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Abstract 

 To generate an effective cellular immune response, it is necessary to elicit both antigen-

specific CTL (CD8+) and Th (CD4+) T cell recognition. The design of an effective therapeutic 

vaccine must incorporate means by which to generate novel T cell responses or enhance existing 

responses of a clinically-preferred functional type. In the cancer setting, one vaccine strategy is 

to target the immune system to specifically recognize tumor-associated antigens (TAAs).  TAAs 

can be sub-categorized in many ways (i.e. onco-viral, mutated self-proteins, overexpressed and 

fetal-like proteins).  Thus far, in part based on the historical prioritization applied to epitope 

searches, the number of defined CTL epitopes greatly outnumbers that of Th epitopes. Our goal 

in the current studies was to define and then characterize functional CD4+ T cell responses 

directed against the HPV-16 E7 oncoprotein in patients with cervical intraepithelial neoplasia 

(CIN) or cancer using dendritic cell (DC)-based vaccine strategies. 

 The importance of this work stems from the unequivocal linkage between oncogenic 

HPV-infection and the development of cervical carcinoma. Over 50% of all cervical carcinomas 

are HPV-16 positive, making it the most salient HPV type for integration into therapeutic 

vaccine designs. For cellular transformation to occur and be maintained, expression of the HPV 

early region gene products E6 and E7 is mandatory.  Due to this unique requirement for 

 iv



sustained expression of the E6 and E7 proteins in transformed cells, these proteins make 

excellent candidates for protective or therapeutic vaccinations.  While numerous HPV-16 E7-

derived CTL epitopes have been identified over the past several years, surprisingly, only a single 

Th epitope has been reported thus far.  In this thesis, I have defined three novel, naturally-

processed and -presented epitopes derived from the HPV-16 E7 oncoprotein that are recognized 

by CD4+ T helper cells in patients with cervical intraepithelial neoplasia (CIN) or cervical 

carcinoma.  Since the functional polarization state of the E7-specific CD4+ T cells remains of the 

Th1-type until the development of cancer in situ in these patients, DC-based vaccines that 

include E7-derived peptides or the whole E7 protein, and which are capable of selectively 

maintaining or enhancing Type-1 immunity may prove clinically beneficial in preventing or 

treating HPV-16+ malignancies, including cervical cancer.  
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1. Introduction 

  

1.1 HPVs and Cervical Cancer 

 
Cervical cancer is the second most common cancer among women world wide, killing 

approximately 250,000 women per year (1), (2).  The human papillomavirus (HPV) has been 

linked to cervical cancer, and is the first cancer recognized by the World Health Organization 

(WHO) to be 100% attributable to a viral infection (3). HPV has been classified by genotypes 

into high-risk and low-risk subsets. Acute intravaginal infection with mucosal high-risk HPV 

subsets (HPV-16, -18, -31, -33, and -45) results in cervical intraepithelial neoplasia (CIN), of 

which approximately 1% progress to invasive cancer (1).  The Progression of CIN I to cervical 

carcinoma is depicted in Figures 1-4. Fortunately, more than 95% of HPV infections of the 

anogenital tract resolve over three to five years (4). HPV-16 is responsible for more than 50% of 

cervical cancers worldwide (5), and it is estimated that less than 5% of healthy individuals 

infected with HPV-16 progress to cervical cancer (6). Cutaneous high-risk HPV genotypes, such 

as HPV-5 and -8, cause warts and may promote squamous skin cancer (SCC), while low-risk 

cutaneous (HPV-1 and –2) and mucosal (HPV-6 and –11) genotypes appear to cause skin and 

genital warts, respectively (7).   

 The present treatment for cervical cancer combines surgery or radiotherapy with adjuvant 

chemotherapy and has almost a 100% cure rate for Federation International of Gynecology and 

Obstetrics (FIGO) if the tumors are stage I low-grade, with invasion confined to the inner half of 

the myometrium (8).  Individuals with advanced FIGO stage tumors that have spread beyond the 
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pelvis, however, are currently regarded as incurable, with the majority of these patients living in 

developing countries. Indeed, more than 80% of cervical cancer occurs in developing countries 

(1), which lack the proper cytology screening that has resulted in the remarkable reduction in the 

cervical cancer incidence in more developed countries.   

 

1.2 Transformation of cells by HPVs 

 
HPVs are small double-stranded DNA viruses, which infect stratified epithelium. HPV-

associated cancers arise from a single spontaneous integration event of the viral genome into a 

host cell chromosome. Integration is a terminal event for the viral life cycle (9).  The viruses 

enter the epithelium through microlesions and infect the basal epithelial cells where they 

maintain a copy number of 50-100 genomes per cell (10). Upon cell division, one daughter cell 

will remain part of the basal epithelium, while the other daughter cell will migrate up to the next 

level and start to differentiate (11). At this stage the viral DNA will segregate with the two 

daughter cells and replicate to maintain the 50-100 copies per cell. One daughter cell starts to 

differentiate, which is a problem for the virus, because it needs the replication machinery of the 

cell in order to maintain viral DNA synthesis, with terminally differentiated cells exhibiting 

reduced levels of requisite transcriptional enzymes (11). Therefore, the virus needs to stimulate 

G1 to S-phase progression in a cell programmed to terminally differentiate in order to provide 

the correct environment for viral DNA replication (9). The virus has evolved to trigger cell 

differentiation, allowing the mRNA coding for the capsid proteins, which is only switched in  

differentiated cells to be transcribed. Following, uncoupling of G1 to S-phase progression from 

differentiation, the viral message is transferred to the newly divided cells (11). As the infected 

cells move up through the epithelium and partially differentiate, the viral genome is amplified to 
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thousands of copies per cell in the granular layer and late gene transcription and translation occur 

near the top of the epithelium with viral particle assembly taking place in the cornified tissue 

layer (12). Infected cells are sloughed off from the top of the epithelium releasing HPV particles 

and are transmitted directly to other individuals by contact during sexual intercourse. 

Alternatively, for HPVs that infect cutaneous cells, the infected cells may remain present in the 

skin for extended periods of time before the virus is transmitted to a new epithelial surface (9). It 

should be stressed that the basis for these models are derived from experiments performed in 

tissue culture. It remains unclear how a given daughter cell transmigrates the epithelium, as 

outlined above, while the other daughter cell continues to divided in the basal layer and to 

provide a reservoir of viral DNA for further cell divisions (10). What is known is that infected 

cells of the basal layer are not lysed by virion production, but instead, these cells can continue to 

proliferate. This differentiation dependence allows the latently infected cells to persist in the 

basal layers of the mucosa for several years (10).  This protracted period of HPV transcriptional 

maintenance prior to occult tumor development provides confidence that appropriately designed 

HPV vaccines may prove effective in preventing and treating HPV-related malignancies, such as 

cervical cancer.   

1.3 HPV onco-proteins and the activities of E7 

 
Insights into the mechanisms by which HPV infection can result in malignancy has come 

from the observation that three onco-proteins encoded by HPVs, E6, E7, and to a lesser extent 

E5, target host factors that control the cell cycle and proliferation. The replication proteins E1 

and E2 are required for episomal replication of the genome in human keratinocytes and when 

either of these open reading frames is disrupted, the genome integrates into the host chromosome 

(13).  However, extensive experiments have demonstrated that high-risk HPV E6 and E7 
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proteins are sufficient to induce immortalization of primary human keratinocytes in tissue culture 

(14-16). In contrast, low-risk HPV E6 and E7 proteins are unable to immortalize cells in vitro, 

although they may be able to moderately extend the life span of HPV-infected cells (17).  

The activity of the high-risk HPV E7 protein has been extensively studied.  E7 proteins of 

the high-risk types are primarily nuclear proteins of approximately 100 amino acids in length that 

dimerize through a zinc-finger motif in the C-terminus (18). The primary activity of high-risk E7 

proteins is to facilitate progression of the cell cycle into S phase by binding with members of the 

retinoblastoma (Rb) tumor repressor family proteins (19).  The role of the Rb protein in cell 

cycle regulation is to promote transition from G1 into S phase. In normal cells, early G1 phase 

Rb is hypophosphorylated and becomes increasingly phosphorylated towards S phase. The 

hypophosphorylated form of Rb binds the transcription factor E2F and actively represseses 

transcription from promoters containing E2F sites (20).  A large number of genes for DNA 

synthesis are regulated by E2F, such as DNA polymerase alpha and thymidine kinase, which are 

transcribed in a cell cycle-dependent manner (21), (22). When the E7 protein binds to 

hypophosphorylated Rb, it prevents Rb from binding to E2F and thereby, promotes cell cycle 

progression (23).  In normal epithelia cells, it is believed that Rb mediates cell cycle exit 

following differentiation, but in infected cells the binding of E7 to Rb promotes cell cycle 

progression in differentiated cells and allows for productive replication of HPV genes.  

Interestingly, to efficiently overcome cell cycle arrest, Rb appears to be targeted for E7-induced 

ubiquitin-mediated degradation, but this fails to occur when a low-risk HPV E7 binds Rb (24).  

Of note, E7 binds to other Rb family proteins p107 and p130, which negatively regulate E2F 

transcription (25), (26). E7 from high-risk HPV types have demonstrated the ability to diminish 

the inhibitory activities of the cyclin-dependent kinase inhibitors (CKIs) such as p21 (27, 28) and 
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p27 (29).  Recently, it was reported that inactivation of both Rb and p21 by E7 is necessary to 

prevent cell cycle arrest (30).  Other mechanisms of preventing cell cycle arrest, which are 

independent of Rb, include E7 binding to histone deacetylase-1 (HDAC-1) and the AP-1 family 

of transcription factors, c-Jun, JunB, JunD and c-Fos (31). 

The E6 protein is the first gene expressed during HPV infection and acts together with E7 

to induce changes leading to immortalization (32). One important function of E6 is to bind the 

tumor suppressor p53 and target it for ubiquitin-mediated degradation. p53 is expressed in 

response to DNA-damaging agents or unscheduled induction of DNA replication resulting in cell 

cycle arrest or apoptosis (33-35). The over-expression of p53 is a major impairment for viral 

replication, since HPV depends on the host cell DNA machinery and must stimulate S phase 

progression for replication.  Therefore, it is not surprising that HPV E6 and E7 function together 

as the only HPV proteins necessary for immortalizing cells.  Due to the inherent dependency of 

cervical carcinomas on maintained expression of the E6 and E7 proteins, these viral proteins 

represent very attractive targets for preventative and therapeutic treatments, such as vaccines.  

Numerous approaches are being investigated for the development of a HPV vaccine including 

peptide-based, protein-based, DNA-based, viral-vector based, bacterial vector-based, cell-based, 

dendritic cell-based, modified tumor-based, and VLP based (36). The major obstacle preventing 

the traditional approach of developing a heat-inactivated or attenuated viral vaccine is the 

inability to propagate the HPVs in culture or in animal systems.   

 

1.4 Cellular Immunity to HPV : Th1/Th2/Treg in cervical cancer 

 
 While CD8+ anti-tumor T cells have typically taken center stage as the pre-eminent 

immune element believed required for tumor rejection (37), (38), specific CD4+ T cells appear 
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crucial at the time of CTL priming if secondary expansion and durable memory in CD8+ T cell 

responses are to occur (39), (40).  Furthermore, in experimental models, anti-tumor CD4+ T 

effector cells have the capacity to mediate the regression of MHC class I-loss tumors, that can no 

longer be regulated by specific CTLs (41).  Notably, the quality and functional nature of patient 

anti-tumor CD4+ T cell responses have been suggested as major prognostic indicators of disease 

progression and immunotherapeutic responsiveness (42), (43).        

 Mature murine and human CD4+ T helper cells can be segregated into 3 principal 

functional categories (i.e. Th1, Th2 and Th3/Treg) based on their patterns of effector cytokine 

secretion (44), (45).  Th1-type CD4+ T cells are delineated by their signature secretion of IFN-

γ (and IL-2) and their propensity to support cellular immunity, while Th2-type cells produce 

high levels of IL-4, IL-5 and/or IL-13 and have been traditionally linked to humoral immune 

responses (46), (47).  The Th3/Treg subsets of CD4+ T cells appears to play the role of an 

antigen-specific T “suppressor” cell capable of silencing both Th1- and Th2-type immunity, in 

part due to secretion of the immunosuppressive cytokines IL-10 and TGF-β1 (48).  Many Treg 

cells constitutively bear a CD4+CD25+ phenotype in situ and appear responsible for protection 

against autoimmunity in healthy normal donors, representing fully 5-10% of peripheral blood 

CD4+ T cells (49).  It should be noted that only a subset of total CD4+CD25+ T cells in the 

circulation mediates immunosuppression, with the level of CTLA-4 and GITR co-expression by 

these cells correlating with their degree of suppressor function (50).   

 

The pathogenesis of carcinogenic HPV infections of the cervix results in early induction 

of peripheral tolerance of tissue infiltrating lymphocytes and an imbalanced Th2 response to 

HPV early virus proteins (51).  It is estimated that 70% of patients with cervical cancer have a 
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predominant Th2 response to the HPV E6 and E7 antigens (51). Many previous reports 

addressing the issue of CD4+ T cell functional polarization in cervical cancer patients has been 

equivocal (52), (53). In some studies, freshly-isolated cervical cancer TILs may exhibit a 

predominant Th2-type phenotype associated with the locoregional production of IL-4 and IL-10 

(53), (54).  These cytokines are affiliated with enhanced humoral (i.e. antibody) responses and 

with inhibition of “professional” antigen-presenting cell (i.e. dendritic cell) function, 

respectively, and are often inversely correlated with effective induction or dysfunction of cellular 

T cell-mediated immunity.  However, Santin et al. (55) have shown in 15 patients with cervical 

cancer that isolated TIL are strongly polarized to a Type-1 differentiation pattern (i.e. production 

of IL-2 and IFN-γ), but may be suppressed in vivo by strong production of IL-4/IL-10 within the 

tumor microenvironment (53), (55). These data support a mixed Th1/Th2-type CD4+ T cell 

infiltrate that may overall display Type-2 function in situ.   

 In order to evaluate the polarization status of tumor-specific CD4+ T cells in cancer-

bearing patients in a more refined manner, we have recently defined a series of epitopes derived 

from the HPV-16 E7 protein that are recognized by CD4+ T cells, and have applied these in 

state-of-the-art ELISPOT assays to discriminate the functional status of anti-tumor Th cells.  We 

demonstrated that peripheral blood CD4+ T cells isolated from patients with cervical cancer 

exhibit profound dysfunction in their specific Th1-type immune responses.  Indeed, IFN-γ 

responses were rarely observed, while IL-5 (Th2-type) responses were quite common against 

HPV-16 E7-derived CD4+ T cell epitopes. Notably, TGF-β1 secretion by CD4+ T cells in 

response to HPV-16 E7 peptides was observed in approximately 12% of advanced stage 

patients, and when this occurred, neither IFN-γ nor IL-5 responses were evident, suggesting the 

likely functional dominance of specific T-reg cells in these patients.  It is important to stress that 
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Th1-type immune dysfunction was noted only within the tumor epitope reactive CD4+ T cell 

repertoire, but not within the repertoire of CD4+ T cells recognizing HLA-DR restricted epitopes 

derived from viral pathogens, such as influenza or EBV (which remained strongly Th1-type 

polarized in these patients).   

 

 

1.5 Dendritic cell-based vaccines and therapies for cancer 

 

DCs have been shown to derive from numerous lineages. Generally, DCs, which have 

been used in vaccine protocols, have been derived from monocytes stimulated with Granulocyte 

Macrophage-Colony Stimulating Factor (GM-CSF) and IL-4 or from CD34+ precursors. A 

phenotypically immature DC can efficiently phagocytose both apoptotic and necrotic cell debris, 

microbe and particulate antigens and may through macropinocytosis, take up soluble proteins. 

After antigen capture and maturation, DCs promote antigen-specific T cell activation and 

survival within secondary lymphoid sites (56, 57). DCs have multiple roles and may dynamically 

shift their phenotype in response to the local inflammatory environment. The understanding of 

subtleties in DC phenotypes will be important in ultimately determining the optimal phenotype 

for use in clinical trials and in allowing one to compare results obtained in different protocols. 

Immature DCs capture antigens by several pathways such as, 1) macropinocytosis, 2)  receptor-

mediated endocytosis via mannose receptors and via Type I (CD64) and Type II (CD32) 

Fc−γ receptors,  3)  phagocytosis of particulates such as latex beads, apoptotic and necrotic 

fragments (involving CD36 and αvβ3 or αvβ5 integrins), (58-60)  4)  internalization of heat-shock 

protein gp96 and Hsp 70 via Toll-like receptor 2/4 or CD9 (61-63). The captured antigen is 
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delivered to Major Histocompatibility Complex (MHC) class II compartments, processed and 

then directed to the cell surface in peptide-MHC complexes that can elicit CD4+ T cell responses. 

Furthermore, DCs are also able to present peptides derived from exogenous antigens in MHC 

class I complexes through ‘cross-priming’ mechanisms (64-66). Thus, DCs can stimulate both 

CD4+ and CD8+ T cells by specialized processing of exogenous antigens. DCs can also facilitate 

antigen-specific B cell activation (67).  

Mature DCs develop extensive cytoplasmic veils, exhibit reduced antigen uptake 

capacity, express different cytokine genes and display even higher levels of co-stimulatory 

molecules, as well as higher levels of class II MHC presenting molecules than immature DCs 

(68). DC maturation can be induced following interaction with diverse stimuli (bacterial products 

such as lipopolysaccharide (LPS) or Staphylococcus aureus, Cowan-I strain (SAC), activated 

CD4+ T cells expressing CD40 ligand, apoptotic body uptake, monocyte-conditioned media 

(macrophage supernatant), recombinant cytokines including TNF-α or IL-1β and heat-shock 

proteins (69, 70). Recently, it has also been demonstrated that DC maturation and activation can 

be induced by direct interaction with either naive or activated CD8+ T cells (71, 72). Mature 

human DCs are perhaps best identified by expression of CD83 and the p55 actin-bundling 

protein, fascin (73). Interestingly, better prognosis in cancer are associated with increased 

infiltration by DCs and notably by CD83+ DCs (74), (75). Peripheral blood DCs may either 

migrate directly into the tumor or recruited mononuclear cells may differentiate into DCs in the 

local tumor environment under cytokine stimulation and phagocytose tumor-associated antigens. 

Antigen (notably particulate) uptake also promotes immature DCs to mature. Mature DCs are 

then prompted to migrate to secondary lymphoid organs by their CCR7 chemokine receptors. 

There they present processed Ag to naive T cells. The initial contact between DCs and T cells 
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may be mediated by a transient, high affinity interaction between DC-SIGN on DCs and the 

intracellular adhesion molecule ICAM-3 on T cells (76). Subsequently, this initial contact is 

strengthened via interactions through other adhesion molecules and their corresponding ligands, 

ICAM-1/LFA-1 and LFA-3/CD2 (77, 78). The induction of specific T cell responses by mature 

DCs critically depends on the DCs-T cells crosstalk involving CD40 and co-stimulatory 

molecules (B7-1, B7-2 et al.). Activation of naive T cells occurs only after priming by APCs 

exhibiting high levels of antigen, co-stimulatory molecules or in the presence of pro-

inflammatory cytokines. T cells may become activated after exceeding a critical threshold of 

antigen- MHC crosslinking of their T cell receptors (TCRs). The involvement of co-stimulatory 

and adhesion molecule interactions, particularly if these are sustained over time, modulates the 

threshold antigen dose for activation (79). Just as lymphocytes are composed of different subsets 

with specific functions (T cells, B cells and Natural Killer [NK] cells), DCs are composed of 

distinct subsets that can induce different types of immune responses.  

In mice, three distinct pathways of DC development are likely to exist: myeloid DCs, 

lymphoid DCs and plasmacytoid DCs (77, 80-82). Myeloid DCs can be grown with GM-CSF 

from precursors that yield both granulocytes and monocytes (83). Lymphoid DCs, distinguished 

by CD8α expression, can be generated from precursors that can also develop into T cells, B cells 

and NK cells (84, 85). Ikaros knockout mice lack T, B and NK cells as well as DCs, again 

implicating a role for a lymphoid lineage in the development of DCs (86). However, some have 

questioned a distinct developmental pathway for lymphoid DCs since recent reports have 

demonstrated that both CD8α+ and CD8α- DCs can arise from clonogenic common myeloid 

progenitors, suggesting that CD8α expression is not always indicative of ‘lymphoid’ origin, and 

that phenotypic and functional differences among DC subsets might reflect in maturation status 
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(87), (88). While myeloid DCs and Langerhans cells (LCs) share many common surface 

markers, they can be distinguished developmentally. Genetic studies support the notion of 

separate development pathways in mice deficient in RelB (89). RelB-/- mice, in addition to their 

defects in NK and B cell development, have impaired production of mature DCs, although LCs 

develop normally in these mice (90-92). Murine plasmacytoid DCs can be differentially isolated 

based on their expression of CD11c, B220 (CD45R) and Thy1.2 (CD90). These cells lack 

expression of myeloid (CD11b) antigens and CD8α, a marker used to isolate lymphoid DCs. 

Mobilization of mice with Flt3 ligand (Flt3L) or Flt3L and GM-CSF, which are haematopoietic 

factors that specifically enhance DC growth, results in strikingly increased numbers of 

plasmacytoid DCs in bone marrow and spleen (82).  

In humans, CD34+ haematopietic cells (HPC), the representative DC progenitors, can be 

evolved into two discrete myeloid DC populations, the epidermal LC and the interstitial DC 

(intDC), in cultures containing GM-CSF and TNF-α (39, 77, 93, 94). While both LC and intDC 

subsets can produce IL-12 upon CD40 ligation, only intDC can produce IL-10 (94). DCs can 

also arise from a subset of CD34+ HPC committed to the lymphoid lineage (95). However, as is 

also observed in mice, there is no clonal evidence that would permit one to formally establish the 

existence of a unique lymphoid DC lineage. Three subsets of DC precursors circulate in the 

human blood: CD14+ monocytes, lineage negative CD11c+ precursor DCs and CD11c- precursor 

DCs (77, 80, 96). Monocytes can differentiate into cells displaying features of immature DCs or 

macrophages in response to GM-CSF and IL-4 or Macrophage- Colony Stimulating Factor (M-

CSF), respectively (92, 96, 97). CD11c+ subset contains precursors of intDCs, LC and 

macrophages (98). Distinct factors regulate the survival and differentiation of CD11c-IL-3Rα+ 

DC precursors, also known as plasmacytoid T cells or plasmacytoid monocytes (99). These cells 
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are critically dependent on IL-3 for survival and on CD40L for maturation. CD11c-IL3Rα+ 

plasmacytoid DCs have recently been demonstrated to be the principal IFN-γ producing cells 

(100), (101). In mice, activated lymphoid DCs make higher levels of IL-12 than myeloid DCs 

(102), (103) and induce naive T cells to produce IFN-γ in association with Th1-type responses 

(102), (104, 105). Mouse myeloid DCs induce T cells to produce IL-4 in support of Th2-type 

responses (104), (106). While human DCs can also polarize naive T cell responses, the type of 

DC associated with Th1- or Th2- type responses seem opposite to those observed in mice. 

Human myeloid DCs secrete larger amounts of IL-12 and favor Th1-type responses (107), (101), 

while plasmacytoid CD11c- DCs induce T cell to produce Th2 cytokines, particularly IL-10 

(101, 107, 108). However, the extent of T cell polarization may also be related to the stage of DC 

differentiation/maturation (101, 109) and not simply reflect linkage with a strict phenotypically-

defined subset of DCs (109), (110), suggesting that different protocols of DC preparation may 

affect outcome of vaccinations. 

 

1.6 Dendritic cell-based cancer therapy: delivery and vaccination schedules 

 
 
DCs represent attractive vectors for tumor immunotherapy due to their unique properties, 

including a high degree of antigen capture and antigen presenting capacity that support 

extremely efficient induction and maintenance of specific cell-mediated immune responses. 

Numerous strategies exist for priming DCs to serve as biologic adjuvants: 1) DC pulsed with 

synthetic peptides and eluted peptides, 2) DC transfected with: cDNA or RNA encoding known 

tumor-associated antigen, 3) Tumor cell product-based vaccines DC pulsed with: Tumor lysate, 

Apoptotic body/necrotic body tumor RNA, DC-derived exosomes, Heat-shock protein, DC fused 
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to tumor cells. Mayordomo et al. reported that synthetic peptide-pulsed DCs elicit potent anti-

tumor immunity when injected as vaccines (111). Pulsing synthetic peptides derived from known 

tumor-antigens such as MART-1 (Melanoma Antigen Recognized by T-cells 1)/Melan-A, 

tyrosinase, carcinoembryonic antigen (CEA), gp100, Her-2/neu or MUC1 expressed on human 

DCs have also been shown to yield effective therapeutic vaccines in the clinical setting (112)). 

Some of these peptide epitopes have been modified using single amino acid substitution in the 

MHC anchor positions of the peptide in order to give stronger binding affinity for the MHC class 

I molecules (that is, agonist epitopes), thus increasing their ability to induce CTL responses. The 

subsequent clinical application of these modified peptides has been associated with enhanced 

responses in human trials (113). However, several disadvantages exist in the use of defined 

tumor antigens. In addition to the overwhelming lack of known tumor rejection antigens (TRAs) 

for most human tumors, loaded peptides only reside on the DC cell surface for a short period 

(hours) and most antigenic peptides are only applicable for patients who express a defined 

specific Human Leukocyte Antigen (HLA) haplotype capable of presenting the given epitope 

(114). 

In contrast, gene-based strategies employing cDNA encoding tumor-associated antigens 

do not require prior knowledge of the responder MHC haplotype or of specific MHC-presented 

peptide epitopes. Human DCs genetically engineered to express the melanoma antigen MART-1 

are able to generate peptide-specific, class I-restricted cytotoxic T lymphocytes in cultures of 

peripheral blood leukocytes from normal donors (115). Heiser et al. reported that the vaccination 

with DCs transfected with prostate specific antigen (PSA) mRNA elicits PSA specific CTL 

responses against metastatic prostate tumors, with no evidence of side effects in metastatic 

prostate cancer patients (116). DC-based strategies that do not require prior knowledge of the 

13 



 

responder MHC haplotype or of the relevant MHC restricted peptide epitope have also been 

developed using whole tumors as a source of antigen. DCs can be transduced with recombinant 

viruses such as retroviral or adenoviral vectors, or transfected with whole tumor RNA (117-119). 

Other approaches utilizing whole tumors as a source of antigens have been developed using DCs 

loaded with tumor lysates, acid-eluted tumor peptides or dying tumor cells (apoptotic bodies and 

necrotic cells) (120-122). 

In another strategy, cell-fusion techniques have been used to make hybrids comprising a 

fused tumor cell and a DC; these hybrids may concurrently express tumor DNA encoded 

antigens and the potent stimulating capabilities of the parental DCs (123, 124). Exosomes are 

small, membrane-bound vesicles (vesicles that contain high amounts of MHC, CD86 and tumor 

related peptide) released from tumor cells that may be taken up and presented by DCs (125). 

Tumor-peptide-pulsed, DC-derived exosomes have been successfully used to prime specific 

CTLs in vivo and, when used as a vaccine, to eradicate or suppress the growth of established 

murine tumors (126). The disadvantage of this technique includes the requirement to isolate 

sufficient quantities of patient tumor from which to generate exosomes.  

To enhance the anti-tumor immunity elicited by DC-based vaccination, cytokine gene-

engineered DCs or co-administration of Th1 cytokines have been examined in murine tumor 

models. Using gene-based strategies, it has been shown that co-expression of known melanoma 

antigens with IL-12 or IFN-γ enhances the magnitude of antigen-specific CTL reactivity in 

murine tumor models (127, 128). As alternative approaches to enhance DC-based vaccination, 

systemic administration of Th1 cytokines such as IL-2 and IL-12 have also been shown to 

enhance the therapeutic effectiveness of DC-based vaccination (129, 130). Such combinational 

therapeutic approaches may ultimately be required to improve the clinical efficacy of DC-based 
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immunotherapy. The delivery of DCs directly into tumors is an attractive alternative approach in 

stimulating improved anti-tumor T cell responses in situ, via cross-priming. Both human and 

murine DCs express TNF family ligands (Fas ligand, TRAIL, TNF and Lymphotoxin (131-135) 

and may mediate tumoricidal activity. Subsequent uptake and cross-presentation of tumor 

epitopes may provide a potent immunogen in situ. The ability to mobilize large numbers of DCs 

into the tumor might also be accomplished by administration of Flt3- ligand or GM-CSF, which 

have both been recently evaluated (108). 

Flt3-ligand is a member of a small family of fms-like tyrosine kinase signaling growth 

factors that includes M-CSF and the c-kit ligand. These factors stimulate the proliferation of 

haematopoietic progenitor cells by binding to and activating tyrosine kinase receptors (136, 137). 

Expression of Flt3-ligand receptor is restricted to the most primitive haematopoietic progenitor 

cells and Flt3-ligand stimulates the expansion and mobilization of progenitor cells (138). Lynch 

et al. reported that Flt3-ligand induces at least transient tumor regression in a mouse sarcoma 

model (139). In humans, normal individuals tolerate Flt3-ligand without significant toxicities and 

DC numbers in the peripheral blood increase by more than 20-fold (102). To date, Flt3-ligand 

has not been investigated in human clinical trials as a cancer therapy. 

 
1.7 Vaccine-Induced Immunity to HPVs 

 
One approach to treating various cancers is to target T cell responses to tumor associated 

antigens (TAA) that are expressed on the surface of neoplastic cells in the context of MHC I 

and/or MHC II molecules.  In the case of cancers induced by HPV infections, the oncogenic viral 

proteins (such as E6 and E7) are ideal tumor associated antigens, since they are the only viral 

proteins that must be expressed by the transformed cell and given their derivation from a 

xenogenic source, they are highly-immunogenic.  Dendritic cells (DCs), the most potent antigen-
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presenting cell, are ideal cells for testing the in vitro efficacy of a given TAA (such as high-risk 

HPV E6/E7) to elicit specific CD8+ and CD4+ T effector cells. 

Dendritic cells are unique antigen presenting cells because they are the only cells with the 

capacity to induce primary immune responses, thus permitting establishment of immunological 

memory (80, 140). DCs circulate throughout the periphery as precursors and enter the tissue 

becoming immature DCs (iDCs). Upon encounter with antigen in a pro-inflammatory 

microenvironment, iDCs are induced to mature and to traffic to the tissue-draining lymph 

node(s), where they home to T cell-rich zones. T cells recognizing cognate antigen presented in 

MHC complexes expressed by DCs exhibiting elevated levels of co-stimulatory molecules, 

results in the mutual activation of both the DC (cytokine secretion) and the rare-event, antigen-

specific T cell (77). After several rounds of replication, effector and memory T cells develop that 

may play important long-term regulatory roles against (HPV) virally-infected/transformed cells.  

Indeed, in animal models and human studies, HPV-16+ tumors may undergo regression in 

individuals vaccinated with autologous HPV-16 E6/E7 peptide-pulsed DCs, synthetic E6/E7 

peptides in adjuvant, or HPV-16 Viral-Like Particles (VLPs; refs. (141), (142), in concert with 

increased frequencies of tumor-specific T cells.  However, a major obstacle identified in a 

significant proportion of HPV+ CIN or cervical cancer patients is that, despite the presence of 

detectable anti-HPV-16 E7 T cell responses, lesions are not resolved, due to immune escape 

mechanisms acting at the effector T cell and/or target cell levels (143, 144). Of note, HPV-

infected cervical epithelial exhibit HLA class I dysregulation (i.e. downregulation) in 

approximately 90% of tumors (145).  Antigen processing defects in cervical carcinomas may 

also further limit the presentation of HPV E6/E7-derived epitopes required to generate CTL 

responses and to allow for tumor cell recognition by effector anti-E6/E7 T cells (146).  Notably, 
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CD4+ T cells can provide “help” in the promotion and maintenance of specific CD8+ T cell 

immunity during chronic viral infections (45, 46), and can serve as complementary effector 

mechanisms that are capable of mediating the regression of MHC class I-deficient tumors (147-

149).  Hence, it appears prudent to research vaccines that are capable of augmenting both anti-

HPV CD4+ and CD8+ T cells in order to effect optimal preventative or therapeutic benefit to the 

patient.  

Since the vast majority of research related to the immunology of cervical cancer antigens 

has been focused on defining CD8+ T cell epitopes (150-152), it is perhaps not surprising that 

this is also true for cervical cancer.  Intensive work has been done to characterize HPV-16 E7 

class I restricted epitopes using VLPs, E7-fusion proteins, intact E7 protein, or E7 synthetic 

peptides (153-156).  The study of CD4+ T cell responses and their specificities have received far 

less attention, which is confounding given the central role they have in regulating most anti-viral 

immune responses (157), (158).  Given our perception as to the importance of CD4+ T cell 

responses in the ultimate efficacy of any anti-HPV vaccine for cancer, others and we have 

focused upon, and recently reported the identification of several HLA-DR presented epitopes 

derived from the HPV-16 E7 protein (52, 58).  Based on these results, the central region of the 

HPV-16 E7 protein (E735-77)) appears to represent the major immunogenic region and contains at 

least 3 distinct Th epitopes; within this region (DR15/E7(50-62), DR3/E7(43-77), DQ2/E7(35-

50)) (159). 

 

1.8 Current HPV preventative and therapeutic vaccines 

 
 A preventative vaccine should immunologically mimic the infection they prevent. 

Prophylactic viral vaccines are designed to induce neutralizing antibodies, which reduce the 
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number of cells infected and prevent disease after challenge with virus.  A successful vaccine 

must prime the adoptive immune system to recall specific effector functions in order to prevent 

future infections. A pioneering animal study for HPV vaccines showed vaccinations that induced 

papillomavirus specific antibody prevented infection with virus (160).  As mentioned above, the 

inability to propagate virus for vaccines from in vitro culture has led to the development 

alternative approaches including VLPs.  The 100% efficacy of preventing persistent high-risk 

HPV-16 infection in a recent clinical trial using HPV-16 L1 VLPs (161) is unequivocally the 

leading preventative vaccine.  

 The majority of clinical trials for the treatment of HPV have been carried out in patients 

with late-stage disease, and these individuals are typically immune-compromised due to 

treatment with radiotherapy and/or chemotherapy.  To date, a pilot study of 15 patients 

vaccinated with DCs fed recombinant HPV-16 and –18 proteins and matured with cytokine 

cocktail (IL-1β, IL-6, TNF-α, and PGE2) is the only clinical trial for the treatment of cervical 

cancer using DCs (Table 1) (162). Three clinical trials for CIN patients utilize HPV-16 E7 

peptide (163, 164) and HPV-16 E6-E7 fusion protein (165) for vaccinations are also being 

performed, with the currently available information summarized in Table 1. Additionally, two 

clinical trials for cervical cancer patients vaccinated with recombinant HPV-16 protein (166, 

167) and one vaccinated with peptide and adjuvant (168) have demonstrated only limited 

efficacy (Table 1).  No clinical trials utilizing VLPs for immunotherapy have been performed to 

date. However, with the engineering of the VLP to contain onco-proteins, such as E7, future 

immunotherapies for CIN and cervical carcinoma appear promising.  The combination of VLPs 

fed to autologous DCs and modulated by adding exogenous factors, specifically the DC1 

polarizing cytokines IL-12 and IFN-γ (169), would be presumed most likely to promote 
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enhanced Th1-type immunity, that many believe will be most effective in treating HPV-related 

malignancies. 
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Scope of This Thesis 

We have evaluated CD4+ T cells isolated from the peripheral blood of normal donors, 

CIN patients and cervical cancer patients, for their quantitative and qualitative functional 

responses against novel HPV-16 E7-derived peptide epitopes that we have defined.  We 

observed that while HPV-16+ CIN patients frequently displayed Type-1 CD4+ T cell responses to 

E7 epitopes, this was comparatively rare for HPV-16+ patients with cervical cancer.  Instead, 

cervical cancer patients displayed predominant Type-2 Th responses against E7-derived 

epitopes.  Subsequent analyses suggest that poly-epitope specific, anti-E7 CD4+ T cell responses 

can be elicited from these patients using vaccines based on autologous DCs and HPV-16 E7 

CD4+ epitopes, L1L2-E7 VLPs or rE7 protein. These data suggest that DC-E7 based vaccines 

may promote therapeutically-important immunity in the majority of treated patients, particularly 

in a setting where Type-1 immunity may be preferentially elicited in the cervical cancer-bearing 

host, or in CIN+ patients where Th immune deviation has not yet occurred. 
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Preface Chapter 2 

 
 Using DC-based in vitro vaccinations as a platform, our goal was to define CD4+ T cell 

epitopes derived from the HPV-16 E7 oncoprotein.  We tested CIN and cervical cancer patients 

for the presence of T-helper cell reactivity to six HPV-16 E7 peptides predicted to be presented 

my HLA class II molecules. By analyzing known HPV-infected individuals, the likelihood of 

identifying circulating HPV-specific Th cells in the peripheral blood was anticipated to be 

greatly increased. We identified three novel HPV-16 E7 (E71-12, E748-62, and E762-75) peptide 

epitopes that were recognized by patient CD4+ T cells.  Based on the donor haplotype 

information, the HPV-16 E71-12 and E762-75 epitopes are presented by HLA-DR4 and -DR15, 

while the HPV-16 E748-62 epitope is presented by multiple non-HLA-DR4 (HLA-DR3, -11, and –

15) class II alleles.  By analyzing the CD4+ T cell functional responses in both IFN-γ and IL-5 

ELISPOT assays,  we were also able to determine that Th1-type (i.e. IFN-γ) dominated responses 

to HPV-16 E7 epitopes was common in patients with pre-malignant CIN lesions, while Type-2 

(i.e. IL-5) dominated immunity was prevalent in patients with cervical cancer. 

 The studies in Chapter 2 support the immunogenicity of the HPV-16 E71-12, E748-62, and 

E762-75 peptides, but does not stringently address whether these epitopes are naturally processed 

and presented by patient DCs or tumor cells.  This issue is more formally addressed in Chapter 

3, where recombinant E7 protein/DC-based vaccines are evaluated to elicit epitope-specific Th 

cell responses. 
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2.1 ABSTRACT 

Given the anticipated clinical importance of helper and regulatory CD4+ T cells reactive 

against HPV-16 E7 in the cervical carcinoma setting, we performed this study to identify novel 

E7-derived T helper (Th) epitopes and to characterize functional anti-E7 Th responses in normal 

donors and patients with CIN I-II or cervical cancer.   

Candidate pan-HLA-DR binding peptides were identified and synthesized based on 

results obtained using a predictive computer algorithm, then applied in short-term in vitro T cell 

sensitization assays.  Using IFNγ/IL-5 ELISPOT assays as readouts for Th1-type and Th2-type 

CD4+ T cell responses, respectively, we identified 3 E7-derived T helper epitopes (E71-12, E748-62 

and E762-75), two of which are novel.  

Normal donor CD4+ T cells failed to react against these E7 peptides, while patients with 

pre-malignant CIN I-III lesions displayed preferential Th1-type responses against all three E7 

epitopes.  Th1-type responses were still observed to the E748-62, but not the E71-12 and E762-75 

peptides in cancer patients, where these latter two epitopes evoked Th2-type responses.  Notably 

all responders to the E71-12 and E762-75 peptides expressed the HLA-DR4 or -DR15 alleles, while 

all responders to the E748-62 peptide failed to express the HLA-DR4 allele. 

Our results are consistent with a model in which cervical cancer progression is linked to 

an undesirable Th1- to Th2-type shift in functional CD4+ T cell responses to two novel E7-

derived epitopes.  These peptides may prove important in vaccines to promote and maintain 

protective Th1-type anti-HPV immunity and for the immune monitoring of treated patients 

harboring HPV-16+ malignancies.   
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2.2 INTRODUCTION 

Human papillomaviruses (HPVs) have been linked to cervical dysplasia and cervical 

cancer, and are associated with 12% of all cancers in women (2).  An estimated 30-60% of 

sexually active men and women are infected with genital HPVs, although most are asymptomatic 

(170). There are approximately 370,000 cases of cervical cancer diagnosed worldwide each year 

and a 50% mortality rate has been reported (171, 172).   

HPV is a papillomavirus consisting of a non-enveloped, 55-nm, icosahederal-shaped 

virion, with HPV genotypes divided into several risk groups.   The low-risk genotypes, such as 

HPV-6 and HPV-11, are detected in benign genital warts and low-grade squamous intraepithelial 

lesions (SIL), but are rarely found in invasive carcinomas (7).  HPV DNA of high-risk genotypes 

(HPV-16, -18, -31, -33, -45, or -56) are detected in nearly all cases of cancers of the cervix, with 

HPV-16 observed in 50-60% of HPV+ carcinomas(7, 173).  Expression of early viral proteins, 

such as HPV-16 E6 and E7 are essential in promoting and maintaining the transformation of 

cells by binding to and inactivating p53 and pRB, respectively (14, 15, 25, 174-177).  

Why some individuals clear the virus, while others do not, remains unknown.  The 

observed increase in frequency of HPV+ lesions in immunosuppressed individuals however, 

suggests that the immune system may play a important protective role (178), with T cell-

mediated immunity appearing crucial to the control and eradication of HPV-transformed tumors 

(179).  While most attention has been traditionally dedicated to the study of anti-HPV CD8+ CTL 

responses, it is also clear that CD4+ T cell recognition of E6- and/or E7-derived peptides may be 

critical for optimal prophylactic or therapeutic efficacy against HPV-related malignancies.  In the 

current study, we have identified or confirmed three E7-derived Th epitopes and analyzed the 

magnitude and polarization of specific CD4+ T cell responses in the peripheral blood of normal 

donors and patients with cervical intraepithelial neoplasia (CIN) or cervical carcinoma.  We have 
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observed that in contrast to the undisturbed Th1-type responses against the E748-62 epitope in all 

donor cohorts, CD4+ T cell responses against the E71-12 and E762-75 epitopes showed a cancer-

related bias away from clinically preferred Th1-type and towards a potentially undesirable Th2-

type immunity.  
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2.3 MATERIALS AND METHODS 

2.3.1 Peptide Selection and Synthesis.   

The HPV-16 E7 protein (GeneBank Accession AAB70738) was scanned using a MHC 

Class II HLA-DR peptide binding algorithm (180), with predicted high-affinity HLA-DR 

binding peptides reported in Table 2. Predicted E7 epitopes and the known malarial 

circumsporozooite326-345 (CS326-345) Th epitope (181) were synthesized using fMOC chemistry by 

the University of Pittsburgh Cancer Institute’s (UPCI) Peptide Synthesis Faculty.  Peptides were 

>96% pure based on high-performance liquid chromatography, with identities validated by mass 

spectrometric (MS/MS) analysis performed by the UPCI Protein Sequencing Facility. 

 

2.3.2 Isolation of Peripheral Blood T cells and DCs.  

Patient information is provided in Table 3.  Briefly, the CIN or invasive cancer status of 

patients were determined by pathology review.  No patient had received any adjunctive (chemo-, 

radio-, or immuno-) therapy within 6 weeks prior to blood donation.  Vaginal hysterectomy 

patients were clinically treated for various reasons unrelated to CIN or invasive cervical cancer, 

and were considered normal in the context of the current study.  Normal donors (ND) are 

asymptomatic women with no history of CIN.  Fifty to one-hundred milliliters of heparinized 

donor blood was obtained with informed consent under an IRB-approved protocol and diluted 

1:2 in PBS, prior to being centrifuged (550 x g for 25 min at RT) on discontinuous ficoll-

hypaque gradients (CellgroTM, Mediatech, Inc., Herndon, VA) per the manufacturer’s 

instructions.  Bouyant PBMCs at the gradient interface were recovered and washed three times 

with PBS (BioWhittacker, Walkersville, MD) to remove residual platelets and ficoll-hypaque.  

The generation of donor DCs from adherent mononuclear cells and the isolation and cryo-
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preservation of autologous CD4+ T cell from non-adherent cells were performed as previously 

described (182).   

 

2.3.3 HLA-DR Typing.   

The HLA-DR4+ status of peripheral blood monocytes was confirmed by flow cytometry 

as previously described (182).  Patient HLA-DR genotyping was performed using the Dynal 

Allset+™ SSP DR “low resolution” kit (Dynal Inc., Lake Success, NY), with template DNA 

extracted from patient lymphocytes expanded for 5 days in the presence of 25 µg/ml 

phytohemagglutinin (PHA; Sigma Chemical Co., St. Louis, MO).  DNA extraction was 

performed using the DNeasy Tissue Kit (Qiagen, Valencia, CA), according to the manufacturer’s 

protocol.  

 

2.3.4 Induction of Th Effector Lymphocytes.    

On day 7 of DC culture, autologous CD4+ T cells were thawed in 10 ml of RPMI 1640 

containing 10% FBS supplemented with 20 Units/ml DNase I (type II, from bovine pancreas, 

Sigma) to increase harvested cell yield and to reduce clumping.  Harvested, non-adherent DCs (2 

x 105) were co-cultured with 2 x 106 thawed, autologous CD4+ T cells in the presence of 10 µM 

E7-derived synthetic peptides in RPMI-1640 media containing 10% FBS.  No exogenous 

cytokines were added to these cultures, in order to prevent any Th1 polarizing effects.  

Responder CD4+ T cells were then harvested on day 7-10 and analyzed for HPV-16 E7 peptide-

specific reactivity in ELISPOT assays. 
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2.3.5 IFN-γ and IL-5 ELISPOT assay for Peptide-Reactive CD4+ T cell 
Responses. 

To evaluate the frequencies of peripheral blood CD4+ T cells recognizing peptide 

epitopes, ELISPOT assays for IFN-γ and IL-5 were performed as previously described(182, 

183).  Briefly, 105 CD4+ T cells and autologous thawed DCs (2x104 cells) were seeded in 

ELISPOT wells. Synthetic peptides (stocks at 1 mg/ml PBS) were then added to appropriate 

wells at a final concentration of 10 µg/ml.  Negative control wells contained CD4+ T cells and 

DCs pulsed with CS326-345 peptide, with DCs alone serving as the APC control. Data are reported 

as actual numbers of E7-specific T cell spots above T cell background responses to the negative 

control CS326-345 peptide.  Additionally, when sufficient T cells were available, CD4+ T cells co-

cultured with non-peptide pulsed DCs were included as an additional negative control.  The non-

peptide pulsed DC and CS326-345 peptide-pulsed DC groups varied at most by 5 spots/105 CD4+ T 

cells which was statistically insignificant (data not shown).  Positive controls wells contained T 

cells plated in the presence of 5 µg/ml PHA (Sigma).  All determinations were performed in 

triplicate, with spots imaged using the Zeiss AutoImager (and statistical comparisons determined 

using a Student two-tailed T-test analysis).  The data are reported as the mean (+/- SD) number 

of IFN-γ or IL-5 spots per 105 responder CD4+ T cells analyzed.  

 

2.3.6 TGF-β and IL-10 ELISAs.   

Supernatants were harvested from ELISPOT plates at the endpoint of the culture period, 

pooled for a single stimulus (i.e. a given peptide, etc.) and, then frozen at -20oC until being 

analyzed by cytokine-specific ELISA.  Cytokine capture and detection antibodies and 

recombinant cytokines for the TGF-β ELISA were purchased from BD-Pharmingen (San Diego, 

CA), while the IL-10 ELISA was purchased from Mabtech (Stockholm, Sweden) and used per 
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the manufacturer’s instructions.  The lower limit of detection for the TGF-β and IL-10 assays 

were 50 pg/ml and 12 pg/ml, respectively. 

 

 

2.3.7 PCR Analysis.  

PCR analysis for HPV-16 E6, HPV-16 E6/E7, and HPV L1 DNA was performed on 

patient’s loop electrosurgical excision procedure (LEEP) biopsies.  Extraction of DNA from the 

biopsies was performed using the DNeasy Tissue Kit (Qiagen, Valencia, CA) according to 

provided manufacturer’s protocol.  The following primer sets were used: HPV-16 E6 (forward: 

ATGCACCAAAAGAGAACTGC, reverse: TTACAGCTGGGTTTCTCTAC, product size 

477bp with cycles: melting 94oC for 45 sec, annealing 59oC for 45 sec, extension 72oC for 1 min, 

for 38 cycles), HPV-16 E6/E7 (forward:  ATGCACCAAAAGAGAACTGC, reverse: 

TGCCCATTAACAGGTCTTCC, product size 735 bp with cycles: melting 94oC for 45 sec, 

annealing 59oC for 45 sec, extension 72oC for 1 min, for 40 cycles), HPV L1 capsid (forward: 

GCMCAGGGWCATAAYAATGG, reverse: CGTCCMARRGGAWACTGACT, product size 

450 bp, with cycles same as E6/E7, M denotes A and C; R denotes A and G; W denotes A and T; 

and Y denotes C and T).  The capsid primers specifically amplify the L1 gene for the majority of 

(but not all) oncogenic HPV genotypes (184).  A patient was defined as HPV-16+ if they were 

qualitatively positive by PCR using either the E6 or E6/E7 primers sets.  Hence, we report a 

given patient’s HPV genotype status as HPV-16+, HPV-16-/HPV-L1+, or HPV-16-/HPV-L1-. 
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2.3.8 Statistical Analysis.  

Statistical significance of differences was determined between ELISPOT data sets using a 

Student’s two-tailed T test, with statistical significance defined at p < 0.05.  
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2.4.RESULTS 

 

2.4.1. Selection and screening of candidate HLA-DR-binding peptides 
 derived from the E7 protein. 

 
Our investigation was designed to identify novel HPV-16 E7 derived peptides capable of 

being presented in a pan-DR manner to CD4+ T cells, and to characterize functional anti-E7 Th 

responses in patients with HPV-related dysplasia (CIN I-III) or cervical cancer.  We subjected 

the cDNA sequence of the HPV-16 E7 protein to a computer algorithm analysis designed to 

identify peptides likely to bind a broad range of HLA-DR alleles (i.e. pan-DR binding).  Given 

the relatively high frequency of HLA-DR4 in the general population (~20%) and our past 

success in identifying HLA-DR4-presented epitopes derived from melanoma and renal cancer 

antigens (181-183), we initially required that HLA-DR4 be among the range of class II alleles 

the selected peptides would be predicted to bind to.    

Nine amino acid-long ‘core’ sequences were evaluated and scored for predicted binding 

to nine distinct HLA-DR4 sub-alleles, with individual scores summed for the nine sub-alleles 

(Table 2). The highest aggregate scoring sequence was taken to represent the peptide most likely 

to bind in a pan-DR4 manner.  Peptides E71-12, E711-25, E762-75, E772-86, and E783-97  each 

contained predicted HLA-DR4-binding peptide nonamers, while peptide E748-62 that failed to 

contain a predicted HLA-DR4 binding sequence, was selected for analysis due to its otherwise 

strong predicted pan-DR binding capacity (Table 2).  These six peptides were synthesized and 

subsequently analyzed for T cell recognition in vitro.   
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2.4.2. CD4+ T cells isolated from the majority of patients evaluated respond to 
HPV-16 E7-derived peptides.   

 
Peripheral blood CD4+ T cells were isolated from 28 patients with CIN I-III or cervical 

carcinoma, and from 5 age-matched controls (3 normal individuals undergoing vaginal 

hysterectomy and 2 normal donors with no history of CIN; see Table 3 for donor characteristics).  

After a single round of in vitro stimulation (IVS) with autologous DCs pulsed with a given E7 

peptide, the resulting CD4+ T cells were screened for peptide-specific responses in IFN-γ (Th1-

type responses) and IL-5 (Th2-type responses) ELISPOT assays.  Figure 5 depicts the Th1- vs. 

Th2-type CD4+ T cell responses of all donors against the E71-12 and E762-75 peptides, reported as 

spots per 105 CD4+ T cells analyzed.  A corresponding analysis of CD4+ T cell response to the 

E748-62 peptide is provided in Figure 6.  These data are also summarized in a qualitative (+/-) 

format in Table 2 for each individual evaluated.  The results for peptides E711-25, E772-86, and 

E783-97 have been omitted due to the lack of donor responses to these peptides (data not shown).     

Eighteen of the 28 CIN/cancer patients responded significantly to at least one HPV-16 E7 

peptide in either the IFN-γ (14/28) and/or IL-5 (6/27, 1 patient not tested) ELISPOT assays 

(Table 3).  In the majority (15 of 18) of cases where patients did respond to HPV-16 E7 peptides, 

they reacted against a single peptide. Reactivity to two E7 peptides was observed in only 2 

patients, and reactivity to all three E7 peptides was noted for a single patient with cervical cancer 

(patient #35).  Overall, 6, 8 and 8 patients were responsive to the E71-12, E748-62 and E762-75 

peptides, respectively.  Of note, 0/3 patients undergoing vaginal hysterectomies and 0/2 normal 

donors were reactive against any of the E7-derived peptides evaluated.    

With regard to disease-stage, Type-1 (IFN-γ) responses against any of the three E7 

peptides were observed in 5/11 CIN I, 3/6 CIN II, 3/5 CIN III and 3/6 cervical cancer patients.  
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In contrast, Type-2 (IL-5) responses were not seen in CIN I/II patients, but were observed in 1/5 

CIN III and 5/5 (patient #27 was not evaluated) cervical cancer patients.  Notably, CD4+ T cell 

responses appeared Th1- or Th2-type polarized in the vast majority of responders, with mixed 

Th1 and Th2 reactivity to E7 peptides evident in only 2 patients with cervical cancer (patients 

#12 and #35).   We were able to evaluate HPV genotype status by performing a PCR-based 

analysis of DNA extracted from LEEP biopsies in 16 of the 18 patients responsive to E7-derived 

peptides.  Of these 16 patients, 12 screened as HPV-16+, 3 patients (#24, #29, #32) exhibited an 

HPV-16-/HPV-L1+ genotype and a single patient (#31) was evaluated as HPV-16-/HPV-L1-.  

Plasma was available for 3 of these HPV-16- patients, and in 2 of 3 cases, anti-HPV-16 E7 IgG 

antibodies were detected by ELISA (data not shown).  

 

2.4.3. Peptides E71-12 and E762-75 are primarily recognized by HLA-DR4+ CIN 
patients and HLA-DR15+ patients with cervical cancer. 

 
As indicated above, CD4+ T cells isolated from 6 of 28 patients exhibited statistically 

significant (ELISPOT) responses against the HPV-16 E71-12, with Type-1 responses observed in 

4 CIN I/II patients and Type-2 responses identified in two patients with cervical carcinoma 

(Figure 5 and Table 3).  Strikingly, all six of these responding patients expressed the HLA-DR4 

(4/6) and/or -DR15 (2/6) class II molecules, and were typed as HPV-16+ (with the exception of 

patient #29 who tested as HPV-16-/HPV-L1+) by RT-PCR.     

Similarly, 7 of 8 patients with CD4+ T cells reactive against the HPV-16 E762-75 peptide 

were either HLA-DR4+ or -DR15+ (Table 2), with Type-1 responses observed in 3 patients with 

CIN II/III and Type-2 responses identified in 5 patients with cervical carcinoma (Figure 5).  

Cancer patient #27, who expresses neither HLA-DR4+ nor HLA-DR15+, was responsive to the 
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HPV-16 E762-75 epitope in the IFN-γ ELISPOT assay (but was not tested for IL-5 response due to 

an insufficient number of T cells).   All responders tested positive for expression of HPV-16, 

with the exception of CIN II patient #24, who was typed as HPV-16-/HPV-L1+.  This patient’s 

(#24) plasma also failed to contain detectable levels of anti-HPV-16 E7 IgG antibodies by 

ELISA (data not shown). 

 

2.4.4. Peptide E748-62  appears to be primarily recognized by patients who do not 
express HLA-DR4.   

 
Eight of 28 patients evaluated with CIN I-III or cervical carcinoma displayed statistically 

significant CD4+ T cell responses to the E748-62 peptide in either the IFN-γ or IL-5 ELISPOT 

assays, as summarized in Table 3.  In marked contrast to Th responses against the E71-12 and 

E763-75 peptides, none of the responders to peptide E748-62 were HLA-DR4+ (Figure 6).  Hence, 8 

of 18 (44.4%) evaluable DR4- women exhibited CD4+ T cells reactive against this peptide.  

Seven of these 8 responder patients displayed Th1-type biased reactivity to the E748-62 peptide, 

with CIN III patient #28 representing the sole Th2-type responder to this epitope. Interestingly, 

two HLA-DR15+ cancer patients displayed strong Th1-type immunity to the E748-62 peptide, and 

in the case of patient #35, this response occurred in concert with Th2-biased responses against 

the E71-12 and E762-75 peptides (Table 3). LEEP biopsies were available for 7/8 responder 

patients.  PCR analyses determined the genotype status of 5 patients as HPV-16+, 1 patient (#32) 

as HPV-16-/HPV-L1+ and 1 patient (#31) as HPV-16-/HPV-L1-  (Table 3).  Based on analysis of 

their plasma, these latter two patients displayed detectable levels of anti-HPV-16 E7 IgG 

antibodies by ELISA (data not shown). 
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2.5 DISCUSSION 

In the current report, we have identified two novel HPV-16 E7-derived Th epitopes 

contained within the E7 1-12 and E7 62-74 peptides.  Each epitope is seemingly restricted by at least 

HLA-DR4 and -DR15, and is recognized by CD4+ T cells isolated from CIN and cervical cancer 

patients, but not normal donors.  We also synthesized (and evaluated CD4+ T cell 

responsiveness) the HLA-DR15-presented E748-62 epitope previously defined by Van der Burg et. 

al. (159), based on our algorithm analysis result suggesting that this peptide was likely to be pan-

DR presented.  Our study revealed that the E748-62 peptide is recognized by CD4+ T cells isolated 

from a high frequency (i.e. approximately 44%) of HLA-DR4- CIN or cervical cancer patients 

evaluated in this study, including but not restricted to, HLA-DR15+ patients.  Theoretically, this 

data argues for the pan-class II presentation of this epitope on multiple HLA-DR, -DP or -DQ 

molecules (other than HLA-DR4).  Alternatively, this peptide can be presented by HLA-DR4 

and is either an immunodominant antagonist or it preferentially promotes Th responses other 

than Th1- or Th2-type (i.e. T regulatory, etc.).  These two possibilities are unlikely since this 

peptide is predicted to bind to HLA-DR4 very poorly, if at all.  Furthermore, in extended studies, 

we analyzed the supernatants harvested from ELISPOT wells by ELISA to determine whether 

E7 peptides elicited TGF-β and IL-10 production (an index of T regulatory function, ref. 103) 

from any of these donors.  We observed E7 peptide-specific TGF-β production from CD4+ T 

cells isolated from only two patients (CIN II (patient #1): 102 pg/ml and Cancer patient #39: 

54pg/ml) that exceeded the 50 pg/ml lower limit of detection for this ELISA.  Detectable IL-10 

production (i.e. > 12 pg/ml, the lower limit for the IL-10 ELISA) was observed only for Cancer 

patient #39 (25 pg/ml).  Interestingly, this patient was also one of the 2 patients producing TGF-

β in response to E7-derived peptides.  We were unable to evaluate the other TGF-β producer 
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(patient #1) for IL-10 production due to insufficiency in T cell numbers required for the assay.  

In aggregate, the available data support the pan-class II (but non-HLA-DR4) presented nature of 

the E748-62 peptide.   

IFN-γ and IL-5 ELISPOT assays were employed to monitor the functional polarization of 

patient CD4+ T cell responses against HPV-16 E7-derived peptides.  We observed that a high 

number of CIN I-III patients (11/22) displayed Th1-type immunity to one or more E7 peptides, 

but that only 1/22 CIN I-III patients displayed detectable Th2-type responses to these same 

peptides.  In marked contrast, 5 of 6 patients with cervical cancer (i.e. patient #27 could not be 

evaluated for IL-5) displayed Th2-type responses to at least one E7-derived Th epitopes, with 2/5 

exhibiting mixed Th1-/Th2-type immune responses.  These data suggest that Th2-type 

dominated CD4+ T cell responses against HPV-16 E7 epitopes may correlate with advanced 

disease status in these individuals, a finding consistent with results reported for tumor antigen-

specific Th responses in patients with advanced stage cancers of alternate histologies (182, 185-

189).   

It should be stressed that polarized Th2-type CD4+ T cell responses were specific for the 

HPV-16 E71-12 and E762-75 peptides tested and do not reflect the general tendency of these donors 

with advanced stage malignancy to respond in a generic Th2-biased fashion.  Indeed, mitogen 

(PHA) control spot frequencies obtained for both the IFN-γ and IL-5 ELISPOT assays using 

CD4+ T cells were indiscriminant between patients with cancer, CIN patients, and (normal) 

vaginal hysterectomy patients.  In addition, cancer patients exhibited strong Th1-type immunity 

to the pan-DR-presented EBV Th epitope EBNA-2280-290 (ref. (190), data not shown).  Perhaps 

most salient, cervical cancer patient #35 displayed coordinate Th2-type responses to the E71-12 

and E762-75 peptides and Th1-type reactivity against the E748-62 epitope.   
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The mechanism(s) by which Th2-type skewing may occur in anti-E7 CD4+ T cell 

responses of cervical carcinoma patients remains unknown, but could include: 1) chronic 

antigenic restimulation (i.e. repetitive re-infection, refs. (191-195)) in situ that may delete Th1-

type responders (182, 196)  2) dominant locoregional DC2-type antigen presenting cell function 

in the advanced cancer setting that favors Th2-type immunity (107) and/or 3) a generalized Th2-

polarizing cytokine microenvironment at the tumor site and within the tumor draining lymph 

nodes of affected patients (197).  The maintenance of Th1-type immunity against the pan-DR-

presented EBV Th epitope (and against the E748-62 peptide in patient #35) argues against 

dominant DC2-mediated functional, or global Th2-type cytokine-mediated, skewing of 

peripheral blood CD4+ T cell responses in cervical cancer patients.  However, these important 

issues will require intense prospective evaluation to determine their unequivocal roles in shaping 

the HPV-specific immune response in high-risk and progressor patients. 

Our analysis of donor CD4+ T cells using ELISAs specific for IL-10 and TGF-β revealed 

weak evidence for anti-E7 Treg-type activity in only 2/28 patients (CIN II patient #1 and Cancer 

patient #39).  This suggests, at least in the peripheral circulation of patients, that the detection of 

Treg-type CD4+ T cells reactive against HPV-16 E7-derived epitopes is not a common event.  

Such responses, if they exist in patients, may be more dominant in cervical mucosal sites or the 

secondary lymphoid organs that drain these tissues (198).  

Coordinate analysis of CD4+ T cell responsiveness to HPV-16 E7-derived peptides and 

HPV-16 genotype status of LEEP biopsies indicated that in 6/7 cases for the E71-12 peptide, 5/7 

(evaluable) cases for the E748-62 peptide and 7/8 cases for the E762-75 peptide, the responding 

patients were HPV-16+.  A total of 3 patients (#24 CIN III, #29 CIN I, #32 CIN II) that reacted 

against E7 peptides were genotyped as HPV-16-/HPV-L1+ indicating current infection by 
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alternate HPV types, and a single CIN II patient (#31) who reacted against the E748-62 peptide 

was genotyped as HPV-16-/HPV-L1-. We would hypothesize that each of these latter 4 patients 

had at one time been infected with HPV-16, but had cleared the virus, potentially via specific T 

cell dependent immunity.  This latter possibility is consistent with the detection of (T-dependent) 

IgG, anti-E7 antibody levels in the plasma of patients #31 and 32 by ELISA (data not shown, 

patient #29 could not be evaluated). After clearing HPV-16, a subsequent re-infection with 

alternate HPV genotypes could have resulted in HPV-L1+ status for the CIN lesion in 3 of these 

4 patients.  We currently cannot provide a convincing rationale for the results obtained in patient 

#31, unless the biopsy tissue provided for analysis failed to contain a sufficient quantity of the 

CIN II lesion within the LEEP biopsy, resulting in a positive control signal (for β-actin) but a 

failure to detect the HPV-16 or HPV-L1 genes.  The lack of an L1-specific signal could also 

occur if the patient’s CIN lesion were infected by a high risk HPV type that is not amplified by 

our selected PCR primers.  Finally, the data derived from CIN III patient #24 who exhibited Th1-

type CD4+ T cells reactive against the E762-75 peptide, but who failed to display positive HPV-16 

PCR or serology results (data not shown) remains an enigma.   

One surprising finding in this study was that 5 out of 6 (83%) cancer patients evaluated 

were tissue typed as HLA-DR15+, although this allele is typically only observed in the general 

population at a frequency of 17-29%, depending on donor ethnicity (199). Of interest in this 

regard, recent reports argue that HLA-DR15 may be associated with increased susceptibility to 

cervical cancer (200-202).  We will continue to monitor whether the HLA-DR15 allele is 

expressed by a disproportionately high frequency of cervical cancer patients in our prospective 

studies.  
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Overall, we believe that the E71-12 and E762-75 peptides represent good candidate epitopes 

for implementation in vaccines for (at least) HLA-DR4+ or -DR15+ individuals to prevent or treat 

cervical cancer.  Based on the high-frequency of responders against the E748-62 epitope in HLA-

DR4-negative patients, the inclusion of this peptide in a polyepitope vaccine (including the E71-12 

and E762-75 epitopes), would complement and broaden patient coverage.  This would allow for 

the majority of patients (i.e. > 70%) with HPV-16+ CIN or cervical carcinomas to be treated by 

such a modality.  Furthermore, given an expanding number of cancer histologies reported to be 

HPV-positive, HPV-16 E7 peptide-based vaccines may prove clinically applicable to an even 

larger patient population. When provided with an adjuvant capable of preferentially promoting 

Th1-type immunity, E7 peptide-based vaccines would be anticipated to stimulate IFN-γ 

secreting, anti-E7 CD4+ effector T cells.  These Type-1 Th cells would, in turn, be expected to 

enhance the frequencies and functionality of anti-HPV-16 reactive CD4+ and CD8+ T cells in situ 

and to recruit these T cells into HPV-16+ tissues (via a DTH-type mechanism), yielding 

enhanced clinical efficacy.   These peptides will also likely prove useful in the longitudinal 

immunomonitoring of functionally evolving CD4+ T cell responses in patients with, or at high-

risk to develop, cervical carcinoma or other HPV-related malignancies. 
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Preface Chapter 3 

 Having defined three HLA-DR-restricted Th epitopes derived from the HPV-16 

E7 protein in Chapter 2, we next explored the potential of using recombinant E7 in vaccine 

formulations to discern: 1) whether all three epitopes are naturally-processed and presented by 

host DCs, 2) whether whole protein vaccines are able to elicit poly-specific anti-E7 Th responses 

in patients with CIN or cervical cancer and 3) whether recombinant E7 protein- or E7 peptide-

based vaccines are preferred for the effective induction of E7-specific Th cells in vitro.  Chapter 

3 outlines the use of DC/viral-like particle (VLP) vaccines to elicit specific CD4+ T cell 

responses in vitro.  We observed that this approach is effective in promoting Th responses 

against all three E7-derived epitopes in a subset of donors and importantly, that the use of E7 

recombinant protein- vs. peptide-based vaccines does not alter the functional polarization (i.e. 

Th1-type vs. Th2-type) of the CD4+ T cell immune response.  Since cancer patients, but not 

patients with CIN, continued to display Type-2 dominated immunity to the E71-12 and E762-75 

epitopes, further modification of DC-based vaccines will be warranted to yield predictable and 

preferential Type-1 immunity. 
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3.1 ABSTRACT 
 

Human papillomavirus (HPV) has been casually linked to cervical cancer and cervical 

intraepithelial neoplasia (CIN), making HPV-based vaccines logical candidates for prevention or 

amelioration of these conditions.  The inability to culture HPV or to generate attenuated vaccines 

has however, necessitated the development of novel immunization strategies to prevent and treat 

HPV-associated malignancies.  We evaluated the ability of recombinant HPV-16 L1L2-E7 virus-

like particles (VLPs) to stimulate E7-specific CD4+ T cell responses from normal donors and 

patients with CIN lesions or cervical carcinoma when employed in DC-based vaccines in vitro. 

We have determined that VLPs partially mature DCs and that DC-L1L2-E7 VLP vaccines elicit 

CD4+ T cell responses against three distinct, pan-DR-presented HPV-16 E7-derived epitopes to 

a degree comparable to or exceeding that observed for DCs pulsed with synthetic E7-derived 

peptides or recombinant E7 (rE7).  Notably, DC-L1L2-E7 VLP vaccines stimulated, but did not 

alter the functional polarization state of specific anti-E7 CD4+ T cells.  Patients with pre-

malignant CIN I-III lesions displayed predominant Th1-type anti-E7 immunity, while those with 

cervical cancer were more commonly Th2-type biased.  Since CD4+ T cells isolated from more 

than 90% (17 of 18) of patients evaluated responded to DC-L1L2E7 VLP vaccines in vitro, such 

vaccines may represent promising preventative or therapeutic treatment strategies for patients 

with HPV-16-associated malignancies.  
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3.2 INTRODUCTION 
 

The human papillomaviruses (HPV) have been causally-linked to cervical dysplasia and 

cervical cancer, which represents the third most common cancer (12%) among women 

worldwide (2). Approximately 370,000 cases of cervical cancer are newly diagnosed each year, 

with a 50% mortality rate reported(171, 175).  An estimated 30-60% of sexually active men and 

women are infected with genital HPVs, and these infections are typically resolved 

asymptomatically (170).  The low-risk HPV genotypes, such as HPV-6 and HPV-11, are 

detected in benign genital warts and low-grade squamous intraepithelial lesions (SIL), but rarely 

in invasive carcinomas (7). High-risk HPV genotypes (HPV-16, -18, -31, -33, -45 or –56) have 

been detected in nearly all cancers of the cervix, with HPV-16 identified in 50-60% of HPV+ 

carcinomas (7, 173).  

Why some individuals clear the virus while others do not is only now being resolved 

(203), but the observed increase in frequency of HPV+ lesions in immunosuppressed individuals 

suggests that a functional immune system plays a critical regulatory role (178).  Indeed, T cell-

mediated immunity appears crucial to the control and eradication of HPV-transformed tumors 

(179). However, even in cases where a patient harboring HPV+ CIN or carcinoma lesions 

develop HPV-specific CD8+ T cell responses, this immunity may prove clinically ineffective due 

to tumor-induced immune deviation and tumor immune escape mechanisms (144, 155).  For 

instance, HPV+ tumor cells exhibit suppressed levels of HLA class I expression in approximately 

90% of cases, making them refractory to specific CD8+ T cell killing (170).  In this regard, it 

may be particularly prudent to promote both specific CD4+ and CD8+ T cell-mediated immunity 

to HPV in order to gain optimal therapeutic benefits.  CD4+ T cell-mediated “help” appears 

important in the maintenance of effective CTL responses (204), particularly in the setting of 
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chronic viral infections (179), which may serve as a relevant paradigm for indolent tumors.  

Furthermore, in murine tumor models, CD4+ T cells specific for tumor antigens have been shown 

capable of mediating the rejection of MHC class I-negative tumor cells that cannot be eradicated 

by specific CD8+ CTLs (205, 206).  

Since the oncogenic E6 and E7 gene products are the only HPV-encoded proteins 

required for cellular transformation (15), they represent logical targets for the development of 

prophylactic/therapeutic vaccines for the prevention and treatment of HPV-related malignancies. 

However, HPVs remain very hard to propagate in vitro, making attenuated viral vaccines 

logistically untenable.  This has mandated the evaluation of alternative strategies, including 

vaccines based on synthetic E6/E7 CTL-recognized peptides, recombinant protein, DNA, and 

chimeric Virus-Like Particles (cVLP) (36).  CVLPs formed by spontaneous assembly of the L1 

and L2 capsid proteins of HPV have proven attractive for vaccination purposes since they are 

highly-immunogenic, have no inherent transforming capacity (207) and have been shown to be 

safe and effective in preventing the development of CIN in clinical trials (161). Since patients 

develop strong neutralizing anti-L1/-L2 antibody responses, the efficacy of repeated VLP-based 

vaccination designed to boost HPV-specific T cell responses is considerably reduced (208), 

however, this effect may be circumvented by vaccinating patients with autologous dendritic cells 

infected with VLPs.   In the current study, we evaluated the ability of DCs infected with cVLPs 

composed of the HPV-16 L1 and L2-E7 (fusion) proteins to elicit E7-specific CD4+ T cell 

responses in vitro, with a focus on responses directed against pan-HLA-DR presented E7 

epitopes that we have recently defined1.  

44 



 

FOOTNOTES 

 

1 Warrino, D.E., Olson, W.C., Knapp, W.T., Scarrow, M.I., D’Ambrosio-Brennan, L.J., Guido, 

R.S., Edwards, R.P. Kast, W.M., and Storkus, W.J. Disease-Stage Variance in Functional CD4+ 

T Cell Responses Against Novel Pan-DR Presented HPV-16 E7 Epitopes.   Clin. Cancer Res., in 

press, 2004.  
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3.3 MATERIALS AND METHODS 

3.3.1 Peptides  

The pan-HLA-DR presented HPV-16 E71-12, E748-62, E762-75 peptides, as well as the pan-

DR presented malarial circumsporozooite (CS326-345) peptide were synthesized using fMOC 

chemistry by the University of Pittsburgh Cancer Institute’s (UPCI) Peptide Synthesis Faculty, 

as previously described (181).  Peptides were >90% pure based on high-performance liquid 

chromatography, with identities validated by mass spectrometric (MS/MS) analyses performed 

by the UPCI Protein Sequencing Facility.  

 

3.3.2 Generation and Purification of Recombinant HPV-16 E7 Protein.  

Total RNA was isolated from the HPV-16+ Caski cell line (the kind gift of Dr. Saleem 

Kahn, U. of Pittsburgh) and converted to cDNA using the TRIzol® Reagent (Invitrogen, 

Carlsbad, CA) and the GeneAmp Kit (Roche, Basel, Switzerland), respectively, per the 

manufacturer’s instructions. The following primer set was used for HPV-16 E7; forward: 

ATGCATGGAGATACACCTACATT, reverse: TGGTTTCTGAGAACAGATGG, product size 

300bp with cycles:  melting 94oC for 45 sec, annealing 65oC for 45 sec, extension 72oC for 1 

min, for 38 cycles.  This PCR product was then sub-cloned into the pBAD TOPO® TA 

expression vector (Invitrogen) according to the manufacturer’s protocol, yielding a HPV-16 E7 

fusion product containing a C-terminal poly-histidine tag for isolation purposes. After 

sequencing the insert for identity (DNA Sequencing Facility, UPCI), competent bacteria were 

transformed and expanded in LB Broth (Invitrogen).  Bacteria and inclusion bodies were 

disrupted using 8M Urea (Sigma), with protein dialyzed against PBS.  Recombinant E7 protein 

was isolated using a HisTrapTM (Pharmacia) column and eluted in 300 mM imidazole, per the 
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manufacturer’s instructions.  After dialysis against PBS, and confirmation of correct Mr by 

Western Blotting using both anti-His (Sigma) and anti-HPV-16 E7 (Zymed, San Francisco, CA), 

the protein was frozen at –80oC at 0.5 mg/ml (Figure 7).   The protein was >90 % pure based on 

an analysis of Coomassie-stained gels (Bio-Rad, Hercules, CA).  

 

3.3.3 Generation and purification of HPV16 E7 Virus-like Particles (VLPs).  

VLPs L1L2-E7 and VLP L1L2 were provided by Dr. Da Silva, who produced and 

qualified as previously described (155).  Each batch was tested by Western blot for presence of 

L1, L2, and in the case of chimeric particles, also for L2 fusion protein (E7 protein). Each batch 

was tested by transmission electron microscopy as described (155) for the presence of particles. 

For production of green fluorescence protein (GFP)-VLPs, the GFP gene was cloned from 

pEGFP-plasmid (Clonetech, Palo Alto, CA) with the primers (GFP forward) 5' 

ATGGTGAGCAAGGGCGAGG-3' and (GFP reverse XbaI) 5' 

GCGTCTAGATTGTACAGCTCG-3' by PCR. The mutated L2 gene (lacking the stop codon) 

was cloned by PCR with the primers (L2 forward) 5' 

CCCATGCGACACAAACGTTCTGCAAAACGC-3' and (L2 reverse no stop) 5'-

ATCGGCAGCCAAAGAGACATCTG-3'. PCR products of both reactions were purified and 

ligated at equimolar amounts with T4-DNA-Ligase (BD PharMingen), and L2-GFP fusion 

product was cloned by PCR with primers GFP reverse XbaI and L2 forward. Resulting PCR 

product was purified and cloned into pZero (Clonetech) via EcoRV and XbaI sites, sequenced, 

and subsequently subcloned into pFASTBAC from where chimeric VLP particles were produced 

as described previously (155). Presence of L2-GFP fusion protein in purified chimeric VLPs was 

confirmed by Western blot analysis with anti-GFP Ab (BD PharMingen).  
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Crude insect cell lysates for control experiments were generated by collecting supernatant of 

sonicated insect cell pellets after centrifugation. Before use, the supernatants were treated with 

END-X B15 (Cape Cod Associates, Falmouth, MA) according to manufacturers instructions for 

removal of endotoxins.  

 

3.3.4 Isolation of Peripheral Blood T cells and DCs.   

Patient information is provided in Table 4.  Briefly, the CIN or invasive cancer status of 

patients were determined by pathology review.  No patient had received any adjunctive (chemo-, 

radio-, or immuno-) therapy within 6 weeks prior to blood donation.  Vaginal hysterectomy 

patients were clinically treated for various reasons unrelated to CIN or invasive cervical cancer, 

and were considered normal donors in the context of the current study.  Additional normal age-

matched donors (ND) included asymptomatic women with no history of CIN. Fifty to one-

hundred mililiters of heparinized donor blood was obtained with informed consent under an IRB-

approved protocol and diluted 1:2 in PBS, prior to being centrifuged (550 x g for 25 min at RT) 

on discontinuous ficoll-hypaque gradients (CellgroTM, Mediatech, Inc., Herndon, VA) per the 

manufacturer’s instructions.  Bouyant PBMCs at the gradient interface were recovered and 

washed three times with PBS (BioWhittacker, Walkersville, MD) to remove residual platelets 

and ficoll-hypaque.  The generation of donor DCs from adherent mononuclear cells and the 

isolation and cryo-preservation of autologous CD4+ T cell from non-adherent cells were 

performed as previously described (182).  
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3.3.5 HLA-DR Typing.   

The HLA-DR4+ status of peripheral blood monocytes was confirmed by flow cytometry 

using the 359-13F10 mAb as previously described (183). Patient HLA-DR genotyping was 

performed using the Dynal Allset+™ SSP DR “low resolution” kit (Dynal Inc., Lake Success, 

NY), with template DNA extracted from patient lymphocytes expanded for 5 days in the 

presence of 25 µg/ml phytohemagglutinin (PHA; Sigma Chemical Co., St. Louis, MO).  DNA 

extraction was performed using the DNeasy Tissue Kit (Qiagen, Valencia, CA), according to the 

manufacturer’s protocol.  

 

3.3.6 PCR Analysis.  

PCR analysis for HPV-16 E6, HPV-16 E6/E7, and HPV L1 DNA was performed on 

patient’s loop electrosurgical excision procedure (LEEP) biopsies.  Extraction of DNA from the 

biopsies was performed using the DNeasy Tissue Kit (Qiagen, Volencia, CA) according to the 

manufacturer’s protocol.  The following primer sets were used: HPV-16 E6 (forward: 

ATGCACCAAAAGAGAACTGC, reverse: TTACAGCTGGGTTTCTCTAC, product size 

477bp with cycles: melting 94oC for 45 sec, annealing 59oC for 45 sec, extension 72oC for 1 min, 

for 38 cycles), HPV-16 E6/E7 (forward:  ATGCACCAAAAGAGAACTGC, reverse: 

TGCCCATTAACAGGTCTTCC, product size 735 bp with cycles: melting 94oC for 45 sec, 

annealing 59oC for 45 sec, extension 72oC for 1 min, for 40 cycles), HPV L1 capsid (forward: 

GCMCAGGGWCATAAYAATGG, reverse: CGTCCMARRGGAWACTGACT, product size 

450 bp, with cycles same as E6/E7, M denotes A and C; R denotes A and G; W denotes A and T; 

and Y denotes C and T).  The capsid primers specifically amplify the L1 gene for the majority of 
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(but not all) oncogenic HPV genotypes (184).  A patient was defined as HPV-16+ if they were 

qualitatively positive by PCR using either the E6 or E6/E7 primer sets.  Hence, we report a given 

patient’s HPV genotype status as HPV-16+, HPV-16-/HPV-L1+, or HPV-16-/HPV-L1-. 

 

3.3.7 Induction of Th Effector Lymphocytes.    

On day 7 of DC culture, autologous CD4+ T cells were thawed at 37ºC water bath and 

added to 10 ml of RPMI 1640 media containing 10% FBS and supplemented with 20 U/ml 

DNase I (type II, from bovine pancreas, Sigma) to increase harvested cell yield and to reduce 

clumping.  Harvested, non-adherent DCs (2 x 105) were co-cultured with 2 x 106 thawed, 

autologous CD4+ T cells in the presence of 10 µg E7-derived synthetic peptides, 10 µg HPV-16 

VLP L1L2-E7, 10 µg HPV-16 VLP L1L2 (control), or 10 µg rE7 full length protein, in RPMI-

1640 media containing 10% FBS.  No exogenous cytokines were added to these cultures.  

Responder CD4+ T cells were then harvested on day 7-10 of culture and analyzed for HPV-16 E7 

peptide-specific reactivity in ELISPOT or ELISA assays. 

 

3.3.8 Immunofluorescence Microscopy of DC infection by VLP 

Normal donor Day five iDCs were grown overnight on sterile 12mm glass circular cover 

slips (Corning Inc.) in 24 well plates (Corning Inc.) in DC media. Following day the DCs were 

fed 10ug/ml GFP-VLPs for 2hrs. Cells were washed and fixed with 2% Paraformaldehyde and 

subsequently the cover slip (with cells adhered) were removed from the 24 well plate. The 

coverslips were coated with 1:1000 Triton X-100/PBS (Sigma) and incubated at room 

temperature (RT) for 30 minutes. The coverslips were washed 5x with 0.5%BSA (Sigma) and 

0.15% Glycine (Sigma) in PBS (BSA) and then blocked with 1:20 dilution normal mouse serum 
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(Sigma) in 0.5% BSA and incubated for 40 minutes at RT. The coverslips were washed 5 times 

with BSA and then incubated for 1hr with a 1:100 dilution of L243 in BSA at RT.  Coverslips 

were washed 5 times with BSA and incubated for 1hr with a 1:1000 dilution of Cy3 Fluor® goat 

anti-mouse IgG  (Molecula Probes, Eugene, Oregon) in BSA. The coverslips were washed 5 

times with BSA and followed by 5 washes with PBS alone. The coverslip was then stained with 

Hoescht (Sigma) for 30 seconds and washed once with PBS. To a glass slide one drop of gelvatol 

(the kind gift of Dr. Simon Watkins, U. of Pittsburgh) was added and the coverslip was placed 

face down on the gelvatol. Imaging was done on an Olympus Provis Light Microscope and 

analysis was done on Adobe Photoshop. 

 

3.3.9 IFN-γ and IL-5 ELISPOT assays.  

To evaluate the frequencies of peripheral blood CD4+ T cells recognizing peptide 

epitopes, ELISPOT assays for IFN-γ and IL-5 were performed as previously described (182, 

183). Briefly, 105 CD4+ T cells and autologous thawed DCs (2x104 cells) were seeded in multi-

screen hemagglutinin antigen plates. Synthetic peptides (stocks at 1 mg/ml PBS) were then 

added to appropriate wells at a final concentration of 10 µg/ml.  Negative control wells contained 

CD4+ T cells and DCs pulsed with CS326-345 peptide, with DCs alone serving as the APC control. 

Data are reported as actual numbers of E7-specific T cell spots above T cell background 

responses to the negative control CS326-345 peptide. Additionally, when sufficient patient’s cells 

were available, CD4+ T cells and DCs with no peptide were also employed as a negative control 

group. In all cases, this control group yielded results that were statistically indistinguishable from 

the DC+CS326-345 peptide control group (data not shown). Positive control wells contained T cells 

plated in the presence of 5 µg/ml PHA (Sigma).  All determinations were performed in triplicate, 
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with spots imaged using the Zeiss AutoImager (and statistical comparisons determined using a 

Student two-tailed T-test analysis).  The data are reported as the mean (+/- SD) number of IFN-γ 

or IL-5 spots per 100,000 responder CD4+ T cells analyzed.  

 

3.3.10 TGF-β, IL-10, and IL-12p70 ELISAs.   

Supernatants were harvested from ELISPOT plates at the endpoint of the culture period, 

pooled for a single stimulus (i.e. a given peptide, etc.) and, then frozen at -20oC until being 

analyzed for TGF-β and IL-10 production by cytokine-specific ELISA.  Cytokine capture and 

detection antibodies and recombinant cytokines for the TGF-β ELISA were purchased from BD-

Pharmingen (San Diego, CA), while the IL-10 ELISA was purchased from Mabtech (Stockholm, 

Sweden) and used per the manufacturer’s instructions.  The lower limit of detection for the TGF-

β and IL-10 assays was 50 pg/ml and 37 pg/ml, respectively. Supernatants were harvested from 

day 5 iDCs fed 10 µg/ml VLP, iDCs stimulated with 250 ng/ml of LPS, 100 µg/ml of TNF-α, 

and untreated control iDCs cultured in 24 well plates with 500,000 iDC/ml for 48 hours and, then 

frozen at -20oC until being analyzed for IL-12p70 and IL-10 by cytokine-specific ELISA. 

Cytokine capture and detection antibodies and recombinant cytokines for the IL-12p70 ELISA 

were purchased from BD-Pharmingen (San Diego, CA) and used per the manufacturer’s 

instructions.  The lower limit of detection for the IL-12p70 assays was 37 pg/ml. 

 

3.3.11 HPV-16 E7 IgG1 and IgG4 ELISA.  

High-binding 96 well flat-bottom EIA/RIA plates (Corning Inc., Corning, NY) were 

coated overnight at 4oC with 100 µl of PBS containing 2 µg/ml recombinant HPV-16 E7 protein.  
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Plates were then manually washed 3 times with PBS and blocked for 2h at RT with 100 µl of 1% 

BSA (Sigma) in PBS (w/v). Plates were then washed 5 times with 0.5% Tween (Sigma) in PBS 

(w/v) and coated with 100 µl of patient plasma diluted 1/25 and 1/250 in 0.5% Tween/PBS.  

After incubating for 2h at RT, plates were again washed 5 times with 0.5% Tween/PBS, 

followed by addition of 100 µl of a 1/1000 dilution of biotinylated mouse anti-human IgG1 or 

anti-human IgG4 (Sigma) in 0.5% Tween/PBS, followed by incubation for 1h at RT. After 5 

more washes with 0.5% Tween/PBS, 100 µl of a 1/1000 dilution of peroxidase-coupled 

steptavidin (Sigma) in 0.5% Tween/PBS was added to each well and plates incubated for 1h at 

RT.  Finally after 7 washes in 0.5% Tween/PBS, 100 µl of TMB peroxidase substrate (KPL, 

Gaithersburg, MD) per the manufacturer’s instructions was added to each well, plates incubated 

for 5-30 min. at RT, with the reaction stopped by addition of 50 µl of 2N sulfuric acid (Labchem 

Inc., Pittsburgh, PA).  OD450nm readings were taken immediately using a Dynex MRX ELISA 

Reader (Chantilly, VA).  Assays were standardized against purified human IgG1,κ or IgG4,κ 

(Sigma), with results reported in ng of IgG1/ml and IgG4/ml of patient plasma. 

 

3.3.12 DQ-BSA uptake and analysis.  

DC were harvested on day 5 and pulsed for 48h with 10 µg VLP, 100 ng/ml TNF-α, 100 

ng/ml TNF-α + 10 µg VLP, or control DCs left untreated. The four DC sample cell populations 

were stained individually (25,000-30,000 cells/tube) with 10 µg/ml of DQ-BSA (Molecular 

Probes) in Aim-V media. After being incubated for 4 hours at either 4°C or 37°C, and washed 

twice with FACS buffer, the cells were immediately analyzed by flow cytometry.  
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3.3.13 Flow Cytometry Analysis.  

Two-color flow cytometry analysis was performed as described previously, using a 

FACScan (Becton Dickinson) equipped with a single 488-nm argon ion laser.  DC were 

harvested on day 5 and pulsed for 48h with media containing 10 µg VLP, 100 ng/ml TNF-α, 250 

ng/ml LPS, or control media. At least 50,000 events were acquired for each sample, with data 

analyzed using the WinMDI software program (Version 2.8, Joseph Trotter, Scripps Inst., La 

Jolla, CA). 

 

3.3.14 Statistical Analysis.  

Statistical significance of differences was determined between ELISPOT data sets using a 

Student’s two-tailed T test and between HPV-16 E7 IgG data sets using the Mann-Whitney rank 

sum test, with statistical significance defined as p < 0.05.  
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3.4 RESULTS 

3.4.1 DCs take up (are infected by) VLPs and appear to co-localize to class 
II compartment. 

 
 The ability of DCs to take up HPV-16 VLPs and generate epitopes for presentation in 

MHC II molecules was critical for our study to define VLP derived HPV-16 E7 CD4+ T cell 

epitopes.  Normal donor day 5 iDCs were fed GFP-VLPs for 2 hours and stained for MHC class 

II and examined by immunofluorescence microscopy for co-localization. As shown in figure 8, it 

appears that the VLP is co-localizing with MHC class II resulting in yellow fluorescence when 

the images are overlaid. This is consistent with phagocytosis by iDCs.  

  

3.4.2 CD4+ T cells isolated from the majority of CIN or cervical cancer 
patients respond to in vitro DC-based vaccines incorporating HPV-16 

E7-derived peptides or VLPs. 

 
Peripheral blood CD4+ T cells were MACs-isolated from 17 patients with CIN I-III or 

cervical carcinoma, and from four age-matched control donors (1 normal individual undergoing 

vaginal hysterectomy and three normal, asymptomatic donors with no history of CIN; see Table 

4 for donor characteristics).  These T cells were then stimulated with autologous DCs pulsed 

with a given E7 peptide, HPV-16 L1L2-E7 VLPs, control HPV-16 L1L2 VLPs, or recombinant 

E7 protein (rE7; when sufficient numbers of cells were available) and cultured for one week.  

The resulting CD4+ T cells were then analyzed for peptide-specific responses in IFN-γ (Th1-

type) and IL-5 (Th2-type) ELISPOT assays.  Figure 9 depicts the CD4+ T cell responses of 21 

donors against the E71-12, E748-62, and E762-75 peptides after stimulation for one week with DC-

L1L2-E7 vs. DC-peptide vaccines, with data reported as spots per 105 CD4+ T cells analyzed. 

These data are also summarized in a qualitative (+/-) format in Table 5 for each individual 
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evaluated.  Overall, 16 of the 17 CIN/cancer patients responded in a statistically significant 

manner to at least one HPV-16 E7-derived Th epitope in either the IFN-γ (12/16) and/or IL-5 

(8/16) ELISPOT assays (Table 5). In a majority (9 of 16) of these cases, patients responded to a 

single E7 epitope, with reactivity to two E7 peptides observed in 4 patients, and reactivity to all 

three E7 peptides observed in three patients. Overall, 7, 8, and 11 patients were responsive to the 

E71-12, E748-62 and E762-75 peptides, respectively. Of note, none of the four normal donors 

analyzed exhibited CD4+ T cell that were reactive against E7-derived peptides.  

With regard to disease-stage, Type-1 (IFN-γ) CD4+ T cell responses against any of the 

three E7 Th epitopes were observed in 10/10 (100%) CIN patients and 2/7 (28%) cervical cancer 

patients.  In contrast, Type-2 (IL-5) responses were seen in 2/10 (20%) CIN patients, but were 

observed in 6/7 (86%) of the cervical cancer patients.  Notably, CD4+ T cell responses appeared 

strongly Th1- or Th2-type polarized in the vast majority of responders, with mixed Th1-/Th2-

type (i.e. Th0-like) reactivity to E7 peptides evident in only 2 patients with cervical cancer 

(patients #35 and #49) and 2 patients with CIN II (patients #43 and #50).   We were able to 

evaluate HPV genotype status by performing a PCR-based analysis of DNA extracted from 

LEEP biopsies in 15 of the 17 CIN/cancer patients.  Of these 15 patients, 12 screened as HPV-

16+, while 2 patients exhibited an HPV-16-/HPV-L1+ genotype.  In addition, the presence of anti-

E7 IgG1 and IgG4 antibodies was evaluated for 15 of these 17 patients from whom plasma had 

been obtained.    All 11 evaluable patients that had screened as HPV-16+ by RT-PCR also had 

elevated levels of circulating anti-E7 IgG1 and/or IgG4 antibodies in their plasma (Table 4).  Of 

the two HPV-16-/HPV-L1+ patients, plasma was only available for patient #24, in whom levels 

of anti-E7 IgG1 and IgG4 antibodies were undetectable. 
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In the majority of cases where patients displayed CD4+ T cell responses against HPV-16 

E7-derived epitopes, Th cells with that specificity were evoked in vitro by both DC-peptide and 

DC/L1L2-E7 VLP, but not by DC/L1L2 VLP vaccines.  In two cases (patients #20 and #24), 

CD4+ T cells simulated by DC/L1L2-E7 VLP vaccines reacted against all three E7 epitopes, 

while peptide-based vaccines in these patients yielded Th responses against only a single epitope.  

Additionally, patient CIN II #50 generated anti-E7 Th responses against the DC/L1L2-E7 VLP 

vaccine but not against the peptide-based vaccine. Conversely, for patient #35, single peptide 

vaccinations proved successful, while stimulations with the DC/L1L2-E7 vaccine promoted a 

detectable response only against the E748-62 epitope.  Notably, in all cases where DC/peptide and 

DC/L1L2-E7 vaccines were both successful in eliciting epitope-specific Th responses, the 

polarized nature (i.e. IFN-γ vs. IL-5 biased) of these responses was identical.  

 

3.4.3 Comparison of VLP-, protein- and peptide-based vaccines for 
promoting E7-specific Th responses in vitro.  

 
Our data to this point suggested that VLP-based in vitro vaccines were either equivalent 

to, or in some cases, superior to peptide-based vaccines in eliciting E7-specific T helper cell 

responses (based on the range of stimulated CD4+ T cell specificities observed).    We next 

wished to ask, in cases of VLP superiority to peptides, if this was attributable to the application 

of full-length E7 in the VLP construct. To test whether the inclusion of full-length E7 or the 

activating effects of VLPs were responsible for improved efficacy, we pulsed DCs with 

recombinant E7 (rE7) protein alone or with L1L2 VLPs, or with L1L2-E7 VLPs alone, and used 

these Ag-charged DCs as in vitro vaccines (Table 5).  Responder CD4+ T cells were harvested 

and analyzed on day 7 of culture using IFN-γ and IL-5 ELISPOT assays against E7 peptide-
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pulsed, autologous immature DCs.  Due to limited cell numbers, we were only able to evaluate 

eight patients and two normal donors in these comparative assays.   We observed CD4+ T cell 

reactivity to E7 peptides in 4 of these 8 patients after stimulation with DC-rE7 (Table 5), with 

responses being of the Th1-type in 3 of 4 CIN patients.  One CIN patient exhibited Th0-type 

anti-E7 CD4+ T cell responses.  Of note, in patient  #43, the magnitude of CD4+ T cell responses 

to the E748-62 epitope (the only E7 epitope recognized by this donor) was comparable regardless 

of whether DC-L1L2-E7 or DC-rE7 +/- DC-L1L2 (or even DC-peptide) was used in the IVS 

protocol (Figure 10).  

 

3.4.4 Effects of VLPs on DC function and phenotype.  

 
While the inclusion of L1L2 VLPs in the DC-rE7 vaccines failed to enhance anti-E7 

CD4+ T cell responses, supporting a lack of “adjuvant” effect by the VLPs in this setting, we 

additionally chose to analyze the direct effect of VLP infection on DC phenotype.  As VLPs 

have been previously reported to activate human DCs, we analyzed the impact of VLP infection 

on DC uptake and processing of the fluorogenic substrate DQ (dye-quenched)-green BSA (209), 

as well as, DC expression of MHC/co-stimulator molecules and secretion of cytokines as indices 

of activation/maturation. 

 Untreated DCs, DCs infected with VLPs, DCs cultured with the maturation factor TNF-

α  and DCs co-cultured with VLPs and TNF-α were each analyzed for DQ-BSA uptake and 

catalysis as a surrogate measure for exogenous antigen presentation.  As a negative control, a 

subset of each of the four samples were fed DQ green BSA and incubated at 4°C to inhibit 

metabolic uptake.  As depicted in Figure 11, when compared to control untreated (immature 
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DCs), the mean fluorescence intensity of all other groups was reduced, consistent with the ability 

of these culture conditions to activate/mature DCs.  Both L1L2-E7 VLP infection and TNF-α 

treatment of DCs yielded a comparable level of reduction (approximately 90%) in DQ-BSA 

signal intensity, while a combination of both stimuli appeared to result in the greatest degree of 

DC activation/maturation.   

 DCs in each of these treatment cohorts were also analyzed by flow cytometry for 

comparative expression of the MHC class I and II, CD86, and CD40 molecules. Treatment of 

DCs with 100 ng/ml TNF-α was used as a maturation control, while untreated-unpulsed iDCs 

served as a negative control.  IgG isotype controls were used for gating and compensation. The 

results depicted in Figure 12 indicate that infection of DCs with L1L2E7 VLPs increased 

expression of the co-stimulatory molecule CD86, MHC class I and MHC class II molecules and 

the activation marker CD40, and this degree of increase was comparable to that observed for 

known maturation stimuli (i.e. TNF-α).   
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3.5 DISCUSSION 

  

In our current report, we have compared the in vitro efficacy of vaccines consisting of 

autologous DCs pulsed with three forms of HPV-16 E7 antigen (synthetic peptide, recombinant 

protein, VLP) to elicit E7 epitope-specific CD4+ T cell responses from 17 patients with CIN I-III 

or cervical carcinoma and four normal donor controls.  In most cases, DC-L1L2-E7 VLP 

vaccines proved either equivalent to, or superior to, DC-peptide vaccines in promoting stronger 

E7 epitope-specific responses and they were capable of coordinately stimulating CD4+ T cell 

responses against multiple E7-derived epitopes simultaneously in these IVS protocols in a subset 

of patients.   

Notably, the functional polarization of CD4+ T cells directed against E7 epitopes was not 

qualitatively altered by the use of DC-L1L2 VLP vaccines vs. DC-peptide (or DC-rE7) vaccines.  

Thus, Th1-type immunity to E7 epitopes was typically observed for patients with CIN I-III, 

while Th2-type responses were commonly noted for patients with cervical cancer.  These data 

are in keeping with our hypothesis that Th2-type dominated CD4+ T cell responses against HPV-

16 E7 epitopes may correlate with advanced disease status in these individuals, a finding 

consistent with results reported for tumor antigen-specific Th responses in patients with 

advanced stage cancers of alternate histologies1 (182), (185-189). It should be stressed that 

polarized Th2-type CD4+ T cell responses were specific for the HPV-16 E71-12 and E762-75 

peptides tested and do not reflect the general tendency of these donors with advanced stage 

malignancy to respond in a generic Th2-biased fashion.  Indeed, mitogen (PHA) control spot 

frequencies obtained for both the IFN-γ and IL-5 ELISPOT assays using CD4+ T cells were 

indiscriminant between patients with cancer, CIN patients, and (normal) vaginal hysterectomy 
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patients (data not shown).  In addition, cancer patients exhibited strong Th1-type immunity to the 

pan-DR-presented EBV Th epitope EBNA-2280-290 (ref. (190), data not shown).  Perhaps most 

salient, cervical cancer patient #35 displayed coordinate Th2-type responses to the E71-12 and 

E762-75 peptides and Th1-type reactivity against the E748-62 epitope.   Overall, these results 

suggest that VLP-based vaccines do not affect DC polarization to a degree that is capable of 

modulating the patient’s baseline functional CD4+ T cell responses and that additional factors 

may need to be applied to DC-VLP vaccines to promote biased Th1-type polarization of 

responder CD4+ T cells in order to provide the greatest degree of therapeutic benefit to cancer 

patients (210).  In this regard, we have recently defined a novel protocol to produce potent Type-

1 polarized DC1s in vitro from patient monocytes and are currently evaluating the impact of 

DC1-L1L2-E7 VLP vaccines on the functional bias anti-E7 CD4+ T cell responses in vitro. 

(Wesa et. al. submitted 2004) 

In extended studies, we analyzed the supernatants harvested from responder CD4+ T cell 

ELISPOT wells by ELISA to determine whether E7 peptides elicited TGF-β and IL-10 

production (i.e. indices of T regulatory function, ref. (182)) from any of these donors. We 

observed detectable E7 peptide-specific TGF-β production from CD4+ T cells isolated from 

cancer patient #44 (51 pg/ml) and cancer patient #48 (93 pg/ml; data not shown). IL-10 

production by anti-E7 CD4+ T cells was not detected in any of the donors evaluated in this study.  

We feel that if HPV-16 E7 CD4+ T cell regulatory responses exist, they are sufficiently rare 

and/or undetectable in our assay system. 

While our data argue against VLPs impacting the function phenotype of DCs (by 

comparison to peptide-pulsed DC cohorts), we did observe evidence that VLPs may at least 

partially activate and mature DCs.  Notably, VLPs caused a decrease in antigen 
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uptake/processing (DQ-BSA assay) and an increase in expression of MHC Class I and II, as well 

as CD40 and CD86 co-stimulatory molecules by treated DCs.  However, we did not detect 

differences in DC expression of the CD80 marker (data not shown). This result differs slightly 

from a previous report (ref. (155)) that demonstrated CD80 upregulation in addition to MHC 

class I and II, CD40, and CD86 being upregulated by VLPs. This difference could reflect 

variations in study design (i.e. types of media, use of day 4 vs. day 5 cultured DCs, cytokines 

employed during the “maturation” cultures).  

Coordinate analysis of CD4+ T cell responsiveness to HPV-16 E7-derived peptides and 

HPV-16 genotype status of LEEP biopsies indicated that in 4/5 cases for the E71-12 peptide, 4/5 

cases for the E748-62 peptide and 4/5 cases (evaluable to date) for the E762-75 peptide, the 

responding patients were HPV-16+.  Two patients (#24 CIN III and #29 CIN I) that reacted 

against E7 peptides were genotyped as HPV-16-/HPV-L1+, indicating current infection by 

alternate HPV types, and no patients who reacted against the HPV-16 E7 epitopes were 

genotyped as HPV-16-/HPV-L1-. We would hypothesize that the two HPV-16-/HPV-L1+ 

patients had at one time been infected by HPV-16, but they had since cleared the virus, 

potentially via specific T cell dependent immunity. After clearing HPV-16, a subsequent re-

infection with alternate HPV genotypes could have resulted in HPV-L1+ status for the CIN lesion 

in these patients. The data derived from CIN III patient #24 who exhibited Th1-type CD4+ T 

cells reactive against the HPV-16 E7 peptide epitopes, but who failed to display positive HPV-16 

PCR or anti-E7 serology results remains an enigma. Unfortunately, no plasma was available to 

test patient #29 for the presence of HPV-16 E7 IgG antibodies.    

The mechanism(s) by which in situ Th2-type skewing may occur in anti-E7 CD4+ T cell 

responses of cervical carcinoma patients remains unclear, but could include: 1) chronic antigenic 
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restimulation (i.e. repetitive re-infection, refs. (191-195) in situ that may delete Th1-type 

responders (182, 196) 2) dominant locoregional DC2-type antigen presenting cell function in the 

advanced cancer setting that favors Th2-type immunity (195)  and/or 3) a generalized Th2-

polarizing cytokine microenvironment at the tumor site and within the tumor draining lymph 

nodes of affected patients (197).  The maintenance of Th1-type immunity against the pan-DR-

presented EBV Th epitope (and against the E748-62 peptide in patients #35 and #49) argues 

against dominant DC2-mediated functional, or global Th2-type cytokine-mediated, skewing of 

peripheral blood CD4+ T cell responses in cervical cancer patients.  However, these important 

issues will require intense prospective evaluation to determine their unequivocal roles in shaping 

the HPV-specific immune response in high-risk and progressor patients. 

Of great clinical interest, only 1 of 18 patients with CIN I-III or cervical cancer failed to 

exhibit CD4+ T cell responses to at least one of our pan-DR-presented E7 epitopes after in vitro 

vaccination with autologous DC-based vaccines.  As we evaluated all-comers to this analysis, 

this argues that such vaccines may be applied without consideration of patient HLA class II 

haplotypes, with the expectation that >90% of treated patients will prove responsive to the these 

vaccines.  DCs pulsed with E7 peptides, L1L2-E7 VLPs or rE7 protein all appeared effective in 

promoting T cell responses that in most cases appeared qualitatively regulated more by the CD4+ 

T cell repertoire present in a given patient rather than the form of E7 antigen applied in the DC-

based vaccine.  Based on the data set provided, the VLP-based vaccines might be preferred 

overall for clinical implication however, given the greater level of E7-specific responses 

observed in comparative studies against peptide-based vaccines and the ability of DC-VLP 

vaccines to promote poly-specific responses in some patients where peptide-based vaccines 

failed to do so.  When combined in adoptive DC1-based vaccines or DC0-based vaccines 
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supplemented by type-1 biasing cytokines, L1L2-E7 VLPs may exhibit optimal therapeutic 

benefit given their potential to coordinately stimulate Th1-type CD4+ and CTLs specific for E7 

and to avoid neutralizing anti-L1/L2 antibodies that may be present in the sera of patients with 

CIN or cervical cancer. 
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4.0 SUMMARY AND CONCLUSIONS 

 
Antigen-specific CD4+ T cells play important roles in clearing viral infections and in 

preventing/treating cancer, yet little is known with regard to the specificity and functional nature 

of Th responses in the cancer setting.  Indeed, while a plethora of CD8+ T cell epitopes have 

been defined that derive from tumor-associated antigens (TAA), the number a defined CD4+ T 

cell tumor epitopes is rather small. We chose to investigate the HPV-16 E7 onco-protein as a 

target of CD4+ T cell recognition for a variety of reasons, including the lack of defined CD4+ T 

cell epitopes from this transforming protein and its association expression in greater than 50% of 

all cervical cancers.  In addition to defining novel CD4+ T cell epitopes within the HPV-16 E7 

protein, we examined the functional polarization state of anti-E7 Th responses in various control 

and HPV-16+ patient cohorts using refined in vitro analyses. By identifying and qualifying the 

nature of anti-E7 CD4+ T cell reactivity in such individuals, we expect to develop more effective 

E7-directed vaccines that may protect or treat against HPV-16-associated malignancies.   

The initial phase of my studies involved the dissection of the 98aa HPV-16 E7 protein 

into candidate peptide epitopes, based on algorithm-predicted binding of these sequences to a 

subset of HLA-DR alleles, with a focus on the common HLA-DR4 allele. The basic 

experimental protocol employed in these studies involved the loading of monocyte-derived 

immature dendritic cells (DC) with HPV-16 E7-derived peptides, and the use of these APCs to 

stimulate autologous CD4+ T cells purified from donor peripheral blood.  Following a single 

round of in vitro stimulation, the responder CD4+ T cells were then assayed for reactivity against 

HPV-16 E7 epitopes using IFN-γ (Type-1) and IL-5 (Type-2) ELISPOT assays using autologous 

immature DCs as APCs.  By structuring the in vitro assays in this way, we could determine both 

the specificity and the functional nature (i.e. polarization state) of patient E7-reactive CD4+ T 
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cells.  The screen was initiated using seven predicted Th epitopes, but was ultimately trimmed to 

three (E71-12, E748-62, and E762-75) relevant immunogenic epitopes after evaluating responsiveness 

of Th cells isolated from a large number of normal donors, CIN patients, and cervical cancer 

patients. Additionally, these studies allowed us to conclude that the E71-12 and E762-75 epitopes 

were likely HLA-DR4 and –DR15 restricted, while the E748-62 peptide was presented in a “pan-

DR” manner (but not by HLA-DR4).  Lastly, we are were able to demonstrate that advanced 

stage cervical cancer patients exhibit a predominant Th2-type response to HPV-16 E7-derived 

epitopes, while early stage patients displayed predominantly Th1-type immunity to HPV-16 E7.  

This is a very novel and important finding and agrees with a trend in Th immune responses seen 

in patients with advanced disease stage compared to early disease stage patients in other cancer 

types (such as renal cell carcinoma and melanoma; ref.(182)). These results suggest an evolving 

immune response that converts from a hypothetically beneficial Th1-type to a less beneficial 

Th2-type effector bias as cervical cancer develop and progress in afflicted patients. 

 The next phase was to determine the best in vitro method of inducing HPV-16 E7 CD4+ 

T cell responses, as a prelude to developing specific vaccines for patients with HPV-16-

associated malignancies.  In this work, we compared three methods of inducing HPV-16 E7 

CD4+ T cell responses, namely autologous DCs pulsed with: 1) HPV-16 E7 peptides, 2) HPV-16 

L1L2E7 Virus-like Particles (VLPs), or 3) Full-length recombinant HPV-16 E7 protein (when 

sufficient numbers of T cells were available for all of these analyses).  Importantly, our 

experimental model used immature DCs in order to determine the magnitude, specificity and 

polarization of anti-E7 CD4+ T cell responses in our in vitro vaccine formulations. This was in 

part predicated on our previous findings that immature DCs would not alter the functional 

polarization state of responder CD4+ T cells in our IVS protocols1 and the knowledge that iDCs 
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(vs. mature DCs) were efficient at taking up and processing cVLPs (i.e. L1L2-E7 cVLPs) and 

recombinant proteins, such as rE7 (155).  Our cumulative data suggest that VLP-based vaccines 

were either equivalent to, or slightly superior to, peptide-based vaccines, based on the range of 

stimulated CD4+ T cell specificities recognized by stimulated CD4+ T cells observed in follow-

up assays.  It should be noted, however, that we did observe more IL-5 responses from E7-

stimulated CD4+ T cells when peptide-based vaccines were used vs. VLP-based vaccines. The 

limited data set from rE7-based vaccines suggests that it too is equivalent to peptide-based 

vaccines. Additionally, we showed that VLPs partially mature the iDCs, which may represent a 

potential in vivo advantage verses peptides in vaccine formulations. This by no means suggests 

that HPV peptide-based vaccines are inferior, but may suggest that additional Type-1 biasing 

adjuvants might need to be applied in this context. Clearly, for the treatment of cervical cancer 

patients with peptide-based vaccines is an attractive option since pre-existing antibodies (against 

the L1 and L2 capsid proteins contained in VLPs), which form immune complexes with VLPs 

may cause vaccine clearance and limited efficacy in promoting specific T cell responses to 

L1/L2-E7 cVLPs (208). For this same reason, peptide-based vaccines can be administered 

multiple times without significant concerns for generating neutralizing antibody responses, 

unlike VLPs, where it may prove necessary to boost with heterologous VLPs in order promote an 

increase in specific immunity (211).  Lastly, a previous report showed VLPs when used to treat 

iDCs could lead to full maturation of, and IL-12p70 production from the resulting APCs (155). 

In our study, we could not reproduce all aspects of this work, indeed, our data can only support 

the partial maturation of DCs by VLPs, with very low to undetectable levels of IL-12p70 (or IL-

10) being promoted from the treated cells as measured by cytokine-specific ELISAs. This 

variance in results could be due to patient variability or to subtle differences in the DC culturing 
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conditions (i.e. media types used, the day of culture on which the iDCs were harvested, FBS, and 

levels and schedule of supportive cytokines  added to DC cultures). 

 While our results were striking, it was necessary to determine if patient CD4+ T cell 

responses to HPV-16 E7 epitopes correlated with their HPV-16 status. We extracted genomic 

DNA from vaginal hysterectomy biopsies, patient LEEP biopsies (CIN patients), and cervical 

cancer biopsies and tested for HPV-16 status by PCR using specific primers.  To further expand 

the genostatus assessment, we performed PCR analyses for HPV L1, using a primer pair that was 

relevant for almost all transforming HPV types. The vast majority of patients who displayed anti-

E7 Th responses were HPV-16+/HPV L1+.  In rare cases where a responder was HPV-16-/HPV-

L1+ or HPV-16-/HPV-L1-, we attribute the response to de novo recognition of T cells primed in 

the single IVS using DCs, or that the biopsy was in fact HPV-16+ or L1+, but that the portion of 

tissue available for our analysis lacked HPV integrations.  As an alternative to PCR analysis, 

which determines the current state of HPV infection, we used the HPV-16 rE7 whole protein as 

bait in ELISA assays in order to quantitate the level of anti-E7 IgG Abs present in the plasma of 

patients. If positive, this assay would indicate that a given HPV-16-/L1- patient was likely 

infected at some previous time, but had since cleared HPV-16.  We assessed plasma for its level 

of IgG1 (Th1-type) and IgG4 (Th2-type) HPV-16 anti-E7 specific antibodies. Somewhat 

surprising, we did not observe any correlation between Th1-type CD4+ T cell responders and 

high levels of IgG1 anti-HPV-16 E7 antibody detection, or Th2-type CD4+ T cell responders 

strong IgG4 anti-HPV-16 E7 antibody levels.   Notably, antibody levels do not provide stringent 

indices with regard to the number of activated (antigen-specific) B and supportive Th-type T 

cells and may explain why no correlation was detected between the ELISPOT-based T cell 

assays and the ELISA-based antibody assays.  
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 We also tested the culture supernatants harvested from ELISPOT wells for CD4+ T cell 

production of IL-10 and TGF-β by ELISA as indices for the presence of E7-specific regulatory-

type CD4+ T cells in these patients.  Although one cancer patient was determined to produce 

minimal, but detectable levels of IL-10 and TGF-β in response to E7 peptides, and was 

simultaneously deficient in E7-specific IL-5 and IFN-γ responses (i.e. T-reg cells are dominant 

over Type-1 or Type-2 responses), we believe that our in vitro vaccines (peptide-based, VLP-

based, and rE7 protein-based) do not promote prevalent T-reg responses.  A further analysis 

using tetramer staining, may allow us to corroborate such CD4+ T cell populations for the 

presence of tetramer+ T cells bearing a T-reg phenotype (i.e. foxP3+, GITR+, etc.).  

 Having defined HLA-DR restricted HPV-16 E7 epitopes and shown that Th2-type anti-

E7 responses predominate in cancer patients, we believe the next step towards defining a 

therapeutically beneficial vaccine will be to increasingly bias Type-1 immunity in an E7-specific 

manner.  While we anticipated that Type-1 responses might be a common observation in CD4+ T 

cell cultures stimulated with DC-VLP vaccines in vitro, Th2-type responses remained prevalent 

among cancer patients. This suggests that the degree of DC maturation along the DC1 pathway is 

incomplete after cVLP-pulsing of these APCs and suggests that alternative approaches should be 

actively pursued.  One such approach is to use polarized DC1s as the APCs to “infect” with 

L1/L2-E7 cVLPs and to stimulate patient CD4+ T cells in vitro (and possibly in vivo?). 

Numerous studies have now shown that DC1-based vaccines promote Th1-type specific CD4+ T 

cell responses in vitro (210, 212), and may have the potential to overcome Th2/Treg-type biased 

responses (Wesa et al., Manuscript submitted for publication, 2004) that are present 

endogenously in patients with cervical cancer.   
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 The results reported in this thesis will have a variety of clinical ramifications. Based on 

the data to date and the current trend in the field of clinical immunology, we would argue that the 

best preventative vaccines for CIN and cervical cancer are VLP-based.  The 100% prevention 

efficacy in CIN patients on clinical trials clearly distinguishes VLPs as the best approach for 

preventative vaccines.  Further clinical trials will define the duration of immunity to HPV 

infection after immunization with cVLPs in healthy, immune compromised men and women, and 

children prior to sexual activity, which will help to better define the role and optimal use of 

cVLPs for the prevention of CIN and cervical cancer.  Continuing studies should better define 

the role of HPV in other cancers, such as head and neck cancers and the potential utility of E7-

based vaccines in these disease histologies.  

This is not to suggest that cVLPs are the only effective preventative vaccine. A study 

vaccinating healthy donors with a HPV-16 L2-E6-E7 fusion protein (in the absence of a defined 

adjuvant) resulted in the induction of detectable levels of specific Abs, T-cell proliferation, and 

IFN-γ (ELISPOT) secretion in response to HPV-16 proteins, all in association with resistance to 

HPV infections (213). Previous reports have also demonstrated that peptide based vaccines do 

not generate high antigen-specific immunity and refinements of an HPV vaccine are necessary, 

but did show that HPV peptide-based vaccines could be utilized as an effective therapy (163, 

168).  

Regardless of whether cVLPs, rE7 or E7 peptides are employed as the immunogen, we 

currently believe that a preferred vaccine will include polarized DC1s. The use of DC1s allows 

one to regulate the dosing of antigen applied to stimulate T cells in vivo and overcomes the 

technical short-coming of cVLPs and their associated induction of neutralizing antibodies.  Even 

though novel prime-boost strategies using heterologous VLPs and vaccines using the Venezuelan 

70 



 

equine encephalitis virus replicon particles to deliver the HPV onco-proteins may promote 

enhanced immunogenicity (211, 214), the use of ex vivo “infected” DCs obviates concerns that 

professional APCs are accessed by these vectors in situ.  Optimizing HPV DNA-based vaccines 

have had some moderate success in vitro (215) and in vivo (216), but DNA-based vaccines have 

inherent dangers including the integration of viral genomic DNA into host cells, which in the 

case of HPV-16 E7 cDNA could lead to cellular transformation.  

Our group, using an animal model, has previously demonstrated the ability to prevent and 

treat established HPV-induced tumors using DCs pulsed with HPV-16-derived E7 peptides 

(111). A comparable study has also demonstrated the ability to induce HPV-16 specific CTL and 

HPV specific T-helper responses in the peripheral blood of cervical cancer patients after 

vaccination with iDCs pulsed with autologous or allogeneic HPV-16+ tumor lysates (217), but 

concluded that the use of immature DC for anti-cancer vaccination may not be optimum. In 

follow up experiments, the authors generated human monocyte derived DC primed with tumor 

lysates and matured with the novel synthetic dsRNA analogue Ampligen®, which has shown 

great promise in vitro, with future clinical trials currently pending (218). The authors anticipate 

that this approach may offer a more effective alternative for optimizing Th1-type anti-cancer T-

cell responses in HPV-related malignancy. We feel that the generation of polarized DC1s using 

IFN-γ and a TLR-agonist (such as LPS, poly I:C, CpGs), which are currently being used in 

clinical trials for treatment of other cancers, are superior to synthetic dsRNA because of the 

inherit dangers of RNA and DNA based vaccines inserting oncogenes such as E7.  However, 

currently no consensus exists with respect to the key issues for DC-based vaccines such as (1) 

loading method for optimum immune responses and (2) the optimum means of 

activating/maturation of the DC phenotype. Other important unknowns include the optimum 
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route of DC administration, DC dosage schedule, and the DC dose is yet to be determined for 

optimal clinical efficacy. 

Lastly, a recent study using autologous dendritic cells pulsed with HPV E7 protein 

induced T cell responses in a portion of late stage cervical cancer patients (162). The authors 

stated that boosting of immune responses by adjuvants would be mandatory in future trials. 

Although a number of adjuvants exist, such as alum (Th2 polarizing), incomplete Freund's 

adjuvant (IFA), KLH (Keyhole Limpet Hemocyanin), and Montanide ISA-51, among others, we 

feel the best adjuvant is an autologous, polarized DC-1.  

Currently, VLP-based vaccines for the prevention of HPV can protect against only 70% 

of cervical cancers (HPV-16 and HPV-18 collectively account for 70% of all cervical cancers). 

Studies will be necessary to broaden the range of HPV genotypes that are protected against and 

better define the duration of protection from HPV-related infections.  Results from these trials 

will enable scientists to determine the appropriate target groups of young women at highest risk 

to vaccinate. The most obvious groups to vaccinate with VLPs for prevention of HPV related 

disease are adolescent girls prior to the onset of sexual activity. However, difficultly exists in 

determining what age adolescents begin to have sexual activity and therefore, what the 

appropriate standardized age to vaccinate should be. The downside is a moral one, in that 

vaccines protective vaccines may be misinterpreted resulting in adolescents believing that they 

are freely-licensed for sexual activity and immune against all STDs.  Additionally, the optimal 

age to vaccinate and over what period of time to re-boost has yet to be determined and may 

involve multiple years. An extended issue is whether to vaccinate adolescent males, who can 

carry and disseminate the disease, while remaining asymptomatic.  
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Thus, a major obstacle in the development of preventative HPV vaccines is the necessity 

to educate healthcare professionals and public-health authorities about the benefits of this 

approach and that the benefits outweigh the potential costs.  This is particularly true in the case 

of developing countries and countries with high rates of HPV related infections, where people 

are unaware that papillomaviruses cause cancer. Cervical cancer can largely be prevented in 

developed countries with cytology screening, and the introduction of vaccines that protect 

against 70% of cervical cancers should result in fewer HPV related disease. However, studies for 

further management of HPV abnormalities after vaccination will need to be carefully planned 

and coordinated in order to result in the long-term goal of eliminating HPV related cancers. 

 Therapeutic vaccines for the treatment of existing HPV infections are currently 

experimental in nature. We feel that the HPV peptide-based vaccines and VLP-based vaccines 

may hold the key to overcoming the immunologic challenges imposed by HPV related 

malignancies. Those challenges include the poor (MHC) presentation of viral nucleo-protein 

antigens that are expressed at low levels and the weak natural immune response to HPV-infected 

tissues, that may result in poor trafficking of effector T cell populations to non-inflamed infected 

sites (219). The ability to induce HPV-specific immune responses in humans has already been 

demonstrated by a number of studies (161, 163, 168, 213, 216), but the trafficking of effector T 

cells to the cancer sites is an obstacle that has yet to be overcome. We feel that peptide-based 

vaccines and VLP-based vaccines utilizing polarized DC1s is potentially an effective Type-1 

immunotherapy that supports the trafficking of Type-1 effector T cells into HPV-16+ tissues due 

to locoregional production of chemokines such as IP-10, Mig and ITAC that recruit CXCR3+ 

Type-1 T cells. 
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Irregular squamous cells 

Figure 1. CIN I 

The histology of cervical intraepithelial neoplasia I (CIN I) is defined as dysplastic changes of the lower third of the 
cervical epithelium. The cytology of CIN I can be determined by squamous cells with enlarged, irregular, 
hyperchromatic nuclei and cytoplasm similar to that of normal superficial squamous epithelial cells. In the figure 
below the dysplastic squamous cells are restricted to the lower third of the cervical epithelium and as indicated by 
the arrows and circles the dysplastic squamous cells are spread throughout the lower third of the cervical epithelium. 
CIN I can be associated with any HPV type. Pictures in figures 1-4 were obtained with permission from the wevsite 
http://www.cytology.com/home.htm.  
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Figure 2. CIN II 

The histology of CIN II is defined as proliferation of atypical squamous cells occupy between one third and two 
thirds of the thickness of the cervical epithelium.  The cytology of CIN II is identified by squamous cells with 
enlarged, irregular, hyperchromatic nuclei, and less cytoplasm, which is similar to that of intermediate squamous 
epithelial cell.  As indicated in the figure below the lower two thirds of the cervical epithelium contain numerous 
atypical squamous cells. CIN II is associated with “high-risk" HPV types (16, 18, 31, 33, 45) intermediate-risk” 
HPV types ( 35, 51, 52). 
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Figure 3. CIN III 

The histology of CIN III is distinguished by more than two thirds of the thickness of the epithelium is replaced by 
atypical immature parabasal cells with marked cellular crowding, hyperchromasia and loss of polarity. The cytology 
of CIN III is described as cells with enlarged, hyperchromatic, irregular nuclei and less cytoplasm. As indicated by 
the circles the atypical parabasal squamous cells are traversing the entire cervical epithelium.  Similar to CIN II, 
CIN III is associated with “high-risk" HPV types (16, 18, 31, 33, 45) intermediate-risk” HPV types ( 35, 51, 52). 
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Figure 4. Cervical Carcinoma 

The morphology of the cervical epithelium is completely lost. Most invasive cervical cancers are composed of nests 
or solid sheets of oval to polygonal cells with abundant eosinophilic cytoplasm and nuclei with variable size and 
shape. Well-differentiated tumors are composed predominantly of mature squamous neoplastic cells, which is 
indicated by the circles. Cervical cancer is caused by high-risk" HPV types (16, 18, 31, 33, 45), with greater than 
50% of all cervical cancers being HPV-16 positive. 
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Figure 5. CD4+ T cell responses against the HPV-16 E71-12 and E762-75 peptide epitopes display disease stage-
dependent Th1-/Th2-bias in patients expressing either HLA-DR4 or -DR15.   

Peripheral blood CD4+ T cells were isolated from patients or normal donors (ND) and stimulated for 5-7d with 
autologous DCs plus individual HPV-16 E7 peptides, as described in the legend of Table 2.  Responder CD4+ T 
cells were then analyzed for reactivity against autologous DCs pulsed with the indicated HPV-16 E7 peptides in 
IFN-γ and IL-5 ELISPOT assays.  For each peptide analyzed, patient responders have been segregated based on 
whether they expressed the HLA-DR4 and/or -DR15 class II alleles (left panels) or failed to express these alleles 
(right panels).  Each symbol in a panel represents an individual patient’s data, with patient disease-stage cohorts 
defined by the type of symbol, as indicated.  The number of patients in each cohort is indicated in parentheses for 
each of the HLA-segregated groups.  The IFN-γ and IL-5 ELISPOT data are reported as spot numbers per 105 CD4+ 
T cells analyzed. 
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Figure 6. The HPV-16 E748-62 epitope is recognized in a predominantly Th1-biased manner by CD4+ T cell 
isolated from HLA-DR4-negative patients.   

Using the experimental protocol outlined in the Figure 1 legend and text, we analyzed the Th1- vs. Th2-type 
response of patient CD4+ T cells against the E7 48-62 peptide presented by autologous DCs in IFN-γ and IL-5 
ELISPOT assays. For each peptide analyzed, patient responders have been segregated based on whether they 
expressed (left panel) or failed to express (right panel) the HLA-DR4 class II allele.  Each symbol in a panel 
represents an individual patient’s data, with patient disease-stage cohorts defined by the type of symbol, as 
indicated.  The number of patients in each cohort is indicated in parentheses for each of the HLA-segregated groups.  
The IFN-γ and IL-5 ELISPOT data are reported as spot numbers per 105 CD4+ T cells analyzed. 
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Figure 7. Western Blots of purified HPV-16 E7 recom
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Figure 8. cVLPs infect DCs. 

GFP labeled L1L2VLPs (Green) were fed to normal donor day five iDCs for 2hr and additionally stained for MHC 
Class II (Red) as described in the materials and methods. Using an overlay, the cVLPs and MHC Class II co-localize 
resulting in yellow fluorescence, which is illustrated by the arrows.   
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Figure 9. Anti-E7 CD4+ T cell responses are elicited by autologous DCs infected with L1L2-E7 VLPs or 
pulsed with pan-DR-presented E7 peptides.  

Peripheral blood CD4+ T cells were isolated from patients or normal donors (ND) and stimulated for 5-7d 
with autologous DCs pulsed with individual HPV-16 E7 peptides or with HPV-16 VLPs as described in Materials 
and Methods.  Responder CD4+ T cells was then analyzed for reactivity against autologous DCs pulsed with the 
indicated HPV-16 E7 peptides in IFN-γ and IL-5 ELISPOT assays. Each symbol in a panel represents an individual 
patient’s data, with patient disease-stage cohorts defined by the type of symbol, as indicated.  The number of 
patients in each cohort is indicated in parentheses for each of the groups.  The IFN-γ and IL-5 ELISPOT data are 
reported as spot numbers per 105 CD4+ T cells analyzed. 
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Figure 10. DC-L1L2-E7 VLP and DC-rE7 vaccines effectively elicit Th1-type CD4+ T cell responses and rE7 
vaccines are not improved by “co-infection” with L1L2 VLPs. 

Using the experimental protocol outlined in the Figure 1 legend and text, we analyzed the Th1-type CD4+ 
T cell responses of patient #43 against the E748-62 epitope after one week IVS using autologous DCs pulsed with 10 
µg/ml of E748-62 peptide, 10 µg/ml L1L2-E7 VLP, 10 µg/ml L1L2 VLP, 10 µg/ml rE7 or 10 µg/ml rE7 + 10 µg/ml 
L1L2 VLP.  T cell responses were evaluated in triplicate determinations in IFN-γ ELISPOT assays, with results 
reported as mean +/- SD.   
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Figure 11. Effects of VLP infection on exogenous DQ-BSA uptake and processing.   

Using the experimental protocol outlined in the Figure 1 legend and text, we analyzed the Th1-type CD4+ 
T cell responses of patient #43 against the E748-62 epitope after one week IVS using autologous DCs pulsed with 10 
µg/ml of E748-62 peptide, 10 µg/ml L1L2-E7 VLP, 10 µg/ml L1L2 VLP, 10 µg/ml rE7 or 10 µg/ml rE7 + 10 µg/ml 
L1L2 VLP.  T cell responses were evaluated in triplicate determinations in IFN-γ ELISPOT assays, with results 
reported as mean +/- SD.   
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Figure 12. Effects of VLP on DC maturation markers.  

DCs were harvested after 48h culture without or with VLPs and/or TNF-α as described in Figure 1, stained with 
mAbs specific for the indicated markers and analyzed by flow cytometry. Data presented are representative of 3 
independent experiments performed. 
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Table 1. Clinical Trials of HPV-16 Immunotherapies 

CIN, cervical intraepithelial neoplasia; CR, complete response; PR, partial response; CTL, cytotoxic T lymphocyte; 
DTH, delayed-type hypersensitivity;  E, early; ELISPOT, enzyme-linked immunospot; GST, glutathione S-
transferase; HPV, human papillomavirus; IFA, incomplete freund’s adjuvant. 

 

Therapy Antigen Type Patient Cohort Immune response Efficacy Comments Ref

poly (lactide-co-glycolide) HPV-16 E783-94 CIN II/III 11/15 had bulk T cell response 5/12 CRs No CD4 data 58
microparticles (ZYC101)  HLA-A2 measured by ELISA for IFN-γ

 
Peptide + IFA HPV-16 E712-20 CIN II/III 10/16 CTL responsive 9 of 17 evaluable patients had CD4 response 51

HPV-16 E786-93 HLA-A2 No DTH PR or CR of their CIN lesions unchanged
 

Protein HPV-16 E6-E7 CIN I-III 12/20 had bulk T cell response No change in cervical histology No CD4 data 59
Iscomatrix adjuvant fusion protein measured by ELISA for IFN-γ 13/14 lower HPV copy number

 

Protein E7-GST Cervical Cancer Antibody and DTH No alteration in natural No T cell data 61
Algammulin adjuvant fusion protein history of disease

Vaccinia virus HPV-16 E6-E7 Cervical Cancer 1/8 CTL responsive Outcome not documented No CD4 data 60
TA-HPV, Xenova fusion protein 3/8 Antibody

Peptide HPV-16 E712-20 Cervical Cancer No CTL response 2/17 stable disease No CD4 data 62
oil + Water adjuvant HPV-16 E786-93

DR helper epitope

 
Dendritic Cell HPV-16 and -18 Cervical Cancer 3/11 had bulk T cell response No objective clinical response No CD4 data 57

E7 protein measured by ELIspot for IFN-γ
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Table 2. Predicted pan-DR binding peptides derived from the HPV-16 E7 protein.   

The cumulative DR4 score is the sum of the following nine DR4 alleles: DRβ1*0401, DRβ1*0402, DRβ1*0404, 
DRβ1*0405, DRβ1*0408, DRβ1*0410, DRβ1*0421, DRβ1*0423, DRβ1*0426. The highest theoretical cumulative 
DR4 score achievable by any peptide is 81. The top five DR4 scores are shown above and were synthesized and 
subsequently used to screen patients for CD4+ T cell responses. Other high scoring class II alleles (for at least one of 
the 5 peptides) were DRβ1*0101, DRβ1*0301, DRβ1*0701, DRβ1*0801, DRβ1*1101, DRβ1*1301, DRβ1*1501, 
and DRβ5*0101. An allele was designated as “high scoring” if a given peptide’s predicted result was at least 10% of 
the maximal theoretical score for the HLA-DR allele being evaluated.  The E748-62 peptide did not contain a 
predicted DR4-binding sequence, but was selected for analysis due to a predicted high cumulative score for the 
broad range of non-DR4 alleles (i.e. suggested to be a pan-DR binder).  aDRβ3*0101 and DRβ4*0101 were not 
analyzed. 
 

Peptide 
 
Position 

 Peptide 

Sequence  

 Cumulative 

DR4 Score 

Other High-Scoring  

HLA-DR Allelesa 

E7 1-12   MHGDTPTLHEYD   6.52 DR3 

E7 11-25   YMLDLQPETTDLYCY   10.5 DR3, DR15 

E7 48-62  DRAHYNIVTFCCKCD  0 DR3, DR7, DR8, DR11, DR13, DR15, DRB5 

E7 62-75  DSTLRLCVQSTHVD  14.3 DR3, DR8, DR13 

E7 72-86  THVDIRTLEDLLMGT  16.4 DR3, DR7, DR11, DR13, DR15 

E7 83-97  LMGTLGIVCPICSQK  19.88 DR1, DR3, DR7, DR8, DR11, DR13, DR15, DRB5 
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Table 3. Patient Characteristics and Th Responses to HPV-16 E7 peptides. 

Patient clinical disease stage (patient ID# in brackets), age, HLA-DR typing, HPV (geno- and Ab) typing and CD4+ T 
cell responsiveness to HPV-16 E7-derived peptides are indicated. HPV and HLA-DR genotype status were 
determined by PCR, as outlined in Material and Methods, with data qualitatively reported as +/-.  For HPV genotype 
status, HPV-16-specific (E6 and E6/E7) and pan-HPV (L1 capsid) primers were employed.  IFN-γ/IL-5 ELISPOT 
assays were performed using 105 CD4+ T cells and 2 x 104 thawed autologous monocyte-derived DCs and 10 µg/ml 
final concentration of specific peptide, as described in Materials and Methods.  CD4+ T cells were subjected to one 
round of in vitro stimulation using autologous, immature DCs and 10 µg/ml of specific peptide, and then assayed in 
the ELISPOT assay on day 10-14.  Plus (+) signs appearing in the E7 columns indicate statistically significant (p < 
0.05) spot numbers in response to E7 peptides vs. the Malarial CS (negative control) peptide background.  Minus (–) 
signs in the E7 columns indicate no significant response to E7 peptides vs. the CS control peptide.  Mean and SD are 
provided for the age of each cohort of patients or normal donors.  The IFN-γ vs. IL-5 response data is tabulated for 
each peptide within each donor cohort.  NT= not tested.  
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Table 3  Patient Characteristics and Th Responses to HPV-16 E7 peptides.   (Cont.)                           
      
         CD4+ T Cell Response                                                
                              HLA Genotype:         HPV Genotype:         Against  (IFNγ/IL-5):   
Status Age HLA-DRβ1 HLA-DRβ HPV-16 HPV  E71-12 E748-62 E762-75 
   (3,4,5)   L1       
         
(N = 5)         
ND [01] 28 11,13 3 NT NT   -/-   -/-   -/- 
ND [03] 30 03,12 3 NT NT   -/-   -/-   -/- 
Vag Hyst [10] 53 04,11or13  3  -  -   -/-   -/-   -/- 
Vag Hyst [14] 46 07,13  3,4  -  -   -/-   -/-   -/- 
Vag Hyst [21] 31 03,15  3,5  -  +   -/-   -/-   -/- 
 37.6 +/-11.1     0/0 0/0 0/0 
(N =11)         
CIN I [9] 19 NT NT  -  -   -/-   -/-   -/- 
CIN I [13] 28 04,07  4  -  -   -/-   -/-   -/- 
CIN I [15] 55 NT NT  -  +   -/-   -/-   -/- 
CIN I [19] 44 01,15  5  +  +   -/-   -/-   -/- 
CIN I [20] 50 04,16  4,5  +  +  +/-   -/-   -/- 
CIN I [22] 47 07,08  4  +  +   -/-   -/-   -/- 
CIN I [28] 81 07,11  3,4 NT NT   -/-  +/-   -/- 
CIN I [29] 26 03,04  3,4  -  +  +/-   -/-   -/- 
CIN I [32] 52 11 3  -  +   -/-  +/-   -/- 
CIN I [36] 65 4,15  4  +  +  +/-   -/-   -/- 
CIN I/II [40] 25 03,14 3 NT NT   -/-   -/-   -/- 
 44.7 +/- 19.0     3/0 2/0 0/0 
(N = 6)         
CIN II [1] 20 NT NT  +  -   -/-   -/-   -/- 
CIN II [2] 20 03,13  3  -  -   -/-   -/-   -/- 
CIN II [7] 22 03,04  3,4  +  +  +/-   -/-  +/- 
CIN II [25] 34 03,13  3  +  +   -/-  +/-   -/- 
CIN II [31] 44 03,11  3  -  -   -/-  +/-   -/- 
CIN II [33] 39 01,13  3  -  -   -/-   -/-   -/- 
 29.8 +/- 10.6     1/0 2/0 1/0 
(N =5)           
CIN III [6) 46 03,07  3,4  +  -   -/-  +/-   -/- 
CIN III [8] 28 14,15  3,5  +  +   -/-   -/+   -/- 
CIN III [18] 30 04,11  3,4  +  -   -/-   -/-  +/- 
CIN III [24] 34 04,09  4  -  +   -/-   -/-  +/- 
CIN III [37] 57 07,14  3,4  +  +   -/-   -/-   -/- 
 39.0 +/- 12.2     0/0 1/1 2/0 
(N = 6)          
CANCER [12] 34 07,15  4,5  +  +   -/-  +/-   -/+ 
CANCER [23] 37 03,15  3,5  +  +   -/-   -/-   -/+ 
CANCER [27] 40 01,14  3 NT NT  -/NT  -/NT  +/NT 
CANCER [35] 44 15 5  +  +   -/+  +/-   -/+ 
CANCER [38] 50 07,15  5  +  +   -/-   -/-   -/+ 
CANCER [39] 48 01,15  5  +  +   -/+   -/-   -/- 
 42.2 +/- 6.3     0/2 2/0 1/4 
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Table 4. Patient Characteristics, HPV status, and IgG levels. 

Patient clinical disease stage and [ID #], age, HLA-DR typing, HPV (geno- and Ab) typing and CD4+ T cell 
responsiveness to HPV-16 E7-derived peptides are indicated. HPV and HLA-DR genotype status were determined 
by PCR, as outlined in Material and Methods, with data qualitatively reported as +/-.  For HPV genotype status, 
HPV-16-specific (E6 and E6/E7) and pan-HPV (L1 capsid) primers were employed.  Anti-HPV-16 E7-specific IgG1 
and IgG4 antibody concentrations were determined in specific ELISAs against recombinant E7 protein as bait. NT= 
not tested.  

 Status Age HLA-DRβ1 HLA-DRβ  HPV-16 HPV  IgG1 (ng/ml) IgG4 (ng/ml) 
n=4    (3,4,5)   L1     
 ND [03] 30 03,12 3 NT NT 1 15 
 ND [09] 49 15,16 5 NT NT NT NT 
 ND [10] 40 NT NT NT NT NT NT 
 Vag Hyst [21] 31 03,15  3,5  −  + 1 61 
n=3         
 CIN I [20] 50 04,16  4,5  +  + 779 152 
 CIN I [29] 26 03,04  3,4  −  + NT NT 
 CIN I [36] 65 4,15  4  +  + 994 324 
n=4         
 CIN II [25] 34 03,13  3  +  + NT NT 
 CIN II [43] 33 11,15 3,5 NT NT 170 241 
 CIN II [45] 29 03,07 3,4  −  − 43 871 
 CIN II [50] 32 08,15 5  +  + 1 14 
n=3           
 CIN III [18] 30 04,11  3,4  +  − 25 1276 
 CIN III [24] 34 04,09  4  −  + 1 1 
 CIN III [51] 74 07,16 4  +  − 1.7 1113 
n=7          
 CANCER [23] 37 03,15  3,5  +  + 582 24 
 CANCER [35] 44 15 5  +  + 850 94 
 CANCER [38] 50 07,15  5  +  + 903 1 
 CANCER [44] 74 0103,13 3  +  + 284 1 
 CANCER [46] 61 07,14 4  +  − 1 7 
 CANCER [48] 62 04,16  3,4 NT NT 311 55 
 CANCER [49] 39 04, 11/13 3,4  +  − 11 1 
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Table 5. Patients’ Functional Th Responses to HPV-16 E7 peptides.  

IFN-γ/IL-5 ELISPOT assays were performed using 105 CD4+ T cells and 2 x 104 thawed autologous monocyte-
derived DCs and 10 µg/ml (final concentration) of specific peptide, as described in Materials and Methods.  CD4+ T 
cells were subjected to one round of in vitro stimulation using autologous, immature DCs and 10 µg/ml of specific 
peptide, and then assayed in the ELISPOT assay on day 10-14.  Plus (+) signs appearing in the E7 columns indicate 
statistically significant (p < 0.05) spot numbers in response to E7 peptides vs. the Malarial CS (negative control) 
peptide background. Additionally, plus signs appearing in the VLP columns indicate statistically significant spot 
numbers in response to VLPL1L2-E7 vs. VLPL1L2 (control VLP). Minus (–) signs in the E7 columns indicate no 
significant response to E7 peptides vs. the CS control peptide.  NT= not tested.  

 

 
 Status E71-12 E748-62 E762-75 VLP1-12  VLP48-62 VLP62-75 rE7 1-12 rE7 48-62 rE7 62-75 
n=4              
 ND [03]   -/-   -/-   -/-   -/-   -/-   -/- NT NT NT 
 ND [09]   -/-   -/-   -/-   -/-   -/-   -/-   -/-   -/-   -/- 
 ND [10]   -/-   -/-   -/-   -/-   -/-   -/-   -/-   -/-   -/- 
 Vag Hyst [21]   -/-   -/-   -/-   -/-   -/-   -/- NT NT NT 
n=3            
 CIN I [20]  +/-   -/-   -/-  +/-  +/-  +/- NT NT NT 
 CIN I [29]  +/-   -/-   -/- -/-   -/- -/- NT NT NT 
 CIN I [36]  +/-   -/-   -/-   -/-   -/-   -/- NT NT NT 
n=4            
 CIN II [25]   -/-  +/-   -/- -/-  +/- -/- NT NT NT 
 CIN II [43]   -/- +/+   -/- -/- +/+ -/-   -/-  +/-   -/- 
 CIN II [45]   -/-   -/-   -/- NT NT NT   -/-  +/-  +/- 
 CIN II [50]   -/-   -/-   -/- -/- +/+  +/-   -/- +/+   -/- 
n=3              
 CIN III [18]   -/-   -/-  +/-   -/-   -/-  +/- NT NT NT 
 CIN III [24]   -/-   -/-  +/-  +/-  +/-  +/- NT NT NT 
 CIN III [51]   -/-  +/-   -/-   -/-  +/-   -/-   -/-  +/-   -/- 
n=7           
 CANCER [23]   -/-   -/-   -/+   -/-   -/-   -/+ NT NT NT 
 CANCER [35]   -/+  +/-   -/+ -/-  +/- -/- NT NT NT 
 CANCER [38]   -/-   -/-   -/+   -/-   -/-   -/+ NT NT 
 CANCER [44]   -/-   -/-   -/-   -/-   -/-   -/-   -/-   -/-   -/- 
 CANCER [46]   -/+   -/-   -/+ NT NT NT   -/-   -/-   -/- 
 CANCER [48]   -/-   -/-   -/+   -/-   -/-   -/-   -/-   -/-   -/- 
 CANCER [49]   -/-   -/-  +/-   -/+   -/-  +/-   -/-   -/-   -/- 

NT 
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