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Abstract 

Background: Multivariate analysis, especially principal component analysis (PCA) and factor 

analysis (FA) is one of the effective methods by which to uncover the common factors (both 

genetic and environmental) that contribute to complex disease phenotypes, such as bone mineral 

density for osteoporosis. Although PCA and FA are widely used for this purpose, a formal 

evaluation of the performance of these two multivariate methodologies is lacking.  

 

Method: We conducted a comparison analysis using simulated data on 500 individuals from 250 

nuclear families. We first simulated 7 underlying (unobserved) genetic and environmentally 

determined traits. Then we derived two sets of 50 complex (observed) traits using algebraic 

combinations of the underlying components plus an error term. We next performed PCA and FA 

on these complex traits and extracted the first factor/principal component. We studied three 

aspects of the performance of the methods:  1) the ability to detect the underlying 

genetic/environmental components; 2) whether the methods worked better when applied to raw 

traits or to residuals (that is, after regressing out potentially significant environmental 
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covariates); and 3) whether heritabilities of composite PCA and FA phenotypes were higher 

than those of the original complex traits and/or underlying components.     

 

Results: Our results indicated that both multivariate analysis methods behave similarly in most 

cases, although FA is better able to detect predominant signals from underlying trait, which may 

improve the downstream QTL analysis. Using residuals (after regressing out potentially 

significant environmental covariates) in the PCA or FA analyses greatly increases the probability 

that PCs or factors detect common genetic components instead of common environmental 

factors, except if there is statistical interaction between genetic and environmental factors. 

Finally, although there is no predictable relationship between heritabilities obtained from 

composite phenotypes versus original complex traits, our results indicate that composite trait 

heritability generally reflects the genetic characteristics of the detectable underlying components.  

 

Public health significance: Understanding the strengths and weaknesses of multivariate analysis 

methods to detect underlying genetic and environmental factors for complex diseases will 

improve our identification of such factors. and this information may lead to better methods of 

treatment and prevention. 
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1.0  INTRODUCTION 

Numerous studies over the past several decades indicate that genes contribute to the development 

of complex diseases such as osteoporosis, obesity, and diabetes. Many risk factors for these 

diseases (such as bone mineral density, body fat, glucose levels) have been shown to be 

moderately to highly heritable. In recent years, many studies suggested that a majority of these 

highly heritable traits (risk factors) are governed by a set of common genes (i.e. pleiotropy, 

defined as when two or more phenotypes are co-regulated by a common gene or a common sets 

of genes) (1-4). The evidence supporting the above hypothesis is that bivariate linkage analyses of 

some of these traits revealed stronger linkage signals than were obtained from univariate linkage 

analysis of each trait separately (5-9).   

Conventional measurements of these complex disease-related phenotypes produce many 

intercorrelated phenotypes. For example, bone mineral density (BMD) could be measured by 

peripheral Quantitative Computed Tomography (pQCT) at distal and shaft sites for both radius 

and tibia. High phenotypic and genetic correlations were observed from these bone phenotypes 

due to the common contributions from trabecular and cortical components. Therefore it is 

possible that there might be a relatively small number of factors (both genetic and 

environmental) involved in certain metabolic pathways that contribute to variation in an 

underlying cluster of phenotypes. Identification of these common factors and elucidation of their 
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molecular basis should contribute to a better understanding and possible treatment for some 

complex diseases. 

It is well-known that bivariate and tri-variate genetic analyses are computationally 

intensive. And genetic analyses of more than three traits are beyond our current methodologies. 

Therefore, using multivariate analysis (PCA /Factor analysis) might be an alternative yet 

effective solution to identify common genetic and environmental factors that affect multiple 

traits.  Principal component analysis (PCA) and factor analysis (FA) both involve a mathematical 

procedure that transforms a number of (possibly) correlated variables into a (smaller) number of 

uncorrelated (PCA) or correlated (FA) variables called principal components or factors. During 

the PCA/FA extraction, the shared variance of a variable is partitioned from its unique variance 

and error variance to reveal the underlying factor / PC structure. Only the shared variance 

appears in the solution. So it is reasonable to believe that these two methods have the potential to 

classify phenotypic variation into independent / dependent components that may amplify or 

purify genetic signals and hence be used to dissect genetic networks regulating complex 

biological systems. 
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2.0  REVIEW OF THE RELEVANT LITERATURE 

Since 2001, ten groups of investigators that we are aware of have published articles that used 

multivariate analysis (MA) methods in an attempt to dissect the genetic and environmental basis 

for complex diseases, such as osteoporosis, metabolic syndrome, and asthma.  Seven of these 

groups applied PCA (10-16), while the other three used FA (17-19). In addition, 7 groups used raw 

phenotypes directly as the input variables, one group used raw traits but performed analysis by 

gender and generation (15), and the last two groups used residuals (after adjustment for significant 

covariates) (12,19).  The goals of the 10 groups also differed: one group used MA for phenotype 

clustering/classification, by which it developed composite index scores summarizing 

characteristics of raw traits from different skeletal sites (18).  The remaining 9 groups all focused 

on exploring the underlying genetic/environmental basis of composite traits (that is, principal 

components or factors) derived from PCA or FA. Within these 9 groups, two reported genetic or 

environmental correlations between composite traits and some well-defined real (observed) 

phenotypes (11,14);  two reports focused exclusively on heritability estimation for composite and 

real traits (12, 19);  and three reports concentrated on the association (or linkage) between these 

composite traits and QTLs (Quantitative Trait Loci) ; (13,16,17) The final two papers did both 

heritability estimation and association/linkage analysis for composite phenotypes (10,15).    

 

 3 



However, many statistical issues remain unaddressed by these reports. First, the selection 

of either PCA or FA seems arbitrary; none of the groups justified why they chose one instead the 

other. We decided to evaluate the performance of these two approaches. In particular, we wanted 

to assess which method is better able to detect the underlying environmental or genetic factors. 

Second, most reports used raw traits as input variable, but a few used residuals after regressing 

out some important environmental factors. Does analysis of residuals significantly improve the 

ability of PCA or FA methods to detect underlying genetic components? No direct comparisons 

to answer this question have been reported. Third, many groups have compared the heritability of 

composite traits (obtained from PCA or FA) with the original phenotypes. Does higher 

heritability of the composite trait compared to the original phenotype necessarily imply that the 

composite trait better reflects the underlying genetic components and thus increase the chance 

for detecting underlying genes? No literature that we are aware of has addressed this question.          

Hence, the goal of this thesis is to explore the answers to the above three questions using 

simulated data on nuclear families. 
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3.0  METHODS  

3.1 TERMINOLOGY 

PCA analysis: Principal component analysis uses the information from the entire correlation 

coefficient matrix of a set of phenotypes to produce a smaller number of hypothetical ‘‘factors’’ 

(components) that help explain correlations among the original variables. The analysis was 

performed in two stages: (a) factor extraction using principal component analysis, and (b) 

rotation of the principal components using Varimax option. Definition of factors was done by 

extracting the eigenvalues (which represent the variance explained by each of the principal 

components) greater than certain threshold (15,17,20). 

 

Factor Analysis: Factor analysis is a data-reduction procedure that uses the information from the 

entire correlation coefficient matrix of a large number of variables to produce a smaller number 

of hypothetical factor constructs or components that help explain the correlations between the 

variables. Factors are initially extracted from the correlation matrix until there is no appreciable 

variance left. Coefficients, weights, or loadings roughly represent the correlation between the 

variable item and the factor (17). 

 

 5 



Heritability (H2): Heritability measures the proportion of phenotypic variance attributable to 

genetic variance. Typically, two heritabilities are estimated: narrow sense heritability (h2) and 

broad sense heritability (H2). Narrow-sense heritability gives the proportion of additive variance 

in the phenotypic variance, whereas broad-sense heritability measures the proportion of all 

genetic variance in the phenotypic variance (i.e. including additive, dominance and epistatic 

effects). (21) Heritability is estimated using information on the theoretical genetic relationships 

between different relative pairs. (22,23)

3.2 STUDY DESIGN 

Our overall study design is illustrated in Figure 1. Three datasets of underlying (unobserved) 

traits were generated by simulation; 7 underlying traits (E1, E2, G1, G2, G3, S1 and S2) were 

involved in making these 3 datasets. The differences among these 3 datasets are the variance of 

the underlying environmental traits and the inclusion of S2 (a gene by sex interaction 

phenotype). For each of these three datasets of underlying traits, two sets of complex phenotypes 

were created using arbitrary algebraic functions of the underlying traits. There are 50 complex 

traits in each of the two function sets. Set 1 involves somewhat simpler algebraic combinations 

of traits than set 2 (details below). The seven underlying traits represent the unobserved 

environmental or/and genetic determinants which influence population variation of real traits, 

which are in turn represented by the sets of 50 complex traits. Using these complex traits, we 

created three different inputs for further multivariate analysis: raw traits, residuals model 1 (after 

regressing out E1 and E2), residuals model 2 (after regressing out E1, E2 and Sex).  Finally, we  
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Figure 1 Blueprint for study design 

 

performed both PCA and FA on each dataset x function set x residual combination, for a total of 

36 analyses (see figure 1).  Each aspect of the study design is described in more detail below. 

We evaluated three aspects of the outcomes: 1) the ability to detect the underlying 

genetic/environmental components; 2) whether the methods worked better when applied to raw 

traits or to residuals (that is, after regressing out potentially significant environmental 

covariates).; and 3) heritabilities of composite traits (principal component or factor) comparing 

to 50 complex traits or 7 underlying traits. 
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3.3 SIMULATION OF UNDERLYING TRAITS 

We first simulated 250 nuclear families with two parents and two offspring within each family. 

We then simulated 7 underlying original phenotypes (with corresponding genotypes): E1, E2, G1, 

G2, G3, S1, S2, (see Table 1) for offspring only, for a total of 500 individuals. All of these 

underlying traits were assumed to be normally distributed conditional on genotype. The 

simulated “genotypes” for E1 and E2 were not used in the model; these two traits were designed 

as an environmental model (pure environmental effect, no mean differences between people with 

different genotypes).  Because some environmental factors are likely to be similar between 

siblings, we also allowed for the effect of a shared common environment for E1 and E2 by 

simulating these two traits based on bivariate normal distribution with means all equal 1, 

variance equals 1 or ½ for different dataset and covariance equals to 0.2 for E1 and 0.1 for E2. 

Another three traits (G1, G2 and G3) are standard simple genetic models (mean differences by 

genotype). As can be seen in table 1, the genotypic means and error variance for, G1, G2 and G3 

are identical (mean 1.5, 2.5 and 3.5 for genotype aa, Aa and AA respectively and all SD=1/4); 

only the allele frequencies of these traits differ. The trait S1 has different means for males and 

females, but no interaction between sex and genotype. The trait S2 trait incorporates sex by 

genotype interaction.  
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Table 1 Simulation parameters for 7 underlying phenotypes 

Parameter Sex-Specific 
Genotype 

E1 E2 G1 G2 G3 S1 S2 

♂-aa 1.5 1.5 1.5 2 1.5 
♂-Aa 2.5 2.5 2.5 3 2.5 
♂-AA 3.5 3.5 3.5 4 3.5 
♀-aa 1.5 1.5 1.5 1 
♀-Aa 2.5 2.5 2.5 2 

 
 

Mean 

♀-AA 

 
1 

 
1 

3.5 3.5 3.5 3 

 
1 

SD 1 or 
1/4 

1 or 
1/4 

1/4 1/4 1/4 1/4 1/4 

Allele 
Frequency 

P(a) 
P(A) 

0.8 
0.2 

0.5 
0.5 

0.8 
0.2 

0.9 
0.1 

0.95 
0.05 

0.8 
0.2 

0.7 
0.3 

  

3.4 COMPLEX TRAITS 

Based on the above underlying “unobserved” traits, we created first set of 50 complex 

“observed” traits, each of which is an algebraic combination of a subset of the 7 unobserved 

traits plus the error function (normal distribution with mean 1 and standard deviation 1). The 

objective of our choices reflects the current genetic/epidemiological assumptions about complex 

traits regarding the effects of underlying immeasurable genetic / environment factors. For 

instance, we used additive and multiplicative effects and combinations within and/or between 

underlying genetic and environmental traits; Moreover, we also included very complicated 

models in addition because we wanted to assess if PC and factor analysis could recover 

underlying traits even from extremely sophisticated conditions.     

In order to assess even more complex models, we then created another set of 50 complex 

traits, in which we removed some of the algebraically simpler combinations and substituted more 

complex ones. All these new 50 functions were similar in format to those complicated ones in 
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the first set of functions (e.g. C41-C50, refer to table 2). When devising our 50 complex traits for 

each set, we required that each underlying trait have a similar representation across all 50 

complex traits. Based on our function summary file for dataset 1 and 2 (Tables 2 and 3), the 

proportion of times a specific underlying variable (e.g. G1) was included in the definition of a 

complex trait across all complex traits was as follows: 60% for E1, 54% for E2, 58% for G1, 

54% for G2, 56% for G3 and 58% for S1. In dataset 3, we simply substituted S1 for G3 and S2 

for S1, so the proportions are the same. Table 2 and 3 is the list of formulas for all 100 complex 

traits. 

These complex traits represent phenotypes that we could observe or directly measure in 

reality, such as bone mineral density (BMD), body mass index (BMI), glucose level, and blood 

pressure; whereas the seven original traits represent underlying genetic or environmental 

components, which contribute to the true variation of measured (complex) trait but are not 

actually observed or measured.  

 

Table 2 First set of 50 complex traits 

Addtion 

C1 = e1 + e2 + error *

C2 = g1 + g3 + error 

C3 = (g1 + g2 + g3)/3+error 

C4 = g2 + s1 + error 

C5 = e2 + g3 + s1+error 
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Table 2 continued 

C6 = (g1 + g2 +g3+e1+e2+s1)/7+error 

C7 = 0.5(e1) + e2 + error 

C8 = e1 + 3.5(g3) + error 

C9 = 2(g2) + 0.6(g3) + error 

C10 = 1/3 * g1 + g2 + 2(g3) + error 

C11 = 2(e1) + 1.4(g2) + s1 + error 

C12 = e2 + g3 + 3.2(s1)+error 

Multiplication and Division 

C13 = (e1)(e2) + error 

C14 = (e2 +1) / (e1 + 1) + error 

C15 = (g2)(g1) + error 

C16 = (g1 + 1) / (g3 + 1) + error 

C17 = (g3)(g2) + error 

C18 = (s1)(e2) + error 

C19 = (s1 +1) / (g2 + 1) + error 

C20 = (e1)(g3) + error 

C21 = (e2)(g1)(s1) + error 

C22 = (e1)(g2)(s1)+error 

Combination of addition, subtraction, multiplication and division 
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Table 2 continued 

C23 = (e1 + 1) / ((g3)(s1) + 1) + error 

C24 = (g2 + 1) / ((e2)(s1) + 1) + error 

C25 = (e1)(e2) + g2 + error 

C26 = (g3 + 1) / (g1 + 1) + e2 + error 

C27 = (e2 + 1) / (e1 + 1) + s1 + error 

C28 = (g3)(g2) + 3.2(s1) + error 

C29 = (e2)(s1) + e1 + error 

C30 = (s1 + 1) / (g2 + 1) - g3+error 

C31 = (e1)(g1) + 0.5(s1) +error 

C32 = 3(g3 +1) / (s1 + 1) - e2 + error 

C33 = (e1)(g3) -  (s1 +1) / (e2 + 1) + error 

C34 = (s1 +1) / (g2 + 1) + (e2 +1) / (g3 + 1) - 0.7(g1) + error 

Power, exponentiation, logarithm 

C35 = (g1  + error) 2

C36 = (s1 + error) 3

C37 = e (g3 + error)

C38 = 2) +error  + (s1   

C39 = log (g1 + error + 2) 

Combination of all forms 
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Table 2 continued 

C40 = (g2) 2 + (g1 +1) / (s1 + 1) + error 

C41 = 1 / (g3+2) 3 - 0.7(g2) /  + error 

C42 = 2)+(g3  - s1(e1)  + error 

C43 = log ((g1)(g2) +2) - 2)+(g3 + error 

C44 = (g2 + s1 + 1) / ( (g1)2 + 1)+ error 

C45 = (g1 + 1) / ( (g2)2/3  + 1) + error 

C46 = (g3 - g1)(s1) + log (e2 +2) + error 

C47 = (s1)2 + (g1 + g2)(2 (e1) - e2) + error 

C48 = (e1 + 2(e2) + 1) / ( (g1)2 + 2)+(g3  +1) + error 

C49 = 1 / (log (2(s1) + 2(g3) - e1 + 2) +1) + error 

C50 = ( 1)+ 2)+ ^3 e1 + ^2 g2 + (s1  / (e2 – (s1) 3+ 0.5(g1)(g3) + 1) + error 

 

Table 3 Second set of 50 complex traits 

All 50 traits Combination of all forms  

C1 = log(e1 +5)(e2) – (s1/g3 +2)2 + error 

C2 = 4.4(g1) / 3)e1 - (g2 + + error 
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Table 3 continued 

C3 = (g1 + e2 + g3)/3 + error 

C4 = (e2)2 + (s1 +1)/(g2 + 1) + error 

C5 = (1.2(e1) + g2 -3) / ((g3)2 + 2)(g1+  -2) + error 

C6 = (1.1(g1) + 2.7(g2) + (3/5)(g3)+ e1 -1.4(e2) + 2(s1))/7+error 

C7 = log (e2 + 1.2) - exp 
(g1 + error)

C8 = log ((g1)(g2) +2) - 2)(s1+  + error 

C9 = 2(g2) + (s1 + 2(e2) + 1) / (e2 2 + 2)(g2 +  +1) + error 

C10 = 2.3(g2) + e1 + 2(g3) + error 

C11 = 0.2(e2) + 1.4(g3) + s1 + error 

C12 = (g1/(s1-3)) / ( e2 (2/3) + 1) + error 

C13 = (e12 -3)(log (g1+3)) + error 

C14 = (g2 + (1.2(g2) -2)3 ) / (s1 + 1) + error 

C15 = 2) error   (g2 ++  + (g1) 2 (e1) 

C16 = (s1 + 1)/(g3 + 1) – e1 + error 

C17 = (s1)(e2) + 3.3 (e 
(g3 + error)

)  

C18 = 2)(g2 +  - (g1)(e1)  + error 
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Table 3 continued 

C19 = (s1 +2.2(g3))/(1.7(g2) – 1.2) + error 

C20 = (s1)(g2) – 2/(g1+4) 3 - 0.7(g3)/3 + error 

C21 = (s1)(g2)(e2) + error 

C22 = g1/ (2.2- g3)(e2)(s1) + error 

C23 = (e1 + 1) / ((g1)(g3) + 1) + error 

C24 = (2.2(g2) - s1) / ((e2)(e1) + 1) + error 

C25 = ( 1) g3   g2  (e1 3  2 +++ +4) / (s1 - e2 2 +0.5(g1)(g2) + 1) + error 

C26 = (s1 + 3)/(g3 + 1) – 2.1(e2) + error 

C27 = (e2 + 2.1) / (e1 + 1.2) + g3 + error 

C28 = (g3-1)(g2) + 3.2(e1)- e1+ error 

C29 = (e2)(e1) + g1 + error 

C30 = (s1 + 1) / (g2 + 1) - g1+ error 

C31 = (e1)(g1) + 0.5(e2) + error 

C32 = 3(g3 +1)/(s1 + 1.7) – 2(e1) + error 

C33 = (g1)(e2) -  (s1 +1) / (g2 + 1) + error 

C34 = (s1 +1) / (g2 + 2) + (e2 +1) / (g3 + 1) - 0.7(g1) + error 

C35 = (g1  + error) 2 + g1 / ((e1)(s1)) 
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Table 3 continued 

C36 = (s1+ error) 3 – 2.4(log (e2 + error + 2)) 

C37 = 3.3(e
(g3 + error)

) + 1.4(e1  + error) 2

C38 = 2) error   (s1 ++  + (g1) 2 (e2) 

C39 = log (g1 + error + 2) - e
(e1 + error)

C40 = (g3) 2 + (g2 +1)/(e1 + 1) + error 

C41 = 2 / (e1+5) 3 - 0.7(g3) /  + error 

C42 = 2)(e2+  - (s1)(g1)  + error 

C43 = log (g2 * e1 +2) - 2)(g3+  + error 

C44 = (g1 + e2 + 1) / (g3 2 + 1)+ error 

C45 = (g1 + 1) / (s1 (2/3)  + 1) + error 

C46 = (g1 - e2)(g3) + log(e1 +2) +error 

C47 = (e1) 2 + (g2 + g3)(2(s1) - e2) + error 

C48 = (s1 + 2 (g2) + 1) / (e1 2 + 2)(g3+  +1) + error 

C49 = 4.2 / (log (2(s1) + 2(g3) - e1 + 2) -3) + error 

C50 = ( 2)+  G3 + E1 + (E2 3 2  +1) / (g1 - e1 3 +0.5(g1)(g2) + 1) + error 
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3.5 DATASETS 

For each set of functions above, we created three different datasets of underlying traits by 

simulation to evaluate the performance of the multivariate analysis methods. Datasets 1 

and 2 use only 6 out of 7 underlying traits: E1, E2, G1, G2, G3 and S1 (see Tables 2 and 

3 and figure 1). The only difference between these two datasets is the standard deviation 

of E1 and E2: instead of SD=1 in dataset 1, we changed to SD=1/4 (half of the variance) 

in dataset 2. For the third dataset, we substituted underlying trait S1 for G3 and S2 for S1. 

However, we kept the functions the same and SD=1/4 for E1 and E2.   For example: for 

trait C49 in second set of functions, we used    

4.2 / (log (2(s1) + 2(g3) - e1 + 2) -3) + error 

for dataset 1 and 2, and  

4.2 / (log (2(s2) + 2(S1) - e1 + 2) -3 + error 

for dataset 3.   

We designed these three datasets to perform the following comparisons: 1) By comparing 

analyses of dataset 1 and 2, we could compare how two multivariate analysis methods behave 

when trait variation due to environment decreases; in other words, the proportion of total 

phenotypic variance due to genetics increases. 2) By comparing analyses of dataset 2 and 3, we 

could evaluate the behavior of the analysis methods with and without the presence of sex X 

genotype interaction (by inclusion / exclusion of S2.  (Refer to Fig 1.) For simplicity, we will 
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refer to datasets 1, 2 and 3 in the subsequent text as the high-environment dataset, the low-

environment dataset, and the gene by sex interaction dataset, respectively. 

3.6 STATISTICAL ANALYSIS 

The input variables for the multivariate analyses were either 50 complex traits in their original 

form (raw traits) or residuals of these traits (after removing effects of covariates). Two types of 

residuals were analyzed: (1) after adjusting for E1 and E2; or (2) after adjusting for E1, E2 and 

sex. Both residuals were created from 50 continuous traits by multiple regression after the 

incorporation of corresponding covariates. To mimic analysis methods that would be used in a 

real study, we only considered the linear form of covariates in the multiple regression, although 

we recognize there are quadratic or other non-linear effects of E1 and E2 in our arbitrary 

functions.  

The Pearson pairwise correlations among all 50 complex traits (or residuals) were 

estimated using the R statistical package (V2.4.0 for windows).(24) Principal component and 

factor analysis were both performed in R using its standard default procedure (varimax rotation, 

correlation matrix use Pearson) with default option. (Command: princomp and factanal).   

3.7 EVALUATION 

We limited all analyses and evaluations to only first component / factors which in theory account 

for the greatest proportions of variations from 50 complex traits. Two evaluation strategies were 
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applied. First, we evaluated the ability of each method to detect common underlying 

environment or genetic components. We performed univariate regression analyses and regressed 

every underlying trait on the first composite trait (PC or factor). Correlations (R-Squares) 

between composite trait and underlying original trait were reported respectively. Second, we 

estimated heritability. For each trial, we estimated heritabilities for all phenotypes, including the 

7 underlying traits, the 50 complex traits and the two composite traits (first principal component 

and first factor). We then compared these heritability estimates within each trial by box plot.  

The estimated heritability of a trait using data on full-sibs was calculated as: H2 = 2 times (trait 

correlation between sibs). (25) 
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4.0  RESULTS 

4.1 ANALYSIS OF CORRELATIONS 

Table 4 summarizes all correlations (R-Squares from univariate regression) between composite 

traits and each underlying phenotype.  We generated 3 independent replicates of all our 36 

dataset/analysis combinations and obtained very similar results across these three replicates.  We 

just report here the results from one replicate. (Table 4 and 5).  

 

Table 4 Correlations between composite trait and underlying phenotype in function set 1 

  Raw Traits Residual 1 
  -regress out E1 and E2 

Residual 2 
  -regress out E1, 
E2&Sex 

  Correlation 
-Factor * 

Correlation 
- PC   

Correlation
-Factor 

Correlation 
-PC   

Correlation 
-Factor 

Correlation 
- PC   

E1 0.90 0.45 ~ 0 ~ 0 ~ 0 ~ 0 
E2 <0.01 0.23 ~ 0 ~ 0 ~ 0 ~ 0 
G1 <0.01 ~ 0 <0.01 0.02 <0.01 <0.01 
G2 0.01 0.03 0.01 0.02 0.28 0.22 
G3 <0.01 0.05 0.05 0.10 0.26 0.17 

 
High 

Environment 
Dataset 

 
 S1 0.09 0.22 0.88 0.68 0.24 0.34 
        

E1 0.57 0.24 ~ 0 ~ 0 ~ 0 ~ 0 
E2 <0.01 0.10 ~ 0 ~ 0 ~ 0 ~ 0 
G1 <0.01 <0.01 0.01 0.03 <0.01 0.01 
G2 0.08 0.18 0.06 0.16 0.34 0.28 
G3 0.02 0.09 0.02 0.07 0.21 0.12 

 
Low 

Environment 
Dataset 

 
S1 0.36 0.43 0.90 0.75 0.25 0.32 

        
E1 0.02 0.08 ~ 0 ~ 0 ~ 0 ~ 0 
E2 0.02 0.05 ~ 0 ~ 0 ~ 0 ~ 0 
G1 <0.01 <0.01 ~ 0 <0.01 <0.01 0.05 
G2 0.06 0.09 0.04 0.07 0.23 0.22 
S1 0.49 0.41 0.41 0.48 0.25 0.14 

Gene 
by 
Sex  

Interaction 
Dataset 

S2 0.82 0.70 0.90 0.82 0.12 0.15 
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Table 5 Correlations between compsite trait and underlying phenotype in function set 2 

  Raw Traits 
 

Residual 1 
  -regress out E1 and E2 

Residual 2 
  -regress out E1, 

E2&Sex 
  Correlation 

-Factor * 
Correlation 

- PC  
Correlation

-Factor 
Correlation 

-PC  
Correlation 

-Factor 
Correlation 

- PC  
E1 0.83 0.76 ~ 0 ~ 0 ~ 0 ~ 0 
E2 <0.01 0.03 ~ 0 ~ 0 ~ 0 ~ 0 
G1 0.10 0.12 0.89 0.77 0.02 0.84 
G2 <0.01 <0.01 <0.01 0.03 0.29 0.05 
G3 <0.01 <0.01 0.03 0.08 <0.01 <0.01 

 
High 

Environment 
Dataset 

 
 S1 <0.01 0.02 <0.01 0.05 0.51 0.04 
        

E1 0.48 0.32 ~ 0 ~ 0 ~ 0 ~ 0 
E2 <0.01 0.04 ~ 0 ~ 0 ~ 0 ~ 0 
G1 0.40 0.50 <0.01 0.85 <0.01 0.88 
G2 <0.01 0.02 0.27 0.05 0.27 <0.01 
G3 <0.01 0.02 0.02 0.04 0.03 0.01 

 
Low 

Environment 
Dataset 

 
S1 <0.01 0.03 0.70 <0.01 0.45 <0.01 

        
E1 <0.01 <0.01 ~ 0 ~ 0 ~ 0 ~ 0 
E2 0.03 <0.01 ~ 0 ~ 0 ~ 0 ~ 0 
G1 <0.01 <0.01 <0.01 <0.01 <0.01 0.56 
G2 <0.01 <0.01 0.01 0.01 0.09 0.01 
S1 0.33 0.58 0.32 0.54 0.58 0.21 

Gene 
by 
Sex  

Interaction 
Dataset 

S2 0.93 0.78 0.94 0.80 <0.01 <0.01 
  

From tables above, we derive several conclusions.  

First of all, generally speaking, both multivariate analysis methods (FA and PCA) give 

qualitatively similar results for analyses of all raw traits and most residual models from both sets 

of functions (Table 4 and 5). In other words, both methods show similar correlations with the 

underlying traits. However, when the trait models are more complicated (function set 2) and 

analyses are performed on residuals, these two methods appear to detect different underlying 

traits. For example, factor analysis was most highly correlated with underlying trait S1, whereas 

PCA was correlated with trait G1 in the analyses of the second function set, low environment 

dataset, and using residuals after regressing out E1, E2 or E1, E2 and Sex (Table 5).   
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Even in those cases in which both methods display qualitatively similar results, we think 

factor analysis demonstrates higher potency to detect predominant signals from underlying traits 

than PCA, by which it may benefit the downstream QTL analysis. We found here that when 

composite traits from both methods show significant correlations to a certain underlying trait, the 

correlation coefficient (R-Squares) between the first factor and that underlying trait is 

substantially higher than the corresponding correlations with the first principal component. For 

example, in the first set of functions, high environment dataset, and residuals after adjustment of 

E1 and E2 model: correlations between S1 and factor and S1 and PC are 0.88 and 0.68 

respectively. 

We also compared results of multivariate analyses performed using raw complex traits 

versus residuals of the complex traits. As can be seen (Table 4 and 5), PCA or FA analysis of 

residuals greatly improved detection of common genetic components instead of common 

environmental factors. For example, instead of picking up E1 for both high and low environment 

datasets when using raw traits from either function set 1 or 2, factors or PCs detected one of the 

underlying genetic components. Both PCA and FA obtained the highest correlation with 

underlying trait S1 for both datasets using residuals after regressing out E1 and E2. Furthermore 

the correlation between the environmental traits (E1 and E2) and the composite traits derived 

from the residuals is zero.  As stated in the methods, we only regressed out the linear effects of 

E1 and E2 on the complex traits, even though E1 and E2 were not incorporated in the derivation 

of complex traits in only a linear fashion. Our limited results might suggest that performing a 

linear regression of environmental factors can be effective in removing some of the non-linear 

effects from environmental correlates. However, these results may be dependent on the specific 

set of non-linear functions we used and thus further evaluations are needed.    
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Finally, our results indicate that removing the effects of a covariate (i.e., sex, in our 

example) that has an interaction effect with the genotype on an underlying trait (i.e., trait S2), 

substantially decreases the potency of PCA or FA for detecting this underlying trait.  See the 

second residual model (after adjustment of E1, E2 and sex) for both sets of functions in Tables 4 

and 5.  

4.2 ANALYSIS OF HERITABILITIES 

We next compared the heritability of the underlying (unobserved) traits, the complex (observed) 

traits, and the first principal components and factors. Figure 2 shows the boxplot of heritabilities 

for composite traits compared with heritabilities for 50 complex traits. Table 6 lists mean 

heritabilties (or twice the sibling resemblance for non-genetic traits like E1 and E2) and the 

corresponding ranges for underlying traits. All mean heritabilities were calculated after taking 

the average of heritabilities from three replicates. And the range shows the variations of 

heritabilities among repeats. As indicated by Figure 2, there is no predictable relationship 

between heritability of composite traits and heritability of 50 complex traits. In other words, the 

heritabilities of composite traits are not necessarily higher or lower than original traits. This 

result is counterintuitive to our expectations, especially for residual models. We expected that the 

heritabilities of composite traits would be higher than those of the 50 complex traits, because 

multivariate analysis would incorporate co-variations for multiple traits due to shared genetic 

factors (pleiotropy), especially after removing environmental factors via regression analysis.  
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However, further comparisons of the heritabilities for composite traits and underlying 

phenotypes (table 6), indicates that FA and PCA did the right thing. The genetic/environmental 

information embedded in the composite trait reflects the genetic/environmental signals from 

underlying traits which had the highest correlations with the composite traits. For example, in 

function set 1, high environment dataset, using the raw trait model, the FA composite trait, seems 

exclusively coming from E1 (correlation =0.90) (Table 4). The heritability (or in this case, twice 

the sibling correlation) for this composite trait and heritability of E1 are comparable (0.454 vs 

0.47). For the same function and dataset, but using the first residual model (adjusting for E1 and 

E2), the FA composite trait captured information mostly from S1.  The corresponding 

heritabilities of FAR1 and S1 are also comparable (0.265 vs. 0.30).   

 

Table 6 Mean heritability (sibling resemblance) estimation for underlying traits  

 E1-1** E2-1 E1-2 E2-2 G1 G2 G3 S1 S2 
Heritability 

(H2) 
0.47 0.14 0.97 0.80 0.53 0.36 0.18 0.30 0.06 

H2 Range 0.44-
0.50 

0.11-
0.22 

0.94- 
0.99 

0.74-
0.98 

0.36-
0.69 

0.11-
0.53 

0.10-
0.53 

0.15-
0.40 

0.05-
0.10 

  

*: numbers in the table indicates the mean heritabilities and its range for each underlying trait from all  repeats; 

†: E1-1/E2-1: heritability of E1/E2 in high environment dataset (SD=1); E1-2/E2-2: heritability of E1/E2  

      in low environment and gene by sex interaction dataset (SD=1/4) 
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* F1-D1/D2/D3: first set of functions, dataset 1, 2 or 3; F2-D1/D2/D3: second set of functions, dataset 1, 2 or 3.  

   PC/PCR1/PCR2: indicate heritabilities for composite phenotypes from raw trait, residual 1 or residual 2 model respectively;  

   FA/FA1/FA2: indicate heritabilities for composite phenotypes from raw trait, residual 1 or residual 2 model respectively; 

 

Figure 2 Heritability Estimation of composite and 50 complex traits 
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5.0  DISCUSSION 

There are several interesting and useful conclusions based on our study. The seven underlying 

traits that we simulated are representative of the unobserved environmental or/and genetic 

determinants which influence population variation of real traits. Likewise, the sets of 50 complex 

traits derived from these 7 original phenotypes reflect potentially real phenotypes that could be 

directly measured. Thus, any statistical analysis that can successfully identify variation 

attributable to any underlying original trait should theoretically have better power to detect genes 

when used in a genetic linkage or association analysis. 

As indicated by our results, factor analysis seems to have better performance than PC 

analysis. This conclusion is based on the higher correlation between factors and the most 

significant underlying traits compared to that of PCs and the underlying traits.  In the real world, 

higher correlations between composite trait and certain underlying phenotype (if it is due to 

genetics), should increase the probability of detecting and identifying the underlying genes. 

Hence, we would recommend factor analysis rather than principal component analysis. Another 

reason we prefer FA, although not shown in this thesis (we only consider 1 composite 

component), is that PCA assumes orthogonal relationship between its PCs, however FA does not. 

The assumption of independent extracted components may conflict with the true genetic model. 

For example, bone scientists hypothesized that genes influencing bone size may differ from 

genes influencing for bone mineral density (BMD). However these two sets of genes might 
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interact with each other. If we put several bone size and BMD traits together into PCA, it is 

almost impossible to generate two independent PCs which represent a set of bone size genes and 

another set of BMD genes respectively.  

Another conclusion from these analyses concerns the use of residuals versus raw trait 

values in multivariate analysis. Our results indicate that regressing out potentially significant 

environmental covariates should greatly increase the chances for detecting genetic component 

using both FA and PCA. However, there is an important caveat in the use of this strategy. If the 

underlying trait exhibits a genotype by environment interaction (see the results of our analyses 

with sex), removing the linear effects of such environmental covariates may decrease or even 

remove the genetic signal from the composite trait.   

As shown in the results, the heritability for composite traits is not necessarily higher than 

that of the original complex traits. However, a high heritability does not necessarily predict 

successful detection of genes by linkage or association analysis. The success of detecting 

relevant genes depends not only on the number of loci influencing a trait, but also on the relative 

contribution of each locus, which is not reflected in the magnitude of the heritability estimate.(26) 

In addition, it is possible that different genotypes cause the same phenotype, an effect known as 

genetic heterogeneity. Heterogeneity complicates gene mapping and association and similarly is 

not reflected in the heritability estimate.  In our analysis, we observed some examples of this 

phenomenon. For example, in first set of functions, low environment dataset, using residuals 

adjusting for E1 and E2, the heritability for both FA and PCA are very low (0.20 and 0.18 

respectively). However, both composite traits grab most characteristics from underlying trait S1 

(H2 = 0.18) and the heritability for both composite traits corresponds most closely with S1. 
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These composite traits should be more useful for downstream gene hunting than any of the 

individual complex traits.     

Certain limitations of this study need to be acknowledged. These include 1) lack of 

further tools which could evaluate the results for PCA and FA when two composite traits were 

composed of different underlying trait as major components; 2) full consideration of sample size 

issues. We only simulated 250 families, or 500 sibs with phenotypic data. This sample size might 

be a little bit small to generate robust estimates for parameters. For example, the range of 

heritabilities for each of the 7 underlying traits is wide; and 3) Extension of our analysis to other 

PCs and factors. 

In the future, we think follow-up linkage or association analyses might be a high priority 

in order to evaluate the success of PCA and FA in the final goal of the analyses – detecting 

disease genes.  There are also a number of other extensions that are definitely worthwhile for us 

to explore: multigenerational family data for complex pedigrees; second or third PCs or factors; 

modified methodology conditioning on family relationship; using genetic correlation matrix 

instead of Pearson phenotypic correlation matrix as correlation/covariance matrix in multivariate 

analysis, etc..       
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APPENDIX A         R –CODE FOR SIMULATION 

# Function which generate family ID, indivudal ID, father ID and mother ID # and gender for 

all the members in one nuclear family # 

# Function inputs: family #, usually comes from FOR loop [i]; outputs: family ID, indivudal 

ID, father ID, mother ID and sex # 

 

sim_ID=function(j){ 

 

   fa_ped=j;mo_ped=j;child1_ped=j;child2_ped=j 

   fa_id=j*10+1;mo_id=j*10+2;child1_id=j*10+3;child2_id=j*10+4 

   fa_fa=0;mo_fa=0;child1_fa=fa_id;child2_fa=fa_id 

   fa_mo=0;mo_mo=0;child1_mo=mo_id;child2_mo=mo_id 

 

   fa_sex=1;mo_sex=2; # Use SOLAR format: male =1 and female =2 # 

   child1_sex = sample(c(1,2),1,replace=T);child2_sex = sample(c(1,2),1,replace=T) 

 

 

   fainfo=cbind(fa_ped,fa_id,fa_fa,fa_mo,fa_sex,deparse.level = 0) 

   moinfo=cbind(mo_ped,mo_id,mo_fa,mo_mo,mo_sex,deparse.level = 0) 

   child1info=cbind(child1_ped,child1_id,child1_fa,child1_mo,child1_sex,deparse.level = 0) 
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   child2info=cbind(child2_ped,child2_id,child2_fa,child2_mo,child2_sex,deparse.level = 0) 

 

   ped_info=rbind(fainfo,moinfo,child1info,child2info,deparse.level = 0) 

 

   return(ped_info) 

} 

 

 

# Function which generate the genotype and gender for nuclear family: 2 parents and 2 kids # 

# Function inputs: Allele frequency for P(A) and P(a), outputs: genotype 0/1/2 for 2 parents 

and 2 kids # 

 

sim_geno=function(p,q){ 

 

 

 

     ## Father’s genotype and gender ## 

          ### variable names: fa and fa_sex ### 

 

        fa.r <- rmultinom(1, size=1, prob=c(p^2,2*p*q,q^2)) 

             if (fa.r[1,1]==1) {fa <- 0} else if (fa.r[2,1]==1) {fa <- 1} else if 

(fa.r[3,1]==1) {fa <- 2} 

        #print(fa.r) 

        #print(fa) 
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        fa_sex <- 1 # Use SOLAR format: male =1 and female =2 # 

        #print (fa_sex) 

 

      ## Mother’s genotype and gender ## 

          ### variable names: mo and mo_sex ### 

 

        mo.r <- rmultinom(1, size=1, prob=c(p^2,2*p*q,q^2)) 

             if (mo.r[1,1]==1) {mo <- 0} else if (mo.r[2,1]==1) {mo <- 1} else if 

(mo.r[3,1]==1) {mo <- 2} 

        #print(mo.r) 

        #print(mo) 

 

        mo_sex <- 2 # Use SOLAR format: male =1 and female =2 # 

        #print (mo_sex) 

 

      ## Genotypes and gender for 2 kids## 

          ### variable names: child2/2 and child2/2 ### 

 

 

      ##### child1's genotype by Mendelian Rules  ##### 

        {if (fa==0 & mo==0) {child1 <- 0} 

        else if ((fa==0 & mo==1)|(fa==1 & mo==0)) {child1 <- rbinom(1, size=1, prob=c(0.5))} 

        else if ((fa==0 & mo==2)|(fa==2 & mo==0)) {child1 <- 1} 

        else if (fa==1 & mo==1) { 

                child.r <- rmultinom(1, size=1, prob=c(p^2,2*p*q,q^2)) 
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                if (child.r[1,1]==1) {child1<-0} 

                else if (child.r[2,1]==1) {child1<-1} 

                else if (child.r[3,1]==1) {child1<-2} 

                } 

        else if ((fa==1 & mo==2)|(fa==2 & mo==1)) {child1 <- 1+rbinom(1, size=1, 

prob=c(0.5))} 

        else if (fa==2 & mo==2) {child1 <- 2}   } 

 

        #print (child1) 

 

 

 

 

       ##### child2's genotype by Mendelian Rules  ##### 

        {if (fa==0 & mo==0) {child2 <- 0} 

        else if ((fa==0 & mo==1)|(fa==1 & mo==0)) {child2 <- rbinom(1, size=1, prob=c(0.5))} 

        else if ((fa==0 & mo==2)|(fa==2 & mo==0)) {child2 <- 1} 

        else if (fa==1 & mo==1) { 

                child.r <- rmultinom(1, size=1, prob=c(p^2,2*p*q,q^2)) 

                if (child.r[1,1]==1) {child2<-0} 

                else if (child.r[2,1]==1) {child2<-1} 

                else if (child.r[3,1]==1) {child2<-2} 

                } 

        else if ((fa==1 & mo==2)|(fa==2 & mo==1)) {child2 <- 1+rbinom(1, size=1, 

prob=c(0.5))} 
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        else if (fa==2 & mo==2) {child2 <- 2}   } 

 

        #print (child2) 

 

 

        return_geno = rbind(fa,mo,child1,child2,deparse.level = 0) #return all these values 

to the mail function: 4*2 matrix# 

        #print (return_geno) 

 

        return (return_geno) 

} 

 

 

 

 

# Function which generate the phenotypes ONLY for 2 CHILDREN in each nuclear family # 

# Function inputs: type, genotype and gender for 2 children; outputs: phenotypes for these 

two children, phenotypes for parents will be generately as missing # 

# There are all together 3 different types of phenotypes # 

      #Type 1: environment controlled---no gender or genotype dependence# 

      #Type 2: genetic controlled---genotype dependence# 

      #Type 3: genetic and controlled with sex difference# 

      #Type 4: traits controlled by gene X gender interaction# 

      # r indicates the intended trait correlation between sibs. This is only useful for 

environment controlled model. set to 0 for other models # 
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 sim_pheno=function(type,r,child1,child1_sex,child2,child2_sex){ 

 

 

       # These three are for gene controlled model traits withiout gender difference # 

        mu.aa=1.5;sd.aa=1/2 

        mu.Aa=2.5;sd.Aa=1/2 

        mu.AA=3.5;sd.AA=1/2 

 

       # These six are for gene controlled model traits with gender difference # 

        mu.aa.fe=1;sd.aa.fe=1/2 

        mu.Aa.fe=2;sd.Aa.fe=1/2 

        mu.AA.fe=3;sd.AA.fe=1/2 

 

        mu.aa.ma=2;sd.aa.ma=1/2 

        mu.Aa.ma=3;sd.Aa.ma=1/2 

        mu.AA.ma=4;sd.AA.ma=1/2 

 

    # These six are for gene X Sex intereaction traits # 

        mu.aa.fe.S2=1;sd.aa.fe.S2=1/2 

        mu.Aa.fe.S2=1;sd.Aa.fe.S2=1/2 

        mu.AA.fe.S2=1;sd.AA.fe.S2=1/2 

 

        mu.aa.ma.S2=1.5;sd.aa.ma.S2=1/2 

        mu.Aa.ma.S2=2.5;sd.Aa.ma.S2=1/2 
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        mu.AA.ma.S2=3.5;sd.AA.ma.S2=1/2 

 

 

   # environment controlled model # 

 

      if (type==1){ 

 

          fa_pheno = NA 

          mo_pheno = NA 

 

     library(MASS) 

 

     cormatrix = matrix(c(1/4,r,r,1/4),2,2) 

     sibtrait = mvrnorm(n=1,mu=c(1,1),Sigma=cormatrix) 

     child1_pheno = sibtrait[1] 

          child2_pheno = sibtrait[2] 

         } 

 

   # gene controlled model traits withiout gender difference # 

 

       else if (type==2){ 

 

 

          fa_pheno = NA 

          mo_pheno = NA 
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         { 

          if (child1==0) {child1_pheno<-rnorm(1,mean=mu.aa,sd=sd.aa)} 

          else if (child1==1) {child1_pheno<-rnorm(1,mean=mu.Aa,sd=sd.Aa)} 

          else if (child1==2) {child1_pheno<-rnorm(1,mean=mu.AA,sd=sd.AA)} 

         } 

 

         { 

          if (child2==0) {child2_pheno<-rnorm(1,mean=mu.aa,sd=sd.aa)} 

          else if (child2==1) {child2_pheno<-rnorm(1,mean=mu.Aa,sd=sd.Aa)} 

          else if (child2==2) {child2_pheno<-rnorm(1,mean=mu.AA,sd=sd.AA)} 

         } 

 

       } 

 

   # gene controlled model traits with gender difference # 

 

 

      else if (type==3){ 

 

 

          fa_pheno = NA 

          mo_pheno = NA 
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         { 

          if (child1==0 & child1_sex==1) {child1_pheno<-rnorm(1,mean=mu.aa.ma,sd=sd.aa.ma)} 

          else if (child1==0 & child1_sex==2) {child1_pheno<-

rnorm(1,mean=mu.aa.fe,sd=sd.aa.fe)} 

          else if (child1==1 & child1_sex==1) {child1_pheno<-

rnorm(1,mean=mu.Aa.ma,sd=sd.Aa.ma)} 

          else if (child1==1 & child1_sex==2) {child1_pheno<-

rnorm(1,mean=mu.Aa.fe,sd=sd.Aa.fe)} 

          else if (child1==2 & child1_sex==1) {child1_pheno<-

rnorm(1,mean=mu.AA.ma,sd=sd.AA.ma)} 

          else if (child1==2 & child1_sex==2) {child1_pheno<-

rnorm(1,mean=mu.AA.fe,sd=sd.AA.fe)} 

         } 

 

 

         { 

          if (child2==0 & child2_sex==1) {child2_pheno<-rnorm(1,mean=mu.aa.ma,sd=sd.aa.ma)} 

          else if (child2==0 & child2_sex==2) {child2_pheno<-

rnorm(1,mean=mu.aa.fe,sd=sd.aa.fe)} 

          else if (child2==1 & child2_sex==1) {child2_pheno<-

rnorm(1,mean=mu.Aa.ma,sd=sd.Aa.ma)} 

          else if (child2==1 & child2_sex==2) {child2_pheno<-

rnorm(1,mean=mu.Aa.fe,sd=sd.Aa.fe)} 
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          else if (child2==2 & child2_sex==1) {child2_pheno<-

rnorm(1,mean=mu.AA.ma,sd=sd.AA.ma)} 

          else if (child2==2 & child2_sex==2) {child2_pheno<-

rnorm(1,mean=mu.AA.fe,sd=sd.AA.fe)} 

         } 

 

      } 

 

  else if (type==4){ 

 

 

          fa_pheno = NA 

          mo_pheno = NA 

 

 

         { 

          if (child1==0 & child1_sex==1) {child1_pheno<-

rnorm(1,mean=mu.aa.ma.S2,sd=sd.aa.ma.S2)} 

          else if (child1==0 & child1_sex==2) {child1_pheno<-

rnorm(1,mean=mu.aa.fe.S2,sd=sd.aa.fe.S2)} 

          else if (child1==1 & child1_sex==1) {child1_pheno<-

rnorm(1,mean=mu.Aa.ma.S2,sd=sd.Aa.ma.S2)} 

          else if (child1==1 & child1_sex==2) {child1_pheno<-

rnorm(1,mean=mu.Aa.fe.S2,sd=sd.Aa.fe.S2)} 
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          else if (child1==2 & child1_sex==1) {child1_pheno<-

rnorm(1,mean=mu.AA.ma.S2,sd=sd.AA.ma.S2)} 

          else if (child1==2 & child1_sex==2) {child1_pheno<-

rnorm(1,mean=mu.AA.fe.S2,sd=sd.AA.fe.S2)} 

         } 

 

 

         { 

          if (child2==0 & child2_sex==1) {child2_pheno<-

rnorm(1,mean=mu.aa.ma.S2,sd=sd.aa.ma.S2)} 

          else if (child2==0 & child2_sex==2) {child2_pheno<-

rnorm(1,mean=mu.aa.fe.S2,sd=sd.aa.fe.S2)} 

          else if (child2==1 & child2_sex==1) {child2_pheno<-

rnorm(1,mean=mu.Aa.ma.S2,sd=sd.Aa.ma.S2)} 

          else if (child2==1 & child2_sex==2) {child2_pheno<-

rnorm(1,mean=mu.Aa.fe.S2,sd=sd.Aa.fe.S2)} 

          else if (child2==2 & child2_sex==1) {child2_pheno<-

rnorm(1,mean=mu.AA.ma.S2,sd=sd.AA.ma.S2)} 

          else if (child2==2 & child2_sex==2) {child2_pheno<-

rnorm(1,mean=mu.AA.fe.S2,sd=sd.AA.fe.S2)} 

         } 

 

      } 

 

 

 39 



     return_pheno = rbind(fa_pheno,mo_pheno,child1_pheno,child2_pheno,deparse.level = 0) 

#return all these values to the mail function# 

     #print (return_pheno) 

 

     return (return_pheno) 

} 

 

 

# Function: Heritability estimation. For full sibs, use the formula H2=2*cor(sibs)# 

 H2 = function(sib1_trait,sib2_trait){ 

 

   sibcor = cor(sib1_trait,sib2_trait,use="complete.obs") 

   heritability = 2*sibcor 

 

   return (heritability) 

  } 

 

 

# Function: generate a data-matrix which contains the pedigree information, genotype 

information and original phenotype information for 250 families (1000 individuals) # 

  #For the 6 original phenotypes: we will simulate 2 environment controlled traits, 3 gene 

controlled traits and 1 gene X gender controlled traits # 

  #input: None, output: Data matrix for ped, geno, pheno information # 

 

rawtraits = function(){ 
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sim_data=matrix(data = c("Family ID","Individual ID","Fa_ID","Mo_ID","Sex", 

"GenoE1","PhenoE1","GenoE2","PhenoE2","GenoG1","PhenoG1","GenoG2","PhenoG2","GenoS1","

PhenoS1","GenoS2","PhenoS2"),nrow = 1, ncol = 17) 

 

for(i in 1:250){ 

 

  pedinfo = sim_ID(i) 

 

  # Generate 6 traits (2E,2G and 2S), each controlled by its own allele respectively # 

  genoinfoE1 = sim_geno(0.2,0.8) 

  E1pheno = sim_pheno(1,0.20,genoinfoE1[3,1],pedinfo[3,5],genoinfoE1[4,1],pedinfo[4,5]) 

 

  genoinfoE2 = sim_geno(0.5,0.5) 

  E2pheno = sim_pheno(1,0.10,genoinfoE2[3,1],pedinfo[3,5],genoinfoE2[4,1],pedinfo[4,5]) 

 

  genoinfoG1 = sim_geno(0.2,0.8) 

  G1pheno = sim_pheno(2,0,genoinfoG1[3,1],pedinfo[3,5],genoinfoG1[4,1],pedinfo[4,5]) 

 

  genoinfoG2 = sim_geno(0.1,0.9) 

  G2pheno = sim_pheno(2,0,genoinfoG2[3,1],pedinfo[3,5],genoinfoG2[4,1],pedinfo[4,5]) 

 

  genoinfoS1 = sim_geno(0.2,0.8) 

  S1pheno = sim_pheno(3,0,genoinfoS1[3,1],pedinfo[3,5],genoinfoS1[4,1],pedinfo[4,5]) 
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 genoinfoS2 = sim_geno(0.3,0.7) 

  S2pheno = sim_pheno(4,0,genoinfoS2[3,1],pedinfo[3,5],genoinfoS2[4,1],pedinfo[4,5]) 

 

 

 

 

  all_data = 

cbind(pedinfo,genoinfoE1,E1pheno,genoinfoE2,E2pheno,genoinfoG1,G1pheno,genoinfoG2,G2ph

eno,genoinfoS1,S1pheno,genoinfoS2,S2pheno,deparse.level = 0) 

  # print (all_data) 

 

 

  sim_data=rbind(sim_data,all_data,deparse.level = 0) 

 

} 

 

  write.table(sim_data,file="c:/simdata.csv",sep=",",row.names=F,na="",quote=F,col.names=F) 

 

  sim.data=read.csv("c:/simdata.csv",sep=",",header=T) 

 

 

# Add one variable to the dataset, which indicates the sib group: all sib1 ==1 and all sib2 

==2,parents ==NA # 

 

  Nfmly <- length(unique(sim.data$Family.ID)) 
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  middata <- rep(c(1,2,2,2),Nfmly) 

  sim.data$childgrp <- sim.data$Individual.ID - (sim.data$Family.ID*10+middata) 

 

 # names(sim.data) 

 

  write.table(sim.data,file="c:/simdata.csv",sep=",",row.names=F,na="",quote=F) 

 

  sim.data=read.csv("c:/simdata.csv",sep=",",header=T) 

 

 

  # Calculate the actual allele frequency # 

 

  for(j in c(6,8,10,12,14,16)){ 

 

    temp = table(sim.data[,j]) 

    cat(names(sim.data)[j],"\n\n"," aa  Aa 

AA\n",temp,"\n\n",file="c:/allelecheck.txt",append=T) 

 

    temp_matrix=as.matrix(temp) 

    

Pa=(temp_matrix[1,1]*2+temp_matrix[2,1])/(2*(temp_matrix[1,1]+temp_matrix[2,1]+temp_ma

trix[3,1])) 

    PA=1-Pa 

    cat("P(a)=",Pa,"\n","P(A)=",PA,"\n\n\n",file="c:/allelecheck.txt",append=T) 

} 
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  # Calculate the mean/sd and heritability for each trait (by gender and genotype if 

necessary) # 

 

 

    #cat("\n\n\nDistribution Parameter\n\n",file="c:/allelecheck.txt",append=T)  # 

    #for ( k in c(7,9,11,13,15,17)){ 

 

    #male_data = sim.data[sim.data$Sex==1,];female_data = sim.data[sim.data$Sex==2,] 

    #aa_male_data = male_data[male_data[,k-1]==2,];Aa_male_data = male_data[male_data[,k-

1]==1,];AA_male_data = male_data[male_data[,k-1]==0,] 

    #aa_female_data = female_data[female_data[,k-1]==2,];Aa_female_data = 

female_data[female_data[,k-1]==1,];AA_female_data = female_data[female_data[,k-1]==0,] 

 

 

    #all_mean = mean(sim.data[,k],na.rm=T);all_sd=sd(sim.data[,k],na.rm=T) 

 

    #male_mean = mean(male_data[,k],na.rm=T);male_sd=sd(male_data[,k],na.rm=T) 

    #female_mean = mean(female_data[,k],na.rm=T);female_sd=sd(female_data[,k],na.rm=T) 

 

    #aa_male_mean = mean(aa_male_data[,k],na.rm=T);aa_male_sd=sd(aa_male_data[,k],na.rm=T) 

    #Aa_male_mean = mean(Aa_male_data[,k],na.rm=T);Aa_male_sd=sd(Aa_male_data[,k],na.rm=T) 

    #AA_male_mean = mean(AA_male_data[,k],na.rm=T);AA_male_sd=sd(AA_male_data[,k],na.rm=T) 
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    #aa_female_mean = 

mean(aa_female_data[,k],na.rm=T);aa_female_sd=sd(aa_female_data[,k],na.rm=T) 

    #Aa_female_mean = 

mean(Aa_female_data[,k],na.rm=T);Aa_female_sd=sd(Aa_female_data[,k],na.rm=T) 

    #AA_female_mean = 

mean(AA_female_data[,k],na.rm=T);AA_female_sd=sd(AA_female_data[,k],na.rm=T) 

 

    #cat("\n\n",names(sim.data)[k],"\n","all_mean=",all_mean," 

all_sd=",all_sd,"\n\n",file="c:/allelecheck.txt",append=T) 

 

    #cat("male_mean=",male_mean,"  male_sd=",male_sd,"\n",file="c:/allelecheck.txt",append=T) 

    #cat("female_mean=",female_mean,"  

female_sd=",female_sd,"\n\n",file="c:/allelecheck.txt",append=T) 

 

    #cat("aa_male_mean=",aa_male_mean,"  

aa_male_sd=",aa_male_sd,"\n",file="c:/allelecheck.txt",append=T) 

    #cat("Aa_male_mean=",Aa_male_mean,"  

Aa_male_sd=",Aa_male_sd,"\n",file="c:/allelecheck.txt",append=T) 

    #cat("AA_male_mean=",AA_male_mean,"  

AA_male_sd=",AA_male_sd,"\n",file="c:/allelecheck.txt",append=T) 

    #cat("aa_female_mean=",aa_female_mean,"  

aa_female_sd=",aa_female_sd,"\n",file="c:/allelecheck.txt",append=T) 

    #cat("Aa_female_mean=",Aa_female_mean,"  

Aa_female_sd=",Aa_female_sd,"\n",file="c:/allelecheck.txt",append=T) 
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    #cat("AA_female_mean=",AA_female_mean,"  

AA_female_sd=",AA_female_sd,"\n",file="c:/allelecheck.txt",append=T) 

 

 

   #} 

 

  return(sim.data) 

 

} 

 

#Function: make 50 derived traits using the original 6 phenotypes from the rawtraits 

function# 

 # derived traits will be applying transformations on original phenotypes plus error term# 

 # error term is a normal distribution with mean 1 and variance 1 # 

 # input: none. Will call rawtraits inside the function; output: dataset with ped info 

and 50 derived traits# 

 

alltraits = function(){ 

 

  temptraits = rawtraits() 

 

  # make the error matrix, NA for both parents and obs. from normal distribution 

(1,0.25) for two kids# 

  Nfmly <- length(unique(temptraits$Family.ID)) 

  errormatrix = matrix(rnorm(Nfmly*4*50,1,1),nrow=Nfmly*4,ncol=50) 
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  count = 0 

  for (w in 1:(Nfmly*4)){ 

   count = count +1 

   if (count == 1|count==2){errormatrix[w,]=NA} 

   if (count == 4){count = 0} 

  } 

 

  # make 50 derived traits# 

 

              temptraits$C1 = log(temptraits$PhenoE1 +5) * temptraits$PhenoE2 - 

(temptraits$PhenoS2 / temptraits$PhenoS1 +2)^2 + errormatrix[,1] 

                temptraits$C2 = 4.4*temptraits$PhenoG1 / sqrt (temptraits$PhenoG2 - 

temptraits$PhenoE1+3) + errormatrix[,2] 

                temptraits$C3 = (temptraits$PhenoG1 + temptraits$PhenoE2 + 

temptraits$PhenoS1)/3+errormatrix[,3] 

                temptraits$C4 = (temptraits$PhenoE2) ^2 + (temptraits$PhenoS2 +1) / 

(temptraits$PhenoG2 + 1) + errormatrix[,4] 

                temptraits$C5 = (1.2*temptraits$PhenoE1 +  temptraits$PhenoG2 -3) / 

(temptraits$PhenoS1^2 +sqrt (temptraits$PhenoG1+2) -2) + errormatrix[,5] 

                temptraits$C6 = (1.1*temptraits$PhenoG1 + 2.7*temptraits$PhenoG2 + 

(3/5)*temptraits$PhenoS1+temptraits$PhenoE1-

1.4*temptraits$PhenoE2+2*temptraits$PhenoS2)/7+errormatrix[,6] 

                temptraits$C7 = log (temptraits$PhenoE2 + errormatrix[,39] + 1.2) - exp 

(temptraits$PhenoG1 + errormatrix[,7]) 
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                temptraits$C8 = log (temptraits$PhenoG1 * temptraits$PhenoG2 +2) - 

sqrt(temptraits$PhenoS2+2) + errormatrix[,8] 

                temptraits$C9 = 2*temptraits$PhenoG2 +  (temptraits$PhenoS2 + 2 * 

temptraits$PhenoE2 + 1) / (temptraits$PhenoE2^2 +sqrt (temptraits$PhenoG2+2) +1) + 

errormatrix[,9] 

                temptraits$C10 = 2.3 * temptraits$PhenoG2 + temptraits$PhenoE1 + 

2*temptraits$PhenoS1 + errormatrix[,10] 

                temptraits$C11 = 0.2*temptraits$PhenoE2 + 1.4*temptraits$PhenoS1 + 

temptraits$PhenoS2 + errormatrix[,11] 

                temptraits$C12 = (temptraits$PhenoG1 / (temptraits$PhenoS2-3) ) / 

(temptraits$PhenoE2 ^ (2/3) + 1) + errormatrix[,12] 

                temptraits$C13 = (temptraits$PhenoE1^2 -3) * log (temptraits$PhenoG1+3) + 

errormatrix[,13] 

                temptraits$C14 = (temptraits$PhenoG2 +(1.2* temptraits$PhenoG2 -2)^3) / 

(temptraits$PhenoS2 + 1) + errormatrix[,14] 

                temptraits$C15 = sqrt(temptraits$PhenoG2 + errormatrix[,15] + 2) + 

(temptraits$PhenoG1) ^2 * temptraits$PhenoE1 

                temptraits$C16 = (temptraits$PhenoS2 + 1) / (temptraits$PhenoS1 + 1) - 

temptraits$PhenoE1 + errormatrix[,16] 

                temptraits$C17 = temptraits$PhenoS2 * temptraits$PhenoE2 + 3.3*exp 

(temptraits$PhenoS1 + errormatrix[,17]) 

                temptraits$C18 = sqrt (temptraits$PhenoG2+2) - temptraits$PhenoG1 * 

temptraits$PhenoE1  + errormatrix[,18] 

                temptraits$C19 = (temptraits$PhenoS2 + 2.2 * temptraits$PhenoS1) / (1.7 * 

temptraits$PhenoG2) + errormatrix[,19] 
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                temptraits$C20 = temptraits$PhenoS2 * temptraits$PhenoG2 - 2 / 

(temptraits$PhenoG1+4) ^3 - 0.7*(temptraits$PhenoS1) / 3 + errormatrix[,20] 

                temptraits$C21 = temptraits$PhenoS2 * temptraits$PhenoG2 * temptraits$PhenoE2 

+ errormatrix[,21] 

                temptraits$C22 = temptraits$PhenoG1/ (2.2- temptraits$PhenoS1 )* 

temptraits$PhenoE2 * temptraits$PhenoS2+errormatrix[,22] 

                temptraits$C23 = (temptraits$PhenoE1 + 1) / (temptraits$PhenoG1 * 

temptraits$PhenoS1 + 1) + errormatrix[,23] 

                temptraits$C24 = (2.2*temptraits$PhenoG2 - temptraits$PhenoS2) / 

(temptraits$PhenoE2 * temptraits$PhenoE1 + 1) + errormatrix[,24] 

                temptraits$C25 = (sqrt (temptraits$PhenoE1 + temptraits$PhenoG2 ^2 + 

temptraits$PhenoS1 ^3 +1) +4) / (temptraits$PhenoS2 - temptraits$PhenoE2 ^3 

+0.5*temptraits$PhenoG1*temptraits$PhenoG2 + 1) + errormatrix[,25] 

                temptraits$C26 = (temptraits$PhenoS2 + 3)/(temptraits$PhenoS1) - 2.1 * 

temptraits$PhenoE2 + errormatrix[,26] 

                temptraits$C27 = (temptraits$PhenoE2 + 2.1) / (temptraits$PhenoE1 + 1.2) + 

temptraits$PhenoS1 + errormatrix[,27] 

                temptraits$C28 = (temptraits$PhenoS1-1) * temptraits$PhenoG2 + 

3.2*temptraits$PhenoE1- temptraits$PhenoE1+ errormatrix[,28] 

                temptraits$C29 = temptraits$PhenoE2 * temptraits$PhenoE1 + temptraits$PhenoG1 

+ errormatrix[,29] 

                temptraits$C30 = (temptraits$PhenoS2 + 1) / (temptraits$PhenoG2 + 1) - 

temptraits$PhenoG1+errormatrix[,30] 

                temptraits$C31 = temptraits$PhenoE1 * temptraits$PhenoG1 + 0.5 * 

temptraits$PhenoE2 +errormatrix[,31] 
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                temptraits$C32 = 3*(temptraits$PhenoS1 +1) / (temptraits$PhenoS2 + 1.7) - 

2*temptraits$PhenoE1 + errormatrix[,32] 

                temptraits$C33 = temptraits$PhenoG1 * temptraits$PhenoE2 -  

(temptraits$PhenoS2 +1) / (temptraits$PhenoG2 + 1) + errormatrix[,33] 

                temptraits$C34 = (temptraits$PhenoS2 +1) / (temptraits$PhenoG2 + 2) + 

(temptraits$PhenoE2 +1) / (temptraits$PhenoS1 + 1) - 0.7*temptraits$PhenoG1 + 

errormatrix[,34] 

                temptraits$C35 = (temptraits$PhenoG1  + errormatrix[,35]) ^2 + 

temptraits$PhenoG1 / (temptraits$PhenoE1* temptraits$PhenoS2) 

                temptraits$C36 = (temptraits$PhenoS2 + errormatrix[,36]) ^3 - 2.4* 

log(temptraits$PhenoE2 + errormatrix[,36] + 2) 

                temptraits$C37 = 3.3*exp (temptraits$PhenoS1 + errormatrix[,37]) + 

1.4*(temptraits$PhenoE1  + errormatrix[,37]) ^2 

                temptraits$C38 = sqrt (temptraits$PhenoS2 + errormatrix[,38] + 2) + 

(temptraits$PhenoG1) ^2 * temptraits$PhenoE2 

                temptraits$C39 = log (temptraits$PhenoG1 + errormatrix[,39] + 2) - exp 

(temptraits$PhenoE1 + errormatrix[,39]) 

                temptraits$C40 = (temptraits$PhenoS1) ^2 + (temptraits$PhenoG2 +1) / 

(temptraits$PhenoE1 + 1) + errormatrix[,40] 

                temptraits$C41 = 2 / (temptraits$PhenoE1+5) ^3 - 0.7*(temptraits$PhenoS1) /  

+ errormatrix[,41] 

                temptraits$C42 = sqrt (temptraits$PhenoE2+2) - temptraits$PhenoS2 * 

temptraits$PhenoG1  + errormatrix[,42] 

                temptraits$C43 = log (temptraits$PhenoG2 * temptraits$PhenoE1 +2) - 

sqrt(temptraits$PhenoS1+2) + errormatrix[,43] 
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                temptraits$C44 = (temptraits$PhenoG1 + temptraits$PhenoE2 + 1) / 

(temptraits$PhenoS1 ^2 + 1)+ errormatrix[,44] 

                temptraits$C45 = (temptraits$PhenoG1 + 1) / (temptraits$PhenoS2 ^ (2/3) + 1) 

+ errormatrix[,45] 

                temptraits$C46 = (temptraits$PhenoG1 - temptraits$PhenoE2)* 

temptraits$PhenoS1 + log(temptraits$PhenoE1 +2) + errormatrix[,46] 

                temptraits$C47 = (temptraits$PhenoE1) ^2 + (temptraits$PhenoG2 + 

temptraits$PhenoS1) * (2 * temptraits$PhenoS2 - temptraits$PhenoE2) + errormatrix[,47] 

                temptraits$C48 = (temptraits$PhenoS2 + 2 * temptraits$PhenoG2 + 1) / 

(temptraits$PhenoE1^2 +sqrt (temptraits$PhenoS1+2) +1) + errormatrix[,48] 

                temptraits$C49 = 4.2 / (log (2*temptraits$PhenoS2 + 2*temptraits$PhenoS1 - 

temptraits$PhenoE1 + 2) -3) + errormatrix[,49] 

                temptraits$C50 = (sqrt (temptraits$PhenoE2 + temptraits$PhenoE1 ^2 + 

temptraits$PhenoS1 ^3 +2) +1) / (temptraits$PhenoG1 - temptraits$PhenoE1 ^3 

+0.5*temptraits$PhenoG1*temptraits$PhenoG2 + 1) + errormatrix[,50] 

 

#output the final dataset# 

 

write.table(temptraits,file="c:/alltraits.csv",sep=",",quote=F,row.names=F,na="") 

temptraits = read.csv("c:/alltraits.csv",sep=",",header=T) 

 

 #Plot the histograms of all 56 simulated traits and output it into PDF file # 

 

  pdf(file="c:/alltraits.pdf",title="Histogram for all simulated traits" ) 

  par(mfrow=c(3,2)) 
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  for ( p in c(7,9,11,13,15,17,19:68)){ 

     hist(temptraits[,p], main = paste("Histogram of" , names(temptraits)[p])) 

 

   # Calculate H2 for each trait # 

   sib1data = temptraits[temptraits$childgrp==1,] 

   sib2data = temptraits[temptraits$childgrp==2,] 

 

   h2 = H2(sib1data[,p],sib2data[,p]) 

   cat("\n",names(temptraits)[p],"  Narrow Sense 

Heritability=",h2,"\n",file="c:/H2check.txt",append=T) 

 

   } 

 

  dev.off() 

 

 } 
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APPENDIX B         R-CODE FOR MULTIVARIATE ANALYSIS    

# option 1: PCA/FA analysis without regression # 

 

alltraits=read.csv("c:/alltraits.csv",sep=",",header=T) 

clean=alltraits[,c(2,5,7,9,11,13,15,17,18,19:68)] 

temp<-

clean[is.na(clean$C1)==F&is.na(clean$C2)==F&is.na(clean$C3)==F&is.na(clean$C4)==F&is.na(clean

$C5)==F&is.na(clean$C6)==F&is.na(clean$C7)==F&is.na(clean$C8)==F&is.na(clean$C9)==F&is.na(cle

an$C10)==F&is.na(clean$C11)==F&is.na(clean$C12)==F&is.na(clean$C13)==F&is.na(clean$C14)==F&is

.na(clean$C15)==F&is.na(clean$C16)==F&is.na(clean$C17)==F&is.na(clean$C18)==F&is.na(clean$C19

)==F&is.na(clean$C20)==F&is.na(clean$C21)==F&is.na(clean$C22)==F&is.na(clean$C23)==F&is.na(cl

ean$C24)==F&is.na(clean$C25)==F&is.na(clean$C26)==F&is.na(clean$C27)==F&is.na(clean$C28)==F&i

s.na(clean$C29)==F&is.na(clean$C30)==F&is.na(clean$C31)==F&is.na(clean$C32)==F&is.na(clean$C3

3)==F&is.na(clean$C34)==F&is.na(clean$C35)==F&is.na(clean$C36)==F&is.na(clean$C37)==F&is.na(c

lean$C38)==F&is.na(clean$C39)==F&is.na(clean$C40)==F&is.na(clean$C41)==F&is.na(clean$C42)==F&

is.na(clean$C43)==F&is.na(clean$C44)==F&is.na(clean$C45)==F&is.na(clean$C46)==F&is.na(clean$C

47)==F&is.na(clean$C48)==F&is.na(clean$C49)==F&is.na(clean$C50)==F,] 

 

cor.ma=cov(temp[,c(10:59)],use="pairwise.complete.obs") 

 

# Factor Analysis with orignial traits # 

 

FA=factanal(temp[,c(10:59)],1,covlist=cor.ma,scores="regression") 

 

 

cat("**********************\n","Factor 

Analysis\n","**********************","\n\n","loadings","\n",FA$loadings,"\n\n\n","uniquenesse

s\n",FA$uniquenesses,"\n",file="c:/FA-PCA.txt",append=T) 

 

 

temp$FA1=FA$scores 

write.table(temp,file="c:/FAdata.csv",sep=",",row.names=F,quote=F,na="") 

FAdata=read.csv("c:/FAdata.csv",sep=",",header=T) 

 

for (i in 3:8){ 

 

reg4 = summary(lm(FAdata$FA1~FAdata[,i])) 
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cat("\n\nREGRESS FA1 by E1/E2/G1/G2/G3/S1","\n\n",names(FAdata)[i],"   ","R-Square = 

",reg4$r.sq,"\n\n\n",file="c:/FA-PCA.txt",append=T) 

 

} 

 

 

# PC Analysis with orignial traits # 

 

PCA=princomp(temp[,c(10:59)],cor=T,scores=T) 

 

 

cat("**********************\n","PC 

Analysis\n","**********************","\n\n","loadings","\n",PCA$loadings[,1],"\n\n",file="c:/

FA-PCA.txt",append=T) 

 

temp$PC1=PCA$scores[,1] 

 

write.table(temp,file="c:/FAdata.csv",sep=",",row.names=F,quote=F,na="") 

 

FAdata=read.csv("c:/FAdata.csv",sep=",",header=T) 

 

for (i in 3:8){ 

 

reg3 = summary(lm(FAdata$PC1~FAdata[,i])) 

 

cat("\n\nREGRESS PC1 by E1/E2/G1/G2/G3/S1","\n\n",names(FAdata)[i],"   ","R-Square = 

",reg3$r.sq,"\n\n\n",file="c:/FA-PCA.txt",append=T) 

 

} 

 

 

 

# option 2: PCA/FA analysis with regression of E1 and E2# 

 

 

pcatry=FAdata 

rownum = dim(pcatry)[1] 

resmatrix = matrix(rep(NA,rownum*50),ncol=50) 

 

for (i in 10:59){ 

 

reg = lm(pcatry[,i]~pcatry$PhenoE1+pcatry$PhenoE2) 

 

resmatrix[,i-9] = reg$res 

 

} 

 

colname=matrix(data = 

c("res1","res2","res3","res4","res5","res6","res7","res8","res9","res10","res11","res12","res
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13","res14","res15","res16","res17","res18","res19","res20","res21","res22","res23","res24","

res25","res26","res27","res28","res29","res30","res31","res32","res33","res34","res35","res36

","res37","res38","res39","res40","res41","res42","res43","res44","res45","res46","res47","re

s48","res49","res50"),nrow = 1, ncol = 50) 

 

res_data=rbind(colname,resmatrix,deparse.level=0) 

 

write.table(res_data,file="c:/resdata-temp.csv",sep=",",quote=F,row.names=F,na="",col.names=F) 

 

res_data = read.csv("c:/resdata-temp.csv",sep=",",header=T) 

 

temp=cbind(pcatry,res_data,deparse.level=0)  # temp data which contains ID, E1/E2, all 50 C 

traits and 50 residuals# 

 

 

write.table(temp,file="c:/FAdata.csv",sep=",",quote=F,na="",row.names=F) 

 

temp = read.csv("c:/FAdata.csv",sep=",",header=T) 

 

 

cor.ma=cov(temp[,c(62:111)],use="pairwise.complete.obs") 

 

# Factor Analysis using residuals # 

 

FA=factanal(temp[,c(62:111)],1,covlist=cor.ma,scores="regression") 

 

cat("\n\n***************************\n","Residual Factor 

Analysis\n","***************************","\n\n","loadings","\n",FA$loadings,"\n\n\n","unique

nesses\n",FA$uniquenesses,"\n",file="c:/FA-PCA.txt",append=T) 

 

temp$FAR1=FA$scores 

 

write.table(temp,file="c:/FAdata.csv",sep=",",row.names=F,quote=F,na="") 

 

FAdata=read.csv("c:/FAdata.csv",sep=",",header=T) 

 

for (i in 5:8){ 

 

reg2 = summary(lm(FAdata$FAR1~FAdata[,i])) 

 

cat("\n\nREGRESS FA1 by G1/G2/G3/S1","\n\n",names(FAdata)[i],"   ","R-Square = 

",reg2$r.sq,"\n\n\n",file="c:/FA-PCA.txt",append=T) 

 

} 

 

 

# PC Analysis using residuals # 

 

PCA=princomp(temp[,c(62:111)],cor=T,scores=T) 
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cat("********************************\n","Residual PC 

Analysis\n","********************************","\n\n","loadings","\n",PCA$loadings[,1],"\n\n"

,file="c:/FA-PCA.txt",append=T) 

 

 

temp$PCR1=PCA$scores[,1] 

 

write.table(temp,file="c:/FAdata.csv",sep=",",row.names=F,quote=F,na="") 

 

FAdata=read.csv("c:/FAdata.csv",sep=",",header=T) 

 

for (i in 5:8){ 

 

reg3 = summary(lm(FAdata$PCR1~FAdata[,i])) 

 

cat("\n\nREGRESS PC1 by G1/G2/G3/S1","\n\n",names(FAdata)[i],"   ","R-Square = 

",reg3$r.sq,"\n\n\n",file="c:/FA-PCA.txt",append=T) 

 

} 

 

 

# Calculate the correlations between FA1/PC1/FAR1/PCR1 and Sex # 

 

cor1=cor(FAdata$Sex,FAdata$FA1,method="spearman") 

cor2=cor(FAdata$Sex,FAdata$PC1,method="spearman") 

cor3=cor(FAdata$Sex,FAdata$FAR1,method="spearman") 

cor4=cor(FAdata$Sex,FAdata$PCR1,method="spearman") 

 

 

cat("********************************\n","Correlation 

Calculation\n","********************************","\n\n",file="c:/FA-PCA.txt",append=T) 

cat("Correlation between Sex and FA1 is  ",cor1,"\n",file="c:/FA-PCA.txt",append=T) 

cat("Correlation between Sex and PC1 is  ",cor2,"\n",file="c:/FA-PCA.txt",append=T) 

cat("Correlation between Sex and FAR1 is  ",cor3,"\n",file="c:/FA-PCA.txt",append=T) 

cat("Correlation between Sex and PCR1 is  ",cor4,"\n",file="c:/FA-PCA.txt",append=T) 

 

 

 

# remove another corresponding sibs if one sib is missing in the dataset FAdata # 

# This step is required by H2 function # 

 

IDmatrix=alltraits[,c(2,19)] 

IDmatrix=IDmatrix[is.na(IDmatrix$C1)==F,] 

IDmatrix$idindex <- seq(1,500,1) 

H2data=merge(IDmatrix,FAdata,by.x="Individual.ID",by.y="Individual.ID",all.x=T,all.y=T) 

missingID=H2data$Individual.ID[is.na(H2data$PC1)==T] 

misslen=length(missingID) 

missingindex <- H2data$idindex[is.na(H2data$PC1)==T] 
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IDremainder <- missingID%%2 

IDremainder[IDremainder==0]<- -1 

missingindex2 <- missingindex+IDremainder 

missingrow <- c(missingindex,missingindex2) 

nomissing <- H2data[-missingrow,] 

 

# Calculate the Heritabilities for FA1/PC1/FAR1/PCR1 # 

 

              if(misslen!=0){   

   sib1data = nomissing[nomissing$childgrp==1,] 

   sib2data = nomissing[nomissing$childgrp==2,] 

                } 

 

               if (misslen == 0){   

   sib1data = FAdata[FAdata$childgrp==1,] 

   sib2data = FAdata[FAdata$childgrp==2,] 

                }  

 

                 h2FA1 = H2(sib1data$FA1,sib2data$FA1) 

                 h2PC1 = H2(sib1data$PC1,sib2data$PC1) 

                 h2FAR1 = H2(sib1data$FAR1,sib2data$FAR1) 

                 h2PCR1 = H2(sib1data$PCR1,sib2data$PCR1) 

 

                 cat("\n","FA1 Narrow Sense 

Heritability=",h2FA1,"\n",file="c:/H2check.txt",append=T) 

                 cat("\n","PC1 Narrow Sense 

Heritability=",h2PC1,"\n",file="c:/H2check.txt",append=T) 

                 cat("\n","FAR1 Narrow Sense 

Heritability=",h2FAR1,"\n",file="c:/H2check.txt",append=T) 

                 cat("\n","PCR1 Narrow Sense 

Heritability=",h2PCR1,"\n",file="c:/H2check.txt",append=T) 
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APPENDIX C         DISTRIBUTIONS OF COMPLEX TRAITS 

1st set of 50 functions and 6 underlying traits 
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2nd set of 50 functions and 6 underlying traits 
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