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MODELING AND CONTROL OF SOLID OXIDE FUEL CELL – GAS TURBINE POWER 
PLANT SYSTEMS 

 
 

Adam Hahn, MSME 
 
 

University of Pittsburgh, 2004 
 
 
 

There is extensive research taking place involving fuel cell – gas turbine combined power plant 

systems.  These systems use a high temperature fuel cell and a gas turbine to achieve higher 

overall performance and efficiency than a single mode power plant.  Due to the high temperature 

of the exhaust gasses of the fuel cell, heat can be recuperated and used to drive a gas turbine.  

The turbine creates additional power and is a means of utilizing the exhaust energy of the fuel 

cell.  Despite the research being done on integrating these systems, little work has been done to 

characterize the dynamics of the integrated systems.  Due to the high response of the fuel cell 

and the relatively sluggish response of the turbine, control of the system needs to be understood.  

This thesis develops dynamic models of the individual components that comprise a fuel cell – 

gas turbine hybrid system (axial flow compressor, combustor, turbine, fuel cell, and heat 

exchanger).  These models are incorporated to produce a complete dynamic hybrid model.  The 

models are analyzed with respect to dynamics and basic control techniques are used to control 

various parameters.  It is shown that the system can be controlled using hydrogen input flow rate 

control for the fuel cell and controlled turbine inlet temperature for the gas turbine.  
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1.0 INTRODUCTION 

 

 

1.1 FUEL CELL POWER PLANTS 

 

Fuel cells have been receiving a lot of attention lately due to their potential as becoming a new 

energy source with a large range of applications.  The benefits of fuel cell energy are primarily 

the high efficiency with which they can run and their environmentally friendly by-products.  Fuel 

cells use a chemical reaction to convert hydrogen and oxygen into water, releasing electrons 

(energy) in the process.  Essentially, the hydrogen fuel is being “burnt” in a simple reaction to 

produce water.  Instead of releasing energy, however, the reaction releases an electric current.  A 

typical fuel cell consists of two electrodes (anode and cathode) where the reactions take place.  

The electrodes are also the mediums that the current flows between.  Sandwiched between the 

electrodes is an electrolyte material which the ions flow through to keep the reactions 

continuous. There are several types of fuel cells being researched at present.  These include 

alkaline, proton exchange membrane, phosphoric acid, molten carbonate, and solid oxide.  They 

differ in electrode and electrolyte materials, chemical reactions, catalysts, and operating 

temperatures and pressures [8]. 
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Fuel cells can be incorporated with other components to create high efficiency industrial power 

plants.  These power plants usually consist of a pump or blower to circulate the working fluids 

through the fuel cell, a reformer to convert the fuel into hydrogen, pressure regulators, and power 

conditioners.  Most fuel cells do not use straight hydrogen as fuel.  Therefore they must 

incorporate a reformer to convert the fuel being used into hydrogen.  Fuels that can be reformed 

are methane, ammonia, methanol, ethanol, or gasoline.  Storage of the fuel for power plants is a 

significant issue in fuel cell power plant design.  Typically, the fuel cell takes up a small 

percentage of the overall size of a fuel cell power plant. 

 

 

1.2 GAS TURBINES 

 

Gas turbines have been used to produce power for many years.  They are the main source of 

power for jet aircraft and can be used to create industrial power in gas turbine power plants.  The 

concept is similar to that of a combustion engine:  to convert chemical energy of a fuel into 

mechanical energy.  The fluid cycle is similar to a combustion engine.  A working fluid (usually 

air) is compressed, fuel is added and the mixture is ignited to initiate combustion.  The 

combustion releases energy and the fluid expands moving a physical barrier.  The moving of the 

barrier is the mechanical work out of the cycle.  A portion of this mechanical energy is then used 

to compress the fluid in the next cycle.  The difference between a gas turbine and a combustion 

engine is that the gas turbine cycle runs continuously instead of in iterative cycles (one after the 

other).  The basic components of a gas turbine are a compressor, combustor or heat exchanger, 

and a turbine.  The compressor is typically an axial flow or centrifugal design.  The working 
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fluid flows through the compressor and the pressure is increased.  Heat energy is then added to 

the fluid via combustion or a heat exchanger.  The fluid then expands through a turbine (doing 

work on it) to create energy.  The turbine is used to run the compressor.  The difference between 

the power it takes to run the compressor and the total power out of the turbine is the net power 

produced by the cycle.  Gas turbine power plants can be designed for a multitude of cycles using 

multiple compressors and turbines as well as heat exchangers and throttling devices [6], [14]. 

 

 

1.3 COMBINED FUEL CELL GAS TURBINE POWER PLANTS 

 

As stated above, some fuel cells, specifically solid oxide (SOFC) and molten carbonate (MCFC), 

operate at elevated temperatures [11].  Therefore, their exhaust gasses (steam and air) exit with 

high heat energy content.  These high temperature gasses can be used to run a gas turbine 

bottoming cycle and extract even more energy.  Fuel Cell Gas Turbine (FCGT) hybrid systems 

can be configured in a number of ways.  Heat exchangers can be used to transfer energy from 

one stream to another or the working fluid of the gas turbine can be used to supply the fuel cell 

air input.  These systems are capable of delivering power at very high efficiencies [8], [11].  

Current research is being done to incorporate fuel cells and gas turbines into power plants in a 

number of ways.  A number of technical papers have been written about the design and modeling 

of these systems.  Specifically the National Energy Technology Laboratory in Morgantown WV 

is currently building and analyzing a  hybrid system [12], [13], [20]. 
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One of the issues with the hybrid design is there must be a means to control the power output of 

the entire system as well as protect the individual components from unstable conditions that 

could damage the power plant.  This entails understanding the dynamics of each of the 

components used in the hybrid system and controlling the power output of entire plant.  These 

components include a compressor, combustor, turbine, fuel cell, and heat exchanger.  The main 

unstable conditions of the compressor are rotating stall and surge.  Rotating stall is a condition 

where the flow over individual blades of the compressor is not constant.  If a stall condition 

develops in one of the channels, a decrease in flow rate through that channel will occur.  The 

stall will then become induced in the adjacent channel while recovering in the original channel.  

The stall will propagate about the axis of the compressor and will affect the overall flow rate 

through the compressor [2].  Surge is also a common unstable condition in axial flow 

compressors; this is where the flow rate through the entire compressor is reversed due to the 

pressure drop being in the opposite direction of the flow.  This can severely damage compressors 

and affect the overall power cycle [2].  As well as compressor concerns, fuel cells need to be 

maintained at specific temperatures and pressures to operate safely and efficiently.  Also the 

humidity needs to be kept at certain levels to ensure proper operation.  These are things that need 

to be addressed when dealing with the control of FCGT systems.  There is research being done 

concerning the steady state operation of the systems [10], [19], [21].  However, limited research 

has been performed concerning the dynamics and transients of the systems including a controls 

study. 
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1.4 CURRENT STUDY AND ORGANIZATION 

 

This paper will develop independent dynamic models of an axial flow compressor, combustor, 

turbine, heat exchanger, and solid oxide fuel cell.  The models will be arranged in state space 

format and analyzed independently.  They can then be combined into any configuration of a 

combined cycle and analyzed.  Two configurations will be developed and simulated using 

MATLAB and Simulink software.  Basic controls will be applied to one configuration and 

simulated to show stability. 

 

The components of the gas turbine will be developed first starting with the axial flow 

compressor.  This is a complicated dynamic model that can be used to simulate rotating stall and 

surge conditions.  It will also calculate the flow rate and pressure drop across the compressor as 

well as the angular velocity of the compressor.  This angular velocity will also be the angular 

velocity of the turbine since they are rigidly coupled [1].  A combustor model will be developed 

in section 2.2.  It is based on a “well stirred reactor” model that uses methane and air as the 

reactants [5].  It calculates the mass fractions of reactants and products in the reactor as well as 

the output temperature rise of the products of combustion.  Section 2.3 will develop a turbine 

model that calculates the power output of the turbine and the torque developed [4], [6].  This 

torque will be fed back into the compressor model and drive the compressor.  Section 3.1 will 

develop a counter flow heat exchanger model to be used in the final hybrid model [7], [17].  It is 

based on a log mean temperature difference profile and calculates the output temperature and 

flow rates of hot and cold fluid streams.  Section 3.2 explains a simple fuel cell model that is 

used to determine the power output of a solid oxide fuel cell based on inlet flow rates of 

hydrogen and air [9].  It assumes a constant operating temperature.  Section 4.1 uses the gas 
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turbine components to form an integrated gas turbine power plant and simulates the operating 

conditions.  Section 4.2 integrates all the components to form two possible configurations of a 

FCGT hybrid system.  Section 5 simulates one FCGT configuration with respect to step inputs 

and applies a basic control scenario to the system. 
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2.0 GAS TURBINE MODELS 

 

The components of a typical gas turbine will be developed in this section.  These components 

include a compressor, combustor, and a turbine.  The working fluid (usually air) enters the 

compressor where work is added to bring it to a higher pressure and temperature.  It then enters a 

combustor where it is burned with fuel to raise it to a higher temperature and higher enthalpy.  It 

then expands through the turbine and creates mechanical energy.  A portion of the energy 

produced is used to run the compressor which is rigidly coupled to the turbine.  The models 

developed here are an axial flow compressor, a well stirred reaction (WSR) combustor, and a 

turbine.  The axial flow compressor will contain the dynamics of the velocity of the rotor, which 

is the coupled compressor, turbine, and generator.   

 

 

2.1 AXIAL FLOW COMPRESSOR  

 

The compressor is an integral component of the FCGT model.  Rotodynamic pumps are difficult 

to model due to their complicated flow characteristics and various unstable conditions they can 

encounter [2].  The compressor characteristics will also be a key factor of the controllability of 

the entire integrated system.  The compressor, and hence the gas turbine, will be sluggish and 

slower to react to control input than the other components of the system.  An ideal compressor 
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model would be as simple as possible but complete enough to describe the various phenomenons 

that would affect its controllability.  

 

2.1.1 Main Operating Theory 
 

An axial flow compressor works by causing a working fluid to pass through a series of 

expanding passages.  The passages are formed by the profile of annular blades fixed to a circular 

shaft.  The fluid velocity is normal to the blades and moves through the compressor axially.  The 

fluid pressure increases as the axial velocity decreases.  In order to maintain the axial velocity at 

a constant level, the annulus diameter increases in proportion to the pressure increase.   

 

Axial compressors are made up of several stages, each having a stator blade row and a rotor 

blade row.  The fluid passes through the rotor which transfers kinetic energy and accelerates the 

fluid.  It is then diffused through the expanding blade passages of the stator.  The stator also 

redirects the fluid to a suitable entry angle for the next rotor.  Figure 1 displays a typical 

compressor stage with relative fluid velocities where C1, C2, and C3 are the fluid velocity 

directions before the rotor, after the rotor, and after the stator respectively and R is the rotor 

velocity direction.  Along with the rotors and stators, there are entry and exit guide vanes at the 

beginning and end of the entire compressor. 
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Stator

Rotor

C2

C3

C1

R

 

Figure 1:  Axial Compressor Rotor and Stator Diagrams 
 

 

The two main dynamic conditions that the compressor model should estimate, along with normal 

operation, are surge and rotating stall.  Surge is an axi-symetric instability condition which can 

occur near the pressure ratio limit in an axial or centrifugal compressor.  Surge is induced if there 

is a sudden decrease in mass flow rate or increase in system demand.  Axial flow compressors 

are inherently unstable because the flow is moving in the direction of increased pressure.  If the 

pressure on one side of the overall compressor changes rapidly, the pressure gradient will be too 

high for the compressor to handle, and the overall flow direction reverses (i.e. the compressor 
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“surges”).  This induces an oscillatory flow behavior that could, if not controlled, compromise 

the performance of the entire system or destroy the compressor [14].  

 

Stall is similar to the stalling that can occur in a single airfoil (such as in an airplane).  It occurs 

when the angle of attack of the airfoil is too aggressive and the flow of the working fluid is 

completely separated from the backside of the blade (Figure 2). 

 

 

Figure 2:  Airflow Around a Stalled Airfoil 
 

If there is a minor flow disturbance in one vane and stalling occurs, it will alter the inlet flow 

angle of the adjacent vane.  This disturbance will then cause stalling in that vane, enabling the 

original vane to recover.  The disturbance will propagate radially around the entire blade row.  

The phenomenon is called rotating stall. 
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The fluid dynamics associated with these two phenomenon’s are complicated and not fully 

understood [14].  It is thought that they are related and the onset of one can cause the other to 

occur.  Surge and stall are an integral part of gas turbine modeling and control, and will be 

accounted for in the models developed below. 

 

2.1.2 Compressor Characteristics 
 

Using non-dimensional techniques, overall compressor performance can be represented by two 

graphs.  These graphs are obtained through testing of the compressor.  A sample axial flow 

compressor characteristic is shown in Figure 3.  The graph shows the pressure ratio vs. the 

dimensionless flow rate.  A surge line can be drawn by connecting each maxima on the different 

speed curves.  The stable operating area of the compressor is to the right of the surge line.  In this 

region, a flow rate decrease would result in an increase in pressure ratio.  If the operating point 

moves to the left of the surge line, oscillation of the flow direction (surge) will occur as 

described above. 
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Figure 3:  Typical Axial Flow Compressor Characteristic 
 
 

2.1.3 Moore Greitzer Model 
 

The standard model for axial flow compressors is the Moore – Greitzer model [1].  It accurately 

models compressor behavior as well as transients such as surge and stall.  The compressor is 

simulated using the following model (Figure 4). 
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Figure 4:  Moore – Greitzer Compressor Model 
 

 

Figure 4 terms are defined as: 

 PT: total pressure ahead of entrance and after throttle 

 Ac:  compressor duct area 

 IGV:  inlet guide vanes 

 Li, LE, LT:  length of inlet, exit, and throttle ducts, respectively 

 0:  compressor entrance 

 1:  inlet guide vane exit 

 E:  compressor exit 

 Ps:  static pressure at the end of exit duct and pressure in plenum 

 Vp:  volume of plenum 

 KT:  throttle coefficient 
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The model consists of a compressor operating in a duct that discharges to a downstream plenum.  

Velocities and accelerations in the plenum are considered negligible and its pressure can be 

assumed constant spatially but varying in time.  Due to this time pressure variation, the plenum 

could be treated as a gas spring.  The flow through the system is controlled by the throttle 

coefficient (KT), which is analogous to the loss through a turbine.  Incompressible flow can be 

assumed everywhere except the plenum, due to small mach numbers and the oscillation 

frequency being below the acoustic resonance of the system. The compressor can be treated as 

two dimensional in longitudinal axis and rotor angle if a high hub to tip ratio is assumed.  This 

means that the flow variations occurring radially are negligible if the hub radius, which is the 

radius of the center core of the compressor, is not much smaller than the outer radius of the rotor 

and stator blades. 

 

In the development of the compressor equations, all distances are non-dimensionalized by the 

mean compressor radius.   

 

η 
R
X

= :  axial coordinate        (1) 

where X: actual axial coordinate 

R: compressor mean radius 

θ:  angular coordinate (already non-dimensional) 

 

Time is non-dimensionalized by  
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ξ = 
R

Ut
           (2) 

 where U:  rotor speed at mean diameter (dist / time) 

  t:  time 

 

 

The pressure rise across a compressor of N stages (not including the inlet and exit guide vanes) is 

described by [1]: 

⎟
⎠
⎞

⎜
⎝
⎛ +=

θ
φ

ξ
φ2

a2
1)φ(NF

Uρ
pp
2

1E

 ∂
 ∂

 ∂
 ∂-- ,       (3) 

where: pE:  pressure coefficient at the exit of core compressor 

  p1:  pressure coefficient at the entrance of the core compressor 

  ρ:  density 

  F(φ ):  axi-symetric performance of the blade row 

  
U
C

φ x= :  local unsteady axial velocity coefficient    (4) 

a
UτN

R
≡          (5) 

  where     τ:  time constant, internal lag of the compressor 

The average φ  around the circumference of the compressor is defined asΦ : 

 

∫= θd)θ,ξ(φ
π2
1

)ξ(Φ
π2

0
        (6)  
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Assuming that any circumferential non-uniformity persists along the axis of the compressor, 

then: 

 

)θ,ξ(g)ξ(Φφ += , and        (7) 

)θ,ξ(hh = ,          (8) 

 

 where  g:  disturbance of axial flow coefficient at a specific radial location 

  h:  circumferential flow coefficient 

 

Note that the circumferential averages of both g and h are zero. 

The pressure across the inlet guide vanes (IGV) is computed as: 

 

2
G2

01 hK
2
1

Uρ
pp

=
-

         (9) 

 

where: KG:  loss coefficient of the IGV (=1 if no loss, <1 if loss) 

  p0:  static pressure to the entrance of the IGV 

 

The velocity potential upstream of the IGV is defined, the gradient of which will give the axial 

and circumferential velocity coefficients everywhere in the entrance duct as: 

 

U
v

φη
~

=  
U
uφθ

~
= ,        (10a,b) 

 where v and u are the axial and circumferential velocities, respectively 
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where the subscript denotes partial differentiation 

These velocity coefficients satisfy Laplace’s equation due to the assumption of irrotational flow 

upstream of the IGV, such that: 

0φ
~

2 =∇ .          (11) 

Using LaPlace’s equation with Bernoulli’s equation [2], the pressure drop across the inlet is: 

( )
0

ξ

~
22

2
0T φhφ

2
1

Uρ
pp

⎟
⎠
⎞

⎜
⎝
⎛++=

- ,       (12) 

 where  ξφ
~

:  represents the unsteadiness in Φ  and g. 

 

2.1.4 Exit Ducts and Guide Vanes 
 

In the exit duct, a rotational flow occurs when the axial flow varies with θ.  Using a simplifying 

assumption that the pressure in the exit duct differs only slightly from the pressure in the plenum 

(pS), it can be shown that the Laplace equation is satisfied.  Using the Euler equation, the 

pressure drop between the plenum and the exit is computed as follows: 

 

( ) ( )
0

ξ

~

EE2
Es 'φ1m

θ
ΦLP

Uρ
pp

⎟
⎠
⎞

⎜
⎝
⎛== --

 ∂
 ∂--  ,     (13) 

 

where m is a  parameter to specify the length of the exit duct (2 for long, 1 for  short). 
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Finally, the overall pressure rise from the upstream reservoir (pT) to the plenum (pS) can be 

derived by combining the above equations (3, 9, 11, 12), defining new parameters and making a 

simplifying assumption that g
θd

dh
= . 

 

)YY2(
a2
1mY

ξd
ΦdL)YΦ(ψ)ξ(Ψ θθθξθθξcθθc ++= --- ,    (14) 

 

  where  2
Ts

Uρ
pp)ξ(Ψ −

≡        (15) 

  where Ψ :  the dimesionless pressure rise and, 

 

( ) ( ) 2
c φ

2
1φNFφψ -=          (16) 

is the compressor performance that would be expected if no angle or time dependence were 

permitted. 

 

  ( )
0

~
'φθ,ξY ⎟
⎠
⎞

⎜
⎝
⎛≡         (17) 

  
0

η

~

θθ 'φY ⎟
⎠
⎞

⎜
⎝
⎛=          (18) 

 

The overall pressure balance of the entire system can now be derived by developing the 

equations for the plenum and throttle.  The plenum will eliminate any spatial variation in 

pressure.  The mass entering the plenum will be different than the mass leaving, causing the 
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plenum to act as a gas spring.  The rate of density change in the plenum will be equal to the ratio 

of dps / dt to the square of the speed of sound.  The mass balance of the plenum is: 

 

)]ξ(Φ)ξ(Φ[
B4
1

ξd
ΨdL T2c -=        (19) 

 

where  Lc:  total length of the compressor and ducts 

 

   
CC

P

s LA
V

a2
U

B ≡  (B parameter)     (20) 

   where:  as - speed of sound 

 

The throttle discharges to pT which is at the same pressure as the inlet reservoir.  The momentum 

balance of the plenum is then: 

 

ξd
Φd

L)Φ(F)ξ(Ψ T
TTT +=         (21) 

 

where FT is the throttle characteristic equation.  A reasonable characteristic could be in 

parabolic form [1]: 

 

2
TTT ΦK

2
1

F =           (22) 

 

  where KT is a constant throttle coefficient 
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These equations complete the system of equations for the system as shown in Figure 4.  They are 

summarized below.  The first is the local momentum balance of the system (from (14)), the 

second is the annulus averaged momentum balance (from (6), (7), (8)), and the third is the mass 

balance of the plenum (from (21), (22)): 

 

)YY2(
a2

1
mY)YΦ(ψ

ξd
Φd

L)ξ(Ψ θθθξθθξθθCC ++--=+     (23) 

 

θd)YΦ(Ψ
π2
1

ξd
ΦdL)ξ(Ψ θθC

π2

0
C -∫=+       (24) 

 

)]Ψ(F)ξ(Φ[
B4
1

ξd
Ψd

L 1
T2C

--=        (25) 

  

where 
U
C

Φ X= -  annulus averaged dimensionless axial flow coefficient 

  Ψ - is given by equation (15) 

   ξ - is given by equation (2) 

 

2.1.5 Compressor Characteristic 
 

A function for the characteristic of the compressor ( Cψ ) must be chosen arbitrarily since it is an 

inherent feature of any given compressor.  The characteristic is usually measured for any 

individual compressor.  As stated above, the characteristic usually takes on the form of a smooth 
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cubic equation.  The following is a generic form of this equation with user-defined parameters 

0CΨ , W, and H which can be specified to create a unique characteristic curve to match the curve 

of any compressor. 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛++=

3

0CC 1W
φ

2
11

W
φ

2
31Hψ)φ(ψ --      (26) 

 

  where 0Cψ  -  shut off value of axisymetric characteristic 

   H - Height of characteristic 

W - Width of characteristic 

θθYΦφ -= accounts for departures from the averaged velocity coefficient Φ . 

 

2.1.6 Galerkin Procedure 
 

The system of equations above is highly non-linear and would be difficult to solve.  The 

derivatives are third order in θ and first order in ξ.  The Galerkin procedure of nonlinear 

mechanics is applied to effectively reduce the order of θ.  The Galerkin procedure represents the 

solution of the differential equation by a sequence of basic functions.  This solution is similar to 

a Fourier series.  The variable Y will be represented as a single harmonic function. 

 

))ξ(rθsin()ξ(WAY -=         (27) 

 

  where r(ξ) -  phase angle 
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   A - amplitude of harmonic function 

 

Introducing a new variable J where: 

 

J(ξ) ≡ A2(ξ)          (28) 

 

The final simplified equations according to [1] are: 

 

C

1
T2 L

H)Ψ(F
W
1

W
Φ

B4
H/W

ξd
Ψd

⎥⎦
⎤

⎢⎣
⎡= --        (29) 

 

C

3
0C

L
H1

W
Φ

2
1J

2
111

W
Φ

2
31

H
ψΨ

ξd
Φd

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
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⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛++= -----     (30) 

 

W)ma1(
aH3J

4
11

W
Φ1J

ξd
dJ 2

+⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛= ---       (31) 

 

where J - squared amplitude of angular variation (if >0, rotating stall is occurring) 

  

parameters that will govern equations (29) – (31) are repeated here: 

 H/W:  diagram steepness 

 0Cψ /H:  shut off head 

 LC:  compressor duct length 

 m:  compressor slope 
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 a:  internal compressor lag 

 B:  B – parameter dependent on plenum volume and compressor annulus area 

 FT:  throttle characteristic function 

 

 

The model above is the most complete axial compressor model to date that simulates surge and 

rotating stall.  However, it assumes a constant angular velocity.  This is unsuitable for the current 

study as the velocity of the compressor must be known to control the overall power output of the 

entire system.   The next section addresses this issue. 

 

2.1.7 Spool Dynamics 
 

The model by Gravdahl and Egeland [3] incorporates spool dynamics into the Moore-Greitzer 

model.  The updated model takes the B parameter, which is proportional to compressor speed 

and defined in equation (20), and makes it a fourth variable.  A fourth equation is derived from 

the momentum balance of the compressor.  The three equations above now become four and are 

put into state space format: 

 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

B
J
Ψ
Φ

f

B
J
Ψ
Φ

&

&

&

&

          (32) 
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In the Moore – Greitzer model [1], time was non-dimensionalized using the constant spool 

speed.  Since this quantity will vary, non-dimensionalized time will be updated to incorporate the 

“desired” angular velocity of the compressor. 

 

R
tU

ξ d=           (33) 

  

  where Ud: desired compressor speed at mean radius 

 

The momentum balance of the compressor spool can be written using the momentum equation 

[3]: 

 

ct ττ
dt
ωdI -=           (34) 

 

  where ω - compressor angular velocity 

   I - compressor moment of inertia 

   τt,c - turbine and compressor torque  

 

The angular velocity and the torques can be non-dimensionalized by the following: 

 

R
U2

ω = , and          (35) 
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2
c

ct
ct RUAρ

ττ
ΓΓΓ

-
=-= .        (36) 

 

Rewriting equation (34), the momentum balance in non-dimensional form can be written as: 

 

)ΓΓ(BΛ
ξd

dB
ct

2
1 -=  ,        (37) 

 

where 
d

c
3

1 IU2
bARρ

Λ  ≡  and       (38) 

 

  
p

cc
s V

LA
a2b  ≡ .        (39) 

 

The compressor torque can be found by a momentum balance.  The torque that is imparted to the 

compressor equals the change in angular momentum of the fluid.   

 

tiptipcc CRmτ = ,         (40) 

 

  where φUAρm cc =  -  mass flow rate of the working fluid 

   Rtip - radius of the rotor 

   Ctip - tangential velocity of the fluid upon exit of the rotor 
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The slip factor (σ) can be defined as the ratio of the velocity of the rotor blades and the tangential 

velocity of the fluid.  It can be thought of as a kind of efficiency of the compressor on the fluid 

and is defined as: 

 

tip

tip

U
C

σ  ≡           (41) 

 

Considering equations (40) and (41), the non-dimensionalized torque can then be written as: 

 

φ
R

R
σΓ

2
tip

c ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=          (42) 

 

Incorporating equations (29). (30), (31), (37), and (42), based on the above analysis, produces the 

four state space equations that will simulate the behavior of an axial compression system. 
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H
ψΨ
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ξd
Φd 1dE

3
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c
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-------   (43) 

 

ΨBΓΛ2)ΦΦ(
B
Λ

ξd
Ψd

1T
2 --=        (44) 

 

W)am1(
aH3

bH3
)W10m(ΓΛU2
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J1

W
φ1J
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dJ

B
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⎞
⎜
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⎞

⎜
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2
c1

2
1 B)τu(ΛBΓΛ

ξd
dB

-==         (46) 

cl  - non dimensional compressor duct length 

where ΨγΦ =T is the throttle characteristic    (47) 

   where γ  is the throttle gain 

 

This model uses the torque of the turbine as the input u.  This can be used as a speed control 

using the desired compressor speed Ud.  This would be analogous to controlling the throttle 

coefficient KT in the Moore Greitzer model. 

 

2.1.8 Compressor Model Simulation 
 

A script file was created in MATLAB using an ODE solver function to simulate the model with 

the added spool dynamics in [3].  The simulation parameters are summarized in Table 1.   

 
Table 1:  Compressor Simulation Parameters 

 
R 0.1 m 
lE 8 
Vp 1.5 m3 

H 0.18 
I 0.03 kgm2 
ρ 1.15 kg/m3 
lI 2 

AC 0.01 m2 
W 0.25 
m 1.75 
as 340 m/s 
Lc 3 m 
a 0.3 
ΨC0 0.3 
σ 0.9 
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Results of this model corroborated with the results of reference [3].  The speed control in the 

paper is a simple proportional type controller that is governed by the following equation. 

 

)UU(cΓ dt -=          (47) 

 

  where c is the proportional gain of the controller 

 

The two simulations discussed in the paper were simulated using the MATLAB model and the 

results verified.  The first is the unstable condition with the proportional gain c set to 1 and the 

throttle gain ( γ ) set at 0.5.  These conditions set the operating point of the compressor to the left 

of the local maximum on the characteristic and, therefore in the surge condition.  Figures 5-8 

present the results of the simulation.  Figure 5 gives the dimensionless flow rate, Figure 6 gives 

the dimensionless pressure ratio, Figure 7 gives the rotating stall coefficient, and Figure 8 gives 

the dimensionless compressor speed. 

 



 

29 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

dimensionless time

di
m

en
si

on
le

ss
 fl

ow
 ra

te

 

Figure 5: Dimensionless Flow Rate (Φ), Unstable Condition 
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Figure 6:  Dimensionless Pressure Ratio (Ψ), Unstable Condition 
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Figure 7: Stall Coefficient (J), Unstable Condition 
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Figure 8:  Dimensionless Compressor Speed (B), Unstable Condition 
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As shown from Figure 7, the compressor starts in a rotating stall position since the J value is 

greater than zero.  The pressure (Figure 6) is decreasing at this stage, however the flow rate 

(Figure 5) is staying relatively constant.  This is due to the fact that even though individual 

compressor blades are experiencing reduced flow, the average flow around the entire compressor 

is constant.  As the time increases the input torque begins to increase the speed of the compressor 

due to the proportional control algorithm (Figure 8).  As the speed increases, the stall is damped 

out and the compressor goes into axial surge.  This can be seen by the oscillating flow rate and 

pressure starting around ξ = 600 on the abscissa.   Figure 5 shows the flow rate dropping below 

zero which implies that the flow is actually reversing through the compressor.  This is consistent 

with the definition of surge in a compressor and shows that the model can simulate both unstable 

conditions.  The results in Figures 5-8 match those reported in [3]. 

 

The second simulation discussed in [3] is a stable condition.  This displays the model starting in 

rotating stall and recovering to steady state equilibrium.  The throttle coefficient ( γ ) is set to 

0.65 and the proportional gain, P, is set to 2.  Figures 9-12 are similar to Figures 5-8 

respectively. 
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Figure 9: Dimensionless Flow Rate (Φ), Stable Condition 
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Figure 10:  Dimensionless Pressure Ratio (Ψ), Stable Condition 

Steady state condition 

Steady state condition 
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Figure 11:  Stall Coefficient (J), Stable Condition 
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Figure 12:  Dimensionless Compressor Speed (B), Stable Condition 
 

Steady state condition 
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As shown in figures 9-12, the compressor enters rotating stall at the onset of the simulation (ξ = 

200) when the speed (B) is low.  This can be seen by the positive stall coefficient (J) in Figure 

11.  As the input torque gain increases and the compressor gets up to speed, the stall damps out 

and the compressor enters a steady state condition.  Flow rate, speed, and pressure rise all 

stabilize to a constant value with the stall coefficient at zero.   Therefore, the model can simulate 

a recovery from a stalled condition as well as a steady state condition.  These results duplicate 

those given in [3] and provide confidence that the compressor model is sufficient for 

incorporation into the entire power plant model. 

 

It was desired to be able to simulate and study the entire model in Simulink.  This will allow a 

more thorough means for a control study and an intuitive feel for the complete model itself.  

However, due to the complexity of the compressor model, it would be difficult to simulate in 

Simulink using the standard library of tools.  Therefore, a custom Simulink block called an S-

function was created.  Simulink uses these functions to call lower functions to simulate the block 

and incorporate it with other Simulink blocks.  The S-function uses a set of coupled nonlinear 1st 

order ODE’s that can be solved numerically.  The following model is used: 
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)y(f]y[ =&           (49) 

  where  f - the non-linear compressor model described above 

   y - output 
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The controller was again based on a proportional (P) type controller used previously.  However 

this is broken out of the model and used as the input in a feedback loop.  This P type controller 

could be replaced with a PID or more advanced control algorithm (to be studied later).  Figure 13 

shows the Simulink model for the compressor: 

 

.5

gamma

Scope

f(u)

P-type Control ler

mcomp_s_function

Comp S Function

 

Figure 13:  Simulink Model of Axial Flow Compressor 
 

The function in the P-type controller is: 

])3[u*bU(c d - , 

  where c is the proportional gain, 

   b = 
p

cc
s V

LA
a2 ,       (50) 

  and u[3] is the third state variable in the vector output of the s-function (B).   

The model was simulated using the above parameters for stable and unstable conditions to verify 

the results (Figures 14 - 21): 
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Figure 14:  Simulink Compressor Model Results, Flow Rate (Φ), Unstable Condition 
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Figure 15:  Simulink Compressor Model Results, Pressure Ratio (Ψ), Unstable Condition 
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Figure 16:  Simulink Compressor Model Results, Compressor Speed (B), Unstable Condition 
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Figure 17:  Simulink Compressor Model Results, Stall Coefficient (J), Unstable Condition 
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Figure 18:  Simulink Compressor Model Results, Flow Rate (Φ), Stable Condition 
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Figure 19:  Simulink Compressor Model Results, Pressure Ratio (Ψ), Stable Condition 
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Figure 20:  Simulink Compressor Model Results, Compressor Speed (B), Stable Condition 
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Figure 21:  Simulink Compressor Model Results, Stall Coefficient (J), Stable Condition 
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Comparing Figure 14 to Figures 5-8 and Figure 15 to Figures 9-12, the results of the s-function 

match the script file and the results quoted in [3].  

 

 

2.2 COMBUSTOR  

 

Combustors are typically used in gas turbine cycles to heat the working fluid between the 

compressor and the turbine.  This process increases the enthalpy and temperature of the working 

fluid.  This additional energy is then extracted by the turbine.  This is why the turbine can 

produce more power than it takes to run the compressor and is the source of the net power output 

of the entire gas turbine power plant.  Figure 22 shows the location of the combustor in a typical 

gas turbine system.  Figure 23 shows the temperature – entropy (s) diagram of a typical gas 

turbine cycle with respect to the different locations of the working fluid (a, b, c, d).  The section 

of the graph between b and c is the combustor section.  The rise in temperature and entropy (and 

enthalpy) provides the additional energy to the fluid to be extracted by the turbine.  Without the 

combustor, or some form of heat addition to the fluid, the turbine would simply produce enough 

energy to run the compressor and no additional energy would be created.  From a conservation of 

energy viewpoint, the additional heat energy (or chemical energy of the fuel) is converted to 

mechanical energy by the turbine [6]. 
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Figure 22:  Typical Gas Turbine Cycle 
 

 

Figure 23:  Temperature – Entropy Diagram of Typical Gas Turbine Cycle 
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2.2.1 Combustor Model 
 

A simple combustor model is needed to incorporate into the overall fuel cell – gas turbine 

system.  The model must be able to simulate the temperature rise to the working fluid when it is 

combusted with the compressed air exiting the compressor.  The model assumes the fuel input to 

the combustor to be methane.  However, it is possible to burn the excess hydrogen straight from 

the fuel cell output.  This information will then be used to calculate the power extracted by the 

turbine as well as the speed of the compressor and turbine shaft (they are rigidly connected) and 

the torque on the turbine. 

 

The combustor model used was developed by Fannin [5].  It is called an “unsteady well stirred 

reactor” (WSR) model.  It assumes methane (CH4) as the fuel and air as the oxidizer.  The 

balanced combustion reaction is as follows: 

 

222224 N52.7OH2CO)N76.3O(2CH ++  ⇒++      (51) 

 

A non-linear state space model can be constructed using conservation of species and energy in 

the control volume of the combustor.  The conservation of species equations are based on the 

three species present inside the combustor.  They are the fuel (methane), the oxidizer (air), and 

the products of combustion.  A conservation equation can be written for each species in terms of 

the mass fractions inside the control volume: 

productsoxidfuel

fuel
fuel mmm

m
Y

++
=         (52) 
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productsoxidfuel

oxid
oxid mmm

m
Y

++
=         (53) 

 
productsoxidfuel

prod
prod mmm

m
Y

++
=         (54) 

 

where Yfuel, Yoxid, Yprod – mass fraction of fuel, oxidizer, and products inside the 

combustor 

  mfuel, moxid, mprod – mass of fuel, oxidizer, and products inside the control volume 

 

In words, the conservation of species equation is stated:  The change in the amount of species in 

the control volume is equal to the amount of species in, minus the amount of species out, plus the 

amount of species created.  For the oxidizer and fuel, the amount created inside the control 

volume will be negative.  For the products of combustion, the amount of species created will be 

positive.  This can be visualized by Figure 24. 

COMBUSTOR

FUEL IN

OXIDIZER IN

FUEL INSIDE

OXIDIZER INSIDE

PRODUCTS INSIDE

FUEL OUT

OXIDIZER OUT

PRODUCTS OUT

 

Figure 24:  Conservation of Species of Combustor 
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The amount of species created in the control volume will be driven by the Arrhenius rate term 

for chemical kinetics of combustion.  The conservation of species equations for the fuel and 

oxidizer are as follows: 

 

V)t(ωMW)t(Ym)t(Ym
dt

)t(dY
Vρ fuelfuelfueloutin,fuelin

fuel
&&& +-=     (55) 

V)t(ω
)t(Y
)t(Y

MW)t(Ym)t(Ym
dt

)t(dY
Vρ fuel

in,fuel

in,oxid
fueloxidoutin,oxidin

oxid &&& +-=   (56) 

where  

( ) )t(TR
098,15

3.1
oxid

3.0
fuelfuel

ueY233.0Yρ
s*kg

kmol100,24ω - ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=&    (57) 

and ρ – density inside combustor 

  V – volume of combustor 

  inm&  - total mass flow rate into combustor 

  Yfuel,in, Yoxid,in
  - mass fraction of fuel & oxidizer into combustor respectively 

  outm&  - total mass flow rate out of combustor 

  MWfuel – molecular weight of fuel (methane) 

  fuelω&  - Arrhenius rate term for consumption of species due to combustion 

 

Due to the definition of the mass fraction, the equation for the mass fraction of the products is 

simply 

 

Yprod = 1 - Yfuel - Yoxid,         (58) 
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and is not a differential equation.  The state variables of the system to this point are Yfuel and Yoxid.  

The third state variable will be temperature and is described by the energy equation. 

 

The conservation of energy equation completes the model and is described as the amount of 

energy entering the combustor minus the amount of energy leaving the combustor balanced by a 

storage term. 

 

∑ ∑-
3

1i

3

1i
out,iioutin,fuelin,fuelin,oxidin,oxidinii )t(h)t(Ym)hYhY(m)t(e)t(Y

dt
dVρ

= =

+= &&    (59) 

 

where ei – specific internal energy for i = 1-fuel, 2-oxidizer, 3-products 

hoxid,in, hfuel,in – specific enthalpy of oxidizer and fuel into the combustor 

hi,out – specific enthalpy for i = 1-fuel, 2-oxidizer, 3-products out of combustor 

 

The right side of equation (59) is the total change in internal energy of the three species inside 

the combustor.  The left hand side is the energy associated with the enthalpy of the input species 

and output species.  All of these quantities are dependent on temperature, which is the desired 

output variable from the combustor model.  Therefore, equation (59) is converted to be in terms 

of temperature rather than internal energy and enthalpy.   

 

As stated above, the left hand side of equation (59) represents the change in internal energy of 

the species inside the combustion chamber.  In order to make this term an expression of 

temperature only (and not Yfuel, and Yoxid) it is assumed that the majority of the species inside the 

combustor are products (CO2, H2O, and N2), such that:   
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∑
=

-+=
3

1i
out,iioutin,fuelin,fuelin,oxidin,oxidinprod )t(h)t(Ym)hYhY(m)t(e

dt
d

Vρ &&   (60) 

 

A linear curve fit based on the ideal gas properties of the products can be approximated, giving a 

relationship between the specific internal energy and the temperature of the combustor products.  

This same technique can be applied to the enthalpy terms on the right side of equation (59).  

Therefore, equation (59) can be analyzed in terms of temperature (T) as a function of time.  This 

will be the third state variable and will complete the combustor model. 

 

The linear curve-fits of the internal energy and enthalpy data are shown in Figures 25 and 26.  

The actual data was obtained from ideal gas tables [6].  A linear equation was fit to the data.  

These equations will be incorporated into equation (60) to obtain a state equation for 

temperature.  The enthalpy and internal energy of the products can be obtained by summing each 

of the contributions of the product species on a mass fraction basis.  The mass fractions of the 

product species (CO2, H2O, and N2) can be obtained using the stiochiometry in equation (51) 

along with their respective molecular masses. 
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Figure 25:  Linear Curve Fit of Internal Energy of Products 
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Figure 26:  Linear Curve Fit of Enthalpy of Products and Air 
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The enthalpy equation used in the model for the fuel (methane) is as follows: 

 

Tchh pffuel +=          (61) 

 

where hf - enthalpy of formation 

  cp,fuel - constant pressure specific heat 

 

Equation (60) then becomes (61) 

 

)]Tch)(t(Y)t(h)t(Y[m)hYhY(m)t(e
dt
d

Vρ fuel,p11

3

2i
out,iioutin,fuelin,fuelin,oxidin,oxidinprod ++-+= ∑

=

&&  (61) 

 

2.2.2 Combustor Model Simulation 
 

A script file was written in MATLAB to simulate the model.  The results are displayed in 

Figures 27 – 29.  The outputs of the system are the combustor temperature (Figure 27), which is 

assumed to be the exit flow temperature, and the mass fractions of the fuel and oxidizer inside 

the combustor (Figures 28 and 29, respectively).  This simulation uses constant fuel and oxidizer 

input flow rates.  The parameters of the simulation are summarized in Table 1.  The air to fuel 

mass ratio is close to the stoichiometric value of 17.123. 
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Table 2:  Combustor Simulation Model Parameters 
 

Mass flow rate of fuel in (kg/s) 1
Mass flow rate of oxidizer in (kg/s) 20
Temperature of fuel in (K) 300
Temperature of oxidizer in (K) 600
Initial conditions

Y fuel 0.05
Y oxid 0.95
T (K) 1000  
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Figure 27:  Outlet Fluid Temperature 
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Figure 28:  Fuel Mass Fraction Inside Combustor 
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Figure 29:  Oxidizer Mass Fraction Inside Combustor 
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As can be observed from Figure 21, the combustor raises the temperature of the working fluid 

from 600K to approximately 1800K.  These results are consistent with the test data provided in 

[5].  The mass fractions of the fuel and the oxidizer fall rapidly and eventually stabilize near 

zero.  This result implies that nearly all of the fuel and the oxidizer are being converted to 

products, which is consistent with the ratio of the fuel and oxidizer, which was chosen to be 

close to the stoichiometric value.  The value of the product mass fraction inside the combustor 

would be close to unity according to equation (58).  This gives credence to the assumption that 

the exit fluid consists of mostly products of combustion.   

 

A Simulink model was created based on the script file discussed above.  It uses a user defined s-

function [15] to simulate the combustor model (Figure 30).  The inputs are the same as the above 

model but the outputs have been changed to reflect the mass flow rate out of the combustor along 

with the temperature of those products (63). 

 

 total,outtotal,inoxidfuel,in mmmm &&&& ==+        (63) 
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Figure 30:  Combustor Model in Simulink Using S-Function 
 

By running the same simulation parameters as above, the temperature of the exit products can be 

duplicated using the simulink model (Figures 31, 32).  The mass flow rate of the exit products is 

a simple algebraic relation (63), and can be verified by inspection.  This result gives confidence 

to the s-function representing the model described in [5]. 
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Figure 31:  Output Temperature of Simulink Combustor Model 
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Figure 32:  Output Flow Rate of Simulink Combustor Model 
 

A second simulation was run varying the oxidizer input flow rate.  The fuel input flow rate was 

held constant at 1 kg/s.  The oxidizer flow rate was started initially at 20 kg/s, then decreased to 

10 kg/s at approximately t = 0.21s, and then increased to 30 kg/s at t = 0.41s (Figure 33).  The 

results show that the outlet temperature of the products decreases with a decrease in oxidizer 

mass flow rate (Figure 34).  This is because the air to fuel ratio is no longer optimal so there is 

less combustion taking place.  A second reason for the temperature decrease is that the oxidizer 

is entering the combustor at an elevated temperature (relative to the fuel) due to the compression 

stage.  If the amount of fluid at the higher temperature decreases, the overall temperature of the 

products will decrease as well.  After the subsequent increase in oxidizer flow rate, the 

temperature of the products increases.  This is due to more high-temperature oxidizer entering 

the combustor, as well as more fuel reacting and releasing energy. 
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Figure 33:  Mass Flow Rate of Combustor Model with Varying Input Air Flow Rate 
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Figure 34:  Output Temperature of Simulink Combustor Model with Varying Oxidizer Input Flow 
Rate  
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2.3 TURBINE 

 

 

2.3.1 Turbine Theory 
 

The turbine model is needed to simulate the torque imparted to the compressor and the generator 

as well as to determine the portion of the overall power developed by the gas turbine.  Torque is 

developed in the turbine when the working fluid expands and imparts a force on the turbine 

blades (Figure 35).  The working fluid enters the turbine stator with a velocity CT1 and exits it 

with a velocity of CT2.  When the fluid passes through the turbine rotor stage, the change in 

direction of the fluid to CT3 imparts a force on the rotor, which provides the torque to the 

compressor and the generator and rotates the rotor with a velocity U.  Unlike the compressor 

model, turbines are relatively stable and do not suffer from surge.  This is because the pressure 

drop is in the same direction of the flow of the working fluid.  Therefore there is no force to 

reverse the flow as in the compressor [6], [14]. 
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Figure 35:  Example Turbine Stage 
 

 

2.3.2 Turbine Function 
 

The turbine model used here will actually be an algebraic function rather that a state space 

differential model.  This is because the actual rotor dynamics are encompassed in the compressor 

model developed above (equations (34) – (42)).  Since the compressor and the turbine are rigidly 

coupled, the speed of the turbine is extracted from the compressor model.  The compressor 

model uses the turbine torque to calculate the speed of the rotor based on the rotational 

momentum balance (34).   

 

The power developed by the turbine is calculated using the change in enthalpy in the working 

fluid.  This enthalpy is based on the linearized enthalpy temperature relationship of the products 

of combustion developed for the combustor model (Figure 26) [6].   
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)hh(mηP outininTturb -= &         (64) 

 

where Pturb – total power developed by the turbine 

  inm&  - total mass flow rate into the turbine 

  ηT  - isentropic efficiency of turbine 

  hin – total specific enthalpy of the working fluid into the turbine 

hout – total specific enthalpy of the working fluid out of the turbine based on room 

temperature 

 

The torque developed by the turbine can be calculated using the power developed by the turbine 

and the angular velocity of the rotor from the compressor model. 

 

ω
P

τ turb
t =           (65) 

where tτ  – total torque developed by the turbine 

 

tτ  is fed into the compressor model to determine ω .  The net torque out of the entire gas turbine 

is calculated using the difference between tτ  and cτ . 

 

ctnet τττ -=           (66) 

 

where netτ  - the available torque to run the generator. 

 



 

58 

Therefore the net power out of the gas turbine is: 

 

ωτP netout =           (67) 

 

2.3.3 Turbine Function Simulation 
 

Figure 36 shows the turbine function created in Simulink.  Figures 37, 38 show the torque and 

power outputs from this function using the parameters shown in Figure 36.  The constant inputs 

and algebraic nature of equations (66) and (67) produce constant outputs. 
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Figure 36:  Simulink Turbine Function 
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Figure 37:  Turbine Torque Generated from Uncoupled Turbine Simulation 
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Figure 38:  Net Power Out from Uncoupled Turbine Simulation 



 

60 

 
 
 
 

3.0 HEAT EXCHANGER AND FUEL CELL MODELS 

 

 

The following sections will develop the dynamic heat exchanger and fuel cell models.  These 

models will complete the components needed to create a FCGT hybrid power plant model. 

 

 

3.1 HEAT EXCHANGER 

 

3.1.1 Heat Exchanger Theory 
 

A heat exchanger model will be needed to transfer the energy of the hot fuel cell fluids to the 

working fluid of the gas turbine.  The heat exchangers can be used in various places throughout 

the power plant.  Counter flow design is chosen, which means that the hot and cold streams flow 

in opposite directions through the heat exchanger.  This allows the outlet temperature of the cold 

fluid to exceed the outlet temperature of the hot fluid (Figure 39).  This is not possible in parallel 

flow heat exchangers.   Counter flow heat exchangers are also more efficient in that they can 

transfer the same amount of energy between flows with a smaller surface area [7].  
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Figure 39:  Temperature Graph of Counter Flow Heat Exchanger 
 

The model will calculate the heat transfer between the hot and cold streams and will output the 

temperature output of each stream respectively.  Since the transient time of the temperature rise 

of the cold stream is of interest, it will be calculated using an ODE.  The temperature output of 

the hot stream will be calculated using an algebraic relationship to the energy transferred 

between streams.  Therefore, the outlet temperature of the hot side will not display transients and 

will only show the final temperature.  This will not affect the overall integrated model because it 

is the rise in cold side temperature that will be of use.  The cold side will display the transients. 
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3.1.2 Heat Exchanger model 
 

The following is a list of assumptions used in the heat exchanger model: 

• Laminar flow 

• Pressure drop through the heat exchanger (HX) is negligible 

• The temperature of the cold stream equals the temperature of the HX metal 

• Log mean temperature profile - Equation (68) [7] 

• Both hot and cold fluids are air 

 

)T∆/T∆ln(
T∆T∆

T∆
21

21
lm

-
=          (68) 

where lmT∆ - log mean temp. difference of hot and cold streams 

  o,ci,h1 TTT∆ -=         (69) 

  i,co,h2 TTT∆ -=         (70) 

  o,hi,h T,T - Temp. of inlet and outlet of hot stream 

  o,ci,c T,T - Temp. of inlet and outlet of cold stream 

 

Parameters for the heat exchanger were derived from the flow rate vs. effectiveness information 

given by Solar Turbines via the Department of Energy (DOE).  The heat transfer is given by the 

“ProTrax” equation [17].  The equation for the outlet temperature of the metal, which is assumed 

to be the outlet temperature of the cold stream, is given by equation (71) [16]: 

[ ]q)TT(Cm
Cm
1

t
T

o,ci,ccold,pcold
metal,pmetal

o,c += -
 d

 d
&      (71) 
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  where metalm - mass of the metal in the heat exchanger 

   metal,pC - specific heat of the heat exchanger metal 

   coldm& - mass flow rate of the cold stream 

   cold,pC - specific heat of the cold stream 

   q - rate of heat transfer between streams 

 

The rate of heat transfer is calculated using the “ProTrax” equation [17]: 

( )i,ci,h

cold,pcoldhot,phot

X

X

TT

Cm
1

Cm
e

eq -

&&

=       (72) 

  where hotm& - mass flow rate of the hot stream 

   hot,pC - specific heat of the hot stream 

   X – dimensionless parameter defined as 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

cold,pcoldhot,phot
HXbulk Cm

1
Cm
1AkX

&&
-       (73) 

  where kbulk – bulk thermal conductivity of the streams 

   AHX – HX surface area to gap provided by DOE 

 

The temperature of the hot stream output is simply [7]: 

 

hot,phot
i,ho,h Cm

q
TT

&
-=          (74) 



 

64 

 

These equations comprise the heat exchanger model and will account for variations in the hot 

and cold stream inlet temperatures and flow rates.   

 

3.1.3 Heat Exchanger Model Simulation 
 

An s-function was written in MATLAB to simulate the heat exchanger using Simulink (Figure 

40).  The parameters used for this simulation are summarized in Table 3. 

 

Table 3:  Heat Exchanger Simulation Parameters 
 

mmetal 90 kg 

coldm&  0.7 kg/s, 1kg/s 

hotm&  0.7 kg/s 

Tc,i 400 K 

Th,i 800 K 
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Figure 40:  Heat Exchanger Simulink S-Function 
 

The specific heat values and thermal conductivities for the hot and cold streams are calculated 

based on their respective temperatures [6].  Figures 41 - 44 show the outputs when the 

parameters shown in Figure 40 are run on the model. 
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Figure 41:  Mass Flow Rate of Cold Stream – Heat Exchanger Model 
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Figure 42:  Mass Flow Rate of Hot Stream – Heat Exchanger Model 



 

67 

0 10 20 30 40 50 60 70 80 90 100
400

450

500

550

600

650

700

750

800

time (s)

Te
m

pe
ra

tu
re

 O
ut

 o
f C

ol
d 

S
tre

am
 (K

)

 

Figure 43:  Outlet Temperature of Cold Stream – Heat Exchanger Model 
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Figure 44:  Outlet Temperature of Hot Stream – Heat Exchanger Model 
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As shown from Figure 43, the outlet temperature of the cold stream gradually increases to a 

steady state value of 775K while the cold and hot mass flows (Figures 41, 42) are kept constant.  

The flow rates are taken directly from the inputs.  The outlet temperature of the hot side (Figure 

44) is constant as well due to the algebraic nature of the equations.  However, as stated above, it 

is the cold side that is of consequence in the integrated power plant model.  Figures 45 - 48 show 

the results of the model run with a slightly higher cold stream flow rate.  The outlet temperature 

of the cold stream is slightly lower than before.  This is because the cold steam is not exposed to 

the heat exchanger for as long.  Therefore the energy transfer rate is lower and less heat is 

transferred. 
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Figure 45:  Mass Flow Rate of Cold Stream – Heat Exchanger Model with Higher Cold Mass Flow 
Rate 
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Figure 46:  Mass Flow Rate of Hot Stream – Heat Exchanger Model with Higher Cold Mass Flow 
Rate 
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Figure 47:  Temperature Out of Cold Stream – Heat Exchanger Model with Higher Cold Mass 
Flow Rate 
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Figure 48:  Temperature Out of Hot Stream – Heat Exchanger Model with Higher Cold Mass Flow 
Rate 

 

 

 

3.2 FUEL CELL 

 

3.2.1 Fuel Cell Operating Theory 
 

The fuel cell (FC) is the main power generation system in the power plant.  There are several 

types of fuel cells that could be integrated with a gas turbine, two of which are the molten 

carbonate and the solid oxide varieties, which are most suitable due to their high operating 

temperature.  The high temperature of the fluids leaving the fuel cell is used to run the gas 
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turbine and create more electrical energy.  A solid oxide fuel cell model was developed for this 

study, the basic operation of which is shown in Figure 49.   

 

 

Figure 49:  Solid Oxide Fuel Cell 
 

As shown in the figure, hydrogen fuel enters the anode and combines with oxygen ions to form 

steam and four electrons.  These electrons are forced through a load as electricity (power) and 

enter the cathode to combine with oxygen to produce the oxygen ions that flow through the 

electrolyte.  The oxygen is provided by air.  The excess air exits at elevated temperature and can 

be used to run the gas turbine.  The solid oxide runs at the highest operating temperature of all 

the types of fuel cells.  This eliminates the need for expensive catalysts and provides the 

possibility of including a bottoming cycle [8]. 
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3.2.2 Fuel Cell Model 
 

The FC model is based on a model developed by Padulles, Ault, and McDonald [9].  It was 

developed for dynamic power simulation of solid oxide fuel cells.  The assumptions for the fuel 

cell model are as follows: 

• The gases are ideal 

• The fuel cell is fed with hydrogen and air 

• The electrode channels are small enough that the pressure drop across them is negligible 

• The ratio of pressures between the inside and outside of the electrode channels is large 

enough to assume choked flow 

• The fuel cell temperature is stable 

• The Nerst equation applies 

• The losses are as follows 

o Ohmic 

o Activation 

o Mass Transport 

 

The model development begins with the flow equation for choked flow [9].   

MK
P

m

u

fc =
&

          (75) 

where fcm& - mass flow rate 

  K - valve constant 

  Pu - pressure upstream (inside electrode channels) 

  M - molar mass of fluid 
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A utilization factor (Uf) is defined as the ratio of the amount of hydrogen that reacts with the 

oxygen ions ( reacted,H,fc 2
m& ) over the amount of hydrogen entering the anode ( in,H,fc 2

m& ). 

 

in,H,fc

reacted,H,fc
f

2

2

m
m

U
&

&
=          (76) 

 

By considering that the molar flow of any gas through the valve is proportional to its partial 

pressure, the following equations are derived [9] 
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==          (77) 
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OH

OH
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2 K
M
K

p
q

==         (78) 

 

where OHH 22
q,q  - molar flow rates of hydrogen and water respectively 

  OHH 22
p,p  - partial pressures of hydrogen and water respectively 

  Kan - valve constant of the anode 

OHH 22
K,K  - valve molar constants for hydrogen and water respectively 

 

By substituting equations (76), (77), (78), equation (75) can be written as: 
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( )[ ]OHfHfan
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22
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P
m

+= -
&

      (79) 

 

where Pan – the pressure inside the anode channel 

 

The ideal gas law will be used to find the partial pressures of the gasses flowing through the 

electrodes.  This technique will be applied to all the gasses.  Only hydrogen will be derived here. 

 

RTnVp
22 HanH =          (80) 

where Van – volume of the anode channel 

  R – ideal gas constant 

  T – temperature 

  
2Hn  - moles of hydrogen in the channel 

 

By isolating the pressure and taking the first time derivative, we have: 

 

an

HH

V
RTq

dt
dp

22 =          (81) 

 

The hydrogen flow can be broken down to three parts and equation (81) can be rewritten as 

follows 

( )r
H

out
H

in
H

an

H
222

2 qqq
V
RT

dt
dp

--=         (82) 
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where in
H 2

q  - molar flow of hydrogen into the channel 

  out
H 2

q - molar flow of hydrogen out of the channel 

  r
H 2

q - molar flow of hydrogen that reacts in the channel 

 

According to the electrochemical relationships, the amount of hydrogen that reacts can be 

calculated by: 

 

IK2
F2
IN

q r
0r

H2
==          (83) 

 

where N0 – number of cells in the stack series 

  F – Faraday’s constant 

  I – stack current 

  Kr – modeling constant 

 

By substituting equations (83) and (77) into equation (82), taking the Laplace transform, and 

isolating the partial pressure term, the following equation can be derived: 

 

( )IK2q
sτ1

K/1
p r
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H

H

H
H 2

2

2

2
-

+
=         (84) 

where 
2Hτ  - the system pole associated with the hydrogen flow 
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The stack output voltage is described by the Nerst equation [8].  The -rI term is the ohmis loss.  

This is the loss due to the resistance of the electrodes and the resistance of the flow of O-2 ions 

through the electrolyte. 
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⎜
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where V - fuel cell output voltage 

  E0 - open cell voltage (based on the Gibbs free energy) 

  r - ohmic losses of the stack 

 

The activation loss is caused by the sluggishness of the reactions at the electrode surfaces.  A 

portion of the voltage is lost in driving the chemical reaction that moves the electrons to the 

electrodes.  A way to account for these losses is to use the Tafel equation [8].  This equation was 

derived by physical experimentation on various electrochemical reactions.  It provides a 

relationship between the overvoltage at the surface of an electrode and the log of the current 

density.  This can be used to calculate the activation voltage loss for a SOFC. 

 

)iln(AV∆ act -=          (86) 

where actV∆ - activation voltage loss 

  A - slope of Tafel line (constant specific for SOFC) 

  i - current density (current / electrode area) 
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Mass transport losses are losses that occur due to the difference in concentration of the fuel as it 

passes through the electrode.  The concentration will be high when the fuel and air enter the 

electrodes, but as they travel through, they get used in the reaction.  This concentration affects 

the partial pressure of the reactants and has an effect on the voltage that that portion of the 

electrode can produce.  Unfortunately this loss cannot be accurately calculated analytically.  

Therefore, experimental results are used to empirically estimate the loss.  Equation (87) has been 

developed based on experiments and is accepted as a good approximation of the mass transport 

losses [8]. 

 

)ni(
trans meV∆ =          (87) 

where transV∆ - voltage loss due to mass transfer and concentration loss 

  m, n – constants derived from experiment (specific to SOFC) 

 

Combining all the losses into equation (85) gives an equation for the overall voltage of a single 

fuel cell.  In an actual fuel cell power plant, multiple cells would be combined in series to 

provide the necessary voltage and current demand [8].  The total stack voltage is: 
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The total power generated from the FC (PFC) is simply: 
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VINP 0FC =           (89) 

 

3.2.3 Fuel Cell Model Simulation 
 

A Simulink model was created to simulate the fuel cell based on the analysis performed above 

(Figure 50).  The model was run using parameters shown in Figures 50 and 51.  Figures 52 and 

53 show the voltage and power outputs of the model, respectively.  The initial transients are due 

to the startup of the model and the initial conditions of the transfer functions being zero.  It can 

be seen that the fuel cell produces approximately 200 kW of power with a 300 amp current 

demand at steady state.  The model uses 20 fuel cells connected in series.  The parameters used 

in the simulation are summarized in Table 4. 

 

Table 4:  Fuel Cell Simulation Parameters 
 

Kr 9.95e-4 
FC Temp 1273.15 K 

kmol/kg_air 1/29 
Kmol / kg_H2 1/2 

N0 20 
KH2 8.43e-4 kmol/(atm s) 
KH2O 2.81e-4 kmol/(atm s) 
KO2 2.52e-3 kmol/(atm s) 

2Hτ  26.1 s 

O2Hτ  78.3 s 

2Oτ  2.91 s 
r 0.126 ohms 
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Figure 50:  Simulink Fuel Cell Model 
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Figure 51:  Fuel Cell Simulation Parameters 
 

0 100 200 300 400 500 600 700 800 900 1000
-4000

-3000

-2000

-1000

0

1000

2000

time (s)

To
ta

l F
ue

l C
el

l V
ol

ta
ge

 (V
)

 

Figure 52:  Fuel Cell Voltage 
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Figure 53:  Fuel Cell Power 
 

A second simulation was run using a linear current ramp starting at 10 amps with a slope of 1.  

Figure 54 shows the voltage response of the fuel cell.  Initially, the voltage is low until the 

current reaches a relatively high level.  This is due to the transfer functions initial conditions of 

zero.  The voltage reached a peak just past 400 s after which it starts to drop.  This is typical with 

fuel cells and has to do with the irreversibilities when the current reaches a certain level [8]. 
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Figure 54:  Fuel Cell Voltage Response Due to Linear Current Ramp 
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4.0 MODEL INTEGRATION 

 

 

The models described above can be integrated into a number of combinations of fuel cell gas 

turbine power plants [13], [18], [19], [21].  The basic idea is to combine them in such a way that 

the high temperature of the fuel cell gases is exploited to run the gas turbine.  This can be 

accomplished with heat exchangers or running the same fluid through the fuel cell and the gas 

turbine.  

 

4.1 GAS TURBINE INTEGRATION 

 

4.1.1 Gas Turbine Model Integration 
 

The first step in integrating the individual component models is to construct a simple gas turbine 

model.  This entails combining the compressor, combustor, and turbine into a system that 

produces a net power output.  The integration of the gas turbine model is shown in Figure 22 and 

the thermodynamic cycle is shown above in Figure 23.  By combining the Simulink models as 

shown in Figure 22, a complete gas turbine model is constructed (Figure 55). 
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Figure 55:  Gas Turbine Simulink Model 
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As shown in Figure 55, the inputs to the gas turbine are mass flow rate of fuel into the combustor 

and the throttle coefficient into the compressor model.  The mass flow rate into the combustor 

controls the amount of fuel that is reacting.  This will control the temperature of the combustion 

products entering the turbine.  Since the power developed by the turbine is dependent on the 

input temperature of the working fluid, this flow rate can be used as a gas turbine control 

variable.  The throttle coefficient can be thought of as a bleed air valve which can control the 

pressure drop across the turbine stage.  This valve could therefore be used to control the speed of 

the rotor and therefore the power out of the gas turbine portion of the power plant.  The outputs 

of the compressor model are mass flow rate, pressure, rotor angular velocity, and stall 

coefficient.  The mass flow rate is then used as an input to the combustor and the angular 

velocity is connected to the input of the turbine model.  This will calculate the power output of 

the turbine (equation (67)).  The stall coefficient is used to determine if the compressor is in 

rotating stall.  If this value is above zero, the compressor is experiencing some level of rotating 

stall.  The temperature and flow rate out of the combustor is used to calculate the enthalpy rise of 

the working fluid and the power out of the turbine.  The torque developed by the turbine is fed 

back into the input of the compressor model.  As stated above, the torque balance of the turbine 

and compressor are calculated in the compressor model.   

 

4.1.2 Gas Turbine Model Simulation 
 

The gas turbine model was run using a value of 0.5 kg/s for the fuel input mass flow rate of the 

combustor and a value of 0.5 for the throttle coefficient [3].  The results are shown in Figures 56 

– 58.  Figure 56 shows that the power produced by the turbine ramps up to quasi-equilibrium in 

the first few seconds of operation.  This is due to the initial conditions of the system at startup.  
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After the turbine reaches approximately 125 kW, it stabilizes and remains relatively constant 

throughout the simulation.  Figure 57 shows that the angular velocity of the rotor is increasing 

throughout the simulation.  This is due to the torque generated by the turbine being higher than 

the torque to balance the angular velocity of the rotor, therefore the rotor rotates faster.  A 

stabilization technique for the rotor angular velocity is to control the output torque of the turbine 

by varying the input fuel mass flow rate of the combustor or to incorporate a cold air injection to 

control the inlet temperature of the turbine (Figure 58). 
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Figure 56:  Gas Turbine Output Power 
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Figure 57:  Gas Turbine Rotor Angular Velocity 

0 10 20 30 40 50 60 70 80 90 100
600

800

1000

1200

1400

1600

1800

2000

time (s)

Tu
rb

in
e 

In
le

t T
em

pe
ra

tu
re

 (K
)

 

Figure 58:  Turbine Inlet Temperature 
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4.2 FUEL CELL – GAS TURBINE  

 

4.2.1 FCGT – Integration Configuration One 
 

As stated above, there are several ways to combine a fuel cell and gas turbine into a hybrid 

power plant.  One of which is to run the fuel cell independently and use a heat exchanger to 

transfer the heat from the fuel cell exhaust to the working fluid of the gas turbine after 

compression and before expansion.  This eliminates the need for a combustor to raise the 

temperature of the working fluid before the turbine.  This configuration is shown in Figure 59.  

An advantage to completely separating the working fluids of the fuel cell and the gas turbine is 

that the pressure fluctuations in the gas turbine won’t affect the pressure of the fuel cell.  This is 

not the case with configurations that have the working fluid of the gas turbine being run through 

the fuel cell (described later).   The Simulink model for this configuration is shown in Figure 60. 

As previously stated, the mismatched dynamics of the gas turbine and the fuel cell will produce 

combined transients in the output power of the entire power plant.  These transients will be 

evident during startup and shutdown of the system as well as transients in power demand of the 

grid. 
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Figure 59:  Fuel Cell Gas Turbine Integration using Heat Exchanger
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Figure 60:  Fuel Cell Gas Turbine Hybrid Power Plant Simulink Model 
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4.2.2 FCGT – Integration Configuration One Simulation 
 

The results of running this simulation are represented in Figures 61 – 64.  The fuel cell power 

stabilizes at approximately 200 kW and the gas turbine stabilizes at approximately 70 kW, 

yielding a total plant power of 270 kW.  It can be seen from Figure 61 that the fuel cell stabilizes 

at approximately 60 times faster (400 s) than the gas turbine (25,000 s) response shown in Figure 

62.  The velocity of the gas turbine rotor shown in Figure 63 is slow to reach a steady state 

condition due to the inertia of the turbine and compressor.  It stabilizes at approximately 188 

rad/s, which is equivalent to 1800 rpm.  As seen from Figure 64, the convergence of the total 

plant power output is dominated by the turbine response, which has the slowest dynamics.   
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Figure 61:  FCFT Power Plant – Fuel Cell Power 
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Figure 62:  FCFT Power Plant – Gas Turbine Power 
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Figure 63:  FCFT Power Plant – Gas Turbine Rotor Angular Velocity 
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Figure 64:  FCFT Power Plant – Total Plant Power 
 

 

4.2.3 FCGT – Integration Configuration Two 
 

A second configuration for a combined fuel cell gas turbine system routes run the compressed 

working fluid from the gas turbine directly through the cathode of the fuel cell.  The output from 

the cathode, as well as the leftover fuel from the anode is combusted and run through the turbine.  

The exhaust gas of the turbine is then used to preheat the compressed air before it enters the 

cathode of the fuel cell (Figure 65). 
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Figure 65:  Fuel Cell Gas Turbine Hybrid Power Plant Configuration Two 
 

 

4.2.4 FCGT – Integration Configuration Two Simulation 
 

Figure 66 shows the Simulink Model of the above configuration.  The heat exchanger model is 

excluded due to the fuel cell temperature assumed to be constant.  Figures 67-70 show the results 

of running this model.  The fuel cell contributes 470 kW while the gas turbine contributes 430 

kW.  The gas turbine contributes much more power this time because excess fuel is combusted in 

the working fluid before it expands through the turbine.  The fluid exits the fuel cell at 

approximately 1300K and is combusted to a temperature of 3000K.  Therefore the fluid has a 

much higher enthalpy than the previous configuration (Figure 59).  The total power for the entire 

power plant is 900 kW. 
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 Figure 67 shows that the fuel cell power reaches steady state in approximately 7 s.  This is faster 

than the previous configuration due to the additional mass flow rate of the air being provided by 

the compressor into the fuel cell.  Figure 68 shows the power of the gas turbine stabilizing slower 

than the fuel cell which is expected.  
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Figure 66:  Fuel Cell Gas Turbine Hybrid Power Plant Simulink Model Configuration Two 
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Figure 67:  FCGT Configuration Two – Fuel Cell Power 
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Figure 68:  FCGT Configuration Two – Gas Turbine Power 
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Figure 69:  FCGT Configuration Two – Gas Turbine Rotor Angular Velocity 
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Figure 70:  FCGT Configuration Two – Total Plant Power 
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5.0 PRELIMINARY CONTROLS 

 

 

This section will discuss the control of the FCGT hybrid plant.  The objective of the section is to 

analyze the integrated system with respect to possible control methods.  This entails identifying 

effective control knobs based on the effect of step changes in different parameters.  Once the 

control knobs are identified, a simple proportional, integral, differential (PID) control mechanism 

can be incorporated to determine if the non-linear system can be controlled.  The main variable 

to control is the turbine rotor speed.  This controls the output power of the turbine and also the 

air flow rate that flows through the fuel cell.   

 

 

5.1 RESPONSE TO A STEP INPUT 

 

Fuel cell – gas turbine hybrid configuration 2 will be analyzed dynamically due to its close 

similarity to actual hybrid systems being built and studied today [8], [13].  A step input can be 

attached to the inputs of the system to determine the system’s response.  The inputs that can be 

stepped are the throttle coefficient on the compressor model and the hydrogen input flow rate of 

the fuel cell.  Table 2 shows the parameters for the dynamic step response dynamic simulations.   
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Table 5:  Step Input Response Simulation Parameters 
 

Input Initial value Step value Step at time Result Figure #'s
Hydrogen mass flow rate of FC .1 (kg/s) 1 (kg/s) 5 s 71-74
Throttle coefficient 0.5 0.85 5 s 75, 76  

 

As shown in Figure 71, the power of the fuel cell begins to decrease at the step point (5s).  This 

is due to the increased mass flow rate decreasing the partial pressure inside the electrode.  The 

power is related to the Nerst Equation which is dependent on the partial pressure of the species 

(equation (85)).  The power of the gas turbine (Figure 72) sees an initial spike of performance 

when the additional hydrogen is added to the combustor, and then is damped out to a value 

slightly lower than before the step.  This is due to the ratio of oxygen to hydrogen in the 

combustor departing from optimal.  The gas turbine rotor (Figure 73) follows the power of the 

turbine with respect to angular velocity, exhibiting a modest increase and then decrease as a 

result of the step input.  This is intuitive because the angular velocity calculation is based on the 

power generated from the enthalpy change of the working fluid through the turbine.   
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Figure 71:  Fuel Cell Power during a Hydrogen Mass Flow Step Change  
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Figure 72:  Gas Turbine Power during a Hydrogen Mass Flow Step Change 
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Figure 73:  Rotor Angular Velocity during a Hydrogen Mass Flow Step Change 
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Figure 74:  Total Plant Power during a Hydrogen Mass Flow Step Change 
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The throttle coefficient step input has almost no impact on the total power of the plant (Figure 

75).  This is because the throttle coefficient only slightly affects the pressure rise of the 

compressor (Figure 76).  This change is not enough to have an impact on the overall power of 

the gas turbine and hence the plant.  Therefore, the throttle coefficient can not be used to control 

the system.   
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Figure 75:  Total Plant Power during a Throttle Coefficient Step Input 
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Figure 76:  Pressure Output of Compressor during a Throttle Coefficient Step Input 
 
 
 
 
 

5.2 TURBINE ROTOR SPEED CONTROL 

 

The main control of the gas turbine would be the angular velocity of the rotor.  The rotor velocity 

is directly proportional to the power generated by the gas turbine portion of the power plant.  

One way to control the angular velocity of the rotor is to introduce a temperature-controlled air 

input into the working fluid stream before the fluid enters the turbine.  The inlet temperature of 

the working fluid is directly proportional to the power and torque developed by the turbine.  

Therefore, the overall gas turbine power can be controlled using the temperature controlled air 

input.  This control could also be used to control the amount of fluid that runs through the fuel 

cell because the rotor angular velocity is a factor in the amount of air drawn into the compressor.  
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Since the compressed air leaving the compressor flows directly through the fuel cell (FCGT 

hybrid configuration 2), the air flow can also be controlled by the rotor velocity.   

 

The temperature-controlled air input to the inlet stream of the turbine was incorporated into 

integration configuration 2.  A PID controller was added to the Simulink plant model to control 

the temperature-controlled air inject signal.  An angular velocity setpoint was added to have a 

means for varying the target value.  Various PID gains were tested to determine the optimal 

settings for angular velocity control and are summarized in Table 3: 

 

Table 6:  Air Inject PID Control Settings 
 

Setpoint 96 rad/s
Run # P Gain I Gain D Gain Results Figure #

1 100000 100000 50000 77
2 100000 100000 35000 78
3 1000000 1000000 35000 79
4 1000000 1000000 500 80

Setpoint stepped 96 to 98 @ 1s, 98 to 94 @ 4s
5 1000000 1000000 500 81, 82  

 

As shown in Figure 77, the first run using the control scheme produced an unstable condition.  

The angular velocity would oscillate about the setpoint before rising asymptotically to infinity.  

This is due to the derivative gain being too high.  It creates an “underdamped” system and the 

output is not controlled. 
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Figure 77:  Angular Velocity with Control – PID gain settings 1 – Unstable 
 

Figure 78 shows the results of the second run using different PID settings.  The derivative gain 

was reduced in an attempt to stabilize the system.  The velocity does appear to remain near the 

setpoint, but is still erratic with respect to the reference point (96 rad/s).   
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Figure 78:  Angular Velocity with Control – PID gain settings 2 – Semi-stable 
 

For the third attempt, the derivative gain was kept constant and the proportional and integration 

gains were increased by a factor of 10 to improve the steady state response.  The output 

stabilized macroscopically but the small oscillations remained due to the high derivative term.   
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Figure 79:  Angular Velocity with Control – PID gain settings 3 – Stable with Oscillations 
 

The forth PID setting uses a high decrease in the derivative gain to try and eliminate the micro- 

oscillations in the output.  Figure 80 shows that the signal is much less oscillatory.  After a slight 

overshoot on startup, and slight oscillations throughout, the output reaches the setpoint in 

approximately 5 s. 
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Figure 80:  Angular Velocity with Control – PID gain settings 4 – Stable 
 

To demonstrate that this type of controller can follow a stepped setpoint, a simulation was run 

varying the setpoint at various times throughout the simulation (refer to Table 3).  Figure 81 

shows the setpoint signal and the output and shows that the output can follow small oscillations 

in setpoint and the output power can be controlled. 
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Figure 81:  Angular Velocity with Control – Stepped Setpoint – Stable 
 

Figure 82 shows the response of the deviation of the fuel cell power due to a small change in 

angular velocity of the gas turbine rotor.  It is observed that the fuel cell power does vary slightly 

with respect to rotor velocity.  Therefore the angular velocity of the rotor could possibly be used 

as a control for the output power of the fuel cell as well as the gas turbine.   

 

Command signal – Rotor 
Angular Velocity Setpoint 
(green) 

Response signal – Actual 
Rotor Velocity (blue) 
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Figure 82: Fuel Cell Power Reaction to Step in Rotor Angular Velocity 
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6.0 CONCLUSIONS AND FUTURE WORK 

 

 

Models for the various components of a fuel cell gas turbine hybrid system have been modularly 

developed using MATLAB and Simulink software.  The component models are an axial flow 

compressor, combustor, turbine, heat exchanger, and solid oxide fuel cell.  Each component 

model was developed and validated independently before incorporation into the complete 

system.  This modularity creates a flexible framework that can be used to create a virtually 

limitless number of hybrid power plant combinations.  Two hybrid configurations were 

developed here.  Both were simulated to observe general plant behavior such as power, rotor 

velocity, and fuel cell voltage.  One hybrid configuration was simulated with respect to dynamic 

inputs.  This consisted of stepping various inputs to determine the effect on the system outputs.  

This can determine the control knobs that could possibly be used to control the plant.  It was 

found that varying the H2 input flow rate on the fuel cell had an impact on the total plant power 

as well as the gas turbine power and rotor velocity.  Therefore, this input could possibly be used 

to control the output power of the plant.  A separate control mechanism was implemented to 

control the rotor velocity, and hence power, of the gas turbine.  This consisted of injecting 

temperature controlled air into the working fluid stream just before the turbine.  This would 

control the inlet temperature of the turbine as well as the enthalpy of the inlet fluid.  Since the 

power generated by the turbine is directly proportional to the change in enthalpy of the working 

fluid, the output power, and the rotor velocity, of the gas turbine can be controlled.  This scenario 
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was implemented on the hybrid model using a PID controller.  It was found, after some tweaking 

of the PID gains, that the angular velocity of the gas turbine could be controlled with respect to 

an input set point using the air inject method.   The controls analysis performed in this study is 

not intended to be exhaustive, but rather to give a preliminary look at possible control methods 

and directions.  The main achievement of this study is the development of modular models that 

can be used for future research.  From a controls standpoint, additional studies could be 

performed on linearization of the individual or combined models about a steady state operating 

point.  Standard controls analysis could then be used to characterize and design a control scheme.  

Other control knobs could be analyzed and simulated as well.   

 

The models developed here do not include some additional components that could be used to 

better simulate a FCGT hybrid plant.  For example, a fuel reformer could be incorporated into 

the fuel cell model.  This would more accurately represent an actual fuel cell cycle.  Also, a 

humidifier could be attached to the fuel cell.  Valve dynamics could also be included to better 

simulate the air inject and H2 input flow controls.  In addition to the controls, these models could 

be used for an efficiency study of various hybrid configurations.  This could involve combining 

multiple fuel cells and gas turbines with various heat exchangers.  The study could also be 

expanded to include the power delivery methods, such as synchronous vs. non-synchronous 

turbines. 
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