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ABSTRACT

STRUCTURAL CONSTITUTIVE MODELS FOR KNEE LIGAMENTS

Raffaella De Vita, Ph.D.

University of Pittsburgh, 2005

It has been estimated that approximately 375,000 people experience knee injuries every year

in the United States. The majority of the pathologies affect the anterior cruciate ligament

(ACL) and the medial collateral ligament (MCL). Thus, a thorough characterization of the

mechanical properties of the ligaments is needed to understand the etiology of their injuries

and to improve the strategies of their treatment. The first chapter of this dissertation offers

a brief overview of the morphology and mechanics of the ligaments.

Since injuries are estimated to occur at strain rates that range from 50%/s to 150, 000%/s,

studying the mechanical behavior of ligaments at various strain rates is imperative. In the

second chapter, a structural constitutive model is formulated by taking into account the non-

linearity, anisotropy, incompressibility, and strain rate-related properties of the ligaments.

The collagen fibers, which comprise the ligament, are assumed to be the only load-bearing

component of the tissue. They are oriented in various directions, undulated in the stress-free

configuration, and they gradually become straight upon deformation. Moreover, the collagen

fibers are characterized by a Kelvin-Voigt-type viscoelastic behavior. The fiber spatial orien-

tation and gradual recruitment are represented statistically by probability density functions.

Published experimental data on the ACLs are used to assess the constitutive model.
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The most severe of the knee ligament injuries are partial and complete tears. Thus,

there is a compelling need to understand the mechanical failure behavior of ligaments. In

the third chapter, a structural constitutive model for the description of the ligament tensile

properties is proposed. The model reproduces the three-regions of the nonlinear stress-strain

relationship of ligaments. The collagen fibers contribute to the overall tissue’s response after

becoming taut and before failing and they are assumed to behave as a linear elastic material.

The fiber recruitment and failure processes are stochastically defined. Available experimental

data for the MCLs are employed to validate the constitutive relation. Furthermore, the

generalization to a three-dimensional model is also given.

Future research directions toward the development of a structural constitutive model for

the subfailure behavior of ligaments are indicated in the fourth chapter and conclusions are

drawn in the fifth chapter.

iv



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 LIGAMENT MORPHOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 LIGAMENT MECHANICS . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Quasi-Static Mechanical Properties . . . . . . . . . . . . . . . . . . 8

1.3.2 Viscoelastic Mechanical Properties . . . . . . . . . . . . . . . . . . 10

1.4 CONSTITUTIVE MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.1 Structural Constitutive Models . . . . . . . . . . . . . . . . . . . . 14

2.0 A STRUCTURAL MODEL FOR THE STRAIN RATE DEPENDENT BEHA-

VIOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 STRAIN RATE DEPENDENT BEHAVIOR OF KNEE LIGAMENTS . . 19

2.2 MODEL FORMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Constitutive Equation . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Recruitment Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.3 Fiber Elastic and Viscous Stresses . . . . . . . . . . . . . . . . . . . 26

2.3 MODEL IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Isochoric, Axisymmetric Deformation . . . . . . . . . . . . . . . . . 28

2.3.2 Collagen Fiber Orientation and Crimp . . . . . . . . . . . . . . . . 28

2.4 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

v



2.5 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.0 A STRUCTURAL MODEL FOR THE FAILURE BEHAVIOR . . . . . . . . . 38

3.1 FAILURE BEHAVIOR OF KNEE LIGAMENTS . . . . . . . . . . . . . . 38

3.2 MODEL FORMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Recruitment and Failure Model . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Model Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.0 FUTURE DIRECTIONS: A STRUCTURAL MODEL FOR THE SUBFAILURE

DAMAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 SUBFAILURE DAMAGE IN KNEE LIGAMENTS . . . . . . . . . . . . . 55

4.2 MODEL FORMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 PRELIMINARY RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.0 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

vi



LIST OF FIGURES

Figure 1.1 Knee ligaments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 1.2 Hierarchical structure of collagen . . . . . . . . . . . . . . . . . . . . . . 4

Figure 1.3 Quarter-stagger arrangement of tropocollagen in fibril . . . . . . . . . . . 5

Figure 1.4 Typical ligament stress-strain relationship . . . . . . . . . . . . . . . . . 7

Figure 1.5 Rat MCL collagen fibers waviness observed by scanning electron micro-
scopy. The fibers appear to be wavy in the slack configuration (A), (B).
They are observed to become straight in the reference configuration, under
a 0.05 N load (C). When they are subjected to a 5 N load, they show to
lose their waviness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 1.6 Ligament hysteresis and preconditioning effects . . . . . . . . . . . . . . . 11

Figure 1.7 Ligament stress-strain relationship at increasing strain rates . . . . . . . 12

Figure 1.8 Ligament creep (top) and relaxation (bottom) . . . . . . . . . . . . . . . 13

Figure 1.9 Nonlinear elastic model proposed by Frisen et al. ∆i denotes the displace-
ment of the fibril i, X denotes the displacement of the tissue and F denotes
the force acting on the tissue . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 1.10 Fiber orientation and undulation in a representative volume according
to Lanir’s model. M1 and M2 represent two of the many possible fiber
material directions. Note that fibers are crimped differently along each
material direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 2.1 Assumptions in the recruitment model . . . . . . . . . . . . . . . . . . . 25

Figure 2.2 Λ: axial fiber stretch, Λs: straightening stretch . . . . . . . . . . . . . . . 26

Figure 2.3 Reference configuration (right) and current configuration (left) . . . . . . 29

vii



Figure 2.4 Stress-strain experimental data from Danto and Woo at 1.68%/s and
381%/s strain rates with model (—) and fraction of straight fibers (—)
evaluated at best fitting parameters . . . . . . . . . . . . . . . . . . . . . 31

Figure 2.5 Experimental data from Pioletti and co-authors at 5%/s, 10%/s, 20%/s,
30%/s, and 40%/s strain rates (various symbols) and theoretical stress-
strain curves (continuous line) . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 2.6 Linear dependence of the sensitivity coefficients . . . . . . . . . . . . . . 33

Figure 3.1 Λs: straightening fiber stretch, Λf : failure fiber stretch . . . . . . . . . . 41

Figure 3.2 Assumption of the recruitment model with failure . . . . . . . . . . . . . 43

Figure 3.3 Stress-strain experimental data from Abramowitch and colleagues (•) with
model fit (—), fractions of straight fibers (—), and fractions of broken
fibers (−−) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 3.4 Stress-strain experimental data from Abramowitch and co-authors (•) with
five parameter model fit (—) and four parameter model fit (—) . . . . . . 49

Figure 3.5 Stress-strain experimental data from Provenzano et al. (•) with model fit
(—), fractions of straight fibers (—), and fractions of broken fibers (−−) 50

Figure 3.6 Stress-strain experimental data from Provenzano et al. (•) with five pa-
rameter model fit (—) and four parameter model fit (—) . . . . . . . . . 51

Figure 4.1 Λs: straightening fiber stretch. Λd: damage fiber stretch. Λf : failure fiber
stretch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 4.2 Fiber stress-stretch relation . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 4.3 Stress-stretch curves for the control rat MCL (•) and for the re-stretched
rat MCL after the peak subfailure stretch Λp = 1.09. Model fit (—) and
model prediction (—) are represented at best fitting parameters . . . . . 61

viii



ACKNOWLEDGMENTS

I thank everyone who has taught me, inspired me, and supported me through my graduate

studies at University of Pittsburgh.

First and foremost, I would like to thank my adviser, Prof. William S. Slaughter, for his

guidance and mentorship over these years at University of Pittsburgh. It has been a great

privilege to work with an outstanding teacher as him. He has taught me a lot in each of his

lectures and in each of our research meetings.

I am very thankful to Prof. Michael S. Sacks for showing me the realm of Biomechanics.

I especially thank him for the valuable discussions on structural constitutive models for soft

tissues. After each of our discussions, I felt that I was working on a beautiful subject worthy

off all my efforts. Special thanks are also extended to the members of the Engineered Tissue

Mechanics Laboratory.

I would like to express my gratitude to Prof. Giovanni P. Galdi and Prof. Anne M.

Robertson. They have played a significant role in my choice to pursue my graduate studies

at University of Pittsburgh. I deeply thank them not only for all they have taught me but

also for their warm hospitality and encouragement.

I thank Prof. Daniel Budny for whom I was teaching assistant for three years. He has

made my teaching experience extremely enjoyable. Furthermore, I thank all the students

who I had the privilege to teach and from whom I learnt.

Thanks to all my friends: Gaetano Sterlacci, Stefano Sacrato, Andrea La Gioa, Rachma-

dian Wulandana, Ana Silvestre, Fernando Carapau, Roxana Cisloiu, Brian Ennis, Shadow

Huang, and Sandy Hu. My deepest thanks go to Ashwin Vaidya for his sincere friendship.

ix



I express my gratitude to the staff of the Mechanical Engineering Department. I am

especially grateful to the graduate administrator, Glinda Harvey, for her enormous help.

I would like to thank Prof. Remigio Russo and Prof. Giulio Starita for introducing me

the subject of Mechanics during my undergraduate studies at University of Naples II.

Last but not least, I thank my family for their constant support. In particular, I thank

my husband, Traian Iliescu, for his endless encouragement throughout my graduate studies.

Funding for this research was provided by NSF grant no. BES-9978858 and by the Gra-

duate School of the Department of Mechanical Engineering, University of Pittsburgh. Sup-

plemental funding was obtained by a research grant from the Department of Mathematics,

University of Naples II, Caserta, Italy.

Let theory suggest experiments to perform; nothing could be better. Once the
experimentation has been made and the results have been clearly observed, let
theory take hold of them to generalize them, coordinate them, and draw from
them new subjects of experiments; again nothing could be batter.

(Duhem, 1861-1916)

x



1.0 INTRODUCTION

1.1 MOTIVATION

Ligaments are bands of fibrous tissue that transmit loads between bones and support internal

organs. Their main function is to guide and to restrain joint motion in order to maintain

joint stability. Among the ligaments of the human body, the ligaments of the knee joint

have been extensively studied by the biomechanics community due to the joint’s elevated

vulnerability. Epidemiological research has indicated that approximately 375,000 people are

affected by knee injuries every year in the United States. Particularly, ligament injuries are

the most common, representing 40% of the knee problems.(1)∗

The major ligaments of the knee are the medial collateral ligament (MCL), the lateral

collateral ligament (LCL), the anterior cruciate ligament (ACL), and the posterior cruciate

ligament (PCL) (See Figure 1.1). The MCL and LCL span the femur and the tibia and they

are situated on the inside and outside of the knee, respectively. The MCL’s primary function

is to limit the inward motion of the knee whereas the LCL fetters its outward motion. The

ACL and PCL also run from the femur to the tibia but they are located and crisscross each

other in the center of the knee. They restrain the forward and backward motion of the tibia,

respectively.

The ACL and the MCL will be the focus of the present study since they are the most prone

to injuries. Indeed, recent studies reported that 46% of the ligamentous problems involve the

ACL, 29% affect the MCL, and 13% consist of combined ACL-MCL pathologies.(1) These

injuries occur mostly during sport activities such as skiing, basketball, football, and soccer

and are caused by planting, cutting, pivoting, and tackling maneuvers.

∗Parenthetical references placed superior to the line of text refer to the bibliography.
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Figure 1.1. Knee ligaments.(2)

Injuries to the ligaments can be classified according to their severity as first-degree sprain,

second-degree sprain and third-degree sprain. With a first-degree sprain, the ligament is

overstretched but the joint remains stable. A second-degree sprain occurs when the ligament

is partially torn and it moderately affects the joint stability. A third-degree sprain is the

most debilitating ligament injury. It consists of a complete rupture of the ligament and it

causes severe joint instability. The medical treatment varies with the degree of injury from

the simple RICE (rest, ice, compression, elevation) rule to graft implantation.

The choice between conservative treatment with no repair and surgical treatment with

repair of the torn MCLs and ACLs remains controversial among orthopedists. The MCL

rupture usually heals spontaneously. However, without a surgical repair, disorganized scar

tissue fills the gap between the torn ends of the MCL and the knee presents some instabilities.

On the contrary, the ACL acute tear often requires surgical intervention due to the ligament’s

poor healing properties and limited vascularization. A non-operative treatment of ACL tear

can lead to gross instabilities of the knee and, hence, it can seriously compromise the physical

activity of the patients.
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Several kinds of ligament grafts are utilized for knee ligament reconstruction when com-

plete tear occur.(3) Orthopedic surgeons most commonly use autografts, grafts harvested

from the patients. The autografts are obtained from the middle-third of the patellar ten-

don, from one or two hamstring tendons, and from the distal portion of the iliotibial tract.

Allografts represent the other grafts of choice in knee ligament surgery. The source material

of these grafts is mainly derived from human donor hamstring tendons, patellar tendons,

and Achilles tendons. Although xenografts, which are grafts harvested from an animal

donor, and synthetic polymer grafts have been employed for ligament reconstruction, they

are not recommended for reconstructive surgery due to their short-term durability and poor

biocompatibility . In recent years, fibroblast seeded collagen matrix, fibroblast seeded poly-

mer scaffolds and growth factors that enhance the healing of ligament injuries have shown

promising success in ligament tissue engineering.(4)

In order to reduce the incidence of the ACL and MCL injuries, to understand their

mechanisms, to improve their strategy of treatment, and to construct improved ligament

graft substitutes, a thorough study of the mechanical properties of these tissues is required.

Enormous advances have been made in experimental mechanics to accurately characterize

the biomechanics of ligamentous tissues. The majority of experimentalists investigated the

uniaxial properties of the ligaments and performed their measurement by assuming the tissue

to be homogenous. However, during the knee joint activity these ligaments are subjected to

three-dimensional deformations that are combinations of tension, compression, shear, bend-

ing, and torsion. Moreover, the ligaments exhibit inhomogeneities, which are pronounced at

the bone insertions.(5)

Experimental difficulties and limitations call for the need of an adequate constitutive

theory that can enhance the understanding of the complex mechanical behavior of the liga-

mentous tissue. Constitutive models can guide the design of suitable experiments and de-

scribe mechanical features of the tissue that are impossible to capture solely by means of

experimental investigations. As noted by Truesdell,(6)
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Figure 1.2. Hierarchical structure of collagen.(7)

Of course, physical theory must be based on experience, but experiment comes
after, not before, theory. Without theoretical concepts one would neither know
what experiments to perform nor be able to interpret their outcome.

This study aims at formulating structural constitutive relationships for the short-time

memory dependent behavior and the mechanical failure of knee ligaments. Unlike phe-

nomenological models, these constitutive models are formulated by taking into account the

tissue components, their geometry and their interactions. Thus, in this chapter, the morpho-

logical and mechanical properties of the ligaments, which are significant to the development

and to the discussion of the proposed constitutive models, will be reviewed.

1.2 LIGAMENT MORPHOLOGY

Ligaments are connective tissues that consist of collagen and elastin embedded in a ground

substance of water, proteoglycans, glicolipids, and fibroblasts. Collagen is the main load

carrying component in ligamentous tissues. It is the most abundant protein constituting

65% − 80% of the ligament dry weight.(8) In parallel-fibered tissues, such as ligament and

tendon, collagen is characterized by a hierarchal structure: collagen molecules are packed

together to form collagen fibrils, collagen fibrils aggregate to form collagen fibers and collagen

4



Figure 1.3. Quarter-stagger arrangement of tropocollagen in fibril.(7)

fibers are arranged in fascicles that run parallel to the ligament loading direction (See Figure

1.2). The collagen molecule, also known as tropocollagen, possesses a right-handed triple

helix structure formed by chains of amino acids. The amino acid chains, called α-chains,

in turn, have a left-handed helical conformation. In particular, each α-chain is composed

of sequences of glycine-x-y where x and y are common amino acids, mainly proline and

hydroxiproline, stabilized by hydrogen bonds.

More than 15 types of collagen molecules have been identified. Type I collagen is the

main ligament fiber-forming molecule. It is composed by two α1(I) chains and by one α2(I)

chain, which have specific amino acid sequences.(9) Collagen type III, another fiber-forming

molecule, and collagen type IV are also found in the ligament sheaths.(10)

Groups of four or five collagen molecules are arranged in a quarter-stagger fashion to form

a microfibril. The microfibril striation, which is observed in the electron microscope, has a

period D of 68 nm. Each collagen molecule has a length of 4.4D with a 0.4D overlapping

region. The gap region between neighboring molecules is 0.6D. Subsequently, microfibrils

are assembled into fibrils and fibrils into fibers (See Figure 1.3).
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The collagen fibers appear to be wavy when the ligamentous tissue is unloaded. There

is no agreement among investigators in biomechanics on the fiber waveform. It is described

as helical by Comninou and Yannas,(11) planar sinusoidal by Diamant et al.(12) and planar

zig-zag by Kastelic et al.(13)

Elastin is the other significant protein in ligamentous tissue. It constitutes less than %1

of the tissue dry weight and it is found in the walls of the blood vessels. It is responsible

for the elastic recovery of these tissues. Exceptionally, ligamentum nuchae, which joins the

skull to the neck, and ligamenta flava, which connect the laminae of adjacent vertebrae, are

primarily made of elastin.

Collagen and elastin are embedded in an amorphous ground substance or gel matrix.

The ligament ground substance is comprised of water, proteoglycans, and glycoproteins.

Water occupies 60−70% of the tissue total weight.(8) Proteoglycans consists of core proteins

with multiple covalently attached glycosaminoglycans. Because of their negative charge,

these proteins exert repulsive forces amongst themselves and spread within collagen fibrils

and fibers. Moreover, they possess hydroxyl groups that attract water through hydrogen

binding. Their main function is to regulate the movement of water in the ground substance.

Fibronectin and laminin are large glycoproteins that mediate the communication between

the cells and the surrounding extracellular matrix. Particularly, fibronectins are responsible

for anchoring fibroblasts to the collagen substrates and, therefore, they play significant roles

during tissue growth, healing and remodeling. Laminin functions to bind collagen type IV to

cell membranes. The cells, fibroblasts or fibrocytes, are rather sparse within the ligamentous

tissues and they synthesize collagen.(10)
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Figure 1.4. Typical ligament stress-strain relationship.

Figure 1.5. Rat MCL collagen fibers waviness observed by scanning electron microscopy. The
fibers appear to be wavy in the slack configuration (A), (B). They are observed to become
straight in the reference configuration, under a 0.05 N load (C). When they are subjected to
a 5 N load, they show to lose their waviness.(14)
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1.3 LIGAMENT MECHANICS

1.3.1 Quasi-Static Mechanical Properties

With few exceptions,(15,16) tests to characterize the mechanical behavior of ligaments have

been uniaxial tests along the ligaments’ physiological loading direction. The material proper-

ties, described by stress-strain curves, are acquired by conducting these tests either on the lig-

ament substance or on bone-ligament-bone complexes. Nevertheless, when the ligament-bone

complexes are used, these properties are measured only when the ligament mid-substance

fails without involving the failure of the bone.

The typical uniaxial stress-strain relationship for ligaments under quasi-static loading

conditions is depicted in Figure 1.4. Like other soft connective tissues, the mechanical

behavior of ligamentous tissue is nonlinear. Three regions can be individuated: the “toe”

region, the linear region, and the failure region. These distinct parts of the stress-strain curve

are correlated to the different structural changes occurring into the tissue during uniaxial

loading.

Collagen fibers are mostly oriented in the direction of applied physiological stresses and

they appear to be wavy in the slack configuration. Upon loading, the fibers lose their

waviness and start to carry load. It is commonly believed that the gradual fiber straightening

determines the toe region in the ligament stress-strain curve.(14,17,18)

A number of investigators have analyzed the effects of crimp on the mechanical prop-

erties of collagen, utilizing polarized light microscopy, electron microscopy, x-ray diffrac-

tion techniques, and optical coherence tomography.(12,13,17,18) Recently, Hurschler and co-

workers(14) conducted electron microscopic studies on rat MCLs and they demonstrated that

the straightening of crimped fibers under load occured both in normal and healing tissues.

In Figure 1.5, results of their study for normal ligaments are shown.

Collagen fibers are considered to be responsible for the ligament stiffness and strength.

As the load increases, the tissue is found to be less compliant. Moreover, the collagen fibers

8



straighten out and the mechanical response tends to become linear. At the failure region,

perhaps collagen fibers start to break gradually until a complete tear of the ligament occurs.

By using optical coherence tomography, Hansen et al.(18) measured the changes in crimp

during uniaxial extension of rat tail tendon fascicles. They noted that the crimp period

increased with the axial strain and that the crimp bands extinguished when the stress-strain

relation became linear.

Quantification of the tensile properties of ACL and MCL has received the attention of

several researchers in biomechanics. Clearly, knowledge of tensile strength, ultimate strain

and tangent modulus of these ligaments is essential for the prevention and treatment of

injuries.

The ACL and the MCL mechanical properties have been compared by Woo et al.(19)

The authors reported that the tangent modulus of the MCL was twice that of the ACL in

rabbits. By conducting scanning and transmission electron microscopic studies, the authors

explained that this difference in the tangent modulus was due to the different collagen

densities of the two ligament types. Collagen fibers were densely packed in the main axis

direction of the ACL whereas, in the ACL, space among the fascicles of collagen fibers was

observed. Furthermore, more collagen fibers were transversely oriented to the main axis in

the ACL.

When conducting experiments by using non-contact strain techniques, Woo et al.(20)

found the tangent modulus, the tensile strength, and the ultimate strain for the rabbit

MCL to be approximately 740 MPa, 77.7 MPa, and 12.9%, respectively. By using similar

experimental techniques, Quapp and Weiss(15) determined the tangent modulus, the tensile

strength, and the ultimate strain for human MCL to be approximately 332.2 MPa, 38.6

MPa, and 17.1%, respectively.

The skeletal maturity effects on the mechanical properties of the knee ligaments have also

been examined.(19) Different age groups of rabbits were used to study the changes in the

tibia-MCL-femur tensile properties with maturity. Since failure occurred by tibia avulsion in

9



rabbits with open epiphyses,1 the mechanical properties of the ligamentous substance could

not be acquired. For rabbits with closed epiphyses, tearing in the ligament substance was

the predominant mode of failure and the mechanical properties among these groups were

found to be similar.

Uniaxial tests have been conducted on ligament substance along and transverse to the

main collagen fiber direction.(15) The resulting stress-strain curve for the ligament in the

transverse direction appeared to be almost linear and the tensile strength, ultimate strain and

tangent modulus were profoundly smaller than the corresponding longitudinal quantities.

The values of the tensile strength, ultimate strain, and tangent modulus vary with the

ligament type, the animal specie, age and sex, the injury and treatment regime, and the

experimental techniques. Therefore, one needs to be careful in comparing the different

experimental results and in delineating the mechanics of the knee ligaments.

1.3.2 Viscoelastic Mechanical Properties

Ligaments display history and time dependent mechanical properties. The stress-strain

curves described by these tissues during loading and unloading at a constant strain rate are

different and give rise to hysteretic loops. Particularly, the unloading curve is shifted to the

right. It has lower stress-strain slope at the low strain and higher stress-strain slope at higher

strains than the loading curve (See Figure 1.6). Because of this hysteresis phenomenon, it

is common practice to precondition the ligamentous tissue before acquiring the mechanical

properties. Preconditioning is an experimental procedure in which the tissue is cyclically

loaded and unloaded until the mechanical response becomes repeatable. This procedure has

been shown to produce an increase in the reference length of collagenous tissues.(21–23)

As a result of the short-time memory, the stress values of these tissues under dynamic

uniaxial loadings is higher than those at equilibrium, for the same strain and, consequently,

1Epiphysis is the end of a long bone that is initially separated from the main bone by a layer of cartilage
and, subsequently, becomes united to the main bone through the ossification process.
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Figure 1.6. Ligament hysteresis and preconditioning effects.

the stress-strain curve appears to be ‘stiffer’ (See Figure 1.7). Few studies have analyzed

the effects of strain rates on the mechanical properties of the knee ligaments.(24–27) This

scarcity is attributable to limitations of the experimental equipments in testing biological

tissues at high (> 1000%/s) strain rates.(28) These studies will be reviewed in detail in the

next chapter since they lead to the formulation of a structural constitutive model and to

their partial validation.

The long-time memory behavior of the tissues is manifested during diverse testing pro-

cedures.(16,27,29–32) Several experiments on knee ligaments have shown that a continuous

deformation of these tissues occurs when they are subjected to constant stress (creep) and

a gradual decrease in stress with time occurs when they are under constant strain (relax-

ation) (See Figure 1.8). These tests have been mainly performed along the collagen fiber

direction.(16)

Experimental work on ligamentous tissues has been mainly focused on stress relaxation

tests. Some investigators have emphasized the need of studying the creep phenomenon of

ligaments together with the relaxation phenomenon because ligaments are perhaps more
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Figure 1.7. Ligament stress-strain relationship at increasing strain rates.

subjected to repeated stress than to repeated strain in vivo.(31) Thornton and associates

reported that creep in rabbit MCL is more nonlinear than relaxation. These findings were

interpreted by considering the different structural changes occurring in the tissues during

the two phenomena. In particular, collagen fibers are gradually recruited when the ligament

is subjected to a constant load. Contrarily, they are recruited all at once when the ligament

undergoes relaxation.(31)

Provenzano et al. performed creep and relaxation studies on rat MCLs at different

loads and deformations below the damage threshold.(32) Their findings demonstrated that

the rate of creep is stress dependent and the rate of relaxation is strain dependent. In

particular, the rate of relaxation decreased with increasing strain and the rate of creep

decreased with increasing stress. Moreover, relaxation was observed to proceed faster than

creep, in agreement with other studies.(31) These experimental observations proved the

inadequacy of the quasi-linear viscoelastic theory, proposed by Fung,(9) in capturing the

ligament nonlinear viscoelastic behavior.

12



Figure 1.8. Ligament creep (top) and relaxation (bottom).

The source of the ligament viscoelasticity remains controversial. Minns et al.(33) have

observed a decrease in relaxation and hysteresis when removing the fluid-like matrix from

human tendon, human aorta, and bovine ligamentum nuchae with an enzyme or a chelating

agent. These changes were explained by the decrease of the matrix viscosity in the tis-

sues. Nevertheless, for the tendon, the inherent time-dependent behavior of collagen and the

cross-linking among collagen fibrils, which is provided by the glycoproteins in the matrix,

were also considered responsible. A recent study,(16) in which the viscoelastic properties of

human MCLs were investigated under longitudinal, transverse, and shear loadings, also sug-

gested that the inter-fibrillar and/or inter-molecular cross-links contribute to the viscoelastic

response of the ligaments. Moreover, because the increase in water content in immature rab-

bit MCLs has been shown to increase the relaxation,(34) some investigators attributed the

viscoelasticity of the ligaments to the fluid in the ground substance. To date, the results of

these studies are insufficient to draw conclusions on the role of the individual components

on the overall tissue viscoelasticity.
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1.4 CONSTITUTIVE MODELS

Constitutive relations are mathematical relationships that describe the mechanical behavior

of materials under specific external conditions. It needs to be emphasized that constitutive

equations describe behaviors not materials and they are valid only under certain conditions.

Theoretical understanding of ligament mechanics has advanced greatly in the past de-

cades. Both phenomenological and structural constitutive relationships have been proposed

for ligaments. Phenomenological models are derived directly from experimental observations

of the gross mechanical behavior. Unlike phenomenological models, structural constitutive

models are formulated by modeling the tissue’s components, their geometry and their inter-

actions. Therefore, the material parameters embodied in such models are directly related to

the tissue’s structure. However, complete descriptions of the tissues by such models require

information about fiber orientation, fiber crimping, fiber volume fraction, and interaction

among constituents, which are difficult to acquire.

In this study, the structural approach is preferred to the phenomenological one since it

helps to elucidate the role of individual components in the gross mechanical response of the

tissue. By following this approach, the study aims at formulating three-dimensional consti-

tutive relationships to describe the short-time memory behavior and the failure behavior of

ligaments. A review of structural and phenomenological constitutive laws proposed for the

description of these behaviors for collagenous material will be presented in the next chapters.

Hereafter, the general structural framework, which leads to the formulation of these models,

will be presented.

1.4.1 Structural Constitutive Models

The first mathematical model that captured the structural changes occurring in soft biolog-

ical tissues under uniaxial loading was proposed by Viidik et al.(17) and improved by Frisen

et al.(35) In these early works, soft collagenous tissues were modeled as composed of parallel
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Figure 1.9. Nonlinear elastic model proposed by Frisen et al.(35) ∆i denotes the displacement
of the fibril i, X denotes the displacement of the tissue and F denotes the force acting on the
tissue.

linear elastic fibrils that gradually become taut under load, bear load and, consequently, give

rise to the typical nonlinear elastic behavior (See Figure 1.9).

Diamant et al.(12) formulated a structural models for collagenous tissues in which the

crimped fiber was idealized as a series of slender arms connected by elastic strings. Stouffer et

al.(36) proposed a constitutive law for human patellar tendon that is based on similar ideas.

By using a linearization of finite strain beam theory, Comninou and Yannas(11) developed a

constitutive description for parallel-fibered tissues by assuming constant sinusoidal crimp for

the collagen fibers. The crimp patterns of the fibers, which comprise the soft tissues, were

assumed to be different in a one-dimensional model presented by Decraemer et al.(37) Parti-

cularly, the fiber straightening stretches are distributed according to a Gaussian distribution

with a fixed mean.

Kastelic et al.(38) proposed the so-called SSL (sequential straightening loading) model

which relates the fibril crimp morphology to the tensile properties of the collagen. In this

model, the collagen fascicle was idealized as being composed of elastic fibrils with different

crimp angles. The crimped fibrils offer no resistance to load and they sequentially become

straight and support load. Stress-strain curves obtained from tensile tests on rat tail tendons
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Figure 1.10. Fiber orientation and undulation in a representative volume according to Lanir’s
model.(41) M1 and M2 represent two of the many possible fiber material directions. Note
that fibers are crimped differently along each material direction.

of various ages were used to analyze the predictive capability of the model. By using different

crimp angles, the toe region of the stress-strain curves was reproduced.

The structural three-dimensional constitutive theory for connective tissues developed

by Lanir is pivotal for the formulation of the models that will be presented in the next

two chapters.(39–41) According to Lanir’s approach,(41) the gross mechanical response of

connective tissues is attributed to the mechanical properties and geometrical arrangement

of the tissue’s components: fiber families and ground substance. It is assumed that the

strain energy of the tissue is the sum of the strain energies of individual fibers. Moreover,

the fibers are oriented in different directions and have different undulations in the the tissue

(See Figure 1.10). Both the fiber orientation and the fiber crimping are stochastically defined

in a manner similar to Soong and Huang.(42) Since the load necessary to straighten the

fiber is negligible, the fiber is assumed to support load only after losing the crimp. The

mechanical behavior of the taut fiber is described as linear elastic or linear viscoelastic.

Each fiber undergoes a uniaxial deformation, which is related to the gross tissue deformation

by a tensorial transformation. The ground substance is assumed to sustain only hydrostatic

pressure. For flat soft tissues,(39) Lanir assumed that the elastin and collagen fibers are

responsible for the overall mechanical response at low strains and high strains, respectively.
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Two versions of the constitutive theory were presented in order to account for the high and

low densities of cross-links among fibers.(39) Lanir also proposed a constitutive model for the

rheological model of tendons.(40) However, because of the lack of morphological information,

the capabilities of the proposed models in simulating the mechanics of connective tissues

were partially evaluated.

Lanir’s constitutive law was adopted by Quapp and Weiss(15) to describe the quasi-static

mechanical behavior of human MCL under uniaxial loads, which were applied along and

transverse to the collagen fiber directions. By assuming that all collagen fibers were ori-

ented along the longitudinal direction, the constitutive model was found to be well suited

to represent the mechanical response of ligaments, as observed in the experimental investi-

gation. Because the ground substance was assumed to contribute to the total stress field

of the tissue through a hydrostatic pressure, the transverse stress estimated by the model

was zero. Nevertheless, the experimental findings demonstrated that, although the tensile

material properties were significantly smaller in the transverse direction than in the longi-

tudinal direction, they were not zero as the model predicted. The authors suggested that

more experimental studies are needed to accurately assess the role of the tissue components

and their interactions on the gross ligament mechanical behavior.

The structural models, originally proposed by Lanir, were successfully used to character-

ize the mechanical behavior of passive miocardium(43) and bioprosthetic heart valve.(44–47)

By using the small angle light scattering technique,(48) the collagen fiber orientation was

quantified and incorporated in the constitutive models to describe the biaxial mechanical

response of native and chemically-treated porcine and bovine pericardium by Billiar and

Sacks(45) and Sacks.(46,47) These studies demonstrated the utility of the structural approach

in reducing the number of parameters to be determined and, consequently, the number of

biaxial tests to be performed for the parameter estimation. Furthermore, the material pa-

rameters were physically meaningful and allowed to understand the relation between the

tissue’s structural architecture and overall mechanical behavior.
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Despite the success of the above studies,(45–47) the use of the structural theory for soft

biological tissues is limited due to the difficulties in evaluating fiber waviness and fiber ori-

entation distributions in non-planar tissues. Nevertheless, structural models remain helpful

in investigating the relation between the morphology and the mechanics of biological tissue

since they can describe behaviors which are difficult to capture by histological and mechanical

investigations.
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2.0 A STRUCTURAL MODEL FOR THE STRAIN RATE DEPENDENT
BEHAVIOR

2.1 STRAIN RATE DEPENDENT BEHAVIOR OF KNEE LIGAMENTS

Injuries of the knee joint are estimated to occur at strain rates that range from 50%/s to

150, 000%/s during sport activities and car accidents.(49) Therefore, examining the mechan-

ical properties of knee ligaments under dynamic loading is essential in order to understand

the mechanisms of these injuries. However, because experimental equipments are unable to

record data at high speeds, the vast majority of researchers in biomechanics investigated the

quasi-static mechanical response of the ligaments. Few experimental and theoretical studies

have been devoted to analyzing the elongation or load rate dependent mechanical features

of these tissues.

The highest strain rate, which has been used to characterize the mechanics of knee lig-

aments, is approximately 19, 000%/s.(49) Crowninshield and Pope noted that, in clinical

studies, the mode of failure of the knee ligaments was tearing whereas, in quasi-static exper-

imental investigations, failure occurred by avulsion at the insertion sites of the ligaments to

the bone. Thus, they carried out experimental studies in which the MCL-bone complexes

were tested under quasi-static and dynamic loading conditions to elucidate the mechanisms

of failure. By using a drop hammer device, traumatic loading rates of 19, 000%/s and

51, 000%/s were achieved. This study revealed that the mode of failure is strain rate depen-

dent and that the ligament tearing becomes the predominant mode of failure at high strain

rates. The tensile strength and the ultimate strain were observed to increase with strain rate.

However, due to limitations in the testing apparatus, these mechanical properties could not

recorded at the 51, 000%/s strain rate.
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In 1990, skeletally immature and mature rabbit femur-MCL-tibia complexes were sub-

jected to uniaxial loading at five extension rates that vary from 0.008 mm/s to 113 mm/s

corresponding to 0.01%/s and 220%/s strain rates, respectively.(24) The linear stiffness, ul-

timate load, ultimate deformation, and energy absorbed at failure increased significantly

with the elongation rate for the skeletally immature rabbits. Moreover, because the femur-

MCL-tibia complexes for these rabbits were found to fail by tibial avulsion due to the skeletal

maturation process, the mechanical properties of the ligaments could not be determined. For

the group of mature animals, the authors found that tangent modulus, the tensile strength,

and the ultimate strain increased with the strain rate. The femur-MCL-tibia samples failed

by ligament tearing perhaps in virtue of the high strain rate dependency of bones. Woo

and co-authors(24) concluded that the effects of strain rate on the material properties of the

ligaments was not profound in the range of strain rates used in their study. Nevertheless,

they recognized that the ligaments should be tested under higher strain rates (> 1000%/s)

to accurately simulate their mechanical behavior during injuries.

The influence of strain rate on ACL and the patellar tendon (PT), which is usually

used as a graft material for the ACL surgical reconstruction, was studied by Danto and

Woo.(28) Tensile failure tests were performed on rabbit ACL-bone complexes at strain rates

of 0.016%/s, 1.68%/s, and 381%/s and on PT-bone complexes at strain rates of 0.016%/s,

1.33%/s, and 135%/s. With few exceptions, failure occurred at the insertion sites of the

ligaments to the bone. The tangent modulus of the ACLs was found to increase by 40% only

when the strain rate increased by more than four decades. On the other hand, the tangent

modulus was reported to increase by 94% for PTs over a range of four decades of strain rate.

It was concluded that the PT is more sensitive to strain rate than the ACL.

Lydon et al. conducted tensile tests on the ACL-bone complex specimens using imma-

ture rabbits as animal models at 0.1 mm/s and 920 mm/s rates of elongation.(50) They

demonstrated that the average linear stiffness, the ultimate load, ultimate deformation, and

the energy at failure are affected by the elongation rate. In particular, the linear stiffness
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and the ultimate load have been observed to increase with the elongation rate. Differently

from other studies,(24,28,49) the ultimate deformation was observed to decrease with increas-

ing elongation rate. Furthermore, the mode of failure was confirmed to be rate dependent.

Failure occurred by bony avulsions at the slower elongation rate and by fibrous avulsions at

the higher elongation rate in agreement with previous studies.(49)

The strain rate effects on human cruciate ligaments and PTs and on bovine ACL-bone

complexes have been evaluated by Pioletti et al.(25,26) By performing tensile tests at 0.3, 6,

9, and 12 mm/s strain rates on the human PTs and at 0.1, 1, 5, 10, 20, 30, 40%/s strain

rates on bovine ACL, it was shown that the toe region of the stress-strain curves changes

with the strain rate while the linear region of the curves remaines unaffected. These results

are in agreement with previous findings in which canine ACLs were tested under strain rates

lower than 1%/s.(51) They indicated that more fluid flows in the ligamentous tissue at the

toe region of the stress-strain relationship, before the collagen fibers align in the direction of

applied load.

Traumatic elongation rates, which correspond to 3660%/s and 14, 000%/s strain rates,

were used to determine the strain rate sensitivity of MCLs.(52) The results suggested that the

strain rate does not affect significantly the load-elongation curve. However, the mechanical

testing of the ligaments was performed without keeping the specimens in a saline bath.

Thus, tissue dehydration may have occurred obfuscating the real mechanical properties of

the ligaments.

The different findings in the above experimental studies are determined by various factors

such as variations in species, age, strain measurements, and testing conditions. Moreover, it

must be noted that comparisons among these studies are impossible since strain/elongation

and stress/load rates are not carefully defined. Thus, suitable constitutive models are needed

to provide an integrated understanding of the reported variations in strain rate effects for

knee ligaments.
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The short-time memory of ligaments have been described by various phenomenological

models.(25,28,53–56) The simplest equations used to capture the strain rate dependent behavior

of soft biological tissues were formulated by combining spring and dashpot elements in series

and in parallel.(53,54) The validity of these equations is restricted to small deformations.

Haut and Little proposed a constitutive model based on the quasi-linear viscoelastic theory

advocated by Fung.(9) Their model was shown to be able to reproduce the stress-strain

curves of rat tail tendons only at low strain rates ranging from 0.06%/s to 0.75%/s. Danto

and Woo adopted an empirical nonlinear elastic relationship to fit the stress-strain curve of

ACLs and PTs at different strain rates.(28)

The most attractive theoretical framework for the description of the short-time memory of

soft tissues was proposed by Pioletti and colleagues.(25) They presented a three-dimensional

constitutive law that modeled the strain rate sensitivity, nonlinearity, and incompressibility

of ligaments and tendons. The constitutive equation was formulated by introducing an

elastic potential and a viscous potential which are defined as functions of strain and strain

invariants. It is valid for large deformations and it is thermodynamically admissible. It was

tested by using uniaxial stress-strain data obtained from the human ACL, PCL and PT at

different strain rates and by assuming the isotropy of these tissues. In a recent work,(56)

Limbert and Middletown improved the constitutive model by assuming the ligaments to be

transversely isotropic. Specific forms of the elastic and viscous potentials were derived and

their material parameters were identified by using published uniaxial experimental data for

human ACLs. Furthermore, the predictive capabilities of the model were investigated by

considering various states of deformation.

Although the cited viscohyperelastic models(25,56) faithfully reproduced the strain rate

dependent properties of ligamentous tissues, they were unable to clarify the relation between

the morphology of these tissues and their gross mechanical response. Thus, the first objective

of the present study is to develop a constitutive model to accurately describe the ligament

mechanical behavior based on the collagen fibrous structure.
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By taking into account the orientation, the crimping, and the viscoelastic component

of collagen fibers, the model simulates the strain rate effects on the mechanical response of

the ligaments. Available experimental data for ACL from the literature(26,28) are used to

partially assess the model.

2.2 MODEL FORMULATION

An incompressible, three-dimensional constitutive law is proposed that is based on the col-

lagenous fibrous structure of most ligaments. It is a modification of structural constitutive

relations for soft tissues, originally proposed by Lanir,(39,41) that incorporates strain rate

effects. In the following formulation, the fibrous network is comprised of variously undulated

fibers oriented in different directions. Collagen fibers are undulated in the slack configuration

and unable to support load. They are gradually straightened under strain, at which point

they manifest a viscoelastic behavior. Both the spatial arrangement and the waviness of the

collagen fibers are defined stochastically.

2.2.1 Constitutive Equation

The existence of elastic and viscous potentials, We(C) and Wv(C, Ċ), respectively, is as-

sumed such that the first Piola-Kirchhoff stress tensor P can be expressed as

P = −pF−T + 2F ·
(

∂We(C)

∂C
+

∂Wv(C, Ċ)

∂Ċ

)
, (2.1)

where p is an indeterminate pressure enforcing the incompressibility assumption, F is the

deformation gradient tensor, F T and F−T are its transpose and inverse transpose, respec-

tively, C ≡ F T · F is the right Cauchy-Green deformation tensor, and Ċ is its material

time derivative.(25,57) A “dot product” notation is used, wherein a vector u is mapped by a

second-order tensor A into the vector A ·u and the composition of two second-order tensors
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A and B is another second-order tensor denoted by A ·B, so that (A ·B) ·u = A · (B ·u)

for an arbitrary vector u. The last expression thus admits the unambiguous representation

A ·B · u. The tensor product of two vectors u and v is a second-order tensor denoted by

uv and defined such that uv · a = (uv) · a = u(v · a) for an arbitrary vector a.

In the absence of the viscous potential, (2.1) yields the usual dissipation-free, incom-

pressible hyperelastic response. Thus, the assumed viscous potential Wv(C, Ċ) accounts for

dissipation.(25) Sufficient conditions for satisfaction of the Clausius-Duhem inequality are

that the viscous potential be continuous, non-negative, and convex and that Wv(C,0) = 0.

Let R(M̂) be the probability density for collagen fibers whose mean axes in the reference

configuration are parallel to the unit vector M̂ . Both the elastic and the viscous potentials

are assumed to be determined solely by the collagen fibers’ extension—shear and bending

energies are not taken into account. Accordingly, it is assumed that the elastic and viscous

potentials can be represented as

We(C) =

∫
Σ

R(M̂)we(Λ(C, M̂)) dΣ , (2.2)

Wv(C, Ċ) =

∫
Σ

R(M̂)wv(Λ(C, M̂), Λ̇(C, Ċ, M̂)) dΣ , (2.3)

where Σ is the set of all material directions and we(Λ) and wv(Λ, Λ̇) are the collagen fiber

elastic and viscous potentials corresponding to axial fiber stretch Λ and stretch rate Λ̇, given

by

Λ(C, M̂) =
√

M̂ ·C · M̂ , Λ̇(C, Ċ, M̂) =
1

2

M̂ · Ċ · M̂√
M̂ ·C · M̂

. (2.4)

Introducing the fiber elastic stress σe(Λ) and the fiber viscous stress σv(Λ, Λ̇) as follows

σe(Λ) ≡ dwe(Λ)

dΛ
, σv(Λ, Λ̇) ≡ ∂wv(Λ, Λ̇)

∂Λ̇
, (2.5)
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Figure 2.1. Assumptions in the recruitment model.

the constitutive equation (2.1) then assumes the form

P = −pF−T

+ F ·
∫
Σ

R(M̂)
M̂M̂

Λ(C, M̂)
[σe(Λ(C, M̂)) + σv(Λ(C, M̂), Λ̇(C, Ċ, M̂))] dΣ . (2.6)

Once the collagen fiber orientation distribution R(M̂) and axial constitutive relations σe(Λ)

and σv(Λ, Λ̇) have been specified, relation (2.6) can be employed to predict the ligament’s

strain rate dependent behavior. In the next section, the axial constitutive equations will be

specified by considering the fibers’ initial crimping and straightening under deformation.

2.2.2 Recruitment Model

The fiber recruitment model, which is characterized statistically by a probability density

function for the stretch necessary to straighten a crimped fiber, has been employed by a

number of researchers in biomechanics.(37,39–41,43,44,46,58,59) The novelty of the proposed

model is in the introduction of collagen fibers’ viscous effects to describe the ligament’s

strain rate effect.

Collagen fibers are undulated, or crimped, in the stress-free configuration. They are

assumed to support load only after becoming taut—the load necessary to straighten the
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Figure 2.2. Λ: axial fiber stretch, Λs: straightening stretch.

fibers is assumed to be negligible in comparison. Thus, the fiber elastic and viscous stresses

are given by

σe(Λ) =

∫ Λ

1

g(Λs)σ̂e

(
Λ

Λs

)
dΛs , (2.7)

σv(Λ, Λ̇) =

∫ Λ

1

g(Λs)σ̂v

(
Λ

Λs

,
Λ̇

Λs

)
dΛs , (2.8)

where g(Λs) is the probability density for fibers which become taut at a stretch Λs and Λ/Λs

is the stretch with respect to the fiber’s taut configuration (See Figure 2.2). The probability

density must satisfy the normality condition
∫∞

1
g(Λ) dΛ = 1. The values of σ̂e(Λt) and

σ̂v(Λt, Λ̇t) represent the elastic and viscous stresses for a taut fiber stretched an amount

Λt = Λ/Λs and with a stretch rate of Λ̇t = Λ̇/Λs. They are subject to the constraints

σ̂e(1) = 0 and σ̂v(Λ, 0) = 0.

2.2.3 Fiber Elastic and Viscous Stresses

The structural model presented above correlates the gross mechanical response of the ACL

to the collagen fibers’ mechanical response. Each collagen fiber is assumed to have a Kelvin-

Voight-type viscoelastic constitutive behavior based on studies by Sasaki and Odajima.(60)
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By using an x-ray diffraction method, these authors found that the stress-strain relationship

for the collagen molecule in tendons is almost linear. Moreover, after comparing their findings

with previous studies,(61) they speculated that the mechanical properties of the tropocollagen

are strain rate dependent. The three α-chains, which form the helix structure of the collagen

molecule, are stabilized by hydrogen bonds (See Figure 1.3). The hydrogen bonds are bind

to water molecules and, when the molecule is hydrated, these water molecules exchange with

other water molecules. The disruption and the reformation of these bonds produces energy

dissipation. Therefore, the strain rate dependent behavior of the tropocollagen is believed

to be determined by the network of hydrogen bonds.(60)

There is often some ambiguity in reported experimental results regarding the precise

definition of the measured strains. Assuming that the strain measured is the logarithmic

strain, ε ≡ ln Λ, the elastic and viscous stresses for a taut fiber are taken as

σ̂e(Λt) = K ln Λt , σ̂v(Λt, Λ̇t) = η(ln Λt)̇ =
ηΛ̇t

Λt

, (2.9)

where K is the elastic stiffness and η is the coefficient of viscosity. Alternatively, one could

assume that the reported strain is the engineering strain, ε0 ≡ Λ− 1, and accordingly that

σ̂e(Λt) = K0(Λt − 1) , σ̂v(Λt, Λ̇t) = η0Λ̇t, (2.10)

where K0 and η0 are constants.

The maximum strain in the data used below, from Danto and Woo(28) and Pioletti et

al.,(26) is less than 10%. At this strain, the relative difference between the two interpretations

of the reported strain is ∼ 0.5%. That is, if ε = 0.1 then ε0 = 0.1052 and if ε0 = 0.1 then ε =

0.0953. While this difference is significant, it likely falls within the margin of experimental

error for the data considered here. Nonetheless, it would be beneficial if experimentally

determined strains (and stresses) are more clearly defined when reported. The logarithmic

strain is assumed here.
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2.3 MODEL IMPLEMENTATION

In order to evaluate the capability of the proposed model, published tensile test data ob-

tainedfor the ACL at various strain rates will be used. To this end, an homogenous axysim-

metric defomation is considered. Moreover, the ACL is assumed to have a perfectly col-

lagenous parallel-fibered structure and the recruitment process is governed by a modified

Weibull distribution.

2.3.1 Isochoric, Axisymmetric Deformation

In order to compare the model with the uniaxial loading experiments reported by Danto and

Woo(28) and Pioletti et al.,(26) the isochoric deformation is assumed to be axisymmetric with

a deformation gradient of the form

F = λ−
1
2 erER + λ−

1
2 eθEΘ + λezEZ , (2.11)

where the axial stretch λ(t) is a function of time t that satisfies λ(0) = 1.(62) The orthonormal

bases {ER, EΘ, EZ} and {er, eθ, ez} are defined such that EZ and ez are unit vectors parallel

to the direction of loading in the reference and current configurations, respectively (See

Figure 2.3). The corresponding right Cauchy-Green deformation tensor is thus given by

C = λ−1ERER + λ−1EΘEΘ + λ2EZEZ . (2.12)

2.3.2 Collagen Fiber Orientation and Crimp

In the reference configuration, the mean axial directions of the collagen fibers are assumed

to be aligned along the direction of loading, EZ , so that the probability density for fiber

orientation is R(M̂) = δ(M̂ −EZ), where δ is the Dirac delta function (See Figure 2.3).

28



Figure 2.3. Reference configuration (right) and current configuration (left).

It then follows from (2.4), (2.6), (2.11), and (2.12) that the non-zero components of the first

Piola-Kirchhoff stress are given by

PrR = PθΘ = −pλ
1
2 , PzZ = −pλ−1 + σe(λ) + σv(λ, λ̇) . (2.13)

The traction-free boundary condition on the lateral surface of the test specimen thus implies

that the indeterminate pressure term must vanish, p = 0. The recruitment model, (2.7) and

(2.8), and the assumed form of the fiber response (2.9) then give

PzZ =

∫ λ

1

g(λs)

[
K ln

λ

λs

+ η

(
ln

λ

λs

)̇]
dλs (2.14)

as the only non-zero component of stress.

The crimp probability density is taken to be a modified Weibull function of the following

form:

g(λ) = αβ−αλ−1(ln λ)α−1e−(ln λ/β)α

, (2.15)

where α > 0 is the shape parameter and β > 0 is the scale parameter. This probability

density function is one-sided, with g(1) = g(∞) = 0 and satisfies the normality condition∫∞
1

g(λ) dλ = 1. The corresponding cumulative probability function is

G(λ) =

∫ λ

1

g(λs) dλs = 1− e−(ln λ/β)α

. (2.16)
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The change of variable λs = eεs in (2.14) and (2.15) then yields

PzZ =

∫ ε

0

αβ−αεα−1
s e−(εs/β)α

[K(ε− εs) + ηε̇] dεs . (2.17)

This relation gives the nominal axial stress PzZ as a function of the logarithmic axial strain

and strain rate, ε and ε̇, and the four material parameters K, η, α, and β, which are estimated

by curve fitting data from tensile tests.

2.4 RESULTS

Because of the complexities involved in conducting high strain rate experiments on collage-

nous tissue, there are few studies on the stress-strain relationship at such strain rates in the

biomechanical literature. Published experimental stress-strain data from rabbit and bovine

ACL-bone complexes(26,28) have been used to assess the proposed model. In these studies

the effects of strain rate on the mechanical response of the ligamentous tissue have been

investigated. Several factors such as species, age, and, most importantly, testing methodolo-

gies, have contributed to differences in the experimental findings on the ACL-bone complex

rheological behavior.

Danto and Woo(28) have tested the medial portion of rabbit ACL-bone complex by per-

forming tensile tests at three strain rates: 0.016%/s, 1.68%/s and 381%/s. In their study,

they have not observed a significant difference in the ACL mechanical properties between the

strain rates of 0.016%/s and 1.68%/s. Hence, in order to determine the parameter values in

the material law, (2.17) has been fitted using the stress-strain data at 1.68%/s and 381%/s

strain rates. By implementing the Levenberg-Marquardt nonlinear least-squares algorithm

and by constraining the parameters to be positive, the best-fit parameters have been found

to be α = 1.5, β = 0.038, K = 840 MPa, and η = 5.1 MPa/s. Figure 2.4 illustrates the good-
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Figure 2.4. Stress-strain experimental data from Danto and Woo(28) at 1.68%/s and 381%/s
strain rates with model (—) and fraction of straight fibers (—) evaluated at best fitting
parameters.

31



Figure 2.5. Experimental data from Pioletti and co-authors(26) at 5%/s, 10%/s, 20%/s,
30%/s, and 40%/s strain rates (various symbols) and theoretical stress-strain curves (con-
tinuous line).
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Figure 2.6. Linear dependence of the sensitivity coefficients.
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ness of the fit to the experimental data (R2 = 0.97) together with the fraction of straight

fibers as defined by the cumulative probability G̃(ε) ≡ G(eε) = 1 − e−(ε/β)α
. The model

predicts a stiffening of the toe region with increasing strain rate. The cumulative probability

shows the fraction of the fibers recruited for various values of strain. For instance, it can be

observed that 90% of collagen fibers are recruited at 6.6% strain.

Pioletti et al.(26) have conducted tensile tests at several strain rates (0.1%/s, 1%/s, 5%/s,

10%/s, 20%/s, 30%/s, 40%/s) on bovine ACL-bone complexes. They have demonstrated that

the strain rate affects mainly the toe region of the stress-strain relationship while leaving

almost unaffected the tangent modulus of the linear region. An attempt to fit the data of

Pioletti et al. with the constitutive equation (2.17) has been made. Equation (2.17) fits

the experimental stress-strain curves very well with R2 > 0.99 (See Figure 2.5), although a

unique set of fitting parameters could not be determined because the identifiability criterion

is not satisfied.(63,64) According to this criterion, the sensitivity coefficients of the model,

K∂PzZ/∂K, η∂PzZ/∂η, α∂PzZ/∂α, and β∂PzZ/∂β, must be linearly independent in the

neighborhood of the minimum sum of squares function, over the range of measurements. To

illustrate the criterion, the sensitivity coefficients of the model, which have been obtained

by setting η = 0 and by fitting the stress-strain data at 5%/s strain rate, are depicted

in Figure 2.6. The fitting parameters cannot be uniquely determined since K∂PzZ/∂K +

β∂PzZ/∂β approaches to zero and, hence, K∂PzZ/∂K and β∂PzZ/∂β are approximately

linearly dependent.

2.5 DISCUSSION

A constitutive law for knee ligaments is formulated by modifying the structural theory pro-

posed by Lanir(39,41) to include a description of strain rate dependent effects. The nonlinear

material response, the anisotropy, the finite deformation, and the incompressibility of liga-

mentous tissue are taken into account. The model has the merit of being structurally based,
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with the material parameters directly associated with the tissue’s main constituents. Its

has been shown to be capable of characterizing the typical mechanical properties of the

ACL with only four parameters. The initially wavy collagen fibers in the ligament become

straight when subjected to a load and the tissue’s overall stress-strain relationship stiffens

exponentially. Consequently, the taut collagen fibers sustain the load and, hence, they are

responsible for the high modulus response. The novelty of the model is in capturing, in the

toe region, an increase in the mechanical properties of the ligament with strain rate. No

differences in the slopes of the linear region of the stress-strain curves are predicted. These

results are in accordance with the observations made by Pioletti et al. for bovine ACL.(26)

A good fit of the model with the experimental results by Danto and Woo(28) was at-

tained. The estimated parameters α and β defined a distribution which describes the se-

quential straightening of collagen fibers as the ACL-bone complex elongates. The one-sided

probability density function was selected in order to exclude the unrealistic possibility that

collagen fibers straighten out in compression. In particular, the results indicated that the

transition from the toe region to the linear region of the stress-strain curve occurs with a

smaller percentage of fibers recruited when the strain rate is faster. It is worth noting that

recent studies have established that the Weibull probability function with a nonzero location

parameter can be employed to determine the reference length of the ligament.(65) There-

fore, the assumption of an initial slack configuration could be removed by introducing an

additional parameter into the model.

The collagen fiber elastic modulus was found to have a value, K = 840 MPa, which is com-

parable with the 0.4 GPa and 1 GPa values reported in the biomechanical literature.(9, 60, 66)

It should be noted that the stiffness K in the current model is actually underestimated. This

is because, in the model formulations, collagen fibers are assumed to occupy the whole cross

sectional area of the ACL while the other ligamentous constituents have been neglected. By

the same argument, the value for η is also underestimated.
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When considering the experimental data from Pioletti et al.,(26) it was not possible to

identify a unique set of material constants by implementing the Levenberg-Marquardt non-

linear data fitting procedure and by constraining the parameters to be positive. The iden-

tifiability criterion utilizing sensitivity coefficients was invoked.(63,64) Indeed, the sensitivity

coefficients were found to be linearly dependent. This emphasizes the need for experiments

designed to accurately evaluate the parameters in the constitutive model. It is speculated

that the non-uniqueness is caused by the absence of a prolonged linear region in the experi-

mental stress-strain curves.

The proposed constitutive relation has been tested under the assumption that all col-

lagen fibers are perfectly parallel in the ligament. This assumption can be removed when

quantification of the initial fiber orientation is obtainable. Sacks(46,48) showed that informa-

tion on collagen fiber organization in planar tissues can be gained by using a small angle

light scattering technique and, subsequently, incorporated into structural models. Similar

techniques could help to determine the collagen fiber orientation in the ligament.(67) More-

over, because histological studies clarifying the role of each component in the ligaments are

still not available, the matrix and elastin fiber contributions together with the interactions

among the various constituents are not included in the proposed model.

The collagen fiber behavior was modeled using a Kelvin-Voigt element, which is char-

acterized by a linear dependence on the strain rate. It must be noted that the strain rate

dependent effects are considered to be due solely to the collagen fibers. This assumption is

supported by Sasaki and Odajima.(60) In their study, it was speculated that the modulus of

the collagen molecule increases with strain rate. Nevertheless, it may be possible that strain

rate effects are due to a fluid-like matrix or/and intermolecular cross-linking.

Experimental multiaxial data need to be used to accurately test the model’s capability to

predict the mechanical response of the ACL under various loading conditions. Tensile tests

are not sufficient alone to fully characterize the mechanics of the tissue. Strain measurements

at high strain rates over the entire ligament are required to establish the ACL biomechanics.
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The present study is unique in that it is the first time that a structural constitutive

model has been used to reproduce the strain rate sensitivity of ACL revealed in experimental

investigations. Lanir(41) developed a very general viscoelastic constitutive theory for the lung

tissue which was not validate by using experimental data. In the present study, a specific

viscoelastic constitutive equation is formulated and successfully tested with experimental

data for the ACL. It is believed that the formulation of a reliable constitutive equation in

conjunction with appropriate experimental works can lead to a better understanding of the

mechanisms of ACL injury.
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3.0 A STRUCTURAL MODEL FOR THE FAILURE BEHAVIOR

3.1 FAILURE BEHAVIOR OF KNEE LIGAMENTS

The most severe injuries of the ligaments are partial and complete tears commonly known

as second-degree and third-degree sprains, respectively. Tears of the knee ligaments can lead

to chronic instabilities of the joint and can often prevent the return of athletic patients to

sport activities. Understanding the mechanism of tearing in ligamentous materials is thus

important for the prevention, the diagnosis and the treatment of these injuries. Toward this

end, experimental investigations complemented with reliable constitutive descriptions are

needed to study the disruption of the ligamentous fibers associated with the injuries.

Several experimental studies have been carried out to determine the mechanical proper-

ties of the knee ligaments. The progress in experimental technologies has significantly con-

tributed to characterize the mechanics of these ligaments. Nevertheless, difficulties persist

in accurately establishing the material properties of the ligamentous tissue and in exploring

the role of the tissue’s components during injuries.

As noted earlier, most of the experimentalists have measured the tensile properties of

ligaments (Section 1.3). Tensile tests are usually performed on femur-ligament-tibia com-

plexes due to the problems in clamping the ligamentous substance and due to the necessity

of simulating in vivo loading conditions. During these tests, the ligament can thus fail in

the mid-substance, at the insertion sites, or by bony avulsion. Failure at the insertion sites

consists of the net separation of the ligamentous substance from the bone. Bony avulsion

is a failure of the bone-ligament complex involving the disruption of the osseous substance.

However, the material properties of the ligament—tangent modulus, ultimate strain, and
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tensile strength—are computed only when failure occurs in the ligamentous substance or at

the insertion sites.(5) It is then clear that experiments designed to study the failure of the

ligamentous material can be time-consuming and require costly animal trials.

The strain field is reported to be inhomogeneous over the entire surface of the knee

ligaments.(68,69) Thus, in order to account for the material inhomogeneities, strain is often

measured by video-recording the displacement of markers that are glued on the surface of the

ligament. When the ligament is tearing, the markers come out of the surface region of the

ligament, whose strain is being recorded, and, hence, analyzing the mechanical properties

associated with tears is impracticable.

Because of the shortcomings in the experimental methods, the process of failure in liga-

ments remains poorly understood. It is believed that the development of suitable structural

constitutive relationships may play a significant role in comprehending the mechanisms of

the ligamentous injuries. The structural framework can help delineating the relationship

between the biological architecture and the mechanical failure behavior of ligaments.

Structural modeling of the collagenous tissue failure behavior has already received the at-

tention of several investigators. Kwan and Woo(70) developed a one-dimensional microstruc-

tural model for parallel-fibered collagenous tissues in which collagen fibrils were assumed to

be responsible for the gross tissue nonlinear response. In their model, the tissue was con-

sidered to be composed of groups of fibrils with different initial lengths, uncrimping strains,

and failure strains. Collagen fibril stress-strain relationship was assumed to be bilinear. The

model fitted the rabbit ACL and canine MCL experimental data but eleven parameters were

needed.

The most complete theoretical description of failure for ligaments and tendons has been

presented by Hurschler et al.(59) The constitutive law was formulated by modeling the

collagen fiber, the matrix and the fibril structures. The tissue stress-stretch relationship was

defined by considering the sequential uncrimping and stretching of collagen fibers. The fiber

recruitment process was defined by a one-sided distribution. Moreover, the constitutive law
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for individual fiber was determined by the fibril kinematics and spatial orientation. The

matrix was assumed to contribute to the gross mechanical behavior through a hydrostatic

pressure term. Stretch-based failure criteria were introduced in the model at fibril level for

disorganized tissue and at the fiber level for parallel-fibered tissues. In both cases, the failure

stretch was assumed to be equal for all fibrils or for all the straight fibers. The constitutive

relation was simplified in order to curve fit experimental data of healing rabbit and rat

MCLs. However, the values of the best fitting material parameters were not reported by the

authors and, perhaps, could not be uniquely determined.

In a follow-up study, Liao and Belkoff(66) presented a failure model for the tensile prop-

erties of ligaments that incorporates the collagen fiber gradual recruitment and stretching.

The fiber recruitment was described by a two-sided distribution and, therefore, some fibers

could unrealistically become straight at a negative stretch. Each collagen fiber was assumed

to be linear elastic and to fail at the same stretch in the taut configuration. This model has

the merit of containing only four structural parameters. Although the model was found to

describe well the abrupt failure behavior, it could not reproduce the gradual failure behavior

observed in experimental studies on rabbit MCLs.

Wren and Carter(71) proposed a structural law for the tensile constitutive pre-failure and

failure behavior of soft skeletal connective tissues. The mathematical model accounts not

only for the collagen fiber uncrimping, stretching, breakage, orientation and volume fraction

but also for matrix constitutive behavior and its resistance to fiber reorientation. Experi-

mental data from tendon, meniscus and articular cartilage were used to validate the model.

The values of the structural parameters, which appear in the model, were extrapolated from

various experimental studies.

The aforementioned constitutive models were able to illustrate the abrupt failure behavior

of collagenous tissues. In this chapter, a novel structural constitutive model is formulated

to describe the gradual tensile failure behavior of ligaments under the assumption that,

after losing their waviness, fibers fail at different stretches. The model is validated by using
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Figure 3.1. Λs: straightening fiber stretch, Λf : failure fiber stretch.

published stress-strain data for the MCL. Moreover, it is compared over a model which is

based on the common assumption that the straight fibers in the tissue fail at an identical

stretch. Although a three-dimensional model is proposed, it is not validated due to the lack

of multiaxial histomechanical data for ligaments.

3.2 MODEL FORMULATION

A one-dimensional stochastic model is first presented to describe the tensile pre-failure and

failure behaviors of ligaments. The ligament is idealized as composed of collagen fibers that

are aligned along its direction of physiological loading. The fibers are assumed to be lin-

ear elastic and to possess the same stiffness. They contribute to the ligament’s mechanical

response after becoming taut and before breaking. The fiber bending and compressive stiff-

nesses are ignored as well as fiber-fiber and matrix-fiber interactions. Moreover, viscous

effects are not taken into account. The failure criterion is stretch based but, differently from

previous studies,(59,66,71) the fibers in the tissue are postulated to break at different stretches.

Both the fiber straightening and fiber breakage are statistically defined by Weibull cumula-

tive distributions. Subsequently, a general three-dimensional material law is proposed based

on Lanir’s pioneering work in soft tissue structural constitutive modeling.(39,41)
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3.2.1 Recruitment and Failure Model

The mechanical response of the ligament is determined by the collagen component. Elastin

fibers are not assumed to contribute to the mechanical behavior since their amount is not

significant in these ligaments. (See Section 1.2). Thus, the ligament is assumed to be made

up of N parallel collagen fibers, where N is an integer. In the reference configuration, the

N collagen fibers are aligned along the main physiological loading direction of the ligament.

The generic collagen fiber i is characterized by a straightening stretch, Λ
(i)
s , and a fail-

ure stretch, Λ
(i)
f , where i = 1 . . . N (See Figure 3.1). The straightening stretches and the

failure stretches for the N fibers are randomly distributed according to Weibull cumulative

distributions. Hence, they are given by

Λ(i)
s = 1 + βs[ln(1−G(i)

s )]
1

αs , Λ
(i)
f = 1 + βf [ln(1−G

(i)
f )]

1
αf , (3.1)

where αs > 0 and βs > 0 are the shape and the scale parameters of the Weibull distribution

describing fiber straightening and αf > 0 and βf > 0 are the shape and the scale parameters

of the Weibull distribution governing fiber failure. G
(i)
s and G

(i)
f are random numbers with

0 < G
(i)
s < 1 and 0 < G

(i)
f < 1.

The fibers are assumed to contribute to the overall tissue’s stress only after losing their

undulation and before failing (See Figure 3.2). Moreover, they are modeled as linear elastic

material. Therefore, the stress-stretch relation for the generic fiber i is defined as follows

σ(i) =


0 Λ

Λ
(i)
s

≤ 1 ;

K
(

Λ

Λ
(i)
s

− 1
)

1 < Λ

Λ
(i)
s

< Λ
(i)
f ;

0 Λ

Λ
(i)
s

≥ Λ
(i)
f ,

(3.2)

where K is the fiber stiffness, Λ is the overall tissue’s stretch, and Λ/Λ
(i)
s is the fiber stretch

relative to the taut configuration.
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Figure 3.2. Assumption of the recruitment model with failure.

The overall tissue’s stress, σ is defined as the average of the stresses of the N fibers.

Thus, it is given by

σ(Λ) =
1

N

N∑
i=1

σ(i) . (3.3)

Finally, a set of five material parameters, {K, αs, βs , αf , βf}, needs to be determined

by curve-fitting experimental data to replicate the uniaxial stress-stretch relationship of

ligaments.

3.2.2 Model Generalization

The one-dimensional model proposed in Section (3.2.1) can be generalized in order to describe

the three-dimensional mechanical behavior of ligaments. The first Piola-Kirchhoff stress

tensor P can be expressed as(6)

P = −pF−T + 2F · ∂W (C)

∂C
, (3.4)

where ‘·’ denotes the dot product, p is an indeterminate pressure enforcing the incompress-

ibility assumption, F is the deformation gradient tensor, F T and F−T are its transpose and

inverse transpose, respectively, C ≡ F T · F is the right Cauchy-Green deformation tensor.

The choice of C as a measure of the deformation guarantees that the Principle of Frame
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Indifference is satisfied. W = W (C) is the elastic potential that is defined as follows(39,41)

W (C) =

∫
Σ

R(M̂)w(Λ(C, M̂)) dΣ , (3.5)

where Σ is the set of all material directions in the reference configuration, M̂ is an arbitrary

material direction in Σ, R(M̂) is the probability density function for collagen fibers to be

aligned in the direction M̂ , and w(Λ(C, M̂) is the elastic potential of collagen fibers in the

direction M̂ determined by the axial fiber stretch

Λ(C, M̂) =
√

M̂ ·C · M̂ . (3.6)

According to (3.6), the stretch of each fiber Λ along its mean axis M̂ is derived from an

affine transformation of the overall tissue’s strain C.

After defining the fiber elastic stress σ(Λ) as

σ(Λ) ≡ dw(Λ)

dΛ
, (3.7)

the constitutive equation (3.4) takes the form

P = −pF−T + F ·
∫
Σ

R(M̂)
M̂M̂

Λ(C, M̂)
σ(Λ(C, M̂))dΣ . (3.8)

Given the collagen fiber distribution R(M̂) and the fiber stress-stretch relation σ(Λ) defined

by (3.2)-(3.3), the constitutive law (3.8) defines the multiaxial mechanical response of the

ligamentous material.
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The three-dimensional model (3.8) can be reduced to the one-dimensional model (3.2)-

(3.3) under certain assumptions. Assume that the ligament undergoes an isochoric axisym-

metric deformation defined by the following deformation gradient

F = λ−
1
2 erER + λ−

1
2 eθEΘ + λezEZ , (3.9)

where the λ is the axial stretch, {ER, EΘ, EZ} and {er, eθ, ez} are orthonormal bases such

that EZ and ez are unit vectors parallel to the direction of physiological loading in the

reference and current configurations, respectively. Consequently, the right Cauchy-Green

deformation tensor is given by

C = λ−1ERER + λ−1EΘEΘ + λ2EZEZ . (3.10)

Moreover, assume that collagen fibers are perfectly parallel to the direction of loading so

that R(M̂) = δ(M̂ − EZ) where δ is the Dirac-delta function. It then follows from (3.6),

(3.8), (3.9), and (3.10) that the non-zero components of the first Piola-Kirchhoff stress are

PrR = PθΘ = −pλ
1
2 , PzZ = −pλ−1 + σ(λ) . (3.11)

Because of the traction-free boundary condition on the lateral surface of the ligament, the

indeterminate pressure term p assumes zero value. One then obtains that the only non-zero

component of the stress, PzZ , reduces to the axial fiber stress, σ, defined by (3.2)-(3.3).

3.3 RESULTS

In order to test the constitutive model described by (3.2)-(3.3), the number N of the collagen

fibers that are assumed to form the ligament has been chosen to be 10, 000 since no significant

difference have been observed in the computation of the stress by increasing this number.
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The straightening stretches and failure stretches for the collagen fibers have been computed

by transforming uniform deviates, generated by using Park and Millers Minimal Standard

generator with an additional shuffle,(72,73) into Weibull distributed deviates.

The set of material parameters {K, αs, βs , αf , βf} that appear in the model has been

identified by minimizing the sum of squares difference between experimental and theoretical

stresses. To this end, the Downhill Simplex Method has been numerically implemented.(73,74)

This method permits the evaluation of the minimum of a function with several independent

variables without requiring the computation of its derivatives.

MCL tensile test data published by Abramowitch et al.(75) and by Provenzano et al.(76)

have been employed to test the proposed constitutive model. Abramowitch and collaborators

have performed uniaxial tensile tests on femur-MCL-tibia complexes to evaluate the goat as

animal model for studying the MCL healing process.(75) They have reported a typical stress-

strain data that shows the MCL tearing and complete failure. These data are well fitted

by the presented model as Figure 3.3 illustrates. The model is able to describe the toe

region, the linear region and, most importantly, the failure region of the stress-strain curve.

The values of the parameters have been found to be K = 460 MPa, αs = 1.74, βs = 0.02,

αf = 8.10, and βs = 0.18 (R2 = 0.99). In Figure 3.3, the fractions of taut fibers and the

fractions of broken fibers are also depicted.

As mentioned earlier, a common assumption in previous works on modeling failure in soft

tissues is that the fibers, which comprise the tissues, have an identical failure stretch, defined

relatively to the taut configuration(59,66,71) (Section 3.1). By invoking this assumption, the

single fiber stress takes the following form

σ(i) =


0 Λ

Λ
(i)
s

≤ 1 ;

K
(

Λ

Λ
(i)
s

− 1
)

1 < Λ

Λ
(i)
s

< Λf ;

0 Λ

Λ
(i)
s

≥ Λf ,

(3.12)

46



where Λf is the failure fiber stretch with respect to the taut configuration and the other

quantities appearing in (3.12) are defined as before (Section 3.2.1).

The proposed constitutive model is compared with a constitutive model defined by (3.12)-

(3.3). It is noteworthy that, to simulate the disruption of the ligament, two parameters, αf

and βf , are needed to randomly generate the failure fiber stretches, Λ
(i)
f , in the model (3.2)-

(3.3) whereas one parameter, Λf , is needed to define the failure fiber stretch in the model

(3.12)-(3.3).

Figure 3.4 presents the comparison between the curve fittings of the models described by

(3.2)-(3.3) and by (3.12)-(3.3). The four best fitting parameters for the latter model have

been determined to be K = 716 MPa, αs = 0.89, βs = 0.07, Λf = 1.16 (R2 = 0.98). As

Figure 3.4 shows, the newly proposed model can fit the data better than the four parameter

model (3.12)-(3.3).

Provenzano et al.(76) have conducted an experimental study to analyze the subfailure

damage in ligament. In their study, they have subjected rat femur-MCL-tibia complexes to

tensile tests in order to measure the mechanical properties of the ligament before and after

applying subfailure stretches. A good agreement has been found between the proposed model

and the experimental data obtained from the ligament-bone complex. Figure 3.5 displays

the curve fitting of the model with the experimental data, the fractions of straight fibers and

the fractions of broken fibers. The material parameters have been estimated to be K = 1345

MPa, αs = 1, βs = 0.03, αf = 2.47, and βs = 0.12 (R2 = 0.99).

The constitutive model (3.12)-(3.3) has also been fitted to the experimental data pub-

lished by Provenzano et al.(76) In Figure 3.6, the the curve-fitting is compared with the

curve-fitting obtained by using the newly proposed constitutive law. The value of the four

material parameters, {K, αs, βs , Λf}, embodied in the model (3.12)-(3.3) could not be

uniquely determined. As evidenced by the results in Figure 3.6, the proposed model repro-

duces better the MCL stress-stretch mechanical behavior.
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Figure 3.3. Stress-strain experimental data from Abramowitch and colleagues(75) (•) with
model fit (—), fractions of straight fibers (—), and fractions of broken fibers (−−).
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Figure 3.4. Stress-strain experimental data from Abramowitch and co-authors(75) (•) with
five parameter model fit (—) and four parameter model fit (—).
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Figure 3.5. Stress-strain experimental data from Provenzano et al.(76) (•) with model fit
(—), fractions of straight fibers (—), and fractions of broken fibers (−−).
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Figure 3.6. Stress-strain experimental data from Provenzano et al.(76) (•) with five parameter
model fit (—) and four parameter model fit (—).
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3.4 DISCUSSION

A novel structural constitutive model for the description of the tensile behavior of knee

ligaments is presented. The model is formulated by assuming that the ligament is composed

of undulated collagen fibers that are straighten out upon stretching. They are assumed to

bear load only after losing their waviness and until they rupture. The recruitment and the

disruption of collagen fibers are defined by statistical distributions. The model is capable to

properly reproduce the toe region, the linear region, and the failure region of stress-strain

curves of MCLs reported in published experimental studies.(75,76) Furthermore, an extension

to a three-dimensional material law is formulated within the context of structural mechanics

for soft tissues.(39,41)

The good agreement between the proposed constitutive model and the uniaxial experi-

mental data published by Abramowitch et al.(75) and Provenzano et al.(76) confirms the

utility of the model in describing the process leading to partial and complete rupture of liga-

mentous tissues. The five parameters, which appear in the model, are sufficient to illustrate

the tensile behavior of these tissues. Since the model is structurally-based, these parameters

provide insight into the relation between the histology and the mechanics of the tissues. The

estimated stiffness constants of the collagen fiber for the goat and rat MCLs are within the

stiffness range reported in the biomechanical literature.(9, 60, 66) The remaining parameters

permits the determination of the percentages of taut and broken fibers at each value of the

tissue’s stretch.

The tensile properties of the goat MCL are related to the recruitment and failure of

collagen fibers in Figure 3.3. It can be seen that the percentage of straight fibers increases

gradually with stretch in the toe region of the stress-stretch curve. The fibers are taut and

contribute to the overall tissue’s stress in the linear region of the curve. Finally, the ligament

is torn when 46% of the collagen fibers fail as shown in Figure 3.3.
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The rat MCL stress-stretch data reported by Provenzano et al.(76) are characterized by

the absence of a distinct linear region (See Figure 3.5). For this reason, the constitutive

model predicts that the ligament experiences a complete rupture when 96% of the collagen

fibers are recruited to bear load and 35% of such fibers fail. This suggests that some collagen

fibers remain crimped when the ligament breaks.

The stress of knee ligaments exhibited either an abrupt or a gradual drop in the failure

region of the stress-strain experimental data. Liao and Belkoff speculated that this difference

in the failure regime is age-related.(66) In their study on rabbits, they found that the 4-

month-old MCLs exhibit a prolonged failure region whereas the 7-month-old MCLs exhibit

an abrupt failure region. However, the cause of the different shapes of the stress-strain curves

is unclear and can be ascribed to numerous factors that include experimental methodologies

and animal model age, species, and sex.

The proposed model provides a better fit to the experimental data than the model for-

mulated by assuming that the straight fibers in the ligamentous specimen have an identical

failure stretch (See Figure 3.4 and Figure 3.6). It needs to be noted that the model presented

herein is akin to the model proposed by Wren and Carter(71) in the definitions of fiber stress

and tissue’s stress. In their formulation, soft tissues are viewed as composite materials in

which both the fibers and the ground substance are assumed to contribute to the tissues’

mechanical response. Moreover, these investigators introduced into their model the fiber

volume fraction, the fiber orientation and the resistance of the ground substance to the fiber

reorientation. However, the values of the parameters in the model were inferred from differ-

ent experimental studies in order to simulate the nonlinear stress-strain relationship of soft

skeletal connective tissues.

Recent studies have revealed that the crimp period of collagen fibrils in rabbit MCLs

is location-dependent.(77) These inhomogeneities seem to suggest that the gross constitu-

tive behavior of these ligaments must be derived by taking into consideration their fibrilar

structure. Hurscheler and associates(59) developed a model for ligaments and tendons incor-
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porating the structure of the tissues both at the fiber level and at the fibril level. However,

their model could not be completely validated since the microstructural information, which

is required for the determination of the material parameters, was not available.

In order to account for the anisotropic material behavior of MCLs, a three-dimensional

model is also formulated. The one-dimensional model is generalized by adopting the Lanir’s

structural approach.(39,41) The anisotropy of the tissue is modeled by introducing a statistical

distribution for the collagen fiber orientation. However, the three-dimensional constitutive

model is not assessed since multiaxial mechanical tests complemented with quantification of

the collagen fiber orientation are needed.

While the model demonstrated that the collagen fiber alone is responsible for the me-

chanical behavior of the ligamentous tissue, it does not address other factors which concur

to determine the failure properties of these tissue. The fluid-dominated ground substance

influences the mechanics of the ligaments. However, little is known about its role in the fail-

ure mechanisms. Furthermore, because the stress-strain curves of the rat MCLs have been

observed to change after a critical subfailure stretch along their directions of physiological

loading,(76) it is speculated that damage of individual collagen fiber occurs during injury.

A structural constitutive model, which accounts for damage of knee ligaments, will be the

focus of future research.
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4.0 FUTURE DIRECTIONS: A STRUCTURAL MODEL FOR THE
SUBFAILURE DAMAGE

Some preliminary results on constitutive modeling for the description of the subfailure dam-

age behavior of knee ligaments are presented hereafter. It needs to be emphasized that these

findings are not conclusive but they rather suggest future areas of investigations.

4.1 SUBFAILURE DAMAGE IN KNEE LIGAMENTS

While the third-degree sprain is the most severe pathology of the knee ligaments, the first-

degree sprain and second-degree sprain are the most common. Epidemiological studies have

estimated that more than 85% of the ligamentous injuries consist of first-degree and second-

degree sprains.(78) In first-degree sprains, the ligament is overly stretched and microscopically

damaged. Second-degree sprains involve the partial tearing of the ligament. The treatment

for both injuries is usually non-operative. Despite the high incidence, few experimental

studies(76,79,80) have been directed to analyze the change in the mechanical properties of

knee ligaments when microtrauma and partial tears occur.

Second-degree sprains were first mechanically studied by Laws and Walton in sheep

MCLs.(79) It was demonstrated that the tensile strength of the ligament decreased by 13%

immediately after the injury but it returned to its normal value after six weeks. Moreover,

the laxity of the knee was observed to increase post-injury.

Some researchers investigated the influence of subfailure injuries on the mechanical prop-

erties of rabbit ACLs.(80) Briefly, paired ACLs were used to evaluate the tensile properties

of the ligaments subjected to subfailure injuries. The subfailure injury of each ligament was
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defined as 80% of the ultimate deformation of the paired control ligament. The ultimate

load, ultimate deformation and energy absorbed at failure were seen not to change pro-

foundly following the subfailure stretch. However, the shape of the load-deformation curve

was noted to be remarkably different: the deformations measured at 5%, 10%, 25%, and

50% of the failure load and the stiffness computed at 50% of the failure load were greater for

the ACLs subjected to the subfailure injuries than for the ACLs in the control group. The

major changes were observed in the toe region of the load-deformation and were correlated

to the increased laxity of the knee joint.(80)

The most comprehensive study of subfailure damage has been conducted on rat MCLs

by Provenzano and co-authors.(76) The structural damage was defined as the nonrecoverable

difference in the ligament length after subfailure stretches. The authors reported that the

length of the MCLs permanently increased after subfailure strains that were greater than

5.14%. Moreover, they analyzed the effects of different subfailure stretches on the stress-

strain relation of the rat MCLs. In particular, they performed uniaxial tensile tests on twelve

tibia-MCL-femur complexes from six animals along the longitudinal axes of the ligaments.

Six MCLs, each from one of the six animals, were used as control and were pulled to failure.

The contralateral ligaments were subjected to displacement controlled tests with subfailure

strains of 0%, 4.7%, 5.1%, 6%, 7%, and 9%. In particular, each MCL was preconditioned

and it was allowed to recover in order to eliminate possible creep effects. After recovery,

the MCL was preloaded up to the subfailure stretch, then unloaded and allowed to recover

again. Subsequently, the MCL was reloaded until complete rupture occurred. The stress-

strain responses of the MCLs were observed to change during the second loading when the

subfailure stretches in the first loading exceeded the damage threshold corresponding to

5.14% strain. The toe region of the stress-strain curve was noted to be elongated while the

tangent modulus and the tensile strength were found to decrease with increasing subfailure

strain.
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Motivated by the work of Provenzano and colleagues,(76) a constitutive relation is pro-

posed in an attempt to capture the effects of subfailure damage on the mechanical properties

of the knee ligaments. Similar to the constitutive models, which have been presented in

Chapter 2 and Chapter 3, the model is formulated under the assumption that collagen is the

only load-bearing component of the ligamentous tissue. The gross damage of the tissue is

assumed to be determined by the damage of individual collagen fibers. Preliminary results

obtained by curve fitting the model to the experimental data published by Provenzano et

al.(76) are reported. The predictive capability of the model are investigated and the model

limitations are discussed.

4.2 MODEL FORMULATION

The ligament is assumed to be composed of N collagenous fibers, which run parallel to

the in vivo loading direction, where N denotes an integer—elastin and fluid-like matrix are

disregarded. The collagen fibers are crimped in the slack configuration. They are straighten

out under deformation and start to bear load after becoming straight.

The straightening stretches for the N fibers are assumed to be randomly distributed

according to a Weibull cumulative distribution. Let Λ
(i)
s denote the straightening stretch of

the collagen fiber i, where i = 1 . . . N . It follows that

Λ(i)
s = 1 + βs[ln(1−G(i))]

1
αs , (4.1)

where G(i) is a random number satisfying 0 < G(i) < 1, α > 0 is the shape parameter and

β > 0 is the scale parameter of the Weibull distribution.

The collagenous fiber behaves as a linear elastic material with stiffness K1 up to damage.

It is postulated that the individual fiber is damaged at a threshold stretch Λd and it breaks

at a threshold stretch Λf with Λf > Λd. Both stretches, Λf and Λd, are defined with respect
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Figure 4.1. Λs: straightening fiber stretch. Λd: damage fiber stretch. Λf : failure fiber
stretch.

to the taut configuration (See Figure 4.1). Damage of the collagen fiber i is defined as a

reduction of the stiffness K1 by a factor D(i) given by

D(i) = 1−
Λ

Λ
(i)
s

− Λd

Λf − Λd

=
Λf − Λ

Λ
(i)
s

Λf − Λd

, (4.2)

with Λd < Λ

Λ
(i)
s

< Λf . It is worth noting that the damage parameter D(i) satisfies D(i) → 0

when Λ

Λ
(i)
s

→ Λ−f and D(i) → 1 when Λ

Λ
(i)
s

→ Λ+
d . Moreover, when the fiber completely fails,

it becomes unable to support load. Thus, the stress, σ(i), for a generic fiber i takes the form

σ(i) =



0 Λ

Λ
(i)
s

< 1 ;

K1

(
Λ

Λ
(i)
s

− 1
)

1 < Λ

Λ
(i)
s

≤ Λd ;

D(i)K1

(
Λ

Λ
(i)
s

− 1
)

Λd < Λ

Λ
(i)
s

< Λf ;

0 Λ

Λ
(i)
s

≥ Λf ,

(4.3)

where Λ is the overall tissue’s stretch and Λ/Λ
(i)
s is the fiber stretch relative to the taut

configuration (See Figure 4.2).
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Figure 4.2. Fiber stress-stretch relation.

The overall tissue’s stress, σ, is computed by averaging the stresses, σ(i), of the N collagen

fibers. Thus, it is given by

σ(Λ) =
1

N

N∑
i=1

σ(i) . (4.4)

A set of five structural parameters, {K, α, β , Λf , Λd}, needs to be determined in order to

replicate the typical stress-stretch relationship of ligaments. It needs to be remarked that

the model given by (4.3)-(4.4) can be generalized to a three-dimensional constitutive law by

following the same arguments as in Section 3.2.2.

4.3 PRELIMINARY RESULTS

The constitutive model has been applied to experimental data acquired by performing uniax-

ial tensile tests on a pair of femur-MCL-tibia complexes.(76) One of the two femur-MCL-tibia

complexes was pulled to failure and used as control in order to study the changes in the me-

chanical properties of the ligament due to the subfailure damage. The other femur-MCL-tibia

complex was stretched to a peak value Λp = 1.09. It was unloaded and, after a recovery time

that assured the absence of creep behaviors, it was re-stretched until the femur-MCL-tibia

was completely ruptured.
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The sum of the squares difference between experimental and theoretical stresses has been

minimized to find the values of the material parameters, which are embodied in the proposed

model, by using the Downhill Simplex Method.(73,74) The model (4.3)-(4.4) has been nu-

merically implemented by using N = 10, 000 collagen fibers. Furthermore, as described in

Section 3.3, uniform deviates have been transformed into Weibull deviates to generate the

straightening stretches for the N fibers.(72,73)

The experimental data obtained from the control femur-MCL-tibia specimen have been

used to compute the four parameters {K, α, β, Λf}. The damage stretch for the collagen

fiber, Λd, is assumed to be equal to the threshold damage stretch of the ligamentous tissue,

as experimentally determined by Provenzano et al.,(76) i.e. Λd = 1.0514. This assumption

implies that the gross tissue’s stretch, at which the single collagen fiber experiences damage,

cannot be smaller than 1.0514. Figure 4.3 illustrates the goodness of the fit to the empirical

data by the model (4.3)-(4.4). The best fit material constants have been determined to be

K = 1467 MPa, α = 0.86, β = 0.05, Λf = 1.7 (R2 = 0.99). These parameters have been

used to predict the mechanical response exhibited by the femur-MCL-tibia sample following

the subfailure peak stretch Λp. Toward this end, it is noted that only the collagen fibers

that do not break when the ligament is first stretched up to Λp contribute to carry load. In

the framework of the model, fiber damage is assumed to accumulate when the ligament is

re-stretched and, hence, the stiffness of the collagen fiber changes to a value K2 given by

K2 =


K1

Λp

Λ
(i)
s

≤ Λd;

K1(
Λf−

Λp

Λ
(i)
s

Λf−Λd

)
Λd < Λp

Λ
(i)
s

< Λf ;

0 Λp

Λ
(i)
s

≥ Λf .

(4.5)

The prediction of the model at the best fitting parameters is shown in Figure 4.3. The tensile

strength of the re-stretched ligament is clearly overestimated and the toe region is not well

reproduces by the model prediction.
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Figure 4.3. Stress-stretch curves for the control rat MCL (•) and for the re-stretched rat
MCL after the peak subfailure stretch Λp = 1.09.(76) Model fit (—) and model prediction
(—) are represented at best fitting parameters.
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4.4 DISCUSSION

A preliminary constitutive model is presented in an attempt to describe the subfailure dam-

age behavior in ligamentous tissues. The mechanical behavior of the tissues is determined

by assembling the mechanical contributions of collagen fibers. The fibers are crimped in the

slack configuration and they lose their undulation upon deformation. They contribute to the

overall tissues’ stress after becoming taut. The fiber straightening process is governed by a

Weibull distribution. The fibers are thought to be linearly elastic, to experience damage and

complete failure. The model is fitted to the experimental data for rat MCLs presented by

Provenzano et al.(76) and its predictions are evaluated.

As graphically illustrated in Figure 4.3, the model presented provides a very good fit to

the experimental data in a nonlinear least-square sense. While the value of stiffness constant

K = 1467 MPa falls within the ranges of values reported in the biomechanical literature,(9, 66)

the value of the failure stretch of the collagen fiber Λf = 1.7, is physically unrealistic. It

suggests that the fibers do not break, although the ligament is torn. One must note that, in

order to determine the material parameters of the model, the damage stretch for the collagen

fibers was assumed to coincide with the gross MCL damage stretch that was computed in

the experimental studies.(76) Nevertheless, it is reasonable to believe that the collagen fibers

are damaged at a smaller stretch than the damage stretch of the ligament. This assumption,

which was forced by the lack of information on the failure of the single collagen fiber, may

have affected the value of Λf .

The predictive capabilities of the model are also investigated in order to gain an under-

standing of subfailure damage in ligaments. The model is able to predict the drop in tensile

strength of the MCL after damage in agreement with the experimental studies.(76,79,80) How-

ever, the predicted tensile strength is overestimated. Moreover, the model does not forecast

the prolonged toe region in the stress-strain curve of ligament post-injury. The changes in

the toe region, which is the region where the ligament operates during normal activity, are
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important to explain the increased laxity of the knee after first- and second-degree sprains(80)

and, therefore, need to be accurately reproduced by a constitutive model.

According to the model, the subfailure damage of the ligament results from the reduction

in stiffness of the collagen fibers. The decrease in stiffness of the individual fiber can be

attributed to cracking inside the fiber. Nevertheless, the form of the reduction parameter

(4.2) is arbitrary and it is not inferred from micro-structural considerations. Perhaps, the

constitutive relation for the mechanical characterization of subfailure damage needs to be

formulated by accounting for the various structural hierarchical levels of the ligament. The

dearth of information on the relation between morphology and mechanics remains the main

impediment to the development of such micro-structural models for ligaments.

The outcome of this preliminary study seems to indicate that the material properties

of the ligamentous tissues post-injury depend also on collagen inter-molecular and inter-

fibrillar cross-linking. Collagen fiber damage and failure alone cannot explain the changes in

the stress-strain curves of the normal and injured knee ligaments. In fact, the collagen inter-

molecular cross-linking has been shown to affect the mechanical response of the collagen fibril.

In particular, the stiffness of the cross-link-deficient collagen has been found to be lower than

the stiffness of the normal collagen fibril.(81) Additionally, the inter-fibrillar cross-links, which

are established by the proteoglycan-rich matrix, may play an important role in delineating the

mechanics of collagen fibrils. By performing synchrotron x-ray scattering experiments, Fratzl

et al.(82) observed that the strain in the collagen fibril was 40% lower than the macroscopic

strain in rat tail tendons. This difference suggested that the matrix of proteoglycan also

experiences deformation. Thus, incorporating the contributions of collagen cross-linking and

proteoglycan-rich matrix in the constitutive model for the subfailure damage behavior of

ligaments will be the object of future studies.
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5.0 CONCLUSIONS

Structural constitutive models have been presented to illustrate the strain rate dependent

behavior and the mechanical failure of knee ligaments. The constitutive relations also account

for the anisotropy, the nonlinearity, and the incompressibility of the ligamentous tissues.

Published uniaxial tensile data(26,28,75,76) have been used to assess the models. To this end,

the ligaments are assumed to possess a perfectly parallel collagen structure and to undergo an

isochoric, axisymmetric deformation. The agreement of the models with the cited empirical

observations on knee ligaments is very good. The material constants, embodied in the

models, are physically meaningful and, therefore, they permit to shed light on the connection

between the morphology and the mechanics of these tissues.

Although the results of the proposed models are very promising, multiaxial experimental

data and quantification of the collagen fiber orientation are required for their complete

validation. The mechanical properties of the knee ligaments are commonly investigated

by performing uniaxial tensile tests along their physiological loading direction. However,

it is well know that these tissues experience complex multiaxial deformations in vivo.(5)

Therefore, the ligaments should be tested under quasi-static and dynamic loading conditions

that combine compression, extension, torsion, shear, and bending. Thus, it is incumbent

upon experts in experimental mechanics to fully evaluate the mechanical properties of the

ligaments.

Because the present models are formulated by considering the structural architecture of

the ligamentous tissues, they require detailed histological data. The collagen fiber crimp-

ing, which is incorporated into the models, could be determined by using optical coherence

tomography (OCT). By using this imaging technique, Hansen and collaborators measured
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the changes in crimp as a function of the applied tensile strain in fascicles of the rat tail

tendon.(18) Moreover, the angular distributions of collagen fibers, which is needed by the

proposed models to account for the anisotropy of knee ligaments, could be quantified by

using small angle light scattering (SALS).(48) Sacks and his associates(45–47) employed this

technique to identify the orientation distributions of collagen fibers in planar soft tissues and

integrated the results in structural constitutive models. For non-planar tissues such as knee

ligaments, aligned serial histological sections could be used to collect SALS data. By inte-

grating the data from each section, complete information on the collagen fiber orientation

in the ligaments could be acquired.(67)

Experimental studies need to be designed to discriminate the mechanical response of

the ligament’s components. To this end, the ground substance could be removed from the

ligamentous material by employing enzymes or chelating agents whereas the elastin could

be removed by using formic acids as presented in early studies by Minns and colleagues.(33)

The ligamentous tissue could be mechanically tested under various loading conditions before

and after being subjected to these chemical treatments. The findings obtained could clarify

the role of the elastin and ground substance on the overall mechanical behavior of ligaments.

Recently, Bonifasi-Lista et al.(16) conducted transverse tensile tests and shear tests along

the fiber direction of MCLs and gained insight on the mechanical function of inter-molecular

or/and inter-fibrillar cross-links. Because the cross-links are primarily oriented orthogonally

to the direction of the molecules and fibrils, the authors speculated that such tests could

be useful to determine the inter-molecular or/and inter-fibrillar cross-linking effects on the

elastic and viscoelastic properties of the ligaments. Similar experiments should be performed

in conjunction with chemical treatments that isolate the various constituents of the ligamen-

tous tissue in order to acquire information on the relationship between the mechanical and

the structural features.

In closing, robust structural constitutive models for knee ligaments can help in clarifying

the roles of their constituents in determining their macroscopic mechanical response. The
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models can assist at designing suitable mechanical and histological experiments that discern

the mechanical behavior of collagen, elastin, and proteoglycan-rich matrix as exhibited dur-

ing injuries. Moreover, they can promote the understanding of ligament mechanics when

experiments are too complex and costly to be performed.
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