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Abstract 
 

     The objective of this research is to develop optimal (efficient) test methods for analysis of 

survival data under random censorship with nonproportional hazards. For the first part we revisit 

the weighted log-rank test where the weight function was derived by assuming the inverse 

Gaussian distribution for an omitted exponentiated covariate that induces a nonproportionality 

under the proportional hazards model. We perform a simulation study to compare the new 

procedure with ones using other popular weight functions including members of the Harrington-

Fleming’s G-rho family. The nonproportional hazards data are generated by changing the hazard 

ratios over time under the proportional hazards model. The results indicate that the inverse 

Gaussian-based test tends to have higher power than some of the members that belong to the G-

rho family in detecting a difference between two survival distributions when populations become 

homogeneous as time progresses.  

     The second part of the research includes development of a parametric method in detecting the 

validity of the proportional odds model assumption between two groups of survival data. The 

research is based on the premise that the test procedure developed would take advantage of 

knowledge of the distributional information about the data, which will improve the sensitivity of 

a nonparametric test method. We evaluate type I error and power probabilities of the new 

parametric test by using the simulated survival data following the log-logistic distribution. The 

error probabilities are compared with ones in the literature. The results indicate that the extended 

test performs with a higher sensitivity than the existing nonparametric method. 

     The results from the proposed study provide statistical test methods that are more sensitive 

than existing ones under certain situations which can be used in public health relevance 

applications such as clinical trials. 
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1. INTRODUCTION 

 

1.1. Survival Data 

 

Survival data usually refers to data in the form of a time from a well-defined time origin until 

the occurrence of some particular event of interest. In medical research, the time origin often 

correspond to the recruitment of an individual into an experimental study, such as a clinical trial 

to compare two or more treatments. The end point may correspond to the relief of pain, the 

recurrence of symptoms, or the death of a patient.  

In summarizing survival data, two functions of central interest are the survival function and 

the hazard function. The survival function, , is defined to be the probability that the time to 

event is greater than or equal to t ,  

( )S t

   S(t) = P(T ≥ t) ,                                                      (1.1) 

and the hazard function is defined as 

   

h(t) = lim
Δ→0

P(t ≤T < t + Δ T ≥ t)

Δ

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

,                                      (1.2) 

which is the limiting conditional probability of experiencing an end point immediately after time 

 given the event has not occurred to the individual up to time t  (Collett, 2003).   t

If T  is a continuous random variable, then  is a continuous, strictly decreasing function 

from unity to zero. It can be conveniently expressed as the complement of the cumulative 

distribution function of the variable T , that is, 

( )S t

 1



( ) 1 ( )S t F t= − .                                                        (1.3) 

where  

( ) ( )F t P T t= ≤ .                                                       (1.4) 

Therefore, the survival function can also be obtained by  

   
S(t) = P(T ≥ t) = f (v)dv

t

∞

∫ ,                                            (1.5) 

where  is the probability distribution function of the survival time variable t . Accordingly, 

we have  

( )f t

( )
( )

dS t
f t

dt
= − .                                                         (1.6) 

When  is continuous, the relationship between the hazard function and the survival 

function is given by 

T

( ) ln[ ( )]
( )

( )
f t d S t

h t
S t dt

= = − ,                                               (1.7) 

and 

   
S(t) = exp − h(v)dv

0

t

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.                                                 (1.8) 

For discrete survival variables, the hazard function is given by  

   
h(t

j
) = P(T = t

j
T ≥ t

j
) =

p(t
j
)

S(t
j−1

)
,                                       (1.9) 

where ( )jp t  is the probability that the interested event occurs at time jt . And the survival 

function is related to the hazard function by  

   

S(t) = [1−h(t
j
)]

tj ≤t
∏ = p(t

j
)

tj ≥t
∑ .                                        (1.10) 
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As shown above, for continuous time variables, expressions of  and  can be derived 

analytically if the underlying distribution of survival variable is known or specified. Analysis of 

survival data with a distributional assumption is referred to as parametric. Parametric inference is 

often based on the maximum likelihood theory.  

( )S t ( )h t

If the analysis is performed without assumption about the underlying distribution of the 

survival data, the method is referred to as nonparametric. Commonly used nonparametric 

estimation methods of survival functions include Kaplan-Meier estimator (Kaplan and Meier, 

1958) and Nelson-Aalen estimator (Altshuler, 1970; Nelson, 1972, Aalen, 1978). For either 

method, one first needs to arrange the times by rank. The Kaplan-Meier estimate of the survival 

function is calculated by  

   

Ŝ(t) = 1−
d

j

Y
j

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟tj ≤t
∏ ,                                                     (1.11) 

where jd  is number of events occurred at time jt , and jY  is number of objects at risk at the 

beginning of time jt . The Nelson-Aalen estimator is given by  

   

Ŝ(t) = exp −
d

j

Y
j

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟tj ≤t
∏ .                                                  (1.12) 

 

 

1.2. Proportional Hazards Model 

 

A regression model can be used when we want to relate potential prognostic factors or 

covariates to the length of time to a particular end point (survival time). Often we want to make 
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inferences about the association between the survival time and certain covariates (explanatory 

variables) rather than only estimate the survival function for one-sample. Therefore, we need to 

compare survival distributions among at least two groups adjusted for some covariates. For such 

comparison, the usual null hypothesis is that there is no difference among survival distributions 

from different selected comparison groups. The survival distributions are believed to be 

statistically different if the null hypothesis is rejected, and vice versa. 

One of the most widely used regression model for survival data is the proportional hazards 

model (Cox, 1972). In the proportional hazards model, the ratio of hazards functions between 

two groups of interest is constant over time. In clinical studies the proportional hazards model 

can be used to compare survival distributions of two groups of patients, with one group being a 

treatment group and the other group being the placebo group, adjusted for important prognostic 

factors.  

The proportional hazards model can be expressed by the relationship  

1 2( ) ( )h t h tψ= ,                                                  (1.13) zeβψ =

where  and  are the hazard functions at time t for groups I and II, respectively, when 

there exists only one covariate of the group indicator z . The proportionality parameter ψ  is a 

constant over time t . If  and  are the survival functions for two groups, from Eqs. 

(1.8) and (1.13) we can derive that  

1( )h t 2( )h t

1( )S t 2( )S t

[ ]1 2( ) ( )S t S t
ψ= .                                                     (1.14) 

Since the survival function takes values between zero and unity, Eq. (1.14) implies that  is 

always greater than or less than , depending on whether the proportionality parameter ψ  is 

less than or greater than unity. This implies that if two hazard functions are proportional, the 

1( )S t

2( )S t
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survival functions for the two groups do not cross one another. This is a necessary, but not a 

sufficient condition for proportional hazards. 

Based on this condition, we can evaluate the validity of the proportional hazards assumption 

by plotting the two estimated survival functions together. If the two estimated survival functions 

do not cross, the assumption of proportional hazards is justified. This method is straightforward 

and simple for most survival data. In most cases, unless a plot of the estimated survival functions 

indicates that there is good reason to doubt the proportional hazards assumption, proportional 

hazards model can often be used to compare the two samples.  

Standard procedures for performing the proportional hazards regression are built in the 

commonly used statistical softwares such as SAS and S-plus.  

In this work, we propose a log-rank test method with a newly derived weight function to 

compare two survival distributions with nonproportional hazards. We performed Monte Carlo 

simulations and real data analysis to evaluate performance of the new method comparing with 

the existing simple log-rank test and Harrington-Fleming’s test.  

 

1.3. Proportional Odds Model  

 

Another less widely used but important model in survival analysis is the proportional odds 

model (Bennett, 1983a). In the proportional odds model, the hazard functions of the two groups 

are not proportional over time but their ratio converges to unity as time progresses. Such a 

situation is encountered, for example, when the initial effects of treatment, or the differences 

between stages of the disease at diagnosis, tend to diminish with time so that different groups of 

patients become homogeneous.  
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The odds of an individual surviving beyond some time t  (survival odds) are expressed as  

( ) ( )
( )

( ) 1 ( )
S t S t

t
F t S t

φ = =
−

.                                              (1.15) 

Sometimes also used is the failure odds, which is defined as the inverse of survival odds.  

The proportional odds implies that the relationship between the survival odds from group I 

and from group II,  

1
1 2

1 2

( ) ( )
( ) ,   ( )

1 ( ) 1 (
S t S t

t t
S t S t

φ ψ φ ψ= = =
− −

2

)
,                                (1.16) 

where ψ  is a constant proportionality parameter that does not depend on time t .  

Particularly important property of the proportional odds model concerns the hazard ratio of 

the two group. Eq. (1.16) gives 

2
1

2

( )
( )

1/ (1 1/ ) ( )
S t

S t
S tψ ψ

=
+ −

.                                         (1.17) 

Taking logarithms and the first derivatives upon t  on both sides of Eq. (1.17) gives 

1

2 2

( ) 1
( ) 1 ( 1) ( )

h t
h t S tψ

=
+ −

.                                             (1.18) 

As t increases from 0 to  , the survival function  decreases monotonically from unity to 

zero. Therefore, Eq. (1.18) indicates that under the proportional odds assumption the hazard ratio 

between two groups would converge from the value  at time , to unity at 

∞ 2( )S t

ψ 0t =   . t = ∞

In practical applications, it is common for the hazard functions in two or more groups to 

converge with time. For example, in a follow-up study of patients in a clinical trial, the effect on 

survival of the treatment, or the initial stage of disease, may wear out, converging over time. So 

the proportional odds model, with its property of convergent hazard functions, can be of 

considerable value. Of course, the inference under this model would only be valid when the 
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proportional odds assumption holds. In a two group comparison study, a preliminary 

examination of the likely suitability of the proportional odds model can be undertaken by making 

use of the relationship in Eq. (1.16). The Kaplan-Meier estimate of the survival function is 

obtained for each group and the estimated log-odds of survival beyond time t , 

1 2

1 2

ˆ ˆ( ) ( )
ln ˆ ˆ1 ( ) 1 (

S t S t
S t S t

⎡ ⎤
⎢
⎢ − −⎣ ⎦)

⎥
⎥ , are plotted against ln . If the plot shows a flat line, this would 

indicate that the proportional odds assumption is valid. However, the results from this graphical 

method can be quite ambiguous, mainly due to the significant fluctuations in 

t

ˆ ( )
ln  

calculated from survival data. This problem is especially severe when the size of survival data is 

small. In concern of this, a parametric or semiparametric method with less ambiguity for formal 

testing of the validity of proportional odds assumption between two groups is highly desired. In 

this study, we examine a nonparametric test statistic proposed by Dauxois and Kirmani (Dauxois 

and Kirmani, 2003) and propose a new parametric method to test the proportional odds 

assumption.  

ˆ1 ( )
i

i

S t

S t−

 

1.4. Project Overview  

 

This thesis includes two different topics. The first part is on the development of a new method 

for testing any difference between two survival distributions under non-proportional hazards 

situations. Namely, we propose a new weighted log-rank test method to test the difference of two 

groups of survival data with various types of departure patterns. The second part is on testing the 

validity of model assumption. We extend the Dauxois-Kirmani method (Dauxois and Kirmani, 
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2003) by using the weight function derived from the parametric assumption for testing the 

validity of the proportional odds assumption. In both topics, we show that the modified test 

methods perform with a higher sensitivity compared with their existing counterparts. 

The project is organized as follows  

1. For the development of a new statistic method for testing the difference between two 

survival distribution with non-proportional hazards, there are following contents  (1) Test for 

difference between two survival distributions generated from Monte Carlo simulations with 

nonproportional hazards using the simple log-rank test and the Harrington-Fleming’s weighted 

log-rank test; (2) Derivation of a weight function for the new test method (Oakes and Jeong, 

1998); (3) Test for difference between two simulated survival distributions with nonproportional 

hazards using the new test method; (4) Comparison of the sensitivity of the new method with that 

of the existing methods; (5) Applications to real data. 

2. For the development of new parametric method for testing the validity of proportional 

odds assumption between two survival distributions, there are following contents. (1) 

Examination of nonparametric Dauxois-Kirmani method for testing the validity of proportional 

odds assumption for two survival distributions; (2) Derivation of a new parametric test method 

by parameterizing the Dauxois-Kirmani method; (3) Test for proportional odds assumption for 

simulated the log-logistic survival data using the new method; (4) Comparison of the sensitivity 

of the new method with that of the existing nonparametric method; (6) Applications to real data.  
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2. LITERATURE REVIEW 

 

In this chapter we review the key literature on comparing non-proportional hazards distributions 

difference and proportional odds model assumption.  

 

2.1. Proportional Hazards Modeling  

 

The most widely used method of estimating the effects of covariates on survival times is the 

proportional hazards model proposed by Cox (Cox, 1972). The Cox model assumes that the ratio 

of the hazards between two levels of a covariate (i.e treatment group) is constant over time. It is 

analytically expressed in the form 

0( ) ( )ix
ih t e h tβ= ,                                                       (2.1) 

where  denotes the hazard function for the i( )jh t th patient,  and x  is the value 

that the i

1,2, ,i n= "" i

n

th patient takes for the explanatory variable X . The term  is the baseline hazard 

function. Thus, the null hypothesis that there is no difference in survival distribution between 

groups corresponds to the null hypothesis β  in the model presented in Eq. (2.1) when 

 is a group indicator.  

0( )h t

0=

1,2, ,i = ""

A variety of testing methods have been developed to compare two survival distributions. In 

particular, the simple log-rank test (Savage, 1956; Mantel, 1966; Peto, 1972) is suitable for data 

with proportional hazards, and the G-rho tests (Harrington and Fleming 1982) are good for 

comparing survival distributions with nonproportional hazards.  
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The simple log-rank test (Savage, 1956; Mantel, 1966; Peto, 1972) is perhaps the most widely 

used method in two-sample comparisons of time-to-event data. It is simple to use, nonparametric 

in nature, and highly efficient under the proportional hazards assumptions. It incorporates the 

commonly encountered right censorship of survival data without adding complicated elements to 

the method itself. The general idea behind any test of the difference of  groups of survival data 

is to compare the survival distributions by calculating the statistics 

K

     
Z

j
(τ) = W

j
(t

i
)

d
ij

Y
ij

−
d

i

Y
i

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥i=1

D

∑ ,    j = 1,…K.                                     (2.2) 

Here, we assume the survival data consist of independent right censored samples from K  

populations, and  are the distinct event times in the pooled sample. At time 

, we observe  events in the th

1 2 Dt t t< < <""

it ijd j  sample out of  individuals at risk, , 

, 

ijY 1,2, ,j K= ""

1,2, ,i D= ""
   
d

i
= d

ijj =1

K∑  and 
   
Y

i
= Y

ijj =1

K∑  are the number of events and number of 

objects at risk in the combined sample at time , . The weight function  is 

positive. The terms  and  are the Nelson-Aalen estimator (Altshuler, 1970; Nelson, 

1972; and Aalen, 1978) of the hazard rate in the j

it 1,2, ,i = "" D

i

( )jW t

/ij ijd Y /id Y

th group and the combined sample, 

respectively.  

In practice, all of the commonly used tests have a weight function ( ) ( )j i ijW t Y W t= i . Here, 

 is a common weight shared by each group. With this choice of weight function Eq. (2.2) 

becomes  

( )iW t

     
Z

j
(τ) = W(t

i
) d

ij
−Y

ij

d
i

Y
i

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥i=1

D

∑ ,    j = 1,…K.                                   (2.3) 

The variance and covariance of  is given by  ( )jZ τ
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σ

jj
(τ) = W(t

i
)⎡

⎣⎢
⎤
⎦⎥
2Yij

Y
i

1−
Y

ij

Y
i

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

Y
i
−d

i

Y
i
−1

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
d

i
i=1

D

∑ ,    j = 1,…K.                       (2.4) 

    
σ

jg
(τ) = − W(t

i
)⎡

⎣⎢
⎤
⎦⎥
2Yij

Y
i

Y
ig

Y
i

Y
i
−d

i

Y
i
−1

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
d

i
i=1

D

∑ ,    j ≠ g.                              (2.5) 

If the variance-covariance matrix of any selected  ’s is given by a  by 

 matrix Σ , the test statistic is given by the quadratic form 

1K − ( )jZ τ 1K −

1K −

[ ] [ ]2 1
1 2 1 1 2 1( ), ( ), , ( ) ( ), ( ), , ( )

T
K KZ Z Z Z Z Zχ τ τ τ τ τ−

− −= Σ…… …… τ .                 (2.6) 

When the null hypothesis is true, this statistic has a chi-squared distribution, for large samples 

with  degrees of freedom. An α  level test of null hypothesis rejects when  is larger 

than th upper percentage point of a chi-squared distribution with  degrees of freedom. 

Specially, when  the test statistic Eq. (2.6) can be reduced as 

1K − 2χ

α 1K −

2K =

   

Z =
W(t

i
) d

i1
−Y

i1
(d

i
/Y

i
)⎡

⎣⎢
⎤
⎦⎥i=1

D∑
W(t

i
)⎡

⎣⎢
⎤
⎦⎥
2
(Y

i1
/Y

i
)(1−Y

i1
/Y

i
) (Y

i
−d

i
)/ (Y

i
−1)⎡

⎣⎢
⎤
⎦⎥dii=1

D∑
,                    (2.7) 

which has a standard normal distribution for large samples when the null hypothesis is true. 

The derivation shown above (Klein and Moeschberger, 2003) is in fact consistent with the 

score test from the partial likelihood under the Cox model (Cox, 1975) 

   

L =
eβxii

eβxki

k∈Ri

∑i∈D
∏ ,                                                        (2.8) 

where D  represents the total number of events and R  represents the total number of objects at 

risk at time of the i th event. The log-likelihood is given by  

    
LL(β) = βx

ii
i=1

D

∑ − ln eβxki

k∈R
∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

i=1

D

∑ .                                       (2.9) 
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The partial maximum likelihood estimates are found by maximizing Eq. (2.9). The score 

equations  are found by taking partial derivatives of Eq. (2.9) with respect to β . The 

information matrix  can be obtained by finding the second derivatives of the log partial 

likelihood. If the maximum likelihood estimate of  is , then the scores test given by  

( )U β

( )I β

β β̂

2 1ˆ ˆ( ) ( ) ( )tU I Uχ β β−= β̂

i

,                                              (2.10) 

which corresponds to the test statistic given by Eq. (2.6). 

For two sample comparison, various test methods can be obtained when various weight 

functions are employed in test Eq. (2.7). A common weight function, leading to a test available 

in most statistical packages, is . This choice of weight function leads to the simple log-

rank test. It has the optimal power to detect the difference between two groups of survival 

distributions when the proportional hazards assumption holds. A second choice of weights is 

. This weight function yields Gehan’s (Gehan, 1965) generalization of the two-

sample test. Another weighting function is given by  

( ) 1iW t =

( )iW t Y=

    
W(t) = �S(t) = 1−

d
i

Y
i

+1

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟ti <t
∏                                            (2.11) 

(Peto and Peto, 1972; Kalbfleisch and Prentice, 1980). Andersen et al. (Andersen et al., 1982) 

suggested that this weight function should be modified slightly as  

( ) ( )
1

i

i

Y
W t S t

Y
=

+
� .                                                   (2.12) 

The Gehan’s weight function  depends on the event times and censoring distributions. 

Andersen’s weight functions depend on the survival function of the combined data. Therefore, 

these Wilcoxon type tests can have misleading results when the censoring patterns are different 

in each sample (Prentice and Marek, 1979).  

( )iW t Y= i
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Fleming and Harrington (Fleming and Harrington, 1981) proposed a very general class of test 

that includes, as special cases, the log-rank test and a version of Wilcoxon test which is very 

close to that suggested by Peto and Peto (Peto and Peto, 1972). Here, we denote  as the 

Kaplan-Meier’s product-limit estimator [Eq. (1.11)] of the survival function based on the 

combined data. The weight function of Harrington-Fleming’s test (Klein and Moeschberger, 

2003) is given by  

(̂ )S t

   
W

p,q
(t

i
) = Ŝ(t

i−1
)⎡

⎣⎢
⎤
⎦⎥
p

1− Ŝ(t
i−1

)⎡
⎣⎢

⎤
⎦⎥
q

                                         (2.13) 

with    p ≥ 0,q ≥ 0 . In Eq. (2.13), the survival function at the previous death time  is used 

as a weight to ensure that these weights are known just prior to the time at which the comparison 

is to be made. The simple log-rank test is obtained when . When  and  a 

version of the Wilcoxon test is obtained. When  and , the weight function gives the 

most weight to early departures between the hazard rates. When  and  the weight 

function gives the most weight to late departures between the hazard rates. By tuning the value 

of p and q appropriately, one can construct tests which have the most power against alternatives 

which have the hazard rates differing over any desired region.  

1(̂ iS t − )

0p q= = 1p = 0q =

0p > 0q =

0p = 0q >

Gill and Schumacher (Gill and Schumacher, 1987) proposed a test method for proportional 

hazards assumption for two-sample censored data based on comparison of generalized rank 

estimators of the relative risk. They also proposed a related graphical method and gave 

recommendations for the choice of appropriate weight functions.  Sengupta et al. (Sengupta et 

al., 1998) proposed a graphical method on testing for the proportionality of hazards in two 

samples against the increasing cumulative hazard ratio alternative.  
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Oakes and Jeong (Oakes and Jeong, 1998) proposed a new class of weighted log-rank test for 

nonproportional hazards data by assuming various distributions for an omitted covariate from the 

proportional hazards model, which introduces nonproportionality. Their work established the 

connections between the theory of weighted log-rank test and of frailty models by assuming 

popular distributions in frailty theory for an exponentiated covariate in the Cox model. Although 

the method was derived from fully parametric models, the results extend to nonparametric tests.  

In this work, we applied the weighted log-rank test by Oakes and Jeong to test the difference 

of two groups of survival data with various types of departures. We show that the nonparametric 

test based on one of the weighted log-rank test by Oakes and Jeong performs better than the 

currently available log-rank tests such as simple, Wilcoxon, or G-rho tests by Harrington and 

Fleming for the early difference cases.  

 

2.2. Proportional Odds Modeling 

 

Several models for analyzing proportional odds survival time have been developed (Bennett, 

1983a, 1983b; Pettitt, 1984; Cheng et al., 1995; Murphy et al., 1997; Lam et al., 2002). 

McCullagh (McCullagh, 1980) first generalized the idea of constant odds ratio to more than two 

samples and fitted the model by maximum likelihood. But his model was mainly for social 

sciences and the censorship was not included in it. Bennett extended McCullagh’s work for 

treating medical survival data by including the censorships (Bennett, 1984a). If the baseline 

survival function is , the survival odds ratio of object i  to the baseline is defined as 0( )S t

[ ]
[ ]

0

0 0

( ) 1 ( )

1 ( ) (
ii

i
i

S t S t

S t S t
φ

ψ
φ

−
= =

− )
.                                             (2.14) 
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Let , then we can express the survival function of object i , , as a function of 

parameter β  and survival time . The likelihood of a set of U  of uncensored observations and a 

set C  of right-censored observation for parametric inference is 

ix
i eβψ = iS

it

    
L(β) = f (t

i
;β)

i∈U
∏ S(t

i
;β)

i∈C
∏ ,                                           (2.15) 

where  is the appropriate probability density function of uncensored survival time T . f

To fit the proportional odds model to data it is necessary to estimate the parameter β  and the 

underlying distribution function f  for parametric inference. This is similar to the proportional 

hazards model. In proportional hazards model, the hazard function is cancelled out in the partial 

likelihood method. For proportional odds model, however, the full unconditional likelihood must 

be used. Bennett (1984a) used the proportional odds model for nonparametric estimation of the 

survival function in the regression fitting. Bennett (1984b) also extended his nonparametric 

method to a parametric analysis of survival data following the log-logistic and other 

distributions.  

Pettitt (Pettitt, 1984) used Bennett’s proportional odds model but replaced the survival times 

in the model by their ranks. By comparing his method with that of Bennett, he pointed out 

several advantages of the rank method over Bennett’s general method: (1) the rank method is 

more computationally efficient; (2) the rank method is less sensitively affected by extreme 

observations; and (3) the statistics used to test the null hypothesis of  is distribution free; 

thus, the rank test for  is valid whether or not the proportional odds model is true.  

0β =

0β =

Murphy et al. (1997) demonstrated that a semiparametric maximum likelihood estimation 

method can be used to estimate the regression coefficients of the proportional odds model 
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efficiently. They proposed a profile likelihood function based on the generalization of Bennett 

(1984a)  

    

L(H
0
,β) =

dH
0
(t)/dt

e−βxi + H
0
(t)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

δi

e−βxi

e−βxi + H
0
(t)i=1

n

∏ ,                           (2.16) 

where  is the censoring indicator, parameter iδ 0
0

0 0

1 ( ) 1
( )

( ) ( )
S t

H t
S t tφ
−

= =  is the baseline failure 

odds (inverse of survival odds). Murphy et al. (1997) proved that the maximum likelihood 

estimator of parameter β  is consistent, asymptotically normal, and efficient. Differentiation of 

the derived profile likelihood function yields consistent estimators of the efficient information 

matrix.  

Lam et al. (2002) proposed a random effect semiparametric proportional odds model. They 

used a unified estimation procedure to estimate the regression and dependence parameters 

simultaneously by means of a marginal rank likelihood approach which is approximated by 

Monte Carlo method. Unlike the fully parametric method, their regression parameter estimate is 

not sensitive to the choice of correlation structure of the random effects. With the assumption of 

a baseline log-odds function, Lam et al. demonstrated that the proposed class of semiparametric 

proportional odds models serves as a good alternative to the random effect proportional hazards 

model.  

Dauxois and Kirmani (Dauxois and Kirmani, 2003) developed a nonparametric statistic for 

testing the proportional odds assumption over survival times under random censoring. It is a 

formal analytical test of the proportional odds assumption. The test they proposed has the form 

of 

[ ]
1 2

1 2 2 1( ) ( , ) ( ) ( ) ( ) ( )
s t

W W s t t s t s dsdt
τ τ

γ φ φ φ
< < <

= −∫∫ φ ,                          (2.17) 
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where  is a weight function, which is dependent on the survival function of samples to be 

compared. Some of the weight functions recommended include (Gill and Schumacher, 1987; 

Sengupta et al. 1998)  

( , )W s t

   

W
a
(t) =Y

1
(t)Y

2
(t)

W
b
(t) =

Y
1
(t)Y

2
(t)

Y
1
(t)+Y

2
(t)

W
c
(t) =

Y
1
(t)Y

2
(t)

Y
1
(t)+Y

2
(t)

Ŝ(t)

W
d
(t) =

Y
1
(t)Y

2
(t)

Y
1
(t)+Y

2
(t)

Ŝ(t)⎡
⎣⎢

⎤
⎦⎥
1/2

 

Weight functions  and  are adopted by Dauxois and Kirmani (Dauxois and Kirmani, 

2003) in their test for nonproportional odds assumption. 

( )aW t ( )bW t

It has been proved that the test statistics in Eq. (2.17) is asymptotically normal under the null 

hypothesis of proportional odds. In the numerical calculations, the survival functions can be 

approximated by their Kaplan-Meier estimators. Monte Carlo simulations in the context of the 

log-logistic survival data indicate that the proposed model works well in testing the 

proportionality of odds for survival data with random censoring.  

In this work, we extend the model by Dauxois and Kirmani to parametric cases by 

supplementing the distribution information of the survival data into the model. We have 

performed Monte Carlo simulations in the frame of survival data following the log-logistic 

distribution, and compared the modified model with the nonparametric model by Dauxois and 

Kirmani. Our results indicate that the parametric method developed is more sensitive in testing 

the validity of the proportional odds model assumption than the existing method.   
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3. TEST FOR PROPORTIONAL HAZARDS 

 

We have studied the test statistic for detecting differences in nonproportional hazards survival 

data with random censorship using log-rank test supplemented with a newly developed weight 

function. In this chapter we present the results obtained from this study. We used the modified 

weighted log-rank test by using a new weight function to account for the random effect that 

disrupts the proportionality of the hazards functions. We used Monte Carlo simulations to 

generate survival data with an exponential distribution and found that the modified method is 

superior in detecting the early difference of data than the conventional log-rank test and the G-

rho tests of Harrington and Fleming.  

 

3.1. Weighted Log-rank Test 

 

In the analysis of survival data, we often encounter the situation where the survival times of a 

group of individuals are not independent. Such correlations among survival times may arise 

when different individuals share some feature in common. For example, the survival data from 

the same clinic may be more similar than those from another clinic. This could be due to 

different treat teams in different clinics. Such random effects that can cause dependence in 

survival data are often referred to as frailties.  

Frailty in survival data may complicate survival analysis. The efficiency of a test statistic for 

survival data may decrease if the frailty factor is not considered, due to the nonproportionality 
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caused by frailty (Oakes and Jeong, 1998). In addition, failure to include frailty in a test may 

result in the misspecification of the proportional hazards model (Oakes and Jeong, 1998). Some 

methods have been proposed to attack this problem. One of widely used methods is to include a 

frailty model explicitly into the proportional hazards method (Aalen, 1998) to account for the 

nonproportionality in hazards function caused by random effects. In other words, an extra term 

corresponding to frailty is introduced into the standard proportional hazards model. For example, 

if we denote an unobserved random effect for object i by a covariate , then Eq. (2.1) becomes iz

0( ) ( )i ix z
ih t e b tβ γ+= ,                                                      (3.1) 

where  is an unknown baseline hazard function. Comparing Eq. (2.1) and Eq. (3.1), we can 

see that we actually introduced a prefactor function  to the proportional hazards model in 

order to incorporate the frailty term. An optimal weighting function can be derived if a 

distribution is assumed for the frailty (Oakes and Jeong, 1998).  

0( )b t

izeγ

     Using a weighted log-rank test is important in order to account for the nonproportionality in 

the data. This is due to the fact that the loss of the efficiency of the test from omitting a covariate 

is generally more important than the additional loss of the efficiency due to the resulting 

misspecification of the proportional hazards model (Oakes and Jeong, 1998). 

 

3.2. Derivation of the New Weighting Function 

 

     The proportional hazards model incorporated with a randomization variable  is written as iz

0( | , ) exp( ) ( )i i i i ih t x z x z b tβ γ= + ,                                          (3.2) 
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where  is a unknown baseline hazard function. If the values of  are observed, then the 

score test (simple log-rank test) from Cox’s model with γ  estimated as a nuisance parameter is 

optimal for testing  with  unspecified. If the values of z  are not observed, we need to 

develop a parametric analog (weighted log-rank test) to account for the omitted covariate . 

0( )b t iz

0β = γ

z

     We write the unobserved factor 

exp( )i iw zγ=  

and  

exp( )i ixθ β= , 

so the null hypothesis  is equivalent to .  Eq. (3.2) becomes 0β = 1iθ =

0( | , ) ( )i i i i ih t x w w b tθ= .                                                     (3.3) 

In terms of the corresponding survival functions we get 

0
( | , ) exp ( )

t

i i i iS t x w h u du⎡ ⎤= −⎢ ⎥
⎣ ⎦∫ ,                                                (3.4) 

and the baseline survival function is 

0
0

( ) exp ( )
t

A t b u du0
⎡ ⎤= −⎢ ⎥
⎣ ⎦∫ .                                                   (3.5) 

So from Eq. (3.3) we obtain 

[ ]0( | , ) ( ) i iw
i i iS t x z A t

θ= .                                                    (3.6) 

We assume that  are realizations of identical independently distributed positive random 

variables , the Laplace transform of W  is defined as  

iw

iW

0
( ) ( ) [ ]sW sWp s f W e dW E e

∞
−= = −∫ .                                         (3.7) 

Removing the conditioning on the variable  by integrating over W , Eq. (3.6) becomes iW
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[ ]

[ ]

0

0
0

0
0

0
0

{ log ( )}

0

( ) ( ) ( )

( )exp log ( )

( )exp log ( )

( )

i

i

i

W
i

W

i

W A t

S t f W A t dW

f W A t dW

f W W A t dW

f W e dW

θ

θ

θ

θ

∞

∞

∞

∞
− −

=

⎡ ⎤= ⎣ ⎦

=

=

∫
∫
∫
∫

.                                      (3.8) 

Let  

0 0
0

( ) log ( ) ( )
t

B B t A t b u du= = − = ∫ ,                                        (3.9) 

Then, by comparing Eq. (3.8) with Eq. (3.7) we obtain 

0{ log ( )}( ) ( )i iW A t W B
i iS t E e E e p Bθ θ θ− − −⎡ ⎤ ⎡ ⎤= = =⎣ ⎦⎣ ⎦ .                                (3.10) 

The nonparametric simple log-rank test statistic, , can be calculated by setting  in the 

score statistic of Cox’s partial likelihood (Cox, 1972, 1975),  

( )
3
npU 0β =

( )
3

( )
( ) ( )

( )
j j jnp

i
j j

x Y t
U x

Y t

θ
β

θ idN t
⎡ ⎤
⎢= −⎢

⎥
⎥

⎢ ⎥⎣ ⎦

∑∑∫ ∑
,                                  (3.11) 

which gives 

( )
3

( )
(0) ( )

( )
j jnp

i
j

x Y t
U x

Y t idN t
⎡ ⎤
⎢= −⎢

⎥
⎥

⎢ ⎥⎣ ⎦

∑∑∫ ∑
,                                    (3.12) 

since  gives . When the covariate  are not observed, a wider class of test statistics 

can be defined by introducing a weight function  into the log-rank statistic, giving 

0β = 1iθ = iz

(̂ )l t

( )
3

( )ˆ(0) ( ) ( )
( )

j jnp
i

j

x Y t
U l t x

Y t idN t
⎡ ⎤
⎢= −⎢

⎥
⎥

⎢ ⎥⎣ ⎦

∑∑∫ ∑
.                                  (3.13) 

Gill (Gill, 1980) showed that a weighted log-rank test of form given in Eq. (3.13) is optimal 

provided that the weight function  converges to a deterministic limit  proportional to  (̂ )l t ( )l t
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1

log ( )
( )

h t
t θ

θ

λ
θ =

∂
=

∂
.                                                      (3.14) 

     We know that (Collett, 2003) 

log ( )
( )

S t
h t

t
θ

θ
∂

= −
∂

.                                                     (3.15) 

Combining Eqs. (3.15) and (3.10) we have 

log ( )
( )

p B
h t

tθ
θ∂

= −
∂

.                                                    (3.16) 

Let , note that  is only dependent on t , so we have Bθ = Δ B

( )
t

B B
B

t t t
θ

θ θ
∂Δ ∂ ∂ ′= = =
∂ ∂ ∂

, and ( )B
B

θ
θ θ

∂Δ ∂
= =

∂ ∂
. 

And let , ( )p pΔ =
( )p

p
∂ Δ ′=

∂Δ
, p

p
′∂ ′′=

∂Δ
, then Eq. (3.16) becomes  

log ( ) 1
( )

( )
tp p

h t
t p tθ

θ ′ ′∂ Δ ∂ ∂Δ
= − = − = −

∂ Δ ∂Δ ∂
B p
p

.                           (3.17) 

So  

log ( )
log log( ) log

1 ( ) 1

( ) 1

1

1 1

1

t
t

t

t

t

t

h t B p
B p p

p

B p p
B p p

B p p
B p p

p p
p B

p p

p Bp
p p

Bp Bp
p p

θ θ
θ

θ θ θ

θ
θ θ θ

θ
θ θ θ

θ θ
θ θ θ

θ θ

θ

⎡ ⎤⎛ ⎞′ ′∂ ∂ ∂⎟⎜⎢ ⎥ ⎡ ⎤′ ′= − = − −⎟⎜ ⎟ ⎣ ⎦⎢ ⎥⎟⎜∂ ∂ ∂⎝ ⎠⎣ ⎦
′ ′∂ − ∂

= −
′ ′− ∂ ∂

′ ′∂ ∂ ∂Δ
= −

′ ′ ∂ ∂Δ ∂
⎛ ⎞′ ′∂ ∂ ⎟⎜ ′= + −⎟⎜ ⎟⎟⎜′ ⎝ ∂ ∂ ⎠

′ ′∂ ∂Δ
= + −

′ ∂Δ ∂
′′ ′

= + −
′

.                     (3.18) 
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At , , , 1θ = B BθΔ = = ( ) ( )p p BΔ =
( ) ( )

( )
p p B

p B
B

∂ Δ ∂ ′= =
∂Δ ∂

, ( )
p

p B
′∂ ′′=

∂Δ
, so that Eq. 

(3.18) is  

1

log ( ) ( ) ( )
( ) 1

( ) ( )
h t Bp B Bp B

t
p B p B

θ

θ

λ
θ =

′′ ′∂
= = + −

′∂
.                              (3.19) 

     If the frailty, W , follows a gamma distribution with index κ , then we know the Laplace 

transformation of it is given by (Oakes and Jeong, 1998) as 

( ) (1 )p B B κ−= + ,                                                   (3.20) 

We have 

1( ) (1 ) ( )
1

p B B p B
B

κ κ
κ − −′ = − + = −

+
,                                (3.21) 

2 1
( ) ( 1)(1 ) ( )

1
p B B p B

B
κ κ

κ κ − − +′′ ′= + + = −
+

.                          (3.22) 

So  

( ) ( ) 1 1
( ) 1 1

( ) ( ) 1 1 1
Bp B Bp B

t B B
p B p B B B B

κ κ
λ

′′ ′ +
= + − = − + =

′ + + +
.        (3.23) 

From Eq. (3.20) we have 

1

1
1B

p

κ⎡ ⎤
⎢ ⎥= −
⎢ ⎥⎣ ⎦

,                                                    (3.24) 

So 

1/
1/

1
( )

1 (1/ ) 1
p

p
κ

κλ =
+ −

p= .                                    (3.25) 

At  from Eq. (3.10) we know  1θ =

( ) ( )S t p B p= = .                                                (3.26) 

So the optimal weight function for gamma frailty is  
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1/[ ( )] [ ( )] [ ( )]S t S t S tκλ = = ρ .                                         (3.27) 

     If the frailty W  follows an inverse Gaussian distribution with unit mean and variance , 

then we know the Laplace transformation is (Oakes and Jeong, 1998) 

1(2 )ψ −

1/22[ ( )] 2( ) Bp B e ψ ψ ψ− + += ,                                            (3.28) 

We have 

1/2
1/2

2[ ( )] 2 1/2 1/2( ) [ ( ) ] ( )Bp B e B p B
B

ψ ψ ψ ψ
ψ ψ

ψ
− + + − ⎡ ⎤

′ ⎢= − + = − ⎥
⎢ ⎥+⎣ ⎦

,            (3.29) 

1/2

1/2 3/21
( ) ( ) ( ) ( )

2
p B p B p B B

B
ψ

ψ ψ
ψ

−⎡ ⎤ ⎡ ⎤′′ ′ ⎢ ⎥= − + +⎢ ⎥⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎣ ⎦
.                  (3.30) 

Eq. (3.29) also gives 

1/2

( ) ( )p B p B
B

ψ
ψ

−⎡ ⎤
′ ⎢ ⎥= −

⎢ ⎥+⎣ ⎦
, 

So Eq. (3.30) becomes 

1/2 1/2

1/2 3/2

1/2

1
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1 1
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p B p B p B B
B B

p B
B B
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ψ ψ

ψ ψ
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−
−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤′′ ′ ⎢ ⎥ ′ ⎢ ⎥= − + +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + ⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥⎟ ⎟⎜ ⎜′= − −⎟ ⎟⎜ ⎜⎢ ⎥⎟ ⎟⎟ ⎟⎜ ⎜+ +⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

.       (3.31) 

So the optimal weight function is given by 

1/2 1/2

( ) ( )
( ) 1

( ) ( )

1 1
1

2

1
2( )

Bp B Bp B
t

p B p B

B B
B B

B
B

λ

ψ ψ
ψ ψ ψ

ψ

′′ ′
= + −

′

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤⎢ ⎥⎟ ⎟⎜ ⎜
B

⎢ ⎥= + − − +⎟ ⎟⎜ ⎜⎢ ⎥⎟ ⎟⎟ ⎟⎜ ⎜ ⎢ ⎥+ + +⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎢ ⎥⎣ ⎦

= −
+

.                (3.32) 

From Eq. (3.28) we obtain 
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⎠ ,                                              (3.33) 

21
log

2
p

B
ψ

ψ
ψ

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎝ ⎠
= − ,                                              (3.34) 

and  
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ψψ
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So Eq. (3.32) becomes 

( ) [ ]

2 2

2 2

1 1 2 1
( ) 1

12 2 22 log 2 log ( )2 log
2

p
p S tp

ψ ψ
λ

ψ ψψ
= − + = + = +

⎛ ⎞ − −⎟⎜ − ⎟⎜ ⎟⎝ ⎠

2

2

2ψ .     (3.35) 

     For survival distributions with nonproportional hazards, a weighted log-rank test with an 

optimal weight function is expected to be more sensitive than the simple log-rank test (Oakes 

and Jeong, 1998). For example, when the frailty has a gamma distribution with an index 

parameter κ , from Eq. (3.27) we obtain the optimal weight function   

1
( ) ( )W t S t κ= ,                                                           (3.36) 

which corresponds to the “G-rho” tests of Harrington and Fleming (Fleming and Harrington, 

1991) with rho=1/ . When rho=0, the G-rho test reduces to the simple log-rank test. When 

rho=1, the G-rho test reduces to Wilcoxon test (Collett, 2003). 

κ

However, when the frailty distribution affects the proportionality of the hazards, the simple 

log-rank test is no longer the optimal test, so a weighted log-rank test of G-rho type or different 
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weighting function must be used. For example, when the frailty follows an inverse Gaussian 

distribution, an optimal weighting function is given as Eq. (3.35)  

2

2

1 2
( ) ˆ2 [2 log ( )]

W t
S t

ψ
ψ

= +
−

,                                             (3.37) 

where ψ  is a controlling parameter which can take the value of 0 to  +∞ ,  is the estimated 

common survival function based on the combined sample up to t  (Oakes and Jeong, 1998).  

(̂ )S t

The Gamma and inverse Gaussian are two most commonly seen frailty models in modeling 

survival data using proportional hazards methods. It is known that the inverse Gaussian frailty 

makes the population homogeneous with time, whereas for the gamma frailty the relative 

heterogeneity is constant (Hougaard, 1984). In this study we are particularly interested in testing 

nonproportional hazards survival data that become more and more homogeneous as time 

proceeds. Therefore we chose the weighting function corresponding to the inverse Gaussian 

frailty [Eq. (3.37)] in our simulations. For observed survival data, the test statistic is given by 

1 2
1 1

1 2

( ) i i
i i i

i D i i

d d
W t d Y

Y Y∈

⎡ ⎤⎛ ⎞+ ⎟⎜⎢ ⎥⎟Δ = − ⎜ ⎟⎢ ⎥⎜ ⎟⎜ +⎝ ⎠⎣ ⎦
∑ ,                                         (3.38) 

where  is a common weighting function shared by each group,  and  are the number 

of objects at risk in group I and II at time ,  and  are the number of events occurred in 

each group at time , respectively. The summation is over D , which includes a subset of 

survival times that are observed as event of interest. The variance of W  can be estimated by  

( )iW t 1iY 2iY

it 1id 2id

it

2 1 1[ ( )] 1
1

i i i i
i

i D i i i

Y Y Y d
V W t

Y Y Y∈

⎛ ⎞⎛ ⎞−⎟⎜ ⎜⎟= −⎜ ⎜⎟⎜ ⎜⎟⎜ ⎜ −⎝ ⎠⎝ ⎠
∑ id⎟⎟⎟⎟

.                                     (3.39) 

It can be proved that Z
V
Δ

=  has an asymptotically standard normal distribution (Harrington 

and Fleming, 1982). 
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     The common survival function estimator  in Eq. (3.37) is given by  (̂ )S t

   
Ŝ(t) = 1−

d
i

Y
i

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟t≤ti

∏ . 

     A frailty distribution is usually unobservable, thus we do not know if the frailty itself will 

affect proportionality of the survival data at hand. So we must test if the observed survival data 

still follows proportional hazards assumption before we decide what type of weighting function 

should be used (Therneau and Grambsch, 2000). Testing the proportionality in survival data can 

be performed by using the cox.zph procedure provided in S-Plus.  If the cox.zph test indicates 

proportionality in the data, the log-rank test statistics like simple log-rank test and Wilcoxon log-

rank test can be chosen. However, if the cox.zph test shows that the dataset does not satisfy the 

proportional hazards assumption, we should use a log-rank test with a different type of weighting 

function, such as the one for the survival data with inverse Gaussian frailty or the Harrington-

Fleming test. 

 

3.3. Test of Frailty Distributions 

 

A specific frailty distribution has to be assumed in order to select the appropriate weight 

function used in the proposed weighted log-rank test. In this work, we assume that the frailty 

follows either the Gamma (Vanpel et al., 1979) or Inverse Gaussian (Hougaard, 1984) 

distributions, which are two most commonly used distributions in proportional hazards frailty 

models.  

Economou and Caroni (2005) proposed a graphical method to test the assumption of Gamma 

or Inverse Gaussian frailty distributions in survival data. The method is based on the non-
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parametric Kaplan-Meier estimate of the survivor function. If the baseline hazard function is 

assumed to be Weibull with scale parameter ξ  and shape parameter β , conditional on frailty z , 

the random variable T  of time-to-event has survival function in the form of  

( / )( | ) z tS t z e
βξ−= . 

If  is a random variable with distribution function G  on (0 , then the unconditional 

survival function is given by  

Z , )∞

( / )

0
( ) ( )z tS t e dG z

βξ
∞

−= ∫ .                                                  (3.40) 

In the proportional hazards frailty model, if G  is chosen as the Gamma distribution, both the 

shape parameter and scale parameter are commonly chosen as equal to ν  (and hence with mean 

equal to unity) in order to remove one parameter to avoid a problem of identifiability (Economou 

and Caroni, 2005). Then the probability density function of Gamma distribution is given by  

1( ; , )
( )

zf z z e
ν

ν νν
ν ν

ν
− −=

Γ
. 

Integration of Eq. (3.40) we have  

( / )
( ) 1

t
S t

νβξ
ν

−⎡ ⎤
⎢ ⎥= +
⎢ ⎥⎣ ⎦

.                                                  (3.41) 

Eq. (3.41) corresponds to the survival function of the univariate Burr distribution (Burr, 1942). 

Similarly, if G  is chosen as the Inverse Gaussian distribution with shape parameter λ  and scale 

parameter 1, then Eq. (3.40) becomes 

2( / )
( ) exp 1 1

t
S t

βξ
λ

λ

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟⎜= − + ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦
.                                      (3.42) 

Taking logarithms of the relation Eq. (3.41) we obtain 
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( / )
log ( ) log 1

t
S t

βξ
ν

ν

⎡ ⎤
⎢ ⎥= − +
⎢ ⎥⎣ ⎦

.                                      (3.43) 

From the approximation , it follows that  log(1 ) logx+ ≈ x

log ( ) log logS t t βνβ ν νξ≈ − + , 

when ( / )t βξ
ν

 is large. Consequently, a plot of  vs.  should be a straight line, 

where  is a nonparametric estimator of the survival function, such as the Kaplan-Meier. The 

same plot can be derived for survival function following the exponential distribution since the 

exponential is a special case of the Weibull.  

ˆlog ( )S t− log t

(̂ )S t

Unfortunately, there are some observations (early failures) which result in the nolinear 

behavior of  vs. log  (when ˆlog ( )S t− t
( / )t βξ

ν
 is not large enough). Then these early failure data 

give the plot a characteristic horizontal section for small t  (see Figure 1 for examples). The 

length of this horizontal section depends on the parameter ν . As , that is, there is a high 

degree of heterogeneity, it almost disappear since 

0ν →

( / )t βξ
ν

 is large for all t . 

Likewise, taking logarithms of Eq. (3.42) we obtain 

2( / )
log ( ) 1 1

t
S t

βξ
λ

λ

⎛ ⎞⎟⎜ ⎟⎜= − + ⎟⎜ ⎟⎜ ⎟⎝ ⎠
.                                    (3.44) 

For large λ ,  2( / ) ( / )
1 1

t tβ βξ ξ
λ λ

+ ≈ + , we have lo . Plot of  

vs.  giving a straight line with slope of β . Then the the Weibull-Inverse Gaussian model 

reduces to the initial Weibull model with negligible frailty, since there is only a small degree of 

heterogeneity when λ  is large. 

g ( ) ( / )S t t βξ≈ − ˆlog[ log ( )]S t−

log t
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For very small λ , which corresponds to high degree of heterogeneity, we have 

2( / ) 2( / )
1 1

t tβ βξ ξ
λ λ

− + ≈ − , 

and Eq. (3.44) is 1/ /2log ( ) 2 ( / ) [(2 ) / ]S t t tβ βλ ξ λ ξ≈ − = − β . Plot of  vs.  

giving a straight line with slope of . This corresponds to the Weibull model with scale 

parameter  and shape parameter equal to .  

ˆlog[ log ( )]S t− log t

/2β

1//(2 ) βξ λ /2β

For intermediate values of λ , the initial section of the plot would behave like the no-frailty 

case with slope β , since the term ( / )t βξ
λ

 is still small for small t . For large t , the behavior 

should be like the case of small λ , with slope . At the transition from slope β  to  as 

time increases, the plot will show some curvature. Examples are shown in Figure 2. 

/2β /2β
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Figure 1. Diagnostic plots of the Weibull survival function with the Gamma frailty.  

log ( )S t−  vs. log , for various values of the shape parameter ν  for the Gamma frailty. The 
sample size is 2000, with , and . The curve shows a concave shape when the 
frailty is a Gamma distribution. In particular, when  is small, the non constant part of the curve 
is a straight line.  

t
1000ξ = 2β =

ν
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Figure 2. Diagnostic plots for the Weibull survival function with the Inverse Gaussian frailty. 

log[ log ( )]S t−  vs. log , for various values of the shape parameter λ  for the Inverse Gaussian 
frailty. The sample size is 2000, with , and . The curve shows a shape of straight 
line, especially when λ  is big.  

t
1000ξ = 2β =
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3.4. Simulation Methodology 

 

Suppose there are two groups of survival data with corresponding hazard functions  and 

. Survival data can be generated by Monte Carlo method according to the characteristics of 

 and . Then we can use log-rank tests with different weight functions to determine the 

power of each test method in differentiating these two groups of data. An estimate of the 

statistical power of the test is provided by  

2( )h t

1( )h t

1h 2h

s

m
power

n
= ,                                                         (3.45) 

where  is the number of simulations in which the test can differentiate the data with 

significance, and  is the total number of simulations. 

m

sn

In our simulation, we take  as the baseline hazard function and set it to be a constant, ρ . 

Therefore  becomes 

1( )h t

2h

2 1( | ) ( )zh t z e h t eβ ρ= = zβ .                                              (3.46) 

Here z  is a covariate. The null hypothesis that  and  are identical corresponds to . 

The survival functions are 

1h 2h 0β =

1( ) tS t e ρ−= ,                                                         (3.47) 

and  

2 1( | ) ( )
zeS t z S t

β

= .                                                    (3.48) 

Then for an object in group I, the probability that its survival time is less than value t  is 

1 1( ) 1 ( ) 1 tF t S t e ρ−= − = − ,                                           (3.49) 
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and likewise, for an object in group II, 

( )
2 2( | ) 1 ( ) 1

zt eF t z S t e
βρ−= − = − .                                       (3.50) 

Since that  and  conform to a uniform distribution in the range of [0,1], we have 1( )F t 2( | )F t z

1( ) 1 tF t e uρ−= − = ,                                                  (3.51) 

and  

( )
2( ) 1 t eF t e u

βρ−= − = ,                                               (3.52) 

as  for group two data. 1z =

For survival data in group one, we obtain  

1

ln(1 )u
t

ρ
−

= − .                                                     (3.53) 

For survival data in group two, we obtain 

2

ln(1 )u
t

e
β

βρ
−−

= − = 1e t

N

.                                              (3.54) 

Therefore, we can generate two groups of survival data conforming to  and  in Eq. (3.46) 

by starting from a uniform distribution u , and using the relationships given in Eqs. (3.53) and 

(3.54). 

1h 2h

The simulation procedures are as follows: 

i. Generate  observations from uniform distribution u (0,1), designate them as , 

. 

*N iu

*1,2, ,i N= ""

ii. Generate the survival times for group I, , , base on Eq. (3.53). The 

parameter ρ  in Eq. (3.53) is set arbitrarily as 0.001, 0.1, and 0.3, respectively. The 

data are sorted in ascending order. 

1it *1,2, ,i = ""
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1

ln(1 )
.i

i

u
t

ρ
−

= −  

iii. Generate the survival times for group II, . The random effect (frailty) of the 

survival times is planted into the  by multiplying the factor of e  by , as shown 

in Eq. (3.54). In our simulations, we let the premultiplier e  be in the range of (0, 1). 

The values of e  were chosen according to the shapes of hazards ratios of interest. 

For example, if we are interested in two groups of data with early difference, we let 

the e  take values of piece-wise proportionality reflecting early departures.  

2it

2it β−
1it

β−

β−

β−

iv. Generate the censored data in two groups from a uniform distribution randomly and 

choose the minimum. In this study we let the censoring occur randomly. 

In testing the proportionality of the simulated data, we used the cox.zph function in the S-

Plus/R package. The null hypothesis for this test is that the data obey the assumption of 

proportional hazards.  

We found it was very difficult to incorporate the new weighting function in Eq. (3.37) into the 

survdiff procedure in the R/S-Plus package. Therefore, we wrote our own program in R/S-Plus 

to evaluate Eq. (3.38) and (3.39), see attached programs in the Appendix. The survival data 

obtained were transformed accordingly in order to calculate the quantities in Eq. (3.38) and 

(3.39) numerically. The p-values were calculated corresponding to the observed statistic, 

Z
V
Δ

= , which follow the standard normal distribution. The test results based on the statistics 

in Eq. (3.38) and (3.39) with the new weight function Eq. (3.37) are compared with a simple log-

rank test and Harrington-Fleming’s weighted log-rank test.  
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3.5. Results and Discussion 

 

3.5.1. Test for proportional hazard assumptions 

 

The purpose of this work is to investigate how the simple log-rank test and the weighted log-

rank test of Harrington-Fleming perform for the nonproportional hazards data, compared with 

the test with the new weight function in Eq. (3.37). Thus, as the first step it is worthwhile to 

evaluate how significantly the simulated data violate the proportional hazards assumption.  

We used the cox.zph function in the S-Plus package to test the statistical significance of 

violation of the proportional hazards assumption in the simulated data. We tested simulated data 

with early, middle, and late departure. The datasets were generated by the procedures described 

in section 3.4 with baseline hazard function ρ 0.3. Our results show that cox.zph tests do 

identify that the nonproportionality exists in our simulated data. We examined simulated datasets 

with a data size of 1500 and found that a large fraction of datasets to be nonproportional at the 

significance level of 0.05 detected by the cox.zph procedure. However, the level of 

nonproportionality varies from dataset to dataset. The most significant nonproportionality in 

hazards occurs in data with early departures. For example, for late difference datasets, 32% of 

100 simulations are identified as nonproportional in hazards using the cox.zph procedure. For 

early difference datasets, about 94% of the datasets were identified as nonproportional in 

hazards. For middle difference, 57% of datasets were shown to be nonproportional.  

=

In Figures 3 to 5 we show some examples for the estimated patterns of change of the hazard 

ratios from the cox.zph function (smoothed scaled Schoenfeld residual plots), together with the 

corresponding Kaplan-Meier plots. The shape of the Kaplan-Meier estimation of the survival 
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distributions clearly indicates the nonproportionality hazards nature of the simulated data. For 

example, Figure 3 shows the cox.zph regression for two survival datasets that have later 

difference. The data size is 100.  It can be seen from the residual plots (graph in the top) that the 

residual curve drifts away from value of zero as time progresses, which indicates significant late 

difference in the two groups of survival time. The test of proportional hazards hypothesis of the 

data using cox.zph gives a p-value of 0.04. Similar procedures were applied to simulated 

samples with early and middle differences, two examples of which are shown in Figure 4 and 5. 

Tests of proportional hazards using the function cox.zph of these two sets of survival data give 

p-value of 0.03 and 0.03, respectively. Therefore, it is evident that significant nonproportionality 

exists in the hazards function of the datasets generated in our simulations. These datasets would 

be appropriate samples that can be used for the evaluation of our method.   
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Figure 3. Example of a single simulated data set with late difference.  

The size of datasets .  *
1 2 100n n N= = =
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Figure 4. Example of a single simulated data set with early difference.  

The size of datasets .  *
1 2 100n n N= = =
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Figure 5. Example of a single simulated data set with middle difference.  

The size of datasets . *
1 2 100n n N= = =
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3.5.2. Choosing parameters 

 

The simple log-rank and Harrington-Fleming’s weighted log-rank test can be formulated by 

properly setting the weight function  in Eqs (3.38) and (3.39). For the simple log-rank test, 

 simply equals to unity for all t, which means all the survival times are treated with equal 

weight. For Harrington-Fleming’s weighted log-rank test, the weight function  in Eqs. 

(3.38) and (3.39) is defined by  

( )iW t

( )iW t

( )iW t

, 1
ˆ ˆ( ) ( ) [1 ( )]p

p q i i iW t S t S t−= − 1
q

− ,                                           (3.55) 

where    p ≥ 0,  q ≥ 0  (Klein and Moeschberger, 1997).  Slightly different from the  in Eq. 

(3.40), the  in Eq. (3.55) is the survival function at the previous failure time. When 

 Eq. (3.55)  reduces to the weigh function for the simple log-rank test. When  

and  we have the G-rho test. By choosing the values of p and q properly, we assign 

different weights to the data points. For example, when  and , the tests with this 

weight function put more weights on early difference. When  and , the tests put 

more weights on late difference. In our simulation tests, we set the values of p and q in the 

Harrington-Fleming test as follows: 

(̂ )iS t

1(̂ iS t − )

0p q= = 0p >

0q =

0q = 0p >

0p = 0q >

 

Early difference data: ; 2,  0p q= =

Late difference data: ; 0,  2p q= =

Middle difference data: . 1p q= =
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For the log-rank test with the new weight function, we need to set the parameter ψ  for the 

new weight function in Eq. (3.3). In this study we used three values for ψ , which are 0.01, 1.0, 

and 5.0.  For the baseline hazard function, we used the values of 0.001, 0.1 and 0.3. The optimal 

values of  will be discussed later. ψ

 

3.5.3. Simulation test for data difference 

 

We chose the sample size of the simulation to be 1500, with group I and group II having the 

same size. That is, . The data points are sorted ascendingly according to t and 

divided into 10 subgroups. For each subgroup a factor is multiplied by t to create the early, 

middle, or late difference between data group I and II. For example, when we model early 

difference data, we set a factor array of (0.85, 0.80, 0.75, 0.80, 0.85, 0.90, 0.93, 0.95, 0.97, 0.99). 

The first subgroup of 150 survival times in group II equal to the product of 0.80 and the first 150 

data from group I. The second subgroup of 150 survival times in group II equal to the product of 

0.825 and the second 150 data from group I, and so on. The last subgroup of 150 survival time in 

group I and II are essentially the same. For each choice of factor array,  simulations 

with randomly generated survival times were performed, with level of test equal to 0.05. The 

power of each test was computed according to Eq. (3.45).  

*
1 2n n N= =

1000sn =

One set of results for comparing the simple log-rank, Harrington-Fleming’s weighted log-

rank, and the new weight function tests are shown in Table 1. This set of data has early 

difference. As can be seen from the simulation results, the Harrington-Fleming’s weighted log-

rank test (with  and ) performs poorly in capturing the difference in the two groups.  

The simple log-rank test has shown a higher sensitivity than the Harrington-Fleming’s test, 

2p = 0q =
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giving an average power of about 0.22. In contrast, the test with new weight function has about 

twice the power of a simple log-rank when the parameter ψ  equals to 1.0.  We should point out 

that all three test methods show a low power (less than 0.5) in differentiating the data group, 

mainly due to the very small difference we implanted in the simulated datasets. The power of 

Harrington-Fleming’s test is relatively low. However, this does not indicate that Harrington-

Fleming fails. If we increase the data difference by changing the premultiplier factor array, the 

testing powers for all three tests increase rapidly, but the power of the new weight function test 

remains the highest before they reach unity.  Also we found that variation in the constant 

baseline hazards function does not change the relative sensitivity of these three test methods in 

differentiating the data groups with early departure.  

For the datasets with middle difference, the test with the new weight function shows a higher 

power than the Harrington-Fleming test.  However, its powers are in the same range as that of 

the simple log-rank test. From Table 2, we can see the new test has a slightly higher power than 

simple log-rank test when we choose ψ  to be 1.0. This observation is similar to that we have 

seen for early difference test. It seems that  is good choice for testing the early and middle 

difference survival data using the new weight function. Again, the testing results have only a 

minor change when we vary the baseline function values.  This indicates that the value of the 

constant baseline hazards function has negligible effect on the sensitivity of three testing 

methods in the light of the simulation fluctuations.  

1ψ =

Simulation results from the late difference data are shown in Table 3. We can see that the 

tests with all three methods have a power in the same range.  

We note that the factor arrays for the simulated data with different departure pattern (early, 

middle, or late difference) are in the same magnitude, ranging from 0.80 to 0.99. However, the 
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significance of nonproportionality in these datasets identified by cox.zph varies. Early 

difference data was identified by cox.zph as having the most significant nonproportionality. The 

fact that the new weigh function is more powerful than the simple log-rank and Harrington-

Fleming’s weighted log-rank tests in differentiating the early difference data, indicates that it is 

suitable for discriminating nonproportional hazards survival data.  

Summarizing the results shown in Table 1 to 3, we can see that the advantage of the new test 

is obvious. For early difference data, the new method shows better performance than either 

simple log-rank or Harrington-Fleming’s method. For middle difference, it is better than the 

Harrington-Fleming’s test. Even for the later difference, which has the least nonproportionality, 

the new weight function method has a similar sensitivity as the other two methods. This indicates 

that the new weighting function is successful in properly accounting for the nonproportional 

frailty effect of the simulated survival data.  

We also studied the dependence of the proposed new method on the censoring level, sample 

size, and the baseline distribution. We performed simulations with censoring level 5%, 10%, and 

30%. We found that increasing the censoring level from 0% to 30% would decrease the 

sensitivity of all three testing methods, including the new method proposed in this work. 

However, the relative powers of these methods are consistent with the results obtained above. 

Simulations with various sample size ( ) indicates that decreasing the 

sample size would cause the power of the three methods to decrease. But similar to the impact of 

censoring level, the relative sensitivity of three methods was not changed. Simulations were also 

performed using a Weibull distribution as the baseline instead of the exponential distribution. 

The results from the Weibull distribution simulations are quatitatively consistent with that from 

* 500,1000,1500N =
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the exponential baseline simulations. The results for testing the censoring level, sample size, and 

the baseline distribution are summarized in Tables 4 to 6.  
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Table 1. Simulation results for samples with early difference using the simple log-rank, 
Harrington-Fleming’s weighted log-rank test, and the new weighted logrank test.  

Hypothesis: ; 1000 simulations for each ; , level of test is 0.05. The 
piecewise nonproportional hazard array is (0.85, 0.80, 0.75, 0.80, 0.85, 0.90, 0.93, 0.95, 0.97, 
0.99). 

0β = *N *
1 2n n N= =

 

baseline 
hazards 
function 

ψ  Test with 
new weight 
function, 1P

Simple log-
rank,  2P

Harrington-
Fleming 

weighted log-
rank,  3P

2 1/P P  3 1/P P  

5.0 0.285 0.793 0.526 

1.0 0.445 0.508 0.337 

0.001 

0.01 0.229 

0.226 0.15 

0.987 0.655 

5.0 0.297 0.798 0.548 

1.0 0.446 0.531 0.365 

0.1 

0.01 0.239 

0.237 0.163 

0.992 0.682 

5.0 0.312 0.731 0.503 

1.0 0.439 0.519 0.358 

0.3 

0.01 0.214 

0.228 0.157 

1.065 0.733 
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Table 2. Simulation results for samples with middle difference using the simple log-rank, 
Harrington-Fleming’s weighted log-rank test, and the new weighted logrank test.  

Hypothesis: ; 1000 simulations for each ; , level of test is 0.05. The 
imposed nonproportional hazard array is (0.99, 0.95, 0.90, 0.85, 0.80, 0.80, 0.85, 0.90, 0.95, 
0.99). 

0β = *N *
1 2n n N= =

 

baseline 
hazards 
function 

ψ  Test with 
new weight 
function, 1P

Simple log-
rank,  2P

Harrington-
Fleming 

weighted log-
rank,  3P

2 1/P P  3 1/P P  

5.0 0.890 0.937 0.719 

1.0 0.945 0.883 0.677 

0.001 

0.01 0.849 

0.834 0.640 

0.982 0.754 

5.0 0.915 0.909 0.624 

1.0 0.947 0.879 0.603 

0.1 

0.01 0.818 

0.832 0.571 

1.017 0.698 

5.0 0.887 0.940 0.626 

1.0 0.957 0.871 0.580 

0.3 

0.01 0.835 

0.834 0.555 

0.999 0.665 
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Table 3. Simulation results for samples with late difference using the simple log-rank, 
Harrington-Fleming’s weighted log-rank test, and the new weighted logrank test.  

Hypothesis: ; 1000 simulations for each ; , level of test=0.05. The 
imposed nonproportional hazard array is (1.00, 0.99, 0.98, 0.97, 0.95, 0.93, 0.91, 0.89, 0.87, 
0.85). 

0β = *N *
1 2n n N= =

 

baseline 
hazards 
function 

ψ  Test with 
new weight 
function, 1P

Simple log-
rank,  2P

Harrington-
Fleming 

weighted log-
rank,  3P

2 1/P P  3 1/P P  

5.0 0.977 1.009 1.011 

1.0 0.977 1.009 1.011 

0.001 

0.01 0.981 

0.986 0.988 

1.005 1.007 

5.0 0.978 1.007 1.006 

1.0 0.967 1.019 1.018 

0.1 

0.01 0.987 

0.985 0.984 

0.998 0.997 

5.0 0.983 1.003 0.998 

1.0 0.972 1.014 1.009 

0.3 

0.01 0.983 

0.986 0.981 

1.003 0.998 
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Table 4. Impact of censoring level on the sensitivity of the methods (early difference).  

Hypothesis: ; 1000 simulations for each ; , level of test is 0.05. 
The piecewise nonproportional hazard array is (0.85, 0.80, 0.75, 0.80, 0.85, 0.90, 0.93, 0.95, 0.97, 
0.99). 

0β = *N *
1 2 1500n n N= = =

 

Censoring 
level 

baseline hazards 
function 

ψ  Test with 
new weight 

function 

Simple 
log-rank 

Harrington-
Fleming 

weighted log-
rank 

5.0 0.227 

1.0 0.430 

5% 0.1 

0.01 0.248 

0.232 0.143 

5.0 0.215 

1.0 0.413 

10% 0.1 

0.01 0.250 

0.243 0.123 

5.0 0.198 

1.0 0.389 

30% 0.1 

0.01 0.233 

0.227 0.111 
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Table 5. Impact of sample size on the sensitivity of the methods (early difference).  

Hypothesis: ; 1000 simulations for each various ; , level of test is 0.05. 
The piecewise nonproportional hazard array is (0.85, 0.80, 0.75, 0.80, 0.85, 0.90, 0.93, 0.95, 0.97, 
0.99). 

0β = *N *
1 2n n N= =

 

Sample 
Size  *N

baseline hazards 
function 

ψ  Test with 
new weight 

function 

Simple 
log-rank 

Harrington-
Fleming 

weighted log-
rank 

5.0 0.127 

1.0 0.220 

500 0.1 

0.01 0.110 

0.108 0.04 

5.0 0.189 

1.0 0.345 

1000 0.1 

0.01 0.156 

0.144 0.07 

5.0 0.297 

1.0 0.446 

1500 0.1 

0.01 0.239 

0.228 0.157 
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Table 6. Simulation results for samples with Weibull distribution ( ), with parameter 
.  

,τ ρ
1.5τ =

Hypothesis: ; 1000 simulations for each ; , level of test is 0.05. 
The piecewise nonproportional hazard array is (0.85, 0.80, 0.75, 0.80, 0.85, 0.90, 0.93, 0.95, 0.97, 
0.99). 

0β = *N *
1 2 1500n n N= = =

 

baseline hazards 
function 

ψ  Test with new 
weight function 

Simple log-
rank 

Harrington-Fleming 
weighted log-rank 

5.0 0.295 

1.0 0.421 

0.001 

0.01 0.196 

0.235 0.138 

5.0 0.311 

1.0 0.507 

0.1 

0.01 0.182 

0.247 0.171 

5.0 0.281 

1.0 0.429 

0.3 

0.01 0.252 

0.213 0.153 
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3.5.4. Optimal value of parameter ψ  

 

Theoretically, the value of ψ  can be any arbitrary positive number between 0 and infinity 

(Oakes and Jeong, 1998). As long as a positive ψ  is chosen, the weighting function will be 

always between 0 and 1. However, the change in ψ  value will change the distribution of the 

weighting function. Therefore, further careful work needs to be done before we can give a 

reasonable rule in choosing the optimal ψ  value. 

From the simulation results we recognize that an optimal value exists for parameter ψ  in 

terms of testing the nonproportional hazards data using the newly developed log-rank method. 

This finding can be interpreted from the dependence of the weight function on ψ  and the 

survival distribution. For example, for survival data following exponential distribution, we can 

plot the weight function calculated from Eq. (3.37) versus survival time with three choices of ψ  

values, namely, , , and , as shown in Figure 6. As can be seen from the 

plots, increase in the value of ψ  puts more weight on the data with late difference. So a small 

value of ψ  is desired if we want to test the early difference of survival distribution. On the other 

hand, if the value of ψ  is too small, only the data with minimum survival time will be given 

weight, which is apparently disadvantageous for tesing any data difference. Therefore, an 

optimal value of  has to be chosen in order to obtain the maximum sensitivity of the method. 

0.1ψ = 1ψ = 5ψ =

ψ
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Figure 6. New weight function as a function of survival time and parameter .  ψ

The survival time follows exponential distribution, with baseline parameter . The 
parameter ψ =5, 1, 0.1, respectively, for the curves from top to bottom. 

0.3ρ =

 

     Theoretically, an optimal value for the parameters used in the newly developed weight 

functions can be calculated mathematically from the survival data, if a distribution is assumed 
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about the random effects. For example, for Gamma frailty, we have derived a weight function 

which is dependent on the parameter ρ  as given by Eq. (3.27), 

1/[ ( )] [ ( )] [ ( )]S t S t S tκλ = = ρ .                                         (3.27) 

Once the value of ρ  can be estimated, the weight function in Eq. (3.27) with  will be 

optimal, where  is a numerical estimate of ρ . Likewise, the optimal weight function for inverse 

Gaussian frailty can also be calculated by estimating the value of ψ  in Eq. (3.37). More 

discussions on estimating  and  can be found in Chapter 5.  

ˆρ ρ=

ρ̂

ρ ψ

 

3.5.5. Comparison with supreme weighted log-rank test 

 

The supremum version of weighted log-rank test is given by  

(0, )sup ( )t Z tτ∈ , 

where ( )
( )

( )

t
Z t

V τ
Δ

= , and  and  are calculated from Eqs. (3.38) and (3.39), ( )tΔ ( )V τ

1 2
1 1

(0, ) 1 2

( ) ( )
i

i i
i i i

t t i i

d d
t W t d Y

Y Y∈

⎡ ⎤⎛ ⎞+ ⎟⎜⎢ ⎥⎟Δ = − ⎜ ⎟⎢ ⎥⎜ ⎟⎜ +⎝ ⎠⎣ ⎦
∑ , 

2 1 1

(0, )

( ) [ ( )] 1
1

i

i i i i
i i

t i i i

Y Y Y d
V W t

Y Y Yτ

τ
∈

⎛ ⎞⎛ ⎞−⎟ ⎟⎜ ⎜⎟ ⎟= −⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜ −⎝ ⎠⎝ ⎠
∑ d . 

The simulations were extended to compare the power of supreme versions of the log-rank 

and weighted log-rank test proposed in this work. We found that the power of the supreme 

versions of the log rank and weighted log-rank tests are comparable with their native version. 

Taking the log-rank method using the new weight function as an example, we found that the 

supreme version has almost the same power as the native one does. Such results are consistent 

 54



with the previous findings that supremum statistics are nearly as powerful as the traditional 

statistics under the proportional hazards assumption (Fleming et al., 1987) or more powerful than 

the traditional statistics in certain nonproportional hazards settings (Kosorok and Lin, 1999). One 

typical set of results comparing the supreme and traditional weight log-rank test using the new 

weight function is show in Table 4.  
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Table 7. Comparison of supreme and traditional version of the new weighted log-rank test.  

Hypothesis: ; 1000 simulations for each ; , level of test=0.05. 
The imposed nonproportional hazard arrays are same as those used in Table 1-3.  

0β = *N *
1 2 1500n n N= = =

 

Early difference Middle difference Late difference baseline 
hazards 
function 

 

ψ  Traditional 
version 

Supremum 
version 

Traditional 
version 

Supremum 
version 

Traditional 
version 

Supremum 
version 

5.0 0.285 0.291 0.890 0.891 0.977 0.979 

1.0 0.445 0.446 0.945 0.947 0.977 0.973 

0.001 

0.01 0.229 0.229 0.849 0.837 0.981 0.982 

5.0 0.297 0.298 0.915 0.886 0.978 0.980 

1.0 0.446 0.436 0.947 0.949 0.967 0.964 

0.1 

0.01 0.239 0.237 0.818 0.831 0.987 0.984 

5.0 0.312 0.315 0.887 0.899 0.983 0.980 

1.0 0.439 0.442 0.957 0.934 0.972 0.975 

0.3 

0.01 0.214 0.224 0.835 0.834 0.983 0.985 

 

 

3.5.6. Application in real data  

 

We tested our newly developed method with the real data from an NSABP trial, Protocal B-

14. On this phase III trial, patients with primary breast cancer, negative axillary nodes, and 

oestrogen receptor positive tumors were randomized to receive either tamoxifen (a hormonal 

therapy) or placebo following surgery. The trial itself is described in details in literature (Fisher 
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et al., 1989, 1996). In this dataset, 1450 patients were randomized to placebo and 1435 patients 

were randomized to tamoxifen over a period of seven years and have been followed for an 

additional ten years. The endpoint of interest was disease-free survival (DFS). Only 2817 eligible 

patients (1413 for placebo group, 1404 for treatment group) were used for our snalysis. About 

47% (700 for placebo, 562 for tamoxifen group) of the patients have had a DFS event , and 53% 

have censored data.  

Figure 7 shows the survival for the failure distributions from the Kaplan-Meier estimates. 

The upper line is for treatment group and lower line is for placebo group. From the plot we 

readily see the two groups are nonproportional in hazards. The cox.zph test on the proportional 

hazards assumption give a p-value of 0.00004. We performed test of data difference using the 

simple log-rank, Harrington-Fleming’s weighted log-rank test with , and the new 

weighted logrank test with . The p-values obtained from these three different method are 

2.0p q= =

1ψ =

  5×10−8 ,   , and 4×10−5
  , respectively. This indicates that the log-rank test with the new 

weight function is the most sensitive one among the three methods. The results are consistent 

with the simulations results in section 3.5.3. In this case, all three methods give the same 

conclusion, mainly due to the degree of extremeness of the treatment effect in the selected real 

data.   

8×10−9
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Figure 7. Survival function in NSABP B-14 data estimated from Kaplan-Meier method.  

The upper line is the treatment group, and the lower line is the placebo group. 
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3.6. Conclusion 

 

We studied the sensitivity of a newly developed weighted log-rank test, and compared it with 

the simple log-rank test and Harrington-Fleming’s weighted log-rank test, in testing treatment 

with nonproportional survival data using Monte Carlo simulations. We found that the new test 

shows a better sensitivity in capturing the difference between the data group when the survival 

data has significant nonproportionality (here the data with early difference). For the datasets with 

less nonproportionality (here the data with middle difference), the test with the new weight 

function has better sensitivity than that of Harrington-Fleming’s weighted log-rank test, similar 

to that of the simple-log rank test. For late difference which has least nonproportionality, all 

three methods have similar sensitivity.  
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4. TEST FOR PROPORTIONAL ODDS 

 

4.1. Introduction to the Dauxois-Kirmani Test 

 

The objective of the second part of this thesis is to develop a parametric method for testing of 

the proportional odds assumption over two groups of survival times. The first part of this work 

focused on the method to model survival data with nonproportional hazards by using the 

extended Cox’s proportional hazards model by including time-dependent explanatory variables 

or by introducing a frailty parameter (Oakes and Jeong, 1998). An alternative approach is 

through the proportional odds model. In this chapter we present a new test based on a 

nonparametric method introduced by Dauxois and Kirmani (Dauxois and Kirmani, 2003). This 

method is suitable for testing the proportionality of odds of survival data with random censoring. 

We will review briefly about this method.  

In the proportional odds model, the odds of an individual in group i  surviving beyond some 

time t  are defined as  

( )
( )

1 (
i

i
i

S t
t

S t
φ =

− )

1 t

,                                                           (4.1) 

where  is the survival function for group i . We say that the two groups satisfy a proportional 

odds model if  for all  and some constant . If  is the hazard 

function corresponding to , then under the proportional odds model  

iS

2( ) ( )tφ αφ= 0t > 0α > ih

iS

2

1 1

( ) 1
( ) 1 ( 1) ( )

h t
h t S tα

=
− −

,                                                      (4.2) 
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so that, for  the hazard ratio  is an increasing (a decreasing) function 

converging to unity.  

1 ( 1)α α> < 2 /h h1

A simple method can be used to explore the suitability of using the proportional odds model 

to study two survival distributions. One can calculate the odds ratio by 

    

θ̂ =
φ̂

2
(t)

φ̂
1
(t)

=
Ŝ

2
(t) 1− Ŝ

1
(t)⎡

⎣⎢
⎤
⎦⎥

Ŝ
1
(t) 1− Ŝ

2
(t)⎡

⎣⎢
⎤
⎦⎥
,                                               (4.3) 

where  is Kaplan-Meier estimator of survival function, îS

   

Ŝ
i
(t) =

1                    if t < t
1

1−
d

i

Y
i

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

ti ≤t∏ ,     if t
i

≤ t

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

.                                         (4.4) 

If the plot of  versus t  shows that  is independent on t , proportional odds about the samples 

can be justified, and vice versa.  

θ̂ θ̂

Recently, Dauxois and Kirmani developed a procedure for testing the proportional odds 

assumption of two independent random samples with randomly right-censored lifetimes 

(Dauxois and Kirmani, 2003). The test statistic is given by  

    Z = (n
1

+ n
2
)

1
2 Γ / σ ,                                                      (4.5) 

where Z  is asymptotically normal,    Z ∼ N(0,1)  for testing  versus , where 0H 1H

                           , for all  and some , 0 2 1: ( ) ( )H tφ αφ= t

)t

0t > 0α >

                            are not proportional. 1 2 1: ( ) and (H tφ φ

In Eq. (4.5),  is the sample size of group i , Γ  and  are given by  in σ

1 2 11 22 12 21( , )K K ψ ψ ψ ψΓ = Γ = − ,                                              (4.6) 

and  
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2
22 21 11 22 11 12 12 21 21 12 11 22v v vσ ψ ψ ψ ψ ψ ψ ψ ψ= − − + v .                                 (4.7) 

Value of  is given by  ijψ

    
ψ

ij
= K

i
(t)φ

j
(t)dt

m1 ∨τ1

m2 ∧τ2

∫ ,                                                (4.8) 

where  are weight functions. And  is given by   ( 1,2iK i = ) ijv

    
v

ij
= K

i
(t)K

j
(s)φ

1
(s)φ

2
(t)
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F
1
(s)F

1
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dN
1
(u)

Y
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2(u)0
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∫ +
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2

F
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(s)F

2
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dN
2
(u)

Y
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2(u)0

s∧t
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⎧
⎨
⎪⎪

⎩
⎪⎪

⎫
⎬
⎪⎪

⎭
⎪⎪
dsdt

τ1

τ2

∫τ1

τ2

∫ . 

 (4.9) 

In Eqs. (4.8) and (4.9), 

    
m

1
= max min

1≤j≤n1 :δ1 j =1
T

1j
, min
1≤j≤n2 :δ2 j =1

T
2j

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

, 

{ }
1 2

2 11 1
min max , max 2j jj n j n

m T
≤ ≤ ≤ ≤

= T , 

    m2
∧ τ

2
= min(m

2
,τ

2
),     m

1
∨ τ

1
= max(m

1
,τ

1
)                               (4.10) 

where  is the ijT j th observed survival time in group i , and  if  is censored. Integration 

interval [

0ijδ = ijT

  τ1
,τ

2
] can be chosen as the end points of the data. 

   
Y

i
(t) = I{T

ij
≥ t}

j =1

ni∑  for  

and , is the number of objects in group i  at risk at time t . , is the 

cumulative distribution function. 

0t >

1,2i = ( ) 1 ( )iF t S t= − i

    
N

i
(t) = I{T

ij
≤ t,δ

ij
= 1}

j =1

ni∑  is the number of events in 

group i  before or at time t . The number of events in group i  at time t  is denoted by . id

The values of  and iφ
 
S

i
 can be estimated from the Kaplan-Meier estimator of survival 

function, using Eqs. (4.1) and (4.4). One significant choice has to be made about the weight 

functions  and . Dauxois and Kirmani chose arbitrarily the weight function corresponding 1K 2K
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to the log-rank test for proportional hazards and the normalized form of Gehan’s weight 

function, 

   
K

1
=

n
1

+ n
2

n
1
n

2

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

Y
1
(t)Y

2
(t)

Y
1
(t)+Y

2
(t)

,                                            (4.11) 

1 2
2

1 2

( ) ( )Y t Y t
K

n n
= .                                                        (4.12) 

The numerical estimate of  based on Kaplan-Meier estimators is given by  ijψ

    
ψ̂

ij
= K

i
(t)φ̂

j
(t)dt

m1 ∨τ1

m2 ∧τ2

∫ = K
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∫ ≈ K
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∑ ΔΦ̂
i
(t) ,             (4.13) 

where  denotes the odds of group i . Similarly, the numerical estimate of  based on 

Kaplan-Meier estimators is  

( )i tΦ ijv
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(4.14) 

 

4.2. Extending the Method with Parametric Assumptions 

 

One of the keys to the Dauxois and Kirmani’s method is the choice of the weight functions, 

 and . They did not attempt to develop new weight functions, but simply followed Gill and 

Schumacher (1987) and Sengupta et al. (1998), chose arbitrarily the weight functions  and 

 as two commonly employed format. The weight functions chosen by Dauxois and Kirmani 

(Dauxois and Kirmani, 2003) correspond to the log-rank test for proportional hazards and the 

normalized form of Gehan’s weight function. In theory, any cadlag functions, not necessarily 

1K 2K

1K

2K
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predictable, can be used if they lead to increasing . The purpose is to build a positive 

weight function 

1 /K K2

1 2 1 2( , ) ( ) ( ) ( ) ( )w s t K t K s K s K t= −                                         (4.15) 

to be used in the expression of 

    

γ(w) = w(s,t) φ
1
(t)φ

2
(s)− φ

2
(t)φ

1
(s)⎡

⎣⎢
⎤
⎦⎥

τ1 <s<t<τ2

∫∫ dsdt ,                          (4.16) 

where  can be considered as a measure of nonproportionality of the odd function  and 

 on the time interval [ ].  

( )wγ 1( )tφ

2( )tφ 1 2,τ τ

Besides the weight functions used by Dauxois and Kirmani, other suitable choices include 
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Ŝ(t)⎡
⎣⎢

⎤
⎦⎥
p
,                                    (4.17) 

where  is the Kaplan-Meier estimator computed from the combined survival data sample up 

to time t . The power parameter  is in [0,1]. 

(̂ )S t

p

In addition, one may also explore the application of certain weight functions specific to data 

with particular distributions. That is,  and  can be derived based on the assumption of 

survival data distributions. In the following example, we show how to derive  and  for 

survival data that follow the log-logistic distribution.  

1K 2K

1K 2K

From Dauxios and Kirmani’s paper, we have 
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and 

1 2 1 2
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+ + + +

= = .                                   (4.19) 

As 
   , by the Glivenko-Cantelli Theorem (Shorack and Wellner, 1986), it is easy 

to prove that,  

n
1

→ ∞,n
2

→ ∞

   

Y
1
(t+)

n
1

→ S
1
(t);   

Y
1
(t+)

n
1

→ P(T
1

> t)

Y
2
(t+)

n
2

→ S
2
(t);   

Y
2
(t+)

n
2

→ P(T
2

> t)

, 

and we define 

1

1 2

n
n n

ρ =
+

, 

with 

2

1 2

1
n

n n
ρ= −

+
. 

So we get  

1 2 1 2
1

1 2 1

[ ( )][ ( )] [ ( )][ ( )]
[ ( )] (1 )[ ( )] [ ( )] (1 )[ ( )]

S t S t P T t P T t
K

S t S t P T t P T tρ ρ ρ ρ
> >

= =
+ − > + − >2

,             (4.20) 

1 2 1 2
2 1 2

1 2 1 2

( ) ( ) ( ) ( )
[ ( )][ ( )] [ ( )][ ( )]

Y t Y t Y t Y t
K S t S t P

n n n n
+ + + +

= = = = >1 2T t P T t> .    (4.21) 
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Weight functions based on Eqs. (4.20) and (4.21) utilized the parametric information about the 

distribution of the survival time t . For continuous distributions,  can be used in Eqs. (4.20) 

and (4.21), while for discrete distributions,  can be used. 

( )S t

(P T t> )

Substituting the survival function of the log-logistic distribution into (4.18) and (4.19), we 

have 

    

K
1

=
1

ρ 1+ (t / ξ
2
)β2⎡

⎣⎢
⎤
⎦⎥
+ (1− ρ) 1+ (t / ξ

1
)β1⎡

⎣⎢
⎤
⎦⎥
,                                   (4.22) 

    

K
2

=
1

1+ (t / ξ
1
)β1⎡

⎣⎢
⎤
⎦⎥
1+ (t / ξ

2
)β2⎡

⎣⎢
⎤
⎦⎥
.                                            (4.23) 

These are the weight functions for the log-logistic survival data. The test statistics can still be 

computed by  

1 1
2 2

1 2 1 2 1 2 11 22 12 21( ) ( , ) ( ) (n n K K n n ψ ψ ψ ψ+ Γ = + − ) , 

with 

    
ψ

ij
= K

i
(t)φ

j
(t)dt

τ1

τ2

∫ ; 

( / )

1
( )

1
jj t

t
e

βξ
φ =

−
,                                                    (4.24) 

which can be calculated numerically. 

The variance of the statistic is calculated by  

2
22 21 11 22 11 12 12 21 21 12 11 22v v vσ ψ ψ ψ ψ ψ ψ ψ ψ= − − + v . 

with 

    
v

ij
= K

i
(t)K

j
(s)φ

1
(s)φ

2
(t)

1

F
1
(s)F

1
(t)

dΛ
1
(u)

y
1
(u)0

s∧t

∫ +
1

F
2
(s)F

2
(t)

dΛ
2
(u)

y
2
(u)0

s∧t

∫
⎧
⎨
⎪⎪

⎩
⎪⎪

⎫
⎬
⎪⎪

⎭
⎪⎪
dsdt

τ1

τ2

∫τ1

τ2

∫ . 
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Here 

( ) ln ( )t SΛ = − t . 

And 

   
y

i
(t) =

Y
i
(t)

n
i

→ S
i
(t)  

as 
   . So we have  n

1
→ ∞,n

2
→ ∞

2

( ) ( )
( ) [ ( )]
i i

i i

d t dS t
y t S t
Λ

= − . 

Then, 

   

dΛ
i
(u)

y
i
(u)0

s∧t

∫ = −
dS

i
(u)

[S
i
(u)]20

s∧t

∫ =
1

S
i
(u)

0

s∧t

=
1

S
i
(s ∧ t)

−1 . 

Substituting it into the variance equation, we obtain 

    

v
ij

= K
i
(t)K

j
(s)φ

1
(s)φ

2
(t)

1

F
1
(s)F

1
(t)

1

S
1
(s ∧ t)

−1
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+

1

F
2
(s)F

2
(t)

1

S
1
(s ∧ t)

−1
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪
dsdt

τ1

τ2

∫τ1

τ2

∫ , 

where  

1
( )

1 ( / )
S t

tβ βξ
=

+
, ( / )

( )
1 ( / )

t
F t

t

β

β β

ξ
ξ

=
+

.                                 (4.25) 

The odds ratio between  and  is 1( )tφ 2( )tφ

2

1

2 2

1 1

( ) ( / )
( ) ( / )
t t
t t

β

β

φ ξ
φ ξ

= . 

Let group I be the baseline survival time with . The odds ratio 1 1β = 2

1

( )
( )
t
t

φ
φ

=1 if  and 1ξ ξ= 2

   β2
= 1 , which means the survival data from  and  are proportional in odds. Otherwise, if 1T 2T
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2 1β > , the survival data from  and  have nonproportional odds. Now let , 

, and we denote  simply as  so that we can drop out all the subscripts in the 

formula. We obtain 

1T 2T 1 1β =

1 2ξ ξ= = ξ 2β β

1

1
( )

1 ( / )
S t

t ξ
=

+
, 2

1
( )

1 ( / )
S t

t βξ
=

+
 

1

( / )
( )  

1 ( / )
t

F t
t
ξ

ξ
=

+
, 2

( / )
( )  

1 ( / )
t

F t
t

β

β

ξ
ξ

=
+

 

1( ) ( / )t tφ ξ= ,  2( ) ( / )t t βφ ξ=

    

K
1

=
1

ρ 1+ (t / ξ)β⎡
⎣⎢

⎤
⎦⎥ + (1− ρ) 1+ (t / ξ)⎡

⎣⎢
⎤
⎦⎥
, 

    

K
2

=
1

1+ (t / ξ)⎡
⎣⎢

⎤
⎦⎥ 1+ (t / ξ)β⎡
⎣⎢

⎤
⎦⎥
 

 

4.3. Estimation of Parameters in Assumed Distributions 

 

In order to use the parametric weight functions, one needs to estimate the model parameters 

in the assumed distribution about the survival data. For example, if we assume that the survival 

data follow the log-logistic distribution, we need to estimate parameters ( , . One commonly 

used method for estimating the distribution parameters is the maximum likelihood estimate. In 

maximum likelihood, if the probability density function (pdf) of the survival time is , the 

likelihood of the n  observations  is the product of the probability of an event 

occurring at time  given by 

)ξ β

( )f t

1 2, , , nt t t""

it
   

f (t
i
)

i=1

n

∏ , which is dependent on the parameters in the pdf assumed. 

The maximum likelihood estimates of these parameters are those values for which the likelihood 

function is maximized.  
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If there are censored survival time in the sample, suppose that r  of the n  survival time 

 are observed, and the remaining n  times  are right-censored, 

then the contribution of r  observed times to the likelihood function is 

1 2, , , rt t t"" r− * *
1 2, , ,r rt t t+ +

*
n""

   
f (t

i
)

i=1

r

∏ . For n r  

censored time, if a survival time is censored at time , we know that the lifetime of the 

individual is at least , and the probability of this event is 

−

*t

*t    P(T ≥ t*) = S(t*) . Then the 

contribution of each censored time to the likelihood function is 
   

S(t
j
*)

j =1

n−r

∏ . So the total likelihood 

function is  

   
f (t

i
)

i=1

r

∏ S(t
j
*)

j =1

n−r

∏ .                                                         (4.26) 

If we assign an indicator variable  to each survival time,  iδ

    

δ
i

= 1,    observed

δ
i

= 0,    censored

⎧
⎨
⎪⎪

⎩
⎪⎪

, 

then we can rewrite the likelihood function as 

    
[f (t

i
)]δi

i=1

n

∏ [S(t
i
)]1−δi ,                                                   (4.27) 

without discriminating if a survival time  is censored or not in Eq. (4.27) by incorporating the 

indicator variable .  

it

iδ

Furthermore, Eq. (4.27) can be rewriten as  

    

f (t
i
)

S(t
i
)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

δi

i=1

n

∏ S(t
i
) .                                                      (4.28) 
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From Eq. (1.7) we know ( )
( )

( )
i

i
i

f t
h t

S t
= , so Eq. (4.28) becomes 

    
h(t

i
)⎡

⎣⎢
⎤
⎦⎥
δi

i=1

n

∏ S(t
i
) .                                                         (4.29) 

Eqs. (4.26), (4.27), (4.28), (4.29) are equivalent. Eq. (4.29) is most often used because 

usually the pdf of a survival time could be complicated but the corresponding hazard function 

could be simple.  

For survival time data following the log-logistic distribution, we have  

1

2( )
(1 )

t
f t

t

β β

β β

β ξ
ξ

− −

−=
+

, and 1
( )

1 ( / )
S t

t βξ
=

+
. 

So the hazard function is given by  

1

12( ) [1 ( / ) ]
( ) 1( ) 1 ( / )

1 ( / )

t
f t tt

h t
S t t

t

β β

β ββ

β

β

β ξ
β ξξ

ξ
ξ

− −

− −+
= = =

+
+

. 

The likelihood function is 

    
L(ξ,β) =

βt
i
β−1ξ−β

1+ (t
i
/ ξ)β

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

δi

i=1

n

∏ 1

1+ (t
i
/ ξ)β

.                                      (4.30) 

The log-likelihood function is 

    

lnL(ξ,β) = ln
βt

i
β−1ξ−β

1 + (t
i
/ ξ)β

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

δi

1

1 + (t
i
/ ξ)β

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥i=1

n

∑

= δ
i
ln β + δ

i
ln t

i
β−1 − δ

i
β ln ξ −(δ

i
+1)ln{1 + (t

i
/ ξ)β}⎡

⎣⎢
⎤
⎦⎥

i=1

n

∑

.            (4.31) 

Since there are r  observed events, correspondingly we have  

    
δ

i
i=1

n

∑ = r . 
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So the log-likelihood function is  

    
lnL(ξ,β) = r ln β −rβ ln ξ + δ

i
ln t

i
β−1

i=1

n

∑ − (δ
i
+1)ln[1+ (t

i
/ ξ)β ]

i=1

n

∑ .           (4.32) 

Differentiation with respect to parameters ( ,  and let the derivatives equal to zero, we have )ξ β

    

∂
∂ξ

lnL(ξ,β) = −
rβ
ξ

− (δ
i

+1)
β(t

i
/ ξ)β−1(−t

i
/ ξ2)

1+ (t
i
/ ξ)β

i=1

n

∑ = 0 ,                      (4.33) 

    

∂
∂β

lnL(ξ,β) =
r

β
−r ln ξ + δ

i

t
i
β−1 ln t

i

t
i
β−1

i=1

n

∑ − (δ
i

+1)
(t

i
/ ξ)β ln(t

i
/ ξ)

1 + (t
i
/ ξ)β

i=1

n

∑ = 0 .     (4.34) 

Notice that ln
x

xi
i i

t
t t

x
∂

=
∂

. 

After some algebra, Eqs. (4.33) and (4.34) becomes  

    
r =

(δ
i

+1)t
i
β

ξβ + t
i
β

i=1

n

∑ ,                                                           (4.35) 

    

r

β
+ δ

i
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i
i=1

n

∑ =
(δ

i
+1)t

i
β

ξβ + t
i
β

i=1

n

∑ ln t
i
.                                             (4.36) 

Solving Eqs. (4.35) and (4.36) simultaneously using nonlinear method such as Newton-Raphson 

method, we can find the estimate for parameters . The estimated  then can be used in 

Eqs. (4.22) and (4.23) to calculate the parametric weight functions used in the extended testing 

method.  

ˆ ˆ( , )ξ β ˆ ˆ( , )ξ β

The asymptotic variance-covariance matrix of  is given by ˆ ˆ( , )ξ β

    

var(ξ̂, β̂) = −E

∂2

∂ξ2
lnL(ξ,β)

∂2
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∂β∂ξ
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⎣

⎢
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⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

−1

.                              (4.37) 
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4.4. Simulation Methodology 

 

The log-logistic distribution is a distribution that owns both the accelerated failure time property 

and the proportional odds property (Collett, 2003). Therefore, it is natural to use it in conjunction 

with the proportional odds model. For the log-logistic distribution, the survival function is given 

by 

    
S

β
(t) =

1

1+ (t / ξ)β
   (t ≥ 0,β > 0,ξ > 0) .                                 (4.38) 

The cumulative distribution function is  

    
F

β
(t) = 1−S

β
(t) = 1−

1

1+ (t / ξ)β
= 

(t / ξ)β

1+ (t / ξ)β
.                           (4.39) 

The odds function is expressed as 

    
φ

β
(t) =

S
β
(t)

F
β
(t)

=(t / ξ)−β=(ξ / t)β .                                       (4.40) 

If the baseline distribution  has a log-logistic distribution with , then its odds function 

is 

1X 1β =

    
φ

1
(t) =

S
1
(t)

F
1
(t)

=ξ / t ,                                                 (4.41) 

and  

    
φ

β
(t) = (ξ / t)β ,                                                    (4.42) 

so the odds ratio between  and  is  1( )tφ ( )tβφ
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φ
1
(t)

φ
β
(t)

=
ξ / t

(ξ / t)β
= ′ξ t β−1 ,                                             (4.43) 

where    . ′ξ = ξ1−β

When , the odds ratio 1β = 1( )
( )
t
tβ

φ
φ

= constant, the survival data  and X  are proportional 

in odds. Otherwise, if , the survival data from  and X  are nonproportional in odds. 

1X β

1β > 1X β

First we try to validate if the Dauxios-Kirmani method can tell nonproportional odds data. To 

do that, we create two sets of data with nonproportional odds. The first group of data is from , 

the second is from X  with . In our simulations we set the constants ξ  (hereafter 

1X

β 1β > ′  ξ ) to 

be 1.0. 

To generate survival data  and  following the log-logistic distributions, we use the 

facts that the cumulative distribution functions  and F  conform to uniform distributions in 

the range of [0,1]. That is,  

1X Xβ

1F β

1

/
( ) UNIF(0,1)

1 /
t

F t u
t
ξ

ξ
= =

+
∼ , 

( / )
( ) UNIF(0,1)

1 ( / )
t

F t u
t

β

β β

ξ
ξ

= =
+

∼ .                                    (4.44) 

Then, we obtain 

1 1/ 1
t

u
ξ

=
−

;  
    
t
2

= ξ
1

1/u −1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

1

β

= ξ
1−

1

β ξ
1/u −1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

1

β

= ξ
1− 1

βt
1

1
β .                (4.45) 

The numerical simulation procedure is 

1. Generate survival data with appropriate distributions. For comparison purpose, we 

generate data from the log-logistic distributions. 
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          ; UNIF(0,1)u ∼

1 1/ 1
t

u
ξ

=
−

 and 
1 11

2 1t tβ βξ −=  

Please note two independent sets of u  are used in calculate  and  so that they are not 

correlated.  

1t 2t

2. Set random censoring,  

1 UNIF(5,25)c ∼ ;  2 UNIF(5,25)c ∼

1 1 1=min( , ) t t c 2 2 2=min( , );  t t  c

The value of c  is set according to appropriate censoring levels.  

3. Build data table according to event (or censoring). No tie is allowed. 

4. Count  where ( ), ( ), ( ), ( ),i i i iY t d t N t N tΔ
    
t ∈ [τ

1
,τ

2
],τ

1
= min(t

ij
),τ

2
= max(t

ij
)  for 

1,2;  1, ji j= = n . 

5. Estimate  from Eqs. (4.4) and (4.1), and estimate 

 from either Eqs. (4.11) and (4.12) for Dauxois-Kirmani method, or Eqs. (4.22) and 

(4.23) for the new test method developed in this work. 

1 2( ), ( ), ( ), [ , ], 1,2i i iS t F t t t iφ τ τ∈ =

( )iK t

6. Calculate  from Eqs. (4.10), (4.8), and (4.9). 1 2
ˆ ˆ, , , , 1,2; 1,2ij ijm m v i jψ = =

7. Calculate  from Eqs. (4.6), (4.5), and (4.7). ˆ, ,ZσΓ

8. Calculate the p-value based on  to see if the test is significant (p-value being 

less than the nominal significance level). 

(0,1)Z N∼

9. Repeat 1-8 for 1000 times and calculate the percentage of significant test, which is the 

power of the method.  
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4.5. Results and Discussions 

 

4.5.1. Examination of the existing method 
 

First we tried to reproduce the simulation results reported by Dauxois and Kirmani by 

performing simulations with same conditions as that in the literature (Dauxois and Kirmani, 

2003). We modeled survival data in the context of the log-logistic distribution. The pair of 

survival data have common median . The hypothesis of interest are :  and : 

. The null hypothesis :  is rejected in favor of :  if and only if the test 

statistic 

150ξ = 0H 1β = 1H

1β > 0H 1β = 1H 1β >

1
2

1 2( )Z n n σ= + Γ/  exceeds the 100( )1 α− th percentile of the standard normal 

distribution, where  α  is the nominal significance level. The assessment of power against various 

alternative values of  is obtained by carrying out Monte Carlo simulations. β

For simulation purpose, two pairs of sample sizes  were selected, =(50,60) 

and =(100,120). Random censoring was imposed on the data with same percentage 

censoring level for the two samples. One typical example of survival data is shown in Figure 6, 

the Kaplan-Meier estimate of survival functions with , .  

1 2( , )n n 1 2( , )n n

1 2( , )n n

2β = 1ξ =

We reproduced the Dauxois and Kirmani’s approach by performing Monte Carlo 

simulations. Our simulation results at selected β  values for nominal significance levels  α =0.02 

and  α =0.05 are shown in Table 4. They agree excellently with the results reported in the original 

Dauxois and Kirmani paper.  
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Figure 8. Kaplan-Meier estimators of survival distribution of the log-logistic data.  

The two groups of survival data have common median    ξ = 1.0 , the lower line is the baseline 
with , the upper line is the comparison group with .  1β = 2β =
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Table 8. Reproduction of the Monte Carlo simulation results of the original paper using the 
Dauxois-Kirmani approach.  

Each point is simulated for 20000 simulations, , significance level 150ξ =    . α = 0.02,0.05

α  Sample size, 

 1 2( , )n n

Censoring 

level, % 

1β =  2β =  3β =  4β =  6β =  

0 0.0058 0.5422 0.8790 0.9771 0.9987 

10 0.0054 0.4943 0.8458 0.9436 0.9772 

(50, 60) 

30 0.0051 0.4244 0.7594 0.8836 0.9308 

0 0.0078 0.7888 0.9783 0.9981 1.0000 

10 0.0075 0.7227 0.9689 0.9947 0.9986 

0.02 

(100, 120) 

30 0.0066 0.7025 0.9069 0.9484 0.9775 

0 0.0193 0.7039 0.9310 0.9891 0.9998 

10 0.0200 0.6681 0.9033 0.9658 0.9853 

(50, 60) 

30 0.0213 0.5540 0.8734 0.9326 0.9481 

0 0.0303 0.8163 0.9887 0.9991 1.0000 

10 0.0301 0.8104 0.9836 0.9968 0.9992 

0.05 

(100, 120) 

30 0.0310 0.7912 0.9350 0.9237 0.9406 
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4.5.2. Simulation analysis of the extended method  

 

From simulations we can see that the original method proposed by Dauxois and Kirmani is 

rather conservative in the sense that the power is much smaller than the nominal α  when the null 

hypothesis is true (i.e. when , two survival distributions are proportional in odds). The 

ideal value of power for  should be close to the value of α  in order for the test method to 

be most efficient. It was noticed that the standard deviation of Dauxoi-Kirmina statistic 

 is smaller than the asymptotic expected value of unity. Apparently, the 

plug-in estimator of  overestimates the asymptotic standard deviation of Γ  resulting in 

underdispersion of Z .  

1β =

1β =

1/2
1 2 ˆ( )Z n n σ= + Γ/

σ̂

We performed Monte Carlo simulation of survival data following the log-logistic distribution, 

with proportional or non proportional odds by varying the values of  β , using the extended 

testing method with weight functions derived with the parametric assumption. One typical set of 

simulation results using the new method is shown in Table 5. The simulation results show that 

the extended method has an appreciably higher power in testing the validity of the proportional 

odds assumption than that of the original Dauxois-Kirmani method for the log-logistic survival 

data. This indicates that the inclusion of parametric information in the existing nonoparametric 

approach can significantly enhance its sensitivity. It also suggests that the original method by 

Dauxois and Kirmani is too conservative.  
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Table 9. Monte Carlo simulation results of the log-logistic distribution data using the extended 
method.  

Each point is simulated for 1000 simulations,    ξ = 1.0 , significance level    α = 0.02,0.05 . 
 

α  Sample size, 

n1, n2

Censoring 

level, % 

1β =  2β =  3β =  4β =  6β =  

0 0.015 0.621 0.989 0.993 1.000 

10 0.017 0.600 0.948 0.969 0.999 

50, 60 

30 0.018 0.567 0.927 0.948 0.998 

0 0.020 0.996 0.991 0.999 1.000 

10 0.022 0.957 0.945 0.988 0.999 

0.02 

100, 120 

30 0.022 0.944 0.917 0.968 0.999 

0 0.040 0.817 0.998 1.000 1.000 

10 0.040 0.803 0.958 0.998 1.000 

50, 60 

30 0.042 0.779 0.935 0.989 0.999 

0 0.048 0.981 0.998 1.000 1.000 

10 0.049 0.945 0.965 1.000 1.000 

0.05 

100, 120 

30 0.052 0.924 0.944 0.998 1.000 
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4.5.3. Application in real data  

 

We applied the extended method in the NSABP trial data, Protocal B-14, to comparing its 

sensitivity with that of the existing Dauxois-Kirmani method. The real data have been used as 

test of the new method in the first part of this proposal (see section 3.4.5). Previous work by 

Jeong et al. (Jeong et al., 2003) has shown that the parametric test for the proportional odds 

assumption of the Protocal B-14 data gives a small p-value of 0.000097, indicating that the data 

do not satisfy the proportional odds assumption. Therefore the dataset is a good example for 

testing the extended Dauxois-Kirmani method developed in this work.  

Application of the new method in real data requires one to estimate the distribution 

parameters using the maximum likelihood estimation method as described in section 4.3. The 

parameters ( ,  were estimated using the procedure outlined in section 4.3. By solving the 

nonlinear equations (4.35) and (4.36) simultaneous we obtain the MLE estimate of ( ,  as  

)β ξ

)β ξ

ˆ 1.2927

ˆ 6.1214

β

ξ

=

=
. 

These two values are used in using the Dauxois-Kirmani method and the extended method to 

calculate the p-value upon the null hypothesis that data are proportional in survival odds. Test for 

the proportional odds assumption of the real data using Dauxois-Kirmani’s nonparametric 

method gives a p-value of 0.0078, and the test using our extended parametric method gives a p-

value of 0.00081, which again indicates that the extended parametric method is more sensitive 

than the existing one in testing the assumption of nonproportional odds.  
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4.6. Conclusion 

 

We studied the sensitivity of a newly developed parametric method in detecting the validity 

of the proportional odds model assumption between two groups of survival data. The extended 

method is based on the premise that the test developed with distribution information would have 

better sensitivity than a nonparametric test method. We evaluated type I error and power 

probabilities of the new method by using the simulated survival data following the log-logistic 

distribution. The error probabilities are compared with ones obtained from the existing method. 

The results indicate that the extended method performs with a higher sensitivity than the existing 

nonparametric method.  
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5. FUTURE WORK 

 

5.1. Determination of Optimal Values for  ψ  and  ρ

 

There are several open questions in our new method developed for testing the data difference 

in survival distributions with nonproportonal hazards. One further task is to apply the new 

method in nonproportional data with Gamma frailty. In Chapter 3, our studies were focused on 

the case where the frailty is assumed to follow inverse Gaussian distribution. In reality, the 

Gamma frailty is also extensively encountered in modeling nonproprotional hazards data. Under 

the Gamma frailty model, the weight function given by Eq. (3.27) should be used (Oakes and 

Jeong, 1998). However, the value of  ρ  has to be determined for best efficiency of the new test 

method developed. The extension of the current work to Gamma frailty would be quite 

straightforward.  

Another primary concern is to determine the optimal value for the parameters  ψ  used in the 

weight function (3.37). In section 3.5.4 we explain qualitatively the existence of optimal value of 

 ψ . However, it would be desirable to develop a rigorous mathematical procedure for the 

determination of optimal  ψ  given that parametric information about the survival data is 

available or can be assumed. Accordingly, we describe briefly a procedure to determine the 

optimal value of  ψ  via the maximum likelihood estimation (MLE) method. 

The proportional hazards model incorporated with a randomization variable  is iz

1( | , ) exp( ) ( )h t x z z x h tβ γ= + 0 ,                                                 (5.1) 
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where  is an unknown baseline hazard function. Correspondingly, the survival function is 0( )h t

exp( )
1 0( | , ) ( ) z xS t x z S t β γ+= .                                                  (5.2) 

Let 

exp( )z xθ β= + γ

0 t

−

t

u

,                                                        (5.3) 

and  

0 ln ( )H S= − .                                                         (5.4) 

Thus 

0
0

HS e−= ,  ,                       (5.5) 0exp( )
1 0 0( | , ) ( ) ( )z x HS t x z S t S t eβ γ θ θ+= = =

and we also have 

0
1 1( ) 1 ( ) 1 HF t S t e uθ−= − = − = .                                             (5.6) 

Similarly, if T  follows Weibull distribution with parameters ( ), then the survival 

function is given by  

,τ ρ

0( ) exp( )S t t τρ= − .                                                       (5.7) 

Substituting Eq. (5.7) into Eq. (5.4) we get  

0H τρ= .                                                              (5.8) 

Eq. (5.6) becomes  

1 te
τρ θ−− = .                                                           (5.9) 

and 

1

ln(1 )u
t

τ

ρθ

⎛ ⎞− − ⎟⎜ ⎟ =⎜ ⎟⎜ ⎟⎜⎝ ⎠
.                                                    (5.10) 

Survival time can be generated using Eq. (5.10) 
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1

ln(1 )i
i

i

u
t

τ

ρθ

⎛ ⎞− − ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠
,                                                   (5.11) 

where  is from a uniform distribution ; and  iu (0,1)u

exp( )i iz xθ β γ= + i

w

κ

i

, 

where  is the group indicator generated from a Bernoulli distribution  with 

;  is the frailty. We assume that w  follows either Gamma or inverse Gaussion 

distribution. In real applications, the distribution for w  can be determined by using the graphical 

method described in section 3.3. If w  follows gamma distribution  with unity 

mean and variance of , the survival function of  with gamma frailty  

unit mean and variance 1/  is given by the Laplace transform 

iz (0.5)Bernoulli

0.5β = ix
ieγ =

( ,1/ )gamma κ κ

1/ρ = it ( ,1/ )gamma κ κ

κ

0( ; ) [ ( )]i iS t p H tκ ξ= ,                                                     (12) 

where  is the Laplace transform of gamma distribution ()p

1
( )

1 /
p s

s

κ

κ

⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ +⎝ ⎠
.                                                     (13) 

So Eq. (5.12) becomes  

0 0

1
( ; )

1 ( )/ (i
i i i i

S t
H t H t

κ κ
κ

κ
ξ κ κ ξ

⎛ ⎞ ⎛⎟⎜ ⎜⎟= =⎜ ⎜⎟⎜ ⎜⎟⎜ ⎜+ +⎝ ⎠ ⎝ )

⎞⎟⎟⎟⎟⎠
,                             (5.14) 

where  is the group indicator.  iz
i eβξ =

The hazard function is 

0

0

0

( )
ln ( ; ) [ ln ln( ( ))]

( ; )
( )

H t
S t H t th t
t t

ξκ κ κ κ κ ξ
κ κ

κ ξ

∂
∂ ∂ − + ∂= − = − =

∂ ∂ H t+
.        (5.15) 

From Eq. (5.8) we know , so 0( )H t t τρ=
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1
0

0 0

( )
( ; )

( ) [ ( )]
t H

h t
H t H t t

τξρτ κξτ
κ κ

κ ξ κ ξ

−

= =
+ +

t

κ

.                                    (5.16) 

The likelihood function of κ  is given by 

[ ]
1

( ) ( ; ) ( ; )i
n

i i
i

L h t S t
δκ κ

=

= ∏ ,                                              (5.17) 

where  

    

δ
i

= 1,    observed

δ
i

= 0,    censored

⎧
⎨
⎪⎪

⎩
⎪⎪

 

The log-likelihood function is then 

1 1

ln ( ) ln ( ; ) ln ( ; )
r N

i
i i

L h t Sκ κ
= =

= +∑ ∑ it κ ,                                  (5.18) 

where 
    

δ
i

i=1

n

∑ = r , are number of observed events. Substituting Eqs. (5.14) and (5.16) into Eq. 

(5.18) we obtain 

{ }

{ }

0

1 10 0

0 0
1

0
1

( )
ln ( ) ln ln

[ ( )] ( )

ln ln ln ( ) ln ln[ ( )]

ln ln[ ( )]

r N
i i

i ii i i i i

r

i i i i
i

N

i i
i

H t
L

H t t H t

H t t H t

H t

κ
κξ τ κ

κ
κ ξ κ ξ

κτ ξ κ ξ

κ κ κ κ ξ

= =

=

=

⎛ ⎞⎟⎜ ⎟= + ⎜ ⎟⎜ ⎟⎜+ +⎝ ⎠

= + + − − +

+ − +

∑ ∑

∑

∑

i ,            (5.19) 

Taking derivative in terms of  gives κ

0
1 10 0

ln ( ) 1
(ln 1) ln[ ( )]

( ) ( )

r N

i i
i ii i i i

L r
N H t

H t H t
κ κ

κ κ ξ
κ κ κ ξ κ ξ= =

⎧ ⎫⎪ ⎪∂ ⎪ ⎪= − + + − + +⎨ ⎬⎪ ⎪∂ + +⎪ ⎪⎩ ⎭
∑ ∑ . 

So κ  can be estimated by solving the equation 

0
1 10 0

1
(ln 1) ln[ ( )] 0

( ) ( )

r N

i i
i ii i i i

r
N H t

H t H t
κ

κ κ ξ
κ κ ξ κ ξ= =

⎧ ⎫⎪ ⎪⎪ ⎪− + + − + +⎨ ⎬⎪ ⎪+ +⎪ ⎪⎩ ⎭
∑ ∑ = .   (5.20) 
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Similar procedure can be applied to survival data with inverse Gaussian frailty. If the frailty 

follows an inverse Gaussian distribution  with unit mean and variance 1/ , 

the survival function of  is given by the Laplace transform 

(1,2 )rinvGauss ψ 2ψ

it

0( ; ) [ ( )]i iS t p H tψ ξ= i

ψ

,                                                    (5.21) 

where  is the Laplace transform of inverse Gaussian distribution ()p

1/2( ) exp{ 2[ ( )] 2 }p s sψ ψ ψ= − + + .                                      (5.22) 

So Eq. (5.21) is 

1/2
0( ; ) exp{ 2[ ( ( ))] 2 }i i iS t H tψ ψ ψ ξ= − + + ,                             (5.23) 

where  is the group indicator.  iz
i eβξ =

The hazard function is 

1/2
0

0

0

0 0

ln ( ; ) { 2[ ( ( ))] 2 }
( ; )

( )
( )

( ) ( )

S t H t
h t

t t
H t

H tt
H t t H t

ψ ψ ψ ξ
ψ

ξ ψξτ
ψ

ψ ξ ψ ξ

∂ ∂ − +
= − = −

∂ ∂
∂

∂= =
+ +

ψ+

.                (5.24) 

The log-likelihood function is then 

{ }

1/20
0

1 10

0 0
1

1/2
0

1

( )
ln ( ) ln { 2[ ( ( ))] 2 }

( )

1 1
ln ln ln ln ( ) ln ln[ ( )]

2 2

2 [ ( ( ))] 2

r N
i i

i i
i ii i i

r

i i i i
i

N

i i
i

H t
L H

t H t

H t t H t

H t N

ψξ τ
ψ ψ ψ ξ

ψ ξ

ψ ξ τ ψ ξ

ψ ψ ξ ψ

= =

=

=

= + − + +
+

= + + + − − +

− + +

∑ ∑

∑

∑

i

t ψ

,     (5.25) 

Taking derivative in terms of  gives ψ

0

1 10 0

ln ( ) 1 1 2 ( )
2

2 2 ( ) [ (

r N
i i

i ii i i i

L r H t
N

H t H t

ψ ψ
ψ ψ ψ ξ ψ ψ ξ= =

∂ +
= − + −

∂ + +
∑ ∑

)]

ξ . 

So  can be estimated by solving the equation ψ
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0

1 10 0

1 1 2 ( )
2 0

2 2 ( ) [ ( )]

r N
i i

i ii i i i

r H
N

H t H t

ψ ξ
ψ ψ ξ ψ ψ ξ= =

+
− + −

+ +
∑ ∑ t

= .                 (5.26) 

Eqs. (5.20) and (5.26) determine the optimal values of ρ  and  from MLE. Simulation 

procedures similar to those described in section 3.4 can be developed to model the process 

derived above.  

ψ

For real data, we have to estimate the optimal values of  or ψ  together with the parameters 

 and ρ  simultaneously under some assumption about the survival data  and  (for example, 

Weibull or exponential), and about the frailty w  (for example, inverse Gaussian or gamma).  

ρ

τ 1t 2t

 

 

5.2. Linear Regression Test of Nonproportional Odds 

 

As discussed in section 4.1, the proportional odds assumption of survival data can also be 

tested using a simple method by examination of the relationship between the odds ratio 

    

θ̂ =
Ŝ

1
(t) 1− Ŝ

0
(t)⎡

⎣⎢
⎤
⎦⎥

Ŝ
0
(t) 1− Ŝ

1
(t)⎡

⎣⎢
⎤
⎦⎥
, 

versus time. The survival functions  can be estimated by the Kaplan-Meier method. The 

linear regression method is simple in mathematics, and easy to use. However, it is limited in one 

aspect that the plot of log  vs. logt  could be ambiguous when the data size is small where one 

can not obtain a clean curve to show the dependence of the odds ratio and time, due to data 

fluctuations. The method can be improved if a test statistic for the linear model regression 

method proposed can be developed. The lm package included in R or Splus assumes that the 

slope of the linear model follows a student’s t distribution. Our preliminary simulation test using 

ˆ ( )iS t

θ̂
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the lm function in Splus indicates that rejection rate of null hypotheses at    β = 1  is significantly 

higher than the nominal significance level. This implies that the statistic employed in the lm 

function in Splus may not be suitable for testing the null hypothesis in section 4.6. It would be 

desirable to derive an appropriate test statistic for the linear regression method proposed.  

Linear model regression can be used to fit the relationship between the odds ratio and time if 

after manipulations the relationship between a function of odds ratio and time satisfies the 

following assumptions (1) linearity of the relationship between dependent and independent 

variables; (2) independence of the errors; (3) constant variance of the errors versus time and the 

predictions; and (4) normality of the error distribution.  

Taking the log-logistic distribution as an example, the odd ratio  

10

1

( ) ( / )
( ) ( / )

( ) ( / )
t t

t t
t t

β
β

φ ξ
θ ξ

φ ξ
−= = = , 

which is  

ˆln ( ) ( 1)ln (1 )lnt tθ β β= − + − ξ .                                     (5.27) 

The proportional odds assumption corresponds to that . 1β =

Therefore, by examining the estimated value of  through regression of  as a function of 

, one can readily tell if the survival distributions are proportional in odds. Let  

β ˆln θ

lnt

 
ˆln lna b tθ = + , 

 
then we have  
 

   

H
0
:b = 0         proportional odds

H
a

: b ≠ 0         nonproportional odds
 

 
If the survival data is proportional in odds, the slope of line (5.27) should be close to zero 

when . Otherwise, the slope would not be close to zero. If an appropriate statistical 1β =
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distribution can be postulated for the slope, a test statistic can be derived, given that the 

dependence of  and time satisfies the four principal assumptions for using linear regression 

model.   

ˆln θ
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APPENDIX A 
 
 
 

Simulation Programs 
 
 
 
 

Here we attached all the computing programs. Program 1.1~1.10 are for the algorithms used in 
the first part of this proposal, namely, simulations and real data calculations on using the new 
method to test the survival distribution difference for nonproportional hazards data.  
 
Program 2.1~2.7 are the programs for the testing of proportional odds assumption using Dauxois 
and Kirmani’s method and the new method. For simulations with large samples and significant 
number of replications, R program runs very slow. Therefore, we developed FORTRAN 77 
programs to do the same task, which is very fast. The FORTRAN program is also attached.  
 
Programs for new method on testing the survival distribution difference 
 
 
Program 1.1: Testing the proportional hazards assumption using cox.zph. 
 
# Simulation project with Cox model, Qing Xu 
# 
 
### divide random data into 10 groups for non proportional hazard ratio 
nt<-200; n1<-nt/10; n2<-n1*2; n3<-n1*3;  
n4<-n1*4; n5<-n1*5; n6<-n1*6; n7<-n1*7;  
n8<-n1*8; n9<-n1*9; n10<-n1*10 
 
### each group is characterized by a factor 
# late difference 
#factor1<-1.0; factor2<-0.99; factor3<-0.98;  
#factor4<-0.97; factor5<-0.95; factor6<-0.93;  
#factor7<-0.91; factor8<-0.89; factor9<-0.87;  
#factor10<-0.85; 
 
#early difference 
#factor1<-0.85; factor2<-0.8; factor3<-0.75;  
#factor4<-0.8; factor5<-0.85; factor6<-0.9;  
#factor7<-0.93; factor8<-0.95; factor9<-0.97;  
#factor10<-0.99; 
 
# middle difference 
factor1<-0.99; factor2<-0.95; factor3<-0.9;  
factor4<-0.85; factor5<-0.8; factor6<-0.8;  
factor7<-0.85; factor8<-0.9; factor9<-0.95;  
factor10<-0.99; 
 
### set baseline hazard function h_0(t)=rho 
myrho<-0.3; 
### set data set size 
nii<-200; 
### set loop index 
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ii<-0; 
### counter 
ip1<-0;  
 
repeat{ 
 ii<-ii+1; 

### generate proportional data myt1 
 myu<-sort(runif(nt)); 
 myt1<-log(1-myu)/myrho*(-1); 
 ### generat nonproportional data myt2 
 myt2<-myt1; 
 for (i in 1:n1) {myt2[i]<-factor1*myt1[i]}; 
 for (i in (n1+1):n2){myt2[i]<-factor2*myt1[i]}; 
 for (i in (n2+1):n3){myt2[i]<-factor3*myt1[i]}; 
 for (i in (n3+1):n4){myt2[i]<-factor4*myt1[i]}; 
 for (i in (n4+1):n5){myt2[i]<-factor5*myt1[i]}; 
 for (i in (n5+1):n6){myt2[i]<-factor6*myt1[i]}; 
 for (i in (n6+1):n7){myt2[i]<-factor7*myt1[i]}; 
 for (i in (n7+1):n8){myt2[i]<-factor8*myt1[i]}; 
 for (i in (n8+1):n9){myt2[i]<-factor9*myt1[i]}; 
 for (i in (n9+1):n10){myt2[i]<-factor10*myt1[i]}; 
 
    ### generate censoring range  
 tmax <- max(myt1, myt2); 
 tmin <- min(myt1, myt2); 
 myc1 <- runif(nt, tmin, tmax); 
 myc2 <- runif(nt, tmin, tmax); 
    ### set censored data randomly, censored=Ci<ti(???) 
 myT1st<-rep(1,nt); 
 myT2st<-rep(1,nt); 
 for(i in 1:nt){if(myt1[i]>myc1[i])myT1st[i]<-0}; 
 for(i in 1:nt){if(myt2[i]>myc2[i])myT2st[i]<-0}; 
 
 ### set group  
 mygpT1<-rep(0,nt); 
 mygpT2<-rep(1,nt); 
 
 ### generate data frame (t, status, group) 
 futime<-c(myt1,myt2); 
 fustat<-c(myT1st,myT2st); 
 mygroup<-c(mygpT1,mygpT2); 
 mydata.df<-data.frame(futime,fustat,mygroup); 
 ### use Cox model to fit the data 
 myfit<-coxph(Surv(futime, fustat)~mygroup,data=mydata.df,x=T) ; 
    mytemp<-cox.zph(myfit) ; 
 
     ### see how many p-value are smaller than 0.05 
 p1<-mytemp$table[1,][3]; 
 if(p1<0.05)ip1<-ip1+1; 
 if(ii>=nii)break; 
} 
 
ip1; 
### below are only use for single step run 
#mydata.surv<-survfit(Surv(futime,fustat)~mygroup,mydata.df); 
#plot(mydata.surv,xlab="T",ylab="% surviving",cex=2,lty=2:3); 
#title("Simulation result"); 
#print(mytemp);                  
#plot(mytemp);   

 
 
Program 1.2: Simple log-rank test, Harrington-Fleming’s weighted log-rank test, and test with 
the new weight function 
 
### Simulation with nonproportional data, with 10 factors, from 0.1 to 1.0 
### by Qing Xu, September 2004 
# 
 
### divide random data into three subgroups for frailty implantation 
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nt <- 1500; n1 <- nt/10; n2 <- n1*2; n3 <- n1*3;  
n4 <- n1*4; n5 <- n1*5; n6 <- n1*6; n7 <- n1*7;  
n8 <- n1*8; n9 <- n1*9; n10 <- n1*10 
 
### each group is characterized by a factor, later, early, middle difference for each 
 
factor1s <- c (1.00, 0.99, 0.85);  
factor2s <- c (0.99, 0.95, 0.80); 
factor3s <- c (0.98, 0.90, 0.75);  
factor4s <- c (0.97, 0.85, 0.80);  
factor5s <- c (0.95, 0.80, 0.85);  
factor6s <- c (0.93, 0.80, 0.90);  
factor7s <- c (0.91, 0.85, 0.93);  
factor8s <- c (0.89, 0.90, 0.95);  
factor9s <- c (0.87, 0.95, 0.97);  
factor10s<- c (0.85, 0.99, 0.99); 
 
### set how many set of data you want to simulate, here is 3 (late, early, middle) 
nd <- 3; 
 
### set baseline hazards function 
rhos <- c (0.001, 0.1, 0.3); 
### set how many rho values you want to simulate, here is 3  
nr <- 3; 
 
### paramter for new weighting function 
etas <- c (5, 1, 0.01); 
### set how many etas you want to simulate, here is 3 
ne <- 3; 
 
### number of simulations   
n.iter <- 1000; 
 
### parameters for H-F weighting function 
ps <- c (0, 1, 1); 
qs <- c (1, 0, 1); 
 
### set a control number, nctrl=nd x nr x ne = 3 x 3 x 3=27 
ictrl <- 0; 
nctrl <- nd*nr*ne; 
 
### set initial values for the recording numbers 
hfgtnew <- rep(0, nctrl); 
logrankgtnew <- rep(0, nctrl); 
wilcoxgtnew <- rep(0, nctrl); 
newlta <- rep(0, nctrl); 
hflta <- rep(0, nctrl); 
logranklta <- rep(0, nctrl); 
wilcoxlta <- rep(0, nctrl); 
pave.logrank <- rep(0, nctrl); 
pave.wilcox <- rep(0, nctrl); 
pave.hf <- rep(0, nctrl); 
pave.new <- rep(0, nctrl); 
 
### define a variable to identify the data type 
datatype <- rep('aaaaa', nctrl); 
### eta and rho values 
etavalue <- rep(0, nctrl); 
rhovalue <- rep(0, nctrl); 
  
### loops 
for(id in 1:nd) 
{ 
   ### use current factors 
   factor1 <- factor1s[id]; 
   factor2 <- factor2s[id]; 
   factor3 <- factor3s[id]; 
   factor4 <- factor4s[id]; 
   factor5 <- factor5s[id]; 
   factor6 <- factor6s[id]; 
   factor7 <- factor7s[id]; 
   factor8 <- factor8s[id]; 
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   factor9 <- factor9s[id]; 
   factor10 <- factor10s[id]; 
 
   ### set the right H-F parameters, p, q 
   p <- ps[id]; 
   q <- qs[id]; 
 
 for(ir in 1:nr) 
 { 
      ### use current rho 
      rho <- rhos[ir]; 
 for(ie in 1:ne) 
      { 
         ### use current eta 
         eta <- etas[ie]; 
         ### set initial values for p values 
         p.logrank <- rep(0,n.iter); 
         p.wilcox <- rep(0,n.iter); 
         p.hf <- rep(0,n.iter); 
         p.new <- rep(0,n.iter); 
 
         ### increment the control number 
         ictrl <- ictrl + 1; 
 
         ### main loop 
         for (it in 1:n.iter) 
         { 
            ### generate survival data group one: t1 
            u <- sort(runif(nt)); 
            t1 <- log(1-u)/rho*(-1); 
            t2 <- t1; 
            ### generate survival data group two: t2 
            for (i in 1:n1) {t2[i] <- factor1*t1[i]}; 
            for (i in (n1+1):n2) {t2[i] <- factor2*t1[i]}; 
            for (i in (n2+1):n3) {t2[i] <- factor3*t1[i]}; 
            for (i in (n3+1):n4) {t2[i] <- factor4*t1[i]}; 
            for (i in (n4+1):n5) {t2[i] <- factor5*t1[i]}; 
            for (i in (n5+1):n6) {t2[i] <- factor6*t1[i]}; 
            for (i in (n6+1):n7) {t2[i] <- factor7*t1[i]}; 
            for (i in (n7+1):n8) {t2[i] <- factor8*t1[i]}; 
            for (i in (n8+1):n9) {t2[i] <- factor9*t1[i]}; 
            for (i in (n9+1):n10) {t2[i] <- factor10*t1[i]}; 
 
            ### generate censoring range according to the data range 
            tmax <- max(t1,t2);   # the upper limit of t 
            tmin <- min(t1,t2);   # the lower limit of t 
            tc1 <- runif(nt,tmin,tmax); 
            tc2 <- runif(nt,tmin,tmax); 
 
            ### set censored data randomly,c1[i], c2[i] =1 if censored 
            c1 <- rep(0,nt); 
            c2 <- rep(0,nt); 
            for(i in 1:nt) {if (t1[i] > tc1[i]) c1[i] <- 1 }; 
            for(i in 1:nt) {if (t2[i] > tc2[i]) c2[i] <- 1 }; 
 
            itmax <- nt*2; 
            time.temp<-sort(c(t1,t2),index.return=TRUE) 
            t<-time.temp$x; tindex<-time.temp$ix; 
 
            ### Y1(n.risk), d1(n.event), cc1(n.sensor), Y2, d2, c2 
            y1 <- rep(nt,itmax);  
            y2 <- rep(nt,itmax); 
            d1 <- rep(0,itmax); 
            d2 <- rep(0,itmax); 
            cc1 <- rep(0,itmax); 
            cc2 <- rep(0,itmax); 
 
            ### calculate number at risk  
            for (i in 2:itmax) 
            {    
               if(tindex[i]<=nt) 
               {   
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                  y2[i]<-y2[i-1]; 
                  if(c[i]==0) d1[i]<-1; 
                  cc1[i]<-c[i]; 
                  y1[i]<-y1[i-1]-1; 
               } 
               if(tindex[i]>nt) 
               {   
                  y1[i]<-y1[i-1]; 
                  if(c[i]==0) d2[i]<-1; 
                  cc2[i]<-c[i]; 
                  y2[i]<-y2[i-1]-1; 
               } 
            } 
 
            ### calculate Y=Y1+Y2, d=d1+d2, Y1*(d/Y), d1-Y1*(d/Y)  
            y <- y1 + y2; 
            d <- d1 + d2; 
            y1dy <- y1*(d/y); 
            d1y1dy <- d1 - y1dy; 
  
            ### big one  
            big <- rep(0,itmax); 
            for(i in 1:itmax)  
            { 
               if(y[i] != y1[i]) 
                 (big[i]<-(y1[i]/y[i])*(1-y1[i]/y[i])*((y[i]-d[i])/(y[i]-1))*d[i]); 
            }; 
  
            ### common survival function 
            ss <- (1-d/(y+1)); 
            ### common survival function during t(i-1) to t(i) 
            s1 <- rep(1,itmax); 
            ### common survival function during t(i) to t(i+1) 
            s0 <- ss; 
            for (i in 2:itmax) 
            { 
             s1 [i] <- s1[i-1]*ss[i]; 
             s0 [i] <- s0[i-1]*ss[i]; 
            }; 
 
            ### simple log rank test, w(t)=1 
            zlogrank <- sum(d1y1dy)/((sum(big))^0.5); 
            if(zlogrank < 0) (p.logrank[it] <- 2*pnorm(zlogrank)); 
            if(zlogrank > 0) (p.logrank[it] <- 2*(1-pnorm(zlogrank))); 
 
            ### wilcoxon (Peto-Peto) logrank test, w(t)=s(t) 
            upper <- s0*d1y1dy; 
            lower <- s0*s0*big; 
            zwilcox <- sum(upper)/((sum(lower))^0.5); 
            if(zwilcox > 0) (p.wilcox[it] <- 2*(1-pnorm(zwilcox))); 
            if(zwilcox < 0) (p.wilcox[it] <- 2*pnorm(zwilcox)); 
 
            ### F-H weighting function, w(t)=s1^p*(1-s1)^q 
            hfw <- (s1^p)*((1-s1)^q) 
            upperhf <- hfw*d1y1dy; 
            lowerhf <- hfw*hfw*big; 
            zhf <- sum(upperhf)/((sum(lowerhf))^0.5); 
            if(zhf > 0)(p.hf[it] <- 2*(1-pnorm(zhf))); 
            if(zhf < 0)(p.hf[it] <- 2*pnorm(zhf)); 
 
            ### new weight function, 1/2+(2*eta^2)/(2*eta-log[s])^2 
            weight <- 0.5 + (2*eta^2)/(2*eta-log(s0))^2; 
            uppernew <- weight*d1y1dy; 
            lowernew <- weight*weight*big; 
            znewweight <- sum(uppernew)/((sum(lowernew))^0.5); 
            if(znewweight < 0)(p.new[it] <- 2*pnorm(znewweight)); 
            if(znewweight > 0)(p.new[it] <- 2*(1-pnorm(znewweight))); 
 
            ### calcualte how many p.hf > p.new 
            hfgtnew[ictrl] <- hfgtnew[ictrl] + 1*(p.hf[it] > p.new[it]); 
 
            ### calculate how many p.logrank > p.new 
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            logrankgtnew[ictrl]<-logrankgtnew[ictrl]+1*(p.logrank[it] > p.new[it]); 
 
            ### calculate how many p.wilcox > p.new 
            wilcoxgtnew[ictrl] <- wilcoxgtnew[ictrl] + 1*(p.wilcox[it] > p.new[it]); 
 
            ### calculate how many pvalues are less than 0.05 
            newlta[ictrl] <- newlta[ictrl] + 1*(p.new[it] < 0.05); 
            hflta[ictrl] <- hflta[ictrl] + 1*(p.hf[it] < 0.05); 
            logranklta[ictrl] <- logranklta[ictrl] + 1*(p.logrank[it] < 0.05); 
            wilcoxlta[ictrl] <- wilcoxlta[ictrl] + 1*(p.wilcox[it] < 0.05); 
         }; # end of main loop 
 
         ### record the control identification; 
         if(id == 1)(datatype[ictrl] <- 'late'); 
         if(id == 3)(datatype[ictrl] <- 'early'); 
         if(id == 2)(datatype[ictrl] <- 'middle'); 
         rhovalue[ictrl] <- rho; 
         etavalue[ictrl] <- eta; 
 
         ### average p-value for each test 
         pave.logrank[ictrl] <- sum(p.logrank)/n.iter; 
         pave.wilcox[ictrl] <- sum(p.wilcox)/n.iter; 
         pave.hf[ictrl] <- sum(p.hf)/n.iter; 
         pave.new[ictrl] <- sum(p.new)/n.iter; 
      }; # end of ie loop 
   }; # of ir loop 
}; # end of id loop 
 
### get the data and print; 
result <- data.frame 
(datatype,etavalue,rhovalue,pave.logrank,pave.wilcox,pave.hf,pave.new,logranklta,wilco
xlta,hflta,newlta,hfgtnew,logrankgtnew,wilcoxgtnew); 
result; 

 
 
Program 1.3: Real data application, using cox.zph to test the proportional hazards assumption 
 
# read in real data 
 
dd<-read.table("d:xuqing/phdthesis/qingb14.txt", header=TRUE, sep=",") 
 
# dd$group; #group 1 placebo, group 2 tamoxifen group 
itmax<-2817; 
time.temp<-sort(dd$time,index.return=TRUE) 
t<-time.temp$x; tindex<-time.temp$ix; 
g<-rep(0,itmax); c<-g; e<-c; 
for (i in 1:itmax) 
{  
   ii<-tindex[i]; 
   c[i]<-dd$indi.events[ii]; 
   g[i]<-dd$group[ii]; 
   e[i]<-dd$events[ii]; 
} 
newdata<-data.frame(g,e,t,c,tindex); 
#newdata; 
y1<-0; y2<-0; c1<-0; c2<-0; 
for (i in 1:itmax) 
{ 
   if(g[i]==1) 
   { 
      y1<-y1+1; 
      c1<-c1+c[i]; 
   } 
   if(g[i]==2) 
   { 
      y2<-y2+1; 
      c2<-c2+c[i]; 
   } 
} 
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y1; # number of objects in group 1 
y2; # number of objects in group 2 
c1; # observed events in group 1 
c2; # observed events in group 2 
sum(c); #total number of censored data 
 
S1<-rep(1,itmax); S2<-S1; yy1<-rep(y1,itmax); yy2<-rep(y2,itmax); 
if(g[1]==1)y1<-y1-1; 
if(g[1]==2)y2<-y2-1; 
for (i in 2:itmax) 
{    
   if(g[i]==1) 
   {   
      yy1[i]<-y1; 
      yy2[i]<-yy2[i-1]; 
      S2[i]<-S2[i-1]; 
      if(c[i]==1) {S1[i]<-S1[i-1]*(1-1/y1);} 
      if(c[i]==0) {S1[i]<-S1[i-1];} 
      y1<-y1-1; 
   } 
   if(g[i]==2) 
   {   
      yy2[i]<-y2; 
      yy1[i]<-yy1[i-1]; 
      S1[i]<-S1[i-1]; 
      if(c[i]==1) {S2[i]<-S2[i-1]*(1-1/y2);} 
      if(c[i]==0) {S2[i]<-S2[i-1];} 
      y2<-y2-1; 
   } 
} 
 
data1<-data.frame(t,yy1,yy2,S1,S2); 
data1; 
 
#tt<-t[1:1855];SS1<-S1[1:1855];SS2<-S2[1:1855]; 
#plot(tt,SS1,"S");lines(tt,SS2,"S"); 
plot(t,S1,"S");lines(t,S2,"S"); 
 
# use Cox model to fit the data 
myfit<-coxph(Surv(t,c)~g,data=newdata,x=T) ; 
mytemp<-cox.zph(myfit) ; 
print(mytemp);                  
plot(mytemp);   
 
# see p-value  
p1<-mytemp$table[1,][3]; 
p1; 
 
mydata.surv<-survfit(Surv(t,c)~g,newdata); 
plot(mydata.surv,xlab="T",ylab="% surviving",cex=2,lty=2:3); 
title("Simulation result"); 
legend(c(5,7.5),c(0.85,0.72),c("group 1","group 2"),lty=2:3); 

 
 
Program 1.4: Real data application, using simple log-rank, Harrington-Fleming weight log-rank, 
new method to test the survival distribution difference 
 
# read in real data 
 
dd<-read.table("d:xuqing/phdthesis/qingb14.txt", header=TRUE, sep=",") 
 
# dd$group; #group 1 placebo, group 2 tamoxifen group 
itmax<-2817; 
time.temp<-sort(dd$time,index.return=TRUE) 
t<-time.temp$x; tindex<-time.temp$ix; 
g<-rep(0,itmax); c<-g; e<-c; 
for (i in 1:itmax) 
{  
   ii<-tindex[i]; 

 96



   c[i]<-dd$indi.events[ii]; 
   g[i]<-dd$group[ii]; 
   e[i]<-dd$events[ii]; 
} 
newdata<-data.frame(g,e,t,c,tindex); 
#newdata; 
y1t<-0; y2t<-0; c1<-0; c2<-0; 
for (i in 1:itmax) 
{ 
   if(g[i]==1) 
   { 
      y1t<-y1t+1; 
      c1<-c1+c[i]; 
   } 
   if(g[i]==2) 
   { 
      y2t<-y2t+1; 
      c2<-c2+c[i]; 
   } 
} 
y1; # number of objects in group 1 
y2; # number of objects in group 2 
c1; # observed events in group 1 
c2; # observed events in group 2 
sum(c); #total number of censored data 
 
S1<-rep(1,itmax); S2<-S1; y1<-rep(y1t,itmax); y2<-rep(y2t,itmax); 
d1 <- rep(0,itmax);d2 <- rep(0,itmax); 
cc1 <- rep(0,itmax);cc2 <- rep(0,itmax); 
 
for (i in 2:itmax) 
{    
   if(g[i]==1) 
   {   
      y2[i]<-y2[i-1]; 
      if(c[i]==1) d1[i]<-1; 
      cc1[i]<-1-c[i]; 
      y1[i]<-y1[i-1]-1; 
   } 
   if(g[i]==2) 
   {   
      y1[i]<-y1[i-1]; 
      if(c[i]==1) d2[i]<-1; 
      cc2[i]<-1-c[i]; 
      y2[i]<-y2[i-1]-1; 
   } 
} 
for (i in 2:itmax) 
{    
   if(g[i]==1) 
   {   
      S2[i]<-S2[i-1]; 
      if(y1[i]!=0)S1[i]<-S1[i-1]*(1-d1[i]/y1[i]); 
      if(y1[i]==0)S1[i]<-S1[i-1]; 
   } 
   if(g[i]==2) 
   {   
      S1[i]<-S1[i-1]; 
      if(y2[i]!=0)S2[i]<-S2[i-1]*(1-d2[i]/y2[i]); 
      if(y2[i]==0)S2[i]<-S2[i-1]; 
   } 
} 
 
plot(t,S1,"S");lines(t,S2,"S"); 
 
### set the H-F parameters, p, q 
p <- 0.5; 
q <- 0.5; 
 
### use current eta 
eta <- 1; 
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### calculate Y=Y1+Y2, d=d1+d2, Y1*(d/Y), d1-Y1*(d/Y)  
y <- y1 + y2; 
d <- d1 + d2; 
cc<- cc1+cc2; 
y1dy <- y1*(d/y); 
d1y1dy <- d1 - y1dy; 
    
### variance 
big <- rep(0,itmax); 
for(i in 1:itmax)  
{ 
   if(y[i] != y1[i]) 
   (big[i]<-(y1[i]/y[i])*(1-y1[i]/y[i])*((y[i]-d[i])/(y[i]-1))*d[i]); 
}; 
    
### common survival function 
ss <- (1-d/(y+1)); 
### common survival function during t(i-1) to t(i) 
s1 <- rep(1,itmax); 
### common survival function during t(i) to t(i+1) 
s0 <- ss; 
for (i in 2:itmax) 
{ 
   s1 [i] <- s1[i-1]*ss[i]; 
   s0 [i] <- s0[i-1]*ss[i]; 
}; 
 
data<-data.frame(t,c,g,d,y,cc,s0,s1,d1,y1,cc1,d2,y2,cc2,S1,S2) 
data; 
 
### simple log rank test, w(t)=1 
zlogrank <- sum(d1y1dy)/((sum(big))^0.5); 
if(zlogrank < 0) (p.logrank <- 2*pnorm(zlogrank)); 
if(zlogrank > 0) (p.logrank <- 2*(1-pnorm(zlogrank))); 
 
### wilcoxon (Peto-Peto) logrank test, w(t)=s(t) 
upper <- s0*d1y1dy; 
lower <- s0*s0*big; 
zwilcox <- sum(upper)/((sum(lower))^0.5); 
if(zwilcox > 0) (p.wilcox <- 2*(1-pnorm(zwilcox))); 
if(zwilcox < 0) (p.wilcox <- 2*pnorm(zwilcox)); 
 
### F-H weighting function, w(t)=s2^p*(1-s2)^q 
hfw <- (s1^p)*((1-s1)^q) 
upperhf <- hfw*d1y1dy; 
lowerhf <- hfw*hfw*big; 
zhf <- sum(upperhf)/((sum(lowerhf))^0.5); 
if(zhf > 0)(p.hf <- 2*(1-pnorm(zhf))); 
if(zhf < 0)(p.hf[it] <- 2*pnorm(zhf)); 
 
### new weight function, 1/2+(2*eta^2)/(2*eta-log[s])^2 
weight <- 0.5 + (2*eta^2)/(2*eta-log(s0))^2; 
uppernew <- weight*d1y1dy; 
lowernew <- weight*weight*big; 
znewweight <- sum(uppernew)/((sum(lowernew))^0.5); 
if(znewweight < 0)(p.new <- 2*pnorm(znewweight)); 
if(znewweight > 0)(p.new <- 2*(1-pnorm(znewweight))); 
 
# p-values 
p.new; p.hf; p.wilcox; p.logrank; 

 
 
Program 1.5: Plot of new weight function as a function of parameter  ψ
 
# set survival time [0,25] 
t<-seq(0,25,by=0.5) 
# for exponential distributions, 
rho<-0.3 
s<-exp(-rho*t) 
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# weight function 
phi<-5 
w1<-0.5+2*phi*phi/(2*phi-log(s))^2 
phi<-1 
w2<-0.5+2*phi*phi/(2*phi-log(s))^2 
phi<-0.1 
w3<-0.5+2*phi*phi/(2*phi-log(s))^2 
plot(t,w3,"l",main="weight function vs. survival time") 
lines(t,w2) 
lines(t,w1) 
legend(16,0.75,"phi=5",bty="n") 
legend(2.5,0.75,"phi=1",bty="n") 
legend(-0.5,0.7,"phi=0.1",bty="n") 
legend(10,0.95,"Exponential distribution, baseline rho=0.3",bty="n") 
 
Program 1.6: Example of diagnostic plot of survival data with inverse Gaussian frailty. 
 
### set parameter xi and beta 
xi <- 1000;   # constant, mean 
lambda <- 10;   # parameter 
nt<- 2000; 
beta <- 2; 
 
### generate survival data following Weibull distribution 
u1 <- sort(runif(nt));      #sorted uniform random data 
t <- (-1)*xi*log(1-u1);    #convert into survival time 
s <- (t/xi)^beta; 
S <- exp(lambda*(1-sqrt(2*s/lambda+1))); 
 
plot(log(t),log(-log(S))) 
legend(2,0,"lambda=10",bty="n") 
 

 
Program 1.7: Example of diagnostic plot of survival data with gamma frailty. 
 
### set parameter xi and beta 
xi <- 1000;   # constant, mean 
lambda <- 0.1;  # parameter 
nt<- 2000; 
beta <- 2; 
 
### generate survival data following Weibull distribution 
u1 <- sort(runif(nt));      #sorted uniform random data 
t <- (-1)*xi*log(1-u1);    #convert into survival time 
s <- (t/xi)^beta; 
S <- (1+s/lambda)^(-lambda); 
 
plot(log(t),-log(S)) 
legend(2,0,"lambda=10",bty="n") 
 

 
Program 1.8: Simulations on the MLE of inverse Gaussian frailty parameters. 
 
# Use MLE to estimate the IG parameters of the frailty 
# for exponential survival data with explicit frailty implanted 
# 
### divide random data into 10 groups for non proportional hazard ratio 
   nt<-200;   # sample size 
   n<-nt/10;  # subgroup size 
   f<-c(0.85,0.8,0.75,0.8,0.85,0.9,0.93,0.95,0.97,0.99);  #early difference 
#   f<-c(0.99,0.95,0.9,0.85,0.8,0.8,0.85,0.9,0.95,0.99);  #middle difference 
#   f<-c(1,0.99,0.98,0.97,0.95,0.93,0.91,0.89,0.87,0.85);  #late difference 
   theta<-c(rep(f[1],n),rep(f[2],n),rep(f[3],n),rep(f[4],n),rep(f[5],n), 
            rep(f[6],n),rep(f[7],n),rep(f[8],n),rep(f[9],n),rep(f[10],n)); 
### set baseline hazard function h_0(t)=rho 
   rho<-0.3; 
### set frailty distribution parameter, lambda of IG distribution 
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   nu<-1.0; lambda<-1; #nu=mean, lambda=2*phi, variance=1/lambda 
### set number of simulations 
   nii<-1000; 
### set loop index 
   ii<-0; 
### censor level 
   censorlvl <- 0; 
   t0<-0; tm<-0; 
 
lambda.cum<-rep(0,nii); 
repeat{ 
 ii<-ii+1; 
      ### generate random uniform numbers  
 u<-sort(runif(nt)); 
      ### generate frailty w follwing IG distribution 
      w<-sort(rinvGauss(nt,nu,lambda),decreasing=FALSE); 
      ### generate exponential times with frailty implanted 
 t1<-(-1)*log(1-u)/(rho*w); 
      t2<-t1*theta; #implant difference 
 ### generate censoring 
      if(censorlvl>0){ 
         tc1 <- (runif(nt,min=t0,max=tm));   
         tc2 <- (runif(nt,min=t0,max=tm)); 
         for(i in 1:nt)  
            { 
               if (t1[i] > tc1[i]) c1[i] <- 1;  
               if (t2[i] > tc2[i]) c2[i] <- 1;  
            }; 
         }; 
      ### survival time table 
      tb<-sort(c(t1,t2),index.return=TRUE);  
      t<-tb$x; tindex<-tb$ix; 
      itmax<-nt*2; # total number of data points 
      ### calculate survival function using Kaplan-Meier method 
      S1<-rep(1,itmax); S2<-rep(1,itmax);  
#      yy1<-rep(nt,itmax);yy2<-rep(nt,itmax); 
      if(tindex[1]<=nt) {y1<-nt-1; y2<-nt;} 
      if(tindex[1]>nt) {y1<-nt; y2<-nt-1}; 
      for (i in 2:itmax) 
      {    
         if(tindex[i]<=nt){   
#            yy1[i]<-y1; 
#            yy2[i]<-yy2[i-1]; 
            S2[i]<-S2[i-1]; 
            if(censorlvl>0){ 
               if(c1[i]==0) {S1[i]<-S1[i-1]*(1-1/y1);} 
               if(c1[i]==1) {S1[i]<-S1[i-1];} 
            } 
            if(censorlvl==0){S1[i]<-S1[i-1]*(1-1/y1);} 
            y1<-y1-1; 
         } 
         if(tindex[i]>nt){   
#            yy2[i]<-y2; 
#            yy1[i]<-yy1[i-1]; 
            S1[i]<-S1[i-1]; 
            if(censorlvl>0){ 
               if(c2[i]==0) {S2[i]<-S2[i-1]*(1-1/y2);} 
               if(c2[i]==1) {S2[i]<-S2[i-1];} 
            } 
            if(censorlvl==0){S2[i]<-S2[i-1]*(1-1/y2);} 
            y2<-y2-1; 
         } 
      } 
 
      ### calculate w[i] 
      w.hat<-rep(0,itmax); ww<-rep(0,itmax) 
      for(i in 1:itmax){ 
          theta.temp<-theta[trunc(i/2)]; 
          if(S1[i]<1 && S2[i]<1 && S1[i]>0 && S2[i]>0){ 
             w.hat[i]<-log(S2[i])/(theta.temp*log(S1[i])); 
             ww[i]<-(w.hat[i]-1)^2/w.hat[i]; 
          } 
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      } 
 
      data1<-data.frame(t,S1,S2,w.hat,ww); 
#      data1; 
 
      ### estimate of lambda from MLE 
      
      lambda.hat<-nt/sum(ww); 
#      lambda.hat; 
      lambda.cum[ii]<-lambda.hat 
      ### estimate of phi = half lambda.hat 
 if(ii>=nii)break; 
} 
lambda.cum; 
mean(lambda.cum); 
var(lambda.cum); 
 

 
Program 1.9: Simulations on the MLE of gamma frailty parameters. 
 
# Use MLE to estimate the gamma parameters of the frailty 
# for exponential survival data with explicit failty implanted 
# 
### divide random data into 10 groups for non proportional hazard ratio 
   nt<-200;   # sample size 
   n<-nt/10;  # subgroup size 
#   f<-c(0.85,0.8,0.75,0.8,0.85,0.9,0.93,0.95,0.97,0.99);  #early difference 
#   f<-c(0.99,0.95,0.9,0.85,0.8,0.8,0.85,0.9,0.95,0.99);  #middle difference 
   f<-c(1,0.99,0.98,0.97,0.95,0.93,0.91,0.89,0.87,0.85);  #late difference 
   theta<-c(rep(f[1],n),rep(f[2],n),rep(f[3],n),rep(f[4],n),rep(f[5],n), 
            rep(f[6],n),rep(f[7],n),rep(f[8],n),rep(f[9],n),rep(f[10],n)); 
### set baseline hazard function h_0(t)=rho 
   rho<-0.001; 
### set frailty distribution parameter, 
   kappa<-1.0; scale<-1/kappa; #shape=kappa, scale=rho=1/kappa 
### set number of simulations 
   nii<-1000; 
### set loop index 
   ii<-0; 
### censor level 
   censorlvl <- 0; 
   t0<-0; tm<-0; 
 
kappa.cum<-rep(0,nii); 
repeat{ 
 ii<-ii+1; 
      ### generate random uniform numbers  
 u<-sort(runif(nt)); 
      ### generate frailty w follwing gamma distribution 
      w<-sort(rgamma(nt,kappa,scale),decreasing=FALSE); 
      ### generate exponential times with frailty implanted 
 t1<-(-1)*log(1-u)/(rho*w); 
      t2<-t1*theta; #implant difference 
 ### generate censoring 
      if(censorlvl>0){ 
         tc1 <- (runif(nt,min=t0,max=tm));   
         tc2 <- (runif(nt,min=t0,max=tm)); 
         for(i in 1:nt)  
            { 
               if (t1[i] > tc1[i]) c1[i] <- 1;  
               if (t2[i] > tc2[i]) c2[i] <- 1;  
            }; 
         }; 
      ### survival time table 
      tb<-sort(c(t1,t2),index.return=TRUE);  
      t<-tb$x; tindex<-tb$ix; 
      itmax<-nt*2; # total number of data points 
      ### calculate survival function using Kaplan-Meier method 
      S1<-rep(1,itmax); S2<-rep(1,itmax);  
#      yy1<-rep(nt,itmax);yy2<-rep(nt,itmax); 
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      if(tindex[1]<=nt) {y1<-nt-1; y2<-nt;} 
      if(tindex[1]>nt) {y1<-nt; y2<-nt-1}; 
      for (i in 2:itmax) 
      {    
         if(tindex[i]<=nt){   
#            yy1[i]<-y1; 
#            yy2[i]<-yy2[i-1]; 
            S2[i]<-S2[i-1]; 
            if(censorlvl>0){ 
               if(c1[i]==0) {S1[i]<-S1[i-1]*(1-1/y1);} 
               if(c1[i]==1) {S1[i]<-S1[i-1];} 
            } 
            if(censorlvl==0){S1[i]<-S1[i-1]*(1-1/y1);} 
            y1<-y1-1; 
         } 
         if(tindex[i]>nt){   
#            yy2[i]<-y2; 
#            yy1[i]<-yy1[i-1]; 
            S1[i]<-S1[i-1]; 
            if(censorlvl>0){ 
               if(c2[i]==0) {S2[i]<-S2[i-1]*(1-1/y2);} 
               if(c2[i]==1) {S2[i]<-S2[i-1];} 
            } 
            if(censorlvl==0){S2[i]<-S2[i-1]*(1-1/y2);} 
            y2<-y2-1; 
         } 
      } 
 
      ### calculate w[i] 
      w.hat<-rep(0,itmax); logw<-rep(0,itmax) 
      for(i in 1:itmax){ 
          theta.temp<-theta[trunc(i/2)]; 
          if(S1[i]<1 && S2[i]<1 && S1[i]>0 && S2[i]>0){ 
             w.hat[i]<-log(S2[i])/(theta.temp*log(S1[i])); 
             logw[i]<-log(w.hat[i]); 
          } 
      } 
 
      data1<-data.frame(t,S1,S2,w.hat,logw); 
#      data1; 
 
      ### estimate of kappa from MLE 
      a<-sum(logw);b<-sum(w.hat);c<-(a-b)/itmax; 
      ### solve the nonlinear equation for kappa using Newton type algorithm 
      f<-function(ka) (c+log(ka)+1-digamma(ka))^2 #target function to minimize 
      aa<-nlm(f,1);      #minimization using nlm 
      if(aa$minimum[1]<1e-5){kappa.hat<-aa$estimate[1];} 
      kappa.cum[ii]<-kappa.hat 
      if(ii>=nii)break; 
} 
kappa.cum; 
mean(kappa.cum); 
var(kappa.cum); 
 
Program 1.10: Simple log-rank test, Harrington-Fleming’s weighted log-rank test, test with the 
new weight function, test with the new weight function supreme version 
 
### divide random data into three subgroups for frailty implantation 
nt <- 1500; n1 <- nt/10; n2 <- n1*2; n3 <- n1*3;  
n4 <- n1*4; n5 <- n1*5; n6 <- n1*6; n7 <- n1*7;  
n8 <- n1*8; n9 <- n1*9; n10 <- n1*10 
 
### each group is characterized by a factor, later, early, middle difference for each 
factor1s <- c (1.00, 0.99, 0.85);  
factor2s <- c (0.99, 0.95, 0.80); 
factor3s <- c (0.98, 0.90, 0.75);  
factor4s <- c (0.97, 0.85, 0.80);  
factor5s <- c (0.95, 0.80, 0.85);  
factor6s <- c (0.93, 0.80, 0.90);  
factor7s <- c (0.91, 0.85, 0.93);  
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factor8s <- c (0.89, 0.90, 0.95);  
factor9s <- c (0.87, 0.95, 0.97);  
factor10s<- c (0.85, 0.99, 0.99); 
#factor1s <- c (0.99, 0.775, 0.99);  
#factor2s <- c (0.975, 0.8, 0.975); 
#factor3s <- c (0.95, 0.825, 0.95);  
#factor4s <- c (0.925, 0.85, 0.925);  
#factor5s <- c (0.90, 0.875, 0.9);  
#factor6s <- c (0.875, 0.90, 0.9);  
#factor7s <- c (0.85, 0.925, 0.925);  
#factor8s <- c (0.825, 0.95, 0.95);  
#factor9s <- c (0.8, 0.975, 0.975);  
#factor10s<- c (0.775, 0.99, 0.99); 
 
### set how many set of data you want to simulate, here is 3 (late, early, middle) 
nd <- 3; 
 
### set baseline hazards function 
rhos <- c (0.001, 0.1, 0.3); 
### set how many rho values you want to simulate, here is 3  
nr <- 3; 
 
### paramter for new weighting function 
etas <- c (5, 1, 0.01); 
### set how many etas you want to simulate, here is 3 
ne <- 3; 
 
### number of simulations   
n.iter <- 1000; 
 
### parameters for H-F weighting function 
ps <- c (0, 2, 1); 
qs <- c (2, 0, 1); 
 
### set the groups of t  
itmax <- 20; 
 
### set a control number, nctrl=nd x nr x ne = 3 x 3 x 3=27 
ictrl <- 0; 
nctrl <- nd*nr*ne; 
 
### set initial values for the recording numbers 
hfgtnew <- rep(0, nctrl); 
logrankgtnew <- rep(0, nctrl); 
wilcoxgtnew <- rep(0, nctrl); 
newlta <- rep(0, nctrl); 
hflta <- rep(0, nctrl); 
logranklta <- rep(0, nctrl); 
wilcoxlta <- rep(0, nctrl); 
pave.logrank <- rep(0, nctrl); 
pave.wilcox <- rep(0, nctrl); 
pave.hf <- rep(0, nctrl); 
pave.new <- rep(0, nctrl); 
newsuplta <- rep(0, nctrl); 
pave.new.sup <- rep(0, nctrl); 
 
### define a variable to identify the data type 
#datatype <- rep('aaaaa', nctrl); 
### eta and rho values 
etavalue <- rep(0, nctrl); 
rhovalue <- rep(0, nctrl); 
  
### loops 
for(id in 1:nd) 
{ 
    ### use current factors 
    factor1 <- factor1s[id]; 
    factor2 <- factor2s[id]; 
    factor3 <- factor3s[id]; 
    factor4 <- factor4s[id]; 
    factor5 <- factor5s[id]; 
    factor6 <- factor6s[id]; 
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    factor7 <- factor7s[id]; 
    factor8 <- factor8s[id]; 
    factor9 <- factor9s[id]; 
    factor10 <- factor10s[id]; 
 
    ### set the right H-F parameters, p, q 
    p <- ps[id]; 
    q <- qs[id]; 
 
 for(ir in 1:nr) 
 { 
       ### use current rho 
       rho <- rhos[ir]; 
  for(ie in 1:ne) 
       { 
           ### use current eta 
           eta <- etas[ie]; 
           ### set initial values for p values 
           p.logrank <- rep(0,n.iter); 
           p.wilcox <- rep(0,n.iter); 
           p.hf <- rep(0,n.iter); 
           p.new <- rep(0,n.iter); 
           p.new.sup <- rep(0,n.iter); 
 
           ### increment the control number 
           ictrl <- ictrl + 1; 
 
           ### main loop 
           for (it in 1:n.iter) 
           { 
               ### generate survival data group one: t1 
              u <- sort(runif(nt)); 
              t1 <- log(1-u)/rho*(-1); 
              t2 <- t1; 
              ### generate survival data group two: t2 
              for (i in 1:n1) {t2[i] <- factor1*t1[i]}; 
              for (i in (n1+1):n2) {t2[i] <- factor2*t1[i]}; 
              for (i in (n2+1):n3) {t2[i] <- factor3*t1[i]}; 
              for (i in (n3+1):n4) {t2[i] <- factor4*t1[i]}; 
              for (i in (n4+1):n5) {t2[i] <- factor5*t1[i]}; 
              for (i in (n5+1):n6) {t2[i] <- factor6*t1[i]}; 
              for (i in (n6+1):n7) {t2[i] <- factor7*t1[i]}; 
              for (i in (n7+1):n8) {t2[i] <- factor8*t1[i]}; 
              for (i in (n8+1):n9) {t2[i] <- factor9*t1[i]}; 
              for (i in (n9+1):n10) {t2[i] <- factor10*t1[i]}; 
 
            ### generate censoring range according to the data range 
             tmax <- max(t1,t2);   # the upper limit of t 
              tmin <- min(t1,t2);   # the lower limit of t 
              tc1 <- runif(nt,tmin,tmax); 
              tc2 <- runif(nt,tmin,tmax); 
 
              ### set censored data randomly,c1[i], c2[i] =1 if censored 
              c1 <- rep(0,nt); 
              c2 <- rep(0,nt); 
              for(i in 1:nt) {if (t1[i] > tc1[i]) c1[i] <- 1 }; 
              for(i in 1:nt) {if (t2[i] > tc2[i]) c2[i] <- 1 }; 
 
              ### calculate dt according to tmin,tmax, and itmax 
              dt <- (tmax-tmin)/itmax; 
 
              ### set time increment from t=0 to t=itmax 
              t <- rep(0,itmax); 
              for (i in 1:itmax) { t[i] <- (i-1)*dt }; 
 
              ### initialize Y1(n.risk), d1(n.event), cc1(n.sensor), Y2, d2, c2 
              y1 <- rep(nt,itmax);  
              y2 <- rep(nt,itmax); 
              d1 <- rep(0,itmax); 
              d2 <- rep(0,itmax); 
              cc1 <- rep(0,itmax); 
              cc2 <- rep(0,itmax); 
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              ### convert data into two sample table (like Table 7.2 at p196) 
              for (i in 1:nt)  
              {  
                  iia <- trunc(t1[i]/dt)+1; ### truncate t1, t2 to integers 
                  iib <- trunc(t2[i]/dt)+1; 
                  if(c1[i] == 0){d1[iia] <- d1[iia] + 1}; ### integer values as index 
                  if(c2[i] == 0){d2[iib] <- d2[iib] + 1}; ### to increment n.event 
                  cc1[iia] <- cc1[iia] + c1[i];   ### increment n.censor 
                  cc2[iib] <- cc2[iib] + c2[i]; 
              }; 
 
              ### calculate Y (n.risk) according to n.event and n.censor 
              for (i in 2:itmax)  
              { 
                 y1[i] <- y1[i-1] - d1[i-1] -cc1[i-1];   
                 y2[i] <- y2[i-1] - d2[i-1] -cc2[i-1];   
              }; 
 
              ### calculate Y=Y1+Y2, d=d1+d2, Y1*(d/Y), d1-Y1*(d/Y)  
              y <- y1 + y2; 
              d <- d1 + d2; 
              y1dy <- y1*(d/y); 
              d1y1dy <- d1 - y1dy; 
    
              ### big one  
              big <- rep(0,itmax); 
              for(i in 1:itmax)  
              { 
                 if(y[i] != y1[i]) 
              (big[i] <- (y1[i]/y[i])*(1-y1[i]/y[i])*((y[i]-d[i])/(y[i]-1))*d[i]); 
              }; 
    
              ### common survival function 
              ss <- (1-d/(y+1)); 
              ### common survival function during t(i-1) to t(i) 
              s1 <- rep(1,itmax); 
              ### common survival function during t(i) to t(i+1) 
              s0 <- ss; 
              for (i in 2:itmax) 
              { 
                 s1 [i] <- s1[i-1]*ss[i]; 
                 s0 [i] <- s0[i-1]*ss[i]; 
              }; 
 
              ### simple log rank test, w(t)=1 
              zlogrank <- sum(d1y1dy)/((sum(big))^0.5); 
              if(zlogrank <= 0) (p.logrank[it] <- 2*pnorm(zlogrank)); 
              if(zlogrank > 0) (p.logrank[it] <- 2*(1-pnorm(zlogrank))); 
 
              ### wilcoxon (Peto-Peto) logrank test, w(t)=s(t) 
              upper <- s0*d1y1dy; 
              lower <- s0*s0*big; 
              zwilcox <- sum(upper)/((sum(lower))^0.5); 
              if(zwilcox > 0) (p.wilcox[it] <- 2*(1-pnorm(zwilcox))); 
              if(zwilcox <= 0) (p.wilcox[it] <- 2*pnorm(zwilcox)); 
 
              ### F-H weighting function, w(t)=s1^p*(1-s1)^q 
              hfw <- (s1^p)*((1-s1)^q) 
              upperhf <- hfw*d1y1dy; 
              lowerhf <- hfw*hfw*big; 
              zhf <- sum(upperhf)/((sum(lowerhf))^0.5); 
              if(zhf > 0)(p.hf[it] <- 2*(1-pnorm(zhf))); 
              if(zhf <= 0)(p.hf[it] <- 2*pnorm(zhf)); 
 
              ### new weight function, 1/2+(2*eta^2)/(2*eta-log[s])^2 
              weight <- 0.5 + (2*eta^2)/(2*eta-log(s0))^2; 
              uppernew <- weight*d1y1dy; 
              lowernew <- weight*weight*big; 
              znewweight <- sum(uppernew)/((sum(lowernew))^0.5); 
              if(znewweight <= 0)(p.new[it] <- 2*pnorm(znewweight)); 
              if(znewweight > 0)(p.new[it] <- 2*(1-pnorm(znewweight))); 
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              ### supreme new weight function method 
              Tn <- rep(1,itmax); 
              for (i in 1:itmax) 
              { 
                 Tn [i] <-  sum(uppernew[1:i])/((sum(lowernew[1:itmax]))^0.5); 
              }; 
              abs.Tn<-abs(Tn); 
              sup.Tn<-max(abs.Tn); 
              if(sup.Tn <= 0)(p.new.sup[it] <- 2*pnorm(sup.Tn)); 
              if(sup.Tn > 0)(p.new.sup[it] <- 2*(1-pnorm(sup.Tn))); 
 
              ### calcualte how many p.hf > p.new 
              hfgtnew[ictrl] <- hfgtnew[ictrl] + 1*(p.hf[it] > p.new[it]); 
  
              ### calculate how many p.logrank > p.new 
              logrankgtnew[ictrl] <- logrankgtnew[ictrl]+1*(p.logrank[it] > p.new[it]); 
 
              ### calculate how many p.wilcox > p.new 
              wilcoxgtnew[ictrl] <- wilcoxgtnew[ictrl] + 1*(p.wilcox[it] > p.new[it]); 
   
              ### calculate how many pvalues are less than 0.05 
              newlta[ictrl] <- newlta[ictrl] + 1*(p.new[it] < 0.05); 
              hflta[ictrl] <- hflta[ictrl] + 1*(p.hf[it] < 0.05); 
              logranklta[ictrl] <- logranklta[ictrl] + 1*(p.logrank[it] < 0.05); 
              wilcoxlta[ictrl] <- wilcoxlta[ictrl] + 1*(p.wilcox[it] < 0.05); 
              newsuplta[ictrl] <- newsuplta[ictrl] + 1*(p.new.sup[it] < 0.05); 
            }; # end of main loop 
 
           ### record the control identification; 
              if(id == 1)(datatype[ictrl] <- 'late'); 
              if(id == 2)(datatype[ictrl] <- 'middle'); 
              if(id == 3)(datatype[ictrl] <- 'early'); 
           rhovalue[ictrl] <- rho; 
           etavalue[ictrl] <- eta; 
 
           ### average p-value for each test 
           pave.logrank[ictrl] <- sum(p.logrank)/n.iter; 
           pave.wilcox[ictrl] <- sum(p.wilcox)/n.iter; 
           pave.hf[ictrl] <- sum(p.hf)/n.iter; 
           pave.new[ictrl] <- sum(p.new)/n.iter; 
           pave.new.sup[ictrl] <-sum(p.new.sup)/n.iter; 
        }; # end of ie loop 
     }; # of ir loop 
 }; # end of id loop 
 
### get the data and print; 
result <- data.frame 
(datatype,etavalue,rhovalue,pave.logrank,pave.wilcox,pave.hf,pave.new,logranklta,wilco
xlta,hflta,newlta,newsuplta); 
#result1 <-data.frame(hfgtnew,logrankgtnew,wilcoxgtnew); 
result; 
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Programs for new method on testing the proportional odds assumption 
 
 
Program 2.1: Test the proportional odds assumption using Dauxois-Kirmani method 
 
### set parameter xi and beta 
xi <- 150;   # constant, mean 
beta <- 1;   # parameter 
rbeta <- 1.0/beta;  # rbeta=1/beta 
censorlvl <- 0.1  # censoring level 
if(censorlvl==0.1){ 
   t0<-2; tm<-10; 
} 
if(censorlvl==0.3){ 
   t0<-0.2; tm<-5; 
} 
 
### number of simulations, number of data point in each group  
n.iter <- 200;  # number of simulations 
nt1 <- 50; nt2 <- 60; # number of data points in each group 
siglvl2 <- 0.02; siglvl5 <- 0.05; 
 
### set the groups of t  
itmax <- nt1+nt2;  # number of time intervals 
 
### set initial values of the p-value and power for each simulation 
p.zs<-rep(0,n.iter); # array for storing p values 
p.sig2<-rep(0,n.iter); # array for storing power 
p.sig5<-rep(0,n.iter); 
clevel<-0; 
 
### main loop 
for (it in 1:n.iter) 
{ 
   ### generate survival data group one: t1 
   u1 <- sort(runif(nt1));      #sorted uniform random data 
   t1 <- xi/(1/u1-1);    #convert into survival time 
   u2 <- sort(runif(nt2)); 
   t3 <- xi/(1/u2-1); 
   t2 <- (xi^(1-rbeta))*(t3^rbeta); 
 
   ### set censored data randomly,c1[i], c2[i] =1 if censored 
   c1 <- rep(0,nt1); c2 <- rep(0,nt2); 
   r1 <- runif(nt1); r2 <- runif(nt2); 
   for(i in 1:nt1)  
   { 
      if (r1[i] <= censorlvl) c1[i] <- 1;  
   }; 
   for(i in 1:nt2)  
   { 
      if (r2[i] <= censorlvl) c2[i] <- 1;  
   }; 
 
   ### set censored data randomly,c1[i], c2[i] =1 if censored 
   c1 <- rep(0,nt1); c2 <- rep(0,nt2); 
   if(censorlvl>0){ 
      tc1 <- (runif(nt1,min=t0,max=tm));  #if need sorting? 
      tc2 <- (runif(nt2,min=t0,max=tm)); 
      for(i in 1:nt1)  
      { 
         if (t1[i] > tc1[i]) c1[i] <- 1;  
      }; 
      for(i in 1:nt2)  
      { 
         if (t2[i] > tc2[i]) c2[i] <- 1;  
      }; 
   }; 
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   ### set t intervals 
   t<-sort(c(t1,t2));  
 
   ### Y1(n.risk), d1(n.event), cc1(n.sensor), Y2, d2, c2 
   y1 <- rep(nt1,itmax); y2 <- rep(nt2,itmax); 
 
   ### convert data into two sample table (like Table 7.2 at p196) 
   d1<-rep(0,itmax); d2<-rep(0,itmax);   #initial value for d1,d2 
   cc1<-rep(0,itmax); cc2<-rep(0,itmax); #initial value for cc1,cc2 
 
   indext1<-rep(0,nt1);  #initial value for index of t1 
   for (i in 1:nt1) 
   { 
      for (j in 1:itmax) 
      { 
         if(t1[i]>=t[j]){indext1[i]<-j} #compare with t to get index 
      }; 
   }; 
 
   for (i in 1:nt1)    # get d1,cc1 
   {  
      ### to increment n.event 
      if(c1[i] == 0){d1[indext1[i]] <- d1[indext1[i]] + 1};  
      cc1[indext1[i]] <- cc1[indext1[i]] + c1[i]; 
   }; 
 
   indext2<-rep(0,nt2);  #initial value for index of t2 
   for (i in 1:nt2) 
   { 
      for (j in 1:itmax) 
      { 
         #compare with t to get index 
         if(t2[i]>=t[j]){indext2[i]<-j}   
      }; 
    }; 
 
   for (i in 1:nt2)    # get d2,cc2 
   {  
      ### to increment n.event 
      if(c2[i] == 0){d2[indext2[i]] <- d2[indext2[i]] + 1};  
      cc2[indext2[i]] <- cc2[indext2[i]] + c2[i]; 
   }; 
 
   ### calculate Y (n.risk) according to n.event and n.censor 
   for (i in 2:itmax)  
   { 
      y1[i] <- y1[i-1] - d1[i-1] -cc1[i-1];   
      y2[i] <- y2[i-1] - d2[i-1] -cc2[i-1];   
   }; 
 
 
   ### calculate Y=Y1+Y2, d=d1+d2, Y1*(d/Y), d1-Y1*(d/Y)  
   y <- y1 + y2; d <- d1 + d2; cc <- cc1 + cc2;  
 
   ### K-M estimate of survival functions 
   ss1<-rep(1,itmax); ss2<-rep(1,itmax); 
   for (i in 1:itmax) 
   { 
       if(y1[i]!=0) ss1[i]<-(1-d1[i]/y1[i]); 
       if(y2[i]!=0) ss2[i]<-(1-d2[i]/y2[i]); 
   }; 
   S1<-rep(1,itmax); S2<-rep(1,itmax); 
   S1[1]<-ss1[1]; S2[1]<-ss2[1]; 
   phi1<-rep(0,itmax); phi2<-rep(0,itmax); 
   for (i in 2:itmax) 
   { 
       S1[i]<-S1[i-1]*ss1[i]; S2[i]<-S2[i-1]*ss2[i]; 
   } 
    
   ### phi, the survival odds 
   for (i in 1:itmax) 
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   { 
       if(S1[i]!=1)phi1[i]<-S1[i]/(1-S1[i]); 
       if(S2[i]!=1)phi2[i]<-S2[i]/(1-S2[i]); 
   }; 
    
   ### F 
   F1 <- 1-S1; F2 <- 1-S2; 
 
   ### K1 K2 
   K1<-((nt1+nt2)/(nt1*nt2))*y1*y2/y; 
   K2<-y1*y2/nt1/nt2; 
    
   ### set integration interval (overlap region) 
   rr<-rep(0,itmax); 
   for (i in 1:itmax) 
   { 
       if((phi1[i]*phi2[i])!=0)rr[i]<-1; 
   }; 
 
   psi11<-sum(K1*phi1*rr); psi12<-sum(K1*phi2*rr); 
   psi21<-sum(K2*phi1*rr); psi22<-sum(K2*phi2*rr); 
   dataset<-data.frame(t,dt,y,d,cc,y1,d1,cc1,y2,d2,cc2,S1,S2,rr); 
 
   ###gamma 
   GAMMA<-psi11*psi22-psi12*psi21; 
 
   ### vij calculation 
   ### initial values of vij 
   v11 <- 0; v12 <- 0; v21 <- 0; v22 <- 0; 
   for (kt in 1:itmax) 
   { 
      for (ks in 1:itmax) 
      {  
         nu<-min(ks,kt); 
         dbyy1 <- 0; dbyy2 <- 0; 
         temp1 <- 0; temp2 <- 0;  
         for (ku in 1:nu) 
         { 
            if(y1[ku]!=0)dbyy1 <- dbyy1 + d1[ku]/(y1[ku]*y1[ku]); 
            if(y2[ku]!=0)dbyy2 <- dbyy2 + d2[ku]/(y2[ku]*y2[ku]); 
         }; 
         if((F1[ks]!=0)&(F1[kt]!=0))temp1 <- nt1*dbyy1/(F1[ks]*F1[kt]); 
         if((F2[ks]!=0)&(F2[kt]!=0))temp2 <- nt2*dbyy2/(F2[ks]*F2[kt]); 
         tmp<-phi1[ks]*phi2[kt]*(temp1+temp2); 
         v11 <- v11 + K1[kt]*K1[ks]*tmp; 
         v12 <- v12 + K1[kt]*K2[ks]*tmp; 
         v21 <- v21 + K2[kt]*K1[ks]*tmp; 
         v22 <- v22 + K2[kt]*K2[ks]*tmp; 
      }; # end of ks loop 
   }; # end of kt loop 
 
   ### variance 
   var2<-psi22*psi21*v11-psi22*psi11*v12-psi12*psi21*v21+psi12*psi11*v22; 
 
   ### statistics 
   zs<-0; 
   if(var2!=0)zs<-sqrt(nt1+nt2)*GAMMA/sqrt(var2); 
 
   ### p-value 
   if(zs > 0) (p.zs[it] <- 2*(1-pnorm(zs))); 
   if(zs < 0) (p.zs[it] <- 2*pnorm(zs)); 
   if(p.zs[it] < siglvl5) (p.sig5[it]<-1); 
   if(p.zs[it] < siglvl2) (p.sig2[it]<-1); 
   clevel<-clevel+(sum(c1)+sum(c2))/(nt1+nt2); 
}; # end of main loop 
 
# print error if crash 
if(it<n.iter){ 
   print('it < n.iter');it; 
   dataset;dataset1; 
   GAMMA; var2; v11; v12; v21; v22; 
   psi11; psi12; psi21; psi22; 
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}; 
 
### average p-value 
pave.zs<-sum(p.zs)/n.iter; 
 
### power 
power2<-sum(p.sig2)/n.iter; 
power5<-sum(p.sig5)/n.iter; 
pave.zs;power2;power5; 
 
### check censoring level 
clevel/n.iter; 
 
### following is only for single step run 
#if(zs>0)p<-2*(1-pnorm(zs)); 
#if(zs<=0)p<-2*pnorm(zs); 
#zs;p; 
#time<-c(0,t); SS1<-c(1,S1); SS2<-c(1,S2); 
#plot(time,SS1,"S") 
#lines(time,SS2,"S","red") 
# censoring level 
#sum(c1)/nt1; 
#sum(c2)/nt2; 

 
 
Program 2.2: Test the proportional odds assumption using extended method 
 
### Simulation with nonproportional odds data 
# log-logistic distribution survival data  
# parametric weight function is used 
 
### set parameter xi and beta 
xi <- 1;   # constant, mean 
beta <- 1;   # parameter 
rbeta <- 1.0/beta;  # rbeta=1/beta 
censorlvl <- 0.1  # censoring level 
if(censorlvl==0.1){ 
   t0<-2; tm<-10; 
} 
if(censorlvl==0.3){ 
   t0<-0.2; tm<-5; 
} 
 
### number of simulations, number of data point in each group  
n.iter <- 1000;  # number of simulations 
nt1 <- 50; nt2 <- 60; # number of data points in each group 
siglvl2 <- 0.02; siglvl5 <- 0.05; 
rho<-nt1/(nt1+nt2); 
 
### set the groups of t  
itmax <- nt1+nt2;  # number of time intervals 
 
### set initial values of the p-value and power for each simulation 
p.zs<-rep(0,n.iter); # array for storing p values 
p.sig2<-rep(0,n.iter); # array for storing power 
p.sig5<-rep(0,n.iter); 
clevel<-0; 
 
### main loop 
for (it in 1:n.iter) 
{ 
   ### generate survival data following Weibull distn 
   u1 <- sort(runif(nt1));      #sorted uniform random data 
   t1 <- xi/(1/u1-1);    #convert into survival time 
   u2 <- sort(runif(nt2)); 
   t3 <- xi/(1/u2-1); 
   t2 <- (xi^(1-rbeta))*(t3^rbeta); 
 
   ### set censored data randomly,c1[i], c2[i] =1 if censored 

 110



   c1 <- rep(0,nt1); c2 <- rep(0,nt2); 
   if(censorlvl>0){ 
      tc1 <- (runif(nt1,min=t0,max=tm));  #if need sorting? 
      tc2 <- (runif(nt2,min=t0,max=tm)); 
      for(i in 1:nt1)  
      { 
         if (t1[i] > tc1[i]) c1[i] <- 1;  
      }; 
      for(i in 1:nt2)  
      { 
         if (t2[i] > tc2[i]) c2[i] <- 1;  
      }; 
   }; 
 
   ### survival time table 
   tb<-sort(c(t1,t2),index.return=TRUE);  
   t<-tb$x; tindex<-tb$ix; 
 
   ### estimate of survival functions 
   phi1<-rep(0,itmax); phi2<-rep(0,itmax); 
   S1<-rep(1,itmax); S2<-rep(1,itmax); 
   txi<-t/xi; 
    
   for (i in 2:itmax) 
   { 
      if(tindex[i]<=nt1){ 
         index1<-tindex[i]; 
         if(c1[index1]==0){S1[i]<-1.0/(1+txi[i])}; 
         if(c1[index1]==1){S1[i]<-S1[i-1]}; 
         S2[i]<-S2[i-1]; 
      } 
      if(tindex[i]>nt1) { 
         index2<-tindex[i]-nt1; 
         if(c2[index2]==0){S2[i]<-1.0/(1+(txi[i]^beta))}; 
         if(c2[index2]==1){S2[i]<-S2[i-1]}; 
         S1[i]<-S1[i-1]; 
      } 
   } 
 
   ### odds, phi 
   for (i in 1:itmax) 
   { 
      if(S1[i]<=0.999)phi1[i]<-S1[i]/(1-S1[i]); 
      if(S2[i]<=0.999)phi2[i]<-S2[i]/(1-S2[i]); 
   }; 
   dataset11<-data.frame(t,tindex,S1,S2,phi1,phi2) 
 
    
   ### F 
   F1 <- 1-S1; F2 <- 1-S2; 
 
   ### K1 K2 
   k1tmp<-(1+(t/xi)); 
   k2tmp<-(1+((t/xi)^beta)); 
   K2<-1.0/(k1tmp*k2tmp); 
   K1<-1.0/(rho*k2tmp+(1-rho)*k1tmp); 
    
   ### set integration interval (overlap region) 
   rr<-rep(0,itmax); 
   for (i in 1:itmax) 
   { 
      if((phi1[i]*phi2[i])!=0)rr[i]<-1; 
   }; 
 
   psi11<-sum(K1*phi1*rr); psi12<-sum(K1*phi2*rr); 
   psi21<-sum(K2*phi1*rr); psi22<-sum(K2*phi2*rr); 
 
   dataset1<-data.frame(t,S1,S2,F1,F2,phi1,phi2,K1,K2,rr); 
 
   ###gamma 
   GAMMA<-psi11*psi22-psi12*psi21; 
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   ### vij calculation 
   ### initial values of vij 
   v11 <- 0; v12 <- 0; v21 <- 0; v22 <- 0; 
   for (kt in 1:itmax) 
   { 
      for (ks in 1:itmax) 
      {  
         nu<-min(ks,kt); 
         ss1tmp<-S1[nu];ss2tmp<-S2[nu]; 
         if(ss1tmp<0.000001)ss1tmp<-0.000001; 
         if(ss2tmp<0.000001)ss2tmp<-0.000001; 
         temp1 <- 0; temp2 <- 0;  
         if((F1[ks]>=0.01)&(F1[kt]>=0.01)){ 
            temp1 <- (1.0/ss1tmp-1)/(F1[ks]*F1[kt])}; 
         if((F2[ks]>=0.01)&(F2[kt]>=0.01)){ 
            temp2 <- (1.0/ss2tmp-1)/(F2[ks]*F2[kt])}; 
         tmp<-phi1[ks]*phi2[kt]*(temp1+temp2); 
         v11 <- v11 + K1[kt]*K1[ks]*tmp; 
         v12 <- v12 + K1[kt]*K2[ks]*tmp; 
         v21 <- v21 + K2[kt]*K1[ks]*tmp; 
         v22 <- v22 + K2[kt]*K2[ks]*tmp; 
      }; # end of ks loop 
   }; # end of kt loop 
 
   ### variance 
   var2<-psi22*psi21*v11-psi22*psi11*v12-psi12*psi21*v21+psi12*psi11*v22; 
 
   ### statistics 
   zs<-0; 
   if(var2>0)zs<-sqrt(nt1+nt2)*GAMMA/sqrt(var2); 
 
   ### p-value 
   if(zs >= 0) (p.zs[it] <- 2*(1-pnorm(zs))); 
   if(zs < 0) (p.zs[it] <- 2*pnorm(zs)); 
   if(p.zs[it] < siglvl5) (p.sig5[it]<-1); 
   if(p.zs[it] < siglvl2) (p.sig2[it]<-1); 
   clevel<-clevel+(sum(c1)+sum(c2))/(nt1+nt2); 
}; # end of main loop 
 
# print error if crash 
if(it<n.iter){ 
   print('it < n.iter');it; 
   dataset1;dataset11; 
   GAMMA; var2; v11; v12; v21; v22; 
   psi11; psi12; psi21; psi22; 
}; 
 
### average p-value 
pave.zs<-sum(p.zs)/n.iter; 
 
### power 
power2<-sum(p.sig2)/n.iter; 
power5<-sum(p.sig5)/n.iter; 
pave.zs;power2;power5; 
 
### check censoring level 
clevel/n.iter; 
 
### following is only for single step run 
#if(zs>0)p<-2*(1-pnorm(zs)); 
#if(zs<=0)p<-2*pnorm(zs); 
#zs; 
#p; #p-value 
#time<-c(0,t); SS1<-c(1,S1); SS2<-c(1,S2); 
#plot(time,SS1,"S") 
#lines(time,SS2,"S","red") 
# censoring level 
#sum(c1)/nt1; 
#sum(c2)/nt2; 
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Program 2.3: Test the proportional odds assumption using linear regression method 
 
### set parameter xi and beta 
xi <- 1;   # constant, mean 
beta <- 2;   # parameter 
rbeta <- 1.0/beta; # rbeta=1/beta 
censorlvl <- 0.0  # censoring level 
if(censorlvl==0.1){ 
   t0<-2;    tm<-20; 
} 
if(censorlvl==0.3){ 
   t0<-0.2;    tm<-8; 
} 
 
### number of simulations, number of data point in each group  
n.iter <- 50;  # number of simulations 
nt1 <- 50; nt2 <- 60; # number of data points in each group 
siglvl2 <- 0.02; siglvl5 <- 0.05; 
 
### set the groups of t  
itmax <- nt1+nt2;  # number of time intervals 
 
p.zs<-rep(0,n.iter); # array for storing p values 
p.sig2<-rep(0,n.iter); # array for storing power 
p.sig5<-rep(0,n.iter); 
clevel<-0; 
slope<-rep(0,n.iter); 
slope.se<-rep(0,n.iter); 
p.value<-rep(0,n.iter); 
 
### main loop 
for (it in 1:n.iter) 
{ 
   ### generate survival data group one: t1 
   u1 <- sort(runif(nt1));      #sorted uniform random data 
   t1 <- xi/(1/u1-1);    #convert into survival time 
   u2 <- sort(runif(nt2)); 
   t3 <- xi/(1/u2-1); 
   t2 <- (xi^(1-rbeta))*(t3^rbeta); 
 
   c1 <- rep(0,nt1); c2 <- rep(0,nt2); 
   if(censorlvl>0){ 
      tc1 <- (runif(nt1,min=t0,max=tm));  #if need sorting? 
      tc2 <- (runif(nt2,min=t0,max=tm)); 
      for(i in 1:nt1)  
      { 
         if (t1[i] > tc1[i]) c1[i] <- 1;  
      }; 
      for(i in 1:nt2)  
      { 
         if (t2[i] > tc2[i]) c2[i] <- 1;  
      }; 
   }; 
   ### survival time table 
   tb<-sort(c(t1,t2),index.return=TRUE);  
   t<-tb$x; tindex<-tb$ix; 
  
   phi1<-rep(0,itmax); phi2<-rep(0,itmax); 
   S1<-rep(1,itmax); S2<-rep(1,itmax); 
   txi<-t/xi; 
    
   for (i in 2:itmax) 
   { 
       if(tindex[i]<=nt1){ 
           index1<-tindex[i]; 
           if(c1[index1]==0){S1[i]<-1.0/(1+txi[i])}; 
           if(c1[index1]==1){S1[i]<-S1[i-1]}; 
           S2[i]<-S2[i-1]; 
       } 
       if(tindex[i]>nt1) { 
           index2<-tindex[i]-nt1; 
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           if(c2[index2]==0){S2[i]<-1.0/(1+(txi[i]^beta))}; 
           if(c2[index2]==1){S2[i]<-S2[i-1]}; 
           S1[i]<-S1[i-1]; 
       } 
   } 
 
   ### phi, and survival odds ratio (theta) 
   theta <- rep(0,itmax);tt<-rep(0,itmax); 
   jjj <- 0; 
   for (i in 1:itmax) 
   { 
       if(S1[i]<=0.999)phi1[i]<-S1[i]/(1-S1[i]); 
       if(S2[i]<=0.999)phi2[i]<-S2[i]/(1-S2[i]); 
       tmp<-phi1[i]*phi2[i]; 
       if(tmp!=0) { 
          jjj<-jjj+1; 
          tt[jjj]<-t[i]; 
          theta[jjj]<-phi1[i]/phi2[i];} 
   }; 
 
    
   clevel<-clevel+(sum(c1)+sum(c2))/(nt1+nt2); 
   theta1<-theta[1:jjj];ttt<-tt[1:jjj]; 
   logtheta<-log(theta1);logt<-log(ttt); 
   lm.D9<-lm(logtheta~logt); 
   temp<-summary(lm.D9); 
   temp1<-anova(lm.D9); 
   slope[it]<-temp$coefficients[2,1]; 
   slope.se[it]<-temp$coefficients[2,2]; 
   p.value[it]<-temp$coefficients[2,4];  
   if(p.value[it]<siglvl5){p.sig5[it]<-1}; 
   if(p.value[it]<siglvl2){p.sig2[it]<-1}; 
}; 
#censor level 
clevel/n.iter; 
#average p-value 
sum(p.zs)/n.iter; 
# power for 0.05 significance 
sum(p.sig5)/n.iter; 
# power for 0.02 significance 
sum(p.sig2)/n.iter; 
# average slope and its deviation estimated from lm function 
sum(slope)/n.iter; 
sum(slope.se)/n.iter; 
 

 
Program 2.4: FORTRAN programs for testing proportional odds assumption using extended 
method. It is about 177 times faster than the R program for the same simulation task 
 
      program main 
      implicit none 
      integer ntt,nb,nn 
      parameter(ntt=400,nb=5,nn=2) 
      real*8 t1(ntt),t2(ntt),c1(ntt),c2(ntt),y(ntt),d(ntt), 
     &       t(ntt),y1(ntt),y2(ntt),d1(ntt),d2(ntt),c(ntt), 
     &       phi1(ntt),phi2(ntt),tc(ntt),s(ntt),f(ntt), 
     &       ss1(ntt),ss2(ntt),s1(ntt),s2(ntt),f1(ntt),f2(ntt), 
     &       k1(ntt),k2(ntt),b(nb),n1(nn),n2(nn),t10(nb),t30(nb), 
     &       zs, p_sig2,p_sig5,beta,xi,rr,ct,tmax,censor,clvl, 
     &       rbeta,ranmar,v11,v12,v21,v22,psi11,psi12,p2,p5,t0, 
     &       psi21,psi22,var2,gama,tmp,temp1,temp2,dbyy1,dbyy2 
      integer n_iter,nt1,nt2,itmax,i,j,k,iseed,jseed,ks,kt, 
     &        ku,nu,iter,id(ntt),idnull(ntt),ib,jn 
      data n1/50,100/, n2/60,120/, b/1,2,3,4,6/ 
      data t30/510,395,395,395,395/, t10/1550,820,700,680,670/ 
       
      open(1,file='dauxois.res') 
      open(2,file='dauxois.dat') 
      write(*,*)'n_iter=' 
      read(*,*)n_iter 
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      write(*,*)'censor level %' 
      read(*,*)censor 
      xi=150 
      t0=5 
      iseed=18734 
      jseed=23869 
c loop over (nt1, nt2)       
      do jn=1,2 
      nt1=n1(jn) 
      nt2=n2(jn) 
      itmax=nt1+nt2 
c loop over beta 
      do ib=1,5 
      beta=b(ib) 
      rbeta=1./beta 
      if(censor.eq.30)tmax=t30(ib) 
      if(censor.eq.10)tmax=t10(ib) 
       
      call rmarin(iseed,jseed) 
       
      p_sig2=0.0 
      p_sig5=0.0 
      ct=0.0 
c loop over simulation       
      do iter=1,n_iter 
         do i=1,nt1 
            t1(i)=xi/(1./ranmar()-1.) 
         enddo 
         do i=1,nt2 
            t2(i)=xi/((1./ranmar()-1.)**rbeta) 
         enddo 
         do i=1,nt1 
            t(i)=t1(i) 
            id(i)=1 
         enddo 
         do i=nt1+1,itmax 
            t(i)=t2(i-nt1) 
            id(i)=2 
         enddo 
         call shell(itmax,t,id) 
         do i=1,itmax 
            if(censor.gt.0)then 
               tc(i)=t0+(tmax-t0)*ranmar() 
            else 
               tc(i)=0.0 
            endif 
         enddo 
         if(censor.gt.0)call shell(itmax,tc,idnull) 
         do i=1,itmax 
            if(id(i).eq.1)then 
               c2(i)=0.0 
               d2(i)=0.0 
               if(censor.gt.0.and.t(i).gt.tc(i))then 
                  c1(i)=1.0 
                  d1(i)=0.0 
               else 
                  c1(i)=0.0 
                  d1(i)=1.0 
               endif 
            elseif(id(i).eq.2)then 
               c1(i)=0.0 
               d1(i)=0.0 
               if(censor.gt.0.and.t(i).gt.tc(i))then 
                  c2(i)=1.0 
                  d2(i)=0.0 
               else 
                  c2(i)=0.0 
                  d2(i)=1.0 
               endif 
            else 
               write(*,*)'id(i) NE 1 or 2' 
               stop 
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            endif 
         enddo 
         y1(1)=nt1 
         y2(1)=nt2 
         do i=2,itmax 
            y1(i)=y1(i-1)-d1(i-1)-c1(i-1) 
            y2(i)=y2(i-1)-d2(i-1)-c2(i-1) 
         enddo 
         do i=1,itmax 
            y(i)=y1(i)+y2(i) 
            d(i)=d1(i)+d2(i) 
            c(i)=c1(i)+c2(i) 
            ct=ct+c(i) 
            if(y1(i).ne.0)then 
               ss1(i)=1.0-d1(i)/y1(i) 
            else 
               ss1(i)=0.0 
            endif 
            if(y2(i).ne.0)then 
               ss2(i)=1.0-d2(i)/y2(i) 
            else 
               ss2(i)=0.0 
            endif 
         enddo 
         s1(1)=ss1(1) 
         s2(1)=ss2(1) 
         do i=2,itmax 
            s1(i)=s1(i-1)*ss1(i) 
            s2(i)=s2(i-1)*ss2(i) 
         enddo 
         temp1=1.0/(nt1*nt2) 
         temp2=(nt1+nt2)*temp1 
         psi11=0.0 
         psi12=0.0 
         psi21=0.0 
         psi22=0.0 
         if(iter.eq.n_iter)then 
             write(2,*)'EXAMPLE DATA TABLE:' 
             write(2,110)n_iter,beta,nt1,nt2 
             write(2,*)' i        t  id   y  d  c  y1 d1 c1  y2 d2 c2    
     & s1    s2  rr   phi1   phi2   k1   k2' 
         endif 
         do i=1,itmax 
            f1(i)=1.0-s1(i) 
            f2(i)=1.0-s2(i) 
            phi1(i)=0 
            phi2(i)=0 
            if(f1(i).ne.0)phi1(i)=s1(i)/f1(i) 
            if(f2(i).ne.0)phi2(i)=s2(i)/f2(i) 
            tmp=y1(i)*y2(i) 
            k1(i)=temp2*tmp/y(i) 
            k2(i)=temp1*tmp 
            if(phi1(i)*phi2(i).eq.0)then 
               rr=0.0 
            else 
               rr=1.0 
            endif 
            psi11=psi11+k1(i)*phi1(i)*rr 
            psi12=psi12+k1(i)*phi2(i)*rr 
            psi21=psi21+k2(i)*phi1(i)*rr 
            psi22=psi22+k2(i)*phi2(i)*rr 
            if(iter.eq.n_iter)then 
               write(2,100)i,t(i),id(i),y(i),d(i),c(i), 
     &      y1(i),d1(i),c1(i),y2(i),d2(i),c2(i),s1(i),s2(i),rr,phi1(i), 
     &      phi2(i),k1(i),k2(i) 
            endif 
         enddo 
         gama=psi11*psi22-psi12*psi21 
         v11=0.0 
         v12=0.0 
         v21=0.0 
         v22=0.0 
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         do kt=1,itmax 
            do ks=1,itmax 
               if(kt.lt.ks)then 
                  nu=kt 
               else 
                  nu=ks 
               endif 
               dbyy1=0.0 
               dbyy2=0.0 
               temp1=0.0 
               temp2=0.0 
               do ku=1,nu 
                  if(y1(ku).ne.0)dbyy1=dbyy1+d1(ku)/(y1(ku)*y1(ku)) 
                  if(y2(ku).ne.0)dbyy2=dbyy2+d2(ku)/(y2(ku)*y2(ku)) 
               enddo 
               if((f1(ks).ne.0).and.(f1(kt).ne.0)) 
     &         temp1=dbyy1*nt1/(f1(ks)*f1(kt)) 
               if((f2(ks).ne.0).and.(f2(kt).ne.0)) 
     &         temp2=dbyy2*nt2/(f2(ks)*f2(kt)) 
               tmp=phi1(ks)*phi2(kt)*(temp1+temp2) 
               v11=v11+k1(kt)*k1(ks)*tmp 
               v12=v12+k1(kt)*k2(ks)*tmp 
               v21=v21+k2(kt)*k1(ks)*tmp 
               v22=v22+k2(kt)*k2(ks)*tmp 
            enddo 
         enddo 
         var2=psi22*psi21*v11-psi22*psi11*v12 
     &       -psi12*psi21*v21+psi12*psi11*v22 
         if(var2.gt.0)then 
            zs=sqrt(float(nt1+nt2))*gama/sqrt(var2) 
         else 
            zs=0  
         endif 
         if(zs.ge.1.96.or.zs.le.-1.96)p_sig5=p_sig5+1.0 
         if(zs.ge.2.32.or.zs.le.-2.32)p_sig2=p_sig2+1.0 
      enddo 
100   format(i3,f11.3,i2,f5.0,2(f3.0),f4.0,2(f3.0),f4.0, 
     &2(f3.0),2(f6.3),f3.0,2(f7.2),2(f6.2))       
       
      clvl=ct/(float(n_iter)*(nt1+nt2)) 
      p2=p_sig2/float(n_iter) 
      p5=p_sig5/float(n_iter) 
      write(*,110)n_iter,beta,nt1,nt2,clvl,p2,p5 
      write(1,110)n_iter,beta,nt1,nt2,clvl,p2,p5 
110   format('simulation=',i5,' beta=',f3.0,' (nt1,nt2)=',2(i4), 
     & ' censor=',f6.4,' power0.02=',f6.4,' power0.05=',f6.4)       
      enddo 
      enddo 
      end 
       
c   shell method to sort number 
 
      subroutine shell(n,arr,id) 
      parameter (aln2i=1./0.69314718, tiny=1.e-5) 
      dimension id(n) 
      real*8 arr(n) 
      lognb2=int(alog(float(n))*aln2i+tiny) 
      m=n 
      do nn=1,lognb2 
         m=m/2 
         k=n-m 
         do j=1,k 
            i=j 
3           l=i+m 
            if(arr(l).lt.arr(i))then 
               t=arr(i) 
               arr(i)=arr(l) 
               arr(l)=t 
               idt=id(i) 
               id(i)=id(l) 
               id(l)=idt 
               i=i-m 
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               if(i.ge.1)go to 3 
            endif 
         enddo 
      enddo 
      return 
      end 
 
c   random number generator subroutine 
 
      subroutine rmarin(ij,kl) 
      real*8 u(97), c, cd, cm, s, t 
      integer i97, j97, ij, kl 
      integer i, j, k, l, ii, jj, m 
      logical test 
      common /raset1/ u 
      common /raset2/ c, cd, cm 
      common /raset3/ i97, j97 
      common /raset4/ test 
 
      if( ij .lt. 0  .or.  ij .gt. 31328  .or. 
     *  kl .lt. 0  .or.  kl .gt. 30081 ) then 
      print '(a)', ' the first random number seed must have a value 
     *between 0 and 31328' 
       print '(a)',' the second seed must have a value between 0 and 
     *30081' 
      stop 
      endif 
 
      i = mod(ij/177, 177) + 2 
      j = mod(ij    , 177) + 2 
      k = mod(kl/169, 178) + 1 
      l = mod(kl,     169)  
      do 2 ii = 1, 97 
         s = 0.0 
         t = 0.5 
         do 3 jj = 1, 24 
            m = mod(mod(i*j, 179)*k, 179) 
            i = j 
            j = k 
            k = m 
            l = mod(53*l+1, 169) 
            if (mod(l*m, 64) .ge. 32) then 
              s = s + t 
            endif 
            t = 0.5 * t 
3     continue 
         u(ii) = s 
2     continue 
      c = 362436.0 / 16777216.0 
      cd = 7654321.0 / 16777216.0 
      cm = 16777213.0 /16777216.0 
      i97 = 97 
      j97 = 33 
 
      test = .true. 
      return 
      end 
       
c   random number function 
 
      function ranmar() 
      real*8 u(97), c, cd, cm 
      real*8 ranmar, uni 
      integer i97, j97 
      logical test 
      common /raset1/ u 
      common /raset2/ c, cd, cm 
      common /raset3/ i97, j97 
      common /raset4/ test 
    
      if( .not. test ) then 
      print '(a)',' call the init routine (rmarin) before calling  
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     * ranmar'   
      stop 
      endif 
 
      uni = u(i97) - u(j97) 
      if( uni .lt. 0.0 ) uni = uni + 1.0 
      u(i97) = uni 
      i97 = i97 - 1 
      if(i97 .eq. 0) i97 = 97 
      j97 = j97 - 1 
      if(j97 .eq. 0) j97 = 97 
      c = c - cd 
      if( c .lt. 0.0 ) c = c + cm 
      uni = uni - c 
      if( uni .lt. 0.0 ) uni = uni + 1.0 
      ranmar = uni 
 
      return 
      end 

 
Program 2.5: R programs for estimating the parameters from real data using MLE method, the 
log-logistic distribution is assumed for the real data 
 
 
# Estimate parameter (xi, beta) using MLE 
# Assume survival data follow log-logistic distribution  
# with nonproportional hazards 
 
# read in real data 
dd<-read.table("d:xuqing/phdthesis/qingb14.txt", header=TRUE, sep=",") 
# dd$group; #group 1 placebo, group 2 tamoxifen group 
itmax<-2817; 
time.temp<-sort(dd$time,index.return=TRUE) 
t<-time.temp$x; tindex<-time.temp$ix; 
g<-rep(0,itmax); c<-g; e<-c; 
for (i in 1:itmax) 
{  
   ii<-tindex[i]; 
   c[i]<-dd$indi.events[ii]; 
   g[i]<-dd$group[ii]; 
   e[i]<-dd$events[ii]; 
} 
# number of events 
r<-sum(c); 
# MLE functions Eq. (4.35) and (4.36) 
fff<-function(p){ 
   tbeta<-t^(p[1]*(g-1)); #p[1]=beta, p[2]=xi 
   aa<-(c+1)*tbeta; 
   bb<-p[2]^p[1]+tbeta; 
   cc<-aa/bb; 
   dd<-cc*log(t); 
   ee<-c*log(t); 
   tst<-(r-sum(cc))^2+(r/p[1]+sum(ee)-sum(dd))^2; 
   tst; 
} 
# solve the nonlinear equations to get beta and xi 
res<-nlm(fff,c(1,2)) #initial value of beta=1, xi=2 
beta.hat<-res$estimate[1]; #MLE beta.hat 
xi.hat<-res$estimate[2]; #MLE xi.hat 
rmin<-res$minimum;  #final fff value 
beta.hat; xi.hat; 
 

Program 2.6: R programs for testing the proportional odds assumption using Dauxois-Kirmani 
method for real data, the log-logistic distribution is assumed for the real data 
 
# read in real data 
 
dd<-read.table("d:/xuqing/phdthesis/qingb14.txt", header=TRUE, sep=",") 
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# dd$group; #group 1 placebo, group 2 tamoxifen group 
itmax<-2817; 
time.temp<-sort(dd$time,index.return=TRUE) 
t<-time.temp$x; tindex<-time.temp$ix; 
g<-rep(0,itmax); c<-g; e<-c; 
for (i in 1:itmax) 
{  
   ii<-tindex[i]; 
   c[i]<-dd$indi.events[ii]; 
   g[i]<-dd$group[ii]; 
   e[i]<-dd$events[ii]; 
} 
newdata<-data.frame(g,e,t,c,tindex); 
#newdata; 
y1<-0; y2<-0; c1<-0; c2<-0; 
for (i in 1:itmax) 
{ 
   if(g[i]==1) 
   { 
      y1<-y1+1; 
      c1<-c1+c[i]; 
   } 
   if(g[i]==2) 
   { 
      y2<-y2+1; 
      c2<-c2+c[i]; 
   } 
} 
# number of objects in group 1 
nt1<-y1; 
# number of objects in group 2 
nt2<-y2; 
# observed events in group 1 
c1; 
# observed events in group 2 
c2; 
sum(c); 
 
S1<-rep(1,itmax);S2<-S1;yy1<-rep(y1,itmax);yy2<-rep(y2,itmax); 
d1<-rep(0,itmax);d2<-d1; 
if(g[1]==1){ 
   y1<-y1-1; 
   if(c[1]==1){d1[1]<-1} 
} 
if(g[1]==2){ 
   y2<-y2-1; 
   if(c[1]==1){d2[1]<-1} 
} 
for (i in 2:itmax) 
{    
   if(g[i]==1) 
   {   
      yy1[i]<-y1; 
      yy2[i]<-yy2[i-1]; 
      S2[i]<-S2[i-1]; 
      if(c[i]==1) { 
         S1[i]<-S1[i-1]*(1-1/y1); 
         d1[i]<-1; 
      } 
      if(c[i]==0) {S1[i]<-S1[i-1];} 
      y1<-y1-1; 
   } 
   if(g[i]==2) 
   {   
      yy2[i]<-y2; 
      yy1[i]<-yy1[i-1]; 
      S1[i]<-S1[i-1]; 
      if(c[i]==1) { 
         S2[i]<-S2[i-1]*(1-1/y2); 
         d2[i]<-1; 
      } 
      if(c[i]==0) {S2[i]<-S2[i-1];} 
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      y2<-y2-1; 
   } 
} 
 
data1<-data.frame(t,yy1,yy2,d1,d2,S1,S2,c); 
#data1; 
 
yy<-yy1+yy2; 
phi1<-rep(0,itmax); phi2<-rep(0,itmax); 
 
### phi, the survival odds 
for (i in 1:itmax) 
{ 
    if(S1[i]!=1)phi1[i]<-S1[i]/(1-S1[i]); 
    if(S2[i]!=1)phi2[i]<-S2[i]/(1-S2[i]); 
}; 
 
### F 
F1 <- 1-S1; F2 <- 1-S2; 
 
### K1 K2 
K1<-((nt1+nt2)/(nt1*nt2))*yy1*yy2/yy; 
K2<-yy1*yy2/nt1/nt2; 
 
### set integration interval (overlap region) 
rr<-rep(0,itmax); 
for (i in 1:itmax) 
{ 
    if((phi1[i]*phi2[i])!=0)rr[i]<-1; 
}; 
 
psi11<-sum(K1*phi1*rr); psi12<-sum(K1*phi2*rr); 
psi21<-sum(K2*phi1*rr); psi22<-sum(K2*phi2*rr); 
dataset<-data.frame(t,yy,yy1,yy2,S1,S2,rr); 
 
###gamma 
GAMMA<-psi11*psi22-psi12*psi21; 
 
### vij calculation 
### initial values of vij 
v11 <- 0; v12 <- 0; v21 <- 0; v22 <- 0; 
for (kt in 1:itmax) 
{ 
   for (ks in 1:itmax) 
   {  
      nu<-min(ks,kt); 
      dbyy1 <- 0; dbyy2 <- 0; 
      temp1 <- 0; temp2 <- 0;  
      for (ku in 1:nu) 
      { 
         if(yy1[ku]!=0)dbyy1 <- dbyy1 + d1[ku]/(yy1[ku]*yy1[ku]); 
         if(yy2[ku]!=0)dbyy2 <- dbyy2 + d2[ku]/(yy2[ku]*yy2[ku]); 
      }; 
      if((F1[ks]!=0)&(F1[kt]!=0))temp1 <- nt1*dbyy1/(F1[ks]*F1[kt]); 
      if((F2[ks]!=0)&(F2[kt]!=0))temp2 <- nt2*dbyy2/(F2[ks]*F2[kt]); 
      tmp<-phi1[ks]*phi2[kt]*(temp1+temp2); 
      v11 <- v11 + K1[kt]*K1[ks]*tmp; 
      v12 <- v12 + K1[kt]*K2[ks]*tmp; 
      v21 <- v21 + K2[kt]*K1[ks]*tmp; 
      v22 <- v22 + K2[kt]*K2[ks]*tmp; 
   }; # end of ks loop 
}; # end of kt loop 
 
### variance 
var2<-psi22*psi21*v11-psi22*psi11*v12-psi12*psi21*v21+psi12*psi11*v22; 
 
### statistics 
zs<-0; 
if(var2!=0)zs<-sqrt(nt1+nt2)*GAMMA/sqrt(var2); 
 
### p-value 
if(zs > 0) (p.zs <- 2*(1-pnorm(zs))); 
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if(zs < 0) (p.zs <- 2*pnorm(zs)); 
 
p.zs; 
 
 

Program 2.7: R programs for testing the proportional odds assumption using the extended 
method for real data, the log-logistic distribution is assumed for the real data 
 
# read in real data 
 
dd<-read.table("d:/xuqing/phdthesis/qingb14.txt", header=TRUE, sep=",") 
 
# dd$group; #group 1 placebo, group 2 tamoxifen group 
itmax<-2817; 
time.temp<-sort(dd$time,index.return=TRUE) 
t<-time.temp$x; tindex<-time.temp$ix; 
g<-rep(0,itmax); c<-g; e<-c; 
for (i in 1:itmax) 
{  
   ii<-tindex[i]; 
   c[i]<-dd$indi.events[ii]; 
   g[i]<-dd$group[ii]; 
   e[i]<-dd$events[ii]; 
} 
newdata<-data.frame(g,e,t,c,tindex); 
#newdata; 
y1<-0; y2<-0; c1<-0; c2<-0; 
for (i in 1:itmax) 
{ 
   if(g[i]==1) 
   { 
      y1<-y1+1; 
      c1<-c1+c[i]; 
   } 
   if(g[i]==2) 
   { 
      y2<-y2+1; 
      c2<-c2+c[i]; 
   } 
} 
# number of objects in group 1 
y1; 
# number of objects in group 2 
y2; 
# observed events in group 1 
c1; 
# observed events in group 2 
c2; 
sum(c); 
xi<-1.2927; 
beta<-6.1214; 
rho<-y1/(y1+y2); 
 
### estimate of survival functions 
phi1<-rep(0,itmax); phi2<-rep(0,itmax); 
S1<-rep(1,itmax); S2<-rep(1,itmax); 
txi<-t/xi; 
 
for (i in 2:itmax) 
{ 
   if(g[i]==1){ 
      if(c[i]==1){S1[i]<-1.0/(1+txi[i])}; 
      if(c[i]==0){S1[i]<-S1[i-1]}; 
      S2[i]<-S2[i-1]; 
   } 
   if(g[i]==2){ 
      if(c[i]==1){S2[i]<-1.0/(1+(txi[i]^beta))}; 
      if(c[i]==0){S2[i]<-S2[i-1]}; 
      S1[i]<-S1[i-1]; 
   } 
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} 
 
### odds, phi 
for (i in 1:itmax) 
{ 
   if(S1[i]!=1)phi1[i]<-S1[i]/(1-S1[i]); 
   if(S2[i]!=1)phi2[i]<-S2[i]/(1-S2[i]); 
}; 
dataset11<-data.frame(t,tindex,S1,S2,phi1,phi2) 
 
 
### F 
F1 <- 1-S1; F2 <- 1-S2; 
 
### K1 K2 
k1tmp<-(1+(t/xi)); 
k2tmp<-(1+((t/xi)^beta)); 
K2<-1.0/(k1tmp*k2tmp); 
K1<-1.0/(rho*k2tmp+(1-rho)*k1tmp); 
 
### set integration interval (overlap region) 
rr<-rep(0,itmax); 
for (i in 1:itmax) 
{ 
   if((phi1[i]*phi2[i])!=0)rr[i]<-1; 
}; 
 
psi11<-sum(K1*phi1*rr); psi12<-sum(K1*phi2*rr); 
psi21<-sum(K2*phi1*rr); psi22<-sum(K2*phi2*rr); 
 
dataset1<-data.frame(t,S1,S2,F1,F2,phi1,phi2,K1,K2,rr); 
 
###gamma 
GAMMA<-psi11*psi22-psi12*psi21; 
 
### vij calculation 
### initial values of vij 
v11 <- 0; v12 <- 0; v21 <- 0; v22 <- 0; 
for (kt in 1:itmax) 
{ 
   for (ks in 1:itmax) 
   {  
      nu<-min(ks,kt); 
      ss1tmp<-S1[nu];ss2tmp<-S2[nu]; 
      #if(ss1tmp<0.000001)ss1tmp<-0.000001; 
      #if(ss2tmp<0.000001)ss2tmp<-0.000001; 
      temp1 <- 0; temp2 <- 0;  
      if((F1[ks]!=0)&(F1[kt]!=0)){ 
         temp1 <- (1.0/ss1tmp-1)/(F1[ks]*F1[kt])}; 
      if((F2[ks]!=0)&(F2[kt]!=0)){ 
         temp2 <- (1.0/ss2tmp-1)/(F2[ks]*F2[kt])}; 
      tmp<-phi1[ks]*phi2[kt]*(temp1+temp2); 
      v11 <- v11 + K1[kt]*K1[ks]*tmp; 
      v12 <- v12 + K1[kt]*K2[ks]*tmp; 
      v21 <- v21 + K2[kt]*K1[ks]*tmp; 
      v22 <- v22 + K2[kt]*K2[ks]*tmp; 
   }; # end of ks loop 
}; # end of kt loop 
 
### variance 
var2<-psi22*psi21*v11-psi22*psi11*v12-psi12*psi21*v21+psi12*psi11*v22; 
 
### statistics 
zs<-0; 
if(var2>0)zs<-sqrt(itmax)*GAMMA/sqrt(var2); 
 
### p-value 
if(zs >= 0) (p.zs <- 2*(1-pnorm(zs))); 
if(zs < 0) (p.zs <- 2*pnorm(zs)); 
 
p.zs; 
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