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A CONSTRAINT-STABILIZED TIME-STEPPING APPROACH FOR

PIECEWISE SMOOTH MULTIBODY DYNAMICS

Gary D. Hart, PhD

University of Pittsburgh, 2007

Rigid multibody dynamics is an important area of mathematical modeling which at-

tempts to predict the position and velocity of a system of rigid bodies. Many methods will

use smooth bodies without friction. The task is made especially more difficult in the face of

noninterpenetration constraints, joint constraints, and friction forces.

The difficulty that arises when noninterpenetration constraints are enforced is directly

related to the fact that the usual methods of computing the distance between bodies do not

give any indication of the amount of penetration when two bodies interpenetrate. Because

we wish to calculate vectors that are normal to contact, and because it is necessary to

determine the amount of penetration, when it exists, the classical computation of the depth

of penetration when applied to convex polyhedral bodies is inefficient.

We hereby describe a new method of determining when two convex polyhedra intersect

and of evaluating a measure of the amount of penetration, when it exists. Our method is

much more efficient than the classic computation of the penetration depth since it can be

shown that its complexity grows only linearly with the size of the problem.

We use our method to construct a signed distance function and implement it for use with a

method for achieving geometrical constraint stabilization for a linear-complementarity-based

time-stepping scheme for rigid multibody dynamics with joints, contact, and friction which,

before now, was not equipped to handle polyhedral bodies. During our analysis, we describe

how to compute normal vectors at contact, despite the cases when the classic derivative fails

to exist.
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We put this analysis into a time-stepping procedure that uses a convex relaxation of a

mixed linear complementarity problem with a resulting fixed point iteration that is guaran-

teed to converge if the friction is not too large, the time step is not too large, and the initial

solution is feasible. Finally, we construct an algorithm that achieves constraint stabilization

with quadratic convergence.

The numerical results proved to be quite satisfactory, implying that the constraint sta-

bilization holds, and that quadratic convergence exists.
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1.0 INTRODUCTION

Man has always cultivated the desire or need to predict the future, and has expended

much time, energy, and capital for the pursuit of that knowledge. Numerous examples can be

seen from the plethora of predictions of the weather, stock market, athletic competitions, and

even political races. Some natural phenomena can be modeled by a mathematical equation,

the solution of which may produce a satisfactory predictor of future behavior.

1.1 APPLICATION OF RIGID MULTI BODY DYNAMICS

Simulating the dynamics of a system with several rigid bodies and with joint, contact

(noninterpenetration), and friction constraints is an important part of many areas, e.g. rock

dynamics [45] and human motion [38]. Often mathematical models will ignore friction be-

cause friction makes simulation particularly difficult because there might be no acceleration

solution (Painleve Paradox) even when the velocity solution exists. Hence, attempting to

predict of the position of bodies using any good numerical method requires extra care, since

the classical solution may not even exist [47].

However, dynamical friction and contact analysis is also part of many other research

areas, such as virtual reality [41] and robotic simulations [7]. It is thus expected that progress

in simulating such phenomena will have a positive impact upon many other areas.

A virtual reality driving simulator is currently being developed with the hope of helping

patients, for example soldiers or car accident victims, recover from post-traumatic stress

disorder (PTSD). Moreover, virtual reality exposure (VRE) therapy is used to cure fears

of heights, flying, public speaking, and thunderstorms [30, 43, 44]. In some cases of PTSD
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related to the World Trade Center attacks of September 11, 2001 there are documented cases

when VRE therapy helped when the standard treatment of imaginal exposure therapy failed

[23].

Minimally invasive surgery is usually preferred by both patients and surgeons, and a

Karlsruhe Endoscopic Surgery Trainer uses a surgical training system which is based on

virtual reality and the simulation software KISMET [34]. A Virtual Reality Anatomic tool

models the flexion-extension movement of the human knee joint whose accuracy depends

highly on its collision detection [14].

The U.S. military has extreme interest in robotic simulation for use on the battlefield.

One particular need is the use of self-driving vehicles so as to comply with a congressional

mandate to move towards a large unmanned ground force [52], while another predicted use

in the Pentagon’s Future Combat System as a significant part of this country’s military

fighting force [51]. The medical operating rooms have been invaded by robots that work

with surgeons to save lives. According to the United Nations Economic Commision for

Europe’s World Robotics 2004 survey, in 2003 the demand for robots increased by 19 per

cent, and in the first half of 2004, the demand increased over same period in 2003 by 18 per

cent which, at the time, was the highest growth ever recorded [53].

1.2 PREVIOUS APPROACHES

The mathematical modeling of rigid multibody dynamic systems is extensive and various

methods have been proposed to overcome particular difficulties. Because the equations of

motion involve differential equations, it would seem natural to try an integrate-detect-restart

simulation method. The possibility of several bodies in near collision might cause too many

small stepsizes to be used. Other items that make the problem more difficult to solve include

the presence of joint constraints, the presence of friction, and the modeling of nonsmooth

bodies.

When there are joint constraints in the system, then the problem reduces to solving a

system of differential algebraic equations (DAE) [13, 29]. But then specialized techniques
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must be used because of the non-smooth nature of the noninterpenetration and friction con-

straints. Historical approaches for simulating rigid multi-body dynamics with contact and

friction have included piecewise DAE methods [29],acceleration-force linear complementar-

ity problem (LCP) methods [15, 25, 50], penalty (or regularization) methods [24, 46], and

velocity-impulse LCP-based time-stepping methods [8, 10, 48, 49]. Actually, the LCP of the

velocity-impulse method is identical to the one used in the compression phase of multiple

collision resolution [26] when the value of the time step is set to 0.

Milenkovic and Schmidl [36] solve a quadratic program at each step for their optimization

based animation technique in the attempt to avoid the extremely small stepsize that can

occur in the traditional classical integrate-detect-restart simulation methods. Unfortunately,

this method must still fall prey to the small stepsizes that are inevitable when many bodies

collide almost simultaneously.

1.2.1 Penalty Methods

Considering all of these various methods, one very often encounters the penalty (barrier)

function approach to constrained optimization in the literature [19, 20, 31]. One reason

is that the non-smooth nature of contact and friction is more easily treated by smooth

mathematical modeling. This approach has a nice advantage in that it is fairly easy to set

up and it also results in a DAE, for which we have numerous very well developed analytic

theory and software tools. Unfortunately, this approach has disadvantages, such as the

creation of stiff problems even for moderate time steps, and also obtaining the a priori

appropriate values for the needed smoothing parameters can be difficult.

1.2.2 Methods With Hard Constraints

The mathematical model of the LCP method produces inequality constraints from both

contact and friction, and then treats them computationally as hard constraints. One im-

mediate advantage of using this approach is the elimination of artificially induced stiffness.

Moreover, since the user no longer needs as much input, such as extra fine-tuning a priori

parameters, we might expect this approach to work more efficiently. On the other hand, now
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the subproblems are constrained by inequalities, and so separate analysis and software tools

must now be developed for this approach to be successful.

The velocity impulse LCP based approach that is used here has the advantage that

it does not suffer from the lack of a solution that can appear in the piecewise DAE and

acceleration-force LCP approach [15, 48], nor does it suffer from the artificial stiffness that

is introduced by the penalty approach.

1.3 CURRENT NEEDS OF HARD CONSTRAINT APPROACHES

If we wish to avoid the possibility of infinitely small time steps, which can result from

collisions, then a minimum size of the time step must be given. For numerical methods with

a minimum time step, interpenetration of the bodies may be unavoidable. Thus for such

methods, which includes fixed-step methods, an allowance must be made for interpenetra-

tions.

When interpenetration is allowed, there is no need for collision detection, and thus the

order of the numerical scheme cannot exceed 1 [27]. Because of this, it is reasonable to

employ a first-order integration technique.

1.3.1 Depth of Penetration

In these cases, the need for computing a distance between objects and the extent of in-

terpenetration, when it exists, becomes vital. In physical simulations, for example, collisions

and interpenetration among objects must be detected. The minimum Euclidean distance

is usually used to compute the distance between separated objects. But when penetration

exists, we cannot use this minimal Euclidean distance to describe the extent of the penetra-

tion. Hence we will need to develop a useful measure of distance if we want to determine

the depth of penetration, and we need to do this while maintaining constraint stabilization.

Of particular interest is choosing a method for the computation of the distance between

two objects which is efficient and feasible. Recently, many have proposed using a natural
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extension of the Euclidean distance in the particular case of convex polyhedra, as in [2, 32,

33]. These analyses for the penetration depth often involve the Minkowski sum and involve

specialized algorithms. Unfortunately, the computational price of a method that calculates

the Minkowski sums is too high because of its complexity.

1.3.2 Constraint Stabilization

In addition to the analysis of dynamic systems, the numerical solution of subproblems

resulting from such simulations often results in constraint drift, especially when solving an

algebraic-differential equation, which is due to the index reduction process [13]. Our method

must adjust for this problem.

The constraint stabilization issue in a complementarity setting has been tackled by us-

ing nonlinear complementarity problems [49], an LCP followed by a nonlinear projection

approach that includes nonlinear inequality constraints [9], and a post-processing method

[18] that uses one potentially non-convex LCP based on the stiff method developed in [9]

followed by one convex LCP for constraint stabilization. When applied to joint-only sys-

tems, the method from [18] belongs to the set of post-processing methods defined in [11, 12].

In order to achieve constraint stabilization, however, all of these methods need additional

computation after the basic LCP subproblem has been solved. This stands in contrast with

our approach which will need no additional computational effort to achieve constraint sta-

bilization.

1.3.3 Improving Complexity

As a part of my thesis research I have developed a method [5] that achieves geometri-

cal (noninterpenetration and joint) constraint stabilization for complementarity-based time-

stepping methods for rigid multi-body dynamics with contact, joints, and friction without

the need of additional postprocessing. A variant of the scheme presented here is currently

used for the dynamical simulation of dynamical robotic grasps [7, 37]. This scheme needs no

computational effort other than that for solving the basic LCP subproblem, though the free

term of the LCP is modified compared with other time-stepping LCP approaches [8, 9, 49].
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One of the goals of this thesis is to ultimately define a new measure that easily detects

collision and penetration of two convex bodies, is computationally efficient by involving only

solving a linear programming problem, is computationally fast because of complexity of

O(n + m), compared to best algorithms known for calculating penetration depth, and is

metrically equivalent to the signed Euclidean distance when close to a contact. Another goal

is to develop an algorithm which efficiently models the system and solves the resulting LCP

while achieving constraint stabilization. Our last goal is implementation of the algorithm to

simulate polyhedral multibody contact problems with friction.
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2.0 RATIO METRIC: A NEW PENETRATION DEPTH MEASURE

Virtual reality is very prominent on television and movie theaters. In many episodes of

the television series Star Trek, for example, the crew members are often seen in the holodeck,

a virtual reality room where humans could interact with a computer simulated environment.

Many people can not imagine the pervasive impact of virtual reality in our everyday lives.

Currently, there are some virtual environment simulations which provide force feedback

to the user. Haptic technology uses this tactile information to apply forces or motion, and

this can allow the user to experience a more sensory interface. Virtual reality with haptic

technology has great potential for teaching, and has been used in the gaming and medical

industry.

An example of these advances In the medical industry is robotic surgery, which is in-

strumental for some minimally invasive surgery techniques [1] or the 3D modeling of the

coronary artery for angiograms [39]. It would seem logical that not only would the detection

of contact be important, but the calculation of the depth of any penetration be vital as well.

The conventional method of computing the Euclidean depth of penetration is convenient

for smooth bodies, but not efficient for piecewise smooth bodies. In the cases of polyhedra,

one typically finds methods that compute the Minkowski sums [33]. For computational

efficiency, however, we require a different procedure.

Our goal in this Chapter is to define a new measure that defines the distance between

convex bodies, as opposed to only between smooth surfaces. We start by introducing and

analyzing a new measure between two convex bodies. Finally, we extend the analysis to

produce our new measure of penetration depth and after we have this measure defined

properly, we will see that it is metrically equivalent to the Euclidean Penetration Depth

measure. However, we will see that this new measure has lower computational complexity.
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2.1 COMPLEXITY OF PAST APPROACHES

When the bodies are modeled by spheres, then detecting contact and calculating the

depth of penetration, when it exists, is trivial because it involves only the radii and locations

of the spheres. For nonsmooth bodies, however, the situation is quite different and compli-

cated. There are several problems with computing Minkowski sums to calculate the depth

of penetration when the bodies are polyhedra [33].

The worst case deterministic scenario in computing the depth of penetration using

Minkowski sums has complexity O(m2 + n2). On the other hand, Agarwal et. al. [2]

have an produced a stochastic method for approximating the depth of penetration with

complexity of about O(m3/4+εn3/4+ε) for any ε > 0. Thus leads us to ask the question: Is

there a faster deterministic method using some metric which is similar (at least in the limit)

to the penetration depth?

We can now answer in the affirmative, since it is known [35] that we can solve a linear

programming problem in linear time. We will now present an efficient algorithm that cal-

culates the depth of penetration using linear programming instead of Minkowski sums. The

obvious advantage is that the complexity of linear programming problems is computationally

faster for polyhedral bodies.

2.2 POLYHEDRA AND EXPANSION/CONTRACTION MAPS

We begin by using the defining inequalities to provide us with a compact way to describe

a convex polyhedron. Then we define the expansion (or contraction) of that polyhedron with

respect to a given interior point. We find that there exists a mapping associated with this

expansion/contraction, which we also define.

Definition 2.1. We define CP(A, b, xo) to be the convex polyhedron P defined by the linear

inequalities Ax ≤ b with an interior point xo. We will often just write P = CP(A, b, xo).

Definition 2.2. Let P = CP(A, b, xo). Then for any nonnegative real number t, the
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expansion (contraction) of P with respect to the point xo is defined to be

P (xo, t) = {x|Ax ≤ tb+ (1− t)Axo}

and has an associated mapping

Γ(x, xo, t) = tx+ (1− t)xo.

Notice that the mapping is component-wise affine. That is, its restriction with respect

to any individual variable, is an affine transformation:

Γ(x, xo, t)− Γ(y, xo, t) = t(x− y)

Γ(x, xo, t)− Γ(x, yo, t) = (1− t)(xo − yo)

Γ(x, xo, t1)− Γ(x, xo, t2) = (t1 − t2)(x− xo).

(2.1)

We plan to exploit other properties of this mapping. Under modest conditions, we see that

one of the restricted mappings actually is invertible.

Proposition 2.3. For any x, we have Γ(x, xo, 0) = xo. Also, let t > 0, and define G to be

the restriction of Γ(x, xo, t) in its first component, that is,

Gxo,t(.) = Γ(., xo, t).

Then G has an inverse map that satisfies

G−1
xo,t(x) = Gxo, 1

t
(x).
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Proof. That Γ(x, xo, 0) = xo should be obvious. Now, for any t > 0, we have already

established in equation (2.1) the fact that G is affine. It is also clear that G is nonconstant.

Hence this nonconstant affine map must have an inverse map, say G−1. In particular, if we

let x = Gxo,t(z), then z = G−1
xo,t(x) and it follows that

G−1
xo,t(x) = z

=
1

t
t(z − xo) + xo

=
1

t
t(z − xo) +

1

t
xo + (1− 1

t
)xo

=
1

t
[t(z − xo) + xo] + (1− 1

t
)xo

=
1

t
[tz + (1− t)xo] + (1− 1

t
)xo

=
1

t
x+ (1− 1

t
)xo

= Γ(x, xo,
1

t
)

= Gxo, 1
t
(x).

�

Our interests are mainly for nonnegative values of the real number t, so we examine the

image of our polyhedron under this map.

Proposition 2.4. Let P = CP(A, b, xo). Then for any nonnegative real number t, P(xo, t)

is the image of P under the map Γ(x, xo, t). That is,

Γ(P, xo, t) = P (xo, t)

Proof. Every point x ∈ P , must satisfy Ax ≤ b, and therefore

AΓ(x, xo, t) = A (tx+ (1− t)xo)

= tAx+ (1− t)Axo

≤ tb+ (1− t)Axo.

Thus Γ(P, xo, t) ⊆ P (xo, t). On the other hand, for any z = Γ(x, xo, t),we also have
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Az = AΓ(x, xo, t)

= A(tx+ (1− t)xo)

= tAx+ (1− t)Axo)

≤ tb+ (1− t)Axo.

Thus P (xo, t) ⊆ Γ(P, xo, t). This establishes equality, and thus completes the proof. �

If the interior point xo is obvious or assumed to be known, we will often simply write

P(t), for simplicity of notation. Next, notice that the image of a hyperplane under our

mapping is another hyperplane parallel to the original.

Proposition 2.5. Let H be a hyperplane. Then Γ(H, xo, t) is a hyperplane parallel to H.

Proof. Let the hyperplane H be given by

H =
{
x|cTx = α

}
.

Then define β = tα+ (1− t)cTxo. This implies that if z is any point on H and x the image

of z, then

cTx = cT Γ(z, xo, t)

= cT (tz + (1− t)xo)

= tcT z + (1− t)cTxo

= tα+ (1− t)cTxo

= β,

which is in the hyperplane H ′ =
{
x|cTx = β

}
which is parallel to H. Now, since t > 0, there

is a one-one relationship between α and β, thus the image of H is H ′. �

From now on, whenever we write a hyperplane H =
{
x|cTx = α

}
, we may assume,

without loss of generality, that the associated vector c is a unit vector. One advantage is

because the matrix form of the associated projection mapping has a simple form P = ccT ,

and because the projection of a vector v will always satisfy ||P (v)|| ≤ ||v||.
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The characteristic we described in Proposition 2.5 of mapping hyperplanes to parallel

hyperplanes is useful when considering a separating hyperplane. We know that two non-

intersecting convex bodies can be separated by a hyperplane. We discover that our map

preserves separation.

Lemma 2.6. Let H be a hyperplane. Then Γ(H, xo, t) is a hyperplane H ′ parallel to H

which is closer to xo when 0 < t < 1, and more distant from xo when t > 1. Moreover, if H

separates two bodies, then their images under Γ is separated by H ′.

Proof. That Γ(H, xo, t) is a hyperplane parallel to H follows directly from Proposition

2.5. Notice that the collection of hyperplanes parallel to H forms an ordered set with

Ho = Γ(H, xo, 0) being the hyperplane parallel to H that passes through xo, and Γ(H, xo, 1)

the hyperplane H itself. Further computation shows that

β = tα+ (1− t)cTxo

= tcTx+ (1− t)cTxo

= tcTx+ cTxo − tcTxo

= cTxo + tcT (x− xo),

which, because of the order relation of the hyperplanes parallel to H, shows that if 0 < t < 1

then hyperplane H ′ is between H and Ho and when t > 1, H is between H ′ and Ho.

Finally we note that Γ maps the half plane
{
x|cTx < α

}
to
{
x|cTx < β

}
, and so if H

separates two bodies, then their images under Γ must be separated by H ′. �

Corollary 2.7. Let H be a hyperplane and t > 0. Then the preimage of H under Γ(H, xo, t)

is Γ(H, xo,
1
t
), a hyperplane parallel to H.

Proof. Since we have Γ(H, xo, t) = Gxo,t(H), it follows from Proposition 2.3 that G−1
xo,t(H) =

Gxo, 1
t
(H) = Γ(H, xo,

1
t
). This means that the preimage of H under Γ(., xo, t) is exactly

Γ(H, xo,
1
t
). We now can invoke Lemma (2.6) to obtain the desired result. �

In addition to preserving separation of bodies, notice that our map has other interesting

features.
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Proposition 2.8. Let z be a point and t > 0. Then Γ(z, xo, t) is a point z on the ray from

xo through z, which is closer to xo when t < 1, and more distant from xo when t > 1.

Proof. Direct calculation shows that

Γ(z, xo, t)− xo = tz + (1− t)xo − xo

= t(z − xo),

and so Γ(z, xo, t) is indeed a point z on the ray from xo through z. From Lemma (2.6) we

get the order result. �

Proposition 2.9. Let P = CP(A, b, xo) have a nonempty interior. Then P (xo, s) ⊆ P (xo, t)

if and only if s ≤ t.

Proof. Let s ≤ t. Recall from Definition 2.1 that we have Ax ≤ b. Then it follows that

x ∈ P (xo, s) ⇒ Ax ≤ sb+ (1− s)Axo

⇒ Ax ≤ s(b− Axo) + Axo

⇒ Ax ≤ t(b− Axo) + Axo

⇒ Ax ≤ tb+ (1− t)Axo

⇒ x ∈ P (xo, t).

That is, P (xo, s) ⊆ P (xo, t).

Now suppose that P (xo, s) ⊆ P (xo, t). Note that the nonempty interior criterion insures

us that we can choose any point xt in P (xo, t) different from xo. The point defined by

x = xo + α(xt − xo)

must reside, by convexity, within P (xo, t) if 0 ≤ α ≤ 1, and also satisfy

Ax = A (xo + α(xt − xo))

= Axo + α(Axt − Axo)

≤ Axo + α (tb+ (1− t)Axo − Axo)

= αtb+ (1− αt)Axo

= sb+ (1− s)Axo,
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as long as s = αt. Therefore, we have x ∈ P (xo, s). Recall that 0 ≤ α ≤ 1, hence it must be

true that s < t. �

This inclusion relation is important when we use this map to expand or contract our

convex polyhedra. In particular, we now show that from the way we defined it, P (xo, t)

must be convex.

Proposition 2.10. Let P = CP(A, b, xo). Then P (xo, t) is convex.

Proof. Let x, y ∈ P. Then

Ax ≤ tb+ (1− t)Axo

and

Ay ≤ tb+ (1− t)Axo.

It follows that for any convex combination z = α x + β y,where α+ β = 1, we have

Az = A(αx+ βy)

= αAx+ βAy

≤ α(tb+ (1− t)Axo) + β(tb+ (1− t)Axo)

= (α+ β)(tb+ (α+ β)(1− t)Axo

= tb+ (1− t)Axo,

and thus z ∈ P (xo, t). That is, P (xo, t) is convex. �

For any value of t > 0, P (xo, t) is a polyhedron similar to P. The faces of P (xo, t) are

parallel to the corresponding faces of P. Also the expansion (contraction) of P(t) as t increases

(decreases) is linear in every radial direction centered at xo. In particular, every point on

the boundary of P (xo, 2) is exactly twice as far as the corresponding point of P is from xo.

See Figure 1.

The family of polyhedra {P (xo, t)|t ≥ 0} are often described as a concentric family with

center xo. Notice that we always have P(xo, 1) = P. Notice also that for any value of t ≥ 0,

we get xo ∈ P (xo, t). Moreover, P = CP(A, b, xo) is already closed, thus if P is bounded,

then P(xo, 0) = xo.
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xo

P

P(xo,2)

Figure 1: Demonstration of growth

2.3 POLYHEDRAL RATIO METRIC

At this point, we are finally ready to define the depth of penetration measure we plan to

use. This measure will be based on a ratio metric penetration depth. Our goal is to show

that we can produce a penetration depth measure which is equivalent to the Minkowski

penetration depth [2], which is a standard metric for computing the distance between two

convex bodies. The Minkowski Penetration Depth (MPD) is the natural extension of the

Euclidean minimum distance function and is defined as follows:

Definition 2.11. Let Pi = CP (Ai, bi, xi) be a convex polyhedron for i = 1,2. The Minkowski

Penetration Depth between the two bodies P1 and P2 is defined formally as

PD(P1, P2) = min{||d|| |interior(P1 + d)
⋂

P2 = ∅}. (2.2)

Let Pi be the convex polyhedron given by Aix ≤ bi, for i = 1,2. Then the Minkowski

penetration depth between the two bodies will be obtained at two points p1 and p2 such that

pi ∈ Pi and ||p1 − p2|| = PD(P1, P2).

We would now like to define a ratio metric corresponding to simultaneous expansion

(contraction) of two convex polyhedra. The idea is that two nonintersecting convex polyhedra

will simultaneously expand until they reach perfect contact. Likewise, two interpenetrating

15



Figure 2: Visual representation of double expansion or contraction

convex polyhedra will simultaneously contract until they reach perfect contact. In brief,

the ratio metric penetration depth captures the amount of expansion or contraction that is

needed to achieve perfect contact.

See Figure 2 for a graphical demonstration. The two innermost triangles will simultane-

ously expand until they touch and the two outer triangles will simultaneously contract until

they touch. We now give the formal definition.

Definition 2.12. Let Pi = CP (Ai, bi, xi) be a convex polyhedron for i = 1,2. Then the ratio

metric between the two sets is given by

r(P1, P2) = min{t|P1(x1, t)
⋂

P2(x2, t) 6= ∅}, (2.3)

and the corresponding Ratio Metric Penetration Depth (RPM) is given by

ρ(P1, P2, r) =
r(P1, P2)− 1

r(P1, P2)
. (2.4)

Notice that if we let Pi = CP (Ai, bi, xi) be a convex polyhedron for i = 1,2, then

• Pi(xi, 0) is always equal to {xi},

• Pi(xi, t) is always closed, and

• given any point z, we can find a nonnegative real number ti such that z ∈ Pi(xi, ti) .
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It immediately follows that as long as x1 and x2 are distinct, the ratio metric between the

two sets is well defined, and thus so is the ratio metric penetration depth.

Proposition 2.13. Let Pi = CP (Ai, bi, xi) be a convex polyhedron for i = 1,2, then r(P1, P2) =

r(P2, P1).

Proof. The proof follows trivially from Definition 2.3 because we have

r(P1, P2) = min{t|P1(x1, t)
⋂
P2(x2, t) 6= ∅},

= min{t|P2(x2, t)
⋂
P1(x1, t) 6= ∅},

= r(P2, P1).

�

This shows that the our polyhedral ratio metric is symmetric. We can see that this

measure additionally satisfies a trichotomy relation, which we can express in terms of the

interpenetration of the two bodies.

Proposition 2.14. Let Pi = CP (Ai, bi, xi) be a convex polyhedron for i = 1,2. Then

1. P1 and P2 interpenetrate if and only if r(P1, P2) < 1,

2. P1 and P2 do not intersect if and only if r(P1, P2) > 1,

3. P1 and P2 intersect but do not interpenetrate if and only if r(P1, P2) = 1.

Proof. From the definition we use equation (2.3) and convexity to find a point q ∈ P2(x2, r(P1, P2))

which must lie on the boundary of P1(x1, r(P1, P2)). Finally, recall that P1 = P (x1, 1) and

P2 = P (x2, 1), and so the results follow directly from Proposition 2.9. �

The value returned by the ratio metric is nonnegative. Therefore, it is impossible for

two of our convex polyhedra to have a ratio metric of 0 if their corresponding given interior

points are distinct.

Corollary 2.15. Let Pi = CP (Ai, bi, xi) be a convex polyhedron for i = 1,2. Then r(P1, P2) =

0 if and only if x1 = x2.

Proof. This follows immediately from the fact that Pi(xi, 0) is always equal to {xi}, and

thus P1(x1, 0) ∩ P2(x2, 0) is nonempty if and only if {x1} ∩ {x2} is nonempty. �
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The final major idea for this chapter is showing that the ratio metric penetration depth

is equivalent to the Euclidean distance/MPD. To show that, we must have usable bounds

for this RPM. To get our bounds, we will need to enforce slight restrictions during the

construction of the convex polyhdra Pi.

In our simulations, we will allow some small penetration between bodies, but we do not

allow too much penetration. To model this restriction we will choose a parameter ε ≥ 0

which represents the maximum allowable penetration between any two bodies. With this

restriction, we can now state our Metric Equivalence Theorem.

Theorem 2.16. Let Pi = CP (Ai, bi, xi) be a convex polyhedron for i = 1,2, s be the

Minkowski Penetration Depth between the two bodies, D be the distance between x1 and

x2, ε be the maximum allowable Minkowski penetration between any two bodies. Then the

ratio metric penetration depth between the two sets satisfies the relationship

s

D
≤ ρ(P1, P2, r) ≤

s

ε
, (2.5)

if P1 and P2 have disjoint interiors, and

−s
ε
≤ ρ(P1, P2, r) ≤ − s

D
(2.6)

if the interiors of P1 and P2 are not disjoint.

Proof. When the bodies are in perfect contact, then we get all quantities to be zero in equa-

tions (2.5) and (2.6) and the conclusion follows trivially. Thus, we separate the proof into two

additional cases, one where the bodies do not interpenetrate, and one where interpenetration

exists.

In both cases, let t = r(P1, P2), and recall that P1(x2, t) and P2(x2, t) are compact,

convex polyhedra that intersect, but with an empty interior, and so they can be separated

by a hyperplane H∗. Let p∗i be a point on Pi which intersects H∗
i = Γ(H, xi,

1
t
), which is

the preimage of H∗ from Corollary 2.7. The point p∗i is optimal for Pi with respect to the

hyperplane H∗.
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Figure 3: Ratio Metric Bounds: Exterior Case

Strict exterior case: We define D∗ =
∣∣c∗T (x2 − x1)

∣∣ and s∗ =
∣∣c∗T (p∗2 − p∗1)

∣∣. See Fig-

ure 3. When we expand both polyhedra, their intersection can be separated by a hyperplane

H∗, and upon computation of the required ratio metric, we get

r(P1, P2) =
D∗

D∗ − s∗
.

Using this, we can calculate the ratio metric penetration depth:

ρ(P1, P2, r) =
s∗

D∗ . (2.7)

Notice that the minimum translation necessary for the two bodies to intersect cannot have

modulus less than s∗. Moreover, ε is easily a lower bound for the value of D∗, since the ball

of radius ε centered at xi is contained in Pi. Fortunately this means we can find an upper

bound for this ratio metric penetration depth in this case:

ρ(P1, P2, r) ≤
s

ε
. (2.8)

Now, instead of first choosing the hyperplane in order to calculate the extremal points, let

us choose the extremal points in order to calculate the hyperplane. We denote the endpoints
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of the minimal translation segment, say p∗i ∈ Pi. Our goal is to use this segment to define

the separating hyperplane. Then the analysis might continue much as before.

We must show that these points can define separating hyperplanes H∗
1 and H∗

2 . Suppose

that there were two points p∗1,1, p
∗
1,2 ∈ P1 satisfying the minimum distance requirement from,

say, p∗2. That is, ∣∣∣∣p∗1,1 − p2

∣∣∣∣ =
∣∣∣∣p∗1,2 − p2

∣∣∣∣ = s > 0.

Then by convexity, P1 must also contain the point p = 1
2
(p∗1,1 + p∗1,2). However, we see that

||p− p2|| =
∣∣∣∣1

2
(p∗1,1 + p∗1,2)− p2

∣∣∣∣
=

∣∣∣∣1
2
(p∗1,1 − p2) + 1

2
(p∗1,2 − p2)

∣∣∣∣
≤ 1

2

∣∣∣∣p∗1,1 − p2

∣∣∣∣+ 1
2

∣∣∣∣p∗1,2 − p2

∣∣∣∣
= s.

But strict inequality will hold unless p∗1,1 = p∗1,2. Thus, for the point p∗2, there can only

be one corresponding minimizer from P1, namely p∗1. Hence given the point p∗2, there is only

one point which intersects P1 and the sphere centered at p∗2 with radius s, which we call B.

Now define H∗
1 to be the hyperplane through p∗1 orthogonal to the segment p∗1p

∗
2. If there

is a point q outside of B, not on H, but in the same half-space as P2, then the line segment

p∗1q will intersect the sphere B at some point qo different from p∗1. If q ∈ P1, then every point

of the segment p∗1q, including qo would necessarily belong to P1. This yields a contradiction,

and thus our choice of H∗
! is indeed a separating hyperplane and contains p1 orthogonal

to p1p2. In the same way, we can define the hyperplane H∗
2 through p∗2 orthogonal to the

segment p∗1p
∗
2, and it will be a separating hyperplane.

Our analysis now proceeds much as before. The first time that the image of both H∗
1 and

H∗
2 coincide, we call H∗. Then the ratio factor for which H∗ = Γ(H∗

1 , x1, r) = Γ(H∗2, x2, r)

is precisely

r =
D∗

D∗ − s∗
.
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However, since we are not guaranteed that the bodies have yet intersected, we must also

have r ≤ r(P1, P2). Therefore, we get s∗/D∗ ≤ ρ(P1, P2, r). Also in this case we have s∗ = s

and D∗ ≤ D, and so
s

D
≤ ρ(P1, P2, r). (2.9)

Strict Interior case: Similarly to the external case, we first define a hyperplane H∗

that separates the bodies at simultaneous contracting contact and then get the extremal

points p∗1 and p∗2. So define D∗ =
∣∣c∗T (x2 − x1)

∣∣ and s∗ =
∣∣c∗T (p∗2 − p∗1)

∣∣. Our construction is

as in Figure 4, and the relation with the separating hyperplane at contact can be visualized

using Figure 5. Then when we contract both polyhedra, their intersection can be separated

by a hyperplane H∗, and upon computation of the required ratio metric, we get

r(P1, P2) =
D∗

D∗ + s∗
.

We then calculate the ratio metric penetration depth, and since we notice that s ≤ s∗ and

D ≥ D∗, we get that:

ρ(P1, P2, r) = − s∗

D∗ ≤ − s

D
. (2.10)

Now we will once again use the minimum translation segment to get the maximal points

p∗1 and p∗2 as in the external case. Define H∗
i to be the hyperplane through p∗i orthogonal

to the segment p∗1p
∗
2. The analysis of the previous case can show that the hyperplanes H∗

i

are, in a sense, separating. Upon simultaneous contraction, the first time that the image of

both H∗
1 and H∗

2 coincide, we call H∗. Then the ratio factor for which H∗ = Γ(H∗
1 , x1, r) =

Γ(H∗2, x2, r) is precisely

r =
D∗

D∗ + s∗
.

Again, we cannot guaranteed that the bodies have nonempty intersection, we must also

have r ≤ r(P1, P2). Therefore, we get −s∗/D∗ ≤ ρ(P1, P2, r). However in this situation we

know used the minimum translation segment, and so s∗ = s. Finally, we use, ε as a lower

bound for the value of D∗. Then we can write.

−s
ε
≤ ρ(P1, P2, r). (2.11)

21



p1

H*1H*2 H*

p2

s*

x2

x1

D*

Figure 4: Ratio Metric Bounds: Interior Case

We have finished the proof of the theorem when we consider the bounds (2.8) and (2.9)

for the exterior case, and bounds (2.10) and (2.11) for the interior case.

�

We have shown that the RPD is equivalent to the MPD. In particular, because we have

Let Pi = CP (Ai, bi, xi), we notice that the equation (2.3) of Definition 2.12 can be written

as

r(P1, P2) = min{t ≥ 0 | Aix ≤ tbi + (1− t)Aixi, i = 1, 2}. (2.12)

Clearly this metric should handle convex polyhedral bodies and provide us with an elegant,

yet simple way to detect collision and penetration of two bodies. If the “distance” between

the polyhedra is less than one, then the bodies interpenetrate.

Recall the problems with computing PD. The complexity for computing PD by using

the Minkowski sums is O(m2 +n2). This complexity result can be improved when stochastic

methods is used to get a fast approximation to the PD. In some cases, the complexity can

be reduced to O(m3/4+εn3/4+ε) for any ε > 0 [2].

One of the truly remarkable aspects of the use of this metric is its simplicity, in that
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it only involves solving a linear programming problem, which is well known and has com-

plexity of O(n+m), Therefore, our formulation (2.12) has substantially lower complexity of

computation than MPD.

Our ratio metric penetration depth does have a physical relation to the hyperplane that

separates the bodies at perfect contact. It is not necessarily the same hyperplane that the

Penetration Depth uses when calculating the minimal translation. See Figure 5.

Remark 2.17. Let h be the step size. The importance of the Metric Equivalence Theorem

(2.16) is that, if RPD = O(hp), then MPD is also O(hp). Therefore, not only will the MPD

noninterpenetration constraints be satisfied by time-stepping schemes based on RPD, but

with the same asymptotic order with lower computational complexity.

Remark 2.18. Because we also have to deal with the boundary, or some other fixed object,

we could easily expand our definition of the ratio metric (and hence ratio metric penetration

depth) to handle such special situations, where only the one body will expand or contract.

For example, for any convex polyhedron P = CP (Ai, bi, xo) and for any nonempty closed

convex body Q, the ratio metric between Q and P is given by

r̂(P,Q) = min{t|P (xo, t)
⋂

Q 6= ∅}, (2.13)

and the corresponding ratio metric penetration depth ρ is defined by

ρ(P,Q, r̂) =
r̂(P,Q)− 1

r̂(P,Q)
.

This formulation is computationally friendly to handle any fixed convex body which

could conceivably be considered part of the boundary. Moreover, it can be shown that this

formulation of the metric also satisfies the conclusions of Theorem 2.16.

Remark 2.19. It is important to note that our ratio metric r is not a metric, but for an

appropriate choice of the function f, f(r) can be a metric. Indeed, we used

f1(t) =
t− 1

t
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Figure 5: Separating hyperplanes and direction of minimal translation

to define our metric. That is ρ = f1(r). The reader can show that by using the simpler

function f2(t) = t− 1, we can also define a true metric. This should illustrate the important

nature of the ratio metric r, whose properties are used to produce a feasible metric.

Remark 2.20. It was suggested for me to use f2(t) = t−1 for the metric to be equivalent to

the MPD, but the Metric Equivalence Theorem (2.16) was more easily proved by considering

the rational expression

ρ(P1, P2, r) =
r(P1, P2)− 1

r(P1, P2)
,

and this led to the name “Ratio Metric”.

Here is a crucial observation. We can always expand/contract the bodies using r(P1, P2),

and we can let p be any point of intersection. Then we can always find a hyperplane H which

separates the two convex bodies P (x1, r(P1, P2)) and P (x2, r(P1, P2)) and passes through the

point p. Now, for i = 1,2 let Hi be the pre-image of H and pi be the pre-image of p under

Γ(H, xi, t) . Notice that Hi passes through pi. Recall that H1 and H2 are parallel.

Often, there is only one choice for a separating hyperplane H. If there are multiple

possibilities, then we choose the one that makes the smallest angle with respect to the

segment passing through the optimal points p1 and p2.

One conjecture is that for small penetration, the motion of the bodies produced by

contraction is close to being a translation. Thus, we expect the distance and direction vector

associated with the depth of penetration to be asymptotically equal to the distance between

the hyperplanes H1 and H2, or the length of the segment from p1 to p2.
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3.0 DIFFERENTIABILITY

Previously, we defined a measure of the depth of penetration which quantifies the signed

distance between two convex polyhedra. Having such a measure is invaluable to our method,

but we need to know if it meets all of our needs.

We anticipate that in the model of polyhedral contact dynamics problems, we will need

to calculate normal vectors, which necessitates the computation of the derivative of the pene-

tration depth. Anitescu, Cremer, and Potra [3] describe the mechanics of such formulations.

This means that in addition to having the ability to determine the depth of penetration, our

measure must also be reduced to differentiable functions. It is not trivial to assume that

distance measures be differentiable. In one dimension, we know that the function f(x) = |x|

fails to be differentiable at the origin.

Our goal in this chapter, is to discuss the concept of a Basic Contact Unit, which we

will define for two polyhedra in noninterpenetrational contact. Then we will examine the

differentiability of our new measure when restricted with respect to a Basic Contact Unit.

We will then show that our measure is piecewise differentiable, which we will find to be

sufficient for our purposes.

3.1 PERFECT CONTACT

We begin our discussion by defining what it means for two convex polyhedra to be in

perfect contact. We first mentioned this concept in the previous chapter but did not formally

define it. Next, we will describe the basic contact unit and the various types of contact that

can occur. Finally, we define an event, and the restriction of a contact to an event.
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Definition 3.1. Two convex polyhedra are in perfect contact when there is a nonempty

intersection without interpenetration.

It should be clear that when two bodies are in perfect contact, the region of contact must

lie on the boundary of both bodies. Next, we define a basic contact unit.

Definition 3.2. In n-dimensional space, a Basic Contact Unit (BCU) is any contact

that occurs when

• two convex polyhedra are in perfect contact,

• the contact region attached to a BCU is a point, and

• exactly n+1 facets are involved at the contact.

The point where the contact occurs is called an event point, or more simply, an event.

Remark 3.3. A Corner-on-Face contact is always a BCU, regardless of the dimension. In

two-dimensions, the Corner-on-Face contact is the only type of basic contact unit. When

we closely examine the contacts in three dimensions there are, in fact, exactly two types of

BCUs, namely the Corner-on-Face (CoF) contacts, and (nonparallel) Edge-on-Edge (EoE)

contacts.

Consider an n-dimensional space. If we let i be the number of facets from the first body

involved for a BCU, then (n + 1 - i) must be the number of facets involved from the second

body. It seems likely, therefore, that there are exactly
[

n+1
2

]
distinct types of basic contact

units.

Regardless of the dimension, when there is perfect contact, the intersection is the convex

hull of the event points. We prove this in three dimensions. The two-dimensional case is

similar, much simpler, and left to the reader.

Theorem 3.4. The intersection of two convex polyhedra in perfect contact is the convex hull

of the event points.

Proof. Let P1 and P2 be two convex polyhedra in perfect contact. Perfect contact implies

that the intersection P1

⋂
P2, which itself is convex, belongs to the boundary of both P1

and P2. Recall the fact that every edge is the intersection of two faces and every point is

the intersection of three faces. Now, we proceed to list all possible configurations and group
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them according to the type of contact. There are exactly three distinct types of intersection,

based on the region of contact.

Contact Region Is Point: It suffices to show that the point of contact is an event. There

are four cases to consider.

Nonparallel Edge-on-Edge: This is already a BCU, thus the intersection is an event.

Corner-on-Face: This is also already a BCU, so the intersection is an event..

Corner-on-Corner: Every face involved with intersecting at the corner for one body

constitutes a basic contact unit with the corner point of the other body. Hence the

intersection is an event.

Corner-on-Edge: Every face involved with intersecting at the edge for one body con-

stitutes a basic contact unit with the corner point of the other body. Hence the

intersection is an event.

Contact Region is Line Segment: The line segment is the convex hull of its terminal

points, so it suffices to show that each terminal point is an event. There are two cases

to consider.

Parallel Edge-on-Edge: Each terminal point results from a Corner-on-Edge, hence is

an event.

Edge-on-Face: Each terminal point results from either a Corner-on-Face or a nonpar-

allel Edge-on-Edge, hence is an event.

Contact Region Is Polygon: Here, the polygon is a convex hull of its extreme points. It

suffices to show that each extreme point is an event. There is one last case to consider.

Face-on-Face: Each extreme point must be either a Corner-on-Face, Corner-on-Edge,

or a nonparallel Edge-on-Edge, hence is an event.

We have shown that every possible configuration during perfect contact results in an

intersection which is the convex hull of points, and each of these points is, in fact, an event

point. This completes the proof. �

See Figure 6 and Figure 7 for visual examples of these two basic contacts in three dimen-

sions. Observe Figure 8 as an example of Face-on-Face contact, where the two-dimensional
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Figure 6: Corner-on-Face Figure 7: Edge-on-Edge Figure 8: Face-on-Face

convex region of contact is a convex hull of four events, in this case, the events are the result

of two CoF contacts and two EoE contacts.

In Figure 9, for instance, the contact region is a line segment, which is the convex hull

of the two events shown. Although our distance function fails to be differentiable for this

contact, we will prove differentiability of the ratio metric when restricted to an event. That

will allow us to use a normal vector which is a convex combination of the normal vectors we

get from each restriction.

Our goal is to eventually produce a normal vector at a BCU when contact occurs. There-

fore, it leads us to turn our attention to the differentiability at a BCU.

=> +

Figure 9: 2D Example: Contact Region Is Convex Hull of BCUs.
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3.2 DIFFERENTIABILITY AT AN EVENT

In Calculus, we learn that it is unreasonable to expect a real valued function of a real

variable to be differentiable when its graph has a corner. One explanation is because there

would not exist a unique normal line to the graph. In much the same way, it is also un-

reasonable to expect the ratio metric to be differentiable at a point of contact that is not a

BCU. Again, a unique normal vector would not exist.

A simple two dimensional example of this can be seen in Figure 10. In this example

we have a triangle with vertices P1, P2, and P3 which is above the fixed boundary given by

{(x, y) ∈ R2 | y ≤ 0}. The coordinates of vertex Pi are (xi, yi). The Euclidean distance d

from the triangle to the boundary is given by d = max{|y1|, |y2|, |y3|}. The distance d, as a

function of y1, y2, and y3 is not differentiable for all yi ≥ 0.

To specifically illustrate the lack of differentiability, suppose that the triangle is defined

so that y2 = y1 + a sin θ and y3 = y1 − a sin(θ) for some positive constant a, and where θ is

a parameter. Then the Euclidean distance between the triangle and the boundary is

d(y1, θ) = min{y1 + a sin θ, y1 − sin θ},

which is singular when θ = 0. Notice that the distance could be expressed as the minimum

of two functions, each of which could be interpreted as some measure of distance. That is,

we have

d2(x2, y2, θ) = y1 + a sin θ

and

d3(x3, y3, θ) = y1 − a sin θ,

and basically we have d = min{d2, d3}.

Notice that the Euclidean distance function can actually be considered to be piecewise

smoothly defined. The concept of a piecewise smoothly defined distance function, which this

example illustrates, is extremely important and is a recurring theme throughout this thesis.

Moreover, it is possible to exploit this piecewise differentiability to enable the calculation of

a normal vector (or a set of normal vectors), despite the nonexistence of the derivative. We
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Figure 10: Nondifferentiability of Euclidean distance function

calculate a normal vector by using a convex combination of differentiable functions. This is

accomplished by breaking up the contact region as a convex combination of BCUs.

To get some of our differentiability results, we prove a small lemma that shows that under

suitable conditions, we can get differentiability of a solution of a system of linear equations.

Lemma 3.5. Let m be the order of the square matrix A(α) and the vector b(α), which are

differentiable with respect to the real parameter α. Suppose further, that

x(α∗) = A(α∗)−1b(α∗).

Then

x′(α∗) = A(α∗)−1
[
b(α∗)− A′(α∗)A(α∗)−1b(α∗)

]
.

Proof. This follows directly from the fact that

x(α∗) = A(α∗)−1b(α∗) =⇒ A(α∗)x(α∗) = b(α∗)

=⇒ A′(α∗)x(α∗) + A(α∗)x′(α∗) = b′(α∗)

=⇒ x′(α∗) = A(α∗)−1 [b(α∗)− A′(α∗)x(α∗)] .

�
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This tells us that if the coefficient matrix and the right hand side of a system of linear

equations is continuously differentiable, then so is the solution when the coefficient matrix

is nonsingular. We will exploit this property very soon to get the desired differentiability we

seek.

Corollary 3.6. Let m be the order of the square matrix A(α) and the vector b(α), which are

differentiable with respect to the real parameter α. Suppose further, that

x(α∗) = A(α∗)−1b(α∗).

1. If A(α) and b(α) are differentiable to order n, then so is x(α∗).

2. If A(α) and b(α) are infinitely differentiable, then so is x(α∗).

Occasionally, at a point of perfect contact, we will simply say that an event occurs. Now,

to get our needed differentiability, we must consider restricting the polyhedron to only the

convex body facets involved at an event.

Definition 3.7. Let Pi = CP (Ai, bi, xi) be a convex polyhedron for i = 1,2. Let t∗ =

r(CP (A1, b1, x1), CP (A2, b2, x2)). Then P1(x1, t
∗) and P2(x2, t

∗) are in perfect contact. Let

E be any event of this perfect contact. For any i = 1,2, we define the restrictions of Pi(xi, t)

to E, which we denote as PE(xi, t), to be the convex body defined by the facets of P (xi, t)

which involve E.

Suppose that we have PLi
= CP (ALi

, bLi
, 0) as the local representation for a convex

polyhedron for i = 1, 2. The transformation from local coordinates xLi
to world coordinates

x is given by

x = xi +RixLi
,

which can be rewritten into the form

xLi
= RT

i (x− xi).

Here the matrices R1 and R2 are typical rotation matrices. We assume the use of Euler ro-

tation matrices, or anything comparable, so that the matrices are differentiable with respect
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to their arguments. For example, we can use the classical Fick ZYX implementation of the

Euler angles, since it does not suffer from singularities at the identity orientation [40].

We find that

ALi
xLi

≤ bLi
⇐⇒ ALi

RT
i (x− xi) ≤ bLi

⇐⇒ ALi
RT

i x ≤ bLi
+ ALi

RT
i xi.

(3.1)

It then follows that the local formulation of Pi = CP (ALi
, bLi

, 0) is equivalent to the global

formulation of Pi = CP (ALi
RT

i , bLi
+ALi

RT
i xi, xi). This means that our ratio metrics globally

becomes the computation of

r(P1, P2) = min
t≥0

 AL1R
T
1 x ≤ t(bL1 + AL1R

T
1 x1) + (1− t)AL1R

T
1 x1

AL2R
T
2 x ≤ t(bL2 + AL2R

T
2 x2) + (1− t)AL2R

T
2 x2

= min
t≥0

 AL1R
T
1 x− b1t ≤ AL1R

T
1 x1

AL2R
T
2 x− b2t ≤ AL2R

T
2 x2

.

(3.2)

Suppose that we have two convex polyhedra in perfect contact. When we restrict our-

selves to any event that occurs because of this perfect contact, the ratio metric (and thus

the ratio metric penetration depth) is, in fact, differentiable. This result we now prove.

Theorem 3.8. Let Pi = CP (ALi
RT

i , bLi
+ ALi

RT
i xi, xi) be a convex polyhedron (in world

coordinates) for i = 1,2. Moreover, let t∗ = r(P1, P2). Then, at any event of perfect contact

E, r(PE(x1, t), PE(x2, t)) is infinitely differentiable with respect to the translation vectors and

rotation angles.

Proof. We are required to compute the ratio metric in (3.2). This computation yields

r(P1, P2) = min
t≥0

 AL1R
T
1 x ≤ t(bL1 + AL1R

T
1 x1) + (1− t)AL1R

T
1 x1

AL2R
T
2 x ≤ t(bL2 + AL2R

T
2 x2) + (1− t)AL2R

T
2 x2

= min
t≥0

 AL1R
T
1 x− b1t ≤ AL1R

T
1 x1

AL2R
T
2 x− b2t ≤ AL2R

T
2 x2

,

which allows us to expand (or contract) the polyhedra until we get perfect contact.
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With t∗ = r(P1, P2), we let E be any event at the perfect contact with event point, say

x∗. We want to consider the restrictions PE(xi, t) for i = 1,2 which can be written as

ÂLi
RT

i x− b̂it ≤ ÂLi
RT

i xi,

where Âi = QiAi and b̂i = Qibi and Qi is the projection matrix that chooses the inequalities

that define the facets of P (xi, t) that involve E. Therefore we know that

r(PE(x1, t), PE(x2, t)) = min
t≥0

 ÂL1R
T
1 x− b̂1t ≤ ÂL1R

T
1 x1

ÂL2R
T
2 x− b̂2t ≤ ÂL2R

T
2 x2

(3.3)

where the sum of the rows of ÂL1 and ÂL2 totals n+1.

Notice that (x∗, t∗) an optimal solution. Suppose that (x†, t†) is any other solution of

(3.3). Then we clearly have t† = t∗. Moreover, since E is an event at the perfect contact

with event point x∗, which is a BCU, we can conclude that x† = x∗.

This means (x∗, t∗) is the unique solution of (3.3) and thus to the reduced system

ÂL1R
T
1 x− b̂1t = ÂL1R

T
1 x1

ÂL2R
T
2 x− b̂2t = ÂL2R

T
2 x2

, (3.4)

which is square of order n+ 1 and can be rewritten into matrix form:

 ÂL1R
T
1 −b̂1

ÂL2R
T
2 −b̂2

 x

t

 =

 ÂL1R
T
1 x1

ÂL2R
T
2 x2

 . (3.5)

Of importance is the fact that we know, because of our assumption that the contact region

attached to any BCU must be a point, that the coefficient matrix in (3.4) is nonsingular.

Now, it is clear that both the coefficient matrix and the right hand side of equation (3.5)

are infinitely differentiable with respect to the components of the translation vectors x1 and

x2, and also infinitely differentiable with respect to the rotation angles in R1 and R2.

Finally, recall that the t component of the solution is t∗ = r(PE(x1, t), PE(x2, t)) . Upon

application of Corollary 3.6, this completes the proof. �
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We have shown in Theorem 3.4 that every region of perfect contact between two convex

polyhedra is the convex hull of event points. At an event point of perfect contact, we are

actually guaranteed a solution to equation (3.5), which in turn guarantees the existence of

the derivative. We wish to describe mathematical and physical constraints for this. Let

us examine properties of two specific types of event points, namely Corner-on-Face and

nonparallel Edge-on-Edge contacts. Recall from our discussion in Remark 3.3 that these

cover all possible types in two or three dimensional space.

The CoF contact is characterized by the interaction of a corner of one polyhedron with

a face of the other polyhedron. Let us consider the case where a corner point p1 of P1 and

a face F2 of P2 produce a CoF contact at the optimal value of t.

Recall that our reduced system is equation (3.5). For convenience, let us write A = ÂL1 ,

b = b̂1, c = ÂT
L2

, and δ = b̂2. Then we can rewrite (3.5) as ART
1 −b

cTRT
2 −δ

 x

t

 =

 ART
1 x1

cTRT
2 x2

 . (3.6)

We are interested in the conditions that will ensure that the system of equations in (3.6) has

a solution.

Lemma 3.9. If A, R1, and R2 are any nonsingular matrices of size n and b and c are any

vectors of length n and δ is an arbitrary scalar, then the matrix ART
1 −b

cTRT
2 −δ


is nonsingular if and only if cTRT

2R
−T
1 A−1b 6= δ. Furthermore, we have

det

 ART
1 −b

cTRT
2 −δ

 =
(
cTRT

2R
−T
1 A−1b− δ

)
detA detR1.

Proof. The proof follows directly from the factorization ART
1 −b

cTRT
2 −δ

 =

 I 0

cTRT
2R

−T
1 A−1 cTRT

2R
−T
1 A−1b− δ

 ART
1 −b

0 1

 .
�
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Remark 3.10. Notice that the solution (x∗, t∗) of (3.6) must satisfy

x∗ = x1 +R−T
1 A−1bt∗

and, since t∗ 6= 0, it follows that

cTRT
2 x1 + cTRT

2R
−T
1 A−1bt∗ − δt∗ = cTRT

2 x2.

Rewritten as

cTRT
2 x1 − cTRT

2 x2 = (δ − cTRT
2R

−T
1 A−1b)t∗, (3.7)

it means equation (3.6) has a unique solution if and only if cTRT
2 x1 6= cTRT

2 x2, that is, the

centers x1 and x2 can be separated by the hyperplane determined by cTRT
2 . Observe that

we get

t∗ =
cTRT

2 x2 − cTRT
2 x1

cTRT
2R

−T
1 A−1b− δ

.

We can now explicitly compute the derivative. Doing so, we have

5x1t
∗ = 5x1r(PE(x1, t), PE(x2, t)) = − 1

cTRT
2R

−T
1 A−1b− δ

cTRT
2 (3.8)

and

5x2t
∗ = 5x2r(PE(x1, t), PE(x2, t)) =

1

cTRT
2R

−T
1 A−1b− δ

cTRT
2 .

Remark 3.11. Upon close inspection of our formulation of the reduced problem for a CoF

contact, we can see that the results depend on the two interior points and the hyperplane.

It becomes clearly evident that the gradient we compute depends purely on the hyperplane,

and thus the number of facets that make up the corner point is irrelevant.

Therefore, another amazing result of our computations is that for a CoF contact, any

combination of facets that produce the corner will give the same results. It follows directly

that although there might be many formulations that give the CoF contact, there is truly

only one event taking place.
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Figure 11: Icosahedron With 20 Faces

We can easily notice that if the corner of an icosahedron (as shown in Figure 11) de-

termines the corner point of a CoF contact, then there are five possible facets from the

icosahedron that would intersect at the point. There are 10 combinations of facets that

could uniquely determine the point, but the result would be the same, since it depends on

the point, but not the facets.

Remark 3.12. In the three dimensional case with nonparallel EoE contact, we would have

to consider the system in equation (3.5) where there are two rows each in the matrices ÂL1

and ÂL2 . Since the edges are nonparallel, there is at least one face associated with ÂL2 which

is globally linearly independent from the set of global face of ÂL1 .

Hence, we can find vectors c and d such that

ÂL2 =

 d

c



and the matrix

A =

 ÂL1R
T
1

dTRT
2


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is nonsingular. Then we can write our system

ÂL1R
T
1 x− b1t = ÂL1R

T
1 x1

dTRT
2 x− εt = dTRT

2 x2

cTRT
2 x− δt = cTRT

2 x2

(3.9)

in the form

Ax− Bt = Ax1 + ∆

cTRT
2 x− δt = cTRT

2 x2

, (3.10)

where we define

B =

 b1

ε

 (3.11)

and

∆ =

 0

dTRT
2 (x2 − x1)

 . (3.12)

If we have cTRT
2 A−1B 6= δ, we can solve to get

t∗ = −c
TRT

2 x2 − cTRT
2 x1 − cTRT

2 A−1∆

cTRT
2 A−1B− δ

, (3.13)

and conclude that the gradients 5x1t
∗ and 5x2t

∗ will again exist.

The gradient is used to produce the normal vectors at contact between two bodies.

It is important, though, to give more details concerning the choice of normal vectors. In

our computation model, we consider any event E at the perfect contact, and we use the

restrictions PE(xi, t) for i = 1,2. As before, we obtain

r(PE(x1, t), PE(x2, t)) = min
t≥0

 ÂL1R
T
1 x− b1t ≤ ÂL1R

T
1 x1

ÂL2R
T
2 x− b2t ≤ ÂL2R

T
2 x2

.

The restriction that t ≥ 0 is not superfluous, since it is possible to define

min
t

 ÂL1R
T
1 x− b1t ≤ ÂL1R

T
1 x1

ÂL2R
T
2 x− b2t ≤ ÂL2R

T
2 x2

,

which might not exist if we consider some other potential event Epot. Our goal is not to

consider allowing negative values of t, but rather, to consider all potential events.
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Figure 12: Example of Two Component Signed Distance Functions

For example, consider the two-dimensional case with two convex bodies P1 and P2. Each

body Pi has fi flat facets, ni non-flat facets, and pi corner points, respectively. We can

produce n1n2 + n1f2 + f1p2 + f1n2 + p1f2 different potential events, one for each pairing of a

non-flat facet from one body to a flat or non-flat facet of the other body, and each pairing

of a flat facet of one body with a corner point of the other body. We associate a component

function with each event.

In Figure 12, there would be 32 potential events, hence 32 component functions: 4 from

the one non-flat facet from P1 paired with the four flat facets of P2, 12 from the three flat

facets of P1 paired with the four corner points of P2 and 16 from the four flat facets of P2

paired with the four corner points of P1. Two particular functions are Φ̂(1) which calculated

the distance between the non-flat facet B̂C with the flat facet EH, and Φ̂(2) which calculated

the distance between the flat facet CD with the point H.

It is unfortunate, however, that computationally, we must consider whole hyperplanes

instead of partial ones. For example, when we consider the function Φ̂(2) from Figure 12,

which would ideally give the distance between the point H and the facet CD, we would require

more than just the typical number of equations associated with a CoF event. Indeed, for a

typical CoF event, we would be measuring the distance between the point H and the whole
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hyperplane that contains facet CD, and not just the facet itself.

For the global formulation of Pi = CP (ALi
RT

i , bLi
+ALi

RT
i xi, xi) for i = 1, 2, it is possible

for us to list all of the potential events. Suppose that there are n1,2 such potential events.

We will use the component functions that correspond to each potential event.

Therefore, we can always associate with the mth potential event E(m), a component func-

tion Φ̂(m). Following the procedures we earlier followed, we use the restrictions PE(m)(x1, t)

and PE(m)(x2, t). Then we can write Φ̂(m) in the form Φ̂(m) = f(rm), where f(t) = (t− 1)/t

and

rm = min
t≥0

 Âm1R
T
1 x− bm1t ≤ Âm1R

T
1 x1

Âm2R
T
2 x− bm2t ≤ Âm2R

T
2 x2

(3.14)

where the sum of the numbers of rows of Âm1 and Âm2 is n+1.

Notice that Φ̂(m) depends on the translation and rotation variables. Also note that Φ̂(m)

might not be defined. Indeed, we expect Φ̂(m) to be defined for some configurations of the

global position variables, and not defined for others, in which cases we consider Φ̂(m) to have

the value of −∞ for convenience. This leads us to the following result, which tells us that

the ratio metric penetration depth is the maximum of component distance functions.

Theorem 3.13. Suppose x1 6= x2 and let Pi = CP (ALi
RT

i , bLi
+ ALi

RT
i xi, xi) be convex

polyhedra for i = 1, 2 and let
{
E(1), E(2), · · · , E(N)

}
be the list of all possible events with

corresponding component distance functions
{

Φ̂(1), Φ̂(2), · · · , Φ̂(N)
}
. Then

ρ(P1, P2, r) = max
{

Φ̂(1), Φ̂(2), · · · , Φ̂(N)
}
,

where ρ(P1, P2, r) is defined by (2.4).

Proof. We begin by noting that r(P1, P2) is a nonnegative real number. Since x1 6= x2, then

by Corollary 2.15 we know that r(P1, P2) > 0. Let t∗ = r(P1, P2). Then there exists an event

Ek at the perfect contact. Let us denote the corresponding component function as Φ̂k.

Proceeding exactly as before, we can write

r(PE(k)(x1, t), PE(k)(x2, t)) = min
t≥0

 Âk1R
T
1 x− b1t ≤ Âk1R

T
1 x1

Âk2R
T
2 x− b2t ≤ Âk2R

T
2 x2

,
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where the sum of the rows of Âk1 and Âk2 totals n+1. Now,

t∗ = r(P1, P2)

= min
t≥0

 A1x+ (A1x1 − b1)t ≤ A1x1

A2x+ (A2x2 − b2)t ≤ A2x2

≥ min
t≥0

 Âk1R
T
1 x− b1t ≤ Âk1R

T
1 x1

Âk2R
T
2 x− b2t ≤ Âk2R

T
2 x2

= rk

= r(PEk
(x1, t), PEk

(x2, t))

= t∗,

which shows that r(P1, P2) = rk. Next, if we choose any other index m for possible event

and component function pair (Em, Φ̂
(m)), we find that

rk = min
t≥0

 A1x+ (A1x1 − b1)t ≤ A1x1

A2x+ (A2x2 − b2)t ≤ A2x2

≥ min
t≥0

 Âm1R
T
1 x− b1t ≤ Âm1R

T
1 x1

Âm2R
T
2 x− b2t ≤ Âm2R

T
2 x2

= rm.

Since m was arbitrary, we have rk = max {r1, r2, · · · , rN} . Now we exploit the strict mono-

tonicity of f(t) and the fact that Φ̂(m) = f(rm) to conclude that Φ̂(k) = max
{

Φ̂1, Φ̂2, · · · , Φ̂N

}
.

This completes the proof. �
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3.3 ACTIVE AND NEARLY ACTIVE EVENTS

Up until now, we have produced an innovative computationally convenient method for

finding a signed distance between two convex polyhedra. In particular, we know when the

two bodies are in perfect contact. When that happens, we need to obtain a list of active

events.

If we were planning to use a classical integrate-detect-restart simulation method, then

our analysis is sufficient to this point, and we would compute the normal vector at any active

event. We plan, however, to allow some small interpenetration to exist, and this makes it

necessary for us calculate, at any given step, a list of normal vectors for all events that are

close enough to being active.

In this section we will discuss how such a list can be determined. Our discussion for this

section will deal with three dimensional problems, and can be generalized or extended to

include other cases.

Recall that our computation of the ratio metric (3.2) has the form

r(P1, P2) = min
t

 AL1R
T
1 x− b1t ≤ AL1R

T
1 x1

AL2R
T
2 x− b2t ≤ AL2R

T
2 x2

. (3.15)

If any point (xo, to) belongs to the region of perfect contact, then it must simultaneously

solve the system

AL1R
T
1 x− b1t = AL1R

T
1 x1,

AL2R
T
2 x− b2t = AL2R

T
2 x2.

(3.16)

Recall that we can always associate with the mth potential event E(m), a component function

Φ̂(m), and point (x(m), t(m)),when it exists. If we want to indicate that the point (x(m), t(m))

is the solution of the system of equations associated with the potential event E(m), we will

write

x(m) = E
(m)
x

t(m) = E
(m)
t

(3.17)

and if we want to indicate the two bodies j1 and j2 used to describe the contact E(m), we

will write

(j1, j2) = Bod(E(m)).
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Also, given any event potential E(m), there are precisely two distinct indices j1 and j2,

1 ≤ j1, j2 ≤ nB which give us the two particular bodies whose distance is being computed.

Then E(m) is actually an event if

• The two bodies j1 and j2 are in contact, where (j1, j2) = Bod(E(m)),

• E(m)
t = r(Pj1 , Pj2) = 1,

• E(m)
x ∈ CP (ALj1

RT
ji
, bLj1

+ ALj1
RT

j1
xj1 , xj1), and

• E(m)
x ∈ CP (ALj2

RT
j2
, bLj2

+ ALj2
RT

j2
xj2 , xj2).

We don’t even consider the event E(m) to be active if the bodies j1 and j2 are not in

contact. We require the ratio metric calculated with the reduced system of inequalities to

be identical with the ratio metric calculated with the full system of inequalities. Likewise,

the solution of the reduced system of linear equations must yield a point on the intersection

of the two bodies. We define the set of indices m for which these conditions are satisfied as

the Active Events.

Because we will allow small interpenetration at each step, we must discuss what happens

when the bodies are not necessarily in perfect contact, but are close. In particular, what

happens when we have slight interpenetration or if the bodies are almost but not quite in

contact?

For computational efficiency, we need to determine the list of events that are imminently

active. In order to determine this list, we need to amend our criteria. Therefore, given the

potential event E(m), we know that m belongs to the set of nearly active events if:

• The distance between bodies j1 and j2 is small enough, where (j1, j2) = Bod(E(m)),

• E(m)
t = r(Pj1 , Pj2) is close enough to 1,

• E(m)
x is close to being an element of CP (ALj1

RT
ji
, bLj1

+ ALj1
RT

j1
xj1 , xj1), and

• E(m)
x is close to being an element of CP (ALj2

RT
j2
, bLj2

+ ALj2
RT

j2
xj2 , xj2).

Assume for now that we have t∗ = r(P1, P2), which ideally should be some value close

to 1, of course, because it indicates that the two bodies are almost in contact, in perfect

contact, or have a little interpenetration. Notice that our analysis can continue even if t∗ is

not close to 1.
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Now, when we need to solve a system like (3.16), we have a potential event, say (xo, to).

The compatibility check has the condition that the value of to must be close to the value of

t∗ instead of 1. This assures us that the potential event is close to being optimal.

This condition is exactly what we need for a suffiect check for potential events. We thus

outline our algorithm for the compatibility check:

Algorithm 3.14. Compatibility Check

Check for potential CoF and EoE events.

1. The solution (xo, to) must exist.

2.

 b1t
o − ÂL1R

T
1 (xo − x1) ≤ εx

b2t
o − ÂL2R

T
2 (xo − x2) ≤ εx

3. |to − t∗| ≤ εt

where the parameters εx > 0 and εt > 0 are given.

When the bodies are in perfect contact, we become aware that when there are some

potential events that are, in some sense, “close enough”, we need to include them. Notice

that Condition 2 insures us that the point is physically close to the intersection of the two

bodies, and Condition 3 insures us that we choose events close to being maximal.

If we want to list the active events only, we choose the parameters εx and εt close to zero.

However, if we wish to include the nearly active events, we merely choose larger values of

our parameters εx and εt.

Recall that when two bodies are in perfect contact, the region of perfect contact is itself

a convex region. If the region of perfect contact is two dimensional, then there can only be

one active hyperplane from each body.

Again, the solution of the dual problem will indicate which hyperplanes are active. When

a nonzero component occurs, then the corresponding hyperplane is in contact, and thus is

active. Unfortunately, the converse in not true, and so if we want to determine all of the

active events, we need a procedure that will obtain that information for us.

A good procedure will check all of the possible Corner-on-Face events by testing each

active face of one body with the possibly active corners of the other body. Then the procedure
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would check all of the possible Edge-on-Edge events by testing each possibly active edge of

one body with each possibly active edge of the other body.

With this is mind, we can produce a good procedure which will systematically determine

all of the nearly active events:

Algorithm 3.15. Good Algorithm

Good Algorithm for choosing the nearly active events.

Step 1: Solve the dual problem.

Step 2: List the active hyperplanes H1i, i = 1, . . . , n1 and H2j, j = 1, . . . , n2 .

Step 3: Choose appropriate parameters εx > 0 and εt > 0,

Step 4a: Check (general) compatibility of H1i with the list of adjacent points of H2j.

Step 4b: Check (general) compatibility of H2j with the list of adjacent points of H1i .

Step 4c: Check (general) compatibility of adjacent edges of H1i with adjacent edges of

H2j.

Finally, we just note that when we consider two bodies in perfect contact in a three

dimensional space, it is possible for the convex hull of the nearly active events to be three

dimensional, although the convex hull of the active events is at most two dimensional.
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4.0 CONSTRAINTS AND MODEL

Perhaps it is true that science is man’s attempt to explain what God had done. It is

important for us to explain some of the details of our mathematical model of the kinematics

of rigid convex polyhedral bodies with joints, contact, and friction constraints. Moreover,

our explanation cannot be purely theoretical, but computational as well.

Our goal in this chapter is to provide a description of our approach and show how we

arrive at the prevailing equations for our model. We begin by discussing the major physical

constraints, including the inequality constraints that define the convex bodies, the general-

ized position coordinates, noninterpenetration constraints, and our model of the Coulomb

friction. Next, we elaborate our choice of the active set, discuss differentiability which per-

mits the computation of the contact normal vector, then we produce linear complementary

model.

Throughout this paper, we will often use complementarity notation which we now define.

Definition 4.1. Let a and b be Real numbers satisfying:

1. a ≥ 0

2. b ≥ 0

3. ab = 0

then a and b are complementary to each other. We say that a and b satisfy a complementarity

condition and we write

a ≥ 0 ⊥ b ≥ 0.

The vectors u and v of length k satisfy a complementarity condition if u(i) is complemen-

tary to v(i) for i = 1, 2, · · · , k. We denote it by

u ≥ 0 ⊥ v ≥ 0.
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4.1 PHYSICAL CONSTRAINTS

As we model the motion, we have to observe constraints, whether implicit or explicit,

if our model is to be realistic. Geometrical constraints involve only the position variable

and depend on the shape of the bodies and the type of constraints involved. Friction, as a

kinematic constraints, should not be ignored simply because of the mathematical difficulties

that accompany it.

Thus, we will focus our attention on two geometrical constraints, namely joint constraints

and noninterpenetration constraints, and on the kinematic friction constraint. It is common

to group the translational and angular components of body into one vector, which we call

the composite position [29]. In what follows, we use a vector q to represent the composite

position of a body.

Polyhedral Bodies. Notice that any nonconvex body can be approximated by a union

of convex bodies. Thus, our model will assume that all of the bodies are convex and poly-

hedral.

For the ji
th body, we define Pji

= CP (Ajj
, bji

, 0) to be the polyhedron defined by the

linear inequalities

Aji
x ≤ bji

which contains the origin. By convention, and without loss of generality, we can normalize

this system such that all entries of vector bji
are equal to 1. Then the position of the body

is described by specifying its center xji
and its rotation angles θji

with respect to the center.

Rotation Matrix. Suppose that the position of the body Bji
has center at xji

and

rotation angles θji
. Recall that using world coordinates, we get Pji

= CP (Aji
RT

ji
(θji

), bji
+

Aji
RT

ji
(θji

)xji
xji

).

Here Rji
is a rotation matrix. We will use an Euler angle parameterization of the rotation

matrix. In three dimensions, for instance, the angle θji
will have three components, say
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θji
= [αji

, βji
, γji

]T . Then for the rotation matrix we could use

Rji
(θji

) =


cos γji

− sin γji
0

sin γji
cos γji

0

0 0 1




cos βji
0 sin βji

0 1 0

− sin βji
0 cos βji




1 0 0

0 cosαji
− sinαji

0 sinαji
cosαji


which is the classical Fick ZYX implementation of the Euler angles (sometimes referred as

the yaw, pitch and roll angles), and does not have a singularity at the identity orientation.

Position Coordinates. Let the space Qj contain the generalized coordinates for the

bodies Bj1 and Bj2 . This is accomplished if the bodies Bj1 and Bj2 have centers at xj1 and

xj2 , respectively, and respective rotation angles θj1 and θj2 . Then the generalized position

vector in Qj is

qj =


xj1

θj1

xj2

θj2

 .

Now suppose that we have nB rigid bodies in the system. Denote by Q1, Q2, · · · , QnB

the spaces that contain generalized coordinates of the bodies B1, B2, · · ·BnB
, whose general-

ized coordinates we denote by q1, q2, · · · , qnB
. These spaces are locally homeomorphic with

some bounded open set of Rs [29]. The aggregate generalized position (from here on, the

generalized position) becomes q = (qT
1 , q

T
2 , · · · , qT

nB
)T . We denote Q = Q1 ×Q2 × · · ·QnB

.

Noninterpenetration Constraints. Physically, it is necessary to constrain the bodies

from penetrating one another if they are not to occupy the same space. It is typical for

mathematical models of the constraints of noninterpenetration be defined in terms of a

continuous signed distance function between the two bodies Φ(j)(q) [3]. We will write the

collection of these noninterpenetration constraints as

Φ(j)(q) ≥ 0, j = 1, 2, · · · , p. (4.1)

Our model computes the ratio metric penetration depth as the signed distance functions

between the piecewise smooth polyhedra Pj1 and Pj2 using Definition (2.12). If the bodies
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Bj1 and Bj2 have centers at xj1 and xj2 , respectively, and respective rotation angles θj1 and

θj2 , then at the generalized position q we have

Φ(j)(q) = ρ(Pj1 , Pj2 , r) =
r(Pj1 , Pj2)− 1

r(Pj1 , Pj2)
,

where

r(Pj1 , Pj2) = min{t|Pj1(xj1 , t)
⋂

Pj2(xj2 , t) 6= ∅}.

We will just refer to the Φ(j)(q) simply as the (signed) distance functions. It should be

clear that these distance functions are mappings that depend continuously on q and on the

shape of the bodies, but we consider the latter dependency only implicitly.

Sufficient conditions for local differentiability of Φ(j)(q) have been discussed in [5]. How-

ever for our polyhedral bodies, the function Φ(j)(q) cannot be differentiable everywhere. We

have earlier discussed the fact that our distance function is piecewise differentiable. We need

to take advantage of this piecewise differentiability.

Suppose that the jthsigned distance function Φ(j)(q) will have kj component signed dis-

tance functions.

Φ
(j)
1 (q),Φ

(j)
2 (q), · · · ,Φ(j)

km
(q), j = 1, 2, · · · , p.

Then by Theorem 3.13 we have

Φ(j)(q) = max
j=1,2,··· ,p

{
Φ

(j)
1 (q),Φ

(j)
2 (q), · · · ,Φ(j)

km
(q)
}
. (4.2)

For convenience, we can consider the collection of component functions and rename them.

When we do that, we write them as

Φ̂(m)(q), m = 1, 2, · · · , po,

where po = k1 + k2 + · · ·+ kp. We can use (4.2) to prove that Φ(j)(q) is continuous.

At any event E at the perfect contact, our model uses the restrictions PE(xji
, t) for i =

1, 2 to compute r(PE(xj1 , t), PE(xj2 , t)), with which we define the component function

Φ̂(m)(q) =
r(PE(xj1 , t), PE(xj2 , t)))− 1

r(PE(xj1 , t), PE(xj2 , t))
.
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Figure 13: Noninterpenetration Constraint: Constraint not enforced

In Figure 13, we see what may happen when a noninterpenetration constraint is not

enforced.

Joint Constraints. In biomechanics and robotics, there are five types of joints: hinge,

fixed, ball and socket, gliding, and pivot joints. In mathematical modeling, joint constraints

are typically described by the equations

Θ(i)(q) = 0, i = 1, 2, · · · , nJ . (4.3)

Here, Θ(i)(q) are sufficiently smooth functions. If the gradients∇qΘ
(i)(q), i = 1, 2, · · · ,m

exist, then we define ν(i)(q) by

ν(i)(q) = ∇qΘ
(i)(q), i = 1, 2, · · · , nJ . (4.4)

The impulse exerted by a joint on the system is c
(i)
ν ν(i)(q), where c

(i)
ν is a scalar related

to the Lagrange multiplier of classical constrained dynamics [29]. The requirement that

the distance between two bodies remain fixed is one example of a joint constraint. This

is illustrated in Figure 14, where the car works best if the wheels of the car have a fixed

distance between them.

Friction Constraints. Frictional constraints are expressed by means of a discretiza-
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Figure 14: Joint Constraint: Fixed distance between wheels

tion of the Coulomb friction cone [8, 9, 49]. For a contact m ∈ {1, 2, · · · , po}, we take a

collection of coplanar vectors d
(m)
i (q), i = 1, 2, · · · ,M (m)

C , which span the plane tangent at

the contact (though the plane may cease to be tangent to the contact normal when mapped

in generalized coordinates [3]). The convex cover of the vectors d
(m)
i (q) should approximate

the transversal shape of the friction cone. In two-dimensional mechanics, the tangent plane

is one dimensional, its transversal shape is a segment, and only two such vectors d
(m)
1 (q) and

d
(m)
2 (q) are needed in this formulation.

Denote by D(m)(q) a matrix whose columns are d
(m)
i (q) 6= 0, i = 1, 2, · · · ,M (m)

C , that

is, D(m)(q) =

[
d

(m)
1 (q), d

(m)
2 (q), · · · , d(m)

M
(m)
C

(q)

]
. A tangential impulse is

∑M
(m)
C

i=1 β
(m)
i d

(m)
i (q),

where β
(m)
i ≥ 0, i = 1, 2, · · · ,M (m)

C . Assume that the tangential contact description is

balanced, that is,

∀i, 1 ≤ i ≤M
(m)
C , ∃k, 1 ≤ k ≤M

(m)
C such that d

(m)
i (q) = −d(m)

k (q). (4.5)

The friction model requires maximum dissipation for given normal impulse c
(m)
n and

velocity v and guarantees that the total contact force is inside the discretized cone. This

model can be expressed as

D(m)T
(q)v + λ(m)e(m) ≥ 0 ⊥ β(m) ≥ 0,

µc
(m)
n − e(m)T

β(m) ≥ 0 ⊥ λ(m) ≥ 0.
(4.6)
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Here we define e(m) to be a vector of ones of dimension M
(m)
C , e(m) = (1, 1, · · · , 1)T ,

µ(m) ≥ 0 is the Coulomb friction parameter, and β(m) is the vector of tangential impulses

β(m) =

(
β

(m)
1 , β

(m)
2 , · · · , β(m)

M
(m)
C

)T

. The additional variable λ(m) ≥ 0 is approximately equal

to the norm of the tangential velocity at the contact, if there is relative motion at the contact,

or
∣∣∣∣∣∣D(q)(m)T

v
∣∣∣∣∣∣ 6= 0 [8, 49].

Notation. Let M(q) be the symmetric, positive definite mass matrix of the system in the

generalized coordinates q and by k(t, q, v) the external force. All quantities described in this

associated with contact m are denoted by the superscript (m). When we use a vector or

matrix norm whose index is not specified, it is the 2 norm.

4.2 MODEL

Active Set. Given the position q, two bodies are in physical contact if and only if one

of the distance functions is zero, that is, we have Φ(j)(q) = 0 for some j, 1 ≤ j ≤ p. That is,

we define the physically active set as

{
j | Φ(j)(q) = 0, j = 1, · · · , p

}
. (4.7)

Because of the components of Φ(j)(q), this is equivalent to having Φ
(j)
k (q) = 0, for some j,

1 ≤ j ≤ p and for some k, 1 ≤ k ≤ kp. Since we renamed and reordered the functions, we

know that if two bodies are in physical contact, then for some index m, 1 ≤ m ≤ po, we have

Φ̂(m)(q) = 0.

We need a way to identify where the contact occurs, so in the following, when we refer to

contact j, we are saying that the two bodies whose (piecewise) distance is determined by Φ
(j)
k

are in contact and, because of renaming, we have Φ̂(m) = Φ
(j)
k . If two bodies are in contact

at position q, then Φ(j)(q) = Φ
(j)
k (q) = 0 and hence Φ̂(m)(q) = 0 for some m. On the other

hand, it is conceivable that Φ̂(m)(q) = 0 for some j without any the occurrence of contact.

That is to say, at the same time we can have Φ
(j)
k (q) 6= 0 for all j and k. The problem is

dictated by several factors, including the piecewise definition of Φ(j)(q).
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For computational efficiency, only the contacts that are imminently active are included

in the dynamical resolution and linearized, and their set is denoted by E . One practical way

of determining E is by choosing sufficiently small parameters ε̂t and ε̂x, and the definition

becomes

E1(q) =
{
m | Φ(j) ≤ ε̂t, j = Bod(E(m)), 1 ≤ m ≤ po

}
E2(q) =

{
m | 0 ≤ Φ̂(m) − Φ(j) ≤ ε̂t, j = Bod(E(m)), 1 ≤ m ≤ po

}
E3(q) =

{
m | E(m)

x ∈ CP (ALm1
RT

m2
, bLm1

+ ALm1
RT

m1
xm1 , xm1) + ε̂x, 1 ≤ m ≤ po

}
E4(q) =

{
m | E(m)

x ∈ CP (ALm2
RT

m2
, bLm2

+ ALm2
RT

m2
xm2 , xm2) + ε̂x, 1 ≤ m ≤ po

}
(4.8)

and

E(q) = E1(q)
⋂
E2(q)

⋂
E3(q)

⋂
E4(q). (4.9)

This defines the nearly active (or computationally active) set, but we will just call it the

active set, since we are interested in numerical results. Our Good Algorithm 3.15 will produce

precisely this set of active events.

Determining when a quantity is equal to zero, as in our definition of the physically Active

Set in (4.7), is often numerically disastrous. To accommodate our needs, we formally define

the computationally active set (or nearly active set) by

A(q) =
{
j | Φ(j)(q) ≤ εt, j = 1, · · · , p

}
, (4.10)

where εt > 0 is a given parameter. Since this is the only set of use to us, we shall simply call

it the active set.

Notice that m ∈ E1(q) if the bodies are active. Also, m ∈ E2(q) if the measured event

distance is close enough to without exceeding the measured distance between the bodies.

Finally, we see that m ∈ E3(q) or m ∈ E4(q) if the event m is physically active if at least one

of the bodies is allowed to slightly expand.

Let a position q be given. If A(q) is empty, then by definition E(q) must be empty. On

the other hand, if A(q) is not empty, then there must be at least one event which is active,

and so E(q) cannot be empty. In other words, we have shown that

A(q) = ∅ ⇐⇒ E(q) = ∅.
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In fact, when A(q) is not empty, there is some event m such that Φ(j)(q) = Φ̂(m)(q). We

cannot have an m such that Φ̂(m)(q) < Φ(j)(q), because then m /∈ E2(q). The consequences

of this is that we find that

min
j∈A

Φ(j)(q) = min
m∈E

Φ̂(m)(q). (4.11)

Differentiability properties. The mappings Θ(i)(q) that define the joint constraints

are differentiable [29]. Unfortunately, the situation is different, however, for the mapping

defining the noninterpenetration constraints. If the bodies are smooth and relatively strictly

convex, then the mapping Φ(j)(q) is differentiable as long as the amount of interpenetration

not large [3].

The mappings Φ(j)(q) are obviously not differentiable for bodies with non-smooth shapes,

such as convex polyhedra. Fortunately, we only need piecewise continuity of Φ(j)(q) and

sufficient differentiability of Φ̂(m)(q) in order to get the results we desire.

Therefore, to simplify the analysis, assume that the mappings that define the joint con-

straints Θ(i)(q) are differentiable. Assume, further, that the noninterpenetration constraints

Φ(j)(q) are continuously defined with component functions Φ̂(m)(q) which are differentiable,

which is true for our ratio metric penetration depth.

Contact Normal Vector. Now, denote the normal at an event (m) by

n(m)(q) = ∇qΦ̂
(m)(q), m ∈ E . (4.12)

When the contact is active, it can exert a compressive normal impulse, c
(m)
n n(m)(q), on

the system, which is modeled mathematically by requiring c
(m)
n ≥ 0. The fact that the

contact must be active before a nonzero compression impulse can act is expressed by the

complementarity constraint

Φ̂(m)(q) ≥ 0 ⊥ c(m)
n ≥ 0, m ∈ E . (4.13)

See Figure 15 for an illustration.

Linear Complementarity Model. Let hl > 0 be the time step at time t(l), when the

system is at position q(l) and velocity v(l). We have that hl = t(l+1) − t(l). Choose the new
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Figure 15: Contact Model

position to be q(l+1) = q(l) + hlv
(l+1), where v(l+1) is determined by enforcing the simulation

constraints.

The geometrical constraints are enforced at the velocity level by modified linearization

of the mappings Θ(i) and Φ̂(m). For joint constraints the modified linearization leads to

γΘ(i)(q(l)) + hl∇qΘ
(i)T

(q(l))v(l+1) =

γΘ(i)(q(l)) + hlν
(i)T

(q(l))v(l+1) = 0, i = 1, 2, · · · , nJ ,
(4.14)

where γ is a user-defined parameter. If γ = 1, then we would achieve proper linearization,

which is the case treated in [5].

For a noninterpenetration constraint of index j, we have Φ(j)(q) ≥ 0, and so modified

linearization at q(l) for one time step amounts to γΦ(j)(q(l)) + hl∇qΦ
(j)T

(q(l))v(l+1) ≥ 0.

Since our noninterpenetration constraints are piecewise defined as we discussed earlier,

we modify the linearization we obtained earlier. Recall that we need to have Φ̂(m)(q(l)) ≤

Φ(j)(q(l)). Thus our linearization becomes γΦ(j)(q(l)) + hl∇qΦ̂
(m)T

(q(l))v(l+1) ≥ 0; that is,

after including the complementarity constraints (4.13) and using the definition of n(m)(q(l)) =

∇qΦ̂
(m)(q(l)), we have

n(m)T

(q(l))v(l+1) +
γ

hl

Φ(j)(q(l)) ≥ 0 ⊥ c(m)
n ≥ 0. (4.15)

The choice of γ 6= 0 is of interest to consider for the following reason. If we analyze the

linearization of the joint constraint, we see that, to be included in a system whose unknown is
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v(l+1), it must be rewritten as γΘ(i)(q(l))
hl

+ν(i)T
(q(l))v(l+1) = 0, i = 1, 2, · · · , nJ ,. Clearly, if hl

needs to be small and Θ(i) is large, this may cause a problem. So the effect of hl being small

is compensated by a suitably chosen γ. Obviously γ = 0 would result in the constraint drift

not being compensated at all, so some lower bound on γ is, practically speaking, necessary.

As is the case with other parameter-dependent schemes, its choice in the end will be problem

specific.

Now we completely define the prevailing system that describes our model. We first use

an Euler discretization of the equations of motion, that is, of Newton’s law. This results in

the following equation [6]:

M(q(l))
(
v(l+1) − v(l)

)
= hlk

(
t(l), q(l), v(l)

)
+
∑nJ

i=1 c
(i)
ν ν(i)(q(l))

+
∑
m∈E

c(m)
n n(m)(q(l)) +

M
(m)
C∑

i=1

β
(m)
i d

(m)
i (q(l))

 .
(4.16)

Next, we use the modified linearization of the geometrical constraints (4.14) and noninter-

penetration constraints (4.15) to get

γΘ(i)(q(l)) + hlν
(i)T

(q(l))v(l+1) = 0, i = 1, 2, · · · , nJ ,

n(m)T
(q(l))v(l+1) + γ

hl
Φ̂(m)(q(l)) ≥ 0 ⊥ c

(m)
n ≥ 0, m ∈ E .

(4.17)

Finally, we include the conditions for model of friction (4.6).

D(m)T
(q)v + λ(m)e(m) ≥ 0 ⊥ β(m) ≥ 0 m ∈ E ,

µc
(m)
n − e(m)T

β(m) ≥ 0 ⊥ λ(m) ≥ 0 m ∈ E .
(4.18)
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5.0 ISSUES IN SOLVING THE LCP

Now that we have the prevailing mathematical system that describes our model, there

are a few unanswered questions. We need to determine if there a solution, and if so, a method

that will compute the solution.

In this chapter, we will produce a linear complementarity problem from the prevailing

system (4.16), (4.17), and (4.18), after which we will consider a convex relaxation thereof.

That will allow us to produce a fixed-point iteration that will converge, for small values of

the friction coefficient, to a solution of the LCP.

To simplify the notation, we replace the superscript (l + 1) of the velocity solution of

(5.1–5.2) by the superscript ∗, and there will be no superscripts for the complementarity

problems. After collecting all the constraints introduced previously, with the geometrical

constraints replaced by their linearized versions (4.14) and (4.15), we got the prevailing

system which includes (4.16), (4.17), and (4.18).

We can rewrite the system to obtain the following mixed LCP:



M (l) −ν̃ −ñ −D̃ 0

ν̃T 0 0 0 0

ñT 0 0 0 0

D̃T 0 0 0 Ẽ

0 0 µ̃ −ẼT 0





v(l+1)

cν

cn

β̃

λ


+



−Mv(l) − hlk
(l)

Υ

∆

0

0


=



0

0

ρ

σ̃

ζ


(5.1)


cn

β̃

λ


T 

ρ

σ̃

ζ

 = 0,


cn

β̃

λ

 ≥ 0,


ρ

σ̃

ζ

 ≥ 0 . (5.2)

56



Here

ν̃ = [ν(1), ν(2), · · · , ν(nJ )],

cν = [c
(1)
ν , c

(2)
ν , · · · , c(nJ )

ν ]T ,

ñ = [n(m1), n(m1), · · · , n(ms)],

cn = [c
(m1)
n , c

(m2)
n , · · · , c(ms)

n ]T ,

β̃ = [β(m1)T , β(m2)T , · · · , β(ms)T ]T ,

D̃ = [D(m1), D(m2), · · · , D(ms)],

λ = [λ(m1), λ(m2), · · · , λ(ms)]T ,

µ̃ = diag(µ(m1), µ(m2), · · · , µ(ms))T ,

Υ = γ 1
h

(
Θ(1),Θ(2), · · · ,Θ(m)

)T
,

∆ = γ 1
h

(
Φ(Bod(E(m1))),Φ(Bod(E(m2))), · · · ,Φ(Bod(E(ms)))

)T

,

and

Ẽ =


e(m1) 0 0 · · · 0

0 e(m2) 0 · · · 0
...

...
...

...
...

0 0 0 · · · e(ms)



are the lumped LCP data, and E = {m1,m2, · · · ,ms} are the active events constraints. Here

e(j) is a vector of ones of dimension m
(j)
C , that is, e(j) = (1, 1, . . . , 1)T . The vector inequalities

in (5.2) are to be understood componentwise.

To simplify the presentation, the dependence of the parameters in (5.1–5.2) on q(l) is not

explicitly included. Also, M (l) = M(q(l)) is the value of the mass matrix at time t(l), and

k(l) = k(t(l), q(l), v(l)) represents the external force at time t(l).

Consider a perturbation to this mixed linear complementarity problem by introducing

the parameters ∆ and Υ and defining Γ =
(
Γ(m1),Γ(m2), · · · ,Γ(ms)

)T
to be a nonnegative

vector that has as many components as active constraints. In reality, ∆ and Υ are used to

maintain the full generality of our results, and we will use the fact that ∆ ≥ 0 and Υ = 0

only when needed.
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The perturbation of our mixed LCP (5.1–5.2) we will consider is



M (l) −ν̃ −ñ −D̃ 0

ν̃T 0 0 0 0

ñT 0 0 0 −µ̃

D̃T 0 0 0 Ẽ

0 0 µ̃ −ẼT 0





v

cν

cn

β̃

λ


+



−Mv(l) − hk(l)

Υ

Γ + ∆

0

0


=



0

0

ρ

σ̃

ζ


(5.3)


cn

β̃

λ


T 

ρ

σ̃

ζ

 = 0,


cn

β̃

λ

 ≥ 0,


ρ

σ̃

ζ

 ≥ 0 . (5.4)

Notice that the matrix of this linear complementarity problem is clearly positive semidefinite.

This fact will allow us to get some very useful results by simply interpreting (5.3–5.4) as a

a quadratic program. To simplify the notation, let q(l) = −Mv(l) − hk(l).

We now can rewrite the mixed complementarity problem (5.3–5.4) into the form

M (l)v −ñc̃n −D̃β̃ = −q(l)

ν̃Tv = −Υ

ñTv −µ̃λ ≥ −Γ−∆ ⊥ cn ≥ 0

D̃Tv +Ẽλ ≥ 0 ⊥ β̃ ≥ 0

µ̃cn −ẼT β̃ ≥ 0 ⊥ λ ≥ 0

(5.5)

and from this we can show a relation between the velocity solutions of (5.1–5.2) and (5.3–5.4)

under suitable conditions.

Lemma 5.1. Let Υ = 0. If for a solution
(
v∗, cν , cn, β̃, λ

)
of (5.5) we have that Γ = µ̃λ, then

that solution of (5.5) is a solution of (5.1–5.2). Conversely, any solution
(
v∗, cν , cn, β̃, λ

)
of

(5.1–5.2) is a solution of (5.3–5.4) with Γ = µ̃λ.

Proof. The proposed substitution makes the two LCPs identical. �

Observe that (5.5) can be seen as constituting the first-order optimality conditions of
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the quadratic program

minv,λ
1
2
vTM (l)v + q(l)T

v

subject to n(m)T
v − µ(m)λ(m) ≥ −Γ(m) −∆(m), m ∈ E

D(m)T
v + λ(m)e(m) ≥ 0, m ∈ E

νT
i v = −Υi, i = 1, 2, · · · , nJ

λ(m) ≥ 0 m ∈ E

(5.6)

and that allows us to relate the solutions of (5.3–5.4) and (5.2).

Lemma 5.2. Any solution (v, λ) of (5.6), together with its Lagrange multipliers, is a solution

of the linear complementarity problem (5.3–5.4). Conversely, the v, λ components of any

solution of (5.3–5.4) are a solution of (5.6).

Proof. The proof follows directly from the property of first-order optimality conditions and

by the convexity of the quadratic program (5.6), once we write out the first-order optimality

conditions for (5.6) to get (5.5). �

Even though the quadratic program (5.6) is not strictly convex with respect to (v, λ),

it is strictly convex with respect to v. It then follows that v is the unique solution of the

following strictly convex quadratic program:

minv
1
2
vTM (l)v + q(l)T

v

subject to e(m)n(m)T
v + µ(m)D(m)T

v ≥ −
(
Γ(m) + ∆(m)

)
e(m), m ∈ E

νT
i v = −Υi, i = 1, 2, · · · , nJ .

(5.7)

If Γ ≥ 0, ∆ ≥ 0 and Υi = 0, then v = 0 is a feasible point of the quadratic program.

Moreover, our previous assumption that M (l) be positive definite means that whenever (5.7)

is feasible, it has a unique solution v∗(Γ). Now, it follows that the mapping

P1(Γ) = v∗(Γ) (5.8)

is well-defined for any Γ for which (5.7) is feasible.
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Let v be a velocity vector. For the given active events E , we can define

Λ(v) = λ, (5.9)

where

λ(m) = max
i=1,2,··· ,M(m)

C

{
d

(m)T

i (v)
}
, m ∈ E .

Because of the way D(m) is balanced for a given contact m, for any fixed v, Λ(v) ≥ 0.and,

Λ(v) produces the smallest possible λ that satisfies

D̃Tv + Ẽλ ≥ 0.

After v∗(Γ) is found, then a λ∗, that, together with v∗(Γ), is a solution of (5.6) can be found

by choosing

λ∗ = Λ(v∗). (5.10)

Therefore, all the properties of the velocity solution of (5.3–5.4) can be inferred by

working with (5.7), once we show that the two problems have the same v-solution. The

quantity λ∗ is implicitly a function of Γ, but, for defining its properties, we prefer to regard

λ∗ as a function of v∗, or λ∗(v∗).

Theorem 5.3. Whenever (5.6) is feasible, the v-solution of (5.6) is unique and is, in fact, a

solution of (5.7). Conversely, if v is a solution of (5.7), then (v,Λ(v)) is a solution of (5.6).

Proof. Let (v2, λ2) be a solution to (5.6). Therefore, we have

n(m)T

v2 − µ(m)λ
(m)
2 ≥ −Γ(m) −∆(m), m ∈ E

and

D(m)T

v2 + e(m)λ
(m)
2 ≥ 0, m ∈ E ,

from which it follows, by multiplying the second inequality by µ(m) and adding it compo-

nentwise to the first inequality, that

e(m)n(m)T

v2 + µ(m)D(m)T

v2 ≥ −e(m)
(
Γ(m) + ∆(m)

)
, m ∈ E .
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Hence, v2 is feasible for (5.7), which must now have an optimal solution v1 that satisfies

1

2
v1

TM (l)v1 + qTv1 ≤
1

2
v2

TM (l)v2 + qTv2.

On the other hand, the solution of (5.7) satisfies

e(m)n(m)T

v1 + µ(m)D(m)T

v1 ≥ −e(m)
(
Γ(m) + ∆(m)

)
, m ∈ E . (5.11)

Define λ1 = Λ(v1), so, by (5.9), we have that

D(m)T

v1 + e(m)λ
(m)
1 ≥ 0, m ∈ E . (5.12)

Also, from (5.9) and the fact that the columns of D(m) form a balanced set, we must have

that d
(m)T

i v1 + λ
(m)
1 = 0 for some i among 1, 2, · · · ,M (m)

C . Since from (5.11) we must have

that n(m)T
v1 + µ(m)d

(j)T

i v1 ≥ −
(
Γ(m) + ∆(m)

)
, the last equality implies

n(m)T

v1 − µ(m)λ
(m)
1 ≥ −

(
Γ(m) + ∆(m)

)
,m ∈ E

and thus from (5.12) we obtain that (v1, λ1) is feasible for (5.6). Hence

1

2
v2

TM (l)v2 + qTv2 ≤
1

2
v1

TM (l)v1 + qTv1.

Therefore, the objective functions of (5.6) and (5.7) must be equal to each other. That

means (v1,Λ(v1)) is optimal for (5.6) and v2 is optimal for (5.7). The proof is complete upon

recalling the uniqueness of the solution of (5.7). �
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Consider now another related linear complementarity problem.


M (l) −ν̃ −ñ −D̃

ν̃T 0 0 0

ñT 0 0 0

D̃T 0 0 0




v

cν

cn

β̃

+


−Mv(l) − hk(l)

0

∆

Ẽλ

 =


0

0

ρ̃

σ̃

 (5.13)

 cn

β̃

T  ρ

σ̃

 = 0,

 cn

β̃

 ≥ 0,

 ρ

σ̃

 ≥ 0 , (5.14)

where λ is fixed, and thus not a variable of the problem. Clearly the LCP (5.13–5.13)

represents the optimality conditions for the quadratic program

minv
1
2
vTM (l)v + q(l)T

v

subject to n(m)T
v ≥ −∆(m), m ∈ E

D(m)T
v ≥ −λ(m)e(m), m ∈ E

νT
i v = 0, i = 1, 2, · · · , nJ ,

(5.15)

where λ ≥ 0 is given. In this section we will assume that ∆ ≥ 0, and thus that (5.15) is

feasible.

Recall that M (l) is positive definite, hence (5.15) has a unique solution v∗(λ), which

means that the mapping

P2(λ) = v∗(λ) (5.16)

is well defined whenever (5.7) is feasible.

Lemma 5.4. Assume that (v∗, λ∗) are components of the solution of (5.1-5.2). Then the

solution of (5.15) with λ = λ∗ is exactly v∗, or P2(λ
∗) = v∗.

Proof. Let
(
v∗, cν , cn, β̃, λ

∗
)

be a solution of (5.1–5.2). By comparing the linear comple-

mentarity problems (5.1–5.2) and (5.13–5.14), we see that if we set λ = λ∗, we obtain that(
v∗, cν , cn, β̃

)
is a solution of (5.13–5.14). The conclusion follows by our previous observation

that (5.13–5.14) are the optimality conditions of (5.15), and thus v∗ is the unique solution

of (5.15) for λ = λ∗. �

62



The fundamental result of this section is based on analyzing the properties of a series of

aggregate maps. Recall that, following the definition of the mixed linear complementarity

problem (5.1–5.2), µ̃ is a diagonal matrix whose entries are the friction coefficients at the

individual contacts.

Assume for now that ∆ ≥ 0 and Υ = 0. Then we can define three aggregate maps by

χ1(v) = P1(µ̃Λ(v)),

χ2(Γ) = µΛ ◦ P1(Γ),

χ3(Γ) = µΛ ◦ P2 ◦ Λ ◦ P1(Γ).

(5.17)

It turns out under modest conditions, each of the mappings above is indeed a contraction.

The results were proven in [6].

Next, we consider the so-called Mangasarian-Fromovitz Constraint Qualification (MFCQ)

for quadratic programs. Consider the generic quadratic program

minimize qTx+ 1
2
xTQx

subject to ATx+ α ≥ 0

BTx+ β = 0,

(5.18)

where A ∈ RI n×m, B ∈ RI n×p, α ∈ RI m, and β ∈ RI p.

Definition 5.5. Consider the quadratic program (5.18). MFCQ holds at any point x ∈ RI n

if the following conditions are true:

1. B has full row rank,

2. ∃f ∈ RI m, f < 0, and d ∈ RI n, such that

 ATd = f

BTd = 0
.

An important consequence of (5.18) satisfying MFCQ is the following [6].

Lemma 5.6. If the quadratic program (5.18) satisfies MFCQ, then it is feasible for any

α ∈ RI m and β ∈ RI p. If, in addition, the matrix Q is positive definite, then the quadratic

program has a solution.
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We need to have a certain constraint regularity to hold if we want to ensure that the

solution v(l+1) remain stable, despite the parameters ∆ and Υ. In order to state sufficient

conditions, we use some properties of the friction cone. We define the friction cone at a given

position as follows:

FC(q) =
{
t = ν̃cν + ñcn + D̃β̃

∣∣∣ cn ≥ 0, β̃ ≥ 0,
∣∣∣∣β(m)

∣∣∣∣
1
≤ µ(m)c(m)

n , ∀m ∈ E
}
. (5.19)

Simply put, the friction cone is the portion in the velocity space that can be covered by

feasible constraint interaction impulses, and is clearly a convex set.

We do not wish our configuration to become disassembled, which now forces us to exploit

one of the properties of the friction cone. This leads us to define when the friction cone is

pointed.

Definition 5.7 (Stewart [48]). We say that the friction cone FC(q) is pointed if for all

(cν , cn, β̃) satisfying cn ≥ 0 and
∣∣∣∣β(m)

∣∣∣∣
1
≤ µ(m)c

(m)
n , ∀m ∈ E , then ν̃cν + ñcn + D̃β̃ 6= 0.

We will assume that from now on, all of the configurations that we encounter have

a uniformly pointed friction cone. This assumption is essential if we want to be certain

that our time-stepping scheme (5.1)–(5.2) converges in the limit to a weak solution of the

continuous problem [48].

Pang and Stewart [42] use the pointed friction cone to show the existence of a solution

to the mixed LCP (5.1)–(5.2).

Theorem 5.8. Assume that the friction cone FC(q) is pointed. Then the mixed LCP (5.1)–

(5.2) has a solution.

Proof. The proof follows directly from the results in [42]. �

Suppose now that the friction cone is pointed, therefore we know that the mixed LCP

(5.1)–(5.2) has a solution. Then determining a method for solving the mixed LCP is simple,

because if the mass matrix M (l) is constant, we can find the solution by using Lemke’s

algorithm [21].
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Theorem 5.9 (Anitescu and Hart [6]).

i) Assume that, for µ̃ = 0, the friction cone FC(q) is pointed. Then there exists µ◦ > 0

such that, whenever ||µ̃|| ≤ µ◦ the mapping χ1(v) is a contraction with parameter 1
2
, and

therefore has a unique fixed point.

ii) Let KΓ > 0 and Kµ > 0 such that the friction cone FC(q) is pointed whenever ||µ̂||∞ ≤

Kµ, ∀m ∈ E. Then there exists µ◦ such that for 0 ≤ ||µ|| ≤ µ◦, the mapping χ2 is a

contraction.

iii) Let KΓ > 0 and Kµ > 0 such that the friction cone FC(q) is pointed whenever ||µ̂||∞ ≤

Kµ, ∀m ∈ E. Then there exists µ◦ such that for 0 ≤ µ ≤ µ◦, the mapping χ3 is a

contraction.

Our assumption that the friction cone be pointed plays an important key to the proof.

This is because the friction cone being pointed implies that the quadratic program (5.7) will

satisfy MFCQ. It would then follow that Lemma 5.6 applies, and thus not only does the

solution of (5.7) exist, but it is Lipschitz continuous with respect to ∆ and Υ.

In [6] we also show that, for sufficiently small friction, we can use the aggregate mappings

above to get a fixed point iteration that converges globally and linearly to the velocity solu-

tion while solving convex subproblems, provided that the friction cone is pointed. Moreover,

an energy bound is found for the solution for the quadratic program (5.7).

Anitescu and Hart [5] show that the velocity solution of the mixed LCP (5.1)–(5.2) has

an upper bound:

v(l+1)T
M (l)v(l+1) ≤ v(l)M (l)v(l) + h2

l k
(l)M (l)−1k(l)

+2hlv
(l)T

k(l) + c(q(l), µ̃,M (l))2
∣∣∣∣∣∣∆(l)

− ,Υ
(l)
∣∣∣∣∣∣2
∞
.

(5.20)

They then use the uniformly pointed friction cone assumption to obtain uniformly upper

boundedness of the quantity c(q(l), µ̃,M (l)), with upper bound cU , during simulation. When

we rewrite inequality 5.20 using this uniform bound, we get

v(l+1)T

M (l)v(l+1) ≤ v(l)M (l)v(l) + h2
l k

(l)M (l)−1k(l) + 2hlv
(l)T

k(l) + c2U

∣∣∣∣∣∣∆(l)
− ,Υ

(l)
∣∣∣∣∣∣2
∞
. (5.21)

We can summarize their results.
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Proposition 5.10. Suppose that the quadratic program (5.7) satisfies MFCQ. Let A(q(l), µ̃)

be the matrix of inequality constraints and B(q(l)) the matrix of equality constraints in (5.7).

Also, assume that Γ(m) ≥ 0, m ∈ E. Then there exists c = c(A(q(l), µ̃), B(q(l)),M (l)) such

that the solution v(l+1) of (5.7) satisfies

v(l+1)T

M (l)v(l+1) ≤ v(l)M (l)v(l) + h2
l k

(l)M (l)−1k(l) + 2hlv
(l)T

k(l) + c2
∣∣∣∣∣∣∆(l)

− ,Υ
(l)
∣∣∣∣∣∣2
∞
.

The various bounds are used to show that constraint stabilization can be achieved as we

construct our constant step time-stepping algorithm, which we do in the next chapter.
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6.0 CONSTRAINT STABILIZATION

As we discussed, rigid multibody dynamics is an important area of mathematical mod-

eling and attempts to predict the position and velocity of a system of rigid bodies. Nonin-

terpenetration constraints, joint constraints, and friction forces serve to make the task more

difficult. The predicted position and velocity is accomplished by some numerical integration

technique.

The problem is that in order to solve the prevailing equations and constraints, an integra-

tion technique must be used. However, all integration time-stepping schemes will introduce

a discretization error, which means that for successive steps, the bodies may drift apart from

each other without solving the necerssary constraints. When the geometrical constraints are

not satisfied, this constraint drift becomes visible,and then the simulation may be useless.

Baumgarte was one of the earliest pioneers dealing with constraint stabilization [16].

What we are proposing here is a method that achieves geometrical (noninterpenetra-

tion and joint) constraint stabilization for complementarity-based time-stepping methods

for rigid multi-body dynamics with contact, joints, and friction. A variant of the scheme

presented here is currently used for the dynamical simulation of dynamical robotic grasps

[7, 37]. This scheme needs no computational effort other than that for solving the basic LCP

subproblem, though the free term of the LCP is modified compared with other time-stepping

LCP approaches [8, 9, 49].

The constraint stabilization issue in a complementarity setting has been tackled by us-

ing nonlinear complementarity problems [49], an LCP followed by a nonlinear projection

approach that includes nonlinear inequality constraints [9], and a post-processing method

[18] that uses one potentially non-convex LCP based on the stiff method developed in [9]

followed by one convex LCP for constraint stabilization. When applied to joint-only systems,

67



the method from [18] belongs to the set of post-processing methods defined in [11, 12]. In

order to achieve constraint stabilization, however, all of these methods need additional com-

putation after the basic LCP subproblem has been solved. They stands in contrast with our

approach that needs no additional computational effort to achieve constraint stabilization.

In this chapter, we will prove a generalized theorem on constraint stability and state the

conditions that are needed therein. We next give details about the general algorithm we use

that achieves constraint stability. Two major contributions of this thesis are the introduction

of an efficient metric which can calculate the depth of penetration for convex polyhedral bodies

and its implementation within an algorithm which achieves constraint stabilization.

One big advantage of our time-stepping scheme is that for an appropriately choice of the

step size hl and parameter ε̂, at the end of each step our algorithm, while allowing small

interpenetrations, guarantees that the physically actives set will be contained in E , and hence

there will never be a need to stop the simulation.

6.1 GENERALIZED STABILITY RESULTS USING RPD

For the generalized position vector q, we denote by δj1j2(q) the signed distance between

the bodies Bj1 and Bj2 . Recall that there is a j such that Φ(j)(q) = δj1j2(q). The feasible set

of all noninterpenetration and joint constraints is then defined by

δj1j2(q) ≥ 0, 1 ≤ j1 < j2 ≤ nB, Θ(i)(q) = 0, i = 1, 2, · · · , nJ . (6.1)

We next rewrite the noninterpenetration constraints and associate a pair (j1, j2) with an

index j ∈ {1, 2, · · · , p} and define Φ(j)(q) = δj1j2(q). Here p = 1
2
nB(nB + 1). Next, we see

that the feasible set defined in (6.1) is equivalent to the set defined by

Φ(j)(q) ≥ 0, 1 ≤ j ≤ p, Θ(i)(q) = 0, i = 1, 2, · · · ,m. (6.2)

In proving that our method provides constraint stabilization, we need to have continuity

and piecewise differentiability of Φ(j)(q), 1 ≤ j ≤ p, over a sufficiently large subset of Q.
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Unfortunately, it is unreasonable to expect differentiability over all of Q. Anitescu and Hart

[5] give an example of nondifferentiability even for a simple two-dimensional problem.

We note that the signed distance function is defined for any two bodies. In that respect

the relations of (6.2) quantifies the geometrical constraints between any two bodies. For this

analysis, however, it is not sufficient to have the feasible set defined by continuous functions;

here we need piecewise differentiability of the involved mappings at least over the feasible

set and an open neighborhood of it.

While such a property holds if all the bodies involved are smooth and strictly convex [3],

we are particularly interested in using bodies with planar facets for which a representation

like the one in equation (6.2) that uses differentiable mappings is available only locally.

A downside of our approach in the bodies-with-facets case, however, is that the linear

complementarity problem from our approach will involve more constraints than the integrate-

detect-restart procedure. Nonetheless, we expect that it will solve fewer problems per time

step.

Recall that we are interested in achieving feasibility as the time step goes to 0 and keeping

infeasibility under control for finite time step. To accommodate this, we need to define the

set of allowable positions. An allowable position is not necessarily physically feasible, but

will allow our analysis to proceed relatively smoothly when small penetration exists. Thus,

define now, for some ε > 0, the sets

ΩΦ
ε = {q ∈ Q | Φ(j)(q) ≥ −ε, 1 ≤ m ≤ p},

ΩΘ
ε = {q ∈ Q |

∣∣Θ(i)(q)
∣∣ ≥ −ε, i = 1, 2, · · · , nJ},

Ωε = ΩΦ
ε ∩ ΩΘ

ε .

Also, in order to describe the behavior of the infeasibility of the non-interpenetration and

joint constraints, we define

I(q) = max
1≤j≤p,1≤i≤nJ

{
Φ

(j)
− (q),

∣∣Θ(i)(q)
∣∣} , (6.3)
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which we will use to measure the extent of infeasibility of the non-interpenetration and joint

constraints. Here we use the notation f− to denote the negative part of the real valued

function f . That is,

f−(x) = max{−f(x), 0}

= 1
2
(|f(x)| − f(x)) .

Let us now prove a small Lemma concerning the representation of our piecewise functions

on a line segment.

Lemma 6.1. Let the functions Φ(j) be piecewise continuously differentiable. Also, let the

position q, the vector w, and real number t > 0 be given such that the line segment from q

to q + tv is feasible. Then we can find a sequence
{
t1, t2, . . . , tkj

}
of increasing positive real

numbers and a sequence of component functions
{

Φ̂(m1), Φ̂(m2), . . . , Φ̂(mkj
)
}

such that

Φ(j)(q + tv)− Φ(j)(q) =

kj∑
i=1

[
Φ̂(mi)(q + tiv)− Φ̂(mi)(q + ti−1v)

]
. (6.4)

Proof. Since we know that the segment from q to q+tv is in the domain of Φ(j), we consider

that very segment which we will subdivide into finitely many subsegments.

Let to = 0. At the point p, there is an active event, m1. We can then find t1 which is the

largest value of t for which m1 is active. If q + t1v is not equal to q + tv, then we repeat the

process, finding an active event m2 at q + t1v and the largest value of t,say t2 with t2 > t1,

for which m2 is active.

Because of the unique way Φ(j) is defined, the way we defined the ti and the fact that there

exist only finitely many events, we can use Theorem (3.13) to enumerate a finite number of

values t1, t2, . . . , tkj
and associated events m1,m2, . . . ,mkj

such that on the ith segment, we

get

Φ(j)(q + tv) = Φ̂(mi)(q + tv) ∀t ∈ [ti−1, ti].

Notice that we can then write

Φ(j)(q + tv)− Φ(j)(q) =

kj∑
i=1

[
Φ(j)(q + tiv)− Φ(j)(q + ti−1v)

]
=

kj∑
i=1

[
Φ̂(mi)(q + tiv)− Φ̂(mi)(q + ti−1v)

] (6.5)
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and that completes the proof. �

Proposition 6.2. Let the functions Φ(i) be piecewise continuously differentiable. If the

component functions Φ̂(m) are locally differentiable and have uniformly bounded derivatives

with bound C1, then for any position q and vector w and real number t > 0,

∣∣Φ(j) (q + tw)− Φ(j) (q)
∣∣ ≤ t ||w||C1. (6.6)

Proof. We can immediately invoke Lemma 6.1 so that from q to q + τw for 0 ≤ τ ≤ t, we

can find an increasing sequence of values 0 = to < t1 < · · · < tn = t and its corresponding

restriction Φ̂(mi). Then using Taylor’s Theorem and the uniform bound C, we get

Φ(j) (q + tw)− Φ(j) (q) =
n∑

k=1

(
Φ̂(mi) (q + tkw)− Φ̂(mi) (q + tk−1w)

)
≤

n∑
k=1

||tkw − tk−1w||C1

=
n∑

k=1

(tk − tk−1) ||w||C1

= (tn − to) ||w||C1

= t ||w||C1,

and

−
(
Φ(j) (q + tw)− Φ(j) (q)

)
= −

n∑
k=1

(
Φ̂(mi) (q + tkw)− Φ̂(mi) (q + tk−1w)

)
≤

n∑
k=1

||tkw − tk−1w||C1

=
n∑

k=1

(tk − tk−1) ||w||C1

= (tn − to) ||w||C1

= t ||w||C1,

which completes the proof. �

We now list one of the assumptions about the kinematic description of the non-interpenetration

constraints.
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Assumption A1: There exists εo > 0, Cd
1 > 0, and Cd

2 > 0 such that

• Φ(j) for 1 ≤ j ≤ nB are piecewise continuous on their domains Ωε, with piecewise

components Φ̂(m)(q) which are twice continuously differentiable in their respective

open domains with first and second derivatives uniformly bounded by Cd
1 > 0 and

Cd
2 > 0, respectively, and

• Θ(i)(q) for i = 1, 2, · · · ,m are twice continuously differentiable in Ωε with first and

second derivatives uniformly bounded by Cd
1 > 0 and Cd

2 > 0, respectively.

Lemma 6.3. If Assumption A1 holds, then for any j such that 1 ≤ j ≤ nB, we have

Φ(j) is everywhere directionally differentiable. Moreover, the generalized gradient of Φ(j) is

contained in the convex cover of the gradients of its component functions which are active at

q and evaluated at q.

Proof. Let q be any point in the domain of Φ(j). We need to consider the generalized

directional derivative of Φ(j) at q in the direction v is defined, see [17], by

Φ(j)o(q; v) = lim sup
p→q,t↓0

Φ(j)(p+ tv)− Φ(j)(p)

t
.

So we consider the segment from q to q + tv which we will subdivide into finitely many

subsegments.

Once again, we invoke Lemma 6.1 so that from p to p + τw for 0 ≤ τ ≤ t, we can find

an increasing sequence of values 0 = to < t1 < · · · < tn = t and corresponding restrictions

Φ̂(mi).

Next we can use differentiability of the component functions and the mean value theorem

to calculate

1
t

[
Φ(j)(p+ tv)− Φ(j)(p)

]
=

1

t

k∑
i=1

[
Φ̂(mi)(p+ tiv)− Φ(j)(p+ ti−1v)

]
=

1

t

k∑
i=1

[
(ti − ti−1)∇Φ̂(mi)

T
(p+ ζi−1v)v

]
.

(6.7)

Since we know that

lim sup
p→q,t↓0

∇Φ̂(mi)(p+ ζi−1v) = ∇Φ̂(mi)(q)
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and

lim
t→0

1

t

k∑
i=1

(ti − ti−1) = 1,

our initial calculation can be simplified because the calculation of Φ(j)o(q; v) always produces

a convex combination of the gradients of the events which are active at q and evaluated at q.

This is enough to show that the generalized gradient ∂Φ(j)(q) must be contained within the

convex cover of the gradients of the component functions which are active at q and evaluated

at q. �

Lemma 6.4. If Assumption A1 holds, then for any j such that 1 ≤ j ≤ nB, then Φ(j)

satisfies a Lipschitz condition.

Proof. By Lebourg’s Mean Value Theorem [17], given q1 and q2 in the domain of Φ(j), there

exists qo on the line segment between q1 and q2 that satisfies

Φ(j)(q1)− Φ(j)(q2) ∈
〈
∂Φ(j)(qo), q1 − q2

〉
.

This means that there is some Γ ∈ ∂Φ(j) such that

Φ(j)(q1)− Φ(j)(q2) = Γ(q1 − q2).

However, we know, by Lemma 6.3, that Γ must be a convex combination of gradients of

component functions. Notice that by Assumption A1, each of these gradients can be bounded

above by Cd
1 , and so we must have

∣∣Φ(j)(q1)− Φ(j)(q2)
∣∣ ≤ Cd

1 ||q1 − q2|| ,

which concludes the proof. �
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The stability results we seek concern the behavior of the infeasibility of the constraints,

noninterpenetration and joint. It is especially noteworthy that, because of the way we defined

the active set (4.10), the measure of constraint infeasibility we defined as

I(q) = max
1≤j≤p,1≤i≤nJ

{
Φ

(j)
− (q), |Θ(i)(q)|

}
(6.8)

has a special relation to another measure of infeasibility that is attached to a choice of the

active set. That is, we can define

IA(q) = max
j∈A,1≤i≤nJ

{
Φ

(j)
− (q), |Θ(i)(q)|

}
(6.9)

and notice that the active set, by definition (4.10), must include all of the noninterpenetration

constraints that are infeasible at the current point q. It follows that

I(q) = IA(q)(q),

although if q1 and q2 are different, then we will, in general, have

I(q1) 6= IA(q2)(q1).

Notice that we could also define a measure of infeasibility as

IE(q) = max
m∈E,1≤i≤nJ

{
Φ̂

(m)
− (q), |Θ(i)(q)|

}
, (6.10)

and from (4.11) and our definitions of infeasibility, it is not very difficult see that we have

IA(q) = IE(q).

Now by the definition of ∆ and Υ after (5.1)–(5.2), we know that

IA(q(l)) =
hl

γ

∣∣∣∣∣∣∆(l)T

− ,Υ(l)
∣∣∣∣∣∣
∞
. (6.11)

There is a connection between Ωε for ε0 and I(q), namely that

q ∈ Ωε ⇔ I(q) ≤ ε.

Finally, we make the following additional assumptions about the kinematic description

of the noninterpenetration constraints.

Assumption D1: The mass matrix is constant. That is, M
(
q(l)
)

= M (l) = M .
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Assumption D2: The norm growth parameter c(·, ·, ·) used in [5] is constant. That is,

c (A(q, µ̃), B(q).M) ≤ co ∀ε ∈ [0, εo] ∀q ∈ Ωε, (6.12)

where A(q, µ̃) and B(q) are the matrices defining the inequality constraints and equality

constraints, respectively.

Assumption D3: The external force is continuous and increases at most linearly with the

position and velocity, and is uniformly bounded in time. That is

k(t, v, q) = ko(t, v, q) + fc(v, q) + k1(v) + k2(q) (6.13)

and there is some constant cK ≥ 0 such that

||ko(t, v, q)|| ≤ cK

||k1(v)|| ≤ cK ||v||

||k2(q)|| ≤ cK ||q|| .

(6.14)

In addition, assume that

vTfc(v, q) = 0 ∀v, q. (6.15)

Now that we have Assumptions (A1) and (D1) - (D3), we are ready to produce our time-

stepping algorithm.
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6.2 THE ALGORITHM

Most previous approaches have pursued a simulate-detect-restart approach [8, 15, 22, 49].

In these approaches, when a collision occurs after the velocity is determined as a solution

of the LCP, the simulation does not necessarily proceed for the duration of the timestep.

Usually, the simulation is stopped at the collision, the collision is resolved by using LCP

techniques [8, 26], and the simulation is restarted.

For these approaches, the active set is updated as a result of collision detection. If many

collisions occur per unit of simulation, then there will be many costly updates that will

interfere with the performance of the solver. Moreover, for a variable timestep procedure,

the timestep may easily approach zero in the face of multiple collisions.

In the approach presented here, the active set A (4.10) is always defined, and with the

appropriately chosen parameter ε̂, we can compute the computationally active events E (4.10)

by using the Compatibility Check from Algorithm 3.14. Our hope is that for appropriately

chosen step size hl and parameter ε̂, our time-stepping scheme may now proceed in the face

of small interpenetrations and the physically actives set at the end of each step should be

contained in E .

Therefore, in this case there is no need to stop the simulation if ε̂ is appropriately chosen.

A good guideline for this choice is ε̂ = vmaxh, where h is of the order of the expected size

of the timestep and vmax is the expected range of the velocity. Since the definitions of

the active sets are different, the results of computing with our definition of the active set

and the simulate-detect-restart strategy are different. However, we can formally recover the

simulate-detect-restart strategy in our approach by choosing γ = 0 in (4.14) and (4.15).

Computationally, our approach is more appealing, because we solve only one LCP for

fixed time-step h, and this makes it more attractive for interactive simulation. In [4] we

showed for the smooth case, that this scheme achieves constraint stabilization and that

infeasibility at step l is upper bounded by O(||hl−1||2
∣∣∣∣v(l)

∣∣∣∣2). We will show that constraint

stabilization is achieved in the case for our piecewise smooth distance functions.

We have all of our necessary pieces and this leads us to formally define our method by

the following algorithm.
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Algorithm 6.5. Time-stepping Algorithm for Convex Polyhedra

Algorithm for piecewise smooth multibody dynamics

Step 1: Given q(l). v(l). and hl, calculate the active setA
(
q(l)
)

and active events E
(
q(l)
)
.

Step 2: Compute v(l+1). the velocity solution of the mixed LCP (5.3–5.4) by using the

quadratic program (5.6) .

Step 3: Compute q(l+1) = q(l) + hlv
(l).

Step 4: IF finished, THEN stop ELSE set l = l + 1 and restart.

For the remainder of this section, we consider the time-stepping algorithm defined above

applied over a finite time interval [0, T]. Typical assumptions are that the active set A(q)

is defined by (4.10), the time steps hl > 0 satisfy
N−1∑
i=0

hl = T, l = 1, 2, · · · , N − 1 and

hl−1

hl
= ch, l = 1, 2, · · · , N − 1.

We will use the constant mass matrix from Assumption (D3) and define the quantities

zl =
∣∣∣∣∣∣M− 1

2v(l)
∣∣∣∣∣∣

wl =
∣∣∣∣q(l)

∣∣∣∣
ŵl = max

j=0,1,...,l
wj

ẑl = max
j=0,1,...,l

zj

ĥl = max
j=0,1,...,l

hj.

(6.16)

Also, recall that we calculate the new position by

q(l+1) = q(l) + hlv
(l+1). (6.17)

Next, we use an important result.
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Lemma 6.6. If Assumptions (D1) - (D3) hold and for some l ∈ {0, 1, · · · , N} and we have

q(l) ∈ Ωεo/2, that is,

θl = I(q(l)) ≤ εo
2
, (6.18)

then there is a non negative continuous function ψ1 = ψ1(z, w) such that

z2
l+1 ≤ z2

l + 2hl

(
ck
∣∣∣∣M−1

∣∣∣∣ 12 zl + ck
∣∣∣∣M−1

∣∣∣∣ z2
l + ck

∣∣∣∣∣∣M− 1
2

∣∣∣∣∣∣ zlwl + h2
lψ1 + co

||θl||2

h2
l

)
(6.19)

and

wl+1 ≤ wl + hl

∣∣∣∣∣∣M− 1
2

∣∣∣∣∣∣ zl. (6.20)

Proof. By Assumption (D1), definition 6.16, and our time stepping process (6.17), we use

the Cauchy-Schwarz inequality to see that the condition

wl+1 ≤ wl + hl

∣∣∣∣∣∣M− 1
2

∣∣∣∣∣∣ zl

is always satisfied.

We obtain an upper bound on the term v(l)T
k(l), based on the assumption (D3). Using

the identification (6.16) and the property of the Coriolis force (6.15), we now get

v(l)T

k(l) = v(l)T (
fc(v

(l), q(l)) + k0(v
(l), q(l), t(l)) + k1(v

(l)) + k2(q
(l))
)

= v(l)T (
k0(v

(l), q(l), t(l)) + k1(v
(l)) + k2(q

(l))
)

≤ cK
∣∣∣∣M−1

∣∣∣∣ 12 zl + cK
∣∣∣∣M−1

∣∣∣∣ z2
l + cK

∣∣∣∣∣∣M− 1
2

∣∣∣∣∣∣ zlwl. (6.21)

It follows from our assumption (D2), that there exists a constant cB > 0 such that

v(l)T

k(l) ≤ cB(zl + z2
l + zlwl).

Now we use the computation of infeasibility measure of the active set A and the definitions

of ∆ and Υ in (5.1)–(5.2) to get

I(q(l)) =
hl

γ

∣∣∣∣∣∣∆(l)
− ,Υ

(l)
∣∣∣∣∣∣
∞
.
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Assume now that for some l ∈ {0, 1, . . . , N} we have that q(l) ∈ Ω ε0
2
, that is,

θl = I(q(l)) ≤ ε0
2
. (6.22)

Next we need to use Corollary 5.10, which applies because of our assumption (D2) and

(6.22) to get our needed inequalities. Furthermore, we use this with (5.21) and the previous

inequality, and this implies that

z2
l+1 ≤ z2

l + h2
l k

(l)M (l)−1k(l) + 2cBhl(zl + z2
l + zlwl) + cUγ

2

(
I(q(l))

hl

)2

. (6.23)

If we define

ψ1 = ψ1(z, w) = max
t≤T, ||v||≤z

˛̨̨˛̨̨
M− 1

2

˛̨̨˛̨̨
,||q||≤w

k(q, v, t)TM−1k(q, v, t), (6.24)

which, by assumption (D3) , must be continuous, and recall that I(q) = IA(q)(q), we can

use Corollary 5.10, Assumption (D2), (6.9), and (6.11) to conclude the proof, since I(q) =

IA(q)(q). �

Lemma 6.7. If Assumptions (A1), (D1) - (D3) hold and for some l ∈ {0, 1, · · · , N}, and

q(l) ∈ Ωεo/2, and

Cd
1hl

∣∣∣∣∣∣M− 1
2

∣∣∣∣∣∣ zl+1 = Cd
1hl

∣∣∣∣vl+1
∣∣∣∣ ≤ 1

2
min

{
ε̂,
εo
2

}
, (6.25)

then

I(q(l) + τv(l+1)) ≤ εo ∀ τ ∈ [0, hl]. (6.26)
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Proof. Suppose that q(l) ∈ Ωεo/2, and assume that (6.26) is not true. Then since I(q(l)) ≤ εo

2
,

we can define

t∗ = min
0≤t≤hl

{t | I(q(l) + τv(l+1)) ≤ εo ∀ 0 ≤ τ ≤ t},

and conclude that 0 < t∗ < hl, and, because of the way we measure infeasibility (6.3), we

have I(q(l) + t∗v(l+1)) = εo, so there are exactly two possible cases.

Case 1: Noninterpenetration Infeasibility. We can find exactly where the infeasi-

bility exists. That is, there is some index m such that Φ(j)(q(l) + t∗v(l+1)) = −εo. From (6.22)

we must have δi1i2(q
(l)) ≥ − ε0

2
. Since, from the definition of t∗, we know I(q(l) +τv(l+1)) ≤ ε0,

∀τ, 0 ≤ τ ≤ t∗, the rest follows directly from (6.18), Assumption (A1), and Proposition 6.2.

εo

2
≤ Φ(j)

(
q(l)
)
− Φ(j)

(
q(l) + t∗v(l+1)

)
≤

∣∣Φ(j)
(
q(l)
)
− Φ(j)

(
q(l) + t∗v(l+1)

)∣∣
≤ t∗

∣∣∣∣v(l+1)
∣∣∣∣Cd

1

≤ εo

4
,

(6.27)

which cannot be true.

Case 2: Joint Infeasibility. There is some index i such that
∣∣Θ(i)q(l) + t∗v(l+1))

∣∣ = εo.

Now, using (6.18), Assumption (A1), and Taylor’s Theorem, we get

εo

2
≤ Θ(i)

(
q(l)
)
−Θ(i)

(
q(l) + t∗v(l+1)

)
≤

∣∣Θ(i)
(
q(l)
)
−Θ(i)

(
q(l) + t∗v(l+1)

)∣∣
≤

∣∣t∗v(l+1)∇Θ(i)(ξ)
∣∣

≤ t∗
∣∣∣∣v(l+1)

∣∣∣∣Cd
1

≤ εo

4
,

(6.28)

which cannot be true either. Since neither case can occur, then our original assumption is

false, so this completes the proof. �

Lemma 6.8. If Assumptions (A1), (D1) - (D3) hold and for some l ∈ {0, 1, · · · , N} we

have q(l) ∈ Ωεo/2 and (6.25). Moreover, if

Cd
1hl

∣∣∣∣v(l+1)
∣∣∣∣ ≤ εx

2
,
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then

Φ(j)(q(l+1)) ≥ ε̂

2
> 0 ∀ j 6∈ A(q(l)). (6.29)

Proof. For any j 6∈ A(q(l)), we get, from the definition of the Active Set (4.10), that

Φ(j)(q(l)) ≥ ε̂. It now follows from Assumption (A1) and Proposition 6.2 that

Φ(j)(q(l+1)) = Φ(j)(q(l) + hlv
(l+1))

≥ Φ(j)
(
q(l)
)
− hl

∣∣∣∣v(l+1)
∣∣∣∣Cd

1 ,
(6.30)

from which the result follows. �

This Lemma shows us that if the distance function corresponding to two bodies is not

on the active list, then after taking a step with our algorithm, the two bodies cannot be

infeasible, because there cannot be any interpenetration between them. Next, we show

that after taking a step under suitable conditions, any infeasibility that may exist remains

suitably bounded. This is accomplished by considering all possible instances from which the

infeasibility might occur.

Lemma 6.9. If Assumptions (A1), (D1) - (D3) hold and for some l ∈ {0, 1, · · · , N} we

have q(l) ∈ Ωεo/2 and (6.25). Moreover, if

Cd
1hl

∣∣∣∣v(l+1)
∣∣∣∣ ≤ ε̂

2
,

then

θl+1 = I
(
q(l+1)

)
≤ 1

2
Cd

c h
2
l

∣∣∣∣M−1
∣∣∣∣ z2

l+1. (6.31)

Proof. We will use the fact that v(l+1) is a solution of the quadratic program (5.6). We need

to consider four different cases.

Case 1: I(q(l+1)) = −
∣∣Θ(i)(q(l+1))

∣∣, for some index i, 1 ≤ i ≤ nJ . Here, the infeasibility

comes from one of the joint constraints. We find that∣∣Θ(i)
(
q(l+1)

)∣∣ =
∣∣Θ(i)

(
q(l) + hlv

(l+1)
)∣∣

≤
∣∣∣Θ(i)

(
q(l)
)

+ hl∇qΘ
(i)
(
q(l)
)T
v(l+1)

∣∣∣+ 1
2
h2

lC
d
2

∣∣∣∣v(l+1)
∣∣∣∣2

=
∣∣∣Θ(i)

(
q(l)
)

+ hlν
(j)Tv(l+1)

∣∣∣+ 1
2
h2

lC
d
2

∣∣∣∣v(l+1)
∣∣∣∣2

=
∣∣Θ(i)

(
q(l)
)
− hlΥ

(i)
∣∣+ 1

2
h2

lC
d
2

∣∣∣∣v(l+1)
∣∣∣∣2

= 1
2
h2

lC
d
2

∣∣∣∣v(l+1)
∣∣∣∣2

(6.32)
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and hence the result follows.

Case 2: I(q(l+1)) = Φ
(j)
− (q(l+1)) = −Φ(j)(q(l+1)) > 0 for some index j /∈ A(q(l)). Here

the infeasibility comes from two bodies which were not initially active. Note that since

j 6∈ A(q(l)), this contradicts Lemma 6.8. Therefore, this case cannot happen.

Case 3: I(q(l+1)) = Φ
(j)
− (q(l+1)) = −Φ(j)(q(l+1)) > 0 for some j ∈ A(q(l)) and every event

m that is optimal at some point in the segment [q(l), q(l)+hlv
(l+1)] is in E(q(l)). This describes

the situation when the infeasibility occurs from progressing to the (l + 1)st step with all of

the events that become active are included.

A theorem from Lebourg,[17] states there is some ξ on the line segment joining q(l) and

q(l+1) such that

Φ(j)(q(l+1))− Φ(j)(q(l)) = ∂Φ(j)(ξ)(q(l+1) − q(l)).

For some τ ≥ 0, we can write

ξ = q(l) + τ(q(l+1) − q(l)). (6.33)

Moreover, by Lemma 6.3 the generalized gradient at ξ is contained in the convex cover

of

{
∇Φ̂m1(ξ),∇Φ̂m2(ξ), . . . ,∇Φ̂mk(ξ)

}
where {m1,m2, . . . ,mk} are the active events at q. We may then write

∂Φ(j)(ξ) ∈
k∑

j=1

λj∇Φ̂mj(ξ)

where λj ≥ 0 for 1 ≤ j ≤ k and
k∑

j=1

λj = 1. Using the differentiability of component

functions, we get

∇Φ̂mT
(ξ)w = ∇Φ̂mT

(q(l) + τ(q(l+1) − q(l)))w

≤ ∇Φ̂mT
(q(l))w + τCd

2

∣∣∣∣q(l+1) − q(l)
∣∣∣∣ ||w||

≤ ∇Φ̂mT
(q(l))w + Cd

2

∣∣∣∣q(l+1) − q(l)
∣∣∣∣ ||w||

(6.34)

for any vector w.
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Now from Lebourg’s Mean Value Theorem [17], we know there is some ξ between q(l)

and q(l+1), and Γ ∈ ∂Φ(j) such that

Φ(j)(q(l+1)) = Φ(j)(q(l))− ΓT (ξ)(q(l+1) − q(l)).

Combining these results and using our assumption that mν ∈ E(q(l)) and the fact that

Φ(j)(q(l)) + hln
mν Tv(l+1) ≥ 0 because of our linearization (4.15), we can write

I(q(l+1)) = −Φ(j)(q(l+1))

= −Φ(j)(q(l))− ΓT (ξ)(q(l+1) − q(l))

= −Φ(j)(q(l))−
k∑

ν=1

λν∇Φ̂mν
T
(ξ)(q(l+1) − q(l))

= −
k∑

ν=1

λν

(
Φ(j)(q(l)) +∇Φ̂mν

T
(ξ)hlv

(l+1)
)

≤ −
k∑

ν=1

λν

(
Φ(j)(q(l)) + hl∇Φ̂mν

T
(q(l))v(l+1) − Cd

2

∣∣∣∣hlv
(l+1)

∣∣∣∣2)
= −

k∑
ν=1

λν

(
Φ(j)(q(l)) + hl∇Φ̂mν

T
(q(l))v(l+1)

)
+ Cd

2

∣∣∣∣hlv
(l+1)

∣∣∣∣2
= −

k∑
ν=1

λν

(
Φ(j)(q(l)) + hln

mν Tv(l+1)
)

+ Cd
2

∣∣∣∣hlv
(l+1)

∣∣∣∣2
≤ Cd

2

∣∣∣∣hlv
(l+1)

∣∣∣∣2 ,

(6.35)

which is what we wanted to show.

Case 4: I(q(l+1)) = Φ
(j)
− (q(l+1)) = −Φ(j)(q(l+1)) > 0 for some index j ∈ A(q(l)) and

∃m /∈ E(q(l)) but Φ(j)(q̂) = Φ̂(m)(q̂) at q̂ = q(l) + τv(l+1). In this case, the infeasibility is

caused by some event which was not itself initially active, but became active in motion from

q(l) to q(l+1). Notice that we obviously have that m ∈ E1(q
(l)) , since the bodies were initially

active at the position q(l).

Without loss of any generality whatsoever, our analysis may assume that the first time

that event m became active is at the q(l) + hlv
(l+1). So we first note that if k were the active

index for contact j at the lth step, then from Theorem (3.13) we have

Φ̂(m)(q(l)) ≤ Φ̂(k)(q(l)).
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Using the Mean Value Theorem and our bounds on the first derivatives, we once again invoke

Proposition 6.2 and also get

Φ̂(m)(q(l))− Φ̂(k)(q(l)) =
(
Φ̂(m)(q(l))− Φ̂(m)(q(l+1))

)
+
(
Φ̂(m)(q(l+1))− Φ̂(k)(q(l))

)
≤

∣∣∣Φ̂(m)(q(l))− Φ̂(m)(q(l+1))
∣∣∣+ ∣∣Φ(j)(q(l+1))− Φ(j)(q(l))

∣∣
=

∣∣∣Φ̂(m)(q(l))− Φ̂(m)(q(l) + hlv
(l+1))

∣∣∣
+
∣∣Φ(j)(q(l) + hlv

(l+1))− Φ(j)(q(l))
∣∣

≤ hl

∣∣∣∣v(l+1)
∣∣∣∣C1 + hl

∣∣∣∣v(l+1)
∣∣∣∣C1

= 2hl

∣∣∣∣v(l+1)
∣∣∣∣C1

≤ εx,

(6.36)

which shows that m ∈ E2(q
(l)) .

Similar to previous analysis, we consider the restriction to the event E of index m. At

each step l we get, as we did in equation (3.4), the system of equations

ÂL1R
(l)
1

T
x− bL1t = ÂL1R

(l)
1

T
x

(l)
1

ÂL2R
(l)
2

T
x− bL2t = ÂL2R

(l)
2

T
x

(l)
2

, (6.37)

where the sum of the numbers of rows of ÂL1 and ÂL2 is n+1. We are assuming that at step

l + 1, we are at the optimal event, so that the equation

ÂL1R
(l+1)
1

T
x− bL1t = ÂL1R

(l+1)
1

T
x

(l+1)
1

ÂL2R
(l+1)
2

T
x− bL2t = ÂL2R

(l+1)
2

T
x

(l+1)
2

(6.38)

has a unique solution, which we will call (x̃(l+1), t̃(l+1)). Note that t̃(l+1) is used to compute

the value of Φ̂(m)(q(l+1)). If we rewrite the system (6.38) in matrix form, we get ÂL1R
(l+1)
1

T
−bL1

ÂL2R
(l+1)
2

T
−bL2

 x

t

 =

 ÂL1R
(l+1)
1

T
x

(l+1)
1

ÂL2R
(l+1)
2

T
x

(l+1)
2

 . (6.39)

Suppose that we can produce R
(l)
1

T
, R

(l)
2

T
, x

(l)
1 , and x

(l)
2 from respective small perturba-

tions of R
(l+1)
1

T
, R

(l+1)
2

T
, x

(l+1)
1 , and x

(l+1)
2 . Then we could guarantee a unique solution to

the system  ÂL1R
(l)
1

T
−bL1

ÂL2R
(l)
2

T
−bL2

 x

t

 =

 ÂL1R
(l)
1

T
x

(l)
1

ÂL2R
(l)
2

T
x

(l)
2

 . (6.40)
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In fact, we know that the polyhedral positions and rotation matrices are all directly calculated

from the step computation

q(l+1) = q(l) + hlv
(l+1).

Let (x̃(l+1), t̃(l+1)) be the solution of the system (6.40). We easily see that if hlv
(l) is small

enough, then we use differentiability of the systems (6.39) and 6.40 with perturbation analysis

to find a bound CM such that

∣∣∣∣x̃(l) − x̃(l+1)
∣∣∣∣ ≤ CM

∣∣∣∣hlv
(l+1)

∣∣∣∣ .
Next, let us define the three quantities

δ̄ = x̃(l) − x̃(l+1)

¯̄δi = x
(l+1)
i − x

(l)
i

¯̄̄
∆i = R

(l+1)
i −R

(l)
i .

(6.41)

Let CR be the constant satisfied by the rotation matrices. If we use the constant CM from

the perturbation analysis, we can obtain the bounds∣∣∣∣δ̄∣∣∣∣ ≤ CM

∣∣∣∣hlv
(l+1)

∣∣∣∣∣∣∣∣∣∣¯̄δi∣∣∣∣∣∣ ≤
∣∣∣∣hlv

(l+1)
∣∣∣∣∣∣∣∣∣∣ ¯̄̄∆i

∣∣∣∣∣∣ ≤ CR

∣∣∣∣hlv
(l+1)

∣∣∣∣ .
(6.42)

Finally we define

ξi = ÂLi
R

(l)
i

T
(δ̄ + ¯̄δi) + ÂLi

¯̄̄
∆i(x̃

(l+1) − x
(l+1)
i ),

and di to be the radius of polyhedron i. Then

||ξi|| =
∣∣∣∣∣∣ÂLi

R
(l)
i

T
(δ̄ + ¯̄δi) + ÂLi

¯̄̄
∆i(x̃

(l+1) − x
(l+1)
i )

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ÂLi

∣∣∣∣∣∣ (∣∣∣∣δ̄∣∣∣∣+ ∣∣∣∣∣∣¯̄δi∣∣∣∣∣∣+ di

∣∣∣∣∣∣ ¯̄̄∆i

∣∣∣∣∣∣)
≤ (1 + CM + diCR)

∣∣∣∣∣∣ÂLi

∣∣∣∣∣∣ ∣∣∣∣hlv
(l+1)

∣∣∣∣ .
(6.43)

If we now choose a small enough stepsize such that

(1 + CM + diCR)
∣∣∣∣∣∣ÂLi

∣∣∣∣∣∣ ∣∣∣∣hlv
(l+1)

∣∣∣∣ ≤ ε̂x
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then obviously ||ξi|| ≤ ε̂x, but in addition, we now have

ÂLi
R

(l)
i

T
(x̃(l) − x

(l)
i ) = ÂLi

R
(l)
i

T
(
(x̃(l) − x̃(l+1)) + (x̃(l+1) − x

(l+1)
i ) + (x

(l+1)
i − x

(l)
i )
)

= ÂLi
R

(l)
i

T
(
δ̄ + (x̃(l+1) − x

(l+1)
i ) + ¯̄δi

)
= ÂLi

R
(l)
i

T
(δ̄ + ¯̄δi) + ÂLi

R
(l)
i

T
(x̃(l+1) − x

(l+1)
i )

= ÂLi
R

(l)
i

T
(δ̄ + ¯̄δi) + ÂLi

(
R

(l+1)
i

T
+

¯̄̄
∆i

)
(x̃(l+1) − x

(l+1)
i )

= ÂLi
R

(l)
i

T
(δ̄ + ¯̄δi) + ÂLi

¯̄̄
∆i(x̃

(l+1) − x
(l+1)
i )

+ÂLi
R

(l+1)
i

T
(x̃(l+1) − x

(l+1)
i )

≤ ÂLi
R

(l)
i

T
(δ̄ + ¯̄δi) + ÂLi

¯̄̄
∆i(x̃

(l+1) − x
(l+1)
i ) + bLi

≤ ξi + bLi

(6.44)

which show that

x̃(l) ∈ CP (ALi
RT

i , bLi
+ ALi

RT
i xi, xi) + ε̂x.

This is true for i = 1, 2. Hence we have shown that m ∈ E3

⋂
E4 .

Notice that we have shown that m ∈ E1

⋂
E2

⋂
E3

⋂
E4 = E , which is a contradiction.

Therefore, this case can never happen. Now we have completely exhausted all possible cases,

and we have thus completed the proof. �

As we rapidly approach the finale, let us now state a Lemma and a Theorem from

Anitescu and Hart which can be found in [5], where their proof is also given. They are

crucial for us to obtain our ultimate result.

Lemma 6.10. Consider the nonnegative sequences tn and zn, for 0 ≤ n ≤ N and hn for

0 ≤ n ≤ N−1, where t0 = 0 and tN = T . Here hn satisfies tn+1−tn = hn, for 0 ≤ n ≤ N−1,

and zn satisfies the inequality

z2
n+1 ≤ z2

n + hnc1(5z
2
n + 2zn) + c2hn,∀0 ≤ n ≤ N − 1,

where c1 > 0 and c2 > 0 are two real parameters. Let y(t, y0) be the solution of the scalar

differential equation

ẏ = 6c1y + (c1 + c2)

that satisfies y(0, y0) = y0. Then,
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1. y(t) satisfies

a. y(t, x1) ≥ y(t, x2) whenever x1 ≥ x2,

b. z2
n+1 ≤ y(hn, z

2
n).

2. z2
n ≤ y(tn, z

2
0), for 0 ≤ n ≤ N .

Theorem 6.11. Consider the nonnegative sequences tn, zn, wn and θn for 0 ≤ n ≤ N and

hn for 0 ≤ n ≤ N−1, where θ0 = 0, t0 = 0 and tN = T . Here hn > 0 satisfies tn+1−tn = hn,

for 0 ≤ n ≤ N − 1. Let ci > 0, i = 1, 2, . . . , 5, and ψ1(z, w) a continuous mapping of two

real arguments that is nonnegative whenever z ≥ 0 and w ≥ 0.

Assume the following:

Condition 1: Whenever

θn ≤ c5, (6.45)

for some n satisfying 0 ≤ n ≤ N − 1, the following inequalities hold:

z2
n+1 ≤ z2

n + hnc1(z
2
n + wnzn + w2

n + wn + zn) +
c2
2
hn + h2

nψ1 + c4
θ2

n

h2
n

(6.46)

wn+1 ≤ wn + c1hnzn+1, (6.47)

where ψ1 = ψ1(zn, wn).

Condition 2: If, in addition,

c1hnzn+1 ≤ c5, (6.48)

then the following inequality also holds for 0 ≤ n ≤ N − 1:

θn+1 ≤ c3h
2
nz

2
n+1. (6.49)

Condition 3: The time steps hn, n = 1, 2, . . . , N − 1 are chosen such that

hn−1

hn

≤ ch, (6.50)

where ch > 0 is a fixed parameter.

Then there exists an H > 0 such that, whenever hn < H, ∀0 ≤ n ≤ N − 1, we have

that (6.45), (6.48) and thus (6.46), (6.47) and (6.49) hold for any 0 ≤ n ≤ N − 1 and that

z2
n ≤ y(tn,max{z0, w0}2) and w2

n ≤ y(tn,max{z0, w0}2), ∀n, 0 < n < N . Here y(t, y0) is the

function defined in Lemma 6.10.
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Now we have carefully constructed all of the preliminaries items we need for our major

result. We have meticulously assembled all of the necessary parts to use Theorem 6.11.

Thus, we can now state our main results on the constraint stability of our algorithm which

can be summarized in the next theorem which is a direct consequence of Theorem 6.11. The

crux of its proof immediately follows from fact that the Assumption 1 of Theorem 6.11 is

satisfied because of Lemma 6.6. Assumption 2 is satisfied because of Lemma 6.9.

Theorem 6.12. Consider the time-stepping algorithm defined above and applied over a finite

time interval [0, T]. Assume that

• The active set A(q) is defined by (4.10).

• The active events E(q) are defined by (4.9).

• The time steps hl > 0 satisfy
N−1∑
l=0

hl = T, l = 1, 2, · · · , N − 1,

hl−1

hl
= ch, l = 1, 2, · · · , N − 1 .

• The system satisfies Assumtions (A1) and (D1) - (D3) .

• The system is initially feasible. That is, I(q(0)) = 0.

Then, there exist H > 0, V > 0, and Cc > 0 such that

1.
∣∣∣∣v(l)

∣∣∣∣ ≤ V ∀l, 1 ≤ l ≤ N and

2. I (q(l)) ≤ Cc

∣∣∣∣v(l)
∣∣∣∣2 h2

l−1,∀l, 1 ≤ l ≤ N .

Proof. Define t0 = 0 and tn+1 = tn +hn for 0 ≤ n ≤ N−1, and let zn, wn, ŵn, ẑn, and ĥn be

the quantities that we defined in (6.16), and define θn = I(q(n)). Then we have nonnegative

sequences tn, zn, wn and θn for 0 ≤ n ≤ N and hn for 0 ≤ n ≤ N − 1, where t0 = 0 and

tN = T , and θ0 = 0 because the system is initially feasible. Notice that hn > 0 satisfies

tn+1 − tn = hn, for 0 ≤ n ≤ N − 1.

Notice that Lemma (6.6) is precisely a statement that Condition 1 is satisfied. Likewise,

Condition 2 is satisfies immediately from the application of Lemma 6.9. Finally, Condition 3

is satisfied from our original assumption. Therefore, it follows that Theorem (6.11) applies.

From Theorem (6.11), there exist H > 0 and Z > 0 such that, whenever we have that

hl ≤ H, ∀l such that 0 ≤ l ≤ N , we can get ||zl|| ≤ Z, ∀l such that 0 ≤ l ≤ N .
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We see that the first part of the conclusion of our theorem is true, once we use (6.16),

and define V =
∣∣∣∣∣∣M− 1

2

∣∣∣∣∣∣Z to get ||vl|| ≤ V , ∀l such that 0 ≤ l ≤ N .

In addition to the second part of Theorem 6.11 we use Lemma (6.9). This means that

the second part of the conclusion of our theorem follows after we use zl+1 ≤
∣∣∣∣∣∣M 1

2

∣∣∣∣∣∣ ∣∣∣∣v(l+1)
∣∣∣∣,

which follows from (6.16) and from choosing Cc = 1
2
Cd

2 ||M−1|| ||M || in (6.31). �

The algorithm we propose here achieves constraint stabilization and, in particular, the

second conclusion of Theorem (6.12) actually quantifies the constraint stabilization property.

This means that the discretization error from our integration process cannot overwhelm the

solution. In the unstabilized schemes, the integration process may cause constraint drift,

where the computed solution fails to satisfy necessary geometrical constraints.

Notice that the velocity remains bounded. That is, as we proceed with our simulation

for a fixed time interval, and under some general suitable conditions on the external force

(6.13), the velocity will not become infinite.

We do not need to change the step size to control the infeasibility. In fact we only need to

solve one linear complementarity problem per step. This is a tremendous computational ad-

vantage, and means that in some sense, we can predict the maximum amount of computation

needed.

This method, although developed to handle convex polyhedra, can easily be extended

to other possibilities. For example, it is certainly possible to consider cases when the signed

distance function is defined piecewise (for whatever reason) and has component functions

that are, in fact, differentiable.

89



7.0 NUMERICAL RESULTS

We have previously shown that the solution set of the LCP subproblem may be nonconvex

for arbitrarily small friction [4]. However, even in this case, we can find two iterative methods

that converge linearly with a fixed convergence rate to a solution point, at least for small

values of the friction coefficient [6], while solving only convex subproblems that can be solved

in polynomial time, with no need to backtrack for collisions. The result is especially intriguing

since problems with nonconvex solution sets rarely have polynomial time solutions.

We have also shown that our method can be applied to interesting phenomena, such as

size-based segregation,. One example of size-based segregation is the Brazil Nut example

where 270 bodies were simulated, including a few larger sized bodies. The large ball emerges

after about 40 shakes, and this means that out results were in the same order of magnitude

as typical penalty method simulations, but with 4 orders of magnitude larger time step while

essentially capturing the same dynamics [28]. Figure 16 shows four frames of the Brazil Nut

example.

We have also previously defined a method that achieves constraint stabilization while

solving only linear complementarity problem per step [5]. Since our method does not need to

stop and detect collisions explicitly, it can advance with a constant time step and predictable

amount of effort per step. We proved that the velocity stays bounded and that the constraint

infeasibility is uniformly bounded in terms of the size of the time step and the current value

of the velocity.

In [7] we extended our method to a version with an adjustable parameter γ, and the

constraint stabilization effect was shown to hold for any γ ∈ (0, 1]. An application of this

method was used in a robotic grasp simulator [37]. In Figure 17, we see two frames of a

robot simulation consisting of a glass that is within the reach of a Bartlett hand that starts
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Figure 16: Four frames from the Brazil Nut example

Figure 17: Two frames of a robot simulation
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to close.

Finally, we show four examples of the successful implementation of our method, which

was adjusted to take advantage of convex polyhedral bodies. These problems all use the

Ratio Metric Penetration Depth to calculate the distance between bodies and the depth of

penetration, when it exist.

We successfully implement our algorithm for numerous examples, and in all simulations,

we define the following parameters:

h is the constant stepsize,

µ is the Coulomb friction coefficient,

γ is the constraint stabilization parameter.

εx is an event detection parameter,

εt is an event detection parameter,

ε0 is an event detection parameter, and

δmax is the maximum allowable determinant.

The parameters h, µ, γ, εx, and εt have been previously defined. However, especially in the

case of checking the EoE events, we need to determine whether the matrices were singular,

so if the determinant of the system exceeds δmax, we conclude that the system is singular.

Also, the theoretical condition t∗ ≤ t ≤ t∗ + εt is replaced by the computational condition

t∗ − ε0 ≤ t ≤ t∗ + εt.

Since it is impossible to compare the actual value of the maximum infeasibility for dif-

ferent timesteps, we instead use the average infeasibility, which is a fair comparison. The

simulations were all produced from implementation of our algorithm into several MatLab

routines. The numerical calculations were performed on either an Apple PowerBook running

a 1.67 GHz PowerPC G4 processor with 2 GB of RAM running Mac OS X 10.4.8 or an Apple

PowerMac G5 running a 1.6 GHz G5 processor with 512 MB or RAM running Mac OS X

10.4.8 and all calculations were performed by MatLab 10.0 R14 for Mac OS X.
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7.1 PROBLEM: BALANCE2

This problem is two dimensional and has six bodies: two triangles, three squares, and one

rectangle. With two squares and a triangle place on the rectangle and delicately balanced

on the other triangle, a square is dropped at one end, disturbing the initial balance of the

system.

We ran the simulation for 12 seconds with the parameters:

h µ γ εx εt ε0 δmax

0.01 0.1 1.0 0.01 0.1 0.0001 1000000

In Figure 18, we show six successive frames from the simulation. They represent the situation

for the values of time 0, 2, 3, 5, 6, and 12 seconds, respectively.

We demonstrate the effect of the constraint stabilization parameter γ, by running the

problem for a series of values of γ ∈ {0, 0.25, 0.5, 0.75, 1} and h ∈ {0.1, 0.05, 0.02, 0.01}. The

results are shown in Figure 19, where we clearly see that when the stepsizes are larger, then

infeasibility grows.

In Figure 20 we fixed γ = 1 and showed that, as h ∈ {0.1, 0.02, 0.01, 0.002, 0.001} that,

in the limit as the stepsize approaches zero, the behavior of the infeasibility is proportional

to the square of the stepsize, which validates Theorem 6.12.

7.2 PROBLEM: PYRAMID1

Despite it name, this problem is two dimensional and involves a single triangle with nine

rectangular bodies arranged in a row. The triangle makes contact with one rectangle, which

causes a chain reaction similar to dominoes falling.

We ran the simulation for 10 seconds with the parameters:

h µ γ εx εt ε0 δmax

0.01 0.2 1.0 0.01 0.1 0.0001 1000000

At the end of the simulation, the bodies were all at rest.
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Figure 18: Six successive frames from Balance2
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Figure 19: Problem Balance2: Effect of Constraint Stabilization Constant γ on Infeasibility

Figure 20: Problem Balance2: Infeasibility
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Figure 21: Six successive frames from Pyramid1
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Figure 22: Problem Pyramid1: Infeasibility

In Figure 21, we show six successive frames from the simulation. They represent the

situation for the values of time 0, 1, 2, 3, 4, and 10 seconds, respectively. The quadratic

nature of the constraint stabilization is again demonstrated in Figure 22 when we again

fixed γ = 1 and observed that, as h ∈ {0.1, 0.02, 0.01, 0.002, 0.001} that the behavior of

the infeasibility is proportional to the square of the stepsize in the limit, again validating

Theorem 6.12.

7.3 PROBLEM: DICE3

Originally, the theory for this thesis was developed for demonstration with two dimen-

sional problems. However, it soon became clear that the concepts easily extended to three

dimensions. What followed is the extension of the theoretical analysis to three dimensionsa.

This problem is precisely a three dimensional problem and two cubes, one on top of the

other. Gravity causes the cube on top to fall over the edge of the bottom cube.
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We ran the simulation for 3 seconds with the parameters:

h µ γ εx εt ε0 δmax

0.01 0.1 0.3 0.5 0.2 1.0e− 7 1.0e+ 10

At the end of the simulation, both of the bodies were on the floor but the one that fell was

not quite at rest. In Figure 23, we show four successive frames from the simulation. They

represent the situation for the values of time 0, 1, 2, and 3 seconds, respectively.

We were excited to notice the quadratic nature of the constraint stabilization for this

three dimensional problem, again seen in Figure 24 when we fixed γ = 1 and observed that,

as h ∈ {0.1, 0.05, 0.01, 0.005} that the behavior of the infeasibility is proportional to the

square of the stepsize in the limit, again validating Theorem 6.12 for a 3D case.

7.4 PROBLEM: SETUP6

This problem is another three dimensional problem and consists of two polyhedra, a cube

and a tetrahedron. The cube is dropped from its initial position somewhat above the cube.

Once it is dropped, it falls and collides with the tatrahedron. The collision causes the cube

to fall to the floor and slide away, while the tetrahedron slides into the corner.

Note again the quadratic nature of the constraint stabilization for this three dimen-

sional problem, again seen in Figure ??. We fixed γ = 0.3 and observed that, as h ∈

{0.1, 0.03, 0.01, 0.003, 0.001} that the behavior of the infeasibility is proportional to the

square of the stepsize in the limit, again validating Theorem 6.12 for a 3D case.

We ran the simulation for 6 seconds with the parameters:

h µ γ εx εt ε0 δmax

0.01 0.3 0.3 0.5 0.5 1.0e− 7 1.0e+ 10

At the end of the simulation, both bodies were all on the floor and at rest. In Figure 26, we

show four successive frames from the simulation. They represent the situation for the values

of time 0, 2, 4, and 6 seconds, respectively.
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Figure 23: Four successive frames from Dice3
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Figure 24: Problem dice3: Infeasibility

Figure 25: Problem Setup6: Infeasibility
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Figure 26: Four successive frames from Setup6
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7.5 DISCUSSION OF RESULTS

We have successfully defined a method that achieves constraint stabilization while solving

only linear complementarity problem per step [5]. Our method does not need to stop and

detect collisions explicitly and can advance with a constant time step and predictable amount

of effort per step. We proved that the velocity stays bounded and that the constraint

infeasibility is uniformly bounded in terms of the size of the time step and the current value

of the velocity.

All this is still possible for polyhedral bodies because of our newly defined Ratio Metric

Penetration Depth, which we used to calculate the distance or interpenetration between

bodies. The simulations all look very good, and we have shown successive frames for each

simulation. The achievement of constraint stabilization appears to be validated by our

numerical results, as seen in Figures 20 and 22.
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8.0 CONCLUSIONS AND FUTURE WORK

In the analysis of the time-stepping scheme for multi-body dynamics with joints, contact,

and friction that stabilizes constraint infeasibility while solving only one linear complemen-

tarity problem per step, local constraint stabilization has already been proved for the choice

of γ = 1 [5]. It was shown that this scheme achieves constraint stabilization and that in-

feasibility at step l is upper bounded by O(||hl−1||2
∣∣∣∣v(l)

∣∣∣∣2). We have developed a scheme

with 0 < γ ≤ 1, used it in a robotics applications, and demonstrated numerically its conver-

gence [7]. We have now extended the convergence analysis to prove that the scheme achieves

constraint stabilization. That is, this thesis has shown that the constraint infeasibility is of

order O(h2) where h is the time step, while the accuracy of the method is order O(h).

However, any body can be approximated by a finite union of convex, smooth-shaped

bodies, we could extend, in principle, the analysis for approximation of any configuration,

and we have now succeeded in extending the results with smooth bodies to non-smooth

or non-convex bodies. Therefore, this thesis has advanced anaylsis in the specific area of

convex polyhedra, which has currently not been performed to date. In order to do that,

we proposed a new metric that improves upon the current method of detection of collisions

or penetrations. This is a natural next step to move towards the analysis of contact with

non-smooth bodies.

Specifically, we have produced a metric that is equivalent to the Minkowski-type ones

proposed in [2, 32, 33], but with the huge advantage that penetration is simple to determine

computationally. Our new metric is truly interesting because penetration between two bodies

is easily determined. One of the truly remarkable aspects of the use of this metric is its

simplicity, in that its computations only involves solving a linear programming problem,

which can be done very efficiently.
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Note that the major accomplishments achieved in this thesis can be summarizes as fol-

lows:

1. I have successfully developed a special signed distance function indicator, which we de-

fined in Definition 2.12, for convex, polyhedral bodies. The function is based on solving

the linear program. Recall that the advantage is that computing this indicator function

has complexity O(m+ n), where m, n are the facets of the polyhedra, due to results on

the complexity of linear programming in R3 [35]. This compares much favorably with

previous results that have a worst case complexity at best O(n2) [32, 33].

2. We have successfully shown from the Metric Equivalence Theorem 2.16 that this new

measure of penetration depth is equivalent to the Minkowski Penetration Depth metric,

at least in the limit of small penetration.

3. We have successfully calculated the generalized gradients of this function, which are

needed in the linearization phase for implementation, by sensitivity analysis of the linear

program. This was discussed in Remarks 3.12 and and 3.10 and for a CoF contact, we

use equation 3.8.

4. We have successfully extended the convergence analysis to prove in Theorem 6.12 that,

when used in conjuction with the calculated generalized gradients, the scheme achieves

constraint stabilization. Particularly, we proved that the constraint infeasibility is order

O(h2) where h is the time step, while the accuracy of the method is order O(h).

5. We have successfully implemented the analysis into a method, namely Algorithm 6.5 that

achieves constraint stabilization while solving only one linear complementarity problem

per step for several problems with good results.

Some future endeavors based on this research may include:

• Optimizing program performance. Some of the programs used were previously created

and optimized for smooth bodies, and adapted for polyhedral bodies. They need to be

optimized for polyhedral bodies.

• Optimizing the algorithm. Worth serious investigation is the adoption of an algorithm

which at each step solves a strictly convex quadratic program, as opposed to solving a

mixed linear complementarity problem by conventional methods.
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• Extending the results of piecewise smooth signed distance functions to piecewise smooth

signed distance functions. We might get better results or sharper bounds from using

piecewise smooth functions.

• Extension to higher dimensions. It might be interesting to extend all results to higher

dimensions so as to include general convex polytopes, because future applications might

not be limited to three dimensions.

• Evaluating the bounds of constraint stabilization. It would be interesting to explore

the possibility of constraint stabilization results being useful for values of γ ≥ 1. It is

worth experimentation, since there are cases where extrapolation is beneficial, such as

the method of successive over relaxation (SOR) in the numerical solution of systems of

linear equations.

• Expansion of numerical examples. Of further interest is the implementation of this

method to sized-based segregation problems, such as the Brazil Nut example, using

polyhedral bodies..
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