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Systemic lupus erythematosus (SLE) is a major public health problem in the U.S. Cardiovascular 

disease (CVD) risk increases significantly in SLE patients, resulting in serious morbidity and 

mortality.  Accelerated atherosclerosis and markedly higher prevalence of CVD risk factors 

(intermediate phenotypes) are thought to directly contribute to these consequences.  Given the 

significant mortality and morbidity associated with SLE and high prevalence of CVD in SLE, 

identifying genetic variation associated with both SLE risk and intermediate phenotypes of CVD 

is of significant importance. 

C-reactive protein (CRP) is a sensitive marker of inflammation.  Increased CRP levels 

have been found to be associated with cardiovascular events in a large number of healthy 

populations and may contribute to atherosclerosis.  The gene coding for CRP is located on 

chromosome 1q23.2, which falls within a linkage region thought to harbor a systemic lupus 

erythematosus (SLE) susceptibility gene. Moreover, two single nucleotide polymorphisms 

(SNPs) in the CRP gene have recently been shown to be associated with CRP levels and/or SLE 

risk in a British family-based cohort.  This study was aimed to assess the genetic association 

between five CRP tagSNPs with SLE risk and intermediate phenotypes of CVD. 

The association between CRP and SLE risk, assessed in two independently-ascertained 

SLE cohorts, was tested in a case-control Caucasian sample of 337 SLE and 448 healthy controls 
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from Pittsburgh and a family-based sample of 203 Caucasian SLE trios from Los Angeles.  

While none of the SNPs were found to be associated with SLE risk individually, global 

haplotype statistics revealed significant association (p < 0.000001) in the Pittsburgh cohort 

whereas all those haplotypes containing two potentially functional SNPs (-390 and +90) showed 

association with SLE risk in the Los Angeles cohort (p = 0.01 – 0.06).  The association study 

between CRP and intermediate phenotypes of CVD and stroke risk was tested in 237 of the SLE 

women from the Pittsburgh cohort.  Four of the five tagSNPs (-861, -390, +90, and +838) 

examined revealed significant association with risk of intermediate phenotypes of CVD (p < 

0.001 to 0.04).   

In summary, our data did not confirm previously observed individual SNP association 

with SLE, but suggested that unique haplotype combinations in the CRP gene may modify the 

risk of developing SLE, and that variation in CRP may contribute to the accelerated 

atherosclerosis in SLE. 
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1.0  INTRODUCTION CHAPTER 

1.1 SYSTEMIC LUPUS ERYTHEMATOSUS (SLE) 

Lupus (Latin for wolf) was first described by the thirteenth century physician Rogerius who 

noted the erosive facial lesions were reminiscent of a wolf's bite (1).  The shape of the typical 

mid-face lupus rash was then allegorized again by von Hebra in 1845 in a published illustration 

to a butterfly spreading its red wings (Gr. erythema, flash), while the lesions now referred to as 

discoid lupus were described in 1833 by Cazenave under the term erythema centrifugum (2).  

The systemic nature of lupus was first observed in 1872 by Kapos, whom noted “…even 

dangerous constitutional symptoms may be intimately associated with the process in question 

(facial rash), and that death may result from conditions which must be considered to arise from 

the local malady” (3). 

The existence of a disseminated or systemic form of lupus was firmly established by 

Osler in 1904 (4).  This important establishment of a disseminated form of lupus allowed 

extensive pathologic studies of today’s SLE, resulting in the milestone discoveries, including the 

lupus erythematosus (LE) cell (a neutrophil or macrophage that has phagocytized the denatured 

nuclear material of an injured cell) in 1948 (5),  the presence of antinuclear antibodies (6), and 

antibodies to deoxyribonucleic acid (DNA) (7) in SLE patients.   
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1.1.1 Epidemiology and clinical features 

SLE is the prototypic systemic inflammatory autoimmune disease affecting predominantly 

younger premenopausal women at onset.  Despite significant medical advances made in the past 

decade, SLE continues to cause devastating disability, morbidity and mortality in the more than 

1.5 million Americans affected by this chronic disease. 

The complex nature of SLE is well known for its heterogeneous and unpredictable 

phenotypes, therefore this disease model lacks “clean” epidemiological features across the 

general population to easily define and capture SLE cases.  Using the 1982 revised American 

College of Rheumatology (ACR) criteria to define SLE cases (8), epidemiological studies found 

the prevalence of SLE in the population to be about 54 cases per 100,000 in white females, and 

40 to 50 per 100,000 in the general population (9).  Improved detection of milder disease in the 

past decades resulted in tripling of the incidence in the last 40 years to 5.56 per 100,000 (10).  A 

recent study in Allegheny County, Pennsylvania found the 5-year incidence rate to be 3.4 per 

100,000 (11). 

SLE is a complex, chronic, multi-system autoimmune disease involving both humoral 

and cellular aspects of the innate and acquired immune systems.  While disease states can be as 

simple as troublesome alopecia, they can also manifest into life-threatening kidney and brain 

damage.  Due to the improved diagnosis and treatment of the disease, survival in SLE has 

improved dramatically from 50% after 4 years in 1954 to 97% after 5 years and 90% after 10 

years (9).  The extended lifespan of SLE patients allows the observation of a bimodal mortality 

pattern.  Patients who die early in the course of their disease likely expire due to active lupus 

and/or infection, while those who die late in the course of the disease often expire from strikingly 

high incidence of myocardial infarction due to atherosclerotic heart disease (12). 
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SLE is known to impact social productivity because sixty-five percent of patients have 

onset between the ages of 16 and 55 (13).  SLE disproportionately affect minorities, the 

prevalence of SLE is higher among Asians, Afro-Americans, Afro-Caribbean, Hispanic 

Americans, than Caucasians, and the disease activity appears to be most severe and difficult to 

treat in African American women (14).  Young African American females are at the highest risk 

to develop SLE, which was reported to have a prevalence of 1 in 245 black women age 15 to 64 

in a California metropolitan area (15).  SLE has the most striking impact on females with an 

incident rate of 9 to 1 over males.  In child bearing age SLE disproportionately affects women up 

to 15 times more than men.  Even in pediatric SLE, the female-to-male ratio has been reported to 

be 3:1.  Taking these data together, it is clear that hormones play a significant role in the SLE 

etiology (14). 

Predicting the characteristics of the clinical phase of SLE is a difficult task for this 

autoimmune disease.  SLE not only can affect any system and organ of the patient, the 

heterogeneous clinical presentations almost always differ from patient to patient, as well as differ 

within the same patient from one phase of disease progression to another in her/his lifetime.  

Therefore, the diagnosis and management of SLE has long been a challenge for health care 

providers.  To have a confirmed diagnosis of SLE, patients must have at least 4 of the 11 criteria 

given in Table 1.1 at some point in time.  Since patients go in and out of remission for different 

“organ involvement” and/or serological readings, it is often difficult for patients with milder 

cases of the disease to recall correctly all the symptoms that have occurred.  Therefore it is likely 

for physicians to miss the cases with milder symptoms at onset, which might develop into full-

blown disease eventually.  In 1997, the Diagnostic and Therapeutic Criteria Committee of the 
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ACR reviewed the 1982 criteria and recommended revisions to the 10th criterion of 

immunologic disorders based on committee consensus (16): 

1. Delete item 10(a) (Positive LE cell preparation), and 

2. Change item 10(d) to “Positive finding of antiphospholipid antibodies based on (1) an 

abnormal serum level of IgG or IgM anticardiolipin antibodies, (2) a positive test result for lupus 

anticoagulant using a standard method, or (3) a false-positive serologic test for syphilis known to 

be positive for at least 6 months and confirmed by Treponema pallidum immobilization or 

fluorescent treponemal antibody absorption tests.” (Table 1.1). 
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Table 1.1.  The 1982 American College of Rheumatology Criteria for Classification of SLE 

Criterion Definition 

1. Malar rash Fixed erythema, flat or raised, over the malar eminences, tending to 
spare the nasolabial folds 

2. Discoid rash Erythematous raised patches with adherent keratotic scaling and 
follicular plugging: atrophic scarring may occur in older lesions 

3. Photosensitivity Skin rash as a result of unusual reaction to sunlight, by patient 
history or physician observation 

4. Oral ulcers Oral or nasopharyngeal ulceration, usually painless, observed by a 
physician 

5. Arthritis Nonerosive arthritis involving ≥ 2 peripheral joints, characterized by 
tenderness, swelling, or effusion 

6. Serositis 
(A) Pleuritis: convincing history of pleuritic pain or rub heard by a 
physician or evidence of pleural effusion, or (B) Pericarditis: 
documented by ECG or rub or evidence of pericardial effusion 

7. Renal disorder 
(A) Persistent proteinuria >0.5 g/d or >3+ if quantitation not 
performed, or (B) Cellular casts: may be red blood cell, hemoglobin, 
granular, tubular, or mixed 

8. Neurologic disorder 

(A) Seizures: in the absence of offending drugs or known metabolic 
derangements (eg, uremia, ketoacidosis, or electrolyte imbalance), or 
(B) Psychosis: in the absence of offending drugs or known metabolic 
derangements (eg, uremia, ketoacidosis, or electrolyte imbalance) 

9. Hematologic disorder 

(A) Hemolytic anemia: with reticulocytosis, or (B) Leukopenia: 
<4000/mm3 total on ≥2 occasions, or (C) Lymphopenia: <1500/mm3

on ≥2 occasions, or (D) Thrombocytopenia: <100,000/mm3 in the 
absence of offending drugs 

10. Immunologic disorder 

(A) Positive LE cell preparation, or (B) Anti-DNA: antibody to 
native DNA in abnormal titer, or (C) Anti-Sm: presence of antibody 
to Sm nuclear antigen, or (D) False positive serologic test for 
syphilis known to be positive for at least 6 months and confirmed by 
T pallidum immobilization or fluorescent treponemal antibody 
absorption test 

11. Antinuclear antibody 
An abnormal titer of antinuclear antibody by immunofluorescence or 
an equivalent assay at any point in time and in the absence of drugs 
known to be associated with “drug-induced lupus” syndrome 

The proposed classification is based on 11 criteria. For the purpose of identifying patients in clinical studies, a 
person shall be said to have systemic lupus erythematosus if any 4 or more of the 11 criteria are present, serially or 
simultaneously, during any interval of observation. 

 

SLE disease manifestation can be categorized in two phases, active phase and chronic 

damage phase.  Active phase of clinical symptoms often requires intense immune-suppressive 

agents to quickly “slow-down” the disease activity to prevent chronic organ damage that is often 
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irreversible and sometimes fatal.  Preventing damage from occurring is the most important goal 

in clinical practice.  The significant risk factors physicians aim to reduce in order to prevent 

morbidity and mortality include:  infection, hypertension, diabetes, osteoporosis, and 

atherosclerosis.  It is therefore important to manage disease activity in SLE patients using several 

serological biomarkers listed in Table 1.2, in addition to routine physical examinations.  These 

serological biomarkers helped physicians to identify asymptomatic patients who are at increased 

risk of flaring; hence treatment can be administered in a timely fashion to prevent the severe 

irreversible damage from occurring. 

Table 1.2.  The Biomarkers used to assess SLE disease activity, adapted from (17)
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1.1.2 Etiopathogenesis 

1.1.2.1 A Pathway of Gene → Environment → Abnormal Immune Response 

Despite the significant advancement made in immunobiology, the etiopathogenesis of SLE is 

still not yet completely understood.  Familial aggregation of lupus and disease concordance rates 

in monozygotic twins suggest the involvement of both genetic and environmental factors in the 

predisposition to lupus (18).  It is believed that gene products are influenced by environmental 

stimuli and that most genes only have deleterious effects in the presence of particular 

environmental stimulus (19, 20).  The resulting abnormal immune response which leads to 

disease phenotype are well known for certain distinguished immunological and cellular 

characteristics:  over production of autoantibodies, antigens that autoantibodies direct against, 

exaggerated B cell responses, altered activation of T-cells resulting in increased apoptosis, and 

cytokine-related innate immunity dysfunctions (17, 21). 

1.1.2.2 Autoantibodies – Hallmark of SLE 

SLE is characterized by an overproduction of autoantibodies.  Recent data have showed the 

presence of over 100 autoantibodies in patients with SLE (22), many of which have been 

associated with disease activity and are being used as biomarkers (Table 1.2).  More surprisingly, 

it is estimated that 88% of SLE patients have serological evidence of some types of 

autoantibodies before the diagnosis of their disease (23).  Significant autoantibodies commonly 

seen in SLE patients include dsDNA, ANA, Ro (SSA), La (SSB), and 

antiphospholipidantibodies (aPL).  SLE sub-phenotypes that were found to be associated with 

specific antibodies are illustrated in Figure 1.1.  Antigens in SLE patients are material of 

DNA/RNA plus protein, which include chromatin components such as dsDNDA, nucleosomes 
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and histones.  It is believed that these antigens are “mistaken” by immune system of SLS patients 

as a “foreign target”, therefore a wave of autoantibodies are produced to direct against these 

antigens (17).  Recently, Katzav et al. (24) injected human anti-ribosomal P antibodies extracted 

from an SLE patient into healthy female mice.  These mice were twice as likely as the control 

mice to show typical signs of depressive cognitive and motor functions related to lupus, 

suggesting the mechanistic role of anti-ribosomal P antibodies on central nervous system (CNS) 

involvement of lupus, one of the most serious organ involvement in patients. 

 

 

Figure 1.1.  Sample autoantibodies in SLE
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1.1.2.3 B-cells and T-cells in SLE 

The contributions of B- and T-cell abnormalities to SLE are well established (25).  It is believed 

that lymphoid architecture has a key role in the development of the humoral immune response.  

Since variations in program death 1 (PD1) and protein tyrosine phosphatase non-receptor type 22 

(PTPN22) genes were found to be associated with SLE risk and that they are both involved in 

lymphocyte activation, the hyperactivity of B-cell may be a key mechanism for the disease 

development.  Altered T-cell activation thresholds and accompanied increased co-stimulations 

are found in SLE patients.  These abnormal activations of T-cells may contribute to defects both 

in helper T-cell functions and the T regulatory cell (Treg) mechanism in response to self-antigen 

presentation (26).  Better understandings of the B- and T-cell and the immune system in SLE 

have helped scientist to develop more specific biologics therapies to treat SLE.  Biologic 

therapies are a new class of drugs produced through genetic manipulation. They include standard 

single molecule drugs, as well as antibodies and vaccines.  Examples of these biologics for 

treating SLE include B-cell depletion agents (Lymphostat-B, Rituximab), agent inhibiting T–B 

interaction (IDEC-131), blockade of cytokines (anti-IL-10 antibodies), tolerance induction to 

DNA and to Ig-peptides and peptide therapy (Riquent) (27), and gene therapy (28). 

1.1.2.4 Cytokines 

Cytokines profile in SLE patients is believed to consist of both increased pro-inflammatory 

cytokines (IFN-α, IFN-γ, IL-4, IL-6, and IL-10) and decreased anti-inflammatory cytokines 

(TGFb and IL-2).  The pathogenic role of type I interferons (IFN) in SLE has been well 

established in both human clinical studies and murine models (29-35).  Evidence of association 

between IFN and SLE include:  observed elevated levels of IFN in SLE sera (36), IFN-α levels 
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correlating with SLE disease activity and organ involvement (37, 38), increased expression of 

IFN-α-induced genes in SLE (IFN signature) (39-41), induction of lupus-associated 

autoantibodies and clinical lupus upon IFN-α therapy for some malignancies (42, 43), and 

differential expression of a IFN-induced gene in lupus and control mice (44).  IFN-α is perhaps 

the “boss cytokine” and many groups are working on understanding the etiology of SLE based 

interferon pathways in order to develop more therapeutic agents (45, 46). 

 

 

Figure 1.2.  Contributions of interferon-α (IFNα) to autoimmunity in systemic lupus erythematosus, 

adapted from (40)

1.1.2.5 Environmental Risk Factors and SLE 

Environmental risk factors for SLE may include infectious agents (20, 47, 48), environmental 

pollutants and occupational exposures such as silica (49-51) that can modulate immune 

responses, and behavioral factors such as smoking (52), diet (53) and sun exposure (54, 55).  
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Exposure to these factors may induce the production of autoreactive T cells, autoantibodies and 

the stimulation of pro- and anti-inflammatory cytokines that induce the onset of SLE.  

Additionally, sex hormones in hormone replacement therapy have been associated with mild 

flares in SLE, which confirmed the role of female hormones in SLE development (56). 

1.1.2.6 Genetics of SLE 

Family and twin studies strongly suggest the involvement of genetic factors in the predisposition 

to lupus.  First degree relatives of SLE patient has 20 to 40 times more at risk than those without 

an immediate family member diagnosed with SLE (18, 57).  Using a polygenic inheritance 

model, SLE has a heritability of 66 ± 11% in the Caucasians (9). 

The study of human lymphocyte antigen (HLA) class genes has been conducted to 

determine specific amino acid sequences in the cell surface molecules that are involved in 

antigen presentation to T-helper cells in patients with lupus.  Using a dense map of polymorphic 

microsatellites across the HLA region, three distinct haplotypes that encompassed the class II 

region exhibited transmission distortion.  SLE risk HLA haplotypes include: 

DRB1*1501/DQB1*0602, DRB1*0801/DQB1*0402, and DRB1*0301/DQB1*0201.  It is found 

that having one haplotype increases the relative risk of SLE by 2 to 3 times, by having any two 

haplotypes the relative risk increases to 4 to 6 times (58). 

Single gene dysfunctions that may cause lupus development include genes involved in 

antigen presentation in the innate immunity (C1q, SAP, PARP,MBL), loci found to associate with 

tolerance breaking (Sle1 [Mus musculus]), and increased immunological response (Sle2/3 [Mus 

musculus], IL-10, PD-1,IRF5,PTPN22).  Other genes found to be associated with SLE risk 

include Ifi202, Fas, FasL, p21, bcl2, which are also associated with autoreactive cells, and FcγR, 

CR1, MBL which are associated with antibody/immune complexes persistence (59, 60). 
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Genes with the strongest influence on SLE risk are known to be complement-related 

defects.  Though extremely rare, homozygous deficiency of C1q, C1r, and C1s are at up to 95% 

increased risk of developing SLE, while homozygous deficiency for C4 have up to 60% risk of 

SLE.  Even partial C4A deficiency/defect has been associated with 15% risk of the disease (61).  

Indeed, association studies showed that complement components C2 (62) and C4 (63) genes also 

have been implicated in SLE.  Chromosomal regions, and the candidate genes found associated 

with risk of SLE within the linked intervals, are shown in Table 1.3. 

 

Table 1.3.  Chromosomal regions exhibiting confirmed significant linkage to SLE, adapted from (59) 

 

 

The best-supported SLE susceptibility genome regions exhibiting significance levels in 

single studies and/or confirmed evidence in an independent sample are:  1q23, 1q41, 2q37, 4p16, 

6p21, 11p13, 12q24 and 16q13 (64-70).  Recent meta-analysis of genome-wide linkage studies 

identified the strongest evidence for linkage in regions to be 6p21 and 16q13 (66), confirmed 

once again the importance of complement pathway genes and importance of loci interaction 

effects in the genome (69). 

A number of genes have also been found to be associated with specific manifestations of 

SLE phenotypes.  These include FCR2A/cA, MCP1, MBL, PDCD1 associated with lupus 
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nephritis, FCR3A with end stage renal disease MCRP1 associated with vasculitis and arthritis, 

and CRP associated with atherosclerosis (25, 59, 60). 
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1.2 C-REACTIVE PROTEIN (CRP) 

Pentraxins are highly conserved cyclic pentamers such as CRP, Serum Amyloid P component 

(SAP) and PTX3 (a cytokine modulated molecule).  CRP and SAP bind to chromatin, small 

nuclear ribonucleoproteins (snRNP), as well as to apoptotic cells that are exposed on the cell 

membrane.  CRP and SAP act as scavengers for dying cells and cell debris.  Therefore, defects in 

these factors may impact the development of SLE in humans and mice in a variety of ways.  

These arguments also provide a possible rationale for using them in the treatment of autoimmune 

diseases such as lupus.  In fact, treatment of lupus-prone mice with CRP or transgenic over-

expression of CRP protects against development of lupus (71).  Recent studies also suggest an 

immune modulatory role of CRP through induction of IL-10 and binding with Fcγ receptors.  

Consistent with their role in development of autoimmune and inflammatory diseases, CRP has 

been used as a biomarker of inflammation (72).  Given the overwhelming association between 

CRP and inflammation, CRP genetic variations may also modify risk of SLE itself and excessive 

cardiovascular disease (CVD) risk in SLE. 

 

 14



 

1.2.1 CRP as an acute phase protein and implication for CVD 

CRP, discovered in 1930 by Tillett and Francis (73), is a major acute-phase protein whose levels 

increase significantly after tissue injury or inflammation.  CRP is believed to be critically 

important for organism survival, as it is found in both vertebrates and invertebrates 

phylogenetically spanning 400 million years of evolution.  Important functions CRP serves in the 

immune system include opsonization, activation of the classical pathway of complement, 

immune-modulation, induction of phagocytosis, and possibly atherogenesis. 

Given CRP’s capability of recognizing foreign pathogens and/or damaged cells of the 

host and to initiate their elimination by interacting with humoral and cellular effector systems in 

the blood (74), CRP is known to be a sensitive marker of systemic inflammation.  In fact CRP 

has been one of the most widely studied inflammatory markers in the past decade, resulting in at 

least 14,114 published articles since year 1997 (as documented in NCBI PubMed database). 

Mounting evidence indicates that systemic inflammation is linked to the emergence of 

CVD disease.  Several studies have successfully demonstrated associations between increased 

CRP levels and marked CVD risk in healthy population (75-77).  Ridker et al.(78) have found 

that elevation of high sensitivity CRP (hsCRP) was not only a independent predictor of 

cardiovascular event in 28,263 healthy postmenopausal women, cardiovascular event prediction 

model which includes hsCRP was much better than a model with lipids profile alone. Indeed, 

recent studies using human CRP-transgenic mice have provided convincing evidence that CRP 

may be an active participant in thrombosis and atherogenesis (79, 80), instead of simply a down-

stream inflammatory marker alone. 
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CRP serves not only as a powerful inflammatory marker, significant risk factor in 

predicting cardiovascular mortality and potential contributor of atherogenesis, it is also 

associated with major CVD risk factors including inflammation (81), metabolic syndrome (82), 

hypertension (83), and obesity (84).  These significant associations with well-established 

Framingham CVD risk factors suggest that circulating CRP may play a significant role in the 

early development of CVD by affecting the CVD intermediate phenotype progression, which 

then leads to cardiovascular events. 

 

 

 

Figure 1.3.  Human CRP 3D structure.  Adapted from (85)

 

Native CRP (nCRP) is composed of 5 identical subunits arranged as a cyclic pentamer 

(Figure 1.3).  As subunits separate and dissociate into individual nomomeric units, they undergo 

a conformational change that modifies CRP’s solubility and antigenicity as monomeric CRP 

(mCRP).  As oppose to nCRP which is a serum-based protein, mCRP is primarily detected in 

fibrous tissues of normal human blood vessel intima (86).  Several groups have attempted to 

determine the differencial effects nCRP and mCRP have on development of artheroscherosis.  

While some groups found mCRP to be more proinflammatory than nCRP (87), other found 
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nCRP to be responsible for increasing of artherosecrosis (88).  Therefore, precise differential 

biological functions and pathogenetic mechanisms nCRP and mCRP have on artherosecrosis and 

possibly SLE risk are not certain. 

CRP is a highly heritable multi-factorial trait.  The heritability for CRP has been reported 

ranging from 35% to 56% in various populations (Table 1.4). The high of 56% strongly confirm 

the significance of the role CRP gene plays in various phenotypic associations discussed above. 

 

Table 1.4.  CRP heritability reported in various population

 

 

1.2.2 Gene encoding CRP  

CRP is a relatively small gene with approximately 6800 base pairs.  The gene contains two exons 

(black boxes in Figure 1.4) with a 104 amino acid peptide coding regions.  The gene contains a 

short 5'-untranslated region (89 bp, grey box), with two exons separated by a short intron region 

(286 bp), and an unexpectedly longer (1.2 kb) 3'-untranslated region (grey box). 
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Figure 1.4.  C-reactive protein gene and seven TagSNPs examined in this project 

 

CRP has been shown to bind chromatin (89, 90), histones (90), and apoptotic cells (91).  

Given these specific immune-modulating abilities, CRP is also thought to modify the 

autoimmune disease phenotype by promoting the removal of necrotic and apoptotic cells, and its 

ability to recruit complement and FcyR mediated effector pathways (92).  In SLE patients, 

defective apoptotic cell clearance and immune complex deposition are thought to cause organ 

damage and cascading inflammation.  Therefore the increased clearance of apoptotic cells and 

their derived nuclear contents by phagocytic cells via CRP opsonization may possibly prevent 

the development of potential nuclear antigen-specific autoimmune responses (91, 93).   

Recent in vivo studies have shown that lupus-prone BW mice carrying the CRP transgene 

had reduced proteinuria, lived longer than non-transgenic BW, and accumulation of IgM and IgG 

in their renal glomeruli was delayed (71).  Additionally, injecting CRP to another lupus strain 

mouse NZB/NZW delayed the onset of high-grade proteinuria and prolonged survival (94).  

With its unquestionable ties to inflammation, increasing evidence of its participation in 

atherogenesis, and unique ability to modify the disease phenotypes of SLE, CRP has clearly 

proven to be a functional candidate gene for SLE. 

Abundant epidemiological and functional studies have investigated association between 

plasma or serum CRP and SLE.  Genetic studies on CRP and SLE are, however, very limited to 
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date.  In 2002, Szalai et al.(95) found a polymorphic GT-repeat in the intron of the CRP gene to 

be associated with baseline CRP levels in SLE patients.  In 2005, the same group found that SLE 

patients with vascular events had a greater number of the CRP GT20 variant compared with SLE 

patients without vascular events in African-Americans and Hispanics, but not in Caucasians (96).  

In 2004, Russell et al. investigated CRP as a candidate gene for SLE in two cohorts totalling 586 

UK simplex SLE families.  They found the basal levels of CRP to be influenced independently 

by two polymorphisms at the CRP locus, one of which was also associated with SLE and 

antinuclear autoantibody production (97). 

Given the limited literature on association finding between CRP polymorphisms and 

SLE, it is important to carry out additional genetic studies to determine the role of CRP genetic 

variation in relation to SLE risk.  The objective of this genetic association research project was to 

investigate the role of CRP as a potential disease-susceptibility locus or biomarker, for SLE 

using two independent SLE cohorts of North American caucasians.  The two cohorts consisted of 

differentially ascertained case-control sample from Pittsburgh and a family-based sample from 

Los Angeles.  In addition, the role of CRP polymorphisms in circulating CRP levels and 

additional well-established intermediate phenotypes for cardiovascular disease (CVD) in SLE 

patients were examined to deepen our understanding of the role of CRP gene in SLE. 
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1.3 PROJECT METHODS SUMMARY 

Detailed methodology for this project is clearly explained in Method sections in each of the three 

manuscripts (Chapters 2, 3, and 4).  In summary, this project used the candidate gene approach, 

combining multiple epidemiological study designs to test our hypothesis that variations in the 

CRP gene are associated with SLE risk, SLE clinical manifestations, and CVD risk. 

CRP tagSNPs for this work were chosen from the SeattleSNPs Program for Genomic 

Applications (http://pga.gs.washington.edu/) European population, using the LDSelect algorithm 

(98) using a linkage disequilibrium threshold of r2 = 0.64 and a minor allele frequency threshold 

of five percent.  Five tagSNPs were selected relative to the ATG codon of the CRP translation 

site in the FASTA database (Genbank NC_000001.9).  The positions of these SNPs are -861, -

390, +90, +838 and +2043.  SNPs -861 and -390 positioned in the promoter region, +90 located 

in intron/exon boundary, +838 positioned within exon 2, and + 2043 in the 3’ untranslated 

region.  For clarification, reference numbers from NCBI Single Nucleotide Polymorphism are 

provided for each of the five SNPs: -861 is rs3093059, -390 is rs3091244, +90 is rs1417938, 

+838 is rs1800947 and +2043 is rs1205. 

Allelic and haplotype association tests were used in the case-control cohort based at the 

University of Pittsburgh (Pitt).  Case-control study analysis were conducted using R.2.1.1 and 

EH.  Combined linkage and association tests were used in the familial cohort based at the 

University of California of Los Angeles (UCLA).  Family-based study analyses were conducted 

using FBAT and GENEHUNTER, ver.2.0. 
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This research project included patients defined using both the 1982 and 1997 American 

College of Rheumatology criteria for definite or probable SLE (8, 16) to ensure capturing all 

SLE patients. 
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2.1 

2.2 

ABSTRACT 

The gene coding for C-reactive protein (CRP) is located on chromosome 1q23.2, which falls 

within a linkage region thought to harbor a systemic lupus erythematosus (SLE) susceptibility 

gene. Recently, two single nucleotide polymorphisms (SNPs) in the CRP gene (+838, +2043) 

have been shown to be associated with CRP levels and/or SLE risk in a British family-based 

cohort. This study was aimed to confirm the reported association in an independent population-

based case-control cohort, and also to investigate the impact of four additional CRP tagSNPs (-

861, -860, -390, +90) on SLE risk and serum CRP levels.  Altogether we examined the 

association of six tagSNPs in the CRP gene in 337 Caucasian SLE women and 448 healthy 

controls.  While none of the SNPs were found to be associated with SLE risk individually, global 

haplotype statistics revealed significant association (p<0.000001).  Three SNPs (-861, -390, +90) 

were found to significantly influence serum CRP level in SLE cases.  Haplotypes consisting of 

these three SNPs also confirmed significant impact these SNPs have on CRP levels.  However, 

global haplotype test revealed no significant association between CRP and CRP levels. Our data 

did not confirm previously observed individual SNP associations with either SLE risk or CRP 

levels, but suggested that unique haplotype combinations in the CRP gene may modify the risk 

of developing SLE. 

INTRODUCTION 

The pathogenesis of systemic lupus erythematosus (SLE) is complex and multi-factorial, 

involving interactions between multiple genes, hormones and several environmental factors.  
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Even though the etiology of SLE remains elusive, it is believed that impaired handling of 

antigen–antibody complexes and subsequent tissue deposition leading to release of inflammatory 

mediators and an array of inflammatory cells can induce a broad spectrum of clinical 

manifestation (1).  Epidemiological studies have shown that the prevalence of SLE is up to 15 

times higher in women than in men (2), and that premature atherosclerosis and cardiovascular 

disease (CVD) are significantly increased in SLE women as compared to the general population 

(3-6).  Traditional risk factors alone are insufficient to fully explain this significant increased 

burden of CVD in young SLE women.  Of a range of additional factors that are thought to be 

contributing to the premature atherosclerosis observed in SLE, chronic inflammation plays a 

pivotal role in the pathogenesis of both SLE and CVD. 

The genetics predisposition of SLE is complex, possibly involving multiple genes, 

hormonal and environmental factors, and interactions among them.  Family and twin studies 

suggest that genetic factors play a significant role in the predisposition to SLE (7, 8).  The 

estimated heritability of SLE in Caucasian is 66% (9).  Recent genome wide linkage analyses in 

multiplex SLE families have provided many chromosomal regions for exploration of disease-

predisposing genes, including a region on the q-arm of chromosome 1 (10).  The gene coding for 

C-reactive protein (CRP) is located at 1q23, which falls within the 1q23-43 region thought to 

harbor a susceptibility gene for SLE in multiple independent genome scans of both mice and 

humans (11-15).  The unique position of the CRP gene makes it a logical positional candidate 

gene to investigate as a susceptibility locus for SLE. 

CRP is also a functional candidate gene based on the physiological activity of its 

products.  CRP is an important liver-derived acute-phase protein that can increase up to 1000-

fold in serum as a response to diverse stimuli such as infection or injury (16).  Important 
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functions of CRP in the immune system include opsonization (17), activation of the classical 

pathway of complement(18), immune-modulation, induction of phagocytosis (19), and possibly 

atherogenesis (20).  In the past decade, CRP has been the most widely studied inflammatory 

marker in predicting CVD risks. Recent in vitro studies have provided convincing evidence that 

CRP is likely an active participant in thrombosis and atherogenesis (20, 21). 

In addition to its strong association with inflammation, CRP has been shown to bind 

chromatin (22), histones (23) and apoptotic cells (24).  These unique characteristics of CRP are 

thought to contribute to its ability to modify the autoimmune disease phenotype by promoting the 

removal of necrotic and apoptotic cells and recruiting complement and FcyR-mediated effector 

pathways (25).  In the host, the increased clearance of apoptotic cells and their derived nuclear 

contents by phagocytic cells via CRP opsonization may prevent the development of potential 

nuclear antigen-specific autoimmune responses (24, 26).  Recent in vivo studies have shown that 

lupus-prone BW mice carrying the CRP transgene had reduced proteinuria, lived longer than 

non-transgenic BW, and had delayed accumulation of IgM and IgG in their renal glomeruli(27).  

Injecting CRP to another lupus strain mouse, NZB/NZW, also delayed the onset of high-grade 

proteinuria and prolonged survival(28).  CRP’s autoimmunity prevention ability may come from 

its ability to prevent activation of autoreactive B cells by promoting clearance of antoantigenes to 

non-antigen presenting sites(25). 

Several studies have shown that CRP levels in SLE patents are abnormally elevated both 

in the absence and presence of infection (29-33).  The value of using CRP to monitor SLE 

disease activity has remained controversial given the inconsistent correlation between circulating 

CRP and disease activity from numerous studies (34-38).  The abnormal elevation pattern of 

CRP in SLE patients provided the first clinical clue that variation in the CRP may contribute to 
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the pathogenesis of SLE.  With CRP’s unquestionable tie to inflammation, association with 

atherogenesis, its unique ability to modify the disease phenotypes of SLE and its genetic 

candidacy, CRP serves as a promising susceptibility gene for SLE. 

Russell et al.(39) recently found basal levels of CRP to be influenced independently by 2 

CRP polymorphisms (+838 & +2043), and the latter was also associated with SLE and 

antinuclear autoantibody production.  They hypothesized that defective disposal of potentially 

immunogenic material, indicated by low basal CRP levels, may be a contributory factor in lupus 

pathogenesis.  In the present study, we examined six tagSNPs both individually and as 

haplotypes to investigate the associations of CRP with SLE risk and serum CRP levels in SLE 

patients.  We hypothesized that the variation in the CRP gene may contribute to the genetic 

susceptibility of SLE and impact CRP levels in patients with SLE. 

2.3 SUBJECTS AND METHODS 

2.3.1 Subjects  

A total of 337 white female SLE cases and 448 healthy female controls were included in this 

study.  All cases were 18 years of age or older (mean age 43 ± 11 years), and met the 1982 and 

1997 American College of Rheumatology criteria for definite or probable SLE(40, 41).  All 

subjects were recruited from the Pittsburgh Lupus Registry, and have been seen either at the 

University of Pittsburgh Medical Center or by independent rheumatologists in the Pittsburgh 

metropolitan area.  This mixed cohort provides a population-based representation of SLE 

compared to a cohort that is recruited strictly from a tertiary referral center, providing us with 
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better presentation of heterogeneity of this disease.  Controls were geographically matched and 

obtained from the Central Bank of Pittsburgh, and had no apparent history of SLE (mean age 45 

± 13 years).  This study was approved by the University of Pittsburgh Institutional Review 

Board, and all subjects provided written informed consent. 

2.3.2 SLE clinical and laboratory characteristics  

C-reactive protein was measured using high sensitivity enzyme-linked immunoabsorbent assay.  

Details of the assay have been previously described (42, 43).  SLE disease activity and 

cumulative damage were measured by the same physician (SM) in all patients, using the 

Systemic Lupus Activity Measure (SLAM) (44) and the Systemic Lupus International 

Collaborating Clinics (SLICC) damage index (45), respectively.  Renal disease among SLE 

patients was defined using the ACR criteria, which requires (a) renal biopsy showing lupus 

nephritis, or (b) persistent proteinuria greater than 0.5 grams per day or greater than 3+ if 

quantification is not performed, or (c) evidence of cellular casts in the urine.  Central nervous 

involvement (CNS) among SLE patients was defined by history of seizure or psychosis due to 

SLE.  Joint involvement was defined as inflammatory arthritis.  Laboratory studies included ds-

DNA, antiphospholipid antibodies, serum C3, and C4. 

2.3.3 TagSNP selection and genotyping 

Informative tagSNPs in the CRP gene were chosen by utilizing the SeattleSNPs Program for 

Genomic Applications web site (http://pga.gs.washington.edu/education.html).  SNPs -861, -860, 

and -390 are located in the promoter region of CRP, SNP +90 is located in intron/exon boundary, 
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+838 is present within exon 2, and + 2043 maps in the 3’ untranslated region.  We have 

designated our SNPs based on their position relative to the ATG codon of the CRP translation 

site in the FASTA database.  For clarification, reference numbers from the NCBI Entrez SNP 

database are provided for each of our six SNPs: -861 is rs3093059, -860 is rs3093060, -390 is 

rs3091244, +90 is rs1417938, +838 is rs1800947 and +2043 is rs1205.   

Genotyping for +838 and +2043 was obtained using polymerase chain reaction restriction 

fragment length polymorphism (PCR-RFLP).  SNPs -861 and -860 were genotyped using 

pyrosequencing assays.  SNPs -390 and +90 were genotyped using TaqMan assays. 

2.3.4 Statistical analyses 

Allele frequencies were calculated by the allele counting method.  Goodness of fit to Hardy–

Weinberg expected proportions was examined by χ2 test.  The pair-wise linkage disequilibrium 

(LD) between markers was estimated using the D' method(46).  The differences in genotype 

frequencies between cases and controls were tested by Fisher's Exact test.  Multivariate logistic 

regression models were used to assess minor allele carrier effects of each SNP with SLE risk, 

adjusting for age as a covariate.  Common haplotype frequency was estimated using the 

expectation-maximization algorithm in the EH software program(47) in both cases and controls.  

To assess the association between CRP genetic variation and SLE clinical characteristics, we 

performed either analysis of variance (ANOVA) for quantitative clinical characteristics of SLE 

(C3, C4, SLAM and SLICC) or logistic regression analysis for categorical variables (renal 

disease, joint inflammation, CNS involvement and antiphospholipid antibodies).  Covariates 

adjusted for in the models included age, BMI, and smoking.   
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To assess the association between CRP genetic variation and serum CRP in SLE subjects, 

CRP values were log-transformed to achieve the normal distribution of the variable.  The mean 

log-transformed CRP (logCRP) levels between different genotype groups were compared using 

ANOVA and adjusted for the effects of age, BMI, and smoking.  Tests of haplotype association 

with logCRP were conducted using the haplo.stats package for R(48), with age, BMI, and 

smoking included as covariates.  Haplo.stats tests association by means of a generalized linear-

regression framework that incorporates haplotype phase uncertainty by inferring a probability 

matrix of haplotype likelihoods for each individual (derived by use of the EH haplotype-

inference algorithm) rather than by assignment of a most likely haplotype.  All computations 

were performed using R version 2.1.2.  A nominal p-value of 0.05 was considered significant in 

all analyses.  Analysis results were presented on all SNPs except for one uninformative SNP, -

860, due to its extreme low minor allele frequency (0.1% in cases and 0% in controls). 

2.4 RESULTS 

2.4.1 Association of CRP SNPs with SLE risk 

Of the total 785 subjects (337 cases and 448 controls) genotyped for six CRP SNPs, we repeated 

genotyping on 10% of the subjects for each SNP a second time and had higher than 99% 

concordance rate in all SNPs.  No statistically significant deviations from Hardy–Weinberg 

equilibrium were found in any of the SNPs.  Table 2.1 presents the genotype and allele 

frequencies in our cases and controls for the six CRP SNPs examined.  Allele and genotype 
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frequencies were not significantly different between cases and controls (using the p-value of 

0.05) in any of the individual six SNPs examined. 

2.4.2 Association of CRP haplotype with SLE risk 

We conducted pair-wise linkage disequilibrium (LD) analysis using four SNPs (excluding the 

uninformative SNP -860 and the tri-allelic SNP -390), and found different patterns of LD 

association in cases versus controls.  In cases, with the exception of the -861/+90 and +90/+838 

pairs, all SNP pairs are in significant LD.  Among controls, all pairs were in significant LD 

except for the –861/+838 pair (Table 2.2).  Given the potential effects LD may have on SLE risk, 

we further assessed the distribution of CRP haplotypes between cases and controls.  Five SNPs (-

861, -390, +90, +838, +2043) were included in our global haplotype analysis using 222 cases and 

313 controls (Table 2.3).  A total of 8 haplotypes were observed at a frequency of 2% or greater 

from either case or control groups.  The overall haplotype distribution was significantly different 

between cases and controls (χ2 = 138.86, p < 0.000001) (Table 2.3).  Haplotype 5 appears to be 

the most pronounced risk haplotype for SLE while haplotypes 2, 4 and 8 seem to covey 

protection against SLE. However, since no single allele at any locus defined and was restricted to 

a given risk or protective overall haplotype, no specific haplotype-tagging SNP could be 

identified to account for the significant overall haplotype associations. 

2.4.3 Association of CRP SNPs with SLE Clinical Characteristics 

We performed either ANOVA for quantitative clinical characteristics of SLE or logistic 

regression analysis for categorical variables adjusting for the effects of age, BMI, CRP levels, 
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smoking and medications specifically correlated with the dependent phenotypes.  The risk of 

CNS involvement was significantly increased in cases with GC genotype at +838 (OR = 4.7 (1.6 

– 13.7); p = 0.005).  Individuals with +838 GC genotype also exhibited significantly higher C4 

levels compared to GG individuals (23.46 ± 8.35 vs. 20.67 ± 7.68, p = 0.033).  No significant 

associations were observed between any of the individual SNPs and SLAM, SLICC, C3, 

creatinine, renal disease, joint arthritis, and antiphospholipid antibodies (data not shown). 

2.4.4 CRP SNPs associations with serum C-reactive protein levels 

We performed both single-site and haplotype analyses to assess the association between CRP 

SNPs and log-transformed serum CRP levels (logCRP) in a subgroup of SLE patients (n = 237).  

In the single-site analyses, minor alleles of two SNPs revealed significant associations with 

increased logCRP in SLE patients (+90, p = 0.0032; -390, p = 0.012), and one SNP was 

marginally significant (-861, P = 0.159) when age, BMI and smoking are controlled for as 

covariates.  Since BMI was a potential effect modifier between CRP levels and SNP-861, 

association test was also performed with BMI removed from the model.  Without BMI as a 

covariate in the model, association between -861 and logCRP became statistically significant (p 

= 0.02) (Table 2.4).  Heterozygotes of –861 were associated with increased logCRP levels 

compared to homozygotes of the wild type allele (T).  Homozygotes of the less common allele 

(T) at +90 had the highest logCRP level (1.544 ± 1.048) compared to homozygotes of the wild 

type allele (0.639 ± 0.976) and heterozygotes (0.623 ± 1.054).  Mean logCRP levels were 

significantly higher in homozygotes of T allele at the triallelic promoter SNP-390 (1.305 ± 

1.128) and heterozygotes with an A allele (CA) (1.356 ± 0.947) when compared to homozygotes 

of the wild type (CC) (0.519 ± 0.947) (Table 2.4). 
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2.4.5 CRP haplotype association with serum CRP levels 

Given the significant individual effects SNP -861, -390, and +90 have on CRP level, we 

performed 3-SNP haplotype analysis consisting of these three potentially functional SNP to 

evaluate the significance of the CRP promoter region has on CRP levels.  Three-SNP haplotypes 

were inferred using the haplo.glm function in the haplo.stats package in R.  Haplotype T-861C X 

C-390TA X A+90T exhibited the most significant impact and associated with an increase of 

1.171 logCRP units compared to the reference haplotype (p = 0.0161).  Haplotype T-861C X C-

390TA X A+90T also associated with an increase of logCRP by 0.2928 (p = 0.0423) (Table 2.5).  

Haplotypes consisting of all five CRP SNPs were then inferred to determine “gene-wide” 

haplotype effects on CRP levels.  Eight haplotypes with frequency greater than or equal to 0.02 

were identified (Table 2.6).  No individual 5-site haplotype showed associations with CRP 

levels. 

2.5 DISCUSSION 

We examined the association of CRP tagSNPs in relation to SLE risk and CRP levels of SLE 

patients.  Circulating CRP has been the most widely studied inflammatory marker in predicting 

CVD risks in the past decade.  Several studies have demonstrated associations between CRP 

levels and CVD in healthy population(49-53).  Furthermore, recent studies using human CRP-

transgenic mice have provided the first direct proof that CRP may be an active participant in 

thrombosis and atherogenesis (20, 21).  Given the importance of inflammation as underlying 

SLE etiology and overwhelming associations observed between CRP and inflammation, we 
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hypothesized that variation in the gene encoding for CRP may contribute to the risk of SLE and 

modify the CRP levels in SLE patients. 

An abundance of epidemiological studies and functional studies have investigated the 

association between CRP levels and SLE.  Genetic association studies on CRP variation and SLE 

and related clinical manifestations are, however, very limited to date (39, 54, 55).  Here, we 

screened six CRP tagSNPs using 337 white SLE women from the Pittsburgh Lupus Cohort and 

448 sex and demographically matched controls.  Given the reference of the recent family-based 

study (39), we set out to replicate these associations, but instead took a gene-wide, 

comprehensive approach by screening four additional CRP tagSNPs using a population-based 

case-control study design. 

Individually none of the examined SNP showed significant association with SLE risk.  

Therefore we are unable to confirm findings by Russell et al. that the minor (A) allele of +2043 

was associated with SLE risk.  We also did not observe significant association between 

decreased CRP with +2043 and +838 as shown in their cohort.  Interestingly, the +838 SNP 

demonstrated significant association with CNS involvement (OR = 4.7 (1.6 – 13.7); p = 0.005) 

and increased serum C4 (p = 0.033) in our SLE patients.  While decreased C4 activity is believed 

to be a marker of active SLE, the observed elevated C4 levels in SLE patients with CNS 

involvement most likely result from CNS-specific systemic inflammation.  The association 

observed with CNS involvement, though statistically significant, should be interpreted with 

caution given the small number of CNS positive patients (n = 23). 

In contrast to the single-site analysis, the CRP haplotype analyses yielded significant 

associations with SLE risk.  The global 5-site CRP haplotype distribution was remarkably 

different between cases and controls (p < 0.000001), presenting strong evidence of association 
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with SLE risk.  However no haplotype-tagging SNP was found to explain the significant 

haplotype association with SLE risk.  The absence of haplotpe-tagging SNP confirmed our 

individual SNP analysis that no polymorphisms we examined in the CRP gene individually alter 

SLE susceptibility.  The observed significant haplotype association in the absence of individual 

SNP association may be explained by the unique characteristic haplotype-based analyses offer on 

detecting unique chromosomal segments that harbor multiple disease-predisposing alleles. 

Further, the use of multilocus analyses in the SNP setting can improve the information content of 

genomic regions (56) and capture effects from higher number of polymorphisms (versus single 

SNP analysis) and their subtle interaction effects (epistasis) (57) within the given haplotype 

block.  Even though the individual SNP approach has been the gold standard for association 

studies for many years, it was designed to easily detect polymorphisms with significant 

individual genotypic effect (OR>3) on single-gene disorders that follow a Mendelian inheritance.  

Given the polygenic and multifactorial nature of SLE pathogenesis, the haplotype approach may 

be more sensitive and accurate at detecting genotype-phenotype associations in comparison to 

the individual SNP approach. 

It remains a possibility that CRP itself does not directly contribute to SLE susceptibility, 

rather one or more as yet unidentified functional alleles may be in strong LD with one or more of 

the SNPs we examined.  These functional alleles are likely to be located in one or more nearby 

genes, thereby “tag” the CRP haplotypes observed to be associated with SLE risk in our cohort.  

Two SLE susceptibility genes that also mapped to 1q23, FcγRIIA and FcγRIIIA, are genes 

encoding low-affinity receptors for IgG.  Recent meta-analyses revealed that the FcγRIIA-

R/H131 polymorphism was associated with a 1.3-fold greater risk of development of lupus, and 

that the FcγRIIIA -V/F158 polymorphism conferred 1.4-fold risk for developing lupus nephritis 
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(58). The interaction of immunoglobulin (Ig)G Fc receptors containing an activation motif 

(ITAM) with immune complexes and cytotoxic autoantibodies can initiate an inflammatory 

response leading to tissue damage (59).  It has been also demonstrated that FcγRIIA-R/H131, 

working in conjunction with CRP, has the unique ability to alter the cytokine profile of the host 

(60) by mediating phagocytosis (61), and contributing to the impaired removal of circulating 

immune complexes (62),  resulting in the antibody-triggered inflammation and disease 

pathogenesis of SLE and nephritis.  Given the overlapping chromosomal position of the human 

CRP, FcγRIIA and FcγRIIIA genes and their unique ability to modify SLE phenotype when 

working together, it is likely that genetic interaction between these three loci (epistasis) may 

modify SLE susceptibility. 

Using 237 SLE women, mean logCRP levels were significantly higher in homozygotes of 

T allele at the triallelic promoter SNP-390 (1.305 ± 1.128) and heterozygotes with an A allele 

(CA) (1.356 ± 0.947) when compared to homozygotes of the wild type (CC) (0.519 ± 0.947, p = 

0.12). Homozygotes of the less common allele (T) at +90 were also associated with more than 

two-fold increased in logCRP (1.544 ± 1.048) compared to homozygotes of the wild type allele 

(0.639 ± 0.976) and heterozygotes (0.623 ± 1.054, p = 0.0032)(Table 4).  In fact, these increased 

CRP level association observed with these two individual SNPs have also been reported by 

studies of healthy population (63-65). 

Polymorphisms located in gene promoters likely play an important role in gene function 

by altering transcription factor identification and binding, which in turn can influence gene 

expression and affect biological impacts.  Promoter SNP -390 is a tri-allelic SNP that forms an 

E-box element (66) in the promoter, and its minor alleles (T and A) were found to be associated 

with increased CRP levels in the non-SLE populations (63, 64, 66, 67).  Similarly, SNP +90, 
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which is located on the intron/exon boundary and has the potential to affect alternative splicing 

in the gene, also showed association with increased CRP levels (63).  Previously Russell et 

al.(39) reported significant association between SNPs +1059, +2147 and decreased CRP level in 

British SLE cohort.  Similarly, a more recent study by Miller et al. (63) also reported the same 

association of these two SNPs in three large cohorts of healthy general population.  However, we 

did not observe the same association with decreased CRP in our SLE sample.  The lack of 

association in our SLE women may be attributed to the limited sample size of the minor allele 

carriers in our study, or it may be confounded by the effects from anti-inflammatory medications 

SLE patients take on the regular basis, like corticosteroids. 

To further understand the gene effects on CRP levels, we performed both promoter 

region (3-SNP) haplotype and global (5-SNP) haplotype analyses.  Our 3-site haplotype analysis 

included two promoter SNPs and the intron/exon boundary SNP, revealed again and confirmed 

the importance of the minor alleles -390T and +90T.  Both haplotyes containing -390T and 

+90T, H01 (T-861C X C-390TA X A+90T) and H4/5 (T-861C X C-390TA X A+90T), was 

associated with significantly increased logCRP levels compared to the referent 3-site haplotype 

(T-861C X C-390TA X A+90T). When all 5 tagSNPs were examined together as haplotypes, the 

association to CRP levels became non-significant.  This “diluted-out” association with 

circulating CRP using the global haplotype approach, is however not entirely surprising. 

Determining the true association between genetic variation and CRP levels is inherently 

difficult due to the complex mechanism of CRP production, which is activated by cytokines IL-6 

and IL-1 and influenced by multiple other genes and environmental factors (68).  The difficulty 

is compounded in SLE cohort because not only are the inflammatory cytokines found to be 

increased in SLE patients (69), but the strong correlation observed between CRP and IL-6 levels 
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in healthy subjects may be absent in SLE (70).  SLE is a chronic-inflammatory disease with 

abnormal expression of CRP during both the presence and absence of acute infections.  Multiple 

studies have also found inconsistent correlations between CRP levels and SLE disease activity, 

indicating that the mechanism influencing CRP expression in SLE may be different from those in 

the general population.  Our data showed that even though the individual SNP and promoter 

region haplotype analysis revealed similar pattern of association as shown in general population, 

no evidence of gene-wide haplotype association with circulating CRP levels could be determined 

as previously showed using large healthy cohorts (64).  This finding further supports the 

hypothesis that mechanism influencing CRP expression in SLE may be different from those in 

the general population. 

Russell et al.’s family-based study proposed that low levels of basal CRP may predispose 

to antinuclear autoantibody production, which in turn contributes to the development of human 

lupus.  Our results show that individually, certain SNPs correlated with CRP levels, their 

association with SLE risk was not significant.  Conversely, we found multiple global haplotypes 

that correlated highly with SLE risk, but had no direct associations with CRP level in SLE 

subjects.  Although we did not find strong evidence that any of the CRP global haplotypes 

influence CRP level and thereby predict SLE risk, the significant haplotype results suggest that 

variation in the CRP gene modifies SLE risk via as yet unidentified mechanisms.  Determination 

of how CRP variation influences SLE risk is expected to further our understanding of SLE 

etiology and may have direct clinical relevance. 
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2.7 MANUSCRIPT 1 TABLES AND FIGURES 

Table 2.1.  Genotype and allele frequencies of CRP SNPs 

  SLE cases Controls   SLE cases Controls  

SNP Genotype n (%) n (%) p-value Allele n (%) n (%) p-value 

-861 TT 287 (85.93) 388 (86.8) 0.813 TT 621 (93) 834 (93.3) 0.802
(rs3093059) TC 47 (14.07) 58 (12.98)  C 47 (7) 60 (6.7)  
 CC 0 (0) 1 (0.22)      
         
-860 GG 333 (99.7) 447 (100) 0.428 G 667 (99.9) 894 (100) 0.428
(rs3093060) GA 1 (0.3) 0 (0)  A 1 (0.1) 0 (0)  
 AA 0 (0) 0 (0)      
         
-390 CC 92 (38) 135 (41) 0.849 C 289 (59) 416 (61) 0.565
(rs3091244) CT 88 (36) 118 (36)  TT 161 (33) 196 (31) 0.451
 TT 29 (12) 30 (9)  A 36 (7) 52 (8) 0.789
 CA 17 (7) 28 (8)      
 TA 15 (6) 18 (5)      
 AA 2 (1) 3 (1)      
         
+90 AA 117 (48.75) 159 (47.89) 0.973 A 335 (69.8) 461 (69.4) 0.895
(rs1417938) AT 101 (42.08) 143 (43.07)  TT 145 (30.2) 203 (30.6)  
 TT 22 (9.17) 30 (9.04)      
         
+838 GG 283 (83.98) 395 (88.17) 0.125 G 619 (91.8) 840 (93.8) 0.14
(rs1800947) GC 53 (15.73) 50 (11.16)  C 55 (8.2) 56 (6.3)  
 CC 1 (0.3) 3 (0.67)      
         
+2043 GG 142 (42.51) 207 (46.31) 0.538 G 441 (66) 607 (67.9) 0.434
(rs1205) GA 157 (47.01) 193 (43.18)  A 227 (34) 287 (32.1)  
 AA 35 (10.48) 47 (10.51)      
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Table 2.2.  Pairwise Linkage Disequilibrium between CRP SNPs

Pairwise Linkage Disequilibrium - SLE
 +90 +838 +2043  

-861 0.018 0.993 0.880  
 (0.945) (0.037) (< 0.001)  

+90  0.066 0.234 D' 
  (0.511) (0.016) (p-value) 

+838   0.846  
   (< 0.001)  
     

Pairwise Linkage Disequilibrium - Controls
 +90 +838 +2043  

-861 0.996 0.482 0.996  
 (< 0.001) (0.319) (< 0.001)  

+90  0.687 0.952 D' 
  (0.002) (< 0.001) (p-value) 

+838   0.753  
   (< 0.001)  
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Table 2.3.  CRP Haplotype Case-Control Comparison

Haplotype -861 
(T>C) 

-390 
(C>T>A) 

+90 
(A>T)

+838 
(G>C)

+2043 
(G>A) 

SLE 
Frequency
(n = 222) 

Control 
Frequency 
(n = 313) 

Frequency 
Difference 

         
H1 T C A G G 0.330 0.304 0.026 
H2 T C A G A 0.183 0.259 -0.076 
H3 T C A C A 0.047 0.050 -0.004 
H4 T T T G G 0.201 0.286 -0.085 
H5 T T T G A 0.061 0.002 0.058 
H6 T A A G G 0.038 0.011 0.027 
H7 C C A G G 0.032 0.004 0.028 
H8 C A A G G 0.007 0.061 -0.054 

         
      Overall p < 0.000001  
      χ2 = 138.86  
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Table 2.4.  Association of CRP Polymorphisms and Mean logCRP level (± SD)

SNP Genotype n (%) Mean ± S.D.   p-value   
              

-861*  TT 191 (84.14) 0.718 ± 1.013   0.16   
(rs3093059) TC 36 (15.86) 0.977 ± 1.103      

  CC 0 (0) …       
              

-861* * TT 191 (84.14) 0.685 ± 1.072   0.021   
(rs3093059) TC 36 (15.86) 1.141 ± 1.115      

  CC 0 (0) …       
              

-390* CC 50 (34.48) 0.519 ± 0.947   0.012   
(rs3091244) CT 55 (37.93) 0.589 ± 0.899       

  TT 19 (13.10) 1.305 ± 1.128       
  CA 11 (7.59) 1.356 ± 0.947      
  TA 8 (5.52) 0.696 ± 0.992       
  AA 2 (1.38) 0.515 ± 0.843       
              

+90*  AA 66 (45.83) 0.639 ± 0.976   0.0032   
(rs1417938) AT 63 (43.75) 0.623 ± 0.932      

  TT 15 (10.42) 1.544 ± 1.048       
              

+838*  GG 193 (83.91) 0.703 ± 1.043   0.373   
(rs1800947) GC 37 (16.09) 0.869 ± 0.979      

  CC 0 (0) …       
              

+2043*  GG 100 (43.67) 0.845 ± 1.117   0.207   
(rs1205) GA 107 (46.72) 0.605 ± 0.949      

  AA 22 (9.61) 0.857 ± 0.999       
              
              

* Impact of CRP Polymorphisms on Mean logCRP level (± SD) - Adjusted 
for Age, BMI, and Smoking 
** Impact of CRP Polymorphisms on Mean logCRP level (± SD) - Adjusted 
for Age and Smoking 
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Table 2.5.  Association of CRP Haplotype with Serum logCRP Levels in SLE

3-Loci Promotor Halpotype                 

 
-861 

(T>C) 
-390 

(C>T>A) 
+90 

(A>T)
Haplotype 
Frequency Coefficient SE t-stat p-

value   
Intercept … … … … -1.651 0.364 -4.536 0.000   

Age … … … … 0.014 0.007 2.064 0.040   
BMI … … … … 0.048 0.010 4.887 0.000   

Smoke … … … … 0.394 0.137 2.878 0.004   
H7 C C A 0.050 0.028 0.273 0.103 0.918   

H01 C T T 0.019 1.171 0.483 2.425 0.016   
H6 T A A 0.074 0.263 0.246 1.072 0.285   

H02 T T A 0.024 -0.158 0.384 -0.411 0.682   
H4/5 T T T 0.301 0.293 0.143 2.042 0.042   

H_other* * * * 0.009 0.648 0.682 0.950 0.343   
H1 = Referent T C A 0.522 Referent … … …   

           
Global Halpotype           

 
-861 

(T>C) 
-390 

(C>T>A) 
+90 

(A>T) +838 (G>C) +2043 
(G>A) 

Haplotype 
Frequency Coefficient SE t-stat p-

value
Intercept … … … … … … -1.611 0.402 -4.010 0.000

Age … … … … … … 0.013 0.007 1.925 0.056
BMI … … … … … … 0.049 0.010 4.952 0.000

Smoke … … … … … … 0.356 0.140 2.540 0.012
H7 C C A G G 0.0404 0.144 0.352 0.409 0.683
H6 T A A G G 0.0386 0.309 0.359 0.860 0.391
H3 T C A C A 0.0407 0.117 0.349 0.334 0.739
H2 T C A G A 0.1656 -0.094 0.189 -0.497 0.620
H5 T T T G A 0.0661 0.228 0.257 0.890 0.375
H4 T T T G G 0.2152 0.319 0.216 1.478 0.141

H_other* * * * * * 0.1157 0.349 0.217 1.610 0.109
H1 = Referent T C A G G 0.3178 Referent … … … 

           
NOTE. -- t statistics and p values were calculated from the coefficients and SEs within the best-fit multivariate model 
by the haplo.glm function in the haplo.stats R package. 

* Haplotypes with frequency <2% were pooled as "H_other."           
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3.1 ABSTRACT 

C-reactive protein gene (CRP) maps on 1q23, a genomic region shown strong evidence in 

harboring lupus susceptibility genes on distal mouse chromosome 1 and its syntenic human 

counterpart. Recently we have found evidence of CRP as a susceptibility gene for systemic lupus 

erythematosus (SLE) using a population-based case-control study.  Here we aim to use a family-

based population to test and confirm the evidence of association. Five single nucleotide 

polymorphisms (SNPs) in CRP were genotyped in 205 UCLA Genetic Study trio families.  Of 

the five SNPs, none individually was significantly associated with SLE risk.  However, minor 

alleles of promoter SNP-390 (T) and intron/exon boundary SNP+90 (T) showed marginal 

association with the disease risk (P = 0.05 and 0.06, respectively).  Haplotype analyses further 

demonstrated that any combination of CRP haplotypes containing +390T and +90T showed 

evidence of significant overtransmission to the SLE probands in our 205 trios (P = 0.01 – 0.06).  

Our findings, in conjunction with previous case-control study, suggest CRP to be a likely 

susceptibility gene for human systemic lupus erythematosus.   Future molecular studies of CRP 

gene and sequencing of additional loci in the 1q23 region will help identify the likely genetic 

epistatsis effect contributing to this complex polygenetic disease. 
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3.2 INTRODUCTION 

Systemic lupus erythematosus (SLE) is a complex polygenic autoimmune disease characterized 

by production of autoantibodies against different autoantigens. The chronic inflammation 

resulting from the hyperactive immune system coupled with immune complex deposition results 

in a wide range of symptoms, from mild arthritis to life-threatening multiple organ systems 

involvement. Modern therapeutic strategies have improved the disease prognosis significantly 

compared to 20 years ago.  However, treatments are generally immunosuppressive, which can 

result in devastating side effects such as serious infections, and some patients are not responsive 

to these aggressive therapies.  Given the well established genetic- and environmental- 

contributions to the development of SLE (1, 2), early identification of individuals with genetic 

susceptibility of SLE may enable health care professionals to provide timely preventative 

intervention such as lifestyle management to prevent or delay the onset of disease and the 

subsequent organ damage. 

The genetic basis for SLE susceptibility is complex, possibly involving multiple genes 

and their interactions (epistasis) to contribute to SLE or its many subsets defined by clinical and 

laboratory features (3).  Individuals carrying the susceptibility loci increase the probability of 

disease onset upon further environmental exposures that modify these genetic effects.  Several 

independent genome scans in multiplex SLE families have identified a number of genomic 

regions that may harbor susceptibility genes (2). Amongst the various candidate genes mapping 

within intervals of these genomic regions, the well studied genes to date include HLA-DR, Fc 

receptor cluster (FCGR2A, FCGR3A), PARP and PDCD1.  The gene encoding C-reactive 

protein (CRP) maps on 1q23, one of the multiple susceptibility loci that are syntenic between 
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human SLE and murine SLE models in linkage studies (2), making it a logical positional 

candidate gene for SLE association study. 

CRP is a prototypic acute phase protein in humans that increases rapidly in circulating 

concentration after an acute stimulus, such as infection, tissue damage or inflammation, making 

CRP serve a gold-standard biomarker of systemic inflammation.  Therefore CRP also serves as 

an important functional candidate gene for SLE for inflammatory cascade is believed to be 

chronically “activated” in patients with active disease. However, CRP has been found to be non-

remarkable in patients with active disease (4, 5) and non-responsive in patients with evidence of 

infection (6, 7).  Therefore, the reliability of circulating CRP as a diagnostic biomarker of disease 

activity and infection in SLE patients remains questionable.  Given the abnormal behavior of this 

acute phase protein in SLE patients and its important ability to modulate immunity and 

inflammation cascade, we aim to determine if the genetic variation in the CRP gene may 

contribute to SLE susceptibility. Here, we use 205 Caucasian SLE trios from the Southern 

California region to assess whether polymorphisms in CRP, a highly sensitive inflammatory 

marker, are associated with the risk of SLE development. 

3.3 SUBJECTS AND METHODS 

3.3.1 Human Subjects and Data Collection. 

Two hundred and five Caucasian SLE complete trios consisting of mother-father and affected 

child from the University of California, Los Angeles (UCLA) Lupus Genetic Study (8) were 

enrolled in this study.  Of the 205 trios, 138 were recruited from the metropolitan areas of Los 
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Angeles; and 67 from Columbus, OH.  The mean age for the 205 SLE probands was 43.16.  

Ninety percent of SLE probands were female (n = 186) and ten percent were male (n = 19). All 

probands met the American College of Rheumatology criteria for the SLE classification (9).  Of 

the 205 probands, thirty six percent (n = 74) had evidence of glomerulonephritis.  Of the 410 

parents of affected probands in this study, 5.3 percent (n = 22 (19 female/ 3 male)) also had the 

diagnosis of SLE.  All participants gave written informed consent. Approval for human study 

protocols were obtained from the human subjects review boards at University of California, Los 

Angeles. Genomic DNA was purified from peripheral blood mononuclear cells.   

3.3.2 SNP selection and Genotyping.  

CRP tagSNPs were chosen from the SeattleSNPs Program for Genomic Applications 

(http://pga.gs.washington.edu/) European population, using the  LDSelect algorithm (10) using a 

linkage disequilibrium threshold of r2 = 0.64 and a minor allele frequency threshold of five 

percent.  Five tagSNPs were selected relative to the ATG codon of the CRP translation site in the 

FASTA database (Genbank NC_000001.9).  The positions of these SNPs are -861, -390, +90, 

+838 and +2043.  SNPs -861 and -390 positioned in the promoter region, +90 located in 

intron/exon boundary, +838 positioned within exon 2, and + 2043 in the 3’ untranslated region. 

For clarification, reference numbers from NCBI single nucleotide polymorphism are provided 

for each of the five SNPs: -861 is rs3093059, -390 is rs3091244, +90 is rs1417938, +838 is 

rs1800947 and +2043 is rs1205.  Genotyping for -861 was carried out using Pyrosequencing 

assay on PSQ 96MA system.  SNPs -390, +90, +838 and +2043 were genotyped using TaqMan 

SNP genotyping assays under standard conditions (http://www.appliedbiosystems.com/), except 

for the triallelic tagSNP -390, which was genotyped using methods previously described (11). 
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3.3.3 Statistical and In Silico Analysis. 

The family-based association test (FBAT, ver.1.7.2) software was used to determine evidence of 

association between the CRP polymorphisms and SLE risk, using both individual SNPs and 

haplotypes (12). The FBAT statistic is an extension of the original transmission disequilibrium 

Test (TDT) (13).  Statistics for individual SNPs were calculated under an additive risk model, 

and for both the bi-allelic (each allele against all others) and multi-allelic (all alleles at a marker 

were compared simultaneously in one test) mode of testing. Haplotype statistics were tested 

using individual haplotype test and global haplotype test. Genehunter was utilized to confirm the 

FBAT statistics and to estimate copies of transmitted versus untransmitted alleles for each 

individual marker and haplotypes (GENEHUNTER, ver.2.0).  Cohort summary statistics, linkage 

disequilibrium statistics of the four bi-allele SNPs, and Hardy-Weinberg equilibrium (HWE) 

tests were carried out using the R statistics program ver.2.0.1.  The genotype and allele 

distribution of the tagSNPs in probands with and without glomerulonephritis were compared 

using Fisher’s Exact test. Mendelian inconsistencies were evaluated by FBAT.  Mendelian error 

rates were 13 families for SNP -861, 28 for SNP -390, 8 for SNP +90, 6 for SNP +838 and 8 for 

SNP +2043.  These Mendelian errors were excluded in the analysis.  Promoter SNP analysis for 

transcription factor element binding was performed using TFSEARCH ver.1.3 

(http://www.cbrc.jp/research/db/TFSEARCH.html), while splice site prediction was performed 

using Berkeley Drosophila Genome Project (BDGP)  

(http://www.fruitfly.org/seq_tools/splice.html). 
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3.4 RESULTS 

3.4.1 Gene structure, Hardy-Weinberg equilibrium, and linkage disequilibrium in CRP 

CRP is a relatively small gene with approximately 6,800 base pairs.  The gene contains two 

exons (black boxes in Figure 1) with a 104 amino acid peptide coding regions.  The gene 

contains a short 5'-untranslated region (89 bp, grey box), with two exons separated by a short 

intron region (286 bp), and an unexpectedly longer (1.2 kb) 3'-untranslated region (grey box).  

Two of the 5 SNPs locate on the promoter regions (SNPs -861 and -390), SNP +90 locates on the 

intron and exon border, SNP + 838 is an synonymous coding SNP in exon 2, and +2043 loates 

on 3'-untranslated region (Figre 1).  All 5 SNPs examined were in HWE in probands alone, 

parents alone or combined.  Linkage disequlibirum test of the founder (parents) showed that all 

SNPs were in strong LD with each other (D' >0.96) (Table 3.1). CRP polymorphisms genotype 

distributions for 205 probands in this study and 337 caucasain SLE cases from our previous 

study for comparison purpose (Table 3.2). 

3.4.2 Marginal over-transmission of -390T and +90T alleles 

Of the five SNPs examined in this family-based analysis, we found evidence of marginal over-

transmission to SLE probands on the minor allele (T) of the triallelic SNP -390 (Z = 1.947, P = 

0.051) and the minor allele (T) of the intron/exon boder SNP +90 (Z = 1.819, P = 0.068) (Table 

3.3). SNP -390 (T) was transmitted 88 times from a heterozygous parent to the index probands, 

and remained untransmitted 64 times. SNP +90 (T) was transmitted 99 times from a 

heterozygous parent to the index probands, and remained untransmitted 75 times. Multiallelic 
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analysis produced a global chi-square value of 3.96 (P = 0.138) for SNP -390, and chi-square 

value of 3.31 (P = 0.068) for SNP +90.  FBAT analysis failed to show evidence of significant 

over-transmission on minor alleles of SNP-861 (P = 0.896), +838 (P = 768), and +2043 (P = 1) 

to our SLE probands (Table 3.3). 

3.4.3 Significant “Mini-Haplotype” Associations with SLE risk 

CRP polymorphisms were analyzed in multiple combinations to assess effects of “mini-

haplotypes” in CRP gene on SLE risk.  We termed these combinations “mini-haplotype” to 

differentiate them from the gene-wide haplotypes consisting of all five tagSNPs.  Our results 

showed evidence of overtransmission of 2-SNP haplotypes -390T → +90T (72 transmitted/48 

untransmitted, p = 0.028) and +90T → +838G (80 transmitted/53 untransmitted, p = 0.043). Of 

the 3-SNP haplotypes, two haplotypes containing minor alleles at -390T and +90T showed 

overtransmission to SLE probands: -861T → -390T → +90T (64 transmitted/44 untransmitted, p 

= 0.029) and -390T → +90T → +838G (72 transmitted/45 untransmitted, p = 0.013).  The 4-

SNP haplotype analysis revealed the same pattern of haplotype-tag effect from the combination 

of -390T and +90T alleles: -861T → 390T → +90T → +838G (p = 0.042) and 390T → +90T 

→ +838G → +2043G (p = 0.038). In summary, all mini-haplotypes containing minor alleles at 

+390 and +90 showed evidence of overtransmission to the SLE probands in our 205 trios. 

3.4.4 Marginal Global Haplotype association with SLE risk 

When all 5 SNPs were included for gene-wide haplotype analysis, they formed five common 

haplotypes (≥ 1%), accounting for 96.2% of the founder chromosomes in the population studied 
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(Table 3.4).  The combination of -390T and +90T alleles occurred only on the most frequent 

haplotype (H1), same as the mini-haplotype results, this haplotype also showed an increased 

transmission rate to SLE proband (54 transmitted/39 untransmittted, p = 0.068) in the individual 

haplotype analysis. The global haplotype analysis revealed similar finding of χ2 statistic of 

10.764 with the p-value of 0.056.  These results are consistent with the single SNP analyses, as 

the high risk haplotype (h1) is tagged by the high risk alleles -390T and +90T. 

3.4.5 Association of CRP SNPs with SLE glomerulonephritis 

We also examined genotype and allele distribution between SLE with (n = 74) and without (n = 

131) the diagnosis of glomerulonephritis.  The allele and genotype frequencies between these 

two groups did not differ significantly (data not shown). 

3.5 DISCUSSION 

C-reactive protein serves several important roles in the human innate immune system, including 

agglutination, bacterial capsular swelling, phagocytosis, and complement activation/regulation 

(14).  These varied biologic functions of CRP as an acute phase protein distinguish it as a 

remarkable marker of non-specific systemic inflammation in healthy individuals.  In SLE, CRP 

appears to serve an intriguing dual role, both as a contributor of inflammation which results in 

premature coronary artery disease in patients (15), and as a protective factor for SLE associated 

renal involvement in mice models (16, 17).   
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CRP has been shown to alter the clearance of the SLE autoantigen chromatin (18) and 

histones (19), to bind to the apoptotic cells surface (20), and to suppress acute inflammation via 

possible cytokine cascade regulation (21) and/or IL-10 synthesis (22), all of which are consistent 

with the protective role of CRP. These activities are thought to be necessary for clearing of the 

apoptotic debris, a process that is believed to be defective in patients with SLE.  However, we 

still do not understand how circulating CRP impacts SLE pathogenesis.  The fascinating 

opposing roles CRP plays in patients with SLE may be better understood by investigating the 

blue print coding this protein – the CRP gene.  Here we examined association of CRP 

polymorphisms with SLE, and our results suggest that two CRP SNPs might contribute to the 

risk of SLE development. 

We have previously identified evidence supporting linkage to SLE in chromosome region 

1q23 using 238 individuals from 62 multiplex, multiethnic SLE families (23).  The CRP gene 

maps directly to the 1q23 region, which also contains a cluster of four genes that encode low-

affinity receptors for IgG (FCGR2A, FCGR3A, FCGR3B, and FCGR2B). Genetic 

polymorphisms in these four genes, especially alleles of FCGR2A and FCGR3A, have been 

associated with SLE in multiple cohorts (24-27).  Various studies have demonstrated the ligand- 

and allele-dependent differential interaction effects between CRP and various Fc gamma 

receptors (28-31).  Therefore the relative importance of these Fc gamma alleles found to be 

associated with SLE may depend on not only the IgG subclass of pathogenic autoantibodies in 

each patient, but also the integrity of the circulating CRP that binds to these receptors.  Hence it 

is reasonable to assume that interactions between CRP gene and these neighboring Fc gamma 

receptor genes (epistasis) play an important role in SLE susceptibility.  Before any epistatic 
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effects can be identified, we must first identify the associations between each candidate locus 

with the disease risk and patterns of linkage disequilibirum between candidate loci. 

In our recent SLE population-based study (32) examining the same five CRP SNPs using 

337 Caucasian American patients and 448 sex- and race-matched controls, we found no 

statistically significant associations between each of the individual SNP with SLE risk (P = 0.12 

– 0.97) but discovered significantly different global haplotype frequencies comparing cases to 

controls (P < 0.000001) (32).  Here, we also found no evidence of significant associations on the 

individual SNP analysis (P = 0.051 – 1).  In the global haplotype analysis comparing number of 

haplotypes transmitted to probands versus number of haplotypes not transmitted, the evidence of 

SLE association is only marginal (P = 0.056).  However, using a mini-haplotype analysis, we 

have additionally shown here that the SLE risk likely associate with CRP haplotypes bearing two 

specific alleles (-390T and +90T) in this particular family-based cohort.  All mini-haplotypes 

containing minor alleles at +390 and +90 showed evidence of overtransmission to the SLE 

probands in our 205 trios (p = 0.012 – 0.043). 

When comparing global haplotype results between the two cohorts, we were surprised to 

see that the high risk global haplotype (H1, Table 3.4) in this study actually appears to be 

protective in the previous case-control study by having lower estimated frequency in cases 

compared to controls (32).  To rule out the possibility of genotyping or other classification 

errors, we compared the genotype frequencies on each of the five SNPs between SLE probands 

in this study (n = 205) and SLE cases from the case-control (n = 337). There are no significant 

differences in genotypic frequency between these two studies, indicating the unlikely chance of 

misclassification.   
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Studies of cases and unrelated controls design and is known for its disadvantage of prone 

to confounding due to unaccounted population admixture, which may affect the validity of the 

obtained results (33).  On the other hand, family-based study designs offer the advantages of 

sharing common genetic background among the family members and more homogeneous 

environmental exposures associated with the disease risk. Thus, the problem of population 

stratification and admixture is bypassed (34).  The finding that high risk global H1 haplotype in 

this study appears to be protective is likely to be a result of the population stratification 

unaccounted for in our previous case-control designs.  SLE is known for its complex influence 

from multiple genes and environmental factors, indicating that genetic effect from each 

susceptibility gene is modest at the best.  Furthermore, phenotype variation in SLE is almost 

always product of many pleiotropic genes and epistatic genes, further increasing the difficulty of 

detecting significant effect from one individual gene in multiple independent cohorts. 

In fact, the combined results of our two studies support the complex CRP genetic 

influence on SLE risk.  Unlike the recent British SLE family-based study by Russell et al. (35), 

neither one of our US-based studies found evidence of individual SNP associations, which 

supports the differential admixture effect on SLE risk.  In the absence of individual SNP 

association, global haplotype analyses revealed evidence of association between CRP and SLE in 

both study designs (p = < 0.000001 and 0.056), in which case-control design showed higher level 

of statistical significance than the family-based design.  Observing a higher degree of association 

in a more genetically heterogeneous population (case-control design) provides evidence on 

presence of additional susceptibility genes near by CRP, and supports the epistatic effects of 

CRP has on SLE.  The less significant but still suggestive global haplotype association in the 
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family-based design suggest a significant role CRP variation plays in the polygenic nature of 

SLE.  

Russell et al. have preciously identified over-transmission of the A allele at +2043 locus 

to SLE probands in their British family-based study of CRP (35).  In this study consisting of 

North American trios, the expected and observed transmission of alleles at +2043 are identical, 

resulting in a p-value of 1 (Table 3.3).  Taken into context together with our previous population-

based study, we found no evidence of association to support +2043 as a susceptibility 

polymorphism in North American Caucasian SLE.  Russell et al. had also suggested that since 

SNP+2043 was found to be associate with a lower base-line CRP levels, ANA production, and 

SLE risk in their cohort, relative deficiency of CRP (indicated by low CRP level)  may 

predispose to development of SLE (35).  It is believed that CRP binds to ribonucleoproteins and 

polar phospholipid materials released during apoptosis, therefore decreased circulating CRP may 

interfere with effective clearing of the immune complexes and result in SLE development. This 

theory, however, dose not support the epidemiological finding in African Americans who have 

higher circulating levels of CRP (36), and have up to 3 times the risk of developing SLE 

compared to other racial categories (37).  Additionally, CRP level is found to be higher in 

women compared to men in the general population (38), and this may contribute to the high 

female to male ratio (10-15:1) of the SLE prevalence (39). 

The hypothesis that decreased circulating CRP levels may predispose to increased risk of 

SLE is further contradicted by a recent study conducted by Miller et al.(14).  In their association 

study of CRP polymorphisms and CRP levels in healthy individuals, minor allele of +2043 was 

also associated with significantly decreased circulating CRP levels in all three of their large 

cohorts (Women's Health Study (n = 717), Pravastatin Inflammation/CRP Evaluation trial (n = 
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1,110) and Physicians' Health Study (n = 509)).  This strongly suggests that the association 

between +2043 and decreased CRP levels in Russell’s SLE families is a normal genotype-

phenotype association, not likely to be attributed to SLE-related risk factors, or has potential to 

increase the development of SLE.  Perhaps the non-remarkable nature of CRP in SLE patients is 

a result of some form of yet to be identified defect in the protein integrity, a defect which may 

not necessarily be reflected in circulating CRP levels.   

Our lack of significant association with SNP +2043 does not rule CRP out as a SLE 

susceptibility gene.  In fact, our mini-haplotype analysis found evidence of CRP association with 

SLE risk on two potentially functional SNPs: a promoter triallelic SNP at -390, and an 

intron/exon boundary SNP at +90 lying at the 29th base pair downstream of exon 1, both of 

which have been shown to alter CRP levels(11, 14, 35, 40, 41).  We showed that all individual 

SNPs/mini-haplotypes/global-haplotype that are specific to -390T and -90T alleles are associated 

with an increase in SLE risk.   

We (11, 32) and others (14, 41) have previously found significant association between 

the -390T allele and increased circulating CRP levels. Using  the transcription factor–motif 

analysis, -390T allele in the CRP promoter showed to form a potential USF binding motif (41).  

Functional study indeed demonstrated that the -390 SNP resides within the hexameric core of 

transcription factor binding E-box elements and was associated with increases promoter activity 

(41).  An SLE association with a high-CRP associated SNP may sound contradictory to the 

theory that CRP “protects” against SLE risk, however the observation that African American 

women associate with both significantly elevated risk of SLE and increased basal CRP levels 

should not be ignored.  In fact we have previously found that the -390T allele which is associated 

with increased CRP levels is more frequent in African Americans than Caucasian Americans 

 71



 

(11).  It remains unclear whether increased circulating CRP is a risk factor for SLE risk, or rather 

an indicator of the chronic systemic inflammatory processes underlying SLE etiology. 

SNP +90 resides at 27 basepairs downstream from the end of exon 1.  Using the splice 

site prediction software, we identified a possible alternative splicing site (GT) in silico which is 

10 basepairs downstream from +90.  It is possible that transcription of CRP may not splice out 

the entire intron between exon 1 and 2, hence leaving SNP +90 as part of the coding sequence in 

the final protein product which in turn interferes with the integrity of the final protein product.  

The significance and mechanisms of this potential alternative splicing in SLE remain to be 

determined.   

It remains a strong possibility that either SNPs -390 and +90, or both are in significant 

LD with one or more functional SLE-risk polymorphism(s), possibly in the Fc gamma receptor 

genes which were previously found to confer risk for SLE.  The interplay between these risk 

polymorphisms may result in haplotype-specific transmission to individuals who then develop 

SLE upon exposure to additional environmental injury or trigger.  This hypothesis is supported 

in our Pittsburgh population-based study in which the haplotype distribution was significantly 

different between cases and controls (32).  We are in the process of performing additional 

characterization of candidate genes in 1q23 as well as linkage disequilibrium analyses between 

these genes in order to better understand the epistasis effects in the 1q23 region.  Better 

understanding of the gene-gene interactions may shed light on novel pathways in which CRP 

participates to modulate the risk of SLE. 
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3.7 MANUSCRIPT 2 TABLES AND FIGURES 

Table 3.1.  Pairwise Linkage Disequilibrium between CRP SNPs in founders 

           
     +90 +838 +2043 
           
  D'  0.9978 0.9869 0.9976 

-861 Corr.  -0.2227 -0.0782 -0.2086 
  p-value  <0.0001 0.0328 <0.0001 
           

  D'    0.9968 0.9704 
+90 Corr.    -0.1773 -0.4557 
  p-value    <0.0001 < 0.0001
           
  D'      0.9569 
+838 Corr.      0.3624 
  p-value      < 0.0001
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Table 3.2.  Genotype requencies of CRP SNPs – comparison between UCLA cohort and Pitt Cohort 

SNP Genotype UCLA Probands 
n (percent) 

Pitt SLE Cases
n (percent) p-value 

-861 TT 158( 0.82) 287( 0.86) 0.2154 
(rs3093059) TC 35( 0.18) 47 ( 0.14)  

 CC 0( 0.00) 0 ( 0.00)  
     

-390 CC 62( 0.33) 92(0.38) 0.6042 
(rs3091244) CT 68 (0.36) 88(0.36)  

 TT 25(0.13) 29(0.12)  
 CA 20(0.11) 17(0.07)  
 TA 12 (0.06) 15(0.06)  
 AA 0(0.00) 2(0.01)  
     

+90 AA 88(0.44) 117(0.49) 0.3085 
(rs1417938) AT 86(0.43) 101(0.42)  

 TT 27(0.13) 22(0.09)  
     

+838 GG 176 (0.88) 283(0.84) 0.1965 
(rs1800947) GC 23(0.11) 53(0.16)  

 CC 2 (0.01) 0(0.00)  
     

+2043 GG 97(0.49) 142(0.43) 0.356 
(rs1205) GA 82(0.41) 157(0.47)  

 AA 20(0.10) 35(0.10)  
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Table 3.3.  Single-marker association analysis in the CRP gene 

Bi-allelic association analysis result           
         

Marker Allele afreq Fama Sb E(S)c Var(S)d Z p-value 
-861 T 0.909 53 83 82.5 14.75 0.13 0.8964 
-861 C 0.091 53 29 29.5 14.75 -0.13 0.8964 
-390 C 0.59 130 138 150 41.5 -1.863 0.0625 
-390 T 0.323 117 100 88 38 1.947 0.0516 
-390 A 0.087 45 25 25 12.5 0 1.0000 
+90 A 0.678 131 155 167 43.5 -1.819 0.0688 
+90 T 0.322 131 113 101 43.5 1.819 0.0688 
+838 G 0.937 44 66 65 11.5 0.295 0.7681 
+838 C 0.063 44 22 23 11.5 -0.295 0.7681 
+2043 G 0.696 134 171 171 45 0 1.0000 
+2043 A 0.304 134 103 103 45 0 1.0000 

         
Multi-allelic association analysis result         

         
Marker Allele# DF Chisq p-value     

-861 2 1 0.017 0.8964     
-390 3 2 3.958 0.1382     
+90 2 1 3.31 0.0688     
+838 2 1 0.087 0.7681     
+2043 2 1 0 1.0000     

         
a Number of informative families (i.e. families with at least one heterozygous parent). 
b Statistic test from family–based association test for the observed number of transmitted alleles. 
c Expected value of S under the null hypothesis (ie no linkage or association). 
d Empirical variance. 
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Table 3.4.  Haplotype association analysis of CRP gene 

 

Individual haplotype association analysis result
                          

Haplotypes -861 -390 +90 +838 +2043
Haplotype 
frequency Fam S E(S) Var(S) Z p-value

h1 T T T G G 0.305 92.800 100.763 90.493 31.863 1.819 0.069 
h2 T C A G G 0.288 101.000 79.237 89.007 33.802 -1.680 0.093 
h3 T C A G A 0.234 93.900 79.822 76.885 32.463 0.515 0.606 
h4 C A A G G 0.075 38.000 26.000 25.500 11.083 0.150 0.881 
h5 T C A C A 0.060 36.900 21.941 21.941 9.943 0.000 1.000 
             

* Haplotypes with frequencies < 0.01 were not listed 
                          
Global haplotype association analysis result

             
Allele# DF Chisq p-value          

18 5 10.764 0.056          
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Figure 3.1.  CRP gene and position of five TagSNPs 
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4.1 ABSTRACT 

Cardiovascular disease (CVD), a multi-factorial trait with complex pathophysiology, is one of 

the major causes of morbidity and mortality in all westernized populations.  Elevated level of 

CRP has emerged as a sensitive predictor of cardiovascular disease (CVD) in the general 

population. However, the value of circulating CRP as biomarker for CVD in systemic lupus 

erythematosus (SLE) remains uncertain. Given the positional and functional candidacy of the 

CRP gene in SLE, we hypothesized that variation in the CRP gene may serve as a potential 

biomarker to assess CVD risk in patients with SLE.  We also hypothesized that association 

between CRP polymorphism and CVD risk are independent of the effects from circulating CRP 

levels.  Two hundred thirty seven white women who met the ACR criteria for definite or 

probable SLE were genotyped for five CRP tagSNPs (-861, -390, +90, +838 & +2043). 

Genotyping was performed using PCR-RFLP, Pyrosequencing or TaqMan assays. B-mode 

ultrasound was used to measure carotid plaque and carotid intima-media wall thickness (IMT). 

Association studies were performed using the Fisher’s exact test, multivariable ANOVA and 

multivariable logistic regression models.  Our data showed significant associations between CRP 

polymorphisms with several important intermediate phenotypes of CVD, including high blood 

pressure, high BMI, high waist-hip ratio, increased acute phase proteins CRP and fibrinogen, 

levels of cholesterol, triglycerides, low-density lipoprotein (LDL), high-density lipoprotein 

(HDL), IMT and stroke risk.  Our data revealed that CRP gene modifies the risk of CVD 

intermediate phenotypes in SLE patients independent of the gene expression levels.  

Additionally, pleiotropic effects of these CRP polymorphisms reinforced the important role CRP 

plays in the development of CVD. CVD risk assessment for SLE patients could potentially be 

improved by inclusion of CRP genetic variation.  
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4.2 INTRODUCTION 

Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by the 

production of various autoantibodies and involvement of multiple organs.  The increased 

morbidity and mortality in SLE patients can be explained largely from the 5 to 6-fold increased 

risk of coronary heart disease (CHD).  This excess risk is especially pronounced in younger 

women (age 35-44) where the risk was found to be > 50-fold (1).  While traditional 

cardiovascular disease (CVD) risk factors are found to be more prevalent in patients with SLE , 

they alone do not fully explain the significantly increased risk for atherosclerosis and CVD in 

SLE population (2, 3).  

Chronic inflammation has been identified as significant part of the underlying mechanism 

for atherosclerosis and SLE pathogenesis, hence the gene coding for acute phase protein, such as 

C-reactive protein (CRP), may play an important role in the pathogenesis of CVD in SLE.  CRP 

is a stable and sensitive acute phase protein which has been used as a gold standard of 

inflammation biomarker.  Recent data has demonstrated that CRP not only reflects but also 

participates in inflammatory cascades (4), and is associated with major CVD risk factors, 

including inflammation (5), metabolic syndrome (6), and hypertension (HTN) (7) in the general 

population.  These specific characteristics of CRP mark the gene coding for this acute phase 

protein as an ideal functional candidate gene to investigate as a susceptibility locus for CVD risk. 

Genetic studies of CRP have identified several single nucleotide polymorphisms (SNPs) 

to be associated with the basal CRP levels in both healthy and SLE populations (8-10).  

However, SNPs that were found to be associated with increased circulating CRP levels have not 

been found to consistently correlate with increased CVD risk (5, 10, 11).  We hypothesize that 

genetic variation in CRP significantly impact the risk of CVD by promoting the accelerated 
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development of Framingham CVD risk factors at pre-clinical stage of the CVD.  Here the risk 

factors for disease model are characterized as “intermediate phenotypes”; intermediate in 

time/mechanism between gene action and the ultimate disease trait. The CVD risk factors we 

investigate in this study include: inflammatory markers (CRP, fibrinogen, homocysteine, 

albumin), hemodynamic function (SBP, DBP, hypertension), lipids (total cholesterol, HDL LDL, 

triglycerides), metabolism (BMI, waist-hip ratio, fasting glucose), and subclinical atherosclerosis 

(carotid artery intima-media thickness (IMT), carotid plaque).   

The objective of this study was to utilize a cohort of SLE women, a population well-

known for its inherent increased risk of accelerated atherosclerosis and CVD morbidity and 

mortality, to examine the role of CRP genetic variation (tagSNPs) in relation to CVD risk factors 

(intermediate phenotypes).  Additionally, we hypothesize that not only are the intermediate 

phenotypes of CVD in SLE affected by CRP SNPs, but may also be independent from the effect 

of circulating CRP levels, modified by other epistasis genes, and are likely to share genetic 

determination (pleiotropy). 

4.3 SUBJECTS AND METHODS 

4.3.1 Subjects 

A total of 237 white female SLE cases currently enrolled in the Pittsburgh Lupus Registry were 

included in this study. All eligible women who were 18 years of age or older were invited to 

participate, regardless of their history of cardiovascular event. The 237 cases included in this 

study had the mean age of 44.26 ± 10.9 (SD), and met the 1982 and 1997 American College of 
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Rheumatology criteria for definite or probable SLE (12, 13).  All subjects have been seen either 

at the University of Pittsburgh Medical Center or by practicing rheumatologists in the Pittsburgh 

metropolitan area. This study was approved by the University of Pittsburgh Institutional Review 

Board, and all subjects provided written informed consent prior to participation. Each participant 

also provided an authorization for release of medical information so that pertinent hospital and 

outpatient records could be reviewed to confirm aforementioned events. 

4.3.2 Cardiovascular disease intermediate phenotypes measurement 

Patients’ clinical information on age, race, smoking habits (having ever smoked), history of 

stroke were obtained using a standard questionnaire. Body mass index (calculated from height 

and weight) and waist-to-hip ratio were obtained using a formula of waist measurement divided 

by the hips measurement of each patient. Current blood pressure status was determined using an 

average of 2 consecutive sitting blood pressure readings. Levels of total cholesterol, low-density 

lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglyceride, glucose, 

and homocysteine levels were measured in fasting blood samples using standardized laboratory 

tests. Hypertension (HTN) was defined as an average systolic blood pressure = 140 mmHg or an 

average diastolic blood pressure = 90 mmHg or the use of antihypertensive agents. History of 

stroke were confirmed by medical records ascertainment. 

4.3.3 Inflammatory markers measurement 

Serum albumin (dye binding assay), high sensitivity C-reactive protein (ultrasensitive colometric 

ELISA), and fibrinogen (modified clot-rate assay) were measured.  Methods for these 
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measurements have been previously described (14, 15).  Each laboratory test was done in the 

same lab and same vascular disease measurement session for all the study participants. 

4.3.4 Vascular disease measurement 

Carotid ultrasound was performed at the University of Pittsburgh Epidemiology Ultrasound 

Research Laboratory. Briefly, a Toshiba SSA-270A scanner (Tustin, CA) equipped with a 5-

MHz linear array imaging probe was used to image the right and left common artery, carotid 

bulb, and the first 1.5 cm of the internal and external carotid arteries.  

Plaque was defined as a distinct focal area protruding into the vessel lumen, with at least 

50% greater thickness than that found in surrounding areas. For each segment scanned, the 

degree of plaque was graded as follows: 0 = no observable plaque; 1 = one small plaque (less 

than 30% of the vessel diameter); grade 2 = one medium plaque (between 30% and 50% of the 

vessel diameter) or multiple small plaques; grade 3 = one large plaque (greater than 50% of the 

vessel diameter) or multiple plaques with at least one medium plaque. The grades were summed 

across the right and the left carotid arteries to create the combined plaque index (possible range 

0-30), the overall measure of the extent of focal plaque.   

Intima-media thickness (IMT) was measured across 1-cm segments of both the right and 

left sides of the near and far walls of the distal common carotid artery and the far wall of the 

carotid bulb and the internal carotid artery. Values from each location were averaged to produce 

an overall measure of IMT.  
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4.3.5 Statistical analysis 

Allele and genotype frequencies were calculated by the allele counting method. Goodness of fit 

to Hardy–Weinberg expected proportions was examined by х2 test. Pair-wise linkage 

disequilibrium (LD) between markers was estimated using the D' method (16).  The descriptive 

analyses were summarized as means and standard deviation for continuous variables and as 

percentages for categorical variables. Correlations between serum CRP and various quantitative 

intermediate phenotypes were measured using pearson correlation tests.  Statistical genotype-

phenotype association tests included multivariate one way analysis of variance (ANOVA) and 

multivariate general linear models for continuous variables, and Fisher’s exact test and 

multivariate logistic regression for categorical data. Effects of age, BMI, and smoking were 

controlled in ANOVA and multivariate regression models.  CRP level was then included as an 

additional covariate to assess the genotype-phenotype association independent of the CRP levels. 

Quantitative risk factors were log-transformed to normal distribution.  Carotid plaque was 

categorized as plaque positive (degree of plaque of equal to or greater than 1) and plaque 

negative (degree of plaque of zero).  R.2.0.1 was used to perform all statistical procedures.  All 

p-value reported in this study is the nominal p-value.   

4.3.6 Genotyping 

CRP tagSNPs were selected as previously described (17).  Reference numbers from NCBI single 

nucleotide polymorphism are provided for each of the five SNPs examined:  -861 is rs3093059, -

390 is rs3091244, +90 is rs1417938, +838 is rs1800947 and +2043 is rs1205.  Genotyping for 

+838 and +2043 SNPs was obtained using polymerase chain reaction- - restriction fragment 
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length polymorphism (PCR-RFLP).  SNPs -861 was genotyped using pyrosequencing assays.  

SNPs -390 and +90 were genotyped using TaqMan assays.   

4.4 RESULTS 

4.4.1 Clinical characteristics of SLE women 

A total of 273 women from our original cardiovascular disease study (18) were genotyped and 

phenotyped on intermediate traits of CVD, carotid artery intima-media thickness (IMT), carotid 

plaque, and history of ischemic stroke.  All women are self-reported to be Caucasians in 

ethnicity.  106 (44.72%) of the 273 women have had a history of smoking and 95 (40%) are post-

menopausal.  Their mean age at the time of the phenotype characterization was 44.26 ± 10.9 

(mean ± SD) years.  Their mean duration of SLE was 10.12 ± 7.09 years with disease activity 

score (SLAM) of 6.71 ± 3.51 and disease damage score (SLICC) of 1.38 ± 1.74.  Of the 273 

women, 77 (32.5%) had evidence of carotid plaque, 47 (19.83%) showed renal involvement, and 

77 (32.5%) had diagnosis of HTN (Table 4.1). 

4.4.2 Allele and genotype frequencies of CRP SNPs and corresponding CRP levels 

All five tagSNPs examined showed no significant deviations from Hardy-Weinberg equilibrium.  

Genotype and allele frequencies of each SNP and their associated log-transformed serum CRP 

levels (mean ± SD) are presented in Table 4.2.  Having adjusted for effects of age, BMI, and 

smoking, minor alleles of two SNPs revealed significant associations with increased CRP (+90, p 
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= 0.0032; -390, p = 0.012, respectively).  Homozygotes of the minor allele (T) at +90 had the 

highest logCRP level (1.544 ± 1.048) compared to homozygotes of the common allele (A) (0.639 

± 0.976) and heterozygotes (0.623 ± 1.054).  Mean CRP levels were significantly higher in 

homozygotes of the T allele at the triallelic promoter SNP-390 (1.305 ± 1.128) and heterozygotes 

with an A allele (CA) (1.356 ± 0.947) when compared to homozygotes of the common allele (C) 

(0.519 ± 0.947).  Promoter SNP -861 was marginally associated with CRP level after adjusting 

for effects of age, BMI, and smoking (P = 0.159)(data not shown).  However BMI was found to 

be significantly associated with this SNP, therefore BMI was treated as a potential effect 

modifier and removed from the ANOVA test.  Without BMI as a covariate in the model, 

association between -861 and CRP became statistically significant (p = 0.02).  Subjects having 

one copy of the minor allele C at –861 were associated with increased CRP levels compared to 

homozygotes of the common allele T (1.141 ± 1.115 vs. 0.685 ± 1.072) (Table 4.2). 

4.4.3 Correlation between circulating CRP levels and cardiovascular disease intermediate 

phenotypes. 

Correlation coefficient tests were applied to determine correlation between serum CRP levels 

and quantitative intermediate phenotypes for CVD shown in Table 4.3.  CRP was significantly 

correlated with BMI (p < 0.0001), waist-hip ratio (p < 0.0001), glucose (p =0.003), HDL (p = 

0.04), triglycerides (p < 0.001), SBP (p = 0.002), DBP (p = 0.037), fibrinogen (p < 0.0001), 

albumin (p < 0.0001), and IMT (p < 0.001) (Table 4.3). 
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4.4.4 Pleiotropic effects of CRP with CVD intermediate phenotype. 

Association tests for effects of individual CRP polymorphisms (SNPs) on intermediate 

phenotypes (listed in Table 4.3) were performed first with age, BMI, and smoking as covariates 

to adjust their potential confounding effects and the results are presented in Table 4.4A.  Four 

SNPs (-861, -390, +90, and +838) exhibited significant associations with CVD intermediate 

phenotypes, while three showed pleiotropic effects (one allele → multiple traits) on these 

intermediate phenotypes.  SNP -861 was pleiotropically associated with DBP (p = 0.05), HTN (p 

= 0.01), BMI (p = 0.004), and waist-hip ratio (p = 0.037).  SNP -390 was associated with 

circulating CRP levels (p = 0.015).  SNP +90 was pleiotropically associated with CRP (p = 

0.003), fibrinogen (p = 0.027), total cholesterol (p = 0.015), and LDL (p = 0.047).  SNP +838 

was also pleiotropically associated with HDL (p < 0.001), glucose (p = 0.01), and IMT (p = 

0.026) (Table 4.4A). 

Serum CRP levels were then added as covariates in the model to determine genotype-

phenotype associations independent of the influence from CRP expression.  The original 

associations between these SNPs with multiple intermediate traits remained statistically 

significant.  SNP -861 was associated with DBP (p = 0.038), HTN (p = 0.008), BMI (p = 0.04), 

and waist-hip ratio (p = 0.013).  SNP +90 was associated with total cholesterol (p = 0.009), and 

LDL (p = 0.042).  SNP +838 was associated with HDL (p < 0.001), glucose (p = 0.016), and 

IMT (p = 0.028) (Table 4.4B).  Table 4.5 shows genotype-specific mean ± SD of these 

intermediate phenotypes. 

Pleiotropic effects of the three SNPs were observed in Table 4.5.  Homozygotes of the 

major allele (T) at -861, had BMI of 3.282 ± 0.203 (log-transformed mean ± SD), waist-hip ratio 

of -0.173 ± 0.124, and DBP of 4.355 ± 0.131.  Heterozygotes at -861 showed association with 
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BMI of 3.361 ± 0.257 (p = 0.04), waist-hip ratio of -0.227 ± 0.104 (p = 0.013), and DBP of 4.307 

± 0.115 (p = 0.038).  Homozygotes of the major allele (A) at +90 had total cholesterol level of 

5.333 ± 0.189 (log-transformed mean ± SD), and LDL of 4.766 ± 0.229; heterozygotes had a 

total cholesterol level of 5.237 ± 0.205, and LDL of 4.633 ± 0.332, while homozygotes of the 

minor allele (T) had a total cholesterol level of 5.209 ± 0.194, (p = 0.009) and LDL of 4.645 ± 

0.355 (p = 0.042).  Homozygotes of the major allele (G) at +838 were associated with HDL of 

4.03 ± 0.268 (log-transformed mean ± SD), glucose of 4.581 ± 0.143, and IMT of -0.367 ± 

0.133, while heterozygotes were associated with HDL of 3.842 ± 0.236 (p < 0.001), glucose of 

4.652 ± 0.246 (p = 0.016), and IMT of -0.313± 0.141 (p = 0.028) (Table 4.5).  Additionally, 

heterozygotes at SNP -861 were significantly associated with protection against high blood 

pressure (OR = 0.231 (95% CI: 0.07-0.68); p = 0.008) (data not shown). 

4.4.5 Associations of SNP -861 with BMI and SNP +838 with Ischemic Stroke  

Individual ANOVA tests revealed significant associations between minor allele (T) at -861 with 

both elevated CRP levels and increased BMI (p = 0.021 and 0.004, respectively).  We therefore 

performed a multivariate regression model for BMI in 237 SLE patients including age, smoking, 

CRP levels, and all 5 SNPs as independent variables.  Our data showed that CRP levels and SNP 

-861 remain significantly associated with BMI (Table 4.6). 

A logistic regression model that controlled for the effects of age, BMI, and smoking 

revealed that carriers of the C allele at SNP +838 had > 4 times the risk of past ischemic stroke 

(OR, 4.28 [95% CI, 1.12-16.36]; P = 0.033).  Therefore we performed a multivariate regression 

model to include additional well-known stroke risk factors to determine the significant 

contributing variables.  The specific risk factors included were LDL, triglycerides, HDL, and 
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glucose.  This analysis revealed that SNP+838 remains the most significant independent risk 

factor for stroke in SLE patients (OR = 5.61 (1.24-25.27); p = 0.015) (Table 4.7). 

4.5 DISCUSSION 

An increased CRP level serves as a powerful inflammatory marker and is a risk factor in 

predicting cardiovascular events in patients with coronary heart disease (19).  It is also associated 

with major cardiovascular disease risk factors including inflammation (5), metabolic syndrome 

(6), and HTN (7).  Surprisingly, genetic polymorphisms within the CRP gene associated with 

increased CRP levels do not always correspond with increased risk of cardiovascular events (8, 

11, 20), casting doubts on the causal role CRP plays in the CVD pathogenesis.  Using the cohort 

of 237 women with SLE we find CRP SNPS altering quantitative variation in levels of several 

important CVD intermediate phenotypes.  We also find HTN and ischemic stroke risks to be 

significantly affected by SNPs in the CRP gene.  We observed pleiotropic effects of 3 of the 4 

CRP SNPs and more strikingly, the genotype-phenotype associations were shown to be 

independent from the effects of circulating CRP levels.   

In light of the recent contradictory in vitro roles circulating CRP plays in the 

development of atherosclerosis (21-23), it is important to determine the association between CRP 

genetic variation and the development of CVD.  The multifactorial nature of CVD development 

implies that genes affect the risk of CVD in the early pre-clinical stage of the disease.  The 

human CRP gene, which maps to 1q21-q23, is not only a functional candidate gene for 

inflammation but also a positional candidate gene for SLE (24).  Several studies have shown that 

women with SLE have a high incidence of coronary heart disease, where the highest increased 
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risk was observed in women under the age of 45 (1, 25).  We have reported that women with 

SLE aged 35-44 were over 50 times more likely to have a myocardial infarction (MI) than were 

women of similar age from a population based sample (rate ratio = 52.43, 95% CI = 21.6 to 98.5) 

(1).  The unique nature of accelerated atheroscrosis and increased CVD risk makes a cohort of 

SLE women an ideal population to examine the genetic factors contributing to the development 

of intermediate phenotypes of CVD. 

In addition to successfully replicating the associations for increased CRP levels with 

SNPs -861, -390, and -+90 that have been previously reported in healthy general populations (5, 

8) (Table 4.2), we also noted that homozygotes for the rare allele (T) at SNP +90 showed 

significant associations with lower LDL (p = 0.042) and total cholesterol levels (p = 0.009) 

compared to homozygotes of the major allele (A).  Carriers of the rare allele (C) at the 

synomonous SNP +838 were significantly associated with increased IMT (p = 0.028), increased 

glucose level (p = 0.016), decreased HDL (p < 0.001) (Table 4.5), and increased stroke risk in 

SLE patients (OR = 5.61; p = 0.015) (Table 4.7).  These significant genotype-phenotype effects 

were tested both with and without controlling for the effects of circulating CRP levels.  

Interestingly, the evidence of association remains significant in both types of multivariate 

regression models.  This strongly suggest that variation in the CRP gene affect risk of these 

intermediate traits not simply by promoting increased circulating CRP levels, but more likely to 

behave as a pleiotropic gene (one gene affecting multiple traits) and possibly an epistatic gene 

(gene interacting with other genes to confer risk of trait) (26).    

One of the main advantages of studying intermediate phenotypes instead of the disease 

itself (CVD events) is their significantly higher population prevalence (prevalence of HTN 

[~22%] > prevalence of stroke [~2.5%]) (27).  More importantly, the number of genetic factors 
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influencing each intermediate phenotype is presumably smaller than the number of factors 

affecting the ultimate disease trait.  Therefore, the proportion of variance in a disease risk factor 

explained by a given genetic locus will be greater than the proportion of variance explained in 

the disease trait, which helps in the identification of genetic biomarkers for both intermediate 

phenotypes and the disease itself.  Studies of multiple disease intermediate phenotypes enable the 

understanding of the genetic contribution to components of CVD development, which may shed 

light on novel mechanisms of disease pathogenesis. 

We observed an interesting pleictropic effect of the minor allele (C) of promoter SNP -

861.  Although the carriers of this minor allele were associated with increased BMI and elevated 

CRP levels, they were also associated with protection against high blood pressure (p = 0.008) 

and high waist-hip ratio (p = 0.038) (Table 4.4).  To confirm the association between SNP -861 

with BMI, we performed a multivariate regression model including CRP, age, smoking, and 5 

CRP tagSNPs as covariates.  We again found that CRP levels and -861 significantly and 

independently contribute to increased BMI (p = 0.001 and 0.053, respectively) (Table 4.6).  High 

BMI is a strong risk factor for increased CRP and human CRP has been shown to directly 

inhibited the binding of leptin to its receptor and blocked cellular signaling in vitro, which may 

play a role in obesity (28).  It is therefore not surprising that susceptibility genes for obesity and 

circulating CRP levels should be shared and that SNP that predisposes to susceptibility of 

increased weight may also contribute to elevated baseline CRP.  It is likely that CRP gene has 

pleiotropic effects which independently impact obesity and CRP expression via mechanisms 

unrelated to risk of traditional metabolic syndrome.  

We have shown here compelling evidence of association between several CRP SNPs and 

well-known intermediate phenotypes of CVD using a cohort of SLE women at high risk of 
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accelerated atherosclerosis.  CVD is a polygenic disease having its phenotypes as product of 

pleiotropic genes and epistatic genes.  In the last decade a number of epistatic genes and 

pleiotropic genes have been defined based on the CVD event risk (29).  The contributing 

pathophysiologic consequences from each susceptibility gene of CVD likely affect the disease 

risk at pre-clinical stage by promoting the development of CVD risk factors.  Identifying 

susceptibility loci which promote the accelerated development of these intermediate phenotypes 

(risk factors) may shed light on the CVD pathogenesis and allow detection of high risk 

individuals for timely therapeutic interventions.  Here we have shown pleiotropic effects of CRP 

loci influencing several intermediate phenotypes of CVD in SLE women.  CVD risk assessment 

for SLE patients and understanding of the disease mechanisms could potentially be improved by 

inclusion of CRP genetic variants involved in the different pathophysiological steps leading to 

CVD.  
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4.6 MANUSCRIPT 3 TABLES AND FIGURES 

Table 4.1.  Descriptive statistics of White SLE Women (mean ± sd) 

Characteristic Caucasian SLE Women (n=237) 
Age 44.26 ± 10.9 
Renal  47 (19.83%) 
Smoking History  106 (44.72%) 
BMI 27.69 ± 7.28 
Post Menopausal  95 (40%) 
Antinuclear Antibody + 92% 
Total Cholesterol 195.57 ± 42.1 
Total HDL 56.84 ± 16.64 
LDL 110.22 ± 36.59 
Triglyc. 130.41 ± 91.66 
W-H Ratio 0.839 ± 0.123 
IMT  0.70.3± 0.18 
Disease Duration 10.12 ± 7.09 
C3  95.33 ± 24.07 
C4 21.4 ± 7.45 
High BP 77 (32.4%) 
Plaque Positive 77 (32.5%) 
Current Plaquenil Use 108 (45.6%) 
# Years on Steroids (0 - 36) mean = 5.54, median = 3 
Cholesterol Med. Use 7/229' (3.1%) 
Pulse Pressure 42.07 ± 13.22 
SLICC 1.3787 ± 1.7484 
SLAM 6.7106 ±  3.5145 
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Table 4.2.  Genotype and allele frequencies of CRP SNPs and associated mean logCRP levels (± SD) in 

237 SLE women

SNP Genotype n (%) Allele n (%)  LogCRP (Mean ± p-value 
-861 TT 192 (84) T 420 (92)  0.685 ± 1.072 0.021**

(rs3093059) TC 36 (16) C 36 (8)  1.141 ± 1.115  
 CC 0 (0)    …  
        

-390 CC 50 (34) C 166 (57)  0.519 ± 0.947 0.012* 
(rs3091244) CT 55 (38) T 101 (35)  0.589 ± 0.899  

 TT 19 (13) A 23 (8)  1.305 ± 1.128  
 CA 11 (8)    1.356 ± 0.947  
 TA 8 (6)    0.696 ± 0.992  
 AA 2 (1)    0.515 ± 0.843  
        

+90 AA 66 (46) A 195 (68)  0.639 ± 0.976 0.0032*
(rs1417938) AT 63 (44) T 93 (32)  0.623 ± 0.932  

 TT 15 (10)    1.544 ± 1.048  
        

+838 GG 194 (84) G 425 (92)  0.703 ± 1.043 0.3728*
(rs1800947) GC 37 (16) C 37 (8)  0.869 ± 0.979  

 CC 0 (0)    …  
        

+2043 GG 101 (44) G 309 (67)  0.845 ± 1.117 0.2068*
(rs1205) GA 107 (47) A 151 (33)  0.605 ± 0.949  

 AA 22 (10)    0.857 ± 0.999  
* Inferential statistic adjusted for Age, BMI, and Smoking 
** Inferential statistics adjusted for Age and Smoking 
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Table 4.3.  Pearson's product-moment correlation between CRP and various intermediate phenotypes of 

CVD

Intermediate Traits   
Characteristic Phenotype Correlation p-value 
Inflammatory markers C-reactive protein, mg/dL --- --- 
  Fibrinogen, mg/dL 0.50147 < 2.2e-16
  Homocysteine, �mol/L 0.298 0.0774 
  Albumin, mg/dL -0.2818 3.14E-06 
Hemodynamics Systolic blood pressure, mmHg 0.1885911 0.002048 
  Diastolic blood pressure, mmHg 0.1279071 0.03744 
  Hypertensive* --- --- 
Lipids Total cholesterol, mg/dl -0.0292864 0.6351 
  HDL cholesterol, mg/dl -0.126 0.04039 
  LDL cholesterol, mg/dl -0.067 0.2808 
  Triglycerides, mg/dl 0.21241 0.00049 
Metabolic Body mass index, kg/m2 0.3600031 1.82E-09 
  Waist-hip ratio 0.3197 1.23E-07 
  Glucose, mg/dL 0.18303 0.00278 
Subclinical atherosclerosis Carotid artery intima-media thickness 0.2331 0.000132 
  Carotid plaque* --- --- 
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Table 4.4.  Inferential statistics for association between CRP polymorphisms and various intermediate phenotypes 

    A. Without CRP level as covariate (p-value)  B. With CRP level as covariate (p-value) 
Intermediate Traits CRP polymorphisms  CRP polymorphisms 

Characteristic Phenotype -861 -390 +90 +838 +2043  -861 -390 +90 +838 +2043
C-reactive protein, mg/dL 0.150 0.015 0.003 0.417 0.184  --- --- --- --- --- Inflammatory 

markers Fibrinogen, mg/dL 0.903 0.393 0.027 0.333 0.244  0.371 0.475 0.265 0.472 0.600 
  Homocysteine, mmol/L 0.275 0.723 0.192 0.606 0.085  0.246 0.748 0.215 0.539 0.086 
  Albumin, mg/dL 0.974 0.197 0.320 0.786 0.161  0.639 0.266 0.240 0.983 0.330 

Hemodynamics Systolic blood pressure, 
mmHg 0.286 0.980 0.975 0.489 0.223  0.216 0.962 0.962 0.387 0.179 

  Diastolic blood pressure, 
mmHg 0.050 0.545 0.394 0.827 0.394  0.038 0.311 0.225 0.857 0.514 

  HTN 0.010 0.910 0.900 0.268 0.588  0.008 0.566 0.765 0.260 0.626 
Lipids Total cholesterol, mg/dl 0.705 0.090 0.015 0.120 0.092  0.703 0.063 0.009 0.101 0.082 
  HDL cholesterol, mg/dl 0.838 0.248 0.632 <0.001 0.612  0.738 0.319 0.873 <0.001 0.488 
  LDL cholesterol, mg/dl 0.898 0.166 0.047 0.228 0.205  0.948 0.117 0.042 0.203 0.193 
  Triglycerides, mg/dl 0.501 0.481 0.336 0.175 0.734  0.385 0.334 0.176 0.196 0.635 
Metabolic Body mass index, kg/m2 0.004 0.359 0.450 0.183 0.191  0.040 0.437 0.145 0.395 0.242 
  Waist-hip ratio 0.037 0.866 0.292 0.130 0.813  0.013 0.876 0.248 0.184 0.952 
  Glucose, mg/dL 0.404 0.686 0.844 0.010 0.746  0.286 0.615 0.773 0.016 0.803 

Carotid artery intima-
media thickness, mm 0.416 0.132 0.684 0.026 0.969  0.418 0.089 0.847 0.028 0.965 Subclinical 

atherosclerosis Carotid plaque 0.846 0.694 0.711 0.601 0.124  0.865 0.680 0.727 0.604 0.080 
                         
Inferential statistics for 273 SLE patients adjusting for age, BMI, smoking as covariates. HDL, high-density lipoprotein; LDL, low-density 
lipoprotein. All phenotypes are quantitative variables except for Hypertensive and Carotid plaque.  Hypertensive is defined by having SBP ≥ 
140 or DBP ≥ 90 or BP medication use.  Carotid plaque positive is defined by having the degree of plaque score equal or greater than 1.  All 
quantitative phenotypes have been log-transformed to achieve normal distribution.  Significant differences (p<0.05) are indicated by bold type. 



 

Table 4.5.  Pleiotropic effects of CRP SNPs with cluster of CVD risk factors 

 -861 TT TC CC p-value  
 N 191 36 0   
BMI mean ± sd 3.282 ± 0.203 3.361 ± 0.257 --- 0.040  
WHR mean ± sd -0.173 ± 0.124 -0.227 ± 0.104 --- 0.013  
DBP mean ± sd 4.355 ± 0.131 4.307 ± 0.115 --- 0.038  
          
 +90 AA AT TT p-value  
 N 66 63 15   
Total Cholesterol mean ± sd 5.333 ± 0.189 5.237 ± 0.205 5.209 ± 0.194 0.009  
LDL mean ± sd 4.766 ± 0.249 4.633 ± 0.332 4.645 ± 0.355 0.042  
          
          
 +838 GG GC CC p-value  
 N 193 37 0   
HDL mean ± sd 4.03 ± 0.268 3.842 ± 0.236 --- <0.001  
Glucose mean ± sd 4.581 ± 0.143 4.652 ± 0.246 --- 0.016  
IMT mean ± sd -0.367 ± 0133 -0.313 ± 0.141 --- 0.028  
           

Results are presented in log-transformed values adjusting for age, BMI (except for BMI as 
dependent variable), smoking and serum CRP levels.  
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Table 4.6.  Multivariate regression model for Body Mass Index (BMI) in 237 SLE patients 

 Df Sum of Sq RSS AIC F value p-value 
Intercept  5794.7 545    
CRP 1 552.1 6346.8 555.5 11.528 0.001 
Age 1 78.9 5873.6 544.9 1.647 0.202 
Smoking 1 69.6 5864.3 544.7 1.453 0.230 
-861 1 183.1 5977.8 547.3 3.823 0.053 
-390 5 107.6 5902.3 537.5 0.449 0.813 
+90 2 11.6 5806.3 541.3 0.121 0.886 
+838 1 22.9 5817.6 543.6 0.479 0.490 
+2043 3 80.3 5875 540.9 0.559 0.643 
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Table 4.7.  Multivariate regression model for Stroke in 11 SLE patients 

  
 Df Sum of Sq RSS AIC F value p-value 
Intercept  9.21 -703.31   
Age 1 0.0003951 9.21 -705.3 0.009 0.923 
BMI 1 0.01 9.22 -705.03 0.263 0.608 
Smoking 1 0.01 9.22 -705.12 0.185 0.667 
CRP 1 0.01 9.22 -705.11 0.188 0.665 
LDL 1 0.01 9.22 -705.1 0.197 0.658 
Trig 1 0.01 9.22 -705.09 0.210 0.647 
HDL 1 0.0047983 9.21 -705.19 0.113 0.738 
Glucose 1 0.07 9.28 -703.64 1.606 0.206 
+838 1 0.25 9.46 -699.14 5.981 0.015 
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5.0  CONCLUSION CHAPTER 

The objective of this dissertation project was to investigate the role of CRP as a potential 

disease-susceptibility locus or biomarker for SLE.  Two independent SLE cohorts of North 

American Caucasians were applied.  The two cohorts consisted of differentially ascertained case-

control sample from Pittsburgh and a family-based sample from Los Angeles.  In addition, the 

role of CRP polymorphisms in circulating CRP levels and additional well-established 

intermediate phenotypes for cardiovascular disease (CVD) in SLE patients were examined.  We 

hypothesize that CRP polymorphisms affect the risk of SLE, and also contribute to accelerated 

atherosclerosis/cardiovascular disease in SLE women, independent of the effects from 

circulating CRP.

5.1 SUPPLEMENTARY DATA OF THIS DISSERTATION 

5.1.1 Genetic and environmental contributions of serum CRP 

To understand the factors contributing to the variation in circulating CRP, we performed multiple 

linear regression analyses to determine the proportion of variance in CRP levels that are 

attributed to the effects from: (1) age, BMI and smoking history, (2) five CRP tagSNPs selected 

in this project, and (3) combined age, BMI, smoking and 5 tagSNPs.  Our data showed that 
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SNP+90 remained associated with CRP levels (p-value = 0.08) in the presence of all other 

variables, while environmental factors contributed most significantly to CRP levels (P = 0.002 to 

0.003) (Table 5.1). 

The proportion of variance (adjusted R2 value) in log-transformed CRP levels explained 

by the five CRP SNPs together was relatively small (0.062), while the proportion of variance due 

to age, BMI, and smoking was significantly higher (0.155).  Together, age, BMI, smoking and 

five SNPs explained approximately 0.267 of the total variation in serum CRP levels in our SLE 

cohort (Table 5.1).  While the combined effects from these variables may seem small, they must 

be considered relative to the many factors that likely influence CRP levels in an inflammatory-

based autoimmune disease, and are relatively large for a genetic effect in a complex disease.  

Moreover, the proportion of variance due to genetic effect (R2 = 0.062) and covariates in the 

model (age, BMI, smoking, R2 = 0.155) are comparable to those in a recent report by Miller et al. 

(0.02 and 0.2, respectively) (1).  Previously reported heritability of circulating CRP (up to 0.56) 

(2) supports the presence of additional functional genetic variations with substantial effects that 

influence CRP levels both in SLE and healthy populations. 
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Table 5.1.  Multivariate regression model for Body Mass Index (BMI) in 237 SLE patients 

 Df Sum of Sq RSS AIC F value p-value 
Intercept  111.377 2.836   
Age 1 8.35 119.727 10.668 9.072 0.00316 
BMI 1 9.734 121.11 12.23 10.5749 0.00149 
Smoking 1 9.383 120.759 11.835 10.1933 0.0018 
-861 1 1.225 112.601 2.323 1.3305 0.25099 
-390 5 4.709 116.085 -1.533 1.0231 0.40716 
+90 2 4.681 116.058 4.435 2.5428 0.08284 
+838 1 0.841 112.217 1.858 0.9131 0.34119 
+2043 2 2.383 113.76 1.715 1.2946 0.27778 
       
Adjusted R-Square: 0.155 (age, BMI, smoking)   
Adjusted R-Square: 0.062 (5 SNPs)    
Adjusted R-squared: 0.267 (age, BMI, smoking +5 SNPs)  
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5.1.2 Correlation between SLE disease activity and CRP levels 

Increased SLE disease activity is almost always accompanied with increased systemic 

inflammation; therefore it was of a particular interest to investigate whether or not there is 

significant correlation between SLE disease activity (measured by SLAM) and log-transformed 

CRP levels in the Pittsburgh cohort.  As shown in Figure 5.1, there is no distinguishable pattern 

of correlation between the two quantitative variables.  This observation supports the current 

literature cited in manuscripts 1 and 2 that circulating CRP levels do not accurately predict SLE 

disease activity. 

Figure 5.1. Scatter plot of CRP levels versus SLE disease activity 
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We furthermore divided quantitative variables of CRP and SLAM scores into “extreme 

phenotype” categories of three.  Based on the “high, middle, and low” category assigned to each 

patient according to their data, we explored whether genotype distribution of each of the CRP 

SNPs examined differed significantly between patients who have “high disease activity (SLAM 

category 3) with high marker of inflammation (CRP category 3)” versus patients who have “high 

disease activity (SLAM category 3) but with low marker of low inflammation (CRP category 

1)”.  The result showed no significant differences in genotype distribution between those patients 

who have the high marker of inflammatory biomarker with high disease activity (as expected) 

versus those patients who have unexpectedly low marker of inflammatory biomarker with high 

disease activity (Table 5.2 and 5.3). 

 

Table 5.2.  Distribution of SLE patients by disease activity score (SLAM) and CRP levels  

 

 SLAM Score 

LogCRP level < 4 4 to 7 > 7 

< 0.2624 13 13 37 

0.2624 to 1.1314 14 28 28 

> 1.1314 11 26 45 
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Table 5.3.  No significant association between CRP SNPs and SLAM–CRP correlation 

 

SNP Genotype lowCRP with highSLAM 
n = 37 

highCRP with highSLAM 
n = 45 p-value

-861 TT 27 34 0.59 

(rs3093059) TC 6 11  
  CC 0 0  
       
-390 CC 10 8 0.31 
(rs3091244) CT 8 5  
  TT 3 5  
  CA 0 3  
  TA 1 3  
  AA 1 0  
       
+90 AA 11 11 0.10 
(rs1417938) AT 10 8  
  TT 0 5  
       
+838  GG 32 35 0.24 
(rs1800947) GC 4 10  
  CC 0 0  
       
+2043 GG 19 23 0.52 
(rs1205) GA 15 16  
  AA 2 6  
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5.2 DISSERTATION SUMMARY 

By studying human subjects with SLE and CVD, we hope to acquire further understanding of 

mechanisms/pathways contributing to this unique population at marked increased risk of CVD.  

Our results additionally contribute to a better insight of the inflammatory processes in the context 

of CVD in the general population.  Results addressing specific scientific questions in this study 

are summarized below: 

5.2.1 Does variation in CRP gene confer susceptibility to SLE? 

In chapters 2 and 3 of this study, we report that no individual CRP polymorphism is individually 

associated with the risk of SLE.  When we examined the combined effect of polymorphism as 

haplotypes, we found evidence of associations in both the case-control and family-based study 

designs involving the -390 and +90 SNPs.  We found no association between SNP -2043 and 

SLE risk as reoprted recently in a British SLE family-based study (3).  The significant haplotype 

results in this study suggest that the variation in the CRP gene may modify SLE risk.  

Determination of how CRP variation influences SLE risk is expected to further our 

understanding of SLE etiology and may have direct clinical relevance. 
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5.2.2 Does CRP variation affect intermediate phenotypes of CVD in SLE? 

In chapter 4 we have presented evidence that several CRP polymorphisms significantly 

contribute to important intermediate phenotypes of CVD.  The CVD risk factors in the general 

populations affected by CRP SNPs are metabolic syndrome associated traits, BMI, waist-hip 

ratio, glucose levels, hypertension, and lipids profile.  In addition, acute phase proteins CRP and 

fibrinogen were also found to be effected significantly by several CRP promoter polymorphisms.  

Together, the degree of association seen here may explain the increased metabolic syndrome 

observed in SLE patients compared to the general population (4) and chronic systemic 

inflammation which contribute to accelerated atherosclerosis in SLE patients.  The most critical 

finding are that these significant genotype-phenotype associations remain significant after 

controlling for the effects of circulating serum CRP, and exhibited pleiotropic effects.  This 

strongly suggests the important role the CRP gene plays in CVD intermediate phenotype 

development; thereby increasing the risk of CVD events in persons with risk genetic variants. 

5.2.3 Does CRP variation affect CVD risk in SLE? 

In chapter 4 we have shown for the first time that CRP exon 2 polymorphism +838 significantly 

alters ischemic stroke risk and increased carotid artery intima-media thickness in SLE patients.  

Strikingly, effect of +838 on stroke is independent of the well known CVD risk factors: age, 

BMI, smoking history, serum CRP, low density lipoprotein, high density lipoprotein, 

triglyceride, and glucose level.  Although +838 resides in exon 2, it does not affect the protein 

structure of CRP.  It is likely that SNP is in significant linkage disequilibrium with  functional 

allele in either CRP or nearby loci. 
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5.2.4 How does environmental factors and CRP variation contribute to circulating CRP 

in SLE, and is CRP level associated with disease activity? 

In chapter 5, we present evidence that age, BMI, and smoking history significantly contribute to 

variation in circulating serum CRP levels.  Together they explained 15.5 % of the CRP variation.  

On the other hand, the combined effect of 5 CRP tagSNP explains only 6.2 % of the CRP 

variation.  Together, this model explains 26.7 % of the variation in circulating CRP.  This finding 

supports the multi-factorial and polygenic characteristic of circulating CRP.  Additionally, the 

correlation test between CRP and SLE disease activity presented in Figure 5.1 confirmed the 

previous observation that CRP, being a stable and sensitive inflammation marker, does not 

correlate with SLE disease activity as one would expect.  While the precise mechanism 

underlying this intriguing phenomenon is still unknown, it appears that the five CRP tagSNPs we 

examined do not contribute to the discordant correlation pattern. 

5.3 FUTURE WORK 

Human lupus is a complex genetic trait involving multiple genes and their interactions, leading 

to heterogeneous phenotype presentations.  While many independent studies have identified 

many susceptibility genes thought to contribute to the development of SLE, success in 

determining genotypic mechanisms leading to SLE risk and phenotype variation has been rather 

limited (5-7).  It is therefore important to carry out additional genetic studies that may lead to the 

identification of new biological pathways. 
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In this study, SNPs -390 and +90, define the CRP haplotypes that are associated with 

SLE risk.  For the promoter triallelic SNP -390, previous work has already shown the T allele 

correlated with increased binding of transcription factors and thereby increases the promoter 

activity.  It would be of great interest to compare promoter activity between SLE patients and 

healthy controls given the same genotype.  If the promoter activity express differently between 

SLE and controls given the same genotype, then the evidence of -390 as risk SNP increases.  It 

will suggest that SLE risk associated with this promoter is not solely a result of circulating CRP 

level (which is shown to increase given -390T). Instead this promoter SNP may have interactive 

effect with other unidentified genes or proteins in conferring SLE risk. 

SNP +90 is an intron/exon SNP that has potential to induce alternative splicing in a gene.  

Evidence of potential alternative transcript isoform(s) induced by this SNP may be explored by 

researching the databases of  expressed sequence tags (ESTs) (8).  If the alternative splicing is 

seen, effects of this alternative splicing may be further confirmed using gene expression analysis. 

Differential gene expressions resulting from this alternative splicing may explain in part the 

mechanism in which CRP participates in the various biological functions in the host (discussed 

in Chapter 1). 

Additional works of interest include determining the associations between CRP 

polymorphisms and anti-CRP antibody (9) to assess if the abnormally higher prevalence of anti-

CRP antibody in SLE may be a result of genetic defect, thereby effect disease severity. 

Exploration of differential effects native CRP (nCRP) and modified CRP (mCRP) have on 

different phenotype presentation in SLE may further our understanding of the causes and process 

of this protein conformation change.  Of course, once we understand how the conformational 
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change in CRP occurs, we should conduct genetic association studies to identify susceptibility 

loci for this bio-cellular event. 

Finally, applying mouse model, including knockout models, genetic hypomorphs and 

hypermorphs, will be useful in modeling and characterizing the human disease for better 

understanding of the disease etiology.  For example, a non-SLE susceptibility CRP intron repeat 

polymorphisms has been shown to correlate with baseline CRP levels (10), and may be designed 

as a transgene to be inserted in lupus-prone mice NZB/NZW model (11).  Two CRP haplotypes 

may be created using the promoter variant GT1818 and GT2020 which correspond to increased 

baseline CRP, and GT1616 and GT2121 which correspond to decreased CRP.  Additionally, we will 

use a non-treated NZB/NZW lacking human CRP expression (CRP in mice does not rise 

significantly as human CRP does in the presence of infection) as a control model.  By comparing 

the time of onset of SLE-like phenotype and disease severity between these models, insights may 

be found on whether elevated CRP or decreased CRP directly contribute to the pathogenesis of 

SLE.  If the disease progression among these three differentially treated animal models does not 

differ significantly, we must re-evaluate the hypothesis that circulating CRP is causally involved 

in the SLE risk, and turn our attention to the CRP polymorphisms and their interactions with 

additional susceptibility loci or environmental risk factors.  Successful animal models can 

provide fundamental insights on SLE etiology and help identify more sensitive markers of 

disease activity and damage.  Better understanding of SLE pathophysiology is the fundamental 

key to improve treatment, and ultimately prevent SLE.  
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5.4 PUBLIC HEALTH SIGNIFICANCE AND CONCLUDING REMARKS 

Lupus affects an estimated 239,000 (conservative estimate) people in the United States (US) 

(12). Due to the lack of highly sensitive diagnostic markers to define and capture cases, the 

definitive epidemiological information on lupus is also lacking.  Therefore the exact number of 

people affected by lupus is unknown and likely to be significantly higher than the estimate.  SLE 

is a serious rheumatic autoimmune disease with unknown etiology and relatively unpredictable 

disease manifestations among different patients as well as within a particular patient given 

her/his lifetime.  Even though the advanced medical and scientific research in the past two 

decades has significantly improved the quality of life for SLE patients, SLE still remains one of 

the most fatal forms of rheumatic diseases.   

Center for Disease Control (CDC) recently reported that the annual number of SLE 

deaths in the US during year 1979 to 1988 has increased from 879 to 1,406, and the crude death 

rate has increased from 39 to 52 per 10 million population (13).  Of all SLE deaths, 36.4% 

occurred among persons aged 15 to 44 years.  Crude death rates were more than 5 times higher 

among women than men, and were also more than 3 times higher among blacks than whites (13). 

The striking disparities and the rising death rate in SLE call for better preventative strategies for 

this disease on the public health level.  Prevention of deaths and disabilities related to SLE 

requires early recognition and diagnosis in order for physicians to administer timely therapeutic 

management.  Therefore understanding the etiology and pathogenesis of SLE is of a crucial 

importance.  

The results of this project are compelling because they support the hypothesis that 

variation in the CRP gene is involved in the pathogenesis of SLE and accelerated atherosclerosis. 
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Investigations into the relationship of these genetic variations in a gene coding for such sensitive 

biomarkers and potential contributor for systemic inflammation, help provide better insights into 

the biological pathways involved in the SLE pathogenesis. Knowledge of these genetic 

associations may help elucidate mechanistic pathways amenable to pharmacological 

intervention. Results of this research further provide the basis for future functional and 

epidemiological studies to elucidate the pathogenic roles CRP and other inflammatory risk 

factors play in SLE development.  
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