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LATENT VARIABLE MODELS FOR LONGITUDINAL STUDY WITH

INFORMATIVE MISSINGNESS

Li Qin, PhD

University of Pittsburgh, 2006

Missing problem is very common in today’s public health studies because of responses mea-

sured longitudinally. In this dissertation we proposed two latent variable models for longi-

tudinal data with informative missingness. In the first approach, a latent variable model

is developed for the categorical data, dividing the observed data into two latent classes: a

‘regular’ class and a ‘special’ class. Outcomes belonging to the regular class can be modeled

using logistic regression and the outcomes in the special class have pre-deterministic values.

Under the important assumption of conditional independence in the latent variable mod-

els, the longitudinal responses and the missingness process are independent given the latent

classes. Parameters that we are interested in are estimated by the method of maximum

likelihood based on the above assumption and correlation between responses. In the second

approach, the latent variable in the proposed model is continuous and assumed to be nor-

mally distributed with unity variance. In the latent variable model, the values of the latent

variable are affected by the missing patterns and the latent variable is also a covariate in

modeling the longitudinal responses. We use the EM algorithm to obtain the estimates of the

parameters and Gauss-Hermite quadrature is used to approximate the integral of the latent

variable. The covariance matrix of the estimates can be calculated by using the bootstrap

method or obtained from the inverse of the Fisher information matrix of the final marginal

likelihood.
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PREFACE

This dissertation is organized in the following way. In Chapter 1, we give an introduction on

missing mechanisms, methods for dealing with missing data, especially the latent variable

models, and a simple description of the whole dissertation. In Chapter 2, we present literature

reviews on approaches for longitudinal missing data and latent variable models. In Chapter

3, we propose a latent class model for the categorical outcomes and compare it with the

weighted GEE and the shared parameter model in the simulation and the application. In

Chapter 4, a latent variable model is developed for the complicated intermittent missing data

in which the continuous latent variable link the missingness process and the longitudinal

component. We give the summary of this dissertation in the final chapter.
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1.0 INTRODUCTION

Longitudinal studies are increasingly common in public health and medicine, in which, each

subject is to be observed at a fixed number of times. Consequently, subjects commonly have

missing data due to missed visits. A subject is called a dropout when the response variable

is observed through a certain visit and is missing for all subsequent visits (Diggle, Liang,

and Zeger 1994[1]). Otherwise, the missing pattern is called arbitrary or intermittent.

In general, the missingness mechanism concerns whether the missingness is related to the

study variables or not. Little and Rubin (1987)[2] divide these mechanisms into three classes:

Missing Completely at Random (MCAR), Missing at Random (MAR), and Nonignorable

(NI). Suppose Y is a data matrix that includes observed and missing data and let Yo be

the set of observed values of Y, Yu be the set of unobserved or missing values of Y and

let R be the missing data indicator matrix: Rij = 1, if Yij is observed; and Rij = 0, if

Yij is missing. Missing Completely At Random (MCAR) indicates that the missingness is

unrelated to the values of any variables, whether missing or observed, so: Pr(R|Y) = Pr(R)

for all Y. Generally one can test whether MCAR conditions can be met by comparing

the distribution of the observed data between the observed cases and missing cases (Little

1988[3]). Unfortunately this is hard when there are few cases as there can be a problem

with Type I errors. Non-Ignorable (NI) missingness is at the opposite end of the spectrum.

In this case, the missingness is related to the missing values. It is nonrandom and is not

predictable from any one variable in the data set, that is, Pr(R|Y) 6= Pr(R) for all Y and

Pr(R|Y) depends on Yu. Missing At Random (MAR) is between these two extremes. It

requires that the cause of the missing data is unrelated to the missing values, but may be

related to the observed values of other variables, that is: Pr(R|Y) = Pr(R|Yo) for all Yu.

MAR and MCAR are both said to be ignorable missing data mechanisms.
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A simple solution for the modelling of dropout data is ‘last observation carried forward’.

As the name indicates, this method replaces the dropouts with the last observed measure-

ment. A refinement of the method would be to estimate a time-trend, either for an individual

subject or for a group of subjects allocated to a particular treatment, and to extrapolate

not at a constant level, but relative to this estimated trend. Thus, if Yij is the last observed

measurement on the ith subject at the jth time point, µ̂i(t) is the estimated time-trend and

Rij = Yij − µ̂i(tj), the method would impute the missing values as Yij = µ̂i(tk) + Rij for all

k > j (here j and k are time points). The last observation carried forward is mostly used

in the pharmaceutical industry, and elsewhere, in the analysis of randomized parallel group

trials for which a primary objective is to test the null hypothesis of no difference between

treatment groups. But in general, this method is not recommended.

Another very simple way of dealing with missingness is ’complete case analysis’. Using

this approach, one discards all incomplete sequences. When the missingness process is not

related to the measurement process, it is obviously wasteful of data. But when these two

processes are related, it has the potential to introduce bias because the complete case cannot

be assumed to be a random sample with respect to the distribution of the outcomes. So

this approach is not recommended as a general method either, except in the case where the

interest is focused on the sub-population of completers.

Now we summarize some approaches to parametric modelling of longitudinal data with

potentially informative missingness. There mainly exist three methods: selection models,

pattern mixture models and random effects models. In a selection model, the joint dis-

tribution of Yo and R is factored into the marginal distribution of Yo and the conditional

distribution of R, given Yo, that is, Pr(Yo,R) = Pr(Yo)Pr(R|Yo). The terminology is due

to Heckman (1976)[4], and conveys the notion that dropouts are selected according to their

measurement history. Pattern mixture models, introduced by Little (1993)[5], work with the

factorization of the joint distribution of Yo and R into the marginal distribution of R and

the conditional distribution of Yo given R, that is, Pr(Yo,R) = Pr(R)Pr(Yo|R). From

a theoretical point of view, it is always possible to express a selection model as a pattern

mixture model and vice versa, as they are simply alternative factorizations of the same joint

distribution. Random effects models are extremely useful in longitudinal data analysis. The
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idea under this method is that a subject’s pattern of responses in a study is likely to depend

on some unobservable characteristics. These unobservable characteristics are then included

in the model as random variables, that is, as random effects. A simple formulation of this

kind of model would be to postulate a bivariate random effect, U = (U1, U2) and to model

the joint distribution of Yo, R and U as f(yo, r,u) = f1(y
o|u1)f2(r|u2)f3(u). This assumes

that Yo and R are conditionally independent given U. In terms of Little and Rubin’s hierar-

chy, the dropouts in the above equation are completely random if u1 and u2 are independent,

whereas if u1 and u2 are dependent then, in general, the dropouts are informative.

The latent class model is another approach for the modelling of missing data and can

be framed as a kind of pattern mixture model, in which latent classes connect the ob-

served outcomes and the missing patterns in the likelihood function. Before explaining

more about the latent class model, we first introduce the concept of latent variable mod-

els. For latent variable models, there are two types of variables to be considered. The

variables, which can be directly observed, are called ‘manifest’ variables or responses and

those which cannot be observed and represent the constructs of interest, are the ‘latent’

variables. In practice, the dimension of the latent variables is much smaller than that of

the manifest variables. There are two assumptions underlying the latent variable models.

One is that the values of the manifest variables are the results of an individual’s latent

variables. The other is that the manifest variables are independent after controlling for the

latent variables. This second assumption is also called ‘local independence’. According to

Bartholomew and Knott (1999)[6], there are four kinds of latent variable models based on

the distributions of the latent and manifest variables: factor analysis, latent trait analy-

sis, latent profile analysis, and latent class analysis (see Table 1). In some literatures, a

model with categorical latent variables is also referred to as a latent class model. To il-

lustrate the local independence in a basic latent class model, we assume that there are

categorical response variables (Y1, Y2, · · · , YT ), and a latent categorical variable Z such that

for each possible sequence of response outcomes (y1, y2, · · · , yT ) and each category z of Z,

Pr(Y1 = y1, · · · , YT = yT |Z = z) = Pr(Y1 = y1|Z = z) = · · · = Pr(YT = yT |Z = z). So a

latent class model summarizes probabilities of classification Pr(Z = z) in the latent classes

as well as conditional probabilities Pr(Yt = yt|Z = z) of outcomes for each Yt within each

3



Table 1: Four kinds of latent variable models.

Manifest Variables Latent Variables

Continuous Categorical

Continuous Factor Analysis Latent Profile Analysis

Categorical Latent Trait Analysis Latent Class Analysis

latent class. More generally, the latent variable Z can be multivariate. Similarly, we can

derive the conditional distributions of the manifest variables for the model with continuous

latent variables.

Missing data is a common issue encountered in the analysis of longitudinal data. In the

behavioral intervention setting, missed visits and/or loss to follow up can be extremely prob-

lematic. In this area, missed visits can be assumed to be a result of failure of the intervention,

sustained lack of interest in the study or decreased desire to change the behavior. For smok-

ing cessation and weight loss studies, these are common issues that must be dealt with at the

data analysis phase. For example, Perkins, et al., 2001[7] conducted a weight concern with

smoking study. The purpose of this study was to determine if cognitive-behavioral therapy

can reduce weight concerns and increase the success of smoking cessation. The study in-

cluded 219 women who were randomized to one of three groups: i) behavioral weight control

to prevent weight gain (weight control); ii) cognitive-behavioral therapy to reduce concerns

(CBT); or iii) nonspecific social support (standard), which involved a discussion of weight.

Participants were assessed for smoking abstinence, a binary measure, at 4-weeks postquit and

12-months postquit. However, the outcomes at the second time point for some women were

missing due to dropout. The assumption in the smoking cessation literature is that these

women were smoking so that all missing outcome values are set equal to zero (0 = smoking;

1 = not smoking) for the purposes of analyses. However this approach can introduce bias

because not every woman who drops out is smoking. Since women who smoked again after

quitting were more likely to drop out of the study, the dropout may be informative and this

is the problem that we want to address in the first part of the dissertaion.

4



As previously discussed, there are two types of missing patterns: monotone missing data

or dropout and non-monotone or intermittent missing data. The second part of the disser-

taion is focused on developing a latent variable model that allows informative intermittent

missingness. The example data come from a study comparing a family-based program with

usual care for the treatment of severe pediatric obesity. Originally 172 obese children and a

parent or guardian living in the same house as the child were included in the investigation.

However, individuals with missing baseline data were not included, so the final sample in-

cluded 133 children. Subjects were randomized to each of the two groups: treatment group

(68 subjects) and usual care group (65 subjects) and then followed for 18 months (the first

6 months were the treatment period). Interest centers on the difference in the children’s

body mass index (BMI) in these two groups. As in most behavioral weight loss studies, the

children who were not successful at losing weight are more likely to miss the assessments, so

it is reasonable to consider the data as being subject to informative missingness.

The proposed work will focus on two methods for the analysis of data where the outcome

is subject to missingness. First, we propose a latent class model for longitudinal binary

response data with informative dropout. The latent variable is used as a mechanism to

induce independence between the outcome and the missing status. Thus, in the proposed

latent class model, the dropout process and response process are assumed to be independent

given a latent class. Because this assumption cannot be verified, we will assess the sensitivity

by comparing the proposed model with other models such as the shared parameter model

and weighted GEE. In the proposed latent class model, the observed data are divided into

two latent classes: a special class in which subjects have deterministic outcomes (in the

women’s smoking cessation study, we assume that the subjects in the special class are in

smoking status) and a second one in which the outcomes can be modeled using logistic

regression. Latent class models are similar to pattern mixture models. But the proposed

approach is useful especially when the sample size is small and there are a large number of

missing patterns though the idea of the proposed latent class model can only be applied to

some special data sets.

Secondly, we propose a latent variable model for informative intermittent missingness

which is an extension of Roy’s (2003)[8] latent dropout class model. In our model, the value
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of the latent variable is affected by the missing pattern and it is also used as a covariate

in modeling the longitudinal response. Using this approach, the latent variable links the

longitudinal response and the missing process. In our model the latent variable is continuous

instead of categorical and we assume that it is from a normal distribution with unity variance.

To simplify the analysis for intermittent missing patterns, we define two variables: one for

the dropout time, and the other for the number of missing time points before dropout.

The EM algorithm is used to obtain the estimates of the parameter we are interested in

and Gauss-Hermite quadrature is used to approximate the integration of the latent variable

(Sammel, et al., 1997[9]).

6



2.0 LITERATURE REVIEW FOR MISSING DATA ANALYSIS AND

LATENT VARIABLE MODELS

2.1 APPROACHES FOR LONGITUDINAL MISSING DATA

2.1.1 GENERALIZED ESTIMATING EQUATIONS (GEE)

Generalized estimating equations (GEE) are widely used for the analysis of longitudinal

data (Liang and Zeger 1986[10]) since they have many advantages over standard approaches.

This approach does not require the complete specification of the joint distribution of the

repeated responses but rather only the first two moments, making it easier to apply and

to extend to outcomes of various types. In GEE, the correlations among the outcomes are

treated as nuisance parameters. Correct specification of the variance-covariance structure

improves the precision of the estimate. The GEE approach also yields consistent marginal

regression parameter estimates when the responses are MCAR because it solves the problem

of missing data by simply basing inferences on the observed responses. But when the data

is not MCAR, the standard GEE estimates can yield biased regression parameter estimates

and hence fail to provide consistent estimates.

Xie and Paik (1997)[11] present an approach for the missing covariate problem in the

GEE model when the outcomes are binary and the probability of missingness depends on

the observed outcomes and covariates. To deal with the missing covariate problem, the

proposed method replaces the missing terms in the estimating functions with consistent

estimates obtained from the completely observed units. In this method, it is assumed that the

covariates and the random process that causes the covariates to be missing are independent

when conditioning on the observed data. Denote Y, Z, and X as the outcomes, the subset

7



of the completely observed covariates and the subset of the partially observed covariates,

respectively. Define ri to be the observation indicator for Xi, that is, ri = 1 if Xi is observed,

and ri = 0 otherwise, then under the conditional independence assumption, f(X|Y, Z, r =

1) = f(X|Y, Z, r = 0). Additionally, the outcomes are assumed to be either completely

observed or missing completely at random. The estimate of the regression coefficients is

shown to be consistent and asymptotically normally distributed.

Another approach developed recently for handling missing data within the GEE frame-

work, is a method based on weighted generalized estimating equations (WGEE). Preisser,

Galecki, Lohman and Wagenknecht (2000)[12] propose a WGEE approach for incomplete lon-

gitudinal binary outcomes, which are dropouts and MAR. In their method, if the dropout

mechanism is specified correctly, the unbiased estimates of parameters in the model for the

marginal means can be given by the observed responses. Lipsitz, Molenberghs, Fitzmau-

rice and Ibrahim (2000)[13] presented a modified GEE for handling missing binary response

data. The method is less biased than the standard GEE when data are MAR and the work-

ing correlation structure is the true correlation structure. Although, this method provides

consistent estimates when the data are MCAR, the estimates of the regression parameters

may not be consistent for MAR. The proposed modification uses Gaussian estimates of the

correlation parameters, i.e., the estimating function that yields an estimate of the correlation

parameters is obtained from the multivariate normal likelihood.

Yi and Cook (2002)[14] developed inverse probability-weighted second-order estimating

equations for monotone missing data arising in clusters. This approach facilitates consistent

estimation of the marginal mean parameters and association parameters under specified

assumptions. For computational reasons, they consider using a weighted alternating logistic

regression algorithm for the association parameters of the response distribution.

2.1.2 LIKELIHOOD-BASED METHODS

Likelihood-based methods are the most common procedures for modelling marginal propor-

tions in longitudinal binary outcomes, in which the parameters describing the association of

an individual’s repeated measures are regarded as nuisance parameters. In a formal sense
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there is no difference between maximum likelihood for incomplete data and maximum like-

lihood for complete data. As defined in the introduction, Y = (Yo,Yu), and R is the

missing-data indicator matrix that identifies the pattern of missing data. We also define θ

and ψ to be the vectors of parameters for the densities of Y and R separately. Then the full

likelihood is a function of θ and ψ proportional to f(yo, r|θ, ψ):

Lfull(θ, ψ) ∝ f(yo, r|θ, ψ), (2.1)

where f(yo, r|θ, ψ) is obtained by integrating Yu out of the density f(y, r|θ, ψ). Maximum

likelihood estimates are obtained by maximizing (2.1), and a large sample covariance matrix

for the parameters can be estimated using the inverse of the information matrix obtained by

differentiating the log-likelihood twice with respect to (θ, ψ) or using the bootstrap.

2.1.2.1 SHARED PARAMETER MODELS One approach for dealing with infor-

mative missing data is the shared parameter model. Various authors have proposed shared

random effect models for longitudinal data subject to informative missing data. Heckman

(1979) [15], and Wu and Carroll (1988)[16] developed models for a Gaussian primary re-

sponse. In these models, the primary response and missingness are modeled separately, and

both models are linked by a common random parameter. Such models relaxed the common

assumption that the missing data are missing at random. But these models also require other

assumptions, and can even lead to a wrong conclusion if these other assumptions cannot be

met. Follmann and Wu (1995)[17] proposed an approximate generalized linear model with

random effects. Their method can be applied to a variety of distributions for the primary

and missing data. The generalized linear model for the primary response is conditioned on

the random parameter. The approximation of the generalized linear model is obtained by

conditioning on the data that describes the missingness. The assumption of the method is

that both the means of the primary response and the variable describing the missingness

can be written as a linear function of fixed and random effects. This method approximates

a mixed generalized linear model with possibly heterogeneous random effects.

Ten Have, Kunselman, Pulkstenis and Landis (1998)[18] formally proposed logistic re-

gression models for observed longitudinal and missing response components with common

9



random effect parameters. In the shared parameter models, an important assumption is that

the drop-out process and longitudinal outcome process are independent by conditioning on

the random effects structure underlying both processes. Actually the random effect parame-

ter in the paper is also a latent variable. In this paper, they conduct a sensitivity analysis

by comparing the models with an approximate conditional logit model (Follmann and Wu

1995)[17] and the naive mixed effects logit model. They found that the approximate condi-

tional model does poorly with respect to the between-cluster effect and that the naive model

does worse for the within-cluster effect when compared to the shared parameter models.

Albert, Follmann, Wang and Suh (2002)[19] extended the work of Follmann and Wu

(1995)[17] and Ten Have et al. (1998). They present a model for longitudinal binary data

subject to informative missingness in which a Gaussian autoregressive process rather than a

random effect is shared between the response and missing-data mechanism. The paper shows

that incorporating within-subject autocorrelation through a latent autoregressive process

allows for a richer correlation structure for the repeated binary responses and allows for a

more realistic link between the response and missing-data mechanism.

2.1.2.2 TRANSITION MODELS Transition models are often used in longitudinal

data analysis when the interest is in prediction (Diggle and Kenward 1994)[20]. Cox (1970)

[21], and Zeger and Qaqish (1988)[22] have proposed models for characterizing the transition

patterns in repeated binary data. Stasny (1987)[23] and Conaway (1993)[24] developed first-

order Markov chain models for categorical responses in the presence of nonignorable missing

data. Cole, Lee, Whitmore and Zaslavsky (1995)[25] developed an empirical Bayes model for

Markov-dependent binary sequences with randomly missing observations. For most cases,

the transition probabilities are not the same for every individual. By assuming that the

individual transition probabilities are from a common distribution, empirical Bayes models

can be used to obtain estimates of the transition probabilities. In the proposed method,

the transition probabilities are drawn from a common, new family of bivariate beta prior

distributions. Liu, Waternaux and Petkova (1999)[26] proposed likelihood-based methods

for analyzing longitudinal binary data with noninformative and informative drop-out. They

use a first-order transition model for the outcome and different logit models for the drop-out
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process which are functions of the response variable. But this model does not allow for

intermittent missing observations. Deltour, Richardson, and Le Hesran (1999)[27] proposed

stochastic algorithms for approximate maximum likelihood estimation for Markov models

with intermittent missing data. Albert (2000)[28] extended their method by developing

a transitional model that allows for (i) a more flexible transitional model with kth order

Markov dependence, (ii) both dropout and intermittent nonignorable missingness, and (iii)

longitudinal binary data sets with a large number of observations per subject. They also

propose an EM algorithm for parameter estimation.

2.1.2.3 OTHER METHODS Fitzmaurice, Laird and Zahner (1996)[29] proposed mul-

tivariate logistic models for binary responses with dropouts. They assume that nonresponse

depends on covariates and on both the observed responses and the value of the unobserved

response. The association between the binary responses is modeled in terms of conditional

log odds ratios. They also introduced some simple procedures for identifying nonignorable

models when the response variable is discrete. In 1999, Lipsitz, Ibrahim and Fitzmaurice[30]

considered likelihood methods when the outcome observed over time is binary and the co-

variates of interest are categorical. They assume that the missing data are MAR. Because

both the response and covariates are categorical, they obtain the maximum likelihood para-

meter estimates using the EM algorithm with the weights proposed in Ibrahim (1990)[31].

When the percentage of missing data is low, they consider the parameters of the covariate

distribution as nuisance parameters. But when the percentage is high, the estimation of

the parameters of interest under this assumption may be unstable. To address this case,

they develop a conditional model for the covariate distribution. In these conditional models,

changes in the binary responses over time are characterized by the conditional probability

of success at time t given the covariates and the previously observed binary response.
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2.2 LATENT VARIABLE MODELS

Latent class models are measurement models for categorical variables. The basic assumption

of latent class analysis is that the total population can be subdivided into several subgroups

(latent classes) that cannot be directly observed. Each individual of the total population

belongs to one, and only one, class of a categorical latent variable. Thus, the latent classes are

exhaustive and mutually exclusive. Furthermore, it is assumed that the observed variables

used to measure the unobserved latent variable are mutually independent given a latent class

which is referred to as the assumption of local independence.

Latent class models (Lazarsfeld and Henry 1968[32]; Goodman 1974[33]; McCutcheon

1987[34]) have been used in a wide range of biomedical settings. Lindsay, Clogg and Grego

(1991)[35] used a simple latent class model for item analysis to construct mixture models.

That is, they model the population as consisting of a finite set of groups, each of which is

homogeneous. The conventional latent class model can be described as follows: for each of N

subjects, indexed by i, we make J dichotomous (0-1) measurements, say (yi1, yi2, · · · , yiJ)T =

yi. Assume that the subjects are drawn from a population with v latent classes, each class

consisting of homogeneous individuals. The theoretical proportions of being in each latent

class are π1, · · · , πv, with
∑

t πt = 1 and 0 < πt < 1. Conditioning on a subject being in the

tth latent class, let the probability of the response vector, yi, be qt(yi) = P [Yi = yi|t] =∏J
j=1(λj|t)

yij(1−λj|t)
(1−yij). That is, within each latent class, the probabilities for the vector

of responses are independent with unknown and item-specific success probabilities, λj|t. If the

probability of being in latent class t is πt, the overall likelihood is L(λ, π) =
∏

i

∑
t πqt(yi).

Hadgu and Qu (1998)[36] first applied a latent class modelling approach incorporating

random effects and covariates to diagnostic testing for sexually transmitted diseases. Suppose

the latent classes are denoted by δ = 1 or δ = 0 for the presence or absence of disease,

respectively. In a latent class analysis with random effects, they introduce a latent variable,

t, which summarizes the attributes of the subject or the diagnostic test that are not explained

by the disease status alone. Assume that t is distributed according to a standard normal

distribution. For the ith diagnostic test, a test result is denoted by Yi. The relationship

between the outcome and latent variable can be expressed as: Pr(Yi = 1|δ, b) = Φ(aiδ + bδt),
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where Φ is the cumulative density function of the standard normal variate and aiδ and bδ

are two parameters. When bδ = 0, this model reduces to the traditional latent class model.

In this setting, the probability function is given by Pr(Y|δ) =
∫ ∞
−∞

∏p
i=1 Φ(aiδ + bδt)

Yi [1 −

Φ(aiδ + bδt)]
1−Yiφ(t)dt . For a latent class model with random effects and covariates, the

probability of a positive response given the true disease status δ, random effect t, the ith

diagnostic test, and covariates xi = (xi1, xi2, · · · , xim)′, (m denotes the number of covariates),

can be expressed as Pr(Yi = 1|δ, t,xi) = Φ(aiδ + bδ + c′δxi), where cδ is an m × 1 vector of

coefficients.

Roeder, Lynch and Nagin (1999)[37] developed a technique for handling uncertainty

in latent class assignment by building a complex mixture model for the full dataset. The

methods that they develop provide an extension compared with other papers in two ways:

they allow for the uncertainty of latent class membership; and they develop a model for

multivariate analysis of risk factors. In practice, there are two stages for a mixture model

approach: in the first stage, response variables are used to categorize individuals by the

latent trait; then standard methods of analysis are used to identify cross-group differences.

Clogg (1995)[38] pointed out that ignoring the uncertainty of latent trait assignment would

result in inherent dangers in the classify-analyze paradigm.

Because latent classes cannot be observed directly, problems arise when it is not clear how

many classes are appropriate. Previous work has shown that the Pearson χ2 statistic and the

log likelihood ratio G2 statistic are not valid test statistics for evaluating latent class models.

Garrett and Zeger (2000)[39] developed and illustrated graphical methods for choosing an

appropriate number of classes in latent class models. They develop procedures for assessing

Markov chain Monte Carlo convergence and for selecting the number of categories for the

latent variable based on evidence in the data using Markov chain Monte Carlo techniques.

Latent class models have been applied widely in the medical area for diagnoses. In 2002,

Reboussin, Miller and Lohman[40] applied latent class models for missing data. The data

are multiple longitudinal binary health outcomes with multiple-cause non-response when

the data are missing at random. They apply the latent transition model of Reboussin et

al. (1998[41], 1999[42]) that models the probability of being in a current stage conditionally

on the prior stage and covariates using a baseline category logistic regression model. They
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extend the estimating equations approach of Robins and co-workers (1995)[43] to latent class

models by reweighting the multiple binary longitudinal outcomes by the inverse probability

of being observed. This results in consistent parameter estimates when the probability of

non-response depends on observed outcomes and covariates (missing at random) assuming

that the model for non-response is correctly specified. Robust variance estimates are derived

which account for the use of a possibly misspecified covariance matrix, estimation of missing

data weights, and estimation of latent class measurement parameters. In this paper, they

discuss the issue that latent class models are not verifiable which is similar to random-effects

models, and the paper also ignores the uncertainty of latent class membership. From an

application standpoint one should pay attention to the fact that while the introduction of

additional classes may result in a statistical improvement in a fit, the classes themselves may

be clinically uninformative.

Lin, Turnbull, McCulloch and Slate (2002)[44] applied latent class models to a censored

survival outcome. The proposed model easily accommodates highly unbalanced longitudinal

data and recurrent events. There are two levels of structure in the latent class joint model.

First, the uncertainty of latent class membership is specified through a multinomial logit

model. Second, the class-specific trajectory and event process are specified parametrically

and semiparametrically, under the assumption of conditional independence given the latent

class membership. In the article, they provide empirical methods to check this conditional

independence assumption. They use a likelihood approach to obtain parameter estimates via

the EM algorithm. Patterson, Dayton and Graubard (2002)[45] use jackknife as a method

of estimating standard errors for the latent class model parameters.

A latent dropout class model is proposed by Roy (2003)[8] for modeling longitudinal

data with nonignorable dropouts. Pattern mixture models are very useful for nonignorable

missing data, but are not feasible when there are too many dropout patterns and the sample

size is not large, which leads to some patterns with very few subjects. The ideas of latent

dropout class models are based on the assumption that a small number of latent classes exist

behind the sparse observed dropout times and that the probability of being in a given class

is determined by the time of dropout. Therefore, the likelihood for the response is a mixture

of the latent dropout classes, instead of over the observed dropout times themselves as is the
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case for the pattern mixture model. Parameter estimates are obtained using the method of

maximum likelihood and a modified Newton-Raphson algorithm is proposed for it.
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3.0 A LATENT CLASS MODEL FOR LONGITUDINAL BINARY

RESPONSES WITH INFORMATIVE DROPOUT

Nonignorable missing data is a common problem in longitudinal studies. Latent class models

are attractive for simplifying the modeling of missing data when the data are subject to either

a monotone or intermittent missing data pattern. In our study, we propose a new latent class

model for categorical data, dividing the observed data into two latent classes; one class in

which the outcomes are deterministic and a second one in which the outcomes can be modeled

using logistic regression. In our model, the latent classes connect the longitudinal responses

and the missingness process under the assumption of conditional independence. Parameters

are estimated by the method of maximum likelihood based on the above assumption and

tetrachoric correlation (le Cessie 1994[46]) between responses. We compare the proposed

method with a shared parameter model and weighted GEE using both a clinical trial data

set and simulations. The results show that our method and the shared parameter model

are similar and better than the weighted GEE model. Although the results obtained using

the proposed method and the shared parameter model are similar, our proposed method is

simpler to implement and can also be used for intermittent missing data.

3.1 INTRODUCTION

Missing data is a common issue encountered in the analysis of longitudinal data. In the

behavioral intervention setting, missed visits and/or loss to follow up can be extremely

problematic. In this area missed visits are assumed to be a result of failure of the intervention,

sustained lack of interest in the study or decreased desire to change the behavior. For smoking
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cessation and weight loss studies, these are common issues that must be dealt with at the

data analysis phase. For example, Perkins, et al., 2001[7] conducted a weight concern with

smoking study. The purpose of this study is to determine if cognitive-behavioral therapy can

reduce weight concerns and increase the success of smoking cessation. The study includes 219

women who were randomized to one of three groups: i) behavioral weight control to prevent

weight gain (weight control); ii) cognitive-behavioral therapy to reduce concerns (CBT); or

iii) nonspecific social support (standard), which involved a discussion of weight. Participants

were assessed for smoking abstinence, a binary measure, at 4-weeks postquit and 12-months

postquit. However, the outcomes at the second time point for some women were missing

due to dropout. The assumption in the smoking cessation literature is that these women

were smoking so that all missing outcome values are set equal to zero (0 = smoking; 1 = not

smoking) for the purposes of analyses. However this assumption can introduce bias since

not every woman who drops out is smoking. Since women who smoked again after quitting

are more likely to drop out of the study, the dropout may be informative and this is the

problem that we want to address in this part.

For informative missingness, in which the missing status depends on unknown outcome

values, there are two main methods: selection models and pattern mixture models. For

selection models, the joint distribution of the outcome and missingness is partitioned into

the marginal distribution of the outcome and the conditional distribution of the missingness

given the outcomes. As an alternative to selection models, pattern mixture models work with

the factorization of the joint distribution of the outcome and missingness into the marginal

distribution of missingness and the conditional distribution of the outcome given missingness.

Latent class models are another approach for informative missingness, and can be framed

as a special case of a pattern mixture model, in which latent classes connect the observed

outcomes and the missing patterns in the likelihood function.

For latent variable models, variables are classified as ‘manifest’ when they can be directly

observed and as ‘latent’ when they cannot be directly observed. A latent class model is a

type of latent variable model with latent variables being categorical. Latent class models

have been applied widely in the medical area for diagnoses (e.g. Hadgu and Qu, 1998[36];

Garret et al., 2000[39]). Recently, latent class models have also been used for dealing with
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missing data. Reboussin et al. (2002)[40] proposed a latent class approach for multiple

binary longitudinal outcomes subject to missing at random. The idea behind this method

is to reweight the binary outcomes by the inverse probability of being observed, which is an

extension of Robins, et al. (1995)[43]’s estimating equation approach. Roy (2003)[8] proposed

a latent dropout class model for continuous data with nonignorable dropouts. The ideas of

latent dropout class models are based on the assumption that a small number of latent

classes can be used to represent the sparse observed dropout times and that the probability

of being in a given class is determined by the time of dropout. Therefore, the likelihood for

the response is a mixture of latent dropout classes, rather than over the observed dropout

times themselves, as is the case for the pattern mixture model.

We propose a latent class model for longitudinal binary response data with informative

dropout. The latent variable is used as a mechanism to induce independence between the

outcome and the missing status. Thus in the proposed latent class model, the dropout

process and response process are assumed to be independent given a latent class. Because

this assumption cannot be verified, we will assess the sensitivity by comparing the proposed

model with other models such as the shared parameter model and weighted GEE. In the

proposed latent class model, the observed data are divided into two latent classes: a special

class in which subjects have deterministic outcomes (in the women’s smoking cessation study,

we assume that the subjects in the special class are in smoking status) and a second one in

which the outcomes can be modeled using logistic regression. Under these assumptions there

is no need to choose an appropriate number of latent classes. As we mentioned before, latent

class models are similar to pattern mixture models. But latent class models can handle

intermittent missing data in the same way as for monotone missing data. It is very useful

especially when the sample size is not large, but there are a large number of missing patterns

becaust it avoids the case of very few subjects in one missing pattern which is a problem in

the traditional pattern mixture models.

The proposed latent class model is addressed in Section 3.2. The shared parameter model

(Ten Have et al., 1998[18]) and the weighted GEE (Robins et al., 1995[43]) are also described

in Section 3.2. In Section 3.3, simulation results are presented for these three models. The

results obtained when applying these models to the women’s smoking cessation data are
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presented in Section 3.4. A discussion is provided in the last section.

3.2 MODELS

We consider bivariate binary outcomes. For n individuals, each one can be expressed as

Yi = (Yi1, Yi2)
′. We let Yij = 0 (j = 1, 2) denote smoking and Yij = 1 denote not smoking

for ith subject at time point j. Because of missingness, some subjects might only have Yi1

or have no outcomes at all. This kind of missing pattern is due to dropout and may be

related to unobserved outcomes, resulting in informative drop-outs. Here we consider the

settings where Yi1 is always observed and Yi2 could be observed or missing. Let Ri be the

indicator denoting the missing status of subject i, where Ri = 1 if Yi2 is observed and 0 if

Yi2 is missing.

3.2.1 Latent Class Model (LCM)

In our latent class model, a latent class is added into the pattern mixture model. We define

ηi(i = 1, · · · , n) to be ith subject’s latent class, and ηi = 1 or 0. For simplicity, we assume

that ηi = 1, if subject i is in a special status, such that Pr(Yi = (0, 0)′|ηi = 1) = 1. This

means that if subject i belongs to the class ηi = 1, then the outcomes are (0, 0)′. In the

smoking study, it can be explained as a smoking phenotype, where the subject has more

difficulty with smoking cessation when compared with individuals who are not in the same

class. Furthermore, when ηi = 0 the subject i is considered to be in regular status. In the

following description, we assume the covariate matrix, X, is fixed. Thus, any distribution

that is mentioned is actually the distribution conditional on X. Under these assumptions,

the pattern mixture model with the latent class is given by

Pr(y, r, η) =
n∏

i=1

Pr(yi|ri, ηi)Pr(ηi|ri)Pr(ri)

=
n∏

i=1

Pr(yi|ηi)Pr(ηi|ri)Pr(ri).

(3.1)
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Here we let Pr(yi|ri, ηi) = Pr(yi|ηi), that is, given the latent class, ηi, the outcome, Yi,

is independent of the missingness, Ri. This is an important assumption which reduces

the mathematic complexity for estimation. For the probabilities of latent classes given

missingness, Pr(ηi|ri), we set e = (e1, e0), where e1 = Pr(ηi = 0|Ri = 1) and e0 = Pr(ηi =

0|Ri = 0).

Suppose the conditional outcome probability, pij = Pr(Yij = 1|ηi = 0), can be fit by the

following logistic regression,

log
pij

1− pij

= βTXij, (3.2)

where, i = 1, · · · , n, j = 1, 2, Xij is a covariate vector of Yij and β is a vector of parameters.

Note that pij depends on the same parameters at different time points (It is easy to extend

this so that pij depends on different parameters for different j). This results in the following

model for pij,

pij =
exp(βTXij)

1 + exp(βTXij)
. (3.3)

We let pi1 and pi2 denote the marginal probabilities at time points 1 and 2 for the ith

subject, and simn = Pr(Yi1 = m,Yi2 = n), m = 0, 1, and n = 0, 1. To calculate si11,

si10, si01 and si00 from pi1 and pi2, we have to consider the correlation between Yi1 and Yi2.

Prentice (1988)[47] developed a method that accounts for the correlation but depends on

the marginal probabilities. Here we use the tetrachoric correlation, which is extended from

probit marginals (Ashford and Sowden, 1970[48]) to the logistic marginals (le Cessie and

van Houwelingen, 1994[46]). The general idea is to obtain si11 by using bivariate standard

normal distributions and tetrachoric series,

si11 = pi1pi2 + n(gi1)n(gi2)
∞∑

k=0

1

(k + 1)!
Hek(gi1)Hek(gi2)ρ

k+1, (3.4)

where n(u) = (2π)−1/2 exp(−u2/2) are the density function of the standard normal distribu-

tion, ρ is the correlation of Yi1 and Yi2, gij = Φ−1(pij) with Φ(·) being the standard normal

cumulative distribution function, and

Hek(ν) =

[k/2]∑
i=0

k!

i!(k − 2i)!
(−1)i2−iνk−2i (3.5)
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are the Hermite polynomials, where [k/2] is the largest integer in the range of ≤ k/2. After

computing si11, we can easily obtain si10, si01 and si00 by

si10 = pi1 − si11,

si01 = pi2 − si11,

si00 = 1− pi1 − pi2 + si11.

(3.6)

Based on the description above, the likelihood for the ith subject is

L(β, e, ρ;yi, ηi, ri) = L(β, ρ,yi|ηi)L(e, η|ri)L(ri)

= [(Pr(yi|ηi = 0)e1 + I(Yi1 = 0, Yi2 = 0)(1− e1))I(Ri = 1)

+ (Pr(yi1|ηi = 0)e0 + I(Yi1 = 0)(1− e0))I(Ri = 0)]L(ri),

(3.7)

where I(·) is the indicator function, and Pr(yi|ηi = 0) and Pr(yi1|ηi = 0) can be obtained

from equations (3.3), (3.4) and (3.6). Because the marginal distribution of Ri does not

depend on the parameters we are interested in, it can be ignored when maximizing the

likelihood. We use the quasi-Newton method to obtain the estimates of β, ρ and e by

maximizing the marginal likelihood in the equation (3.7). Initial values for estimation may be

obtained from PROC GENMOD in SAS by assuming that outcomes are missing completely

at random. The standard errors of the estimates are obtained from the inverse of the Hessian

matrix of the final marginal likelihood.

The proposed latent class model can also be applied to the intermittent missing data

problem resulting in the following likelihood function:

L(β, e, ρ;yi, ηi, ri) = [(Pr(yi|ηi = 0)e11 + I(Yi1 = 0, Yi2 = 0)(1− e11))I(Ri = (1, 1)′)

+ (Pr(yi1|ηi = 0)e10 + I(Yi1 = 0)(1− e10))I(Ri = (1, 0)′)

+ Pr(yi2|ηi = 0)e01 + I(Yi2 = 0)(1− e01))I(Ri = (0, 1)′)]L(ri).

(3.8)

Here Ri is a 2 × 1 vector, (Ri1, Ri2), of indicator variables denoting the missing status of

a subject i, where Rij = 1 if Yij is observed and 0 if Yij is missing, where j = 1, 2; and

emn = Pr(ηi = 0|Ri1 = m,Ri2 = n), m = 0, 1 and n = 0, 1.
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3.2.2 Shared Parameter Model (SPM)

Ten Have, Kunselman, Pulkstenis and Landis (1998)[18] developed a shared parameter model

with a logistic link for longitudinal binary response data to accommodate informative drop-

out. The model includes two components: observed longitudinal components and dropout

components. These two parts share random effects parameters and they are independent

after conditioning on the random effects structure. This independence is a critical assumption

for this method.

Let Zi be the indicator for dropout where Zi can take on the values 1 or 2, with Zi = 2

indicating that a subject does not drop out at all. Let τi be the random effect vector for

the ith subject, and we let τi have a multivariate normal distribution with mean 0 and

variance-covariance that is an identity matrix with the appropriate dimension.

The resulting marginal likelihood for the ith subject for both the drop-out component

and the longitudinal component is

f(yi, zi) =

∫
fy(yi|τ)fz(zi|τ)f(τ)dτ. (3.9)

Yij|τ is Bernoulli(πij), to calculate πij, then the logistic model is

log(
πij

1− πij

) = τT
i Σwij + βTxij, (3.10)

where xij and wij are the observed covariate vectors corresponding to the fixed and random

effects, respectively, for the ith subject at time point j, and Σ is the Cholesky decomposition

of Ω, that is, Ω = ΣTΣ.

Let Si1 = 1 if subject i drops out between time 1 and 2, and 0 otherwise; and Si2 = 1 if

the ith subject does not drop out and 0 otherwise. Further, define:

λij = Pr(Zi = j|Zi > j − 1; τi)

= Pr(Sij = 1|Sij′ = 0, j′ < j; τi).
(3.11)

Let ψij = λij(1− λij)
−1, where ψij is a continuation ratio, then

log[fz(zi|τ)] = si1 log λi1 + si2[log λi2 + log(1− λi1)]

= si1 logψi1 + log(1− λi1)(si1 + si2)

= si1 logψi1 + log(1− λi1).

(3.12)

22



It is assumed that si1 + si2 = 1. In order to obtain fz(zi|τ), logψij should be modeled first.

Here

logψij = τT
i Σ∗wij + ρTuij, (3.13)

where Σ∗ = Σ+∆, ∆ is an upper trianglar matrix, as is Σ, and uij is a vector of covariates

specific to the dropout process.

3.2.3 Weighted GEE (WGEE)

Robins, Rotnitzky and Zhao (1995)[43]’s weighted GEE approach yields consistent estimates

when the responses are MAR. The missing data can be written as

νimi
= fm(mi|yi,xi, γ) = Pr(Mi = mi|yi,xi, γ), (3.14)

where Mi = 1 +
∑2

j=1 rij, and γ is the vector of parameters of the nonresponse model. Thus

νimi
can be obtained by modelling the dropout mechanism using Yi1 and/or Xi.

Suppose µi(β) = E(Yi|Xi, β), then we can partition Yi into the unobserved components

Yu
i and the observed components Yo

i . Similarly, we can make the exact same partition of µi

into µu
i and µo

i . Then under the weighted GEE approach,

Uβ(β̂) =
n∑

i=1

1

νim

D̂′
iV̂

−1
i [Yo

i − µo
i ] = 0, (3.15)

where Di = ∂µo
i/∂β and Vi is a ‘working’ covariance matrix of Yo

i .

3.3 SIMULATION RESULTS

We perform a simulation study comparing the proposed method, the shared parameter model

and the weighted GEE. We generate data by considering two aspects: the logistic model

structure for (X,Y) and the missing structure (R).

For generating the covariate data, we let X1 be a standard normal variable, and X2

be a bivariate normal variable with mean = (0, 0.2) and variance-covariance given by
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 1 0.3

0.3 1

, which will be considered as a time-varying covariate in modeling longitu-

dinal outcomes. For the outcomes, we consider the case of a binary response measured at

two time points, Yi = (Yi1, Yi2)
′ with correlation ρ. To generate data for this scenario,

we first generate the continuous variables (Z1, Z2)
′, which are from a bivariate standard

normal distribution with correlation δ. Then we let Yij = 1 if Zj ≤ Φ−1(pij); Yij = 0, if

Zj > Φ−1(pij), where j = 1, 2, and Φ(·) is the standard normal cumulative distribution func-

tion. Here pij are the marginal probabilities, pij = Pr(Yij = 1) = E(Yij), and are obtained

from logit(pij) = βTXij = β1t + β2X1i + β3X
2
1i + β4X2ij, with t = 1 or 10; β1 = 0.1, β2 =

0.2, β3 = 0.3 and β4= 0.4. For the purpose of simulation, the correlation, δ, is set to be

0.5. According to Emrich, et al. (1991)[49], the correlation between Yi1 and Yi2 is given by,

ρ = [Φ(Φ−1(pi1),Φ
−1(pi2), δ)− pi1pi2]/[pi1(1− pi1)pi2(1− pi2)]

1/2.

For the missing structure, we assume a monotone missing data pattern with the bi-

nary response at the first time point completely observed. Three missing mechanisms are

considered for the response at time point 2: (i) WGEE missing mechanism, in which

logit[Pr(Ri = 0|Yi1)] = −0.5− 0.5Yi1.

Note that the missingness depends on the observed outcomes so that the missing mechanism

under the WGEE is MAR. (ii) SPM missing mechanism. For the SPM mechanism, note

that the pij = Pr(Yij = 1) in the (X,Y) structure are obtained from

logit(pij) = βTXij + σ1τ,

where τ is a normal variable with mean = 0 and variance σ2
1 = 1. For the missing process,

logit[Pr(Ri = 0|Xi1, τ)] = −0.5− 0.5Xi1 + σ2τ,

where σ2
2 = σ2

1 + δ and δ = −0.1. (iii) LCM missing mechanism, in which we let Pr(Ri =

0) = 0.3. In the data generation procedure, for WGEE and SPM, we first obtain a full data

set, then delete some of Yi2 values according to the missing structure. But in LCM, the

procedure is different: after obtaining the missing patterns, we define the latent classes in

which we let e1 = Pr(ηi = 0|Yi2 observed), e0 = Pr(ηi = 0|Yi2 missing) and we assume that
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Yi1 is always observed. Then we generate the (X,Y) structure in each latent class. For the

latent classes, ηi, ηi = 1 denotes the case where Pr(Yij = 1|ηi = 1) = 0, that is, if ηi = 1

then Yij = 0; and ηi = 0 denotes the standard case where Pr(Yij = 1|ηi = 0) =
exp(βT Xij)

1+exp(βT Xij)
.

For the simulation, we considered e1 = 0.9 and e0 = 0.7 to examine the impact of the

heterogeneity of the data on the parameter estimate.

For the simulation study, we consider the three missing mechanisms and sample sizes

of 200 with 500 replications (Table 2). The summary measures for a particular parameter

are the bias, standard error of mean, square root of mean square error and 95% coverage

probability. Table 2 presents the simulation results. With the exception of the SPM, each

method performed optimally under its own structure. When the missing mechanism is

WGEE, the weighted GEE has the smallest bias, standard error of mean and square root

of mean square error while the 95% coverage probabilities are low compared with other

methods. When the missing mechanism is SPM, the weighted GEE has low 95% coverage

probabilities. But the latent class model has the smallest bias for the ‘time’ variable (β1)

and the time varying continuous variable (β4). When the missing mechanism is LCM, the

95% coverage probabilities are low for all of the parameter estimates under the weighted

GEE. The shared parameter model performs well in terms of the mean square error and 95%

coverage probability. For the latent class model, its biases are small and the 95% coverage

probabilities are large compared with the other models.

In the comparison among the three models, the overall conclusions are that, the weighted

GEE has the poorest 95% coverage probability, especially in the LCM missing mechanism

for β1 and β3. The shared parameter model performs well under each of the three missing

mechanisms. The proposed latent class model has the most accurate 95% coverage proba-

bility, and for data generated by the LCM missing mechanism, its bias is smaller than the

other methods. So the latent class model performs well in the greatest number of cases and

generally outperforms the shared parameter model and weighted GEE for the informative

missingness scenario.
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3.4 APPLICATION TO THE SMOKING CESSATION STUDY

We illustrate the proposed method – latent class model, the shared parameter model and

the weighted GEE previously discussed, using an example from the women’s smoking ces-

sation study (Perkins et al., 2001[7]). This is a longitudinal study designed to assess the

effect of weight concern on smoking cessation for women. At enrollment, 219 women met

the eligibility criteria. If the women were trying to become pregnant or were following a

medically prescribed diet, they were not eligible. All of the participants were randomly di-

vided into three groups: i) behavioral weight control to prevent weight gain (weight control);

ii) cognitive-behavioral therapy to reduce weight concerns (CBT); or iii) nonspecific social

support (standard), which involved no discussion of weight. Each of the three interventions

consisted of ten 90-minute sessions provided over 7 weeks, with two sessions per week during

the first 3 weeks and one session per week over the next 4 weeks. Participants were instructed

to quit smoking after the fourth session. Follow-up sessions were scheduled at 3, 6, and 12

months postquit for assessment purposes; no treatment was provided in these periods. In

this trial, the repeated binary responses of interest are whether the participants are in con-

tinuous abstinence or not (1 = yes, 0 = no). Here, continuous abstinence was defined as

no relapse since the quit day and relapse was defined as self-report of 7 consecutive days of

any smoking at all or an expired-air carbon monoxide (CO) greater than 8 ppm, as widely

recommended (Ossip-Klein et al. 1986[50]).

In this study, we focus on the outcomes at two time points, 4-week postquit (Y1) and

12-month postquit (Y2). The 57 women who had missing data at 4-week postquit (also

missing at 12-month postquit) were removed from all analyses, leaving 162 subjects (116

subjects have no missing data; 46 subjects were observed at 4-week postquit and missing

at 12-month postquit). To identify significant covariates related to outcomes, we carried

out a preliminary analysis by using standard GEE (Liang and Zeger, 1986[10]) under the

assumption of MCAR. The results showed that the following variables should be included in

the models: group (weight control, CBT ) (*‘standard’ as a control group), time (t), age at

first cigarette (age), change in desire to smoke from prequit to postquit (desire), and weight

gain in percent (WtGn). The latter two variables were time-varying, and both the baseline
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(4-week postquit) values and the change from baseline are included for the longitudinal

effects. We also fit a generalized additive model (GAM) for the outcomes, Y1, with three

covariates, ‘age at first cigarette’, ‘change in desire to smoke’ and ‘weight gain in percent’.

Figure 1 shows plots of smooth terms in GAM. From the results of GAM, we added square

terms for ‘age at first cigarette’ and ‘change in desire to smoke’, in addition to the linear

terms.

A summary of outcomes is in Table 3. It shows that missingness at 12-month follow-up

is 28.40%. The abstinent rate for subjects without missingness at 12-month follow-up is

53/(53+63) = 45.68%, which is much less than the abstinent rate (72.84%) at the 4-week

postquit. It also shows that the dropout might be related to the unobserved second-time

outcomes. Based on these results it is reasonable to consider non-ignorable missingness.

In Table 4, we present the parameter estimates, standard errors and Z-values calculated

from them for these three models. These parameter estimates are common fixed effects

under these models. The results of these analyses suggest that the latent class model and

the shared parameter model have similar results. From them, we can see that the ‘CBT’

group has a larger abstinent rate compared with the ‘standard’ group. ‘Time’ is significant in

the models with a decreasing abstinent rate over time. Both of them also show that ‘change

in desire to smoke’ is significant with a negative linear parameter estimate and positive

square term. From Figure 1, we can see that most values of ‘change in desire to smoke’

are negative or around zero, so increasing ‘change in desire to smoke’ will lead to a lower

abstinence rate. Both of the analyses show that there is a linear increase (on the logit scale)

in the abstinence rate as the ‘weight gain in percent’ increases. The results obtained from

the weighted GEE show that ‘age at first cigarette’ is significant in both linear and square

terms, while these factors are not significant in the other models. In the latent class model,

we obtain the correlation within the subject, ρ = 0.28 (SE = 0.32, Z = 0.89). Table 5 gives

the estimates for e1 and e0. It shows that subjects with missing outcomes have a greater

probability (1−0.93 = 0.07) of being in the special status, that is ‘smoking’ phenotype, than

the subjects without missing outcomes (1− 0.96 = 0.04).

27



3.5 DISCUSSION

In this part a latent class model is proposed for the analysis of binary repeated measures

outcomes subject to informative dropout. The latent variable is used to induce conditional

independence between the outcome and missing status so that standard likelihood techniques

can be used to derive the estimators. While this model can be considered as a type of

pattern mixture model, the latent class model can fit any type of missing data, monotone or

intermittent missingness and work well in the small sample setting. The simulation results

provide further support for the use of this method when compared to the shared parameter

and weighted GEE models. The results indicate that the proposed model generally has a

smaller bias when compared to the shared parameter model; and the coverage probabilities

of the latent class variable model are significantly better than those of either of the other

two methods.

Each of the three methods can be implemented using a standard statistical package

such as S-Plus or R; however, the weighted GEE only requires the input of the weights

in the general routine for GEE. Additionally, the shared parameter model requires more

computational time than the other two methods. The proposed latent class model requires

less computational time as there is no need for integration. Both the latent class and shared

parameter models are based on likelihood theory so that likelihood ratio and score tests can

be computed.

Roy (2003)[8] proposed a latent dropout class model for continuous responses with non-

ignorable dropouts. In our latent class model, we develop a latent class model for categorical

responses with nonignorable dropouts. The dropout time is related to the latent class, whose

probability is estimated by the MLE. For the relationship within subjects, we use the tetra-

choric correlation (le Cessie and van Houwelingen, 1994[46]) for the estimation. Here we

focused on monotone missingness, but the method can also be used for intermittent missing

data in the same way.
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Table 2: Simulation results for weighted GEE (WGEE), shared parameter model (SPM) and latent class model (LCM) (sample

size = 200, informative dropout).

Bias WGEE missing mechanism SPM missing mechanism LCM missing mechanism
SE of Mean WGEE SPM LCM WGEE SPM LCM WGEE SPM LCM√

MSE
95% CP
β1 = 0.1 1.1×10−3 2.2×10−2 5.1×10−3 -1.2×10−2 2.6×10−2 -8.5×10−4 -2.7×10−2 1.1×10−2 4.6×10−3

2.7×10−3 2.9×10−3 3.1×10−3 2.5×10−3 3.3×10−3 3.5×10−3 2.2×10−3 3.4×10−3 4.1×10−3

2.4×10−2 3.4×10−2 2.8×10−2 2.6×10−2 3.9×10−2 3.1×10−2 3.4×10−2 3.2×10−2 3.7×10−2

0.932 0.970 0.986 0.890 0.952 0.971 0.646 0.978 0.947
β2 = 0.2 1.0×10−2 3.5×10−2 3.0×10−2 -7.2×10−3 9.4×10−3 -2.3×10−2 -4.7×10−2 -2.8×10−2 6.6×10−3

1.9×10−2 2.1×10−2 2.1×10−2 1.9×10−2 2.3×10−2 2.0×10−2 1.7×10−2 2.0×10−2 2.2×10−2

1.7×10−1 1.9×10−1 1.9×10−1 1.7×10−1 2.0×10−1 1.8×10−1 1.6×10−1 1.8×10−1 2.0×10−1

0.940 0.937 0.963 0.934 0.956 0.955 0.924 0.994 0.974
β3 = 0.3 6.6×10−2 7.4×10−2 1.2×10−1 -2.6×10−2 4.7×10−2 3.9×10−2 -1.4×10−1 -1.3×10−1 2.9×10−2

1.3×10−2 1.5×10−2 1.7×10−2 1.2×10−2 1.5×10−2 1.6×10−2 1.1×10−2 1.1×10−2 1.8×10−2

1.4×10−1 1.5×10−1 1.9×10−1 1.1×10−1 1.4×10−1 1.5×10−1 1.7×10−1 1.6×10−1 1.7×10−1

0.934 0.956 0.951 0.920 0.974 0.982 0.656 0.962 0.970
β4 = 0.4 7.4×10−3 9.6×10−2 3.5×10−2 -5.2×10−2 4.6×10−2 -3.8×10−2 -8.0×10−2 4.9×10−2 2.0×10−2

1.5×10−2 1.7×10−2 1.5×10−2 1.4×10−2 2.0×10−2 1.6×10−2 1.3×10−2 1.7×10−2 1.8×10−2

1.4×10−1 1.8×10−1 1.4×10−1 1.3×10−1 1.8×10−1 1.5×10−1 1.4×10−1 1.6×10−1 1.6×10−1

0.932 0.962 0.986 0.932 0.972 0.949 0.888 0.988 0.958
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Table 3: Summary of outcomes for the smoking cessation study.

12-month postquit

y2 is missing y2 = 0 y2 = 1 Total

4-week postquit y1 = 0 13 26 5 44(27.16%)

y1 = 1 33 37 48 118(72.84%)

Total 46(28.40%) 63(38.89%) 53(32.72%) 162

Table 4: Marginal parameter estimates, estimated standard errors and Z-values for the

smoking cessation study (Modelling Pr(abstinent)).

Par. WGEE SPM LCM
Est. SE Z Est. SE Z Est. SE Z

β0 1.37 1.68 0.81 1.55 2.91 0.53 1.51 3.03 0.50
βWC 0.77 0.42 1.85 0.69 0.44 1.59 0.71 0.50 1.42
βCBT 1.07 0.46 2.36 1.08 0.46 2.36 1.01 0.52 1.95
βt -0.21 0.04 -5.73 -0.20 0.03 -5.81 -0.25 0.04 -6.16
βage -0.49 0.24 -2.02 -0.46 0.40 -1.14 -0.49 0.42 -1.17
β(age)2 0.02 0.009 2.64 0.02 0.01 1.60 0.02 0.01 1.65
βdesire -0.02 0.007 -3.20 -0.03 0.01 -2.71 -0.03 0.01 -2.79
β(dsr)2 0.0007 0.0002 3.50 0.0006 0.0002 3.00 0.0008 0.0002 3.94
βWtGn 0.24 0.05 5.11 0.28 0.06 5.06 0.28 0.06 4.74

Table 5: Estimates, estimated standard errors and Z-values for the latent classes, e1 and e0

under the proposed method for the smoking cessation study.

Estimate SE Z-value

e1 0.96 0.03 28.81

e0 0.93 0.07 12.86
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Figure 1: Plots of smooth terms in a generalized additive model for the smoking cessation study. (The dashed lines indicate

plus and minus two pointwise standard deviations.)
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4.0 AN EXTENSION OF LATENT VARIABLE MODEL FOR

INFORMATIVE INTERMITTENT MISSING DATA

We propose a latent variable model for informative intermittent missingness in longitudinal

studies which is an extension of Roy’s (2003) [8] latent dropout class model. In our model,

the value of the latent variable is affected by the missing pattern and it is also used as a

covariate in modeling the longitudinal response. So the latent variable links the longitudinal

response and the missing process. In our model the latent variable is continuous instead of

categorical and we assume that it is from a normal distribution with unity variance. The EM

algorithm is used to obtain the estimates of the parameter we are interested in and Gauss-

Hermite quadrature is used to approximate the integration of the latent variable (Sammel,

et al., 1997[9]). The standard errors of the parameter estimates can be obtained from the

bootstrap method or from the inverse of the Fisher information matrix of the final marginal

likelihood. Comparisons are made to the pattern mixture model in terms of a clinical trial

dataset, which is a pediatric obesity study evaluating the effectiveness of a family-based

intervention. The proposed method is also compared to generalized estimating equations

(GEE). We use the generalized Pearson residuals to assess the fit of the proposed latent

variable model.

4.1 INTRODUCTION

In longitudinal studies, subjects are followed over time, so missing data are a frequent prob-

lem. There are two basic types of missing patterns; one is monotone missing data or dropout

in which a subject’s data are observed only through a certain time and are missing thereafter
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and the other is non-monotone or intermittent missing data in which a subject may return

after one or more missed visits. If the missing process depends on unobserved outcomes,

according to Rubin (1976)[51] such a missing data process is ‘nonignorable’ or ‘informative’

because likelihood inference is biased if we ignore the missing process. In this paper we

developed a latent variable model that allows informative intermittent missingness. The

example data come from a study comparing a family-based program with usual care for

the treatment of severe pediatric obesity. Originally 172 obese children and a parent or

guardian living in the same house as the child were included in the investigation, but we do

not consider those who were missing at baseline, so that 133 children are included in the

models. Subjects were randomized to each of two groups: treatment group (68 subjects)

and usual care group (65 subjects) and then followed for 18 months (the first 6 months were

the treatment period). Interest centers on the difference of the children’s body mass index

(BMI) in these two groups. As in most behavioral weight loss studies, the children who are

not successful at losing weight are more likely to miss the assessments, so it is reasonable to

consider the data as being subject to informative missingness.

To account for informative missingness, a number of model-based approaches have been

proposed to jointly model the longitudinal outcome and the missing mechanism. Among

these approaches, pattern-mixture models (Little, 1993[5]), which factor the joint distribution

as the marginal distribution of the mechanism multiplied by the conditional distribution

of the response given the mechanism, are commonly used because of their robustness in

modeling the missing mechanism. Random effects models for informative missingness have

also been investigated by a number of researchers. Ten Have, et al. (1998)[18] presented

a shared parameter model for longitudinal binary response data with informative dropout.

The model consists of observed longitudinal and missing response components that share

random effects parameters. Guo, et al. (2004)[52] proposed a modified pattern mixture

model for longitudinal data with dropouts. In their model, the pattern-specific parameters

are modeled as random and, conditional on them, the longitudinal outcomes and the dropout

process are assumed to be independent.

The other method developed by researchers for informative missing data is latent vari-

able models. Since Goodman’s (1974)[33] development of maximum likelihood procedures
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for fitting latent variable models, they have been used for a wide variety of applications.

For instance, Clogg (1979)[53] used latent variables to assess agreement among subjects’

responses to several survey items; Rindskopf and Rindskopf (1986)[54] used them to ana-

lyze characteristics for diagnostic tests; Sammel, et al. (1997)[9] proposed a latent variable

model for mixed discrete and continuous outcomes, in which the latent variable accounts

for the relationship between different outcomes. In recent years, some authors have used

latent variable models for missing data. Moustaki and Knott (2000)[55] discussed the cal-

culation of response propensities by using latent variable models with or without covariates,

which is used to weight item responders to account for item non-response when missing data

cannot be ignored. Lin, et al. (2004)[56] proposed a latent pattern mixture model, where

the mixture patterns are formed from latent classes that link the longitudinal response and

the missingness process. They also propose a noniterative approach to assess the assump-

tion of the conditional independence between the longitudinal outcomes and the missingness

process given the latent classes. A latent dropout class model is proposed in Roy’s (2003)[8]

paper. In his paper, it is assumed that there exist a small number of dropout classes. Class

membership is unobserved, but the probability of being in a particular latent dropout class

is determined by the dropout times. Therefore, the likelihood for the response is a mix-

ture of latent dropout classes, not the observed dropout times themselves as is the case for

traditional pattern mixture models. An important assumption of latent variable models for

missing data analysis is that conditional on the latent variables, the longitudinal outcome

process and missingness process are independent.

We propose a latent variable model for informative intermittent missingness which is

an extension of Roy’s (2003)[8] latent dropout class model. In our model, the value of

the latent variable is affected by the missing pattern and it is also a covariate in modeling

the longitudinal response. Using this approach, the latent variable links the longitudinal

response and the missing process. In our model the latent variable is continuous instead

of categorical and we assume that it is from a normal distribution with unity variance. To

simplify the analysis for intermittent missing patterns, we define two variables: one for the

dropout time, and the other for the number of missing time points before dropout. The EM

algorithm is used to obtain the estimates of the parameter we are interested in and Gauss-

34



Hermite quadrature is used to approximate the integral of the latent variable (Sammel, et

al., 1997[9]).

We describe the proposed latent variable model and the parameter estimation in Section

4.2. In Section 4.3 we apply the proposed model to the children’s obesity data and compare

it with the pattern mixture model and GEE, and discuss the assessment of fit of the model.

A discussion is provided in the last section.

4.2 MODEL SPECIFICATION AND ESTIMATION

4.2.1 MODEL SPECIFICATION

Suppose in a longitudinal study with K repeated measurements and N individuals, Yij

denotes the observed vector of responses for the ith subject observed at the jth time point.

For some reasons, not all subjects have all K measurements. When this occurs as a result

of dropout, the response Yij for subject i, is only observed at time points j = 1, · · · , ki;

where ki ≤ K. But if the data are subject to intermittent missingness, before time point ki,

there may be additional missing measurements. We use a missing indicator for each of the

K measurements with 1 denoting missing and 0 denoting observed. To simplify the missing

status, we define Ri = (Ri1, Ri2)
′, to be a vector denoting the missing status of subject i,

where Ri1 = time point after which the ith subject drops out and Ri2 = number of missing

measurements before dropout. The important assumption of the latent variable model is

that the longitudinal outcomes and missing process are independent when conditioned on

the unobserved latent variable. Let bi be the unobserved latent variable for subject i and

Yc
i = (Yi,Y

m
i ) denote the complete response vector, which includes the observed response

vector, Yi, and the unobserved one, Ym
i . The marginal likelihood for the ith subject for
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both the response and missing components is then

f(Yi,Ri) =

∫ ∫
fy(Y

c
i |bi,Ri)fb(bi|Ri)f(Ri)dY

m
i dbi

= f(Ri)

∫
fy(Yi|bi)fb(bi|Ri)dbi

∝
∫
fy(Yi|bi)fb(bi|Ri)dbi,

(4.1)

where fy(Yi|bi) is the conditional distribution of Yi given bi, and fb(bi|Ri) is the conditional

distribution of bi given Ri. The missing process Ri affects the response Yi through the

latent variable bi.

We first present the model for the latent variable conditional on the missing process.

It is assumed that bi follows a normal distribution with unity variance and that values of

the latent variable are affected by the missing status and other covariates. Under these

assumptions, the latent variable bi can be modelled through the equation

bi = ZT
i θ + δi, (4.2)

where Zi = (1, Ri1, Ri2, Zi1, · · · , Zip) is a (p+3)× 1 covariate vector, θ is a (p+3)× 1 vector

of coefficients and δi ∼ N(0, 1) is an error term. Then (bi|Ri) ∼ N(ZT
i θ, 1).

Next, a model for the outcome conditional on the latent variables is specified. The

complete response conditional on the latent variable is assumed to be normally distributed

with mean and variance

E(Yij|bi,Wij) = WT
ijβ = β0 + biβ1 + XT

ijβ2, (4.3)

var(Yij|bi,Wij) = σ2
j , (4.4)

for j = 1, · · · , K, where β = (β0, β1, β2) is a vector of coefficients, Wij = (1, bi,Xij) is a vec-

tor of covariates for subject i at time j and Xij = (Xi1, · · · , Xiq)
T , Xi1, · · · , Xiq are observed

covariates. We assume no dependence between the variance, the covariance of Yi1, · · · , YiK

and latent variable bi, but this assumption can be relaxed. An important assumption implied

by model (4.3) is that, conditional on the latent variable, the missing data are MAR. That

is, with the latent variable including in the model, the missingness no longer depends on
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the missing data, after conditioning on observed data. This assumption is also used in Roy

(2003) [8]’s paper, but it cannot be verified from the observed data. Given the assumptions

stated above, maximum likelihood inference can be based on the distribution of the observed

response vector Yi, conditional on Ri and the covariates. In addition to the normal distri-

bution, any manifest variables from an exponential family can be fit into the above latent

variable mixed effect model.

4.2.2 ESTIMATION

We use the EM algorithm to obtain parameter estimates. From equation (4.1), the log-

likelihood that we want to maximize is

l(β, σ2, θ) =
∑

i

log(

∫
fy(Yi|bi; β, σ2)fb(bi|Ri; θ)dbi), (4.5)

where

fy(Yi|bi; β, σ2) =
∏

j

1√
2πσ2

j

exp[− 1

2σ2
j

(Yij − β0 − biβ1 −XT
ijβ2)

2],

and

fb(bi|Ri; θ) = constant× exp(−1

2
(bi − ZT

i θ)
2).

E-step. We will obtain the expectation of functions of the data g(Yi, bi) by the Hermite

integration formula as Sammel, et al.(1997)[9] did,

Ebg(Yi, bi) =

∑T
t=1wtexpb2tg(Yi, bt)fy(Yi|bt)fb(bt|Ri)∑T

t=1wtexpb2tfy(Yi|bt)fb(bt|Ri)
(4.6)

The fixed abscissas bt and corresponding weights wt are obtained from the table for the

Hermite intergrals (Abramowitz and Stegun, 1987[57]) (See Table 6) with T = 10 being

sufficient for accuracy.

M-step. We maximize the expected complete-data log-likelihood for the parameter

(β, σ2, θ) at the M-step, which consistents of the following steps: (1) Differentiating the

log of fy(Yi|bi; β, σ2) with respect to β, which gives

∂ log fy(Y|b; β, σ2)

∂β
=

N∑
i=i

Wi(Yi −Wiβ). (4.7)
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Setting this quantity to be zero and taking an expectation with respect to the latent variable,

gives

β̂ = (
N∑

i=1

Eb(WiW
T
i ))−1

N∑
i=1

Eb(Wi)Yi. (4.8)

(2) The partial derivative with respect to σ2
j is

∂ log fy(Yij|bi; β, σ2
j )

∂σ2
j

=
N∑

i=1

[− 1

2σ2
j

+
1

2(σ2
j )

2
(Yij −WT

ijβ)2], (4.9)

which implies that

σ̂2
j =

1

N∗
j

N∑
i

Eb(Yij −WT
ijβ̂)2, (4.10)

where N∗
j is the number of observed continuous outcomes for the time point j.

(3) Differentiating log fb(bi|Ri; θ) with respect to θ gives

∂ log fb(bi|Ri; θ)

∂θ
= Zi(bi − ZT

i θ).

It now follows that

θ̂ = (
N∑

i=1

ZiZ
T
i )−1

N∑
i=1

ZiEbbi, (4.11)

where Ebbi can be calculated by equation (4.6).

By beginning with reasonable initial estimates of the parameters, the E- and M-step are

repeated by solving equations (4.8), (4.10) and (4.11) until differences in values of all the

estimates in the consecutive iterations are sufficiently small.

The covariance matrix of the parameter estimates can be obtained by the bootstrap

method or by directly calculating the inverse of the Fisher information matrix using the

marginal log-likelihood of Yij at convergence. The marginal distribution of Yij is multivariate

normal with mean and variance

E(Yij) = µij = β0 + ZT
i θβ1 + XT

ijβ2, (4.12)

var(Yij) = Vij = β2
1 + σ2

j . (4.13)
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The first term in var(Yij) comes from the variance of the latent variable bi, and the second

term comes from the conditional variance of Yij given bi. So the marginal log-likelihood of

Yij is

lm =
∑

i

∑
j

[−1

2
log(β2

1 + σ2
j )−

1

2(β2
1 + σ2

j )
(Yij − β0 − ZT

i θβ1 −XT
ijβ2)

2].

Then, the negative values of twice derivatives with respect to β0, β1, β2, σ
2
j and θ are

−∂
2lm
∂β2

0

=
∑

i

∑
j

1

Vij

,

−∂
2lm
∂β2

1

=
∑

i

∑
j

[
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The standard errors of the parameters can be obtained from the squared root of the inverse

of the values (or the diagonal of the matrix) in the above equations.

4.3 APPLICATION TO THE KIDQUEST DATA

4.3.1 DATA DESCRIPTIONS AND MODEL SPECIFICATIONS

To illustrate our method, we use a subset of data from the KidQuest study, which was

conducted by Obesity/Nutrition Research Center, University of Pittsburgh. The subjects

in this study are severely over-weight children who are 8-12 years old. One purpose of

the KidQuest study is to show that children who participate in a family-based intervention

program, have favorable changes in body mass index, body composition, food intake, activity

level, and cardiovascular risk factors at 6-, 12- and 18-month assessments, when compared

to those who receive usual care.
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For our analysis we focus on the 133 children with complete baseline data. The entry

criteria for the study are: to be 8.0 to 12.0 years of age; to have at least one parent or

guardian willing to participate in the treatment program with the child; and to be ≥ 150%

ideal body weight for height and age based on norms of the World Health Organization.

Exclusion criteria were: mental retardation, pervasive developmental disorder or psychosis;

genetic obesity syndrome; inability to engage in moderate exercise defined as 30 minutes of

vigorous activity on most days of the week; or regular use of a medication that affects body

weight or antidepressant medication, etc.

In this study, the continuous outcomes are a standardized measure of BMI, denoted

ZBMI . To calculate the standardized ZBMI , we need the age and gender specific mean BMI

(MBMI) and SD of that mean (SDBMI), which are obtained from Kuczmarski, et al. (2002)

[58]. The formula for calculation of ZBMI is

ZBMI =
BMI −MBMI

SDBMI

.

Because the missingness of the data is informative, the missing indicators are related to

the obesity outcomes. It is also assumed that the ZBMI ’s and the missing indicators are

manifestations of an unobservable obesity severity score, the latent variable. Tables 7 and

8 give descriptive statistics for the ZBMI ’s and missingness. We see that compared with

the usual care group, the children in the treatment group have a greater decrease in their

ZBMI ’s at the 6-month assessment and that their ZBMI ’s increase thereafter. This is due

to the fact that the treatment period is 6 months long and that during these 6 months

their weights are controlled well, but after 6 months, their weights increase. The percentage

of missingness increases from the 6-month to the 18-month assessment. In particular, the

percentage of missingness is greatest for the 12-month assessment with the children in the

usual care group. A possible reason is that the children in the usual care group have no

change in ZBMI at the 6-month assessment compared with the baseline, resulting in an

increase in missingness at the next assessment.

Now we consider models for the latent variable and ZBMI . Parameter estimates, standard

errors and Z-values for these models are presented in Tables 10 – 11. In the model for the

latent variable, we use a missing indicator (R1, R2, see Table 9) and ‘treatment’ (1 =
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treatment, 0 = usual care) as the covariates. A negative estimate of R1 (θ1 = −0.0559)

and a positive estimate of R2 (θ2 = 0.1914) imply that subjects who dropped out later and

had fewer missing measurements before they dropped out had smaller values of the latent

variable. In this case the latent variable can be treated as an unobservable obesity severity

score, so that those subjects dropping out later and having fewer missing measurements

before dropout had a smaller obesity severity scores. The relationship between the latent

variable and the treatment is negative (θ3 = −0.1455). Thus the children in the treatment

group have a lower obesity score than the children in the usual care group. But the Z-value

= -1.16 shows that the ‘treatment’ covariate is not significant. The reason for this is that

the treatment was only applied for the first 6 months and in the remaining 12 months all of

the children were under usual care.

Table 11 provides results for the modelling of ZBMI for the proposed latent variable

model, the pattern mixture model and GEE. In the latent variable model, the covariates

are ‘intercept’, ‘latent variable’, ‘sex’, ‘time’ and ‘time2’. The ‘latent variable’ covariate is

significant (β1 = 2.0297, Z-value = 4.39), so a larger ZBMI is induced by a larger value of the

latent variable. The ‘time’ and ‘time2’ covariates are also significant (β3 = −0.0798, Z-value

= -3.62; β4 = 0.0027, Z-value = 2.25) with the interpretation that ZBMI is lowest at 12

months. The estimate of the ‘sex’ covariate is positive and it is not significant (β2 = 1.5434,

Z-value = 1.46). In both the pattern mixture model and GEE, the ‘treatment’ covariate is

not significant which agrees with the latent variable model. But their estimates of the ‘sex’

covariate are positive and significant. It means that the boys have larger values of ZBMI

than the girls do. The latent variable model and GEE yield similar inference for significant

‘time’ and ‘time2’ effects, whereas the pattern mixture model does not show any significant

‘time’ and ‘time2’ effects. Table 12 gives the estimates of the conditional variances for ZBMI

at different time points in the latent variable model.
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4.3.2 ASSESSING FIT OF THE MODEL

Here we use generalized Pearson residuals to detect outliers and assess the conditional inde-

pendence assumption. The Pearson residual for outcome Yij can be calculated from

rij =
Yij − E(Yij)√

var(Yij)
, (4.14)

where E(Yij) and var(Yij) are given in equations (4.12) and (4.13). The Pearson residuals

versus the missing patterns (see Table 9) are plotted in Figure 2. It can be seen that almost all

residuals fall within 2 units around 0, so our latent variable model fit the observed data quite

well. Also there is no relationship between the residuals and the missing patterns, showing

that the conditional independence assumption between the observed outcomes and missing

patterns given the latent variable holds. Note that we cannot assess the fit of the model

to the unobserved data and that we do not know whether the assumption of conditional

independence between the unobserved outcomes and the missingness holds.

4.4 DISCUSSION

In this part of the dissertation, we proposed a latent variable model for longitudinal data

with informative intermittent missingness. In our model, the value of the latent variable is

determined by the missing patterns and it affects the observed outcomes. The propsed latent

variable model is motivated by Roy (2003)[8]’s latent dropout class model. We consider the

latent variable as continuous and assume that it is normally distributed with unity variance.

In the real data, the latent variable commonly has its own meaning although it can not be

observed directly. In the KidQuest study, the latent variable is considered as an unobservable

obesity severity score.

The estimates of the parameters we are interested in are obtained by maximizing the

log-likelihood and the EM algorithm is applied. One of the key operations in latent variable

models is the summing or integrating over the latent variable. Because we assume that the

latent variable is normally distributed, integration over the latent variable is possible. Here
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we use the Gauss-Hermite quadrature as Sammel, et al. (1997)[9] did. Other methods for

approximating the integral of the likelihood can also be considered, for example, Mauritsen

(1990)[59] and Ten Have, et al. (1998)[18] approximate the normal integration by summing

with respect to the binomial distribution. When the distribution of the latent variable is not

simple (nonnormal), the integration becomes complicated.

To obtain the covariance matrix of the parameter estimates, the bootstrap technique or

the inverse of the Fisher information matrix can be used. But when the outcomes are not

normally distributed or the sample size is small, bootstrap technique or other asymptotic

standard errors should be considered since they take account of the nonnormality of the

observed outcomes in the maximum likelihood estimates.
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Table 6: Hermite integration
∫ ∞
−∞ g(x)dx =

∑n
i=1wie

x2
i g(xi) for n = 10.

Abscissas(±xi) Weight Factors (wi) wie
x2

i

0.3429 6.1086×10−1 0.6871

1.0366 2.4014×10−1 0.7033

1.7567 3.3874×10−2 0.7414

2.5327 1.3436×10−3 0.8207

3.4362 7.6404×10−6 1.0255

Table 7: Descriptive statistics for ZBMI .

Assessment Treatment Usual care t-test p-value

n mean SD n mean SD

Baseline 68 5.35 2.02 65 5.39 1.73 -0.13 0.8967

6 months 55 4.27 1.65 48 5.36 1.76 -3.25 0.0016

12 months 49 4.76 2.27 34 4.93 1.64 -0.36 0.7211

18 months 42 4.41 1.68 41 4.87 1.58 -1.29 0.1999

Table 8: Descriptive statistics for missingness (frequency and percentage in the table are for

the missingness).

Assessment Treatment, n = 68 Usual care, n = 65 chi-sq. test p-value

Frequency % Frequency % (d.f. = 1)

6 months 13 19.12 17 26.15 0.94 0.3318

12 months 19 27.94 31 47.69 5.53 0.0187

18 months 26 38.24 24 36.92 0.02 0.8759
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Table 9: Distribution of the missing patterns for KIDQUEST data

Pattern R1 R2 Baseline 6 months 12 months 18 months Frequency(%)

1 4 0 • • • • 62 (46.62)

2 3 0 • • • × 15 (11.28)

3 2 0 • • × × 13 (9.77)

4 1 0 • × × × 19 (14.29)

5 4 1 • • × • 13 (9.77)

6 4 1 • × • • 3 (2.26)

7 4 2 • × × • 5 (3.76)

8 3 1 • × • × 3 (2.26)

Total 133

•: Observed, ×: Missing

Table 10: Estimates, estimated standard errors and Z-values for parameter of latent distri-

bution

Parameter Estimate SE Z-value

θ0,intercept 1.2447 0.4904 2.54

θ1, R1 -0.0559 0.0648 -0.86

θ2, R2 0.1914 0.1738 1.10

θ3, treatment -0.1455 0.1253 -1.16
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Table 11: Estimates, estimated standard errors and Z-values for modelling the outcomes, ZBMI .

Proposed model Pattern mixture model GEE

Variable Estimate SE Z-value Estimate SE Z-value Estimate SE Z-value

β0, intercept 4.1617 2.3463 1.77 4.6961 0.6243 7.52 5.1224 0.2602 19.69

β1, latent variable 2.0297 0.4621 4.39

β1, treatment -0.4738 0.6796 -0.70 -0.2513 0.2994 -0.84

β2, sex∗ 1.5434 1.0548 1.46 3.2169 1.1800 2.73 0.8707 0.3117 2.79

β3, time -0.0798 0.0221 -3.62 -0.1416 0.2569 -0.55 -0.0799 0.0191 -4.18

β4, time2 0.0027 0.0012 2.25 0.0084 0.2288 0.04 0.0026 0.0010 2.60

∗sex: 1=male, 0=female.
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Table 12: Estimates, estimated standard errors and Z-values for conditional variance of ZBMI

at different time points in the latent variable model

Parameter Estimate SE Z-value

σ2
1 0.7651 0.2392 3.20

σ2
2 0.4292 0.1557 2.76

σ2
3 0.6128 0.2480 2.47

σ2
4 0.7495 0.2702 2.77

47



Missing Pattern

Pe
ar

so
n 

R
es

id
ua

ls

2 4 6 8

-4
-2

0
2

4

 

Figure 2: Plot of Pearson residuals for the proposed latent variable model versus missing

patterns.
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5.0 SUMMARY

We consider two methods based on latent variable models to analyze two longitudinal data

sets with the outcome being subject to informative missingness. In the first approach, a

latent class model is developed for binary outcomes with informative dropouts. This method

can also be applied to intermittent missing data. The latent class model can be framed as a

random effects model with the distribution of the random effects unspecified. The advantage

of our proposed approach over a traditional random effects model is the simplicity of the

implementation. Using this approach there are only two latent classes that are then added

to the likelihood while the distribution of random effects must be considered for the random

effects approach, which requires an assumption of normality and in most cases requires a

more complicated likelihood involving integration of the random effects terms. To implement

the proposed method, it is assumed that the population can be divided into two latent classes:

a ‘regular’ class and a ‘special’ class. This assumption simplifies the model when compared

with the other latent class models that need to determine how many latent classes are

appropriate. However this special assumption may not hold in many data sets. The latent

class model is also compared with weighted GEE (Robins, et al., 1995[43]), and a shared

parameter model (Ten Have, et al., 1998[18]) in a simulation study and in an application

to a real data set. In the simulation, three missing mechanisms corresponding to each of

the three models are considered. It is not surprising that each model is the best one under

its own missing mechanism, but the latent class model and the shared parameter model

perform well under all the three missing mechanisms. The results show that the weighted

GEE has a poor 95% coverage probability, especially under the latent class model missing

mechanism. The proposed latent class model is the best one among these three models for
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the simulation results in bias and 95% coverage probability. We also applied these three

models to the women’s smoking cessation data and the proposed latent class model and

the shared parameter model have similar results. All of these results in the simulation and

the application indicate that the proposed latent class model performs well for informative

missing data and is a better choice when the data are appropriate for both the latent class

model and the shared parameter model, since the calculation for the latent class model is

simpler.

A pattern mixture model can also be very useful in a setting where the number of poten-

tial missing patterns is small, since the model specifically addresses the relationship between

covariates and a given outcome within the framework of the missing patterns. However, this

approach is very limited when there are many repeated measurements in a longitudinal study

and/or when intermittent missingness is present. This is due to the fact that the number

of missing patterns becomes too large, making implementation of the model difficult. To

address this issue, we consider the latent variable model in the second part of this disserta-

tion. This approach is an extension of the latent dropout class model by Roy (2003)[8], in

which the outcomes and missing indicators are linked by a continuous latent variable. The

model consists of continuous longitudinal outcomes, the missing indicators and the continu-

ous latent variable. The value of the latent variable is affected by the missing pattern and

it is also a covariate in modelling the outcomes. The parameter estimates are obtained by

EM algorithm and the covariance matrix of the estimates can be approximated by using the

bootstrap method or the inverse of the Fisher information matrix. This approach is then

applied to the KidQuest data from Department of Psychiatry, University of Pittsburgh, and

compared with the pattern mixture model and GEE. We use generalized Pearson residuals

to detect the outliers and assess the fit of the proposed latent variable model.
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