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Deregulation of normal cell cycle control is essential for malignant transformation.  The Cdc25A 

dual-specificity phosphatase promotes cell cycle progression by dephosphorylating and 

activating the cyclin-dependent kinases.  Cdc25A has oncogenic and anti-apoptotic activity and 

is overexpressed in many human tumors.  The mechanisms by which Cdc25A is overexpressed 

in human cancer are unknown.  Cdc25A protein levels are downregulated by cell cycle 

checkpoints in response to genotoxic stress; cell cycle checkpoints are frequently compromised 

in tumor cells.  In addition, under normal physiologic conditions, the half-life of Cdc25A protein 

is short.  Alterations to physiologic Cdc25A regulatory mechanisms could be sufficient to result 

in oncogenic overexpression of this cell cycle regulatory protein.  While Cdc25A 

downregulation in response to genotoxic stress occurs through defined signal transduction 

pathways, regulation of Cdc25A protein levels in non-stressed cells is poorly understood.  The 

purpose of this thesis was to examine the physiological regulation of Cdc25A protein levels in 

human tumor cells.  The goals of our studies were: 1) to investigate regulatory mechanisms of 

Cdc25A protein levels in non-stressed human tumor cells; 2) to understand how Cdk2 kinase 

activity regulates Cdc25A protein levels; and 3) to explore the mechanism by which Cdk2 kinase  
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activity regulates Cdc25A protein turnover.  The results of our studies revealed that Cdc25A 

protein half-life in non-stressed interphase cells is regulated, in part, by Cdk2 kinase activity, and 

that Cdk2 does not regulate Cdc25A turnover by affecting several known signal transduction 

pathways that control Cdc25A protein stability.  Recent reports on the role of ubiquitin ligases in 

physiologic Cdc25A turnover have identified several phosphorylation sites that are necessary for 

efficient Cdc25A recruitment to ubiquitin ligases.  The kinase(s) responsible for phosphorylating 

these serine residues remain to be identified, although Cdk2 could be one prime candidate.  

While initial reports of the interactions between Cdc25A and Cdk2 focused on an auto-

amplification feedback loop that results in increased catalytic activity of both proteins, it now 

appears that Cdk2 also regulates Cdc25A stability and plays an important role in regulating 

Cdc25A protein levels during interphase progression. 
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1. INTRODUCTION 

 

1.1. GENERAL INTRODUCTION 

Cancer is defined as the unregulated proliferation of previously normal cells that have 

undergone specific alterations to their genomes, enabling them to acquire the necessary 

capabilities to evade the homeostatic regulation of cell division, invade nearby tissues and 

metastasize to distal sites in the body (1).  Cancer is the second leading cause of mortality in the 

United States, contributing to ~23% of all deaths in 20011.  Furthermore, half of all men and one 

third of all women in the United States will develop cancer in their lifetime2.    A central theme 

of the efforts to control and eliminate cancer, the stated goal of the National Cancer Institute, is 

to promote basic science research in an effort to better understand the fundamental biology of 

cancer with the hope of generating novel therapeutic interventions that can be translated into 

clinical treatments for cancer3.  While human cancers posses numerous genotypic alterations that 

can occur in any of the >100 different human tumor types, these mutations can be classified 

according to six essential alterations in normal cellular processes that enable malignant cell 

growth.  These processes are “…self-sufficiency in growth signals, insensitivity to growth-

inhibitory (antigrowth) signals, evasion of programmed cell death (apoptosis), limitless 

replicative potential, sustained angiogenesis, and tissue invasion and metastasis (2).”  To fully 

understand how instability in the human genome contributes to the malignant phenotype, it is 

                                                 
1 The American Cancer Society: Cancer Statistics 2004 (http://www.cancer.org) 
2 The American Cancer Society: Cancer Statistics 2004 (http://www.cancer.org) 
3 The National Cancer Institute: “The Nation’s Investment in Cancer Research: A Plan and Budget Proposal for 
Fiscal Year 2004.”  Prepared by the Director, National Cancer Institute 
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important to understand the fundamental underlying biological processes before they go awry. 

The work presented herein is an effort to understand the biology of the cell division cycle and the 

regulation of the cell division machinery.  These studies were undertaken to provide insight on 

the mechanisms leading to deregulation of the cell division machinery and to further the 

understanding of how deregulated cell biology contributes to the development of cancer. 

 

1.2. THE MAMMALIAN CELL DIVISION CYCLE 

The mammalian cell division cycle, or cell cycle, consists of 2 major processes, namely 

the replication of genetic material and the uniform segregation of this newly duplicated genetic 

material into two daughter cells (3).  Progression through the cell cycle occurs in response to the 

activation of mitogenic signaling cascades, which results in the synthesis and activation of 

proteins necessary for operation of the cell cycle machine (4).  The cell cycle consists of four 

distinct phases: G1, the first gap phase, during which the cell senses signals from its external 

environment and commits to cell division; S, the DNA synthesis phase, during which the genome 

is replicated; G2, the second gap phase, in which the cell can correct any errors in DNA 

replication and prepare for cell division; and M, or mitosis, in which the cell physically divides 

and segregates its identical copies of genetic material into two daughter cells (5, 6).  Progress 

from one phase of the cell cycle to the next requires movement through cell cycle transitions 

between each cell cycle phase; the major catalysts of movement through cell cycle transitions are 

the cyclin-dependent kinases (Cdks).  The Cdks consist of a catalytic kinase subunit (the Cdk 

itself) and a regulatory subunit known as a cyclin (4).  Cdk activity is primarily regulated in a 

temporal manner through the regulated expression of cognate cyclins, whose expression levels 

oscillate with specific phases of the cell cycle (1).  Cyclin D is expressed throughout the cell 
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cycle in response to mitogenic stimulation; cyclin E expression increases in late G1, peaks at the 

G1/S transition, and decreases in S phase; cyclin A expression increases throughout S phase, 

peaking in late G2 and decreasing before the G2/M transition; and cyclin B expression emerges 

in late S and early G2 and peaks in mitosis (7).  This expression pattern results in cell cycle 

phase specific activity of various Cdks.  The D-type cyclins associate with Cdk4 and Cdk6 in G1 

to promote G1 progression and contribute to the activity necessary for the G1/S transition; E-

type cyclins associate with Cdk2 and also contribute to the G1/S transition and S phase 

progression; A-type cyclins associate with Cdk2 in S phase to promote S phase progression and 

with Cdk1 in late S phase and in G2 to promote progress through G2; and B-type cyclins 

associate with Cdk1 in late G2 and in mitosis to promote the G2/M transition and enable mitotic 

progression (Figure 1.1) (1, 7).  The Cdks, therefore, serve as the major promoters of progress 

through the cell division cycle and, as such, are subject to precise regulation to ensure a proper 

sequence of activation. 

 

1.3. CDK REGULATION 

As the driving force behind cell cycle progression, Cdk catalytic activity is constrained 

by several layers of regulation: 1) association with cognate cyclins results in catalytic activation 

of the Cdk kinase subunit; 2) Cdk activity is regulated both positively and negatively by 

phosphorylation events; and 3) Cdk activity is negatively regulated by small protein Cdk 

inhibitors (CDKI).  Temporal regulation of cyclin expression results in precise timing of Cdk 

activation; this is the primary mechanism regulating Cdk activation (7, 8).  The Cdks are also 

positively regulated by phosphorylation of a threonine (Thr) residue in the T loop, an extended 

loop in the Cdk protein that impedes substrate binding in the absence of phosphorylation (8).   
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Figure 1.1: Regulation of the Mammalian Cell Cycle by Cdks
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Cdks are phosphorylated at this threonine residue (Thr 161 in Cdk1 and Thr 160 in Cdk2) by the 

Cdk activating kinase (CAK) (Figure 1.2) (9).  On the other hand, the Cdks are negatively 

regulated by phosphorylation at Thr 14 and tyrosine (Tyr) 15 (in Cdk1 and Cdk2) in the ATP-

binding domain of the Cdk, which prevents phosphorylation of its substrates (8).  While 

inhibitory phosphorylation in the ATP-binding site has been clearly defined for Cdk1 and Cdk2, 

it is still unclear whether comparable negative regulatory phosphorylation plays a role in Cdk4 

regulation, although several reports correlate decreased Cdk4 catalytic activity with increased 

tyrosine phosphorylation of Cdk4 (10, 11).  Cdk phosphorylation at Thr 14 and Tyr 15 is 

catalyzed by Wee1 and Myt1 protein kinases (Figure 1.2).  Wee1 is a tyrosine-specific protein 

kinase that localizes to the nucleus, whereas Myt1 encodes a dual-specific protein kinase that 

resides outside of the nucleus and localizes to the Endoplasmic Reticulum (ER) and Golgi 

complex (12, 13).  Cdk activity can also be inhibited by a family of proteins known as CDKIs, 

which bind to Cdk/cyclin complexes to inhibit their activity.  The CDKIs comprise two families, 

the INK4 family, consisting of p16INK4A, p15INK4B, p18INK4C, and p19INK4D, which selectively 

target the G1 specific Cdk4/cyclin D and Cdk6/cyclin D, and the Cip/Kip family, consisting of 

p21Cip1, p27Kip1 and p57Kip2, which are more promiscuous Cdk inhibitors, inhibiting the activity 

of multiple Cdks throughout the cell cycle (1, 14, 15).  Full catalytic activation of the Cdks is 

only achieved when the triply phosphorylated (Thr 14, Tyr 15, and Thr 161) Cdk/cyclin complex 

is dephosphorylated at both Thr 14 and Tyr 15.  Dephosphorylation of Cdks at these sites to 

promote cell cycle progression is catalyzed by the activity of the Cdc25 dual-specificity 

phosphatases (DSPases) (Figure 1.2). 
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Figure 1.2: Cdk Activation by Cdc25 Phospha

 Mitogenic signaling promotes the activat

progression.  Cdc25s activate Cdks by removing

and tyrosine 15 in the ATP binding domain of t

phosphorylation by CAK.  Growth inhibitory sig

Cdk phosphorylation catalyzed by Wee1 and My

Cdc25 

Wee1 

1

Mitogenic 
Stimuli 

CAK 
-T-Y-
P P
Myt
Cdk

cyclin 
Growth
Arrest 

-

-

-T-Y
 

tases. 

ion of

 inhib

he kin

nals p

t1 kina

Cdk

cyclin
-T
P

-
-T
P

 Cdc25 phosphatases to initiate cell cycle 

itory phosphorylations from threonine 14 

ase.  Cdk activity requires threonine 161 

romote Cdc25 inactivation and inhibitory 

ses.  

Cell Cycle 
Progression 



 7

 

1.4. CDC25 PHOSPHATASES 

cdc25 was first identified in S. pombe fission yeast as the 25th protein that influenced the 

yeast cell division cycle (16).  It was noted that upon mutation of cdc25, cells assumed the 

opposite of a wee1 phenotype, namely that they failed to divide and grew to an enlarged state.  

This suggested that cdc25 functioned antagonistically to wee1, which was known to encode a 

protein kinase that inhibited yeast cell division (16, 17).  Several lines of evidence suggested that 

cdc25 encoded a protein phosphatase: 1) phenotypic evidence that cdc25 was antagonistic to 

wee1, a known kinase; 2) phosphotyrosine content increased in cells lacking cdc25; 3) the 

protein product of an additional cell cycle regulatory factor, cdc2, was tyrosine phosphorylated 

to inhibit its activity; and 4) a tyrosine to phenylalanine mutation in cdc2 rendered yeast cells 

resistant to disruption of cdc25 (17).  Moreover, the cdc25 gene product demonstrated the ability 

to dephosphorylate phosphotyrosine, phosphoserine and phosphothreonine residues in vitro (18).  

Three human homologs of cdc25, Cdc25A, Cdc25B, and Cdc25C (Figure 1.3), were identified 

using a degenerate oligonucleotide primer-based PCR cloning strategy and by genetic 

complementation of a cdc25ts temperature-sensitive yeast strain (19-21).  While all three human 

homologs successfully complemented the cdc25ts temperature-sensitive yeast mutant, we now 

know that their expression is cell cycle specific in mammalian cells: Cdc25C mRNA is 

predominantly expressed in G2 and M phase, Cdc25B mRNA is expressed throughout the cell 

cycle and is elevated in G2, and Cdc25A mRNA is also expressed throughout the cell cycle, with 

peak expression during late G1 and S phases (20-22). 
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Figure 1.3: Mammalian Cdc25 Phosphatases. 

The mammalian Cdc25A, Cdc25B, and Cdc25C phosphatases ar

distinct genes and have specific roles in cell cycle regulation.  They compris

domain, which serves a regulatory role and is the site of multiple phos

carboxy terminal domain, marked by a conserved -L-I-G-D- motif.  Th

domain contains the canonical PTPase active site motif -H-C-X5-R- (where X

Single letter amino acid abbreviations are used.  Demarkated sequences in C

identify 14-3-3 binding sites (serine phosphorylation site underlined) that f

mediated cytoplasmic sequestration by interfering with the proximal NLS 

indicated with asterisks).  NES sequences are indicated with triangles and t

is marked by larger font.  Cdc25A phosphorylation sites and 14-3-3 interac

Figure 5.1. 

Cdc25A

Cdc25B

Cdc25C 

 LIGD

LIGD

LIGD

SGLYRSPSMP

RLFRSPSMP 

* *

* *

1 

1 

1 
HCEFSSER
HCEFSSER 

566

524
*

HCEFSSER 

473
*

e encoded by three 

e an amino terminal 

phorylations, and a 

e carboxy terminal 

 is any amino acid).  

dc25B and Cdc25C 

acilitate checkpoint-

(NLS sequences are 

he catalytic cysteine 

tions are detailed in 



 9

 

1.4.1. MAMMALIAN CDC25 DUAL-SPECIFICITY PHOSPHATASES 
 

The three human Cdc25 isoforms, while sharing functional and sequence homology, are 

encoded by distinct genes that localize to different chromosomes: Cdc25A is found on 3p21, 

Cdc25B on 20p13, and Cdc25C on 5q31.  The human Cdc25 family is further complicated by 

splicing to generate multiple variants of each isoform: 2 for Cdc25A, 5 for Cdc25B and 5 for 

Cdc25C (23, 24).  While the function of the Cdc25 splice variants remains unknown, it has been 

speculated that the Cdc25A and Cdc25C splice variants may have different roles in different cell 

lines or may differ in their cell cycle phase distribution.  Furthermore, alternative splicing may 

eliminate specific consensus phosphorylation sites, potentially subjecting the different splice 

variants to differential regulation; deletion of such phosphorylation motifs decreases Cdc25B 

phosphatase activity, and Cdc25C activity has been reported to increase following 

phosphorylation (24-27).  Of the Cdc25B splice variants, only 2 of the 5 seem to be 

predominantly expressed in mammalian cells: Cdc25B2 and Cdc25B3 (23). 

At the protein level, Cdc25 DSPases are structurally divided into two major domains: a 

highly conserved carboxy terminal domain, which is delineated by a conserved -L-I-G-D- motif 

and comprises approximately 30% of the protein, and an amino terminal domain, which varies in 

length and shares little homology between the three human isoforms (Figure 1.3) (28).  The 

Cdc25 catalytic site, with the canonical PTPase active site motif -H-C-X5-R- (where X is any 

amino acid), resides in the carboxy terminal domain (29).  In mammalian cells, the Cdc25 

phosphatases function as dual-specificity phosphatases, a protein tyrosine phosphatase (PTPase) 

sub-class uniquely able to hydrolyze phosphate ester bonds on both a tyrosine and either a serine 

or threonine located in the same protein substrate (30).  While the canonical PTPase active site is 
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typically a deep ~9 Å cleft, the DSPase active site is a shallow ~6 Å cleft; the more shallow 

nature of the DSPase active site is presumably necessary to enable DSPases to dephosphorylate 

both the less extended phosphoserine and phosphothreonine motifs as well as the more extended 

phosphotyrosine motif (30-32).  Like the PTPases, DSPases employ a two-step catalytic 

mechanism to dephosphorylate their protein substrates (Figure 1.4).  This mechanism involves 

formation of a transient phospho-enzyme intermediate by transferring the phosphate from the 

substrate amino acid to the DSPase catalytic cysteine residue.  The dephosphorylated substrate is 

then expelled from the active site following protonation of the tyrosine phenolic oxygen by an 

acidic amino acid residue; phosphoserine/phosphothreonine hydrolysis is catalyzed by the same 

active site and is believed to proceed via a similar mechanism (30, 33-35).  The active 

phosphatase is regenerated when a basic amino acid residue activates a proximal water molecule, 

allowing hydrolysis of the phospho-enzyme intermediate and resulting in the release of inorganic 

phosphate (30, 36).   It is not clear, however, whether the Cdc25 DSPases employ a general acid 

in their catalytic mechanism, as an amino acid functioning as the catalytic acid has not been 

convincingly identified and may even reside on the protein substrate (37-40).  While the carboxy 

terminal domain of the Cdc25 DSPases houses the enzyme’s catalytic machinery, the amino 

terminus is thought to be the major regulatory region of the protein, containing multiple 

phosphorylation sites that may positively or negatively regulate Cdc25 activity (28, 41-43). 

The crystal structures for the Cdc25A and Cdc25B catalytic domains have been reported 

at 2.3 Å and 1.9 Å resolutions, respectively, but no crystal structure for a full length Cdc25 

protein is available.  Both phosphatases contain the canonical -H-C-X5-R- PTPase catalytic site 

motif nestled in the P-loop structural motif, a characteristic of all tyrosine phosphatases (36, 38, 

44).  While the overall structures of the catalytic domains of the two Cdc25 phosphatases are  
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Figure 1.4: Catalytic Mechanism of Cdc25 Phosphatases. 

 Cdc25 phosphatases employ the general PTPase catalytic mechanism to dephosphorylate 

protein substrates.  In a two step mechanism, the phosphate from a phosphoamino acid substrate 

is transferred to the catalytic cysteine to form a phospho-enzyme intermediate.  The 

dephosphorylated substrate is then expelled from the active site by protonation of the tyrosine 

phenolic oxygen (Panel A).  Phosphoserine/phosphothreonine hydrolysis is catalyzed by the 

same active site and is believed to proceed via a similar mechanism.  The active phosphatase is 

regenerated by means of a proximal water molecule that hydrolyzes the phospho-enzyme 

intermediate, facilitating release of inorganic phosphate (Panel B) (33).  The catalytic cysteine in 

Cdc25A is cysteine 430 and a residue with the potential to function as the catalytic acid is 

glutamic acid 431, although the requirements for a catalytic acid in the dephosphorylation 

mechanism employed by the Cdc25s is still a matter of debate (33, 37-40, 44). 
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similar, Cdc25A failed to bind oxyanions in its catalytic site, whereas Cdc25B readily bound 

tungstate and sulfate in its catalytic site in a mode akin to other PTP- and DSPases (44).  This 

may stem from the more shallow nature of the Cdc25A active site when compared to the active 

site architecture of Cdc25B, which is more reminiscent of other DSPases active sites; the 

Cdc25A catalytic domain also lacks any loops proximal to the active site that may facilitate 

substrate binding (38, 44).  A comparison of the two crystal structures also revealed that the C-

terminal tail of Cdc25B folds back upon its active site, whereas the C-terminal tail of Cdc25A is 

directed away from the active site cleft, resulting in a more open structure (44).  These structural 

data lend credence to biochemical data arguing that the final 17 carboxy terminal residues of 

Cdc25B function to confer its substrate specificity and the reports in the literature suggesting a 

higher degree of promiscuity for Cdc25A substrate selection (45-48).  Interestingly, while 

Cdc25A has been functionally compared to other PTP- and DSPases because of its canonical -H-

C-X5-R- motif in its active site, it unexpectedly shares topology with the bacterial sulfur 

transferase protein rhodanese; the significance of this homology is unclear, but suggests that the 

two enzyme families may share a common evolutionary origin (38, 49).  In contrast, Cdc25B 

compares more favorably with other PTP- and DSPases (44). 

  

1.4.2. CELL CYCLE CONTROL BY CDC25 PHOSPHATASES 
 

The roles for Cdc25A, Cdc25B, and Cdc25C in different phases of the cell cycle have 

been well studied.  Because Cdc25C is the human Cdc25 isoform most homologous to yeast and 

Xenopus Cdc25, most investigators believe that it functions primarily in mitosis and catalyzes 

mitotic progression by activating Cdk1/cyclin B (18, 50-52).  Microinjection of antibodies 

against Cdc25C into HeLa cells blocked entry into mitosis, substantiating this hypothesis (53).  
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However, Cdc25C may also be involved in regulating DNA synthesis, as Cdc25C phosphatase 

activity was detected in S phase cell extracts and downregulation of Cdc25C was accompanied 

by S phase inhibition (54).  A potential role for Cdc25C in S phase, however, remains unknown.  

Since Cdc25B also activates Cdk1/cyclin B, it was initially believed to be functionally redundant 

to Cdc25C; microinjection of Cdc25B antibodies also inhibited entry into mitosis (55, 56).  

However, Cdc25B and Cdc25C activity appear to be separated temporally, with Cdc25B activity 

peaking prior to that of Cdc25C.  Cdc25B has been identified as the “mitotic trigger”, activating 

a pool of Cdk1/cyclin B to promote the onset of mitosis (55, 57-62).  Moreover, Cdc25B can also 

activate Cdk2/cyclin A in S phase and Cdk1/cyclin A in G2 (25, 63, 64).  The primary function 

attributed to Cdc25A was promoting the G1/S cell cycle transition and S phase progression 

(Figure 1.1).  The original Cdk substrate identified for Cdc25A was Cdk2/cyclin E, 

overexpression of Cdc25A accelerated S phase entry with premature Cdk2 activation, and 

microinjection of Cdc25A antibodies prevented S phase entry in cells induced by serum 

stimulation (22, 65, 66).  However, Cdc25A protein levels and activity remain elevated past S 

phase and increase as cells enter mitosis (67); in fact, Cdk1/cyclin B phosphorylates Cdc25A and 

increases its stability in mitotic cell populations (68).  While the precise function of Cdc25A in 

G2 and mitosis remains unclear, Cdc25A appears to be rate limiting for the G2/M transition and 

mitotic progression by regulating Cdk1/cyclin B activity (Figure 1.5) (67-70).  This should not 

come as a complete surprise because, when Cdc25A was first identified, it was found to 

associate with cyclin B and Cdk1 and was hypothesized to function in mitosis (19).  As Cdc25A 

is expressed and active for all the major cell cycle transitions, targeted deletion of Cdc25B or 

Cdc25C would be predicted to have no significant impact on cell cycle progression.  In fact, 

mouse embryonic fibroblasts (MEFs) harvested from mice with targeted deletions of Cdc25B or  
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Figure 1.5: Cdc25A Promotes Mammalian Cell Cycle Progression. 
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Cdc25C have normal cell cycle profiles when compared to wild type MEFs, suggesting a 

dominant role for Cdc25A in cell cycle control (71, 72). 

 

1.4.3. CDC25S AS TARGETS OF CELL CYCLE CHECKPOINTS 
 

The function of the cell cycle is to faithfully replicate (S phase) and separate (M phase) 

the genome into two identical daughter cells (1).  To that end, cells possess highly evolved 

checkpoint mechanisms to terminate cell cycle progression in an effort to ensure high fidelity 

DNA replication and distribution (73).  As the major promoters of Cdk activation and cell cycle 

progression, Cdc25 phosphatases are targets of cell cycle checkpoints.  Cdc25s were first 

implicated in the yeast DNA damage checkpoint, which was characterized by increased Cdc2 

Tyr 15 phosphorylation (Cdc2 is equivalent to Cdk1 in mammalian cells), implying Cdc25 

inhibition (74).  In response to DNA damage, Chk1 phosphorylated Cdc25, promoting 14-3-3 

binding, nuclear exclusion and functional Cdc25 inactivation; 14-3-3 proteins bind specifically to 

phosphoserine motifs in signal transduction and cell cycle regulatory proteins and can affect the 

subcellular localization of target proteins (75, 76).  Inhibition of Cdc25 phosphatases at cell cycle 

checkpoints is a conserved phenomenon from yeast to mammals and these checkpoints are 

activated in response to diverse stimuli (76-81).  While Cdc25B and Cdc25C are targets of the 

G2/M cell cycle checkpoint, Cdc25A is targeted by all the major cell cycle checkpoints, 

reinforcing findings from the Cdc25B and Cdc25C knockout mouse studies that Cdc25A plays a 

major regulatory role in mammalian cell cycle progression (68, 71, 72, 82-90).  Nevertheless, 

Cdc25B and Cdc25C must functionally contribute to cell cycle progression, as they are 

inactivated in cell cycle checkpoints by Chk1-, Chk2-, and p38 mitogen-activated protein kinase  
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Figure 1.6: Cdc25B and Cdc25C are inactivated by Ce
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(MAPK)-mediated phosphorylation and cytoplasmic sequestration by 14-3-3 proteins; 

incidentally, these phosphorylation sites are localized to the amino termini of Cdc25B and 

Cdc25C (see section 1.4.1) (Figure 1.6) (23, 41, 91-94).  Cdc25B and Cdc25C inactivation by 

cytoplasmic sequestration occurs as a result of 14-3-3-dependent obstruction of their nuclear 

localization signals (NLS), blocking nuclear entry (79, 80, 92-96).  In addition, there is some 

evidence that phosphorylation of Cdc25 by Chk1 results in decreased Cdc25 phosphatase 

activity, independent of 14-3-3 (78).  The cell cycle checkpoints targeting Cdc25A are 

independent of 14-3-3 and involve proteolytic degradation (Figure 1.7).  Cdc25A does not 

appear to have validated NLS or NES consensus sequences, and its subcellular localization is a 

matter of debate, as Cdc25A has been reported to localize in the nucleus, the cytoplasm and the 

plasma membrane and to interact with proteins that reside in each of these cellular compartments 

(42, 45, 48, 66, 97-100).  Following any number of genotoxic stresses, including DNA damaging 

chemotherapeutics, UV or IR irradiation, oxidative stress, or disruption of DNA synthesis, cells 

enact p53-independent cell cycle checkpoint programs that lead to rapid ubiquitin-mediated 

proteolysis of Cdc25A at the G1/S, intra-S and G2/M checkpoints (67, 68, 82-90).  These p53-

independent checkpoints serve as a rapid response to genetic insults; p53-dependent checkpoints 

can then be enacted to maintain cell cycle arrest, if necessary, to preserve genomic integrity (87).  

Phosphorylation of Cdc25A at Ser 123 was found to be necessary for promoting Cdc25A 

ubiquitination in response to genotoxic stress (84).  It is now apparent, however, that Cdc25A is 

phosphorylated at a number of additional amino terminal serine residues, including Ser 75, and 

that Cdc25A ubiquitination and proteolytic degradation in response to cell cycle checkpoints is 

the result of a complicated and poorly understood interaction between multiple phosphorylation 

sites and effector proteins (discussed in detail in Chapter 5).  Because of its critical role in 
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Figure 1.7: Cell Cycle Checkpoints Target Cdc25A for Pro
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promoting all the major cell cycle transitions, it is not surprising that the cell possesses precise 

regulatory mechanisms targeting Cdc25A for destruction to arrest the cell cycle and maintain 

genomic integrity. 

 

1.4.4. CDC25A IS A COMPONENT OF MULTIPLE SIGNALING PATHWAYS  

 In addition to its critical role in regulating cell cycle progression by dephosphorylating 

the Cdks, Cdc25A has been implicated in several signaling pathways that mediate cell growth 

and cell survival (Figure 1.8).  Growth factor stimulation of cells initiates signal transduction 

cascades that culminate in activation of the cell cycle machinery.  This signaling paradigm relies 

on a functional connection between mitogenic signal transduction pathways and cell cycle 

proteins.  Such a connection exists between the MAPK signaling cascade and Cdc25A (Figure 

1.8).  Cdc25A interacts with Raf1, a mitogen-activated protein kinase kinase kinase that 

transmits signals from growth factor receptors to effector MAPKs, such as extracellular 

regulated kinase (Erk).  Raf1 co-precipitated with Cdc25A and co-localized with Cdc25A at the 

cellular level in immunofluorescence microscopy studies, and Raf1 was shown to phosphorylate 

Cdc25A, leading to increased Cdc25A catalytic activity (98).  This provided a clear link between 

mitogenic stimulation and the cell cycle, as Raf1 is activated in response to mitogenic 

stimulation and Cdc25A promotes cell cycle progression.  This functional relationship, however, 

appears to exist in an equilibrium, as Cdc25A also dephosphorylated Raf1 at phosphotyrosine 

residues, downregulating Raf1 kinase activity and attenuating mitogenic signaling through the 

MAPK signaling pathway (48).  This functional interaction provides the cell with a mechanism 

for terminating mitogenic signaling once the threshold for activating cell cycle progression has 

been crossed; while transient mitogenic stimuli are clearly necessary to promote cell growth, 
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Figure 1.8: Cdc25A Regulates Multiple Signaling Pathways. 

 Cdc25A plays an important role in multiple signal transduction pathways.  Cdc25A 

downregulates mitogenic signaling by dephosphorylating Raf1 and the EGFR, promotes cell 

cycle progression by activating multiple Cdk complexes, upregulates hormone-responsive gene 

expression by acting as a cofactor for steroid hormone receptors, and downregulates apoptotic 

stimuli by blocking Ask1 dimerization, which is required for Ask1 activation. 
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prolonged mitogenic stimulation can have deleterious effects on cells (101-104).  Cdc25A can 

also serve as an epidermal growth factor receptor (EGFR) phosphatase.  By dephosphorylating 

and inactivating the EGFR, Cdc25A further contributes to the regulatory feedback mechanism 

that downregulates mitogenic signaling following initiation of the cell cycle (Figure 1.8) (45).  

The redundant nature of feedback regulation between the cell cycle and mitogenesis emphasizes 

the importance of maintaining these two processes in balance.  Moreover, Cdc25A is a 

component of cytokine-mediated mitogenic signaling pathways that involve Pim1.  Pim1 is an 

oncogenic serine/threonine protein kinase whose expression is rapidly upregulated following 

cytokine stimulation and is required for cytokine-mediated cell proliferation (105).   Cdc25A lies 

downstream of Pim1, and phosphorylation of Cdc25A by Pim1 results in increased Cdc25A 

phosphatase activity (99).  Furthermore, proliferation in response to cytokines is impaired in 

pim1-deficient cells, implying that activation of Cdc25A by Pim1 is necessary for cytokine-

mediated initiation of cell proliferation (106, 107).  Therefore, Cdc25A activation is a 

culminating point for mitogenic signaling pathways that result in initiation of cell cycle 

progression. 

 Cell proliferation depends on timely and faithful gene expression in response to 

environmental stimuli.  In addition to growth factor-mediated gene expression, cell proliferation 

can be promoted in response to steroid hormone stimulation.  Steroid hormone stimulation 

results in sequence specific binding of steroid hormone receptors to palindromic response 

elements, recruitment of coactivators and transcription factors, and transcription of steroid 

hormone-responsive genes (108, 109).  Cdc25A can function as a steroid receptor coactivator in 

a hormone-dependent manner, leading to increased expression of steroid hormone-responsive 

genes (Figure 1.8); Cdc25A can also enhance hormone-independent steroid receptor 



 24

transactivation, albeit modestly, presumably as a result of enhancing ligand-independent steroid 

receptor activation (110).  Cdc25A is believed to affect steroid receptor activity by a mechanism 

similar to that of Cdc25B, which promotes steroid receptor transactivation through protein-

protein interactions independent of Cdc25 phosphatase activity (110).  By enhancing expression 

of proliferation-promoting genes through its ability to function as a steroid receptor coactivator, 

in addition to is ability to mediate activation of the cell cycle following mitogenic stimulation, 

Cdc25A bridges growth-inducing stimuli to the cell cycle. 

 Cdc25A also participates in the cellular response to stress.  Cells have complex signaling 

mechanisms that trigger apoptosis in response to DNA damage, environmental stresses and 

changes in reduction-oxidation (redox) potential, which involve signaling cascades culminating 

in stress-responsive gene activation (111, 112).  Apoptosis signal-regulating kinase 1 (Ask1) is 

an upstream kinase in the signal transduction cascade activated by multiple stress-induced 

signals that culminates in activation of the stress-responsive MAPKs, p38 and SAPK/JNK, 

resulting in execution of cellular apoptosis (113, 114).  Critical to the activation of Ask1 is its 

ability to homo-oligomerize; inhibition of Ask1 homo-oligomerization is a mechanism by which 

cells avoid unscheduled apoptotic signaling (115-119).  Cdc25A promotes cell survival by 

inhibiting Ask1 activity and activation of signaling pathways downstream of Ask1 that culminate 

in initiation of the apoptotic program (Figure 1.8) (120).  Interestingly, Cdc25A-mediated 

inhibition of Ask1 is independent of its phosphatase activity; the carboxy terminal domain of 

Cdc25A, whether proficient or deficient in phosphatase activity, as a result of mutation of the 

catalytic cysteine, interacted with the carboxy terminal domain of Ask1 and prevents Ask1 

homo-oligomerization (120).  Furthermore, this interaction in cells suppressed apoptosis 

following oxidative stress, validating this role for Cdc25A in cell survival (120).  Therefore, 
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Cdc25A not only plays a critical role in promoting cell cycle progression but also provides a link 

between external growth stimuli and cell cycle activation and contributes to cell survival.  The 

multitude of biological processes involving Cdc25A require that it is precisely regulated and 

suggest that loss of this regulation can result in aberrant cell cycle progression in the absence of 

external stimuli and inappropriate cell survival, hallmarks of malignant transformation. 

 

1.4.5. ROLE IN MALIGNANCY 
 

 Deregulation of cell cycle control is an essential alteration to cell biology typical of 

malignant transformation (2).  Accelerated cell cycle progression in tumor cells can be promoted 

through multiple mechanisms, including loss of tumor suppressor genes, such as the 

Retinoblastoma gene (Rb) and p53, whose physiological function is to regulate cell cycle 

progression, or through amplification or gain-of-function mutations of proto-oncogenes, whose 

normal physiological role is to promote and relay growth signals from the cell surface to the 

nucleus.  It is therefore not surprising that deregulated expression of Cdc25A can promote 

malignant transformation.  Indeed, Cdc25A has been reported to have oncogenic properties, 

transforming normal mouse embryonic fibroblasts in cooperation with an activated isoform of 

Ras (Ha-RasG12V) or in an Rb−/− background (121).  Overexpression of Cdc25A has been 

documented in numerous human cancers, including breast cancer, colorectal carcinoma, 

esophageal squamous cell carcinoma, gastric carcinoma, hepatocellular carcinoma, ovarian 

cancer, squamous cell carcinoma of the head and neck, non-small cell lung cancer, non-

Hodgkin’s lymphoma and thyroid neoplasms (121-136).  Cdc25A overexpression in tumors is 

most likely due to the deregulation of multiple processes, as increased Cdc25A expression has 

been documented in human cancers at both the mRNA and protein levels; the chromosomal 
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location of Cdc25A maps near an area frequently involved in karyotypic abnormalities in renal 

carcinomas, small cell lung carcinomas and benign salivary gland tumors (65, 137).  

Furthermore, Cdc25A overexpression has been associated with a poor prognosis and decreased 

survival in multiple tumor types. 

Several hypotheses exist to explain the oncogenic potential of Cdc25A, based on its 

regulatory roles in the cell cycle and its involvement in multiple cellular processes.  The 

proliferation of normal human cells is constrained by a phenomenon known as senescence, 

which limits the number of population doublings to a finite number (138).  This constraint to 

replicative potential may serve as a tumor suppression mechanism; immortal cells that are 

immune to senescent arrest have an increased potential to accumulate genetic errors and progress 

to the malignant stage (139).  Senescent human mammary epithelial cells are arrested in G1, in 

part due to downregulation of Cdc25A, which contributes to Cdk2/cyclin E inhibition (66, 140).  

Overexpression of Cdc25A in senescent mammary epithelial cells might enable escape from 

senescent arrest to an inappropriate proliferative state, contributing to malignant progression.  

This hypothesis is supported by the observation that elimination of Cdc25A expression by 

antisense oligonucleotides resulted in decreased Cdk2 activity and inhibition of S-phase 

progression in MCF-7 breast cancer cells (124).  Cdc25A may also exert its oncogenic potential 

by affecting the MAPK signaling cascade (Figure 1.8) (45, 48, 98, 104).  Cdc25A activation by 

Raf1 promotes cell cycle activation and Cdc25A quenches mitogenic signaling by 

dephosphorylating and inactivating Raf1 and EGFR. (45, 48, 97, 98).  This may, in fact, serve as 

a common mechanism for multiple mitogenic signaling pathways that culminate in initiation of 

the cell cycle.  Since constitutive activation of the MAPK cascade has been reported to have 

cytostatic and cytotoxic effects, overexpression of Cdc25A to downregulate MAPK activity may 
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be functionally significant in cells transformed by upstream components of the MAPK signal 

transduction cascade, enabling them to escape the lethal consequences of constitutive MAPK 

signaling (101-104).  Therefore, deregulated Cdc25A expression accelerates cell cycle 

progression, contributing to malignant transformation, but may also protect transformed cells 

from the toxic effects of constitutive mitogenic stimulation by downregulation of MAPK 

signaling. 

 Cdc25A may also contribute to oncogenic transformation by decreasing cellular 

responsiveness to genotoxic stress via downregulation of the pro-apoptotic signaling kinase 

Ask1.  Cdc25A inhibits Ask1 activation by a non-catalytic, protein-protein interaction 

mechanism that prevents Ask1 dimerization, a necessary event for Ask1 activation (Figure 1.8) 

(120).  Therefore, tumor cells overexpressing Cdc25A may become refractory to apoptotic 

stimuli as a result of Cdc25A/Ask1 hetero-dimer formation competing with the formation of 

Ask1/Ask1 homo-dimers, leading to loss of Ask1 apoptotic signaling and the acquisition of a 

selective growth advantage (120).  Overexpression of Cdc25A can also provide a growth 

advantage through resistance to cell cycle checkpoints, enabling cell cycle progression in the 

presence of compromised genetic material that would otherwise result in cell cycle arrest.  

Because Cdc25A is a central target of cell cycle checkpoints enacted in response to genetic 

insults (Figure 1.7), cells overexpressing Cdc25A will circumvent anti-growth signals in 

response to DNA damage, proceed with genomic replication under compromised conditions, and 

progress through the cell cycle with damaged or altered DNA.  In fact, in cells engineered for 

inducible Cdc25A expression, overexpression of Cdc25A to levels that saturated the cellular 

capacity for proteolytic Cdc25A degradation resulted in loss of cell cycle checkpoint capacities 

(84, 87).  These results support the hypothesis that cells overexpressing Cdc25A are more prone 



 28

to propagating genetic abnormalities and acquiring a growth advantage (84, 87).  Because of its 

oncogenic potential and the multiple pathways by which Cdc25A can contribute to the malignant 

phenotype, cells possess multiple regulatory mechanisms to control homeostatic Cdc25A 

expression. 

 

1.4.6. BIOCHEMICAL REGULATION OF CDC25A 

Under normal physiological conditions, Cdc25A expression is subject to tight regulation 

at both the transcriptional and post-translational levels.  Transcription of Cdc25A mRNA is 

regulated by E2F and c-Myc transcription factors and seems to be cell cycle dependent, with 

Cdc25A mRNA expression peaking in late G1 and S phase, consistent with its role in promoting 

the G1/S transition (22, 66, 141-144).  Cdc25A mRNA expression can also be transactivated by 

the high-risk human papillomavirus (HPV) E7 oncoprotein (87, 144, 145).  Furthermore, 

Cdc25A mRNA expression is downregulated by an E2F4/p130/histone deacetylase 1 (HDAC1)-

dependent mechanism in response to transforming growth factor-beta (TGF-β), which 

contributes to inhibition of Cdk activity and cell cycle arrest (146, 147).  In addition to 

transcriptionally-mediated regulatory mechanisms, Cdc25A protein levels are tightly controlled 

by post-translational phosphorylation, predominantly in the amino terminus (discussed in detail 

in Chapter 5; see Table 5.1 and Figure 5.1).  The reported phosphorylation sites predominantly 

target Cdc25A for ubiquitin-mediated proteolysis through a complex and poorly understood 

mechanism.  While Cdc25A is phosphorylated by Chk1, Chk2 and p38 MAPK in response to 

cell cycle checkpoints to target it for destruction by the proteasome, it is now known that rapid 

proteolytic Cdc25A degradation is not restricted to the cell cycle checkpoint responses (67, 68, 

84-87).  In fact, ubiquitin-mediated Cdc25A proteolysis appears to be the predominant 
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mechanism for maintaining physiologic Cdc25A protein levels, and Cdc25A is a highly labile 

protein throughout interphase (70).  Only as cells approach and enter mitosis does Cdc25A 

stability increase, as Cdc25A is rate-limiting for the G2/M transition and mitotic progression; 

mitotic stabilization of Cdc25A has been attributed to phosphorylation by Cdk1/cyclin B, which 

seems to uncouple Cdc25A from its ubiquitin-proteasome degradation pathway (68).  Cdc25A 

catalytic activity can also be modified by phosphorylation; while these phosphorylation sites are 

presumed to be in the amino terminal regulatory domain, they have not yet been identified.  

Cdc25A activity is upregulated following phosphorylation by Cdk2/cyclin E, Raf1 and Pim1 

kinases (see section 1.4.4.) (66, 98, 99).  These phosphorylation events enable the cell to control 

Cdc25A activity and promote cell cycle progression in response to appropriate mitogenic stimuli.  

The phosphorylation status of Cdc25A has also been reported to affect its association with 14-3-

3 proteins.  While 14-3-3 association with Cdc25B and Cdc25C enforces cytoplasmic 

sequestration in cell cycle checkpoints (Figure 1.6), 14-3-3 association with Cdc25A has not 

been reported to affect Cdc25A subcellular localization but to prevent Cdc25A association with 

cyclin B.  Phosphorylation of Cdc25A by Chk1 promotes 14-3-3 binding to prevent premature 

activation of Cdk1/cyclin B and inappropriate mitotic division, thus preserving genomic integrity 

(69).  14-3-3 has also been hypothesized to facilitate Cdc25A interactions with Raf1, though the 

details of this interaction are unknown; formation of a Cdc25A/14-3-3/Raf1 complex may be 

important for facilitating Cdc25A activation by Raf1 to translate mitogenic signals to the cell 

cycle machinery (48, 97).  Cdc25A activity can also be negatively regulated by p21.  Cdc25A 

has a cyclin binding motif in its amino terminus that favors cyclin E and cyclin A binding; this 

motif is similar to the cyclin binding motif of p21.  p21 inhibits Cdc25A activity by competing 

for a common binding site in the cyclin subunit of Cdk2/cyclin E or Cdk2/cyclin A, thus 
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preventing Cdc25A from dephosphorylating and activating Cdk2 (148).  Because of its roles in 

multiple signaling pathways and the deleterious consequences of its deregulated expression, 

Cdc25A is subject to precise regulatory mechanisms to ensure the faithful execution of normal 

cell processes. 

 

1.5. STATEMENT OF PROBLEM AND HYPOTHESIS 

While Cdc25A is rapidly degraded by cell cycle checkpoints following genotoxic stress, 

Cdc25A is also a highly labile protein throughout interphase (70).  Overexpression of Cdc25A 

has been documented in multiple human cancers.  Deregulated expression of Cdc25A in 

malignant tumors could be attributed to a failure to downregulate Cdc25A in response to 

genotoxic stress, as several components of the cell cycle checkpoints targeting Cdc25A can be 

lost in tumors (149-151).  Deregulated Cdc25A expression in tumors could also be attributed to 

loss of the normal regulatory mechanisms that maintain physiological Cdc25A protein levels.   

The following studies were undertaken to explore the mechanisms regulating physiologic 

Cdc25A protein levels in the absence of genetic insults; while Cdc25A has a short half-life in 

interphase in the absence of genotoxic stress, the mechanisms controlling its proteolysis under 

these conditions remain poorly understood.  Cdc25B protein levels are downregulated by a 

mechanism involving one of its proximal downstream effectors, Cdk1/cyclin A (61), and 

regulatory feedback loops involving proximal downstream effectors are a common mode of 

regulation for the Cdc25 DSPases (28, 61, 62, 66, 152, 153).  Therefore, the hypothesis 

underlying the objective of these studies is that a candidate for interphase regulation of Cdc25A 

protein levels in the absence of genetic insults is a proximal downstream effector of Cdc25A, 

namely, a cyclin-dependent kinase. 
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2. EXPERIMENTAL METHODS 

 

2.1.  MATERIALS 

Roscovitine (2-(R)-(1-ethyl-2-hydroxyethylamino)-6-benzylamino-9-isopropylpurine), 

olomucine (2-(2-hydroxyethylamino)-6-benzylamino-9-methylpurine) and cycloheximide were 

purchased from Calbiochem (La Jolla, California) (see Appendix A).  Plasmids expressing 

dominant-negative (DN) mutants of Cdk1, Cdk2 and Cdk3 were generously provided by Dr. 

Sander van den Heuvel (154) and obtained from Dr. Richard Steinman (University of 

Pittsburgh).  These mutants were generated by point mutation of Asp to Asn in the amino acid 

sequence KLADFGLAR (Asp146 for Cdk1, Asp145 for Cdk2, and Asp145 in Cdk3).  This Asp 

residue plays an essential role in the phosphotransfer reaction by chelating Mg2+ and orienting 

the Mg2+ATP phosphates in the catalytic site of the kinase (154).  Plasmids encoding wild-type 

Cdc25A and the catalytically inactive C430S mutant of Cdc25A in pcDNA3 were provided by 

Dr. Thomas M. Roberts (Harvard Medical School) (48).  A plasmid encoding GST-Cdc25C 

(200-256) in pGEX-2T was generously provided by Dr. Yves Pommier (National Cancer 

Institute) (155).  E. coli strain BL21(DE3) was from Novagen (Madison, WI).  Lipofectamine 

PLUS was from Invitrogen (Carlsbad, CA).  Primary antibodies specific for Cdc25A (F6), 

Cdc2 p34 (17), Cdk2 (M2), Cdk3 (Y-20), p21 (C-19), p27 (C-19) Chk1 (G4), cyclin B1 (H-433), 

cyclin D1 (A-12) and vinculin (H-300) were from Santa Cruz (Santa Cruz, CA); Cdc25B and β-

catenin antibodies were from BD Transduction Labs (Lexington, KY); p38 MAPK, phospho-p38 

MAPK (Thr180/Thr182), Chk1 and phospho-Cdc25C (S216) antibodies were from Cell 
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Signaling Technology (Beverly, MA); β-tubulin antibodies were from Cedarlane Laboratories 

(Hornby, Ontario); and p21 WAF1 antibodies were from Oncogene Research Products (San 

Diego, CA).  Antibody species and dilutions are provided in Appendix B.  Peroxidase-

conjugated goat-anti-mouse and goat-anti-rabbit secondary antibodies were from Jackson 

ImmunoResearch Laboratories (West Grove, PA).  Protein A/G-PLUS agarose conjugates and 

normal mouse IgG were from Santa Cruz.  Digoxigenin (DIG)-labeled RNA Molecular Weight 

Marker I, anti-DIG-AP Fab fragments, CDP-Star ultra-sensitive chemiluminescent substrate for 

AP, and RNAse A were from Roche Applied Science (Indianapolis, IN).  Isopropylβ-D-1-

thiogalactopyranoside (IPTG), glutathione and propidium iodide were purchased from Sigma (St. 

Louis, MO).  10x Kinase Assay Buffer and 10 mM ATP were from Cell Signaling Technology 

(Beverly, MA).  Glutathione-sepharose 4B was from Amersham Pharmacia Biotech (Piscataway, 

NJ). 

 

2.2. CELL CULTURE 

HeLa human cervical carcinoma cells, MCF-7 human mammary adenocarcinoma cells, 

and NIH 3T3 murine embryonic fibroblasts  (American Tissue Culture Collection, Manassas, 

VA) were maintained in Dulbecco’s Minimum Essential Medium (DMEM) supplemented with 

10% fetal bovine serum (FBS, HyClone, Logan, UT) and 1% penicillin-streptomycin 

(Gibco/Invitrogen, Carlsbad, CA) in a humidified atmosphere of 5% CO2 at 37°C.  Wild type, 

p53−/− and p21−/− HCT-116 human colorectal carcinoma cells, generously provided by Dr. Bert 

Vogelstein (Johns Hopkins University) and obtained from Dr. Lin Zhang (University of 

Pittsburgh), were maintained in McCoy’s 5A with L-glutamine supplemented with 10% fetal 
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bovine serum (FBS, HyClone, Logan, UT) and 1% penicillin-streptomycin (Gibco/Invitrogen, 

Carlsbad, CA) in a humidified atmosphere of 5% CO2 at 37°C. 

 

2.3. TRANSIENT TRANSFECTION OF HUMAN TUMOR CELLS 

HeLa, HCT-116, and NIH 3T3 cells were transfected at 50-60% confluence using 

Lipofectamine PLUS according to the manufacturer’s instructions.  Maximum transfection 

efficiency was achieved in the presence of serum for HeLa and NIH 3T3 cells and in serum-free 

conditions for HCT-116 cells.  Unless otherwise indicated, cells were processed for experiments 

48 hr following removal of DNA:lipid complexes and addition of complete medium. 

 

2.4. WESTERN BLOTTING 

Cells were harvested and lysed in a HEPES lysis buffer (30 mM HEPES, 1% Triton X-

100, 10% glycerol, 5 mM MgCl2, 25 mM NaF, 1 mM EGTA, pH 8.0, 10 mM NaCl, 2 mM 

Na3VO4, 10 µg/ml soybean trypsin inhibitor, 10 µg/ml leupeptin, 10 µg/ml aprotinin, 100 µg/ml 

4-(2-aminoethyl)benzenesulfonylfluoride, and 6.4 mg/ml Sigma 104 phosphatase substrate), 

incubated on ice for 30 min, and centrifuged at 13,000 x g to clear the lysates.  Protein content 

was determined by the Bradford method.  Total cell lysates (20 to 50 µg protein) were resolved 

by SDS-PAGE and transferred to nitrocellulose membranes (Schleicher & Schuell, Keene, NH).  

Membranes were incubated in blocking solution for at least 1 hr and then probed with primary 

antibodies overnight.  Positive antibody reactions were visualized using peroxidase-conjugated 

secondary antibodies and an enhanced chemiluminescence detection system (Renaissance, NEN, 

Boston, MA).  To reprobe membranes with different primary antibodies, a conventional 
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membrane stripping protocol was followed.  Membranes were incubated in stripping buffer (62.5 

mM Tris-HCl pH 6.8, 2% SDS and 100 mM 2-mercaptoethanol) for 30 min at 50ºC, washed 

multiple times, re-incubated in blocking solution and probed with a different primary as 

described above.  For experiments involving quantitation of protein expression levels, X-ray 

films were scanned on a Molecular Dynamics personal SI densitometer and analyzed using the 

ImageQuant software package (Version 4.1, Molecular Dynamics, Sunnyvale, CA). 

 

2.5. RNA ISOLATION, NORTHERN BLOTTING AND RT-PCR 

Total RNA was isolated from cells using the RNeasy Kit (Qiagen, Valencia, CA) 

according to the manufacturer’s instructions.  RNA concentrations were determined 

spectrophotometrically using a DU640 Spectrophotometer (Beckman Instruments, Fullerton, 

CA). 

Northern blotting was performed using NorthernMax™ system (Ambion, Austin, TX) 

according to the manufacturer’s instructions.  Briefly, 5 µg total RNA was separated on 1% 

denaturing agarose gel containing 2.2 M formaldehyde, transferred to Nytran SuPerCharge 

membrane (Schleicher & Schuell BioScience, Keene, NH), UV crosslinked and processed for 

detection of mRNA.  A 711 base, DIG-labeled, single strand anti-sense DNA probe was 

generated by asymmetric PCR amplification using the PCR DIG Probe Synthesis Kit (Roche 

Applied Science, Indianapolis, IN) according to the manufacturer’s instructions.  Briefly, the 

template for probe synthesis was a 711 bp PCR product at the 3’ end of human Cdc25A cDNA; 

this template was generated by conventional PCR methodology using the following primers: 

5’−AAGAGGAGGAAGAGCATGTC−3’ (Primer A) 

5’−TCAGAGCTTCTTCAGACGAC−3’ (Primer B) 
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The DIG-labeled probe was generated by asymmetric PCR from this template using primer B.  

β-actin mRNA was detected with a DIG-labeled β-actin RNA probe (Roche Applied Science, 

Indianapolis, IN).  Overnight hybridization of probes to the immobilized RNA was carried out in 

ULTRAhyb™ Ultrasensitive Hybridization Buffer (Ambion, Austin, TX) and the membrane was 

processed for detection of the hybridized probes using the DIG Wash and Block Buffer Set 

(Roche Applied Science, Indianapolis, IN) according to the manufacturer’s instructions.  

Hybridized probes were detected using anti-DIG-AP Fab fragments; the hybridized probe/anti-

DIG-AP complex was visualized on X-ray film (Kodak, Rochester, NY) after incubation of the 

membrane with CDP Star.  Relative intensities of the hybridization signals were quantified as 

described above for western blotting (see section Experimental Methods 2.4). 

RT-PCR analysis of gene expression was performed using the Advantage RT-for-PCR 

Kit according to the manufacturer’s instructions (Clontech Laboratories, Palo Alto, CA).  cDNA 

synthesis was performed using 1 µg total RNA and random hexamer primers.  The resulting 

cDNA was used to amplify Cdc25A and Glyceraldehyde-3-Phosphate Dehydrogenase (G3PDH) 

with the following primers: 

 Cdc25A (126): 

  5’-GAGGAGTCTCCACCTGGAAGTACA-3’ (forward) 

  5’-GCCATTCAAAACAGATGCCATAA-3’ (reverse) 

 G3PDH: 

5'-TGAAGGTCGGAGTCAACGGATTTGGT-3' (forward) 

5'-CATGTGGGCCATGAGGTCCACCAC-3' (reverse) 

The PCR conditions for amplification consisted of 30 cycles of denaturing at 95°C for 30 sec, 

annealing at 56°C (Cdc25A) or 60°C (G3PDH) for 30 sec, and extension at 72°C for 1 min, 
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followed by a final incubation at 72°C for 10 min.  PCR reaction conditions were in the linear 

range of amplification as determined using a standard curve.  Amplified PCR products were 

resolved using 2% agarose gel electrophoresis and visualized with ethidium bromide staining. 

 

2.6. FLOW CYTOMETRY 

HeLa cells were transfected with the DN Cdk2 mutant or an empty pcDNA3.1 vector as 

described in Experimental Methods 2.3.  Cells were harvested by trypsin treatment, washed with 

ice cold phosphate-buffered saline (PBS) and fixed in ice-cold 70% ethanol overnight at –20oC.  

The following day, fixed cells were washed twice in PBS and stained with 250 µg/ml RNAse A 

and 50 µg/ml propidium iodide for 1 hr at room temperature.  Flow cytometry analysis of DNA 

content in 20,000 cells per sample was conducted with a Becton Dickinson FACSCalibur (BD 

Pharmingen, San Diego, CA). 

 

2.7. GENERATION OF RECOMBINANT GST-CDC25C (200-256) 

GST-Cdc25C (200-256) in pGEX-2T was transformed into E. coli strain BL21(DE3) 

according to the manufacturer’s instructions.  Protein induction was achieved using IPTG and 

GST-Cdc25C (200-256) was purified using glutathione-sepharose 4B beads as described in 

Appendix C. 

 

2.8. CHK1 KINASE ASSAY 

HeLa cells or HCT-116 cells were transfected with dominant-negative Cdk2 mutant or an 

empty vector as described in Experimental Methods 2.3.  Cells were harvested in lysis buffer 
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supplemented with 2 mM DTT and protein content determined as described in Experimental 

Methods 2.4.  500 µg whole cell lysates were precleared for 30 min with normal mouse IgG and 

protein A/G-PLUS agarose beads at 4°C on an orbital rocker platform.  Chk1 was 

immunoprecipitated from precleared lysates using anti-Chk1 antibodies and protein A/G-PLUS 

agarose beads overnight at 4°C on an orbital rocker platform.  Chk1 immunoprecipitates were 

washed twice in PBS supplemented with protease and phosphatase inhibitors and twice in 1x 

Kinase Assay Buffer (25 mM Tris-HCl (pH 7.5), 5 mM beta-glycerophosphate, 2 mM 

dithiothreitol (DTT), 0.1 mM Na3VO4, 10 mM MgCl2) supplemented with protease inhibitors.  

Beads were then resuspended in 40 µl 1x Kinase Assay Buffer supplemented with 200 µM ATP 

and 2 µg GST-Cdc25C (200-256) and incubated at 30°C for 30 min.  Reactions were terminated 

by addition of 4x SDS sample buffer followed by boiling.  Samples were analyzed by 12% SDS-

PAGE and immunoblotted for phospho-Cdc25C (S216) as a measure of Chk1 kinase activity. 

 

2.9. DOMINANT-NEGATIVE CDK2 ADENOVIRUS 

A recombinant adenovirus expressing the dominant-negative Cdk2 mutant (Ad.DN 

Cdk2) under control of the CMV promoter was generously provided by Dr. Michael D. 

Schneider (Baylor College of Medicine) (156).  Amplification of the recombinant adenovirus to 

prepare high-titer stocks was performed by Jaculyn Duke (Department of Molecular Genetic & 

Biochemistry, University of Pittsburgh).  Briefly, high-titer adenoviral stocks were prepared 

using HEK 293 cells.  Adenoviruses were harvested from the media and from cell supernatants 

by freeze-thawing the cell pellet.  Adenoviruses were purified by multiple rounds of cesium 

chloride density gradient centrifugation and viral titer was determined by absorbance at 260 nm. 
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HCT-116 cells were infected with adenoviruses at indicated MOI for 1 hr at 37°C in a minimal 

volume of phosphate-buffered saline (PBS), pH 7.4.  Following the 1 hr incubation with virus, 

complete medium was added to the plates.  Infected cells were incubated at 37°C for 48 hr and 

harvested as described in Experimental Methods 2.4. 
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3. REGULATION OF CDC25A PROTEIN LEVELS IN HUMAN TUMOR CELLS 

 

3.1. INTRODUCTION 

By dephosphorylating and activating the Cdks, Cdc25A promotes the G1/S cell cycle 

transition and S phase progression, and plays a non-redundant role in the G2/M transition (22, 

66-68). 

 Cdc25A overexpression transformed normal mouse embryonic fibroblasts in cooperation 

with an activated isoform of Ras (Ha-RasG12V) or in an Rb−/− background (121) and Cdc25A 

overexpression has been documented in numerous human cancers (42); Cdc25A regulatory 

mechanisms are, therefore, of considerable interest.  Cdc25A mRNA expression is regulated in a 

cell cycle-dependent manner (22, 66, 141-144).  Cdc25A protein levels are tightly regulated by 

proteasome-mediated degradation pathways that may involve multiple ubiquitin ligases (67, 70, 

83, 84, 87).  While Cdc25A protein stability is negatively regulated in a cell cycle checkpoint-

dependent manner by poly-ubiquitination and subsequent proteasome-mediated degradation (67, 

87), Cdc25A is also rapidly turned over during interphase, but the mechanisms regulating 

Cdc25A protein stability in the absence of genetic insults remain unclear (67, 84, 87). 

Due to the highly labile nature of Cdc25A protein, candidates for interphase regulation of 

Cdc25A protein levels in the absence of genetic insults would be proximal downstream effectors.  

By analogy, the stability of Cdc25B is decreased following phosphorylation by one of its 

proximal downstream effectors, Cdk1/cyclin A (61). To test the hypothesis that Cdk activity 

contributes to Cdc25A instability in interphase, Cdc25A protein levels were measured in human 
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tumor cells following inhibition of Cdk activity using complementary pharmacologic and genetic 

approaches. 

 

3.2. RESULTS 

 

A common regulatory mechanism for the Cdc25 DSPases involves feedback loops that 

integrate the activity of proximal downstream effectors to regulate Cdc25 activity; for example, 

Cdc25B protein levels are downregulated by a mechanism involving Cdk1/cyclin A, a proximal 

downstream effector of Cdc25B activity (61, 62).  Phosphorylation of Cdc25B by Cdk1/cyclin A 

is a critical step in proteasome-mediated Cdc25B degradation, and Cdc25-Cdk feedback loops 

appear to be a common regulatory feature of cell cycle biology (28, 61, 62, 66, 152, 153).  A 

similar regulatory mechanism may therefore be responsible for controlling Cdc25A protein 

levels.  In support of this hypothesis are studies indicating higher expression levels of a 

catalytically inactive Cdc25A mutant (Cdc25A C430S) compared to the wild type Cdc25A 

protein (Figure 3.1).  This suggests that the catalytic activity of Cdc25A may contribute to its 

protein expression levels by affecting the activity of downstream targets and lends credence to 

the hypothesis that Cdk activity, as a downstream effector of Cdc25A activity, may function in a 

feedback loop contributing to regulation of Cdc25A protein levels. 

 

3.2.1. INHIBITION OF CDK ACTIVITY INCREASES CDC25A PROTEIN LEVELS 

To probe the role of Cdk activity in regulating Cdc25A protein levels, asynchronous 

HeLa human cervical carcinoma cells were treated with the Cdk inhibitor roscovitine.  



 41

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Cdc25A Catalytic Activity Contributes to Cdc25A Expression. 

Representative results from NIH 3T3 cells transfected with pcDNA3-Cdc25A wild type 

(WT) or pcDNA3-Cdc25A catalytically inactive C430S mutant (C/S).  Cells were harvested 24 

hr after transfection and Cdc25A and total p42/p44 Erk MAPK levels (loading control) were 

examined by western blot.  Catalytically inactive Cdc25A protein is expressed at higher levels 

than catalytically competent Cdc25A, supporting the hypothesis that a downstream target of 

Cdc25A contributes to the regulation of its expression. 

pcDNA3-Cdc25A 

– Cdc25A (shorter exposure) 

– p42/p44 Erk MAPK 

WT C/S

– Cdc25A 
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Roscovitine is a potent and selective Cdk inhibitor that inhibits Cdk1, Cdk2, Cdk3 and Cdk5 but 

does not significantly inhibit Cdk4 and Cdk6 (Appendix A).  Roscovitine (10 µM) treatment of 

HeLa cells resulted in a marked increase in Cdc25A protein levels at 24 hr (Figure 3.2).  In 

agreement with previously published results (61), roscovitine treatment resulted in an increase in 

Cdc25B levels (Figure 3.2), presumably due to inhibition of Cdk1/cyclin A-mediated targeting of 

Cdc25B for proteasome-mediated degradation.  Roscovitine treatment had no effect on Cdc25C 

protein levels (Figure 3.2), whose activity is predominantly regulated by cytoplasmic 

sequestration and inactivation (78, 81, 96).  Cdc25A protein levels in HeLa cells increased in a 

concentration- and time-dependent manner following treatment with roscovitine (Figures 3.3.A 

and 3.4), suggesting that this increase was due to the specificity of roscovitine as a Cdk inhibitor; 

similar results were obtained when HeLa cells were treated with olomucine, a structurally 

distinct Cdk inhibitor with a similar selectivity profile but with reduced potency (Figure 3.3.C).  

Because Cdc25A protein levels were elevated rapidly, namely within one hour of roscovitine 

treatment (Figure 3.4), it seems unlikely that the increased Cdc25A protein levels were due to 

cell cycle perturbation. 

 

3.2.2. CDK INHIBITION INCREASES CDC25A PROTEIN LEVELS INDEPENDENT OF 

p53 AND HPV STATUS 

Regulation of Cdc25A protein levels by DNA damage checkpoints is a p53-independent 

phenomenon (87).  Cdc25A expression is also affected by the high-risk human papillomavirus 

(HPV) E7 oncoprotein (87, 144, 145).  To test whether the increase in Cdc25A protein levels in 

HPV-positive HeLa cells following Cdk inhibition was dependent on p53 or HPV status, MCF-7 

human mammary adenocarcinoma cells, wild type for p53 and HPV-negative, were treated with 
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Figure 3.2: Roscovitine Treatment Increases Cdc25A Protein Levels. 

HeLa cells were treated for 24 hr with vehicle control (DMSO) or 10 µM roscovitine.  

Cdc25A, Cdc25B, Cdc25C and β-tubulin levels (loading control) were examined by western 

blot.  Inhibition of Cdk activity in HeLa cells resulted in increased Cdc25A and Cdc25B protein 

levels, while Cdc25C protein levels remain unchanged. 
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Figure 3.3: Cdk Inhibition Increases Cdc25A Protein Levels in a Concentration-Dependent 

Manner. 

HeLa cells (Panels A & C) and cells MCF-7 (Panel B) were treated for 24 hr with vehicle 

control (DMSO) or increasing concentrations of roscovitine (Panels A & B) or olomucine (Panel 

C).  Cdc25A and β-tubulin (loading control) levels were examined by western blot.  Cdc25A 

levels are expressed as fold increase over vehicle control ± S.E.M. (n = 3-5) (Panels A & B).  

Increasing concentrations of roscovitine significantly increased Cdc25A protein levels (ANOVA 

p < 0.05).  Olomucine, a structurally distinct Cdk inhibitor with a similar selectivity profile but 

reduced potency, also increased Cdc25A protein levels in a concentration-dependent manner in 

HeLa cells (Panel C). 
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Figure 3.4: Roscovitine Treatment Increases Cdc25A Levels in a Time-Dependent Manner. 

HeLa cells were treated with 10 µM roscovitine for 0 to 2 hr.  Cdc25A and β-tubulin 

(loading control) levels were examined by western blot (Panel A).  Cdc25A levels from 

roscovitine treated cells are expressed as fold increase over control (0 hr) ± S.E.M. (n = 5 to 7) 

(Panel B).  Cdc25A protein levels significantly increased with increasing length of roscovitine 

treatment (ANOVA p < 0.05). 
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increasing concentrations of roscovitine for 24 hr.  Similar to the results obtained in HeLa cells, 

Cdc25A protein levels in MCF-7 cells increased in a concentration-dependent manner following 

roscovitine treatment, indicating that increases in Cdc25A levels resulting from Cdk inhibition 

were independent of p53 activity or HPV status (Figure 3.3.B). 

 

3.2.3. CDC25A PROTEIN LEVELS ARE INCREASED BY INHIBITION OF CDK2 

KINASE ACTIVITY AND ARE NOT SECONDARY TO CELL CYCLE 

PERTUBATION 

Because roscovitine is a broad-spectrum Cdk inhibitor, the relative contribution of 

roscovitine-sensitive Cdks to the regulation of Cdc25A protein levels was examined.  HeLa cells 

were transfected with dominant-negative mutants of Cdk1, Cdk2 and Cdk3, as these are the 

predominant roscovitine-sensitive Cdks in HeLa cells.  These dominant negative Cdk mutants 

are believed to inhibit endogenous Cdk kinase activity by competing for essential interacting 

molecules, including cyclins, creating specific loss-of-function phenotypes (157).  The specific 

loss-of-function phenotype associated with a dominant-negative Cdk mutant could be 

complemented by overexpression of the corresponding wild type Cdk, revealing the specificity 

of Cdk inhibition (154).  Only genetic inhibition of Cdk2 kinase activity resulted in increased 

Cdc25A protein levels, whereas genetic inhibition of Cdk1 or Cdk3 had no effect on Cdc25A 

levels (Figure 3.5).  In addition, no significant alteration in the HeLa cell cycle profile was 

observed after transfection with the dominant-negative Cdk2 mutant (Figure 3.6), consistent with 

the recent reports that cancer cells can proliferate in the absence of Cdk2, that the Cdk2−/− mouse 

is fully viable with no developmental abnormalities, and that Cdk2−/− MEFs display no defects in 

mitotic cell cycle progression (158-160).  Thus, the increase in Cdc25A protein levels after 
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Figure 3.5: Dominant-Negative Cdk2 Mutant Expression Increases Cdc25A Levels in HeLa 

Cells. 

HeLa cells were transfected with pcDNA3.1 (empty vector control) or vectors encoding 

dominant-negative (DN) Cdk1, DN Cdk2, or DN Cdk3 mutants.  48 hr after transfection, 

Cdc25A, Cdk1, Cdk2, Cdk3 and β-tubulin (loading control) levels were examined by western 

blot (Panel A).  Cdc25A levels are expressed as fold increase over vector control ± S.E.M (n = 3) 

(Panel B).  DN Cdk2 expression significantly increases Cdc25A protein levels in HeLa cells 

(ANOVA p < 0.05). 
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Figure 3.6: Dominant-Negative Cdk2 Mutant Expression does not Alter Cell Cycle 

Progression in HeLa Cells. 

HeLa cells were transfected with either pcDNA3.1 (empty vector control) (Panel A) or 

DN Cdk2 mutant (Panel B).  48 hr after transfection, cells were fixed and stained with propidium 

iodide.  DNA content was analyzed by flow cytometry to monitor cell cycle progression.  

Genetic inhibition of Cdk2 kinase activity did not result in cell cycle perturbation. 
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ectopic expression of the dominant-negative Cdk2 mutant was not secondary to cell cycle arrest.  

These results indicate that Cdk2 kinase activity plays an important role in regulating Cdc25A 

protein levels in asynchronous cells. 

 

3.2.4. CDK2 INHIBITION INCREASES CDC25A PROTEIN HALF-LIFE 

Since Cdc25A expression can be regulated at both the transcriptional and post- 

translational levels, the mechanism by which inhibition of Cdk2 kinase activity increases 

Cdc25A levels was investigated.  In response to genetic insults or inhibition of DNA synthesis, 

Cdc25A is phosphorylated and targeted for rapid ubiquitin-mediated proteolytic degradation by 

the checkpoint kinases Chk1 and Chk2 (67, 84, 87).  Furthermore, Cdc25A is a labile protein 

throughout interphase independent of genotoxic stress (70).  Cdc25A expression can also be 

regulated at the transcriptional level by E2F and c-Myc transcription factors (142-144).  Because 

Cdc25A has a short half-life in interphase and an increase in the half-life of a labile protein 

would result in a significant accumulation of that protein, the protein half-life of Cdc25A in 

asynchronous cells was explored following inhibition of Cdk2 kinase activity.  Following a 24 hr 

treatment with roscovitine or DMSO (vehicle control), HeLa cells were treated with 10 µg/ml 

cycloheximide for 0 to 60 min and Cdc25A levels were examined by western blotting.  The basal 

half-life of Cdc25A was 6.26 ± 0.78 min, which is in agreement with previous reports (67, 70).  

Roscovitine-mediated inhibition of Cdk2 kinase activity doubled the half-life of Cdc25A (Figure 

3.7); this could readily account for the observed time-dependent increase in Cdc25A protein 

levels.  To confirm that the increased Cdc25A protein levels were not affected by a 

transcriptionally-mediated mechanism, Cdc25A mRNA levels were examined by northern 

blotting.  Roscovitine treatment of HeLa cells did not significantly increase Cdc25A mRNA 



 51

 

 

 

 

 

 

 

 

 

 

 

Roscovitine 

DMSO

Time (min)0 10 20 30 60
− Cdc25A

− vinculin

0 10 20 30 60 Time (min)
− Cdc25A

− vinculin

A.

B.

0 10 20 30 40 50 60
0

50

100 DMSO
Roscovitine

Time (min)

C
dc

25
A

 L
ev

el
s

(%
 C

on
tr

ol
 )

DMSO Roscovitine
0

5

10

15

C
dc

25
A

 H
al

f-L
ife

(m
in

)



 52

 

Figure 3.7: Inhibition of Cdk2 Activity Increases Cdc25A Half-Life in Asynchronous Cells. 

HeLa cells were treated for 24 hr with vehicle control (DMSO) or 10 µM roscovitine 

followed by 10 µg/ml cycloheximide (CHX) for 0-60 min.  Cdc25A and vinculin (loading 

control) levels were examined by western blot (Panel A).  Cdc25A levels are expressed as 

percent of control ± S.E.M (n = 3) (Panel B).  Roscovitine treatment significantly increased the 

half-life of Cdc25A (Student’s t-test p < 0.05). 
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levels (Figure 3.8.A, upper two panels and quantified in 3.8.B), confirming that Cdk2 kinase 

activity affects Cdc25A protein levels by a post-transcriptional mechanism.  These results were 

independently confirmed by RT-PCR (Figure 3.8.A, lower two panels). 

 

3.3. DISCUSSION 

Cdc25A biology is undergoing a paradigm shift, from a narrow role as the critical 

regulator of the G1/S checkpoint to a more broad responsibility in the cell cycle with an essential 

function in mitosis.  Specifically, it is now known that Cdc25A levels peak for the G2/M 

transition and mitotic progression and that degradation of Cdc25A is necessary for the G2/M 

checkpoint in response to DNA damage (67, 68).  The original models describing the modes of 

regulation for Cdc25A are now being refined to focus on protein stability as a key regulatory 

mechanism (67, 68, 70, 83, 84, 87).  The relationship between Cdc25A and Cdk2 was originally 

thought to be that of an auto-amplification feedback loop where Cdc25A contributed to the 

activation of Cdk2 and Cdk2 contributed to the activation of Cdc25A to sufficiently amplify the 

activities of both proteins to enable progression through the G1/S cell cycle transition (66).  The 

results presented herein indicate that Cdk2 kinase activity also contributes to the labile nature of 

Cdc25A in interphase, and this kinase activity may in fact be the same Cdk2 kinase activity 

originally reported to activate Cdc25A phosphatase activity.  These results contribute to the 

understanding of this Cdc25A-Cdk feedback loop and support a mathematical model that 

suggests hyperphosphorylation of Cdc25A by Cdk2 may contribute to its degradation (66, 161).  

By directly linking Cdc25A stability to the activity of its substrates, physiologic levels of 

Cdc25A can be maintained in a tight feedback loop to prevent catastrophic deregulation of 

Cdc25A protein levels or activity.  This relationship between increased activity and decreased 
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protein stability has been described for another protein phosphatase, PTEN, and may in fact 

serve as a common regulatory mechanism for many enzymes.  PTEN phosphorylation maintains 

the phosphatase in a stabilized state with decreased catalytic activity; upon loss of 

phosphorylation in the C-terminal PTEN tail, catalytic activity is increased and protein stability 

is decreased (162).  Although the results presented herein do not specifically detail the nature of 

the Cdk2/cyclin complex that contributes to the inherent instability of Cdc25A in interphase or 

the detailed molecular mechanism involved, there are several testable hypotheses.  Cdc25A was 

recently reported to associate with elements of the SCF ubiquitin ligases and may be a target of 

the APC/Ccdh1 and SCF ubiquitin ligases (70).  However, it remains uncertain how Cdc25A 

might be targeted to these ubiquitin ligases.  Other cell cycle regulatory proteins, notably p27 

and cyclin E, are targeted by the SCF ubiquitin ligase for proteolytic degradation by a 

phosphorylation-dependent mechanism, while conversely, phosphorylation may not be necessary 

for p21 and cyclin D degradation mediated by SCF ubiquitin ligases (163, 164).  It remains 

unclear whether phosphorylation of Cdc25A is a necessary event preceding ubiquitin ligase 

association, as Cdc25A phosphorylation can have both positive and negative effects on its 

ubiquitination and proteolytic degradation.  Cdc25A phosphorylation promotes its degradation in 

response to genetic insults while, on the other hand, Cdc25A is rescued from proteolytic 

degradation in mitosis by Cdk1/cyclin B-mediated phosphorylation (68).  The results presented 

herein support a role for Cdk2-mediated phosphorylation of either Cdc25A itself or a specific 

effector protein(s) necessary for the rapid degradation of Cdc25A.  While Chk1 and Chk2, given 

their role in phosphorylating Cdc25A and targeting it for degradation in response to genotoxic 

stress, cannot be ruled out as possible downstream effectors of the Cdk2 kinase activity 

responsible for Cdc25A degradation, their role may be unique to proteasomal targeting of 
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Cdc25A following cellular stress and may not play a role in regulating Cdc25A levels in the 

absence of cellular stress.  This would conform to the regulatory model for Cdc25C; Cdc25C is 

inactivated in the G2/M checkpoint by Chk1- and Chk2-dependent phosphorylation, 14-3-3 

association and cytoplasmic sequestration (78-81, 93, 165, 166).  Cdc25C, however, is 

maintained inactive and sequestered in the cytoplasm by 14-3-3 association during interphase in 

the absence of cellular stress as a result of phosphorylation by Cdc twenty-five C associated 

protein kinase (C-TAK1), a non-checkpoint kinase (167). 

 The results presented herein, together with the above mentioned studies, support the 

following model for DNA-damage-independent regulation of Cdc25A: Cdc25A levels are 

upregulated by transcription in G1 to a level that enables sufficient Cdk2/cyclin E activation to 

promote the G1/S transition.  Cdc25A protein levels are then carefully maintained via 

Cdk2/cyclin E and Cdk2/cyclin A kinase activity through S phase and into late G2 phase.  Only 

once Cdk1/cyclin B has been activated in advance of the G2/M transition are Cdc25A protein 

levels released from this strict regulatory loop, permitted to increase and reach their maximal 

levels, which are required to for catalyzing the G2/M transition and promoting mitotic 

progression (67, 68). 

 

3.1 CONCLUSIONS 

Inhibition of Cdk activity with small molecule Cdk inhibitors increases Cdc25A protein 

levels in a concentration- and time-dependent manner in human tumor cells.  Cdc25A protein 

levels are increased by specific inhibition of Cdk2, as demonstrated using a dominant-negative 

Cdk2 mutant, whereas Cdk1 and Cdk3 are not involved.  Cdk2 regulates Cdc25A protein levels 
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by a post-transcriptional mechanism; inhibition of Cdk2 kinase activity increases Cdc25A 

protein half-life but not Cdc25A mRNA levels. 
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4. MOLECULAR MECHANISM OF CDK2-MEDIATED REGULATION OF CDC25A 
PROTEIN HALF-LIFE 

 

4.1. INTRODUCTION 

Protein ubiquitination and proteasome-mediated degradation is an irreversible mechanism 

for regulating protein abundance (168).  Cdc25A degradation by the ubiquitin-proteasome 

pathway is a central component of the rapid G1/S, S and G2/M cell cycle checkpoint responses 

to genotoxic stresses (67, 68, 84, 87, 89, 90).  While Cdc25A was originally relegated to 

promoting the G1/S transition, it is now known that Cdc25A has dramatically increased stability 

in mitosis to catalyze Cdk1/cyclin B activation and mitotic progression, is rapidly degraded with 

kinetics similar to Cyclin B following mitotic exit and is, in fact, also a highly labile protein 

throughout interphase (22, 66, 68, 70).  Two ubiquitin ligase complexes have been reported to 

ubiquitinate Cdc25A and target it for proteasome-mediated degradation; the APC/C (Anaphase 

Promoting Complex or Cyclosome) ubiquitin ligase complex regulates Cdc25A degradation 

following mitotic exit and the SCF (Skp1/Cullin or Cul1/F-box) ubiquitin ligase complex 

regulates Cdc25A turnover throughout interphase (70). 

Protein ubiquitination is the result of a stepwise mechanism catalyzed by 3 protein 

complexes.  It involves the catalytic activation of ubiquitin by the E1 ubiquitin-activating 

enzyme (E1), the transfer of activated ubiquitin to the E2 ubiquitin-conjugating enzyme (E2), 

and the conjugation of activated ubiquitin to the target protein by the E3 ubiquitin ligase (E3), 

which is a complex of several regulatory and scaffolding proteins (169).  E3 ubiquitin ligases, 

which ultimately unite the target protein with the ubiquitin machinery, are responsible for target 
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specificity and are made up of two main classes, the HECT (Homologous to E6-AP C Terminus) 

ubiquitin ligases and the RING (Really Interesting New Gene) finger ubiquitin ligases, among 

which are the APC/C and the SCF ubiquitin ligases (169). 

The APC/C ubiquitin ligases control mitotic cell cycle regulatory proteins, such as cyclin 

B, while the SCF ubiquitin ligases have a broader role in interphase cell cycle regulation and 

catalyze the ubiquitination of p27, cyclin D, p21 and cyclin E (164, 169-172).  Substrate 

recognition by E3 ubiquitin ligases is facilitated by adaptor proteins, either Cdc20 or Cdh1 in the 

APC/C (173), or the F-box proteins in SCF, of which more than one hundred have been 

identified (174, 175).  Throughout mitosis and upon mitotic exit, Cdc25A protein levels appeared 

to parallel those of cyclin B, a known APC/C substrate, suggesting that Cdc25A degradation 

upon mitotic exit could be catalyzed by a mechanism similar to the one regulating cyclin B 

expression (70, 176).  In fact, overexpression of the APC/C adaptor protein Cdh1, but not Cdc20, 

decreased Cdc25A protein levels in transfected cells, confirming that Cdc25A, like cyclin B, 

could indeed be an APC/C substrate (70).  Cdc25A contains 3 APC/C targeting motifs, one of 

which is required in APC/C targets to ensure specificity of substrate recognition (169).  Cdc25A 

contains one putative D-box sequence, first identified in cyclin B as a destruction targeting motif, 

and two Cdc25A KEN-box motifs, identified by virtue of their role in targeting destruction of the 

APC/C adaptor Cdc20 (177, 178).  One of the two KEN-box motifs appeared to be conserved 

throughout all human Cdc25s and Cdc25s of other species, and mutation of this KEN-box motif 

blocked Cdc25A degradation by APC/CCdh1 following mitotic exit, confirming the role of 

APC/CCdh1 in Cdc25A turnover (70).  However, this KEN-box-mutated Cdc25A was still 

unstable in interphase, indicating that APC/CCdh1-independent ubiquitin ligases must be 

involved; the SCF E3 ubiquitin ligase is active in interphase and is responsible for regulating cell 
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cycle proteins, making it an attractive candidate.  Indeed, inhibition of SCF ubiquitin ligase 

activity using a dominant-negative mutant of Cul1, a bridging structural protein component of 

the SCF ubiquitin ligase complex, resulted in increased Cdc25A protein levels (70).  The same 

result was observed for p27, a known SCF substrate, confirming that expression of the dominant-

negative Cul1 mutant inhibited SCF ubiquitin ligase activity, whereas the APC/C substrate 

cyclin B was unaffected by expression of the dominant-negative Cul1 mutant (70, 179).  Cdc25A 

interacted with both Skp1 and Cul1, components of the SCF ubiquitin ligase complex, in cells, 

further substantiating Cdc25A as a SCF substrate (70).  The F-box protein responsible for SCF 

ligase-mediated ubiquitination of Cdc25A during interphase, however, remains a mystery.  

Specificity of F-box-mediated target recognition is often governed by phosphorylation of the 

target proteins (169). 

The destruction of Cdc25A following DNA damage is mediated by Chk1 and Chk2 

protein kinases, which phosphorylate Cdc25A at S123 to facilitate its ubiquitin-mediated 

proteolysis (84, 87).  While Chk1 and Chk2 activity was assumed to require activation by 

upstream DNA damage-activated kinases ATM (Ataxia-Telangiectasia-Mutated) and ATR 

(ATM- and Rad3-related), Chk1 possess basal kinase activity independent of DNA damage-

associated stimuli (180-182).   This led to the identification of Chk1 as a regulator of physiologic 

turnover of Cdc25A protein levels in the absence of DNA damage, in addition to its role in 

checkpoint-mediated Cdc25A degradation (183).  Proteolytic turnover of Cdc25A involves three 

novel Chk1 phosphorylation sites (Ser 178, 278, and 292), in addition to Ser 123, both under 

physiological conditions and in response to cell cycle checkpoints; however, the precise function 

and relative contribution of each of these phosphorylation sites to Cdc25A degradation is not 

clear (183).  Chk2, on the other hand, is DNA damage-dependent and does not appear to possess 
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significant basal kinase activity in the absence of upstream stimuli and, as such, is not involved 

in the physiological regulation of Cdc25A turnover (181-184). 

The presence of multiple phosphorylation sites in the amino terminus of Cdc25A that 

cooperate in facilitating its turnover suggests a more complex regulatory mechanism for Cdc25A 

proteolysis than first believed.  In fact, recent studies have identified another serine 

phosphorylation site, Ser 75, in the amino terminus of Cdc25A that contributes to its turnover in 

response to UV irradiation (85, 86).  Ser 75 was phosphorylated by Chk1 following UV 

exposure, targeting Cdc25A for proteolytic degradation as previously described in response to 

UV irradiation (85-87).  In addition, following osmotic shock, p38 MAPK was responsible for 

Ser 75 phosphorylation to promote Cdc25A degradation; whether p38 MAPK contributes to 

physiological Cdc25A turnover in the absence of osmotic stress, however, is not clear (85).  That 

a kinase other than Chk1 or Chk2 can facilitate stress-induced turnover of Cdc25A introduces the 

possibility that non-checkpoint serine/threonine kinases can participate in the regulation of 

Cdc25A turnover.  The individual contributions of each amino-terminal Cdc25A serine 

phosphorylation site and any novel, as of yet unidentified phosphorylation sites, remain to be 

elucidated; only once the individual roles of each phosphorylation site are understood will a 

cumulative model of the regulation of Cdc25A stability be feasible. 

Therefore, in an effort to understand the molecular mechanism(s) by which Cdk2 

contributes to the physiological turnover of Cdc25A, the effect of inhibiting Cdk2 kinase activity 

on the known mechanisms governing Cdc25A protein stability, namely SCF and APC/CCdh1 

ubiquitin ligase activities, Chk1 activity, and p38 activity, was examined. 
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4.2. RESULTS 

 

4.2.1. INHIBITION OF CDK2 KINASE ACTIVITY DOES NOT INHIBIT SCF OR APC/C 

UBIQUITIN LIGASE ACTIVITIES 

Based on the known association of Cdc25A with components of the SCF ubiquitin 

ligases in vivo (70), several substrates of SCF ubiquitin ligases were examined to determine 

whether inhibition of Cdk2 kinase activity by ectopic expression of the dominant-negative Cdk2 

mutant downregulated SCF ubiquitin ligase activities.  β-catenin, p27, and cyclin D (164, 179, 

185) protein levels were not increased in cells transfected with the dominant-negative Cdk2 

mutant, suggesting that the increased Cdc25A protein half-life due to Cdk2 inhibition was not 

due to downregulation of SCF ubiquitin ligase activities (Figure 4.1.A). While p27 has been 

identified as a Cdk2 substrate, with Cdk2-mediated p27 phosphorylation promoting p27 

degradation by the ubiquitin-proteasome pathway, p27 turnover can also be catalyzed by Erk 

MAPKs (186-188).  Furthermore, Erk MAPK-mediated p27 turnover was not impaired by Cdk2 

inhibition (186), which is consistent with our finding that p27 turnover does not appear to be 

significantly perturbed by the dominant-negative Cdk2 mutant.  Cdc25A has also been reported 

to be a substrate of the APC/C ubiquitin ligase complex during mitosis and in early G1 (70).  To 

determine whether inhibition of Cdk2 kinase activity downregulated the activity of the APC/C 

ubiquitin ligase, cyclin B levels were examined in cells transfected with the dominant-negative 

Cdk2 mutant; cyclin B is a known substrate of the APC/C ubiquitin ligase (176).  Cyclin B levels 

were not increased following inhibition of Cdk2 kinase activity, suggesting that the increase in 

Cdc25A protein half-life following Cdk2 inhibition was not due to perturbation of APC/C 

ubiquitin ligase activities (Figure 4.1.B). 
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While SCF and APC/C ubiquitin ligase activities appear to be unaltered by inhibition of 

Cdk2 kinase activity, p21 protein levels were increased following inhibition of Cdk2 kinase 

activity with the dominant-negative Cdk2 mutant in both HeLa cells (Figure 4.2.A) and in HCT-

116 colorectal carcinoma cells (Figure 4.2.B), which are p53 wild type.  Increased p21 protein 

levels following Cdk2 inhibition was not an artifact of p21 sequestration by ectopic expression of 

the dominant-negative Cdk2 mutant protein, as p21 levels were not increased by overexpression 

of other Cdk mutant proteins (Figure 4.3.A).  Moreover, p21 levels were increased following 

roscovitine-mediated inhibition of Cdk2 kinase activity, further supporting the hypothesis that 

p21 levels were specifically elevated as a consequence of inhibiting Cdk2 kinase activity (Figure 

4.3.B).  

 

4.2.2. p21 IS NOT INVOLVED IN CDK2-MEDIATED REGULATION OF CDC25A 

PROTEIN HALF-LIFE 

p21 protein levels can be regulated by p53-dependent and p53-independent 

transcriptional mechanisms and by post-transcriptional mechanisms, including phosphorylation 

by p38α MAPK, JNK1, and AKT/PKB and protein-protein interactions with PCNA, all of which 

enhance the half-life of p21 (189-192).  p21 has been reported to associate with Cul1, a 

component of the SCF ubiquitin ligase machinery and has recently been confirmed as a substrate 

of the SCF ubiquitin ligase coupled to a specific F-box protein, Skp2 (164, 193).  The 

relationship between p21 levels and Cdc25A is unclear, but p21 appears to have a negative effect 

on Cdc25A function.  p21 and Cdc25A compete for Cdk2/cyclin E and Cdk2/cyclin A binding, 

creating a dynamic equilibrium between active and inactive Cdk2/cyclin complexes (148).  In 

addition, Cdc25A levels were found to be elevated in p21−/− mouse embryonic fibroblasts (MEF) 
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due to increased Cdc25A mRNA levels; the mechanism by which targeted deletion of p21 

upregulates Cdc25A mRNA levels is unknown (194).  The unexpected increase in p21 protein 

levels following inhibition of Cdk2 kinase activity prompted an investigation into whether p21 

was involved in or necessary for Cdk2-dependent regulation of Cdc25A protein half-life.  To that  

end, wild type, p53−/−, or p21−/− isogenic HCT-116 cells were transfected with the dominant-

negative Cdk2 mutant and examined for effects on Cdc25A protein levels.  Inhibition of Cdk2 

kinase activity by overexpression of the dominant-negative Cdk2 mutant resulted in increased 

Cdc25A protein levels in both the wild type (Figure 4.4, left-most panel) and the p21−/− HCT-116 

(Figure 4.4, right-most panel) cells, indicating that p21 is not necessary for Cdk2-mediated 

regulation of Cdc25A protein half-life.  In addition, Cdc25A protein levels were increased in the 

p53−/− HCT-116 cells following overexpression of the dominant-negative Cdk2 mutant (Figure 

4.4, center panel), confirming previous results that Cdk2-mediated regulation of Cdc25A protein 

levels is a p53-independent event (Results 3.2.2) (87). 

 

4.2.3. CHK1 ACTIVITY IS NOT RESPONSIBLE FOR CDK2-MEDIATED 

REGULATION OF CDC25A PROTEIN HALF-LIFE 

Because Chk1 was recently identified as a physiological regulator of Cdc25A stability in 

the absence of genotoxic stress (183), Chk1 protein levels and Chk1 kinase activity were 

examined following inhibition of Cdk2 kinase activity in HeLa cells using the dominant-negative 

Cdk2 mutant.  Inhibition of Cdk2 kinase activity did not decrease Chk1 protein levels or Chk1 

kinase activity, as measured by in vitro phosphorylation of GST-Cdc25C (200-256), a surrogate 

Chk1 substrate (Figure 4.5.A), indicating that Cdk2 regulates Cdc25A protein half-life through a 

Chk1-independent pathway.  Similar results were obtained in HCT-116 cells (p53 wild type and  
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HPV-negative) transfected with the dominant-negative Cdk2 mutant (Figure 4.5.B).  These 

results confirm that Cdk2 regulates Cdc25A protein half-life in a Chk1-independent manner.  In 

addition, HCT-116 cells infected with an adenovirus expressing the dominant-negative Cdk2 

mutant resulted in a concentration-dependent effect of Cdk2 inhibition on Cdc25A protein levels  

that was independent of effects on Chk1 (Figure 4.5.C).  This confirms previous results showing 

a concentration-dependent effect of small molecule Cdk inhibitors (Figure 3.3.B) and of 

dominant-negative Cdk2 mutant expression on Cdc25A protein levels in transient transfections 

(Figure 3.5.B).  Taken together, these results suggest that Cdk2 does not lie upstream of Chk1 in 

a signaling cascade that maintains the physiological regulation of Cdc25A protein half-life. 

 

4.2.4. p38 MAPK IS NOT INVOLVED IN CDK2-MEDIATED REGULATION OF 

CDC25A PROTEIN HALF-LIFE 

 p38 MAPK activity has been reported to regulate Cdc25A protein stability following 

osmotic stress; p38 MAPK phosphorylated Cdc25A at Ser 75, promoting Cdc25A degradation 

(85).  However, a role for p38 MAPK activity in regulating Cdc25A protein levels in the absence 

of osmotic stress has not been thoroughly investigated.  It was therefore hypothesized that Cdk2 

could regulate Cdc25A protein half-life by affecting p38 MAPK activity.  To determine whether 

p38 MAPK activity was downregulated by Cdk2 inhibition, HCT-116 cells were transfected with 

the dominant-negative Cdk2 mutant and p38 MAPK phosphorylation at threonine 180 and 

threonine 182, a widely accepted surrogate for p38 MAPK activity, was analyzed.  Inhibition of 

Cdk2 kinase activity did not downregulate p38 MAPK phosphorylation (Figure 4.6), suggesting 

that p38 MAPK activity is not involved in Cdk2-mediated regulation of Cdc25A protein half-

life. 
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4.3. DISCUSSION 

Conventional cell cycle dogma assigns Cdc25A the limited role of dephosphorylating and 

activating Cdk2/cyclin E at the G1/S transition and Cdk2/cyclin A during early S phase.  Recent 

work has revealed that Cdc25A also plays a critical, non-redundant role in mitosis by 

contributing to the Cdk phosphatase activity that regulates Cdk1/cyclin B (68, 70, 89, 90).  

Cdc25A levels are subject to precise regulatory mechanisms that maintain strict control over 

Cdc25A protein levels through proteolytic degradation; while this mechanism is employed for 

cell cycle checkpoint-mediated downregulation of Cdc25A, it is now apparent that proteolytic 

degradation is also a major regulatory mechanism for Cdc25A expression in a cell cycle-

dependent manner in the absence of genetic insults (67, 68, 70, 84, 87).  Chk1, which contributes 

to cell cycle checkpoint-dependent Cdc25A proteolytic degradation, was identified as a 

physiologic regulator of Cdc25A turnover in interphase, and Cdc25A ubiquitination and 

degradation appears to be facilitated by APC/CCdh1 in mitosis and early G1 and by SCF ubiquitin 

ligases in interphase (70, 183). 

 

4.3.1. REGULATION OF CDC25A BY UBIQUITIN LIGASES 

In accordance with the rapid turnover of Cdc25A in interphase catalyzed by the SCF 

ubiquitin ligase, it was hypothesized that decreased Cdc25A turnover following Cdk2 inhibition 

may be a result of downregulating SCF ubiquitin ligase activity, which targets multiple cell cycle 

regulatory proteins for proteolysis (70, 164, 169, 179, 193).  Indeed, the studies confirming 

Cdc25A as an SCF substrate made use of a dominant-negative Cul1 mutant to inhibit SCF 

ubiquitin ligase activity, which resulted in increased p27 protein levels, an SCF substrate that 
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provided a convenient surrogate for monitoring SCF ubiquitin ligase activity (70, 179).  p27 

protein levels and protein levels of other SCF substrates, such as cyclin D and β-catenin, could 

therefore serve as useful endpoints for monitoring SCF activity to determine whether inhibiting 

Cdk2 kinase activity increased Cdc25A protein half-life by non-specific downregulation of SCF 

ubiquitin ligase activities.  Inhibition of Cdk2 kinase activity with the dominant-negative Cdk2 

mutant clearly did not affect SCF ubiquitin ligase activities because, while Cdc25A protein 

levels and half-life are elevated following Cdk2 inhibition, p27, cyclin D, and β-catenin, three 

well established SCF substrates, were unaffected. 

Cdc25A turnover is subject to an alternate regulatory mechanism in mitotic exit and early 

G1, as proteolysis in this segment of the cell cycle is the domain of the APC/C ubiquitin ligases 

(169, 195).  Cdc25A degradation upon mitotic exit was reminiscent of cyclin B degradation and 

Cdc25A contained a conserved KEN-box motif; this led to the identification of Cdc25A as a 

target of the APC/CCdh1 ubiquitin ligase (70, 169, 176).  To determine whether Cdk2 inhibition 

led to downregulation of APC/CCdh1 ubiquitin ligase activity, we examined cyclin B levels in 

cells following inhibition of Cdk2 kinase activity with the dominant-negative Cdk2 mutant.  

Cdk2-mediated regulation of Cdc25A half-life did not involve decreasing APC/CCdh1 ubiquitin 

ligase activity, as cyclin B levels were unaffected following Cdk2 inhibition.  Collectively, 

inhibition of Cdk2 kinase activity did not downregulate general ubiquitin-proteolytic machinery, 

suggesting that an alternate mechanism was responsible for Cdk2-mediated regulation of 

Cdc25A protein half-life. 
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4.3.2. THE ROLE OF p21 IN CDK2-MEDIATED REGULATION OF PHYSIOLOGIC 

CDC25A TURNOVER 

 While Cdk2 inhibition did not alter SCF or APC/CCdh1 ubiquitin ligase activities, p21 

levels were increased in cells transfected with the DN Cdk2 mutant.  Dominant-negative mutant 

proteins function by competing for essential substrates, thus inhibiting endogenous protein 

function (157).   Because p21 can associate with multiple Cdks (1, 192), we compared p21 

protein levels in cells transfected with dominant-negative Cdk1, dominant-negative Cdk2, or 

dominant-negative Cdk3 mutants to rule out elevation of p21 protein levels as an artifact of 

sequestration by ectopic expression of a dominant-negative Cdk mutant protein.  p21 levels were 

not elevated following expression of DN Cdk1 or DN Cdk3 mutants, suggesting that the elevated 

p21 levels were not an artifact of sequestration by overabundance of Cdk protein; in addition, 

inhibition of Cdk2 catalytic activity with roscovitine also resulted in increased p21 protein levels, 

further supporting a direct link between Cdk2 catalytic activity and p21 protein levels.  Because 

increases in p21 levels mirrored increases in Cdc25A levels following inhibition of Cdk2 kinase 

activity, we hypothesized that increased p21 levels may be a causative mechanism for Cdk2-

mediated increases in Cdc25A half-life; moreover, all three cell lines (HeLa, MCF-7, HCT-116) 

in which Cdk2 inhibition increased Cdc25A protein levels have functional p21.  To test the p21 

hypothesis, we transfected isogenic HCT-116 cells, in which p21 or p53 gene expression was 

eliminated via in vitro targeted deletion, with the dominant-negative Cdk2 mutant.  Cdc25A 

protein levels were elevated in all 3 isogenic cell lines following Cdk2 inhibition, indicating that 

p21 was not necessary for Cdk2-mediated regulation of Cdc25A turnover.  While it is unclear 

how inhibition of Cdk2 kinase activity increased p21 protein levels, it may be a result of 
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upregulating p73 activity or by modulating regulatory mechanisms that dictate p53-independent 

p21 expression (described in Results 4.2.2) (192, 196). 

  

4.3.3. A CDK2-CHK1-CDC25A CONNECTION? 

 One possibility is that Cdk2-mediated regulation of Cdc25A proceeds through 

conventional pathways regulating Cdc25A turnover in the absence of genotoxic stress.  Chk1 

was recently identified as a physiological regulator of Cdc25A protein turnover in the absence of 

stresses (183).  While Chk1 activity was originally believed to be checkpoint-dependent, Chk1 

activity accumulates in parallel with Chk1 protein levels even in the absence of DNA damage or 

stress and Chk1 possesses basal kinase activity (180).  While no formal link has been established 

between Cdk2 and Chk1, the effect of inhibiting Cdk2 kinase activity on Chk1 kinase activity 

was explored to determine whether there was a functional connection.  Inhibiting Cdk2 kinase 

activity had no effect on total Chk1 protein levels or Chk1 kinase activity in HeLa cells 

expressing the dominant-negative Cdk2 mutant; similar results were observed in HCT-116 cells.  

Furthermore, a concentration-dependent increase in Cdc25A protein levels in HCT-116 cells was 

observed with increasing expression of the dominant-negative Cdk2 mutant using an adenovirus 

expression system (Ad.DN Cdk2); this increase in Cdc25A was independent of changes in Chk1 

protein levels, which remained unchanged throughout these experiments.  These results suggest 

that Cdk2 does not regulate Chk1 expression or Chk1 activity and, therefore, Cdk2-mediated 

regulation of physiological Cdc25A turnover occurs independently of Chk1.  At this point, the 

data reported herein cannot support or refute the hypothesis that Cdk2 directly phosphorylates 

Cdc25A to regulate its stability, in a mode akin to Chk1-mediated regulation of Cdc25A 

stability; Cdk2 has indeed been reported to phosphorylated Cdc25A to upregulate its phosphatase 
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activity at the G1/S transition (66) and this or additional phosphorylation events may contribute 

to Cdk2-mediated regulation of Cdc25A stability. 

 

4.3.4. p38 MAPK-MEDIATED REGULATION OF CDC25A TURNOVER 

 UV-mediated degradation of Cdc25A was recently shown to involve an additional Chk1 

phosphorylation site, Ser 75, which is analogous to a phosphorylation site in Xenopus Cdc25A 

required for the mid-blastula transition (85, 86, 88, 197).  This serine phosphorylation seems to 

contribute to Chk1-mediated Cdc25A protein turnover.  In addition, p38 MAPK can promote 

Cdc25A downregulation by phosphorylating Cdc25A at Ser 75 in response to osmotic stress 

(85).  This is not entirely unexpected, as p38 MAPK has been reported to phosphorylate Chk1 

phosphorylation sites in Cdc25B and Cdc25C in vitro and p38 MAPK negatively regulates 

Cdc25B in vivo in response to cell cycle checkpoints (91).  Furthermore, several layers of 

redundant regulatory mechanisms are expected for Cdc25A expression, as loss of Cdc25 

regulation can have deleterious effects on cell biology (67, 68, 84, 87).  Because Chk1 

contributes to the physiologic regulation of Cdc25A and since p38 MAPK has been shown to be 

able to phosphorylate Chk1 phosphorylation sites, it was hypothesized that p38 MAPK may 

contribute to the physiologic regulation of Cdc25A turnover mediated by Cdk2, even though no 

evidence exists to suggest a functional link between the two.  Such a model would predict that 

for Cdc25A stability to be increased, p38 MAPK activity should be decreased following Cdk2 

inhibition.  However, expression of the dominant-negative Cdk2 mutant had no effect on p38 

MAPK phosphorylation, a common surrogate for MAPK activity, revealing that Cdk2 does not 

affect physiologic Cdc25A turnover by downregulating p38 MAPK activity. 
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4.3.5. β-TrCP IS THE F-BOX PROTEIN THAT REGULATES CDC25A 

UBIQUITINATION AND DEGRADATION BY THE SCF UBIQUITIN LIGASE 

 Ubiquitin-mediated proteolysis catalyzed by SCF ubiquitin ligases requires substrate 

recognition and binding, which is facilitated by the F-box protein subunit of the SCF ubiquitin 

ligase complex; F-box proteins determine the substrate specificity for the SCF ubiquitin ligase 

machinery (169).  Constitutive and DNA damage-induced turnover of Cdc25A protein was 

recently reported to be catalyzed by the SCFβ-TrCP ubiquitin ligase, which is known to catalyze 

the turnover of β-catenin, IκB and several other proteins (185, 198, 199).  β-TrCP is an F-box 

protein that interacts with proteins containing a DSG phosphodegron, a short phospho-peptide 

motif containing the sequence DS*GφXnS*, where S* is a phosphoserine, φ is a hydrophobic 

amino acid, and X is any amino acid (where n ≥ 1) (200-202).  While recognition of Cdc25A by 

the SCFβ-TrCP ubiquitin ligase involved Chk1-mediated phosphorylation of Cdc25A at Ser 75, 

Chk1 activity by itself was insufficient for β-TrCP binding and, in fact, a Cdc25A S75A mutant 

still weakly associated with β-TrCP in vivo, questioning the necessity of this phosphorylation site 

for β-TrCP binding (198).  Ser 75 is not part of the DSG phosphodegron recognized by β-TrCP 

but somehow appears to facilitate β-TrCP binding to the proximal upstream phosphodegron, 

which includes phosphorylated Ser 82 and either phosphorylated Ser 79, phosphorylated Ser 88, 

or both (198, 199).  Incidentally, neither Ser 79, Ser 82, nor Ser 88 are Chk1 phosphorylation 

sites, nor are they phosphorylated by casein kinase Iα, initially hypothesized as a potential 

alternate candidate kinase for these sites (198).  While Chk1 appears to be important for Cdc25A 

proteolytic degradation in the presence and absence of genotoxic stress, Chk1-mediated Cdc25A 

phosphorylation does not form the SCFβ-TrCP phosphodegron and Chk1-mediated 

phosphorylation of Ser 75 is dispensable for in vivo association between Cdc25A and the SCFβ-
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TrCP, which questions the role of Chk1-mediated phosphorylation of Cdc25A at Ser 75, Ser 123, 

Ser 178, Ser 278, Ser 292 in Cdc25A protein turnover.  It has been hypothesized that the multiple 

Chk1-catalyzed Cdc25A phosphorylation sites could serve to enhance the association between 

Cdc25A and the SCFβ-TrCP ubiquitin ligase machinery to enable efficient ubiquitination in a 

mode akin to that involved in proteasome-mediated destruction of the SCF substrate Sic1, a yeast 

G1 Cdk inhibitor.  Efficient recognition of Sic1 by SCFCdc4 required phosphorylation of at least 

six sites to generate a functional Cdc4 phosphodegron (CPD); while alone, each phosphorylation 

site formed a low-affinity CDP, the combination of 6 low-affinity CPDs enabled Sic1 

recognition by SCFCdc4, creating a biological threshold for fine tuning this irreversible regulatory 

switch (203, 204).  While this hypothesis is appealing for fine tuning Cdc25A protein stability, 

multi-site phosphorylation may play a different role in regulating Cdc25A, as phosphorylation of 

Ser 82 and either Ser 79 or Ser 88 appear to be the only necessary phosphorylations required for 

interaction with SCFβ-TrCP (198, 199).  Cdc25A mutants lacking the 4 Chk1 phosphorylation sites 

(Ser 123, Ser 178, Ser 278, Ser 292) were observed to be consistently labeled with shorter 

ubiquitin conjugates, suggesting that Chk1-mediated Cdc25A phosphorylation might serve to 

affect the sites of ubiquitin conjugation or the efficiency of polyubiquitination, which could 

impact proteasome recruitment and subsequent degradation of Cdc25A (198, 199, 205).  The 

identity of the kinase that phosphorylates the Cdc25A DSG motif serine residues, Ser 79, Ser 82 

and Ser88, is unknown and it is not clear if one or more kinases are involved.  At least one of the 

serine phosphorylation sites in the β-TrCP phosphodegron, serine 88, constitutes the minimal 

consensus Cdk phosphorylation site, S/T*-P (206).  Inhibition of Cdk2 kinase activity, therefore, 

could interfere with formation of the β-TrCP phosphodegron in Cdc25A, resulting in decreased 

recognition of Cdc25A by SCFβ-TrCP, decreased Cdc25A turnover and an increase in Cdc25A 
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protein half-life without directly downregulating SCFβ-TrCP ubiquitin ligase activity; this 

hypothesis would be consistent with the observation that inhibition of Cdk2 kinase activity did 

not increase β-catenin protein levels, which confirmed that Cdk2 inhibition does not 

downregulate SCFβ-TrCP ubiquitin ligase activity.  While the data presented herein cannot rule out 

the involvement of additional factors in Cdk2-mediated regulation of Cdc25A turnover, the 

hypothesis that Cdk2 is involved in generating the β-TrCP phosphodegron in Cdc25A is indeed 

plausible.  Evaluation of this hypothesis, using site-directed mutagenesis to create 

phosphorylation site-deficient Cdc25A mutants and phospho-DSG motif-specific antibodies to 

probe the role of the DSG motif serine phosphorylation sites in Cdk2-mediated regulation of 

Cdc25A protein turnover, and resolution of the Cdk2-specific phosphorylation sites in Cdc25A 

remain future directions for this project. 

 

4.4. CONCLUSIONS 

Inhibition of Cdk2 kinase activity with a dominant-negative Cdk2 mutant did not 

decrease SCF or APC/C ubiquitin ligase activities.   Inhibition of Cdk2 kinase activity increased 

p21 protein levels in both HeLa and HCT-116 cells; p21, however, is not involved in Cdk2-

mediated regulation of Cdc25A protein half-life, as inhibition of Cdk2 kinase activity in p21−/− 

HCT-116 cells resulted in increased Cdc25A protein levels.  Chk1, recently described as a 

physiologic regulator of Cdc25A protein stability, is not involved in Cdk2-mediated regulation 

of Cdc25A protein half-life.  p38 MAPK, recently described as a regulator of Cdc25A stability in 

an osmotic stress checkpoint, does not play a role in the physiologic regulation of Cdc25A 

stability by Cdk2. 
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5. DISCUSSION 

 

Genomic instability is a hallmark of cancer that stems in part from illegitimate cell cycle 

progression (134, 207).  The cell cycle machinery is a common target of oncogenic mutations, 

and overexpression of the proto-oncogene Cdc25A has been documented in clinical studies of 

multiple human cancers (121-129, 131-134, 208).  As Cdc25A mediates cell cycle progression 

and is a target of cell cycle checkpoints, overexpression of Cdc25A can promote inappropriate 

cell cycle progression in the presence of damaged DNA or premature cell division prior to 

faithful completion of DNA replication, both of which contribute to genomic instability (42, 82).  

Due to the labile nature of Cdc25A during normal cell cycle progression in the absence of 

genotoxic stress, one possible explanation for increased Cdc25A protein levels in human tumors 

is a defect in physiologic protein turnover mechanisms.  In support of this hypothesis, it was 

recently shown that in a panel of breast cancer cell lines, Cdc25A levels were elevated not as a 

result of increased mRNA expression but as a result of enhanced protein stability; while some 

cell lines were defective in DNA damage checkpoints, suggesting defects in Chk1 signaling 

could be responsible for enhanced Cdc25A protein stability, others were proficient in degrading 

Cdc25A following DNA damage, suggesting normal Chk1 function and supporting the existence 

of Chk1-independent mechanisms for regulating physiologic Cdc25A protein turnover (134).  In 

addition, a gain-of-function mutation in the Caenorhabditis elegans Cdc25 gene (cdc-25.1) 

resulted in deregulated hyperproliferation of intestinal cells, reminiscent of neoplastic behavior 

(209).  A mutant Caenorhabditis elegans strain was identified by the presence of extra intestinal 

cells, and the responsible mutation was traced back to the cdc-25.1 gene.  Sequence analysis 
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revealed that this gain-of-function Cdc-25.1 mutant protein encoded a serine to phenylalanine 

mutation at amino acid 46; this residue falls in within a SRDSG motif (the second serine residue 

being affected by the mutation) in the protein’s amino terminus and was hypothesized to be a site 

of negative regulation for the protein (209).  Furthermore, intestinal hyperplasia could be 

generated in a normal Caenorhabditis elegans strain by introducing the mutant cdc-25.1 (Ser 46 

Phe) as a transgene, confirming its direct oncogenic potential (209).  This SRDSG motif in Cdc-

25.1 is reminiscent of a putative DSG ubiquitin ligase binding motif; loss of this motif could 

enable a gain-of-function mutation as a result of compromised protein turnover. By analogy, 

deregulation of Cdc25A protein turnover as a result of mutations to its DSG ubiquitin ligase 

binding motif could be sufficient to induce a hyperplastic growth state as a result of Cdc25A 

overexpression.  These findings argue in favor of deregulated physiologic Cdc25A turnover as a 

potential mechanism contributing to Cdc25A overexpression in malignancies and emphasize the 

need to better understand physiologic Cdc25A turnover mechanisms. 

To more fully understand the physiologic regulation of Cdc25A turnover, we explored 

the molecular mechanisms that regulate cell cycle checkpoint-independent regulation of Cdc25A 

protein levels. 

 

5.1. REGULATION OF CDC25A BY PHOSPHORYLATION 

Cdc25A phosphorylation is catalyzed by multiple kinases (Table 5.1 and Figure 5.1).  

Preliminary studies on Cdc25A determined that phosphorylation by several different kinases 

served to upregulate its catalytic activity following mitogenic stimuli to promote cell cycle 

progression (66, 98, 99).  Cdc25A phosphorylation is now known to also play a key role in  
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Table 5.1: Reported Human Cdc25A Phosphorylation Sites. 
 
 
Residue Amino Acid Kinase Function 

17 Serine Cdk1/cyclin B Mitotic stabilization 

75 Serine Chk1 Phosphorylation site involved in degradation 
Promotes recognition by SCFβ-TrCP 

75 Serine p38 MAPK Phosphorylation site involved in degradation 
Promotes recognition by SCFβ-TrCP 

79 Serine ??? Phosphodegron formation 
SCFβ-TrCP binding site 

82 Serine ??? Phosphodegron formation 
SCFβ-TrCP binding site 

88 Serine ??? Phosphodegron formation 
SCFβ-TrCP binding site 

115 Serine Cdk1/cyclin B Mitotic stabilization 
123 Serine Chk1, Chk2 Phosphorylation site involved in degradation 

178 Serine Chk1, Chk2 
Phosphorylation site involved in degradation 
Promotes 14-3-3 binding 
Prevents Cdk1/cyclin B activation 

278 Serine Chk1 Phosphorylation site involved in degradation 
292 Serine Chk1, Chk2 Phosphorylation site involved in degradation 

507 Threonine Chk1 Promotes 14-3-3 binding 
Prevents Cdk1/cyclin B activation 

??? ??? Cdk2 Increases Cdc25A catalytic activity 
??? ??? Cdk2 Decreases Cdc25A stability 
??? ??? Pim1 Increases Cdc25A catalytic activity 
??? ??? Raf1 Increases Cdc25A catalytic activity 
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regulating protein stability.  Since the seminal report identifying Cdc25A as target of DNA 

damage checkpoints (87), Cdc25A phosphorylation studies have focused on how genotoxic 

stress responses are relayed to regulatory proteins that target Cdc25A for degradation.  The 

mechanism that emerged has revealed that targeting Cdc25A for ubiquitin-mediated degradation 

requires more than the original model of checkpoint kinase-catalyzed Ser 123 phosphorylation 

(84, 87); Cdc25A degradation in response to genotoxic stresses is, in fact, the result of a 

previously unanticipated and complicated interaction between phosphorylation content and 

phosphorylation kinetics, with multiple amino terminal phosphorylation sites playing important 

and non-redundant roles (68, 70, 85, 86, 183, 199).  The known Cdc25A phosphorylation sites 

are listed in Table 5.1 and depicted in Figure 5.1, and while the detailed mechanism by which 

these phosphorylation sites affect Cdc25A stability is unclear, recent studies support several 

conclusions.  Cdc25A plays an essential role in catalyzing mitotic cell division.  Cdc25A protein 

stability is significantly increased as cells approach and enter mitosis, and this is a result of 

Cdk1/cyclin B-catalyzed phosphorylation at Ser 17 and Ser 115.  Phosphorylation at these sites 

uncouples Cdc25A from the rapid proteolytic degradation typical of physiologic interphase 

Cdc25A regulation and promotes the increase in Cdc25A protein levels essential for mitotic 

progression (68).  While this mechanism promotes the onset of mitosis, the cell has also 

developed countermeasures to prevent premature initiation of mitosis.  Mitotic progression is 

inhibited by Chk1-mediated phosphorylation of Ser 178 and Thr 507, which promotes 14-3-3 

binding to Cdc25A (69).  While 14-3-3 association with Cdc25B and Cdc25C results in 

obstruction of the Cdc25 NLS and concomitant nuclear exclusion, the interaction between 14-3-3 

and Cdc25A has not been reported to affect Cdc25A subcellular localization; 14-3-3 binding 

effectively prevents Cdc25A from binding cyclin B by obstructing the cyclin B binding motif in 
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Cdc25A and blocks Cdk1/cyclin B activation that is required for mitotic progression (69).  14-3-

3 association may facilitate Cdc25A degradation, as inhibiting the interaction between Cdc25A 

and Cdk1/cyclin B will prevent Cdk1/cyclin B from phosphorylating Cdc25A at Ser 17 and Ser 

115 to increase its stability; the precise roles of Ser 178 and Thr 507 phosphorylation in Cdc25A 

turnover, however, are still unclear.  Upon mitotic exit and cell cycle re-entry, Cdc25A lability 

returns, most likely as a result of cyclin B degradation and concomitant inactivation of 

Cdk1/cyclin B complexes.  This results in a loss of the phosphorylations that stabilize Cdc25A 

and facilitates its degradation by the APC/CCdh1 ubiquitin ligase (68, 70).  Cdc25A regulation 

during interphase is also a complex matter.  Chk1 phosphorylates Cdc25A at Ser 123, 178, 278 

and 292 during unperturbed cell cycle progression, and these phosphorylation sites contribute to 

its labile nature (183).  While Chk2 appears to phosphorylate all of these serine residues except 

Ser 278, Chk2 is only implicated in Cdc25A turnover following genotoxic stresses; increased 

lability of Cdc25A following DNA damage involves increased kinetics of Cdc25A 

phosphorylation, presumably reflecting the cumulative effect of Chk1- and Chk2-mediated 

phosphorylations (181-184).  In addition, Cdc25A phosphorylation at Ser 75 also contributes to 

its labile nature both in the presence and absence of genotoxic stress (85, 198).  Ser 75 

phosphorylation is mediated by either Chk1 or p38 and appears to be one of the more critical 

phosphorylation sites for Cdc25A ubiquitination (198).  While phosphorylation is clearly a 

prerequisite for Cdc25A degradation, the mechanism by which Ser 75, 123, 178, 278 and 292 

phosphorylation contributes to Cdc25A lability is unknown.  Furthermore, regulation of Chk1-

dependent Cdc25A phosphorylation is complicated and poorly understood, as Chk1 

phosphorylates Cdc25A at multiple sites to affect multiple processes at different points in the cell 

cycle (69, 85-87, 90, 183).  Recently, interphase turnover of Cdc25A was reported to depend on 
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SCFβ-TrCP ubiquitin ligase, both in the presence an absence of DNA damage (198, 199).  While 

Chk1-dependent phosphorylation of Ser 75 appeared to be important for Cdc25A ubiquitination 

in the absence of genotoxic stress, Cdc25A could still associate with SCFβ-TrCP ubiquitin ligase, 

albeit in a decreased manner, following mutation of Ser 75 to alanine, implying that alternate 

phosphorylation sites could facilitate Cdc25A recognition by the β-TrCP F-box protein in the 

absence of Chk1-dependent phosphorylation of Ser 75 (198).  It appears that interphase 

ubiquitin-mediated turnover of Cdc25A by with SCFβ-TrCP depends on phosphorylation at Ser 82 

and either Ser 79 or Ser 88, which together constitute a phosphodegron necessary for Cdc25A 

ubiquitination by SCFβ-TrCP (198, 199).  Ser 79, 82 and 88 are not Chk1 phosphorylation sites, 

confirming an essential role for kinases other than Chk1 in mediating physiological Cdc25A 

turnover.  Chk1 phosphorylation of Cdc25A at Ser 75 is believed to ‘prime’ Cdc25A for 

phosphorylation at Ser 82 and either Ser 79 or Ser 88 to form the SCFβ-TrCP phosphodegron 

(198).  While the details of such a ‘priming’ mechanism are still unknown, Ser 75 

phosphorylation could form a docking site for a specific protein kinase(s) or a protein complex 

containing one or more kinases with the ability to phosphorylate Cdc25A at Ser 79, 82 and/or 88.  

Candidate kinases for these phosphorylation sites remain to be identified, although one potential 

kinase for Ser 88 phosphorylation, based on primary amino acid sequence, could be Cdk2. 

An additional layer of complexity is added to Cdc25A regulation by phosphorylation 

when interphase regulation of Cdc25A activity is considered.  Cdc25A phosphatase activity 

increases following phosphorylation by Raf1, Pim1, and Cdk2/cyclin E (66, 98, 99).  Cdc25A 

phosphorylation by Raf1 and Pim1 couples mitogenic stimulation to initiation of the cell cycle, 

whereas phosphorylation of Cdc25A by Cdk2/cyclin E, which requires prior Cdc25A activity, 

endows Cdc25A with sufficient phosphatase activity to promote progression through the G1/S 
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transition.  The precise location of the Raf1-, Pim1-, and Cdk2/cyclin E-mediated Cdc25A 

phosphorylation sites, however, remains to be elucidated.  Their impact on Cdc25A protein 

stability will also need to be considered.  Regulation of Cdc25A by phosphorylation is clearly a 

complex interplay between positive and negative regulatory stimuli; the built in redundant and 

overlapping signals reflect the importance of Cdc25A in cell biology. 

 

5.2. REGULATION OF CDC25A BY CDK2 

The first reports of Cdk2 affecting Cdc25A described an enzyme/substrate positive 

feedback loop in which Cdc25A dephosphorylated Cdk2/cyclin E, resulting in Cdk2/cyclin E 

activation (66).  Activated Cdk2/cyclin E would then, in turn, phosphorylate Cdc25A, increasing 

Cdc25A activity; this feedback loop would proceed until sufficient Cdc25A and Cdk2/cyclin E 

activities were achieved to promote the transition from G1 to S phase.  Furthermore, the early 

literature maintained that Cdc25A was present and active in late G1 and early S phase, whereas 

cell cycle progression beyond these points was relegated to Cdc25B and Cdc25C activities (20-

22, 28, 66).  It is now believed that Cdc25A not only catalyzes the G1/S transition but it also 

plays critical roles throughout S phase, in G2, at the G2/M transition and in mitosis (67, 68, 89, 

90).  The relationship between Cdc25A and Cdk2 is also regarded differently, as Cdk2 appears to 

contribute to the lability of Cdc25A in interphase (210).  While the details of this relationship 

remain to be fully elucidated, several points are clear.  The kinase activity of Cdk2 is necessary 

for proper maintenance of Cdc25A protein half-life in the absence of genotoxic stress (Chapter 

3.2.4).  The retarded degradation of Cdc25A following inhibition of Cdk2 kinase activity is not 

due to downregulation of SCF or APC/C ubiquitin ligase activities, which are responsible for 

Cdc25A turnover in interphase and mitosis, respectively (Chapter 4.2.1).  Furthermore, inhibiting 
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Cdk2 kinase activity does not downregulate one catalyst of physiologic Cdc25A turnover, Chk1 

(Chapter 4.2.3), implying that Cdk2 does not lie upstream in a signaling pathway that culminates 

in Chk1 activation to regulate Cdc25A turnover.  Based on the results presented herein and the 

current state of Cdc25A biology, an attractive hypothesis for Cdk2-mediated regulation of 

Cdc25A half-life in the absence of genotoxic stress is that Cdk2 phosphorylates Cdc25A at 

serine residues essential for formation of the phosphodegron that enables Cdc25A recognition by 

SCFβ-TrCP.  Inhibition of Cdk2 kinase activity would therefore result in retarded Cdc25A 

degradation by decreasing Cdc25A recognition and ubiquitination by SCFβ-TrCP.  Validating this 

hypothesis would entail analysis of 1) Cdc25A ubiquitination following inhibition of Cdk2 

kinase activity, 2) Cdc25A/SCFβ-TrCP association following inhibition of Cdk2 kinase activity, 

and 3) Cdk2-specific phosphorylation sites in Cdc25A.  These constitute the future aims for this 

research project.  One cannot rule out, however, that Cdk2 facilitates activation of an 

intermediate kinase that contributes to generation of the Cdc25A phosphodegron. 

 

5.3. CELL CYCLE REGULATION AND CANCER 

Oncogenic alterations of the cell cycle machinery occur frequently in human tumors, 

contribute to the disruption of normal growth control and override cell cycle checkpoints (2, 211, 

212).  Therefore, pharmacologic inhibitors of oncogenic cell cycle regulatory proteins are 

predicted to possess great theoretical value for treatment of human neoplastic disease (4).  The 

current anticancer strategy of designing novel therapies against specific molecular targets to 

minimize effects on non-neoplastic tissues, however, depends on validating the suitability of 

molecular targets for therapeutic intervention (3, 213).  The best example to date of the need for 
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target validation comes from recent studies revealing the suitability of Cdk2 as a target for 

therapeutic intervention of human cancers.  While targeting Cdk2 emerged as a novel therapeutic 

strategy based on its apparent central role in promoting cell cycle progression (3, 214-219), 

cancer cells proliferated in the absence of Cdk2 activity and Cdk2 protein, indicating that in fact, 

Cdk2 is probably not a suitable target for cancer therapy (160).  This unexpected result was 

further validated by targeted deletion of Cdk2 in mice, which confirmed that cells can progress 

through the cell cycle in the absence of Cdk2 (158, 159).  However, it is still possible that 

genetic instability could result in tumor cells that acquire dependence upon Cdk2 activity.  These 

studies emphasize the need for thorough target validation for novel therapeutic strategies.  As 

oncogenic drivers of cell proliferation, Cdc25 phosphatases are a source of potential targets for 

the treatment of cancer, and many groups have endeavored to search for specific small molecule 

Cdc25 inhibitors (42).  Much like the case for Cdk2, cells from mice that have undergone 

targeted deletion of Cdc25B or Cdc25C proliferate normally, implying that specific targeted 

inhibition of these two Cdc25s, if achievable, might not generate a useful therapeutic for human 

cancers (71, 72).  Furthermore, targeted deletion of Cdc25A in mice is embryonic lethal (Peter J. 

Donovan, personal communication).  However, these results may be attributed to essential roles 

for the Cdc25 DSPases in developmental biology and the ability of Cdc25A to functionally 

compensate for Cdc25B or Cdc25C, as inhibition of Cdc25B using antisense oligonucleotides 

(220) and inhibition of Cdc25A using antisense oligonucleotides or small interfering RNA 

(siRNA) (68, 124) results in inhibition of cell cycle progression in human tumor cells; moreover, 

inhibition of Cdc25 activity in human tumor cells using small molecule inhibitors also results in 

inhibition of cell cycle progression  (42, 221).  Therefore, interfering with Cdc25A activity could 

provide a novel therapeutic opportunity for the treatment of cancer.  However, caution must be 



 91

taken with this approach because, as the efforts for inhibiting Cdk2 revealed, regulation of cell 

cycle progression is at the same time less intricate and perhaps also more complicated that 

previously assumed (222).  Full target validation and a thorough understanding of novel target 

protein biology is an essential precursor to any successful therapeutic development efforts.  The 

work presented herein contributes to the fundamental understanding of Cdc25A regulation in 

unperturbed interphase cells.  This is important because, as in Caenorhabditis elegans, where 

loss of Cdc25 regulation led to a hyperproliferative phenotype, and in human tumors 

overexpressing cyclin B, which could lead to unscheduled activation of Cdk1/cyclin B 

complexes and increased Cdc25A stability, loss of Cdc25A regulation in human cells could 

promote deregulation of cell cycle proliferation, insensitivity to anti-growth signals and genetic 

instability, several essential alterations that are hallmarks of human cancer (2, 19, 198, 209).  

Therefore, understanding the basic biology of Cdc25A may provide insight into the mechanisms 

by which Cdc25A levels are overexpressed in tumors, how elevated Cdc25A levels contribute to 

the malignant phenotype and may generate novel approaches for the treatment of human cancers 

by therapeutic intervention targeting Cdc25A. 

 

5.4. CONCLUSIONS 

Inhibition of Cdk2 kinase activity in human tumor cells increased Cdc25A protein levels 

by decreasing Cdc25A protein turnover.  Cdk2-mediated regulation of Cdc25A turnover in 

interphase was a p53- and p21-independent phenomenon.  Cdk2 did not regulate Cdc25A 

turnover by inhibiting APC/CCdh1 or SCFβ-TrCP ubiquitin ligase activities.  Cdk2 did not regulate 

Cdc25A turnover by modulating Chk1 or p38 MAPK, two known regulators of Cdc25A 
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stability.  Cdk2 activity may play an essential role in facilitating Cdc25A recognition by SCFβ-

TrCP ubiquitin ligase, a hypothesis awaiting evaluation. 
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APPENDIX A 
 
 

SMALL MOLECULES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Cdk Inhibitor 
• ATP site competitive inhibitor 
• Cdk1/cyclin B (IC50=0.65 µM) 
• Cdk2/cyclin A or E (IC50=0.70µM)
• Cdk5/p35 (IC50=0.20 µM) 
• Erk1 MAPK (IC50=34 mM) 
• Erk2 MAPK (IC50=14 mM) 

  
 
 
 

Roscovitine 

a Data obtained from Calbiochem (http://www.calbiochem.com) 

• Cdk Inhibitor 
• ATP site competitive inhibitor 
• Cdk1/cyclin B (IC50=7 µM) 
• Cdk2/cyclin A or E (IC50=7 µM) 
• Cdk5/p35 (IC50=3 µM) 
• p44 MAPK (IC50=25 µM) 
• Cdk4/cyclin D1 (IC50>1 mM) 
• Cdk6/cyclin D3 (IC50>250 µM) 

  
 
 
 

Olomucine 

• Inhibitor of protein synthesis 
• Interferes with translocation step 

  
 
 
Cycloheximide 
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APPENDIX B 
 
 

ANTIBODIES FOR WESTERN BLOTTING 
 

Antibody Species Dilution Vendor 
β-catenin mouse 1:500 BD Transduction Labs 
β-tubulin mouse 1:5000 Cedarlane Laboratories 

Cdc2 p34 (17) mouse 1:1000 Santa Cruz 
Cdc25A (F6) mouse 1:100 Santa Cruz 

Cdc25B mouse 1:750 BD Transduction Labs 
Cdk2 (M2) rabbit 1:2000 Santa Cruz 

Cdk3 (Y-20) rabbit 1:500 Santa Cruz 
Chk1 (G4) mouse 1:250 Santa Cruz 

Chk1 rabbit 1:500 Cell Signaling Technology 
cyclin B1 (H-433) rabbit 1:200 Santa Cruz 
cyclin D1 (A-12) mouse 1:200 Santa Cruz 

p21 (C-19) rabbit 1:500 Santa Cruz 
p21 WAF1 mouse 1:100 Oncogene Research Products 
p27 (C-19) rabbit 1:500 Santa Cruz 
p38 MAPK rabbit 1:500 Cell Signaling Technology 

phospho-p38 MAPK (Thr180/Thr182) rabbit 1:1000 Cell Signaling Technology 
phospho-Cdc25C (S216) rabbit 1:5000 Cell Signaling Technology 

vinculin (H-300) rabbit 1:500 Santa Cruz 
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APPENDIX C 
 
 

INDUCTION AND PURIFICATION OF GST-CDC25C (200-256) 
 

The following protocol was adapted from Frangioni and Neel (223) for purification of 

recombinant GST fusion proteins: 

Protein Overexpression in  E. coli: 

1. Inoculate 100 ml of LB media containing 100 µg/ml ampicillin with E. coli strain 

BL21(DE3) transformed with pGEX-2T-GST-Cdc25C (200-256).  Incubate at 37°C 

overnight.  

2. Inoculate 1L of LB media containing 100 µg/ml ampicillin with 100 ml starter culture 

(Step 1) and allow to grow 3-5 hr at 37°C while monitoring the OD600.   

3. When OD600 = 0.6-0.8, induce with IPTG to a final concentration of 1 mM and shake at 

37°C for 3 hr. 

4. Pellet cells by centrifugation at 5000 x g for 15 min. at 4°C. 

 

Sample Preparation/Protein Purification: 

1. Resuspend pellet in STE buffer (see below), 25 ml per L culture, supplemented with 100 

µg/ml lysozyme and protease inhibitors (10 µg/ml aprotinin, 10 µg/ml leupeptin, 100 

µg/ml AEBSF). 

2. Incubate on ice for 15 min. 

3. Add DTT to final concentration of 10 mM. 
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4. Add N-laurylsarcosine (sarkosyl) [alkyl anionic detergent to aid in solubility] to final 

concentration of 1.5% from a 10% solution in STE buffer. 

5. Vortex for 5 sec to mix. 

6. Sonicate on ice for 5 X 5 sec. pulses at power level 4, 50% duty cycle. Save sample of 

sonicate for analysis by SDS-PAGE. 

7. Centrifuge at 10,000 x g for 30 min at 4°C.  Save samples of pellet and supernatant for 

analysis by SDS-PAGE. 

8. Add Triton X-100 to final concentration of 2% from a 10% stock solution in STE buffer 

to supernatant.  

9. Vortex for 5 sec. 

10. Prepare glutathione-sepharose 4B beads. 

a. Resuspend slurry in bottle.  Pipet 1.33 ml of original slurry. (1.33 ml 75% slurry, 

which equals 1 ml bed volume in working 50% slurry suspension.)  

b. Centrifuge at 500 x g for 5 min at 4°C.  Decant the supernatant. 

c. Wash the beads in 10 ml PBS (per 1 ml bed volume).  Centrifuge at 500 x g for 5 

min.  Decant supernatant. 

d. Resuspend beads in 1 ml STE buffer containing protease inhibitors.  (1 ml bead 

volume + 1 ml buffer = 50% slurry) 

11. Add 2 ml 50% glutathione-sepharose 4B beads (from step 10.d) to supernatant.  Allow 

binding to occur on rocker at 4°C for 1hr.   

12. Centrifuge at 800 x g (2000 rpm) for 5 min at 4°C.  Save sample of unbound material for 

analysis by SDS-PAGE. 
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13. Wash beads twice with 10 bed volumes (10 ml) STE buffer supplemented with DTT and 

protease inhibitors (see Step 1).  Spin at 800 x g (2000 rpm) for 5 min at 4°C between 

washes to pellet beads.  Save washes for analysis by SDS-PAGE. 

14. Wash beads twice with 10 ml elution buffer supplemented with DTT and protease 

inhibitors (see Step 1).  Spin at 800 x g (2000 rpm) for 5 min at 4°C between washes to 

pellet beads.  Save washes for analysis by SDS-PAGE. 

15. After final wash, add 0.5 ml elution buffer to bead pellet.  Resuspend and transfer to 1.5 

ml microcentrifuge tube.  Spin at 800 x g (2000 rpm) for 5 min at 4°C.  Remove 

supernatant.  

16. Elute protein 3X with 0.5 ml of 10 mM glutathione in elution buffer containing 

inhibitors.  Spin at 800 x g (2000 rpm) for 5 min at 4°C between elutions.  Allow elution 

to occur at 4°C for 30 min. 

17. Determine protein concentration by Bradford method.   

18. Analyze fractions and other samples by SDS-PAGE analysis. 

19. Add 20% glycerol to each faction. 

20. Aliquot fractions and store at -80°C. 

 

Buffers 

� STE: 10 mM Tris (pH 8.0), 150 mM NaCl, 1 mM EDTA     

� Elution Buffer: 30 mM Tris (pH 8.0), 75 mM NaCl, 1 mM EDTA 
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