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INFERENCE, POWER AND SAMPLE SIZE FOR ADAPTIVE TWO-STAGE

TREATMENT STRATEGIES

Wentao Feng, PhD

University of Pittsburgh, 2008

An adaptive treatment strategy (ATS) is defined as a sequence of treatments and interme-

diate responses. ATS’ arise when chronic diseases such as cancer and depression are treated

over time with various treatment alternatives depending on intermediate responses to ear-

lier treatments. For example, in two-stage adaptive treatment strategies, patients receive

one of the induction treatments followed by a maintenance therapy given that the patients

responded to the induction treatment they received. Clinical trials are often designed to

compare adaptive treatment strategies based on appropriate designs such as sequential ran-

domization designs. One of the main objectives of these trials is to compare two or more

treatment strategies in terms of largest patient benefit, such as prolonged survival.

Statistical inference from such trials needs to account for the sequential randomization

structure of the design. Recent literature suggests several methods of estimation. A com-

parative review of available inferential procedures for analyzing data from such trials is

presented. A sample size formula is introduced for comparing the survival probabilities un-

der two treatment strategies sharing the same initial treatment. The formula is based on

the large sample properties of inverse-probability-weighted estimator. Monte Carlo simula-

tion study shows strong evidence that the proposed sample size formula guarantees desired

power, regardless of the true distributions of survival times.

To test for a difference in the effects of different induction and maintenance treatment

combinations, a supremum weighted log-rank test is proposed. The test is applied to a

dataset from a two-stage randomized trial and the results are compared to those obtained
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using a standard weighted log-rank test. A sample-size formula is derived based on the

limiting distribution of the supremum weighted log-rank statistic. Simulation studies show

that the proposed test provides sample sizes which are close to those obtained by standard

weighted log-rank test under a proportional hazard alternative. However, the proposed test

is more powerful than the standard weighted log-rank test under non-proportional hazard

alternatives.

The public health significance of this work is to provide a practical guidance of sample

size determination and a test procedure in clinical trials that adopt two stage randomization

designs.

Keywords: Adaptive treatment strategy; Brownian motion; Counting process; Inverse-

probability-weighting; Potential outcomes; Proportional hazards; Supremum log-rank

statistic; Survival function; Two-stage randomization design.
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1.0 INTRODUCTION

1.1 ADAPTIVE TREATMENT STRATEGIES

An adaptive treatment strategy (also known as dynamic treatment regime) is an individually

tailored series of decision rules specifying how treatment option should vary over time. The

rule at each stage uses time-varying measurements of response, adherence, and other patient

characteristics up to that point to determine the next treatment type and/or dosage. The

decision rules comprising a treatment regime are made prior to the beginning of the course

of treatment. Dynamic treatment regimes are widely used in the treatment of chronic or

complex diseases such as cancer, AIDS, hepatitis and mental illness, where the presence of

heterogeneity in response, potential for relapse, variability of patients characteristics and

problems with adherence demands the adjustments of clinical decisions over time. The

objective in developing such multistage decision-making strategies is to improve patient

outcomes over time. The study of sequenced treatment alternatives to relieve depression

(STAR*D) by Rush et al. [1] is one such example where patients were treated according

to one of several available treatments (or different doses of same drug) for a fixed period of

time and then based on the intermediate response were switched to a different treatment.

The main objective of such trials is to compare different treatment strategies in search of

the best one.
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Figure 1.1: A typical two-stage randomization design: full circles, rectangles and arched

rectangles represent respectively the time of randomization, available treatment arms and

the intermediate outcome.

1.2 TWO-STAGE RANDOMIZATION DESIGNS

Randomized clinical trials comparing treatment strategies with randomization being done

upfront to all possible strategies require large number of patients, even when the number

of stages and the number of treatment choices at each stage are small. For instance, a

clinical trial comparing treatment strategies with three stages and two possible treatment

options at each stage requires randomization to 23 = 8 possible regimes. By considering the

natural course of treatment, one could randomize patients at the beginning of each stage

once they become eligible. For example, to compare treatment strategies for a dynamic

treatment regime with two stages and two treatment options at each stage, patients could

be randomized to one of two possible therapies and depending on the intermediate response,

could be randomized to further therapies at stage two. Such multistage randomization

designs are referred to as sequential multiple assignment randomization trial or SMART

[2]. A pictorial representation of a standard two-stage design is given in Figure 1.1. The

treatment options Bj and B′
j , j = 1, 2 may be same or different depending on specific
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clinical trials. Unlike the situation described in Figure 1.1, where every patient receives

some therapy at each stage, there may be cases where therapy may be stopped after the

first stage if certain clinical conditions are not met. In the CALGB clinical trial described

below, the non-responding patients did not receive further treatment in the second stage.

For a two-stage design where therapy is stopped for patients not responding to the initial

treatment, the branches involving B′
j , j = 1, 2 in Figure 1.1 will be missing. In such

cases one could assume that the non-responding patients will receive a common treatment.

Clinical trials employing two-stage randomization designs are commonly implemented in

biomedical research. We describe two such clinical trials that motivated the methodologies

in our research.

1.3 CALGB 8923 TRIAL

Cancer and Leukemia Group B (CALGB) conducted a two-stage clinical trial (Protocol 8923)

to investigate the combination of different induction and maintenance therapies. As reported

by Stone et al. [3], 388 AML (acute myelogenous leukemia) patients 60 years of age or older

participated in this double-blind, placebo controlled trial. Following standard chemotherapy,

in the first stage, 195 of these patients were randomly assigned to receive placebo and 193

receive granulocyte-macrophage colony-stimulating factor (GM-CSF). 79 in the GM-CSF

group and 90 in the placebo group achieved complete remission and consented to further

treatment. In the second stage, 37 GM-CSF and 45 placebo patients were randomly assigned

to receive intensification therapy I, and the rest 42 GM-CSF patients and 45 placebo patients

to intensification therapy II. The purpose of the trial was to examine the effects of infusions

of GM-CSF after initial chemotherapy for elderly patients with AML.
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1.4 E4494 CLINICAL TRIAL

The E4494 clinical trial conducted by the Eastern Cooperative Oncology Group (ECOG),

CALGB and the Southwest Oncology Group (SWOG) and reported by Winter et al. [4] is

another example of TSRD. This study was aimed to address the impact of the addition of

rituximab to standard cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP)

therapy during induction with a second randomization to maintenance rituximab (MR) or

observation on early and late treatment failures in diffuse large B-cell lymphoma (DLBCL) in

elderly patients. Among the 632 previously untreated patients 60 years of age or older with

DLBCL, 318 were randomized to the induction treatment with addition of rituximab(R) to

CHOP, and 314 to standard CHOP. In the second stage, out of 415 responding patients, 207

were then randomized to MR and 208 to observation. After ineligibility exclusion, there were

267 R-CHOP and 279 CHOP patents in the induction stage, 174 MR and 178 observation

patients in maintenance stage. The goal of the study was to compare the risk of treatment

failure, time-to-treatment failure and overall survival among different treatment policies.

1.5 MOTIVATION AND PURPOSE

Traditional methods for analyzing data from two-stage trials separate the two stages, for

example, first estimate and compare the survival distributions between two induction treat-

ments for all patients in the study, ignoring the maintenance therapy, then for all responding

patents, estimate and compare their survival distributions between two maintenance thera-

pies conditioning on the response, regardless of the induction therapy they had received. The

outcome of interest in the second stage is usually taken as the length of time from receiving

the maintenance therapy to death or failure. Contrary to implementing intention-to-treat

analysis which will be addressed in the following chapters, such methods discard informa-

tion from the patients who could have potentially received the therapy and consequently

reduces the effective sample size and makes the analysis inefficient. More importantly, such

methods of analysis are limited to comparing different induction treatments or maintenance
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treatments, without being able to address the question of finding the best combination of

induction and maintenance therapies.

For the cases where the outcome of the study is survival time, Lunceford et al. [5]

proposed a class of consistent, asymptotically normal estimators for the survival distribution

of treatment policies. Their framework allowed consistent estimation of survival distributions

under intent-to-treat treatment policies. However, these estimators were not efficient and

failed to use the auxiliary information collected in the form of covariates. Wahed and Tsiatis

[6] obtained the most efficient semi-parametric regular asymptotically linear estimators for

survival distribution and related quantities borrowing the idea of semi-parametric theory

from Robins et al. [7]. The estimators proposed incorporated auxiliary time independent

and time dependent covariates to gain efficiency. The cases of where the data may be right

censored, were incorporated in Wahed and Tsiatis [8]. Considering the impractical nature

of the most efficient estimator, they also proposed estimators that are easy to compute but

are more efficient than Lunceford et al. [5] estimators. Lokhnygina and Helterbrand [9]

employed Cox’s proportional hazard model to derive a consistent estimator and score test

for the log hazard ratio. Guo and Tsiatis [10] proposed a weighted risk set estimator (WRSE)

for the survival distribution with right censoring using the concepts of counting process and

risk sets described by Fleming and Harrington [11]. Recently, Guo [12] proposed a weighted

log-rank test for testing the equality of two survival curves under two different strategies

sharing the same maintenance therapy. However, as noted in Eng and Kosorok [13], this test

has low power for detecting time-varying relative hazards.

There have been quite a few innovative procedures, some of which were mentioned above,

to make inferences regarding adaptive treatment strategies based on the data collected from

sequentially randomized designs. However, few techniques are available with respect to the

design of such trials. For example, an important problem that has yet to be addressed is

the power analysis and sample size determination to compare two or more strategies, or to

detect a particular class of alternatives.

The notation and assumptions used throughout our research are introduced in chapter

2. The first part of this research provides an exhaustive and comparative review of ana-

lytical approaches available for the two-stage randomization designs with survival time as

5



the primary outcome. Comparative conclusions are drawn based on the simulation stud-

ies. The results are presented in chapter 3. In the second part of the research, we present

a sample size formula to compare the point-wise survival probabilities for different treat-

ment strategies using Wald’s test. The formula is based on the large sample properties of

inverse-probability-weighted estimator. Simulation study provides strong evidence that the

proposed sample size formula guarantees desired power, regardless of the true distributions

of survival time. Results are presented in Chapter 4. In the final part of this thesis, for the

purpose of testing the equality of survival distributions of two adaptive treatment strategies,

a supremum weighed log-rank test is proposed, and a sample size formula is derived based

on the limiting distribution of the supremum weighted log-rank test statistic, as elaborated

in chapter 5. Simulation studies show that the proposed test provided sample sizes that

are close to those obtained by standard weighted log-rank test under a proportional hazard

alternative. Some remarks and potential future research are discussed in chapter 6.
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2.0 MODEL FRAMEWORK AND NOTATION

Let us consider a two-stage clinical trial similar to the CALGB 8923 Study , where the

induction treatment is A, with levels A1 and A2, and the maintenance treatment is B,

with levels B1 and B2. The objective is to compare the survival distributions for different

treatment policies AjBk, j, k = 1, 2, where AjBk stands for “treat with Aj followed by Bk if

the patient is eligible and consents to subsequent maintenance therapy.”

Let us assume that each patient i has an associated set of random variables, also referred

to as potential outcomes, {R∗
1i, R

∗
2i, (1 − R∗

1i)T
∗
10i, (1 − R∗

2i)T
∗
20i, R

∗
1iT

R∗
1i , R∗

2iT
R∗
2i , R∗

1iT
∗
11i,

R∗
1iT

∗
12i, R

∗
2iT

∗
21i, R

∗
2iT

∗
22i, Vi}, where R∗

ji is the eligible/consent status that patient i would

achieve were s/he assigned to one of the two policies AjBk, j, k = 1, 2, R∗
ji = 1 if patient

i was eligible and would consent to subsequent maintenance treatment, Rji = 0 otherwise;

T ∗j0i is the survival time of patient i if s/he received induction treatment Aj, and was not

eligible or refused subsequent maintenance treatment, defined only when R∗
ji = 0; TR∗ji is

the time from initial randomization to Aj to the time s/he received maintenance therapy,

defined only when R∗
ji = 1; T ∗jki is the survival time of patient i if s/he received induction

treatment Aj, was eligible and consented to receive maintenance treatment and received Bk;

Vi is a vector of auxiliary covariates including relevant baseline characteristics for patient i.

From the definition above, we can see that TR∗ji is defined only for those eligible and consent

patients, and all of the ten variables R∗
1i, R

∗
2i, T

∗
10i, T

∗
20i, T

R∗
1i , TR∗2i , T ∗11i, T

∗
12i, T

∗
21i and T ∗22i

can not be observed for the same patient since a patient can receive only one of the two

induction treatments, can not be both responder and non-responder, and can only receive

one of the two maintenance treatments if s/he responds in the 1st stage. These variables,

for such reason, are referred to as counterfactuals [14, 15] or potential random variables.
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With the above notations, the survival time for patient i who received treatment policy

AjBk would be Tjki = (1−R∗
ji)T

∗
j0i +R∗

jiT
∗
jki. Due to the fact that some patients eligible for

maintenance therapy Bk may not consent to further treatment or may be randomized to the

maintenance therapy B3−k, k = 1, 2 , the inference on features of these distributions addresses

directly the ”intent-to-treat” question of interest. With the above conceptualization, the

primary goal is to estimate parameters and draw inference on the distribution of Tjk, j, k =

1, 2. Specifically, we consider the problem of estimating Sjk(t) = Pr(Tjk > t) = E{I(Tjk >

t)}, the survival probability beyond time t for treatment policy AjBk. In other cases, possible

parameters of interest can be the mean or median restricted survival time.

If there is no censoring, the observed data can be represented as a set of i.i.d ran-

dom vectors {Zi, Ri, RiT
R
i , (1 − Ri)T0i, Vi, RiXi, Ti}, i = 1, · · · , n, where Zi denotes the A

treatment randomization, i.e, Zi = 2 − j if the ith patient is assigned to treatment Aj,

j = 1, 2; Ri = ZiR
∗
1i + (1 − Zi)R

∗
2i is the observed eligible/consent status for patient i;

TRi = ZiT
R∗
1i + (1−Zi)T

R∗
2i ; T0i = ZiT

∗
10i + (1−Zi)T

R
20i,; Vi is a vector of auxiliary covariates

as defined before; Xi denotes the B treatment assignment indicator, defined only if Ri = 1 ,

where Xi = 2− k if assigned to treatment Bk,k = 1, 2; and Ti is the observed survival time

for patient i. Following stable unit treatment value assumption [16], we assume that the

observed survival time for patient i is related to the potential outcomes through the relation

Ti = Zi {(1−R∗
1i)T

∗
10i +R∗

1i(XiT
∗
11i + (1−Xi)T

∗
12i)}

+(1− Zi) {(1−R∗
2i)T

∗
20i +R∗

2i(XiT
∗
21i + (1−Xi)T

∗
22i)} , (2.1)

that is, for a patient who receives induction treatment Aj, if s/he is observed to be a

non-responder, then his/her observed survival time Ti is equal to the corresponding po-

tential survival time Tj0i; on the other hand if the patient is observed to be a responder

and received treatment B1(B2), his/her observed survival time Ti is equal to the corre-

sponding counterfactual survival time T ∗j1i(T
∗
j2i), j = 1, 2. In the presence of right cen-

soring, the observed data can be summarized as the collection of i.i.d random vectors

{Ui,∆i, G
H
i (Ui)}, i = 1, · · · , n, where Ui = min(Ti, Ci),∆i = I(Ti ≤ Ci), Ci is the cen-

soring time and GH
i (Ui) = {Zi, RiI(T

R
i ≤ x), XiRiI(T

R
i ≤ x), Vi(x), x ≤ u}, where Vi(x),

similar to the Vi defined before, is a vector of auxiliary variables that may additionally be

8



collected on patient i at time x. Thus GH
i (Ui) represents data-history collected on individ-

ual i prior to time u, which contains the information of the eligibility/consent status, the

time of response if responded, the assignment of maintenance treatment and other auxiliary

variables of interest of patient i.

Since in most clinical trials total follow-up time is limited, only restricted survival time

up to time L can be considered, where L is some value less than the maximum follow-up

time for all patients in the sample, in such cases, Tjk will actually represent min(Tjk, L).

The first goal of our research is to estimate and compare Sjk(t) for the policy AjBk,

j, k = 1, 2. Then, in the second part of the thesis, we develop a sample size formula for

testing the hypothesis H0 : F11(t) = F12(t) vs. H1 : F11(t) 6= F12(t) where F1k(t) =

Pr(T1k ≤ t) = E{I(T1k ≤ t)}, denotes the probability of failure before or at time t for

treatment strategy A1Bk, k = 1, 2. Furthermore, a supremum weighted log-rank test and

corresponding sample size formula are derived in order to compare the distributions of T11

and T21.
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3.0 A REVIEW OF INFERENTIAL PROCEDURES

3.1 INTRODUCTION

In this chapter, we review and compare the currently available inferential procedures for the

two-stage randomization designs with survival time as the primary outcome. Since the data

from patients receiving induction treatment A1 are independent of those from patients with

induction treatment A2, we focus only on the data from patients who received A1, that is,

patients with treatment policies A1B1 and A1B2. The methods for policies A2B1 and A2B2

follow analogously. Since we only consider the two treatment policies that are associated

with the induction treatment A1, we drop the subscript 1 in this chapter and chapter 4. For

instance, in these two chapters, Tki is short for T1ki, k = 1, 2.

3.2 AVAILABLE INFERENTIAL PROCEDURES

3.2.1 NAÏVE ESTIMATOR

To estimate Sk(t) for the policy A1Bk, a näıve approach would be to construct an estimator

only using the data from those patients who are treated consistently with that policy. If there

was no censoring, this would mean that one could average the indicator function I(Ti > t)

over all the patients in the set: {i : 1−Ri +RiXki = 1}, where X1i = Xi and X2i = 1−Xi,

to get

ŜNAÏVE
k (t) =

{
n∑
i=1

(1−Ri +RiXki)

}−1

×
n∑
i=1

(1−Ri +RiXki)I(Ti > t). (3.1)

10



This näıve estimator takes into account the patients who did not respond and those who were

assigned to maintenance treatment Bk. However, it neglects those patients who responded

and were randomized to treatment B3−k, k = 1, 2 , as a result, the näıve estimator is expected

to underestimate Sk(t) by overestimating the contribution of the non-responders to the

survival distribution. Besides, the group of patients that has been used is no longer a

random sample from those who could potentially follow the policy A1Bk. In the cases where

their data is censored, Kaplan-Meier estimator for the survival distribution from the group

{i : 1−Ri +RiXki = 1} could be used to calculate the näıve estimator.

3.2.2 CONSISTENT AND ASYMPTOTICALLY NORMAL ESTIMATORS

In order to make more efficient use of the information from patients who are inconsistent with

the policy A1Bk, Lunceford et al. [5] proposed three forms of consistent and asymptotically

normal estimators. Assume that the assignment of B treatment is conditionally independent

of the potential survival time given the induction treatment and the data collected prior

to observing the response. Let the probability of randomization to the B1-treatment be

denoted by π1 = P (X1i = 1|Ri = 1). Then this assumption could be interpreted as X1i ⊥

T ∗1i, T
∗
2i|GH

i (TRi ), Ri = 1. This, in turn, implies that Pr(X1i = 1|T ∗1i, T ∗2i, GH
i (TRi ), Ri = 1) =

Pr(X1i = 1|Ri = 1) = π1. This assumption is the “sequential randomization assumption”

or the assumption of “no unmeasured confounders” as discussed in Robins (1997). The

probability πk can be allowed to depend on the data-history prior to the randomization

including the induction treatment, but for simplicity, we avoid discussing it here. To be

consistent with the examples in chapter 1, we take π1 to be known by design. Let us define

π2 = 1 − π1 = Pr(X1i = 0|Ri = 1) = Pr(X2i = 1|Ri = 1), where X2i = 1 − X1i. Let

K(u) = Pr(Ci > u) denote the survival distribution for the censoring time Ci. Assume also

that the censoring time is independent of the observed data and counterfactuals.

The first estimator in the sequel of three is defined as the weighted average of the patients

who are consistent with the treatment policy. Since by definition, non-responders are con-

sistent to the policy A1Bk, they were given unit weight in the construction. Responders who

were assigned to Bk with randomization probability πk are also consistent with the policy.

11



But, due to the fact that some of the responders were randomized to the other B treatment,

each patient receiving Bk represents 1
πk −1 other similar patients who could have potentially

be assigned to B1 treatment, and thus received the weight 1
πk . Combining both, the weight

function takes the form Qki = 1 − Ri +
RiXki
πk , k = 1, 2. Additionally, since patients may

be censored at any time, a second form of weighting was applied to account for the censored

patients. Each uncensored patient with survival time Ui represents 1

K(Ui)
−1 prognostically

similar patients who survived beyond time Ui and thus receives a weight of 1

K(Ui)
. Thus

the combined weight for a patient with complete survival time Ui becomes ∆iQki

K(Ui)
. Since

K(u) is unknown, it is usually estimated by the Kaplan-Meier estimator of the censoring

survival curve K̂(U) =
∏

u≤t{1 − dN c(u)/Y (u)}, with N c(u) =
∑n

i=1 I(Ui ≤ u,∆i = 0)

and Y (u) =
∑n

i=1 I(Ui ≥ u), resulting in an estimated weight function ∆iQki/K̂(Ui). The

estimator for the survival function Sk(t) is then defined as:

ŜIPMW
k (t) = 1− n−1

n∑
i=1

∆iQki

K̂(Ui)
I(Ui ≤ t), k = 1, 2. (3.2)

It was shown that if the true K(·) is substituted in the above equation, then ŜIPMW
k (t) is

unbiased for Sk(t). ŜIPMW
k (t) in equation (2) is an example of an inverse-probability-of-

missing-weighted (IPMW) estimator (Horvitz-Thompson estimator, Horvitz (1952)). The

second estimator was obtained by averaging using a probabilistically adjusted sample size,

i.e.,

ŜPAk (t) = 1−

{
n∑
i=1

∆iQki

K̂(Ui)

}−1 n∑
i=1

∆iQki

K̂(Ui)
I(Ui ≤ t), k = 1, 2 (3.3)

Lunceford et al. [5] observed that both ŜIPMW
k (t) and ŜPAk (t) are solutions of the equations

of the form
∑n

i=1
∆i

K̂(Ui)
{QkiI(Ui ≤ t) + Sk(t) − 1 − αk(Qki − 1} = 0 with αk set to 0 and

1 − Sk(t), respectively. Thus the third estimator was constructed by choosing the αk that

minimizes the variance among all solutions. To be specific, the third estimator has the form:

ŜLDTk (t) = 1− n−1

n∑
i=1

∆iQki

K̂(Ui)
I(Ui ≤ t) + α̂kn

−1

n∑
i=1

∆i

K̂(Ui)
(Qki − 1), k = 1, 2 (3.4)
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where

α̂k =

[
n−1

n∑
i=1

∆iQki(Qki − 1)
I(Ui ≥ u)

K̂(Vi)
+

∫ L

0

dN c(u){K̂(u)Y (u)}−1Ê{Lα1k(t, u)}

]

÷

[
n−1

n∑
i=1

(Qki − 1)2 +

∫ L

0

dN c(u){K̂(u)Y (u)}−1Ê{Gα
k (u)}

]
,

with

Ê{Lαk (t, u)} = n−1

n∑
i=1

∆i{QkiI(Ui ≤ t)− Ĝ1k(t, u)} × {Qki − 1− ĜQk
(u)}I(Ui ≥ u)

K̂(Ui)
,

Ê{Gα
k (u)} = n−1

n∑
i=1

∆i{Qki − 1− ĜQk
(u)}2 I(Ui ≥ u)

K̂(Ui)
,

ĜQk
(u) = {nŜk(u)}−1

n∑
i=1

∆i(Qki − 1)
I(Ui ≥ u)

K̂(Ui)
,

Ĝ1k(u) = {nŜk(u)}−1

n∑
i=1

∆iQkiI(Ui ≤ t)
I(Ui ≥ u)

K̂(Ui)
.

The three estimators ŜIPMW
k (t), ŜPAk (t) and ŜLDTk (t) are consistent and asymptotically nor-

mal. For details on the asymptotic property of these estimators we refer our readers to

Lunceford et al. [5]. These estimators were defined on an ad hoc basis and the formal

efficiency issue was not discussed.

3.2.3 SEMI-PARAMETRIC EFFICIENT ESTIMATOR

Wahed and Tsiatis [6] used the semi-parametric theory of missing data described in Robins,

Rotnitzky and Zhao [7] to characterize the most efficient regular asymptotically linear (RAL)

[17] estimator. They observed that any RAL estimator can be characterized by its influence

function and their approach was to find the most efficient influence function for all RAL

estimators of Sk(t). However, the most efficient influence function for this problem contains

a nuisance parameter in the form of the conditional expectation Pr(Tki > t|TRi , Vi, Ri =

1, Xki = 1). One way to construct useful estimators from the most efficient influence function

is to approximate these conditional probability based on patient data history leading to

locally efficient estimators. A natural way of estimating Pr(Tki > t|TRi , Vi, Ri = 1, Xki = 1)
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is to use a logistic regression of the binary outcome I(Ti > t) on the covariates Vi and TRi

within the subgroup of patients with R = 1 and xk = 1. For instance, a logistic regression

model

Pr(Tki > t|TRi , Vi, Ri = 1, Xki = 1) =
1

1 + e−(γ0+γ1TR
i +γT

2 Vi)
= g(TRi , Vi; γ)

will give rise to the locally efficient estimator:

ŜLEk =
1

n

n∑
i=1

[{(1−Ri) +
RiXki

πk
}I(Ui > t)−Ri(

Xki − πk
πk

)g(TRi , Vi; γ̂)] (3.5)

for k = 1, 2. This estimator remains consistent even if the function form g(·) is not correctly

specified, but if the regression relationship was incorrectly specified, then the gain of efficiency

over the IPMW or LDT estimator could not be guaranteed. In the presence of right censoring,

an inverse probability weighted version of the locally efficient estimator (3.5) is given by

ŜIPCWLE
k =

1

n

n∑
i=1

∆i

K̂(Ui)

[{
(1−Ri) +

RiXki

πk

}
I(Ui > t)−Ri(

Xki − πk
πk

)g(TRi , Vi; γ̂)

]
(3.6)

for k = 1, 2. We will refer to it as the Inverse Probability of Censoring Weighted Local

Efficient (IPCWLE) estimator. The properties of this estimator have not been investigated

in previous studies. This estimator is asymptotically unbiased. In addition, in our simulation

studies presented later, we find that the relative efficiency of this estimator over IPMW, PA

or LDT estimator is close to unity. But this estimator also depends on the specification of

the model g and therefore, is subjected to model mis-specification.

Wahed and Tsiatis [8] then extended the semi-parametric method to obtain the most

efficient estimator in the presence of right censoring. In order to avoid cumbersome calcula-

tion in the construction of most efficient estimator, they restricted the search for the optimal

estimator to a sub-class of the RAL estimators that contains the existing estimators. Let-

ting U∗
i = min(Ci, T

R
i ), ∆∗

i = I(Ci < TRi ), Yi(u) = I(Ui ≥ u), Ê1(u) =
∑n

i=1RiI(U
∗
i <

u)XkiYi(u)/Y (u), Ê2(u) = Y −1(u)
∑n

i=1{1 − RiI(U
∗
i < u)}Yi(u) and L1i = {RiI(U

∗
i <

u)Xki − Ê1(u)}/πk, L2i = 1 − RiI(U
∗
i < u) − Ê2(u), a simplified version of the regular

asymptotic linear efficient (RALE) estimator is given by :

ŜRALEk (t) = An/Bn (3.7)
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where

An =
1

n

n∑
i=1

∆iQki

K̂(Ui)
I(Ui > t)− 1

n

n∑
i=1

∆∗
i (Qki − 1)

K̂(U∗
i )

γ̂TWi

+
2∑
j=1

1

n

n∑
i=1

∫
dN c

i (u)

K̂(u)
ϕ̂j(u)Lji(u),

and

Bn =
1

n

n∑
i=1

∆iQki

K̂(Ui)
− 1

n

n∑
i=1

∆∗
i (Qki − 1)

K̂(U∗
i )

γ̂TµWi

+
2∑
j=1

1

n

n∑
i=1

∫
dN c

i (u)

K̂(u)
ϕ̂jµ(u)Lji(u),

where γ̂ = α−1β, γ̂µ = −α−1βµ, ϕ̂1(u) = ζ−1(u)η(u), ϕ̂1µ(u) = 1, ϕ̂2(u) = κ−1(u)τ(u),

ϕ̂2µ(u) = κ−1(u)− τµ(u) where,

α = n−1

n∑
i=1

∆i

K̂(Ui)

{
K−1(U∗

i )(Qki − 1)2W iW
T
i

}
,

β = n−1

n∑
i=1

∆i

K̂(Ui)

{
K−1(U∗

i )Qki(Qki − 1)I(Ui > t)W i

}
,

βµ = n−1

n∑
i=1

∆i

K̂(Ui)

{
K−1(U∗

i )Qki(Qki − 1)W i

}
,

τ(u) = n−1

n∑
i=1

∆i

K̂(Ui)

[{
(1−Ri)I(U

∗
i ≥ u) +

RiXki

π

}
I(Ui > t)

]
,

τµ(u) = n−1

n∑
i=1

∆i

K̂(Ui)

{
(1−Ri)I(U

∗
i ≥ u) +

RiXki

π

}
,

κ(u) = n−1

n∑
i=1

∆i

K̂(Ui)

[
I(Ui ≥ u)

{
1−RiI(T

R
i < u)

}]
,

η(u) = n−1

n∑
i=1

∆i

K̂(Ui)
{I(U∗

i < u ≤ Ui)RiXkiI(Ui > t)} ,

ζ(u) = n−1

n∑
i=1

∆i

K̂(Ui)
{I(U∗

i < u ≤ Ui)RiXki} .

The estimator ŜRALEk is consistent and asymptotically normaland is guaranteed to be asymp-

totically more efficient than the IPMW and LDT estimators since it is the most efficient
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estimator among a class of estimators including the IPMW and LDT estimators. For details

on the proof of asymptotic properties, variance estimates, and the estimates of covariance

between ŜRALE1 (t) and ŜRALE2 (t), we refer the readers to Wahed and Tsiatis [8].

3.2.4 WEIGHTED RISK SET ESTIMATOR

Guo and Tsiatis [10] derived the Weighted Risk Set Estimator (WRSE) using the concepts

of counting process and risk sets, which is an extension of the Aalen-Nelson estimator. This

estimator is more intuitive and easier to compute than the above ones. The intention was to

use Aalen-Nelson estimator to estimate the cumulative hazard function, however, due to the

property of two stage design, not all counting processes Ni(u) = I(Ui ≤ u,∆i = 1) and at risk

process Yi(u) = I(Ui ≥ u) could be observed, because some of the patients who could have

received treatment B1 are instead randomized to receive B2. Consequently, a time-varying

weight function was defined for treatment strategy A1B1: Wi(u) = 1−Ri(u) +Ri(u)Xi/π1,

where Ri(u) = RiI(T
R
i ≤ u) is the indicator of response at time u for patient i. With

this weight function, the extended Aalen-Nelson estimator for the cumulative hazard under

policy A1B1 is defined as

∆̂1(t) =

∫ t

0

∑n
i=1Wi(u)dNi(u)∑n
i=1Wi(u)Yi(u)

(3.8)

and the corresponding estimator for the survival function follows as

ŜWRSE
1 (t) = exp

{
−

∫ t

0

∑n
i=1Wi(u)dNi(u)∑n
i=1Wi(u)Yi(u)

}
(3.9)

It has been shown that WRSE is consistent and asymptotically normal. Detailed proof of

the consistency and asymptotically normality of the WRSE is given by Guo and Tsiatis [10].

3.2.5 COX PROPORTIONAL HAZARD MODEL

Because of the wide use of Cox regression model in the analysis of survival data, Lokhny-

gina and Helterbrand [9] derived a consistent estimator for the log hazard ratio comparing

strategies A1B1 and A2B1 in the Cox model. In addition to the sequential randomization

assumption and the assumption of independent censoring, this construction like other appli-

cations using Cox model, requires the proportional hazard assumption between two treatment
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policies. As in a usual Cox proportional hazard model, consider the hazard corresponding

to policy A2−jB1 be λ(t|Z = j), j = 0, 1 where λ(t|Z) = λ0(t)exp(Zβ), The estimate of β

can be obtained by solving the pseudo-score equation

Uwn(β) =
n∑
i=1

∫ ∞

0

wi{Zi − Z̄w(u, β)}dNi(u) = 0 (3.10)

where wi = 1−Ri +Ri(u)Xi/π1 acts as an inverse probability weight, and

Z̄w(u, β) =

∑n
i=1wiZiYi(u)exp(Ziβ)∑n
i=1wiYi(u)exp(Ziβ)

.

Lokhnygina and Helterbrand [9] showed that the estimator of β is consistent and asymptot-

ically normal. This estimator is easier to implement with available software and intuitively

appealing.

3.3 SIMULATION STUDIES

To evaluate the performance of the methods reviewed in the previous section, several simu-

lations were carried out following Lunceford et al. [5] strategy. We only simulated data

for policy AB1 and AB2 since the data from A1 and A2 are independent. All simula-

tions were based on a 2.5-year study for n=200 and 500 subjects. For each individual,

censoring time C was generated as uniform(0,2.5) independent of all other variables. Remis-

sion/consent status R were sampled from Bernoulli(πR). Two values of the response rate

πR = 0.4 and πR = 0.6 were used in this simulation. The B treatment indicators were

generated from Bernoulli(0.5) distribution. For non-responders (R = 0), a survival time T ∗λ

was generated from exponential(λ), where λ was taken to be 2.22 so that E(T ∗λ )/L = 0.3,

where L = 1.5 was the upper limit of the restricted observed lifetime. For responders, a

remission/consent time TR was drawn from exponential(α). We take T ∗∗1 ∼ EXP (eβ1),

T ∗∗2 ∼ EXP (eβ1+β2T ∗∗1 ), where T ∗∗1 and T ∗∗2 are post-remission survival time under B1 and

B2, respectively. The parameters α, β1 and β2 were chosen to be 6.67, 0.29 and -0.67, re-

spectively, so that E(TR)/L = 0.1, E(T ∗∗1 )/L = 0.5, and E(T ∗∗2 )/L = 1.0. The potential

restricted survival times were calculated as T1 = min{(1 − R)T ∗λ + R(TR + T ∗∗1 ), L} and

T2 = min{(1−R)T ∗λ +R(TR + T ∗∗2 ), L}.
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Table 3.1: Monte Carlo means, relative biases (bias as a percentage of the true value) and mean squared errors (MSE, expressed

as multiples of 103) for estimation of survival probabilities based on 1000 data sets of sizes 200 each. The true values were

S1(0.5) = 0.450, S2(0.5) = 0.492, S1(1.0) = 0.196, S2(1.0) = 0.261 for 40% response and S1(0.5) = 0.511, S2(0.5) = 0.575,

S1(1.0) = 0.240, S2(1.0) = 0.339 for 60% response.

πR = 0.4 πR = 0.6

Policy AB1 Policy AB2 Policy AB1 Policy AB2

t(years) Estimator Ŝ(t) Bias(%) MSE Ŝ(t) Bias(%) MSE Ŝ(t) Bias(%) MSE Ŝ(t) Bias(%) MSE

0.5 IPMW 0.452 0.4 4.28 0.493 0.2 4.42 0.511 0.0 5.48 0.578 0.5 5.93

PA 0.450 0.0 2.44 0.492 0.0 2.38 0.511 0.0 2.73 0.575 0.0 2.56

LDT 0.447 0.7(-) 2.11 0.489 0.6(-) 2.00 0.508 0.6(-) 2.41 0.571 0.7(-) 2.23

IPCWLE 0.450 0.0 2.18 0.492 0.0 2.03 0.510 0.2(-) 2.51 0.574 0.2(-) 2.27

WRSE 0.453 0.7 1.91 0.495 0.6 1.93 0.514 0.6 2.20 0.578 0.5 2.15

RALE 0.446 0.9(-) 2.07 0.489 0.6(-) 1.98 0.508 0.6(-) 2.35 0.572 0.5(-) 2.18

1.0 IPMW 0.197 0.5 2.84 0.263 0.8 3.58 0.239 0.4 3.84 0.341 0.6 4.81

PA 0.196 0.0 2.29 0.262 0.4 2.65 0.238 0.8(-) 2.93 0.338 0.2(-) 3.17

LDT 0.193 1.5 2.03 0.259 0.8(-) 2.20 0.237 1.3(-) 2.62 0.335 1.2(-) 2.75

IPCWLE 0.194 1.0(-) 2.13 0.261 0.0 2.36 0.238 0.8(-) 2.72 0.337 0.6(-) 2.92

WRSE 0.200 2.0 1.71 0.267 1.5 2.00 0.243 1.3 2.25 0.343 1.2 2.53

RALE 0.192 2.0(-) 1.87 0.259 0.8(-) 2.09 0.236 1.7(-) 2.41 0.336 0.9(-) 2.60
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Table 3.2: Monte Carlo means, relative biases (bias as a percentage of the true value) and mean squared errors (MSE, expressed

as multiples of 103) for estimation of survival probabilities based on 1000 data sets of sizes 500 each. The true values were

S1(0.5) = 0.450, S2(0.5) = 0.492, S1(1.0) = 0.196, S2(1.0) = 0.261 for 40% response and S1(0.5) = 0.511, S2(0.5) = 0.575,

S1(1.0) = 0.240, S2(1.0) = 0.339 for 60% response.

πR = 0.4 πR = 0.6

Policy AB1 Policy AB2 Policy AB1 Policy AB2

t(years) Estimator Ŝ(t) Bias(%) MSE Ŝ(t) Bias(%) MSE Ŝ(t) Bias(%) MSE Ŝ(t) Bias(%) MSE

0.5 IPMW 0.451 0.2 1.54 0.494 0.4 1.71 0.512 0.2 2.10 0.576 0.2 2.23

PA 0.451 0.2 0.95 0.493 0.2 0.94 0.512 0.2 1.05 0.575 0.0 0.97

LDT 0.450 0.0 0.85 0.492 0.0 0.79 0.511 0.0 0.92 0.574 0.2(-) 0.85

IPCWLE 0.450 0.0 0.85 0.493 0.2 0.80 0.511 0.0 0.97 0.576 0.2 0.85

WRSE 0.452 0.4 0.77 0.494 0.4 0.79 0.513 0.4 0.85 0.576 0.2 0.81

RALE 0.450 0.0 0.78 0.492 0.0 0.78 0.511 0.0 0.87 0.574 0.2(-) 0.82

1.0 IPMW 0.197 0.0 1.07 0.263 0.8 1.36 0.241 0.4 1.50 0.341 0.6 1.89

PA 0.197 0.0 0.88 0.263 0.8 1.03 0.241 0.4 1.14 0.340 0.3 1.27

LDT 0.196 0.0 0.80 0.262 0.4 0.87 0.240 0.0 1.02 0.339 0.0 1.11

IPCWLE 0.197 0.5 0.87 0.263 0.8 0.89 0.241 0.4 1.09 0.340 0.3 1.14

WRSE 0.199 1.5 0.68 0.264 1.2 0.82 0.243 1.3 0.88 0.342 0.9 1.01

RALE 0.197 0.5 0.69 0.262 0.8 0.81 0.241 0.4 0.89 0.339 0.0 1.01
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For each of 1000 Monte Carlo data sets, P (Tk) > t, k = 1, 2 were estimated at time

point 0.5 year and 1.0 year, reflecting early and late period of study. The mean squared

errors were calculated from the bias of the estimated mean probability and the variance of

the 1000 estimates. In calculating the IPCWLE and RALE estimators, the response time TRi

was considered as the only auxiliary variable which the survival time could depend upon. For

IPCWLE, to model the conditional expectation of survival probability among the responders

who are consistent with the policy, logistic regression of survival probability on the response

time was fitted. We did not include the Lokhnygina and Helterbrand’s [9] Cox regression

method in our simulation because its distinct property makes comparison less feasible.

Table 3.1 presents the mean, relative bias and mean squared errors for survival probability

estimates based on 1000 samples of size 200 each. As shown in Table 1, almost all the relative

biases, calculated as (bias/true value)×100, were less than 2%. By closely examining the

table we notice that the relative biases were larger for t = 1.0 than t = 0.5, that is, the

estimators were more biased for survival estimates at times towards the end of the study

when there were more censoring present. In comparing the biases of different estimators in

small samples, the PA estimator was generally the least biased, followed by the IPCWLE

and IPMW estimators. LDT and RALE estimators always underestimated the true values

whereas WRSE estimator overestimated them.

Comparing the MSE’s, IPMW estimates were the least efficient as one would expect

since no information from the censored patients or any auxiliary information is used in

construction of such estimator. Among the IPMW, PA, LDT and RALE estimates whose

influence functions belong to the same class, LDT estimates showed substantial gains in

efficiency relative to both the first two, and RALE estimates are more efficient than LDT

estimates in all scenarios, with the relative efficiency ranging from 1.01 to 1.18. The MSE

of IPCWLE estimates were slightly larger than that of LDT estimates but substantially

smaller than that of IPMW or PA estimates. In most instances WRSE estimator appeared

to be the most efficient among all the estimates. The relative efficiencies of WRSE estimates

with respect to LDT estimates ranged from 1.00 to 1.19 and the gain is bigger when more

censoring is present. In general, the MSEs followed the pattern: IPMW ≥ PA ≥ IPCWLE

≥ LDT ≥ RALE ≥ WRSE.
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Table 3.2 presents the mean, relative bias and mean squared errors for survival probability

estimates based on 1000 samples of size 500 each. When the sample size was increased to 500,

all the biases dropped to less than 1% except for the WRSE estimator. It was not surprising

since the asymptotic unbiasness of WRSE estimator is achieved via the exponential functional

of the cumulative hazard function. When the sample size was increased from 200 to 500,

the efficiency of all the estimators improved, but the trend of relative efficiencies remained

mostly unaffected.
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4.0 INVERSE-PROBABILITY-WEIGHTING BASED SAMPLE SIZE

FORMULA

4.1 BACKGROUND AND OBJECTIVE

Suppose the goal is to test the hypothesis that the probability of survival under a given strat-

egy at a fixed time t does not differ from that under a different strategy sharing the same

initial treatment. The goal can be accomplished by comparing the consistent estimators of

survival probabilities under both strategies. Let us consider the IPMW estimator defined in

3.2.2 for this purpose. This inverse-probability weighting estimators are constructed based on

the patients who actually received the combined treatments and those who did not respond

to the initial treatment or those who refused further treatment. Thus when comparing the

survival under two treatment strategies sharing the same initial treatment, the pair of esti-

mators are not independent, since they are influenced by the same set of non-responders and

non-consenters. In other words, the two groups of patients that are used to estimate survival

are no longer random samples from those who could potentially follow respective treatment

strategies. Consequently, one can not use the usual two-sample sample size formula for com-

paring the survival rates between two independent groups. In this section, the primary goal

is to determine the required sample size for testing the hypothesis H0 : F1(t) = F2(t) vs.

H1 : F1(t) 6= F2(t) where Fk(t) = Pr(Tk ≤ t) = E{I(Tk ≤ t)}, denotes the probability

of failure before or at time t for treatment strategy A1Bk, k = 1, 2. We derive a sample

size formula based on Lunceford et al.’s [5] estimator which is appropriate for censored data

and sequential randomization. In other words, F̂k(t) = 1− Ŝk(t), where Ŝk(t) was shown in

equation (3.3).
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Following the appendix in Lunceford et al. [5] , we have the large-sample property

n1/2{F̂k(t)− Fk(t)} = n−1/2

n∑
i=1

ψki + op(1), (4.1)

where ψki is the influence function for F̂k(t), given by

ψki = Qki{I(Ti ≤ t)− Fk(t)} −
∫ L

0

Qki{I(Ti ≤ t)− Fk(t)} −G1k(t, u)

K(u)
dM c

i (u), (4.2)

where

Gk(t, u) =
E[{I(Tki ≤ t)− Fk(t)}I(Tki ≥ u)]

P (Ti > u)
, (4.3)

λc(u) is the hazard function for the censoring distribution, and M c
i (t) is the corresponding

martingale process [11] M c
i (t) = N c

i (t) −
∫ t

0
λc(u)Yi(u)du, where N c

i (t) = I(Ui ≤ t,∆i = 0)

and Yi(u) = I(Ui ≥ u). The variance of the influence function is given by

σ2
ψk

= E(ψki)
2 = E[Qki{I(Ti ≤ t)− Fk(t)}]2 +

∫ L

0

E{Lki(t, u)}2

K(u)
λc(u)du, (4.4)

where Lki(t, u) = [Qki{I(Ti ≤ t) − Fk(t)} − Gk(t, u)]I(Ti ≥ u). Similarly, the covariance of

ψ1i and ψ2i is

σψ1ψ2 = E(ψ1iψ2i) = E[Q1iQ2i{I(Ti ≤ t)− F1(t)}

× {I(Ti ≤ t)− F2(t)}] +

∫ L

0

E{L1i(t, u)L2i(t, u)}
K(u)

λc(u)du. (4.5)

For details on the derivation of (4.4) and (4.5) we refer the reader to Lunceford et al. [5].
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4.2 A SAMPLE SIZE FORMULA FOR TESTING EQUALITY OF

SURVIVAL PROBABILITIES

Denoting F1(t)−F2(t) by D, our goal is to test the null hypothesis H0 : D = 0 against HA :

D 6= 0. Utilizing the fact that the above estimators are consistent and asymptotically normal,

the hypothesis testing could be performed using Wald’s test with the test statistic being

Z = D̂/σ̂D, where D̂ = F̂1(t)− F̂2(t) and σ̂2
D is a consistent estimator of the variance of D̂,

σ2
D. Since F̂1(t) and F̂2(t) are asymptotically normally distributed, Z is also asymptotically

follow the standardized normal distribution under the null hypothesis. A consistent estimator

of σ2
D can be obtained by using the formula for variance and covariance estimates given in

Lunceford et al. [5]. However, for power or sample size calculation in the absence of pilot

data, one needs to have knowledge about the actual variance σ2
D.

By (4.1), the asymptotic variance of F̂k(t) is given by var(F̂k(t)) = E(ψ2
k)/n = σ2

ψk
/n,

and consequently, the asymptotic variance of D̂ is

σ2
D = var(D̂) = σ2

ψ1−ψ2
/n =

σ2
ψ1

+ σ2
ψ2
− 2σψ1ψ2

n
. (4.6)

If the variabilities σ2
ψ1

, σ2
ψ2

and σψ1ψ2 were known with type I error set to α, the true difference

in survival probabilities at time t, D, can be detected with pre-specified power 1− β, when

the sample size is at least

n =
σ2
ψ1−ψ2

· (z1−α/2 + z1−β)
2

D
, (4.7)

where z1−α/2 and z1−β are the 100(1 − α/2)th and 100(1 − β)th percentile of the standard

normal distribution, respectively. But σ2
ψ1

, σ2
ψ2

and σψ1ψ2 are unknown and hence educated

guess should be made regarding them in order to use the above sample size formula. However,

expressions (4.4) and (4.5) are too complicated. Our purpose is to express equations (4.4)

and (4.5) in simplified forms in terms of the parameters of the survival distributions of sub-

populations. Let us denote the cumulative distributions of the counterfactual variables T0,

T ∗1i and T ∗2i by F0, F
∗
1 and F ∗

2 , and the corresponding survival functions by S0, S
∗
1 and S∗2 ,
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respectively. For k = 1, the first term on the right side of (4.4) can be rewritten as

E{Q2
1i[I(T1i ≤ t)− F1(t)]

2} = E[{I(T1i ≤ t)− F1(t)}2E(Q2
1i|T1i)]

= [V ar(I(T1i ≤ t))] · (1− πR + πR/π1)

= F1(t)(1− F1(t))(1− πR + πR/π1), (4.8)

where F1(t) = P(T1i ≤ t) = (1− πR)F0(t) + πRF
∗
1 (t), and πR = P(Ri = 1).

For the other term in (4.4), since L1i(t, u) = [Q1i{I(Ti ≤ t)−F1(t)}−G1(t, u)]I(Ti ≥ u),

we have

E{L1i(t, u)}2 = E
[
Q2

1i{I(Ti ≤ t)− F1(t)}2I(Ti ≥ u)

− 2Q1i{I(Ti ≤ t)− F1(t)}G1(t, u)I(Ti ≥ u)

+ G2
1(t, u)I(Ti ≥ u)

]
. (4.9)

Using the fact that E(Q2
1i|T1i) = 1− πR + πR/π1, the first part in equation (4.9) can be

written as

E
[
Q2

1i{I(T1i ≤ t)− F1(t)}2I(T1i ≥ u)
]

= E
[
Q2

1iI(T1i ≤ t)I(T1i ≥ u)− 2Q2
1iI(T1i ≤ t)F1(t)I(T1i ≥ u) +Q2

1iF
2
1 (t)I(T1i ≥ u)

]
= E

[
I(u ≤ T1i ≤ t)E(Q2

1i|T1i)
]
− 2F1(t)E

[
I(u ≤ T1i ≤ t)E(Q2

1i|T1i)
]

+F 2
1 (t)E

[
I(T1i ≥ u)E(Q2

1i|T1i)
]

= (S1(u)− S1(t))(1− πR + πR/π1)− 2F1(t)(S1(u)− S1(t))(1− πR + πR/π1)

+F 2
1 (t)S1(u)(1− πR + πR/π1)

= (1− πR + πR/π1)[F1(t)− F1(u)− 2F1(t)(F1(t)− F1(u)) + F 2
1 (t)S1(u)]. (4.10)

Similarly, since E(Q1i|T1i) = 1, the second part in (4.9) is :

−2G1(t, u)E [{I(u ≤ T1i ≤ t)− I(T1i ≥ u)F1(t)}E(Q1i|T1i)]

= −2G1(t, u) [S1(u)− S1(t)− (1− S1(t))S1(u)]

= 2G1(t, u)S1(t)F1(u). (4.11)
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The third part in (4.9) is :

G2
1(t, u)E[I(Ti ≥ u)]

= G2
1(t, u) [(1− πR)S0(u) + πR{π1S

∗
1(u) + (1− π1)S

∗
2(u)}] . (4.12)

Thus adding (4.10), (4.11), and (4.12)

E{L1i(t, u)}2 = (1− πR + πR/π1)[F1(t)− F1(u)− 2F1(t)(F1(t)− F1(u)) + F 2
1 (t)S1(u)]

+2G1(t, u)S1(t)F1(u)

+G2
1(t, u) [(1− πR)S0(u) + πR{π1S

∗
1(u) + π2S

∗
2(u)}] , (4.13)

where

Gk(t, u) =
E[I(Tki ≤ t)I(Tki ≥ u)− Fk(t)I(Tki ≥ u)

P (Ti ≥ u)

=
(Sk(u)− Sk(t))− (1− Sk(t))Sk(u)

P (Ti ≥ u)
=
−Sk(t)Fk(u)
P (Ti ≥ u)

,

P (Ti ≥ u) = (1−πR)S0(u)+πR {π1S
∗
1(u) + π2S

∗
2(u)}), and S1(t) = (1−πR)S0(t)+πRS

∗
1(t).

Thus, given the censoring distribution, the variance of ψ1i can be explicitly expressed by

σ2
ψ1

= F1(t)(1− F1(t))(1− πR + πR/π1) +

∫ L

0

(4.13)× λc(u)

K(u)
du. (4.14)

The variance of ψ2i, σ
2
ψ2

can be derived analogically. Now in order to obtain the variance

of ψ1i − ψ2i, we need to simplify the covariance term in equation (4.5).

It can easily be shown that E(Q1iQ2i|T1i, T2i) = 1 − πR, leading the first term in the

right side of (4.5) to

E [Q1iQ2i{I(Ti ≤ t)− F1(t)}{I(Ti ≤ t)− F2(t)}]

= E [Q1iQ2i{I(T1i ≤ t)− F1(t)}{I(T2i ≤ t)− F2(t)}]

= E [{I(T1i ≤ t)I(T2i ≤ t)− F1(t)F2(t)}E(Q1iQ2i|T1i, T2i)]

= E [I(T1i ≤ t)I(T2i ≤ t)− F1(t)F2(t)] (1− πR). (4.15)
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If we assume that T ∗1i ⊥ T ∗2i|R = 1, then E [I(T1i ≤ t)I(T2i ≤ t)] in (4.15) can be expressed

as

E [I(T1i ≤ t)I(T2i ≤ t)]

= P [I(T1i ≤ t)I(T2i ≤ t)|R = 1]P (R = 1) + P [I(T1i ≤ t)I(T2i ≤ t)|R = 0]P (R = 0)

= πRF
∗
1 (t)F ∗

2 (t) + (1− πR)F0(t). (4.16)

We substitute equation (4.16) into (4.15), then the first term in the right side of (4.5)

becomes

πR(1− πR)F ∗
1 (t)F ∗

2 (t) + (1− πR)2F0(t)− (1− πR)F1(t)F2(t) (4.17)

For the second part of (4.5), using derivations similar to (4.10), (4.11), and (4.12), we obtain

E{L1i(t, u)L2i(t, u)} = {(1− F1(t)− F2(t))(F0(t)− F0(u)) + F1(t)F2(t)(1− F0(u))} (1− πR)

−G2(t, u){−F1(u)S1(t)} −G1(t, u){−F2(u)S2(t)}

+G1(t, u)G2(t, u) [(1− πR)S0(u) + πR(π1S
∗
1(u) + π2S

∗
2(u))] . (4.18)

Thus the covariance σψ1ψ2 between ψ1i and ψ2i in equation (4.5) is given by

σψ1ψ2 = (4.17) +

∫ L

0

(4.18)

K(u)
λc(u)du. (4.19)

Finally, the variance of ψ1i − ψ2i is

σ2
ψ1−ψ2

= σ2
ψ1i

+ σ2
ψ2i
− 2σψ1ψ2 . (4.20)

Thus if we make working distributional assumptions for T0, T
∗
1 , T ∗2 , and make clinically

meaningful estimates of the remission/consent rate πR and the censoring distribution, given

the randomization rate π1, we would be able to calculate the variance σ2
ψ1−ψ2

and hence

determine the sample size using (4.7). If T0, T
∗
1 and T ∗2 are assumed to follow exponential

distributions (irrespective of what the true distributions are), then the required distributional

forms of T0, T
∗
1 and T ∗2 are identified by the means of T0, T

∗
1 and T ∗2 respectively, making

computations simpler. We will compute the variance and the sample sizes based on the

working assumption that the counterfactual survival times are exponentially distributed and

will check the sensitivity of this assumption by generating samples from other distributions.
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

H0: F11( 1 )= F12( 1 )= 0.65

Ha: F11( 1 )= 0.65 , F12( 1 )= 0.45

Type I error: 0.05

Power : 0.8

Required Sample Size for the A1 arm: 188

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 4.1: A snapshot of the output generated by the R routine for sample size.

Generally, the censoring time is assumed to follow a uniform distribution over some

interval [0, τ ], where τ is some time point beyond the length of the trial. We will adopt

this assumption for the purpose of illustration. For this special case, C ∼ UNIF(0, τ),

K(u) = 1 − u/τ and λc(u) = 1/(τ − u). Other censoring distributions such as exponential

censoring can also be implemented. We have developed an R [18] routine to calculate the

sample size based on the proposed variance formula (see Appendix A.1). Figure 4.1 gives a

snapshot of the output generated by the routine.

4.3 SIMULATION STUDIES

To evaluate the performance of the sample size formula proposed above, several simulations

were carried out. We only simulated data for strategy A1B1 and A1B2. All simulations

were based on a 2.5 year study, with the upper limit of the restricted observed lifetime

being 1.5 years. For each individual, censoring time C was generated from a UNIF(0,3.5)

independent of all other variables, resulting in 18% to 24% censoring at the end of one year.

Remission/consent status R were sampled from and Bernoulli(0.5) in Table 4.1 and from

Bernoulli(0.7) in Table 4.2. The B treatment indicators were generated from Bernoulli(0.5)

28



distribution, i.e, for those who responded and agreed to further treatment, the randomization

ratio between the two maintenance treatments was 1:1.

In the simulation scenarios described in Table 4.1 and Table 4.2, for nonresponders (R =

0), a survival time T0 was drawn from EXP(α0). For responders, we take T ∗1 ∼ EXP (α1),

T ∗2 ∼ EXP (α2), where T ∗1 and T ∗2 are survival time for patients treated with B1 and B2,

respectively. For each of the two response rate scenarios, specific values of α0, α1 and α2

were chosen so that when F1(1.0) = 0.65, F2(1.0) varies from 0.55 to 0.35, similarly, when

F1(1.0) = 0.50, F2(1.0) varies from 0.43 to 0.25. As a result, the difference in survival

probability D to be detected ranged from 0.08 to 0.30. The potential restricted survival

times were calculated as T1 = min{(1−R)T ∗0 +RT ∗1 , L} and T2 = min{(1−R)T ∗0 +RT ∗2 , L}.

For the purpose of sample size determination, the variance σ2
ψ1−ψ2

was calculated using

equation (4.20) under the true assumption of exponential survival distributions (we check

the sensitivity of this assumption in simulation scenarios presented later). The sample size

n was then determined by the sample size formula (4.7) be setting α = 0.05 and β = 0.20.

We generated 2000 Monte-Carlo samples of size n from the true survival distributions. For

each of these samples the test statistic Z = D̂/σ̂D was computed and compared to the null

distribution. The observed power was calculated as the proportions of Monte Carlo data sets

for which the null hypothesis was rejected at the .05 type I error level. For each scenario,

data from null distributions, i.e, when the F2(1.0) was actually the same as F1(1.0), were

also generated to assess the false rejection rates (type I error).

Results presented in Table 4.1 and Table 4.2 show that the sample sizes obtained using

the proposed sample size formula provided observed power that are close to the expected

power. In a few occasion, for smaller true differences in survival, average observed powers

were smaller than the expected power. The test always maintained the nominated type I

error level.

In practice, however, the distribution of true survival are unknown and thus the working

assumption of the underlying survival distributions being exponential may not be valid.

Simulations were also carried out where the true survival times were generated from log-

normal, Weibull or a mixture of log-normal and Weibull distributions to assess the robustness

of our sample size formula to the mis-specification of true distributions. The parameters of

29



Table 4.1: Sample size and achieved power for comparing survival probabilities at 1.0 year

using inverse-probability-weighted estimator. Results are from simulation studies based on

2000 Monte Carlo data sets. Survival times for non-responders, responders in treatment

strategy A1B1, and responders in A1B2 are generated from exponential distributions with

means α0,α1 and α2, respectively. Response rate is assumed to be 50%, randomization ratio

is 1:1 for the B-treatment.

α0 α1 α2 F1(1.0) F2(1.0) Var(ψ1 − ψ2) n power Type I error

0.825 1.10 1.64 0.65 0.58 0.7339 1166 0.780 0.056

0.825 1.10 1.98 0.65 0.55 0.7399 578 0.774 0.056

0.825 1.10 2.83 0.65 0.50 0.7438 261 0.775 0.051

0.925 0.98 3.66 0.65 0.45 0.7408 146 0.792 0.047

0.965 0.94 5.94 0.65 0.40 0.7321 92 0.805 0.052

1.054 2.04 3.52 0.50 0.43 0.7365 1177 0.817 0.050

1.054 2.04 4.83 0.50 0.40 0.7245 566 0.813 0.042

1.268 1.65 5.96 0.50 0.35 0.7107 248 0.849 0.046

2.262 0.97 3.59 0.50 0.30 0.7059 139 0.867 0.054

2.262 0.97 6.50 0.50 0.25 0.6768 85 0.887 0.056
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Table 4.2: Sample size and achieved power for comparing survival probabilities at 1.0 year

using inverse-probability-weighted estimator. Results are from simulation studies based on

2000 Monte Carlo data sets. Survival times for non-responders, responders in treatment

strategy A1B1, and responders in A1B2 are generated from exponential distributions with

means α0,α1 and α2, respectively. Response rate is assumed to be 70%, randomization ratio

is 1:1 for the B-treatment.

α0 α1 α2 F1(1.0) F2(1.0) σ2
ψ1−ψ2

n power Type I error

0.545 1.19 1.80 0.65 0.55 0.9591 760 0.720 0.045

0.545 1.19 2.29 0.65 0.50 0.9612 335 0.775 0.049

0.545 1.19 3.01 0.65 0.45 0.9540 188 0.771 0.051

0.545 1.19 4.21 0.65 0.40 0.9376 118 0.792 0.057

0.545 1.19 6.63 0.65 0.35 0.9122 80 0.772 0.051

0.855 1.84 2.61 0.50 0.43 0.9630 1513 0.805 0.052

0.855 1.84 3.10 0.50 0.40 0.9502 739 0.792 0.053

0.855 1.84 4.37 0.50 0.35 0.9220 321 0.790 0.052

0.855 1.84 7.01 0.50 0.30 08850 173 0.817 0.059

0.855 1.84 15.72 0.50 0.25 0.8397 106 0.844 0.061
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Table 4.3: Achieved power when comparing survival probabilities at 1.0 year using inverse-

probability-weighted estimator. Simulation studies were based on 2000 Monte Carlo data

sets. Survival times for nonresponders, responders in treatment strategy A1B1, and re-

sponders in A1B2 were generated from log-normal distributions in Scenario 1, from Weibull

distributions in Scenario 2. In Scenario 3, the distributions for the three survival times T0, T
∗
1

and T ∗2 are generated from exponential, log-normal and Weibull distribution, respectively.

Sample sizes are based on the assumption that the survival times were from exponential

distributions.

Power(Type I error)

πR F1(1.0) F2(1.0) n Scenario 1 Scenario 2 Scenario 3

0.70 0.65 0.55 760 0.736(0.052) 0.793(0.050) 0.748(0.056)

0.65 0.50 335 0.750(0.054) 0.771(0.048) 0.739(0.052)

0.65 0.45 188 0.770(0.055) 0.795(0.053) 0.755(0.067)

0.65 0.40 118 0.745(0.051) 0.772(0.051) 0.748(0.068)

0.65 0.35 80 0.776(0.060) 0.789(0.046) 0.789(0.065)

0.50 0.50 0.43 1177 0.816(0.049) 0.814(0.046) 0.823(0.051)

0.50 0.40 566 0.806(0.050) 0.821(0.050) 0.801(0.047)

0.50 0.35 248 0.812(0.047) 0.824(0.051) 0.820(0.049)

0.50 0.30 139 0.841(0.048) 0.832(0.043) 0.816(0.059)

0.50 0.25 85 0.826(0.051) 0.841(0.057) 0.818(0.057)
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these distributions were chosen such that the expected probabilities of survival at time 1.0

(year) is the same as those in tables 4.1 and 4.2. Table 4.3 shows that when we use the sample

size formula as if the survival times were from exponential distributions, the observed power

remains close to the expected power (0.80). For observed type I errors, they were again

around 0.05, similar to the results presented in tables 4.1 and 4.2. In other words, the

working assumption of exponential true survival played no major role in the variance and

hence sample size calculation. Thus, as long as we know the means of T0, T
∗
1 and T ∗2 ,

we can ignore the true underlying distributions and calculate the variance as though the

true counterfactuals followed exponential distributions. The implication of this finding is

that when planning a two stage randomization clinical trial to test the equality of survival

between two strategies sharing the same induction treatment, we only need to know the

means of T0, T
∗
1 and T ∗2 , regardless of their actual distributions.

33



5.0 SUPREMUM WEIGHTED LOG-RANK TEST AND

CORRESPONDING SAMPLE SIZE

5.1 INTRODUCTION

In the previous chapter we have considered testing the equality of two treatment strategies

based on survival probabilities at fixed time t. However, survival probabilities at a fixed

time t may not reflect the overall nature of the design. For the purpose of comparing overall

survival pattern under various treatment strategies, Guo [12] proposed a weighted log-rank

test, which was pointed out to have low power for detecting time-varying relative hazards[13].

In this chapter, we define a supremum weighted log-rank test for testing the equality of

two adaptive treatment strategies sharing same maintenance treatment based on the overall

survival distributions. Another important problem that we will address in this chapter is the

determination of sample size to detect a particular class of alternatives. We derive a sample

size formula based on the proposed supremum weighted log-rank statistic and conduct power

analysis through simulation.

We will focus on comparing the survival distributions of treatment strategies A1B1 and

A2B1, i.e., to compare the distributions of T11 and T21. The method for comparing other

pairs of treatment strategies follows analogously.

5.2 LOG-RANK TESTS

If everyone randomized to the initial treatment Aj remained on B1 once they responded to

Aj (that is, were there no second randomization), we could have observed the event times
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Uj1i = min(Tj1i, Ci) for the treatment strategy AjB1, j = 1, 2. A two sample standard log-

rank statistic could then be used to test the null hypothesis of no difference between the

two survival distributions related to the strategies A1B1 and A2B1. Using counting process

representations [11], the standard log-rank test statistic could then be represented as

ZLR
n (t) =

∫ t

0

Y11(s)Y21(s)

Y11(s) + Y21(s)

{
dN11(s)

Y11(s)
− dN21(s)

Y21(s)

}
, (5.1)

where Nj1i(s) = I(Uj1i ≤ s,∆i = 1), Yj1i(s) = I(Uj1i ≥ s), Nj1(s) =
∑n

i=1Nj1i(s) and

Yj1(s) =
∑n

i=1 Yj1i(s) for j = 1, 2. Under the null hypothesis of no difference between two

treatment strategies, n−1/2ZLR
n (t) is asymptotically normally distributed with mean zero and

a variance that is consistently estimated by σ2
n
LR

(t), where

σ2
n
LR

(t) = n−1

∫ t

0

Y11(s)Y21(s)

Y11(s) + Y21(s)

{
dN11(s) + dN21(s)

Y11(s) + Y21(s)

}
.

For details on the properties of the log-rank statistic, we refer the readers to Fleming and

Harrington [11].

In a TSRD study, however, Uj1i could not be observed for patients who are assigned

to induction treatment Aj but randomized to maintenance treatment B2 after responding

to Aj. In order to account for the second randomization, Guo [12] modified the standard

log-rank test by assigning a time-dependent weight to each observation, and using inverse

weighting methods to derive a weighted log-rank test statistic. The weight function is defined

as Wi(s) = 1 − Ri(s) + Ri(s)Xi/πz, where Ri(s) = RiI(T
R
i ≤ s) and πz is the probability

of a patient being assigned to maintenance treatment B1 given that they responded and

consented. In other words, if a patient has not responded at time s, they will have weight

Wi(s) = 1; if the patient has responded/consented by time s and is assigned to B1 in the

second randomization, Wi(s) = 1/πz; however, if the patient has responded/consented by

time s and is assigned to B2, which is not consistent with treatment strategy AjB1, then

Wi(s) = 0. Define Nji(s) = I(Ui ≤ s,∆i = 1, Zi = 2− j), Yji(s) = I(Ui ≥ s, Zi = 2− j) and

let Y j(s) =
∑n

i=1Wi(s)Yji(s), N j(s) =
∑n

i=1Wi(s)Nji(s), be the weighted versions of at-risk

and the death processes for the jth induction treatment. Based on these weighted processes
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Guo [12] proposed the following inverse-probability-of-randomization-weighted (IPRW) log-

rank statistic

Zn(t) =

∫ t

0

Y 1(s)Y 2(s)

Y 1(s) + Y 2(s)

{
dN1(s)

Y 1(s)
− dN2(s)

Y 2(s)

}
. (5.2)

It has been shown that under the null hypothesis n−1/2Zn(t) is asymptotically normally

distributed with mean zero and variance

σ2(t) =
2∑
j=1

E


[∫

S
(c)
3−j(u)

S
(c)
1 (u) + S

(c)
2 (u)

n∑
i=1

Wi(u){dNji(u)− λ(u)Yji(u)du}

]2
 , (5.3)

where S
(c)
j (u) = P (Uj1 ≥ u) is the distribution of the overall survival time for treatment

policy AjB1. Consequently, Guo [12] proposed to use the standardized IPRW log-rank

statistic Tn(L) = n−1/2Zn(L)/σn(L) to test the equality of survival curves between strategies

A1B1 and A2B1, where σ2
n(t) is a consistent estimator of σ2(t).

Of importance to note here is that although the IPRW log-rank statistic accounts for

the randomization in the second stage, it does not assign variable weights, for example, to

early and late failures. To account for this, we define the following class of general IPRW

log-rank statistics

Zφ
n(t) =

∫ t

0

φ̂n(s)
Y 1(s)Y 2(s)

Y 1(s) + Y 2(s)

(
dN1(s)

Y 1(s)
− dN2(s)

Y 2(s)

)
, (5.4)

where φ̂n(s) is a weight function uniformly consistent for some limiting function φ(s) over

all closed subintervals of [0, L) [13].
We show in section 5.3 that the variance of n−1/2Zφ

n(t) can be consistently estimated by

σ2φ

n (t) = n−1

∫ t

0

{
φ̂n(s)

}2 Y
2
2(s)

∑n
i=1 W 2

i (s)Y1i(s) + Y
2
1(s)

∑n
i=1 W 2

i (s)Y2i(s)
[Y 1(s) + Y 2(s)]2

{
dN1(s) + dN2(s)
Y 1(s) + Y 2(s)

}
.

(5.5)

Corresponding standardized log-rank test statistics would be given by Tn(L), where Tn(t) =

n−1/2Zφ
n(t)/σφn(L) and the supremum version by supt∈(0,L) |Tn(t)|. In the next section we will

describe the limiting distribution of this statistic based on which a sample size formula will

be derived.
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5.3 LARGE SAMPLE PROPERTIES OF SUPREMUM LOG-RANK TEST

Eng and Kosorok introduced a sample size formula for the supremum log-rank statistic

for two-sample censored data based on the standard contiguous time-varying proportional

hazard alternative [13, 19], namely, the hazards of the two comparison groups are λn1 (t) =

λ0(t)exp(φ(t)γ∗/2n1/2) and λn2 (t) = λ0(t)exp(−φ(t)γ∗/2n1/2), where λ0(t) is a continuous

baseline hazard and γ∗ is a scalar constant. We will use the same alternative for hazards

λn1 (t) and λn2 (t) for strategies A1B1 and A2B1 respectively.

Let Λn
j (t) =

∫ t

0
λnj (s)ds, Λ0(t) =

∫ t

0
λ0(s)ds, and

M j(t) = N j(t)−
∫ t

0

Y j(s)dΛ
n
j (s). (5.6)

Since Nji(t) jumps only when the ith individual from the jth strategy fails, we can eas-

ily see that Wi(t)Nji(t) = Wi(t)∆iI(Ui ≤ t)I(Xi = 2 − j), leading to d(Wi(t)Nji(t)) =

Wi(Ui)∆iI(Ui = t)I(Xi = 2− j) = Wi(t)dNji(t). Thus we can write,

dM j(t) = dN j(t)− Y j(t)dΛ
n
j (t)

= d
n∑
i=1

Wi(t)Nji(t)−
n∑
i=1

Wi(t)Yji(t)dΛ
n
j (t)

=
n∑
i=1

Wi(t)dMji(t), (5.7)

where Mji(t) = Nji(t) −
∫ t

0
Yji(s)dΛ

n
j (s) is a continuous-time martingale. Now n−1/2Zφ

n(t)

can be written as

n−1/2Zφ
n(t) = Gn(t) +Rn(t), (5.8)

where,

Gn(t) = n−1/2

∫ t

0

φ̂n(s)
Y 1(s)Y 2(s)

Y 1(s) + Y 2(s)

{
dM1(s)

Y 1(s)
− dM2(s)

Y 2(s)

}
, (5.9)

and

Rn(t) = n−1/2

∫ t

0

φ̂n(s)
Y 1(s)Y 2(s)

Y 1(s) + Y 2(s)
(dΛn

1 (s)− dΛn
2 (s)). (5.10)

Now, Gn(t) can be expressed as

n−1/2

[
n∑
i=1

∫ t

0

φ̂n(s)
Y 2(s)Wi(s)

Y 1(s) + Y 2(s)
dM1i(s)−

n∑
i=1

∫ t

0

φ̂n(s)
Y 1(s)Wi(s)

Y 1(s) + Y 2(s)
dM2i(s)

]
. (5.11)
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By the martingale central limit theorem [11], Gn(t) converges to a mean zero Gaussian
process with variance equal to the limiting value of

n−1
2∑
j=1

n∑
i=1

∫ t

0

{
φ̂n(s)

}2 Y
2
3−j(s)W

2
i (s)

[Y 1(s) + Y 2(s)]2
Yji(s)dΛnj (s)

≈ n−1

∫ t

0
φ2(s)

dΛ0(s)
[Y 1(s) + Y 2(s)]2

{
Y

2
2(s)

n∑
i=1

W 2
i (s)Y1i(s) + Y

2
1(s)

n∑
i=1

W 2
i (s)Y2i(s)

}
.(5.12)

The variance formula (5.12) leads to the consistent variance estimator (5.5).

5.4 A SAMPLE SIZE FORMULA FOR COMPARING SURVIVAL CURVES

Let n be the total number of patients and n1 and n2 be the number of patients assigned to A1

and A2, respectively. Assume that nj/n converges to aj ∈ (0, 1), j = 1, 2. Define πNRj (s) to

be the limiting distribution of
∑n

i=1(1−Ri(s))Yji(s)/nj, i.e., the proportion of patients who

haven’t responded to Aj at time s and are still at risk at time s among those who received

Aj, and πRj1(s) be the proportion of patients who have been assigned to AjB1 and are still

at risk at time s among those who received Aj. Under these assumptions, we can write

n∑
i=1

W 2
i (s)Y1i(s) =

∑
(1−Ri(s))Y1i(s) +

1

π2
z

∑
Ri(s)ZiY1i(s)

≈ na1π
NR
1 (s) +

1

π2
z

na1π
R
11(s), (5.13)

and similarly,
n∑
i=1

W 2
i (s)Y2i(s) ≈ na2π

NR
2 (s) +

1

π2
z

na2π
R
21(s), (5.14)

and

Y j(s) ≈ najπ
NR
j (s) +

1

πz
najπ

R
j1(s), j = 1, 2. (5.15)

If we assume that the censoring and response rates are similar in the two induction treatment

groups, then for example we can further write πNR1 (s) = πNR2 (s) = πNR0 (s) and πR11(s) =

πR21(s) = πR0 (s). Consequently, equation (5.12) can be uniformly consistently approximated

by ∫ t

0

a1a2φ
2(s)

(
πNR0 (s) +

πR0 (s)

π2
z

)
dΛ0(s) = a1a2Dφ(t) (5.16)
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where

Dφ(t) =

∫ t

0

φ2(s)πNR0 (s)dΛ0(s) +
1

π2
z

∫ t

0

φ2(s)πR0 (s)dΛ0(s)

=

∫ t

0

φ2(s)dDNR(t) +
1

π2
z

∫ t

0

φ2(s)dDR(t), (5.17)

where DNR(t) is the probability of observing an event by time t from the patients who are

yet to respond by time t, DR(t) is the probability of observing an event by time t from the

patients who have responded and received maintenance treatment B1.

On the other hand, a Taylor series expansion of
√
n(dΛn

1 (s)− dΛn
2 (s)) shows that under

the hypothesized contiguous alternative Rn(t) can be written as

Rn(t) = n−1

∫ t

0

φ̂n(s)
Y 1(s)Y 2(s)

Y 1(s) + Y 2(s)

√
n(dΛn

1 (s)− dΛn
2 (s))

≈ n−1

∫ t

0

φ(s)
Y 1(s)Y 2(s)

Y 1(s) + Y 2(s)
γ∗φ(s)λ0(s)ds,

which converges uniformly in probability to∫ t

0

a1a2φ
2(s)

(
πNR0 (s) +

πR0 (s)

πz

)
γ∗dΛ0(s) = γ∗a1a2D

′
φ(t), (5.18)

where

D′
φ(t) =

∫ t

0

φ2(s)dDNR(t) +
1

πz

∫ t

0

φ2(s)dDR(t) (5.19)

We can set γ∗ = n1/2γ (for the purpose of determining the sample size), where γ refers

to a fixed alternative, in which case n−1/2Zφ
n(t) converges weakly to the Gaussian process

W (a1a2D(t)) + n1/2γa1a2D
′(t), where W (·) is a standard Brownian motion.

Using an entirely similar sets of arguments, it can be shown that σ2φ

n (t) in Equation (5.5)

converges uniformly to a1a2Dφ(t). Thus if we define u(t) = Dφ(t)/Dφ(L) and assume that

κ = D′
φ(t)/Dφ(t) is a constant over time, then Tn(t) converges weakly to

T (t) =
W (a1a2Dφ(t))√
a1a2Dφ(L)

+
γa1a2

√
nD′

φ(t)√
a1a2Dφ(L)

∼ W

(
Dφ(t)

Dφ(L)

)
+ γκ

√
a1a2nDφ(L)

Dφ(t)

Dφ(L)

= W (u(t)) + µu(t), (5.20)

where µ = γκ
√
a1a2D and D = nDφ(L).
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By definition, the assumption that κ is a constant follows when DR(t) and DNR(t) are

proportional over time, i.e, the death rate for responders is proportional to that for the

non-responders. This assumption also holds approximately if DNR(t) is large compared to

DR(t), in which case (5.17) and (5.19) are dominated by the first term in their expressions.

We notice that the expression (5.20) is a Brownian motion process with drift µ, denoted by

Wµ(u). To compute the sample size required to achieve a power 1− β when the type I error

is α in a two-sided hypothesis testing, we set φ(t) = 1 (proportional hazard alternative). We

then follow the procedure outlined in Eng and Kosorok [13] to obtain the critical value S1−α

for the supremum of standard Brownian motion such that

P ( sup
u∈[0,1]

|W (u)| > S1−α) = α. (5.21)

We then solve for µ in the following expression

Φ(S1−α − µ) + e2µS1−αΦ(S1−α + µ) = 1− β, (5.22)

where Φ = 1−Φ and Φ is the standard normal cumulative distribution. Finally, we compute

D =
µ2

a1a2γ2κ2
, (5.23)

and n = D/D(L) is the required sample size. Routines for conducting the supremum/standard

weighted log-rank test using software package R [18] is in Appendix A.2, and for calculating

the sample size for supremum weighted log-rank test is in Appendix A.3. Notice that in

the case where πz = 1, that is, if there were no second randomization, then Dφ(t) = D′
φ(t),

leading to κ = 1, and the sample size formula coincides with the Eng and Kosorok’s [13]

sample size formula for the two-sample supremum log-rank test.

In the standard inverse-probability-of-randomization-weighted log-rank test, since the

statistic Tn(L) is asymptotically normally distributed with mean µ = γκ
√
a1a2D, the corre-

sponding sample size can be calculated using Schoenfeld’s (1983) Formula, i.e.,

D =
(Z1−α/2 + Z1−β)

2

a1a2γ2κ2
, n = D/D(L). (5.24)

where Zq is the qth quantile of the standard normal distribution. We will compare the sample

sizes resulting from the above two methods in our simulation study in section 5.6.
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5.5 ANALYSIS OF CALGB 8932 DATA

We apply the supremum weighted log-rank test to a dataset from the CALGB 8923 trial

reported by Stone et al. [3]. In the trial, 388 elderly patients with acute myelogenous

leukaemia were randomized to two initial treatments following chemotherapy, 193 patients

received infusions of granulocyte macrophage colony-stimulating factor, GM-CSF, and 195

patients received placebo. In the second stage, 37 out of the 79 patients who responded and

consented in the GM-CSF group and 45 out of the 90 patients who responded and consented

in the placebo group were randomized to intensification therapy I. The remaining patients

who responded and consented were assigned to intensification therapy II. The goal was to

compare survival distributions under different induction and maintenance combinations.

As a result of the thorough follow-up and the short survival times, 361 deaths were

observed during the study length of over 3000 days. Since the responders responded at

different times, each of them was assigned a set of time-varying weights depending on whether

or not they had responded at that time and the status of their second-stage randomization.

Figure 5.1 compares the survival curves estimated using Guo & Tsiatis’s weighted risk

set estimates for two pairs of treatment strategies: GM-CSF/Intensification I vs. Placebo/

Intensification I, and GM-CSF/Intensification II vs. Placebo /Intensification II. Based on

the standard weighted log-rank test, the first comparison yielded a p-value of 0.088 while the

supremum weighted log-rank test described in section 5.2 produced a p-value of 0.178. For

the second comparison the p-values were respectively 0.39 and 0.54 for weighted log-rank

test and the supremum weighted log-rank test. Based on the results of supremum log-

rank test, GM-CSF and Placebo had slightly different effects in treating acute myelogenous

leukaemia patients when followed by intensification therapy I, but that, if they were followed

by intensification therapy II, no significant difference was detected. The p-values from the

supremum weighted log-rank test were larger than that from the standard weighted log-rank

test. As shown in the hazard plots in Fig. 5.2, the hazard rates of the groups being compared

cross over during the course of study, which indicates violation of the proportional hazard

assumption. As a result, the supremum weighted log-rank test is more appropriate than the

standard weighted log-rank test for this dataset.
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Figure 5.1: Leukaemia dataset. (a) Weighted risk set estimates of survival probability

for strategies GM-CSF/Intensification I, solid line, and Placebo/Intensification I, dashed

line, (b) for strategies GM-CSF/Intensification II, solid line, and Placebo/Intensification II,

dashed line.
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Figure 5.2: Leukaemia dataset. (a) Nonparametric hazard function estimates for strategies

GM-CSF/Intensification I, solid line, and Placebo/Intensification I, dashed line, (b) for GM-

CSF/Intensification II, solid line, and Placebo/Intensification II, dashed line.
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Figure 5.3: Hazard (left) and survival (right) functions when the hazards ratio between

the two groups is 2. Dashed lines are for treatment strategy A2B1 and solid lines are for

treatment strategy A1B1.

5.6 SIMULATION STUDIES

A series of Monte Carlo simulations were conducted to evaluate the proposed sample size

formula for comparing treatment strategy A1B1 and A2B1. In the first simulation scenarios,

following Lokhnygina and Helterbrand [9], to ensure a proportional hazard relationship be-

tween those two groups, we define the survival distribution for each strategy as a mixture of

distributions for responders and nonresponders:

Sj(t) = θjSR,j(t) + (1− θj)SNR,j(t), j = 1, 2,

where

SR,j(t) =

{
1, t ≤ tresp,

θ−1
j [exp{−λ0exp((j − 1)γ)(t)} − (1− θj)cjexp(−λNRj (t))], t > tresp

, (5.25)

SNR,j(t) =

{
(1− θj)

−1[exp{−λ0exp((j − 1)γ)t} − θj], t ≤ tresp,

cjexp(−λNRj t), t > tresp,
(5.26)
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tresp is the time of the response assessment, θj is the proportion of responders in the induction

treatment group Aj, e
γ is the hazard ratio for group A2B1 relative to A1B1, and cj is the

normalizing constant.

Since we are only interested in comparing A1B1 and A2B1 in this demonstration, the

survival distribution for responders assigned to B2 was simulated to be the same as those

assigned to B1. The baseline hazard λ0 was set to be 0.8. The proportion of responders in

treatment arms A1 and A2 are 0.5 and 0.4, respectively, and λNR1 = 0.85, λNR2 = 0.88, and

tresp = 0.35(years). All patients who were still at risk at time L = 2.0(years) are censored

at that time. Figure 5.3 illustrates the survival functions for the two comparison groups

when the hazard ratio is 2.0.

We considered two values of type I error, α = 0.01 and α = 0.05, two target powers, 0.80

and 0.90, and two values of the hazard ratio, 2.0 and 1.6. Also, censoring times were assumed

to be distributed uniformly on the interval (0, 3.0) or (0, 2.05), yielding respectively 30% and

40% of observations censored. For each of the above 24 scenarios, 5000 Monte Carlo datasets

were generated for the sample size calculated from the formula proposed for the supremum

weighted log-rank test in section 5.4. Then both standard and supremum log-rank tests were

performed on each dataset and observed powers were calculated as the proportion of times

on which the null hypothesis was rejected. To see how the false rejection rate of the test

matched up to the nominal value, we also generated data from the null hypothesis, γ = 0,

and obtained the rejection rates.

The results are shown in Table 5.1 for 30% censoring, when censoring time was distributed

as Un(0, 3.0) and 40% censoring, when censoring time was distributed as Un(0, 2.05). The

target powers were achieved in almost all scenarios, and the type I errors were close to the

nominal level. The power of the supremum weighted log-rank test were very close to that of

Guo’s standard test [12] in most scenarios, and the sample sizes required by the two tests

did not differ by more than 6%.

To assess the sensitivity of the sample size and power to the assumption of constant κ,

we considered other sets of simulations. Table 5.2 shows the results when κ was defined

by κ = D′(L/2)/D(L/2), instead of κ = D′(L)/D(L) in Table 5.1, in other words, it was

evaluated at the middle of the following-up time interval instead of at the last time point.
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Table 5.1: Sample size, achieved power and type I error when comparing the survival curves

under treatment strategies A1B1 and A2B1 using supremum IPRW log-rank test and stan-

dard IPRW log-rank test based on 5000 Monte Carlo data sets. The results from regular

IPRW log rank test are given in parentheses. κ in Equation (5.23) is taken as D′(L)/D(L).

The rejection rates for IPRW log-rank test are based on the sample size from the Supremum

IPRW log-rank test.

Hazard Target Target type I Sample

% Censored ratio(eγ) power error(α) size Observed power False rejection rate

30 % 2.0 0.80 0.05 136(128) 0.790(0.845) 0.051(0.062)

0.01 198(191) 0.815(0.826) 0.011(0.011)

0.90 0.05 181(172) 0.896(0.920) 0.047(0.056)

0.01 252(243) 0.911(0.920) 0.008(0.011)

1.6 0.80 0.05 306(289) 0.818(0.829) 0.053(0.062)

0.01 447(430) 0.825(0.849) 0.012(0.019)

0.90 0.05 408(387) 0.918(0.921) 0.056(0.062)

0.01 568(548) 0.913(0.925) 0.014(0.015)

40 % 2.0 0.80 0.05 153(145) 0.812(0.843) 0.048(0.067)

0.01 224(215) 0.829(0.848) 0.010(0.012)

0.90 0.05 204(194) 0.919(0.936) 0.048(0.061)

0.01 284(274) 0.921(0.930) 0.009(0.010)

1.6 0.80 0.05 344(326) 0.830(0.837) 0.056(0.062)

0.01 504(485) 0.829(0.861) 0.013(0.018)

0.90 0.05 460(436) 0.920(0.936) 0.054(0.060)

0.01 641(618) 0.913(0.924) 0.012(0.015)
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Table 5.2: Sample sizes, achieved powers and type I errors when comparing the sur-

vival curves under treatment strategies A1B1 and A2B1 using the supremum inverse-

probability-of-randomization-weighted log-rank test and the standard inverse-probability-

of-randomization-weighted log-rank test based on 5000 Monte Carlo datasets. The results

from the standard log-rank test are given in parentheses. The value of κ in equation (5.23)

is taken as κ = D‘(L/2)/D((L/2). The rejection rates for the standard log-rank test are

based on the sample size from the supremum test.

Hazard Target Target type I Sample

% Censored ratio power error size Observed power False rejection rate

30 % 2.0 0.80 0.05 126(119) 0.769(0.779) 0.041(0.052)

0.01 184(177) 0.764(0.811) 0.008(0.011)

0.90 0.05 168(160) 0.877(0.889) 0.043(0.055)

0.01 234(226) 0.880(0.896) 0.010(0.012)

1.6 0.80 0.05 282(267) 0.804(0.829) 0.054(0.057)

0.01 412(396) 0.811(0.823) 0.012(0.018)

0.90 0.05 376(357) 0.908(0.919) 0.052(0.060)

0.01 524(505) 0.904(0.913) 0.013(0.017)

40% 2.0 0.80 0.05 145(137) 0.801(0.833) 0.050(0.051)

0.01 212(204) 0.820(0.821) 0.009(0.012)

0.90 0.05 193(183) 0.908(0.922) 0.050(0.052)

0.01 269(259) 0.910(0.929) 0.012(0.012)

1.6 0.80 0.05 324(306) 0.795(0.821) 0.051(0.060)

0.01 474(456) 0.805(0.823) 0.011(0.014)

0.90 0.05 432(410) 0.916(0.919) 0.054(0.059)

0.01 602(581) 0.904(0.914) 0.013(0.016)
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Comparing to Table 5.1, both the sample size and observed power decreased, but the changes

were not substantial and the expected powers were still achieved: when the hazard ratio

was 1.6, the observed power was a little lower than expected, while, when it was 2.0, the

observed power was still higher than expected. Other choices of κ between D′(L/2)/D(L/2)

and D′(L)/D(L) resulted in sample sizes and powers comparable to those presented in Table

5.2. Thus the choice of κ had little impact on the sample size based on the supremum test.

Next we consider scenarios in which the hazard ratio between the two comparison groups

is not constant, i.e., when the proportional hazard assumption does not hold. In the scenarios

presented in Table 5.3, we generated data by setting the value of γ in equations (5.25) and

(5.26) to be log(1.86) over the time interval [0, 1.0], log(0.90) over the interval [1.0, 1.8] and

log(1.10) thereafter. Figure 5.4 shows the hazard and survival functions of the two groups

for the simulated data. It is clear that, although the hazards cross over at certain time

points, the survival curve for treatment strategy A2B1 is always below that for A1B1. The

goal is to see if the tests can still detect the difference in survival when the hazards are not

proportional. The sample sizes are computed based on supremum weighted log-rank test

with a proportional hazards assumption, where the log hazard ratio γ was set to log(1.6).

Table 5.3 shows that the powers observed for the supremum weighted log-rank test

achieved the desired levels in almost all scenarios, while the standard log-rank test, which

required proportional hazards assumption, failed to do so. The results provide strong evi-

dence that the supremum weighted log-rank test is more powerful than standard weighted

log-rank test in comparing strategies from TSRD when the alternative is not proportional

hazards.
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Figure 5.4: (a) Hazard and (b) survival functions when the hazards of the two groups are not

proportional. Dashed lines are for treatment strategy A2B1 and solid lines are for treatment

strategy A1B1.
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Table 5.3: Achieved powers when comparing the survival curves under treatment strategies

A1B1 and A2B1 using supremum inverse-probability-of-randomization-weighted log-rank test

and Guo’s inverse-probability-of-randomization-weighted log rank test, from simulation stud-

ies based on 5000 Monte Carlo datasets, when the alternative is non-proportional hazards.

Observed power

Target Target type I Sample Supremum Regular

% Censored power error(α) size IPRW LR test IPRW LR test

30 % 0.80 0.05 306 0.784 0.656

0.01 447 0.762 0.643

0.90 0.05 408 0.906 0.785

0.01 568 0.879 0.731

40 % 0.80 0.05 344 0.828 0.742

0.01 504 0.823 0.730

0.90 0.05 460 0.919 0.843

0.01 641 0.926 0.849
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6.0 DISCUSSION AND FUTURE WORK

Sequential randomization designs are being broadly accepted in clinical trials for the purpose

of conducting adaptive treatment strategies. While traditional methods of data analysis can

not make efficient use of all the information obtained from such trials, recent methodolo-

gies have shown considerable advancement in this area. Lunceford et al. [5] first proposed

methods for estimating survival distribution and mean restricted survival time for treatment

strategies from two-stage randomization designs. The inverse-probability-weighted estima-

tors proposed by them are consistent and asymptotically normal. However, these estimators

are not asymptotically efficient, mainly because they fail to take into account the information

from censored observations. Nevertheless, their method was the first valid approach toward

statistical inference from two-stage designs. The estimators developed by Wahed and Tsiatis

[6, 8] improves efficiency over Lunceford et al. [5] estimators by taking into account auxiliary

covariates, which provides additional gain in efficiency when the covariates are prognostic of

the survival time among responders. These estimators are not as simple or intuitive as the

inverse-probability-weighted estimator[5] or the weighted risk set estimator defined by Guo

and Tsiatis [10].

The weighted risk set estimator defined as a natural extension of the Aalen-Nelson es-

timator is more intuitive and easier to implement than other estimators such as inverse-

probability-weighted estimator or the regular asymptotically linear efficient estimator. Our

simulation study shows that weighted risk set estimator is the most efficient among the ones

discussed in chapter 3, however, the estimate of survival probability shows some bias in small

samples possibly due to its non-linear functional dependence on the cumulative hazard func-

tion. The small-sample bias of this estimator is larger than other estimates in most cases.

The regular asymptotically linear estimator proposed by Wahed and Tsiatis [8] is the most
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efficient in its class, i.e, the class of regular asymptotically linear estimators, although the

idea is not as intuitive and the implementation is more computationally involved.

For the purpose of comparing survival probabilities between different treatment strate-

gies, we presented a sample size formula based on an inverse-probability-weighted consistent

and asymptotically normal estimator. In determining the variance of the estimated differ-

ence between survival rates, we made the working assumption that the survival times follow

exponential distributions. The simulation results show that the sample size formula achieves

the desired power even when the true survival distributions are not exponential. This gives

our sample size formula a broader applicability. Possible future work includes the considera-

tion of informative censoring and the comparison among more than two strategies in similar

or more complex designs.

In comparing survival curves for different treatment strategies in two stage randomiza-

tion trials with censored data, we have presented a weighted supremum weighted log-rank

test. This approach takes into account the second randomization, which makes use of the

information for the non-responding patients as well as the patients assigned to other treat-

ment strategies, enhancing the efficiency of the test. The supremum weighted log-rank test

is more powerful than the usual log-rank test in the case of non-proportional hazard alterna-

tive. The sample size formula provided in our study is based on the limiting distribution of

the test statistic and the contiguous time-varying proportional hazard alternative, and has

been shown to provide desired power and nominal type I errors. As two-stage randomization

is being used in many clinical trials in recent times, there is a growing need for a sample size

formula for the purpose of designing such trials. The sample size formula developed in this

article will serve that need, while the supremum IPRW log rank test can serve as an efficient

tool to analyze such data.
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APPENDIX

PROGRAMS WRITTEN IN R c©

A.1 SAMPLE SIZE FOR INVERSE PROBABILITY WEIGHTED WALD’S

TEST FOR ADAPTIVE TREATMENT STRATEGIES

##########################################

# Name:

# Sample.Size.tsrd.walds

# Purpose:

# To calculate sample Size for comparing two two-stage adaptive treatment

# strategies sharing common induction treatment.

# Arguments:

# m0: mean survival time for the non-responders;

# m1: mean survival time for those who responded and received the

# maintenance treatment I;

# m2: mean survival time for those who responded and received the

# maintenance treatment II;

# pir: the response/consent rate;

# pi: the probability for a respondent to be randomized to the

# maintenance treatment I;

# t: the time at which survival probability to be compared;
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# LL: the restiction of lifetime (the uplimit of the survival time);

# c: the uplimit of the uniform distribution of censoring time,

# i.e, Censoring time ~ UNIF(0,c);

# alpha: pre-specified Type I error;

# beta: pre-specified Type II error.

##########################################

SampleSize<-function(m0,m1,m2,pir,pi,t,LL,c,alpha,beta)

{

alpha0<-1/m0;alpha1<-1/m1;alpha2<-1/m2;

S0.t<-exp(-t/alpha0);S11.t.star<-exp(-t/alpha1);S12.t.star<-exp(-t/alpha2);

F0.t<-1-S0.t;F11.t.star<-1-S11.t.star;F12.t.star<-1-S12.t.star;

F11.t<-(1-pir)*F0.t+pir*F11.t.star;S11.t<-1-F11.t;

F12.t<-(1-pir)*F0.t+pir*F12.t.star;S12.t<-1-F12.t;

cons<-1-pir+(pir/pi);

S0.u<-function(u){exp(-u/alpha0)};F0.u<-function(u){1-S0.u(u)};

S11.u.star<-function(u){exp(-u/alpha1)};

S12.u.star<-function(u){exp(-u/alpha2)};

F11.u.star<-function(u){1-S11.u.star(u)};

F12.u.star<-function(u){1-S12.u.star(u)};

F11.u<-function(u){(1-pir)*F0.u(u)+pir*F11.u.star(u)};

S11.u<-function(u){1-F11.u(u)}

F12.u<-function(u){(1-pir)*F0.u(u)+pir*F12.u.star(u)};

S12.u<-function(u){1-F12.u(u)}

Pr.T.u<-function(u){(1-pir)*S0.u(u)+pir*(pi*S11.u.star(u)

+(1-pi)*S12.u.star(u))};

Gprim.1<-function(u){-S11.t*F11.u(u)/Pr.T.u(u)};

Gprim.2<-function(u){-S12.t*F12.u(u)/Pr.T.u(u)};
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E.L2.1<-function(u){cons*(S11.u(u)-S11.t)-2*F11.t*cons*(S11.u(u)-S11.t)

+cons*(F11.t^2)*S11.u(u)+2*Gprim.1(u)*S11.t*F11.u(u)

+((Gprim.1(u))^2)*Pr.T.u(u)}; #E(L_11^2)

E.L2.2<-function(u){cons*(S12.u(u)-S12.t)-2*F12.t*cons*(S12.u(u)-S12.t)

+cons*(F12.t^2)*S12.u(u)+2*Gprim.2(u)*S12.t*F12.u(u)

+((Gprim.2(u))^2)*Pr.T.u(u)}; #E(L_12^2)

int.1<-function(u){E.L2.1(u)*(c)/((c-u)^2)};

int.2<-function(u){E.L2.2(u)*(c)/((c-u)^2)};

var.F11<-F11.t*S11.t*cons+integrate(int.1,0,LL)$value; # variance of phi_1

var.F12<-F12.t*S12.t*cons+integrate(int.2,0,LL)$value; # variance of phi_2

cov.fst<-pir*(1-pir)*F11.L.star*F12.L.star+(1-pir)^2*F0.L-(1-pir)*F11.L*F12.L

# first term in the covariance expression

E.L1L2<-function(u){

(1-pir)*((1-F11.t-F12.t)*(F0.t-F0.u(u))+F11.t*F12.t*(1-F0.u(u)))

+Gprim.2(u)*F11.u(u)*S11.t+Gprim.1(u)*F12.u(u)*S12.t

+Gprim.1(u)*Gprim.2(u)*Pr.T.u(u)

}; # E(L11*L12)

inter<-function(u){E.L1L2(u)*(c)/((c-u)^2)};

cov.snd<-integrate(inter,0,LL)$value;

# second term in the covariance expression

var.F11.F12<-var.F11+var.F12-2*(cov.fst+cov.snd) #variance of phi_1-phi_2

Delta=F11.u(t)-F12.u(t);

n<-((qnorm(1-alpha/2)+qnorm(1-beta))^2)*var.F11.F12/(Delta^2)

cat(’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~’,’\n’,

’ H0: F11(’,t,’)= F12(’,t,’)=’,round(F11.t,2),’\n’,

’ Ha: F11(’,t,’)=’,round(F11.t,2),’ ,’, ’F12(’,t,’)=’,round(F12.t,2),’\n’,’
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Type I error: ’, alpha,’\n’,

’ Power : ’, 1-beta,’\n’,’ Requried Sample Size for the A1 arm:’,ceiling(n),’\n’,

’~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~’,’\n’ )

return(invisible(list("response rate"=pir,"randomization rate"=pi,

Delta=round(Delta,2),alpha=alpha,beta=beta,"sample size"=ceiling(n))))

}
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A.2 COMPARING ADAPTIVE TREATMENT STRATEGIES USING

SUPREMUM/STANDARD WEIGHTED LOG-RANK TEST

##########################################################################

# Name:

# sup.log.rank.two.stage

# Purpose:

# returns the p-value for the supremum weighted

# log-rank test proposed in chapter 5

# Arguments:

# time: the observed event time;

# delta: the censoring indicator, 1 if death, 0 if censoring;

# group: group indicator, 1 for A1, 2 for A2;

# R: response indicator, 1 for responders, 0 for non-responders;

# t.r: the time for assessing the response status;

# pi.z: the probability of responders to be randomized to second treatment B1;

# error: the tolerance.

# Acknowledgment:

# Functions associated with Brownian motion are in courtesy of Professor

# Kosorok of UNC Chapel Hill

##########################################################################

sup.log.rank.two.stage<-function (time, delta, group, R,Z,t.r, pi.z,error=1.0e-8)

{

sup.G<-function(x,m=10)

# This is to calculate the CDF of supremum Brownian motion

{

k<-m:0

(4/pi)*sum(((-1)^k)/(2*k+1)*exp(-(pi^2)*((2*k+1)^2)/(8*x^2)))

}
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cnorm<-function(z,thresh=3.6,delta=0.6,kk=4){

# This is to calculate the 1 - CDF of standard normal distribution

check<-F

if(z<0){

z<-(-1)*z

check<-T

}

if(z<thresh){

out<-1-pnorm(z)

}

else{

term<-1

tally<-term

if(kk>1){

for(k in 1:(kk-1)){

term<-(-1)*term*(2*k-1)/z^2

tally<-tally+term

}

}

out<-tally*dnorm(z)/z

if(z<thresh+delta){

x<-1-pnorm(z)

out<-x+(z-thresh)*(out-x)/delta

}

}

if(check){out<-1-out}

out

}

n<-length(time)
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weight<-rep(1,n)

X <- group - 1

n2 <- sum(X)

n1<- n-n2

Wb<-rep(1,n) # Weight Before time of response

Wa<-1-R+R*Z/pi.z # Weight After time of response

Iu1<-matrix(0,n1,n1);Iu2<-matrix(0,n2,n2)

y1.temp<-rep(0,n1);y2.temp<-rep(0,n2);d1.temp<-rep(0,n1);d2.temp<-rep(0,n2);

N.u1<-matrix(0,n1,n1);N.u2<-matrix(0,n2,n2);

y1.new.temp<-rep(0,n1);y2.new.temp<-rep(0,n2);

V1<-time[X==0]

V2<-time[X==1]

delta1<-delta[X==0]

delta2<-delta[X==1]

Wb1<-Wb[X==0];Wa1<-Wa[X==0]

Wb2<-Wb[X==1];Wa2<-Wa[X==1]

for (i in 1:n1)

{ Iu1[i,]<-ifelse(V1>=V1[i],1,0)

N.u1[i,]<-ifelse(V1<=V1[i],1,0)

y1.temp[i]<-sum((Wb1*(V1[i]<t.r[i])+Wa1*(V1[i]>=t.r[i]))*Iu1[i,])

y1.new.temp[i]<-sum((Wb1*(V1[i]<t.r[i])+Wa1*(V1[i]>=t.r[i]))^2*Iu1[i,])

d1.temp[i]<-(Wb1[i]*(V1[i]<t.r[i])+Wa1[i]*(V1[i]>=t.r[i]))*delta1[i]

}

for (i in 1:n2)

{ Iu2[i,]<-ifelse(V2>=V2[i],1,0)

N.u2[i,]<-ifelse(V2<=V2[i],1,0)

y2.temp[i]<-sum((Wb2*(V2[i]<t.r[i])+Wa2*(V2[i]>=t.r[i]))*Iu2[i,])
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y2.new.temp[i]<-sum((Wb2*(V2[i]<t.r[i])+Wa2*(V2[i]>=t.r[i]))^2*Iu2[i,])

d2.temp[i]<-(Wb2[i]*(V2[i]<t.r[i])+Wa2[i]*(V2[i]>=t.r[i]))*delta2[i]

}

new.v<-append(V1,V2)

mis<-rep(-1,n2)

y1.temp<-append(y1.temp,mis)

y1.new.temp<-append(y1.new.temp,mis)

mis<-rep(-1,n1)

y2.temp<-append(mis,y2.temp)

y2.new.temp<-append(mis,y2.new.temp)

mis.d<-rep(-1,n2)

d1.temp<-append(d1.temp,mis.d)

mis.d<-rep(-1,n1)

d2.temp<-append(mis.d,d2.temp)

otime<-order(new.v)

new.v<-new.v[otime]

y1<-y1.temp[otime];y1.new<-y1.new.temp[otime];

y2<-y2.temp[otime];y2.new<-y2.new.temp[otime];

d1<-d1.temp[otime];

d2<-d2.temp[otime];

for (i in (n-1):1){

if (y1[i]<0) y1[i]<-y1[i+1]

if (y2[i]<0) y2[i]<-y2[i+1]

if (y1.new[i]<0) y1.new[i]<-y1.new[i+1]

if (y2.new[i]<0) y2.new[i]<-y2.new[i+1]

}

y1.new.temptemp<-y1.new[y1.new>0]

y2.new.temptemp<-y2.new[y2.new>0]
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for (i in 1:n){

if (y1.new[i]<=0) y1.new[i]<-y1.new[length(y1.new.temptemp)]

if (y2.new[i]<=0) y2.new[i]<-y2.new[length(y2.new.temptemp)]

}

y1.temptemp<-y1[y1>0]

y2.temptemp<-y2[y2>0]

for (i in 1:n){

if (y1[i]<=0) y1[i]<-y1[length(y1.temptemp)]

if (y2[i]<=0) y2[i]<-y2[length(y2.temptemp)]

}

for (i in 1:n) {

if (d1[i]<0) d1[i]<-0

if (d2[i]<0) d2[i]<-0

}

#weight<-tapply(weight,time,"max")

w <- (y1 * y2)/(y1 + y2)

w.new<-(y1^2*y2.new+y2^2*y1.new)/(y1+y2)^2

terms <- (d1/y1 - d2/y2)[w > 0]

terms<-terms[!is.na(terms)]

temp<-y1+y2-1

temp<-ifelse(temp<1,1,temp)

cc<-1-(d1+d2-1)/temp

cc<-1

vterms <- (cc*(d1 + d2)/(y1 + y2))[w > 0]

weight<-weight[w > 0]

w <- w[w > 0]

w.new<-w.new[w.new>0]

#terms <- ( w * terms)/sqrt(sum( w * vterms))
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terms.new <- ( w * terms)/sqrt(sum( w.new * vterms))

temp<-c(0,cumsum(terms))

temp.new<-c(0,cumsum(terms.new))

xs<-max(temp.new)

xi<-min(temp.new)

if(abs(xs)>abs(xi)){test<-xs} else test<-xi

x <- abs(test)

m<-ceiling(max(c(1,(x*sqrt(2)/pi)*sqrt(max(c(1,log(1/(pi*error)))))-0.5)))

p<-1-sup.G(x,m=m)

out <- NULL

out$test <- test

out$p <- p

x.logrank<-temp.new[length(temp.new)]

out$test.logrank<-x.logrank

out$p.logrank<-2*cnorm(abs(x.logrank))

cat(’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~’,’\n’,

’ Test statistics for Supremum weighted log rank test :’,test,’;’,’\n’,

’ P-value for Supremum weighted log rank test :’,p,’;’,’\n’,

’ Test statistics for Regular weighted log rank test :’,x.logrank,’;’,’\n’,

’ P-value for Regular weighted log rank test :’,out$p.logrank,’;’,’\n’,

’~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~’,’\n’ )

}
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A.3 SAMPLE SIZE FOR COMPARING ADAPTIVE TREATMENT

STRATEGIES USING SUPREMUM WEIGHTED LOG-RANK TEST

##########################################################################

# Name:

# sample.size.sup.log.rank.two.stage

# Purpose:

# Returns required sample size for comparing

# the two strategies A1B1 vs. A2B1;

# Arguments:

# alpha: Type I error rate ;

# power: desired power ;

# pi.z: proportion of responders to be randomized to second treatment B1;

# gamma: the hazard ratio of A1B1 vs A2B1 in the alternative hypothesis;

# D.NR.tau: expected proportion of death among the non-responders at the

# end of the study;

# D.R.tau: expected proportion of death among the responders at the end

# of the study;

# Acknowledgment:

# Functions associated with Brownian motion are in courtesy of Professor

# Kosorok of UNC Chapel Hill

##########################################################################

sample.size.sup.log.rank.two.stage<-

function(alpha,power,pi.z,gamma,D.NR.tau,D.R.tau)

{

sup.G<-function(x,m=10)

## This is to calculate the CDF of supremum brownian motion

{

k<-m:0
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(4/pi)*sum(((-1)^k)/(2*k+1)*exp(-(pi^2)*((2*k+1)^2)/(8*x^2)))

}

sup.g<-function(x,m=10)

## This is to calculate the PDF of supremum brownian motion

{

k<-m:0

(pi/x^3)*sum(((-1)^k)*(2*k+1)*exp(-(pi^2)*((2*k+1)^2)/(8*x^2)))

}

cnorm<-function(z,thresh=3.6,delta=0.6,kk=4){

## This is to calculate the 1-CDF of standard normal distribution

check<-F

if(z<0){

z<-(-1)*z

check<-T

}

if(z<thresh){

out<-1-pnorm(z)

}

else{

term<-1

tally<-term

if(kk>1){

for(k in 1:(kk-1)){

term<-(-1)*term*(2*k-1)/z^2

tally<-tally+term

}

}

out<-tally*dnorm(z)/z

if(z<thresh+delta){

x<-1-pnorm(z)
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out<-x+(z-thresh)*(out-x)/delta

}

}

if(check){out<-1-out}

out

}

sup.inverse<-function(alpha,error=1e-8)

# This is to calculate the critical value of

#supremum brownian motion: S_{1-alpha}

{

x<-qnorm(1-alpha/4)

temp<-max(1,2/x)

m<-ceiling((x/pi)*sqrt(2*log(temp/(pi*error)))-0.5)

if(m<0){m<-0}

interror<-1

while(interror>error)

{

yx<-sup.G(x,m=m)

dg<-sup.g(x,m=m)

delta<-(1-alpha-yx)/dg

x<-x+delta

interror<-sup.G(x)-(1-alpha)

}

x

}

sup.mu<-function(alpha, beta, error=1e-8)

# This is to calculate R (

#the ratio of sample size between supremum and regular)

{

u<-sup.inverse(alpha,error=error)
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y<-1-beta

ml<-qnorm(1-alpha/2)+qnorm(1-beta)

x<-ml

delta<-1

while(delta>error)

{

yx<-cnorm(u-x)+exp(2*x*u)*cnorm(u+x)

dp<-dnorm(u-x)-exp(2*u*x)*dnorm(u+x)+2*u*exp(2*u*x)*cnorm(u+x)

delta<-(y-yx)/dp

x<-x+delta

}

x

}

D.tau<-D.NR.tau+(1/pi.z^2)*D.R.tau

D.tau.prime<-D.NR.tau+(1/pi.z)*D.R.tau

kappa<-D.tau.prime/D.tau

mu.star<-sup.mu(alpha,1-power)

beta<-log(gamma)

D<-mu.star^2/(pi.z*(1-pi.z)*(beta)^2*kappa^2)

# size is the sample size using the supremum weighted log rank test #

size<-D/D.tau

size #146 when alhpa=0.05,beta=0.2, 195 when alhpa=0.05,beta=0.1

# size.wlr is the sample size using the regular weighted log rank test #

size.wlr<-(qnorm(1-alpha/2)

+qnorm(power))^2*D.tau/(pi.z*(1-pi.z)*(beta)^2*D.tau.prime^2)

size.wlr
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cat(’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~’,’\n’,

’ Type I error :’,alpha,’;’,’Power :’,power,’;’,’\n’,

’ Probability of being randomized to B1 :’,pi.z,’;’,’\n’,

’ Hazard ratio : ’, gamma,’;’,’\n’,

’ Requried Sample Size Using Regular Weighted Log Rank Test:’,

ceiling(size.wlr),’\n’,

’ Requried Sample Size Using Supremum Weighted Log Rank Test:’,

ceiling(size),’\n’,

’~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~’,’\n’ )

return(invisible(list("randomization rate"=pi.z,alpha=alpha,power=power,

"hazard ratio"=gamma,"sample size.supremum"=ceiling(size),

"sample size.regular"=ceiling(size.wlr))))

}
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