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ABSTRACT

STUDIES OF BLOOD FLOW IN ARTERIAL BIFURCATIONS : FROM INFLUENCE
OF HEMODYNAMICS ON ENDOTHELIAL CELL RESPONSE TO VESSEL WALL
MECHANICS

Bong Jae Chung, Ph.D.

University of Pittsburgh, 2004

The pathology of arterial diseases such as aneurysms and atherosclerosis is of great clini-
cal interest. Several decades have passed since attempts to correlate hemodynamic factors to
pathology of these diseases began. Under the hypothesis that hemodynamics is an important
factor responsible for arterial diseases, we attempt to (i) investigate geometrical risk factors
responsible for aneurysm formation in arterial bifurcations, (ii) evaluate a current hypothesis
that aneurysms develop as a result of purely inertial effects on pressure fields at bifurcations
(iii) design a novel flow chamber which reproduces flow fields found at arterial bifurcations
to study endothelial cell functions due to hemodynamic stresses and (iv) develop a small
on large theory for modeling small periodic motions of arterial walls superposed on large
deformations. An outcome of this work included the development of a new methodology for

generating realistic idealized bifurcation models.

A number of researchers have identified geometric features common to arterial bifurca-
tions. Here, idealized models have been developed that contain all these geometric features.
These idealized models are used to investigate effects of Re, radius of curvature and bifur-

cation angle on arterial bifurcations. Elevated pressure and wall shear stress at the apex of

v



bifurcation, which could be responsible for aneurysm formation, are found to arise as the
fluid is diverted into the two daughter branches. Careful modeling of the apex region of the
bifurcation is found to be needed for study of aneurysm due the important role of radius of
curvature. The bifurcation angle is found to have only minor influence on the stresses at the
apex region. Through this analysis, we found that the elevated wall shear stress at the apex

is likely an important risk factor responsible for the formation of aneurysms.

Based on the results from the computational bifurcation study, a flow device was designed
to test the response of endothelial cells to wall shear stresses found at arterial bifurcations.
The function of endothelial cells responding to hemodynamic stresses are hypothesized to
degrade arterial walls and in turn, possibly cause initiation of aneurysms. Through numeri-
cal and analytical studies, we successfully designed a novel flow chamber which has two flow
regimes : one for testing the cells exposed to wall shear stresses found in straight arteries
and the other found at arterial bifurcations. This second section recreates the quantitative

and qualitative features of flow fields found at arterial bifurcations.

In order to model blood and arterial wall interaction in studies of hemodynamic factors
related to arterial diseases and aging, a constitutive model for the vessel wall is required.
Based on multi-mechanism theory, the role of elastin and collagen fibers, responsible for
the passive mechanical response of arteries, are included as separate mechanisms. This
theory is then used with small on large theory which approximates large deformations as
the superposition of a small deformation on a large deformation. Taking this approach, the
prestretch and preloading of the vessel can be included. Since deformations due to oscillatory
motions of arterial walls are reported to be small compared with deformations due to the
preloadings, the small on large theory is appropriate. The novelty of this study was to
(i) employ a nonlinear constitutive equation for the large deformation region, (ii) develop
governing equations for the wall motion using a small on large theory and (iii) include the

separate roles of elastin and collagen fibers in modeling vessel walls.
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1.0 INTRODUCTION

A cerebral aneurysm is one type of arterial disease of the human cerebral vascula-
ture. When an aneurysm ruptures, the blood flooded into the subarachnoid space or brain
parenchyma causes a subarachnoid hemorrhage (SAH) or occasionally an intracerebral hem-
orrhage (ICH). In 50% of the cases, this is fatal.(!¥156) Cerebral aneurysms are mostly

(71,79-81

found at apecies of arterial bifurcations or the neck of curved arteries. ) We confine

our attention to arterial bifurcations in this work. The etiology of the cerebral aneurysms has

(80,102,105,122

been debated by a number of authors. ) Some researchers believe that aneurysms

originate from congenital factors(®-1%%) while some authors hypothesize that biomechanical

factors play important roles in the genesis, growth and rupture of aneurysms.(24:102,103,122) T

n
this work, we hypothesize that hemodynamic forces are important factors in the formation

of aneurysms near the apecies of arterial bifurcations.

If hemodynamics plays an important role in the initiation of aneurysms, mechanical
forces such as pressure and shear force acting on the apex region of the bifurcation must
be responsible for aneurysm formation. The local pressure is mildly elevated at the region
of the bifurcation due to momentum transfer and the wall shear stress found near the apex
region varies along the neck of the bifurcation and is highly elevated near the apex. These
local forces found at the apex of the bifurcation may damage the walls near the bifurcation
and thereby, lead to the development of aneurysms. Typically, the flow in the bifurcation is
characterized by a given volume flow rate, fluid properties and geometrical shape. Therefore,

risk factors for aneurysm development may be related to Reynolds number and geometry.

We hypothesize that the magnitude of wall stress at the apex of the bifurcation is signif-
icantly elevated, challenging the homeostasis of the arterial wall in this region. We explore
risk factors based on this hypothesis. In order to find the risk factors, idealized geometric
models of arterial bifurcations are developed and used in numerical analysis to compute

the flow fields in the bifurcation. The idealized models are carefully constructed to include



key geometric features found in in vivo arterial bifurcations. The models including the key
geometric features are then used to explore Reynolds number and geometric effects. Several
authors explored the role of geometric risk factors in atherosclerosis and have studied the
effect of the angles between the daughter branches of the bifurcation focusing on the outer
walls of the bifurcations where atherosclerotic plaques are commonly found.(%1%7) We also
explore the effect of angles focusing attention at the apex region where aneurysms typically
are found. The two dimensional studies of sharp corner effect on flows showed that aphysical
values of pressure and shear stress are obtained in sharp corner models.(60:61,72,91,104) \ye

use rounded corners in the bifurcation models and study the effect of radius of curvature at

the apex.

Our second hypothesis is that endothelial cells lining on the innermost layer of the vessel
walls exposed to the wall shear stress found at the apex play a significant role in the develop-
ment of aneurysms. The role of endothelial cells on arterial diseases such as atherosclerosis
have been debated by many authors.>%129 Numerous researchers reported that altered
shear stress field can damage the endothelial cells and cause intercellular reorganization. 2%
Mechanical shear force locally changes ion channel activation,(™'!) cell turnover rate(*® and

cell orientation in flow direction.®%7)

The local changes may lead to global alterations
such as vasoregulation.®9) It has been hypothesized that these morphological and functional
changes of the endothelium can be responsible for the initiation of arterial diseases. However,

the specific mechanisms responsible for the development of the diseases are still not clearly

understood.

The response of the endothelial cells under physiological loading conditions has been
investigated in in vitro environments. Many in vitro devices have been developed to test
the response of the endothelial cells to shear stress. The devices include parallel plate flow
chambers, capillary tubes, parallel circular disk flow chambers and cone—and—plate viscome-

ters. In many studies, these chambers have been employed to investigate the response of



the cells exposed to shear stress fields similar to those found on the walls of a straight
artery(":1517:39:40) and on the outer walls of a bifurcating artery.(>'% The wall shear stress
fields on the walls of straight arteries are homogeneous while inhomogeneous shear stress
fields are found on the outer walls of the bifurcations. Some flow devices include a step to
investigate the cell response to inhomogeneous shear stress fields arising from flow recircula-
tion.> These chambers have been designed to elucidate the mechanisms responsible for
the initiation of atherosclerotic disease. The values of shear stress found on the walls near
the apex of the arterial bifurcation are not homogeneous and are not recirculating. For this
reason, a novel flow chamber must be designed for the purpose of studying cell response to
shear stress found in the region near the arterial bifurcation. We found that a T-shaped flow
chamber is an appropriate model for this study and designed the chamber for the investiga-

tion of the cells exposed to the shear stress found at the apex of the bifurcation.

The main design criteria for parallel plate flow chambers are related to obtaining a ho-
mogeneous shear stress field. In order to produce a required magnitude of wall shear stress,
the two dimensional analytical solution for the fully developed flow between two infinite
parallel plates have been used for the parallel plate devices. The solution relates the cor-
responding wall shear stress to a given flow rate. However, the wall shear stress from the
analytical solution does not occupy the entire bottom plate of the chamber due to viscous
effects near the lateral walls and inertial effects near the inlet region. Many authors have
recognized the inertial effects in the inlet region and estimated the region where they are
significant using boundary layer theory.®® The boundary layer theory is based on a uni-
form and unidirectional inlet velocity profile and high Reynolds number. The typical flow
chamber experiments run for lower Re than the Re necessary for boundary layer theory.
Furthermore, the inlet velocity profile found in the inlet region of the chambers are uniform
and unidirectional, rather than three dimensional. As a result, the boundary layer theory is

not accurate in estimating the inertial effects in typical flow chambers.



Since the importance of cell-to-cell communication has been reported by a number of
researchers, 3144747 3 test region for the cells should be defined with care. Moreover, our
T-shaped flow chamber must produce wall shear stress fields similar to those found in arterial
bifurcations. For this reasons, we need to quantify the flow in the T-shaped flow chamber
to confine the cells in the region of “well defined flow” which satisfies our cell test condition.
Avoiding the rough estimates inherent in boundary layer theory, both an analytical and nu-
merical analyses are made to determine a region where the wall shear stress is within a chosen
percentage of the two dimensional values. The qualitative and quantitative comparison be-
tween the shear stress characteristics near the T-junction of the T-shaped flow chamber and
near the arterial bifurcation is made by a numerical approach. In addition, the inertial and
viscous effects for the T-shaped chamber are quantified using both analytical and numerical
approaches. These results are then used to develop a novel T-shaped flow chamber which
can be used to expose endothelial cells to shear stress fields found at arterial bifurcations
along with shear stress fields found at the walls of straight arteries. Therefore, the chamber
is designed with two categories of test regions : one at the bifurcation of chamber and the
other downstream of the bifurcation where the flow is nearly fully developed. This second
category of flow regime is the same as that generated in a parallel plate flow chamber and
will be used as a control. Because many biological assays only provide relative data, a flow

chamber with a built in control such as the chamber will be very valuable.

As our final work, a mathematical model to describe periodic motions of vessel wall is
proposed. In most analyses of the motion of vessel walls, a stress-free body is represented as
a reference configuration and the inflation due to pressure as a load is applied to the body

to describe the motion of the walls.(107,108,114)

In general, in vivo blood vessels are axially

stretched.(114:116,120,125,144) Eo1 example, when an in vivo blood vessel is cut in cross-section,

the vessel axially shrinks in length. Hence, we include this axial extension in developin
9

the equations of motion of blood vessel. Furthermore, in vivo arteries are preloaded by the

systemic pressure (100 mmHg). The deformation of arterial walls due to pulsatility is re-



ported to be small compared with these large deformations, which result from prestretching

(109,110,114) Based on that, approximate

and inflation by the systemic pressure in vessel walls.
solutions to the exact theory can be obtained using small on large theory. In this theory,
small deformations are superposed on a known finite deformation of a compressible or in-
compressible homogeneous elastic body.(1'®) Using this theory, the periodic motions of vessel

wall can be modeled as small inflation and compression due to pulsatile pressure superposed

on finite axial extension and inflation.

Vessel prestretch is included in experiment studies of the canine descending aorta and
a pressure radius curve obtained."'*) The curve shows that at a higher pressure level, the
vessel wall becomes stiffer. This feature is believed to be due to the recruitment of collagen
fibers.(112114) M R. Roach and A.C. Burton separated the roles of elastin and collagen fibers
and reported that the recruitment of collagen fibers at a certain level of pressure is responsi-

(112) Recently, the roles of elastin and collagen fibers

ble for the stiffness of the arterial walls.
were quantified using a multi-mechanism theory without considering the prestretch.(141-143)
In this theory, a new constitutive relation is introduced to account for the recruitment of
collagen fibers. We use the muti-mechanism theory to separate the roles of elastin and col-
lagen fibers and find the material constants, fitting the pressure-radius curve given in.('%
We then use these material constants to describe the periodic motions of a vessel wall using

the equations developed by the small on large theory combined with the multi-mechanisms.

The modeling of the periodic motions of arterial walls has been performed by many

authors. (140:145,146,150,151) - Gome authors did not account for prestretch or the base pres-

e(145,150,151) wwhile, some authors included the effects of these preloadings using a mem-

sur
brane theory.*” However, in this work, no constitutive equation is used for the large
deformation region. Instead, both the stresses and strains of the large deformation must be

known apriori. This limit the usefulness of this approach. The novelty of this study is to

(i) employ a nonlinear constitutive equation for the large deformation region, (ii) develop



governing equations for the wall motion using a small on large theory and (iii) include the
separate roles of elastin and collagen fibers in modeling vessel walls. The elastin fibers in
arterial walls are degraded due to development, aging or diseases of arteries.(141:152.153) The
quantification of the separate roles of elastin and collagen fibers using the multi-mechanism

theory will therefore be useful to investigate the motions of aged and diseased arterial walls.



2.0 THE RELATIONSHIP BETWEEN BIFURCATION GEOMETRY AND
HEMODYNAMIC STRESS IN MODEL OF CEREBRAL ARTERIAL
BIFURCATIONS

2.1 Objectives

Cerebral aneurysms have a great propensity to initiate and develop at apecies of bifur-
cations.(™-7-81) Many researchers have hypothesized that hemodynamic forces are strongly

n.(68-71,73,75-78,103) However specific

related to the development of aneurysms at the apex regio
mechanisms responsible for their formation, development and rupture still remain unknown.
The flow field in the vasculature is determined by its geometry for a given flow rate and there-
fore, there may exist key geometric features related to the development of aneurysms. If so,
these “geometric risk factors” would enable us to screen for patients who are predisposed to
the formation of aneurysms and to perform a computational analysis in a more efficient way.

Computational models including these key geometric risk factors would be more effective

than models considering detailed individual geometric features of each patient’s vasculature.

Great attention has been paid to investigating the role of hemodynamics in atherosclero-
sis in a number of numerical and experimental studies on bifurcations.(62 64,83,84,86,88,150,157)
Atherosclerotic plaques have a tendency to accumulate on outer walls of daughter branches

d.(320:82)  The plaques are not

where recirculation and lowered wall shear stress are foun
typically found in the neighborhood of apecies of bifurcations. On the other hand, cerebral
aneurysms are almost always found at apecies of bifurcations.(™ ™31 Therefore the regions
of apecies of bifurcations have not been the focus of the studies of atherosclerosis. For exam-
ple, many authors have employed computational models of bifurcations which contain sharp

corners at apecies of bifurcations. (6365

Past two dimensional analytical studies revealed that
wall shear stress and pressure will be unbounded at sharp corners.(0%72 91194 Thjs is clearly
an unphysical result. Two dimensional numerical studies captured this singularity, showing

that pressure and wall shear stress become unbounded as meshes are refined at sharp corners



(61) There is no corresponding analytical work for three dimensional

of bifurcation models.
bifurcations. We show in Section 2.5 that in three dimensional models with sharp corners,
pressure and wall shear stress are also unbounded at the apex. These singularities in pressure
and wall shear stress are not found at more realistic rounded corners. Wall shear stress in
rounded corner models is zero at the apex and the maximum value of the shear stress shifts
away from the apex along the curve of the rounded corner. This is quantitatively different

than the shear stress field in sharp corner models. It is therefore, necessary for us to de-

sign an idealized bifurcation model more carefully for studies of cerebral aneurysm initiation.

The regions of apecies of bifurcations have been widely thought to have elevated pressure
and wall shear stress due to momentum transfer. Convective terms of the linear momentum
equations have been thought to play an important role in pressure intensity at apecies of
rounded bifurcations. One of the objectives of this work is to evaluate this hypothesis. Here,
we hypothesize that Reynolds number would be a critical parameter affecting both pressure

intensity and wall shear stress at apecies and explore its effect.

“Geometric risk factors” were described earlier by Friedman et al(%? and Perktold et al.(157)
Their interests were focused on identifying the geometric features responsible for atheroscle-
rotic alterations corresponding to flow divider curvatures of aortic bifurcations(®? and bi-

(157) " A second objective of this work is to identify

furcation angles of carotid bifurcations.
possible “geometric risk factors” related to the formation of aneurysms. We explore effects
of a bifurcation angle between two daughter branches and radius of curvature at the apecies

of bifurcations.



2.2 An Idealized Model

Computational models of human cerebral bifurcated arteries for a numerical analysis
were developed to investigate the “geometric risk factors” for studies of the aneurysm devel-
opment. Typically, numerical models of human blood vessels are categorized by two types of
models ; idealized models and reproductions of in vivo geometries. Three dimensional recon-
structions of images from MRI or CT provide models close to real geometries. The models
produced by the images are very useful for patient specific studies but disadvantageous be-
cause of large computing time and memory and difficulties in performance of parametric
studies. On the other hand, idealized models require fewer computer resources and can be
used in parametric studies to investigate geometric effects on flow fields. For these reasons
idealized models are constructed in this study. To our knowledge, there are currently no
idealized models that contain major geometric features of in vivo blood vessels, identified

y.939) Our aim in this research is to generate more realistic idealized models

for example b
that contain all these features and can be used in parametric studies. These models are
then used in the remainder of this chapter to study effects of Reynolds number, radius of

curvature at apecies of bifurcations and bifurcation angles.

2.2.1 Geometric Features of Bifurcated Vessels

Attempts to obtain realistic idealized models of bifurcations are made by capturing the
key geometric features commonly found in in vivo bifurcated vessels reported by a number
of authors. A few researchers have reported that the trunk of the parent vessel widens

1.(93-95)

towards the bifurcation in a typical bifurcated vesse The shape of cross-sectional

area of the bifurcated vessel changes from relatively circular in the parent vessel to oval, to
pinched oval, to a figure eight shape toward the bifurcation and then to two circles in two

(94-96)

daughter branches. In addition, the shape of the longitudinal perpendicular plane in

the region of the bifurcation is parabolic.’”) A representative figure of a typical bifurcation
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Longitudinal Planar Cut

Figure 2.1. The schematic of bifurcation region of cerebral artery indicating 3 orthogonal
(99)

sectioning planes by Helen M. Finlay "%.

reported by Helen M. Finlay et al.®¥ is shown in Figure 2.1. Quantitative information on
the cross sectional transition was obtained by Macfarlane et al..(%%) They evaluated the
first bifurcation of the left and right anterior cerebral arteries of a 68 year old female to
obtain cross sectional geometry using a technique based on the natural fluorescence of the
collagen and elastin in the arterial wall.®®) A large number of cerebral bifurcations were
analyzed by this methodology. The following significant geometric features on bifurcated

vessels were found in all vessels studied.

1. An almost linear increase in cross sectional area with distance upstream from the apex
of the bifurcation was found. Macfarlane reported that the ratio of cross sectional area
of parent vessel divided by the distance from the apex (the slope of this line) ranged

from -.7 mm to -2.3 mm. (%%

2. It was reported that the cross sectional area of the parent vessel increases from the

constant cross sectional region to the apex of the bifurcation as 50% and 60% for the

10
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Figure 2.2. Geometric data of human cerebral arterial bifurcations from Macfarlane ).

left and right ACA of a 68 year old woman(®® and 76.9% — 111% for the larger sample

size of cerebral arteries considered in.(%%)

3. Macfarlane et al. found that an increase along the axis formed by the intersection of
the longitudinal planar and cross sectional planes is most likely the main source of

increase of the cross sectional area of the parent vessel.(%% %)

Figure 2.2 demonstrates that the cross-sectional area of the parent trunk increases with
distance downstream from the inlet region of the parent vessel and then approaches the

maximum value at the apex of the bifurcation along a centerline of the vessel.

Past numerical studies on bifurcated vessels were mainly devoted to finding hemody-
namic causes for accumulation of atherosclerotic plaques as discussed earlier. The plaques
are mostly found at the outer walls of the daughter branches of bifurcations. Therefore little
attention has been paid to the neighborhood of apecies of bifurcations and often erroneous

geometrical models which included sharp corners at apecies of bifurcations were used.(3-6%

11



A few authors investigated the effect of sharp corners on stress field analytically and nu-
merically.(60:61,72,91,109) - Apalvtical studies on steady and two dimensional Stokes flow of an
incompressible and Newtonian fluid past a wedge showed that the stress tensor is singu-
lar at the corner of the wedge.(" Analytical solutions even for non-zero Reynolds number
showed that wall shear stress and pressure will be unbounded at the sharp corner, regard-
less of surrounding geometry.(6%9:199)  Tywo dimensional numerical study of a bifurcated
vessel by Haljasima et al. revealed that pressure and wall shear stress at the sharp corner
are unbounded.(®) Models which include the sharp corners are inappropriate in studies of
aneurysms. Therefore, in this work, in addition to reproducing the geometric features in the

idealized models, we will use rounded corners.

2.2.2 Numerical Models

Two types of geometries are employed for current parametric studies ; a model with
curved daughter branches (“curved model”) for studying the effect of Reynolds number and
radius of curvature at the bifurcation and a model with straight daughter branches (“straight
model”) for studying the effect of bifurcation angles. All models are created by using a soft-
ware package, Pro Engineer which is compatible with a fluid solver, ADINA for analysis .

The dimensions of the models are based on data provided by Macfarlane et al..(%%%)

The main step in developing our models in Pro Engineer is to first create one half of
the bifurcation geometry and then mirror it about a central plane. A primitive half model
is composed of a trajectory along which the cross section of the model is changing. The
trajectory forms the outside edge of the cross section to create for example, a circle. Cross
sections are defined at specific points on the trajectory. A body is then generated by creating
the blend between the cross sections. The key geometric features such as the widening of

the parent trunk and the “pinching off” effect discussed in Section 2.2.1 are captured by

1Jill Cochran, a former undergraduate student, created these models

12
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Figure 2.3. Representative Pro Engineer drawings of the bifurcation model.

controlling the trajectories and the changing cross sections. In addition, the sharp corners at
the bifurcations that arise when joining two daughter branches can be smoothed by a round-

ing technique. Detailed description for both curved and straight models are presented below.

2.2.2.1 Curved Model.

The curved model consists of two shorter straight segments connected by a large curved
segment as can be seen in Figure 2.3 (a). As shown in the figure, seven points are used
to define the trajectory of the curved model. The segments from point A to point C are

straight, from C to F are curved with a single radius, and from F to G are straight. Cross

13



Table 2.1. Cross sectional geometry at labeled points in curved model .

Point /Segment Cross-section
A Circle-Parent
A-B Circle-Parent
B Circle-Parent
B-C Transition-Circle-Oval
C Transition-Circle-Oval
C-D Transition-Circle-Oval
D Oval
D-E Transition-Oval-Circle
E Circle-Daughter
E-F Circle-Daughter
F Circle-Daughter
F-G Circle-Daughter
G Circle-Daughter

sections are defined at points A, B, D, E, and G. The cross sections of A and B are circular
with the diameter of the parent vessel. The cross section of D is oval at the bifurcation
point. The cross sections of E and G are circles with the diameter of the daughter branch.
A transition in cross section occurs from point B to point D (circle to oval), and from point
D to point E (oval to circle). Table 2.1 shows cross sectional geometry at labeled points in
the curved model. These features can be easily seen in Figure 2.4. Figure 2.5 represents a
curved model created by this method to study the effect of Reynolds number and radius of

curvature at the bifurcation.

2.2.2.2 Straight Model.

The straight model is composed of two long straight segments and a shorter curved seg-
ment as shown in Figure 2.3 (b). Six points define the trajectory of this model. The segment
from point A to point C is straight, from point C and D is a curve of a single radius, and
from point D to F is straight. Cross sections are defined at points A, B, D, E, and F. The

cross sections of A and B are circles with the diameter of the parent branch. The cross

14
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Figure 2.4. Orthogonal sections from a representative curved model.

Figure 2.5. Curved bifurcation model with 20° bifurcation angle.
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Table 2.2. Cross sectional geometry at labeled points in straight model .

Point /Segment Cross-section
A Circle-Parent
A-B Circle-Parent
B Circle-Parent
B-C Transition-Circle-Oval
C Transition-Circle-Oval
C-D Transition-Circle-Oval
D Oval
D-E Transition-Oval-Circle
E Circle-Daughter
E-F Circle-Daughter
F Circle-Daughter

section of D is oval at the bifurcation point and the cross sections of points E and F are
circles with the diameter of the daughter branch. The transition in cross section is found
between points B and D (circle to oval), and between points D and E (oval to circle). Cross
sectional geometry at labeled points in this model can be seen in Table 2.2. Orthogonal
sections from a representative straight model are shown in Figure 2.6. Using this technique,
we develop three straight models with bifurcation angles, 3 of 20°, 40° and 60° to study the

effect of bifurcation angles as shown in Figures 2.7, 2.8 and 2.9.

From the geometric data of arterial bifurcations from Macfarlane® (see Figure 2.2), the
ratio of the area of two daughter branches to the area of a parent vessel is about the same.
Based on this, the ratio of the diameters of two daughter branches to the diameter of a parent
vessel is chosen to be 0.6. Distance between the apex and the inlet is 13.95 times larger than
the radius of the parent vessel. We choose the sufficiently large distance to obtain a fully
developed flow region at the inlet so that the result are unchanged with further increasing
the length of the parent branch. Because data of the radius of curvature at the apex region
is not available, the radius of curvature at the bifurcations of the models is explored over a

range of curvatures of 0.065, 0.080 and 0.100 times the radius of the parent vessel.
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Figure 2.6. Orthogonal sections from a representative straight model.

Figure 2.7. Straight bifurcation model with 20° bifurcation angle.
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Figure 2.8. Straight bifurcation model with 40° bifurcation angle.

Y/

Figure 2.9. Straight bifurcation model with 60° bifurcation angle.
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Figure 2.10. Cross-sectional area as a function of distance from the inlet.

2.2.3 Validation

All the models created by Pro Engineer successfully include the significant geometric fea-
tures reported in(®>9>97) and discussed in Section 2.2.1. Their orthogonal sections from the
representative models agree well with the geometric features provided by©®39%97 (see figure
2.4, 2.6). The figures show that the shape of cross-sectional area of the bifurcation is circular
in a parent vessel and it becomes a oval and transitions smoothly to a figure eight shape until
it pinches off into two daughter branches. In addition, the shape of the boundary of the bifur-
cation in the longitudinal perpendicular plane is parabolic. Shown in Figure 2.10 is a plot of
the cross sectional area versus the distance from the inlet. The cross sectional area displays
an approximately linear increase (taper : 0.224) before the bifurcation and a linear decrease
(taper : -0.363) afterward. This feature is qualitatively in accord with the features provided
by Macfarlane et al.. Finally, as can be seen in Figure 2.11, all junctions joined by the
parent and two daughter branches are smoothed. In particular, round corners at the apecies

of the bifurcation models are generated to eliminate the sharp corners for physical relevance.
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Figure 2.11. Enlarged view of round corner at the apex of the bifurcation.

2.3 Governing Equations and Non-dimensionalization

The fluid is modeled as incompressible, homogenous and linearly viscous and the flow as
steady. Therefore, the motion of the fluid is governed by the following equations referred to

rectangular Cartesian coordinates, x;,

Ui,i = 0, (21)
puiv; = Tij, (2.2)
Tij = —pbij + n(vij + vj), (2.3)

where v; are the components of velocity vector, p is the fluid density, p is the fluid dy-
namic viscosity, T;; are the components of the Cauchy stress tensor, the notation (),7 de-
notes 9()/0x;. Equations 2.1 and 2.2 represent the incompressibility and linear momentum
equations, respectively. The assumption of steady flow in cerebral arterial bifurcations is
motivated by the fact that the value of Womersley parameter is small for unsteady flow in
cerebral arteries. For unsteady, fully developed flow driven by an oscillatory pressure gradi-

ent in a straight pipe with circular cross section, the value of Womersley parameter range

from 1.3 to 2.7 for the cerebral arteries with 2 ~ 4 mm diameters. Hence, we can consider

20



Table 2.3. Models for parametric studies .

Model Radius of Curvature (R.) | Angle (3) Parametric Studies
A curved model 0.065, 0.08, 0.1 20° Re, R,
A straight model 0.1 20°,40°,60° | Angle of daughter branches
relative to parent branch

the flow in cerebral arteries with 2 ~ 4 mm diameters as quasi-steady.

Non-dimensional variables are defined as

vi _ (p—pin)D

— L _n/ 2.4
v P 2ulU (24)
where D is the diameter of the parent vessel, U is the average velocity at the inlet of

the parent vessel, p;, is the pressure at the inlet of the parent vessel. The dimensionless

parameter used in this study is the Reynolds number defined as

~_pUD
o

Re (2.5)

The Reynolds number is used as one of the parameters for the parametric studies.

Based on the definition of Re, we plan to perform the parametric studies using the curved
and straight models as shown in Table 2.3.
2.4 Numerical Formulation

2.4.1 Boundary Conditions

Due to geometric symmetry, half models are used for calculating flow fields in the bifurca-

tion models. The half models significantly diminish the amount of work for mesh generation
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Figure 2.12. Representative meshed bifurcation with inlet, I'y and outlet, I's.

and computing time. Figure 2.12 shows a representative meshed bifurcated model. The fluid

enters at inlet I'; and exits at outlet I's.

The Cauchy stress tensor, T;; in the linear momentum equations 2.2 can be expressed
in the either physical or mathematical formulation since the difference between the stress
tensors in both formulations is divergence free. A modified stress tensor, T}; is used in the
mathematical formulation. It has no transposed term of velocity gradient as expressed in

Equation 2.6.

Note that the equation of linear momentum has a similar form for both formulations as

1"

The stress tensor, T}; in the mathematical formulation is considered for the purpose of inlet
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and outlet boundary conditions. Then the following boundary conditions are applied ;

Ovi
t; = Tz‘/jnj - (/‘a;)‘nj - pnz)) . = Can; for a = 1,2, (2.8)

J
gijkting = 0, on symmetry plane (2.9)

where n; are components of the outward normal to the surface and C, is a prescribed con-
stant. The modified traction vector, ¢, is specified to be constants at the inlet, I'y and the
outlet, I'y (see Equation 2.8). Imposing 2.8 at the boundaries is consistent with fully devel-
oped flow conditions (Pouisseulle flow). For this work, C} is chosen to be zero at I'y and Cy
is chosen to obtain a required range of the Reynolds number based on the inlet diameter at
['5. On the symmetry plane, the perfect slip condition is specified and no slip conditions are

applied on the surrounding walls of the bifurcation models.

Evaluation of the applicability of the mathematical traction as a numerical boundary
condition for flow in a straight pipe of circular cross section is given in Section 2.5. The
detailed explanation of this boundary condition is discussed in®®) for the numerical aspects

and®"%%) for the mathematical aspects.

2.4.2 Solution Methods

The governing equations, 2.1 and 2.2 are solved by utilizing the commercial software
package ADINA| version 7.5 (Automatic Dynamic Incremental Nonlinear Analysis, Water-
town, MA) based on a finite element method. Bodies created in Pro-Engineer software are
imported into ADINA fluid solver and meshed entirely by employing free-form mesh (irregu-
lar meshes) generating four-node tetrahedral elements. Meshes are refined in the bifurcation

region where high pressure gradients are expected.
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The tetrahedral elements have a linear interpolation function, which is called “a shape
function” for pressure and a bubble function for the velocities.®® A finite volume approach
of upwinding is used to overcome numerical instabilities at high Reynolds numbers.(®) The
steady, incompressible Navier Stokes equations with the boundary conditions described in
Sections 2.3 and 2.4.1 are solved by a sparse solver based on the Gauss elimination method.
The sparse solver solves a system of linear algebraic equations. The Newton-Raphson it-
erative scheme is used to solve the nonlinear finite element equations.(®) The convergence
criterion for the major iteration is as follows. The major iteration loop is Newton-Raphson
iteration and the iterate is stopped if the following condition is satisfied.

X=X
X

< RTOL, (2.10)

where RTOL is a chosen tolerance. X° denotes the solution vector for the velocity and

pressure at iteration ¢ and || X || is the Euclidean vector norm defined as
X 1= Tz )Y, (2.11)
J

with the z; being the components of the vector X. Therefore the norms (magnitude) of
the difference between velocity and pressure from previous iteration and those from current
iteration are used for the convergence criterion. Our calculations are stopped when the con-

dition (2.10) with RT'OL = 0.001 is met for both velocity and pressure.

2.4.3 Mesh Convergence

Characteristics of the pressure along centerlines of the bifurcation models are our primary
concern. We determine if inertial effects cause a localized high pressure at the apecies and
look for “geometric risk factors”. Mesh refinement studies are conducted by refining the

meshes in the bifurcation region where the steep wall shear stress and pressure gradient ex-
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Table 2.4. Mesh refinement studies .

Mesh Density El E2 E3 B4 E5 E6 E7
Number of Elements | 47800 | 50000 | 52000 | 54000 | 56000 | 60000 | 81000
0.002 F X
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Figure 2.13. Centerline pressure (Pa) along the distance from the inlet of the model for seven

different mesh densities.

ist. Meshes are refined in the bifurcated region by increasing the number of elements at that
region. Table 2.4 shows the seven different mesh densities with the number of total elements
generated using the curved model. The centerline pressures evaluated in all the models are
presented in Figure 2.13. Comparison between the variations of centerline pressures of E6
and E7 mesh densities shows that pressure differences between the two models are within

0.5 % range along the centerlines. Numerical bifurcation models for the parametric studies

5

10

Distance from Inlet

are then based on the E7 mesh density.
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2.5 Results (Re, Radius of curvature, bifurcation angle)

As discussed earlier, the mathematical traction is specified at the inlet and outlet bound-
aries of the half model. We perform a numerical analysis on a straight cylinder using both the
physical and mathematical tractions to evaluate the applicability of mathematical traction
as a boundary condition by employing the ADINA-F fluid solver. We compare the analytical
solution for fully developed flow in a straight pipe with the numerical solutions obtained by
applying the physical traction (PT) and mathematical traction (MT) boundary conditions to
the inlet of the straight cylinder for the validation. For the computational analysis, uniform
constant normal traction at the inlet and zero normal traction at the outlet of the straight
cylinder are specified for Re = 100. When we assume that gravity effect is negligible, the
analytical solution for steady, fully developed flow is

2

v ﬁ(—j—i)(% 1), (2.12)
where r and x are the radial and axial spatial variables, respectively. The magnitudes of
velocities, v obtained numerically using MT and PT formulations are compared to the mag-
nitude of velocity from the analytical solution for the same Re number. The radial distance
r and v obtained numerically are normalized, dividing by the radius of the pipe, D/2 and
maximum velocity v,,., from the analytical solution. The results are shown in Figure 2.14
by denoting the normalized v and r as v* and r*, respectively. As shown in the figure, the
analytical solution matches well with the axial velocity for the mathematical traction (MT)
(maximum error = 1.2%). The axial velocity for the physical traction (PT) on the other
hand, deviates up to 11% compared to the analytic solution. The mathematical traction is

therefore chosen as a numerical boundary condition in our models.

This work focuses on applications to blood flow in the human circulatory system. The
fluid for analysis is human blood. Human blood exhibits shear thinning non-Newtonian be-

havior at low shear rates. We used the value of the viscosity reported by C.G. Caro, which is
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Figure 2.14. Comparison of normalized velocity profiles for exact solution, PT formulation
and MT formulation at inlet.

0.0035 Ns/m? as the viscosity of human blood for our analysis. The density of human blood
is 1050 kg/m?>. The parametric studies of the bifurcation models were carried out based on

these human blood properties.

The curved model is used to study the inertial effects. Reynolds numbers are chosen to
be 255, 505, 755 based on the inlet average velocity, U and the diameter of the parent vessel,
D. Radius of curvature, R, is selected to be 0.065. Pressure variation along the centerline of
the model for the three cases is presented in Figures 2.15, 2.16, 2.17. As expected, elevated
pressure is localized in the region of the bifurcation. The pressure values of the bifurcation
region appear to be greatly altered as the Re changed. Clearer evidence supporting this is
shown in Figure 2.18. The figure shows the centerline pressure along the distance from the
inlet up to the apex of the bifurcation. Higher Reynolds number results in higher center-
line pressure. We can also see that there exists a steep pressure gradient in the region of
the bifurcation. In addition, a larger pressure gradient is found at higher Reynolds number

(see a smaller box in Figure 2.18). These facts prove our hypothesis, that elevated pres-
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Figure 2.15. Pressure (Pa) variation in the curved model at Re = 255 and R, = 0.065.
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Figure 2.16. Pressure (Pa) variation in the curved model at Re = 505 and R, = 0.065.
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Figure 2.17. Pressure (Pa) variation in the curved model at Re = 755 and R, = 0.065.
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Figure 2.18. Centerline pressure (Pa) with distance downstream from the inlet to the apex
in the curved model at Re = 255, 505, 755 and R, = 0.065.

29



0.0003

0.00025

0.0002

0.00015

Wall shear stress

0.0001 -

5E-05

0 0.25 0.5 0.75
Distance from apex

Figure 2.19. Wall shear stress (Pa) along the neck of the bifurcation in the curved model at
Re = 255, 505, 755 and R, = 0.065.

sure at apecies of bifurcations results from increased inertial effects. Stokes flow, in which
the inertial effect is negligible, is simulated to determine whether the geometric effects can
contribute to the sudden increase in the centerline pressure in the region of bifurcation for
this bifurcation model (R. = 0.065). The change in pressure in the bifurcation region is not

significant, therefore supporting our hypothesis.

Increasing Reynolds number increases the magnitudes of wall shear stresses along the
center neck of the bifurcation (see Figure 2.19). As shown in the figure, at each Re, the
value of wall shear stress is found to be zero at the apex because of the geometrical symme-
try and then increases along the neck of the bifurcation up to the maximum value. It then
decreases to a constant value of wall shear stress found in a straight artery at a given flow
rate. The overall values of these wall shear stresses increase as Re increases along the neck,
concluding that increased inertial force elevates overall values of wall shear stresses at the

vicinity of the apex of bifurcation.
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Figure 2.20. Pressure (Pa) variation in the curved model at Re = 505 and R. = 0.065.

The second study is used to investigate the round corner effect that most researchers
previously disregarded. Fixing the Reynolds number at 505, a sharp corner and three radius
of curvature, R. (S = sharp corner, A = 0.065, B = 0.08, C = 0.1) at the corner of the
bifurcation model are used. The pressure contour plots for the three cases are shown in
Figures 2.20, 2.21, 2.22.  Although it is difficult to find any differences from the contour
plots, the lines inside a smaller box in Figure 2.23 make clear two facts. One is that as
the radius of curvature increases, the pressure decreases. The other is that the centerline
pressure at the sharp corner of the bifurcation is unbounded. In our numerical studies this
unboundness cannot be attained though it is more accurately modeled with increasing mesh
density. As seen in Figure 2.23, the pressure at the sharp corner drops significantly. Due to
the singularity at the nodal point, we see a discontinuity in the pressure curve. As stated
previously, wall shear stress at a sharp corner is also unbounded as mesh is refined in the
region of the apex (see Figure 2.24). The maximum wall shear stress decreases as the radius
of curvature increases as shown in Figure 2.25. The unboundness of pressure and wall shear
stress at a sharp corner and lowering effect of larger radius of curvature on wall shear stress

in three dimensional model are compatible with the results found in two dimensional numer-
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Figure 2.21. Pressure (Pa) variation in the curved model at Re = 505 and R, = 0.08.
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Figure 2.22. Pressure (Pa) variation in the curved model at Re = 505 and R, = 0.1.
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Figure 2.23. Centerline pressure (Pa) with distance downstream from the inlet to the apex
in the curved model at Re = 505 and R. = 0.065, 0.08 and 0.1.

ical model of bifurcation.(®) These facts reenforce the point that care should be taken in

computational studies when modeling the bifurcation.

As our final parametric study, the effect of the angles between the two daughter branches
using the straight model is explored. Angles are selected to be 20°,40° 60° fixing the
Reynolds number at 505 and radius of curvature at R. = 0.1. Three representative pressure
contour plots and plots of centerline pressure along the distance from the inlet for the models
with three angles are presented in Figures 2.26, 2.27, 2.28 and 2.29 respectively.  The effect
of bifurcation angle on wall shear stress is also shown in Figure 2.30. As seen in Figures 2.29
and 2.30, there are no major differences in pressure gradients and wall shear stresses at the
bifurcations, implying the effect of angle in this range on wall shear stresses and pressures

at the apex is almost negligible.
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Figure 2.26. Pressure (Pa) variation in the straight model with 20° bifurcation angle at Re
= 505 and R, = 0.1.
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Figure 2.27. Pressure (Pa) variation in the straight model with 40° bifurcation angle at Re
=505 and R, = 0.1.
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Figure 2.28. Pressure (Pa) variation in the straight model with 60° bifurcation angle at Re
= 505 and R, = 0.1.
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Figure 2.29. Centerline pressure (Pa) with distance downstream from the inlet to the apex
in the straight models with 20°, 40° and 60° bifurcation angles at Re = 505 and R, = 0.1.
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Figure 2.30. Wall shear stress (Pa) along the neck of the bifurcation in the straight models
with 20°, 40° and 60° bifurcation angles at Re = 505 and R, = 0.1.

2.6 Discussion of Results and Future Work

In order to investigate the geometric risk factors thought to be responsible for the
aneurysm formation at the bifurcation, we created the two types of idealized models ; a
straight and a curved model including key geometric features found in in vivo bifurcated
arteries. Using these geometries, the effects of Reynolds number, radius of curvature and
bifurcation angle on the centerline pressure from the inlet to apex and wall shear stress at

the vicinity of the apex were numerically explored.

From the Reynolds number study, we found that (i) elevated pressure gradients in the
region proximal to the apex of bifurcation result from inertial force, not from geometric
shape, and (ii) larger inertial force results in larger centerline pressure gradients and overall
wall shear stresses at the vicinity of the apex. Bifurcation angle was found not to be an
important parameter for increase of the centerline pressures and wall shear stresses. As em-
phasized earlier, rounding a sharp corner is found to be very important for computational

studies of bifurcation geometry to find hemodynamic effects on aneurysm formation since
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Figure 2.31. A straight artery and a bifurcation showing its length.

pressure and wall shear stress are unbounded at a sharp corner. Patient specific geometry of
the apex region should be found to investigate hemodynamic effect more precisely because

larger radius of curvature lowers the values of pressure gradients and wall shear stresses.

Appendix A shows detailed calculations to convert the values of pressures or wall shear
stresses presented in the result section to actual values for bifurcations with 2mm and 4mm
diameters using the dimensionless parameters given in Equations 2.4 and 2.5. Pressure dif-
ferences from inlet to apex, AP found in bifurcations with 2mm, 3.2mm and 4mm diameters
(curved model with R. = 0.065) are then compared to those from inlet to outlet found in
straight arteries with 2mm, 3.2mm and 4mm diameters for given Reynolds numbers. The
length of the straight artery and the length from the apex to the inlet of the bifurcation is
6.975 x D as shown in Figure 2.31. It turns out that pressure differences in bifurcations are
about 1.8 ~ 6.1 times larger than those in straight arteries for a given Re (see Table 2.5%).
Maximum wall shear stresses found at the apex regions of bifurcations (curved model with
R. = 0.065) are also compared with wall shear stresses found in straight arteries for a given
Re (see Table 2.6). As shown in the table, we found that the maximum wall shear stresses at
the apex regions are about 14.2 ~ 17.4 times larger than wall shear stresses found in straight

arteries. Typical value of wall shear stress found at the lateral walls of straight segments

2¥5 in the table are well outside the expected physiological region.

38



Table 2.5. Pressure differences found in straight arteries and bifurcations for given Reynolds

numbers (AP(mmHg)) .

Straight artery Bifurcation
Re AP AP AP AP AP AP
D=2mm |D=32mm | D =4mm | D =2mm | D =32mm | D = 4mm
255 1.25 0.49 0.31 2.25 0.88 0.56
505 * 0.96 0.62 * 3.52 2.25
755 * * 0.92 * * 5.63

Table 2.6. Wall shear stresses found in straight arteries and at the apex regions of bifurcations

for given Reynolds numbers (7, (dynes/cm?)) .

Straight artery Bifurcation
Re Tw Tw Tw Tw Tw Tw
D=2mm | D=32mm | D=4mm | D =2mm | D =32mm | D = 4mm
255 53.33 20.34 13.33 757.49 295.87 189.37
505 * 45.86 26.66 * 719.13 460.25
755 * 40.00 * * 755.99
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Figure 2.32. Pressures and the corresponding Re to wall shear stress 15 dynes/cm? in two
generation bifurcations with the diameter D, and Dj.

of the vascular system are commonly believed to be nearly constant and on the order of 15
dynes/cm?. The supposition that the geometry of the arterial tree is such that wall shear

g (148

stress is approximately constant, is also supported by the cube law analysi ) Recalling

the relationship between Re and 7, for a straight segment

Re = p—Dsz, (2.13)

442
it is clear that for fixed blood properties and chosen vessel diameter, D, only a small range
of Re will correspond to 7, of order 15 dynes/cm?. For example, it follows from Equation
2.13 that for a vessel with D = 4mm the Reynolds number will be on the order of 260. To
emphasize this, in Table 2.6, values which are well outside the physiological wall shear stress

range are noted with a “*”.

We now consider a representative section of the arterial tree containing two generations
of bifurcations (see Figure 2.32). In the following discussion, wall shear stress is fixed as 15

dynes/cm?. The diameter and Re of the second generation bifurcation could be estimated
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by Equation 2.13 as Dy = 3.2mm and Rey; = 160 using continuity. For the parent bifurcation
with D, = 4mm, Re, is around 260 for 7, = 15 dynes/cm?. Since the elevation of pressure
at the bifurcation is found to be a local effect and therefore, the pressure drop (P, — P)
from the inlet of parent bifurcation to the inlet of the second generation bifurcation is nearly
the same value found in a straight artery (0.31 mmHg for Re = 255) from our numerical
analysis (see for example, Figure 2.15). Then, the pressure increase (P, — P;) between the
apex and the inlet of the second generation bifurcation can be estimated by extrapolating
the values given in Table 2.5 for Re = 160 (nonlinear fit) and is found to be around 0.4
mmH g. Then it turns out that the total pressure increase (P — F,) from the inlet of parent
bifurcation to the apex of the second generation bifurcation is about 0.71 mmH g, which is
slightly larger than the pressure increase (P,; — P,) between the apex and the inlet of parent
bifurcation (0.56mmH g). This value of pressure increase is small compared to the average
blood pressure (100mmH g). Therefore, it is unlikely that this amount of elevation of pres-
sure at the apex of either bifurcations will play a major role in the initiation of aneurysms.
Since the spatial pressure variation at the apex is more severe (see for example, Figure 2.15),
we would conclude that the spatial gradient of pressure at the apex could play a role in the

aneurysm formation though to date there is physical explanation of this.

The maximum wall shear stress at the apex of the parent bifurcation (Re = 255) is 189.37
dynes/cm? as shown in Table 2.6. The value of wall shear stress at the apex is quite large
compared to the value found in a straight artery. This high value of wall shear stress may
affect the turnover rate and the viability of endothelial cells, which could be a major factor
in wall degradation. Therefore, we conclude that the elevation of wall shear stress at the

apex of bifurcation may be an important risk factor for the aneurysm initiation.

As for the pressure calculations, the maximum wall shear stress found at the apex of the
second generation bifurcation was estimated by extrapolating the values given in Table 2.6

(linear fit). The maximum wall shear stress at the apex of the second generation bifurcation
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was found to be 135 dynes/cm?, which is smaller than the value found at the apex of the
parent bifurcation. This demonstrates that the apex wall shear stress will decrease as blood
flows through increasing generations of the arterial tree. Significantly, this is consistent with

the sparse population of aneurysms in several generations more away from the circle of Willis.

As discussed throughout this chapter, several assumptions have been introduced in our
studies of blood flow in cerebral bifurcations. In this chapter, the flow was modeled as
unsteady. This assumption is more appropriate in arteries with small diameters such as the
cerebral arteries (2 ~ 4 mm) where the Womersley numbers are small (1.3 — 2.7). Arterial
walls are flexible and fluctuate with time under the propagation of pressure waves. In oder
to simplify the analysis, in this chapter, we modeled the walls of bifurcations as rigid. The
periodic motion of the vessel walls which typically less than 10 % strain throughout the
vasculature system ((!39), is particularly small in the cerebral arteries due to the dampening
of the pulse wave as it travels into the cerebral vasculature. For this reason, the mathematical
modeling of the periodic motions of walls is left for future studies in which the propagation
of pulse waves is of interest. We have not yet studied the effects of asymmetry in the
bifurcation geometry and of varying the area ratios of parent and daughter branches. These
geometrical parameters may also be important in determining risk factors. Specifically, an
angular asymmetry in bifurcation branches may shift the location of the maximum wall shear
stress closer or farther from the apex of the bifurcation and may also alter the maximum
wall shear stress. This in turn may alter the position of the aneurysm. We need to undertake
a more detailed study of these effects. In this work, we modeled the blood as a Newtonian
fluid. Blood is non-Newtonian due to the shear thinning effects of viscosity with shear rate.
However, K. Perktold et al. showed that there are only minor differences in the magnitude

of wall shear stress between studies using Newtonian and shear thinning fluids in a carotid
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bifurcation model at fixed flow rate.(*®”) Their results show that the shear thinning viscosity
found in blood lowers the magnitude of wall shear stress at the inner wall by 10% compared
with the results of a Newtonian fluid. As a result, the use of Newtonian fluid, slightly

overestimates the magnitude of wall shear stress.
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3.0 A NOVEL FLOW CHAMBER
3.1 Objectives

Cellular tissues such as endothelial cells, blood cells, bone cells and cardiac cells are under

0.9:12:123) Endothelial cells are layered on the luminal

physiological loading conditions in viv
wall of the blood vessel, exposed to blood flow under a cardiac cycle. The morphological and
functional alterations of endothelium due to blood flow have been hypothesized to be respon-

sible for vascular diseases by many researchers. (%8129

Mechanical effects such as shear stress,
strain and normal stress have been reported to affect the morphology and function of endothe-
lial cells as biomechanical mediators in intercellular reorganization™?% and.* Mechani-
cal shear stress deforms original polygonal shapes of endothelial cells to ellipsoidal shapes,
aligning them with flow direction.®*>7 Moreover, temporal and spatial shear stress gradient
have been shown to play an important role in the response of endothelial cells.(16:31-33) These
temporal and spatial shear stress gradients locally change cell turnover rate,(!® ion channel

(129) cellular cytoskeleton,®) gene expression at the

activation,”!V) intercellular signaling,
level of transcription and protein synthesis.(®%14716:129) These local changes may lead to va-
soregulation®® and arterial wall remodeling.®”) In spite of researchers’ efforts, the specific

mechanisms regulating these cellular responses are not fully understood.

Because of the geometrical complexity of arteries and resolution limitations of current
technology to measure wall shear stress and pressure, in vivo studies of the endothelial
cell response to shear stress have been limited. As a result, various types of in wvitro
flow devices have been developed to simulate the in vivo biomechanical environment of

the vascular endothelial cells. Current designs of flow chambers include parallel plate geome-

§.(7,15,17,18,38-40) g (41,42)
) )

trie capillary tube geometrie cone—and-plate geometries. (> 8%16) Most
flow devices used in laboratories are parallel plate flow chambers and cone—and—plate vis-
cometers. The cone-and—plate viscometer has the advantage that it does not have a reservoir

effect. However, it generates a secondary flow motion with undesirable spatially inhomoge-
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neous shear stress levels. On the other hand, the parallel plate flow device generates a
reservoir effect but a desirable homogeneous shear stress level without a secondary motion.
Because the flow in the parallel plate flow chamber is driven by pressure gradients, the pres-
sure changes nearly linearly in the axial direction of the chamber. In the past, the level
of pressure variation has been considered negligible. More recently researchers have begun
to explore this effect.(!3 Given the wide range of pressure found throughout the arterial
system and over one heart cycle, it seems unlikely that the magnitude of pressure plays as
significant a role as wall shear stress. We do not discuss the effect of pressure on the cells
in this study and it will remain for future work. Most existing flow devices were designed
to produce either a homogeneous shear stress or inhomogeneous shear stress found near the
recirculation regions of flow past a step. The flow devices which include steps were in general,
designed to investigate endothelial cell response to shear stress found in the outer walls of

bifurcations where atherosclerotic lesions are localized.(® %)

Most parallel plate flow chambers have inlet reservoirs to reduce high inertial effects in
the chambers so that they produce nearly homogeneous shear stresses on the entire bottom

plates. Previous researchers have recognized the significance of the reservoir effect and some

(52) (17,18,39,48)

have used the results from boundary layer theory'°*) to estimate the inertial effect.
Entrance length due to momentum transfer from the reservoirs cannot be however, simply
obtained by the boundary layer theory, mainly because of the inlet flow condition and the
range of Reynolds number assumed in the theory.®® The uniform flow profile as an in-
let condition in the theory is typically quite different from the inlet flow profiles found in
the most parallel plate chambers except the flow chamber designed by Ruel et al..*®) The
Reynolds number appropriate for the theory is larger than typical Reynolds number used in
flow chambers.(17:1®) As a result of these two issues, the boundary layer theory significantly
underestimates the entrance length for the typical flow chambers.(®? Moreover, viscous dis-

sipation near the side walls of the chamber affects flow characteristics, producing values of

shear stress more than 80% of the desired value. The data can be contaminated if the cells
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exposed to the altered shear stress are included in the data analysis. Furthermore, the cells
exposed to the altered shear stress can influence the response of other cells due to cell-to—

(31,44-47)

cell communication. Therefore, flow chambers must be carefully designed to obtain

meaningful data.

Several authors have reported the analysis of their flow chambers to estimate the effects
of the lateral walls and inlet reservoir. Ruel et al. injected dye in the flow chamber*® and
Nauman et al. used beads'” to evaluate whether the streamlines were parallel to the cham-
ber wall. Ruel et al. used boundary layer theory to estimate the effect of the lateral walls
of their own flow chamber.®) Nauman et al. used particle image velocimetry to evaluate
whether the velocity field was uniform across the width of the flow chamber.(!") However,
there exists an exact solution for fully developed flow in a channel that will be discussed later
to evaluate the effect of the lateral walls. Therefore instead of the rough approximation using
boundary layer theory which Ruel et al. used, the exact solution can be used to evaluate
the lateral wall effect. The uniformity of the velocity across the width that Nauman et al.
concluded is not in accord with the analytic solution and furthermore, the use of relatively
large beads which are about one—third the channel height reduced the accuracy of their mea-

surement, as noted by the authors.

We design a flow chamber to expose the endothelial cells to wall shear stress found at
the arterial bifurcation to study the hemodynamic effects on the cells near the bifurcation.
Clearly understanding the hemodynamic effects on endothelium in vitro strongly relies upon
a scientifically accurate design process. The accurate observation of desired flow character-
istics in laboratories is not easy due to the limitations of apparatus capabilities. Taking
advantage of the large increase in computer technology, we took a numerical approach in the
design of our flow chamber and therefore, a more quantitative approach in the evaluation of

the effects of the inlet and outlet reservoirs and lateral walls, avoiding the rough estimates
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of boundary layer theory. Our goal is to design a flow chamber which can provide a substan-

tial region for cell testing outside the region governed by lateral wall, entrance and exit effects.

As discussed in Chapter 2, we expect wall shear stress to play a more major role than
pressure in aneurysm formation. Therefore, in the design process, the focus is on reproduc-
ing the wall shear stress field. In the numerical studies discussed in Chapter 2, we found
that wall shear stress near the apex of the bifurcation is not homogeneous but varies along
the neck of the bifurcation. Endothelial cells in this region therefore, experience inhomoge-
neous shear stress. It is therefore, necessary for us to redesign the existing flow chambers
to produce the shear stress characteristics qualitatively and quantitatively similar to those
found near the apex of the bifurcation. Our computational approach will demonstrate that
a T-shaped flow chamber is appropriate to study the response of endothelial cells to wall

shear stress fields found at arterial bifurcations.

Our aim in this analysis is to design flow chambers in which the test endothelial cells are
exposed to “well defined flow”. As will be discussed later in detail, this “well defined flow” is
defined as the flow which satisfies principle design criteria. A parallel plate flow chamber is
numerically designed and then built prior to the design of the T-shaped flow chamber. This
pre-construction of the parallel plate flow chamber enables us to investigate the methods to
prevent leakage of the fluid in the chamber, to eliminate air bubbles captured in the chamber,
to control a desired volume flow rate and to manipulate the endothelial cells. Furthermore,
the numerical design of the parallel plate flow chamber allows us to investigate the effects
of reservoirs and lateral walls. The quantitative and qualitative features of the wall shear
stress found in the region of T-junction as well as the effects of reservoirs and lateral walls of
the T-chamber can be estimated by the numerical analysis on a two dimensional T-shaped

channel and three dimensional parallel plates with a reservoir.
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Figure 3.1. Representative velocity profile at the bifurcation with d, = 4mm, radius of
curvature = 0.2mm, Re = 255.

3.2 Flow Characteristics at the Apex of the Bifurcation

In the previous chapter, we developed idealized symmetric models of bifurcated vessels
and numerically analyzed blood flow in the vessels, modeling the blood as an incompress-
ible, homogeneous, linearly viscous fluid. The study revealed that wall shear stress found
in the region of the apex of the bifurcation is not homogeneous. Due to the geometrical
symmetry, the fluid impacts the apex of the bifurcation and then divides symmetrically into
the two daughter branches as can be seen in Figure 3.1. The flow then becomes nearly fully
developed distal to the apex. Steep velocity gradients present in the region proximal to the
stagnation point as shown Figure 3.1. Shown in Figure 3.2 are shear stress contours on the
wall of the bifurcation and a shear stress curve along the center neck of the bifurcation. In
the figure, the wall shear stress increases up to the maximum value from zero at the apex
and decreases to a constant value along the center neck of the bifurcation. We now consider
the curve formed by the intersection of the longitudinal plane and the surface of the arterial
model. The wall shear stress at points (slice 1) on this curve are shown in Figure 3.3. The
other slices correspond to two planes parallel to the longitudinal plane, but progressively
further away from the apex point (0.04 mm away from the apex point). If the stress field
was perfectly two-dimensional, these curves would be identical. Though the maximum drops

slightly, the shear stress is close to two-dimensional in this region. This is likely due to the
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Figure 3.2. Shear stress contours on the wall of the bifurcation and a shear stress curve along
the center neck of the bifurcation with d, = 4mm, radius of curvature = 0.2mm, Re = 255.
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model.
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fact that the principal radii of curvature at the apex, are opposite in sign and significantly
different in magnitude. Our n vitro flow chamber model makes use of this two dimension-
ality. As discussed in the next section, part of our design criteria is to recreate these flow

features in the in vitro test chamber.

3.3 Ciriteria for Flow Chamber Design

The principal design criteria for the T-shaped flow chamber for investigating the en-
dothelial cell response to shear stress found in the apex region of the bifurcation are as

follows :

1. The flow chamber should reproduce qualitative features of stress field found on arterial

walls at the apex of a bifurcation.

2. Quantitative features of the stress field in the test region of the flow chamber should
be the same order of magnitude as those found on arterial walls at the apex of a

bifurcation

3. The shear stress field should be approximately two dimensional in a large percentage

of chamber : “Active Test Region”

4. The “Active Test Region” should be wide enough to obtain sufficient quantities of cells

for genetic testing.

In particular, the third criterion is important due to cell-to—cell communication.®:4447) The
“Active Test Region” (ATR) is defined as a region where the third criterion is met. In the
ATR, the effects of lateral walls and reservoirs should be below a specified magnitude (see
Section 3.6). The “well defined flow” is defined as flow which (i) recreates quantitative and
qualitative features of stress field found on arterial walls at the apex of a bifurcation (the

first and second criteria) and (ii) satisfies the third criterion.
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3.4 Methods of Flow Chamber Design

To expose the test endothelial cells to the “well defined flow”, the flow in the chamber
needs to be quantified. For this purpose numerical studies are carried out. However, the
numerical analysis of the three-dimensional T-shaped flow chamber is quite expensive. More-
over, the ratio of the width of the chamber to the height of the channel is quite large. Such a
large ratio in geometrical dimension caused numerical instability even for a small Reynolds
number in our analysis. We thereby analyze the computational model of the T-chamber by
combining two dimensional analysis on the T-shaped channel with three dimensional analy-
sis on two segments of a parallel plate with a reservoir. The following discussion explains
how the T-shaped flow chamber can be numerically designed using the combination of the

two and three dimensional analyses :

e Two dimensional analysis

The two dimensional numerical analysis on the T-shaped channel (see for example,
Figure 3.27) is performed to satisfy the first and second criterion. Due to the large
ratio of the width of the chamber to the height of the channel, in most regions of
the chamber, the flow is laterally two dimensional®®®%) except the regions near the
reservoirs and lateral walls. Therefore, the two dimensional analysis is sufficient to
inform us about flow characteristics in the region of the T-junction of the chamber
except the regions near the reservoirs and lateral walls. The effects of the reservoirs

and lateral walls will be evaluated using a three dimensional analysis.

e Three dimensional analysis

The third and fourth design criterion are achieved using a three dimensional numerical

computation on the following two models of segments of a parallel plate,

1. A parallel plate with the inlet reservoir, Model 1 (see for example, Figure 3.29)
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2. A parallel plate with the outlet reservoir, Model 2 (see for example, Figure 3.30)

Because the two daughter branches with the outlet reservoirs are symmetric, only one
model (Model 2) is employed. Instead of using the entire chamber, the two models
of segments are used to evaluate the effects of inlet and outlet reservoirs. Since the
flow in the regions beyond an entrance or exit length is nearly fully developed, a fully
developed condition can be specified at the inlet of Model 2 or outlet of Model 1.
The height of the parent branch and length of the daughter branch are chosen to be
sufficiently long for this purpose. However, there are flow disturbances due to the effect
of the lateral walls in the region of the T-junction. The effect can not be evaluated
by this analysis. Since the effect of lateral walls of a rectangular duct with a large
geometrical ratio is very small as will be discussed later, we assume that the effect is

small. So, it will not be discussed in this study and will remain for future work.

This combination of the two and three dimensional approaches decreases the necessary com-
putational work. It should be also noted that the dimensions of the chambers should be

carefully chosen for both the requirement of the design criteria and numerical stability.

As discussed previously, the construction of the parallel plate flow chamber precedes that
of the T-shaped flow chamber. We also study the effect of size of the reservoir on the en-
trance length from the numerical design of the parallel plate chamber and then use the result
to determine the size of the reservoir of the T-shaped flow chamber. The parallel plate flow
chamber has been successfully built using the numerical results and tested in our laboratory.

We begin our design analysis with the numerical design of the parallel plate flow chamber.

3.5 Mathematical and Numerical Formulations

The numerical analyses for the design of both the flow chambers are performed by mod-

eling the perfusion fluid as incompressible, homogeneous and linearly viscous. In this case,
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Equations 2.1 — 2.3 are the governing equations for the fluid. The boundary conditions 2.8,

which are employed in the previous bifurcation studies are used again for this study.

Equations 2.1 — 2.3 with the boundary conditions 2.8 are solved using ADINA software
package. The Newton—Raphson method is used to linearize the nonlinear finite element equa-
tions and a sparse solver is used to solve a linear set of algebraic equations.(®® The detailed

numerical methods employed in ADINA fluid solver are discussed in Chapter 2, Section 2.4.2.

3.6 Parallel Plate Flow Chamber

For the design analysis of the parallel plate flow chamber, we only need the third and
fourth design criterion. We first discuss the shear stress field on the bottom plate where
cells are grown. In classical parallel flow devices, the assumption that all cultured cells are
exposed to nearly the same shear stress in magnitude and direction is made for the data
analysis. Some flow devices use a sub—domain of the entire bottom surface for testing the

(39,48,49) Tn other chambers, the cells are cultured on the entire surface of the bottom

cells.
plate.(!"18) In both cases, the shear stress, Ttq,,, for two dimensional, steady, fully developed
flow between two infinite parallel plates is assumed to be applied to all the cells. As will be

discussed later in detail, the relationship between the wall shear stress and the volume flow

rate for the flow is assumed to be
6Qu

T = e

(3.1)

where p is the fluid viscosity, w is the channel width and A is the channel height. However,
the wall shear stress is not homogenous on the entire surface of the bottom plate due to
the inlet and outlet effects from the reservoirs and viscous effects from the side walls. For
example, the wall shear stress near the lateral walls deviates more than 80% of that expected
by Equation 3.1.0%) The deviation due to the reservoir effect may be much larger. For a

given flow rate, ) the test cells are supposed to experience the wall shear stress close to that
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Figure 3.4. Schematic of flow loop.

predicted by Equation 3.1 since the cells are confined to a sub-region of the entire bottom

5.(39:48,49) However, not many authors have measured

surface in some existing flow chamber
the effects of reservoirs and lateral walls quantitatively. In our study, both numerical and
analytical methods are approached to measure such effects. We then identify an “Active Test

Region” (ATR) defined as the region where wall shear stress is within a chosen percentage

of 3.1 to meet the third and fourth criterion, which will be discussed in detail in later section.

3.6.1 Flow Loop for Parallel Plate Flow Chamber

A schematic of flow loop is shown in Figure 3.4. The flow loop is described as follows :

1. Culture medium is pumped from lower reservoir of head tube [C] with peristaltic pump

A

2. The fluid flows through pulse dampener [B] to eliminate pump vibration and achieves

steady flow.

3. The fluid is raised to the top of head tube [C| where head driven flow begins. Fluid
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Slide Slots

Figure 3.5. A assembled parallel plate flow chamber.

passes from the inlet tube to the outlet tube as shown in the blow up view and at-
mospheric pressure is achieved. Any extra fluid pumped to the top of the head tube is

allowed to overflow and runs down to the lower reservoir.
4. Fluid flow is driven by the height difference inside the head tube.

5. The fluid enters the flow chamber [D]| and comes in contact with the endothelial cells

exposing them to the desired shear stress.

6. The fluid passes by an ultrasonic flow meter [E| and into the lower reservoir of the

head tube to be pumped back through the system.

The parallel plate flow chamber is designed by modifying a chamber proposed by J.A. Fran-
gos et al..'® The parallel plate flow chamber shown in Figure 3.5 is composed of two
machined acrylic sheets. The bottom plate has rectangular recessed areas to allow for three
high tolerance slides to be inserted. These slides, on which the endothelial cells are cultured,
have a tolerance of .001 inch to prevent movement when flow passes over the slides. The
upper plate is machined to include three recessed regions, an entrance reservoir, the flow

path, and an exit reservoir. The flow region is machined to 6.50 x 2.75 x .020 inch and
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Figure 3.6. Cross section of flow chamber in yz plane.

is flanked by the two reservoirs of .75 x 3.75 x .625 inch. The two plates are sealed with
an o-ring and screwed together with 12 screws that are capped with plastic tees for easy
hand tightening. The 12 screws ensure that a good seal is kept around the o-ring as well as
maintaining the .020 inch gap inside the chamber. The medium flows into the inlet reservoir
through the cylindrical opening and flows out from the out reservoirs. Figure 3.6 shows the
vertical cross sectional view of the parallel plate region. Referred to a rectangular Cartesian
coordinate system (z,y,2), the top and bottom plates are placed at y = +h/2 while the
lateral walls at z = +w/2, making the parallel plate region of the thickness h and width w.
The bottom plate of the flow chamber can be seen in Figure 3.7. The interfaces between
the inlet reservoir and the parallel plate region and between the outlet reservoir and the
parallel plate region are located at x = 0 and x = L, respectively. The Active Test Region
denoted in the figure will be discussed in detail in a later section. Table 3.1 shows the di-

mensions of the flow chamber as well as three other representative parallel plate flow devices.

The comparison of flow in chambers with reservoirs of two different lengths is made to
investigate the effect of size of the reservoir on the entrance and exit length. The height and
width of the reservoirs are 1.6 cm and 1.9 cm, respectively. One of the flow chambers has an
inlet and an outlet reservoir of the length equal to the channel width, w (shorter reservoir)
as shown in Figure 3.11. The other flow chamber is designed to have 25% longer (9.4 cm
long) reservoirs than the shorter reservoir by equally lengthening both the inlet and outlet

reservoirs in +z-direction as shown in Figure 3.12.
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Table 3.1. Geometric parameters for flow chambers .

Chamber h W L  p=h/w Range of Re (20°C) Range of Re (37°C)
(cm) (cm) (cm) for 744, € [10,55]  for 744, € [10, 55]
dynes/cm? dynes/cm?
Chung et al. 0.0254 7.6 16.5 0.0033 [13,59] 26,109
Chung et al. 0.050 7.6 16.5 0.0066 50,229 [101,464]
Frangos(!®) 0.0254 2.3 0.011 [13,59] 26,109]
Nauman et al.07 | 0.022 4.1 0.0054 [9.7,44] [20,90]
Ruel et al.4%) 0.1 7.5 0.014 [200,917] [405,1858]

3.6.2 Dimensionless Parameters
The non-dimensional parameters used in this analysis are the Reynolds number Re, and

the lateral channel aspect ratio 3, which can be expressed in the forms of

, (3-2)

where V is the average velocity, Q/(hw). These two dimensionless parameters determine
the size of the ATR. It will be discussed later that the length of the ATR determined by the
effect of the reservoirs is a function of Re and 3, whereas the width of ATR determined by
the effect of lateral walls is a function of 3. The values of # commonly used in current flow

chambers are listed in Table 3.1 and will be discussed later.

We denote the distance between the ATR and the channel inlet, outlet and lateral walls
as Ly, Lo, and L, respectively, Figure 3.7. We define the dimensionless variables of L,,,, L.,

and L,, for later convenience as follows.

(3.3)

o7



1l cX

—FX_

b J

>

Figure 3.7. Cross section of flow chamber in xz plane with schematic of Active Test Region.

3.6.3 Evaluation of Active Test Region

As emphasized in the earlier section, flow chambers are designed to produce a homo-
geneous shear stress on their lower plates for cell testing. When one tests biological cells
under shear forces and evaluates the biological data, it is commonly assumed that the flow
field over the cells is purely two dimensional and fully developed. For such a flow field, the
velocity field and corresponding volume flow rate can be obtained by considering steady flow

between infinite parallel plates such that

. h? dp Y o\

v o= @(—%)(1—(}1—/2) )€z, (3.4)
hw  dp

QR = m(—%)- (3.5)

It follows that the stress vector ¢ obtained from Cauchy stress tensor, Equations 3.4 and 3.5

on the lower plate is

——é, — p(x) é,. (3.6)

We denote the €, component of Equation 3.6 as the wall shear stress, 774,,, and already given

in Equation 3.1. Another purpose in the design process of the flow chamber is to develop
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a flow chamber with a sufficient area for cells. It is therefore, somewhat necessary to choose

a reasonable deviation for 744,, to obtain the Active Test Region.

Generally, the wall shear stress, 7, found on the entire surface of the lower plate is a
function of z and z due to the effects of lateral walls and reservoirs. We define the ATR as

a region where the following inequality condition is satisfied.

7w (2, 2) — deZD’

100
’deZD’

<. (3.7)

The Active Test Region is evaluated by using a chosen . Thereby, the chosen percentage,
of 7¢4,,, determines the size of the ATR. The choice of a value of v is not quite straightforward
because it is still unknown how sensitively the endothelial cells respond to the magnitude of

shear stress. We choose the value of v of 5% in this study.

As shown in Figure 3.7, the ATR is a rectangular sub-region of the entire surface of
the lower plate. However, the largest possible ATR will not be in general, rectangular. We
make use of three variables, L., L., L, to determine the largest possible rectangular ATR
(see Figure 3.18). The ATR is evaluated in a way that we find the corresponding smallest

possible values of L., and L., for a chosen value of L,, that satisfy the condition 3.7.

3.6.4 Analytical Solutions
We now begin to quantify the effects of reservoirs and lateral walls. In this section, we

confine our attention to classic “analytic results” that are applicable to our design analysis.
3.6.4.1 Inlet Length.

When fluid flows a rectangular duct or cylindrical conduit from a large reservoir, inertial

force dominates in the inlet region of the duct or conduit.®® The inertial force dies out
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within a certain distance while viscous force begins to dominate. This distance is commonly
called “Inlet Length” while such an effect is called “Entrance Effect”. In general, fluid flow is
said to be fully developed when inertial force is very small relative to viscous force. However,
the flow never becomes fully developed in a finite distance from the inlet of a duct because
the velocity field is an analytic function.®?) The inlet length is still useful for practical pur-

poses as a method to estimate when the flow is approximately fully developed.

One of the typical and classic examples of analytic approaches in order to predict the
entrance length is the solution of the inlet length for the flow in a semi-infinite two di-
mensional straight channel with flat parallel walls based on boundary layer theory.®? The
actual inlet length estimated by this theory is L, = 0.04Re h. The result agrees well with
the corresponding numerical solution to full Navier Stokes equations. However, this estimate
is not a good approximation in obtaining the inlet length of our flow chamber. There are a
few reasons. Generally, the inlet length depends on the inlet velocity profile, the Reynolds
number, cross sectional geometry and the measure being used to asses the degree of fully
developed flow. The value of inlet length from the boundary layer theory is predicted based
on unidirectional flow with a constant magnitude at the inlet cross section. And, secondly,
the boundary layer results are valid only for large Reynolds number.®? Typical flow cham-
ber experiments employ too small a Reynolds number to use the boundary layer theory to
find the entrance length. Moreover, the velocity vectors of the flow entering the inlet cross
section from the reservoir of our flow chamber are not uniaxial and of constant magnitude.
The vectors have three non-zero components being functions of the spatial variables (x, y, 2)
at the inlet. The profile generated by typical flow chambers is also far from uniform. Three
dimensional numerical analysis, which will be discussed in later section is therefore, the only

source to calculate the inlet length of our flow chamber.
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3.6.4.2 Effect of Lateral Walls in Fully Developed Region.

We now focus our attention on the effect of lateral walls to obtain L,, which relies upon
the dimensionless parameter, § given in Equation 3.8 for fully developed flow. Unlike the
inlet length, the effect of lateral walls in the region where the flow is fully developed purely
due to viscous dissipation can be quantitatively measured by an analytical approach. The
analytic solution for steady, fully developed flow in a channel of rectangular cross section is
given by®®5%) (see also(®) and therefore, L,, can be directly calculated from the solution.
The velocity field, the corresponding flow rate and wall shear stress referred to rectangular

Cartesian coordinate are

h?  dp y? 32 = -1 cosh(™=) cos(™H)
By, 2) = 22—y (1 — e D Y h Llle
,U(y7 Z) 8,u( d.’lf) [( (h/2)2) 3 = ( COSh(n;rw) n3 =2
h3w , dp 192h = 1 nrw
= (——) |1 - == E — tanh(—— 3.8

Hal2) = (- 2) [1 2y iL_))] -

Combining Equation 3.1 with 3.8, the non-dimensional wall shear stress for fixed flow rate

reduces to -
8 1 COS
(2 Tdap(Z) R D ’2‘—2) 59
7(2) = _ |
Tid2p 1= %5 Zf:1,375m n—ls tanh(5%) ’

where the dimensionless variable Z = z/(w/2). The non-dimensional wall shear stress, 7(Z2)
in Equation 3.9 provides information about the deviation of the wall shear stress of the re-

gion where the flow is fully developed in the parallel plates relative to the wall shear stress

of the ATR.

Figure 3.8 shows the profile of the normalized wall shear stress along the width of the
channel. As ( decreases, 7 becomes flatter and thereby, the value of L,, decreases. The value

of the wall shear stress at the center is slightly different than 744, ,. The aspect ratio 8 turns
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Figure 3.8. Non-dimensional wall shear stress as a function of z for § = 0.05,0.1,0.2.

out to play an important role in obtaining sufficiently large ATR. As seen in Figure 3.9, a
critical value, §* that the equality condition of (3.7) is met is around 0.074 for v = 5%.
must be less than §* because for larger 5 than 3*, the wall shear stress at the center of the
chamber is so different from 744, that condition (3.7) will not be met for v = 5%. The
values of ( for the flow chambers discussed here are all less than 0.014 as listed in Table
3.1. It can be seen from Figure 3.10 that the L, is only a function of the aspect ratio, 3
and the Reynolds number does not play any role on this length, L,. Within the chamber
outside the inlet length, L., can be easily calculated from Equation 3.8. L, as a function of
(3 is shown in Figure 3.10 by considering three criterion of v : 5.0%, 10.0% and 20.0%. This
figure covers the range of 3 for all the flow chambers we consider in Table 3.1. The function
f)w(ﬁ) is nearly linear in the range of § shown in the figure for both criterion. Table 3.2
shows the values of L,, for all the flow chambers. The effect of lateral walls is comparatively

small for all the flow chambers discussed here. A more profitable way to obtain the largest

possible ATR is to select larger L, than the values of L, evaluated in this section. The

explanation will be given in the result section.
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Figure 3.10. Dependence of L,, on 3 for v = 5.0%, 10.0% and 20.0%.
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Table 3.2. Values of L,, and L,, for fully developed flow in two flow chambers with v = 5.0%

Chamber 16} Ly, w/2 Ly,

5.0 % Criterion

Chung et al. 0.0033 0.0058 3.8 cm  0.022 cm
Frangos(!®) 0.011  0.019 1.15cm 0.021 cm
Nauman et ol | 0.0054 0.0093 2.05 cm 0.019 cm
Ruel et al.*®) 0.014 0.023 3.75cm 0.088 cm

3.6.5 Numerical Analysis

As discussed earlier, the analytical solution based on the boundary layer theory is not
applicable to the studies of L., and L.,. Instead, we perform a numerical analysis to study
the entrance, exit and lateral effects outside the fully developed region. By virtue of the
symmetry of our parallel plate flow chamber and rapid development of the flow field for
the range of Reynolds numbers used in this study, the half models of the flow chamber are
employed (see Figure 3.11) for our numerical analysis. As a result, one half model is used
for two half parallel plates with a reservoir: a half chamber with an inlet reservoir (Inlet
Chamber) to obtain L., and a half chamber with an outlet reservoir (Outlet Chamber) to
obtain L.,. A computational model for the two chambers, which is composed of one half of
the rectangular channel, the rectangular reservoir and a connecting segment of pipe is seen
in Figure 3.11. The fluid enters at the pipe opening, I'; and exits at the outlet of the half
chamber, 'y for the inlet chamber. For the outlet chamber, the fluid enters at I'y and exits

at Fl-

3.6.5.1 Numerical Boundary Conditions.

No slip conditions are applied on the surrounding walls. Let us now consider boundary
conditions specified at I'y and I's for both chambers. At the inlet, I'y and outlet, I'; of
both chambers, (5 is set to zero and C is chosen to obtain a desired flow rate for the inlet

chamber in Equation 2.8. For the outlet chamber, identical boundary conditions to those for
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Figure 3.11. Distribution of mesh in computational domain for shorter reservoir.

the inlet chamber are specified. Cs is set to zero and (' is chosen to obtain the same flow
rate with that for the inlet chamber. (' is a positive constant for the inlet chamber and a
negative constant for the outlet chamber. Prescribing these boundary conditions result in
nearly fully developed flow at the cylindrical opening, I'; and the outlet boundary of the

parallel plate region, I's.

3.6.5.2 Mesh Refinement Study.

Regular meshes are combined with irregular meshes in the computational domain in AD-
INA; version 7.5. A rule-based mesh (regular mesh) is used for the rectangular channel in
conjunction with a free-form mesh (irregular mesh) for the reservoir and pipe opening. We
employ a Delaunay mesh algorithm generating four-node tetrahedral elements for the free
form mesh. Figure 3.11 and 3.12 show the computational fluid meshes of two models used
in this study. In order to increase the accuracy of numerical solutions the meshes are refined
near the lateral walls, the junction of the pipe and reservoir as well as the junction of the
channel and reservoir, where steep velocity gradients are expected. The number of meshes

near the lateral walls is gradually increased in the lateral direction in order that the shear
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Figure 3.12. Distribution of mesh in computational domain for longer reservoir.

stress near the side walls are computed more accurately. Even highly elevated element den-
sity is employed very near the lateral walls in Figures 3.11 and 3.12 because steep velocity
gradient presents very near the side walls. The meshes are also refined in the junction of
the cylindrical opening and reservoir. In addition, the mesh density is increased gradually
from right to left in the axial direction in Figures 3.11 and 3.12 in order to perform the

computation with care in highly inertial regions.

In modeling a numerical fluid domain, the determination of a proper mesh density is
critical to obtain satisfactory results. The execution of mesh refinement study is the only
source to derive confident results because exact solutions or experimental results are not
available in this study. The inlet length caused by the inertial force from the reservoir
is considered as a factor in determining the appropriate mesh density in our study. Mesh
refinement is considered to be sufficient when the successive increment of the element density
in steps of 10,000 elements results in less than 8% change in the calculated inlet length, L.,
which is seen to be a significant deceleration in slope from the previous mesh elements.

Based on the result, over 80,000 four—node tetrahedral elements are generated and used in
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all computational studies. The results of the mesh refinement study are listed in Table 3.3

for two different choices of L,,,.

Table 3.3. Results for Mesh Refinement Study .

L, =0.21 cm L, = 0.031 cm
Number of Elements | L., (cm) Number of Elements | L, (cm)
60,000 1.52 60,000 3.62
70,000 2.04 70,000 3.62
80,000 2.22 80,000 3.62

3.6.5.3 Numerical Results and Discussion.

f)en and f)ex are a function of the Reynolds number as emphasized previously. The
Reynolds numbers studied here are 16.1, 33.1 and 51.8 and their corresponding values of
Ttdep (at 20° C) are 15.0, 30.1 and 48.0 dynes/cm?®. The typical range of the wall shear
stress considered in most flow chambers is from 10 to 55 dynes/cm?. As can be seen in
Figure 3.13 and 3.14, The values of f)en and f)ex as a function of Re for two choices of L,
for the shorter reservoir are plotted. L, is chosen to be 0.008 in Figure 3.13, while L, is
0.055 in Figure 3.15. These values become higher as Re increases overall. The values of Les
are smaller than f)en, which means that the inlet reservoir has a more serious effect on the
entrance length than the effect of the outlet reservoir on the exit length. In addition, both
f)en and f)ex increase as f)w is decreased. f)en and f)ex for the two reservoirs are compared
for two different L,, at Re = 33.1, 51.8. In Figure 3.15, the comparison of L., is made for
the two reservoirs when L,, = 0.008 (L, = 0.031 cm) while in Figure 3.16, L,, = 0.055 (L,
=0.21 cm). L., for the shorter reservoir is compared to L., for the longer reservoir when
L., = 0.008 in Figure 3.17. These figures illustrate that the longer reservoir dramatically
reduces f)en and f)ex for both f)w at Re = 33.1 and 51.8 and thereby, increases the size of

the Active Test Region as shown in Table 3.4.
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Figure 3.17. Comparison of L, for two reservoirs for L, = 0.008, (L, = 0.031¢m) and Re
= 33.1, 51.8 (Ttayp = 30.1,48.0dynes/cm?).

For illustrative purpose, two possible Active Test Regions of the flow chamber with longer
reservoirs are shown in Figure 3.18. Since the shape of the ATR is not unique, our preferable
shape of the ATR is chosen to be a rectangle so that we can easily control the areas where
biological cells are grown. The choice of L, is based on experimental or design considera-
tions so, we can choose the values of L,, to maximize the area of the ATR. The values of
areas of the ATR listed in Table 3.4 illustrate that for the range of Re used in this study,
the choice of larger L,, results in larger area of the ATR for both flow chambers : one with
shorter reservoirs and the other with longer reservoirs. The increment of L, from 0.031 cm
to 0.21 cm increases the size of the ATR as shown in Table 3.4. The larger areas of the
ATR are obtained in the flow chamber with longer reservoirs compared to the flow chamber
with shorter reservoirs for the two choices of L,, at Re = 33.1 and 51.8. The longer reservoir
increases the sizes of the ATR by 25% on the average for all selected L,, at Re = 33.1 and
51.8. The individual percentage of the improvement on the size of the ATR are shown in
Table 3.4. Note that the highest values of L., and L., are always found near the side wall

opposite to the inlet or outlet cylindrical opening.
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Figure 3.18. Representative figure of contours of constant wall shear stress and two possible
Active Test Regions.

Table 3.4. Summary of size of active test region as a function of Re and L,, for two reservoir
geometries .

Shorter reservoir Longer Reservoir
Re L, Len | Leg | Area L., |L.. | Area %  of
of of im-
ATR ATR prove-
ment
(cm) (cm) | (cm) | (cm?) (cm) | (cm) | (em?) | %
16.1 | 0.031 3.02 | 1.75 | 88.7
33.1 | 0.031 3.02 | 1.75 | 88.7 0.95 [0.95 | 110.5 24.57
51.8 | 0.031 3.62 [222 |80.6 1.33 | 0.95 | 107.6 33.5
16.1 | 0.21 1.33 | 0.95 | 102.5
33.1 [0.21 1.75 | 1.33 | 96.7 0.14 [(0.14 | 116.9 20.89
51.8 | 0.21 2.22 | 1.75 |90.2 0.60 [ 0.14 | 113.6 25.9
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The physical locations of the first and second glass slides are x = 2.2 ¢m and x = 14.3 c¢m,
respectively. Therefore, for the flow chamber with shorter reservoirs the larger value of L,
(0.21 cm) must be used to assure that all cells can be confined in the well defined ATR,
even for the small Re. The flow chamber with longer reservoirs on the other hand, can
use both the values of L, in Table 3.4. The largest possible ATR is obtained by using
the longer reservoir, choosing the larger value of L,, as shown in Table 3.4. This ensures a

room of over 85¢cm? for cultured cells given by three distinct slides in the Active Test Region.

Care should be taken when we calculate the flow rate and Re using a desired wall shear
stress since the fluid density, p and viscosity, ;1 depend on temperature. We typically use
the properties of water for those of the perfusion fluids. The values of p and p of water are
1.0 g/em?® and 0.01 g/(cm s) (see,e.g.®?), respectively at 20°C and 1 atmospheric pressure.
However, in typical experiments of the flow chambers, physiological conditions are used.
In that case, temperature and pressure are maintained near 37° and 1 atm and then, the
density of water is nearly unchanged, 0.993 g/cm? and the viscosity drops to 0.007 g/(cm s)
(see,e.g.9), which is about 30% decrease. A number of researchers overestimated the wall
shear stress by using the density and the viscosity of water at 20°C and 1 atm of pressure
for their experimental runs at 37°C. The relationship between wall shear stress based on the
viscosity (actual viscosity) at 37°C and wall shear stress (expected viscosity) at 20°C is in a
form of

Tayp (actual) = 0.77¢4,,, (expected) (3.10)

The values of the Reynolds number at 20°C and 37°C for all the flow chambers when the

range of Trq,, is 10-55 dynes/cm? are listed in Table 3.1.
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Figure 3.19. A 3-D assembled T-shaped flow chamber.

3.7 T-shaped Flow Chamber

Our main goal for this research is to construct the T-shaped flow chamber to test endothe-
lial cells exposed to wall shear stresses found at arterial bifurcations and in straight arteries
simultaneously. The T-flow chamber is numerically designed using all the design criteria dis-
cussed in Section 3.3 and built based on the computational results. We have designed and
manufactured the parallel plate flow chamber by evaluating the effects of reservoirs and lat-
eral walls using the third and fourth design criteria. The purpose of pre-construction of the
parallel plate flow chamber was to develop methods for eliminating air bubbles, preventing

fluid leakage, controlling a desired flow rate and manipulating the cells.

3.7.1 Flow System for T-shaped Flow Chamber

The T-shaped flow chamber is designed to have three reservoirs : one upper reservoir
at the inlet and two lower reservoirs at the outlets. Culture medium flows into the upper
reservoir and moves down through the vertical slit and flows out from the two lower reservoirs

attached to two daughter branches as shown in Figure 3.19 and 3.20. The medium from the
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Figure 3.20. T-shaped flow chamber - side cutaway view of parts of constructed chamber.

vertical slit is divided into the two daughter branches. As in the parallel plate flow chamber,
there are three slide slots where the endothelial cells on the bottom plate reside (see Figure
3.21); one in the region of the T-junction, the others in the regions of the parallel plates.
The cells are supposed to experience two types of shear forces ; constant and unidirectional
shear force in the regions of the parallel plates and shear force similar to that found at the
apex of the bifurcation in the region of the T-junction. Accordingly, there are two tapering
regions on the bottom plate. These regions are devised to obtain two desired wall shear
stresses for one experimental run : 15 — 30 dynes/cm? in the regions of the parallel plates
(Test Region I) and 150 — 190 dynes/cm? in the region of the T-junction (Test Region II)
(see Figure 3.21).

3.7.2 Design Methods

To meet the first and second design criteria, the flow characteristics found at the apex of

the bifurcation must be qualitatively and quantitatively similar to those at the T-junction
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Figure 3.21. T-shaped flow chamber - bottom plate of constructed chamber.

of T-shaped flow chamber. The velocity and pressure fields in a two dimensional T-shaped
flow channel are computed to investigate the applicability of our T-shaped flow chamber.
The numerical results will demonstrate that the T-shaped flow chamber is an appropriate
model to study the response of endothelial cells exposed to shear stress found at bifurca-
tions. Two three dimensional segments of the parallel plates with a reservoir are analyzed
numerically to evaluate the third and fourth design criterion. One segment of the parallel
plates represents the vertical plate with a reservoir of the T-flow chamber. The other parallel
plate represents one half of the horizontal parallel plate of the T-chamber. The vertical and
horizontal segments are analyzed numerically to study the effect of the inlet reservoir and
outlet reservoir, respectively. Only one horizontal segment is employed to study the effect of

the outlet reservoir due to the geometrical symmetry.

Care should be taken to determine the geometrical ratio of the thickness of the parent

branch to that of the daughter branch since the ratio plays an important role in generating the
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Figure 3.22. Two dimensional model of the T-shaped flow chamber.

flow recirculation at the T-junction. Moreover, the use of the sharp corner at the intersection
of the vertical plate and upper horizontal plate can also create a secondary flow at a given
flow rate. Prior to the design of a three dimensional T-shaped flow chamber, we pay our
attention to the design of the T-junction of a two dimensional T-shaped channel in order to
eliminate the flow recirculation in the region of the bifurcation of the T-channel. We also
explore the effect of Reynolds number on the flow characteristics found at the T-junction of

the T-channel.

3.7.3 Validation of T-shaped flow chamber

3.7.3.1 Numerical Geometry and Dimensionless Parameter.

A two dimensional model of the T-shaped channel is generated in ADINA as shown in
Figure 3.22 to design the T-junction. We round the sharp corner that the vertical plate
and upper horizontal plates intersect, to avoid vortex generation. The T-channel is then
carefully remodeled in sizes of the radius of curvature, R,, thickness of the parent branch, ¢3

and height of the daughter branches, t; to eliminate the flow recirculation (see the blow—up
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in Figure 3.22). In addition, we employ long enough channels for the parent and daughter
branches to obtain approximately fully developed flow at the outer slide region. t3, t; and
R, of the channel are then chosen to be 0.001, 0.0003 and 0.0005 m, respectively. Reynolds

number for this study is defined as

L inle
Re = Z30niet (3.11)

1

where p is the fluid density, u is the fluid viscosity and vy, is the average velocity at the inlet.

3.7.3.2 Numerical Boundary Conditions.
In Figure 3.22, I'y and I'y denote the inlet and two outlets, respectively. At the inlet,I';,
uniform velocity is given to obtain a required flow rate and C5 in Equation 2.8 is set to be

zero at the two outlets, I's. This leads nearly fully developed flow at the outlets.

3.7.3.3 Results.

The numerical computation is performed in the range of the Reynolds number 50 ~ 500.
The properties of water are used for this study. The values of p and u of water are 1.0 g/cm?
and 0.01 g/(cm s) (see,e.g.©®?), respectively at 20°C and 1 atmospheric pressure. Stream-
lines in the region the T-junction as shown in Figure 3.23 are smoothly divided into the
two daughter branches without generating any flow disturbance. The flow in this carefully
chosen model in dimension does not generate the flow recirculation in the bifurcation region
even at the highest Re used in this study. Figure 3.24 and 3.25 represent the distributions of
axial shear stresses and shear stress gradients found on the bottom plate, respectively. From
Figure 3.24, one may conclude that the maximum shear stress (maximum 7) and shear stress
found in the region far from the T-junction (asymptotic 7) increase as the Re increases. As

the Re becomes smaller, the difference between the maximum shear stress and the asymp-
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Figure 3.23. Streamlines in the bifurcation region when Re = 500.
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Figure 3.24. Axial shear stress distributions on the bottom plate.
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Table 3.5. Re effect on the changes of the point where the maximum shear stress occurs in
distance .

Re | Maximum 7 (dynes/cm?) | Asymptotic 7 (dynes/cm?) | Distance from the origin (mm)
50 17.4 15.9 1.04

100 38.6 31.8 1

250 121.55 79.6 0.93

500 301.55 159.2 0.9

Re=50

Re=100
Re =250
Re =500

shear stress gradient (dynesicm®)

E
T T

| L L L L |
5 10

distance {mm})

Figure 3.25. Shear stress gradients on the bottom plate.

totic shear stress becomes smaller and the maximum shear stress shifts to the right. Table
3.5 shows these results clearly. It shows the Re effect on the change of the position where the
maximum shear stress occurs in distance. One can also see that the changes of shear stress
gradients become larger as the Re increases. Moreover, the distance between the origin and

region which is free of axial shear stress gradient becomes longer as Re increases, Figure 3.25.

The wall shear stress found at the apex of the arterial bifurcation (Section 3.2) is now
compared to the results of the two dimensional analysis on the T-shaped channel. It is shown

that comparing the shear stress curve in Figure 3.2 with the shear distributions in Figure
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Figure 3.26. Flow region geometry with its dimensions (not drawn to scale).

3.24, the T-shaped channel recreates the qualitative feature of the wall shear stress found at
the apex of the bifurcation (criterion 1). The second criterion is also well satisfied since the

wall shear stress in both cases are all order of 100 dynes/cm? for Re = 250 and 500.

3.7.4 Design of T-shaped Flow Chamber

With the help of the results in Section 3.7.3, we design a three dimensional T-shaped flow
chamber. We focus our attention on obtaining the dimensions of flow regions in the T-shaped
flow chamber that satisfy all the design criterion discussed in section 3.3. A representative
flow region geometry with its dimensions is seen in Figure 3.26. The figure shows all the
dimensions of the cross section and bottom plate as well as three slides. In the figure, the
radius of curvature, R., the thickness of the parent and daughter branches, t3, ¢; are 0.5, 1
and 0.3 mm respectively. These dimensions are the results of the two dimensional analysis
performed in Section 3.7.2. The width of plate, W are same as in the parallel plate flow

chamber. The width of slides near the outlet reservoir, l4 is 38.1 mm. Note that the bottom
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Table 3.6. Analysis required to obtain the individual dimension .

Dimension | h [ty |l |3 ] 15
Analysis | BC|A|A|A|D

plate is symmetric in the axial direction. In this work, we compute the remaining dimensions
shown in the figure using two and three dimensional numerical analysis. In particular, the

positions of the three slides and size of the middle slide are determined.

ADINA fluid solver is used again for this analysis. The density and viscosity of water
under the temperature and pressure used in typical experimental runs are used. The values
of p and p of water are 0.993 g/cm® and 0.007 g/(cm s) (see,e.g.%), respectively at 37°C
and 1 atmospheric pressure. We compute the minimum values in dimension which satisfy all
the design criterion by performing the numerical analyses. In Table 3.6, the type of analysis
required to obtain the individual dimension is shown. The analysis A though D are explained

as follows.

3.7.4.1 Analysis A.

In this analysis, a two dimensional T-shaped model is employed to compute the minimum
values of t9,11,13. Figure 3.27 shows the two dimensional domain corresponding to the T-
shaped model given in Figure 3.26. For numerical boundary conditions, C5 in Equation 2.8
is set to zero at the two outlets, I'y; and a uniform and constant velocity is specified at the

inlet, I'y for a required flow rate. The no slip boundary condition is used for the walls.

Along with the first and second design criterion, an additional design requirement is con-
sidered to determine t5. The endothelial cells on the center slide are to be exposed to the
corresponding maximum shear stress, about 200 dynes/cm? while on the other two slides,

the corresponding shear stress in the range of 15 to 30 dynes/cm? for a given flow rate. This
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Figure 3.27. Fluid domain and slides for two dimensional T-shaped model, (not drawn to
scale).

enables the flow chamber to be used to perform two different types of experiments simulta-
neously ; one for the response of cells to shear stress found at the arterial bifurcation, the
other for the response of cells to shear stress found on the walls of a straight artery. The bot-
tom parallel plates include two tapering regions to satisfy this additional design requirement

and the design requirement determines t. Note that [; and [;+[5 are chosen to be 1 and 3 cm.

The cells must be contained in the “well defined flow region”. The cells on the slides
should be exposed to the wall shear stress to satisfy all the design criterion. So to obtain
ly, I3, the position where the flow becomes nearly fully developed near the T-junction and
taper is computed using the following condition.

|Ta — Ttdol

lo > 1 100 <, (3.12)

e |7 fda|

where o represents 1 or 3, 74, is the wall shear stress in the fully developed region and [,

is the corresponding length that the condition 3.12 is met, respectively. They are all shown
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Figure 3.28. T-shaped model showing v. and hq, hy (not drawn to scale).

in Figure 3.27. 7, is the wall shear stress found in the region shown in the figure. For a cho-

sen value of 7 of 5%, we obtain the minimum values of /1, [3 using the equality condition 3.12.

3.7.4.2 Analysis B.

In order to determine the height of the vertical plates h, we have to quantify the entrance
effect due to the inlet reservoir which will be studied in Analysis C and the upstream in-
fluence of the bifurcation region. In this analysis, the upstream influence of the T-junction
is quantified. From the results of Analysis A, the centerline velocities, v. are obtained and

then h; shown in Figure 3.28 is found using the following condition.

[ve = Veal (3.13)
|Verdl

where v.zq is the fully developed centerline velocity. We choose the value of v of 5%. The

value of h; is added to hy which will be computed in Analysis C to find h.
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Figure 3.29. Parent branch with the inlet reservoir (not drawn to scale).

3.7.4.3 Analysis C.

In this analysis, the three dimensional model of the vertical plates with the inlet reservoir
is used as shown in Figure 3.29 to investigate the entrance effect due to the inlet reservoir.
We define hy as the minimum length required to avoid the entrance effect. The height hs
obtained from this analysis (see Figure 3.28) is added to h; from Analysis B to determine the
minimum length of the vertical plates, h. The dimensions of the inlet opening and reservoir
are given in the figure. The boundary conditions used in this model are no slip conditions on
the walls, Cy in Equation 2.8 is set to zero at I'y and C] in Equation 2.8 is chosen to obtain
the flow rate given in Analysis A at the inlet opening, I'y. We again use the condition 3.7

to compute the entrance length, L., and then choose hs such that

hy > Lep. (3.14)
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Figure 3.30. Daughter branch with the outlet reservoir (not drawn to scale).

3.7.4.4 Analysis D.

The three dimensional model of the daughter branch with the outlet reservoir is employed
to find the exit length, L., as seen in Figure 3.30. Because of the symmetrical geometry of
the horizontal plates in the axial direction, the one half model can represent both the left
and right daughter branches. Note that the dimensions of the outlet opening and reservoir
are the same as those of the inlet opening and reservoir. C' is set to zero at I'; and C5 is
chosen to obtain the required flow rate given in Analysis A. No slip conditions are applied
on the walls. As in Analysis C, the condition 3.7 is used to compute L., and then I5 is

determined using

ls > L. (315)

3.7.4.5 Results.

Analysis A

According to the previous numerical results of the T-channel (see Figure 3.24), the

range of wall shear stress does not drop to the 15 — 30 dynes/cm? desired in Test Region
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Table 3.7. Corresponding shear stresses to four different Re .

Re 142 | 284 | 535 | 583
Timaz (dynes/em?) | 29 | 71 | 163 | 183
Too (dynes/em?) | 6 | 11 | 21 | 23

Table 3.8. The values of [; and I3 for the corresponding Re .

Re | Iy (mm) | l3(mm)
142 1.6 1.1
284 2.2 1.1
935 3.5 3.5
o83 3.8 4.3

I as the maximum reaches 150 — 190 dynes/cm? in Test Region II. In addition, for a fully
developed flow in infinite parallel plates, the wall shear stress is reversely proportional
to the gap of the two parallel plates. Therefore, t, is chosen to be twice larger than ¢,
to obtain the required 7, for the two flow regimes. Four different Reynolds numbers
are studied ; Re = 142, 284, 535, 583. The highest Re is found to be eligible to obtain
the required range of 7, in the two test regions. Table 3.7 shows the Reynolds numbers
and the corresponding wall shear stresses found on the two test regions of the bottom
plate. Figure 3.31 illustrates how the wall shear stress behaves on the bottom plate
for chambers with a tapered region. The wall shear stress at the bifurcation region
of T-chamber has quantitatively and qualitatively similar characteristics to that found
at an arterial bifurcation and then, drops to a constant value through the tapering
region. As stated earlier, the tapering region plays the role of reducing the magnitude
of wall shear stress. [, is determined by the equality condition, Equation 3.12 for the

corresponding Re. The results are listed in Table 3.8.

Analysis B

For Re = 583, the equality condition, Equation 3.13 results in ~; = 1.3 mm.
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Figure 3.31. Wall shear stress on the bottom plate for four different Re (not drawn to scale).

Analysis C

We employ the mesh densities of the model of parallel plate flow chamber (see Section
3.6) for the current computational domain. The meshed vertical plate with the inlet
reservoir is shown in Figure 3.32. In order to find L., for the required range of wall
shear stress on the bottom plate of T-chamber, the volume flow rate is calculated
from Analysis A and applied to the inlet opening to find C;. The dimensions of
the cylindrical opening and reservoir are same with those of the half model of parallel
plate flow chamber (Section 3.6) except the position and thickness of the parallel plate.

Applying the equality condition 3.7 results in
Loy, = 42.2mm when L, = 0.21cm, (3.16)

for the largest Re given in Analysis A. We set hy = L, to find the minimum value of

h.

Analysis D

The T-shaped flow chamber has a wider gap than the parallel plate chamber. We
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Figure 3.32. The meshed body of the vertical plate with an inlet reservoir.

Table 3.9. The dimensions of the flow region geometry .

ti | ta | ts | R | W h l ly Is | U l5
Analysis A BC| A A D
Dimensions (mm) | 0.3 | 0.6 | 1.0 | 0.5 | 76.2 | 43.5 | 3.8 | 26.2 | 4.3 | 38.1 | 19.8

adapt the previous half model of parallel plate flow chamber by increasing the gap of
the model. We determine the minimum value of l5. Figure 3.33 shows the meshed
model used in this analysis. We evaluate the volume flow rate from Analysis A and
then find C for the highest Re given in Analysis A. The equality condition, Equation
3.7 results in

L., =19.8mm when L, =0.21cm. (3.17)

For the minimum value of I5, we set l5 = L.

The dimensions of the flow region geometry from the analyses are listed in Table 3.9.
The value of h; from Analysis B and hy from Analysis C are summed to determine h. These

dimensions are the minimum values that we can obtain from the analyses. The T-shaped
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Figure 3.33. The meshed body of the horizontal plate with an outlet reservoir.

flow chamber should be designed using these minimum requirements in dimension for the

expected shear stress range on the bottom plate of the chamber.

3.7.5 Construction of the T-shaped Flow Chamber

Based on the computational results, we have manufactured the novel T-shaped flow cham-
ber 1. The flow chamber is composed of seven machined polycarbonate pieces. The chamber
requires that three pieces be bonded together to make the bottom plate and four pieces be
bonded to make the top plate (see Figure 3.19). The bonding of acrylic and polycarbonate
was tested under autoclave and it was found that any air bubbles, inherent in the bonding
process, would expand inside the acrylic joint and warp the plastic. Polycarbonate, with its
much higher strength, melting temperature, and rigidity did not warp during the autoclaving
process. It was also learned that prolonged exposure to ethyl alcohol would cause acrylic to
cloud over and in some cases turn brittle. Since ethyl alcohol rinses and autoclaving are the
two primary methods of sterilizing the system, polycarbonate became the final choice. An-

other benefit of polycarbonate was its ability to keep tighter tolerances due to its increased

! Andrew Cardine and Bill Kreke, former undergraduate students, performed the assembling process of the
T-shaped flow chamber. The flow chamber was machined in the Machine Shop of University of Pittsburgh.
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rigidity. This became more important with the T-flow chamber because of the complexity

of the seven parts that had to come together to form the chamber.

3.7.5.1 Top Plate.

The top plate (Figure 3.19, see also Figures 3.20) is machined from four pieces of 1.0
inch polycarbonate. These four plates are then bonded together to form one top plate. The
top plate is composed of three flow paths, a parent branch and two daughter branches, and
three reservoirs, an inlet reservoir and two outlet reservoirs. As stated earlier, the depth of
the daughter branches is 0.3 mm. This is a constant depth across the daughter flow path
since the necessary expansions are taken care of in the machining of the bottom plate. The
parent flow path has a depth of 1.0 mm. 0.5 mm is cut out of each of the uprights that
form the inlet reservoir and the parent flow path. At the bottom of the T-junction there is a
curved surface of 0.5 mm forming the transition between the parent and daughter branches.
There are six ports on the top plate, an entrance port, two exit ports (one for each daughter
branch), and three air release ports. The four ports associated with the two outlet reservoirs
are 1/4 inch NPT (note that 1/4 inch NPT is much larger than 0.25 inch and is actually a
tapered thread). The other two ports lie along a bonded surface. These ports have stainless
steel adapters that take the 1/4 inch NPT fitting to a 7/16-20 straight thread. The straight

thread eliminates the wedging effect of the NPT fitting at the bonded surface.

3.7.5.2 Bottom Plate.

The bottom plate (Figure 3.19, see also Figures 3.21) for the flow chamber is made of
three individual pieces of 0.5 inch polycarbonate. The three pieces are then bonded together
to form a single bottom plate. The break lines for the three piece bottom plate are shown as
dotted lines in Figure 3.21. To isolate the high shear stress region (150 to 190 dynes/cm?) at
the T-junction, a 0.400 x 3.000 inch slide is used below the T-junction. In order to achieve
wall shear stress levels between 15 and 25 dynes/cm? throughout the rest of the chamber so

that a parallel plate control slide 1.500 x 3.000 inch could be monitored, the 0.3 mm gap
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Figure 3.34. T-shaped flow chamber.

had to be expanded to 0.6 mm. The increase was made by ramping the surface shown by
the cross-hatching. It is this ramping that requires the plate to be broken into three pieces

before assembly.

3.7.5.3 Assembly.

The top and bottom plates are sealed together with an o-ring. The plates will be clamped
together to reduce the amount of time that the cultured cells are exposed to uncontrolled
conditions. The clamping device should include a base plate to hold the chamber stationary
and should apply even pressure around the top plate keeping it firmly locked to the bottom
plate. An additional note about the top plate is the need for retaining ridges, which are
identified by gray blocks on Figure 3.20. These ridges are necessary to fill in the gap left
by the 3.000 inch slides as they go across the 2.750 inch flow path as shown in Figure 3.21.
Since the depth of the flow region is 0.6 mm and the top plate flow region is cut to a depth of
0.3 mm, the extra 0.3 mm must be filled by the ridges. Figure 3.34 represents the assembled

T-shaped flow chamber.
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3.8 Discussion of Results and Future Work

The previous investigation of characteristics of flow at arterial bifurcations showed that
wall shear stress found at arterial bifurcation varies along the center neck of the bifurcation.
This inhomogeneous characteristic is shown to be closely two dimensional so that we could
build a novel flow chamber to test endothelial cells exposed to wall shear fields found at the
bifurcations. The T-shaped flow chamber was applicable to investigate the cells exposed to
such the wall shear fields since it produces the flow fields quantitatively and qualitatively
similar to those found at arterial bifurcations. We devised the T-shaped flow chamber to
generate two types of wall shear stress fields ; one found at arterial bifurcations and the other
found in straight arteries. This device could enable us to expose the cells to two different

wall shear stress fields simultaneously during one experimental run.

Prior to the construction of the T-shaped flow chamber, the numerical design of T-shaped
flow chamber was carefully performed satisfying all the design criteria. These criteria were
taken account because the chamber must produce the “well defined flow” to test the cells.
The consideration of this “well defined flow” was made since the novel flow chamber should
recreate the qualitative and quantitative features of wall shear stresses found at arterial
bifurcations, and the test cells must be grown in the confined region beyond the region
governed by inertial and lateral wall effects. The inertial effects generated by the inlet and
outlet reservoirs of the chamber and lateral wall effects could be quantified analytically and
numerically. However, determining the size of the test region by quantifying these effects
was dependent on the choice of a certain value of v given in Equation 3.7. We chose v of
5%. If this is a conservative choice, let us consider L, L., and L., in the parallel plate flow
chamber using larger values of v. Figure 3.10 included the dependence of 8 on L,, for the
choice of v of 10% and 20%. As shown in the figure, larger values of 7 results in smaller L,,.
From the numerical analysis, we found that increasing the value of v to 10% and 20% lowered

Len, and L., by 75-80% and 87-99%, respectively compared to the results of the choice of
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Figure 3.35. Dependence of L., and L., (in cm) on Reynolds number for L,, = 0.031¢m and
Re = 16.1, 33.1, 51.8 (744, = 15.0,30.1, 48.0dynes/cm?) when vy = 10%.

~v of 10% as shown in Figures 3.35 and 3.36. These results imply that a chosen value of ~
determines the size of ATR. Therefore, it is critical for us to know a value reasonable based
on the experimental error that found in most studies. However, the value is not currently

available and so, we made a conservative choice for 7.

The parallel plate flow chamber was built and tested in our laboratory. The T-shaped
flow chamber was also manufactured but has not been tested yet. For future work, we plan
to add a step to the T-chamber to recreate the flow circulation found in the outer walls
of bifurcations. To do this a drop will be created inside the chamber after the fluid leaves
the T-junction. This will enable us to simultaneously run tests to compare endothelial cell
response to flow at the apex of bifurcations, outer walls of bifurcations and straight segment
of arteries. This is particularly important since many genetic tests provide a relative, not an

absolute number.
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Figure 3.36. Dependence of L., and L., (in cm) on Reynolds number for L,, = 0.031¢m and
Re = 16.1, 33.1, 51.8 (744, = 15.0,30.1, 48.0dynes/cm?) when v = 20%.

J.A. Frangos et al. reported that temporal shear gradients are important factors for
endothelial cell proliferation and gene expression.3% The sudden or ramped onset of flow
with step, impulse, ramped transient or ramped type of flow profile has been shown to
affect cell proliferation and gene expression in their studies. Hence, as future work, transient
analysis on the flow chamber can also be made numerically to test endothelial cells under

unsteady loading conditions.
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4.0 THE MATHEMATICAL MODELING OF THE MOTION OF VESSEL
WALLS

4.1 Objectives

The periodic motions of arterial walls are typically modeled as linearly elastic(140:145,146)

since the radial deformation by pulsatility is relatively small. In vivo arteries are preloaded
by prestretch and a base pressure (100 mmHg), a large deformation. Arterial walls pre-
loaded by these deformations are also loaded with an oscillatory pressure waveform. The
strain due to the preloadings are reported to be large compared to the oscillatory deforma-

n.(114136) Hence we can model the periodic motions of vessel walls as small deformations

tio
superposed on large deformations using a small on large theory. The mathematical and nu-
merical analyses of the vessel wall behavior are however very expensive since in vivo vessel
geometry is not simple. We employ a simple geometry : a straight cylindrical tube as the
unloaded reference configuration. Here we address the separate roles of elastin and collagen
fibres, the importance of including prestretch and the nonlinear characteristics of the wall in
describing the motion of vessel walls.

Arteries are composed of three layers: the intima, the media and the adventitia (e.g.(127:129)).
The intima is the innermost layer and its main components are endothelial cells and a thin
basal membrane. The endothelial cells act as a mechanical transducer to transmit the signal
to the media as a result of shear stress and pressure arising from blood flow.(??) The media
consists of smooth muscle cells, elastin and collagen fibrils. On the other hand, the adven-
titia is the outermost layer of the artery and composed mainly of wavy collagen fibrils with
admixed elastin, nerves, fibroblasts and the vasal vasorum. To investigate the functions of
fibrils, most studies have been performed in in vitro experiments using arteries excised from
autopsy.(112:118,119,125,126,152) " The hehavior of arteries in vivo are influenced by pulsatile
transluminal pressure, axial force, chemical hormones and nervous control and therefore,

in vivo investigations of the mechanical behavior of arteries are very limited.16)
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Previous mechanical tests of arteries under static biaxial loading(**® or static uniform

(112,118,119,125,126,152) after pre-conditioning showed that the

inflation with an axial extension
vessel exhibits a highly nonlinear stress—strain relationship. Additionally, in a pressure—
radius curve, the slope becomes larger as the internal pressure increases. M.R. Roach and
A.C. Burton isolated the roles of elastin and collagen fibers on the mechanical function of
arteries by using formic acid (to degrade collagen) and trypsin (to degrade elastin).(!2) They
reported that the elastin fibers dominate the mechanical function at lower levels of pressure
and adversely, at a higher level of pressure the collagen fibers dominate the function. Ac-
cordingly, the stability and integrity of arteries under the pulsatile loading condition are
preserved by the collagen fibers since the arterial wall stiffens at a higher level of pressure.

The smooth muscle cells also contribute to the mechanical function but have been under-

stood not to play the major role in the passive state of arteries.(12113)

The significance of prestretch and residual stress has been reported by many authors

(114,116,120,125,144)) " I'n yijpo, arteries are axially prestretched and therefore, the arteries

(e.g.
retract axially when cut cross sectionally. The amount of axial retraction differs in various
types of vessels in the arterial tree. It has been reported that the ratio of the in vivo length
to the retracted length is between 1.1 to 1.6.(1%4116:13) Tp addition, the vessels have been
shown to be under circumferential stress even when unloaded. In particular, when a longi-
tudinal cut is made on the unloaded arterial segment, the arteries retract circumferentially
forming an open sector. The circumferential retraction has been known to occur due to the

residual stress. It has been reported that the incorporation of the residual stress slightly

softens the material of the artery.(%

Based on the continuum theory of hyperelastic materials, various strain energy func-

116,120, 132,133
e.g.l )

tions for arteries have been developed ( . Most of the arteries have close

to a cylindrical shape and remain the same shape even after they are excised at autopsy.
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Accordingly an infinite cylindrical tube with a thin or thick wall is taken as a domain for
analytical analyses based on finite deformation. As stated earlier, arteries are under both
axial and intramural pressure forces. As just mentioned, even unloaded arteries are not stress
free bodies and have residual stress. Several authors have accounted for the prestretch and

s.(116:120) G A Holzapfel et al. included an additional torsional force related to

residual stres
the residual stresses.(!'® They constructed the constitutive equations for the strain energy
for both the media and adventitia considering the role of collagen fibers, taking the strain

energy as a linear combination of isotropic and anisotropic components.

Even though the mathematical analysis of vessel wall motion by large deformations in-
cluding the roles of fibrils and the effects of prestretching and residual stress has been per-
formed by many authors, the behavior of healthy arterial walls is typically modeled as
linearly elastic in the analysis of vessel wall motion under physiological loading conditions

(140,145,146))

(e.g. . This is motivated by the fact that the pressure waveform that propagates

down the vessel results in a relatively small deformation. In particular, the radial strain

is usually smaller than 0.1.(136)

Underlying this linear analysis is the assumption that the
unloaded reference configuration is that found at the average physiological pressure in vivo.
Hence, this analysis does not account for axial prestretch, which has been shown to be on
the order of 1.1-1.6(114:116:131) o1 for the radial distension associated with the base or aver-
age pressure, which is for example, approximately 100 mmHg for ascending or descending

aortas.(114136) Tp addition the separate roles of the elastin and collagen fibrils are not taken

account in these analysis.

The hypothesis underlying this work is that the axial loading and pressure loading (pre-
stretch and average pressure loading) that a vessel experiences play an important role in
the mechanical response of the vessel and warrant a nonlinear analysis of the vessel motion
that includes these loadings. Other researchers have already noted the importance of this

1y (114,116,120,125)

prestretc In this work, both the axial stretch and radial extension by aver-
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age pressure loading will be considered as large deformations. The periodic motion of the
artery will then be included as a small deformation superposed on these large deformations

(115)

using a small on large theory. The arterial wall motion is governed mainly by both

elastin and collagen fibers with negligible contributions of smooth muscle cells (muscular in-

a.(12113) Collagen recruitment has been considered previously

active behavior) in the medi
by other researchers, (see, e.g.(!1). A mathematical model accounting separately for the
role of the elastin and collagen including the effect of collagen fiber recruitment will be de-
veloped through an extension of a multi-mechanism theory that has previously been applied

to cerebral arteries.(137-139,141-143)

The specific aims of this research are therefore, described as follows:

1. Based on the continuum theory of multiple mechanisms, 3739 further develop a con-
stitutive equation of the arterial wall that separately accounts for the role of the elastin
and collagen, including the effect of collagen fiber recruitment. The quantitative values
for the parameters in the multi-mechanism model will be obtained from the experimen-

(114) - Significantly, when

tal pressure-radius curve which includes prestretch given in.
analyzing this data, the unloaded reference configuration will be chosen to correspond
to the unloaded vessel wall (prior to prestretch and the radial distension associated

with the base or average pressure),

2. An investigation of the motion of the arterial wall will then be made to describe the
oscillatory wall motion due to pulsatile flow in arteries using a small on large theory (%)
for the multi-mechanism constitutive equation developed in Specific Aim 1. The central
ideas is that the oscillatory motion arising from the pulsatile arterial waveform is small
and will be superposed on the large deformation corresponding to axial prestretch
and radial inflation due to the average pressure in the vessel. This analysis will be

performed for a cylindrical tube of finite thickness.
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The assumptions underlying this work are

1. Only axisymmetric arteries of constant radius are considered. Therefore the current
work will not be applicable to non—axisymmetric arterial segments such as bifurcations
or segments with substantial sclerotic changes. This work can be generalized to include
other geometries though the finite deformations in the small on large theory will need

to be solved computationally.

2. The arterial media is assumed to be homogeneous. The media of artery is historically
heterogeneous.™” However, according to P.B. Dobrin'® the media was found to act

mechanically as a homogeneous material.

3. The arterial wall is assumed to be an incompressible material. Earlier experimental
studies of incompressibility of the arterial wall showed that under physiological condi-

tions of both internal pressure and longitudinal stretch an incompressible assumption

is justified.(119)

4. According to the theory of multiple mechanisms, a microstructural change is associated
with a certain deformation parameter and is referred to a scalar kinematic parameter s.
Therefore, there is an activation criterion for collagen recruitment, s,. Here we assume
that all of the collagen fibers have the same activation criterion. This assumption
can be relaxed using an integral model if experimental data warrants this increased

complexity.

5. In use of the dual mechanism theory, two types of strain energies are used to model
the experimental data curve. For each of these strain energy functions the material is
assumed to be isotropic. The proposed model can be extended to anisotropic materials,

(see, e.g.(110)),

6. The significance of the residual stress in the arterial wall has been discussed by many

authors.(116:120.121) - A cylindrical tube with an opened angle was therefore taken as a
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stress—free body. The aim of this research is to study the effect of prestretch and the

role of the dual mechanisms. This effect can be considered in a future work.

4.2 Pressure—Radius Curve for the Descending Aorta of A Dog

Only recently has a quantitative model including recruitment of collagen fibers in the me-
chanical behavior of arterial walls been formulated using a multi-mechanism theory,.(141-143)
However, this model was directed at cerebral arteries and in addition, did not take into
account the effects of prestretch. Atabek et al. provided detailed information on the me-
chanical behavior of the descending aorta of a dog™% which makes an extension of this
multi-mechanism model to include prestretch possible. In their article, the effect of pre-
stretch is considered. A distinguishing feature is that pressure-radius curves merge to a
single line for all tested axial stretching ratios after collagen recruitment. One focus of this

(141-143)

research is to use this data to extend the work of to include prestretch and to ap-

ply this formulation to noncerebral arteries. We summarize the pressure-radius curve given

in% below.

Shown in Figure 4.1 is the typical pressure-radius curve for the descending aorta of a dog.(!14)
In the figure h,, R, and [, are the initial thickness, inner radius and length of an undeformed
configuration, respectively and p is the systemic pressure, 100 mmHg. The defined dimen-

sionless parameters A; and A\, are

I R
- - 4.1
l, M, R, A2 (4.1)

where [ and R are the length and inner radius of a current configuration, respectively.

According to,(""% the in vivo artery is axially prestretched by the amount of \; ~ 1.4
before pressure loading so that A\, is approximately 0.85 under initial longitudinal strains at

p/p = 0. The artery was loaded by a uniform pressure after being stretched axially by three
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Figure 4.1. Typical pressure-radius curve for the descending aorta of a dog 4.

different values of A;. When the value of \; for prestretch is 1.35, the value of \; is larger
than 0.85 at p/p = 0 and inversely, when A\; = 1.45, A\, is smaller than 0.85 at p/p = 0 since

larger prestretch results in smaller diameter of the vessel before pressure loading.

The curve in the figure has an inflection point. Up to p/p = 0.6 the slope of the curve
decreases as pressure increases. It is reported that arteries are controlled by highly elastic
elastin lamellae, showing a nonlinear “ballooning effect” up to this level of pressure.(!'*) For
p/D greater than approximately 0.6 the slope increases linearly, inflects smoothly and rises
exponentially with the increment of pressure. This steep increase of the slope is believed
to be due to the contribution of collagen fibers. It is also reported that the collagen fibers

begin to straighten out at a certain pressure value larger than p/p = 0.6.(114)
The curves of \; = 1.35, 1.4 and 1.45 merge to a single curve for approximately A\, > 1.25.

Note that pulsatility of pressure is between 0.75 and 1.25. This corresponds to deviation of

10 % of Ay about the mean.
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Figure 4.2. Deformation stages according to the pressure-radius curve.

4.3 Mathematical Analysis to Fit the Experimental Data

4.3.1 Deformation Stages According to the Pressure—Radius Curve

We consider deformation stages according to the pressure-radius curve. In Figure 4.2,
the pressure-radius curve has three stages A, B and C. Three cylindrical tubes corresponding
to these stages are also shown in the figure to simplify discussion of the deformation history
due to the stretching and pressure forces acting on the artery. At Stage A, we have an unde-
formed initial configuration. Both the extension and inflation ratios A\; and \s, respectively
begin with the value of 1. Therefore, a magnitude of axial stress, ¢ is zero in this stage.
The artery is then stretched and reaches Stage B. The initial inner radius and thickness of
the artery, R, and h, change to R, and hy, respectively by the amount of \; larger than 1.
In this stage, the pressure is not yet applied however, A, is less than 1 due to the extension
and therefore, o is not zero. At Stage C, a uniform pressure force normal to the surfaces of
the artery starts to act on the surfaces, while the length of the segment [ is held fixed. Then
Ry and hy change to R. and h,, respectively. In this stage, starting with s less than 1, A

reaches 1 and becomes larger than 1 as the pressure force increases.
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As previously stated, collagen fibres become load bearing at a certain pressure level. Be-
fore collagen fibres begin to straighten out, the motion of arterial walls is governed purely
by elastic elastin lamellae. In order to model such characteristics of motion of arterial walls,
a muti mechanism theory is used in this study. According to the theory, a microstructural
change is associated with a certain deformation parameter and is referred to a scalar kine-
matic parameter s. Therefore, there is an activation criterion for collagen recruitment, s,.

We assume that there is a single value of s, throughout of the material.

4.3.2 Dual Mechanism Constitutive Model

Using previous work on dual mechanism models for arteries, we consider the stress—free
body to correspond to an arterial segment excised from autopsy. The excised artery is
idealized as an axisymmetric cylindrical tube. It is then subjected to both axial stretch and
pressure forces. The first mechanism is the elastin and the second mechanism corresponds
to the collagen. The unloaded configuration of the elastin corresponds to the unloaded
configuration of the arterial wall. Significantly, the unloaded configuration of the collagen
is different than that for the elastin. As will be discussed below, and explained in detail
in,(1417143) the reference configuration at which collagen recruitment begins depends on an
activation criterion. At the early loading stage, the elastin fibers dominate the motion. The

motion is described as the motion of a particle in an initial configuration, x; to a current

configuration, xk governed by

X = X, (¥ 1), (4.2)

as seen in Figure 4.3. Mechanical response of the material due to collagen is dependent on
the stretch of the collagen relative to the unloaded configuration, k5. The motion is described

as the motion of a particle in the newly introduced configuration, ks for collagen recruitment
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Figure 4.3. Kinematics of dual mechanisms.

to a current configuration, x governed by

X = Xrg (y7t)7 (43)

as also seen in Figure 4.3. The motion of a particle in the initial configuration, x; to the

newly introduced configuration, k4 is governed by

S’ = Xk1 (y7t2)7 (44)

where t5 is the time at which the k4 is achieved. As stated in the assumptions, the collagen

recruitment is associated with a scalar kinematic parameter s expressed as

s = A(Fy), (4.5)

where Fj; is the components of deformation gradient tensor.

ox;
F, =22 4.6
y; (4.6)
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For isotropic and incompressible materials, s can be written as a function of the first and

second invariants of

S = S(Il,IQ). (47)
s(I1, I5) is chosen such that s = 0 when ¢ = ¢; at which the body is rest. The activation of
the second mechanism is defined as

Aa = S(Il,IQ) — Sq &= 0, (48)

where s, is the initiation value of collagen recruitment. Likewise, if the loading is of sufficient
magnitude, such that a second activation criterion is met, s;, the elastin will rupture. So, s,

can be also taken account for elastin breakage when
Ab = S(Il, IQ) — Sp = 0. (49)

Three stages for a loading condition are considered depending on the value of s.

1. 0<s< s,

s starts at zero and increases before it reaches s,. In this stage, only the elastin
contributes to the motion of the arterial walls. The Cauchy stress tensor, T is only a

function of F.

2. 5, <s< s

When s reaches s, collagen fibres begin to straighten out. So, in this stage, both
elastin and collagen fibres play a role in deformation of the arterial wall. The Cauchy
stress tensor, T is then a function of F and F where

7, =95
J 8@]

(4.10)
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3. $> s

At s = s, all of the elastin break simultaneously. The arterial wall motion is gov-
erned by only collagen fibres in this stage. The Cauchy stress tensor, T is then only a

function of F.

In order to take into account the roles of both the fibers in the second stage, the strain energy
for the stage is a linear combination of two types of strain energy functions; one responsible
for the elastin and the other for the collagen fibers. In the third stage, the strain energy is
due to that for the collagen fibers alone. Therefore, the constitutive relation is a different
type at each stage. The following constitutive relation can be proposed for hyperelastic,
homogenous, isotropic and incompressible materials to model the motion of arterial walls

using the mathematical notation referred to in;(13%)

79 = pGU 4 B¢ + WBY + &g + UBY, (4.11)
where
oW oW
d = 92— T =92— 4.12
oI’ oL’ (4.12)
o = 28—W, U= 28—W, (4.13)
oI, oI,
with

W = W(Il,IQ) if 0 <s< Sa;
W(Il,IQ) -+ W(fl,fg) if Sqg <8 < Sp;

W(I, L) if s> s (4.14)

sq and s, can be determined using

s=1—3. (4.15)
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Figure 4.4. Motion of arterial walls by dual mechanisms.

In Equation 4.11, p is the Lagrange multiplier, G¥ is the contravariant components of metric
tensor in &, g is the contravariant components of metric tensor in x1, ¢ is the contravariant
components of metric tensor in ko, B¥ is the contravariant components of tensor associated
with the first invariant I;, ¢ and G;; and B is the contravariant components of tensor

associated with the first invariant I; in k2, §¥ and G, respectively.

We now consider a homogeneous deformation of both extension and inflation of a cylin-
drical tube. Figure 4.4 shows the motion of arterial walls categorized by the three stages.
The motion from the initial configuration, x; to the current configuration, x can be solved
using the strain energy shown in the first equation in Equation 4.14. Therefore, in the first
stage, only elastin plays a role in the motion. For the second stage the motion from the con-
figuration, ks to the current configuration,  is considered. In this stage, the strain energy
includes two terms ; one term for elastin part, the other term for collagen recruitment (see
the second equation in Equation 4.14). According to the pressure-radius curve in Section

4.2, there is no elastin breakage so, we do not consider Stage III in this study.
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We define

aq ai
Ay = —- =L 4.1
2 A17 >\2a A17 ( 6)

where A; and a; are the initial and current inner radius respectively, A; is the inner radius

in the configuration, ko. We can then find A5, through
)\2 = )\Qa’S:Sa for Aa = 0, (417)

where Ay, > 1. Therefore, Stage I and Stage II can be recategorized through Ay, as follows;

o 1 < )y < Ay

Strain energy accounting for elastin is W = W (I4, I5) in this stage.

o Mg < Ao < Ay

Strain energy for both elastin and collagen recruitment is W = W (I, I5) + W(fl, fz)

in this stage.

In order to model the data in Stage I, we use a strain energy function corresponding to the
Neo—Hookian model defined as

W =Cy(I, —3), (4.18)

where ('} is a material constant. The strain energy function for an exponential model defined
as

A

W= %67<f1—3>, (4.19)

where «, v are all material constants is linearly combined with the strain energy in Stage I

(see Equation 4.18) to fit the data in Stage II.
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4.3.3 Classical Solutions of the Extension and Inflation of A Cylindrical Tube

4.3.3.1 Stage I (A < \,).
We consider the motion from the configuration x; to k. The cylindrical coordinate(r, 6, z)

is used to define the motion from the body B, in k; to the body B in k as

y1 = p(r)cosh, 1y, = p(r)sind, ys =z/\ for B,, (4.20)

x1 =rcosh, xy=rsing, x3==z for B. (4.21)

Metric tensors for the body B, can be found as

Oy™ oy™
Gk = Sgagh (4.22)
; 06" 0o
gzk — 3ym3y—m’ (4‘23)
so that
, 1
] = DIAG ()% plrP 53], (1:21)
ik 1 1 2
lg"] = DIAG o ()2’ W, A (4.25)

where ’ stands for 9()/0r and 0 are r, 0,2 when i = 1,2,3. Metric tensors for the body B

are

oy™ oy™
% k
G* = S;m%im, (4.27)
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so that

[Ga) = DIAG [1, r*, 1], (4.28)
‘ 1
[G*] = DIAG [1, = 1} , (4.29)
To satisfy incompressibility condition,
G
I; = E =1, (4.30)
where G and g are
G = |G| =77, (4.31)
p/ r Zp r 2
9 = lgul = pr) plr)” )AQ( S (4.32)
1
Therefore,
/ 2 2
P (T)Af ) (4.33)
1
This results in
p(r) =~/ A2+ C. (4.34)
We now apply initial conditions which are
Al = p(al), AQ = p(ag). (435)
Then applying Equation 4.34 to 4.35 yields
plr) = \/Aur? + A3 — Aa. (4.36)

110



We then find three invariants using the metric tensors as follows ;

L = G —— s
O O
2
rs p(r 1
I, = G7gd3=p(r) + (7«2) T
1

Is = 1.

Using the first invariant, we calculate B¥ which is defined as

Bij — Ilgij o girgstrs,

so that

[BY] = DIAG

2 22 1 X e

Then, the components of Cauchy stress tensor can be written as
79 = ®g + VB + pGY,

so that using ¢/, GY, BY we can obtain the stress tensor as follows ;

2

_— 1 r A2
P = DIAG it + (o g ) V4

1 1 A2 13
7 (o ) VR

)\2 )\27,2
)\2@ 1 1
e A

With a negligible gravity force, the equilibrium equations take the form

TZkHZ = 0,
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(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)



where || represents the differentiation of the second order tensor in the current configuration.

These can be rewritten in terms of the second Christoffel symbols in
T+ T 4 TE ' = 0. (4.45)

The second Christoffel symbols are defined as

P aZym ay—m Iy
T 00m00t 06t T

(4.46)

so that we can obtain

1
F%z = - F%z = F§1 = ;7 (4-47)

and all other Christoffel symbols are zero. Since 7% is a function of r, only the differentiation

of 7 with respect to r exists. This reduces the equilibrium equations to

1
L Zp 2 o (4.48)
, r
7'7?53 = 0, (4.49)
=0 (4.50)

Substituting the components of 7 into the equilibrium equations results in

or'’" 1 1 A2 P
= P L g+ = 4.51
or T(pm? *(pwp’(r)?*p(r)z) W) (451)
1 1 r2 A2
—= <I>+( + )\If+ p),
r (p’ﬂ p(r)?p/(r)? — p/(r)?
ox dp
o= =0, (4.52)
Op
22— ZE 4.
7 5. =0 (4.53)

Equation 4.52 and 4.53 inform us that p = p(r) since ® and ¥ are also functions of r. We
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integrate Equation 4.52 from the inner radius to the arbitrary radial position r to obtain

" 1
T e = 7" |rmay = / (7’7'99 - —T"> dr. (4.54)
al r

External forces exerting on the inner and outer surfaces of the tube can be written as
P* = P'G; + P’Gy + P3Gy = 7%n;, (4.55)

where n; are the components of unit normal vector to the surface. The unit normal vector

is written in the form of

n =n,G! +n,G? 4+ n3G3. (4.56)
At r = ay, the normal vector is
Gl
n=—, (4.57)
o1
so that we have
1

n; = ng=n3=0 at r=as. (4.58)

Jon b

Substituting Equation 4.58 into Equation 4.55 yields
T |reay = P (4.59)

Similarly, at r = ay,

(4.60)

Therefore, we obtain

—1

N

n; = —1, npo=n3=0 at r=ay. (4.61)

Substituting Equation 4.61 into Equation 4.55 gives

T ey, = — P (4.62)
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Figure 4.5. External forces acting on the inner and outer surfaces of a cylindrical tube.

From the boundary conditions shown in Figure 4.5, we have
P'y—o, = P, Pi—a, = —P,. (4.63)

Therefore, we obtain

TT‘T" = _Pi7 TTT’r:ag = _Po- (464)

r=a1

Applying Equation 4.64 to Equation 4.54 and defining AP = P, — P, yields

o [ (Gor ) e Gop - 5) o) o

For the elastin stage, a neo-Hookian model is employed. Referring to Equation 4.18, we

obtain

oW oW
d=9—" =29 T =2-—— —0. 4.66
oI, e o1, 0 (4.66)

This further reduces Equation 4.65 to

ap =20 [

al

(p(:)2 N [;(;232> dr. (4.67)
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Integration of Equation 4.67 results in

Ci. | Ai(a3 — af) + A?

2G, In
A1 A?

At

C 1 1
57 (A = huad) (—2 - —2) - (a6)
1

as  ag

Q2

ai

Now we use the incompressibility condition to find the relationship between a; and ay such

that
Ay = plag) = y/\ad + A3 — M. (4.69)
Therefore,
2 2 2
as = \/A2 AAl hai (4.70)
1

Equation 4.68 can be rewritten using an inflation ratio, As in the form of

Cl )\1@% + A%(l — )\1)\%) 201 Qo ClA% 2 1 1
AP =11 —=1 1I-MA) (5 — ——5 |, (471
Mo A2 N P o ARG T ) 4TY
with
A2 — A2(1 — M N2
az—\/ 2 1;1 MAy) (4.72)

4.3.3.2 Stage IT (A, < XA < N\p).

We consider the motion from the configuration xy to k. Collagen fibres play a role
independently on the arterial wall motion so that the stretching ratio, A; is not taken account
for the collagen recruitment. Starting with an unknown radius, p,(r) of the body Bj, the

motion from B; to B can be described as

U1 = pa(r)cosl, Go = pu(r)sinb, g3 =z for By, (4.73)

x1 =rcosh, xo=rsinf, x3==z for B. (4.74)

115



Using the cylindrical coordinates. Metric tensors for the body B; become

gix] = DIAG [py(r)*, pa(r)*, 1], (4.75)

‘ 1 1
i*] = DIAG , 1. 4.76
7 o) pulr)? o

Metric tensors for the body B are shown in Equations 4.26 and 4.27. Since the incompress-

ibility condition still holds, we obtain

Iy = Q =1, (4.77)
g
where G and § are
G = |Gyl =1 (4.78)
g = gl = pa(r)*palr)*. (4.79)
Therefore,
Pu(r)?pa(r)? =1 (4.80)

Then we can find the radius of body B; such that
pa(r) = Vr2 4+ C. (4.81)
Applying the initial conditions which are
A= pa(@),  As = pa(az), (4.82)

to Equation 4.81 yields

pa(r) = \/72 + A2 — a2, (4.83)
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Three invariants can be found using the metric tensors as follows ;

R 1 7
L = §"G, = + +1, (4.84)
pa(r)?  pa(r)?
2
~ “ N a T
b= @ady= A+ P01y (4.85)
I, = 1. (4.86)
Using the first invariant, we obtain B defined as
B =[5 — §" G, (4.87)
as follows ;
. 2 1 1 1 1 2
[BY] = DIAG - + + +———|. (4.88)

Pa(r)?pL(r)?  ph(r)? pa(r)?oL(r)?  pa(r)?’ ph(r)?  pa(r)?

The strain energy for this stage is a linear combination of W and W which are given in

Equations 4.18 and 4.19 so that

W =W(I, L)+ W, L) = Ci(I, — 3) + %e%ﬁ—?’). (4.89)
We then obtain
b = zg—va = ae’173), (4.90)
1
v = 2?;: = 0. (4.91)

This reduces the proposed constitutive relation, Equation 4.11 to

Fi _ pGi 4 20y 4 by (4.92)
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Stress tensor 7 can be obtained using the metric tensors as follows ;

. 201 é) p 201 i
77| = DIAG |[p+ + , =
~ P e T

With a negligible gravity force, equilibrium equations in this stage form
||, = 0.
Rewriting 4.94 in terms of the second Christoffel symbols yields
Tzzk +TL ™ L TR = 0.

Then the equilibrium equations can become

2 1
Mrmay = T rmay = / (7’7'99——7'”) dr
_ /a112 201 2C; 1
P p(r)?r
d 1
(r)?r

T

+

r—

pa(7“)2 A o

Applying the boundary conditions shown in Figure 4.5 such that
T’T”

_ T _
T \r=a1 = _Pi7 T ’r:az - _Pm

results in

a2 i d 1
AP—/ 2017“— 2011+ (I) r— = | ar
o AP p(r)2r o pa(r)® pl(r)?r
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(4.93)

(4.94)

(4.95)

(4.96)

(4.97)

(4.98)



where

p(r) = \/)\17’2+A%—>\1a%, (4.99)
pr) = Mr(ar?+ A2 = \ad)™2 (4.100)
palr) = \Jri+ A2—al, (4.101)
ph(r) = r(@r?+ A2 —a?) V2 (4.102)

Integrating Equation 4.98 yields

Cl )\1 (a% — a%) + A% 201 (o)
AP = —1 — In|— 4.103
)\1 . ‘ A% )\1 . aq ( )
C’1

1 1
A2 M) = — =
- (33 7)
az y(i1-3)
+Oé/ TeA— d’/’.
o \r2+A?2—a2
as 2 A2 _ g2 y(I1-3)
_Oé/ ((7’ + 1 30/1)6 ) d’f’
al /r

Now the incompressibility condition can be applied to find the relationship between a; and

Ay = palas) = /a2 + A2 — a2, (4.104)
A2 — A2
—JAI - A2t a2 = \/ +ai (4.105)

Since Ay, is A, /A1, using the inflation ratio, Ay, we rewrite Equation 4.98 in terms of A;, Ay

ay as follows :

so that
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and A, such that

Cl )\1@% + A%(l — >\1>\%) 201 (5]
AP = —1 In 4.106
M n‘ A o e (4.106)
C A2 o [ 1 1
— A - - —
e AN e
7’67([1 3)
/ Y dr
2 2\ A2\ ,v(11-3)
/ (7’ + (A3, — i‘)}z)Aﬂe ) dr,
r
where
AZ _ AZ 1— 2
ay, = \/ 2 — Ail AM?), (4.107)
A1
R r? 4+ (A3, — \3) A2 r?
I, = = 1. 4.108
! 2 LECER RS Ve (4.108)

The material constants, C7,« and v are obtained by fitting the pressure-radius curve in
Figure 4.1 using the nonlinear equation given in Equation 4.106. These material constants
are then used to evaluate oscillatory motions of arterial wall using the small on large theory

discussed in next section.

4.4 Mathematical Analysis of Periodic Motions of Vessel Wall

(134,136) Fow-

As a result of the pulsatile nature of blood flow, the arterial wall oscillates.
ever, due to the complexity of the problem, analytical studies of nonlinear deformations of
the arterial wall are confined to static uniform loading. (114 116,120,125,144) Gty djes that account
for the fluctuation of the vessel wall, have not accounted for the large deformation associ-
ated with prestretch and uniform loading under average physiological pressure. Rather these
studies only considered the small periodic motions of vessel wall, about an assumed stress

free configuration. The pressure oscillation corresponds to approximately 20 to 25 % change

of the systemic pressure('%126) and the corresponding radial strain is smaller than 0.1.(13%)

120



This suggests that the motion of in vivo arterial wall can be modeled using the small on large
theory proposed by A.E. Green et al..!'® In this work, the axial extension and inflation
corresponding to loading up to the systemic pressure are modeled as large deformations and

the oscillatory motions superposed on these are small.

The small on large theory approximates the exact theory for a complete nonlinear be-
havior using a superposition method. We superpose small deformations on a known finite
deformation of a homogeneous elastic body. The theory approximates the covariant base
vectors to obtain the vectors of a current configuration by deforming a body by a small
amount. Based on these approximated base vectors, the strain invariants, the strain energy,
the stress components and therefore, the linear momentum equations for the current body
can be obtained. The detailed procedure to obtain the equations are given in the Appendix
B. To apply these equations to the dual mechanism material, we consider two stages for
the collagen recruitment described earlier. All of the equations in the Appendix B can be
applicable to the two stages. Accordingly, for the first stage based on the small on large
theory, the classical solutions of the elastin stage are used to obtain the approximate solu-
tions whereas the classical solutions from the elastin/collagen stage are used for the second
stage based on the small on large theory. Since different strain energy functions are applied
to each stage based on the small on large theory, each stage will have a different form of
constitutive relations, A and therefore, the linear momentum equations. To describe the
behavior of periodic motions of vessel wall we find solutions of small deformation with time

by prescribing an oscillatory pressure force.

4.4.1 Small Deformation Superposed on Finite Uniform Extension and Inflation
of a Cylindrical Tube under a Static Loading Condition
We further deform the strained body B which is deformed by finite uniform extension and

inflation by an infinitesimal displacement, ew (see B.1), defining the displacement vector, w
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as

w=w,G" =w"G,,, w =u, wy, =17, w3 =w. (4.109)
Consider the deformation u = u(r), and v = w = 0. Then € is defined as

_ (a1 —ay)
=y (4.110)

where @, is the current inner radius of the body B (see Appendix B). Referring to Equation

B.8, we obtain the components of the covariant metric tensor,
G;j = Wi j -+ Wji — QF%U, (4111)

so that

G},] = DIAG [28753)

, 2u(r)r, 0} . (4.112)

The components of the contravariant metric tensor from Equation B.8 become

G = — (GGG + GGG, + GGG,
GG GYy + GPGP*Ghy + GPGPGY,
GRGI'GYy, + GRGP Gy, + GPGPRGYy), (4.113)
so that

Ou(r)  2u(r)
or >

[G"] = DIAG | -2 ,0] . (4.114)

We use these results and the components of contravariant base vectors, g¥/ in Stage I and

G in Stage II (see Equations 4.25 and 4.77) to obtain three invariants for each stage (see
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Equation B.10) as follows. For Stage I,

! __ TS
Ilf Grs

Ié — gll(G//u+G11[é)+922(G”22+G221§))+933(G”33+G33I§)

= ¢"G, + ¢”°Gh, + g Gy,

= guG/u + QZQGIQQ + 933G§3

1 1
= WGlll + ;GIQQ + >\ng3
2 Ou  2u(r)r

(P2or — p

_ /2@ 22u(r)

= ar

For Stage II,

TI __ arsev
Il =g Grs

fé _ gll(Glll + Gll[é) + QQZ(GIZZ + GZZIé) + §33(G/33 + G33Ié)

r3

1 1
= (TG)ZG/H + p—gGlzz + Gy

2 Ou N 2u(r)r
(po)?Or — pi

— _9 /2@ _ QQU_(T)
“or T o3
For all the stages,
Iy=1; = LGG
= GUG, + G2Ghy + GBGY,
or r
= 0,
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It then follows that

ou u(r)
—_— = 4.12
or r’ (4.120)
so that
u(r) = % (4.121)

The components of stress tensor in Stage I are expressed in Equation B.21. For Stage II,

the proposed constitutive equation given in Equation 4.11 becomes

7—_ij — Tij + 67_/ij — (p+ ep/)(Gij + 6CTv/ij) + ((I> + 6(p/)gij + (\I/ + 6\11/)(Bij + 6B/ij)

(P + ed)§7 + (U 4 V') (BY + eB'Y), (4.122)

for the current body. Neglecting the terms of O(e?) and collecting the terms of O(e), we find

that in Stage II,
79 = PG + pG" 4+ @' ¢V + UB" + W'BY 4+ &5 + UB'ij + V' BY. (4.123)

Generally for all the stages under a static loading condition, neglecting body force and

acceleration, the equation of motion (B.24) becomes

Nd||; =0, (4.124)
where
N =719 4 pml 4 7w+ T+ T W, (4.125)
so that
g 0 0 0
N = DIAG |71 +27_11_u —1—7'113,7"22 —i—27'223 +7_22_u,7_/33 +7_33_u +7_33E . (4.126)
or r r or or r
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Since differentiation of A\¥ with respect to i in the body B is defined as

A9||; = N+ XITS, 4+ oY

s1)

where

1
anm = anm = 07 FTm = ;7

finally, the equilibrium equations for all the stages can be written in the form of

8>\11 )\11

o +——X2r = 0 when j=1,
8)\22
50 0 when j =2,
8)\33
5. = 0 when j=3.

(4.127)

(4.128)

(4.129)
(4.130)

(4.131)

We now look for solutions of two separate stages using dual mechanisms in the small on large

theory.

4.4.1.1 Stage I (A < \,).

In this stage, the scalar invariants ¢’ and ¥’ are found to be

® = AIl+FI, =0,

\IJ/

FI. + BI, =0,

because the constants, A, B, F' in Equations B.18 and B.19 become

_ 02 _
=50

_ 0¥
=5 =

A = =
8

0, B 0, 0,
where

®=20C;, U=0 I=1, I,=0.
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Then from the components of stress tensor 7’ (see Equation B.21), we can find that

2pk  , 2pk P ,}

(7] = DIAG [7 +p, ==+ p (4.135)

Using the result of the incompressibility condition, Equation 4.121, the components of tensor,

A (see Equation 4.126) can be found as

y 2pk nk  2pk P 0o K
[)\J]:DIAG [p/+7—T 7’_2,_7—’_5—’_7— ﬁ,])/ ) (4‘136)
where
2C

Tll = p/21 +p7
(4.137)

201 D

22
T = 7 + 7’_2

recalling that p and 7 are a function of r and applying Equation 4.136 to the equilibrium

equations, Equations 4.129 to 4.131 yields

8)\” 2]{301 2]{301 2]{3])

ar rp? + 32 o3 (4.138)
a /

8—1; = 0, (4.139)
Z_Z = 0, (4.140)

so that p’ = f(r). We now apply boundary conditions. The current external force measured

per unit area of the surface of the body B is expressed as

P +eP' = (P! + eP7)G; = (nim7 + enA9) Gy, (4.141)
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so that we can find the current inner and outer pressures of the body B such that

(P + €P/)’r:a1 = (_le - 6>‘1j)Gj)’r:a17

P+ eP)rmay, = (T +eA")G,)|rmay, (4.142)

since the normal vectors for the inner and outer surfaces of body B are

n = —1, ng=n3=0 at r=a,

n = 1, ng=n3=0 at r=a, (4.143)

respectively. Defining the current inner and outer pressures as P, and P,, respectively,

applying the boundary conditions yields that

(P + EP/)’r:aq = _pon (4144)

(P+eP)—a, = PGy, (4.145)

so that the pressure difference defined as AP = P, — P, can be found as

APG; = (P+€P')|mq, + (P + €P)|i—0,, (4.146)
AP = (Tllyr:az - Tll’f‘zm) + 60‘11’7‘:@ - All’r:m)? (4.147)
AP = AP+ eAea, — Mza,), (4.148)
where
AL M =2k [ (L Y ar—an [P 4.149
’T:az - ’r:m - 1 i % + 7’3—/)/2 r— j 7 T. ( . )

The above equation is obtained by integrating Equation 4.138 with respect to 7.
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4.4.1.2 Stage IT (A, < XA < N\p).

In this stage, p,(r) is used and the scalar invariants ® and ¥’ become

A

& = A+ FIL = aye 3]

1

¥ = FI, +BI, =0,

(4.150)

because the constants A, B, F' in Equations B.18 and B.19 in this stage are found to be

iy ; o o
A:a—A:a’er(h_?’), B:aA =0, F:aA =0,
8[1 812 aIl

where

d=qeh® W=0, =1, I}=0.
The components of the stress tensor 7’ (see Equation 4.123) then become

ar)/e')’(fl_'?’) - au , Oéf)/ef)’(fl_'?’) N
— 2 L2yt >

a a

A2a767(f1_3)f{ + 7).

(7] =  DIAG|

E-EL B

(4.151)

(4.152)

(4.153)

Using the result of the incompressibility condition, Equation 4.121, The three invariants are

found to be
R 2k 2k
L= et
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The components of the tensor, A (see Equation 4.126) with u(r) = k/r can then be found as

)\33

where

\

)\11 —

)\22 —

o 2C,

™ = 4+

(4.157)

ae7(i1 _3)

= T TPt

(4.158)

- 20, p e (h=3)

2 2 2

r Pa

p

recalling that p and 7 and I, are a function of r and substituting Equation 4.157 into the

equilibrium equations, Equation 4.129 to 4.131 yields

O -1 s . 3 . 4k k k
o eI+ Dane B0 — r—ap Tt (4159)
op op’
B 4.160
00 0z ’ ( )

so that p’ = f(r).

Applying the boundary conditions in Equation 4.144 and 4.145, the

pressure difference, AP can be written in

AP = AP + A" —ay — M oeay),

(4.161)
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where, by integrating Equation 4.159 with respect to 7,

@ (_qyerth=-3p i o 4kp(r) k k
A0, — Ay, = / it S (O ) W LA L) P
: b a o Pa re re r

(4.162)
We rewrite Equation 4.162 using Equations 4.154 and 4.158 such that

az 7(f1—3) 9 9 r R ) 9
)\11’7‘:(12 - All’r:a& = k(/ L DU NGNS + _204’)/67(11_3) - ann
w TP pa TE) P Pa TG
1 (@3 20, 1 [aer@=3 o0,
+; p2 + p2 + 7’_3 p’2 + p/2 dr

_/ %%dH (p(izg) B ])(L;)>), (4.163)

1

integrating the term of p(r) in Equation 4.162 by parts. Equation 4.163 includes the term of
Op(r)/0r which can be obtained from the analysis in Stage I of the large deformations and

written in the form of

Op A2 a1 A2 2r
LYo NN (i S e il
ar 1(A§ DY) R G R R W e

2C 2C
202000 ) 164

We again rewrite Equation 4.163 using p(a;) and p(ay) so that

az ’y(f1—3) 2 9 R 9 2
)\11’7‘:(12 - All’r:aq = k(/ % (_2 - W) + %@767(11_3) (—2 Y] /2>
ay "Pq Pa  T"Pq Pa Pa  T7Pq

1 [ aei=3) 20, 1 (=3 20,
+; 2 + 7 +7’_3 Pz + 7 dr

_/a2 L 9p (201/;2(@1) B 201P2(a2)>

———dr +

. r2or Aat Aaj
AP 1 1
2 (= -2\ p), 4.165
(@) (1169
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Equation 4.165 includes the unphysical term of P, which arises from the approximations by
the small on large theory as expected in the linearized theory of elasticity. This term of P,

is taken to be zero in our analysis.

4.4.2 Periodic Motions of Vessel Wall
So far, we obtained the solutions of small radial deformation superposed on the large
deformations under a static loading condition. The base pressure of artery reported in"% is
100mmH g and the corresponding dimensionless pressure, P/P is 1. The vessel deforms by
the large deformations up to P/P = 1 under a static loading condition and then, experiences
a pulsatile pressure force. The motions of vessel wall governed by the pulsatility are to be
described by the small deformation. The body B deformed by the large deformations has
the inner and outer radius, a; and a,, respectively, at the base pressure. These radii and
AP are constants and therefore, the current pressure-radius relation (see Equation 4.161)
of the body B turns out to be linear. From Equation 4.110, the current inner radius of the
body B is obtained by
a; = a; +eu(ay) = ag + —, (4.166)

and rewriting Equations 4.161 and 4.165 by taking k£ out of the integral yields

_ a2 _ ymnet(1i=3) /9 9 . 2 9
AP =AP + ek(/ e ( ) + %04767([1_3) ( )
a P

2 2T 2.2 2T 2.2
1 /rp(l p(l /rp(l a p(l /rp(l

1 [ a3 20, 1 (aeXh=3) 90,
+; p2 + p2 +ﬁ p’2 -+ p/2 d’f’

_ /@ 1op, . (201/?2(@1) B 201P2(a2)>

. r2or Aaj Aaj
AP 1 1
= —__\p
()P
= AP+ ek(Cs, (4.167)

From Equations 4.166 and 4.167, we know that ek determines the current pressure, AP so

that when ek is zero, AP = AP and @; = a; as shown in Figure 4.6.
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100 mm”9 Periodic Motions

AP=AP ¥
(AP =0)

a=a
(ek=0)

Figure 4.6. Relation between AP and AP.

Under a periodic pressure force, the equations of motion (see Equation B.23) of the body

B become

T+ eX]]; = p(f7 + ef), (4.168)

neglecting the body force where p is the density of artery. Since the large deformations are
under a static loading condition, f7 is zero. Then collecting the terms of O(¢) of Equation

4.168 yields
d*u(ar)  p d*k

Nlls=pf" = =g = G (4.169)
so that
8>\11 )\11 p de
=L 4.170
or + r 4 ay dt? ( )

As will be discussed in the result section, the vessel deformed by the large deformations up
to the base pressure is in Stage I and therefore, the solutions of Stage II are used to describe

the periodic motions. Integrating Equation 4.170 and applying the boundary conditions give

((ZQ — al) de

AP = kCy + P — (4.171)
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If we consider a sinusoidal pressure force such that

AP = AP +e/Np = AP + A, sin(wt), (4.172)

then Equation 4.171 can be written as

plaz — ay) d*(ek)
ai dt2

+ Cy(ek) = A, sin(wt). (4.173)

Solving Equation 4.173 in terms of ek yields

A,

ek(t) = Cy — plag — ar)w?/ay

sin(wt). (4.174)

Therefore, we obtain the current inner radius, a;(¢) with time using Equation 4.166.

4.5 Results

4.5.1 Material Constants and Activation Criterion

The pressure-radius relationships for the tube deformed by the finite extension and in-
flation given in Equations 4.71 and Equation 4.106 are solved simultaneously in a nonlinear
regression iteration loop to find the material constants, Ci,a,~ and the activation crite-

(114

rion, Ay, by fitting the pressure-radius data provided in Atabek’s article.(!'%) A subroutine

“RNLIN” in IMSL package of Fortran version 6.0 is used for the analysis of the nonlinear

regression. This subroutine fits a nonlinear regression model which is of the form

yi = flz,0) + e, i=1,2,....n (4.175)

using least squares. 6 is the vector of p regression parameters, and the ¢;’s are independently

distributed normal errors with mean zero and variance o2. The residuals are
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Figure 4.7. Pressure-radius curve fit using the Atabek’s data 114 at \ = 1.4.

A value of 6 is determined by minimizing the sum of the individual norms of e;(#). The
integration of Equation 4.106 is numerically performed using a subroutine “QDAGS” in the

IMSL package.

Under the assumption of isotropic materials, the activation criterion, s, is a function of
both A\; and Ay,. Because in the muti mechanisms, the collagen recruitment in a body is
assumed to initiate at a unique activation criterion, s,, the variable s, must be equal at
different stretching ratios, A;’s. It follows that a value of A\; should correspond to a unique
value of Ay, such that s, is unchanged. By fitting all data sets for three stretching ratios in(*%
keeping s, same, we found that curves generated using the three different ratios did not merge
in a single curve, as is shown in the pressure-radius curve in.('¥ An anisotropic material
may be needed to obtain this feature. In this research, we only consider the pressure-radius
curve when the stretching ratio, A\; is 1.4. Figure 4.7 shows the result of the data fit. In the
figure, the pressure is normalized by the systemic pressure. The value of r? obtained by the
data fit is 0.99. The corresponding material constants and activation criterion are listed in

Table 4.1. As shown in Figure 4.7 and Table 4.1, Ay, is found in the vicinity of the inflection
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Table 4.1. Material constants and activation criterion .

Constants 4 o v A2 Sq
30 KPa | 18.6 Kpa | 7.49 | 1.15 | 0.67

point of the curve. The nonlinear ballooning effect of the arterial wall at a lower level of
pressure is recreated by the strain energy using a neo—Hookian model before the collagen
recruitment (Stage I). After the collagen straighten out at a higher level of pressure which
satisfies the activation criterion, both elastin and collagen fibers start to play a role on the
motion and then the arterial wall becomes stiffer. As in Figure 4.7, the exponential behavior
in the slope of the curve after the recruitment of collagen fibers (Stage II) is recreated by
the strain energy using both neo-Hookian and exponential models. The material constants
and activation criterion shown in Table 4.1 are to be used to analyze the periodic motions

of arterial wall superposed on the large extension and inflation.

4.5.2 Description of Motion of Arterial Wall by A Small Deformation

The oscillatory behavior of arterial walls is analyzed by the small on large theory. The
theory is also applied to the dual mechanisms so that the separate roles of elastin and col-
lagen fibers can be taken account. The material constants and activation criterion in Table
4.1 are used to solve Equation 4.165. The integration of the equation is also numerically

performed using the subroutine, “QDAGS”.

As in Table 4.1, the value of Ay is 1.15 at which the collage fibers come into play. Pres-
sure begins to oscillate after the recruitment of collagen fibers so that the solutions in stage
IT using the small on large theory (see Equation 4.165) are used to describe the periodic
motions of arterial wall. The pressure-radius lines, obtained by deforming the body B at
the base pressure by a small inflation and compression under a static loading condition (see

Equation 4.161) are presented in Figure 4.8. The figure describes the motion of the wall
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Figure 4.8. Pressure-radius lines by small on large theory under a static loading condition.

pressurized or compressed up to 25% of the average pressure, 100mmHg. As seen in the
figure, the lines for the small inflation and compression are linearly fit to the slope of the

curve of large deformations under the static loading condition at the base pressure.

The periodic motions of vessel wall under a sinusoidal pressure force are obtained by
Equation 4.174. The density of the artery similar to blood density, p and the period of one
cardiac cycle in human arteries, T used in®*" were 1000 kg/m® and 0.8 sec. We use these
values to present the dimensionless inner radius, As(¢) in Figure 4.9. The figure presents the
periodic motions of a vessel wall with time under a sinusoidal pressure force. The trend of
the periodic motions of a wall under the sinusoidal pressure force is found to be similar to

that under a static loading condition.

4.6 Discussion of Results and Future Work

The mathematical modeling of the motion of arterial walls was motivated by the fact

that the periodic behavior of vessel walls can not be simply modeled using linear elasticity
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Figure 4.9. Periodic motions of vessel wall under a sinusoidal pressure force.

because in vivo arteries are prestretched and preloaded by the average pressure (100mmH g)
and the deformations by these preloadings are large. Furthermore, several researchers re-
ported the importance of the separate roles of elastin and collagen fibers in arterial wall
motion.(112113,116)  The central idea was to approximate the large deformations to obtain
a small deformation superposed on the large deformations using a small on large theory in
modeling the periodic motions of vessel wall pre-deformed by the base pressure and pre-
stretching. The novelty of this research was to (i) employ a nonlinear constitutive equation
for the large deformation region, (ii) develop governing equations for the wall motion using
a small on large theory and (iii) include the separate roles of elastin and collagen fibers in

modeling vessel walls.

Taking a stress-free body as a reference configuration, we stretched and inflated the body
to obtain the pressure-radius relation. During these large deformations, the collagen fibers
begin to straighten out and therefore, the proposed constitutive relation accounting for the
role of collagen fibers was used to find the pressure-radius relation after the recruitment of

collagen fibers. The body at the base pressure was then deformed by the small inflation and
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compression under a static loading condition to find the pressure-radius equation. Under a
sinusoidal pressure force, a wave equation for the periodic motions of an arterial wall was

obtained to solve the radial displacement with time.

The elastin degradation due to development regarded as the “growth” that occurs up
to maturation,('*®) aging and arterial disease such as aneurysms is reported by many au-
thors.(141:152,153) The axial tension and pressure diameter test on the passive carotid arteries
from dogs by Cox(!*?) revealed that development stiffens the wall, decreasing the disten-
sibility, increasing the collagen fraction and decreasing the elastin fraction. The study of
age-associated changes in wall structure by Yin®®® showed an increased deposition of col-
lagen and some degradation of elastin. In the cerebral saccular aneurysmal walls mostly
found at bifurcations the elastin and the media are degraded."*!) Therefore, the periodic
motions of aged or diseased arterial walls can be predicted through further study using our

constitutive model, which includes the separate roles of elastin and collagen fibers.

Blood flow in arteries is coupled to the motion of the vessel wall. Recently, theories for
fluid—structure interaction have been applied to study blood flow coupled to the motion of
vessel walls in order to find the mechanical factors responsible for arterial diseases. In these
studies, the wall is usually modeled as a membrane. In a future work, we will use standard
membrane approximations to obtain the governing equations for axisymmetric deformation
of a cylindrical membrane composed of the dual mechanism material. The corresponding
equations for small on large deformations can subsequently be developed. These mem-
brane equations can then be incorporated into multi-scale models of the circulatory system
(e.g.(149)). These multi-scale models also will be useful for investigations of the effects of

elastin degradation and collagen remodeling due to aging or arterial diseases.

In this chapter, the arterial wall material was modeled as homogeneous, incompressible

and isotropic. Earlier experimental studies of incompressibility of the arterial wall showed
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that under physiological conditions of both internal pressure and longitudinal stretch an
incompressible assumption is justified.'?) The merging feature shown in the pressure-radius

(114) could not be predicted using the

curves at three different stretching ratios reported in
isotropic dual mechanism model. It is expected that this is due to the anisotropic character
of the wall or possibly the need for a more complex function for the activation criterion.
Anisotropic materials will be considered in a future work. The effect of residual stress on

t(116:120,121) and therefore, also

the stiffness of an arterial wall is reported to be significan
needs to be included in our future work. In developing the dual mechanism model to include
prestretch, we used experimental data from the descending canine aorta. Our constitutive

model and the theoretical developments for this model using a small on large theory can also

be applied to other arteries such as cerebral arteries.
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APPENDIX

A. ACTUAL PROPERTIES OF HUMAN BLOOD BIFURCATION

We evaluate actual pressure values using the dimensionless pressure, P and Re (see
Equation 2.4), considering two actual diameters, 0.002 and 0.004 meter. The corresponding
non-dimensional pressures P to the ranges of Re considered are presented in Table A.1. In
the table, j represents three different Re (j = 1, 2, 3 ; Re = 255, 505, 755). P; represents
pressures obtained numerically corresponding to three different Re cases. In order to obtain
the actual pressures, actual velocities should be computed using three different Re. The
results are shown in Table A.2. In the table, L,; and D,; are the actual radius and diameter
of the parent vessel. i represents two different actual diameters (i = 1, 2 ; diameter = 0.002,

0.004 meter). U,;; are the actual velocities. Then the actual pressures can be calculated by
p, =2 (A.1)

Using the data in Table A.2, the following relationships between the actual and non-dimensional

pressures are found.

Pl‘ = 3-5PjUa1j when 1 =1 (AQ)

ng = 1-75PjUa2j when 1 =2 (A?))

We then finalize our calculations to obtain the actual pressures for the two actual vessel
diameters with three Re cases as shown in Table A.3. This table can also be used to

calculate actual wall shear stresses for the two actual diameters.
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Table A.1. Non dimensional Pressures for Re = 255, 505, 755.

Re [ 1 (Ns/m®) | U, /) [L(w) [ B (P} P,

255 0.0035 0.0004245 1 0 673061* P,
505 0.0035 0.0008418 1 0 339409* P,
755 0.0035 0.001257 1 0 227371* Py

Table A.2. Calculations of Actual Velocities for Re = 255, 505, 755.

Re | p (kg/m?) | Pin (Pa) | Da1(m) | Dap(m) | Lar(m) | Laa(m) | Uayj(m/s) | Uag;(m/s)
255 | 1050 0 0.002 | 0.004 | 0.001 | 0.002 | 0.425 0.2125
505 | 1050 0 0.002 | 0.004 | 0.001 | 0.002 | 0.8417 | 0.4208
755 | 1050 0 0.002 | 0.004 | 0.001 | 0.002 | 1.2583 | 0.6292

Table A.3. Relationship between Actual Pressures and Obtained Pressures for Re = 255,
505, 755.

AP Py Py Py3 Py Pay Pss
1001178*P; | 999882* P, | 1001353*P; | 250294.6% Py | 249941* P, | 250358* P
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APPENDIX

B. GENERAL THEORY OF SMALL DEFORMATIONS SUPERPOSED ON
FINITE DEFORMATION (SMALL ON LARGE THEORY)

We consider a unstrained body B, and strained body B by a known finite deformation of
B,. A strained body B is deformed to B by the infinitesimal displacements of the material
points in B. The material points P, of the body B, are displaced to P of the body B by a
known finite deformation. The points P are displaced to the points P’ of the body B by an

infinitesimal displacement. Then the displacement vector P, P’ can be written

V(917927937t) +€W(917927937t)7 (B]‘)

where € is a constant, v and w is the displacement vector P;P and PP’ , respectively, 6;

2

are the covariant coordinate system. € is small so that ¢ and higher order powers of € are

negligible. The covariant base vectors of §; at points P of the body B are

Gi = R)i =V, +Tr,;, (BQ)

where (),; denote 9()/90". So, the covariant base vectors of 6; at points P’ of the body B
are denoted by
Gi -+ GG; =V, —|—I‘,Z‘ —|—6W,i . (B?))

The term of € is then

The displacement vector w can be written in terms of either contravariant or covariant
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components by

J— m __ m
w = w,,G" = w"G,,.

Then, G/ can be obtained by

G; = ’meiGm = ’meiGm,

where

wm”z = wmai_rs iWs,

wlli = w™ +TGw?,

(B.6)

(B.7)

where I'? . is the Christoffel symbol of the second. Based on G, we can obtain the covariant

metric tensor Gj;,

determinant of the metric tensor G’ of the body B as follows.

Gy = willj +wl
G/ij — —GirstG;,S,

G' = GG, +G"Gy,

G = GGG,

The strain invariants of the body B based on above results become

Ltell = %Gy +eGl),

Ltel, = g,5(G™ +eG")(Iy + €l}),

L+el; = (G+eG)/g,
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so that

I = ¢°G (B.10)

Ié — grs (G/rsI3 + GrsIé),

I, = G'Yg.

We assume that the vessel walls are homogeneous isotropic materials. Then, the elastic

potential for the body B is a form of

W =W(lL, I Is), (B.11)

where

I = ¢°G,s, I, =g,,G"I3, I3= G/g (B_12)

The elastic potential for the body B then becomes

W =W(I; + eI}, I + €I, Iy + €I3). (B.13)

The contravariant stress tensor 7/ for the body B is expressed by

79 = g 4 UBY 4 pGY, (B.14)

where the scalar invariants ®, ¥, p and BY are

2 oW 2 oW 15)1%%
VI; 01’ VI; 0L, P \/738[3 ’ ( )
BY = Ilgij — girgst,,s. (B.16)

By Taylor’s expansion, using the scalar invariants ® 4+ €®', U 4 €W’ p + ep’ for the body B,
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we obtain

P
3
o
V' = FI + B, + DI, — —1I,
21,
P = (B, + DIy + CLy) + 5o I,
3
where
42 O*W B2 O*W C_iaZW
VLo T ot T I oIy
2 W 2 W 2 W (B.18)
VI 01,015’ VT 01501, VI 0LOL’ ‘

The tensor B becomes B + ¢B'"7 for the body B and using G},
BY = (g7g" — g"¢")G,,. (B.19)
To the first order of € of the stress tensor 79/ + e and T; + €T} for the strained body B,

i gijcpl + B9 + B 4+ G'p 4+ Gy, (B.20)

T, = VOXIG,, X = £ 4 7|, 4 ru (B.21)

Finally, the equations of motion for B and B when the body force and acceleration vectors

for the body B are F + ¢F’ and f + ef’ are

T,. + pFVG = pfVG, (B.22)
T,, + pF'VG = pf'VG,
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where p is the density. Equation B.23 can be rewritten using Equation B.21 in the form

X+ pFY = pfY, (B.23)

where
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