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The advent of reliable simultaneous recording of the activity of many neurons has enabled 

the study of interactions between neurons at a large scale: the number of observed pairwise 

interactions is proportional to the square of the number of recorded neurons.  The dominant 

phenomenon in these pairwise interactions is synchronization, reflecting a system where 

many observed variables have in common a smaller set of latent variables.  This permits the 

possibility that the complex signals observed in the brain might be reducible to a simpler 

system.  We used this insight to design a better signal processing scheme for 

neuroprosthetics; to identify the same neurons in many recording sessions from their 

pairwise interactions; to show that the tuning functions of neurons in motor and premotor 

cortex do not reflect simple coordinate frame models; and to identify error as a dominant 

signal during continuous movements. 
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1.0  INTRODUCTION 

1.1 THE LATENT VARIABLE CONCEPT 

Latent variables occur in any situation where some observed phenomena reflect a 

simpler, more abstract set of unobserved latent variables.  For example, we could say that 

precipitation, temperature, and the time of sunrise all reflect the latent variable of the season.  

The term latent variable model generally refers to models of the form: 

CXY =  

Equation 1 

where Y is a q x T matrix of q observed variables, over T observations; X is a p x T matrix of 

unobserved latent variables; and C is a q x p matrix defining a linear relationship between X 

and Y.  It is understood that the true relationship may be nonlinear: in our example of season 

as a latent variable, there is not a linear relationship between season and snowfall.  

Nonetheless a linear model can be a good approximation that will allow us to discover the 

latent variables in a set of data.  Let us consider a simple example.  Figure 1 shows some 

seasonally varying data. 

 13 



 

Figure 1.  Several astronomical and weather variables for Pittsburgh, PA.  Blue line is 60-day moving average. 

 

We suspect that all these variables are associated with the latent variable season.  We 

can use a standard technique, factor analysis, to try to identify this variable from the data.  

Factor analysis fits the maximum-likelihood C for the model in Equation 1 under the 

assumptions that everything is linear and the observed variables in Y are each contaminated 

by noise.  Factor analysis requires that we specify how many latent variables are present; we 

are going to specify two.  Figure 2 shows the resulting factors. 
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Figure 2.  Latent variables for Figure 1 data, computed using factor analysis.  Vertical gray lines show January 1 

of each year. 

 

We have identified two sinusoidal signals which are roughly 90° out of phase.  This 

makes sense when we consider that season is a cyclic variable, so we need a sine and a cosine 

to fully specify it (we shall return to this concept much later in this dissertation).  In this 

example, we know that the discovered latent variable corresponds to the earth orbiting the 

sun.  In general, it is not necessarily the case that a latent variable will correspond to a single 

physical process.  If we were to study sales of 6’ tall trees, wrapping paper, and hardcover 

books we might identify Christmas as a latent variable, which does not correspond to a 

specific physical event. 

This type of model does not apply to every situation.  A good example of a process for 

which these methods are ill-suited is the tides.  From the point of view of a person standing 
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on the shore looking down, there is a single observed variable, the height of the water, which 

is driven by two unobserved variables: the positions of the sun and the moon.  For this person 

to understand the tidal process they need to realize that the single complex signal they 

observe (the height of the water) can be explained by two simpler cyclic signals and a 

nonlinear relationship.  The type of model in Equation 1 is not useful here, because there are 

more hidden variables (sun and moon) than observed variables (water height), and the 

relationships involved are not well-approximated by linear models.  Latent variable models 

make sense for neural data when we have many simultaneously recorded neurons and there 

is considerable correlation in the population.  Broad-timescale correlation has long been 

observed in cross-correlations between neurons (Figure 26).  This type of correlation is often 

considered to reflect common inputs, rather than specific anatomical connectivity between 

the recorded neurons (Moore et al. 1970).  Broad-timescale cross-correlograms like those in 

Figure 26 have received less attention in the literature because they are difficult to interpret.  

In a technically daunting effort, Matsumura et al. (1996) recorded intracellularly in neurons in 

the motor cortex of both anesthetized and awake monkeys.  Intracellular recordings are much 

more sensitive to the presence of monosynaptic connections than extracellular spike-

triggered averages.  Nonetheless, those authors showed that broad-timescale 

synchronization was the dominant phenomenon, which in the case of intracellular recording 

manifests itself as a broad depolarization of the intracellularly recorded neuron both before 

and after another neuron fires an action potential.   

The most obvious way to study broad-timescale correlations is to examine cross-

correlograms between pairs of simultaneously recorded neurons.  With more than two 
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neurons being recorded at once there will be multiple combinations that can be considered: 

 possible pairs where n is the number of neurons.  With arrays of more than a few 

electrodes, it is no longer practical to examine cross-correlograms individually in search of a 

general principle.  The availability of so many cross-correlograms is nonetheless an 

advantage, but we will need to use more sophisticated approaches to understand the data, 

such as the latent variable model in 

2/)1( −⋅ nn

Equation 1.  In this situation the Y matrix corresponds to 

firing rates of individual neurons, while the X matrix corresponds to signals that many 

neurons have in common.  

In this dissertation, we are going to look at explicit latent variable models of neural 

data, but also at various technical issues that are illuminated by thinking about neural 

populations in terms of latent variables.  We will leverage the insight we gain to build a better 

neuroprosthetic (1.2, Chapter 2.0) and to track neurons over multiple days (1.3, Chapter 3.0).  

We will use the large amounts of data we collected to show how simple models fail to provide 

a complete description of the firing properties of single neurons in a complex task (1.4, 

Chapter 4.0).  Finally, we will use machine learning techniques to identify an error-related 

signal that has previously been shown to exist, but never viewed directly due to its complex 

embedding in the population (1.5, Chapter 5.0).   

1.2 NEUROPROSTHETICS AS ESTIMATORS OF LATENT VARIABLES 

The observation that many neurons in motor cortex are broadly tuned to the intended 

direction of arm movement (Georgopoulos et al. 1982) led to a scheme for extracting 
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intention from many separately recorded neurons: the population vector (Georgopoulos et al. 

1988).  The population vector is a vector-based algorithm in which the normalized firing rate 

of each neuron drives a cursor in that neuron’s preferred direction (PD).  Normalization 

consists of subtracting a baseline rate and dividing by a modulation depth for each neuron.  

The formula for the basic population vector is: 

i

q

i
iii mbrpv /)(

1
∑
=

−⋅=  

Equation 2 

where v  is the intended movement vector, ip  is a unit-length vector representing the PD of 

neuron i ,  is the firing rate of neuron i,  is the baseline firing rate of neuron i and  is the 

modulation depth of neuron i.  The p, b, and m parameters are specified according to the 

following model: 

ir ib im

)( dpmbr iiii ⋅+=  

Equation 3 

where d  is the direction of intended movement.  This model can be fit with linear regression 

using neural firing rates that occur when the monkey’s intent is known.  Fitting this model 

represents something of a chicken-and-egg problem, since we can’t decode the monkey’s 

intent until we fit the model, and the tuning characteristics of neurons are not always the 

same between normal arm movement and prosthetic control (Taylor et al. 2002).  The 

procedure for solving this problem has evolved over the years.  Our current practice in 

neuroprosthetic cursor control is to begin each session by presenting several peripheral 

targets with a stationary cursor at the center of the monitor (Jarosiewicz et al. 2008).  We 
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assume the monkey attempts to move the cursor in the direction of the target and fit the 

model of Equation 3 accordingly.  We periodically re-fit that model during the first few 

minutes of control using the accumulated data.  During this time, we artificially straighten the 

monkey’s movement using a procedure called deviation gain, in which the movement of the 

cursor is decomposed into a vector pointing directly at the target plus a vector pointing 

orthogonal to that direction (Velliste et al. 2008, Supplementary Methods).  The orthogonal 

vector is multiplied by the deviation gain which is between 0 and 1.  This has the effect of 

making the monkey’s movements more accurate without actually pushing the cursor toward 

the target.  We only use the deviation gain during the adaptation period, which tends to last 

around 30 trials, after which the parameters of Equation 3 are fixed. 

The population vector and the associated adaptation procedures have always been 

based on the idea that individual neurons are approximately cosine-tuned to the direction of 

intended movement.  When we do online spike sorting we often include “units” which are 

small and noisy and probably include the activity of multiple neurons.  Nonetheless the 

extraction algorithm (the adaptation and population vector procedures) is based on the 

assumption that individual cosine-tuned neurons drive these signals.  However, in the context 

of pure neuroprosthetics we are not actually interested in the neurons in and of themselves, 

only in the monkey’s intent.  The population vector can be considered an estimator of the 

hidden intent of the monkey, given a set of observed variables (neural firing rates).  Other 

estimators have since been developed which better account for some properties of real 

neurons, such as non-uniform PD distributions, Poisson noise, and non-cosine-tuned neurons 

(Brockwell et al. 2004; Koyama et al. 2010; Wu et al. 2006).  If we are interested in using 
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neuroprosthetics as a medical device, these schemes are all hobbled by the need to convert 

the raw signals being recorded from the subject’s cortex into a series of spike times 

associated with individual neurons.  This process, spike sorting, is a time-consuming manual 

system which is not plausible in a device intended to be used by patients in their own homes.  

Converting the time-varying voltage signal on a microelectrode into a series of spike times 

requires two steps: setting a threshold which detects waveforms that may be action 

potentials, and then sorting these waveforms into categories corresponding to one or more 

neurons and noise.  The first step is straightforward to automate: a threshold can be set based 

on the standard deviation of the voltage signal, or it can be adjusted to target a specific 

number of waveforms per second, or we can simply set a single level across all channels.  

Circuits have been developed that can fit on the back of an implanted Utah array and perform 

threshold detection (Harrison et al. 2009). The second step, spike sorting, is more difficult to 

automate.  A scheme based on modeling the waveform distribution as a mixture of Gaussians 

has been implemented (Sahani 1999; Santhanam et al. 2004) but it requires that the 

implanted signal processing circuitry either export all detected waveforms on all channels, or 

implement a spike-sorting algorithm on-chip.  This increases the complexity of a device which 

needs to be very compact and low-power, and we will find that it is possible to avoid the 

need for spike sorting entirely.  

Ventura (2008) demonstrated that a detected action potential could be assigned to a 

neuron of origin probabilistically, by assessing the likelihood that a particular neuron would 

have fired at that time given its tuning function and the current estimated intended direction 

of movement.  Pseudo-sorting the spikes in this manner offers a way around the obstacle of 
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manual spike sorting in a clinical setting.  However, if we consider that we are ultimately 

interested only in the hidden intent and not in the individual neurons, there is more direct 

solution.  We can re-pose the neuroprosthetic problem by considering the intended 

movement direction as a latent variable.  The population vector and other similar algorithms 

extract this latent variable by inferring it from the firing rates of individual neurons.  However, 

it is possible to skip the intermediate step of neurons and proceed directly from a relatively 

unprocessed signal to the intended direction of movement.  We set a threshold on each 

channel using a global rule that does not require manual intervention.  We used a uniform 

voltage level across all channels that was chosen to be as unselective as possible without 

overloading the DSP system (Fraser et al. 2009).  A similar scheme has since been described 

which used a threshold based on the root-mean-squared power of the signal on each 

electrode (Gilja et al. 2010).  The theory of these schemes is that the threshold-crossing count 

is an observable variable which, like individual neurons, is linearly related to the latent 

variables of the monkey’s intended movement direction.  The threshold-crossing counts 

reflect the activity of identifiable neurons together with background activity consisting of the 

combined electrical fluctuations of many neurons.  A neuroprosthetic system based on this 

scheme is the subject of Chapter 2.0 , “Control of a brain-computer interface without spike 

sorting.” 
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1.3 USING THE REDUNDANT CHARACTERISTICS OF FIRING RATES TO TRACK 

NEURONS CHRONICALLY 

The most obvious finding when latent variable models are applied to neural data is that the 

firing rates of a population of neurons, when smoothed at long timescales, contain 

considerable redundancy (Yu et al. 2009).  It implies that there is a low-dimensional 

representation that explains a large portion of the firing rates of many single neurons, at least 

in the context of a specific task.  This redundancy is expressed in the cross-correlograms 

between pairs of neurons as large triangular peaks at zero-offset, which are thought to reflect 

the mass action of many common inputs to the two neurons (Moore et al. 1970).  The latent 

variable concept can be thought of as a mathematical formulation of a neural network that is 

dominated by the mass action of many neurons.  If the latent variable model is consistent in a 

given population from day to day, then these cross-correlograms will also be consistent.  That 

opens up the possibility that we might use these cross-correlograms as an identifying feature 

to recognize when the same neuron has been recorded in multiple sessions separated by one 

or more days.   

The notion of recording from the same neurons chronically is not new (for example, 

Schmidt et al. 1976).  However, all methods for labeling the same neurons over multiple 

session have either been subjective (Chestek et al. 2007; Ganguly and Carmena 2009; 

Greenberg and Wilson 2004; Jackson and Fetz 2007; Schmidt et al. 1976; Williams et al. 1999) 

or have been based on weak classifiers that are subject to severe error rates (Dickey et al. 

2009; Tolias et al. 2007).  The fundamental problem is that the average shape of the action 

potential from one sorted unit provides only a limited amount of information.  Cross-
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correlograms between neurons, if they are consistent from day to day, represent a powerful 

potential source of information because they are so numerous: for n neurons there are 

 cross-correlograms.  The supposition that long-timescale features of cross-

correlograms might be consistent is borne out in the data.  It represents an extremely useful 

technical consequence of the latent variable concept.   

2/)1( −⋅ nn

In Chapter 3.0 , “Recording from the same neurons chronically in motor cortex” we 

take advantage of the ability to track neurons chronically to address a fundamental question: 

are the firing properties of neurons in motor cortex stable over time?  There is a divergence of 

opinion in the literature as to whether the tuning characteristics of neurons are more or less 

fixed, or whether they evolve continuously as part of a dynamic  network.  Li et al. (2001) show 

examples of primary motor cortex neurons which seem to maintain a changed preferred 

direction after macaques performed a practiced visuomotor rotation task, but they are only 

able to record these neurons for a single session and thus it is unknown whether these 

changes remain the next day.  Ganguly and Carmena (2009) recorded primary motor cortex 

neurons chronically and identified a subset which they deemed stable across periods of up to 

19 days.  They showed examples of cells with stable tuning to arm movement direction across 

the study period.  In the context of a brain-computer interface paradigm where movement of 

a cursor was directed by brain activity, they showed that the tuning of neurons to movement 

direction evolved and then stabilized as performance in the task improved.  Chestek et al. 

(2007) recorded neurons in primary motor cortex for single sessions, as well as some neurons 

which they deemed stable across two sessions.  They found small variations in tuning to arm 

movement which were potentially explained by a similar level of variation in the movement 

 23 



itself.  Greenberg and Wilson (2004) recorded premotor cortex neurons and identified a small 

number of cells that seemed stable across periods of up to 9 days.  They found that most 

neurons were consistently tuned to the abstract characteristics of a delayed-response task, b-

ut a minority changed their tuning across sessions.  With the ability to track the same neurons 

over many weeks, we were able to demonstrate that there are small changes in PD from day 

to day, but these small changes do not add up into large changes over time. 

1.4 COMPLEXITY OF TUNING FUNCTIONS IN A RICH MOVEMENT TASK 

Early studies of the activity of motor cortex neurons in awake behaving monkeys focused on 

very simple tasks, such as squeezing a force sensor, flexing the wrist, or pulling a lever (Evarts 

and Tanji 1976; Fetz and Cheney 1980; Smith et al. 1975).  Investigators focused on the 

corticospinal tract and the motor cortex’s role as a driver of muscle activity.  When motor 

cortex neurons were recorded during a more complex two-dimensional reaching task, they 

were found to be broadly tuned to the direction of movement, a comparatively abstract 

parameter (Georgopoulos et al. 1982).  However, there is heavy correlation between EMGs, 

the direction of movement, and kinetic and kinematic parameters.  This has led to an ongoing 

controversy over what variables are and are not encoded in motor cortex.  Depending on the 

details of the behavorial paradigm, different features such as muscle activity or direction of 

movement can appear to be dominant.  A recent study (Churchland and Shenoy 2007) 

provided a somewhat radical perspective on this issue.  Churchland and Shenoy recorded 

single neurons in the primary motor cortex and dorsal premotor cortex of macaques 
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performing a center-out reaching task with multiple target directions and distances.  They 

trained the macaques to an unusually high degree, so that their movements would be 

extremely consistent across repetitions.  They also discarded any trials where the movement 

was unusual, and they recorded individual neurons for many more trials than were necessary 

simply to get estimates of tuning functions.  Because of these factors, they were able to make 

highly accurate estimates of how a neuron’s firing rate would evolve over time during a 

specific type of reach.  They compared these firing rate profiles to EMGs and a number of 

kinematic parameters, and found that these parameters explained only part of the neurons’ 

firing rates.  Furthermore, they were able to show that it was mathematically impossible for 

any small set of variables to explain the details of all the firing rate profiles.  Those authors 

suggest an unusual conclusion: perhaps these neurons do not actually encode any abstractly 

meaningful parameters.   

We sought to examine the same issues using a 26-target three-dimensional reaching 

task.  Where Churchland and Shenoy studied the temporal details of firing rates, we studied 

the spatial details.  Additionally, because we used fixed electrode arrays, we recorded many 

low-firing-rate neurons that would likely have been missed when electrodes are introduced 

daily and an investigator searches for neurons to record while advancing the electrode.  We 

found that individual neurons were sensitive to both the direction of movement and the 

phase of the task.  The distribution of preferred directions in 3D space was highly non-

uniform, with a bias towards the saggital plane, and the distribution of preferred phases was 

dispersed across all phases of the task, including before and after movement occurred.  These 

tuning functions were not accurately described by kinematic parameters.  In an effort to 
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summarize the meaning of population activity, we reduced the many simultaneously 

recorded neurons into a small set 6-15 latent variables and performed information theoretic 

analysis.  We determined that activity was influenced by both the direction and target of 

movement throughout all phases of the task, with a modest tendency for more directional 

information around the period of peak movement speed. 

1.5 USING LATENT VARIABLES TO CHARACTERIZE BRAIN FUNCTION 

The latent variable concept is not only useful for motivating technical advances.  

Latent variable models are often used in system identification, where the dynamical system 

driving a set of observed variables is modeled automatically using machine learning 

techniques (Shi and MacGregor 2000).  Latent variables are applicable whenever the observed 

variables are driven by a simpler underlying system.  The brain is obviously too complex a 

system to be subjected to true system identification when only a few hundred neurons are 

recorded, but there may be aspects of brain function that are implemented by a large number 

of neurons but fundamentally reflect a simple low-dimensional system.  Under these 

circumstances, it would be feasible to record enough neurons participating in the same low-

dimensional system to identify some dimensions automatically. 

The representation of direction of movement in motor cortex seems to be an example 

of this type of system.  Direction of intended arm movement explains a meaningful fraction of 

the variance in the firing rate of neurons in motor cortex even though it only has 2 or 3 

degrees of freedom.  The population vector extracts a directional signal from this population; 
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it can be thought of as a way to extract latent variables (directional components of 

movement) where we have specified an explicit model for the C matrix in Equation 1 (the 

cosine tuning model, which can be formulated as a linear operation).  The fact that the 

population vector works means there is a directional signal in this population, at least in 

specific contexts.  But it doesn’t exclude the possibility that other signals are also present.  We 

need a different method to extract those other signals.  Instead of specifying the C matrix 

based on an explicit model of how the neurons are tuned, we can use machine learning 

methods to discover C and X in simultaneously recorded data. 

In a prior example of this approach, Yu et al. (2009) developed a method called 

Gaussian process factor analysis (GPFA) to extract a latent variable representation from a 

population of 61 simultaneously recorded neurons in motor cortex.  In Churchland et al. 

(2010) this method was applied to population activity in dorsal premotor cortex during a 

delay-period movement task.  After using GPFA to extract the matrix of latent variables X 

(from Equation 1, p latent variables × T timepoints), they considered each column of X as a 

position in p-dimensional space, and showed that that this position followed a characteristic 

trajectory each time the monkey made a movement (Figure 3).   
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Figure 3.  From Churchland et al. (2010).  A low-dimensional latent variable representation of neural population 

activity follows a characteristic trajectory in each trial of a delay-period movement task.  Single trials with 

unusually long reaction times also have unusual trajectories in this space (red traces).  (b) and (c) represent 

different days of recording.  Adapted by permission from Macmillan Publishers Ltd: Nature Neuroscience 

(Churchland et al. 2010), © 2010. 

 

 

 

The activation of latent variables always moved to a specific position in p-dimensional 

space during the pre-movement period.  When it was outside of that region when the go cue 

was given, the monkey had longer reaction times, indicating that the activations of latent 

variables had to be at specific values before the monkey could proceed with movement.  This 

paper was primarily about the decline in variability associated with the presentation of a 

stimulus, but it was a significant application of the latent variable concept because it showed 

that it was possible to extract a low-dimensional set of variables that seemed to be 

meaningful.  However, it was limited to a single day’s recordings, and the possible meaning of 
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individual latent variables was not explored.  That is the issue at the center of Chapter 4.0.  We 

take advantage of the cyclic nature of a ellipse-drawing task to selectively extract latent 

variables that are sinusoidal.  This approach produces a small set of latent variables consisting 

of simple features that can be studied directly.  These features seem to correspond to the 

horizontal and vertical direction of movement, and an error signal that anticipates the need 

for corrective movement. 

1.6 DEVELOPING A PLATFORM FOR WIDESPREAD SIMULTANEOUS RECORDING 

The Utah array (Maynard 1997) has been invaluable for providing reliable simultaneous 

recordings of many neurons.  However, it is subject to some significant limitations.  One Utah 

array can only record in one brain area, and the total number of simultaneously implanted 

arrays is limited by our ability to place multiple connectors on a single monkey’s head.  Due to 

the short length of its electrodes (1.0-1.5mm), the Utah array cannot access brain areas that 

are located in the sulci of the cortex, and it cannot access deep brain areas at all.  To address 

some of these issues, we developed a new platform for simultaneous recording of many 

neurons across many brain areas, with much longer, individually adjustable electrodes.  

Unlike the Utah array, which is implanted under the bone with a lead wire extending to a 

head-mounted connector, our platform is based on recording chamber technology.  In order 

to achieve our goals, it was necessary to significantly improve the performance of existing 

recording chambers, which are limited in size by the need to anchor the edges with dental 

acrylic, and which are prone to catastrophically detach from the skull in some monkeys.  
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While our efforts are incomplete, we were able to make significant progress in the 

improvement of this technology.  Recording chambers with vastly improved performance 

were developed and used in four monkeys without any failures.  An array of 256 individually 

moveable electrodes was developed based on a new, highly compact and cheap to 

manufacture linear motion mechanism.  It can be implanted into an existing recording 

chamber without additional surgery.  Full-scale prototypes were constructed and successfully 

recorded neural activity.  The details of this system are described in Chapter 6.0 . 
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2.0  CONTROL OF A BRAIN-COMPUTER INTERFACE WITHOUT SPIKE SORTING1 

In this chapter, our application of the latent variable concept to neural data was at an early 

stage. By thinking about neuroprosthetics in terms of extracting hidden signals, we were able 

to skip an intermediate step of identifying individual neurons and create a simpler scheme for 

neuroprosthesis.  It is a purely technical work; its purpose is to bring brain-computer 

interfaces a step closer to being useable in the real world.  

2.1 ABSTRACT 

Two rhesus monkeys were trained to move a cursor using neural activity recorded with silicon 

arrays of 96 microelectrodes implanted in the primary motor cortex. We have developed a 

method to extract movement information from the recorded single and multi-unit activity in 

the absence of spike sorting. By setting a single threshold across all channels and fitting the 

resultant events with a spline tuning function, a control signal was extracted from this 

population using a Bayesian particle-filter extraction algorithm. The animals achieved high-

                                                 

1 This chapter was published as Fraser GW, Chase SM, Whitford A, and Schwartz AB. Control of a brain-

computer interface without spike sorting. J Neural Eng 6: 055004, 2009. 
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quality control comparable to the performance of decoding schemes based on sorted spikes. 

Our results suggest that even the simplest signal processing is sufficient for high-quality 

neuroprosthetic control. 

2.2 INTRODUCTION 

This paper demonstrates an alternate strategy for processing signals from intracortical 

electrodes for prosthetic control.  Current brain-computer interfaces based on intracortical 

electrode arrays use extracellular action potentials processed with spike-sorting strategies to 

generate a control signal (Hochberg et al. 2006; Musallam et al. 2004; Santhanam et al. 2006; 

Taylor et al. 2002; Velliste et al. 2008; Wessberg et al. 2000).  A threshold voltage is set for a 

particular electrode and each time the voltage potential exceeds that threshold, a waveform 

snippet of the time-varying potential is recorded.  These waveforms are divided into one or 

more categories, in the hopes of identifying individual cells or separating out cell-related 

activity.  During a typical neuroprosthetic control experiment, a human operator will view the 

ongoing waveforms for a brief period on each channel at the beginning of each day’s session 

and attempt to identify distinct waveforms by setting the spike-sorting parameters of a digital 

signal processing device.  The need for human intervention is an obstacle to bringing neural 

prosthetics from the lab to the clinic, as is the complex digital signal processing employed in 

current brain-computer interfaces.   

A separate class of brain-computer interfaces (BCIs) use low-frequency signals from 

external electrodes (EEGs, for example Wolpaw et al. 1991), surface macroelectrodes (ECoGs, 
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for example Leuthardt et al. 2004), or intracortical microelectrodes (LFPs, for example Mehring 

et al. 2003, Pesaran et al. 2002).  These techniques and those based on spikes activity can be 

ordered according to their spatial resolution, with EEGs at one end and spike activity at the 

other.  The BCIs with the greatest number of degrees of freedom and accuracy have been 

operated with spike activity (Taylor et al. 2002; Velliste et al. 2008; Wessberg et al. 2000). 

Recent papers have suggested other schemes for extracting a control signal from 

intracortical recordings.  Stark and Abeles (2007) showed that multiunit activity, reflected in 

the power between 300-6000 Hz, is a good predictor of upcoming hand movement in 

macaques.  Ventura (2008), using simulated data, extracted  movement intent from mixtures 

of tuned units, with an accuracy comparable to traditional spike-sorting approaches.  Both of 

these papers suggest that there is information to be found in relatively unprocessed signals 

from microelectrodes in the motor cortex.  In the current study, we report on the feasability of 

operating a  brain-computer interface without spike sorting with recordings from two 

monkeys chronically implanted with microelectrode arrays. 

2.3 METHODS 

2.3.1 Chronic microelectrode implant 

Monkey A, a male rhesus macaque, was implanted in January of 2007 with a single 96-

channel array (Blackrock Microsystems; Maynard et al. 1997) on the convexity of the motor 

cortex next to the central sulcus, with the lateral edge of the array ~2mm medial to the genu 
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of the arcuate sulcus.  The recording sessions reported here were done in June of 2008.  

Monkey C, also a male rhesus macaque, was implanted in February of 2009 in the same 

location.  The reported sessions were recorded 10 weeks later.  Monkey A’s array gave as 

many as 130 distinguishable cells and multineuron combinations during the period of best 

recordings.  At the time of this experiment, June 2008, there were 1-2 clear single units, 1-6 

probable single units, ~40 fair neurons/multineuron combinations, and 15-30 poor, 

multineuron traces on a typical day of recording.  Monkey C’s array gave ~75 fair 

neurons/multineuron combinations and ~5 probable single units on the day of this 

experiment. 

2.3.2 Behavioral task 

Prior to the implant, the monkey was trained to do a center-out arm movement task in 

a virtual environment.  It sat in front of a stereoscopic computer monitor (DTI, Rochester NY) 

with one arm gently restrained, the other free to move with an infrared marker taped slightly 

distal to the wrist so that its position could be monitored with a motion capture system 

(Northern Digital, Waterloo ON, Canada).  The position of the infrared marker drove the 

position of a green cursor displayed on the screen in a virtual environment.  Blue spheres 

were displayed as targets at various points in the three-dimensional environment and the 

monkey was rewarded with a droplet of water for making and holding contact with the 

targets.  In each case, the monkey first made contact with a central target and touched the 

target for a required time of 200—300 ms, selected randomly from a uniform distribution.  A 

peripheral target was then randomly selected from a queue of remaining targets.  In the 
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experiments described in this paper, we used a set of 16 targets, their centers arranged evenly 

in an circle on the plane of the monitor with a radius of 85 mm for monkey A and 79 mm for 

monkey C.  The monkey moved to the peripheral target within a limited time period—1600 

ms in this study—and held contact for a required time of 0-200 ms.  The cursor and the target 

had radii of 8 mm for monkey A and 9 mm for monkey C.  The variable hold period was long 

enough that the monkey couldn’t consistently succeed by moving straight through the 

target—it had to stop or drastically slow its movement as it approached the target.  Once a 

target was hit successfully, it was dequeued from the remaining targets.  

After the monkey was implanted and the neural signals were deemed large enough 

and stable enough to sort (about three weeks for both monkeys), the animal began to use the 

brain-computer interface.  Both arms were restrained and the cursor was driven with neural 

activity.  To decode intent, it is necessary to determine the tuning parameters of the neurons 

being recorded.  In this study, we made a first estimate by running the task with null tuning 

parameters.  In brain control, the cursor was placed on the central target at the beginning of 

each trial.  Then the peripheral target was presented after the expiration of the central hold 

period.  Initially,  the monkey was unable to move the cursor with null tuning parameters and 

failed each trial.  Nevertheless, the monkey modulated its neural activity consistently for each 

target, making it possible to estimate tuning parameters and begin real-time neural 

decoding.  During this initial period where the control parameters are adapting, we enhanced 

the straightness of the trajectories by artificially reducing the deviation from the ideal, 

perfectly straight movement.  At each timestep, the prediction of the decoding algorithm was 

decomposed as the sum of a vector straight towards the target and a vector orthogonal to it.  
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The orthogonal vector was then multiplied by the deviation gain: between 0.1 and 0.5 in this 

study. Adjusting the deviation gain is a highly subjective process; we ramp up the deviation 

gain as the model parameters are re-fit with more data and the decoding becomes more 

consistent.  Choosing how much deviation gain to apply is a matter of balancing the need for 

straight trajectories with the tendency of the monkey to modulate erratically if it realizes that 

the trajectories come out straight regardless of the consistency of its modulation.  We need 

straight trajectories while the decoding parameters are being fit so that we can accurately 

compute the tuning functions of signals.  At the same time, the monkeys have shown a 

tendency to produce inconsistent modulation if the deviation gain is too strong for too long.  

The experimenter attempts to balance these priorities.  Typically the deviation gain is 0.1-0.25 

for the first 16 targets, 0.5 for the next set, and off thereafter.  If the trajectories are still erratic 

we will keep it on longer.  This procedure was used only in these adaptive sessions. Deviation 

gains were only used for a short period at the beginning of a daily experimental session for 

calibration purposes.  Subsequent control used no deviation gain. 

2.3.3 Signal Processing 

Signals were buffered, amplified, bandpass filtered to 250-8000 Hz, and processed 

using a 96-channel Plexon Multichannel Acquisition Processor (Plexon Inc, Dallas TX).  The 

DSP system was configured so that it would register all events crossing a negative threshold 

in the downward direction and send their times to one of the task-management computers.  

In monkey A, a threshold was set across all channels at -37.5 uV, except 10 channels where the 

power of the time-varying voltage was so high that it constantly saturated the A/D converter.  
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On those channels the gain was reduced until the clipping was under control, effectively 

putting the thresholds in the (-)40-80 uV range.  In monkey C, the signals had higher 

amplitude and the threshold was set at -60 uV for all channels.  In both animals the threshold 

was chosen to be as low as possible without severely overloading the capacity of the DSP 

system on too many channels.  There was sufficient variation in the signals to cross the 

threshold on 95/96 channels in monkey A, and 78/96 channels in monkey C.  It should be 

noted that because of the difference in the age of the implanted arrays (10 weeks in monkey 

C versus 1.5 years in monkey A), the signals are very different.  In the very old array of monkey 

A, the amplitude of the sortable action potentials are much closer to the amplitude of the 

background noise.  In the very young array of monkey C, the action potentials stand out much 

more strongly from the background, but there are often more active neurons observable on a 

given channel.  Hence the threshold had to be set higher in monkey C to avoid capturing so 

much activitiy that the capacity of the DSP system would be overloaded.  This higher 

threshold resulted in 18 channels that observed no threshold-crossings.  For the same reason 

monkey C showed less of a difference in baseline rate for sorted versus unsorted sessions, as 

evidenced in Figure 8.  It should be noted that in both monkeys the resulting signals were not 

comparable to single-unit recordings; the waveforms picked up by the threshold included 

large amounts of background activity and noise on nearly every channel where the signal 

crossed threshold at all.  This is evidenced by the fact that threshold-crossings showed 

consistently higher baseline rates and modulation depths than units sorted on the same 

channels (Figure 8). 
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2.3.4 Decoding algorithm 

We used a Bayesian Monte-Carlo estimation algorithm very similar to the one 

described by Brockwell and colleagues (2004).  This algorithm, called a particle filter, solves 

the problem of decoding neural intent by offering a firing-rate model for each recorded unit, 

then estimating the movement intent most consistent with this forward model and the recent 

history of movement.  The particle filter can be intuitively understood in terms of a hypothesis 

space of movement intents that the monkey might have at the present timestep.  The particle 

filter uses modulated control signals: a neuron whose firing rate increases for a particular 

movement direction, or in this study, a time-varying voltage signal which crosses a threshold 

more or less often depending on the current intended movement direction.  A single 

modulating signal gives the particle filter information about which regions of the hypothesis 

space are consistent with its current level of activity.  One signal alone will leave ambiguity: a 

high-firing neuron indicates movement in its preferred direction, or perhaps movement 

somewhat off its preferred direction at a higher speed.  These signals are noisy, so one signal 

may simply be wrong at the present moment.  The particle filter searches the hypothesis 

space at several hundred points—particles—for the region that is most likely given all the 

current activity levels.  The distribution of particles in one timestep is generated from their 

position in the previous timestep, which enforces our assumption that movement in the 

current timestep is similar to movement in the previous timestep.  This distribution is biased 

according to the likelihood of the hypothesis that each particle had found.  Thus the particles 

form a cloud that follows the most likely region of the hypothesis space from one timestep to 

another.  This process is diagrammed in Figure 4.  Using a particle filter as an extraction 
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algorithm is simply a matter of identifying a modulated signal and specifying a tuning 

function for it.  Brockwell and colleagues used an exp(cosine) firing rate model where each 

sorted unit had a baseline rate, a single preferred direction, and an adjustable-width tuning 

function.  Our new approach is based on a firing rate model that makes fewer assumptions 

about the shape of the tuning function. 
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f  is a bell-shaped function spanning the range [-2,2].  It represents a cubic spline basis 

function; by shifting and spacing these basis functions at intervals of 1 and adding them up, 

we get a set of basis functions that span the entire circle of movement directions.  is the 

weight of a particular spline basis function, fit by a regression model.  The effect of the 

summation portion of the firing model is to fit a smoothing spline to firing rate as a function 

of the intented movement direction in the X-Y plane.  This process is diagrammed in 

iw

Figure 5.  

Our model effectively states that firing rate is equal to a baseline rate plus an 8-knot spline 

function in polar coordinates that expands and contracts according to the speed of 

movement.  The  parameters which determine the shape of the spline function are fit using iw

 39 



linear regression.  Our decoder is written in Matlab (Mathworks, Natick MA) and uses its GLM 

library to fit the model with an identity link function.   

X
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Particle Filter MovementThreshold-crossings

HypothesesPDF for each unit

 

Figure 4.  Extracellular activity-related signals are recorded from motor cortex activity (N1-N5).  The number of 

threshold-crossings is counted on each channel for each 33 ms interval (left panel) and  fed into a particle filter 

extraction algorithm that compares bin counts to the known tuning functions of those channels.  Each bin count 

points to a probable region of the hypothesis space of movement trajectories (middle panel).  The particle filter 

maintains a set of hypotheses about movement (middle panel, small dots).  At each timepoint these particles are 

moved randomly by a distance drawn from a Gaussian distribution, then resampled according to the 

probabilities indicated by the counts N1-N5.  In this manner the particle cloud is dragged around by the probable 

regions from the N1-N5 counts.  An outlier bin count which disagrees with the rest of the population (above, N5) 

will have little influence over the particle cloud.  To generate an estimate of the global movement intent we 

simply take the mean of all the particles. 
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Basis functions

Weighted bases add up to a 
tuning function  

Figure 5.  A tuning function is fit as a weighted sum of spline basis functions.  The tuning function of one 

channel is shown as the thick black line.  It is fitted as a sum of shifted bell-shaped basis functions (top), each of 

which spans a 4/π radian section of movement directions.  The basis functions are scaled (bottom) and added 

to produce the fitted function. 

 

The empirical firing rate of cell i is taken to be poisson-distributed with mean iλ .  Thus 

the probability of observing a specific bin count given a firing rate in iλ  from equation 1 is 

given by the equation: 

( )tnpoisspdfnP iiii Δ⋅= λλ ,)(  

where poisspdf gives the poisson probability density function with mean ti Δ⋅λ  evaluated at 

 (  is the width of the bin).  The particle filter also incorporates an assumption about the 

way velocity changes over time.  In both Brockwell et al. and this paper, it is assumed that the 

velocity at one timepoint is related to the previous timepoint according to a Gaussian 

distribution.   The standard deviation of this distribution depends on the length of the time 

in tΔ
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step and the assumptions of the experimenter.  In a brain-control experiment it should 

correspond to the distance to the target and the movement duration.  Here, we assume that 

velocity changes with a standard deviation of 67 mm/s over one second.  The prior probability 

of the x-component velocity at the current timestep, x , given the x-component of velocity at 

the previous timestep, x , is a function of the length of the timestep  and the standard 

deviation of movement per second 

tΔ

σ : 

( )σ⋅Δ= txxnormpdfxxP ,,)(  (2) 

where normpdf describes the normal distribution probability density function for the 

distribution with mean and standard deviation σ⋅Δt , evaluated at xx .The problem of 

decoding an intended movement direction from the threshold-crossing activity is then a 

matter of maximizing the probability distribution defined by equations (1) and (2):  

),(...),()()(),...,,( 11 yxnPyxnPyyPxxnnxyxP mm ⋅⋅⋅⋅~ P,, y  (3) 

x and y are set to 0 at the beginning of each trial (during the central hold period);  are 

the observed bin counts for the m channels being used.  The absolute probability of the left-

hand-side of equation 3 is scaled by additional terms but since we are only interested in the 

relative maximum we can leave them out.  The particular filter uses a set of particles—points 

in the X-Y velocity coordinate space—to estimate the maximum of this distribution.  Each 

time a new set of bin counts arrives, the particles are moved probabilistically.  First, each 

particle makes a random movement whose destination is chosen from a normal distribution 

with mean at the previous location of the particle and standard deviation of 

mnn ,...,1

σ⋅Δt .  This 

corresponds to the first two terms of the right-hand-side of equation 3.  Second, a probability 

is calculated for each particle equal to the remaining terms of equation 3.  The entire 
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population of particles is then resampled from itself, with replacement, according to these 

probabilities.  This means that high-probability particles are more likely to reappear after 

resampling, and that some particles will end up being represented multiple times in the new 

population.   

These steps are constructed so that the probability distribution of the position of a 

single particle is exactly equal to the distribution being estimated.  The entire population of 

particles acts as a proxy for the distribution being estimated.  We generate a single estimate 

of movement for real-time brain control by taking the mean of the entire population of 

particles.  The accuracy of decoding increases with the number of particles, but so does the 

computational complexity.  We used 400 particles, which we found to be the highest number 

where the computation could be completed reliably in the time between bin counts.  With a 

simulated population we found that the quality of control did not become noticeably worse 

until the number of particles dropped below 50. 

The described decoding algorithm has a number of parameters (the  and  terms 

in the model) that must be fit from the actual tuning of the neurons.  In the reported unsorted 

neural control session for monkey A, we used a previous day’s parameters as the initial 

parameters for decoding.  At the beginning of the day we ran an adaptive session where we 

re-fit the and b0  terms.  We gave 4 sets of 16 targets, re-fitting the model to the cumulative 

set of data for that day after each set.  For the purposes of linear regression, the intended 

movement was taken as the idealized vector from the center of the workspace to the 

peripheral target.  For monkey C we set the initial parameters to 0, which means that for the 

first 16 targets the cursor did not move.  Nevertheless the monkey looked at the monitor and 

0b iw

iw
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modulated its neural activity sufficiently to get a set of parameters to move during the 

remainder of the adaption period.   

The sorted session for monkey C was done in exactly the same way as the unsorted 

session, with parameters initially set to 0.  The sorted session for monkey A was done 

somewhat differently; parameters were initially 0 but the extraction algorithm being used was 

a variation on the Bayesian inference decoder where Laplace’s method of integration is used 

in place of the Monte Carlo particles of the particle filter.  We have found the accuracy of the 

two methods is similar; the main difference is that the Laplacian integration method is more 

computationally efficient. 

2.4 RESULTS 

Four datasets are reported here, unsorted and sorted for monkeys A and C.  In all cases 

cursor movement was confined to the two-dimensional plane of the monitor, though the VR 

system displayed objects in three dimensions.  Monkey C did the unsorted control session 

first, followed by an 80 minute break, followed by the sorted control session.  It had less than 

half its daily water quota in the first session so its motivation level was still high during the 

second session, assessed by the fact that it engaged in the task continuously for the entirity of 

both sessions.  It used exactly the same decoding algorithm for both sessions, except that the 

extraction algorithm was being fed counts of threshold-crossings in the first session and 

counts of sorted spikes in the second.  Monkey A did the unsorted session two weeks after the 

sorted session.  The sorted session contained two breaks where the decoding algorithm was 
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seamlessly switched to population vector algorithm (Taylor et al. 2002) for 80 and 112 trials.  

These trials are excluded.  This particular sorted session was chosen for comparison because it 

was also done in the middle of the week when the monkey’s motivation level tends to be 

highest, it used a Bayesian decoding algorithm very similar to the particle filter, and it was 

contemporaneous with the other session.   

There is inherent variation in the quality of brain-control decoding from one session to 

the next, even when they are performed on the same day.  When the parameters are initially 

set to zero and then fit from a limited set of movements during the adaptation period, the 

accuracy of the fit depends on the way that the animal modulates its activity during those 

particular trials.  Therefore, it is not possible to make an exacting comparison between the 

quality of control in the sorted versus unsorted session.  We can only evaluate whether the 

unsorted scheme works approximately as well as a decoder based on sorted units.  The 

primary metrics we have for the quality of control are our subjective impression of Figure 6; 

the success rate of the animal; the speed of movement; and the straightness of the 

trajectories. 
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Table 1.  Decoder performance. 

 Monkey A Monkey C 

 Unsorted Sorted Unsorted Sorted 

Success 

Rate 

78% 93% 96% 84% 

Speed 815 ms 932 

ms

807 ms 735 

ms 

Straightness 1.12 1.1 1.11 1.17 
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Figure 6.  Superimposed movement trajectories as the monkey does the center-out task for 16 targets using 

unsorted threshold-crossing signals (left) or sorted activity (right).  This plot shows position samples at 30 Hz and 

incorporates all successful trials on a single day between the start of the central hold period and the end of the 

peripheral hold period. The colors and symbols are varied according to the target direction in the current trial.   

The upper-left plot contains 384 trials, the upper right shows 233; lower left 480; lower right 512.  The trials for 

each condition were done in one contiguous block, except that in the monkey A / sorted condition there were 

two breaks in the trials where the decoder was switched to population vector algorithm (Taylor et al. 2002) for 80 

and 112 trials (these trials are excluded).  Success rates were 78%, 93%, 96%, and 84% for A/unsorted, A/sorted, 

C/unsorted, C/sorted.  Because of the vagaries of monkey motivation and the fact that no two adaptation 

sessions are the same, it is not possible to make an exacting comparison of performance here.  We can only 

observe that both algorithms produce qualitatively good control. 
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Success rate is simply the proportion of trials where the animal succeeds according to 

the central hold, movement time, and peripheral hold criteria defined in the methods section.  

Speed is the time between the peripheral target being presented and the cursor contacting it.  

Straightness is the total path length of the cursor from when it left contact with the no longer 

visible central target to when it made contact with the peripheral target, divided by the 

length of a perfectly straight line between the endpoints of the same path.  The above table 

gives the median speed and straightness for all successful trials.  

We can treat the threshold-crossings on a particular channel as though it were a 

neuron and define a tuning function for it—an estimate of what the threshold-crossing rate 

will be when the monkey moves in a particular direction at a particular speed.  The  

parameters of the particle filter decoder describe such a tuning function; 

iw

Figure 7 compares 

the assumptions of the decoder with the empirical per-target firing rates observed in the 

control session.  The thick black lines and the black circles in Figure 7 show the comparison 

between the model’s spline fit and the later activity of the channels.  The channels shown are 

selected from the better-tuned half of what we recorded, but are representative in terms of 

the model’s fit and the lack of multimodality in the tuning functions.  The particular examples 

shown in Figure 7 are indicated on the scatterplots in Figure 8. 
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Figure 7.  5 examples of 16-target tuning functions for neurons, sums of neurons, and unsorted threshold-

crossings.  Each of these 5 examples shows various tuning functions from a single channel.  The Y-axis shows the 

firing rate of a pseudo-unit during the movement period of the task.  The X-axis gives the angle from the start 

point in the center of the monitor to the peripheral target.  The multiple plotted lines illustrate how one or two 

identifiable neurons and background activity add up into the signal we observe with the blind thresholding we 

used.  The green and blue lines are the tuning functions of sorted units.  The connected-circles line is the sum of 

these units.  The open black circles show the tuning function of the blind-threshold pseudo-unit used in 

unsorted control.  The thick black line shows the fitted spline function that the particle filter decoder is using, 

which is fit from a separate dataset at the beginning of the recording session.  In these 5 example channels we 

can see the different relationships between the identifiable units on a channel and the signal you get when you 

set a blind threshold.  Unsorted activity is sometimes well-explained as the sum of units on that channel (A,B); 

most often it has the same shape as the sum of units but a higher baseline rate and modulation depth (C,D); and 

sometimes a channel without sortable activity will show strong modulation in the hash (E). 
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Figure 8.  The summed activity of all the units on each channel was fit as a linear model of the X- and Y-

components of target direction plus a constant.  The same was done with the unsorted-threshold crossings.  This 

fit is equivalent to a cosine-tuning function with a baseline rate, a modulation depth, and a preferred direction.  

Baseline rate is the mean firing rate across all targets.  Modulation depth is the height of the cosine tuning 

function, approximately the difference between the most-active target and the least-active target.  Preferred 

direction is the movement direction which, according to the tuning function, would elicit maximum firing from 

the unit.  The above plots show the relationship between each parameter of this model when it is fit with the 

unsorted threshold-crossing data, on the Y-axis, versus the sum of the sorted units recorded on the same 

channels, on the X-axis.  Each channel gives a single point on the plot; the channels from Figure 7 are indicated 

with letters.  A linear fit is detailed on each plot.  Unsorted control shows higher baseline rates, higher 

modulation depths, and nearly the same preferred directions. 
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We would also like to make a quantitative comparison of the tuning characterstics of 

channels and neurons between unsorted and sorted sessions.  In the unsorted session, we fit 

a cosine function to the 16-target mean threshold-crossing rates.  In the sorted session, we fit 

a cosine function in the same manner, except that we used the combined activity of the 

sorted neurons in place of the threshold-crossing event.  Monkey A had 60 channels with 

sorted units where such a comparison could be made.  Monkey C had 62.  Monkey A had 10 

channels with two sorted units and monkey C had 20; in these cases the activity of the two 

units were simply merged together for the purpose of fitting a cosine.  In this small dataset, 

the mean difference in preferred directions for two units on the same channel was 80 

degrees.  The model for the cosine fit is: 

jyijxiiji yxn ,,0,, βββ ++=  

jin ,  is the mean firing rate for unit i, target j; 0,iβ is the baseline firing rate for neuron i; 

jj yx ,  is the vector to target j; the angle of yi,xi, ,ββ  is the preferred direction of unit i and 

the length of yixi ,, ,ββ  is the modulation depth of unit i.  The baseline rates, modulation 

depths and preferred directions are compared between sorted and unsorted conditions in 

Figure 8.  In both animals the baseline rates and modulation depths were higher in the 

unsorted condition, and the preferred directions were similar between unsorted threshold 

crossings and the combined sorted units recorded later on the same channels. 
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2.5 DISCUSSION 

We have demonstrated that good neural control can be achieved without 

conventional spike sorting or careful setting of thresholds.  There is intrinsic variability in the 

quality of control from one session to the next, so it is not possible to make an exact 

quantitative comparison between sessions in these data.  An experimental paradigm that 

better controls for the quality of adaptation data and the motivation level of the animal is 

clearly an avenue for future research.  This initial finding has demonstrated that unsorted 

signals can be substituted for conventional ones without a dramatic, obvious drop in the 

quality of control.   

We chose an 8-knot spline to model the tuning function because we expected mixed 

neuron signals to create complicated, sometimes multimodal tuning functions.  We were 

surprised to find that on virtually all channels, the tuning function of the unsorted threshold-

crossings was roughly uni-modal, in spite of the fact that where two units were recorded on 

the same channel their preferred directions did not tend to be similar.  Since the tuning 

functions of the unsorted signals are not multi-modal, one may reasonably ask why 

population vector algorithm does not work well with these signals.  We did attempt to use 

population vector algorithm on these signals, but found the quality of control so poor that we 

could not collect enough data to report.  We speculate that the challenging aspect of 

unsorted signals is not multi-modality but the background noise that is introduced.  Statistical 

extraction algorithms like the particle filter have the advantage of being able to recognize 

when a channel is an outlier in the present timestep, and to effectively reduce its contribution 

to the inference of intent.  The particle filter examines the space of hypothetical velocities and 
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asks the question: what is the probability of observing these firing rates at various points in 

the hypothesis space of velocities?  If a channel is momentarily inundated with background 

noise it will point to a region of the hypothesis space that is inconsistent with the rest of the 

channels, and it will have little weight toward the decoding of intent. The population vector 

algorithm gives each signal equal weight in the computation of intent, even if that signal is 

highly inconsistent with the majority of the population.  We have demonstrated that with a 

good choice of extraction algorithm, a simple global threshold specification can be used in 

place of the spike-sorting schemes of conventional brain computer interfaces.  These results 

have an immediate relevance for designs of self-contained spike processing circuits in the 

next generation of neural prosthetic devices.  Without the need to set parameters of signal 

processing, it is possible to make an effective neural prosthetic system without operator 

intervention.   

Perhaps more importantly, the kind of extraction algorithm demonstrated in this 

paper is arguably better suited to the indistinct patterns of multiunit activity that are typical 

of long-term chronic multielectrode recordings.  These signals are composed of summated 

mixtures of signals from a number of sources rather than action potentials of individual 

neurons.  They are subject to high levels of baseline noise and their tuning functions are 

harder to predict.  We have shown that a well-chosen extraction algorithm can contend with 

these issues and provide a good control signal.  While we used the same signal processing 

equipment that has been employed for years in neural prosthetics, we used it in a way that 

simulated a much simpler system.  Our results show that a probe with fixed thresholds and 

one-way telemetry could be used for effective prosthetic control.  It is easier to imagine a 
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turn-key clinical system for neural prosthetics that is based on the threshold-crossing counter 

used here.  The elimination of elaborate signal processing regimes is an important step 

towards putting neural prosthetics into the real world.   
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3.0  RECORDING FROM THE SAME NEURONS CHRONICALLY IN MOTOR CORTEX2 

In this chapter, we take advantage of the shared variance that is the defining characteristic of 

systems driven by latent variables.  This shared variance manifests itself in cross-correlograms, 

and in the process of studying these cross-correlograms it became clear that they would be 

an excellent metric for identifying the same neuron in many different recording sessions.  This 

solves a longstanding problem in chronic neural recordings: tracking the same neurons over 

long periods.  Previous work on this topic has been based on subjective metrics, or 

quantitative metrics that are unreliable.  In a population of simultaneously recorded neurons, 

there is an enormous amount of information about neuron identity in the cross-correlograms 

due to the many pairs of neurons that can be examined.  This level of information is superior 

even to waveform shape as an identifier of the same neuron in separate recording sessions.  

By combining it with several other simple metrics of identity we are able to produce a 

definitive classifier. 

                                                 

2 The following chapter has been submitted to the Journal of Neurophysiology as Fraser and Schwartz, 

Recording from the same neurons chronically in motor cortex.  This chapter reflects changes made in response 

to reviewer comments. 
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3.1 ABSTRACT 

Two rhesus monkeys were implanted with silicon arrays of 96 microelectrodes.  Neural 

activity was recorded periodically over a period of weeks to months.  We have developed a 

method to determine whether single units in two separate recording sessions represent the 

same neuron.  Pairwise cross-correlograms, the autocorrelogram, waveform shape, and mean 

firing rate were used together as identifying features of a neuron.  When two units recorded 

on separate days were compared using these features, their similarity score tended to be 

either high, indicating two recordings from the same neuron, or low, indicating different 

neurons.  While these metrics are individually weak, together they produce a strong classifier.  

Some neurons were recorded for >100 days.   These monkeys performed a center-out 

reaching task, and we found that the firing properties of chronically recorded neurons were 

stable over time.
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3.2 INTRODUCTION 

Neurobiologists who do chronic extracellular recordings frequently observe similar 

activity recorded on the same electrode from day to day.  Occassionally a single neuron will 

have some unusual characteristic—a distinctive waveform, or some unusual and obvious 

firing property—that makes it clear that this same neuron is present in multiple sessions.  The 

possibility that some neurons may be represented multiple times in a series of recording 

sessions creates a problem and an opportunity.  Separately recorded neurons may not 

actually represent independent sources of data, so statistical tests which assume each unit is 

an independent sample may not be valid.  But if the same neuron could be identified as such 

across multiple sessions, it would be possible to combine data and thereby estimate that 

neuron’s firing properties with greater confidence.  A sufficiently accurate metric of identity 

would allow all the recordings from a long series of sessions to be considered as a single 

population of neurons, with each identified unit contributing to the population for some 

portion of time.   

A number of authors have attempted to identify the same neurons across recording 

sessions in a systematic way.  The identification problem amounts to deciding, for each 

comparison between a sorted unit in one session and a sorted unit in another session, 

whether they represent the same neuron.  Some authors have taken a qualitative approach, 

looking at waveform and sometimes inter-spike interval distribution information to identify 
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examples with very stable characteristics (Chestek et al. 2007; Ganguly and Carmena 2009; 

Greenberg and Wilson 2004; Jackson and Fetz 2007; Schmidt et al. 1976; Williams et al. 1999).  

A few have developed classifiers that identify stable neurons systematically (Dickey et al. 

2009; Tolias et al. 2007), but these methods are subject to severe trade-offs between false 

negatives and false positives when the classifier is unreliable. 

We have developed a new metric of unit identity using pairwise cross-correlograms 

between neurons in a simultaneously recorded population.  It provides unit identification 

information comparable to that based on wave shape.  Combining this metric with wave 

shape, autocorrelation shape, and mean firing rate, we are able to clearly identify whether 

two separately recorded units represent the same or different underlying neurons.  We 

followed the identities of neurons across multiple sessions, in some cases for over 100 days. 

The ability to track a large number of neurons across sessions allows us to address a 

fundamental question: how much do the tuning characteristics of neurons vary from day to 

day?  There is a divergence of opinion in the literature as to whether the tuning characteristics 

of neurons are more or less fixed (Chestek et al. 2007; Ganguly and Carmena 2009; Greenberg 

and Wilson 2004), or whether they evolve continuously as part of a dynamic network that is 

only stable at the ensemble level (Carmena et al. 2005; Li et al. 2001; Rokni et al. 2007).  We 

use our classifier to follow the same neurons over periods of weeks to months, and find that 

the tuning of neurons to the direction of movement is stable over time. 
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3.3 METHODS 

3.3.1 Chronic microelectrode implant 

Two male rhesus macaques were implanted with 96-channel microelectrode arrays 

(Blackrock Microsystems; Maynard et al. 1997).  Monkey C was implanted in February of 2009 

with a single array on the convexity of the motor cortex next to the central sulcus, with the 

lateral edge of the array ~2mm medial to the genu of the arcuate sulcus.  The recordings 

reported here were done in March—April of 2010, and consist of 6 sessions, recorded once a 

week on a day when the monkey did center-out movement tasks.  Monkey F was implanted in 

April of 2009 with two arrays.  One array was implanted in the same location as monkey C’s 

array, targeting the primary motor cortex arm area.  The other array was implanted further 

anterior and lateral, directly adjacent to the genu of the arcuate sulcus.  This array was 

intended to target ventral premotor cortex.  The recordings reported here were done in May 

2009-March 2010.  They consist of 40 sessions spread irregularly over that period.  All animal 

procedures were approved by the institutional care and use committee of the University of 

Pittsburgh.   

All activity was sorted off-line using OfflineSorter (Plexon).  OfflineSorter allows a 

variety of features to be used to sort; we used principal component distributions, peak/valley 

voltage, and voltage at specific timepoints.  We used different features depending on the 

particular arrangement of waveforms on a given channel/day, and we only sorted units that 
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were sufficiently distinct from noise and from each other.  We identified 32—106 neurons per 

session from the combined activity of both arrays in monkey F, and 14—22 neurons per 

session from the single array of monkey C.   

3.3.2 Behavioral task 

Prior to implantation, each monkey was trained to do a center-out reaching task in a 

3D virtual environment.  They viewed a stereoscopic monitor (Dimension Technologies) 

which displayed a target sphere in its center and a cursor sphere which tracked the 

movement of an infrared marker (Northern Digital) taped to the back of the monkey’s hand.  

To receive a water reward, the monkey had to complete a center-out movement.  First, it had 

to move the cursor sphere to contact a central target for a required period randomly selected 

in each trial from 400-600 ms (monkey F) or 200-600 ms (monkey C).  The target sphere would 

then be moved to a peripheral location selected randomly from a queue of  26  locations 

spread evenly in a sphere with radius 66 mm (monkey F) or 83 mm (monkey C).   The monkey 

would then have to contact the peripheral target for 400-600 ms (monkey F) or 200-300 ms 

(monkey C).  A failed trial resulted in the target being requeued.  Monkey F also performed 

out-center trials, where the order of targets was reversed.  

3.3.3 Tracking the same neurons 

An implementation of this algorithm has been posted to MATLAB Central as “Tracking 

neurons over multiple days”, id # 30113. 
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Let us consider the problem of determining whether a particular sorted unit in session 

1 represents the same neuron as another sorted unit in session 2, one or more days later.  In 

this data, we need only consider cases where the two units in question were recorded on the 

same electrode.  This is because the inter-electrode spacing on the Utah array is large (400 

μm) so it is unlikely that one neuron will be recognized on two different channels.  If the two 

units do represent the same neuron, there will be several indicators in the data that we can 

quantify.  We expect that the mean waveform shape, the autocorrelation function, the mean 

firing rate, and the cross-correlograms with other neurons will be similar.  An example of 

these parameters for the same neuron in two recording sessions is shown in Figure 9.  We 

quantify the similarity of the wave shape in the same manner as Jackson and Fetz (2007), as 

the peak value of the cross-correlogram between the average waveform shape in session 1 

versus session 2.  This allows for changes in the overall size of the waveform and slight shifts 

in the time domain, which are common.  The resulting coefficient is Fisher transformed (the 

arc tangent of the hypotenuse function) to make it more normally distributed.  
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Figure 9. The same neuron has been detected in two recording sessions 3 days apart.  There are various 

indicators that this has happened.  The cross correlograms are between the target neuron and various other 

neurons that are present in both sessions.  In order to line them up as we did above, we need to already know 

which neurons survived from session 1 to session 2.  This problem is solved by an iterative procedure as 

described in Methods/Tracking.  
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We estimate the autocorrelation function from 0 to 100 ms by binning at 5 ms 

resolution, exactly as is shown in Figure 9.  That gives us a 20-point vector for each session.  To 

quantify the similarity of these vectors, we take the Pearson correlation coefficient between 

them.  Again we Fisher transform to make the distribution more normal.  The similarity of the 

mean firing rates is computed simply as the difference between the log of the mean rates.  

We take the log because mean firing rates follow an approximately log-normal distribution. 

Because there are many neurons simultaneously recorded, there are many pairwise 

cross-correlograms.  Those shown in Figure 9 were chosen because they illustrate the 

strongest features for that neuron.  The correlograms are computed for a range of +/- .5 s at 

100 ms resolution.  We found this range captured the largest and most consistent features of 

the cross-correlograms, which tended to be positive and negative triangular bumps with lags 

near zero.  The time-resolution represents a trade-off between capturing finer features of the 

correlogram and computation time.  These macroscopic features reflect common inputs 

rather than synaptic connections between neurons.  In order to summarize all the cross-

correlograms as a single metric, we first take Pearson correlations between presumed 

identical cross-correlograms in the same manner as we do for the autocorrelation functions.  

That means we are comparing one of the cross-correlograms on the left in Figure 9 to the one 

immediately to its right, resulting in a single number for each pair.  We Fisher transform those 

numbers and take the mean, resulting in a combined pairwise cross-correlogram similarity 

score.  

These four scores are combined with a quadratic classifier that computes an optimal 

decision boundary under the assumption that the underlying data can be modeled as a 
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mixture of multivariate Gaussians.  Ordinarily a training data set is used to fit these Gaussians.  

In our case, we have a great deal of known different-neuron data (comparisons across 

different channels, which can’t be the same neuron).  However we do not have any known 

same-neuron data.  Therefore we used partially supervised expectation-maximization to fit a 

mixture of Gaussians model (Come et al. 2009; Lanquillon 2000).  Our dataset includes many 

points with known labels (cross-channel comparisons) while the remainder has mixed labels 

(within-channel, subsequent-day comparisons that might be the same neuron).  Because the 

different-neuron dataset is so large, it essentially dictates the shape of one of the Gaussians, 

and the other Gaussian converges very quickly onto a second cluster of points that lie away 

from the different-neuron distribution, putatively corresponding to the same-neuron 

comparisons.  The decision boundary of the classifier is calibrated to produces a 5% error rate 

in the known different-neuron distribution.  This may seem high but it is mitigated by the 

types of potential errors that occur in real recordings.  Figure 10 illustrates the types of 

possible errors, which depend on how many neurons are present on a channel and how they 

emerge and disappear over time.  Drop errors occur when the same neuron on two days is 

classified as two different neurons.  Switch errors occur when the classifier switches the labels 

between two neurons but at least one of them continues between days.  This error happens 

rarely because the classifier will always label the session 2 neurons according to which session 

1 neuron they fit best, so to produce a switch it essentially has to produce two errors 

simultaneously.  Decoy errors occur when one neuron disappears at the same time another 

appears, and they are classified as the same neuron.  The 5% error rate that we use as a target 

applies only to instances where it is possible to make a decoy error, which are inherently 
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unlikely.  The location of the decision boundary and the contours of the two Gaussians are 

shown in Figure 11, and the parameters of the Gaussians are summarized in Table 2. 

 

 

 

 

Figure 10.  Types of errors we can make while trying to label the same neurons over multiple sessions.  Drop 

errors occur when the target neuron continues but the classifier fails to positively identify it across one of the 

gaps (indicated by the X).  The original label is then a false negative until the target neuron actually disappears.  

Decoy errors occur when the target neuron disappears at the same time as a new neuron appears, and the 

classifier mistakenly labels the new neuron as being the same as the old one.  The label is then a false positive 

until the new neuron disappears.  Switch errors occur when a distractor neuron is present simultaneously with 

the target, and the classifier mistakenly switches the label to the distractor.  Switch errors are the least likely 

because they essentially require the classifier to simultaneously make a drop and a decoy error.   
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Figure 11.  Similarity score distributions for the real data.  Each point represents a comparison between two 

units on two different days.  We computed four similarity scores as described in Methods/Tracking.  These plots 

show projections of two scores at a time.  Points are labeled according to whether they were classified as the 

same neuron.  The same neuron / different neuron Gaussians estimated from the data are shown as contour 

plots.  A two-dimensional slice of the decision boundary that is used by the classifier is shown as a black line.  

The contours correspond to 25%, 50%, 75% and 95% of the distribution.  There are 6 unique combinations that 

could be shown; we chose the pairwise/wave scatterplot because they are the two most informative features, 

and we chose the mean/wave scatterplot because it illustrates the unique characteristics of the change-in-mean-

rate feature.    
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When we use cross-correlograms to assess the identity of many neurons across two 

sessions, changes in labeling across days need to be considered.  For instance, two neurons 

sorted on channel 1 might be labeled “unit 1a” and “unit 1b.”  On the next day, their labels 

may be exchanged by the investigator doing spike sorting, or unit 1a may have disappeared 

and unit 1b is now labeled 1a.  If we then wish to assess whether some other unit, for example 

unit 2a, is the same in session 1 and session 2, there is a problem with the cross-correlogram 

similarity metric.  The cross-correlogram between unit 2a and unit 1a in session 1 will be 

different than in session 2, even if unit 2a is actually still the same neuron.  We solved this 

problem with an iterative procedure, making an initial assumption that wherever the unit 

labels are the same between session 1 and session 2, they represent the same neuron.  We 

then used our 4-score classifier to identify which units putatively corresponded to the same 

neurons from session to session.  This set of identities was then used to relabel all the units 

and classification was performed again, under the assumption that the number of labeling 

errors will be reduced with each iteration.  If this assumption is correct, the labeling will tend 

to converge, which it does after a few iterations.  

3.3.4 Synthetic  data 

Since we could not test our algorithm with data where the identity of neurons across 

days is known, we constructed a synthetic dataset by using the actual data to capture the 

variability in these metrics across separate recording sessions.  There are four similarity scores: 

pairwise cross-correlation, wave shape, autocorrelation similarity, and mean firing rate.  We 
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computed a synthetic true-positive dataset for one score at a time, by ignoring that score and 

using only the other three to classify the entire data set.  The points classified as same-neuron 

can then be used as a synthetic same-neuron distribution for the score we left out.  To avoid 

introducing a lot of errors, we defined a conservative 3-score boundary that would drop 25% 

of the points classified as positives by the full 4-score classifier.  To understand how this 

works, let us consider a simplified example where we only have the two scores shown in the 

upper-left panel of Figure 11.  We are going to use just the pairwise similarity (x-axis) to 

classify a set of points as positive.  That means we will draw a vertical line and classify 

everything to the right of it as positive.  We can then use these points as a true-positive 

dataset for the wave similarity score. 

By using this technique four times we create four different pools of synthetic true-

positive scores.  We then recombine a random value from each pool to create artificial data 

points.  With these synthetic true-positive points and the known-negative distribution 

(neurons on separate channels), we have a complete data set where the ground truth is 

known.  This technique for creating synthetic data creates a specific kind of bias due to the 

fact that there is some correlation between the different scores, as can be seen in the slight 

tilt of the red cloud in Figure 11.  When we use 3 scores to generate a known same-neuron 

distribution for the 4th, we throw away 25% of the positive category that were worst with 

respect to the 3 scores.  Even though we didn’t consider the 4th score in deciding what to 

throw away, because of the presence of correlation we end up with a slightly non-

representative set of points with respect to the 4th score.  On average, this technique biases 

the distribution of 4th metric 0.1 standard deviations upward.   
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3.3.5 Long-term accuracy 

In order to extrapolate the various error rates to performance in a long series of 

recordings, we need to know how many neurons disappear from our electrodes each day, 

how likely we are to record n neurons on the same channel, and how often the decoy error 

scenario occurs (Figure 10).  These parameters were estimated using the labels produced by 

the full 4-score classifier.  It is not necessary that these labels be exactly right, only that they 

have the same general characteristics as an actual set of recordings.  We modeled the 

turnover rate (the proportion of the population replaced daily) as an exponential decay that 

became smaller as a neuron was recorded for a longer duration, which corresponded to 

tendency in the data for a core group of stable neurons to persist from day to day, coexisting 

with another group of more marginal neurons which  turned over frequently.  The estimates 

for monkeys F and C are turnover rate (for the average gap between sessions): 15%/35%, 

additional neurons per channel: 0.4/0.4, percent of neurons ending in a decoy-prone 

situation: 11%/10%.  We used these parameters along with the drop, decoy and switch rates 

from synthetic data to extrapolate the performance of the classifier over time.   In the Results 

section we use the terms “false negative” and “false positive” in the context of long-term data, 

defining the false positive rate as the proportion of labels that exist at a given time which are 

on the wrong neuron.  The false negative rate was defined as the number of labels no longer 

in existence even though their target neuron still is, divided by the number of labels currently 

in existence.   
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3.3.6 Preferred directions 

We estimated the preferred direction of each neuron on each day it was recorded by 

fitting a linear model:  

zyx zyx ββββλ +++= 0  

where λ is the firing rate of the cell, x, y, and z are the target direction and the β  terms 

are the parameters of the model.  The preferred direction (PD) of the cell is the vector 

zyx βββ ,, .  We generated a measurement error distribution for this cell by bootstrap 

resampling the residuals of the fit on a per-trial basis.  This method will incorporate the 

variability in firing rates that is caused by variability in kinematics.  In this model, nonlinearity 

in the tuning function is considered part of the noise term, so the model will tend to slightly 

overestimate the amount of measurement error.  We will need this measurement error cloud 

when we make two observations of the same neuron’s PD, so that we can associate a level of 

uncertainty with our estimate of the angle between observations.  Since these PDs are three-

dimensional, the effect of measurement error is somewhat complicated.  If two PDs are 90 

degrees apart the measurement error is as likely to make the angle smaller as bigger.  If they 

are more than 90 degrees apart, measurement error will tend to bring the observations closer 

together.  We solve this problem by calculating a “pure measurement error” distribution for 

each comparison, rotating the measurement error cloud of PD 2 so that its mean matches the 

mean of the PD 1 cloud and taking repeated samples from each distribution to compute the 

angle between them.  In Results, we will test two null hypotheses about the evolution of PDs 

over time: that they are unchanging, or that they change in a random walk.  To test the no-
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change hypothesis, for each case where a neuron was observed twice, we computed a 

quantile for the observed change in PD indicating where it lies in the appropriate 

measurement error distribution.  If the true PD is unchanging, these quantiles should be 

uniformly distributed.  To test the random-walk hypothesis, we assumed that the real change 

in PD could be modeled as a step each day in a random direction with a Gaussian-distributed 

step size.  The step size was estimated using comparisons between adjacent sessions (only 

available in monkey F), taking into consideration the fact that observed PD change equals real 

change plus measurement error.  We then generated a random-walk distribution numerically 

and added the appropriate measurement error distribution to it.  Again, we compared the 

observed change in PD to the numerically generated distribution and computed a quantile.  

The uniformity of these quantiles was assessed with a K-S test. 

3.4 RESULTS 

3.4.1 Classification accuracy 

Figure 11 shows the converged similarity score distributions, the shape of the 

Gaussians that are fit to them, and the decision boundary of the classifier.  The fact that the 

distribution of points is clearly divided into a high-similarity cluster and a low-similarity cluster 

indicates that this approach is generally working.  The accuracy of our algorithm is assessed in 

several ways, each of which is subject to different kinds of bias.  The simplest approach is to 

generate a dataset where the ground truth is known by splitting each recording session in 
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half and comparing the two halves as though they were separate sessions.  This results in a 

high-similarity cluster from comparisons between the same neuron in the first and second 

half of the data, and a low-similarity cluster from comparisons between different neurons.  

Compared with multi-day data, the high-similarity cluster is likely to be more tightly 

distributed and further from the low-similarity cluster, because the similarity metrics we are 

using are likely to change less between the first and second half of  a single session than 

across the interval between sessions.  For this dataset we changed the initial conditions of the 

iterative identification procedure by randomizing the unit labels, so that the classifier was not 

initialized with the correct answer.  Testing our classification algorithm using split session 

data gave 0 errors in monkey C and a .005% overall error rate in monkey F. 

Without knowing the ground truth, there are some ways to estimate the error rates in 

the real data.   

1. Estimate the decoy error rate using comparisons across separate electrodes, which 

can’t be the same neuron. 

2. Estimate the drop rate by modeling the data as a mixture of Gaussians. 

3. Estimate the drop rate with synthetic data. 

We use method 1 to set the classification boundary with a target decoy error rate of 

5%.  Where we set the classification boundary amounts to a trade-off between drop errors 

and switch or decoy errors.  A 5% target for the decoy rate heavily favors the drop rate, which 

ends up << 1%.  The decoy error rate in a real dataset will be the product of 5% and the rate at 

which the decoy error scenario occurs (see Figure 10), which is rare.   
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For method 2, we used the Gaussian models shown in Figure 11.  For every same-

channel comparison classified as a negative, we estimated the probability that it was actually 

an unusually inconsistent single neuron using the density of the same-neuron and different-

neuron Gaussians.  By taking the mean of these probabilities we estimated the overall drop 

rate (Table 3).  

For method 3, we constructed a synthetic data set as described in Methods, applied 

our classifier, and calculated the drop rate (Table 3).  The accuracy results are broadly similar 

to method 2.  Pairwise cross-correlograms are the most important metric, followed by 

waveform, autocorrelation, then mean rate.  We then extrapolated the synthetic data error 

rates to generate the long-term false negative and false positive scores shown in Figure 12 

(Methods/Long-term accuracy).  For comparison, we implemented a similar algorithm that 

uses the same waveshape score as ours and a similar autocorrelation score (Dickey et al. 

2009).  The long-term false positive rate of the Dickey et al. algorithm was different than they 

reported because of differences in the way we tested the classifiers.  Dickey et al. assessed 

long-term false positives by constructing a synthetic data set where each day a neuron from a 

different channel was used.  In order to get a false positive after n days, the classifier would 

need to make n errors in a row.  We assessed long-term error rates by estimating the various 

error rates for single comparisons (Table 3), then estimating how often various error scenarios 

would occur (Figure 10).  Using this approach we find error rates tend to increase over longer 

periods of recording.  Figure 12 shows performance for both a conservative threshold, which 

minimizes false positives, and an aggressive threshold, which minimizes false negatives.  The 

aggressive threshold is similar to the one used in Dickey et al., targeting a ~25% false positive 
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rate.  The conservative threshold targets 5%.  We used the conservative threshold for all 

classification in the remainder of this paper. 

Our classification algorithm identified 760 unique neurons in monkey F and 35 in 

monkey C.  The lengths of observation for these neurons are shown in Figure 13.  Most 

neurons were recorded for less than 30 days but some in monkey F were recorded for over 

100.   
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Monkey F 
Same-neuron (red) cluster 

Pair Wave Auto Mean M
ean 

1.70 3.85 2.72 0.00

Pairwise X-Corr 0.19 0.06 0.19 0.00

Cov 
Waveform 0.52 0.05 0.00

Autocorrelation 0.72 0.00
Mean Rate 0.08

Different-neuron (blue) cluster 
Pair Wave Auto Mean M

ean0.01 1.90 1.06 0.02

Pairwise X-Corr 0.15 0.00 0.01 0.00

Cov 

Waveform 0.36 0.05 0.00
Autocorrelation 0.67 0.00

Mean Rate 2.74

Monkey C 
Same-neuron (red) cluster 

Pair Wave Auto Mean M
ean1.61 3.26 2.50 0.07

Pairwise X-Corr 0.10 0.01 0.11 -0.02

Cov Waveform 0.25
-

0.03 -0.01
Autocorrelation 0.72 -0.02

Mean Rate 0.19

Different-neuron (blue) cluster 
Pair Wave Auto Mean M

ean0.03 1.78 1.26 0.08

Pairwise X-Corr 0.17 0.01 0.01 -0.01

Cov 

Waveform 0.40 0.08 -0.04
Autocorrelation 0.32 -0.01

Mean Rate 1.57
 

Table 2.  Means and covariances of the Gaussians fit to the same-neuron and different-neuron distributions, 

shown as contour plots in Figure 11.   
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Gaussian Model 
Pair Wave Auto Mean Not 

Pairwise X-Corr 0.04 0.01 0.04 0.02 0.12

M
onkey F 

Waveform 0.22 0.13 0.16 0.02
Autocorrelation 0.40 0.37 <.01

Mean Rate 0.59 <.01
All <.01

Pairwise X-Corr <.01 <.01 0.02 <.01 0.16

M
onkey C 

Waveform 0.31 0.13 0.24 <.01
Autocorrelation 0.35 0.35 <.01

Mean Rate 0.53 <.01
All <.01

Synthetic Data 
Pair Wave Auto Mean Not 

Pairwise X-Corr 0.01 <.01 0.01 <.01 0.02

M
onkey F 

Waveform 0.09 0.03 0.04 0.00
Autocorrelation 0.23 0.20 <.01

Mean Rate 0.68 <.01
All <.01

Pairwise X-Corr <.01 <.01 <.01 0.01 0.08

M
onkey C 

Waveform 0.23 0.07 0.15 <.01
Autocorrelation 0.31 0.31 <.01

Mean Rate 0.73 <.01
All <.01

 

Table 3.  Drop rate tables.  Each entry indicates the drop rate for a quadratic classifier based on one or more 

scores.  We assessed drop rate by modeling the data as a mixture of Gaussians (method 2 in the text, top two 

tables) or using synthetic data (method 3 in the text, bottom two tables).  Performance is shown for each metric 

of identity, each combination of two, and for the full classifier based on all four combined.  Single-metric 

performance is on the diagonal.  Two-metric performance is indicated by the combination of row and column 

labels.  The “Not” column indicates the performance of a classifier with the 3 scores other than the row label. The 

decoy rate was always 5% (method 1 in the text) due to the way we set the classification boundary.   
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Figure 12.  Long-term accuracy in a synthetic dataset for our method and a similar method with 2 classifiers 

(Dickey et al. 2009).  Here we define accuracy in terms of whether after x days a label is still correct.  False 

negatives (FN) are cases where the label is gone but the target neuron is still around.  False positives (FP) are 

cases where the label is on the wrong neuron, whether or not the original target is still present.  In the top row, 

the classification boundary was set conservatively, targeting a 5% decoy rate.  In the bottom row the 

classification boundary was set aggressively as described in Dickey et al. (2009).  The figures on the right have a 

significantly higher false positive rate because they experience a non-negligible number of switch errors, which 

accumulate rapidly.  False positive errors tend to be more damaging in studies that examine the properties of 

neurons over time, but a high false negative rate will be inefficient because many neurons will not be tracked as 

long as they could be.  
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Figure 13.  Observation lengths for recorded neurons.  X-axis indicates recording duration for a single neuron.  

Y-axis indicates the number of neurons that were recorded that long, divided by the number of neurons that 

could have been recorded that long.  We identified 760 unique neurons in monkey F out of 2892 sorted units 

recorded over 40 sessions.  We identified 35 unique neurons in monkey C out of 104 sorted units recorded over 6 

sessions.  Monkey C had a smaller but more stable population.   

 

 

 

3.4.2 Tuning Parameters 

With the same neurons identified over a long-term dataset, we can evaluate the 

stability of these cells’ directional tuning over time.  Examples of tuning profiles for neurons 

that were tracked for a particularly long time are shown in Figure 14.  These examples show 

low variability in their tuning function between sessions.  For each day that each neuron was 

 78 



recorded, we fitted a cosine tuning model describing a linear relationship between the 

direction of movement and the firing rate of one cell (see Methods/Preferred directions).  

Figure 15 shows histograms for the PD variability between two or more sessions, for all 

recorded cells.  It was necessary to exclude units with weak or inconsistent modulation 

because changes in their PDs reflect more measurement error than real change.  We assessed 

measurement error by bootstrapping the residuals of the cosine tuning fit 

(Methods/Preferred directions) and excluded all comparisons where the uncertainty in our 

estimate of PD change was greater than 10°.  This excluded 49% of the population in monkey 

F, and 17% of the population in monkey C.  The excluded set is based on the measurement 

error, not change in PD, so we are not limiting the potential for real variation in the PD across 

sessions; a neuron with a strong preferred direction in one session could have an equally 

strong but altered preferred direction in the next session. 
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Figure 14.  Directional tuning profile across multiple sessions, two neurons from each monkey.  The mean firing 

rate for each target is displayed in the direction of that target.  There are 26 targets in 3D space; here we see x-y 

and z-y slices.  Firing rate profiles from each single neuron are rendered simultaneously for all sessions where 

that cell was recorded.  Arrows indicate preferred directions (PDs) from model fit.  Scale bars indicate number of 

spikes per reach.  The neurons shown are the first two neurons from each monkey that were recorded for at least 

14 days with a mean preferred direction measurement error of < 5°.  Low measurement error does not 

necessarily limit the amount of variation in PD across sessions.   
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Figure 15.  Observed differences in PD of single neurons across sessions.  PD is the vector indicating the target 

which would theoretically elicit the maximal firing rate from the neuron according to a cosine-tuning model 

fitted from the data.  X-axis indicates the absolute difference in PD.  Y-axis indicates histogram bin counts.  The 

histogram includes the angle between every possible pair of two observations of the same neuron’s PD.  

Comparisons are only included where the uncertainty in our estimate is < 10° according to the bootstrap 

distributions described in Methods/Preferred directions.  This does not constrain the potential variation in PD 

across sessions.  Note that in three dimensions, two PD vectors chosen at random are much more likely to have a 

angle difference of around 90° than around 0°.  
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Figure 15 shows that PD variability is low, generally < 30°.  In assessing these changes 

in PD, we consider three hypotheses: 

1. The PD is static, and all variation is due to measurement error. 

2. The PD experiences slight real variation, which accumulates over time to create a 

random walk. 

3. The PD experiences slight real variation which accumulates, but it is tethered to an 

underlying intrinsic value which does not change. 

Hypothesis 1: the PD is static.  If the true change in PD is always 0, then the observed 

changes should follow the distribution of measurement error that we computed by 

bootstrapping the residuals of the cosine tuning fit.  We can compare each observed change 

in PD to the measurement error distribution described in Methods and compute a quantile.  If 

the observed changes were due only to measurement error, these quantiles would be 

uniformly distributed.  Using a K-S test, we rejected this hypothesis (p<.01). 

Hypotheses 2: the PD experiences real variation that accumulates over time.  We 

extrapolated a series of distributions of PD changes from the one-day changes by assuming 

that PD change represented a random walk plus measurement error, as described in 

Methods.  This distribution was tested against the data with a K-S test in the same way we 

assessed hypothesis 1, and again it is a bad fit (p<.01).  This rejects hypothesis 2.   
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Figure 16.  The relationship between observation interval (x axis) and difference in PD (y axis).  This is the same 

data as Figure 15, scattered out over time.  Each point indicates that two observations were made of the PD of 

the same neuron x days apart, and the angle between the two observations was y degrees.  For monkey F, we 

summarized dense regions of the scatter plot with a gray line indicating the 95% of distribution and a black line 

indicating 66%.  Red line shows the expected average difference in PD if all change is caused by measurement 

error.  Blue line indicates a hypothetical trend assuming that the changes in PD accumulate over time (see 

Methods/Preferred directions for details).  Green line shows a simple nonlinear function fit to the 

data, .  While there is a limited amount of accumulation, it is significantly below the 

distribution associated with the blue line, indicating there is an intrinsic unchanging preferred direction for each 

cell. 

)exp( 321 xbbby ⋅⋅−=
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Figure 16 shows a scatterplot of the relationship between observation interval and PD 

difference.  The expected-value lines associated with hypotheses 1 and 2 are shown and are 

above the mean of the data, visually confirming the results of the K-S test.  This leaves us to 

conclude that while there is real variation in PDs, they are tethered to underlying intrinsic PDs. 

3.5 DISCUSSION  

This report takes a series of extracellularly recorded populations and attempts to 

identify in every case whether an earlier session / later session pair represents the same 

neuron.  Most past work on this topic has attempted to identify a minority of stable cells that 

can be reliably tracked, leaving the rest of the population in the category of “uncertain”.  The 

four features we used are individually weak classifiers, but because they represent 

independent sources of information they can be combined into a strong classifier.  For 

example, mean firing rates can indicate that two units are definitely not the same neuron, but 

they can never give high confidence that they are the same.  The mean firing rate of a single 

neuron tends to be consistent from day to day, but the expected difference in mean rate 

between two different neurons is also zero (Figure 11).  Thus if two units on two days have a 

very different mean rate, then they are almost certainly different neurons; but if they have a 

similar mean rate, we cannot be certain that they are the same neuron.  By itself, mean firing 

rate would be an inaccurate way identify neurons, but when combined with other metrics it 

contributes useful information.  With four different metrics of similarity, we can produce a 
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very strong classifier that can follow neuron identity throughout entire population, not just 

the largest units with the most consistent characteristics. 

Estimating identity for the entire dataset not only allows us to take full advantage of 

the data we have collected, it will allow us to treat the entire chronic series as a single dataset 

for the purpose of network analysis.  The analysis of multi-observation data, where different 

subsets of a network are observed in overlapping intervals of time, has been a topic of 

growing interest (Lambiotte et al. 2009; Mucha et al. 2010).  Setting aside these future 

directions, the most obvious immediate application of a unit identification algorithm is to 

determine whether the firing properties of neurons change over time.  Other authors have 

speculated on the possible role of tuning changes, especially preferred direction changes, in 

the underlying motor control algorithms of the brain (Carmena et al. 2005; Rokni et al. 2007).  

It has been observed before that changes in PD across two adjacent sessions tend to be small 

(Chestek et al. 2007).  Our results confirm these small changes and demonstrate that over a 

long series, they do not accumulate into large changes.  Instead, the PDs of these neurons are 

tethered to an unchanging intrinsic value.   

Unobserved kinematic parameters may account for some or all of the variability in PDs 

that we see.  Since there are no buttons or manipulandum that involve the hand in our task, 

and the reaches are performed and tracked in three-dimensional space, the main unobserved 

kinematic parameters are subtle changes in wrist posture and the way the monkey sits each 

day.  Chestek et al. (2007) showed that the variability in PD within a single day was at least 

partially attributable to subtle changes in kinematics.  It is likely that such subtle changes may 

account for some of the PD variability in our data. 
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The arrays used in these experiments are physically able to record the same neurons 

for long periods.  Even though the shape of waveforms will change from day to day 

(especially in magnitude), we have shown that it is possible to identify the same neurons 

reliably.  Applying this technique to other types of arrays that are less physically stable might 

produce different results.  Also, the performance of Utah arrays in this respect is not 

completely consistent.  It has been our experience that the kind of long-term stability we 

identified in these data usually emerges after an array has been implanted for several months.  

One reason for recording instability is physical motion of the array during accelerations of the 

monkey’s head (Santhanam et al. 2007).  Over long periods of implantation Utah arrays 

accumulate scar tissue, especially at the surface of the cortex (Rousche and Normann 1998).  

This scar may serve to physically stabilize the array.  Our monkey C had an older array (12-13 

months versus 1-11 months) and more stable recordings.  If tracking the same neurons over 

long periods is an important aspect of an experiment, it may be prudent to plan data 

collection for such experiments several months after electrode implantation. 

The monkeys in this dataset performed straightforward arm movement tasks in the 

data we have analyzed.  The sessions used for unit identification and center-out analysis 

represent only part of the experiments that were conducted over the time period they span.  

On other days the monkeys performed different tasks, but none were specifically designed to 

elicit changes in preferred direction.  Clearly we would like to know whether an experimental 

paradigm designed to produce changes in preferred direction (Jarosiewicz et al. 2008; Li et al. 

2001) might produce a long-term trend when applied repeatedly to the same neurons.  That 

issue will have to await future experiments.  
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4.0  COMPLEXITY OF TUNING FUNCTIONS IN A RICH MOVEMENT TASK 

In this chapter, we re-examine a simple reaching task that has long been studied in terms of 

coordinate frames.  Using a finely spaced array of targets in 3-D space, we are able to 

characterize the tuning of neurons with higher accuracy than is possible with only a few 

targets or only two dimensions of movement.  We find that individual neuron’s tuning 

functions are not well described by simple models.  We reduce the population to a low-

dimensional set of latent variables and analyze the activations of those variables using 

information theory, and find that all the parameters of this task influence activity throughout 

the movement.  Along with similar recent research, particularly the work of Churchland and 

Shenoy (2007), this indicates that coordinate frames may be an overly simplistic metaphor for 

the meaning of neural activity in motor areas. 

4.1 INTRODUCTION 

The pioneering work of Georgopoulos and colleagues (1982) demonstrated that broad 

directional tuning describes the activity of many neurons in primary motor cortex during 

center-out reaching tasks on a two-dimensional plane.  This finding has been extended to 

out-center movements (Georgopoulos 1985), movements in three dimensions (Schwartz et al. 
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1988) and has been used to develop the population vector (Georgopoulos et al. 1988), an 

algorithm that extracts intended movement direction from the activity of many neurons with 

different preferred directions.  It has also been shown that some variations of the original 

center-out reaching task produce discrepancies between neural activity and a strict 

interpretation of the directional tuning model (review: Scott 2008).  In order to more clearly 

characterize directional tuning of neurons in primary motor and premotor cortex neurons 

during a free reaching task, we used a fine grid of 26 targets in three-dimensional space and 

incorporated both center-out and out-center movements.   

4.2 METHODS 

4.2.1 Behavioral task 

Two rhesus macaques (monkeys F and T) performed reaching tasks in a virtual 

environment that has been described previously (Schwartz et al. 2004).  The monkey sat in 

front of a 45° angled mirror that reflected the image of a stereoscopic monitor (Dimension 

Technologies).  The position of the monkey’s hand was tracked with an infrared marker 

(Northern Digital) and rendered as a spherical cursor in a 3D environment.  As diagrammed in 

Figure 17, they performed 3D center-out/out-center with 26 targets arranged approximately 

evenly on a 66 mm (monkey F) or 75 mm (monkey T) sphere.  In a single successful center-out 

trial, a target would be presented at the origin and the monkey would make contact for a 

required hold period.  The central target would then be removed and a random peripheral 
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target would be presented, which the monkey would also have to contact and hold.  The hold 

periods were in the range of 150-600 ms and were partially random to prevent the monkey 

from making guesses.  In out-center trials the order of target presentation was reversed.   

 

Figure 17. A: The monkey sits in front of a 45° angled mirror which reflects the image of a stereoscopic monitor.  

A 3D virtual environment is rendered on the monitor.  The position of the monkey’s hand is tracked with an 

infrared marker and represented in the virtual environment by a cursor.  B: The 26-target center-out/out-center 

task at 15% scale.  We use 26 peripheral target locations arranged approximately evenly on a sphere.  In each 

trial a random location is selected.  Half the trials are center-out trials where the monkey must contact a target 

sphere at the origin, then at the peripheral location; half the trials are out-center trials where the order is 

reversed.  
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4.2.2 Neural recording 

These macaques were implanted with two 96-electrode arrays (Blackrock 

Microsystems) in accordance with the rules of the Institutional Animal Care and Use 

Committee of the University of Pittsburgh.  The position of the arrays were chosen to target 

the arm representation of the primary motor cortex (M1) and ventral premotor cortex (PMv), 

also known as area F4 (Luppino and Rizzolatti 2000).  The positions of the arrays were 

reconstructed from photos taken at the time of implantation and are shown in Figure 25.  

Spike waveforms were recorded using a digital signal processor (Tucker Davis Technologies), 

and well-isolated single units were sorted offline using OfflineSorter (Plexon). 

 

 

 

 

 

Figure 18. Location of two arrays in monkeys F and T, reconstructed from surgical photos.  Each Utah array has 

96 channels which are represented by the black circles.  The area of each black circle indicates the difference in 

average firing rate between the best and worst target in the center-out / out-center task for neurons on that 

channel.  CS: central sulcus, SPS: superior precentral sulcus, AS: arcuate sulcus, PS: principal sulcus.   
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4.2.3 Sampling 

Before any further analysis, the firing rate and kinematic data were smoothed, time-

rescaled and sampled.  The spike times were converted to a continuous function using a 400 

ms wide cosine-shaped filter.  Kinematics were smoothed with a 5 Hz lowpass filter.  We then 

defined a region of interest within each trial, starting when the monkey’s hand was at the 

center and the peripheral target was presented, and ending when the monkey made contact 

with the peripheral target.  We rescaled time in each trial so that 10 evenly spaced points 

would cover this period, with an additional 5 points at the same spacing before and after the 

period of interest.  The average period was 0.495/0.631 seconds for monkeys F/T.   

4.2.4 Tuning parameters 

For Figure 20, we computed for each neuron the average firing rate versus time for 

each of the 52 types of movement (26 targets × 2 directions) and identified the time and 

target direction which elicited maximal firing.  For Figure 21, we computed preferred 

direction (PD) using linear regression with firing rate as a function of target direction (not 

hand kinematics): zzyyxx tbtbtbb +++= 0λ .  Modulation depth (MD) is the length of the 

vector zyx bbb ,, .  Target direction, zyx ttt ,, , is defined as the difference between the target 

position and the starting position.  
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4.2.5 Latent variable analysis 

We used factor analysis, a standard dimensionality-reduction technique, to reduce 

each population of simultaneously recorded neurons into a single set of latent variables.  

Factor analysis is very similar to the more common principal component analysis, except that 

it allows different observed variables to have different variances.  In neural data, factor 

analysis is less likely to be dominated by the most active neurons in the population.  Similar to 

PCA, factor analysis may generate a set of latent variables that do not each have an easily 

describable identity.  Instead each latent variable produced by factor analysis may be a 

mixture of features.   

The number of putative latent variables must be specified before performing factor 

analysis.  Every day, we performed factor analysis with 1 to 15 factors, and assessed the 

quality of these models by reconstructing the firing rates of the neurons from the factor 

model in the manner of Yu et al. (2009).  Their method cross-validates in two ways.  We used 

4/5 of the data to derive a factor model, and then used that model to reconstruct the 

remaining 1/5.  Within that 1/5, we would compute the activation of the factors using all but 

the neuron we were reconstructing, so that a neuron would not contribute to its own 

reconstruction. The R2 for reconstruction across all neurons varied from 0.21-0.47 from day to 

day with a median of 0.4.  For each day we chose the model that produced the best 

reconstruction (6-15 latent variables).   

 93 



4.2.6 Information theoretic analysis  

We used information theoretic analysis to quantify the relationship between latent 

variable activation, direction of movement, and target position.  This type of analysis is useful 

because it can capture nonlinear relationships between variables.  Information is usually 

quantified in categorical variables, however the concept is extended to continuous variables 

by differential entropy.  We quantified differential entropy by assuming that each latent 

variable was independent and Gaussian distributed, which gives a closed-form solution.  This 

assumption is a better approximation for latent variables than it is for individual neurons.  We 

are interested in three quantities: 

1. I(A;D|T): the mutual information between activation of the latent variables and 

direction of movement, conditioned on the target position. 

2. I(A;T|D): the mutual information between activation and target position, conditioned 

on direction. 

3. I(A;D;T): the co-information (Bell 2003) between the three variables  

The first two are straightforward; I(A;D|T) indicates how much information D gives us 

about A, given that we already know T.  This value is computed using out-center data, where 

the target is always the same.  I(A;T|D) indicates how much information T gives us about A, 

given that we already know D.  We computed this value by comparing activity between each 

center-out movement direction and the co-linear out-center movement, which has the same 

direction but a different target position.  Co-information is less intuitive.  It indicates how 

much redundancy or synergy is present between the three variables.  A negative value of co-
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information indicates that there is redundancy, meaning that some of what we learn about A 

from D we can also learn from T.  A positive value of co-information indicates there is 

something about A we can only learn by knowing both A and T.  An example of this 

phenomenon is XOR function.  Only by knowing both inputs can we know the output; 

individually they give no information.   

In order to compute I(A;D|T), I(A;T|D) and I(A;D;T) we need a way to measure the 

entropy of A conditioned on knowing T, D, or both (the conditional entropy).  T and D are 

categorical variables, so we simply subtracted the within-category means of A to produce a 

conditional distribution (with n-fold cross-validation).  This procedure is analogous to an 

ANOVA, and makes the same assumptions.  The difference is that we interpret the within-

category reduction of variance in terms of information sharing.  

4.3 RESULTS 

We recorded 2,095 single units over 25 sessions on two arrays in monkey F, and 339 

single units over 5 sessions in monkey T.  Many of these units represent multiple observations 

of the same neuron in separate sessions, but with the exception of Figure 19 they are treated 

separately.  The locations of the arrays are illustrated in Figure 18, as well as the tendency for 

neurons in particular regions of the array to modulate during center-out movements.   
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Figure 19. Tuning of individual neurons in the 3D center-out/out-center task.  6 neurons from monkey F are 

presented.  For each neuron we are looking at a 40 snapshots of the tuning of the cell at a single moment in 

time, in the manner of a filmstrip.  Each snapshot corresponds to one of the tiny images, which is a picture of the 

firing rate as a function of the azimuth (horizontal axis of the image) and elevation (vertical axis of the image) of 

the direction of movement.  The direction eliciting the highest firing rate variance is always at the center of the 

image.  A and B indicate the time of target presentation and target contact.  The average time between them is 

0.495 s.  Neuron 1 shows classical velocity tuning.  Neuron 2 is tuned to direction of movement but is active only 

early in the movement.  Neuron 3 is active only late in the movement.  Neuron 4 decreases activity during 

movement in any direction.  Neuron 5 is directionally tuned, but only in the center-out trials.  Neuron 6 is 

directionally tuned before the onset of movement, exclusively in the out-center trials.  In the complete 

population, seemingly every conceivable combination of temporal and directional tuning can be observed.  The 

minimum and maximum rates for the neurons shown are [0.85,27], [1.0,12], [2.1,11], [1.0,4.3], [0.01,6.6], [0,2.1].  

We used the neuron-tracking algorithm described in Chapter 3.0  to combine data across multiple sessions.  

Neurons 1 and 5 are from the PMv array; the rest are from the M1 array. 
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Figure 20. We computed the time and target direction that elicited maximum firing for each recorded neuron.  

A & B show simple histograms with preferred time on the x-axis.  C & D show two dimensional histograms with 

azimuth on the x-axis and elevation on the y-axis.  There are 26 unique directions in center-out and out-center; 

each is represented by a spot.  The area of the spot is proportional to the number of neurons that fired 

maximally for that target.  The spots are colored black if this number of neurons is statistically greater or fewer 

than expected at α=.05 (Bonferroni corrected).  There is a strong tendency for neurons to be tuned for 

movements directly towards or away from the body in the center-out task (C).  Maximal rates tend to occur later 
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in the center-out task (A) and earlier in the out-center task (B).  The directional bias is present in both the M1 and 

PMv populations when they are analyzed separately.   

Having 26 targets with both outward and inward movement in this task generates a 

rich dataset for evaluating the tuning of individual neurons.  Figure 19 shows a few examples 

of the many types of tuning we observed.  Most neurons exhibit directional tuning at some 

point in the task consistent with cosine tuning (Georgopoulos et al. 1982).  Most of these also 

had preferences for specific phases of movement or for outward versus inward movement.  

These preferences do not divide into obvious categories.  Neurons were found which fire 

before, during, and after the movement.  Figure 20 shows histograms of the number of 

neurons that fired maximally for a particular time or target direction.  There were individual 

cells that might be considered pre-movement, early, late, hold-period, etc., but the 

population does not divide into clearly identifiable groups.  There were two exceptions to 

that rule: the vast majority of neurons that fired maximally late in the movement were center-

out neurons, while early-maximum neurons are nearly always out-center neurons.  Also, there 

was a clear bias in the distribution of PDs for directions in the sagittal plane.  This trend does 

not correlate with any obvious biomechanical parameters.  For instance, the stiffness of the 

arm is greatest for movements directly towards or away from the shoulder (Gomi and Kawato 

1996; Mussa-Ivaldi et al. 1985).  This would explain the overrepresentation of preferred 

directions pointing towards or away from the body, but not the other 6 directions in the 

saggital plane.  Furthermore, the tendency for stiffness to be greatest for movements towards 

the shoulder is stronger as the hand gets further away from the body (Mussa-Ivaldi et al. 

1985).  But there is no tendency for PDs to be clustered around the distal starting positions in 

the out-center task.  Another plausible explanation of the biased PD distribution is that our 
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array was simply in the elbow representation of the motor cortex.  The elbow tends to be 

more involved in saggital plane movements in three-dimensional free reaching tasks, where 

the arm is oriented with the elbow pointing down.  However the biased distribution of 

preferred directions is equally strong on both arrays, which are far apart compared to the map 

of the body on the motor cortex.  Gentilucci et al. (1988) reported a tendency for PMv neurons 

to be tuned to movements up, down, and towards the body, which seemed to relate to 

sensory receptive fields in the same locations.  Movements in the saggital plane are common 

in reaching and self-feeding behaviors; it is possible that the biased distribution of preferred 

directions is a reflection of the importance of these behaviors. 

 

 

 

Figure 21.  Changes in PD and MD between center-out and out-center.  ΔPD is the angle between the PD in 

center-out and the PD in out-center.  The MD ratio is defined as MDOUT/(MDOUT+MDIN).  0 indicates only out-center 

modulation; 1 indicates only center-out modulation.  There is a modest but statistically significant tendency for 

MDs to be higher for center-out than out-center.   

 

Most neurons have different PDs and MDs in center-out versus out-center (Figure 21), 

but there is a lack of modes in the distribution.  There is a tendency to have similar PDs for 
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outward and inward movements, but counterexamples abound.  MDs also showed wide 

variation between inward and outward movements, with a modest overall tendency to be 

higher for outward.   

In order to understand what information is contained in this population, we reduced 

the simultaneous firing rates to a smaller set of latent variables and applied information 

theoretic analysis.  Latent variables are more amenable to this type of analysis because they 

are estimated using sums of many neurons, and therefore are more normally distributed than 

individual neurons.  We treated the latent variable activation as a multivariate Gaussian and 

calculated three information metrics as described in Methods.  Figure 23 shows how early in 

the task, latent variable activations contained somewhat more information about the 

direction of the upcoming movement, while late in the task there was more information 

about the target position.  Neither direction nor target can be said to be the dominant signal.  

The co-information was initially positive, but dropped quickly to negative values around the 

time the monkey started to move its hand.  This implies that during the hold period, 

population activity encoded specific combinations of direction and target of the upcoming 

movement.  After movement begins, the population apparently switches to a simpler 

encoding scheme where direction and endpoint are encoded simultaneously but without the 

earlier synergistic interaction between variables.   

To test whether the complex tuning functions of these neurons might be accounted 

for by combinations of kinematic parameters, we fit a model that predicted instantaneous 

firing rate using position, velocity, acceleration, speed and curvature.  Kinematic models 

achieved a median R2 of 0.18 as compared to 0.4 for the latent variable model.  The kinematic 
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model has a similar order (11 kinematic parameters versus 6-15 latent variables) but only 

describes part of the shared variance that is captured by the latent variable model. 

 

 

 

 

Figure 22. Tuning of latent variables.  Format is the same as Figure 19.  We observe phasic variables (1), 

directionally tuned variables (2-4), and position tuned variables (5-6).  We also see many latent variables that are 

mixtures of features not easily described.  A weighted sum of latent variables can produce a wide variety of 

features. 
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Figure 23. Conditional mutual information between the latent variable model’s low-dimensional representation 

of population activity (A) and movement direction (D) versus target position (T).  A high value of I(A;D|T) means 

that population activity differs between movements that have different directions but the same target (out-

center movements).  A high value of I(A;T|D) means that population activity differs between movements with the 

same direction but different targets (center-out and out-center movements that start in different locations but 

go in the same direction).  Co-information indicates how the three variables interact.  A negative value of co-

information indicates that the information about activity we get from direction is partially redundant with the 

information we get from target position.  A positive value of co-information indicates that direction and target 

together give us information about activity that is impossible to learn from them separately.  Information values 

were calculated separately for 20 timepoints, so that we can see how the information content of population 

activity evolves over the course of the movement. 
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4.4 DISCUSSION 

The 26-target center-out/out-center task gave us an extensive set of conditions in a 

pure reaching task with no hand movement relating to buttons or a manipulandum.  We were 

confronted by a set of idiosyncratic neurons whose tuning functions changed, seemingly in 

response to every variable in the task, and which were not explained by any simple unifying 

principle.  A neuron that might have seemed simply directionally tuned when observed only 

in the center-out task is suddenly inexplicable when we add the out-center version and 

observe a 90° shift.  The fact that many neurons in motor and premotor cortex have a 

complex directional and temporal relationships to movement has been demonstrated before, 

most systematically by Churchland and Shenoy (2007).  The effectiveness of the population 

vector (Georgopoulos et al. 1988) at reconstructing movement is sometimes overly strictly 

interpreted to mean than individual neurons must be velocity-tuned.  But the population 

vector only demonstrates that the directional parameter is embedded in population activity 

and can be extracted from an average of many neurons.  It does not exclude the possibility 

that other parameters may also be present.   

The tuning functions of individual neurons and latent variables seemed to be a 

combination of directional and phasic elements.  We performed information-theoretic 

analysis to determine how much the basic parameters of the task—direction and target 

position—influenced population activity at different phases of the task.  The low-dimensional 

representations in latent variable models are especially amenable to information theoretic 

analysis because they are less noisy, less correlated, and more normally distributed than the 

individual neurons they are computed from.  We found that there was a similar level of 
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information about direction and target position, though direction was more dominant 

around the time of movement initiation while target was more dominant towards the end of 

the trial.  The evolution of co-information over time implies that before the onset of 

movement, the population codes specific combinations of direction and target, but once the 

movement starts it switches to a more straightforward scheme.  Co-information is a 

sometimes-counterintuitive quantity that can be hard to interpret.  In the context of this task, 

the positive value of co-information before movement probably reflects the fact that there 

were many neurons that were directionally tuned during hold A (the initial hold period), but 

only during the out-center task where the monkey knew the upcoming direction (for example 

cell 6 in Figure 19).   

The approach of thinking about the population as transmitting information is 

particularly illuminating when we consider the preferred-time histograms in Figure 20.  There 

are virtually no cells that fire maximally during hold A in center-out, and very few that fire 

maximally during hold B in out-center.   Center-out hold A and out-center hold B both occur 

at the origin of the workspace, but there is nothing particularly special about that point in 

space with respect to the monkey’s body.  But these events do share an important 

characteristic in the context of our task: they are low points of information content.  The 

origin is the most common position of the cursor, so at a purely kinematic level this is the 

least surprising and therefore lowest-information position for a monkey that has spent a lot of 

time doing this task.  Center-out hold A and out-center hold B are also both times when 

upcoming movement is unknown.  The lack of information about the future means there is 
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less for the population to encode.  Thus, it makes sense that there is a lack of neurons 

encoding anything at this point in time. 

There are two primary differences between this study and past work on this topic.  

First, target directions were spaced finely in three-dimensional space, making it more likely 

that we would accurately characterize neurons with narrow tuning functions.  Second, 

because we used fixed arrays and sorted all activity off-line, we included many neurons with 

low firing rates and a modest response to the task.  Under these circumstances we identified a 

dramatically biased distribution of preferred directions.  We also found that many neurons 

were tuned to a specific phase of the task, including phases where no movement was 

occurring.  These results do not lend themselves to a simple interpretation in terms of 

coordinate frames.  In an effort to summarize the modulation of the population, we applied 

information theoretic analysis and showed that neural firing rates were sensitive to both the 

direction of movement and the target position throughout all the phases of movement.  

These findings suggest that the firing rates of many neurons may not represent abstractly 

meaningful parameters. 
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5.0  LATENT VARIABLES REVEAL AN ERROR SIGNAL IN PREMOTOR AND MOTOR 

CORTEX3 

In this chapter, we are able to study latent variables directly.  We take advantage of an 

unusual task, in which a monkey makes circular arm movements for several revolutions.  

Because of the cyclic nature of this task, many plausible candidates for latent variables will 

produce a sinusoidal signal, whatever their exact nature or lag relationship to movement.  We 

are able to use a carefully tuned canonical correlation-based procedure to specifically extract 

signals that are sinusoidal at the frequency of movement.  Because of the selectivity of this 

approach, we identify a small set of latent variables that can be studied directly.  This avoids 

the endemic problem of this type of analysis, in which the extracted signals are mixtures of 

unrelated features and therefore difficult to interpret. 

                                                 

3 This chapter has been prepared for publication, to be submitted shortly as Fraser and Schwartz, 

Latent variables reveal an error signal in premotor and motor cortex. 
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5.1 ABSTRACT 

Some time-varying signals may be represented by the brain in a weak but widely 

distributed manner, such that they are difficult to detect in individual neurons.  In order to 

study such signals, we used dimensionality reduction techniques to extract latent variables 

embedded in populations of 50-100 simultaneously recorded neurons in the primary motor 

and premotor cortex of macaque monkeys doing a circular drawing task.  We identified two 

signals well-known to exist in these neurons, the horizontal and vertical directions of 

movement.  We also identified a third signal that anticipated positional error of the monkey’s 

movements.  This signal is a very robust and widely distributed feature of activity in these 

areas.  It represents a neural correlate of the future-predicting components in theoretical 

models of movement control. 

5.2 INTRODUCTION 

To better understand how brain coordinates the movement of the body, we would 

like to characterize the signals embedded in neural activity during movement.  In traditional 

electrophysiology, this is accomplished by recording neurons individually.  Parameters such 

as muscle activation, joint kinematics and endpoint are chosen based on prior knowledge of 

brain function and compared to the firing rates of individual neurons.  The population vector 

(Georgopoulos et al. 1988) is an alternative to this basic scheme in which the firing rates of 

many separately recorded neurons are combined using vector sums to produce a decoded 
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representation of an internal parameter, such as intended movement direction.  This method 

summarizes the activity of many neurons, but still requires the investigator to specify the 

parameters encoded by the population. 

With simultaneous recording of many neurons, it is possible to use dimensionality 

reduction techniques to extract directly from the data the latent variables that many neurons 

have in common.  Latent variables are a mathematical concept, in which many observed 

variables, such as neural firing rates, can be partially explained by a smaller number of hidden 

variables containing shared variance that many of the observed variables have in common.  

An example of the use of latent variable analysis to study neural firing rates is Yu et al. (2009), 

where the investigators were able to extract a low-dimensional representation which 

exhibited characteristic patterns of activation during each trial.  This type of analysis is less 

biased by prior beliefs, and it is capable of revealing signals that are inaccessible to single-

neuron recording.  It is possible for a set of neurons to encode signals in a way that is difficult 

to understand when they are viewed one at a time.  If individual neurons encode many 

parameters simultaneously, and only a small minority of these parameters are well-

characterized, it will be extremely difficult to relate individual activity patterns to behavioral 

events.  This is especially true in studies of motor behavior.  When studying sensory responses 

in an anesthetized animal, an experimenter can isolate a single parameter and manipulate it 

consistently for many repetitions to determine a neuron’s response.  But with awake 

behavior, the animal will tend to produce complex movements and behave differently from 

trial to trial. 
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Traditional electrophysiology analysis often involves a search for neurons which 

significantly increase or decrease their firing rates in response to an event in the experiment.  

Alternatively, the firing rates of all recorded neurons may be summed so that an overall 

increase can be detected.  These approaches may not reveal the full extent of the signals 

embedded in the population for two reasons.  First, one set of neurons may increase firing 

rate while another set simultaneously decreases firing rate, as is the case with cosine tuning 

(Georgopoulos et al. 1982).  The net result is that there is no change in the summed firing rate.  

Second, the firing rates of individual neurons may be generated by many factors 

simultaneously.  Some of these factors may be distributed across the population, so that they 

cannot be easily identified in any one neuron.  

With simultaneous recording of a small population of 50-100 neurons, we can address 

these issues using dimensionality reduction techniques to extract latent variables directly 

from the data.  One of the latent variables we identified was a widely distributed signal that 

seems to be related to error correction.  Modulation of firing rates during corrective 

movement has been identified in these brain areas before (Flament et al. 1992; Wise et al. 

1998), but we were able to study the error signal more directly than has previously been 

possible. 
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5.3 METHODS 

5.3.1 Behavioral task 

Two rhesus macaques (monkeys F and T) performed reaching tasks in a virtual 

environment, described previously (Schwartz et al. 2004).  The monkey sat in front of a 45° 

angled mirror that reflected the image of a stereoscopic monitor (Dimension Technologies).  

The position of the monkey’s hand was tracked with an infrared marker (Northern Digital) and 

rendered as a spherical cursor in a 3D environment.  As diagrammed in Figure 24, these 

monkeys performed a drawing task in which they pushed a virtual sphere along a circular or 

elliptical template for 6 cycles.  In some trials, we introduced an illusion effect, in which we 

distorted the relationship between the horizontal position of the hand and the position of the 

cursor in the virtual environment so that the monkey was drawing a circle in the real world 

but seeing an ellipse in the virtual world.  In these trials the first two cycles would be 

performed normally, and then the distortion would build gradually in cycles 3 and 4.  In cycles 

5 and 6 the distortion would be completely in effect, so a circle drawn in reality would appear 

as an ellipse on the screen.   
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Figure 24. Task objects at 15% scale (monkey not to scale).  A: The monkey sits in front of a 45° angled mirror 

which reflects the image of a stereoscopic monitor.  A 3D virtual environment is rendered on the monitor.  The 

position of the monkey’s hand is tracked with an infrared marker and represented in the virtual environment by 

a cursor.  B: Ellipse drawing task.  The monkey must push a sphere around an elliptical template six times.  C: 

Circle drawing, also six cycles.  D: Illusion drawing.  The monkey starts out drawing an ellipse for two cycles.  

Then a distortion is introduced so that while it is drawing a circle in the real world, it is drawing an ellipse on the 

screen.  The distortion is introduced gradually during cycles 3 and 4, so that by cycles 5 and 6 the monkey is 

drawing a circle but seeing an ellipse as illustrated in panel D. 

 

5.3.2 Neural recording 

These macaques were implanted with two 96-electrode arrays (Blackrock 

Microsystems) in accordance with the rules of the Institutional Animal Care and Use 

Committee of the University of Pittsburgh.  The position of the arrays were chosen to target 

the arm representation of the primary motor cortex (M1) and ventral premotor cortex (PMv), 

also known as area F4 (Luppino and Rizzolatti 2000).  The positions of the arrays were 
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reconstructed from photos taken at the time of implantation and are shown in Figure 25.  

Spike waveforms were recorded using digital signal processors (Plexon Inc; Tucker Davis 

Technologies), and well-isolated single units were sorted offline using OfflineSorter (Plexon). 

 

 

 

 

Figure 25. Location of two arrays in monkeys F and T, reconstructed from surgical photos.  Each Utah array has 

96 channels which are represented by the black circles.  The area of each black circle indicates the number of 

neurons that were recorded on that channel.  An example circle is shown above each panel.  CS: central sulcus, 

SPS: superior precentral sulcus, AS: arcuate sulcus, PS: principal sulcus.   

 

 

5.3.3 Sampling 

Before any further analysis, the firing rates of neurons and the position and velocity of 

the monkey’s hand were smoothed, time-rescaled and sampled.  The spike times were 

converted to a continuous function by convolving the point process (a series of Dirac delta 

functions at the spike times) with a 400 ms wide cosine-shaped filter.  Position and velocity, 
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which were captured at 60 Hz, were smoothed with a 5 Hz lowpass filter.  Drawing trials were 

divided into cycles, with the cycle edges defined by the cursor crossing the x=0 plane.  The 

first half of the first cycle and the second half of the last (6th) cycle were discarded because 

they were inconsistent across trials.  The remaining five cycles were divided into 20 equally 

spaced timepoints.  Because the speed of movement was somewhat variable, the 20 samples 

were closer together in some cycles than others.  The mean cycle length was 1.21/1.00 s for 

monkeys F/T.  20 sample times were added to the beginning and end of the series of 100 (5 

cycles × 20 samples) using the spacing from the first and last cycles. 

5.3.4 Illusion response scores 

We quantified the response of each neuron to the illusion in a series of steps.  First, we 

detrended the neuron’s average firing rate by removing the mean and the average linear 

trend within a condition (circle, ellipse, or illusion).  Second, we identified the cyclic 

component of the neuron’s firing by fitting it with a sine function at the frequency of the 

circular movement of the hand.  The points where the sine function crossed zero while 

increasing defined the edges of the firing-rate cycle.  The five central cycles were identified for 

the ellipse and illusion conditions.  Third, we quantified the modulation in each cycle by 

summing up the absolute value of firing rate within the cycle.  Since the mean and trend were 

removed in step 1, the absolute value indicates modulation in either direction.  Illusion 

modulation for each cycle was normalized by dividing by the corresponding non-illusion 

ellipse cycle’s modulation, in order to remove any trends that reflect progress through the 

task rather than the illusion.  Finally, we divided the amount of modulation in the last two 
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cycles by the first two, resulting in a measurement of the impact of the illusion on 

modulation. 

5.3.5 Latent variable analysis 

We would like to take the simultaneous activity of all the neurons recorded on one day 

and transform it into a set of latent variables.  Broad-timescale correlation of the type shown 

in Figure 26 was ubiquitous in these data, indicating that there was some shared variance in 

the simultaneous activity of these neurons which can be exploited by dimensionality 

reduction.  The drawing task had two unique features that allowed us to estimate latent 

variables with a specialized technique.  First, the drawing movement was cyclic, so many of 

the interesting signals will appear sinusoidal.  Second, there was a manipulation during the 

illusion trials that may alter firing rates.  These two features were built into our estimation of 

latent variables using canonical correlation.  Canonical correlation is a statistical technique 

that identifies signals that two sets of observed variables have in common (Hotelling 1936).  

In our case, one set of variables was the firing rates of neurons.  The other set of variables was 

a processed version of the kinematics.  Five cycles from each drawing trial were sampled at 

100 points as described earlier. At each point, the sine and cosine of the movement direction 

(vertical and horizontal component) was calculated. These values were inserted into a matrix, 

illustrated in Figure 27, with each column representing one of the 

elements.   Each row contained the sine or cosine values for 

only one cycle from each trial, with zeros elsewhere.  Each row was also selective for illusion or 

non-illusion, so it would stay at zero for the other type of trials.  There were 10 (5 cycles x 2 

 trials]of[number   s timepoint100 ⋅
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components/cycle) rows for the non-illusion trials and 10 rows for the illusion trials. The entire 

matrix was then where n is the number of trials.  For any particular column, there 

would be only two non-zero entries corresponding to the sine and cosine of movement 

direction. This matrix and the matrix of neural firing rates at the same time points were 

analyzed with canonical correlation to generate a set of latent variables that the two inputs 

had in common.  Canonical correlation outputs a weight matrix, which describes the 

relationships between latent variables and neural firing rates.  This weight matrix was used to 

estimate the latent variable activations from the observed firing rates.  We used 5-fold cross-

validation to avoid creating artificial correlations, using 4/5 of the data to create the weight 

matrix, and then reconstructing the left-out 1/5.  Our canonical correlation based approach 

differs from traditional dimensionality-reduction algorithms (

n10020×

for example Yu et al. 2009) in 

that the processed kinematics (Figure 27) impose assumptions about the nature of the latent 

variables: they must have a sinusoidal shape, which may vary from cycle to cycle and between 

normal and illusion trials. 
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Figure 26. Cross-correlograms (unnormalized) showing broad-timescale correlation, which is ubiquitous in this 

data.  Top row, long-timescale cross correlograms.  Bottom row, short-timescale versions of the same cross-

correlograms.  The strong features at long timescales are sometimes accompanied by short timescale features. 
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Figure 27. Illustration of the processed kinematics that are used as one of the inputs to canonical correlation. 

 Rows correspond to variables, columns to observations.  Each row contains the sine or cosine of movement 

direction for a specific cycle of drawing, for either illusion or non-illusion trials.  Jagged lines indicate that some 

rows are not shown.  When canonical correlation is performed using this matrix and the matrix of simultaneous 

neural firing rates, it will identify signals that both have in common.  The common signals can be any linear 

combination of the rows shown above. 

 

5.3.6 Computing the kinematic error signal in drawing 

One of the latent variables consistently identified in the drawing task looked like an 

error signal.  In the context of this task we formulated error as the disparity between the 

 117 



current position of the arm and the average elliptical trajectory across all trials.  To calculate 

positional error, we first constructed an idealized trajectory by taking the mean of all trials 

within a specific condition (for instance, ellipse cycle 5).  Then, at each instant in time, we 

identified the point on this idealized figure closest to the monkey’s hand.  We subtracted the 

x-position of the monkey’s hand from the x-position of the nearest point on the figure (the 

figure was interpolated at high resolution to avoid aliasing).  We always used the visual 

position to create the ideal trajectory, but compared it to the actual position of the monkey’s 

hand, so the error signal will be most obvious during late cycles of the illusion trials.  During 

non-illusion trials, it will be zero on average, because the ideal trajectory is constructed from 

the average trajectory.  But it will modulate during individual trials, because the monkey’s 

trajectory varies from trial to trial.   

5.4 RESULTS 

We recorded 2,095 neurons over 25 sessions on two arrays in monkey F, and 339 

neurons over 5 sessions in monkey T.  The number of neurons recorded at each electrode is 

shown in Figure 25. 

During the illusion trials, a dissociation was created between the actual movement of 

the monkey’s hand and the movement displayed on the screen.  In the last two cycles, the 

monkey makes circular movements with its hand while elliptical movements appear on the 

screen.  In both M1 and PMv we observed a wide range of responses to the illusion, including 

cells that dramatically diminish or enhance their response during the illusion (Figure 28).  We 
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analyzed the increase or decrease in modulation for all recorded cells and found that the 

dominant phenomenon is decreased modulation, especially in the part of PMv where we 

recorded (Figure 29).  However, there was also a minority of neurons that increased their 

modulation in response to the illusion.   

 

 

 

 

 

Figure 28. Average firing rate profile of two neurons during the circle, ellipse, and illusion versions of 

the drawing task.  A: This cell is anti-illusion.  It diminishes its modulation during the illusion, below 

what is expected from the actual (circular) movement.  B: This cell is pro-illusion.  It increases its firing 

rate during the illusion, even though the movement is getting smaller.  
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Individual neurons had complex cyclic responses during the drawing task.  These 

responses changed shape as well as magnitude in the last two cycles of the illusion.  

Nonetheless, it is possible that there are simpler signals embedded in these complex 

responses.  The canonical-correlation procedure described in Methods consistently identified 

the same three latent variables in every session of drawing task, in both monkeys (Figure 30).  

The first two correspond closely to horizontal and vertical movement direction.  The third 

variable emerged in the late cycles of the illusion, corresponding to the time when a disparity 

was created between the actual movement of the monkey’s hand and the apparent 

movement on the monitor.  Within individual trials, we compared the latent variables to the 

horizontal error of the monkey’s trajectory (Methods) and found that latent variable 3 was 

tightly correlated with the difference between actual and ideal position approximately 150 

ms in the future (Figure 31).  During non-illusion trials, latent 3 appears inconsistently from 

trial to trial because the monkey makes different errors each time.  Therefore, it averages out 

and is not visible in Figure 30.   However, we can compare the instantaneous value of latent 3 

to the instantaneous value of horizontal error.  The source of horizontal error is different in 

illusion versus non-illusion trials.  In illusion trials, error is created by the experiment, while in 

non-illusion circle and ellipse trials, it comes from small errors in the monkey’s movements.   
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Figure 29. Distributions of illusion response scores.  A neuron with a score of 1 has the same amplitude of 

modulation in the last two cycles of the illusion as the first two.  < 1 means modulation decreases (A in the 

previous figure), > 1 means modulation increases (B in the previous figure).  PMv neurons are more likely to be 

diminished by the illusion, but both populations exhibit a range of responses.  The details of calculating these 

scores are described in Methods. 
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Figure 30. We consistently identify the same 3 latent variables in the drawing task.  The above plots show the 

activation of these variables, calculated independently for each session, overlaid on one another.  They were 

extracted from the neural firing rates using the weights that result from canonical correlation.  Latent variables 1 

and 2 correspond closely to the horizontal and vertical component of movement direction, while latent 3 

coincides with the discrepancy between actual and visual movement that appears in the late cycles of the 

illusion condition.  The x-axis of each of the 6 plots indicates rescaled time, as described in Methods.  Tick marks 

correspond to boundaries between cycles.  Activations are unitless. 
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Figure 31: Latent 3 is correlated with an error signal.  Shown are cross correlograms between latent 3 activation 

and the horizontal error signal that is described in Methods.  Correlograms were calculated separately for each 

session and are shown overlaid.  The relationship between latent 3 and future x-error holds for both the illusion 

trials (top), where error is created by the experiment, and non-illusion trials (bottom), where error comes from 

the monkey.  The x-axis represents rescaled time; the peak in the cross-correlograms corresponds to ~150 ms. 

 

5.5 DISCUSSION 

We were able to leverage some of the special characteristics of our task to extract 

meaningful latent variables.  Movement and neural activity in the drawing task was cyclic, so 

we assumed that many of the interesting signals would follow that cycle, and constrained our 

search to latent variables that resembled sinusoids.  The same three latent variables were 

found in every session.  Latent variables 1 and 2 correspond closely to the horizontal and 

vertical direction of movement, consistent with the previously identified representation of 

direction in motor cortex (Georgopoulos et al. 1982).  Latent variable 3 is more novel.  

Previous studies have shown that corrective movement influences the activity of neurons in 

motor and premotor cortrex (Flament et al. 1993), but the precise nature of this signal was 

unknown because it was usually weakly represented in neurons that encoded other 

parameters simultaneously.  By directly extracting this signal, we have been able to show that 

it is correlated with positional error ~150 ms in the future, whether that “error” is the result of 

a visuomotor distortion or the trial-to-trial variability of the monkey.  It may seem odd that a 

neural signal would be correlated with future positional error, since positional error is the 

 123 



cause rather than the result of corrective movement.  However, the idea of predicting future 

error for the purpose of making online adjustments to ongoing movement is common in 

control theory (Miall et al. 1993; Todorov and Jordan 2002).   

Traditional thinking about motor and premotor cortex has localized error-correction 

primarily in PMd (Gomez et al. 2000; Wise et al. 1998).  Most of the neurons we recorded 

responded to the illusion with modest decreases in modulation (Figure 29).   But this does not 

necessarily mean that error-correction is not a part of their function.  Consider two ways a 

signal might be embedded in a set of neurons.  In the simpler case, some percentage of the 

population is driven primarily by the signal of interest.  Studying this signal is simply a matter 

of finding those neurons.  In the more difficult case, the signal of interest may weakly drive a 

large percentage of the population, with other unrelated signals present in the same neurons.  

In this case there may not be any individual neurons that clearly show the signal of interest.  

The only way to observe such a signal is to record the entire population and demix the latent 

variables.  Latent 3 seems to be an example of this type of encoding.  The fact that we observe 

such a consistent representation of the error signal implies the existence of a separate 

channel within the direction-encoding neurons, which anticipates the future need for error 

correction.  This signal influenced neurons that were widely distributed across our recording 

electrodes; its distribution was approximately the same as the distribution of recorded 

neurons in Figure 25. 

It has previously been shown that in this task, some neurons follow the apparent 

movement on the monitor while others follow the actual movement of the monkey’s hand 

(Schwartz et al. 2004).  A hypothetical population of neurons tuned to movement velocity and 
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position in both visual and motor coordinates would contain signals like latent 3, due to the 

difference between the motor and visual neurons late in the illusion.  However, they will not 

replicate the relationship between latent 3 and the small errors in non-illusion trials, because 

there is no difference between the motor and visual signals in non-illusion trials.  

Furthermore, the exercise of constructing a population of neurons tuned to specific features 

of movement and then showing they can replicate aspects of the results misses the point of 

doing latent variable analysis.  We can hypothesize many different encoding schemes that 

would produce differential firing rate modulation in the late cycles of the illusion, and thereby 

replicate the main feature of latent 3.  The purpose of the analysis in this paper is to avoid 

specifying an encoding scheme a priori.  Instead we extract the important signals directly 

from the data and then study them.   

We do impose some assumptions by using the processed kinematics matrix (Figure 

27) as one of the inputs to canonical correlation.  The sines and cosines in the rows of this 

matrix biased the canonical correlation technique to extract latent variables which are cyclic.  

Because of the circular nature of the drawing task this is a very broad assumption; many 

different hypothetical encoding schemes will produce a cyclic signal in this task.  Indeed, the 

error signal we identified in latent 3 is compatible with multiple interpretations.  It might 

reflect a disparity between the monkeys expected perception and reality, or an upcoming 

corrective movement, or simply a computational element of the brain that has no intuitively 

meaningful description.  We have no way of knowing whether this signal is being used by the 

brain for any function; it could be a faint effect of a stronger error signal located in another 

area.  We can only say that there is a consistent signal in these brain areas that is correlated 
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with upcoming positional error.  The most telling finding is that in non-illusion trials, when 

the monkey deviates from its average trajectory the activation of latent 3 follows those 

deviations. 

Latent variable analysis is based on the idea that correlation across recorded neurons 

is generated by factors that drive each neuron in a common manner.  This common drive may 

be too weak to observe clearly in individual firing rates.  By looking at a population recorded 

simultaneously, these effects become evident.  Furthermore, because they are extracted 

directly from the data, they do not require a priori assumptions about the identity of an 

encoded variable.  The directional components in latent 1 and 2 were expected, but the 

discovery of the error-related signal in latent 3 was surprising.  The fact that corrective 

movement influences neural activity in motor and premotor cortex has been demonstrated 

before, but it has not been possible to directly observe an error signal because of the way it is 

embedded amongst stronger signals in individual neurons.  Simultaneous recordings of 

populations, and the new analysis techniques they enable, have revealed a previously 

inaccessible signal. 
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6.0  A PLATFORM FOR WIDESPREAD SIMULTANEOUS RECORDING 

In this chapter, we describe a recording chamber and an array of 256 individually moveable 

electrodes that can be used to recording the activity of neurons across many brain areas.  The 

recording chamber has been used in four monkeys over the last two years without a single 

failure.  While the electrode array has not yet been used to record in a monkey performing a 

behavioral task, it has successfully recorded neural activity in full-scale prototypes. 

6.1 A LEGGED TITANIUM RECORDING CHAMBER 

Recording neural activity in trained macaques requires permanent access to the brain.  This 

involves creating a hole in the skull and then somehow protecting that hole from infection.  

Most existing schemes use a recording chamber—a metal cylinder, usually affixed to the skull 

with dental acrylic.  The need to place a significant quantity of dental acrylic around the edge 

limits the size of the recording chamber.  Also, this method of attachment is prone to failure, 

as the dental acrylic tends to gradually detach from the underlying skull.  While individual 

monkeys will sometimes retain their recording chambers for years, this failure mode cannot 

be completely eliminated. 
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To allow a larger portion of the brain to be accessed in a single chamber, and to 

eliminate the detachment failure mode, we developed a recording chamber that included 

legs that could be screwed directly into the skull (Figure 32).   

 

 

 

 

 

Figure 32: Legged recording chamber. 

 

 

 

This recording chamber was milled out of a single piece of titanium using a CNC 

machine.  It consisted of two parts: an outer rim and an inner sleeve.  The outer rim would be 

implanted completely under the skin for a minimum of two months.  During this time the 

monkey would be trained and the legs of the recording chamber would gradually become 

engulfed in bone, due to the osteoconductive property of titanium.  This period of bone 
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integration lasted between two months and two years.  We found that longer periods were 

better, and that if they were over a year the bone formed a nearly complete seal with the 

edge of the outer rim. 

Following the period of bone integration, an incision would be made along the 

centerline of the pre-implanted outer rim of the chamber.  We found that making an incision 

and displacing the skin to the side produced a healthier long-term skin interface than 

removing an oval of tissue.  While the excess skin would be wrinkly immediately after surgery, 

the skin tended to retract somewhat in the weeks following, so an initially wrinkly skin edge 

would end up in the ideal position.  The legs of the chamber would always remain buried 

underneath the skin and muscle tissue.  An oval-shaped craniotomy would be cut through 

the skull in the center of the outer rim.  A shelf of bone would be left extending ~1/32” 

towards the center of the recording chamber (Figure 33).  We devised a simple tool to cut this 

shelf precisely: a standard burr bit with a piece of Teflon tubing fitted tightly around it.  The 

Teflon tubing served both as a stand-off, to keep the edge of the bit 1/32” from the inner face 

of chamber, and as a depth stop, preventing the bit from cutting too far through the skull and 

into the brain. 
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Figure 33.  A craniotomy is cut in the center of the recording chamber, leaving a 1/32” bone shelf (A) extending 

inwards from the pre-implanted fixture. 

 

 

 

After the craniotomy was cut, we would slide the inner sleeve into the recording 

chamber.  The bottom edge of the inner sleeve needs to match the shape of the surface of the 

dura.  We found the best way to accomplish this was simply to manufacture the inner sleeve 

with excessive depth and a .02” inner wall that we would then cut with a large burr during the 

surgery.  By repeatedly inserting the sleeve and then adjusting the fit, we could produce an 

excellent match to the surface of the dura in about half an hour. 

The inner sleeve must seal against the cut edge of the bone to prevent infection of the 

chamber.  We experimented with several ways to accomplish this, but we found the best 

technique was to use a small amount of dental acrylic.  We first placed an oval shaped piece 

of latex glove on the surface of the dura and tucked its edges under the cut edge of the bone.  
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We then mixed dental acrylic, and when it reached the viscosity of honey we poured an 

excess directly on the cut edge of bone.  It spilled onto the latex glove protecting the dura, 

and the inner sleeve was firmly inserted all the way into the outer rim (Figure 34).  This would 

displace some of the dental acrylic into the center of the recording chamber.  We would 

immediately pour saline solution into the chamber to absorb heat from the curing acrylic.  At 

this time we would also insert the four flathead screws that attach the inner sleeve to the 

outer chamber.  After about 30 seconds the dental acrylic would achieve the consistency of 

bubble gum and we would pull out the piece of latex glove protecting the dura, sweeping 

away the excess dental acrylic with it. 

 

 

 

 

Figure 34. A cross-section of the assembled recording chamber.  A: Lid.  B: Inner sleeve, extends down to dura.  

C: Bone screw.  D: Outer rim.  E: The gap between the inner sleeve, the outer rim, and the bone shelf is filled with 

dental acrylic.  F: There is a groove in the lid which tightly fits a silicone o-ring that seals the chamber. 
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At this point the only remaining step was to place stitches at the ends of the recording 

chamber, where the centerline incision tended to extend somewhat beyond the edge.  A 

purse-string suture was always placed to ensure the skin was pulled tightly against the edge 

of the chamber as it healed.  We attached a plastic lid using four screws; the plastic cap had an 

internal o-ring that sealed the chamber.  The center of the lid had a tapped hole with a 

flathead screw that could be removed to allow the volume of the chamber to equalize as the 

lid was pressed into place.   

The legged recording chamber provides two principal advantages: its superior 

reliability, and the large area of the cortical surface that can be accessed.  Figure 35 shows 

tracings of the cortical sulci in several implanted recording chambers, based on intraoperative 

photographs. 
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Figure 35: Tracings of the cortical sulci that were visible in the lumen of several legged recording chambers.  The 

accessible surface extends from the dorsolateral prefrontal cortex to some posterior parietal areas.  AS, arcuate 

sulcus.  CS, central sulcus.  IPS, intraparietal sulcus.  PS, principal sulcus. 

 

6.2 THE 256-ELECTRODE ARRAY 

The development of the legged recording chamber provided access to a much larger area of 

the brain than was possible with previous designs.  We sought to leverage this capability by 

developing an array of 256 individually moveable electrodes that could be inserted directly 

into the chamber.  The linear motion of each electrode was actuated by turning a screw.  The 

screw was stationary; its threads interlocked with a moveable shuttle in which the electrode 

was mounted.  Both screw and shuttle were inserted into a pair of overlapping deep holes in a 
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plastic block.  The deep holes served to trap the shuttle against the screw so that when the 

screw was turned, the shuttle would move up or down.  This mechanism, diagrammed in 

Figure 36, was reliable and inexpensive to implement.  It did require the development of 

some creative machining strategies.  It is not possible to drill two deep holes that overlap one 

another with conventional drill bits.  We drilled the smaller of the two holes with a standard 

drill, then drilled the larger hole with an extra long 3/64” end mill using a short peck 

operations that each make the hole slightly deeper.   

The brass shuttles are moon-shaped and have a thread cut into one side of them.  To 

produce this unusual feature, we drilled and tapped a grid of 000-120 threaded holes in a sold 

block of brass.  We then cut the appropriate moon shape around each existing hole. The brass 

block was thicker than the shuttles, so this left an array of finished shuttles attached to a solid 

brass support.  The block was then flipped over and glued with Crystalbond (Electron 

Microscopy Sciences) into a fixture which had a matching hole for every shuttle that was 

sticking out of the face of the brass block.  The back side of the block was machined off, 

leaving the shuttles glued into the holes of the fixture.  We then dissolved the Crystalbond 

with acetone and sonication, which served both to thoroughly dissolve the adhesive and to 

vibrate all the shuttles out of the fixture.  It took several hours to machine an array of 320 

shuttles, but the CNC machine is completely automated and ran unattended.   
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Figure 36.  Cross-section of the linear motion mechanism used in the 256-electrode drive.  A: Brass shuttle.  B: 

Stainless steel screw.  C: Interlocking threads between screw and shuttle.  D:  Hole for electrode to be mounted 

in.  E: Plastic block (gray region) that the screw and shuttle are embedded in.  The screw never moves up or 

down; by turning the screw, we advance or retract the shuttle with the electrode mounted in it.  The screw and 

shuttle are held together by the surrounding plastic block.  

 

 

 

We arranged to have electrodes manufactured by FHC at precisely the right length for 

the array so that they could be mounted directly into the shuttles by crimping the back end of 

the electrode with a manual pliers and then force-fitting into the hole in the shuttle.  Several 
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other methods of mounting were tried but crimping was the only one sufficiently reliable to 

be used in an array of hundreds of electrodes.   

The linear motion mechanism was scaled to a 256-electrode array by simply repeating 

the pattern of screw/shuttle modules in a plastic block designed to fit into the recording 

chamber.  This plastic block was surrounded by several layers designed to hold the shuttle 

assemblies in place and create a seal between the brain and the outside world.  An exploded 

view of the complete assembly is diagrammed in Figure 37.   
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Figure 37.  Exploded view of the 256-electrode drive and recording chamber.  A: Push-down plate, holds the 

screws down.  B: Guide block, includes 256 columns for the screw/shuttle assembly.  C: Membrane sandwicher, 

traps a .005” silicone rubber membrane between C & D which is pierced by each electrode.  D: Guide holes, 

includes a small hole for each electrode.  E: Inner sleeve.  F: Outer rim.   

 

 

To record voltage signals from the electrodes, we need to make a separate electrical 

connection to each one.  The tungsten electrode is already electrically connected to each 

screw via the brass shuttle.  We made a spring-loaded connector that pressed a brass piston 

down on the head of each screw.  Above each spring was another piston that pressed against 
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a 2-layer printed circuit board, which directed all the signals into two Tucker-Davis ZC128 

connectors (Figure 38).   

 

 

 

 

Figure 38.  Assembled electrode drive with removeable connector.  Includes a quarter for scale. 

 

 

 

Several prototype electrode arrays were assembled (Figure 39) and successfully 

recorded neural activity.  They were tested in monkeys with existing recording chambers 

where neural recording had already been performed using traditional semi-acute techniques 

where the electrodes were introduced and removed each day.  Some early problems with 

seals have been resolved and at this time the drive is ready to be used in a full-scale 

experiment.  
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Figure 39.  Assembled electrode drive, inverted to show fully extended electrodes. 
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