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A MODEL OF BACTERIAL SUPERINFECTION IN AN

INFLUENZA-INFECTED HOST

Sherry B. Linn, M.S.

University of Pittsburgh, 2011

Bacterial pneumonia is a common complication of influenza A infection. We create an ODE

model of bacterial infection with state variables representing the respective levels of bacteria,

impaired and active neutrophils, and the anti-inflammatory molecule interleukin 10 (IL-10).

After fitting the parameters, we obtain a model that demonstrates bistability between states

of health and chronic bacterial infection. The fitted model also closely reproduces IL-10 data

obtained from a model of mice inoculated with a strain of influenza A virus. Additionally,

we develop a different model similar to the first but with stochastic intake of bacteria to

represent the inhalation of small amounts of bacteria into the lungs many times daily. We

find a set of parameters for which the second model produces a fit to the IAV IL-10 data.
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1.0 INTRODUCTION

The term superinfection refers to the situation in which a pathogen infects a host while the

host is already battling an infection. A well-known example is the occurrence of bacterial

pneumonia shortly after influenza infection. This is the main cause of death from seasonal

influenza, which claims 35,000 lives annually in the United States of America. There are

many possible causes of superinfections. One theory is that the primary infection elicits an

immune response, creating a window of time during which the immune system is not at the

resting equilibrium state of health and is susceptible to infection by another pathogen. This

window occurs due to neutrophil paralysis, the prevention of neutrophil migration to the site

of bacterial infection by a canonical anti-inflammatory molecule, IL-10.

It is well documented that the seasonal flu has a higher mortality rate among the elderly

population (aged 65 year or older) than it does among younger individuals. In a study by

Toapanta et al. that sought to better understand this phenomenon, aged and adult mice

were infected with a strain of IAV (A/Puerto Rico/8/34) and then monitored for differences

in immune dynamics [11]. In both aged and adult mice; weight loss, mortality, and virus titer

were monitored. In addition, cells of the innate and adaptive immune response, cytokines

and chemokines produced by immune cells were all analyzed and counted.

Although unmentioned in their manuscript, Toapanta et al. measured levels of IL-10

(pg/mL) for the experiment discussed in [11]. Figure 1 shows levels of IL-10 taken for a

sublethal case in IAV-infected adult mice up to 19 days post-infection. The figure also shows

virus titer data from the mice during the same span of days. The first and larger hump in

the IL-10 data is due to the host immune response to the IAV infection. As described in

Section 2.2.3, the host immune response to pathogenic invasion is a pro-inflammatory wave

shortly followed by an anti-inflammatory wave, which we observe in the first peak in the
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IL-10 data. Note the increase in IL-10 on Day 11 despite the absence of virus after Day 9.

We hypothesize that this unexpected hump in IL-10 levels is due to an unintended secondary

bacterial infection facilitated by the inoculation of the mice with IAV.

Specifically, we believe that the facilitation of the bacterial infection can be explained as

a result of the immune response to the IAV infection. The first peak in IL-10 data marks the

anti-inflammatory wave initiated by the IAV infection, during which neutrophil paralysis is

known to occur. We posit that the temporary paralysis of neutrophils allows the bacteria to

reproduce and spread; the neutrophils are not at the site of infection to attack the bacteria

and to signal other pro-inflammatory effectors to the infection site.

Section 2 provides an introduction to the topics of influenza infection, pneumonia, super-

infection, and immune response. It also gives a brief review of literature on research related

to viral-bacterial superinfections and IAV-bacterial pneumonia superinfections.

In Section 3, we analyze the dynamics of a two-equation ordinary differential equation

(ODE) model of interactions between bacteria and activated neutrophils. We then develop a

four-equation model based on the two-equation model, this time also including interactions

involving IL-10 and paralyzed neutrophils. We take the IL-10 output from the IAV infection

to be the difference between the linear interpolation of the first seven data points and the

IL-10 steady state level. The IL-10 output from the bacterial infection is determined by the

model dynamics. We then find a set of parameters for which the total IL-10 matches the

linear interpolation of all given IL-10 data points.

In Section 4, we develop a model similar to that in the previous section, using stochastic

inhalation of bacteria many times per day, instead of using a constant rate of bacteria

inhalation, into the lower respiratory tract. Because the IL-10 data comes from several mice,

we find the average total IL-10 produced by the system, and compare it to the given IL-10

mouse data. We find a set of parameter values for which the system’s average total IL-10 is

a close match to the linear interpolation of the ten given IL-10 data points.

In Section 5, we conclude by discussing possible extensions of research involving the

model with stochastic bacteria inhalation.
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Figure 1: The 10 data points of IL-10 levels (blue) and viral titer levels (green) in IAV-

infected mice collected by Toapanta et al. over the course of 19 days post infection. The

lines between data points indicate piecewise linear interpolation based on the given data.
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2.0 BACKGROUND AND MOTIVATION

2.1 IAV AND BACTERIAL PNEUMONIA

The influenza virus is known globally as a public health concern and a hindrance to society,

responsible for high levels of work absenteeism, productivity losses, and the overwhelming

of medical facilities caused during peak influenza illness periods. The symptoms of influenza

infection include fever, chills, headache, muscle pain, fatigue, and nasal congestion. Influenza

can be fatal when it leads to lethal complications. Annually, seasonal influenza epidemics

result in 250,000-500,000 deaths and 3-5 million cases of severe illness worldwide [14]. These

figures do not include pandemics; the 1918, 1957, and 1968 influenza pandemics had esti-

mated death tolls of 40-50 million, 2 million, and 1 million people, respectively [15]. There

are three types of influenza virus: influenza A, B, and C. Of these three types, influenza A

virus (IAV) is the most virulent. To this point, the 1918, 1957, 1968, and 2009 pandemic

strains of influenza were of type A, making IAV a topic of research across many disciplines,

including immunology, microbiology, and mathematical biology.

Pneumonia is a respiratory condition often characterized by the filling of alveoli with

inflammatory fluid interfering with gas exchange. This fluid accumulation is the direct effect

of vasoactive agents produced by inflammatory cells, such as neutrophils, in their efforts to

contain and eradicate invading bacteria. In severe cases of pneumonia, gas exchange is so

impaired that animals die and humans require mechanical ventilatory support in intensive

care units and incur substantial mortality, as well. Pulmonary inflammation associated with

pneumonia can also lead to pleural effusion, empyema (infected effusion), lung abscesses,

and acute lung injury (ALI). ALI is a condition in which pulmonary inflammation persists

irrespective of the presence of bacteria. Pneumonia is a major cause of death in the elderly,
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infants and young children, and individuals with chronic illness. Streptococcus pneumoniae

is the bacteria most commonly associated with bacterial pneumonia infections [2], [5], [8].

Staphylococcus aureus and Haemophilus influenzae are other bacteria known to cause pneu-

monia.

There is much evidence of IAV-bacterial pneumonia superinfections. A recent study by

Morens et al. of autopsy data and tissue samples from 58 victims of the 1918 IAV pandemic

found common respiratory-tract bacteria and other histological indicators of acute bacterial

pneumonia infection in most of the samples. This discovery led the authors to conclude

that the majority of 1918 IAV pandemic deaths were directly caused by secondary bacterial

pneumonia as opposed to being caused by the IAV infection itself [8]. The same study

concluded similar results with respect to the 1957 and 1968 IAV pandemics.

There is also evidence that correlates bacterial pneumonia with severe illness in patients

infected with 2009 pandemic H1N1 (H1N1 pdm). The Center for Disease Control (CDC)

received lung tissue samples from 77 American victims of H1N1 pdm, collected from May

1, 2009 to August 20, 2009 [13]. Analysis of these samples exhibited evidence of concurrent

bacterial infection in 22 of the victims. S. pneumoniae was the most prevalent bacteria in

this study, found in 10 of the 22 victims showing concurrent bacterial infection. Palacios, et

al. conducted a similar study of Argentineans infected with H1N1 pdm [9]. They studied

199 cases of patients diagnosed with H1N1 pdm infection; 160 cases were diagnosed as mild

and 39 as severe. S. pneumoniae was found in the patient’s respiratory tract in 62 of the

H1N1 pdm cases, 22 of these cases involving severe IAV infection and the remaining 40 being

mild. From this data, the study concluded that the presence of S. pneumoniae in H1N1-pdm

infected patients is a significant indicator of severe illness.

The given examples suggest a correlation in severity of illness in IAV-infected patients

and secondary bacterial infection, i.e. that the lethality of IAV is increased in cases in which

bacterial pneumonia is contracted. Experiments by McCullers et al. further support the ex-

istence of such a relationship between IAV and bacterial pneumonia [7]. To test the efficacy

of antiviral treatments in cases of bacterial pneumonia following IAV infection, McCullers et

al. inoculated four groups of six mice with S. pneumoniae. Three of these groups were also

inoculated with the same strain of IAV seven days prior to inoculation with S. pneumoniae.
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These three groups were each given one of three antiviral treatments: oseltamivir, riman-

tidine, or a placebo. Oseltamivir inhibits neuraminidase (NA), while rimantidine inhibits

the M2 proton channel protein (M2). If the mice exhibited signs of pneumonia, they were

treated with the antibiotic ampicillin. All mice that were inoculated with only S. pneumo-

niae survived and five of the six mice in the oseltamivir group survived, while none of the

mice in the rimantidine group survived and none of the mice in the placebo group survived.

There is much evidence that influenza increases adherence of bacteria to epithelial cells. The

authors found that inhibition of NA reduces the adherence of S. pneumoniae to alveolar

basal epithelial cells, whereas inhibition of M2 does not. This agrees with the results that

mice coinfected with IAV and S. pneumoniae that were treated with oseltamivir and ampi-

cillin had a greater survival rate compared to those treated with rimantidine and ampicillin.

The results of this experiment suggest that S. pneumoniae is not fatal by itself, but that

infection with IAV followed by infection with S. pneumoniae can be fatal, supporting that

influenza affects the pathogenesis of bacterial pneumonia in such a way that S. pneumoniae

is able to overwhelm the host before specific immune responses can develop.

In another experiment by McCullers et al., 30 mice were infected intranasally with IAV

and then inoculated with S. pneumoniae seven days later [7]. 22 of the mice were treated

with oseltamivir and ampicillin. All mice given both the anti-viral and antibiotic treatments

survived. Seven of these 22 mice developed pneumonia and had visually cleared the pneu-

monia by the eighth day post S. pneumoniae infection. The other eight of the 30 mice

were treated with ampicillin alone. All eight of these mice developed pneumonia and died,

even though six of these eight mice had visibly cleared the pneumonia before death. On the

basis of this experiment, the authors hypothesized that treatment with oseltamivir delays

the onset and slows the progression of bacterial pneumonia by lessening the severity and

duration of IAV. This in turn could alter the pathogenesis of bacterial pneumonia so that

the clearance of S. pneumoniae is enough to bring the mice back to health.

The findings of these experiments by McCullers et al. show that bacterial pneumonia is

more likely to develop in an S. pneumoniae-infected host recovering from an IAV infection

than it is to develop in a host battling a S. pneumoniae without a proceeding IAV infection.

This, in addition to the correlation between severity in H1N1 pdm-infected patients and
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secondary S. pneumoniae infection found in the study by Palacios et al., demonstrates that

IAV and S. pneumoniae have a synergistic relationship that leads to an outcome worse than

the outcome of the host had it been infected with only IAV or only S. pneumoniae.

According to Bakaletz, the presence of IAV is often necessary for bacterial infection to

establish itself in the lower respiratory tract [2]. The well-documented prevalence of bacterial

pneumonia following IAV infection and the increased mortality that secondary bacterial

pneumonia can lead to in IAV-infected patients has led to research as to the possible causes

of this phenomenon.

2.2 VIRAL POTENTIATION OF BACTERIAL INFECTION

2.2.1 Examples

It is important to note that the permissive relationship between IAV and bacterial pneu-

monia is not the only documented example of viral infections amplifying the potency of

bacterial infections when the two infections occur within close chronological proximity to

one another. Bakaletz points out that sinusitis is often observed after rhinovirus, influenza,

adenovirus, or parainfluenza virus infections [2]. Also, in an experiment by Giebink in which

chinchillas were either infected with IAV alone, S. pneumoniae alone, or both IAV and S.

pneumoniae, IAV was found to potentiate otitis media infection [2]. Suzuki and Bakaletz

observed through experiment with a similar model that adenovirus potentiates Haemophilus

influenzae; whether the subjects were inoculated with adenovirus before or after infection

with H. influenzae, both the severity and incidence of otitis media increased [2]. In the

1940s, many studies were conducted on animal models in which infection with influenza

virus followed by infections with any of several pneumopathic bacteria resulted in a higher

occurrence of disease, shortened time to death, or higher death rate [8].
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2.2.2 Causes

Much research has been conducted in order to unearth the causes of and mechanisms re-

sponsible for viral potentiation of bacterial infection. Goldstein et al. looked to formulate

a correlation between bacterial infections and viral infections that precede them through

an experiment in which some mice were immunized against Mengo-37A, a weak strain of

encephalomyocarditis (ECM) virus, while the remaining mice in the experiment were not

[4]. All mice were then either inoculated with Columbia-SK, which is a virulent strain of

ECM virus, Mengo-37A, or a placebo. Finally, all mice were inoculated with Staphylococcus

aureus. The immunized mice that were infected with either strain of the ECM virus expe-

rienced respiration and pulmonary bactericidal activity similar to that of the control mice.

Non-immunized mice that were infected with Columbia-SK were observed to have bacterici-

dal dysfunction worse than that observed in non-immunized mice infected with Mengo-37A.

This experiment connects virulence of the preceding virus with an inability to clear a sec-

ondary bacterial infection. It also provides an example of how the physiological effects of a

viral infection can yield changes that potentiate a bacterial infection.

There are other possible reasons as to why viral-bacterial superinfections tend to be more

pathogenic than the bacterial infection would be without the preceding viral infection. For

example, IAV and other viral infections in the respiratory tract result in damage to respi-

ratory epithelia, which exposes the basement membrane as well as surfaces of regenerating

cells. These exposed surfaces are possible binding sites for bacteria, allowing the bacteria

to populate in the respiratory tract where they would normally not be able to do so. Viral

infection of epithelial cells that have not already been destroyed can also lead to the creation

of potential bacterial binding sites, in this case on the infected host cell [2]. For example, the

influenza virus has been found to increase the adherence of bacteria to epithelium in vitro,

in animal models, and in humans [7]. Destruction of respiratory epithelium also negatively

impacts the ability of cilia to move particles, bacteria, and fluid out of the lower respiratory

tract [2]. The lower respiratory tract is thought to be sterile of bacteria [2]. The mucociliary

escalator is the primary defense against bacteria that contaminate the upper respiratory tract

and is what keeps the lower respiratory tract virtually free of bacteria; however, damage to
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the cilia allows bacteria the opportunity to populate the lower respiratory tract.

McAuley et al. focused on PB1-F2, a proapoptotic IAV protein found in the pandemic

1918 strain, as a possible factor in the lethality of the 1918 flu pandemic via secondary

bacterial pneumonia [6]. They conducted an experiment involving a wild-type strain (WT)

and an isogenic strain (mut) of the mouse-adapted influenza A/Puerto Rico/8/34 (PR8)

strain. The mut PR8 was engineered so as to significantly reduce the expression of PB1-

F2. Two groups of six mice were infected with either the WT or mut viruses and then

inoculated with S. pneumoniae seven days later. The group of mice infected with the WT

virus experienced greater weight loss, incidence of bacterial pneumonia, and mortality than

the group of mice infected with the mut virus. The control mice, which were not inoculated

with S. pneumonia, survived regardless of whether they were infected with the WT virus

or the mut virus. The authors concluded that PB1-F2 is pro-inflammatory to the host,

can enhance the virulence of the strain of IAV that contains it, and facilitates secondary

bacterial pneumonia. They suggested that the apoptosis of host cells caused by PB1-F2 sets

off a positive feedback loop of inflammatory cytokines, which is amplified by the presence of

bacterial pneumonia. This, in turn, enhances the inflammatory response to the IAV in the

lungs.

From the account of immunopathological death described by McAuley et al., it is clear

that the immune response induced by viral infection is important to consider when inves-

tigating possible reasons for the synergistic relationship of viral-bacterial superinfections.

In the second experiment by McCullers et al. described above, six out of the eight mice

treated with only antibiotic were able to visibly clear the S. pneumoniae from their lungs

but nonetheless did not survive the IAV-S. pneumoniae coinfection. This also suggests an

immunopathological death – an inability for the host to return to health despite the absence

of the bacteria that initially caused the pneumonia.

2.2.3 The Immune Response to Infection and Neutrophil Paralysis

The host immune response to acute stress, such as IAV infection, begins with a wave of pro-

inflammatory cytokines including interleukin-1 (IL-1), interleukin-8 (IL-8), interferon gamma
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(INF-γ), and interferon alpha (INF-α). These cytokines mobilize neutrophils and other

immune effectors so as to contain and clear the pathogen. Almost immediately following is a

wave of anti-inflammatory cytokines, which inhibit pro-inflammatory cytokines and initiate

the healing response. The repression of pro-inflammatory mediators creates a window of

opportunity for secondary infections to thrive [1]. The suppression of neutrophil migration

to the site of pathogen infection is another possible manner in which viruses can potentiate

bacterial infections [2].

Neutrophils are the first line of defense against infection, migrating through blood vessels

by chemotaxis in response to the secretion of IL-1, IL-8, INF-α, and INF-γ. The impairment

of neutrophil migration to an infection site is known as neutrophil paralysis and is related to

the depletion of appropriate cell surface receptors to IL-8 on neutrophils. This phenomenon

is a key feature in sepsis, a condition in which a bacterial infection may not be cleared,

while the entire system is overwhelmed with inflammation. Interleukin-10 (IL-10) is an anti-

inflammatory cytokine that is a major regulator of inflammation and has been found to

inhibit cytokine expression, in the lung in particular [10]. In the absence of the secretion of

cytokines at the site of infection, neutrophils cannot migrate to the site of infection. IL-10

is also inhibits the ability for neutrophils to phagocytose the bacteria.

The effects of neutrophil impairment and overexpression of IL-10 were studied in an ex-

periment by Sun et al. [10]. Mice were genetically altered with a gene that overexpresses

IL-10 in the lungs only when induced with tetracycline. These mice (IL-10 OE) and control

mice (WT) were inoculated with Pseudomonas aeruginosa. The IL-10 OE mice experienced

neutrophil paralysis and increased bacteria counts in comparison to the WT mice. In a

different experiment, neutrophil depletion was induced in IL-10 OE mice and in WT mice,

resulting in impaired bacterial clearance in both types of mice [10]. The authors concluded

that the neutrophil paralysis associated with IL-10 leads to increased bacterial counts, in-

creased inflammation in the lungs, and a higher incidence of mortality.

From the above experiment by Sun et al., it is clear that neutrophil paralysis has detri-

mental effects in the face of bacterial infection. Neutrophil paralysis has also been observed

in patients with leukemia, diabetes, and AIDS, all of which are diseases associated with a

high susceptibility to secondary bacterial infection [1].
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3.0 MODEL 1: DETERMINISTIC INHALATION OF BACTERIA

In order to test the plausibility of the hypothesis that the second wave of IL-10 observed in the

IAV mouse data collected by Toapanta et al. is caused by a secondary bacterial infection,

we develop an ODE model containing state variables representative of the quantities of

paralyzed neutrophils, NP , activated neutrophils, NA, bacteria, B, and IL-10 produced in

response to the bacterial infection, I. We will begin by developing a two-equation ODE

model representative of the interaction between activated neutrophils and bacteria.

3.1 THE B-NA SUBSYSTEM

When developing the B-NA subsystem, we take into account the interactions between bac-

teria and activated neutrophils shown in Table 1.

In addition to the above reactions, we assume that the presence of bacteria in the res-

piratory tract recruits activated neutrophils; however, the recruitment rate saturates with

NA +B
ξ→ NA B is destroyed at rate ξ when it interacts with NA.

NA → NA experiences natural death.

∗ p→ B B is inhaled into lower respiratory tract at rate p.

Table 1: A summary of the interactions between B and NA
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the increase of bacteria. For this reason, we represent the recruitment rate of activated

neutrophils with a Michaelis-Menten-like term, B
1+sB

, where 1
s

is the amount of bacteria for

which the recruitment rate reaches its maximum level.

Further, we assume that the bacteria undergo logistic growth, which we represent with

the term kpgB(1 − B), where kpg is the bacterial growth rate. We represent the removal

of bacteria from the respiratory tract via the mucociliary escalator with the term − µ1B
µ2+B

.

A saturation term is appropriate since the rate at which this mechanism removes bacteria

levels off when the amount of bacteria is above a certain threshold.

These assumptions and the reactions in Table 1 yield the system of equations (3.1) and

(3.2).

dB

dt
=

(
p+ kpgB(1−B)− µ1B

µ2 +B
− ξBNA

)
εB (3.1)

dNA

dt
=

(
−NA +

B

1 + sB

)
εNA

(3.2)

The variables B and NA are dimensionless because the correct quantities for the bacteria

and neutrophils in the system is unknown. We include the parameters εB and εNA
for

dimensional correctness. For the time being, we will set εB = 1 and εNA
= 1. We will choose

parameters so that all relevant equilibria of System (3.1) - (3.2) are in the first quadrant

of the B-NA plane since negative quantities of bacteria and neutrophils are not possible.

In order for the system to be representative of biological phenomena, System (3.1) - (3.2)

must exhibit bistability between health and chronic infection for some set of parameters.

We define health as the state for which bacteria levels and neutrophil levels are low and

at equilibrium. Chronic infection is the state for which bacteria and neutrophil levels are

high and at equilibrium. We will first find parameters such that System (3.1) - (3.2) has

three equilibria in the first quadrant of the B-NA plane and then verify that the two outer

equilibria are stable, while the middle equilibrium is a saddle point. This will yield the

desired bistability.

The equilibria of System (3.1) and (3.2) are located at the intersections of the system’s

nullclines. We find the nullclines by setting each equation equal to zero and solving for the

variable NA in terms of B. For Equation (3.1), we have

12



dB

dt
= 0⇒p+ kpgB(1−B)− µ1B

µ2 +B
− ξBNA = 0 (3.3)

⇒NA =
−kpgB3 + kpg(1− µ2)B

2 + (p− µ1 + kpgµ2)B + pµ2

ξB(B + µ2)
. (3.4)

Similarly, for Equation (3.2), we obtain

dNA

dt
= 0⇒−NA +

B

1 + sB
= 0 (3.5)

⇒NA =
B

1 + sB
. (3.6)

Thus the two nullclines of System (3.1) and (3.2) are

N1
A(B) =

−kpgB3 + kpg(1− µ2)B
2 + (p− µ1 + kpgµ2)B + pµ2

ξB(B + µ2)
(3.7)

N2
A(B) =

B

1 + sB
(3.8)

To find the equilibria of the System (3.1) and (3.2), we need to identify the points

(B∗, N∗A) at which the nullclines (3.7) and (3.8) intersect. The values B∗ at which the two

nullclines intersect are found by finding the values of B such that

−kpgB3 + kpg(1− µ2)B
2 + (p− µ1 + kpgµ2)B + pµ2

ξB(B + µ2)
− B

1 + sB
= 0 , or

f(B) = 0, g(B) 6= 0

where

f(B) =(−kpgs)B4 + (kpg − kpgs+ kpgsµ2 + ξ)B3 (3.9)

+ (kpg + ps− sµ1 − kpgµ2 + kpgsµ2 − µ2ξ)B
2

+ (p− µ1 + kpgµ2 + psµ2)B + pµ2, and

g(B) =ξB(1 + sB)(µ2 +B) (3.10)
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p = 0.0012 kpg = 0.05 µ1 = 0.01

µ2 = 0.1 s = 5 ξ = 0.1

Table 2: For these parameter values, System (3.1) - (3.2) exhibits bistability. Bistability

in the model is necessary because the immune system can exhibit both health and chronic

inflammation.

We choose s = 5 so that the half-maximum value of the saturation term B
1+sB

occurs for

B = 0.2. We select values for the remaining parameters so that bistability is possible. We

also want the values of B and NA at the state of health to be very small and positive, while

the state of chronic infection should yield values of B and NA that are significantly higher

than those for the health state. The parameter values in Table 2 satisfy these qualities. The

four equilibria of the B-NA subsystem for the parameter values in Table 2 are displayed in

Table 3. (B3, NA3) has a negative B-coordinate, so we will not consider this equilibrium in

our analysis. The nullclines of System (3.1) - (3.2) and the remaining three equilibria can

be seen in Figure 2, which was generated with XPPAUT [3]. The code can be found in the

Appendix, Section A.1.

(B1, NA1) = (0.0580, 0.0450)

(B2, NA2) = (0.0902, 0.0621)

(B3, NA3) = (−0.2363, 1.3009)

(B4, NA4) = (0.3881, 0.1320)

Table 3: The equilibria of System (3.1) - (3.2) for the parameter values in Table 2.
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Figure 2: The nullclines of System (3.1) - (3.2). The blue nullcline shows where dB
dt

= 0, and

the red nullcline shows where dNA

dt
= 0. From left to right, the intersections of the blue and

red lines are the equilibria (B1, NA1), (B2, NA2), and (B4, NA4).
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Equilibrium Eigenvalue 1 Eigenvalue 2 Equilibrium Type

(B1, NA1) -0.996501 -0.003829 Stable Node

(B2, NA2) -0.995730 0.002854 Saddle Point

(B4, NA4) -0.995466 -0.010759 Stable Node

Table 4: The coordinates, eigenvalues, and description of the stability for each equilibrium

of the B-NA subsystem.

Now we will check the stability of the three equilibria (B1, NA1), (B2, NA2), and (B4, NA4).

Let f1(B,NA) be the right side of Equation (3.1), and let f2(B,NA) be the right side of

Equation (3.2). The linearization of System (3.1) - (3.2) is represented by the matrix J in

Equation (3.11).

J(B,NA) =

 ∂f1(B,NA)
∂NA

∂f1(B,NA)
∂B

∂f2(B,NA)
∂NA

∂f2(B,NA)
∂B

 =

 −1 1
(1+sB)2

−ξB kpg(1− 2B)− µ1µ2
(µ2+B)2

− ξNA

 (3.11)

The eigenvalues of this system, λ1, λ2 satisfy

det(J − λI2x2) = 0 (3.12)

⇒λ2 + λ

(
1− kpg(1− 2B) +

µ1µ2

(µ2 +B)2
+ ξNA

)
− (3.13)

kpg(1− 2B) +
µ1µ2

(µ2 +B)2
+ ξNA +

ξB

(1 + sB)2
= 0, (3.14)

where I2x2 is the identity matrix with two rows and two columns. The eigenvalues of

System (3.1) - (3.2) at the first-quadrant equilibria are summarized in Table 4. As desired,

the choice of parameters in Table 2 gives us a subsystem with one saddle point in between

two stable equilibria. This yields the desired bistability of the model.
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3.2 THE EFFECT OF PARAMETER ξ ON THE BISTABILITY OF THE

B-NA SUBSYSTEM

Before introducing IL-10 and the possibility of neutrophil paralysis into our model, we will

observe the effect of varying the parameter ξ on the bistability of the B-NA Subsystem,

given by Equations (3.1) and (3.2). The parameter ξ represents the rate at which activated

neutrophils are able to clear bacteria with which they come into contact. For the bifurcation

diagram of B versus ξ shown in Figure 3, we see that for low values of ξ, the amount

of bacteria remains at a high level and cannot return to a lower level, regardless of the

initial conditions. The upper branch in the bifurcation diagram represents a state of chronic

infection. If ξ increases past ξ = 0.09294, a lower and middle branch appear. The points on

the unstable portion of the lower branch are unstable spirals, and the points on the middle

branch are saddle points.

When ξ increases past ξ = 0.09759, a subcritical Andronov-Hopf bifurcation occurs,

transforming the equilibria on the bottom branch from unstable spirals to stable spirals.

When ξ ∈ (0.09759, 0.1182), it is possible for B to go to the chronic state or the lower

state of health. When ξ increases past ξ = 0.1182, a subcritical Andronov-Hopf bifurcation

occurs, transforming points on the top branch from stable spirals to unstable spirals. For

ξ ∈ (0.1182, 0.1267), the bacteria level could settle at the health state since all other equilibria

are unstable, or the system could produce oscillations. For ξ > 0.1267, the health state is

the only equilibrium in the system.

We see that by varying ξ, we can alter the bistability of System (3.1) - (3.2). A decrease

in ξ represents an immune system that is less effective at ridding the lower respiratory tract

of bacteria; it makes sense that lowering ξ leads to an immune system that can only exist

at a state of chronic infection and inflammation. In the next section, we introduce IL-

10 and neutrophil paralysis to the system. The increase in IL-10 from the IAV infection

causes the quantity of activated neutrophils to decrease, which has a similar effect on the

immune system as decreasing the value of ξ in the B-NA system; both changes represent

a weakening in the immune system’s ability to fight off bacterial infection and return to a

healthy equilibrium.
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Figure 3: The Bifurcation diagram of B versus ξ for the parameter values given in Table 2.

There is a parameter regime of ξ for which both health and chronic states exist and are stable.

Outside of this regime, the system must stay at either health or chronic infection. On the

upper and lower branch, stability changes through subcritical Andronov-Hopf bifurcations.
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3.3 THE ADDITION OF THE EFFECTS OF IL-10

Now we will consider the effects of anti-inflammatory mediators, specifically IL-10, on the

interaction between bacteria and activated neutrophils. As mentioned in Section 2.2.3, IL-10

has been observed to cause the inhibition of neutrophil migration to the site of infection. In

our model, NP refers to a neutrophil that has been inhibited from migrating to the site of

infection by IL-10. NA refers to a neutrophil that is able to migrate to the site of infection,

where it fights off the bacteria and produces IL-10. Although there are theories as to the

mechanisms of neutrophil paralysis, it is not known what all contributes to this phenomenon

[1]. For this reason, we simplify the process of neutrophil paralysis by describing it in terms

of interactions between neutrophils and IL-10.

We assume that an interaction between IL-10 and an activated neutrophil prevents the

neutrophil from getting to the site of infection; the activated neutrophil becomes a paralyzed

neutrophil. Since the IL-10 produced in response to the bacterial infection, as well as that

produced from the IAV infection, will trigger neutrophil paralysis, we include effects from

both sources of IL-10 in the neutrophil paralysis reaction. From the data point in Figure 1

plotted at t = 0 , we know that the level of IL-10 pre-IAV infection is 80.46 pg/mL. The

function IIAV is the difference between the piecewise-linear interpolation of the first seven

IL-10 data points seen in Figure 1 and 80.46, i.e. IIAV is the additional IL-10 produced

by the pro-inflammatory wave in response to the IAV infection. We assume also that the

neutrophil paralysis is temporary and that the affected neutrophil will return to an active

state before natural death. IL-10 is also assumed to eventually decay. Since IIAV is the

excess IL-10 above the healthy steady state caused by IAV infection, IIAV (t) = 0 outside of

the time during which the influenza infection takes place, meaning that we do not need to

account for its decay. Table 5 summarizes these reactions.

Since the pro-inflammatory wave initiates the anti-inflammatory wave of the immune re-

sponse, we represent the recruitment of IL-10 by activated neutrophils to the site of infection

with the term ζ1NA

1+ζ2(I+IIAV (t))
. This term is appropriate since an abundance of IL-10 at the

site of infection causes IL-10 production to saturate for a fixed level of activated neutrophils.

The model resulting from the above assumptions and the reactions in Tables 1 and 5 is given
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NA + I
γ→ NP + I NA is turned into NP at rate γ when it interacts with I.

NA + IIAV
γ→ NP + IIAV NA is turned into NP at rate γ when it interacts with IIAV .

NP → NA NP will turn back into NA.

I
η→ I decays at rate η.

Table 5: The interactions among NA, NP , and I

by System (3.15) - (3.18)

dNP

dt
= (γ(I + IIAV (t))NA −NP ) εNP

(3.15)

dNA

dt
=

(
−NA +

B

1 + sB

)
εNA
− (γ(I + IIAV (t))NA −NP ) εNP

(3.16)

dB

dt
=

(
p+ kpgB(1−B)− µ1B

µ2 +B
− ξBNA

)
εB (3.17)

dI

dt
=

(
ζ1NA

1 + ζ2(I + IIAV (t))
− ηI

)
εI (3.18)

The parameters εNP
, εNA

, εB, and εI are time-scaling parameters included in order to

obtain system dynamics as close to scientific observation as possible.

In order to choose the remaining parameters, we must make more assumptions while

taking into account what we know to be true from experimental observation. Since health

must be a possible steady state of System (3.15) - (3.18),

dNP

dt
= 0 (3.19)

IIAV (t) ≡ 0 during health ⇒ (γINA −NP ) εNP
= 0 (3.20)

⇒ γINA −NP = 0 (3.21)

⇒ γ =
NP

INA

. (3.22)
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We will assume that the level of activated neutrophils is equal to the level of paralyzed

neutrophils during the state of health. From this assumption and the fact that the level of

IL-10 at the healthy state is I(0) = 80.46, we have that γ = 1
80.46
≈ 0.01243. We will choose

ζ2 = 0.001; since ζ2 is multiplied by I, which takes on values much larger than those of NA,

making ζ2 too large will cause the term ζ1NA

1+ζ2I
to have little effect on the dynamics of I.

The motivation for the development of System (3.15) - (3.18) is to obtain a model sup-

porting the hypothesis that the second hill in the IL-10 data in Figure 1 results from sec-

ondary bacterial infection in the host and that this secondary bacterial infection occurs as a

result of immune dynamics triggered by the primary IAV infection.

We choose the parameters for System (3.15) - (3.18) with the following considerations in

mind:

1. The bacteria most often responsible for bacterial pneumonia is S. pneumoinae [2], [5], [8].

S. pneumoniae reproduces through binary fission, doubling once every 20 to 30 minutes

[12]. If we take the doubling time to be 30 minutes or 1
48

days, we can solve the following

differential equation to determine a value of εB.

dB

dt
= εBkpgB (3.23)

⇒B(t) = B0exp(εBkpgt) (3.24)

⇒2B0 = B

(
1

48

)
= B0exp

(
εBkpg

48

)
(3.25)

⇒εBkpg = 48 ln(2) ≈ 33.27 (3.26)

Since kpg = 0.05, a result obtained in Section 3.1, we set εB = 665.4.

2. S. pneumoniae infection occurs in the lungs one to seven days after viral infection of the

upper respiratory tract [2]. We choose the time-scaling parameters εNA
and εNP

so that

the bacterial infection matches this observation.

3. System (3.15) - (3.18) cannot be insensitive to the increase in IL-10 caused by the IAV

infection; the dynamics of the system must be responsive to the presence of IIAV .
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4. The solution of System (3.15) - (3.18) should stay near the healthy equilibrium in the

absence of the IAV infection. We choose parameters η and εI so that the system demon-

strates these last two qualities. When finding the healthy equilibrium state, which will

also serve as our set of initial conditions, we must keep the following in mind with respect

to the state of health:

a. IIAV ≡ 0, since IIAV is nonzero only in the first 9 days of IAV infection.

b. I ≡ 80.46 pg/mL, since this is the amount of IL-10 shown in the IAV IL-10 data

before IAV infection and since we assume that the mice are initially healthy.

c. When we let ξ = 0.165 in System (3.1) - (3.2) and let all other parameters in the

subsystem remain as they are in Table 2, the steady state values of B and NA will

be the same for both systems. Indeed, when System (3.15) - (3.18) is at equilibrium,

dNP

dt
= 0 (3.27)

⇒ γ(I + IIAV )NA −NP = 0 (3.28)

Thus
dNA

dt
=

(
−NA +

B

1 + sB

)
εNA
− (γ(I + IIAV )NA −NP ) εNP

= 0 (3.29)

⇒ dNA

dt
=

(
−NA +

B

1 + sB

)
εNA

= 0 (3.30)

This means that in System (3.15) - (3.18), NA behaves as it does in the Subsystem

(3.1) - (3.2). Since the dynamics of B in System (3.15) - (3.18) do not depend on

any variables besides NA, we have that the equilibrium values of B and NA in the

larger system should be the same as they are in the B-NA Subsystem.

d. For Equations (3.20) - (3.22), we assume that NA ≡ NP at health.

The parameter values and initial conditions for System (3.15) - (3.18) are shown in Tables

6 and 7, respectively. Although these parameter values were selected by hand, a closer fit

to the IAV IL-10 data could be obtained with the use of more sophisticated parameter

estimation techniques.

Figures 4 and 5 are simulations of System (3.15) - (3.18) with the parameter values in

Table 6. These simulations were run using XPPAUT and the code in the Appendix, Section
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p = 0.0012 kpg = 0.05 µ1 = 0.01 µ2 = 0.1

s = 5 ξ = 0.165 γ = 0.01243 ζ2 = 0.001

η = 0.97 εNP
= 0.15 εNA

= 0.27 εB = 665.4

ζ1 = 2384.48 εI = 5

Table 6: Along with the initial conditions in Table 7, these parameter values for System

(3.15) - (3.18) provide dynamics similar to those observed in the IL-10 data from Figure 1.

B(0) = 0.0429609

NA(0) = 0.03536446

NP (0) = 0.03536863

I(0) = 80.46

Table 7: For the parameter values in Table 6, these initial conditions for System (3.15) -

(3.18) provide dynamics similar to those observed in the IL-10 data from Figure 1.
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A.2. For this set of parameter values, the system yields dynamics for Itot = I + IIAV that

closely match the IL-10 data in Figure 1. Indeed, we see from Figure 4 that the dynamics

of Itot experience a large peak followed by a smaller, secondary peak. The first peak in Itot

is mostly driven by IIAV ; however, the dynamics occurring after the first peak are a result

of the dynamics of System (3.15) - (3.18). In Figure 4, we compare Itot with the IL-10 IAV

data and observe the addition of I and IIAV to form Itot.

In Figure 5, we see that the bacterial level peaks between Day 6 and Day 7 post-IAV

infection. We also observe that the level of activated neutrophils decreases between Day

2 and Day 7, while the level of paralyzed neutrophils increases during this time. These

behaviors occur at the same time as the first, larger increase in IL-10 shown in Figure 1.

Recall that when IL-10 levels increase, activated neutrophils are inhibited from migrating

to the site of infection, allowing for bacteria at the site of infection to populate without

hindrance by the activated neutrophils. The way in which IIAV varies within the first 9

days post-IAV infection has the same effect on System (3.15) - (3.18) as decreasing and then

increasing ξ in the Subsystem (3.1) - (3.2). In the absence of IIAV , the system remains at

the steady state of health, which shows that the system is reacting to the change in IL-10

resulting from the primary IAV infection.
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Figure 4: The dynamics of Itot from System (3.15) - (3.18) closely predict the IL-10 data

post IAV infection. Itot is the sum of the IL-10 recruited by the bacterial infection, I, and

the excess IL-10 recruited by the IAV infection, IAV .

25



0 10 20 30 40 50 600

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Bacteria and Pro inflammatory Mediator Dynamics

Days Post IAV Infection

 

 

Bacteria
Activated Neutrophils
Paralyzed Neutrophils

Figure 5: The dynamics of B, NA, and NP from System (3.15) - (3.18) demonstrates timing

similar to that observed experimentally.
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4.0 MODEL 2: STOCHASTIC INHALATION OF BACTERIA

4.1 DEVELOPMENT OF MODEL 2

We have developed a model for an immune system with output that is qualitatively realistic

and produces IL-10 levels similar to the data collected by Toapanta et al. For this model, the

rate of inhalation of bacteria into the lower respiratory tract is represented by a constant;

however, the flow of bacteria into the lower respiratory tract is not constant. Instead, small

quantities of bacteria are inhaled many times per day. In this next model, we assume that the

same amount of bacteria is inhaled for every inhalation of bacteria and that the inhalation

of bacteria is a Poisson process. With this change, we have the model represented by the

System (4.1) - (4.4).

dNP

dt
= (γ(I + IIAV (t))NA −NP ) εNP

(4.1)

dNA

dt
=

(
−NA +

B

1 + sB

)
εNA
− (γ(I + IIAV (t))NA −NP ) εNP

(4.2)

dB

dt
=

(
kpgB(1−B)− µ1B

µ2 +B
− ξBNA

)
εB + p1(t) (4.3)

dI

dt
=

(
ζ1NA

1 + ζ2(I + IIAV (t))
− ηI

)
εI (4.4)

p1(t) = b1

n∑
i=1

δ(t− τi),

where δ is the Dirac delta function given by

δ(s) = lim
a→0

1

2a
exp

(
−
∣∣∣s
a

∣∣∣)
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The waiting times {τi+1−τi} between inhalations of bacteria are exponentially distributed

with rate parameter λ. The parameter b1 represents the amount of bacteria inhaled at each

time τi. Some of the values for the parameters in System (4.1) - (4.4) can be taken from

our work with System (3.15) - (3.18). However, the parameters involving the stochasticity

of the bacterial inhalation; such as λ and p1; as well as some of the parameters representing

immune system characteristics; such as ξ, ζ1, η, and γ; must be set. Our first step in doing

so is to consider that the average influx of bacteria in the stochastic system should be the

same as the influx of bacteria in the deterministic system, i.e. p̂1 in System (4.1) - (4.4)

should equal εBp in System (3.15) - (3.18).

Note that the expected value of the function p1(t) over a given time interval [0, T ] is

p̂1 =
b1 〈n〉 (T )

T
,

where 〈n〉 (T ) is the expected number of times that p1(t) is nonzero for t ∈ [0, T ]. Since the

number of times for which p1(t) 6= 0 is a Poisson process,

〈n〉 (T ) =

∫ T

0

λdt = λT (4.5)

⇒ p̂1 =
b1λT

T
= b1λ (4.6)

Since we assume p̂1 = εBp, we obtain that

εBp = b1λ⇒ b1 =
εBp

λ
=

0.0012(665.4)

λ
=

0.79848

λ

We will assume that the values of parameters εB, εNA
, εNP

, εI , s, kpg, µ1, µ2, and ζ2 are

the same as in Table 6. We will find new values for the parameters λ, ζ1, η, γ, and ξ for the

stochastic model such that we observe the following behaviors:

1. In the absence of IL-10 from IAV infection, the IL-10 level in the model remains around

the baseline level of 80.46 pg/mL and does not jump spontaneously.
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2. In an experiment by W. J. Doyle in which humans were experimentally infected with

influenza, 15% of the subjects were found to be nasopharyngeally infected with S. pneu-

moniae 6 days post viral challenge [2]. We will attempt to find parameters so that there

is a 0.15 probability of a bacterial infection, by which we mean a jump in the bacteria

level from the baseline level of 0.04 cfu to at least 0.2 cfu.

3. The average of the IL-10 trajectories and the IAV IL-10 data agree at most if not all of

the IAV IL-10 data points.

Each of the IL-10 data points shown in Figure 1 is an average of IL-10 counts from six

mice, all of which had to be euthanized in order to obtain these results. This means that the

data collected by Toapanta et al. represents an average of immune system dynamics, across

different immune systems. We assume that the mice in the experiment had identical immune

systems, and observe whether or not System (4.1) - (4.4) exhibits the three behaviors listed

above at a given parameter point by running the simulation 100 times and averaging the

solutions. In order to find numerical solutions of this system, we used XPPAUT with the

code found in Appendix A.3.

Although Behaviors 1 and 2 are important in finding a good parameter fit for System (4.1)

- (4.4), Behavior 3 represents the primary goal of Section 4 - to develop a model supporting

the hypothesis that bacterial superinfection is responsible for the small, secondary hump in

the IAV IL-10 data. (See Figure 1.) To check that the system exhibits Behavior 3 at a given

parameter point, we find the average of the solutions Itot = IIAV + I and compare it to the

IAV IL-10 data.

Figure 6 shows the results of five consecutive simulations of System (4.1) - (4.4) at the

parameter values specified in Table 8. It is clear from the figure that the steady state level

for I for these parameter values is close to 96 as opposed to being near 80.46, so System

(4.1) - (4.4) does not completely satisfy Behavior 1 at the given parameter point, although

the chance of a spontaneous bacterial infection is very low. Furthermore, for this parameter

point, the probability that bacterial infection occurs is 0.52, so System (4.1) - (4.4) also does

not satisfy Behavior 2 at the given parameter point.

However, System (4.1) - (4.4) does satisfy Behavior 3. In Figure 7, the average of Itot

over 100 trials is compared to the IAV IL-10 data. From this plot, we see that Itot matches
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εB = 665.4 εNP
= 0.15 s = 5 εNA

= 0.27

εI = 15 kpg = 0.05 µ1 = 0.01 µ2 = 0.1

ζ2 = 0.001 b1 = εBp
λ

λ = 600 ζ1 = 2305

ξ = 0.161 η = 0.78 γ = 0.0048

Table 8: The parameter values for System (4.1) - (4.4) that yield the results seen in Figures

6, 7, and 8.

the trend established by the IAV IL-10 data points. In Figure 8, we see the average dynamics

of bacteria, activated neutrophils, and paralyzed neutrophils corresponding to the 100 trials

from which the average Itot in Figure 7 was found. We see that that the bacteria does

not peak as high as it does for System (3.15) - (3.18) in Figure 5, but this makes sense

because these are dynamics over trials for which bacterial infection did or did not occur. For

example, Figure 9 shows the dynamics of B, NA, and NP for a trial for which there was

bacterial infection, while Figure 10 shows the solutions to the same variables for a trial for

which no bacterial infection occurred.

This model with stochastic bacteria inhalation is more realistic than the model with

constant rate of bacterial inhalation because it demonstrates the possibility of bacterial

infection occurring with an assigned probability. In System (3.15) - (3.18), the parameter

values determine fully whether or not the immune system will be able to contain the bacteria

before infection can occur, but we know from experience that hosts with healthy immune

systems do not obtain lower-respiratory tract infections never or always; there is some chance

of getting sick, but there is no certainty of contracting a bacterial infection or not.
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Figure 6: The dynamics of I for five different trials of System (4.1) - (4.4).
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Figure 7: The average over 100 trials of Itot from System (4.1) - (4.4) and the IAV IL-10

data.
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Figure 8: The dynamics of B, NA, and NP from System (4.1) - (4.4). The maximum average

bacteria level is lower than the maximum bacteria level obtained from the parameter selection

for System (3.15) - (3.18). (See Figure 5.)
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Figure 9: The dynamics of B, NA, and NP from System (4.1) - (4.4) for a trial during which

bacterial infection occurred.
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Figure 10: The dynamics of B, NA, and NP from System (4.1) - (4.4) for a trial during

which bacterial infection did not occur.

35



4.2 CONTRIBUTING FACTORS TO BACTERIAL INFECTION IN

MODEL 2 SOLUTION

Notice from Figure 6 that the solution to System (4.1) - (4.4) will fall under two distinct

cases, one of which results in bacterial infection, and one of which does not. We wish to

determine the factors that contribute to whether or not the solution results in bacterial

infection. After observing many simulations System (4.1) - (4.4), one observes that when

bacterial infection does occur in the solution, it occurs within the approximate time window

between Day 4 and Day 8. Figure 11 shows a plot of B(t) for four simulations of the System,

one of which does not result in bacterial infection and three of which do, and Figure 12 shows

the mean B(t) among cases of bacterial infection and the mean B(t) among cases of health.

The dependence on the occurrence of bacterial infection on the time window of Day 4

to Day 8 suggests that there is some aspect of the System that makes a sudden jump in

bacteria levels possible during this time period and highly improbably outside of the time

period. In Figure 13, we see a plot of IIAV (t), the excess IL-10 produced in response to

the IAV infection. During the time window from Day 4 to Day 8, IIAV (t) ≈ 200 or greater.

However, IIAV (t) ≈ 200 does not guarantee that the solution to the System exhibits bacterial

infection since it is possible for the System to remain at health despite the temporary increase

in levels of IIAV (t).

We wish to examine the effect of IIAV (t) on System (4.1) - (4.4). To do so, we make

some assumptions in order to reduce the deterministic model, System (3.15) - (3.18), to a

one-dimensional ODE. Since we would like to compare the results of this analysis to the

stochastic model with the parameters in Table 8, we will consider the deterministic model

with the parameter values in Table 8 relevant to System (3.15) - (3.18).

First, we replace IIAV (t) with a constant parameter called IAV so that we can explicitly

observe the effects of different values of IIAV (t) on the occurrence of bacterial infection. This

yields the system of differential equations, System (4.7) - (4.10).
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Figure 11: Four simulations of System (4.1) - (4.4). The three simulations that do result in

bacterial infection are representative of most other simulations of the System that result in

infection in that bacterial infection does not occur outside of an approximate time window

from Day 4 to Day 8. (See Figure 12 for the mean of B(t) from 30 simulations for which

bacterial infection occurred.) From Figure 13, we see IIAV (t) ≈ 200 or greater in this time

window.
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Figure 12: The mean of B(t) from 30 simulations of System (4.1) - (4.4) for which bacterial

infection does occur and the mean over 30 simulations for which bacterial infection does not

occur.
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Figure 13: A plot of IIAV (t), the additional IL-10 produced as a result of the IAV infection.
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dNP

dt
= (γ(I + IAV )NA −NP ) εNP

(4.7)

dNA

dt
=

(
−NA +

B

1 + sB

)
εNA
− (γ(I + IAV )NA −NP ) εNP

(4.8)

dB

dt
=

(
p+ kpgB(1−B)− µ1B

µ2 +B
− ξBNA

)
εB (4.9)

dI

dt
=

(
ζ1NA

1 + ζ2(I + IAV )
− ηI

)
εI (4.10)

As we change the values of parameter IAV , we observe that I ∈ [72.92, 96.16] for System

(4.7) - (4.10); we let I ≡ 96.16, the steady state value at health I(0), since the extent to which

I changes is small compared to the extent to which IAV changes. I ≡ 96.16 means that

the parameter IAV must take on values in the interval [0, 372.48] because Itot = IIAV (t) + I

must take on values in [0, 468.46]. Also, note that Ntot(0) = NA(0) + NP (0) = 0.052 and

that Ntot ∈ [0.052, 0.111]; we let Ntot ≡ 0.052. Observe the following.

0 =
dNP

dt
= (γ((IAV )NA −NP )) εNA

(4.11)

⇒ NP = γ(IAV )NA (4.12)

This yields

Ntot = NA +NP (4.13)

⇒ Ntot = NA + γ(IAV )NA (4.14)

⇒ NA =
Ntot

1 + γ(IAV )
(4.15)

Plugging this value of NA into dB
dt

, we obtain

dB

dt
=

(
p+ kpgB(1−B)− µ1B

µ2 +B
− ξNtotB

1 + γ(IAV )

)
εB (4.16)

We set dB
dt

= 0 and solve for B at several different values of IAV to observe how changes in

IAV affect the steady state values of B. Figure 14 shows plots of the equation for several
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values of IAV . For IAV = 0, we see that there are three equilibria - one unstable equilibrium

between two stable equilibria. As IAV increases, the unstable equilibrium and the stable

equilibrium to its left disappear. Figure 15 provides a closer look at this phenomenon. When

IAV is below a certain value, B must be at least 0.06, or larger depending on how small

IAV is, in order for it to be pulled toward the higher stable equilibrium. Otherwise, B is

pulled toward the lower stable equilibrium. The value that B must be in order for it to be

pulled toward the higher stable equilibrium decreases as IAV increases.

We can apply these findings to the stochastic system. From what we observed above,

B must be above a necessary value dependent on the value of IIAV (t) in order for bacterial

infection to occur. However, due to the constraints on the stochasticity of B influenced by

the values of parameters b1 and λ in System (4.1) - (4.4), the lower the value of IIAV (t), the

more improbable is is that B will reach the necessary value needed in order to be attracted

to the higher equilibrium. In other words, whether or not the solution of System (4.1) -

(4.4) results in bacterial infection at a certain time t∗ depends on the value of IIAV (t∗) and

whether or not the stochasticity of the system has brought B(t∗) to a large enough value so

as to be pulled toward the higher equilibrium of infection.
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Figure 14: A plot of dB
dt

, Equation (4.16), versus B for several values of IAV . The value of

IAV determines the number of equilibria of Equation (4.16). See Figure 15 for a closer look

at the disappearance of the left and middle equilibria as IAV increases.
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Figure 15: The left and middle equilibria of Equation (4.16) disappear as IAV increases.

When IAV < 100, B must stochastically jump higher than the middle equilibrium in order

to be pulled toward the stable equilibrium to the right. (See Figure 14.) For this reason,

bacterial infection is highly unlikely to occur for IAV < 100.
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5.0 CONCLUSION

Through the above research, we were able to develop a simple model of bacterial infection

involving bacteria, neutrophils, and IL-10. We used this model to support the possibility

that the unexpected secondary hump in the IAV IL-10 data collected by Toapanta et al. is

due to an unintended bacterial superinfection occurring after the mice were inoculated with

IAV. While we were able to find parameters for the deterministic model that satisfied all

of our criterion and yielded results that matched the IL-10 data, the model with stochastic

bacterial inhalation produced a more realistic infection scenario by modeling the somewhat

random nature of illness and infection. In order to choose parameters that yield results

exhibiting all expected behaviors, we could perform a sensitivity analysis on the parameters

to find out which are worth varying and which are not in order to obtain the desired results.

One reason for the difficulty in fitting System (4.1) - (4.4) is that we are working with one

specific immune system as established by our parameter point choice. It is probable that,

since the IAV IL-10 data comes from many different rats, we would want to be able to vary

the parameters slightly in order to obtain a wider spread of the possible immune responses.

For example, for the parameter choice in Table 8, all solutions return to the healthy state

state, but perhaps some of the mice were not able to recover from the bacterial infection.

In this case, we would want the variation in parameters to be such that the change in IL-10

caused by the IAV infection can cause bacteria levels to jump to the high branch in Figure 3,

while also being able to allow bacteria levels to stay at the lower branch. In order to obtain

this, we could include stochastic variation of the parameters in a modification of System (4.1)

- (4.4). We could also vary the parameter b1 stochastically, since the host probably inhales

varying amounts of bacteria as opposed to inhaling the same amount of bacteria every time

bacteria is taken into the lower respiratory tract.
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Finally, these models could be useful in considering the probability of contracting sec-

ondary bacterial pneumonia after an IAV infection with respect to individuals with com-

promised immune systems and the elderly. Community acquired pneumonia is a common

complication for the elderly living in nursing homes or for chronically ill patients who spend

much time in hospital intensive care units.
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APPENDIX

CODE

A.1 NAB PP.ODE CODE

NA’=-NA+B/(1+ss*B)

B’=p+kpg*B*(1-B)-(m1*B/(m2+B))-xi*B*NA)

par p=0.0012, kpg=0.05, m1=0.01, m2=0.1, xi=0.1, ss=5

init NA=0.0449829

init B=0.0580362

@ method=rk4, tol=1e-7, dt=0.01, total=200, bounds=1e70

@ maxstore=100000

done

A.2 NB V3 C.ODE CODE

#Note: IL10_linear.tab is the IL-10 data minus baseline value of 80.64

table ca_ IL10_linear.tab

46



table caFull_ IL10_extended.tab

ca(t)=if((t<=9.0949)&(t>=0))then(ca_(qq*(t)))else(0.0)

caFull(t)=if((t<=19)&(t>=0))then(caFull_(t))else(if(t<0)then(80.46)else(113.28))

NP’=(g*K*NA-NP)*epsNp

NA’=(-NA+B/(1+ss*B))*epsNa-(g*K*NA-NP)*epsNp

B’=(p+kpg*B*(1-B)-(m1*B/(m2+B))-xi*B*NA)*epsB

K’=(ca(t)+z1*NA/(1+z2*K)-y*K)*epsK

par qq=1, epsNp=0.15, epsK=15, z1=2384.48, z2=0.001

par g=0.01243, epsNA=0.27, ss=5, y=0.97

par epsB=665.4, p=0.0012, kpg=0.05, m1=0.01, m2=0.1, xi=0.165

aux myca=ca(t)/1000

aux IL10=caFull(t)

init NP=0.03536446

init NA=0.03536446

init B= 0.0429609

init K=80.46

@ method=rk4, tol=1e-7, dt=0.01, total=60, bounds=1e70

@ maxstore=100000

done

A.3 NB V5 2.ODE CODE

#Note: IL10_linear.tab is the IL-10 data minus baseline value of 80.64
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table ca_ IL10_linear.tab

table caFull_ IL10_extended.tab

ca(t)=if((t<=9.0949)&(t>=0))then(ca_(qq*(t)))else(0.0)

caFull(t)=if((t<=19)&(t>=0))then(caFull_(t))else(if(t<0)then(80.46)else(113.28))

NP’=(g*(K+ca(t))*NA-NP)*epsNp

NA’=(-NA+B/(1+ss*B))*epsNa-(g*(K+ca(t))*NA-NP)*epsNp

B’=(p+kpg*B*(1-B)-(m1*B/(m2+B))-c*B*NA)*epsB

K’=(z1*NA/(1+z2*(K+ca(t)))-y*K)*epsK

nap’=(-nap+na)/tauf

switch’=0

switch2’=0

markov z 2

{0} {lambda}

{100000000000} {0}

global 1 z-.5 {b=b+b1}

trial’=0

par tauf=1

global 1 nap-thresh1 {switch2=switch2+1}

global -1 nap-thresh2 {switch2=switch2+1}

global 1 nap-thresh1 {switch=switch+(t>0)}

global -1 nap-thresh2 {switch=switch+(t>0)}

global 1 t-tend {out_put=1}

par thresh1=0.05, thresh2=0.045, thresh3=300, thresh4=90

par thresh5=0.5, thresh6=0.3

par lambda=600, p=0, c=0.161

par qq=1, epsNp=0.15, epsK=15, z1=2304.72, z2=0.001

par g=0.0048, epsNA=0.27, ss=5, y=0.78
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par epsB=665.4, kpg=0.05, m1=0.01, m2=0.1

par tend=60.01234

b1=0.79848/lambda

only trial,switch,switch2,bzero,xi

aux bzero=b1

aux xi=c

aux IL10=caFull(t)

aux I=K+ca(t)

init NP=0.01602396

init NA=0.03433738

init B=0.04145409

init K=80.46

init switch=0

@ method=euler, tol=1e-7, dt=0.001, total=91, bounds=1e70

@ maxstore=100000, njmp=5, T0=-30

@ trans=100

@ range=1,rangereset=np,rangestep=100,rangeover=trial

@ rangelow=0,rangehigh=100

done
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