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Abstract

The objective of this research is to develop optimal (efficient) test methods for analysis of
survival data under random censorship with nonproportional hazards. For the first part we revisit
the weighted log-rank test where the weight function was derived by assuming the inverse
Gaussian distribution for an omitted exponentiated covariate that induces a nonproportionality
under the proportional hazards model. We perform a simulation study to compare the new
procedure with ones using other popular weight functions including members of the Harrington-
Fleming’s G-rho family. The nonproportional hazards data are generated by changing the hazard
ratios over time under the proportional hazards model. The results indicate that the inverse
Gaussian-based test tends to have higher power than some of the members that belong to the G-
rho family in detecting a difference between two survival distributions when populations become
homogeneous as time progresses.

The second part of the research includes development of a parametric method in detecting the
validity of the proportional odds model assumption between two groups of survival data. The
research is based on the premise that the test procedure developed would take advantage of
knowledge of the distributional information about the data, which will improve the sensitivity of
a nonparametric test method. We evaluate type | error and power probabilities of the new
parametric test by using the simulated survival data following the log-logistic distribution. The
error probabilities are compared with ones in the literature. The results indicate that the extended
test performs with a higher sensitivity than the existing nonparametric method.

The results from the proposed study provide statistical test methods that are more sensitive
than existing ones under certain situations which can be used in public health relevance

applications such as clinical trials.
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1. INTRODUCTION

1.1.  Survival Data

Survival data usually refers to data in the form of a time from a well-defined time origin until
the occurrence of some particular event of interest. In medical research, the time origin often
correspond to the recruitment of an individual into an experimental study, such as a clinical trial
to compare two or more treatments. The end point may correspond to the relief of pain, the
recurrence of symptoms, or the death of a patient.

In summarizing survival data, two functions of central interest are the survival function and

the hazard function. The survival function, S(¢), is defined to be the probability that the time to
event is greater than or equal to ¢,
S(t)=P(T > 1), (1.1)

and the hazard function is defined as

P(t<T <t+A|T>1)
h(t) = lim X . (1.2)
—0

which is the limiting conditional probability of experiencing an end point immediately after time
t given the event has not occurred to the individual up to time ¢ (Collett, 2003).

If T is a continuous random variable, then S(¢) is a continuous, strictly decreasing function
from unity to zero. It can be conveniently expressed as the complement of the cumulative

distribution function of the variable 7', that is,



St)y=1—F(t). (1.3)
where
F(t)=P(T <t). (1.4)
Therefore, the survival function can also be obtained by
awzpaqmyzﬁmﬂmm, (15)
where f(t) is the probability distribution function of the survival time variable ¢. Accordingly,

we have
f)=—-——+. (1.6)

When T is continuous, the relationship between the hazard function and the survival

function is given by

Mﬂ:ﬁ%?:—dff@”, (L.7)
and
S(t) = exp —fot h(v)dv|. (1.8)

For discrete survival variables, the hazard function is given by

Wt)=P(T =t

J

T>t)= Ay (1.9)

where p(t;) is the probability that the interested event occurs at time ¢, . And the survival

function is related to the hazard function by

S(t) =TT hit)) = Sa(t,). (1.10)

t.<t t.>t
J J



As shown above, for continuous time variables, expressions of S(¢) and A(t) can be derived

analytically if the underlying distribution of survival variable is known or specified. Analysis of
survival data with a distributional assumption is referred to as parametric. Parametric inference is
often based on the maximum likelihood theory.

If the analysis is performed without assumption about the underlying distribution of the
survival data, the method is referred to as nonparametric. Commonly used nonparametric
estimation methods of survival functions include Kaplan-Meier estimator (Kaplan and Meier,
1958) and Nelson-Aalen estimator (Altshuler, 1970; Nelson, 1972, Aalen, 1978). For either
method, one first needs to arrange the times by rank. The Kaplan-Meier estimate of the survival

function is calculated by

, (1.11)

where d, is number of events occurred at time ¢,, and Y, is number of objects at risk at the

beginning of time ¢,. The Nelson-Aalen estimator is given by

S(t) = H exp

t. <t
J

4, 1.12
—7]_- (1.12)

1.2.  Proportional Hazards Model

A regression model can be used when we want to relate potential prognostic factors or

covariates to the length of time to a particular end point (survival time). Often we want to make



inferences about the association between the survival time and certain covariates (explanatory
variables) rather than only estimate the survival function for one-sample. Therefore, we need to
compare survival distributions among at least two groups adjusted for some covariates. For such
comparison, the usual null hypothesis is that there is no difference among survival distributions
from different selected comparison groups. The survival distributions are believed to be
statistically different if the null hypothesis is rejected, and vice versa.

One of the most widely used regression model for survival data is the proportional hazards
model (Cox, 1972). In the proportional hazards model, the ratio of hazards functions between
two groups of interest is constant over time. In clinical studies the proportional hazards model
can be used to compare survival distributions of two groups of patients, with one group being a
treatment group and the other group being the placebo group, adjusted for important prognostic
factors.

The proportional hazards model can be expressed by the relationship

hy(t) = ¥hy(t), ¢ = & (1.13)

where h,(t) and h,(t) are the hazard functions at time t for groups | and Il, respectively, when

there exists only one covariate of the group indicator z. The proportionality parameter ¢ is a

constant over time ¢. If S,(¢) and S,(¢) are the survival functions for two groups, from Eqgs.
(1.8) and (1.13) we can derive that

S,(t) = [S,(1)]". (1.14)

Since the survival function takes values between zero and unity, Eq. (1.14) implies that S () is

always greater than or less than S,(¢), depending on whether the proportionality parameter v is

less than or greater than unity. This implies that if two hazard functions are proportional, the



survival functions for the two groups do not cross one another. This is a necessary, but not a
sufficient condition for proportional hazards.

Based on this condition, we can evaluate the validity of the proportional hazards assumption
by plotting the two estimated survival functions together. If the two estimated survival functions
do not cross, the assumption of proportional hazards is justified. This method is straightforward
and simple for most survival data. In most cases, unless a plot of the estimated survival functions
indicates that there is good reason to doubt the proportional hazards assumption, proportional
hazards model can often be used to compare the two samples.

Standard procedures for performing the proportional hazards regression are built in the
commonly used statistical softwares such as SAS and S-plus.

In this work, we propose a log-rank test method with a newly derived weight function to
compare two survival distributions with nonproportional hazards. We performed Monte Carlo
simulations and real data analysis to evaluate performance of the new method comparing with

the existing simple log-rank test and Harrington-Fleming’s test.

1.3.  Proportional Odds Model

Another less widely used but important model in survival analysis is the proportional odds
model (Bennett, 1983a). In the proportional odds model, the hazard functions of the two groups
are not proportional over time but their ratio converges to unity as time progresses. Such a
situation is encountered, for example, when the initial effects of treatment, or the differences
between stages of the disease at diagnosis, tend to diminish with time so that different groups of

patients become homogeneous.



The odds of an individual surviving beyond some time ¢ (survival odds) are expressed as

St S

Fit) 1-5@) (1.19)

o) =

Sometimes also used is the failure odds, which is defined as the inverse of survival odds.
The proportional odds implies that the relationship between the survival odds from group |

and from group II,

¢1(t> = =1, ¢2(t> = 10—(, (1-16)

where ) is a constant proportionality parameter that does not depend on time ¢ .

Particularly important property of the proportional odds model concerns the hazard ratio of

the two group. Eq. (1.16) gives

8,(t) = 5:() . (L.17)
1/ + (1 =1/9)5,(1)
Taking logarithms and the first derivatives upon ¢ on both sides of Eq. (1.17) gives
M(t) _ 1 | (1.18)

hz (t) 1+ (¢ - 1)Sz(t)
As t increases from 0 to oo, the survival function S,(¢) decreases monotonically from unity to

zero. Therefore, Eq. (1.18) indicates that under the proportional odds assumption the hazard ratio

between two groups would converge from the value ¢ attime ¢ = 0, to unity at t = co.

In practical applications, it is common for the hazard functions in two or more groups to
converge with time. For example, in a follow-up study of patients in a clinical trial, the effect on
survival of the treatment, or the initial stage of disease, may wear out, converging over time. So
the proportional odds model, with its property of convergent hazard functions, can be of

considerable value. Of course, the inference under this model would only be valid when the



proportional odds assumption holds. In a two group comparison study, a preliminary
examination of the likely suitability of the proportional odds model can be undertaken by making
use of the relationship in Eg. (1.16). The Kaplan-Meier estimate of the survival function is

obtained for each group and the estimated log-odds of survival beyond time ¢ ,

S(t) / S,(t)
1-8.(t)) 1—25,(t)

indicate that the proportional odds assumption is valid. However, the results from this graphical

, are plotted against Int¢ . If the plot shows a flat line, this would

In

method can be quite ambiguous, mainly due to the significant fluctuations in mlSi—@(t)

N

calculated from survival data. This problem is especially severe when the size of survival data is
small. In concern of this, a parametric or semiparametric method with less ambiguity for formal
testing of the validity of proportional odds assumption between two groups is highly desired. In
this study, we examine a nonparametric test statistic proposed by Dauxois and Kirmani (Dauxois
and Kirmani, 2003) and propose a new parametric method to test the proportional odds

assumption.

1.4.  Project Overview

This thesis includes two different topics. The first part is on the development of a new method
for testing any difference between two survival distributions under non-proportional hazards
situations. Namely, we propose a new weighted log-rank test method to test the difference of two
groups of survival data with various types of departure patterns. The second part is on testing the

validity of model assumption. We extend the Dauxois-Kirmani method (Dauxois and Kirmani,



2003) by using the weight function derived from the parametric assumption for testing the
validity of the proportional odds assumption. In both topics, we show that the modified test
methods perform with a higher sensitivity compared with their existing counterparts.

The project is organized as follows

1. For the development of a new statistic method for testing the difference between two
survival distribution with non-proportional hazards, there are following contents (1) Test for
difference between two survival distributions generated from Monte Carlo simulations with
nonproportional hazards using the simple log-rank test and the Harrington-Fleming’s weighted
log-rank test; (2) Derivation of a weight function for the new test method (Oakes and Jeong,
1998); (3) Test for difference between two simulated survival distributions with nonproportional
hazards using the new test method; (4) Comparison of the sensitivity of the new method with that
of the existing methods; (5) Applications to real data.

2. For the development of new parametric method for testing the validity of proportional
odds assumption between two survival distributions, there are following contents. (1)
Examination of nonparametric Dauxois-Kirmani method for testing the validity of proportional
odds assumption for two survival distributions; (2) Derivation of a new parametric test method
by parameterizing the Dauxois-Kirmani method; (3) Test for proportional odds assumption for
simulated the log-logistic survival data using the new method; (4) Comparison of the sensitivity

of the new method with that of the existing nonparametric method; (6) Applications to real data.



2. LITERATURE REVIEW

In this chapter we review the key literature on comparing non-proportional hazards distributions

difference and proportional odds model assumption.

2.1.  Proportional Hazards Modeling

The most widely used method of estimating the effects of covariates on survival times is the
proportional hazards model proposed by Cox (Cox, 1972). The Cox model assumes that the ratio
of the hazards between two levels of a covariate (i.e treatment group) is constant over time. It is
analytically expressed in the form

h,(t) = e™hy(t), (2.1)

where h,(t) denotes the hazard function for the ™ patient, i = 1,2, ,n and z, is the value

that the ;™ patient takes for the explanatory variable X . The term h,(t) is the baseline hazard
function. Thus, the null hypothesis that there is no difference in survival distribution between
groups corresponds to the null hypothesis 5 = 0 in the model presented in Eqg. (2.1) when
P =1,2,-- ,n 1S a group indicator.

A variety of testing methods have been developed to compare two survival distributions. In
particular, the simple log-rank test (Savage, 1956; Mantel, 1966; Peto, 1972) is suitable for data
with proportional hazards, and the G-rho tests (Harrington and Fleming 1982) are good for

comparing survival distributions with nonproportional hazards.



The simple log-rank test (Savage, 1956; Mantel, 1966; Peto, 1972) is perhaps the most widely
used method in two-sample comparisons of time-to-event data. It is simple to use, nonparametric
in nature, and highly efficient under the proportional hazards assumptions. It incorporates the
commonly encountered right censorship of survival data without adding complicated elements to
the method itself. The general idea behind any test of the difference of K groups of survival data

is to compare the survival distributions by calculating the statistics

di

d.
Uil 5=1..K. 2.2
v J (2.2)

Z,r)=3W0)

i i
Here, we assume the survival data consist of independent right censored samples from K

populations, and ¢, <t, <------ < t,, are the distinct event times in the pooled sample. At time

t,, we observe d, events in the jm sample out of Y, individuals at risk, j =1,2,------ VK,

P=1,2,- D, d = Zf:ldij and ¥, = Z;Yq are the number of events and number of
objects at risk in the combined sample at time ¢, i = 1,2,------ ,D . The weight function W (¢) is
positive. The terms d; /Y, and d, /Y, are the Nelson-Aalen estimator (Altshuler, 1970; Nelson,
1972; and Aalen, 1978) of the hazard rate in the j ™ group and the combined sample,
respectively.

In practice, all of the commonly used tests have a weight function W (t,) = YW (t,). Here,

W (t,) is a common weight shared by each group. With this choice of weight function Eq. (2.2)

becomes

. j=1,.K. 2.3)

The variance and covariance of Z,(7) is given by

10



D 2 Y Y —
=Y [Wt) Ll1--L||=——|d, j=1,...K. 2.4
(M=% (7)]12 2 Ca (2.4)
D 2 Y —d.
o (t)=—-> |W L G L—L1ld, j=g. 2.5
() ;[<,>]KKK_1139 (25)

If the variance-covariance matrix of any selected K —1 Z (7)’s is given by a K —1 by

K —1 matrix X, the test statistic is given by the quadratic form

T

X' =[Z2,(7),Z,(7),...... Ly ()] THZ(7), Zy (7)o L (7). (2.6)
When the null hypothesis is true, this statistic has a chi-squared distribution, for large samples
with K —1 degrees of freedom. An « level test of null hypothesis rejects when x* is larger

than o th upper percentage point of a chi-squared distribution with K — 1 degrees of freedom.

Specially, when K = 2 the test statistic Eq. (2.6) can be reduced as

Zil W(ti)[dil o Yil(dz' /}/z)}

7 — 2 : (2.7)
W7 Wl o, e -y, vl —d) /-

which has a standard normal distribution for large samples when the null hypothesis is true.
The derivation shown above (Klein and Moeschberger, 2003) is in fact consistent with the

score test from the partial likelihood under the Cox model (Cox, 1975)

—, (2.8)

where D represents the total number of events and R represents the total number of objects at

risk at time of the ™ event. The log-likelihood is given by

keER

LL(B) = ZD:/J’:% - ZDj In (2.9)

11



The partial maximum likelihood estimates are found by maximizing Eqg. (2.9). The score

equations U(3) are found by taking partial derivatives of Eq. (2.9) with respect to 5. The

information matrix /() can be obtained by finding the second derivatives of the log partial

likelihood. If the maximum likelihood estimate of 3 is 3, then the scores test given by

A A

X =UE) T (BUE), (2.10)

which corresponds to the test statistic given by Eq. (2.6).
For two sample comparison, various test methods can be obtained when various weight
functions are employed in test Eq. (2.7). A common weight function, leading to a test available

in most statistical packages, is W (t,) = 1. This choice of weight function leads to the simple log-

rank test. It has the optimal power to detect the difference between two groups of survival
distributions when the proportional hazards assumption holds. A second choice of weights is

W(t,) =Y,. This weight function yields Gehan’s (Gehan, 1965) generalization of the two-
sample test. Another weighting function is given by

d

13

2.11
= (2.11)

w(t)=S@t) =[]

t.<t
i

(Peto and Peto, 1972; Kalbfleisch and Prentice, 1980). Andersen et al. (Andersen et al., 1982)

suggested that this weight function should be modified slightly as

W(t) = S(t)——. (2.12)

The Gehan’s weight function W(t¢,) = Y, depends on the event times and censoring distributions.

Andersen’s weight functions depend on the survival function of the combined data. Therefore,
these Wilcoxon type tests can have misleading results when the censoring patterns are different

in each sample (Prentice and Marek, 1979).

12



Fleming and Harrington (Fleming and Harrington, 1981) proposed a very general class of test

that includes, as special cases, the log-rank test and a version of Wilcoxon test which is very
close to that suggested by Peto and Peto (Peto and Peto, 1972). Here, we denote S'(t) as the

Kaplan-Meier’s product-limit estimator [Eq. (1.11)] of the survival function based on the
combined data. The weight function of Harrington-Fleming’s test (Klein and Moeschberger,
2003) is given by

A q

w () =5 )| 1-5¢. )] (2.13)

with p > 0,¢ > 0. In Eq. (2.13), the survival function at the previous death time S(tH) is used

as a weight to ensure that these weights are known just prior to the time at which the comparison

is to be made. The simple log-rank test is obtained when p =¢=0.When p=1and ¢ =0 a
version of the Wilcoxon test is obtained. When p > 0 and ¢ = 0, the weight function gives the
most weight to early departures between the hazard rates. When p =0 and ¢ > 0 the weight

function gives the most weight to late departures between the hazard rates. By tuning the value
of p and q appropriately, one can construct tests which have the most power against alternatives
which have the hazard rates differing over any desired region.

Gill and Schumacher (Gill and Schumacher, 1987) proposed a test method for proportional
hazards assumption for two-sample censored data based on comparison of generalized rank
estimators of the relative risk. They also proposed a related graphical method and gave
recommendations for the choice of appropriate weight functions. Sengupta et al. (Sengupta et
al., 1998) proposed a graphical method on testing for the proportionality of hazards in two

samples against the increasing cumulative hazard ratio alternative.

13



Oakes and Jeong (Oakes and Jeong, 1998) proposed a new class of weighted log-rank test for
nonproportional hazards data by assuming various distributions for an omitted covariate from the
proportional hazards model, which introduces nonproportionality. Their work established the
connections between the theory of weighted log-rank test and of frailty models by assuming
popular distributions in frailty theory for an exponentiated covariate in the Cox model. Although
the method was derived from fully parametric models, the results extend to nonparametric tests.

In this work, we applied the weighted log-rank test by Oakes and Jeong to test the difference
of two groups of survival data with various types of departures. We show that the nonparametric
test based on one of the weighted log-rank test by Oakes and Jeong performs better than the
currently available log-rank tests such as simple, Wilcoxon, or G-rho tests by Harrington and

Fleming for the early difference cases.

2.2.  Proportional Odds Modeling

Several models for analyzing proportional odds survival time have been developed (Bennett,
1983a, 1983b; Pettitt, 1984; Cheng et al., 1995; Murphy et al., 1997; Lam et al., 2002).
McCullagh (McCullagh, 1980) first generalized the idea of constant odds ratio to more than two
samples and fitted the model by maximum likelihood. But his model was mainly for social
sciences and the censorship was not included in it. Bennett extended McCullagh’s work for
treating medical survival data by including the censorships (Bennett, 1984a). If the baseline

survival function is S,(¢), the survival odds ratio of object : to the baseline is defined as

_ ﬂ _ S(ty‘,)[l B So(t)]
e T IS .

14



Let ¢, = ¢™ , then we can express the survival function of object i, S,, as a function of

parameter 3 and survival time ¢,. The likelihood of a set of U of uncensored observations and a

set C of right-censored observation for parametric inference is

L(B)=T1r:B][5:8), (2.15)

€U ieC
where f is the appropriate probability density function of uncensored survival time 7'.
To fit the proportional odds model to data it is necessary to estimate the parameter 5 and the
underlying distribution function f for parametric inference. This is similar to the proportional

hazards model. In proportional hazards model, the hazard function is cancelled out in the partial
likelihood method. For proportional odds model, however, the full unconditional likelihood must
be used. Bennett (1984a) used the proportional odds model for nonparametric estimation of the
survival function in the regression fitting. Bennett (1984b) also extended his nonparametric
method to a parametric analysis of survival data following the log-logistic and other
distributions.

Pettitt (Pettitt, 1984) used Bennett’s proportional odds model but replaced the survival times
in the model by their ranks. By comparing his method with that of Bennett, he pointed out
several advantages of the rank method over Bennett’s general method: (1) the rank method is
more computationally efficient; (2) the rank method is less sensitively affected by extreme

observations; and (3) the statistics used to test the null hypothesis of 3 = 0 is distribution free;
thus, the rank test for 8 = 0 is valid whether or not the proportional odds model is true.

Murphy et al. (1997) demonstrated that a semiparametric maximum likelihood estimation

method can be used to estimate the regression coefficients of the proportional odds model

15



efficiently. They proposed a profile likelihood function based on the generalization of Bennett

(1984a)
a0/ dt | e
n H t t e—;wl
LH,B) =[] — , (2.16)
i=1|€e 7+H0(t) e '—I—Ho(t)
. Lo 1—-5,(t) 1. . :
where ¢, is the censoring indicator, parameter H (t) = = is the baseline failure
Se(8)  (t)

odds (inverse of survival odds). Murphy et al. (1997) proved that the maximum likelihood

estimator of parameter [ is consistent, asymptotically normal, and efficient. Differentiation of

the derived profile likelihood function yields consistent estimators of the efficient information
matrix.

Lam et al. (2002) proposed a random effect semiparametric proportional odds model. They
used a unified estimation procedure to estimate the regression and dependence parameters
simultaneously by means of a marginal rank likelihood approach which is approximated by
Monte Carlo method. Unlike the fully parametric method, their regression parameter estimate is
not sensitive to the choice of correlation structure of the random effects. With the assumption of
a baseline log-odds function, Lam et al. demonstrated that the proposed class of semiparametric
proportional odds models serves as a good alternative to the random effect proportional hazards
model.

Dauxois and Kirmani (Dauxois and Kirmani, 2003) developed a nonparametric statistic for
testing the proportional odds assumption over survival times under random censoring. It is a
formal analytical test of the proportional odds assumption. The test they proposed has the form

of

W)= [ W(s8)[6,()u(s) = ()6, (9)dsdt (217)

T <8<t<Ty
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where W (s,t) is a weight function, which is dependent on the survival function of samples to be

compared. Some of the weight functions recommended include (Gill and Schumacher, 1987;

Sengupta et al. 1998)

iy OO
=y v
YY)
()= ZATE S0
YY) (e
il

Weight functions W, (¢) and W,(t) are adopted by Dauxois and Kirmani (Dauxois and Kirmani,
2003) in their test for nonproportional odds assumption.

It has been proved that the test statistics in Eq. (2.17) is asymptotically normal under the null
hypothesis of proportional odds. In the numerical calculations, the survival functions can be
approximated by their Kaplan-Meier estimators. Monte Carlo simulations in the context of the
log-logistic survival data indicate that the proposed model works well in testing the
proportionality of odds for survival data with random censoring.

In this work, we extend the model by Dauxois and Kirmani to parametric cases by
supplementing the distribution information of the survival data into the model. We have
performed Monte Carlo simulations in the frame of survival data following the log-logistic
distribution, and compared the modified model with the nonparametric model by Dauxois and
Kirmani. Our results indicate that the parametric method developed is more sensitive in testing

the validity of the proportional odds model assumption than the existing method.
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3. TEST FOR PROPORTIONAL HAZARDS

We have studied the test statistic for detecting differences in nonproportional hazards survival
data with random censorship using log-rank test supplemented with a newly developed weight
function. In this chapter we present the results obtained from this study. We used the modified
weighted log-rank test by using a new weight function to account for the random effect that
disrupts the proportionality of the hazards functions. We used Monte Carlo simulations to
generate survival data with an exponential distribution and found that the modified method is
superior in detecting the early difference of data than the conventional log-rank test and the G-

rho tests of Harrington and Fleming.

3.1.  Weighted Log-rank Test

In the analysis of survival data, we often encounter the situation where the survival times of a
group of individuals are not independent. Such correlations among survival times may arise
when different individuals share some feature in common. For example, the survival data from
the same clinic may be more similar than those from another clinic. This could be due to
different treat teams in different clinics. Such random effects that can cause dependence in
survival data are often referred to as frailties.

Frailty in survival data may complicate survival analysis. The efficiency of a test statistic for

survival data may decrease if the frailty factor is not considered, due to the nonproportionality
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caused by frailty (Oakes and Jeong, 1998). In addition, failure to include frailty in a test may
result in the misspecification of the proportional hazards model (Oakes and Jeong, 1998). Some
methods have been proposed to attack this problem. One of widely used methods is to include a
frailty model explicitly into the proportional hazards method (Aalen, 1998) to account for the
nonproportionality in hazards function caused by random effects. In other words, an extra term
corresponding to frailty is introduced into the standard proportional hazards model. For example,

if we denote an unobserved random effect for object i by a covariate z;, then Eq. (2.1) becomes
hi(t) = €™ hy(), 3.1)
where b,(t) is an unknown baseline hazard function. Comparing Eq. (2.1) and Eq. (3.1), we can

see that we actually introduced a prefactor function ¢’* to the proportional hazards model in
order to incorporate the frailty term. An optimal weighting function can be derived if a
distribution is assumed for the frailty (Oakes and Jeong, 1998).

Using a weighted log-rank test is important in order to account for the nonproportionality in
the data. This is due to the fact that the loss of the efficiency of the test from omitting a covariate
is generally more important than the additional loss of the efficiency due to the resulting

misspecification of the proportional hazards model (Oakes and Jeong, 1998).

3.2.  Derivation of the New Weighting Function

The proportional hazards model incorporated with a randomization variable z, is written as

h(t]x,2) = exp(Br;, + v2,)by(t), (3.2)
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where b,(¢) is a unknown baseline hazard function. If the values of z; are observed, then the
score test (simple log-rank test) from Cox’s model with ~ estimated as a nuisance parameter is
optimal for testing # = 0 with ~ unspecified. If the values of z are not observed, we need to
develop a parametric analog (weighted log-rank test) to account for the omitted covariate z.
We write the unobserved factor

w, = exp(y2,)
and

0, = exp(fz;),
so the null hypothesis 3 = 0 is equivalentto 6§, = 1. Eq. (3.2) becomes

h(t|z,w,) = w6bb,(t). (3.3)

In terms of the corresponding survival functions we get

S(t]z,w,)=exp —j;t h,(w)du|, (3.4)
and the baseline survival function is
t
A (t) = exp|— fﬂ b, (w)du| . (3.5)
So from Eq. (3.3) we obtain
St @, z2) = [Aﬂ(t)]wﬁel - (3.6)

We assume that w, are realizations of identical independently distributed positive random

variables W, the Laplace transform of I is defined as
p(s) = j; fW)e"dW = Ele*"]. (3.7)

Removing the conditioning on the variable W, by integrating over W', Eq. (3.6) becomes
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Sty = [ Fw)[A@)] " aw
= j;oo f(W)exp [log A" ]dW

N : (3.8)
= [ f)exp[W6, log (D W
I —W0,{~1log Ay (1)}
= fo FW)e dw
Let
B = B(t) = —log A (t) f b ( (3.9)
Then, by comparing Eg. (3.8) with Eq. (3.7) we obtain
S(t) = Ele "0 = Bl ] = p(0,B). (3.10)

The nonparametric simple log-rank test statistic, U\"”’, can be calculated by setting 3 = 0 in the

score statistic of Cox’s partial likelihood (Cox, 1972, 1975),

220, w]le (1), (3.11)

wO=E v

which gives

2550 (1), (3.12)

Y >

since § = 0 gives 6, = 1. When the covariate z, are not observed, a wider class of test statistics

can be defined by introducing a weight function f(t) into the log-rank statistic, giving

=3 [ f(t)li Zgy ]de(t). (3.13)

Gill (Gill, 1980) showed that a weighted log-rank test of form given in Eq. (3.13) is optimal

provided that the weight function [(t) converges to a deterministic limit i(¢) proportional to
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A(t 3.14
=" (3.14)
We know that (Collett, 2003)
hy(t) = — Olog 5,(1) (3.15)
ot
Combining Egs. (3.15) and (3.10) we have
h,(t) = _alog—p(QB)' (3.16)
ot
Let 6B = A, note that B is only dependent on ¢, so we have
0A _ 0(0B) :983 0B’ and %: 0(0B) _ 5
ot ot ot ’ 00 00
8p(A) ! (9])’ "
And let p(A)=p, ——==1p", —— = p", then Eq. (3.16) becomes
p()paApaAp g. (3.16)
N
hg(t):_(?logp(A):_ 1 9poA _ 6Bp . (3.17)
ot p(A) OA Ot P
So
dlogh,(t) 0 OB/p’ 0 ,
—=0 = —llog|———|| = —|log(—0B/p") — 1
= v 89[ og(—0B/p") — log p|
1 a(-6Bp) 109p
—0B/p’ 00 p 00
_ B/ 96p") 1 09p oA
- /N
OBp 8/9 p OA 6/9 (3.18)
1 (60p ,00 p
=—|—+p —|-—B
ep’[ a0 P an)

10poA 1 By

p" OA 00 0 D
B " 1 B /
p 4 p

p 0 p

22



At0=1, A=DB0=B, p(A)= p(B), agf) - agf) = p/(B), g_i’ = p"(B), so that Eq.
(3.18) is
_ Ologh, ()] _ Bp"(B) |, Bp'(B)
M= B B (319

If the frailty, W, follows a gamma distribution with index «, then we know the Laplace

transformation of it is given by (Oakes and Jeong, 1998) as

p(B)=Q1+B)", (3.20)
We have
/ _ w1 _ K
P(B) = —(1 + By =~ p(B), (321)
" . w2 _ K +1
(B)=kr(k+1)(1+B) """ = B p'(B). (3.22)
So
B Bp"(B) B Bp'(B) . phktl k1
MO =1+ ' (B)  p(B) =1 Bl+B +Bl+B 1+B’ (3.23)
From Eqg. (3.20) we have
B= H ~1, (3.24)
p
So
() p———" (3.25)
1+ (1/p)/" —1
At 0 =1 from Eq. (3.10) we know
S(t)=p(B)=p. (3.26)

So the optimal weight function for gamma frailty is
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AS®)] = [S@)]" =[s@)) - (3.27)
If the frailty T/ follows an inverse Gaussian distribution with unit mean and variance (2¢) ",

then we know the Laplace transformation is (Oakes and Jeong, 1998)

p(B) = ¢ MBIz (3.28)
We have
p'(B) = e P 2 (p 4 BY ) = —p(B)[ v }1/2 , (3.29)
Y+ B
’ N 1 o2
p"(B)=—p (B)[WB‘ +p(3)l§¢/ W+ By ] (3.30)

Eq. (3.29) also gives

" ! Y v / Y v l 1/2 -3/2
7 =)ol v Reees
. VI (3.31)
:p(B)_[w+B] _E[ww]
So the optimal weight function is given by
Bp"(B) _ By'(B)
At)=1 —
D=1 )
B - L 1/2 _l 1 ¢ 1/2
=1+B [¢+B] 2[¢+B]+BL&+31 : (3.32)
B
24+ B)

From Eqg. (3.28) we obtain
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B+w@, (3.33)
B@W (3.34)

and

B :w_l_ ¢
T
(G
So Eq. (3.32) becomes
Y JE P I L SR A SN Ly (3.35)

2 2[¢_;10gp]2 2 @—logp) 2 [20—logS(O)]

For survival distributions with nonproportional hazards, a weighted log-rank test with an
optimal weight function is expected to be more sensitive than the simple log-rank test (Oakes
and Jeong, 1998). For example, when the frailty has a gamma distribution with an index
parameter «, from Eq. (3.27) we obtain the optimal weight function

W(t)=S(t)", (3.36)
which corresponds to the “G-rho” tests of Harrington and Fleming (Fleming and Harrington,
1991) with rho=1/x. When rho=0, the G-rho test reduces to the simple log-rank test. When
rho=1, the G-rho test reduces to Wilcoxon test (Collett, 2003).

However, when the frailty distribution affects the proportionality of the hazards, the simple

log-rank test is no longer the optimal test, so a weighted log-rank test of G-rho type or different
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weighting function must be used. For example, when the frailty follows an inverse Gaussian
distribution, an optimal weighting function is given as Eq. (3.35)

_ 1 2¢°
W) = 2 * [2¢) —log S(t)} '

(3.37)

where ¢ is a controlling parameter which can take the value of 0 to +oo, S(¢) is the estimated

common survival function based on the combined sample up to ¢ (Oakes and Jeong, 1998).

The Gamma and inverse Gaussian are two most commonly seen frailty models in modeling
survival data using proportional hazards methods. It is known that the inverse Gaussian frailty
makes the population homogeneous with time, whereas for the gamma frailty the relative
heterogeneity is constant (Hougaard, 1984). In this study we are particularly interested in testing
nonproportional hazards survival data that become more and more homogeneous as time
proceeds. Therefore we chose the weighting function corresponding to the inverse Gaussian

frailty [Eq. (3.37)] in our simulations. For observed survival data, the test statistic is given by

dz’l + dz"z

A=Y W(t
2,7 Y, +Y,

€D

dzl - Yu ) (3-38)

where W(t,) is a common weighting function shared by each group, Y, and Y,, are the number
of objects at risk in group | and Il at time ¢,, d, and d,, are the number of events occurred in
each group at time ¢, respectively. The summation is over D, which includes a subset of

survival times that are observed as event of interest. The variance of W can be estimated by

, Y Y IIY —d
V= Wt =41 — L || ——L|d,. 3.39
Swer - 5=t .
It can be proved that Z = % has an asymptotically standard normal distribution (Harrington

and Fleming, 1982).
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The common survival function estimator 5‘(1&) in Eq. (3.37) is given by

d
1——i
Y

2

St =T] .

t<t
i

A frailty distribution is usually unobservable, thus we do not know if the frailty itself will
affect proportionality of the survival data at hand. So we must test if the observed survival data
still follows proportional hazards assumption before we decide what type of weighting function
should be used (Therneau and Grambsch, 2000). Testing the proportionality in survival data can
be performed by using the cox.zph procedure provided in S-Plus. If the cox.zph test indicates
proportionality in the data, the log-rank test statistics like simple log-rank test and Wilcoxon log-
rank test can be chosen. However, if the cox.zph test shows that the dataset does not satisfy the
proportional hazards assumption, we should use a log-rank test with a different type of weighting
function, such as the one for the survival data with inverse Gaussian frailty or the Harrington-

Fleming test.

3.3.  Test of Frailty Distributions

A specific frailty distribution has to be assumed in order to select the appropriate weight
function used in the proposed weighted log-rank test. In this work, we assume that the frailty
follows either the Gamma (Vanpel et al., 1979) or Inverse Gaussian (Hougaard, 1984)
distributions, which are two most commonly used distributions in proportional hazards frailty
models.

Economou and Caroni (2005) proposed a graphical method to test the assumption of Gamma

or Inverse Gaussian frailty distributions in survival data. The method is based on the non-
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parametric Kaplan-Meier estimate of the survivor function. If the baseline hazard function is

assumed to be Weibull with scale parameter ¢ and shape parameter 3, conditional on frailty z,
the random variable 7' of time-to-event has survival function in the form of
S(t|2)=e 9"
If Z is a random variable with distribution function G on (0,00), then the unconditional

0 )

In the proportional hazards frailty model, if G is chosen as the Gamma distribution, both the
shape parameter and scale parameter are commonly chosen as equal to » (and hence with mean
equal to unity) in order to remove one parameter to avoid a problem of identifiability (Economou
and Caroni, 2005). Then the probability density function of Gamma distribution is given by

v

1%

I'(v)

v—1 _—vz

flzvv) =

Integration of Eq. (3.40) we have

S(t) = [1 L e (3.41)

Eq. (3.41) corresponds to the survival function of the univariate Burr distribution (Burr, 1942).
Similarly, if G is chosen as the Inverse Gaussian distribution with shape parameter \ and scale

parameter 1, then Eq. (3.40) becomes

e
A

S(t) = exp|A (3.42)

Taking logarithms of the relation Eq. (3.41) we obtain
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1 WO (3.43)

log S(t) = —vlog

From the approximation log(1 + z) ~ log x, it follows that
log S(t) ~ —vBlogt + vlogve’,

(t/&)

14

when is large. Consequently, a plot of —logS'(t) vs. logt should be a straight line,

where S(t) is a nonparametric estimator of the survival function, such as the Kaplan-Meier. The
same plot can be derived for survival function following the exponential distribution since the
exponential is a special case of the Weibull.

Unfortunately, there are some observations (early failures) which result in the nolinear

(t/&)

behavior of —log S(t) vs. log¢ (when

is not large enough). Then these early failure data

give the plot a characteristic horizontal section for small ¢ (see Figure 1 for examples). The

length of this horizontal section depends on the parameter ». As v — 0, that is, there is a high

(t/8)

v

degree of heterogeneity, it almost disappear since is large for all ¢.

Likewise, taking logarithms of Eq. (3.42) we obtain

log S(t) = )\[1 — %ﬁy +11. (3.44)

For large )\, w +1~ @ +1, we have log S(¢) ~ —(t /£). Plot of log[—log5(t)]

vs. logt giving a straight line with slope of . Then the the Weibull-Inverse Gaussian model

reduces to the initial Weibull model with negligible frailty, since there is only a small degree of

heterogeneity when X is large.
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For very small X\, which corresponds to high degree of heterogeneity, we have

and Eq. (3.44) is log S(t) = —2A(t/ €)” = —[(2\)/7t / £/* . Plot of log[—log S(t)] vs. logt
giving a straight line with slope of 3/2. This corresponds to the Weibull model with scale
parameter ¢ /(2)\)"/” and shape parameter equal to 3 /2.

For intermediate values of X, the initial section of the plot would behave like the no-frailty

5]
case with slope 3, since the term % is still small for small ¢. For large ¢, the behavior

should be like the case of small A, with slope 3 /2. At the transition from slope 5 to 5/2 as

time increases, the plot will show some curvature. Examples are shown in Figure 2.
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Figure 1. Diagnostic plots of the Weibull survival function with the Gamma frailty.

—log S(t) vs. logt, for various values of the shape parameter v for the Gamma frailty. The
sample size is 2000, with £ = 1000, and 5 = 2. The curve shows a concave shape when the

frailty is a Gamma distribution. In particular, when v is small, the non constant part of the curve
is a straight line.
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Figure 2. Diagnostic plots for the Weibull survival function with the Inverse Gaussian frailty.

log[—1log S(t)] vs. logt, for various values of the shape parameter A for the Inverse Gaussian
frailty. The sample size is 2000, with £ = 1000, and 3 = 2. The curve shows a shape of straight
line, especially when \ is big.
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3.4.  Simulation Methodology

Suppose there are two groups of survival data with corresponding hazard functions A,(¢) and
h,(t). Survival data can be generated by Monte Carlo method according to the characteristics of
h, and h,. Then we can use log-rank tests with different weight functions to determine the
power of each test method in differentiating these two groups of data. An estimate of the

statistical power of the test is provided by

power = n : (3.45)
n

S

where m is the number of simulations in which the test can differentiate the data with
significance, and 7, is the total number of simulations.
In our simulation, we take h, (t) as the baseline hazard function and set it to be a constant, p.
Therefore h, becomes
hy(t]2)=e"h(t)=e"p. (3.46)
Here z is a covariate. The null hypothesis that h, and h, are identical corresponds to 3 = 0.
The survival functions are
S(t)y=¢e", (3.47)
and
S,(t|2)=S.(t)" . (3.48)
Then for an object in group I, the probability that its survival time is less than value ¢ is

FEty=1-8t)=1—¢", (3.49)
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and likewise, for an object in group I,
F(t|2)=1-8,t)=1—e " (3.50)
Since that F;(t) and F,(¢ | z) conform to a uniform distribution in the range of [0,1], we have
Et)y=1-¢" =u, (3.51)
and
Et)=1—¢"" =u, (3.52)
as z =1 for group two data.

For survival data in group one, we obtain

t, = _M_ (3.53)
P
For survival data in group two, we obtain
t, = —M =t (3.54)
pe’

Therefore, we can generate two groups of survival data conforming to ~, and &, in Eq. (3.46)

by starting from a uniform distribution «, and using the relationships given in Egs. (3.53) and
(3.54).
The simulation procedures are as follows:

I. Generate N observations from uniform distribution « (0,1), designate them as U,

ii. Generate the survival times for group I, ¢,,, i = 1,2,------ ,N", base on Eq. (3.53). The
parameter p in Eq. (3.53) is set arbitrarily as 0.001, 0.1, and 0.3, respectively. The

data are sorted in ascending order.
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iii. Generate the survival times for group Il, ¢,,. The random effect (frailty) of the
survival times is planted into the ¢,. by multiplying the factor of e’ by ¢,,, as shown

in Eq. (3.54). In our simulations, we let the premultiplier e’ be in the range of (0, 1).

The values of e’ were chosen according to the shapes of hazards ratios of interest.
For example, if we are interested in two groups of data with early difference, we let
the e’ take values of piece-wise proportionality reflecting early departures.

iv. Generate the censored data in two groups from a uniform distribution randomly and

choose the minimum. In this study we let the censoring occur randomly.

In testing the proportionality of the simulated data, we used the cox.zph function in the S-
Plus/R package. The null hypothesis for this test is that the data obey the assumption of
proportional hazards.

We found it was very difficult to incorporate the new weighting function in Eq. (3.37) into the
survdiff procedure in the R/S-Plus package. Therefore, we wrote our own program in R/S-Plus
to evaluate Eq. (3.38) and (3.39), see attached programs in the Appendix. The survival data
obtained were transformed accordingly in order to calculate the quantities in Eg. (3.38) and

(3.39) numerically. The p-values were calculated corresponding to the observed statistic,

7 = A, which follow the standard normal distribution. The test results based on the statistics

N7
in Eq. (3.38) and (3.39) with the new weight function Eq. (3.37) are compared with a simple log-

rank test and Harrington-Fleming’s weighted log-rank test.
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3.5. Results and Discussion

3.5.1.  Test for proportional hazard assumptions

The purpose of this work is to investigate how the simple log-rank test and the weighted log-
rank test of Harrington-Fleming perform for the nonproportional hazards data, compared with
the test with the new weight function in Eq. (3.37). Thus, as the first step it is worthwhile to
evaluate how significantly the simulated data violate the proportional hazards assumption.

We used the cox.zph function in the S-Plus package to test the statistical significance of
violation of the proportional hazards assumption in the simulated data. We tested simulated data
with early, middle, and late departure. The datasets were generated by the procedures described

in section 3.4 with baseline hazard function p =0.3. Our results show that cox.zph tests do

identify that the nonproportionality exists in our simulated data. We examined simulated datasets
with a data size of 1500 and found that a large fraction of datasets to be nonproportional at the
significance level of 0.05 detected by the cox.zph procedure. However, the level of
nonproportionality varies from dataset to dataset. The most significant nonproportionality in
hazards occurs in data with early departures. For example, for late difference datasets, 32% of
100 simulations are identified as nonproportional in hazards using the cox.zph procedure. For
early difference datasets, about 94% of the datasets were identified as nonproportional in
hazards. For middle difference, 57% of datasets were shown to be nonproportional.

In Figures 3 to 5 we show some examples for the estimated patterns of change of the hazard
ratios from the cox.zph function (smoothed scaled Schoenfeld residual plots), together with the

corresponding Kaplan-Meier plots. The shape of the Kaplan-Meier estimation of the survival
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distributions clearly indicates the nonproportionality hazards nature of the simulated data. For
example, Figure 3 shows the cox.zph regression for two survival datasets that have later
difference. The data size is 100. It can be seen from the residual plots (graph in the top) that the
residual curve drifts away from value of zero as time progresses, which indicates significant late
difference in the two groups of survival time. The test of proportional hazards hypothesis of the
data using cox.zph gives a p-value of 0.04. Similar procedures were applied to simulated
samples with early and middle differences, two examples of which are shown in Figure 4 and 5.
Tests of proportional hazards using the function cox.zph of these two sets of survival data give
p-value of 0.03 and 0.03, respectively. Therefore, it is evident that significant nonproportionality
exists in the hazards function of the datasets generated in our simulations. These datasets would

be appropriate samples that can be used for the evaluation of our method.
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Figure 3. Example of a single simulated data set with late difference.

The size of datasets n, = n, = N" =100,
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Figure 4. Example of a single simulated data set with early difference.

The size of datasets n, = n, = N" =100,
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Figure 5. Example of a single simulated data set with middle difference.

The size of datasets n, = n, = N" = 100.
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3.5.2.  Choosing parameters

The simple log-rank and Harrington-Fleming’s weighted log-rank test can be formulated by
properly setting the weight function 1 (¢,) in Egs (3.38) and (3.39). For the simple log-rank test,
W (t,) simply equals to unity for all t, which means all the survival times are treated with equal
weight. For Harrington-Fleming’s weighted log-rank test, the weight function W(t,) in Egs.
(3.38) and (3.39) is defined by

A~

|14 q(ti) = g(ti—l)p [1 - S(ti—1>]q ) (3-55)

P,

where p >0, ¢ > 0 (Klein and Moeschberger, 1997). Slightly different from the S(ti) in Eq.

(3.40), the §(ti_1) in Eq. (3.55) is the survival function at the previous failure time. When
p=q =0 Eq. (3.55) reduces to the weigh function for the simple log-rank test. When p > 0
and ¢ = 0 we have the G-rho test. By choosing the values of p and q properly, we assign
different weights to the data points. For example, when ¢ = 0 and p > 0, the tests with this
weight function put more weights on early difference. When p =0 and ¢ > 0, the tests put

more weights on late difference. In our simulation tests, we set the values of p and q in the

Harrington-Fleming test as follows:

Early difference data: p =2, ¢ = 0;
Late difference data: p =0, ¢ = 2;

Middle difference data: p = ¢ =1.
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For the log-rank test with the new weight function, we need to set the parameter v for the
new weight function in Eq. (3.3). In this study we used three values for ¢, which are 0.01, 1.0,

and 5.0. For the baseline hazard function, we used the values of 0.001, 0.1 and 0.3. The optimal

values of ) will be discussed later.

3.5.3. Simulation test for data difference

We chose the sample size of the simulation to be 1500, with group | and group Il having the
same size. That is, n, = n, = N . The data points are sorted ascendingly according to t and

divided into 10 subgroups. For each subgroup a factor is multiplied by t to create the early,
middle, or late difference between data group | and Il. For example, when we model early
difference data, we set a factor array of (0.85, 0.80, 0.75, 0.80, 0.85, 0.90, 0.93, 0.95, 0.97, 0.99).
The first subgroup of 150 survival times in group Il equal to the product of 0.80 and the first 150
data from group 1. The second subgroup of 150 survival times in group 11 equal to the product of
0.825 and the second 150 data from group I, and so on. The last subgroup of 150 survival time in
group | and Il are essentially the same. For each choice of factor array, n, = 1000 simulations
with randomly generated survival times were performed, with level of test equal to 0.05. The
power of each test was computed according to Eqg. (3.45).

One set of results for comparing the simple log-rank, Harrington-Fleming’s weighted log-
rank, and the new weight function tests are shown in Table 1. This set of data has early
difference. As can be seen from the simulation results, the Harrington-Fleming’s weighted log-

rank test (with p = 2 and ¢ = 0) performs poorly in capturing the difference in the two groups.

The simple log-rank test has shown a higher sensitivity than the Harrington-Fleming’s test,
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giving an average power of about 0.22. In contrast, the test with new weight function has about

twice the power of a simple log-rank when the parameter vy equals to 1.0. We should point out

that all three test methods show a low power (less than 0.5) in differentiating the data group,
mainly due to the very small difference we implanted in the simulated datasets. The power of
Harrington-Fleming’s test is relatively low. However, this does not indicate that Harrington-
Fleming fails. If we increase the data difference by changing the premultiplier factor array, the
testing powers for all three tests increase rapidly, but the power of the new weight function test
remains the highest before they reach unity. Also we found that variation in the constant
baseline hazards function does not change the relative sensitivity of these three test methods in
differentiating the data groups with early departure.

For the datasets with middle difference, the test with the new weight function shows a higher
power than the Harrington-Fleming test. However, its powers are in the same range as that of
the simple log-rank test. From Table 2, we can see the new test has a slightly higher power than

simple log-rank test when we choose 1 to be 1.0. This observation is similar to that we have
seen for early difference test. It seems that 1) = 1 is good choice for testing the early and middle

difference survival data using the new weight function. Again, the testing results have only a
minor change when we vary the baseline function values. This indicates that the value of the
constant baseline hazards function has negligible effect on the sensitivity of three testing
methods in the light of the simulation fluctuations.

Simulation results from the late difference data are shown in Table 3. We can see that the
tests with all three methods have a power in the same range.

We note that the factor arrays for the simulated data with different departure pattern (early,

middle, or late difference) are in the same magnitude, ranging from 0.80 to 0.99. However, the
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significance of nonproportionality in these datasets identified by cox.zph varies. Early
difference data was identified by cox.zph as having the most significant nonproportionality. The
fact that the new weigh function is more powerful than the simple log-rank and Harrington-
Fleming’s weighted log-rank tests in differentiating the early difference data, indicates that it is
suitable for discriminating nonproportional hazards survival data.

Summarizing the results shown in Table 1 to 3, we can see that the advantage of the new test
is obvious. For early difference data, the new method shows better performance than either
simple log-rank or Harrington-Fleming’s method. For middle difference, it is better than the
Harrington-Fleming’s test. Even for the later difference, which has the least nonproportionality,
the new weight function method has a similar sensitivity as the other two methods. This indicates
that the new weighting function is successful in properly accounting for the nonproportional
frailty effect of the simulated survival data.

We also studied the dependence of the proposed new method on the censoring level, sample
size, and the baseline distribution. We performed simulations with censoring level 5%, 10%, and
30%. We found that increasing the censoring level from 0% to 30% would decrease the
sensitivity of all three testing methods, including the new method proposed in this work.
However, the relative powers of these methods are consistent with the results obtained above.

Simulations with various sample size (N = 500,1000,1500 ) indicates that decreasing the

sample size would cause the power of the three methods to decrease. But similar to the impact of
censoring level, the relative sensitivity of three methods was not changed. Simulations were also
performed using a Weibull distribution as the baseline instead of the exponential distribution.

The results from the Weibull distribution simulations are quatitatively consistent with that from
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the exponential baseline simulations. The results for testing the censoring level, sample size, and

the baseline distribution are summarized in Tables 4 to 6.
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Table 1. Simulation results for samples with early difference using the simple log-rank,
Harrington-Fleming’s weighted log-rank test, and the new weighted logrank test.

Hypothesis: 5 = 0; 1000 simulations for each N ; n,=n, =N, level of test is 0.05. The

piecewise nonproportional hazard array is (0.85, 0.80, 0.75, 0.80, 0.85, 0.90, 0.93, 0.95, 0.97,
0.99).

baseline (0 Test with  Simple log- Harrington- P, /P P, /P

hazards new weight rank, P, Fleming
function function, P, weighted log-

rank, P,

0.001 5.0 0.285 0.226 0.15 0.793 0.526

1.0 0.445 0.508 0.337

0.01 0.229 0.987 0.655

0.1 5.0 0.297 0.237 0.163 0.798 0.548

1.0 0.446 0.531 0.365

0.01 0.239 0.992 0.682

0.3 5.0 0.312 0.228 0.157 0.731 0.503

1.0 0.439 0.519 0.358

0.01 0.214 1.065 0.733
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Table 2. Simulation results for samples with middle difference using the simple log-rank,
Harrington-Fleming’s weighted log-rank test, and the new weighted logrank test.

Hypothesis: 5 = 0; 1000 simulations for each N ; n,=n, =N, level of test is 0.05. The

imposed nonproportional hazard array is (0.99, 0.95, 0.90, 0.85, 0.80, 0.80, 0.85, 0.90, 0.95,
0.99).

baseline (0 Test with  Simple log- Harrington- P, /P P, /P

hazards new weight rank, P, Fleming
function function, P, weighted log-

rank, P,

0.001 5.0 0.890 0.834 0.640 0.937 0.719

1.0 0.945 0.883 0.677

0.01 0.849 0.982 0.754

0.1 5.0 0.915 0.832 0.571 0.909 0.624

1.0 0.947 0.879 0.603

0.01 0.818 1.017 0.698

0.3 5.0 0.887 0.834 0.555 0.940 0.626

1.0 0.957 0.871 0.580

0.01 0.835 0.999 0.665
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Table 3. Simulation results for samples with late difference using the simple log-rank,
Harrington-Fleming’s weighted log-rank test, and the new weighted logrank test.

Hypothesis: 3 = 0; 1000 simulations for each N ; n,=n, =N, level of test=0.05. The

imposed nonproportional hazard array is (1.00, 0.99, 0.98, 0.97, 0.95, 0.93, 0.91, 0.89, 0.87,
0.85).

baseline (0 Test with  Simple log- Harrington- P, /P P, /P

hazards new weight rank, P, Fleming
function function, P, weighted log-

rank, P,

0.001 5.0 0.977 0.986 0.988 1.009 1.011

1.0 0.977 1.009 1.011

0.01 0.981 1.005 1.007

0.1 5.0 0.978 0.985 0.984 1.007 1.006

1.0 0.967 1.019 1.018

0.01 0.987 0.998 0.997

0.3 5.0 0.983 0.986 0.981 1.003 0.998

1.0 0.972 1.014 1.009

0.01 0.983 1.003 0.998
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Table 4. Impact of censoring level on the sensitivity of the methods (early difference).

Hypothesis: 5 = 0; 1000 simulations for each N ; n, = n, = N~ = 1500, level of test is 0.05.

The piecewise nonproportional hazard array is (0.85, 0.80, 0.75, 0.80, 0.85, 0.90, 0.93, 0.95, 0.97,
0.99).

Censoring baseline hazards P Test with Simple Harrington-
level function new weight  log-rank Fleming
function weighted log-
rank
5% 0.1 5.0 0.227 0.232 0.143
1.0 0.430
0.01 0.248
10% 0.1 5.0 0.215 0.243 0.123
1.0 0.413
0.01 0.250
30% 0.1 5.0 0.198 0.227 0.111
1.0 0.389
0.01 0.233
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Table 5. Impact of sample size on the sensitivity of the methods (early difference).

Hypothesis: 5 = 0; 1000 simulations for each various N ; n, =n, = N, level of test is 0.05.

The piecewise nonproportional hazard array is (0.85, 0.80, 0.75, 0.80, 0.85, 0.90, 0.93, 0.95, 0.97,
0.99).

Sample baseline hazards P Test with Simple Harrington-
Size N* function new weight  log-rank Fleming
function weighted log-
rank
500 0.1 5.0 0.127 0.108 0.04
1.0 0.220
0.01 0.110
1000 0.1 5.0 0.189 0.144 0.07
1.0 0.345
0.01 0.156
1500 0.1 5.0 0.297 0.228 0.157
1.0 0.446
0.01 0.239
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Table 6. Simulation results for samples with Weibull distribution ( 7,p ), with parameter
T=1.5.

Hypothesis: 3 = 0; 1000 simulations for each N ; n,=n, =N = 1500, level of test is 0.05.

The piecewise nonproportional hazard array is (0.85, 0.80, 0.75, 0.80, 0.85, 0.90, 0.93, 0.95, 0.97,
0.99).

baseline hazards Y Test with new Simple log-  Harrington-Fleming
function weight function rank weighted log-rank
0.001 5.0 0.295 0.235 0.138
1.0 0.421
0.01 0.196
0.1 5.0 0.311 0.247 0.171
1.0 0.507
0.01 0.182
0.3 5.0 0.281 0.213 0.153
1.0 0.429
0.01 0.252
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3.5.4.  Optimal value of parameter v

Theoretically, the value of ) can be any arbitrary positive number between 0 and infinity
(Oakes and Jeong, 1998). As long as a positive v is chosen, the weighting function will be
always between 0 and 1. However, the change in v value will change the distribution of the

weighting function. Therefore, further careful work needs to be done before we can give a

reasonable rule in choosing the optimal ¢ value.
From the simulation results we recognize that an optimal value exists for parameter ¢ in

terms of testing the nonproportional hazards data using the newly developed log-rank method.

This finding can be interpreted from the dependence of the weight function on ¢ and the

survival distribution. For example, for survival data following exponential distribution, we can

plot the weight function calculated from Eq. (3.37) versus survival time with three choices of v
values, namely, ¢» = 0.1, ¢» =1, and ¢ = 5, as shown in Figure 6. As can be seen from the
plots, increase in the value of v puts more weight on the data with late difference. So a small
value of v is desired if we want to test the early difference of survival distribution. On the other
hand, if the value of v is too small, only the data with minimum survival time will be given

weight, which is apparently disadvantageous for tesing any data difference. Therefore, an

optimal value of ¢) has to be chosen in order to obtain the maximum sensitivity of the method.
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Figure 6. New weight function as a function of survival time and parameter ).

The survival time follows exponential distribution, with baseline parameter p = 0.3 . The
parameter ¢ =5, 1, 0.1, respectively, for the curves from top to bottom.

Theoretically, an optimal value for the parameters used in the newly developed weight

functions can be calculated mathematically from the survival data, if a distribution is assumed
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about the random effects. For example, for Gamma frailty, we have derived a weight function
which is dependent on the parameter p as given by Eq. (3.27),

ANS@)] = [S@)]" =[S®) (3.27)
Once the value of p can be estimated, the weight function in Eq. (3.27) with p = p will be
optimal, where /5 is a numerical estimate of p. Likewise, the optimal weight function for inverse
Gaussian frailty can also be calculated by estimating the value of v in Eq. (3.37). More

discussions on estimating p and v can be found in Chapter 5.

3.5.5.  Comparison with supreme weighted log-rank test

The supremum version of weighted log-rank test is given by

SUD (0,7 Z(t)| '

where Z(t) = ®) ,and A(t) and V(7) are calculated from Eqgs. (3.38) and (3.39),

d, +d
i dﬂ - Y;l [ﬁ]
i2

il

AR TSN
1,(0,7) Y. YIIY -1 '

3

The simulations were extended to compare the power of supreme versions of the log-rank
and weighted log-rank test proposed in this work. We found that the power of the supreme
versions of the log rank and weighted log-rank tests are comparable with their native version.
Taking the log-rank method using the new weight function as an example, we found that the

supreme version has almost the same power as the native one does. Such results are consistent
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with the previous findings that supremum statistics are nearly as powerful as the traditional
statistics under the proportional hazards assumption (Fleming et al., 1987) or more powerful than
the traditional statistics in certain nonproportional hazards settings (Kosorok and Lin, 1999). One
typical set of results comparing the supreme and traditional weight log-rank test using the new

weight function is show in Table 4.
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Table 7. Comparison of supreme and traditional version of the new weighted log-rank test.

Hypothesis: 5 = 0; 1000 simulations for each N*; n, = n, = N = 1500, level of test=0.05.
The imposed nonproportional hazard arrays are same as those used in Table 1-3.

baseline Early difference Middle difference Late difference
hazards
function Wb Tradit_ional Supremum Tradit?onal Supremum Tradit_ional Supremum
version version version version version version
0.001 5.0 0.285 0.291 0.890 0.891 0.977 0.979
1.0 0.445 0.446 0.945 0.947 0.977 0.973
0.01 0.229 0.229 0.849 0.837 0.981 0.982
0.1 5.0 0.297 0.298 0.915 0.886 0.978 0.980
1.0 0.446 0.436 0.947 0.949 0.967 0.964
0.01 0.239 0.237 0.818 0.831 0.987 0.984
0.3 5.0 0.312 0.315 0.887 0.899 0.983 0.980
1.0 0.439 0.442 0.957 0.934 0.972 0.975
0.01 0.214 0.224 0.835 0.834 0.983 0.985

3.5.6.  Application in real data

We tested our newly developed method with the real data from an NSABP trial, Protocal B-
14. On this phase Il trial, patients with primary breast cancer, negative axillary nodes, and
oestrogen receptor positive tumors were randomized to receive either tamoxifen (a hormonal

therapy) or placebo following surgery. The trial itself is described in details in literature (Fisher
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et al., 1989, 1996). In this dataset, 1450 patients were randomized to placebo and 1435 patients
were randomized to tamoxifen over a period of seven years and have been followed for an
additional ten years. The endpoint of interest was disease-free survival (DFS). Only 2817 eligible
patients (1413 for placebo group, 1404 for treatment group) were used for our snalysis. About
47% (700 for placebo, 562 for tamoxifen group) of the patients have had a DFS event , and 53%
have censored data.

Figure 7 shows the survival for the failure distributions from the Kaplan-Meier estimates.
The upper line is for treatment group and lower line is for placebo group. From the plot we
readily see the two groups are nonproportional in hazards. The cox.zph test on the proportional
hazards assumption give a p-value of 0.00004. We performed test of data difference using the

simple log-rank, Harrington-Fleming’s weighted log-rank test with p = ¢ = 2.0, and the new

weighted logrank test with ) = 1. The p-values obtained from these three different method are

5x107%, 4x107°, and 8 x1077, respectively. This indicates that the log-rank test with the new
weight function is the most sensitive one among the three methods. The results are consistent
with the simulations results in section 3.5.3. In this case, all three methods give the same
conclusion, mainly due to the degree of extremeness of the treatment effect in the selected real

data.
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Figure 7. Survival function in NSABP B-14 data estimated from Kaplan-Meier method.
The upper line is the treatment group, and the lower line is the placebo group.
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3.6.  Conclusion

We studied the sensitivity of a newly developed weighted log-rank test, and compared it with
the simple log-rank test and Harrington-Fleming’s weighted log-rank test, in testing treatment
with nonproportional survival data using Monte Carlo simulations. We found that the new test
shows a better sensitivity in capturing the difference between the data group when the survival
data has significant nonproportionality (here the data with early difference). For the datasets with
less nonproportionality (here the data with middle difference), the test with the new weight
function has better sensitivity than that of Harrington-Fleming’s weighted log-rank test, similar
to that of the simple-log rank test. For late difference which has least nonproportionality, all

three methods have similar sensitivity.
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4. TEST FOR PROPORTIONAL ODDS

4.1. Introduction to the Dauxois-Kirmani Test

The objective of the second part of this thesis is to develop a parametric method for testing of
the proportional odds assumption over two groups of survival times. The first part of this work
focused on the method to model survival data with nonproportional hazards by using the
extended Cox’s proportional hazards model by including time-dependent explanatory variables
or by introducing a frailty parameter (Oakes and Jeong, 1998). An alternative approach is
through the proportional odds model. In this chapter we present a new test based on a
nonparametric method introduced by Dauxois and Kirmani (Dauxois and Kirmani, 2003). This
method is suitable for testing the proportionality of odds of survival data with random censoring.
We will review briefly about this method.

In the proportional odds model, the odds of an individual in group 4 surviving beyond some

time ¢ are defined as

o) = —< = (4.1)

where S, is the survival function for group . We say that the two groups satisfy a proportional
odds model if ¢,(t) = a¢,(t) for all £ >0 and some constant « > 0. If &, is the hazard

function corresponding to S; , then under the proportional odds model

(4.2)

60



so that, for a > 1 (a < 1) the hazard ratio h, /h, is an increasing (a decreasing) function
converging to unity.
A simple method can be used to explore the suitability of using the proportional odds model

to study two survival distributions. One can calculate the odds ratio by

6 = = — Khiel (4.3)
(1) S 0)1-8,0)
where Si is Kaplan-Meier estimator of survival function,
1 if t <t
S, (t) = (4.4)

d| .
1——’], ift <t
Y‘ 2

If the plot of § versus ¢ shows that 6 is independent on ¢, proportional odds about the samples
can be justified, and vice versa.

Recently, Dauxois and Kirmani developed a procedure for testing the proportional odds
assumption of two independent random samples with randomly right-censored lifetimes
(Dauxois and Kirmani, 2003). The test statistic is given by

Z=(n+n)T /o, (4.5)
where Z is asymptotically normal, Z ~ N(0,1) for testing H, versus H , , where
H,:¢,(t)=ag,(t), forall t >0 and some a >0,
H, : ¢,(t) and ¢,(t) are not proportional.
In Eq. (4.5), n, is the sample size of group i, I' and o are given by
I'=T(K,, K,) = thythyy — oty (4.6)

and
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o’ = Yooy 0y — Yoy 01, — Py 0y + Uty (4.7)

Value of 9, is given by

my AT,
o=/ )dt | (4.8)

u V7,

where K; (i = 1,2) are weight functions. And v, is given by

T n, sAt le(u) n, st AN (u)
v, = f | f | Kj(t)Kj(S)gbl(s)ch(t)1F(8)F(t) f + FrG f b }dsdt.

1 1 U) 2 2
(4.9
In Egs. (4.8) and (4.9),
m, = max{ min 7T, min T }
1<j<n, 6, —1 J’ 1<j<n, é 71 2
m, = mm{maXT7 max 7, }
1<j<m T 1< <,

m, AT, = min(m,,7,), m VT =max(m,T,) (4.10)

where 7. isthe ;™ observed survival time in group 7, and 6, =01if T,

i T, is censored. Integration

interval [7,7,] can be chosen as the end points of the data. Y (t) = Z?‘:ll{ﬂj >t} fort >0

17 2
and ¢ = 1,2, is the number of objects in group ¢ at risk at time t. F/(t)=1—5,(¢), is the
cumulative distribution function. N (t) = Z:‘:ll{ﬂj <t,6, =1} is the number of events in
group 7 before or at time ¢. The number of events in group ¢ at time ¢ is denoted by d, .

The values of ¢, and S. can be estimated from the Kaplan-Meier estimator of survival

function, using Egs. (4.1) and (4.4). One significant choice has to be made about the weight

functions K, and K, . Dauxois and Kirmani chose arbitrarily the weight function corresponding
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to the log-rank test for proportional hazards and the normalized form of Gehan’s weight

function,
+ Y (1Y (¢
K =|Ah AULAO (4.12)
nn, |Y(t)+Y,(t)
K, = 7OV (412)
mn,
The numerical estimate of 1, based on Kaplan-Meier estimators is given by
m, \T.
~ my AT, ~ my AT, ~ 22 A~
Y, = f . Ko, t)dt = f o Ki(t)déj(t)zfz K (HAD (1), (4.13)
1771 1o t=m, V',

where &,(t) denotes the odds of group i. Similarly, the numerical estimate of v, based on

Kaplan-Meier estimators is

. Ty Ty “ “ n sAL N (U) n sAL AN (’U,)
v, = K (K (s)AD (s)AD L 1 2 2
(4.14)

4.2.  Extending the Method with Parametric Assumptions

One of the keys to the Dauxois and Kirmani’s method is the choice of the weight functions,

K, and K, . They did not attempt to develop new weight functions, but simply followed Gill and
Schumacher (1987) and Sengupta et al. (1998), chose arbitrarily the weight functions K, and
K, as two commonly employed format. The weight functions chosen by Dauxois and Kirmani

(Dauxois and Kirmani, 2003) correspond to the log-rank test for proportional hazards and the

normalized form of Gehan’s weight function. In theory, any cadlag functions, not necessarily
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predictable, can be used if they lead to increasing K, / K,. The purpose is to build a positive
weight function
w(s,t) = K, (1)K, (s) — K,(s)K,(t) (4.15)

to be used in the expression of

Yw) = [[ wls,t)[6,(t)6,(s)— 6,06, (s)jdsdt (4.16)

7, <s<t<r,
where ~(w) can be considered as a measure of nonproportionality of the odd function ¢,(¢) and
¢, (t) on the time interval [, 7, ].

Besides the weight functions used by Dauxois and Kirmani, other suitable choices include

n +mn, | Y ()Y, ()

2

Y () +Y, (1)

2

p

, (4.17)

K = |5(t)

mn,

where S*(t) is the Kaplan-Meier estimator computed from the combined survival data sample up
to time ¢. The power parameter p is in [0,1].

In addition, one may also explore the application of certain weight functions specific to data

with particular distributions. That is, K, and K, can be derived based on the assumption of
survival data distributions. In the following example, we show how to derive K, and K, for

survival data that follow the log-logistic distribution.

From Dauxios and Kirmani’s paper, we have
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and

Y)Y, (4) _ V) / m]Ys) /n]

n, +n,

K, =

mny  Yi(t4) + Y, (t+) Y (t4) + Y, (t+)
n, +n,
Y, (t4) /n][Y, (i) / m, ]
n[Y,(tH) /n] + n,[Y,(t+) /ny] (4.18)
ny +n,
— RAGIEARAGINES
lnl " [ (t+)/n1] nlj—QnQ[ (t—l—)/nQ]
K, — YitH)Yy(t+) _ Yi(t+) Yo(t+) @.19)

As n, — oo,n, — oo, by the Glivenko-Cantelli Theorem (Shorack and Wellner, 1986), it is easy

to prove that,

and we define

with

So we get

— 5,(t); — P(T > 1)
Y (t+ Y (t+
; )_’SQ(t); 2 )—>P(T2>t)
n n
2 2
Y
10 ==
ny +n,
nZ
:1_p'
n, +n,

_[P(T > 0[P, > 0] w20

R A AP 0 P ST
Y(tﬂ;):z( +) _ Ylgﬂ YQle) =[SOS, ()] = [P(T, > )][P(T, > 1)].  (4.21)
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Weight functions based on Egs. (4.20) and (4.21) utilized the parametric information about the
distribution of the survival time ¢ . For continuous distributions, S(¢) can be used in Egs. (4.20)
and (4.21), while for discrete distributions, P(T > t) can be used.

Substituting the survival function of the log-logistic distribution into (4.18) and (4.19), we

have

K — 1 , (4.22)

Lo/ /g

K = ! :
Lo/ reese)

(4.23)

These are the weight functions for the log-logistic survival data. The test statistics can still be

computed by

(n, + n2)%F(K1»K2) = (n, + n2)%(@/}111/’22 — Yty),s

with
v, = [ K 0t
, (4.24)

which can be calculated numerically.

The variance of the statistic is calculated by

2
g = ¢22w211}11 - ¢22w111)12 - w12¢217)21 + wl2wllv22 .
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Here

And

as n, — oo,n, — 00. SO we have

Then,

f%t dAZ(u) :fsAt_ dSZ(U) _ 1 _ 1
vy S @P S| SeAn
Substituting it into the variance equation, we obtain
T Db (s 1 1 1 Ll
%-—fﬂ f K (1)K (s)¢,( )¢2(t)|F1<S)F1<t) SenD 1 +FQ(S)FQ(15) Y 1]d dt,
where
__ 1 _ (/¢
Oy PO T e

The odds ratio between ¢, (¢) and ¢,(t) is

&) _ (& /)"

alt) &/

Let group | be the baseline survival time with g, = 1. The odds ratio 22—8:1 if & =¢, and

1

B, =1, which means the survival data from 7, and 7, are proportional in odds. Otherwise, if
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B, > 1, the survival data from 7, and 7, have nonproportional odds. Now let g, =1,

¢ =¢& =¢, and we denote 3, simply as 3 so that we can drop out all the subscripts in the

formula. We obtain

1 1
M e M T e

N S VRS 71

14 (t/¢€)

1+ (t/€)
¢1(t) = (S/t), ¢2(t) - (5/15)6

K = L K = !

e ra-pi+e/o] T 1/l o]

4.3. Estimation of Parameters in Assumed Distributions

In order to use the parametric weight functions, one needs to estimate the model parameters
in the assumed distribution about the survival data. For example, if we assume that the survival
data follow the log-logistic distribution, we need to estimate parameters (£, 3). One commonly
used method for estimating the distribution parameters is the maximum likelihood estimate. In
maximum likelihood, if the probability density function (pdf) of the survival time is f(¢), the

likelihood of the n observations t,t,,------ ,t is the product of the probability of an event

n

occurring at time ¢, given by Hf(ti) , which is dependent on the parameters in the pdf assumed.
i=1

The maximum likelihood estimates of these parameters are those values for which the likelihood

function is maximized.
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If there are censored survival time in the sample, suppose that r of the n survival time

*

tytyyeeee ,t, are observed, and the remaining n — r times ¢,,,¢, -+ .t are right-censored,

then the contribution of r observed times to the likelihood function is Hf(t,:)- For n—r
i=1

censored time, if a survival time is censored at time ¢, we know that the lifetime of the

individual is at least ¢ , and the probability of this event is P(T >1t)=S(t). Then the
contribution of each censored time to the likelihood function is l;[S(t:). So the total likelihood
=t
function is
[T/@]] S(t). (4.26)
i=1 j=1
If we assign an indicator variable ¢, to each survival time,

6. =1, observed

i)
6. =0, censored

then we can rewrite the likelihood function as

n

[T 1SE) ", (4.27)

i=1
without discriminating if a survival time ¢, is censored or not in Eq. (4.27) by incorporating the

indicator variable ¢, .

Furthermore, Eq. (4.27) can be rewriten as

S(t). (4.28)
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From Eq. (1.7) we know A(t,) = % so Eq. (4.28) becomes

ﬁ[h(ti)rﬁ(g ). (4.29)

Egs. (4.26), (4.27), (4.28), (4.29) are equivalent. Eq. (4.29) is most often used because
usually the pdf of a survival time could be complicated but the corresponding hazard function
could be simple.

For survival time data following the log-logistic distribution, we have

iy =P s = — L

L+t S/
So the hazard function is given by
gt e
A £ S (/9 A Y L
h(t) i =
s+ 1+(/¢)
L+ (/&)
The likelihood function is
n Bt§71€7“3 5 1
L&, B) = Z - - (4.30)
o= e e
The log-likelihood function is
n Bt.ﬂflgaﬁ , 1
InL&B)=> 1 L - -
D=2 ) T e e

=[5+ 8 me " —5pmE— (6 + Din{l+ (1, /)'}]

1=1

Since there are r observed events, correspondingly we have
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So the log-likelihood function is

InL(§0)=rnf—rGng + iéz_ In tf*l — i(&l +1)Inf1 + (¢, /€)]. (4.32)

i=1

Differentiation with respect to parameters (&, 3) and let the derivatives equal to zero, we have

) rB & Bt /&) (=t /&)

—InLEB)= ——— 6 +1)— L = 4.33
Y T @

o | n t/@HMt/@
—InL ——rl o g — - =0. (4.34
60 = G rine 300 2 ey .

Notice that ot _ t'Int,.
Ox
After some algebra, Eqgs. (4.33) and (4.34) becomes
(6. +1)t’
= , 4.35
E g;f_i_tﬂ ( )
(6 +1)t’

— 6Int =) ————Int. 4.36
LA =Y (439

Solving Egs. (4.35) and (4.36) simultaneously using nonlinear method such as Newton-Raphson
method, we can find the estimate for parameters (£, 3). The estimated (&, 3) then can be used in
Egs. (4.22) and (4.23) to calculate the parametric weight functions used in the extended testing
method.

The asymptotic variance-covariance matrix of (€, 3) is given by

-1

82 0’

n L(¢, 3) In (¢, B)
Var(é 3): —F 8;2 aziw : (4.37)
950¢ In L(¢, B) YT In (&, B)
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4.4.  Simulation Methodology

The log-logistic distribution is a distribution that owns both the accelerated failure time property
and the proportional odds property (Collett, 2003). Therefore, it is natural to use it in conjunction

with the proportional odds model. For the log-logistic distribution, the survival function is given

by
1
SSt:—“ t>0,8>0,6>0). 4.38
W= ) (4.38)
The cumulative distribution function is
1 (t/¢)’
() =1-8(t)=1 YR (4.39)
The odds function is expressed as
_ Sd(t) _ -6__ 8
¢,(t) = 7.0 =(t /&)= /1) (4.40)

If the baseline distribution X, has a log-logistic distribution with 3 =1, then its odds function

is
_ 50 _
¢, (1) = 0 =£/t, (4.41)
and
¢, ()= (/1) (4.42)

so the odds ratio between ¢,(¢) and ¢,(t) is
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= - =&, (4.43)

where ¢ = ¢'77.

When 3 =1, the odds ratio ¢1—(? = constant, the survival data X, and X, are proportional
8

in odds. Otherwise, if 3 > 1, the survival data from X, and X, are nonproportional in odds.

First we try to validate if the Dauxios-Kirmani method can tell nonproportional odds data. To

do that, we create two sets of data with nonproportional odds. The first group of data is from X,
the second is from X, with 3 > 1. In our simulations we set the constants ¢ (hereafter ¢) to

be 1.0.

To generate survival data X, and X, following the log-logistic distributions, we use the
facts that the cumulative distribution functions F; and F|, conform to uniform distributions in

the range of [0,1]. That is,

R =—E —y UNTR(O,1),

Clt/E
ey
Fﬁ(t)_u oG u ~ UNIF(0,1). (4.44)
Then, we obtain
_ & ., _ 1 ’E_ 1’% £ *"73_ 1-1 1

The numerical simulation procedure is
1. Generate survival data with appropriate distributions. For comparison purpose, we

generate data from the log-logistic distributions.
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u ~ UNIF(0,1);

§

t, = and ¢, = ¢ )
1 1/u_1 2 5 1

Please note two independent sets of « are used in calculate ¢, and ¢, so that they are not
correlated.
. Set random censoring,
¢, ~ UNIF(5,25); ¢, ~ UNIF(5,25)
t,=min(t,c,) ; t,=min(t,,c,)
The value of ¢ is set according to appropriate censoring levels.

Build data table according to event (or censoring). No tie is allowed.

. Count Y(t),d,(t),N,(t),AN,(t), where t¢¢€[r,7,],7, = min(t ),7, = max(t ) for

i i
i=12 j=1n,.

Estimate S,(t),F,(t),¢,(t),t € [1,,7,],i =1,2 from Egs. (4.4) and (4.1), and estimate
K,(t) from either Egs. (4.11) and (4.12) for Dauxois-Kirmani method, or Egs. (4.22) and

(4.23) for the new test method developed in this work.

A~

. Calculate m,,m,,v,;,v,,i = 1,2;j = 1,2 from Egs. (4.10), (4.8), and (4.9).
. Calculate I',4,7 from Egs. (4.6), (4.5), and (4.7).

. Calculate the p-value based on Z ~ N(0,1) to see if the test is significant (p-value being
less than the nominal significance level).

Repeat 1-8 for 1000 times and calculate the percentage of significant test, which is the

power of the method.
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45. Results and Discussions

45.1.  Examination of the existing method

First we tried to reproduce the simulation results reported by Dauxois and Kirmani by
performing simulations with same conditions as that in the literature (Dauxois and Kirmani,
2003). We modeled survival data in the context of the log-logistic distribution. The pair of

survival data have common median £ = 150 . The hypothesis of interestare H,: 3 =1 and H,:

B > 1. The null hypothesis H,: 5 =1 is rejected in favor of H : § > 1 if and only if the test

statistic Z = (n, +n,)’T' /o exceeds the 100( 1—« )" percentile of the standard normal

distribution, where « is the nominal significance level. The assessment of power against various

alternative values of 3 is obtained by carrying out Monte Carlo simulations.
For simulation purpose, two pairs of sample sizes (n,,n,) were selected, (n,,n,)=(50,60)
and (n,,n,) =(100,120). Random censoring was imposed on the data with same percentage

censoring level for the two samples. One typical example of survival data is shown in Figure 6,

the Kaplan-Meier estimate of survival functions with g =2, (¢ =1.

We reproduced the Dauxois and Kirmani’s approach by performing Monte Carlo

simulations. Our simulation results at selected 5 values for nominal significance levels a=0.02

and « =0.05 are shown in Table 4. They agree excellently with the results reported in the original

Dauxois and Kirmani paper.
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Figure 8. Kaplan-Meier estimators of survival distribution of the log-logistic data.

The two groups of survival data have common median £ = 1.0, the lower line is the baseline
with g =1, the upper line is the comparison group with g = 2.
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Table 8. Reproduction of the Monte Carlo simulation results of the original paper using the
Dauxois-Kirmani approach.

Each point is simulated for 20000 simulations, & = 150, significance level a = 0.02,0.05.

o Sample size, Censoring 6=1 6 =2 6=3 08 =4 8=06

(n,n,) level, %

0.02 (50, 60) 0 0.0058 0.5422 0.8790 0.9771 0.9987
10 0.0054 0.4943 0.8458 0.9436 0.9772

30 0.0051 0.4244 0.7594 0.8836 0.9308

(100, 120) 0 0.007/8 0.7888 0.9783 0.9981 1.0000

10 0.0075 0.7227 0.9689 0.9947 0.9986

30 0.0066 0.7025 0.9069 0.9484 0.9775

0.05 (50, 60) 0 0.0193 0.7039 0.9310 0.9891 0.9998
10 0.0200 0.6681 0.9033 0.9658 0.9853

30 0.0213 0.5540 0.8734 0.9326 0.9481

(100, 120) 0 0.0303 0.8163 0.9887 0.9991 1.0000

10 0.0301 0.8104 0.9836 0.9968 0.9992

30 0.0310 0.7912 0.9350 0.9237 0.9406
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45.2.  Simulation analysis of the extended method

From simulations we can see that the original method proposed by Dauxois and Kirmani is
rather conservative in the sense that the power is much smaller than the nominal « when the null

hypothesis is true (i.e. when 3 =1, two survival distributions are proportional in odds). The
ideal value of power for 3 =1 should be close to the value of « in order for the test method to
be most efficient. It was noticed that the standard deviation of Dauxoi-Kirmina statistic
Z = (n, +n,)"/’T" /6 is smaller than the asymptotic expected value of unity. Apparently, the

plug-in estimator of & overestimates the asymptotic standard deviation of I' resulting in
underdispersion of 7.
We performed Monte Carlo simulation of survival data following the log-logistic distribution,

with proportional or non proportional odds by varying the values of 3, using the extended

testing method with weight functions derived with the parametric assumption. One typical set of
simulation results using the new method is shown in Table 5. The simulation results show that
the extended method has an appreciably higher power in testing the validity of the proportional
odds assumption than that of the original Dauxois-Kirmani method for the log-logistic survival
data. This indicates that the inclusion of parametric information in the existing nonoparametric
approach can significantly enhance its sensitivity. It also suggests that the original method by

Dauxois and Kirmani is too conservative.
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Table 9. Monte Carlo simulation results of the log-logistic distribution data using the extended
method.

Each point is simulated for 1000 simulations, ¢ = 1.0, significance level « = 0.02,0.05.

Q Sample size, Censoring (=1 6 =2 6=3 0 =4 8=06

Ny, N2 level, %

0.02 50, 60 0 0.015 0.621 0.989 0.993 1.000
10 0.017 0.600 0.948 0.969 0.999

30 0.018 0.567 0.927 0.948 0.998

100, 120 0 0.020 0.996 0.991 0.999 1.000

10 0.022 0.957 0.945 0.988 0.999

30 0.022 0.944 0.917 0.968 0.999

0.05 50, 60 0 0.040 0.817 0.998 1.000 1.000
10 0.040 0.803 0.958 0.998 1.000

30 0.042 0.779 0.935 0.989 0.999

100, 120 0 0.048 0.981 0.998 1.000 1.000

10 0.049 0.945 0.965 1.000 1.000

30 0.052 0.924 0.944 0.998 1.000
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45.3.  Application in real data

We applied the extended method in the NSABP trial data, Protocal B-14, to comparing its
sensitivity with that of the existing Dauxois-Kirmani method. The real data have been used as
test of the new method in the first part of this proposal (see section 3.4.5). Previous work by
Jeong et al. (Jeong et al., 2003) has shown that the parametric test for the proportional odds
assumption of the Protocal B-14 data gives a small p-value of 0.000097, indicating that the data
do not satisfy the proportional odds assumption. Therefore the dataset is a good example for
testing the extended Dauxois-Kirmani method developed in this work.

Application of the new method in real data requires one to estimate the distribution
parameters using the maximum likelihood estimation method as described in section 4.3. The

parameters ((3,£) were estimated using the procedure outlined in section 4.3. By solving the

nonlinear equations (4.35) and (4.36) simultaneous we obtain the MLE estimate of (3,¢) as

B =1.2927

£—6.1214
These two values are used in using the Dauxois-Kirmani method and the extended method to
calculate the p-value upon the null hypothesis that data are proportional in survival odds. Test for
the proportional odds assumption of the real data using Dauxois-Kirmani’s nonparametric
method gives a p-value of 0.0078, and the test using our extended parametric method gives a p-
value of 0.00081, which again indicates that the extended parametric method is more sensitive

than the existing one in testing the assumption of nonproportional odds.
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4.6. Conclusion

We studied the sensitivity of a newly developed parametric method in detecting the validity
of the proportional odds model assumption between two groups of survival data. The extended
method is based on the premise that the test developed with distribution information would have
better sensitivity than a nonparametric test method. We evaluated type | error and power
probabilities of the new method by using the simulated survival data following the log-logistic
distribution. The error probabilities are compared with ones obtained from the existing method.
The results indicate that the extended method performs with a higher sensitivity than the existing

nonparametric method.
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S. FUTURE WORK

5.1. Determination of Optimal Values for ) and p

There are several open questions in our new method developed for testing the data difference
in survival distributions with nonproportonal hazards. One further task is to apply the new
method in nonproportional data with Gamma frailty. In Chapter 3, our studies were focused on
the case where the frailty is assumed to follow inverse Gaussian distribution. In reality, the
Gamma frailty is also extensively encountered in modeling nonproprotional hazards data. Under
the Gamma frailty model, the weight function given by Eq. (3.27) should be used (Oakes and
Jeong, 1998). However, the value of p has to be determined for best efficiency of the new test
method developed. The extension of the current work to Gamma frailty would be quite
straightforward.

Another primary concern is to determine the optimal value for the parameters ) used in the
weight function (3.37). In section 3.5.4 we explain qualitatively the existence of optimal value of

v . However, it would be desirable to develop a rigorous mathematical procedure for the
determination of optimal ¢ given that parametric information about the survival data is

available or can be assumed. Accordingly, we describe briefly a procedure to determine the

optimal value of ¢ via the maximum likelihood estimation (MLE) method.

The proportional hazards model incorporated with a randomization variable z; is

h(t|z,z) = exp(Bz + yz)h,(t), (5.1)
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where h,(t) is an unknown baseline hazard function. Correspondingly, the survival function is

Sl(t ’ z, Z) — So(t)exl)(ﬁz+’yzl:) .

Let
0 = exp(Bz + vz),
and
H,=—1InS,(t).
Thus

So =e ™, S1<t ’ Z, Z) = So(t)exp(mﬂm = So(t)g =

and we also have

(B =1-S5@H)=1-¢™ =

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

Similarly, if T follows Weibull distribution with parameters ( 7,p ), then the survival

function is given by

$,(t) = exp(—pt").

Substituting Eq. (5.7) into Eq. (5.4) we get

Eq. (5.6) becomes

and

Survival time can be generated using Eq. (5.10)
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where w, is from a uniform distribution «(0,1); and

0, = exp(ﬂzi + 7%)1

(5.11)

where z, is the group indicator generated from a Bernoulli distribution Bernoulli(0.5) with

B =0.5; " =w, is the frailty. We assume that w follows either Gamma or inverse Gaussion

distribution. In real applications, the distribution for w can be determined by using the graphical

method described in section 3.3. If w follows gamma distribution gamma(x,1/ k) with unity

mean and variance of p =1/, the survival function of ¢, with gamma frailty gamma(k,1/ k)

unit mean and variance 1/« is given by the Laplace transform

S(Q?"i) = p[giHO(t;:)]'

where p() is the Laplace transform of gamma distribution

p(s) =

1 K
14+s/k)

So Eq. (5.12) becomes

S(tim) = | =
/ L+ &H, () /K K+ §H,(t,)
where ¢ = ¢’ is the group indicator.
The hazard function is

OH, (1)

h(t: ) = ~ 0InS(tk) _ _Oslnk —kln(k + EH,(#))] . 57

ot ot R4 EH)()

From Eq. (5.8) we know H,(t) = pt", S0
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h(t;k) = K St __HETHy () : (5.16)
r+EH(t)  [m+EH (D))

The likelihood function of « is given by
L(r) = [ [[nts0)]" St 5), (5.17)

where

6. =1, observed

6. =0, censored

The log-likelihood function is then

In L(k Zlnh K) + ilnS(ti;/-s), (5.18)

where Z@- = r, are number of observed events. Substituting Egs. (5.14) and (5.16) into Eq.

i=1

(5.18) we obtain

k&TH,(t) - K ’
In L(k In L0 4N In|————
; "f + fiHo(tz‘)]ti ; K+ fiH()(ti)
= Z{ln kT +Iné +InHy(t)—Int, —Ink + EH(¢,)]} (5.19)
Z]:Vl
+> {kInk —kIn[x + EH, ()]}
i=1
Taking derivative in terms of x gives
OlnL(k) r 1 - K
=—— ——— 4+ N(nk+1)— In[k + H, (L) + —————¢ -
Ok Kk ia ’f'f'SiHo(ti) ( ) ;{ | “ 0(7)] /‘i‘f‘ngo(tz)}

So « can be estimated by solving the equation

=

r - 1 . -
;_z:1m+ (Ink +1)— ;{IHH—FgH )]—Fm}—o. (5.20)
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Similar procedure can be applied to survival data with inverse Gaussian frailty. If the frailty

follows an inverse Gaussian distribution rinvGauss(1,2¢) with unit mean and variance 1/21,
the survival function of ¢, is given by the Laplace transform
St ) = pl&H, ()], (5.21)
where p() is the Laplace transform of inverse Gaussian distribution
p(s) = exp{=2[¥(¥ + 5)]"* + 20} . (5.22)
So Eq. (5.21) is
S(t;) = exp{=2[e(¥ + EH, (1))]"* + 2}, (5.23)
where & = e’ is the group indicator.
The hazard function is

n . . 1/2
i) =~ 2S00 DAty + L +20)
aH (t) . (5.24)

\/E&'Ho(t)
Jw + £H () 1o+ EH, (1)

_ o

The log-likelihood function is then

In ()= Y tj;f_:fH F 3o+ A +20)

_Z{ Ine +In& +1In7 -+ In Hy(t) — lnti—%ln[@b%—fi[{o(ti)]}, (5.25)

—22 Y+ EH ()] 4+ 2Ny

Taking derivative in terms of ¢ gives

dlnL{Y) 1 1L 1 ZN: 2y + {H, ()
“ow Y < Jul

o0 20 2%t EH) U+ EH,(L)]

So ¢ can be estimated by solving the equation
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r IR 1 = 2¢ + &:Ho(ti>
N - 49N — =0. 5.26
2 25 v+ &'H()(tz') ; \/¢[w + £iH()(ti)] ( )

Egs. (5.20) and (5.26) determine the optimal values of p and v from MLE. Simulation

procedures similar to those described in section 3.4 can be developed to model the process
derived above.

For real data, we have to estimate the optimal values of p or v together with the parameters
7 and p simultaneously under some assumption about the survival data ¢, and ¢, (for example,

Weibull or exponential), and about the frailty w (for example, inverse Gaussian or gamma).

5.2.  Linear Regression Test of Nonproportional Odds

As discussed in section 4.1, the proportional odds assumption of survival data can also be

tested using a simple method by examination of the relationship between the odds ratio

>

s

5 SWp- 0<t>{

(
(B[1- 5,1

>
>

versus time. The survival functions ﬁi(t) can be estimated by the Kaplan-Meier method. The
linear regression method is simple in mathematics, and easy to use. However, it is limited in one
aspect that the plot of logé vs. log¢ could be ambiguous when the data size is small where one
can not obtain a clean curve to show the dependence of the odds ratio and time, due to data
fluctuations. The method can be improved if a test statistic for the linear model regression
method proposed can be developed. The Im package included in R or Splus assumes that the

slope of the linear model follows a student’s t distribution. Our preliminary simulation test using
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the Im function in Splus indicates that rejection rate of null hypotheses at 5 = 1 is significantly

higher than the nominal significance level. This implies that the statistic employed in the Im
function in Splus may not be suitable for testing the null hypothesis in section 4.6. It would be
desirable to derive an appropriate test statistic for the linear regression method proposed.

Linear model regression can be used to fit the relationship between the odds ratio and time if
after manipulations the relationship between a function of odds ratio and time satisfies the
following assumptions (1) linearity of the relationship between dependent and independent
variables; (2) independence of the errors; (3) constant variance of the errors versus time and the
predictions; and (4) normality of the error distribution.

Taking the log-logistic distribution as an example, the odd ratio

G €1 s
M= " e - ¢

which is
Inf(t)=(3—1)Int+(1— B)In¢. (5.27)
The proportional odds assumption corresponds to that 3 =1.

Therefore, by examining the estimated value of 3 through regression of Iné as a function of

Int, one can readily tell if the survival distributions are proportional in odds. Let

Inf =a +blnt,
then we have
H :6=0 proportional odds
H :b=0 nonproportional odds

If the survival data is proportional in odds, the slope of line (5.27) should be close to zero

when 5 =1. Otherwise, the slope would not be close to zero. If an appropriate statistical
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distribution can be postulated for the slope, a test statistic can be derived, given that the

dependence of In @ and time satisfies the four principal assumptions for using linear regression

model.
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APPENDIX A

Simulation Programs

Here we attached all the computing programs. Program 1.1~1.10 are for the algorithms used in
the first part of this proposal, namely, simulations and real data calculations on using the new
method to test the survival distribution difference for nonproportional hazards data.

Program 2.1~2.7 are the programs for the testing of proportional odds assumption using Dauxois
and Kirmani’s method and the new method. For simulations with large samples and significant
number of replications, R program runs very slow. Therefore, we developed FORTRAN 77
programs to do the same task, which is very fast. The FORTRAN program is also attached.

Programs for new method on testing the survival distribution difference

Program 1.1: Testing the proportional hazards assumption using cox.zph.

# Simulation project with Cox model, Qing Xu
#

### divide random data into 10 groups for non proportional hazard ratio
nt<-200; nl<-nt/10; n2<-nl1*2; n3<-nl1*3;

n4<-nl*4; n5<-nl*5; n6<-nl*6; n7<-nl*7;

n8<-n1*8; n9<-n1*9; nl0<-nl1*10

### each group is characterized by a factor
# late difference

#factorl<-1.0; factor2<-0.99; factor3<-0.98;
#Ffactor4<-0.97; factor5<-0.95; factor6<-0.93;
#factor7<-0.91; factor8<-0.89; factor9<-0.87;
#factorl0<-0.85;

#early difference

#Ffactorl<-0.85; factor2<-0.8; factor3<-0.75;
#factor4<-0.8; factor5<-0.85; factor6<-0.9;
#factor7<-0.93; factor8<-0.95; factor9<-0.97;
#factorl0<-0.99;

# middle difference

factorl<-0.99; factor2<-0.95; factor3<-0.9;
factor4<-0.85; factor5<-0.8; factor6<-0.8;
factor7<-0.85; factor8<-0.9; factor9<-0.95;
factorl0<-0.99;

### set baseline hazard function h_0(t)=rho
myrho<-0.3;

### set data set size

nii<-200;

### set loop index
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i1i<-0;
#H## counter
ipl<-0;

repeat{
1i<-1i+l;
### generate proportional data mytl
myu<-sort(runif(nt));
mytl<-log(1-myu)/myrho*(-1);
### generat nonproportional data myt2

myt2<- mytl

for (i 1:n1) {myt2[i]<-factorl*myti[i]};

for (i in (n1+1):n2){myt2[i]<-factor2*myti[i]};
for (i in (n2+1):n3){myt2[i]<-factor3*mytli[i]};
for (i in (n3+1):nd4){myt2[i]<-factord*myti[i]};
for (i in (n4+1):n5){myt2[i]<-factor5*myti[i]};
for (i in (n5+1):n6){myt2[i]<-factor6*myti[i]};
for (i in (n6+1):n7){myt2[i]<-factor7*mytli[i]};
for (i in (n7+1):n8){myt2[i]<-factor8*myti[i]};
for (i in (n8+1):n9){myt2[i]<-factor9*myti[i]};
for (i in (n9+1):n10){myt2[i]<-factorlO*mytli[i]};

### generate censoring range

tmax <- max(mytl, myt2);

tmin <- min(mytl, myt2);

mycl <- runif(nt, tmin, tmax);

myc2 <- runif(nt, tmin, tmax);

### set censored data randomly, censored=Ci<ti(???)
myTlst<-rep(l,nt);

myT2st<-rep(l,nt);

for(i in 1:nt){if(mytl[i]>mycl[i])myT1lst[i]<-0};
for(i in 1:nt){if(myt2[i]>myc2[i])myT2st[i]<-0};

### set group
mygpTl<-rep(0,nt);
mygpT2<-rep(1,nt);

### generate data frame (t, status, group)
futime<-c(mytl,myt2);

fustat<-c(myTlst,myT2st);

mygroup<-c(mygpT1,mygpT2);

mydata.df<-data.frame(futime, fustat,mygroup);

### use Cox model to fit the data

myfit<-coxph(Surv(futime, fustat)~mygroup,data=mydata.df,x=T) ;
mytemp<-cox.zph(myfit)

### see how many p-value are smaller than 0.05
pl<-mytemp$table[1,]1[3]1;
iT(p1<0.05)ipl<-ipl+l;
if(ii>=nii)break;
}
ipl;
### below are only use for single step run
#mydata.surv<-survfit(Surv(futime, fustat)~mygroup,mydata.df);
#plot(mydata.surv,xlab="T",ylab="% surviving",cex=2,1ty=2:3);
#title(Simulation result™);
#print(mytemp);
#plot(mytemp);

Program 1.2: Simple log-rank test, Harrington-Fleming’s weighted log-rank test, and test with
the new weight function

### Simulation with nonproportional data, with 10 factors, from 0.1 to 1.0
### by Qing Xu, September 2004
#

### divide random data into three subgroups for frailty implantation
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nt <- 1500; nl <- nt/10; n2 <- nl1*2; n3 <- n1*3;
n4d <- nl*4; n5 <- nl1*5; n6 <- nl*6; n7 <- nl*7;
n8 <- nl1*8; n9 <- nl1*9; nl0 <- nl1*10

### each group is characterized by a factor, later, early, middle difference for each

factorls <- ¢ (1.00, 0.99, 0.85);
factor2s <- ¢ (0.99, 0.95, 0.80);
factor3s <- ¢ (0.98, 0.90, 0.75);
factor4s <- ¢ (0.97, 0.85, 0.80);
factor5s <- ¢ (0.95, 0.80, 0.85);
factor6s <- ¢ (0.93, 0.80, 0.90);
factor7s <- ¢ (0.91, 0.85, 0.93);
factor8s <- ¢ (0.89, 0.90, 0.95);
factor9s <- ¢ (0.87, 0.95, 0.97);
factorlOs<- ¢ (0.85, 0.99, 0.99);

### set how many set of data you want to simulate, here is 3 (late, early, middle)
nd <- 3;

### set baseline hazards function

rhos <- ¢ (0.001, 0.1, 0.3);

### set how many rho values you want to simulate, here is 3
nr <- 3;

### paramter for new weighting function

etas <- ¢ (6, 1, 0.01);

### set how many etas you want to simulate, here is 3
ne <- 3;

### number of simulations
n.iter <- 1000;

### parameters for H-F weighting function
ps <- ¢ (0, 1, 1);
gs <- ¢ (1, 0, 1);

### set a control number, nctrl=nd X nr x ne = 3 x 3 x 3=27
ictrl <- 0;
nctrl <- nd*nr*ne;

### set initial values for the recording numbers
hfgtnew <- rep(0, nctrl);
logrankgtnew <- rep(0, nctrl);
wilcoxgtnew <- rep(0, nctrl);
newlta <- rep(0, nctrl);

hflta <- rep(0, nctrl);
logranklta <- rep(0, nctrl);
wilcoxlta <- rep(0, nctrl);
pave.logrank <- rep(0, nctrl);
pave.wilcox <- rep(0, nctrl);
pave_.hf <- rep(0, nctrl);
pave.new <- rep(0, nctrl);

### define a variable to identify the data type
datatype <- rep(“aaaaa”, nctrl);

### eta and rho values

etavalue <- rep(0, nctrl);

rhovalue <- rep(0, nctrl);

### loops
for(id in 1:nd)
{

### use current factors
factorl <- factorls[id];
factor2 <- factor2s[id];
factor3 <- factor3s[id];
factor4 <- factor4s[id];
factor5 <- factor5s[id];
factor6 <- factor6s[id];
factor7 <- factor7s[id];
factor8 <- factor8s[id];
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factor9 <- factor9s[id];
factorl0 <- factorlOs[id];

### set the right H-F parameters, p, q
p <- ps[id];
q <- gslid];

for(ir in 1:nr)

### use current rho
rho <- rhos[ir];
for(ie in 1:ne)

### use current eta

eta <- etas[ie];

### set initial values for p values
p-logrank <- rep(0,n.iter);
p-wilcox <- rep(O,n.iter);

p-hf <- rep(0,n.iter);

p-new <- rep(O,n.iter);

### 1increment the control number
ictrl <- ictrl + 1;

### main loop
for (it in 1l:n.iter)

### generate survival data group one: tl
u <- sort(runif(nt));

tl <- log(1l-u)/rho*(-1);

T2 <- t1;

### generate survival data group two: t2

for (i in 1:nl) {€2[i] <- factorl*tl[l]}

for (i in (n1+1):n2) {t2[i] factor2*tl[il};
for (i in (n2+1):n3) {t2[i] <- factor3*tl[i]};
for (i in (n3+1):n4) {t2[i] <- factord*ti[i]l};
for (i in (n4+1):n5) {t2[i1] <- factor5*tl[i]};
for (i in (n5+1):n6) {t2[i] <- factor6*tli[i]};
for (i in (n6+1):n7) {t2[i1] <- factor7*tl[i]};
for (i in (n7+1):n8) {t2[i] <- factor8*ti[i]};
for (i in (n8+1):n9) {t2[i] <- factor9*tll[i]};
for (i in (n9+1):n10) {t2[1] <- factorlO*tl[i]};

### generate censoring range according to the data range

tmax <- max(tl,t2); # the upper limit of t
tmin <- min(tl,t2); # the lower limit of t
tcl <- runif(nt,tmin,tmax);
tc2 <- runif(nt,tmin,tmax);

### set censored data randomly,cl[i], c2[i] =1 if censored

cl <- rep(0,nt);
c2 <- rep(0,nt);
for(i in 1:nt) {|f (ti[i] > tc
for(i in 1:nt) {if (L2[i] > tc

itmax <- nt*2;
time.temp<-sort(c(tl,t2), index.return=TRUE)
t<-time.temp$x; tindex<-time.temp$ix;

### Yl(n.risk), di(n.event), ccl(n.sensor), Y2, d2, c2

yl <- rep(nt,itmax);
y2 <- rep(nt,itmax);
dl <- rep(0,itmax);
d2 <- rep(0,itmax);
ccl <- rep(0,itmax);
cc2 <- rep(0,itmax);

### calculate number at risk
for (i in 2:itmax)

Ef(tindex[i]<:nt)

93



y2[i]<-y2[i-1];
if(c[i]==0) di[i]<-1;
ccli]<-c[i];
yi[i]<-y1l[i-1]-1

if(tindex[i]>nt)

yi[i]<-y1l[i-1];
if(c[i]==0) d2[|]< 1;
cc2[i]<-c[i];
y2[r]<-y2[i-1]-1
h
b

### calculate Y=Y1+Y2, d=d1+d2, Y1*(d/Y), d1-Y1*(d/Y)
y <- yl + y2;

d <- dl1 + d2;

yldy <- y1*(d/y);

dlyldy <- dl - yldy;

### big one
big <- rep(0,itmax);
for(i in 1l:itmax)

it(y[
(bi
};

### common survival function

ss <- (1-d/(y+1));

### common survival function during t(i-1) to t(i)
sl <- rep(l1,itmax);

### common survival function during t(i) to t(i+l)
sO <- ss;

for (i in 2:itmax)

i] 1= vyi[i])
glil< (yl[l]/y[l])*(1 YiLil/y[iD*((yLil-d[i1)/(y[1]1-1))*d[il);

{sl [i] <- si[i-1]*ss[i];
§0 [i] <- sO[i-1]1*ss[i];

### simple log rank test, w(t)=1

zlogrank <- sum(dlyldy)/((sum(blg))AO 5);

if(zlogrank < 0) (p-logrank[it] <- 2*pnorm(zlogrank));
if(zlogrank > 0) (p-logrank[it] <- 2*(1-pnorm(zlogrank)));

### wilcoxon (Peto-Peto) logrank test, w(t)=s(t)

upper <- s0*dlyldy;

lower <- s0*sO*big;

zwilcox <- sum(upper)/((sum(lower))”0.5);

if(zwilcox > 0) (p-wilcox[it] <- 2*(1-pnorm(zwilcox)));
if(zwilcox < 0) (p.wilcox[it] <- 2*pnorm(zwilcox));

### F-H weighting function, w(t)=sl1p*(1-s1)”q
hfw <- (s17p)*((1- S1)"C|)

upperhf <- hfw*dlyldy;

lowerhf <- hfw*hfw*big;

zhT <- sum(upperhf)/((sum(lowerhf))~0.5);
if(zhf > 0)(p-hf[it] <- 2*(A-pnorm(zhf)));
if(zhf < O)(p-hfLit] <- 2*pnorm(zht));

### new weight function, 1/2+(2*etan2)/(2*eta-log[s])"2
weight <- 0.5 + (2*etan2)/(2*eta-l1og(s0))"2;

uppernew <- weight*dlyldy;

lowernew <- weight*weight*big;

znewweight <- sum(uppernew)/((sum(lowernew))”0.5);
if(znewweight < 0)(p-new[it] <- 2*pnorm(znewweight));
if(znewweight > 0)(p.new[it] <- 2*(1-pnorm(znewweight)));

### calcualte how many p.hf > p.new
hfgtnew[ictrl] <- hfgtnew[ictrl] + 1*(p.-hf[it] > p.new[it]);

### calculate how many p.logrank > p.new
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logrankgtnew[ictrl]<-logrankgtnew[ictri]+1*(p.logrank[it] > p.new[it]);

### calculate how many p.wilcox > p.new
wilcoxgtnew[ictrl] <- wilcoxgtnew[ictrl] + 1*(p.wilcox[it] > p.new[it]);

### calculate how many pvalues are less than 0.05
newlta[ictrl] <- newlta[ictrl] + 1*(p.new[it] < 0.05);
hflta[ictrl] <- hfltafictrl] + 1*(p.-hf[it] < 0.05);
logranklta[ictrl] <- logranklta[ictrl] + 1*(p.logrank[it] < 0.05);
wilcoxlta[ictrl] <- wilcoxltalictrl] + 1*(p.wilcox[it] < 0.05);

}; # end of main loop

### record the control identification;
if(id == 1)(datatype[ictrl] <- “late");
if(id == 3)(datatypel[ictrl] <- "early™);
if(id == 2)(datatypel[ictrl] <- "middle®);
rhovalue[ictrl] <- rho;

etavaluelictrl] <- eta;

### average p-value for each test
pave.logrank[ictrl] <- sum(p.logrank)/n.iter;
pave._wilcox[ictrl] <- sum(p.wilcox)/n.iter;
pave.hf[ictrl] <- sum(p.hf)/n.iter;
pave_new[ictrl] <- sum(p-new)/n._iter;
}; # end of ie loop
}; # of ir loop
}; # end of id loop

### get the data and print;

result <- data.frame
(datatype,etavalue,rhovalue, pave. logrank, pave.wilcox,pave.hf,pave.new, logranklta,wilco
xlta,hflta,newlta,hfgtnew, logrankgtnew,wilcoxgtnew) ;

result;

Program 1.3: Real data application, using cox.zph to test the proportional hazards assumption

# read in real data
dd<-read.table('d:xuqing/phdthesis/qingbl4_txt", header=TRUE, sep=",")

# dd$group; #group 1 placebo, group 2 tamoxifen group
itmax<-2817;
time. temp<-sort(dd$time, index.return=TRUE)
t<-time.temp$x; tindex<-time.temp$ix;
g<-rep(0,itmax); c<-g; e<-c;
for (i in 1l:itmax)
{
fi<-tindex[i];
c[il<-dd$indi.events[ii];
gl i]<-dd$group[ii];
e[i]l<-dd$events[ii];

newdata<-data.frame(g,e,t,c,tindex);
#newdata;

y1<-0; y2<-0; cl<-0; c2<-0;

for (i in 1l:itmax)

L
Ef(g[l]==1)
yl<-yl+1;
3 cl<-cl+c[i];
if(g[i]==2)
y2<-y2+1;
c2<-c2+c[i];
}
}
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yl; # number of objects in group 1

y2; # number of objects in group 2

cl; # observed events in group 1

c2; # observed events in group 2
sum(c); #total number of censored data

Sl<-rep(l,itmax); S2<-S1; yyl<-rep(yl,itmax); yy2<-rep(y2,itmax);
iIf(g[1]==1)yl<-yl-1;

if(g[1]==2)y2<-y2-1;

for (i In 2:itmax)

if(gLi]==1)
{

yyl[i]<-yl;

yy2[i]<-yy2[i-1];

S2[1]<-S2[i1-1];

if(c[il==1) {S1[i]<-S1[i-1]*(1-1/y1);}
if(c[i]==0) {Si[i]<-S1[i-1];}
yl<-yl-1;

) -
1f(gli]==2)
{

yy2[i]<-y2;
yyllil<-yyl[i-1];
S1[i]<-S1i[i-1];
if(c[i]==1) {S2[i]<-S2[i-1]*(1-1/y2);}
if(c[i]==0) {S2[i]<-S2[i-1]:}
y2<-y2-1;
¥
}

datal<-data.frame(t,yyl,yy2,S1,S2);
datal;

#tt<-t[1:1855];SS1<-S1[1:1855];SS2<-S2[1:1855];
#plot(tt,SS1,"S™); lines(tt,SS2,S™);
plot(t,S1,"S™);lines(t,S2,"S™);

# use Cox model to fit the data
myfit<-coxph(Surv(t,c)~g,data=newdata,x=T) ;
mytemp<-cox.zph(myfit)

print(mytemp);

plot(mytemp);

# see p-value
pl<-mytemp$table[1,]1[3]1;
pl;

mydata.surv<-survfit(Surv(t,c)~g,newdata);
plot(mydata.surv,xlab="T",ylab="% surviving",cex=2,1ty=2:3);
title("Simulation result");
legend(c(5,7.5),c(0.85,0.72) ,c('group 1", group 2"),1ty=2:3);

Program 1.4: Real data application, using simple log-rank, Harrington-Fleming weight log-rank,
new method to test the survival distribution difference

# read in real data

dd<-read.table('d:xuqing/phdthesis/qingbl4_txt", header=TRUE, sep=",")

# dd$group; #group 1 placebo, group 2 tamoxifen group

itmax<-2817;

time. temp<-sort(dd$time, index.return=TRUE)

t<-time.temp$x; tindex<-time.temp$ix;

g<-rep(0,itmax); c<-g; e<-c;

for (i in 1l:itmax)

ii<-tindex[i];
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c[i]<-dd$indi.events[ii];
gli]<-dd$group[ii];
e[i]<-dd$events[ii];

newdata<-data.frame(g,e,t,c,tindex);
#newdata;

ylt<-0; y2t<-0; cl<-0; c2<-0;

for (i in 1l:itmax)

if(gLi]==1)
{

ylt<-ylt+1;
cl<-cl+c[i];

) -
1f(gli]==2)
{

y2t<-y2t+1;
c2<-c2+c[i];

}

yl; # number of objects in group 1

y2; # number of objects in group 2

cl; # observed events in group 1

c2; # observed events in group 2
sum(c); #total number of censored data

Sl<-rep(l,itmax); S2<-S1; yl<-rep(ylt,itmax); y2<-rep(y2t,itmax);
dl <- rep(0,itmax);d2 <- rep(0,itmax);
ccl <- rep(0,itmax);cc2 <- rep(0,itmax);

for (i in 2:itmax)
if(glil==1)
{

y2[i]<-y2[i-1];
if(c[i]==1) di[i]<-1;
ccl[i]<-1-c[i];

3 yl[i]<-y1[i-1]-1;

Ef(g[i]==2)
yl[i]<-yl[i-1];
if(c[i]==1) d2[i]<-1;
cc2[i]<-1-c[i];

3 y2[i]<-y2[i-1]-1;

for (i In 2:itmax)
i1f(gli]==1)
{

S2[1]<-S2[i1-1];
if(y1l[i]1'=0)S1[i]l<-S1[i-1]*(1-d1[i]/y1[i]);
if(yl[i]==0)S1[i]1<-S1[i-1];

)
1f(gLi]==2)
{

S1[i]<-S1[i-1];
iT(y2[1]1=0)S2[i]<-S2[i-1]1*(1-d2[i]/y2[i]);
y if(y2[i]==0)S2[i1]1<-S2[i-1];
}

plot(t,S1,"S™);lines(t,S2,"S™);
### set the H-F parameters, p, q
p <- 0.5;

q <- 0.5;

#H## use current eta
eta <- 1;
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### calculate Y=Y1+Y2, d=dl1+d2, Y1*(d/Y), di-Y1*(d/Y)
y <=yl + y2;

d <- dl + d2;

cc<- ccl+cc2;

yldy <- y1*(d/y);

dlyldy <- dl1 - yildy;

### variance
big <- rep(0,itmax);
for(i in 1:itmax)

if(y[i] '= y1[i]) _ . ) . ] ] .
iglil<-1L1/yLiD*Q-y1[11/y[iD*((yL11-dLiD/(y[11-1))*d[iD);

### common survival function

ss <- (1-d/(y+1));

### common survival function during t(i-1) to t(i)
sl <- rep(l,itmax);

### common survival function during t(i) to t(i+l)
sO <- ss;

for (i In 2:itmax)

sl [i] <- si[i-1]*ss[i];
sO [i] <- sO[i-1]*ss[i];

data<-data.frame(t,c,g,d,y,cc,s0,sl1,dl,yl,ccl,d2,y2,cc2,S1,S2)
data;

### simple log rank test, w(t)=1

zlogrank <- sum(dliyldy)/((sum(big))”0.5);

if(zlogrank < 0) (p-logrank <- 2*pnorm(zlogrank));
if(zlogrank > 0) (p-logrank <- 2*(1-pnorm(zlogrank)));

### wilcoxon (Peto-Peto) logrank test, w(t)=s(t)
upper <- s0*dlyldy;

lower <- s0*s0*big;

zwilcox <- sum(upper)/((sum(lower))”0.5);
if(zwilcox > 0) (p-wilcox <- 2*(1-pnorm(zwilcox)));
if(zwilcox < 0) (p.wilcox <- 2*pnorm(zwilcox));

### F-H weighting function, w(t)=s2"p*(1-s2)q
hfw <- (s17p)*((1- S1)"(1)

upperhf <- hfw*dlyldy;

lowerhf <- hfw*hfw*big;

zhf <- sum(upperhf)/((sum(lowerh¥))”0.5);
if(zhf > 0)(p-hf <- 2*(1-pnorm(zht)));

if(zhf < O)(p-hfLit] <- 2*pnorm(zhf));

### new weight function, 1/2+(2*eta”2)/(2*eta-log[s])"2
weight <- 0.5 + (2*etan2)/(2*eta-log(s0))"2;

uppernew <- weight*dlyldy;

lowernew <- weight*weight*big;

znewweight <- sum(uppernew)/((sum(lowernew))”0.5);
if(znewweight < 0)(p-new <- 2*pnorm(znewweight));
if(znewweight > 0)(p-new <- 2*(1-pnorm(znewweight)));

# p-values
p-new; p.hf; p.wilcox; p-.logrank;

Program 1.5: Plot of new weight function as a function of parameter

# set survival time [0,25]
t<-seq(0,25,by=0.5)

# for exponential distributions,
rho<-0.3

s<-exp(-rho*t)
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# weight function

phi<-5

wl<-0.5+2*phi*phi/(2*phi-log(s))"2

phi<-1

w2<-0.5+2*phi*phi/(2*phi-log(s))"2

phi<-0.1

w3<-0.5+2*phi*phi/(2*phi-log(s))"2
plot(t,w3," 1", main="weight function vs. survival time')
lines(t,w2)

lines(t,wl)

legend(16,0.75,"phi=5",bty="n"")
legend(2.5,0.75,"phi=1",bty="n"")
legend(-0.5,0.7,"phi=0.1",bty="n"")
legend(10,0.95,"Exponential distribution, baseline rho=0.3",bty="n")

Program 1.6: Example of diagnostic plot of survival data with inverse Gaussian frailty.

### set parameter xi and beta

xi <- 1000; # constant, mean

lambda <- 10; # parameter

nt<- 2000;

beta <- 2;

### generate survival data following Weibull distribution

ul <- sort(runif(nt)); #sorted uniform random data
t <- (-1)*xi*log(1l-ul); #convert into survival time

s <- (t/xi)"beta;
S <- exp(lambda*(1-sqrt(2*s/lambda+1)));

plot(log(t),log(-10g(S)))
legend(2,0,"lambda=10",bty="n"")

Program 1.7: Example of diagnostic plot of survival data with gamma frailty.

### set parameter xi and beta

Xi <- 1000; # constant, mean

lambda <- 0.1; # parameter

nt<- 2000;

beta <- 2;

### generate survival data following Weibull distribution

ul <- sort(runif(nt)); #sorted uniform random data
t <- (-1)*xi*log(1l-ul); #convert into survival time

s <- (t/xi)"beta;
S <- (1+s/lambda)”~(-lambda);

plot(log(t).-10g(S))
legend(2,0,"lambda=10",bty="n"")

Program 1.8: Simulations on the MLE of inverse Gaussian frailty parameters.

# Use MLE to estimate the 1G parameters of the frailty
# for exponential survival data with explicit frailty implanted
#

### divide random data into 10 groups for non proportional hazard ratio
nt<-200; # sample size
n<-nt/10; # subgroup size
f<-c(0.85,0.8,0.75,0.8,0.85,0.9,0.93,0.95,0.97,0.99); #early difference
#  £<-c(0.99,0.95,0.9,0.85,0.8,0.8,0.85,0.9,0.95,0.99); #middle difference
#  £<-c(1,0.99,0.98,0.97,0.95,0.93,0.91,0.89,0.87,0.85); #late difference
theta<-c(rep(f[1].,n),rep(f[2],n),rep(Ff[3].,n),rep(f[4].,n),rep(f[5].n),
rep(F[6].n),rep(fL7]1.n),rep(f[8],n),rep(f[9].n),rep(f[10],n));
#i# set basellne hazard function h O(t)—r o)
rho<-0.3;
#i# set frailty distribution parameter, lambda of 1G distribution
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nu<-1.0; lambda<-1; #nu=mean, lambda=2*phi, variance=1/lambda
### set number of simulations

nii<-1000;
### set loop index

1i<-0;
### censor level

censorlvl <- 0;

t0<-0; tm<-0;

lambda.cum<-rep(0,nii);
repeat{
1i<-1i+l;
### generate random uniform numbers
u<-sort(runif(nt));
### generate frailty w follwing IG distribution
w<-sort(rinvGauss(nt,nu, lambda),decreasing=FALSE);
### generate exponential times with frailty implanted
tl<-(-1)*log(1-u)/(rho*w);
t2<-tl*theta; #implant difference
### generate censoring
if(censorlvi>0){
tcl <- (runif(nt,min=t0,max=tm));
tc2 <- (runif(nt,min=t0,max=tm));
for(i in 1:nt)

if (t1[i] > tci[i]) ci[i] <- 1;
3: it (e2[i] > tc2[i]) c2[i] <- 1;

### survival time table
th<-sort(c(tl,t2), index.return=TRUE);
t<-tb$x; tindex<-tb$ix;
itmax<-nt*2; # total number of data points
### calculate survival function using Kaplan-Meier method
Sl<-rep(l,itmax); S2<-rep(l,itmax);
# yyl<-rep(nt, itmax);yy2<-rep(nt, itmax);
if(tindex[1]<=nt) {yl<-nt-1; y2<-nt;}
if(tindex[1]>nt) {yl<-nt; y2<-nt-1};
for (i in 2:itmax)

{ if(tindex[i]<=nt){
# yylli]<-yl;
# yy2[i]<-yy2[i-1];
S2[i]<-S2[i1-1];
if(censorlvi>0){
if(ci[i]==0) {S1[i]<-S1[i-1]1*(1-1/y1);}
if(cl[i]==1) {Si[i]<-Si[i-1];:}
if(censorlvl==0){S1[i]<-S1[i-1]*(1-1/y1);}
yl<-yl-1;
%f(tindex[i]>nt){
# yy2[i]<-y2;
# yylli]<-yyl[i-1];
S1[i]<-S1i[i-1];
if(censorlvi>0){
if(c2[i]==0) {S2[i]1<-S2[i-1]1*(1-1/y2);}
if(c2[i]==1) {S2[i]<-S2[i-1];}
if(censorlvl==0){S2[i]<-S2[i-1]*(1-1/y2);}
y2<-y2-1;
}
}

### calculate w[i]
w.hat<-rep(0, itmax); ww<-rep(0, itmax)
for(i in 1l:itmax){
theta.temp<-theta[trunc(i/2)];
iT(S1[i]<1 && S2[i]<1 && S1[1]>0 && S2[i]>0){
w_hat[1]<-1og(S2[i])/(theta.temp*log(S1[i]));
wwli]<-(w.hat[i]-1)"2/w.hat[i];
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}

datal<-data.frame(t,S1,S2,w.hat,ww);
# datal;

### estimate of lambda from MLE

lambda.hat<-nt/sum(ww) ;

# lambda.hat;
lambda.cum[ii]<-lambda.hat
### estimate of phi = half lambda.hat
if(ii>=nii)break;

lambda.cum;
mean(lambda.cum);
var (lambda.cum);

Program 1.9: Simulations on the MLE of gamma frailty parameters.

# Use MLE to estimate the gamma parameters of the frailty

# for exponential survival data with explicit failty implanted

#

### divide random data into 10 groups for non proportional hazard ratio

nt<-200; # sample size
n<-nt/10; # subgroup size
#  ¥<-c(0.85,0.8,0.75,0.8,0.85,0.9,0.93,0.95,0.97,0.99); #early difference
#  ¥<-c(0.99,0.95,0.9,0.85,0.8,0.8,0.85,0.9,0.95,0.99); #middle difference
f<-c(1,0.99,0.98,0.97,0.95,0.93,0.91,0.89,0.87,0.85); #late difference
theta<-c(rep(f[1].,n),rep(f[2],n),rep(f[3].n), rep(f[4] n),rep(f[5]1.n),
rep(f[6].n),rep(f[7].n), rep(f[S].n) rep(f[91.n),rep(f[10],n));
### set baseline hazard function h _0(t)=rho

rho<-0.001;
#Hi# set frailty distribution parameter,
kappa<-1.0; scale<-1/kappa; #shape=kappa, scale=rho=1/kappa
### set number of simulations
nii<-1000;
### set loop index
1i<-0;
### censor level
censorlvl <- 0;
t0<-0; tm<-0;

kappa.cum<-rep(0,nii);
repeat{
1i<-1i+l1;
### generate random uniform numbers
u<-sort(runif(nt));
### generate frailty w follwing gamma distribution
w<-sort(rgamma(nt,kappa,scale),decreasing=FALSE);
### generate exponential times with frailty implanted
tl<-(-1)*log(1-u)/(rho*w);
t2<-tl*theta; #implant difference
### generate censoring
if(censorlvi>0){
tcl <- (runif(nt,min=t0,max=tm));
tc2 <- (runif(nt,min=t0,max=tm));
for(i in 1:nt)
{
it (tl[i] > tcifi

i i 1) cifi] <- 1
if (t2[i] > tc2[i]) c2[i] <- 1:

I—II—I

kB

### survival time table
th<-sort(c(tl,t2), index.return=TRUE);
t<-tb$x; tindex<-tb$ix;
itmax<-nt*2; # total number of data points
### calculate survival function using Kaplan-Meier method
Sl<-rep(l,itmax); S2<-rep(l,itmax);
# yyl<-rep(nt, itmax) ;yy2<-rep(nt, itmax);
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if(tindex[1]<=nt) {yl<-nt-1; y2<-nt;}
if(tindex[1]>nt) {yl<-nt; y2<-nt-1};

0){S1[i]<-S1[i-1]*(1-1/y1);}

0){S2[i]1<-S2[i-1]*(1-1/y2);}

w_hat[1]<-1og(S2[i])/(theta.temp*log(S1[i]));

### solve the nonlinear equation for kappa using Newton type algorithm

#target function to minimize
#minimization using nim

for (i in 2:itmax)
if(tindex[i]<=nt){
# yyi[iJ<=yi; °
# yy2[i]<-yy2[i-1];
S2[i]<-S2[i1-1];
if(censorlvi>0){
if(ci[i]==0) {S1[i]<-S1[i-1]1*(1-1/y1);}
if(cl[i]==1) {Si[i]<-Si[i-1]1;}
if(censorlvi==
yl<-yl-1;
}
if(tindex[i]>nt){
# yy2[i]<-y2;
# yyl[li]<-yyl[i-1];
S1[i]<-S1i[i-1];
if(censorlvi>0){
if(c2[i]==0) {S2[i]1<-S2[i-11*(1-1/y2);}
if(c2[i]==1) {S2[i]<-S2[i-1];}
if(censorlvil==
y2<-y2-1;
}
}
### calculate w[i]
w.hat<-rep(0, itmax); logw<-rep(0, itmax)
for(i in 1l:itmax){
theta.temp<-theta[trunc(i/2)];
iT(S1[i]<1 && S2[i]<1 && S1[1]>0 && S2[i]1>0){
logw[i]<-log(w.hat[i]);
}
datal<-data.frame(t,S1,S2,w.hat, logw);
# datal;
### estimate of kappa from MLE
a<-sum(logw) ;b<-sum(w.hat) ;c<-(a-b)/itmax;
f<-function(ka) (c+log(ka)+l-digamma(ka))”"2
aa<-nIm(f,1);
if(aa$minimum[1]<le-5){kappa.hat<-aa$estimate[1];}
kappa.-cum[ii]<-kappa.hat
if(ii>=nii)break;
kappa.cum;

mean(kappa.cum);
var (kappa.cum);

Program 1.10: Simple log-rank test, Harrington-Fleming’s weighted log-rank test, test with the
new weight function, test with the new weight function supreme version

### divide random

nt <- 1500;
n4 <- nl*4;
n8 <- nl*8;

### each
factorils
factor2s
factor3s
factor4s
factorbs
factor6s
factor7s

group
<- ¢ (1.

<-—
<-
<-—
<-
<-—
<-

nl <-
n5 <-
n9 <-

000000

is

data into three subgroups for frailty implantation

n3 <- nl1*3;
n7 <- nl*7;

characterized by a factor, later, early, middle difference for each

nt/10; n2 <- nl*2;

nl*5; n6 <- nl*6;

n1*9; nl0 <- nl1*10
00, 0.99, 0.85);
.99, 0.95, 0.80);
.98, 0.90, 0.75);
.97, 0.85, 0.80);
.95, 0.80, 0.85);
.93, 0.80, 0.90);
.91, 0.85, 0.93);
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factor8s <- ¢ (0.89, 0.90, 0.95);
factor9s <- ¢ (0.87, 0.95, 0.97);
factorlOs<- ¢ (0.85, 0.99, 0.99);
#factorls <- (0.99, 0.775, 0.99);
#factor2s <- (0.975, 0.8, 0.975);
#factor3s <- (0.95, 0.825, 0.95);
#factords <- (0.925, 0.85, 0.925);
#factorbs <- (0.90, 0.875, 0.9);
#factor6bs <- (0.875, 0.90, 0.9);
#factor7s <- (0.85, 0.925, 0.925);
#factor8s <- (0.825, 0.95, 0.95);
#factor9s <- (0.8, 0.975, 0.975);
#factorlOs<- (0.775, 0.99, 0.99);

O00000O000OO0

### set how many set of data you want to simulate, here is 3 (late, early, middle)
nd <- 3;

### set baseline hazards function

rhos <- ¢ (0.001, 0.1, 0.3);

### set how many rho values you want to simulate, here is 3
nr <- 3;

### paramter for new weighting function

etas <- c (6, 1, 0.01);

### set how many etas you want to simulate, here is 3
ne <- 3;

### number of simulations
n.iter <- 1000;

### parameters for H-F weighting function
ps <- ¢ (0, 2, 1);
gs <- ¢ (2, 0, 1);

### set the groups of t
itmax <- 20;

### set a control number, nctrl=nd X nr x ne = 3 x 3 x 3=27
ictrl <- 0;
nctrl <- nd*nr*ne;

### set initial values for the recording numbers
hfgtnew <- rep(0, nctrl);
logrankgtnew <- rep(0, nctrl);
wilcoxgtnew <- rep(0, nctrl);
newlta <- rep(0, nctrl);

hflta <- rep(0, nctrl);
logranklta <- rep(0, nctrl);
wilcoxlta <- rep(0, nctrl);
pave.logrank <- rep(0, nctrl);
pave.wilcox <- rep(0, nctrl);
pave_.hf <- rep(0, nctrl);
pave.new <- rep(0, nctrl);
newsuplta <- rep(0, nctrl);
pave.new.sup <- rep(0, nctrl);

### define a variable to identify the data type
#datatype <- rep(“aaaaa”, nctrl);

### eta and rho values

etavalue <- rep(0, nctrl);

rhovalue <- rep(0, nctrl);

### loops
for(id in 1:nd)
{

### use current factors
factorl <- factorls[id];
factor2 <- factor2s[id];
factor3 <- factor3s[id];
factor4 <- factor4s[id];
factor5 <- factor5s[id];
factor6 <- factor6s[id];
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factor7 <- factor7s[id];
factor8 <- factor8s[id];
factor9 <- factor9s[id];
factorl0 <- factorlOs[id];

### set the right H-F parameters, p, q
p <- ps[id]:
q <- gsLid];

for(ir in 1:nr)

### use current rho
rho <- rhos[ir];
for(ie iIn 1:ne)

### use current eta

eta <- etas[ie];

### set initial values for p values
p-logrank <- rep(0,n.iter);
p-wilcox <- rep(0,n.iter);

p-hf <- rep(0,n.iter);

p-new <- rep(O,n.iter);

p-new.sup <- rep(0,n.iter);

### increment the control number
ictrl <- ictrl + 1;

### main loop
for (it in 1l:n.iter)

### generate survival data group one: tl
u <- sort(runif(nt));

tl <- log(1-u)/rho*(-1);

t2 <- ti1;

Hit#t generate survival data group two: t2

for (i in 1:n1) {2[i] <- factorl*tl[l]}

for (i in (n1+1):n2) {t2[i] factor2*tif[i]};
for (i in (n2+1):n3) {t2[i] <- factor3*tl[il};
for (i in (n3+1):n4) {t2[i] <- factord*tl[i]};
for (i in (n4+1):n5) {t2[i] <- factor5*tl[il};
for (i in (n5+1):n6) {t2[i] <- factor6*tl[i]};
for (i in (n6+1):n7) {t2[i] <- factor7*tl[il};
for (i in (n7+1):n8) {t2[i] <- factor8*tl[i]};
for (i in (n8+1):n9) {t2[i] <- factoro*tl[il};
for (i in (n9+1):n10) {t2[i1] <- factorlO*ti[i]};
### generate censoring range according to the data range

tmax <- max(tl,t2); # the upper limit of t
tmin <- min(tl,t2); # the lower limit of t
tcl <- runif(nt,tmin,tmax);
tc2 <- runif(nt,tmin,tmax);

### set censored data randomly,cl[i], c2[i] =1 if censored
cl <- rep(0,nt);

c2 <- rep(0,nt);

for(i in 1:nt) {if (t1l[i1] > tcl[i]) cl[i] <- 1 };

for(i in 1:nt) {if (€2[i] > tc2[i]) c2[i] <- 1 };

### calculate dt according to tmin,tmax, and itmax
dt <- (tmax-tmin)/itmax;

### set time increment from t=0 to t=itmax
t <- rep(0,itmax);
for (i in 1:itmax) { t[i] <- (i-1)*dt };

### initialize Yl(n.risk), di(n.event), ccl(n.sensor), Y2, d2, c2
yl <- rep(nt,itmax);
y2 <- rep(nt,itmax);
dl <- rep(0,itmax);
d2 <- rep(0,itmax);
ccl <- rep(0,itmax);
cc2 <- rep(0,itmax);
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### convert data into two sample table (like Table 7.2 at pl96)
for (i in 1:nt)
{

iia <- trunc(tl[i]/dt)+1; ### truncate tl, t2 to integers
iib <- trunc(t2[i]/dt)+1;
if(cl[i] == 0){di[iia] <- di[iia] + 1}; ### integer values as index
if(c2[i] == 0){d2[iib] <- d2[iib] + 1}; ### to increment n._event
ccl[iia] <- ccl[iia] + cl[i]; ### increment n.censor
cc2[iib] <- cc2[iib] + c2[i];

}:

### calculate Y (n.risk) according to n.event and n.censor
for (i In 2:itmax)

yi[i] <- yi[i-1] - di[i-1] -ccl[i-1];
y2[i] <- y2[i-1] - d2[i-1] -cc2[i-1];

### calculate Y=Y1+Y2, d=d1+d2, Y1*(d/Y), di1-Y1*(d/Y)
y <=yl + y2;

d <- dl1 + d2;

yldy <- y1*(d/y);

dlyldy <- dl1 - yildy;

### big one
big <- rep(0,itmax);
for(i in 1:itmax)

IFQy[i] 1= yi[i]) . . ] . . ]
§?lg[l] <- iLVyLiD*@-y1[i)/yLiD*((yLil-d[11)/(yLil-1))*d[i]);

### common survival function

ss <- (1-d/(y+1));

### common survival function during t(i-1) to t(i)
sl <- rep(l,itmax);

### common survival function during t(i) to t(i+l)
sO <- ss;

for (i In 2:itmax)

sl [i] <- si[i-1]*ss[i];
sO [i] <- sO[i-1]*ss[i];

### simple log rank test, w(t)=1

zlogrank <- sum(dlyldy)/((sum(big))”0.5);

if(zlogrank <= 0) (p-logrank[it] <- 2*pnorm(zlogrank));
if(zlogrank > 0) (p-.logrank[it] <- 2*(1-pnorm(zlogrank)));

### wilcoxon (Peto-Peto) logrank test, w(t)=s(t)

upper <- s0*dlyldy;

lower <- s0*sO0*big;

zwilcox <- sum(upper)/((sum(lower))”0.5);

if(zwilcox > 0) (p.wilcox[it] <- 2*(1-pnorm(zwilcox)));
if(zwilcox <= 0) (p-wilcox[it] <- 2*pnorm(zwilcox));

### F-H weighting function, w(t)=s1”p*(1-sl1l)”q
hfw <- (s17p)*((1-s1)"q)

upperhf <- hfw*dlyldy;

lowerhf <- hfw*hfw*big;

zhf <- sum(upperhf)/((sum(lowerhf))”0.5);
if(zhf > 0)(p-hf[it] <- 2*(1-pnorm(zhf)));
if(zhf <= 0)(p-hf[it] <- 2*pnorm(zhf));

### new weight function, 1/2+(2*eta™2)/(2*eta-log[s])"2
weight <- 0.5 + (2*eta™2)/(2*eta-log(s0))"2;

uppernew <- weight*dlyldy;

lowernew <- weight*weight*big;

znewweight <- sum(uppernew)/((sum(lowernew))”0.5);
if(znewweight <= 0)(p.new[it] <- 2*pnorm(znewweight));
if(znewweight > 0)(p-new[it] <- 2*(1-pnorm(znewweight)));
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### supreme new weight function method
Tn <- rep(l,itmax);
for (i In 1:itmax)

Tn [1i] <- sumuppernew[1l:i])/((sum(lowernew[1l:itmax]))”"0.5);

abs_Tn<-abs(Tn);

sup.Tn<-max(abs.Tn);

if(sup.Tn <= 0)(p-new.sup[it] <- 2*pnorm(sup-Tn));
if(sup.Tn > 0)(p.new.sup[it] <- 2*(1-pnorm(sup.Tn)));

### calcualte how many p.hf > p_.new
hfgtnew[ictrl] <- hfgtnew[ictrl] + 1*(p.hf[it] > p-new[it]);

### calculate how many p.logrank > p.new
logrankgtnew[ictrl] <- logrankgtnew[ictri]+1*(p.logrank[it] > p.new[it]);

### calculate how many p.wilcox > p.new
wilcoxgtnew[ictrl] <- wilcoxgtnew[ictrl] + 1*(p.wilcox[it] > p.new[it]);

### calculate how many pvalues are less than 0.05

newlta[ictrl] <- newlta[ictrl] + 1*(p.new[it] < 0.05);

hflta[ictrl] <- hfltafictrl] + 1*(p-hf[it] < 0.05);

logranklta[ictrl] <- logranklta[ictrl] + 1*(p.logrank[it] < 0.05);

wilcoxlta[ictrl] <- wilcoxlta[ictrl] + 1*(p.-wilcox[it] < 0.05);

newsuplta[ictrl] <- newsuplta[ictrl] + 1*(p.new.sup[it] < 0.05);
}; # end of main loop

### record the control identification;
if(id == 1) (datatype[ictrl] <- "late");
if(id == 2)(datatypel[ictrl] <- "middle®);
if(id == 3)(datatype[ictrl] <- "early™);

rhovaluel[ictrl] <- rho;

etavaluelictrl] <- eta;

### average p-value for each test
pave.logrank[ictrl] <- sum(p-.logrank)/n.iter;
pave.wilcox[ictrl] <- sum(p.wilcox)/n.iter;
pave.hf[ictrl] <- sum(p.-hf)/n.iter;
pave.new[ictrl] <- sum(p.new)/n.iter;
pave.new._sup[ictrl] <-sum(p.new.sup)/n.iter;
}; # end of ie loop
}; # of ir loop
}; # end of id loop

### get the data and print;

result <- data.frame
(datatype,etavalue,rhovalue, pave. logrank, pave.wilcox,pave.hf,pave.new, logranklta,wilco
xlta,hflta,newlta,newsuplta);

#resultl <-data.frame(hfgtnew, logrankgtnew,wilcoxgtnew) ;

result;
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Programs for new method on testing the proportional odds assumption

Program 2.1: Test the proportional odds assumption using Dauxois-Kirmani method

### set parameter xi and beta

Xi <- 150; # constant, mean
beta <- 1; # parameter
rbeta <- 1.0/beta; # rbeta=1/beta
censorlvl <- 0.1 # censoring level

if(censorlvl==0.1){
t0<-2; tm<-10;

}
if(censorlvl==0.3){
1t0<-0.2; tm<-5;

}

### number of simulations, number of data point in each group
n.iter <- 200; # number of simulations

ntl <- 50; nt2 <- 60; # number of data points in each group

siglvl2 <- 0.02; siglvl5 <- 0.05;
### set the groups of t

itmax <- ntl+nt2; # number of time intervals

### set initial values of the p-value and power for each simulation
p-zs<-rep(0,n.iter); # array for storing p values
p-sig2<-rep(0,n.iter); # array for storing power
p-sig5<-rep(0,n.iter);

clevel<-0;

### main loop
for (it in 1l:n.iter)

### generate survival data group one: tl

ul <- sort(runif(ntl)); #sorted uniform random data
tl <- xi/(1/ul-1); #convert into survival time
u2 <- sort(runif(nt2));

t3 <- xi/(1/u2-1);

t2 <- (xi“(1-rbeta))*(t3”rbeta);

### set censored data randomly,cl[i], c2[i] =1 if censored
cl <- rep(0,ntl); c2 <- rep(0,nt2);

rl <- runif(ntl); r2 <- runif(nt2);

for(i in 1:ntl)

{

if (ri[i] <= censorlvl) cl[i] <- 1;
%ér(i in 1:nt2)

3: if (r2[i] <= censorlvl) c2[i] <- 1;

### set censored data randomly,cl[i], c2[i] =1 if censored
cl <- rep(0,ntl); c2 <- rep(0,nt2);
if(censorlvi>0){
tcl <- (runif(ntl,min=t0,max=tm)); #if need sorting?
tc2 <- (runif(nt2,min=t0,max=tm));
for(i in 1:ntl)
{

] if (t1[i] > tcl[i]) cil[i] <- 1;
iér(i in 1:nt2)
{ if (t2[i] > tc2[i]) c2[i] <- 1;

}:
¥
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### set t intervals
t<-sort(c(tl,t2));

### Yi(n.risk), di(n.event), ccl(n.sensor), Y2, d2, c2
yl <- rep(ntl,itmax); y2 <- rep(nt2,itmax);

### convert data into two sample table (like Table 7.2 at pl96)

dl<-rep(0, itmax); d2<-rep(0,itmax); #initial value for di,d2
ccl<-rep(0,itmax); cc2<-rep(0,itmax); #initial value for ccl,cc2
indextl<-rep(0,ntl); #initial value for index of tl

for (i in 1:ntl)
for (J in 1l:itmax)
if(tl[i]>=t[j]{indextl[i]<-j} #compare with t to get index
};
for (i in 1:ntl) # get dl,ccl
{
### to increment n.event
if(cl[i] == 0){di[indextl[i]] <- di[indextl[i]] + 1};
ccl[indextl[i]] <- ccl[indextl[i]] + cl[i];
};

indext2<-rep(0,nt2); #initial value for index of t2
for (i in 1:nt2)

for (J in 1l:itmax)

#compare with t to get index
if(e2[i]>=tj]D{indext2[i]<-j}

}:
for (i in 1:nt2) # get d2,cc2
{

### to increment n.event
if(c2[i] == 0){d2[indext2[i]] <- d2[indext2[i]] + 1};
. cc2[indext2[i]] <- cc2[indext2[i]] + c2[i]:

### calculate Y (n.risk) according to n.event and n.censor
for (i In 2:itmax)

yi[i] <- yi[i-1] - di[i-1] -ccl[i-1];
y2[i] <- y2[i-1] - d2[i-1] -cc2[i-1]

### calculate Y=Y1+Y2, d=dl1+d2, Y1*(d/Y), di-Y1*(d/Y)
y <-yl +y2; d<-dl + d2; cc <- ccl + cc2;

### K-M estimate of survival functions
ssl<-rep(1,itmax); ss2<-rep(1,itmax);
for (i In 1l:itmax)

if(yl[i]1'=0) ssi[i]<-(1-d1i[i]/y1[i
if(y2[i]11=0) ss2[i]<-(1-d2[i]/y2[i

b

):
):

}:

Sl<-rep(l,itmax); S2<-rep(1,itmax);
S1[1]<-ss1[1]; S2[1]<-ss2[1];
phil<-rep(0,itmax); phi2<-rep(0,itmax);
for (i In 2:itmax)

S1[i]<-S1[i-1]*ssi[i]; S2[i]<-S2[i-1]*ss2[i];

### phi, the survival odds
for (i In 1l:itmax)
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{

iF(S1[i]11=1)phil[i]<-S1[i1/(1-S1[i]):
N if(S2[i]11=)phi2[i]<-S2[i1/(1-S2[i]):
Hit F

F1 <- 1-S1; F2 <- 1-S2;

#H# KL K2
Ki<-((ntl+nt2)/(ntl*nt2))*yl*y2/y;
K2<-yl*y2/ntl/nt2;

### set integration interval (overlap region)
rr<-rep(0, itmax);
for (i in 1l:itmax)

if((phil[i1*phi2[i1)'=0)rr[i]<-1;

psill<-sum(K1*phil*rr); psil2<-sum(K1*phi2*rr);
psi2l<-sum(K2*phil*rr); psi22<-sum(K2*phi2*rr);
dataset<-data.frame(t,dt,y,d,cc,yl,dl,ccl,y2,d2,cc2,S1,S2,rr);

H#H#gamma
GAMMA<-psill*psi22-psil2*psi2l;

### vij calculation

### initial values of vij

vll <- 0; v12 <- 0; v21 <- 0; v22 <- 0;
for (kt in 1l:itmax)

for (ks in 1l:itmax)

nu<-min(ks,kt);

dbyyl <- 0; dbyy2 <- 0;
templ <- 0; temp2 <- O;
for (ku in 1:nu)

if(yl[ku]!'=0)dbyyl <- dbyyl + di[ku]/(yl[kul*yl[ku]);
if(y2[ku]1=0)dbyy2 <- dbyy2 + d2[ku]/(y2[ku]l*y2[ku]):

1T((F1[ks]'=0)&(F1[kt]!'=0))templ <- ntl*dbyyl/(F1[ks]*F1[kt]);
iT((F2[ks]=0)&(F2[kt]!'=0))temp2 <- nt2*dbyy2/(F2[ks]*F2[kt]);
tmp<-phil[ks]*phi2[kt]*(templ+temp2);

vll <- v1l + K1[kt]*K1[ks]*tmp;

v12 <- v12 + K1[kt]*K2[ks]*tmp;

v21 <- v21 + K2[kt]*K1i[ks]*tmp;

v22 <- v22 + K2[kt]*K2[ks]*tmp;

}; # end of ks loop
}; # end of kt loop

### variance
var2<-psi22*psi2l*vll-psi22*psill*vl12-psil2*psi2l*v21+psil2*psill*v22;

### statistics
zs<-0;
if(var2!=0)zs<-sqrt(ntl+nt2)*GAMMA/sqrt(var2);

### p-value

if(zs > 0) (p-zs[it] <- 2*(A-pnorm(zs)));

if(zs < 0) (p-zs[it] <- 2*pnorm(zs));

if(p.-zs[it] < siglvl5) (p-sigs[it]<-1);

if(p.zs[it] < siglvl2) (p-sig2lit]<-1);

clevel<-clevel+(sum(cl)+sum(c2))/(ntl+nt2);
}; # end of main loop

# print error if crash
if(itsn.iter){
print("it < n.iter");it;
dataset;datasetl;
GAMMA; var2; vil; v12; v21; v22;
psill; psil2; psi2l; psi22;
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}:

### average p-value
pave.zs<-sum(p.zs)/n.iter;

H## power
power2<-sum(p.sig2)/n.iter;
power5<-sum(p-sig5)/n.iter;
pave.zs;power2;power5;

### check censoring level
clevel/n.iter;

### following is only for single step run
#if(zs>0)p<-2*(1-pnorm(zs));
#if(zs<=0)p<-2*pnorm(zs);

#zs;p;

#time<-c(0,t); SS1<-c(1,S1); SS2<-c(1,S2);
#plot(time,SS1,"S™)
#lines(time,SS2,"S","red")

# censoring level

#sum(cl)/ntl;

#sum(c2)/nt2;

Program 2.2: Test the proportional odds assumption using extended method

### Simulation with nonproportional odds data
# log-logistic distribution survival data
# parametric weight function is used

### set parameter xi and beta

Xi <- 1; # constant, mean
beta <- 1; # parameter
rbeta <- 1.0/beta; # rbeta=1/beta
censorlvl <- 0.1 # censoring level

if(censorlvl==0.1){
t0<-2; tm<-10;

}
if(censorlvl==0.3){
t0<-0.2; tm<-5;

}

### number of simulations, number of data point In each group
n.iter <- 1000; # number of simulations

ntl <- 50; nt2 <- 60; # number of data points in each group

siglvl2 <- 0.02; siglvl5 <- 0.05;
rho<-ntl/(ntl+nt2);

### set the groups of t

itmax <- ntl+nt2; # number of time intervals

### set initial values of the p-value and power for each simulation
p-zs<-rep(0,n.iter); # array for storing p values
p-sig2<-rep(0,n.iter); # array for storing power
p-sig5<-rep(0,n.iter);

clevel<-0;

### main loop
for (it in 1l:n.iter)

### generate survival data following Weibull distn

ul <- sort(runif(ntl)); #sorted uniform random data
tl <- xi/(1/ul-1); #convert into survival time
u2 <- sort(runif(nt2));

t3 <- xi/(1/u2-1);

t2 <- (xi“(1-rbeta))*(t3”rbeta);

### set censored data randomly,cl[i], c2[i] =1 if censored
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cl <- rep(0,ntl); c2 <- rep(0,nt2);

if(censorlvi>0){
tcl <- (runif(ntl,min=t0,max=tm)); #if need sorting?
tc2 <- (runif(nt2,min=t0,max=tm));
for(i in 1:ntl)

_if (t1[i] > tel[i]) cl[i] <- 1;
$6r(i in 1:nt2)

N if (2[i] > tc2[i]) c2[i] <- 1;
¥

### survival time table
tb<-sort(c(tl,t2), index.return=TRUE);
t<-tb$x; tindex<-tb$ix;

### estimate of survival functions
phil<-rep(O0, itmax); phi2<-rep(0,itmax);
Sl<-rep(l,itmax); S2<-rep(1,itmax);
tXi<-t/xi;

for (i In 2:itmax)

if(tindex[i]<=ntl){
indexl<-tindex[i];
if(cl[index1]==0){S1[i]<-1.0/(1+txi[i])};
if(cl[index1]==1){S1[i]<-S1[i-1]};
S2[i]<-S2[i-1];

if(tindex[i]>ntl) {
index2<-tindex[i]-ntl;
if(c2[index2]==0){S2[1]<-1.0/(1+(txi[i]"beta))};
if(c2[index2]==1){S2[i]<-S2[i-1]};
S1[i]<-S1i[i-1];

}

### odds, phi
for (i in 1l:itmax)

if(S1[i]1<=0.999)phil[i]<-S1[i]1/(1-S1[i]
if(S2[i]<=0.999)phi2[i]<-S2[i]1/(1-S2[i]

):

) ):
détaset11<—data-frame(t,tindex,Sl,SZ,phil,phiZ)
#i# F
F1 <- 1-S1; F2 <- 1-S2;

### KL K2

kltmp<-(1+(t/xi));

k2tmp<-(1+((t/xi)"beta));

K2<-1.0/(k1ltmp*k2tmp);

K1<-1.0/(rho*k2tmp+(1-rho)*kltmp);

### set integration interval (overlap region)

rr<-rep(0, itmax);

for (i In 1l:itmax)
if((phil[i]*phi2[i1)'=0)rr[i]<-1;

psill<-sum(K1*phil*rr); psil2<-sum(K1*phi2*rr);

psi2l<-sum(K2*phil*rr); psi22<-sum(K2*phi2*rr);

datasetl<-data.frame(t,S1,S2,F1,F2,phil,phi2,K1,K2,rr);

H#H#gamma
GAMMA<-psill*psi22-psil2*psi2l;
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### vij calculation

### initial values of vij

vll <- 0; v12 <- 0; v21 <- 0; v22 <- 0;
for (kt in 1l:itmax)

for (ks in 1l:itmax)

nu<-min(ks,kt);
ssltmp<-S1[nu];ss2tmp<-S2[nu];
if(ss1ltmp<0.000001)ssltmp<-0.000001;
i f(ss2tmp<0.000001)ss2tmp<-0.000001;
templ <- 0; temp2 <- O;
iT((F1[ks]>=0.01)&(F1[kt]>=0.01)){
templ <- (1.0/ssltmp-1)/(F1[ks]*F1[kt])};
iT((F2[ks]>=0.01)&(F2[kt]>=0.01)){
temp2 <- (1.0/ss2tmp-1)/(F2[ks]*F2[kt])};
tmp<-phil[ks]*phi2[kt]*(templ+temp2);
v1l <- v11 + K1[kt]*K1i[ks]*tmp;
v12 <- v12 + K1[kt]*K2[ks]*tmp;
v21 <- v21 + K2[kt]*K1i[ks]*tmp;
v22 <- v22 + K2[kt]*K2[ks]*tmp;
}; # end of ks loop
}; # end of kt loop

### variance
var2<-psi22*psi2l*vll-psi22*psill*vl12-psil2*psi2l*v21+psil2*psill*v22;

### statistics
zs<-0;
if(var2>0)zs<-sqrt(ntl+nt2)*GAMMA/sqrt(var2);

### p-value

if(zs >= 0) (p-zs[it] <- 2*(1-pnorm(zs)));

if(zs < 0) (p-zs[it] <- 2*pnorm(zs));

if(p.zs[it] < siglvls) (p-sig5lit]<-1);

if(p-zs[it] < siglvl2) (p-sig2[it]<-1);

clevel<-clevel+(sum(cl)+sum(c2))/(ntl+nt2);
}; # end of main loop

# print error if crash
if(itsn.iter){
print("it < n_.iter");it;
datasetl;datasetll;
GAMMA; var2; v11; v12; v21; v22;
psill; psil2; psi2l; psi22;

### average p-value
pave.zs<-sum(p.zs)/n.iter;

#H# power
power2<-sum(p-sig2)/n.iter;
power5<-sum(p.sig5)/n.iter;
pave.zs;power2;power5;

### check censoring level
clevel/n.iter;

### following is only for single step run
#1F(zs>0)p<-2*(1-pnorm(zs));
#if(zs<=0)p<-2*pnorm(zs);

#z7s;

#p; #p-value

#time<-c(0,t); SS1<-c(1,S1); SS2<-c(1,S2);
#plot(time,SS1,"S™)
#lines(time,SS2,"S","red")

# censoring level

#sum(cl)/ntl;

#sum(c2)/nt2;
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Program 2.3: Test the proportional odds assumption using linear regression method

### set parameter xi and beta

Xi <- 1; # constant, mean
beta <- 2; # parameter
rbeta <- 1.0/beta; # rbeta=1/beta
censorlvl <- 0.0 # censoring level

if(censorlvl==0.1){
t0<-2; tm<-20;

}
if(censorlvl==0.3){
1t0<-0.2; tTm<-8;

}

### number of simulations, number of data point in each group
n.iter <- 50; # number of simulations

ntl <- 50; nt2 <- 60; # number of data points in each group

siglvl2 <- 0.02; siglvl5 <- 0.05;

### set the groups of t

itmax <- ntl+nt2; # number of time intervals
p-zs<-rep(0,n.iter); # array for storing p values
p-sig2<-rep(0,n.iter); # array for storing power

p.sigb<-rep(0,n.iter);
clevel<-0;
slope<-rep(0,n.iter);
slope.se<-rep(0,n.iter);
p-value<-rep(0,n.iter);

### main loop
for (it in 1l:n.iter)

### generate survival data group one: tl

ul <- sort(runif(ntl)); #sorted uniform random data
tl <- xi/(1/ul-1); #convert into survival time
u2 <- sort(runif(nt2));

t3 <- xi/(1/u2-1);

t2 <- (xi“(1-rbeta))*(t3”rbeta);

cl <- rep(0,ntl); c2 <- rep(0,nt2);

if(censorlvi>0){
tcl <- (runif(ntl,min=t0,max=tm)); #if need sorting?
tc2 <- (runif(nt2,min=t0,max=tm));
for(i in 1:ntl)

{_ if (ti[i] > tci[i]) ci[i] <- 1;
%c,)r(i in 1:nt2)
: if (t2[i] > tc2[i]) c2[i] <- 1;

#ﬁ# survival time table
th<-sort(c(tl,t2), index.return=TRUE);
t<-tb$x; tindex<-tb$ix;

phil<-rep(O0, itmax); phi2<-rep(0,itmax);
Sl<-rep(l,itmax); S2<-rep(1,itmax);
tXi<-t/Xxi;

for (i In 2:itmax)

if(tindex[i]<=ntl){
indexl<-tindex[i];
if(cl[index1]==0){S1[i]<-1.0/(1+txi[i])}:
if(cl[index1]==1){S1[i]<-S1[i-1]};
S2[1]<-S2[i-1];

if(tindex[i]>ntl) {
index2<-tindex[i]-ntl;
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if(c2[index2]==0){S2[i]<-1.0/(1+(txi[i]"beta))};
if(c2[index2]==1){S2[i1<-S2[i-1]1};
) S1[i]<-S1[i-1];
}

### phi, and survival odds ratio (theta)
theta <- rep(0, itmax);tt<-rep(0,itmax);

iy <-0;
for (i In 1l:itmax)
{

iT(S1[1]<=0.999)phil[i]<-S1[i]/(1-S1[
iT(S2[1]<=0.999)phi2[i]<-S2[i]/(1-S2[i
tmp<-phil[i]*phi2[i];
if(tmp!=0) {

JiI<-31j+1;

ttjjil<-t[il;

theta[jijl<- phll[l]/ph|2[|] }

clevel<-clevel+(sum(cl)+sum(c2))/(ntl+nt2);
thetal<-theta[l:jjj];ttt<-tt[1:Jj)j];
Iogtheta<-log(thetal) Iogt<-log(ttt)
Im.D9<—Im(Iogtheta~Iogt);
temp<-summary(Im.D9);
templ<-anova(Im.D9);
slope[it]<-temp$coefficients[2,1];
slope.se[it]<-temp$coefficients[2,2];
p.value[1t]<-temp$coefficients[2,4];
if(p.valuelit]<siglvl5){p.sig5[it]<-1};
if(p-valuel[it]<siglvI2){p-sig2[it]<-1};

#censor level

clevel/n._iter;

#average p-value
sum(p.zs)/n.iter;

# power for 0.05 significance
sum(p-.sig5)/n.iter;

# power for 0.02 significance
sum(p-.sig2)/n.iter;

# average slope and its deviation estimated from Im function
sum(slope)/n.iter;
sum(slope.se)/n._iter;

Program 2.4: FORTRAN programs for testing proportional odds assumption using extended
method. It is about 177 times faster than the R program for the same simulation task

program main

implicit none

integer ntt,nb,nn

parameter(ntt=400,nb=5,nn=2)

real*8 ti(ntt),t2(ntt),cl(ntt),c2(ntt),y(ntt),d(ntt),
t(ntt),yl(ntt),y2(ntt),d1(ntt),d2(ntt),c(ntt),
phil(ntt),phi2(ntt),tc(ntt),s(ntt),f(ntt),
ssl(ntt),ss2(ntt),si(ntt),s2(ntt),Ff1(ntt), F2(nttL),
ki(ntt),k2(ntt),b(nb),n1(nn),n2(nn),t10(nb),t30(nb),
zs, p_sig2,p_sig5,beta,xi,rr,ct,tmax,censor,clvl,
rbeta, ranmar,v1l,v12,v21,v22,psill,psil2,p2,p5,to0,
psi2l,psi22,var2,gama,tmp,templ,temp2,dbyyl,dbyy2

integer n_iter,ntl,nt2,itmax,i,]j,k,iseed, jseed,ks,kt,
ku,nu, iter, id(ntt), idnull(ntt),ib,jn

data n1/50,100/, n2/60,120/, b/1,2,3,4,6/

data t30/510,395,395,395,395/, t10/1550,820,700,680,670/

R0 R0 R0 R0 Ro o Ro Ro

open(1,file="dauxois.res")
open(2,Ffile="dauxois.dat")
write(*,*)"n_iter="
read(*,*)n_iter
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write(*,*)"censor level %"
read(*,*)censor
xi=150
t0=5
iseed=18734
Jseed=23869

c loop over (ntl, nt2)
do jn=1,2
ntl=n1(gn)
nt2=n2(jn)
itmax=ntl+nt2

c loop over beta

do

ib=1,5

beta=b(ib)

rbeta=1./beta
if(censor.eq-30)tmax=t30(ib)
if(censor.eq.10)tmax=t10(ib)

call rmarin(iseed, jseed)

p_sig2=0.0
p_sig5=0.0
ct=0.0

c loop over simulation

do

iter=1,n_iter
do i=1,ntl
tl(D)=xi/(1./ranmar()-1.)
enddo
do i=1,nt2
t2(D)=xi/((1./ranmar()-1.)**rbeta)
enddo
do i=1,ntl
t()=t1(i)
id(i)=1
enddo
do i=ntl+1l,itmax
t(i)=t2(i-ntl)
id(i)=2
enddo
call shell(itmax,t,id)
do i=1,itmax
if(censor.gt.0)then
tc(1)=t0+(tmax-t0)*ranmar()

enddo
if(censor._.gt.0)call shell(itmax,tc,idnull)
do i=1, itmax
if(id(i).eqg-1)then

c2(i)=0.0

d2(1)=0.0

if(censor.gt.0.and.t(i).gt.tc(i))then

cl(i)=1.0

elseif(id(i).eq-2)then
c1(1)=0.0
d1(i1)=0.0

else
write(*,*)"id(i) NE 1 or 2"
stop
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endif

enddo

y1l(1)=ntl

y2(1)=nt2

do =2, itmax
y1(i)=yl(i-1)-d1(i-1)-c1(i-1)
y2(1)=y2(i-1)-d2(i-1)-c2(i-1)

enddo

do i=1,itmax
y(i)=y1(i)+y2(i)
d(i)=d1(i)+d2(i)
c(i)=cl(i)+c2(i)
ct=ct+c(i)
if(yl(i).ne.0)then

ss1(1)=1.0-d1(i)/y1(i)

if(y2(i).ne.0)then
ss2(i1)=1.0-d2(i)/y2(i)

enddo

s1(1)=ss1(1)

s2(1)=ss2(1)

do i=2,itmax
s1(i)=s1(i-1)*ss1(i)
s2(i)=s2(i-1)*ss2(i)

enddo

templ=1.0/(ntl*nt2)

temp2=(ntl+nt2)*templ

psill=0.0

psil2=0.0

psi21=0.0

psi22=0.0

if(iter.eq.n_iter)then
write(2,*)"EXAMPLE DATA TABLE:"
write(2,110)n_iter,beta,ntl,nt2

write(2,*)" 1 t id y d c yldlcl y2 d2 c2
& sl s2 rr phil phi2 k1 k2*®
endif

do i=1, itmax
Ff1(i)=1.0-s1(i)
f2(i)=1.0-s2(i)
phil(i)=0
phi2(i)=0
iT(FL(1).ne.0)phil(i)=s1(i)/F1(
if(f2(i).ne.0)phi2(i)=s2(i)/T2(
tp=yl()*y2(i)
k1(i)=temp2*tmp/y (i)
k2(i)=templ*tmp
if(phil(i)*phi2(i).eq.0)then
rr=0.0
else
rr=1.0
endif
psill=psili+k1(i)*phil(i)*rr
psil2=psil2+k1(i)*phi2(i)*rr
psi2l=psi21+k2(i)*phil(i)*rr
psi22=psi22+k2(i)*phi2(i)*rr
if(iter.eq.n_iter)then
write(2,100)i,t(i),id(i),y
& y1(i),d1(i),cl1(i),y2(i),d2(i)
& phi2(i),k1(i),k2(i)
endif
enddo
gama=psill*psi22-psil2*psi2l
v11=0.0
v12=0.0
v21=0.0
v22=0.0

- -
o/ \o/

N

2(1),rr,phil(i),
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do kt=1, itmax
do ks=1, itmax

if(kt.1t_ks)then
nu=kt

else
nu=ks

endif

dbyy1=0.0

dbyy2=0.0

templ=0.0

temp2=0.0

do ku=1,nu
if(yl(ku).ne.0)dbyyl=dbyyl+dl(ku)/(y1l(ku)*yl(ku))
iT(y2(ku) .ne.0)dbyy2=dbyy2+d2(ku)/(y2(ku)*y2(ku))

enddo

if((fl(ks).ne.0).and. (f1(kt).ne.0))
& templ=dbyyl*ntl/(f1(ks)*T1(kt))

if((f2(ks).ne.0).and. (f2(kt).ne.0))
& temp2=dbyy2*nt2/(f2(ks)*f2(kt))

=phil(ks)*phi2(kt)*(templ+temp2)
v11=v11+k1l(kt)*k1l(ks)*tmp
v12=v12+k1(kt)*k2(ks)*tmp
v21=v21+k2(kt)*k1l(ks)*tmp
v22=v22+k2(kt)*k2(ks)*tmp
enddo
enddo
var2=psi22*psi2l*vil-psi22*psill*vi2
& -psil2*psi2l*v21+psil2*psill*v22
if(var2.gt.0)then
zs=sqrt(float(ntl+nt2))*gama/sqrt(var2)
else
zs=0
endif
if(zs.ge.1.96.0or.zs.le.-1.96)p_sigb=p_sig5+1.0
if(zs.ge.2.32.or.zs.le.-2.32)p_sig2=p_sig2+1.0
enddo
100 format(i3,f11.3,i2,¥5.0,2(Ff3.0),f4.0,2(f3.0),f4.0,
&2(¥3.0),2(F6.3),13.0,2(f7.2),2(f6.2))

clvl=ct/(float(n_iter)*(ntl+nt2))

p2=p_sig2/float(n_iter)

p5=p_sig5/float(n_iter)
write(*,110)n_iter,beta,ntl,nt2,clvl,p2,p5
write(1,110)n_iter,beta, ntl nt2,clvl,p2,p5

110 format (" simulation=" ,i5, beta—' 3.0, (ntl,nt2)=",2(i4),

& * censor=",f6.4," powerO 02=", 6. 4," power0.05=",16.4)
enddo

enddo

end

C shell method to sort number

subroutine shell(n,arr,id)
parameter (aln2i=1./0.69314718, tiny=1._e-5)
dimension i1d(n)
real*8 arr(n
lognb2=int(alog(float(n))*aln2i+tiny)
m=n
do nn=1, lognb2
m=m/2

=1
f(arr().1t.arr(i))then
t=arr (i)
arr(i)=arr(l)
arr(h)=t
idt=id(i)
id(i)=id(l)
id()=idt

i=i-m
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if(i.ge.1)go to 3
endif
enddo
enddo
return
end

c random number generator subroutine

subroutine rmarin(ij,kl)
real*8 u(97), c, cd, cm, s, t
integer 197, j97, ij, kil
integer i, j, k, 1, ii, jj. m
logical test

common /rasetl/ u

common /raset2/ c, cd, cm
common /raset3/ 197, j97
common /raset4/ test

ifCij .1t 0 _.or. 1ij .gt. 31328 _or.
* kI .1t. 0O .or. Kkl .gt. 30081 ) then

print "(a)", " the first random number seed must have a value
*pbetween 0 and 31328"

print "(a)"," the second seed must have a value between 0 and
*30081"

mod(ij/177, 177) + 2
mod (i j , 177) + 2
mod(kl1/169, 178) + 1
mod(kl, 169)

ii =1, 97

0.0

I -
o

I ] -

O=0nN
[1Ne) |

=1, 24
mod(mod(i*j, 179)*k, 179)
J
k

m
mod(53*1+1, 169)
f (mod(1*m, 64) .ge. 32) then
s=s+ t
endif
t=05*t
3 continue
u(ii) = s
2 continue
c = 362436.0 / 16777216.0

- K-S

cd = 7654321.0 / 16777216.0
cm = 16777213.0 /16777216.0
197 = 97

Jj97 = 33

test = .true.

return

end

C random number function

function ranmar()

real*8 u(97), c, cd, cm
real*8 ranmar, uni
integer 197, j97

logical test

common /rasetl/ u

common /raset2/ c, cd, cm
common /raset3/ 197, j97
common /raset4/ test

if( .not. test ) then
print "(a)"," call the init routine (rmarin) before calling
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* ranmar”
stop
endif

uni = u(i97) - u(197)

ifCuni _I1t. 0.0 ) uni =uni + 1.0
u(i97) = uni

i97 = 197 - 1

if(i97 .eq- 0) 197 = 97
Jo97 = j97 - 1

|f(197 eq 0) j97 = 97
c=c-cd

ifCc .It. 0.0 ) c=c +cm

uni = uni - C
ifCuni .It. 0.0 ) uni = uni + 1.0
ranmar = uni

return
end

Program 2.5: R programs for estimating the parameters from real data using MLE method, the
log-logistic distribution is assumed for the real data

# Estimate parameter (xi, beta) using MLE
# Assume survival data follow log-logistic distribution
# with nonproportional hazards

# read in real data

dd<-read.table("'d:xuqing/phdthesis/qingbl4_txt", header=TRUE, sep=",")
# dd$group; #group 1 placebo, group 2 tamoxifen group

itmax<-2817;

time.temp<-sort(dd$time, index.return=TRUE)

t<-time.temp$x; tindex<-time.temp$ix;

g<-rep(0,itmax); c<-g; e<-c;

for (i in 1l:itmax)

ii<-tindex[i];
c[i]<-dd$indi.events[ii];
g[i]<-dd$group[ii];
e[i]<-dd$events[ii];

# number of events
r<-sum(c);
# MLE functions Eq. (4.35) and (4.36)
fff<-function(p){
theta<-t™(p[11*(g-1)); #p[ll=beta, p[2]=xi
aa<-(c+l)*tbeta;
bb<-p[2]"p[1]+tbeta;
cc<-aa/bb;
dd<-cc*log(t);
ee<-c*log(t);
tst<-(r- sum(cc))“2+(r/p[1]+sum(ee) sum(dd))"2;
tst;

# solve the nonlinear equations to get beta and xi
res<-nIm(fff,c(1,2)) #initial value of beta=1, xi=2
beta.hat<-res$estimate[1]; #MLE beta.hat
xi.hat<-res$estimate[2]; #MLE xi.hat

rmin<-res$minimum; #Ffinal fff value

beta.hat; xi.hat;

Program 2.6: R programs for testing the proportional odds assumption using Dauxois-Kirmani
method for real data, the log-logistic distribution is assumed for the real data

# read in real data

dd<-read.table('d:/xuqing/phdthesis/qingbl4._txt", header=TRUE, sep=","")
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# dd$group; #group 1 placebo, group 2 tamoxifen group
itmax<-2817;

time.temp<-sort(dd$time, index.return=TRUE)
t<-time.temp$x; tindex<-time.temp$ix;
g<-rep(0,itmax); c<-g; e<-c;

for (i in 1l:itmax)

fi<-tindex[i];
c[i]<-dd$indi.events[ii];
g[i]<-dd$group[ii];
e[i]<-dd$events[ii];

newdata<-data.frame(g,e,t,c,tindex);
#newdata;

y1<-0; y2<-0; cl<-0; c2<-0;

for (i In 1l:itmax)

if(gLi]==1)
{

yl<-yl+1;
cl<-cl+c[i];

) -
1f(gli]==2)
{

y2<-y2+1;
c2<-c2+c[i];

# number of objects in group 1
ntl<-yl;

# number of objects in group 2
nt2<-y2;

# observed events in group 1
cl;

# observed events in group 2
c2;

sum(c);

S1l<-rep(1,itmax);S2<-S1;yyl<-rep(yl, itmax);yy2<-rep(y2,itmax);
gl<—rep(0,itmax);d2<—dl;
if(g[1]= 1){

yl<-yi-

|f(c[1] 1){d1[1]<—1}

%f(g[l] 2){
|f(c[1] 1){d2[1]<—1}
for (i in 2:itmax)
if(glil==1)
{

yyl[i]<-yl;

yy2[il<-yy2[i-1];

S2[1]<-S2[i-1];

if(c[i]==1) {
S1[i]<-S1[i-11*(1-1/yl);
di[i]<-1;

%f(c[l] O) {S1[i]<-S1[i-1];:}
yl<-yl-

) -
1f(gli]==2)
{

yy2[i]<-y2;

yyllil<-yyl[i-1];

S1[i]<-S1i[i-1];

if(cli]==1) {
S2[i]<-S2[i-11*(1-1/y2);
d2[i]<-1;

%f(c[i]::O) {S2[i1<-S2[i-1];}
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y2<-y2-1;

}

datal<-data.frame(t,yyl,yy2,d1,d2,S1,S2,c);
#datal;

yy<-yyl+yy2; _ -
phil<-rep(0,itmax); phi2<-rep(0,itmax);

#HiH# p
for (
{

hi, the survival odds
i In 1l:itmax)

f(S1[i]1=1)phil[i]<-S1[i]/(1
f(s2[i1'=1)phi2[i]<-S2[i1/(1-

}:

#HH# F
F1 <- 1-S1; F2 <- 1-S2;

#H K1 K2
Ki<-((nt1+nt2)/(ntl*nt2))*yyl*yy2/yy;
K2<-yyl*yy2/ntl/nt2;

### set integration interval (overlap region)
rr<-rep(0, itmax);
for (i in 1l:itmax)

if((phil[i1*phi2[i1)'=0)rr[i]<-1;

psill<-sum(K1*phil*rr); psil2<-sum(K1*phi2*rr);
psi2l<-sum(K2*phil*rr); psi22<-sum(K2*phi2*rr);
dataset<-data.frame(t,yy,yyl,yy2,S1,S2,rr);

#H#H#gamma
GAMMA<-psill*psi22-psil2*psi2l;

### vij calculation

### initial values of vij

vll <- 0; v12 <- 0; v21 <- 0; v22 <- 0;
for (kt in 1:itmax)

for (ks in 1l:itmax)

nu<-min(ks,kt);

dbyyl <- 0; dbyy2 <- 0;
templ <- 0; temp2 <- O;
for (ku in 1:nu)

if(yyl[ku]!'=0)dbyyl <- dbyyl + di[ku]/(yyl[ku]l*yyl[ku]);
if(yy2[ku]!'=0)dbyy2 <- dbyy2 + d2[ku]/(yy2[ku]*yy2[ku]):

iT((F1[ks]'=0)&(F1[kt]!'=0))templ <- ntl*dbyyl/(F1[ks]*F1[kt]);
iT((F2[ks]1=0)&(F2[kt]=0))temp2 <- nt2*dbyy2/(F2[ks]*F2[kt]);
tmp<-phil[ks]*phi2[kt]*(templ+temp2);

vll <- v11l + KI1[kt]*K1[ks]*tmp;

v12 <- v12 + K1[kt]*K2[ks]*tmp;

v21 <- v21 + K2[kt]*K1i[ks]*tmp;

v22 <- v22 + K2[kt]*K2[ks]*tmp;

}; # end of ks loop
}; # end of kt loop

### variance
var2<-psi22*psi2l*vll-psi22*psill*v12-psil2*psi2l*v21+psil2*psill*v22;

### statistics

zs<-0;
if(var2!=0)zs<-sqrt(ntl+nt2)*GAMMA/sqrt(var2);
#i## p-value

if(zs > 0) (p-zs <- 2*(A-pnorm(zs)));
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if(zs < 0) (p-zs <~ 2*pnorm(zs));

p.zs;

Program 2.7: R programs for testing the proportional odds assumption using the extended
method for real data, the log-logistic distribution is assumed for the real data

# read in real data
dd<-read.table("'d:/xuqing/phdthesis/qingbl4.txt", header=TRUE, sep=",")

# dd$group; #group 1 placebo, group 2 tamoxifen group

itmax<-2817;

time.temp<-sort(dd$time, index.return=TRUE)

t<-time.temp$x; tindex<-time.temp$ix;

g<-rep(0,itmax); c<-g; e<-c;

for (i in 1l:itmax)

{
ii<-tindex[i];
c[il<-dd$indi.events[ii];
glLi]<-dd$group[ii];
e[i]<-dd$events[ii];

newdata<-data.frame(g,e,t,c,tindex);
#newdata;

y1<-0; y2<-0; cl<-0; c2<-0;

for (i In 1l:itmax)

L
if(gLi]==1)
{

yl<-yl+1;
cl<-cl+c[i];

) -
1f(gli]==2)
{

y2<-y2+1;
c2<-c2+c[i];

}

# number of objects in group 1
yl;

# number of objects in group 2
y2;

# observed events in group 1
cl;

# observed events in group 2
c2;

sum(c);

Xi1<-1.2927;

beta<-6.1214;

rho<-y1/(yl+y2);

### estimate of survival functions
phil<-rep(0,itmax); phi2<-rep(0,itmax);
Sl<-rep(l,itmax); S2<-rep(l1,itmax);
txi<-t/Xxi;

for (i in 2:itmax)

X

if(c[i]==D){S1[i]<-1.0/A+txi[i]D};
if(c[i]==0){S1[i]<-S1[i-1]};
S2[i]<-S2[1-1];

}

1f(g[i1==2){ ) .
1If(c[i]=D{S2[i]<-1.0/(A+(xi[1i]"beta))};
if(c[i]==0){S2[i]<-S2[i-1]};
S1[i]<-S1[i-1];

}

122



}

### odds, phi
for (i in 1l:itmax)

if(S1[i]'=D)phil[i]<-S1[i]/(A-S1[i]);
if(S2[i]'=Dphi2[i]<-S2[i]/(1-S2[i]);
phil

détaset11<—data.frame(t,tindex,Sl,SZ, ,phi2)

#HH# F
F1 <- 1-S1; F2 <- 1-S2;

#HH K1 K2

kl1tmp<-(1+(t/xi));
k2tmp<-(1+((t/xi)"beta));
K2<-1.0/(k1ltmp*k2tmp);
K1<-1.0/(rho*k2tmp+(1-rho)*kltmp);

### set integration interval (overlap region)
rr<-rep(0, itmax);
for (i in 1l:itmax)

if((phil[i]*phi2[i1)'=0)rr[i]<-1;

psill<-sum(K1*phil*rr); psil2<-sum(K1*phi2*rr);
psi2l<-sum(K2*phil*rr); psi22<-sum(K2*phi2*rr);

datasetl<-data.frame(t,S1,S2,F1,F2,phil,phi2,K1,K2,rr);

##Htgamma
GAMMA<-psill*psi22-psil2*psi2l;

### vij calculation

### initial values of vij

vll <- 0; vl12 <- 0; v21 <- 0; v22 <- 0;
for (kt in 1l:itmax)

for (ks in 1l:itmax)

nu<-min(ks,kt);
ssltmp<-S1[nu];ss2tmp<-S2[nu];
#if(ss1ltmp<0.000001)ssltmp<-0.000001;
#iT(ss2tmp<0.000001)ss2tmp<-0.000001;
templ <- 0; temp2 <- O;
iT((F1[ks]!'=0)&(F1[kt]!'=0)){

templ <- (1.0/ssltmp-1)/(F1[ks]*F1[kt])};
iT((F2[ks]!=0)&(F2[kt]!=0)){

temp2 <- (1.0/ss2tmp-1)/(F2[ks]*F2[kt])};
tmp<-phil[ks]*phi2[kt]*(templ+temp2);
vll <- v11l + KI1[kt]*K1[ks]*tmp;
v12 <- v12 + K1[kt]*K2[ks]*tmp;
v21 <- v21 + K2[kt]*K1i[ks]*tmp;
v22 <- v22 + K2[kt]*K2[ks]*tmp;

}; # end of ks loop
}; # end of kt loop

### variance
var2<-psi22*psi2l*vll-psi22*psill*v12-psil2*psi2l*v21+psil2*psill*v22;
### statistics

zs<-0;

if(var2>0)zs<-sqrt(itmax)*GAMMA/sqrt(var2);

#i## p-value

if(zs >= 0) (p-zs <- 2*(A-pnorm(zs)));

if(zs < 0) (p-zs <~ 2*pnorm(zs));

p.zs;
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