Hopper JL, Yeates MG, Sambrook PN, Eberl S 1987 Genetic
determinants of bone mass in adults. A twin study. J Clin Invest 80(3):706-10.

Gueguen R, Jouanny P, Guillemin F, Kuntz C, Pourel J, Siest G 1995 Segregation
analysis and variance components analysis of bone mineral density in healthy families. J
Bone Miner Res 10(12):2017-22.

Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, Genant HK,
Palermo L, Scott J, Vogt TM 1993 Bone density at various sites for prediction of hip
fractures. The Study of Osteoporotic Fractures Research Group. Lancet 341(8837):72-5.

Marshall D, Johnell O, Wedel H 1996 Meta-analysis of how well measures of bone
mineral density predict occurrence of osteoporotic fractures. Bmj 312(7041):1254-9.

2002 Incidence of vertebral fracture in europe: results from the European Prospective
Osteoporosis Study (EPOS). J Bone Miner Res 17(4):716-24.

Miller PD, Siris ES, Barrett-Connor E, Faulkner KG, Wehren LE, Abbott TA, Chen YT,
Berger ML, Santora AC, Sherwood LM 2002 Prediction of fracture risk in
postmenopausal white women with peripheral bone densitometry: evidence from the
National Osteoporosis Risk Assessment. J Bone Miner Res 17(12):2222-30.

1994 Assessment of fracture risk and its application to screening for postmenopausal
osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 843:1-
129.

2002 America's bone health: The state of osteoporosis and low bone mass in our nation
National Osteoporosis Foundation. National Osteoporosis Foundation, Washington (DC).

Looker AC, Orwoll ES, Johnston CC, Jr., Lindsay RL, Wahner HW, Dunn WL, Calvo
MS, Harris TB, Heyse SP 1997 Prevalence of low femoral bone density in older U.S.
adults from NHANES III. J Bone Miner Res 12(11):1761-8.

Cummings SR, Melton LJ 2002 Epidemiology and outcomes of osteoporotic fractures.
Lancet 359(9319):1761-7.

Gullberg B, Johnell O, Kanis JA 1997 World-wide projections for hip fracture.
Osteoporos Int 7(5):407-13.

133



23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Cooper C, Campion G, Melton LJ, 3rd 1992 Hip fractures in the elderly: a world-wide
projection. Osteoporos Int 2(6):285-9.

Griffin MR, Ray WA, Fought RL, Melton LJ, 3rd 1992 Black-white differences in
fracture rates. Am J Epidemiol 136(11):1378-85.

NIH consensus development panel on osteoporosis prevention d, and therapy 2001
Osteoporosis prevention, diagnosis, and therapy. Jama 285(6):785-95.

Furstenberg AL, Mezey MD 1987 Differences in outcome between black and white
elderly hip fracture patients. J Chronic Dis 40(10):931-8.

Jacobsen SJ, Goldberg J, Miles TP, Brody JA, Stiers W, Rimm AA 1992 Race and sex
differences in mortality following fracture of the hip. Am J Public Health 82(8):1147-50.

Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A 2007
Incidence and economic burden of osteoporosis-related fractures in the United States,
2005-2025. J Bone Miner Res 22(3):465-475.

Ray NF, Chan JK, Thamer M, Melton LJ, 3rd, 1997 Medical expenditures for the
treatment of osteoporotic fractures in the United States in 1995: Reports from the national
osteoporosis foundation. J] Bone Miner Res 12(1):24-35.

Miller PD 1999 Management of osteoporosis. Dis Mon 45(2):21-54.

Baron R 2003 General principle of bone biology. In: Favus MJ (ed.) Primer on the
metabolic bone diseases and disorders of mineral metabolism, Fifth ed. American Society
of Bone Mineral Research, Washington, DC, pp 1-8.

Mundy GR, Chen D, Oyajobi BO 2003 Bone Remodeling. In: Favus MJ (ed.) Primer on
the metabolic bone diseases and disorders of mineral metabolism, Fifth ed. American
Society of Bone Mineral Research, Washington, DC, pp 46-58.

Seeman E 2003 Invited Review: Pathogenesis of osteoporosis. J Appl Physiol
95(5):2142-51.

Hui SL, Slemenda CW, Johnston CC, Jr. 1990 The contribution of bone loss to
postmenopausal osteoporosis. Osteoporos Int 1(1):30-4.

Seeman E 1994 Reduced bone density in women with fractures: contribution of low peak
bone density and rapid bone loss. Osteoporos Int 4 Suppl 1:15-25.

Theintz G, Buchs B, Rizzoli R, Slosman D, Clavien H, Sizonenko PC, Bonjour JP 1992
Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for
a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in
female subjects. J Clin Endocrinol Metab 75(4):1060-5.

134



37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Bonjour JP, Theintz G, Buchs B, Slosman D, Rizzoli R 1991 Critical years and stages of

puberty for spinal and femoral bone mass accumulation during adolescence. J Clin
Endocrinol Metab 73(3):555-63.

Seeman E 2002 Pathogenesis of bone fragility in women and men. Lancet
359(9320):1841-50.

Deng HW, Stegman MR, Davies KM, Conway T, Recker RR 1999 Genetic
determination of variation and covariation of peak bone mass at the hip and spine. J Clin
Densitom 2(3):251-63.

Khosla S, Melton LJ, 3rd, Atkinson EJ, O'Fallon WM, Klee GG, Riggs BL 1998
Relationship of serum sex steroid levels and bone turnover markers with bone mineral

density in men and women: a key role for bioavailable estrogen. J Clin Endocrinol Metab
83(7):2266-74.

Khosla S, Melton LJ, 3rd, Atkinson EJ, O'Fallon WM 2001 Relationship of serum sex
steroid levels to longitudinal changes in bone density in young versus elderly men. J Clin
Endocrinol Metab 86(8):3555-61.

Lorentzon M, Swanson C, Eriksson AL, Mellstrom D, Ohlsson C 2006 Polymorphisms
in the aromatase gene predict areal BMD as a result of affected cortical bone size: the
GOOD study. J Bone Miner Res 21(2):332-9.

Smith MR, Finkelstein JS, McGovern FJ, Zietman AL, Fallon MA, Schoenfeld DA,
Kantoff PW 2002 Changes in body composition during androgen deprivation therapy for
prostate cancer. J Clin Endocrinol Metab 87(2):599-603.

Stanley HL, Schmitt BP, Poses RM, Deiss WP 1991 Does hypogonadism contribute to
the occurrence of a minimal trauma hip fracture in elderly men? J Am Geriatr Soc
39(8):766-71.

Canalis E 2003 Osteogenic growth factors. In: Favus MJ (ed.) Primer on the metabolic
bone diseases and disorders of mineral metabolism, Fifth ed. American Society of Bone
Mineral Research, Washington, DC.

Juppner H, Kronenberg HM 2003 Parathyroid hormone. In: Favus MJ (ed.) Primer on the
metabolic bone diseases and disorders of bone mineral metabolism, Fifth ed. American
Society of Bone Mineral Research, Washington, DC.

Manolagas SC 1998 The role of IL-6 type cytokines and their receptors in bone. Ann N'Y
Acad Sci 840:194-204.

Ferrari SL, Garnero P, Emond S, Montgomery H, Humphries SE, Greenspan SL 2001 A

functional polymorphic variant in the interleukin-6 gene promoter associated with low
bone resorption in postmenopausal women. Arthritis Rheum 44(1):196-201.

135



49.

50.

51.

52.

53.

54.

55.

56.

57.

38.

59.

60.

61.

Terry CF, Loukaci V, Green FR 2000 Cooperative influence of genetic polymorphisms
on interleukin 6 transcriptional regulation. J Biol Chem 275(24):18138-44.

Hofbauer LC, Lacey DL, Dunstan CR, Spelsberg TC, Riggs BL, Khosla S 1999
Interleukin-1beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate
osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 25(3):255-9.

Sherman ML, Weber BL, Datta R, Kufe DW 1990 Transcriptional and posttranscriptional
regulation of macrophage-specific colony stimulating factor gene expression by tumor
necrosis factor. Involvement of arachidonic acid metabolites. J Clin Invest 85(2):442-7.

Nanes MS 2003 Tumor necrosis factor-alpha: molecular and cellular mechanisms in
skeletal pathology. Gene 321:1-15.

2004 Chapter 6: Determinants of Bone Health. Bone Health and Osteoporosis: A Report
of the Surgeon General. U.S. Department of Health and Human Services, Office of the
Surgeon General, Rockville, MD.

Ng MY, Sham PC, Paterson AD, Chan V, Kung AW 2006 Effect of environmental
factors and gender on the heritability of bone mineral density and bone size. Ann Hum
Genet 70(Pt 4):428-38.

Deng FY, Lei SF, Li MX, Jiang C, Dvornyk V, Deng HW 2006 Genetic determination
and correlation of body mass index and bone mineral density at the spine and hip in
Chinese Han ethnicity. Osteoporos Int 17(1):119-24.

Wang X, Kammerer CM, Wheeler VW, Patrick AL, Bunker CH, Zmuda JM 2007
Genetic and Environmental Determinants of Volumetric and Areal Bone Density in
Multi-Generational Families of African Ancestry: The Tobago Family Health Study. J
Bone Miner Res.

Kelly PJ, Nguyen T, Hopper J, Pocock N, Sambrook P, Eisman J 1993 Changes in axial
bone density with age: a twin study. J Bone Miner Res 8(1):11-7.

Christian JC, Yu PL, Slemenda CW, Johnston CC, Jr. 1989 Heritability of bone mass: a
longitudinal study in aging male twins. Am J Hum Genet 44(3):429-33.

Slemenda CW, Christian JC, Reed T, Reister TK, Williams CJ, Johnston CC, Jr. 1992
Long-term bone loss in men: effects of genetic and environmental factors. Ann Intern
Med 117(4):286-91.

Hui SL, Koller DL, Foroud TM, Econs MJ, Johnston CC, Peacock M 2006 Heritability of
changes in bone size and bone mass with age in premenopausal white sisters. J Bone
Miner Res 21(7):1121-5.

Shaffer JR, Kammerer CM, Bruder J, Bauer RL, Mitchell BD 2005 Five-year change in
bone mineral density is heritable in Mexican Americans: The San Antonio Family

136



62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Osteoporosis Study. American Society of Bone Mineral Research 27th Annual Meeting.
American Society of Bone Mineral Research Nashville, TN.

Livshits G, Yakovenko C, Seibel M 2003 Substantial genetic effects involved in
determination of circulating levels of calciotropic hormones in human pedigrees.
Biochem Genet 41(9-10):269-89.

Garnero P, Arden NK, Griffiths G, Delmas PD, Spector TD 1996 Genetic influence on
bone turnover in postmenopausal twins. J Clin Endocrinol Metab 81(1):140-6.

Livshits G, Yakovenko K, Kobyliansky E 2003 Quantitative genetic study of
radiographic hand bone size and geometry. Bone 32(2):191-8.

Cummings SR, Nevitt MC, Browner WS, Stone K, Fox KM, Ensrud KE, Cauley J, Black
D, Vogt TM 1995 Risk factors for hip fracture in white women. Study of Osteoporotic
Fractures Research Group. N Engl J Med 332(12):767-73.

Torgerson DJ, Campbell MK, Thomas RE, Reid DM 1996 Prediction of perimenopausal
fractures by bone mineral density and other risk factors. J Bone Miner Res 11(2):293-7.

Kannus P, Palvanen M, Kaprio J, Parkkari J, Koskenvuo M 1999 Genetic factors and
osteoporotic fractures in elderly people: prospective 25 year follow up of a nationwide
cohort of elderly Finnish twins. Bmj 319(7221):1334-7.

Michaelsson K, Melhus H, Ferm H, Ahlbom A, Pedersen NL 2005 Genetic liability to
fractures in the elderly. Arch Intern Med 165(16):1825-30.

Andrew T, Antioniades L, Scurrah KJ, Macgregor AJ, Spector TD 2005 Risk of wrist
fracture in women is heritable and is influenced by genes that are largely independent of
those influencing BMD. J Bone Miner Res 20(1):67-74.

Zmuda JM, Sheu YT, Moffett SP 2006 The search for human osteoporosis genes. J
Musculoskelet Neuronal Interact 6(1):3-15.

Plank LD 2005 Dual-energy X-ray absorptiometry and body composition. Curr Opin Clin
Nutr Metab Care 8(3):305-9.

Glynn NW, Meilahn EN, Charron M, Anderson SJ, Kuller LH, Cauley JA 1995
Determinants of bone mineral density in older men. J Bone Miner Res 10(11):1769-77.

Knoke JD, Barrett-Connor E 2003 Weight loss: a determinant of hip bone loss in older
men and women. The Rancho Bernardo Study. Am J Epidemiol 158(12):1132-8.

Orwoll E, Blank JB, Barrett-Connor E, Cauley J, Cummings S, Ensrud K, Lewis C,
Cawthon PM, Marcus R, Marshall LM, McGowan J, Phipps K, Sherman S, Stefanick
ML, Stone K 2005 Design and baseline characteristics of the osteoporotic fractures in
men (MrOS) study--a large observational study of the determinants of fracture in older
men. Contemp Clin Trials 26(5):569-85.

137



75.

76.

77.

78.

79.

80.

81.

82.

&3.

&4.

85.

86.

Rosvold Berntsen GK, Fonnebo V, Tollan A, Sogaard AJ, Joakimsen RM, Magnus JH
2000 The Tromso study: determinants of precision in bone densitometry. J Clin
Epidemiol 53(11):1104-12.

Nguyen TV, Eisman JA, Kelly PJ, Sambrook PN 1996 Risk factors for osteoporotic
fractures in elderly men. Am J Epidemiol 144(3):255-63.

Lunt M, Felsenberg D, Adams J, Benevolenskaya L, Cannata J, Dequeker J, Dodenhof C,
Falch JA, Johnell O, Khaw KT, Masaryk P, Pols H, Poor G, Reid D, Scheidt-Nave C,
Weber K, Silman AJ, Reeve J 1997 Population-based geographic variations in DXA bone
density in Europe: the EVOS Study. European Vertebral Osteoporosis. Osteoporos Int
7(3):175-89.

Edelstein SL, Barrett-Connor E 1993 Relation between body size and bone mineral
density in elderly men and women. Am J Epidemiol 138(3):160-9.

Orwoll ES, Bevan L, Phipps KR 2000 Determinants of bone mineral density in older
men. Osteoporos Int 11(10):815-21.

Cauley JA, Fullman RL, Stone KL, Zmuda JM, Bauer DC, Barrett-Connor E, Ensrud K,
Lau EM, Orwoll ES 2005 Factors associated with the lumbar spine and proximal femur
bone mineral density in older men. Osteoporos Int 16(12):1525-37.

Warming L, Hassager C, Christiansen C 2002 Changes in bone mineral density with age
in men and women: a longitudinal study. Osteoporos Int 13(2):105-12.

Nelson DA, Jacobsen G, Barondess DA, Parfitt AM 1995 Ethnic differences in regional
bone density, hip axis length, and lifestyle variables among healthy black and white men.
J Bone Miner Res 10(5):782-7.

George A, Tracy JK, Meyer WA, Flores RH, Wilson PD, Hochberg MC 2003 Racial
differences in bone mineral density in older men. J Bone Miner Res 18(12):2238-44.

Melton LJ, 3rd, Marquez MA, Achenbach SJ, Tefferi A, O'Connor MK, O'Fallon WM,
Riggs BL 2002 Variations in bone density among persons of African heritage.
Osteoporos Int 13(7):551-9.

Hill D, Cauley JA, Sheu Y, Bunker CH, Patrick AL, Baker CE, Beckles G, Wheeler VW,
Zmuda JM 2007 Correlates of Bone Mineral Density in Males of African Ancestry: The
Tobago Bone Health Study (In submission).

Sheu Y, Zmuda JM, Cauley JA, Bunker CH, Patrick AL, Wheeler VW, Barrett-Connor
E, Stefanick ML, Fink HA, Lewis CE, Marshall LM, Orwoll ES 2005 Differences in hip
bone mineral density and body composition in a multi-ethnic cohort of older men
American Society of Bone Mineral Research 27th Annual Meeting. American Society of
Bone Mineral Research, Nashville, TN.

138



87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

Tracy JK, Meyer WA, Flores RH, Wilson PD, Hochberg MC 2005 Racial differences in
rate of decline in bone mass in older men: the Baltimore men's osteoporosis study. J Bone
Miner Res 20(7):1228-34.

Sheu Y, Zmuda JM, Cauley JA, Bunker CH, Patrick AL, Wheeler VW, Barrett-Connor
E, Stefanick ML, Ensrud KE, Lewis CE, Orwoll ES 2006 Greater decline in hip bone
mineral density with aging among Afro-Caribbean than Caucasian men. American
Society of Bone Mineral Research, Philadelphia, PA.

Cummings SR, Black D 1995 Bone mass measurements and risk of fracture in Caucasian
women: a review of findings from prospective studies. Am J Med 98(2A):24S-28S.

Ross PD, Huang C, Davis JW, Wasnich RD 1995 Vertebral dimension measurements
improve prediction of vertebral fracture incidence. Bone 16(4 Suppl):257S-2628S.

De Laet CE, Van Hout BA, Burger H, Weel AE, Hofman A, Pols HA 1998 Hip fracture
prediction in elderly men and women: validation in the Rotterdam study. J Bone Miner
Res 13(10):1587-93.

Bendavid EJ, Shan J, Barrett-Connor E 1996 Factors associated with bone mineral
density in middle-aged men. J Bone Miner Res 11(8):1185-90.

Huuskonen J, Vaisanen SB, Kroger H, Jurvelin C, Bouchard C, Alhava E, Rauramaa R
2000 Determinants of bone mineral density in middle aged men: a population-based
study. Osteoporos Int 11(8):702-8.

Orwoll ES, Oviatt SK, Mann T 1990 The impact of osteophytic and vascular
calcifications on vertebral mineral density measurements in men. J Clin Endocrinol
Metab 70(4):1202-7.

Cauley JA, Lui LY, Stone KL, Hillier TA, Zmuda JM, Hochberg M, Beck TJ, Ensrud KE
2005 Longitudinal study of changes in hip bone mineral density in Caucasian and
African-American women. J Am Geriatr Soc 53(2):183-9.

Mazess RB, Barden HS, Drinka PJ, Bauwens SF, Orwoll ES, Bell NH 1990 Influence of
age and body weight on spine and femur bone mineral density in U.S. white men. J Bone
Miner Res 5(6):645-52.

Baumgartner RN, Stauber PM, Koehler KM, Romero L, Garry PJ 1996 Associations of
fat and muscle masses with bone mineral in elderly men and women. Am J Clin Nutr
63(3):365-72.

Semanick LM, Beck TJ, Cauley JA, Wheeler VW, Patrick AL, Bunker CH, Zmuda JM
2005 Association of body composition and physical activity with proximal femur
geometry in middle-aged and elderly Afro-Caribbean men: the Tobago bone health study.
Calcif Tissue Int 77(3):160-6.

139



99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

I11.

Chilibeck PD, Sale DG, Webber CE 1995 Exercise and bone mineral density. Sports Med
19(2):103-22.

Beck B, Marcus R 1999 Skeletal effects of exercise in men. In: Orwoll E (ed.)
Osteoporosis in men: The effects of gender on skeletal health. Academic Press, San
Diego, pp 129-155.

Riebel GD, Boden SD, Whitesides TE, Hutton WC 1995 The effect of nicotine on
incorporation of cancellous bone graft in an animal model. Spine 20(20):2198-202.

Fang MA, Frost PJ, lida-Klein A, Hahn TJ 1991 Effects of nicotine on cellular function
in UMR 106-01 osteoblast-like cells. Bone 12(4):283-6.

Zmuda JM, Cauley JA, Kriska A, Glynn NW, Gutai JP, Kuller LH 1997 Longitudinal
relation between endogenous testosterone and cardiovascular disease risk factors in
middle-aged men. A 13-year follow-up of former Multiple Risk Factor Intervention Trial
participants. Am J Epidemiol 146(8):609-17.

Vogel JM, Davis JW, Nomura A, Wasnich RD, Ross PD 1997 The effects of smoking on
bone mass and the rates of bone loss among elderly Japanese-American men. J Bone
Miner Res 12(9):1495-501.

Nguyen TV, Kelly PJ, Sambrook PN, Gilbert C, Pocock NA, Eisman JA 1994 Lifestyle
factors and bone density in the elderly: implications for osteoporosis prevention. J Bone
Miner Res 9(9):1339-46.

Lorentzon M, Mellstrom D, Haug E, Ohlsson C 2006 Smoking in young men is
associated with lower bone mineral density and reduced cortical thickness. J Clin
Endocrinol Metab.

Law MR, Hackshaw AK 1997 A meta-analysis of cigarette smoking, bone mineral
density and risk of hip fracture: recognition of a major effect. Bmj 315(7112):841-6.

Klein RF 1999 Alcohol. In: Orwoll E (ed.) Osteoporosis in men: The effects of gender
on skeletal health. Academic Press, San Diego, pp 437-461

Holbrook TL, Barrett-Connor E 1993 A prospective study of alcohol consumption and
bone mineral density. Bmj 306(6891):1506-9.

May H, Murphy S, Khaw KT 1995 Alcohol consumption and bone mineral density in
older men. Gerontology 41(3):152-8.

Dawson-Hughes B 1999 Calcium and vitamin D nutrition. In: Orwoll E (ed.)

Osteoporosis in men: The effects of gener on skeletal health. . Academic Press, San
Diego, pp 197-2009.

140



112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

Rosen CJ, Bouxsein ML 2006 Mechanisms of disease: is osteoporosis the obesity of
bone? Nat Clin Pract Rheumatol 2(1):35-43.

Looker AC, Loria CM, Carroll MD, McDowell MA, Johnson CL 1993 Calcium intakes
of Mexican Americans, Cubans, Puerto Ricans, non-Hispanic whites, and non-Hispanic
blacks in the United States. J] Am Diet Assoc 93(11):1274-9.

Reid IR 1999 Glucocorticoids and osteoporosis. In: Orwoll E (ed.) Osteoporosis in men:
the effects of geneder on skeletal health. Academic Press, San Diego, pp 417-436.

Morton DJ, Barrett-Connor EL, Edelstein SL 1994 Thiazides and bone mineral density in
elderly men and women. Am J Epidemiol 139(11):1107-15.

Wasnich R, Davis J, Ross P, Vogel J 1990 Effect of thiazide on rates of bone mineral
loss: a longitudinal study. Bmj 301(6764):1303-5.

Schneider DL, Barrett-Connor EL, Morton DJ 1994 Thyroid hormone use and bone
mineral density in elderly women. Effects of estrogen. Jama 271(16):1245-9.

Schneider DL, Barrett-Connor EL, Morton DJ 1995 Thyroid hormone use and bone
mineral density in elderly men. Arch Intern Med 155(18):2005-7.

Eastham JA 2007 Bone health in men receiving androgen deprivation therapy for prostate
cancer. J Urol 177(1):17-24.

Bunker CH, Zmuda JM, Patrick AL, Wheeler VW, Weissfeld JL, Kuller LH, Cauley JA
2006 High bone density is associated with prostate cancer in older Afro-Caribbean men:
Tobago prostate survey. Cancer Causes Control 17(8):1083-9.

Smith MR, McGovern FJ, Fallon MA, Schoenfeld D, Kantoff PW, Finkelstein JS 2001
Low bone mineral density in hormone-naive men with prostate carcinoma. Cancer
91(12):2238-45.

Ebeling PR 1999 Secondary causes of osteoporosis in men. In: Orwoll E (ed.)
Osteoporosis in men: the effect of geneder on skeletal health. Academic Press, San
Diego, pp 483-504.

Barrett-Connor E, Holbrook TL 1992 Sex differences in osteoporosis in older adults with
non-insulin-dependent diabetes mellitus. Jama 268(23):3333-7.

van Daele PL, Stolk RP, Burger H, Algra D, Grobbee DE, Hofman A, Birkenhager JC,
Pols HA 1995 Bone density in non-insulin-dependent diabetes mellitus. The Rotterdam
Study. Ann Intern Med 122(6):409-14.

Strotmeyer ES, Cauley JA, Schwartz AV, Nevitt MC, Resnick HE, Zmuda JM, Bauer
DC, Tylavsky FA, de Rekeneire N, Harris TB, Newman AB 2004 Diabetes is associated
independently of body composition with BMD and bone volume in older white and black

141



126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

men and women: The Health, Aging, and Body Composition Study. J Bone Miner Res
19(7):1084-91.

Kao CH, Tsou CT, Chen CC, Wang SJ 1993 Bone mineral density in patients with
noninsulin-dependent diabetes mellitus by dual photon absorptiometry. Nucl Med
Commun 14(5):373-7.

Krakauer JC, McKenna MJ, Buderer NF, Rao DS, Whitehouse FW, Parfitt AM 1995
Bone loss and bone turnover in diabetes. Diabetes 44(7):775-82.

Meyer HE, Tverdal A, Falch JA 1993 Risk factors for hip fracture in middle-aged
Norwegian women and men. Am J Epidemiol 137(11):1203-11.

Schwartz AV, Sellmeyer DE, Strotmeyer ES, Tylavsky FA, Feingold KR, Resnick HE,
Shorr RI, Nevitt MC, Black DM, Cauley JA, Cummings SR, Harris TB 2005 Diabetes
and bone loss at the hip in older black and white adults. ] Bone Miner Res 20(4):596-603.

Augat P, Fuerst T, Genant HK 1998 Quantitative bone mineral assessment at the forearm:
a review. Osteoporos Int 8(4):299-310.

Russo CR, Lauretani F, Bandinelli S, Bartali B, Di Iorio A, Volpato S, Guralnik JM,
Harris T, Ferrucci L 2003 Aging bone in men and women: beyond changes in bone
mineral density. Osteoporos Int 14(7):531-8.

Kaji H, Kosaka R, Yamauchi M, Kuno K, Chihara K, Sugimoto T 2005 Effects of age,
grip strength and smoking on forearm volumetric bone mineral density and bone

geometry by peripheral quantitative computed tomography: comparisons between female
and male. Endocr J 52(6):659-66.

Taaffe DR, Simonsick EM, Visser M, Volpato S, Nevitt MC, Cauley JA, Tylavsky FA,
Harris TB 2003 Lower extremity physical performance and hip bone mineral density in

elderly black and white men and women: cross-sectional associations in the Health ABC
Study. J Gerontol A Biol Sci Med Sci 58(10):M934-42.

Riggs BL, Melton Iii LJ, 3rd, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau
PA, McCollough CH, Bouxsein ML, Khosla S 2004 Population-based study of age and
sex differences in bone volumetric density, size, geometry, and structure at different
skeletal sites. J Bone Miner Res 19(12):1945-54.

Bouxsein ML, Melton LJ, 3rd, Riggs BL, Muller J, Atkinson EJ, Oberg AL, Robb RA,
Camp JJ, Rouleau PA, McCollough CH, Khosla S 2006 Age- and sex-specific

differences in the factor of risk for vertebral fracture: a population-based study using
QCT. J Bone Miner Res 21(9):1475-82.

Sigurdsson G, Aspelund T, Chang M, Jonsdottir B, Sigurdsson S, Eiriksdottir G,
Gudmundsson A, Harris TB, Gudnason V, Lang TF 2006 Increasing sex difference in
bone strength in old age: The Age, Gene/Environment Susceptibility-Reykjavik study
(AGES-REYKJAVIK). Bone 39(3):644-51.

142



137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

Ross PD 1999 The assessment of bone mass. In: Orwoll E (ed.) Osteoporosis in men: the
effects of gender on skeletal health. Academic Press, San Diego, pp 505-525.

Guglielmi G, Grimston SK, Fischer KC, Pacifici R 1994 Osteoporosis: diagnosis with
lateral and posteroanterior dual x-ray absorptiometry compared with quantitative CT.
Radiology 192(3):845-50.

Khosla S, Melton LJ, 3rd, Robb RA, Camp JJ, Atkinson EJ, Oberg AL, Rouleau PA,
Riggs BL 2005 Relationship of volumetric BMD and structural parameters at different
skeletal sites to sex steroid levels in men. J Bone Miner Res 20(5):730-40.

Jamal SA, Gilbert J, Gordon C, Bauer DC 2006 Cortical pQCT measures are associated
with fractures in dialysis patients. J Bone Miner Res 21(4):543-8.

Adami S, Gatti D, Braga V, Bianchini D, Rossini M 1999 Site-specific effects of strength
training on bone structure and geometry of ultradistal radius in postmenopausal women. J
Bone Miner Res 14(1):120-4.

Lorentzon M, Mellstrom D, Ohlsson C 2005 Association of amount of physical activity
with cortical bone size and trabecular volumetric BMD in young adult men: the GOOD
study. J Bone Miner Res 20(11):1936-43.

Haapasalo H, Kontulainen S, Sievanen H, Kannus P, Jarvinen M, Vuori I 2000 Exercise-
induced bone gain is due to enlargement in bone size without a change in volumetric
bone density: a peripheral quantitative computed tomography study of the upper arms of
male tennis players. Bone 27(3):351-7.

Uusi-Rasi K, Sievanen H, Pasanen M, Oja P, Vuori I 2002 Associations of calcium intake
and physical activity with bone density and size in premenopausal and postmenopausal
women: a peripheral quantitative computed tomography study. J Bone Miner Res
17(3):544-52.

Hasegawa Y, Schneider P, Reiners C 2001 Age, sex, and grip strength determine
architectural bone parameters assessed by peripheral quantitative computed tomography
(pQCT) at the human radius. J Biomech 34(4):497-503.

Lenchik L, Hsu FC, Register TC, Lohman KK, Freedman BI, Langefeld CD, Bowden
DW, Carr JJ 2004 Heritability of spinal trabecular volumetric bone mineral density
measured by QCT in the Diabetes Heart Study. Calcif Tissue Int 75(4):305-12.

Lorentzon M, Eriksson AL, Mellstrom D, Ohlsson C 2004 The COMT vall58met
polymorphism is associated with peak BMD in men. J Bone Miner Res 19(12):2005-11.

Yerges LM, Klei L, Roeder K, Cauley JA, Nestlerode C, Ensrud K, Kammerer C, Lang
T, Ferrell R, Orwoll E, Zmuda JM, MrOS Research Group 2007 A High-Density SNP
Screen Identifies ENPPI as a Candidate Locus for Femoral Shaft Bone Density in Older
Men: The Osteoporotic Fractures in Men Study (MrOS). Calcified Tissue International
80(Suppl 1):S34.

143



149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

Harmey D, Hessle L, Narisawa S, Johnson KA, Terkeltaub R, Millan JL 2004 Concerted
regulation of inorganic pyrophosphate and osteopontin by akp2, enppl, and ank: an

integrated model of the pathogenesis of mineralization disorders. Am J Pathol
164(4):1199-209.

Rutsch F, Ruf N, Vaingankar S, Toliat MR, Suk A, Hohne W, Schauer G, Lehmann M,
Roscioli T, Schnabel D, Epplen JT, Knisely A, Superti-Furga A, McGill J, Filippone M,
Sinaiko AR, Vallance H, Hinrichs B, Smith W, Ferre M, Terkeltaub R, Nurnberg P 2003
Mutations in ENPP1 are associated with 'idiopathic' infantile arterial calcification. Nat
Genet 34(4):379-81.

Rutsch F, Vaingankar S, Johnson K, Goldfine I, Maddux B, Schauerte P, Kalhoff H,
Sano K, Boisvert WA, Superti-Furga A, Terkeltaub R 2001 PC-1 nucleoside triphosphate
pyrophosphohydrolase deficiency in idiopathic infantile arterial calcification. Am J
Pathol 158(2):543-54.

Suk EK, Malkin I, Dahm S, Kalichman L, Ruf N, Kobyliansky E, Toliat M, Rutsch F,
Nurnberg P, Livshits G 2005 Association of ENPP1 gene polymorphisms with hand
osteoarthritis in a Chuvasha population. Arthritis Res Ther 7(5):R1082-90.

Lorentzon M, Landin K, Mellstrom D, Ohlsson C 2006 Leptin is a negative independent
predictor of areal BMD and cortical bone size in young adult Swedish men. J Bone Miner
Res 21(12):1871-8.

Meyre D, Lecoeur C, Delplanque J, Francke S, Vatin V, Durand E, Weill J, Dina C,
Froguel P 2004 A genome-wide scan for childhood obesity-associated traits in French
families shows significant linkage on chromosome 6q22.31-q23.2. Diabetes 53(3):803-
11.

Bacci S, Ludovico O, Prudente S, Zhang Y'Y, Di Paola R, Mangiacotti D, Rauseo A,
Nolan D, Dufty J, Fini G, Salvemini L, Amico C, Vigna C, Pellegrini F, Menzaghi C,
Doria A, Trischitta V 2005 The K121Q polymorphism of the ENPP1/PC-1 gene is
associated with insulin resistance/atherogenic phenotypes, including earlier onset of type
2 diabetes and myocardial infarction. Diabetes 54(10):3021-5.

Atwood LD, Heard-Costa NL, Cupples LA, Jaquish CE, Wilson PW, D'Agostino RB
2002 Genomewide linkage analysis of body mass index across 28 years of the
Framingham Heart Study. Am J Hum Genet 71(5):1044-50.

Abate N, Chandalia M, Satija P, Adams-Huet B, Grundy SM, Sandeep S, Radha V,
Deepa R, Mohan V 2005 ENPP1/PC-1 K121Q polymorphism and genetic susceptibility
to type 2 diabetes. Diabetes 54(4):1207-13.

Eller P, Hochegger K, Feuchtner GM, Zitt E, Tancevski I, Ritsch A, Kronenberg F,
Rosenkranz AR, Patsch JR, Mayer G 2007 Impact of ENPP1 genotype on arterial
calcification in patients with end-stage renal failure. Nephrol Dial Transplant.

144



	TITLE PAGE
	COMMITTEE PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	Table 2-1 Effects of hormones and cytokines on bone formation and resorption
	Table 2-2 Longitudinal studies of DXA aBMD changes with aging among older men
	Table 3-1 Comparison of selected baseline characteristics among men who participated and did not participate in the follow-up exam
	Table 3-2 Correlates of the rate of change in hip BMD
	Table 3-3 Mean annualized rate of change in hip BMD by category of percent weight change and Age
	Table 3-4 Mean annualized rate of change in hip BMD by category of percent weight change and BMI
	Table 3-5 Multivariable correlates of the annualized rate of change in BMD in older Afro-Caribbean men
	Table 4-1 Correlates of trabecular and cortical vBMD
	Table 4-2 Significant correlates of vBMD in stepwise multiple linear regression models.
	Table 5-1 Selected characteristics of Afro-Caribbean men (n=1139)
	Table 5-2 Information on the genotyped SNPs in the ENPP1 gene 
	Table 5-3 Association of ENPP1 SNPs and rate of decline in aBMD per year (%/yr)
	Table 5-4 Association of ENPP1 SNPs and bone mineral density 

	LIST OF FIGURES
	Figre 2-1 Biological pathway of bone mineralization
	Figure 3-1 Annualized rate of change in hip BMD by age group
	Figure 4-1 Trabecular vBMD by age group (unadjusted)
	Figure 4-2 Cortical vBMD by age group (unadjusted)
	Figure 5-1 Schematic of negative log 10 of p-value for 34 single SNP association tests with longitudinal aBMD changes at the total hip and femoral neck. 
	Figure 5-2 Schematic of negative log 10 of p-value for 34 single SNP association tests with cross-sectional aBMD at the total hip and femoral neck, and trabecular and cortical vBMD at the radius and tibia. 

	ACKNOWLEDGEMENT
	1.0  DISSERTATION OVERVIEW AND OBJECTIVES
	2.0  INTRODUCTION
	2.1 EPIDEMIOLOGY OF OSTEOPOROSIS AND OSTEOPOROTIC FRACTURES 
	2.1.1 Prevalence of osteoporosis and osteoporotic fractures
	2.1.2 Mortality and Morbidity
	2.1.3 Economic Burden

	2.2 BONE BIOLOGY
	2.2.1 Osteoclasts and bone resorption
	2.2.2 Osteoblast and bone formation
	2.2.3 Bone remodeling
	2.2.4 Bone compartments

	2.3 PATHOGENESIS OF OSTEOPOROSIS 
	2.3.1  Peak bone mass 
	2.3.2 Age-related bone loss
	2.3.2.1 Hormonal factors
	2.3.2.2 Lifestyle and anthropometric factors
	2.3.2.3 Genetic factors


	2.4 AREAL BMD IN MEN
	2.4.1 Assessment of aBMD
	2.4.2 Cross-sectional studies 
	2.4.3 Longitudinal studies
	2.4.4 Areal BMD and Fracture
	2.4.5 Correlates of areal BMD and accelerated bone loss
	2.4.5.1 Age
	2.4.5.2 Body weight and weight change
	2.4.5.3 Physical activity and muscle strength
	2.4.5.4 Cigarette Smoking
	2.4.5.5 Alcohol drinking
	2.4.5.6 Calcium intake
	2.4.5.7 Medication
	2.4.5.8 Medical conditions


	2.5 VOLUMETRIC BMD IN MEN
	2.5.1 Assessment of vBMD
	2.5.2 Results from cross-sectional and longitudinal studies
	2.5.2.1 Cortical vBMD
	2.5.2.2 Trabecular vBMD

	2.5.3 Volumetric BMD and fracture
	2.5.3.1 Correlates of volumetric BMD


	2.6 GENETICS OF OSTEOPOROSIS
	2.6.1 Importance of genetics in osteoporosis
	2.6.2 Candidate gene studies of osteoporosis
	2.6.3 Ectonucleotide pyrophosphatase / phosphodiesterase 1 (ENPP1)

	2.7 LIMITATIONS OF THE EXISTING LITERATURE
	2.8 SPECIFIC AIMS

	3.0  DETERMINANTS OF BONE LOSS IN MEN OF AFRICAN ANCESTRY: THE TOBAGO BONE HEALTH STUDY
	3.1 ABSTRACT
	3.2 INTRODUCTION
	3.3 METHODS
	3.3.1 Study population
	3.3.2 Densitometry
	3.3.3 Anthropometric and body composition assessments
	3.3.4 Other measurements
	3.3.5 Statistical Analysis

	3.4 RESULTS
	3.4.1 Rate of change in BMD and androgen deprivation
	3.4.2 Rate of change in BMD and age group
	3.4.3 Age-adjusted correlates of the rate of change in BMD
	3.4.4 Multiple Linear Regression

	3.5 DISCUSSION
	3.6 REFERENCES

	4.0  DETERMINANTS OF TRABECULAR AND CORTICAL VOLUMETRIC BONE MINERAL DENSITY IN MEN OF AFRICAN HERITAGE
	4.1 ABSTRACT
	4.2 INTRODUCTION
	4.3 METHODS
	4.3.1 Study subjects
	4.3.2 Anthropometric and body composition measurements
	4.3.3 Other measurements
	4.3.4 Peripheral QCT
	4.3.5 Statistical Analysis  

	4.4 RESULTS
	4.4.1 Age-adjusted regression results
	4.4.2 Results from the multiple linear regression model

	4.5 DISCUSSION
	4.6 REFERENCES

	5.0  ASSOCIATION OF COMMON ECTONUCLEOTIDE PYROPHOSPHATASE/PHOSPHODIESTERASE 1 (ENPP1) GENE VARIANTS WITH BONE MINERAL DENSITY
	5.1 ABSTRACT
	5.2 INTRODUCTION
	5.3 METHODS
	5.3.1 Study population
	5.3.2 Bone Measurements
	5.3.3 SNP selection
	5.3.4 Genotyping
	5.3.5 Statistical analysis

	5.4 RESULTS
	5.5 DISCUSSION
	5.6 REFERENCES

	6.0  GENERAL DISCUSSION
	6.1 SUMMARY
	6.2 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS
	6.3 PUBLIC HEALTH SIGNIFICANCE

	BIBLIOGRAPHY

