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ABSTRACT

NUMERICAL EVALUATION OF THIN-SHELLED STRUCTURAL PANELS

Matthew John Yagodich, M.S.M.E.

University of Pittsburgh, 2003

This paper will provide a basis for the behavior of thin shell corrugated steel structures.

Up to this point, the majority of the papers concerning this subject, have been concerned with the

analysis of simple arch type buildings. In addition, the panels were treated as flat, curved

surfaces. Any corrugation in the panel was either neglected, or was mentioned but not handled in

the analysis. Test trials were conducted to evaluate the performance of multi radius panels. A

numerical analysis was then conducted to simulate the laboratory tests. The simulation is useful

when evaluating larger structures of the same type of panel. The ultimate conclusions that this

paper arrives to, is that a linear elastic solution cannot be used to solve problems involving thin

shell arch panels. Rather, a non-linear solution is the most precise method for obtaining accurate

solutions to the panel in question.
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1.0  INTRODUCTION

1.1  Problem Description

This paper will provide a basis for the behavior of thin shell corrugated steel structures.

Up to this point, the majority of the papers concerning this subject, have been concerned with the

analysis of simple arch type buildings. In addition, the panels were treated as flat, curved

surfaces. Any corrugation, otherwise known as crimp, in the panel was either neglected, or was

mentioned but not handled in the analysis.

The cross section for the panel studied for this paper is shown in Figure 1. This style

panel, as it currently is shown in Figure 1, can support a building, depending on the location and

the configuration of the building, up to 100 feet wide. One of the goals for this project is to

optimize the current panel to carry double the current capacity. By evaluating optimum cross

sections, a new panel can be designed to achieve this goal. In addition, the role that corrugations

play in the panel will also be evaluated. 

Figure 1  Steel Structural Panel

Y

X
Z
1



2

The corrugations are required in order to facilitate the bending process, however, they are

running in the wrong direction for strength. Referencing Figure 1, if one imagines an axis

protruding into the paper, which we will call the z-axis, then the corrugations in the panel to

facilitate bending are running in a direction perpendicular to this z-axis. This creates crimp that

acts as an accordion in the z-axis, or longitudinal plane of the panel. The sides of the panel are

also corrugated. The influence that the corrugations have on the structural integrity of the panel

needs to be examined in order to make a determination for the overall structures strength. Highly

non-linear localized buckling is a concern during the loading of the panels. This paper will

attempt to numerically predict the buckling response of this style panel during loading. Once a

buckling response is predicted and verified, a new style panel will then be modeled to determine

the optimum cross section of the panel, the end result being a significant increase in capacity

over the current panel. Figure 2 depicts a detailed view of a typical corrugated panel.

Figure 2  Detail View of Structural Panel with Corrugations
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1.2  Literature Review

The literature review contained herein will provide a summary of numerous articles

reviewed for content, and more importantly, how the articles in question, provide contributions

to this thesis. An attempt will be made, to establish a direct correlation between the attempts to

be made in the thesis, and the articles.

The articles chosen for review are based on general shell theory, and how shells react

under various loading conditions. There are several articles which have examined the types of

buildings constructed from the panels, and how the buildings overall structure is influenced. The

main objective for this paper is to establish a correlation between various sizes and shapes of

panels. An attempt is to be made to also introduce the effects of the corrugation into the analysis.

Although loadings such as snow and wind influence the performance of a building structure,

these parameters will not be considered in this paper, nor will they be covered in this literature

review. 

A paper presented in the Journal of Structural Engineering by Abdel-Sayed, Monasa, and

Siddall [1] examined the structural characteristics of cold-formed farm structures, otherwise

known as barrel-shells. The structures examined in the paper were of the type known as

continuous curvature, meaning the structure possessed a continuous, non-varying radius. Other

papers that were reviewed examined similar structures. The analysis process in this paper

consisted of classical orthotropic cylindrical shell theory that was backed up by physical tests. It

should be noted that the structure tested was of the bolt-together type. The structures involved in

this thesis are seamed panels containing no bolts or fasteners of any kind. A detail of the shell
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analysis will not be discussed here. Rather, a summary of the calculations in the paper will be

discussed. A closed form solution describing the variance of the crimp along the panels’ length at

various radii was established. This leads into formulae that describe the panels’ axial rigidity.

The author suggests that the cross-corrugations on the panel have significant effect on the

performance and rigidity of the panel. They improve its local buckling characteristics and reduce

its bending and axial rigidity in the curved direction. Because the panel being investigated in the

thesis can have varying curvature throughout the length of the panel, the solution for rigidity of

the panel will play an important role in the analysis. The article goes on to further suggest that

the panels were shown to fail by buckling of the “web” portions. The physical panel tests showed

that the panel yielded well before the ultimate load of the panel was reached. The author makes

an assumption by stating that panel failure occurs when the compressive yield is reached in the

zone of shallow corrugations, or when the expected limit of plastic deformation occurs in the

deepest corrugations. A mention of residual stresses is also brought up as a possible key player in

the failure of the panels. Numerous equations are derived for non-linear buckling load

determinations, which could be used as a comparison tool during the analysis runs conducted

later in the thesis. The last noteworthy comment to make is that the author mentions that due to

the panels being bolted together, and end walls being used at the ends of the building, a single

panel can be analyzed as a thin shell supported an all four edges. This is a very important

observation to make due to the desire to drive the efficiency of the finite element model to a

higher point, which includes, properly applying accurate boundary conditions. Twenty-six

references were cited in this paper.
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As a compliment to the above reviewed paper, an article published in the Journal of the

Structural Division by El-Atrouzy and Abdel-Sayed [2] describes the prebuckling analysis of

orthotropic barrel-shells. The paper details how to calculate the rigidities of the panel. The two

areas that control and influence the rigidities of a panel are the material and geometric

parameters of the sheets. The paper also details the particular and homogeneous solutions to the

governing differential equations describing orthotropic shell theory. The homogeneous solutions

to the equations were obtained from tests taken on actual test buildings. The only type of

building tested was of the continuous curvature type. The buildings that will be evaluated in this

thesis can contain non-continuous curvature buildings. Therefore, the homogenous portion of the

solution found in this paper cannot be used as a tool for non-continuous buildings. An interesting

hypothesis to pose however, is whether or not superposition can be used to evaluate a non-

varying continuous building by adding up the components of the building in question. In all, the

following conclusions have been drawn in this paper. The linear solution will always predict a

higher value than the non-linear solution. The prebuckling method produced the most agreeable

solution between the experimental results, and the analytical solution. Eight references were

cited.

A third paper published in the Journal of Engineering Mechanics by Bagchi and

Paramasivam [3] is noteworthy from the standpoint that the paper discusses the possibility of

using a linear eigenvalue solution to predict the nonlinear buckling response of the panel. The

idea is to properly combine the linear buckling analysis and geometrically nonlinear prebuckling

analysis with the minimum number of load steps. The general idea could possibly be used in this

paper from the standpoint that the timesavings in the FEM model would be reduced by utilizing
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the methods presented in this journal article. Since non-linear solutions are traditionally very

expensive numerically, a linear eigenvalue solution may be a viable option when conducting

optimization studies. Eleven references were cited.

A fourth paper published by the Journal of Structural Engineering by Pi and Trahair [4],

discusses the effects of In-Plane buckling on a thin-shelled panel. The paper also mentions the

effects of residual stresses, and how these stresses might affect the performance of the panels.

The entire article discusses the results of numerically derived pin ended arches, both shallow and

high arches. Classical elastic buckling theory was used in comparison to non-linear inelastic

models. In all cases, the classical buckling theory was shown to overestimate both the bifurcation

and the snap-thru buckling loads for shallow pin-ended arches. The non-linear numerical

solution was shown to provide a more accurate solution to the buckling problem of the arches

buckling in plane. This finding collaborates the research performed by El-Atrouzy and Abdel-

Sayed [2]. In addition, the article discusses that standard code practices for evaluating steel

beam-columns cannot be used for evaluation of arches. Again, a non-linear numerical solution is

the suggested method for an accurate solution. The paper concludes with equations being offered

to solve arch structures, while taking into account the non-linear affects inherent in the structure.

Thirty-two references were cited.

A paper published by the Journal of Engineering Mechanics by Bradford, Uy, and Pi [5]

discusses the In-Plane stability of arches under a concentrated load. This article is important

from the standpoint that a wealth of detailed derivations for closed form solutions of non-linear

equilibrium differential equations are presented and discussed. In addition, a rigorous
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mathematical derivation is presented detailing the buckling characteristics of numerous types of

arches. Unlike the Pi and Trahair [4] paper, Bradford, Uy, and Pi evaluate both pin ended and

fixed ended arch structures. The author states that the comparisons between finite element

models and the closed form solutions presented are reasonably accurate. Lastly, a criterion for

using the closed form solutions for the study of full arches with concentrated loads is presented.

This paper contains over twenty references.

A report published by the US Army Corps of Engineers by Sweeney, Briassoulis, and

Kao [6], discusses the results of several full-scale tests performed on a thin shell arch building.

The method of test was discussed in detail. One overwhelming conclusion the authors present, is

that the arches in all cases were shown to fail through the formation of collapse mechanisms, or

hinges. At the onset of a hinge, the structure was shown through moment redistribution to

establish additional hinges until overall failure of the structure occurred. The paper is worth

noting here in that, if further work is to be conducted on full arch structures, the overall in-plane

buckling mode of failure should not be ignored. Over ten references are cited.

In addition to the reviews and papers listed here, the bibliography section of this paper

features numerous other papers and references containing valuable information on thin-shelled

buckling analysis that the reader may find of interest. The papers include discussions concerning

analytical and numerical procedures, physical testing, and recommendations for future analysis

and verification.
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1.3  Outline of Work

I. Experimental

A. Test Rig Setup

B. Test Methods

C. Data Collection

D. Experimental Results

II. Finite Element Model

A. Geometry

B. Material Properties

1. Material Property Modification

C. Boundary Conditions

D. Loading

E. Results Verification

III. Optimization

A. Other Geometries

B. Discussion

IV. Conclusions

A. Recommendations
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2.0  EXPERIMENTAL

2.1  Description of Apparatus

In order to test the current panel configuration to determine the strength, a testing station

was established. The station was designed to accept a panel in a 4-point bend test configuration.

A general overview of the testing stand is shown in Figure 3.

Figure 3  Testing Stand Setup

As shown in Figure 3, the stand was constructed from structural steel. Two main uprights

containing a V shaped notch at each end with a roll bar spanning between them was used to

support the two ends of the panel. The roll bar was used to provide support in the vertical

direction, and yet allow the panel the ability to rotate about the axis of the roll bar. This condition

allowed the panel to be completely free of any moments at the ends. Figure 4, depicts the test

piece with all the accessories for performing the test attached.
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Figure 4  Test Setup Shown With Loading Cage and Connecting Arms

Figure 5  Loading Rig With Load Cell Attached

Load Cell
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The test cage consisted of structural steel with two solid steel rods inserted through holes in the

top of each of the four corner uprights. The steel rods were placed above the test panel, and

allowed to rest freely on top of the panel. The bottom of the loading cage consisted of four link

arms that were connected to the four corner uprights. Two link arms on each side of the loading

cage were then connected underneath the cage in the middle. A solid steel piece of round stock

was then straddled between the link arm connections. The round stock had an eyelet welded to

the middle of the piece. Connecting arms were then attached to the eyelet via a lifting clevis. The

other half of the connecting arms were attached to a custom built clevis, which was designed to

thread into the opening on a load cell. Figure 5 shows the setup with the load cell attached.

The load cell is connected between two threaded, custom made clevises. The bottom clevis was

then attached to a hydraulic cylinder. The load cell was directly connected to a data acquisition

system designed to read and record data streaming from the load cell in real time. In addition to

reading the load the hydraulic cylinder was placing on the panel test piece, a linear displacement

potentiometer was also connected to the panel. Figure 6 shows the custom setup for the

displacement transducer.
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Figure 6  Linear Potentiometer Housing and Associated Cable/Pulley System

Figure 7  Linear Potentiometer Magnet

The potentiometer was placed in a housing so as to better stabilize the unit. A cable was

connected to the end of the potentiometer, and ran thru a pulley located directly below the center

Linear Potentiometer
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portion of the test panel. The cable effectively made a 90° turn and was attached to the test panel

thru the use of a magnet, as shown in Figure 7. The potentiometer was connected to the same

data acquisition system as that of the load cell. To further stabilize the panels, plates were

attached to the panel by using Tek screws and fastening the plates directly to the test panel. The

plates were manufactured from the same material as that of the test panel. They were placed in

the vicinity of where the main loading rounds came into contact with the panel. Figure 8 depicts

a detailed view of the stabilizing plates.

Figure 8  Detail View of Stabilizing Plate

As shown in Figure 8, the stabilizing plates were placed in directly the mid line-loading plane of

the loading cage. The plates accurately simulated the panels as they are used in a service

condition. The plates were used to stabilize the panel against out-of-plane buckling, which does

not occur in a service condition.
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2.2  Testing Methods

The test was conducted in a classical four-point bend configuration. The test piece was

placed between two support rods, which were designed to allow rotation. All test pieces were

loaded in the negative bending configuration. The rotation of the support rods ensured that the

test piece had no moment at the supported ends. A loading cage was designed such that the cage

could accept the test panel by lifting the cage up and underneath the test panel. The cage was

lifted such that the four top corners of the cage were protruding above the test panel in the

middle of the test piece. There were four holes, one in each corner leg, whereby two loading rods

were inserted through each side of the loading cage. The rods were then allowed to rest on top of

the test panel, effectively allowing the test cage to hang underneath the test panel. A modified

clevis was attached to a pull lug on the test cage, while the other end of the clevis had an

allowance for a load cell to be threaded into it. On the other side of the load cell was another

modified clevis, effectively connecting the apparatus to a hydraulic cylinder. The load cell was a

tension/compression type load cell. For the testing, the load cell was set up to read only in

tension. This was done to increase the resolution of the unit to its maximum range. The hydraulic

cylinder was connected to a portable hydraulic unit consisting of a motor, valve bank, pump, and

reservoir. This provided the hydraulic power necessary to run the cylinder. An adjustable control

valve was coupled to the main hydraulic valve to provide accurate control of the flow of

hydraulic fluid to the cylinder. The flow was controlled by allowing the main hydraulic valve to

be in the full open position, while having the adjustable valve initially in the full closed position.

By slowly opening the adjustable valve, the flow of hydraulic fluid could be accurately applied

to the hydraulic cylinder. A laptop computer was used to record the data as the panel was loaded.

The load cell provided an output of between 0 and 10 volts, which was conditioned in the data
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acquisition system to read as an output of pounds force. The transfer of the force was directly

through the load cell and into the clevis pulling on the loading cage attached to the test panel.

Caution was used to ensure that a pure tensile pull at the load cell was achieved. In addition, due

to the use of the clevises, the load cell was also self-centering, also allowing and ensuring a pure

tensile pull at the load cell. As hydraulic pressure was slowly released to the cylinder, the data

acquisition system was constantly being monitored for activity. Two separate channels were

being monitored simultaneously. One channel was for the output from the load cell, and the other

channel was output from the potentiometer. The data was streamed directly to a text file in two

separate columns. The panel was loaded until failure occurred, at which point the data stream

was halted, and a new panel was loaded into the test fixture. There were a total of 27 tests

conducted. The panels can be curved at varying radii. The process is performed by allowing

either deep crimp to produce a tight radius, or by allowing loose or virtually no crimp for a

straight panel. The effects of the crimp and the radius of the panel are very important in

determining the overall width of the structural panel.

Table 1  Summary of Structural Panel Test Configurations

 

Test Data Summary
Tested Radius Number of Tests

15 ft. 6

25 ft. 6

50 ft. 6

Curved (Crimp) 6

Straight 3

The configuration was based on a target material thickness of 0.060 inches. The actual

material thickness used for the test, as measured by a micrometer, was 0.063 inches. This amount
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of data is deemed significant enough for confirmation of the finite element model. Upon

verification of the finite element model, an optimization analysis will be conducted to determine

the optimum geometry for the panel.
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2.3  Experimental Results

The following section details the results of the physical testing. As mentioned earlier,

there were a total of 27 tests conducted on 0.060-inch nominal material. All the tests were

negative bending tests. Graphs were generated for each set of individual tests and plotted to

produce load-deflection plots. The results of the plots are shown below. Due to the material

being considered proprietary and classified, the plots shown in this paper are all normalized. As

one can clearly see, the relationships are all non-linear in nature. This confirms the several

articles reviewed earlier stating that a pure linearized solution cannot be used to solve the

problem from a numeric standpoint. Based on this result, it would appear that to perform a

numerical analysis for these types of panels, a non-linear analysis must be used to obtain an

accurate solution. 

Figure 9  Load-Displacement Plot: Straight Panel with No Crimp

Normalized Load-Displacement Plot
0.063" Material Thickness - Non Crimped Straight Panel - Negative Bending
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As shown in Figure 9, the test for the straight panel with no crimp (i.e. a panel with no

corrugations) shows the behavior of the panels. One will notice a stiffening effect occurring to

two of the panels, evidenced by the relatively low slope of Test #1 and Test #2. Test #3 does not

appear to exhibit this behavior since the slope upon initial loading increases without losing any

stiffness. It shall be shown and discussed in other tests that the phenomenon of stiffening is

predominating in how the panels react.

Figure 10  Load-Displacement Plot: Straight Panel with Light Crimp

Figure 10 shows load-deflection curves for a straight panel with very light crimp

introduced into the panel. A total of six tests were performed in this series. As shown, five of the

six tests follow the same trend. Test #1, shows a deviation from the norm as evidenced by the

lower slope. One will also notice that Test #1 gains a slightly higher load than the stiffer panels.

Normalized Load-Displacement Plot
0.063" Material Thickness - Light Crimp Straight Panel - Negative Bending
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This may be a result of the effects of how the panel relaxes or deflects during the loading

procedure. This will be discussed in future loadings.

Figure 11  Load-Displacement Plot: 50-Foot Radius Panel

Figure 11 shows a test series consisting of 50-foot radius panels. As was discussed

previously, this test series also depicts the stiffening phenomenon during the loading of the

panel. In this case, all six test cases show this effect. At approximately one half the maximum

load, the curves reverse themselves and actually begin to accept more load by stiffening. As

mentioned, the theory behind why this may be occurring concerns the possibility that as the

panel accepts load, a small deformation occurs within the panel structure itself. This

deformation, in conjunction with the crimp existing in the panel, may provide an answer to

explain the stiffening effects seen in the panels during loading. Because the loading conditions

were such that the panel was allowed to freely move across the rolls in the testing cage, it is

Normalized Load-Displacement Plot
0.063" Material Thickness - 50 Ft. Radius - Negative Bending
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doubtful that the test setup itself introduced any inherent adverse affects into the panel. As shown

in Figure 12, the stiffening can again be shown.

Figure 12  Load-Displacement Plot: 25-Foot Radius Panel

In the case of the twenty-five foot radius test series, four out of the six tests depicts the

stiffening effects. The last test series to be conducted, involved fifteen-foot radius panels. The

results of this test series are shown in Figure 13. In Figure 13, one can see that the stiffening

effects are predominately not shown to appear during the test. Test #2 however, does show an

interesting anomaly at nearly one half the maximum applied buckling load. One can notice a

sudden and rather large drop off in load, at which time the panel recovers and continues to take

on more load. As seen previously in the cases where stiffening was shown to occur, the panel is

able to recover and continue to take load to a maximum value at or near the maximum values of

the panels that do not exhibit stiffening effects at the middle load of the panel.

Normalized Load-Displacement Plot
0.063" Material Thickness - 25 Ft. Radius - Negative Bending
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Figure 13  Load-Displacement Plot: 15-Foot Radius Panel

It should also be mentioned, that all the tests failed in the region between the two loading

points. This is to be expected for a four point bending test. Localized buckling was the primary

mode of failure for the test pieces. Figure 14 depicts a typical failure. As shown, the failure

occurs towards the center of the two loading bars as seen on the top, or belly, of the panel. The

sides of the panel, as well as the belly itself, show signs of localized buckling. The next section

discusses the numerical solution using an eigenvalue solver to predict the localized buckling of

the panels. One will notice that the numerical prediction is accurate in terms of the predicted

modes of failure. Figure 15, depicts a straight panel failure lying on the ground showing the

inside portion of the panel. One can also take note, the detail of the stiffening plates added to the

panel at each of the loading points to prevent premature torsional failure.
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Figure 14  Detailed View of Localized Buckling Failure

Figure 15  Detailed View of Localized Buckling with Stiffening Plates
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3.0  FINITE ELEMENT MODEL

3.1  Geometry

The finite element model geometry was conducted in two phases. One general approach

is to use a linearized eigenvalue solution for the problem. Based on analysis conducted for this

paper, it can be suggested that if a corrugated panel (any panel for that matter) is modeled

explicitly and an eigenvalue solution is extracted from the explicit model, a relatively accurate

solution can be obtained. Based on this information, an explicit model was developed which

appears to support this theory. Using shell elements, a model of the panel was obtained. The

shell elements allowed the panel to be geometrically accurate, with the exception of the

corrugation. This solution will be useful when developing a new panel which does not yet

possess any test data depicting its’ performance. Rather, this method can be used to obtain a

“target” load that can then be used to design the actual panel for testing. By evaluating numerous

explicit models, a geometry can be chosen which offers the highest predicted buckling load.

From these studies, a comparison between different panel styles can be relatively quickly

analyzed.

A second model was developed for analyzing the response of the panels during the

physical testing phase. 3-D beam elements were utilized to analyze the tested panels. The cross

section of the panel was inputted and assigned to the beam element. This method was utilized

due to the efficiency of performing the non-linear calculations. An explicit model, as mentioned

above, is too large and thus does not lend itself to an efficient non-linear solution. The linearized

eigenvalue solution is trim enough to perform the calculations in a relatively short amount of

time, and still provide a roughly good estimate of the prebuckling load.
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3.2  Material Properties

The material properties used for the explicit finite element solution were what could be

considered standard material parameters for mild steel. The modulus of elasticity assigned was

29x106 psi, and Poisson's Ratio was set to 0.3. These material properties were assigned to the

shell elements and used for the eigenvalue analysis. The material thickness of the panels were

directly assigned to the shell elements upon completion of the meshing process. The assigned

material thickness was 0.063 inches, which matched the actual test panels.

The material properties assigned to the non-linear models using 3-D beam elements were

a modified stiffness curve. Each panel, depending on its’ radius, was assigned a different

stiffness curve. This method was necessary due to the crimp of the panel affecting the

performance of how the panel actually behaves. The process for programming the curves was

established by evaluating the non-linear solution, and superimposing the solution onto the actual

test load-deflection plots. The stiffness curve was then adjusted until the non-linear solution

matched the test data. This method was performed for each set of different radius panels. By

using this method, and assuming one has access to actual test data, a stiffness curve for the panel

can be established which describes the performance of the panel, while taking into account the

effects of the highly non-linear effects of the crimp in the structural panel. In addition, any

possible stiffening effects arising from the loading of the panel can also be captured in the user

defined stiffness curve. 
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3.3  Boundary Conditions and Loading

The boundary conditions for the explicit solution were modeled after the same type of

boundary conditions that existed in the actual physical testing. The ends of the panel were

constrained to restrict the panel from translating in the vertical downward direction. The loads

were applied in the y-axis direction. Both ends of the panel were fixed in the y-direction to

prevent the panel from translating in the normal direction during loading. The edges along the

top flange of the panel on each end were also fixed to prevent movement in the transverse

direction of the panel. This was done to simulate the round rollers supporting the panels' outer

flanges during the actual test to prevent premature failure of the upper flange. Nodes restraining

the movement in the x-direction were also employed to simulate the stiffening plates used during

the actual testing to prevent premature buckling outside the loading zone. This methodology was

also used to constrain nodes along the middle portion of the panel where the loading cage

channel supports were located. Again, this boundary condition was imposed to simulate the

stiffening plates discussed in the testing methods section. The rest of the panel nodes along the

two edge flanges were allowed to deflect. The forces were set as a whole to unity and were

placed in the same locations with respect to the ends of the panel as they were in the actual test.

The total number of nodes to be loaded were summed up, and then divided out by one to achieve

a unity loading condition. The loads were in the positive y-direction, and were placed across the

belly of the panels. Care was taken not to load any nodes that were in the flange of the panel. The

location on the panel model was along the bottom web of the panel, again, as was done in the

actual test. To provide a solution, a linearized eigenvalue buckling analysis was utilized. Figure

16 shows the details of the boundary conditions and loading conditions.
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Figure 16  Detailed View of Boundary
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arc length control method was selected as the method for a solution of the non-linear equations.

This method will ramp up the loads starting from unity and automatically adjust the arc length of

the solutions’ load-displacement curve according to the stability of the panel. The loads are

adjusted automatically until equilibrium in the panel is restored for each load step. Figure 17

depicts the boundary and loading conditions.

Figure 17  Boundary and Loading Conditions for Beam Element FEM Model
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3.4  Results and Verification

The first task attempted was to perform a linearized eigenvalue buckling analysis of a

panel having a known loading history, which was obtained through testing. The goal was to

validate if an eigenvalue solution would yield a result that would match the test results within

reason. The solution for a typical panel is shown below. 

Figure 18  Typical Eigenvalue Solution for 4 Point Bend Test
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the two loading points, which in this case, were placed in the middle of the panel. The predicted

load did on a consistent basis come to within fifteen percent of the load seen during the testing.

This solution was utilized to obtain a buckling load for a straight, fifty-foot radius, and a fifteen-

foot radius panel. In all cases, the boundary conditions and methods of loading were consistent.

The predicted solution was also confirmed in all cases to be within at least fifteen percent of the

actual load. 

The results of the non-linear analysis were calibrated to fit the actual test data. The

process was performed by programming a modified stiffness curve that produced a load-

displacement curve that matched the load-displacement curves from the actual tests. This process

was very important since it shows that the tests can be duplicated numerically. Upon duplication

of the material properties for a panel possessing a certain radius, it would then be possible to

program the modified stiffness curve into a non-linear solver, and predict the response of any

size panel. The results for the predicted numerical solution are shown in the plots below.
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Figure 19  Load-Displacement Plot: Straight Panel with No Crimp w/Numerical Prediction

Figure 19 depicts the original load-deflection curves for a straight panel with no crimp.

As mentioned earlier, the numerical solution was obtained by modifying a stiffness curve to

match the test data. The modification of the material properties is necessary to account for any

material non-linearities occurring in the panel during loading. In Figure 19, the red line

designates the numerical solution. Test #3 in this case was essentially not included in the

averaging for the solution of the computer model. This test is not considered to be representative

of typical panel behavior.

Figure 20 depicts the solution for a straight panel with light crimp. Again, the same

procedure was used to extract a non-linear solution to the test data. The majority of the tests all

Normalized Load-Displacement Plot
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comply to within expected boundaries for deflection and load, as shown by the tight grouping of

the tests.

Figure 20  Load-Displacement Plot: Straight Panel with Light Crimp w/Numerical
Prediction

As was seen in the straight panel tests with no crimp, there is a case for the light crimp

test series whereby one test did not comply with the normal load-displacement relationship. This

case was Test #5. As was done in the previous test series, Test #5 was not included in the

modification of the stiffness curve for a solution, since this test does not comply with the normal

solution mode. The numerical solution extracted from the non-linear analysis is again shown in

red.
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Figure 21 shows the solution for a fifty-foot radius panel. Very good agreement between

the test data and the numerical solution exists for this test series. The stiffening phenomenon that

was discussed earlier was also successfully modeled into the numerical solution.

Figure 21  Load-Displacement Plot: 50-Foot Radius Panel with Numerical Prediction
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Figure 22  Load-Displacement Plot: 25-Foot Radius Panel with Numerical Prediction

Figure 22 represents the solution for a 25-foot radius panel. In this test series, Test #5 and

Test #6 were somewhat stiffer from the other four tests. Again, as was done previously, the

numerical solution was modeled to the norm for the panel behavior seen in the actual testing.
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Figure 23  Load-Deflection Plot: 15-Foot Radius Panel with Numerical Prediction

Figure 23 is the last of the test series tested and modeled for this paper. The data is

representative of a fifteen-foot radius panel. The test data showed very good agreement between

each individual test, and the numerical solution was developed to adhere to the test data.

Due to the plots in this paper all being normalized for the individual test series being

evaluated, it may be difficult to compare the relationship between the test series. To accomplish

this, Figure 24 was developed which shows a normalized plot using the non-linear solutions from

each of the five test series. Because the non-linear solution was established by developing a

stiffness curve average of the each of the test series, the non-linear solutions are considered to be

representative of an average of the test data.
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Figure 24  Comparison of Load-Deflection Curves for Entire Test Series

As shown in Figure 24, the curves all tend to follow a pattern as the radius of the panel

changes. As expected, the loads become lower as the radius decreases. This is to be expected due

to the crimp in the panel becoming deeper as the radius is decreased. The conclusion from this is

that the crimp in the panel has a much larger affect than was once thought. An interesting note is

that the straight, crimped panel, is shown to be somewhat stiffer than the rest of the panels. The

corrugation is surmised to play a role in the apparent gain in stiffness. One will notice however,

that as the crimps are deepened as evidenced by tighter radii, the slope drops back off to below

the straight panel with no crimp.
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As a separate check of the non-linear solution, Figure 25 shows a normalized plot of the

derived stiffness curves used in the numerical analysis. From these derived curves, the effective

modulus of elasticity for the panel can be calculated.

Figure 25  Derived Stiffness Curves (Normalized) Based on Actual Test Data

In conjunction with the curves from Figure 25, it is possible to check the analysis by

using a well-known analytical linear solution for the linear portion of the curves. The check

involves using Equation 1.

( )22
max 43

24
aL

EI

Pa
−=∆                                   Equation 1

This equation solves the analytical linear equation that relates deflection, load, and modulus of

elasticity. The parameters shown in Equation 1 are defined in Figure 26 [19].
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Figure 26  4 Point Bend Test Geometry Definitions

In addition to the geometric definitions found in Figure 26, the other parameters in

Equation 1 are ∆max for the maximum deflection, E representing the modulus of elasticity, and I

representing the moment of inertia. By solving Equation 1 for E, and by substituting the actual

values for all other parameters, the modulus of elasticity for the panel can be obtained. This

check was performed using the actual values from the test data, and has shown that the analytical

modulus of elasticity given by Equation 1, matches the modulus of elasticity as determined by

the average of the derived stiffness curves to within 1%. This check serves as verification that

the non-linear solution is correct.
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4.0  OPTIMIZATION

During the optimization process, there are an infinite number of panel profiles one can

test. The main goal of course, is to obtain a solution for a new panel profile that significantly

increases the moment capacity of the panel currently in use while keeping the new profile simple

enough for construction. In addition, although this paper dealt with negative bending tests, the

optimization process will also use the eigenvalue solutions to attempt to achieve a balance for

buckling loads between negative and positive bending. With this in mind, a modified profile of

the current design was first chosen. The goal was to increase the local buckling factor of the

panel. The profile chosen as a first initial run is shown in Figure 27.

Figure 27  Optimized Structural Panel A

As shown in Figure 27, the panel has been modified by increasing the center stiffener in the

middle belly of the panel, and also includes two deep side stiffeners. Because the 3-D beam

element analyses were calibrated to actual test data, the optimization process cannot make use of

this type of solution for a comparison study between potential new panel profiles. Rather,

because of the good agreement seen by the explicit finite element model of the current panel, and
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the use of an eigenvalue solution to extract a buckling load, this method will be utilized for the

optimization process. All analyses were set up using the typical 4-point bend configuration, and

the same boundary conditions from the original testing were used. A detailed model was

developed for the optimized panel, herein called Panel A, and the results of the buckling mode

are shown in Figure 28.

Figure 28  Eigenvalue Buckling Response for Panel A (Torsional)

As one can see, the response of the panel is not similar to the response of the current

panel. Here, the first buckling mode, shown in Figure 28, predicts a torsional buckling failure,

instead of the snap-thru type buckling failure. The model shown is for a fifty-foot radius panel.

This radius was chosen for the optimization study due to this radius being an average between a

straight panel and a tight radius panel. In comparison to the current panel at a fifty-foot radius,

panel A exhibited an increase of 1.74 times over the current panel. The first instance for the
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middle section to experience a buckling failure occurs during the third buckling mode. The load

factor increase between the original panel, and the third mode buckling of panel A was 2.4. The

buckling mode is shown in Figure 29.

Figure 29  Eigenvalue Buckling Solution for Panel A (Middle Section Buckle)

The buckling mode shown in Figure 29 suggests that if the panel can be constrained from

torsional buckling failure, and the buckling mode for a localized snap-thru type buckling is

allowed to transpire, then a substantial load increase can be achieved. It can be shown in Figure

29, that the torsional component has disappeared from the panel, and that a more localized

buckle occurs towards the center of the panel. As mentioned above, a balance between positive
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and negative bending was also evaluated. The positive bending for Panel A is shown in Figure

30.

Figure 30  Positive Bending Failure Mode for Panel A

It is shown in Figure 30 that the buckling mode of failure appears in the upper flange of

the panel. This failure is the expected method in which the panel will fail when introduced to

positive bending. As a comparison to the current panel configuration, there is no substantial gain

from the Panel A configuration and the current panel in positive bending. This finding alludes to

the conclusion that this panel profile would not be a viable option for use as a replacement for

the current panel configuration.
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A second panel profile was tested, which was based on the current panel profile using a modified

belly.

Figure 31  Optimized Structural Panel B

Figure 31 depicts the panel profile showing a modified belly in comparison to the current

panel configuration. Upon initial test runs for this panel profile, it was quickly determined that

the buckling load failure compared between negative and positive bending was again not in close

agreement. Another problem with this type of profile is that if produced, difficulties in roll

forming and corrugating the belly of the panel would be present. Because of these findings, this

panel was also quickly abandoned as a possible replacement for the existing profile.

The last panel profile to be tested as a possible replacement is a radical change from the

other panel profiles tested to this point. The profile consisted of securing the same hook and hem

portions of the original panel, but instead of inclined web portions, the web was inclined to a

completely vertical profile. In addition, the traditional belly of the panel was replaced with
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multiple stiffeners that could be compared to thin deck plating. The profile for this design is

shown in Figure 32.

Figure 32  Optimized Structural Panel C

The panel was programmed into a finite element model in the same manner as the other

profiles, along with the same boundary conditions and loading configuration. Upon evaluation

using the eigensolver solution scheme, the predicted buckling load far exceeded expectations. In

comparison to the present panel configuration, the negative bending increase was shown to be

4.95 times that of the current panel. In addition, the positive bending buckling load varied from

the negative buckling load by only 4.5 percent. This indicates that the panel is well balanced

between positive and negative bending. The predicted numerical solution for the negative

bending case is shown in Figure 33. As one can see, the strength of the bottom belly portion of

the panel becomes quite evident. The buckling mode in negative bending essentially causes the

belly of the panel to heave as one unit, as opposed to the localized buckling of the current panel.

The extra and deep stiffeners placed in the belly appear to have a large influence on how much

capacity the panel can handle.
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Figure 33  Eigenvalue Buckling Mode for Panel C (Negative Bending)

By contrast, the positive bending buckling mode is shown to be similar to the positive

buckling mode seen for Panel A. The top flange buckles and failure occurs in the top portion of

the web, along with failure in the hem portion of the panel. However, as mentioned earlier, the

buckling loads for negative and positive bending are very similar for this panel configuration.

Thus in theory, based on the eigenvalue solutions, the panel when in a service condition should

be well balanced.
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Figure 34  Eigenvalue Buckling Mode for Panel C (Positive Bending)



46

5.0  CONCLUSIONS

The conclusions based on this paper are as follows. It is possible to successfully model

explicitly a panel profile that can be used for optimization studies for use as possible future test

studies. It has also been shown, that if test data exists, a numerical solution can be very

accurately modeled to match the test data by modifying the material properties of the model.

This modification will take into account any stiffening effects, as well as the influence of

geometric parameters that cannot be readily accounted for, such as panel corrugation. In

addition, upon verification of a modified material stiffness curve which accurately matches

recorded test data, the stiffness curves can be used to model full scale buildings by applying the

characteristics of the stiffness curves to various portions of the full scale model. The claims made

by other researchers stating that a linear elastic solution cannot be used to solve problems

involving thin shell arch panels has been confirmed by the research in this paper. Rather, a non-

linear solution is the most precise method for obtaining accurate solutions to the panel in

question. For future tests, it is suggested to evaluate multiple material thickness panels to

establish any existing relationship between material thickness and panel radius. It is surmised

and theorized that the trend of ultimate failure load decreasing as radius is decreased will hold

true for various material thickness. The theory stating that the loads will be lower if the material

thickness is decreased, and the loads going higher if the material thickness is increased.
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