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IDENTIFICATION AND RESTORATION OF A CLASS OF ALIASED
SIGNALS

Aasma Walia, M.S.

University of Pittsburgh, 2004

A fundamental theorem of Digital Signal Processing is Shannon’s sampling theorem, which
dictates the minimum rate (called the “Nyquist rate”) at which a continuous-time signal
must be sampled in order to faithfully reproduce the signal from its samples. If a signal
can be reproduced from its samples, then clearly no information about the original signal
has been lost in the sampling process. However, when a signal is sampled at a rate lower
than the Nyquist Rate, the true spectral content of the original signal is distorted due to
“aliasing,” wherein frequencies in the original signal greater than the sampling frequency
appear as lower frequencies in the sampled signal. This distortion is generally held to be
irrecoverable, i.e., whenever aliasing occurs, information is considered to be inevitably lost.

This research challenges this notion and presents a technique for identifying aliasing
and recovering an unaliased version of a signal from its aliased samples. The method is
applicable to frequency-modulated (FM) signals with a continuous instantaneous frequency
(IF), and utilizes analysis of the IF of the aliased signal to 1) determine whether the signal
has potentially been aliased and, if so, 2) compensate for the aliasing by reconstructing
an estimate of the true IF of the signal. Time-frequency methods are used to analyze
the potentially aliased signal and estimate the IF, together with modulation, re-sampling
and interpolation stages to reconstruct an estimate of the unaliased signal. The proposed

technique can yield excellent reconstruction of FM signals given ideal estimates of the IF.
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1.0 INTRODUCTION

Shannon’s sampling theorem states that when converting from an analog signal to digital (or
otherwise sampling a signal at discrete intervals), the sampling frequency must be greater
than twice the highest frequency of the input signal (Nyquist rate) in order to be able to
faithfully reconstruct the original signal from the sampled version !. If the sampling frequency
is less than this limit, then frequencies in the original signal that are above half the sampling
rate will be “aliased” and will appear in the resulting signal as lower frequencies. When this
happens, the original signal cannot be reconstructed from the sampled signal.

Here, we present a method which attempts to recover a signal after it has been sampled
at a rate lower than the Nyquist rate. The method involves obtaining the instantaneous
frequency (IF) estimate for the original, potentially aliased, signal. Under conditions when
the signal is aliased, the method compensates for this aliasing by correcting the IF estimate
and reconstructing an unaliased version of the signal.

This technique attempts to identify and correct for aliasing in a class of signals, having
moderate amplitude-modulation and continuous frequency-modulation. For such signals, the
time-frequency distribution is concentrated along the instantaneous frequency of the signal,
and it is possible to obtain very good estimates for the phase. As derived later, the Wigner
distribution for this class of signals can be approximated as:

Az(t) e(_(w—¢’(t))2)

202 (t)
2mo (t)

W,(t,w) ~ (1.1)

This thesis uses time-frequency techniques to obtain IF estimates. Then the signal is
demodulated, upsampled, interpolated, and remodulated by the compensated IF. Under
ideal conditions - with perfect IF estimates - the technique reconstructs the unaliased signal

given only the aliased version.

!Bandlimited signals centered about some frequency wy > 0, can be sampled at a rate lower than the

Nyquist rate and it is possible to recover the signal if the bandwidth is known.



1.1 SAMPLING AND ALIASING

With the advent of digital computers and their subsequent widespread availability, most
analysis of data are now done digitally. Hence the need to convert continuous-time signals,
such as speech, music, biomedical signals (EEG, EMG, EKG, etc.), sonar, radar, machine
vibrations, etc. into discrete samples that can be manipulated on a digital computer. The
rate at which the signals are sampled for subsequent digital analysis is called the Sampling
Rate or Sampling Frequency.

According to the Sampling Theorem, if the signal is band-limited and if the sampling
rate is high enough, then the samples uniquely specify the original signal and perfect recon-
struction of the original signal from its samples can be achieved. The Sampling Theorem
can be stated as:

Let s(t) be a band-limited signal with S(w) = 0 for |w| > wy, Then, s(¢) is uniquely
determined by its samples s(nT'), n = 0,£1,£2, ..., if wg > 2wy,.
Here, w,, is the largest frequency component in s(t), 2w,, is the Nyquist rate, and w; is the
sampling frequency. If a band-limited signal has been sampled at a rate greater than or equal
to the Nyquist rate, then the continuous signal can be recovered perfectly via interpolation .

But if any band-limited signal has been sampled at a rate lower than the Nyquist rate,
then replica overlap in frequency occurs. This undersampling in time, is called Aliasing,
wherein frequencies above half the sampling frequency appear as lower frequencies in the
sampled version of the original signal. Aliasing results in a distorted version of the original
signal. The spectrum of the sampled signal after aliasing does not have one-to-one corre-
spondence to that of the original continuous-time signal. Therefore, the spectrum of the
sampled signal cannot be used to analyze the continuous time signal and the continuous
time signal cannot be uniquely reconstructed from its samples.

Consider a signal s(t), which is sampled using a periodic 1/0 pulse train p(t) with period
T and duty cycle of duration 7. Let s4(t) denote the sampled signal, given by ss(t) = p(t)s(t).

We can represent Fourier transform pairs by

s(t) & S(w) = /s(t)e_j‘“tdt



sa(t) & Sy(w) = / s(t)e Tt

Since p(t) is a periodic function, it can be expressed in terms of a Fourier series,

p(t) = chea:p(jnwst) (1.2)

n

co = %/OTp(t) dt (1.3)

= —/ tyexp(—jnwst)dt n==+1,42, ... (1.4)

where

and,

with wy = 27/T.
Taking a Fourier transform of s,(¢) and applying the multiplication/convolution property

together with the identity

/exp(jwt)dt =270 (w) (1.5)
we have that
Ss(w) = oS (w) + ch W — nws) (1.6)
n#0

It can be seen that Sg(w) consists of an amplitude-scaled replica of the true spectrum S(w)
of the original signal, plus a sum of scaled replicas of S(w) shifted in frequency by integer
multiples of w,. Hence, if the shifted replicas do not overlap, which will be the case when
wy is greater than twice the maximum frequency w,, in the signal, then aliasing is avoided
and the replicas can be removed by filtering. However, when w; is less than 2w,,, then the
replicas overlap and the original spectrum is distorted and can not be recovered by filtering.

In this thesis we present a new approach that in some cases allows aliasing to be identified
and corrected, so that an unaliased version of the original signal can be recovered from the
aliased signal. The approach utilizes time-frequency methods to jointly analyze the signal in
time and frequency and estimate the instantaneous frequency of the signal. Under certain
situations to be described, aliasing causes an abrupt change in the instantaneous frequency.
Compensating for this effect allows for the reconstruction of an unaliased version of the

signal.



2.0 TIME-FREQUENCY DISTRIBUTIONS

2.1 INTRODUCTION

The two classical signal representations in signal theory are its time and frequency repre-
sentations. But as Gabor[13] noted, “both are idealizations...Our everyday experiences -
especially our auditory sensations - insist on a description in terms of both time and fre-
quency”.

“The fundamental idea of time-frequency analysis is to describe how the spectral content
of a signal changes in time and to develop the physical and mathematical ideas needed
to understand what a time-varying spectrum is” [8]. Time-Frequency Distributions (TFD)
describe frequency over time, thus providing information about what frequencies existed at
each instant of time. TFD is basically a joint distribution which gives the fraction of total
energy of the signal at a particular time and frequency. Since TFDs tell as to how much of
the total is in a particular time frequency cell, it should be positive for all values of time and

frequency.

2.2 CONTINUOUS TFDS

2.2.1 Wigner Distribution

The Wigner Distribution (WD) was introduced by Wigner in 1934 for application in quantum
mechanics. It was later recognized as a powerful tool for time-frequency analysis of signals
and can be interpreted as a distribution of the signal energy in time and frequency. The WD

can be evaluated from both time or the frequency representation of a signal [5].



The WD in terms of the time signal s(t) can be expressed as:

Wi(t, f) = /_ m 92T g (p %)s(t + %)df (2.1)

and in terms of the Fourier transform of s(t), S(f) as:

Foo v v
Wit.s) = [ e DS( - P 2.2

o0

+00 v v
= [ s st - i (23)

o0

A peculiarity of the WD is that it is not strictly nonnegative, except for a chirp signal.
Additionally, for multicomponent signals, that is signals containing more than one part
having their own identity in some sense, the WD introduces interference terms. In other
words, the WD of sum of two signals is not the same as the sum of the WD of each signal.

These interference terms indicate energy in places where one would not expect.

2.2.2 Cohen’s General Class of TFDs
In 1966, Cohen gave a unified formulation from which all TFDs can be obtained:

T T

+o0 +o0 +o0
p(t, f) = / / / P2 g (1 7)™ (u — E)S(U + E)e_j%deVdudT (2.4)

where g(v, ) is an arbitrary function, or the kernel. Different distributions can be obtained

by taking different kernels. The kernel method has a number of advantages such as [7]:

e [t is easy to generate the distributions by just choosing the kernel function. For example,
the WD is obtained by g(v,7) = 1.

e The distributions with certain characteristics can be extracted by constraining the kernel

e The properties of an unknown distribution can be easily determined by examining the

kernel.
The properties of TFDs can be represented in terms of the kernel function as [6]:

e For the TFD to be real, g(v,7) = g*(—v, —7).



e The energy of the TFD equals the energy of the signal when g(0,0) = 1

/MnMﬁZWGW ifg(0,7) =1

[ ote.pyar =150 ifg(v.0) =1
e The first conditional moments of the TFD yield the IF and TD when the following

equations are satisfied
9g(v, )
or

dg(v, T)

10,0 =

2.2.3 Spectrogram

The short-time frequency transform (STFT), is the main method used for time-frequency
analysis, and was first developed for analyzing speech signals [25].

To compute the STFT, the signal, s(t), is divided into small segments which are then
fourier transformed. To achieve this a window function, h(t) is used. STFT can be repre-

sented as:

S(t, ) = /_ ()W (7 = eI (2.6)

[e.9]

The spectrogram is the TFD obtained by taking the magnitude square of the STF'T,

PSP(t7f) = |S(t>f)|2

The spectrogram is obviously positive but does not give the marginal densities |s(¢)|* and
|S(f)]?. Additionally, the window has a significant input on the results obtained. For a given
signal one window may be more appropriate than another, thus requiring knowledge about
the signal for better analysis. Also in case of a multicomponent signal,each signal component
would require its own window for the best results. For such cases, a single window will not
be sufficient for signal analysis. Furthermore, as the length of the window is reduced, the
time resolution becomes better but the frequency resolution degrades, and vice versa.

The spectrogram can be obtained from Cohen’s generalized class of TFDs by taking the
kernel to be a WD of the window h(t). Thus, the spectrogram can be represented as a

convolution in time and frequency of the WD.



2.3 DISCRETE-TIME TIME FREQUENCY DISTRIBUTION (DTFD)

To enable TFDs to be applicable in discrete-time applications the concept of continuous
TFDs need to be transferred to the case of discrete-time signals, thus giving rise to DTFTs.
It is desirable that the DTFT should retain as many properties of the TFD as possible.

To understand the DTFT, we consider the discrete-time Wigner distribution in detail.

2.4 DISCRETE-TIME WIGNER DISTRIBUTION (DWD)

Let s(n) and g(n) be two discrete-time signals. Then the cross-Wigner Distribution can be

defined as:
W g(n,w) =2 Z e 2k s(n 4+ k)g*(n — k) (2.7)

k=—00

And the auto-Wigner Distribution can be defined as:

Wa(n,w) = Wes(n,w) =2 Y e **s(n+ k)s*(n — k) (2.8)

k=—o00

It is clear that the DWD is a function of n(discrete) and w(continuous). One of the
important properties of the DWD is its Periodicity. As pointed out in [5], the DWD as

formulated above is periodic with period 7 with respect to w.

W g(n,w) = Wi 4(n,w + )

2.4.1 Relationship between Discrete and Continuous WD

Let the s,(t) be the continuous-time signals which after sampling results in s(n). Then the

sampling relation for DWD can be shown to be as follows [5]:

Winw) = = > W, (T, ‘”;]”) (2.9)




where Wy, (t,w) is the continuous WD of the signal s,(¢). As we will show, this relationship
between the continuous and discrete TFD can be used to identify aliasing in some cases, and
correct for it.

A lot of research in aliasing has been done for discrete Wigner distributions (DWD),
which when computed traditionally require to be sampled at twice the Nyquist rate to be
alias-free. Many have made efforts to obtain alias-free DWDs at Nyquist rate [23, 2, 4, 14, 18].
Costa [9, 10] summarizes and compares these efforts and their results.[4, 19, 21, 1, 15, 20]
have given alternative definitions for the DWD. Only the technique given by Nuttall [19]
was found to be alias-free for signals sampled at the Nyquist rate. But it requires additional

computations.

2.5 INSTANTANEOUS FREQUENCY

In communications, some form of modulation is required since a purely monochromatic
signal cannot transmit any information [22]. The most widely used modulation techniques
are Amplitude Modulation (AM) and Frequency modulation (FM). FM is a modulation
technique in which the instantaneous frequency (IF) is varied in time. As Carson and Fry
pointed out in [3], FM was first investigated based on the belief that FM could help reduce
the bandwidth requirements for transmission, which was shown otherwise by John Carson
in 1922. When radio transmission was introduced the interest in FM was revived. Also FM
provided reduced noise-to-signal ratio for the received signal, as compared to AM.

Thus, it was of interest to find out how the parameters of the signal, especially the
frequency varied with time. The IF of a complex signal is defined as the derivative of the

phase of the signal, i.e. if z(¢) is a complex signal expressed as A(t)eU¢®) then

_de/(t)
o dt

IF = w(t) (2.10)

But this definition is very ambiguous as there are infinite number of ways for expressing
a real signal in a complex form. To overcome this ambiguity and to determine instantaneous

APF of AM-FM signals, a number of methods have been developed. A few of these techniques



are discussed briefly in the following sections.

The definition of IF (equation (2.10)) was first given by Carson and Fry [3], in 1937,
which was later reinforced by the work of Van der Pol [11]. Carson and Fry, using electric
circuit theory concepts tried to generalize frequency by representing it as a function of time.
They showed that the IF could be expressed as the derivative of the phase of a complex
signal (equation (2.10)). Later, Van der Pol using harmonic motion concepts came up with
the same definition of IF, i.e. derivative of the phase of the signal.

But the problem with this definition was that there were infinite number of ways of
expressing the real signal in complex form, each giving completely different results for the
instantaneous amplitude and phase (thus IF) of the signal. A real signal z(t) can be expressed
as 2(t) = Re{A(t)eU?™)}. There exist an infinite number of pairs [A(t), ¢(t)] whose real part
is equal to the signal x(t).

Gabor gave a solution for this ambiguity in 1946 [13]. He proposed the technique of
finding the unique complex signal, called the analytic signal (AS), by inverting the fourier
transform of the real signal over the positive frequency range only. This procedure is equiva-
lent to taking the imaginary part of the complex signal as the Hilbert transform of the given
real part.

Let z(t) be a real signal. The AS of x(t) as proposed by Gabor can be expressed as:
z(t) = AS{z(t)} = x(t) + jHilbert{z(t)} (2.11)

1
Hilbert(z) = KT
7r

Z(0) — 2X(w) w>0
(w) = (2.12)
0 w <0

Thus the IF could be uniquely calculated from the AS as the derivative of the phase of
the AS. Vakman [24] showed that only the analytic signal technique satisfies certain physical
conditions, Amplitude continuity, harmonic correspondence, phase independence of scaling.
However, other properties, such as requiring that the complex representation be bounded

in magnitude if the real signal is bounded in magnitude, or requiring |z(¢)| = 0 for |t| > T



if |x(t)] = 0 for |t|] > T, lead to techniques other than the Hilbert transform/ analytic
signal [16, 17]

Another technique for obtaining a unique complex signal for a given real signal was in-
troduced by Loughlin and Tacer [17]. This technique uses Cohen’s positive time-frequency
distribution and the complex signal so obtained satisfies a set of reasonable physical con-
ditions which the AS method failed to satisfy for most of the real signals. The technique
proposed that the phase of the complex signal be split into two parts, one corresponding to
the FM (¢) and the other to the AM (¢,). The FM part could be found using the first
conditional moment of the positive TFD (w(t)) as:

t
bf :/ w(T) dr (2.13)

0
The amplitude and the rest of the phase could be obtained using coherent demodulation.
The coherent demodulation gives the “In-Phase AM component” (A;(t)) and the “Quadra-
ture AM component” (Ag(t)), which constitute the complex amplitude A;(t) + jAg(t) =

A(t)e’*a® Thus the complex signal can then be written as
2(t) = A(t)ej(¢f(t)+¢>a(t)) (2.14)
Another technique for obtaining the IF of a signal is by calculating the first conditional
moment of TFDs like Spectrogram, Wigner-Ville distribution, positive Cohen distribution.

One of the earliest TFDs was obtained using the Filterbank/ Short-time Fourier Transform

(STEFT). STET for a complex signal z(¢) can be expressed as

y(t,w) = /z(t) R*(r —t)e!Tdr
Here, z(t) = A(t)e’*®) and h(t) is the window. Using this equation, the spectrogram can be
computed as [8]

Py (t,w) = [y(t,w)|”

The first conditional moment of the spectrogram can be obtained as:

J wPy(t, w)dw)
— [ WP, (t, wt)dw =
<w >y /w H(twlt)dw = TPyt )

JA%(7T) ¢/ (T) R*(T — 1)
i A2 h2 (1 —1t)
It can be shown that as h(t) — d(t), i.e. ultra—w1de band spectrogram, < w >;— ¢'(t)

or, <w >i=
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3.0 INTRODUCTION OF THE METHOD TO IDENTIFY POTENTIAL

ALTASING, AND COMPENSATE FOR IT

In this chapter, we discuss the underlying principle of aliasing in the time-frequency domain
and the proposed method used to identify aliasing and compensate for it.

A few efforts have been made to recover signals sampled at lower rates than the Nyquist
rate. Fonte [12] introduces a technique that allows aliased components of a signal to be iden-
tified and measured. This has been achieved by changing the sampling rate and comparing
the spectra so obtained. This approach requires that one is able to re-sample the continuous-
time signal at different rates, and is limited to line spectra. Accordingly, it differs from our
approach in that multiple sampling rates are used, and it is limited to signals consisting of
tonal components. In contrast, as we will show, our approach utilizes only one sampling
frequency — we work directly from the sampled signal obtained at whatever sampling rate
was employed — and is limited to FM signals.

We reconstruct the original signal after it has been aliased using time-frequency tech-
nique. We used a spectrogram but other methods could be used. The only data available is
the aliased form of the signal.

This research addresses aliasing in FM signals. We express the signal in complex form
in terms of its amplitude and phase as z(t) = A(t)e’*®. Our approach is restricted to
signals which have continuous IF, such that they exhibit a continuous trajectory in the time-
frequency plane. Also we assume that the amplitude A(t) is such that in the time-frequency
plane, the signal is locally narrowband.

We illustrate the main idea using the discrete-time Wigner distribution (DTWD) of a

chirp signal. Let f(n) be a discrete-time sampled chirp,

f(n) = Aererl?

11



The DTWD for f(n) is thus given by
Wi(n,0) = |A*> 6(6 — an — k)
k

Figure (3.1) shows the DTWD for f(n) when it has been sampled at the correct sampling
rate, i.e. at a rate more than twice the Nyquist rate for the signal. It is seen that the window

displays the DTWD (unaliased) as one would expect to see.

/ 871 Fsi2

Fs/2

Figure 3.1: Unaliased WD of Chirp Signal. Gray region represents the observed range of the
DTWD

Under conditions when f(n) has been sampled at a rate lower than twice the Nyquist
rate, DTWD shows aliasing effects. One such case has been shown in the figure (3.2). If
only the shaded area is considered, which represents the region over which we observed (i.e.
sampled) the signal, it can be seen that the aliasing causes the IF of the signal to jump by
2. Thus the original signal can be reconstructed from its aliased version by correcting for
the 27 - jumps in the IF/ phase of the signal.

This motivated us to explore the effects of aliasing on DTFDs in depth and to develop
a technique to recover the complex signal when only its aliased version available. But
this behavior -jumping by 27 - is true only for complex signals, which greatly restricts the

applications of this method. Keeping this in mind, we explored the aliasing effects on real

12



Figure 3.2: Aliased WD of Chirp Signal (Ezponential). Now over the time interval that we
observed the signal (gray region), we see a sudden discontinuity in the trajectory when the IF

greater than Fs/2.

signals, to find a similar trend due to aliasing. Let z(n) = Re{f(n)} = Acos(an?/2). The

DTWD is shown in figure (3.3). N
)

NS

Figure 3.3: Aliased WD of Chirp Signal (Real)

Here again if only the shaded region is considered (representing the interval over which

13



the original signal was sampled), it can be seen that a trend exists depending on the amount

of aliasing. The signal goes till the maximum, i.e.,% and then turns (slope changes from

positive to negative) and continues till it reaches the minimum —% and then turns again

(slope changes from negative to positive). The signal being bounded by [—£%, £5], turns
every time it reaches the boundary. Thus, it seems possible to recover the signal from the
aliased version if the turns could be appropriately corrected (continuously increasing slope).

To simplify the procedure, the analytic signal (AS) corresponding to x(n) was obtained,
y(n) = Analyticlz(n)] = Ae’*™. The DTWD obtained for y(n) is shown in figure (3.4).

Here only the turns in the positive region can be seen. Now the signal is bounded by [0, %]

T

Fs/2 \\3\/

e

Fs/2

Figure 3.4: Aliased WD of Chirp Signal (Analytic)

The considerations above suggest that, for certain signals, it is possible to identify when
aliasing has occurred by observing the signal in the time-frequency plane. Further, given
how aliasing is manifest in the plane - as sudden changes in the trajectory of the IF when
it exceeds %| - it should be possible to correct the IF and reconstruct an unaliased version
of the signal.

We describe the proposed method next, and illustrate its utility by several examples. We
then consider in more detail the conditions on the signal such that the proposed method will

allow for aliasing to be identified and compensated.
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3.1 ILLUSTRATION OF THE METHOD

Figure (3.6) shows the block diagram of the method and outlines the steps followed. We
used the spectrogram as the TFD to identify aliasing and obtain IF estimates to compensate
for the sudden changes in IF due to aliasing. The source code was written using MATLAB,
and the MATLAB functions are included in this thesis. The steps are explained below and

are illustrated using an example,
x(t) = cos(2m3t?)

Figures(3.5(a) and (b)) show the time-series and the log-spectrogram of the aliased sampled
signal x[n].

Time Series of the Original Signal Aliased Original Signal

08

06F

04r

02r

Amplitude
=)
Frequency (Hz)
|

-02F

04

-0.61

-08F

Figure 3.5: (a) Time-series and (b) Log-magnitude spectrogram of the aliased signal

15



!

Nz 4q
Jpduresdn

NT 4q
jdwesdn

weI301)dg
JJemore)

X [eusIiS
pasely

Figure 3.6: Block diagram of a method to compensate for aliasing
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3.1.1 Step 1: Analytic Signal

The first step involves the calculation of the AS for a given real signal (x[n]). As discussed

in chapter, the Analytic Signal can be obtained as

y[n| = Analytic{z[n]} = z[n] + jHilbert{z[n]} = A[n]em[n}

The MATLAB function hilbert was used to obtain the analytic signal.

y = hilbert(x); % Calculates the Analytic Signal for the Real Signal x(t)

3.1.2 Step 2: Spectrogram

We used the custom function sgram?2 to calculate the spectrogram. One reason for this was
that while working on the complex signals, we required to view negative frequencies, which is
not possible using the MATLAB function specgram. Figure (3.7) displays the spectrogram

of the analytic signal y[n].

Aliased Analytic Signal

Frequency (Hz)
|

Figure 3.7: Log-Magnitude Spectrogram of the Analytic Signal y/n/
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sgram2 calculates the spectrogram of a signal and returns a 2-sided spectrum [—m, 7],
in normalized frequency units. It provides the option of the parameters: nflen, number of
ftt points; winlen, Odd length of Hanning window; shift, number of samples to shift the
window by. The following code shows the usage of sgram2 and also includes the commands

to display the spectrogram so obtained.

sg = sgram2(y,256,255,1); % flen:256, winlen:255, shift:1

[T,F] = size(sg); % creates time and frequency vectors

T=0:T-1; F=0 : F-1;

T = Txt(length(t))/T(length(T)); % converts from samples to seconds,
% t:time vector for x(t)

m = 2xpi/(F(length(F))-F(1)); % Fs: sampling rate

b = -pi-m*F(1); % converts from bins to samples

5]
1]

m*xF+b; figure; imagesc(T,F,10%xlogl0(sg’)); axis xy;

3.1.3 Step 3: Instantaneous Frequency

There are number of ways of obtaining the IF estimates from the TFD, and we have used
the peak picking method to obtain the same. For every time instant, the frequency value
corresponding to the maximum value of the TFD at that point is obtained. For a monocom-
ponent signal with slowly varying amplitude, the results obtained by peak picking match
very closely with the expected values. Before getting the values, the frequency vector was
converted into the normalized units (to see variations with [—m, 7| clearly). The following
code was used to obtain the IF vector and figure (3.8) displays the estimated IF.

IF o = []; % initializes the IF vector

[A,k] = max(sg’); % returns the indices of the

% maximum values, A,in vector k
for i = 1:1:1length(k)

IF_o = [IF_o F(k(i))];
end;

18



Instantaneous Frequency Estimates

Normalized Frequency

Figure 3.8: Original IF Estimates for the Analytic Signal y/n/

3.1.4 Step 4: Instantaneous Frequency Correction

The IF estimates for the unaliased version can be obtained from the IF estimates of the
aliased signal by correcting the turns in the IF.

Here, IF ¢ denotes the corrected IF estimates obtained by correcting turns in the original
IF_o. And, n is the number of times the signal turns at the boundaries. The Figure (3.9)

shows the corrected IF estimates obtained for y(t).

IF1 = IF_o; % create copies of IF
n = 0; % initialize number of turns
[c,1] = max(IF1); p = find(IFi<max(IF1)); m = find(p>1); while(m)
n = n+l;
IF = IF1;

[A,i] = max(IF_o);

i = find(IF_o==A4);

IF1 = IF_o(1:min(i)-1);

k = min(i);

Value = (n*Fs/2-IF_o(min(i)-1))/((max(i)+min(i))/2-((min(i))))
IF2 = [IF2 IF_o(max(i)+2:length(IF_o))];
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k = min(i);
while k <= max(i)+1 & k <= length(IF_o)
IF1=[IF1 IF1(k-1)+Value]; % Correcting Turn
k = k+1;
end;
IF1 = [IF1 (n*Fs/2-IF_o(max(i)+2:length(IF_o))+n*Fs/2)];
[c,1] = max(IF1);

p = find(IF1<max(IF1));
m = find(p>1);
end;
IF_c = IF1; % Corrected IF

Corrected ous Frequency Esti

Normalized Frequency

Figure 3.9: Corrected IF Estimates for the Analytic Signal y(t)
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3.1.5 Step 5: Phase Estimation

As mentioned above, the first derivative of the phase of the spectrogram gives the IF. Thus,

the phase can be obtained by integrating the IF estimates (obtained in Steps 3 and 4).

do(t)/dt = IF
o(t) = / IF,
o) = / I,

The MATLAB function cumsum was used to calculate the phase. The function cum-

trapz(t,IF) computes the cumulative sum of IF.

Phi_Hat = cumsum(IF_o); Phi_Hat_Hat = cumsum(IF_c);

Figures(3.10 (a) and (b)) show the phase estimated for the original and the corrected IF

estimates respectively.

Phase Estimation for the Analytic Signal Corrected Phase Estimation
2000 T T T T T T T T T 2000 T T T

1800F 1800F

1600 1600
100k 1400}
1200F 1200

1000f 1000f

Phase
Phase

800F 800F

600 600
400F 400F

200F 200F

Time (s)

Figure 3.10: Phase Estimates for the (a) original and (b) corrected IF estimates
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3.1.6 Step 6: Demodulation

The phase estimation obtained from Step 5, was used to demodulate the analytic signal y[n].
Demodulation involves multiplying y[n| with the signal having negative estimated phase ¢E(t)
yli] = Anlesetd

Demodulation :

va[n] = yln]x e

= Aln]ei®l « ool

Q

A(t) (3.1)

In this step we hope to obtain a result which is almost equal to the amplitude of the AS

y[n]. Figure (3.11) displays the demodulated signal obtained for y[n].

yl = exp(-j*Phi_Hat); y_d = y.*yl;

Demodulated Signal

Frequency (Hz)
|

Figure 3.11: Demodulated Signal
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3.1.7 Step 7: Upsampling

The aliasing problem occurred due to the sampling rate being lower than the required min-
imum rate (twice the Nyquist Rate for DTFD). Thus the signals need to be corrected and
upsampled by the appropriate amount. The demodulated signal (from step 6) and the cor-
rected phase (from step 5) thus need to be upsampled by twice the number of times the signal
turns (from step 4). A custom interpolation function interpolate was used to upsample the

signals.

% Upsampling by 2*n
Phi_Corrected = interpolate(Phi_Hat_Hat,n); % upsample corrected phase
y_d_u = interpolate(y_d,n); % upsample demod. signal

The upsampled phase and demodulated signal have been shown in figures (3.12(a), (b)).

Signal with Corrected Phase Upsampled Demodulated Signal

Frequency (Hz)
Frequency (Hz)

Figure 3.12: (a) Phase signal with upsampled corrected phase and (b) upsampled demodulated

stgnal
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3.1.8 Step 8: Reconstruction

This step involves combining the upsampled demodulated signal with the corrected phase

(¢ from Step 7) to obtain an unaliased version of the original AS y|n].

y_r = y_d_u*exp(j*Phi_Corrected);

The restored signal obtained for the aliased analytic signal (y[n]) in figure (3.5) is shown

in figure (3.13).

Reconstructed Signal (30 dB)

Frequency (Hz)

Time (s)

Figure 3.13: Reconstructed signal

In the next chapter, we consider sources of error, additional signals, and “best-case”

performance given ideal estimates of the IF.
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4.0 RESULTS AND DISCUSSION

In this section, we consider ideal estimates of the IF to examine “best-case” performance of
the method. We also define the class of signals for which our method is applicable in terms of
concentration along the IF for a Wigner distribution of the signal. We consider the Wigner
distribution (WD) since it simplifies the derivations and the spectrogram can be considered
as a “smoothed” version of the WD.

The WD for a continuous-time signal s(t) is defined as:

Wit w) = - /s(t + g) s*(t — %) eI dr (4.1)

Let s(t) = A(t)e’?® | where A(t) specifies the instantaneous amplitude and ¢(t) the

instantaneous phase. Substituting this in equation(4.1), we obtain,

1 o N
Wilt,w) = — [ A(t+—)el®t+3) A%t — 1) eiot=3) =it g7 (4.2)
27 2 2
1 o
- = A(t+g)A<t—g)em(tﬁ)eﬂﬂt—a)e—w dr (4.3)
T
since A(t) is real.
Using Taylor Series Expansion of the phase, we have
S+ D)= 6(0) + 00 + S—d(t) +
27 2 2% 4
and,
2
. Z _ A T 17
St—T)=0) — Lo + )



Ignoring terms higher than ¢"(t), we get

ot +3) = olt+3) =791

Substituting this value in equation(4.3) we get,

1 o, ,
Watw) ~ o / At + g) A(t — g) eI (®) =37 g7 (4.4)

Assuming that A(t) remains relatively constant, i.e. for pure FM signals the above

equation reduces to:

1 Y .
Wit w) = A°(1) o- / (7 0) i g7 (4.5)

Using Fourier Transform, we obtain
Wi(t,w) = A%(t) o(w — ¢'(t)) (4.6)

Thus, the distribution is centered around the IF for signals where A(t) ~ constant and
o™ (t) = 0,n > 4. For such cases, the phase calculations using the IF estimates generate
results with negligible errors.

Other approximations: Let —a(t) = log(A(t)). Then s(t) = e~ and

1 o o
Witw) = 5 / A(H%)A(t—%)eﬂqﬁ(tﬁ”w*a))eﬂwdT (4.7)
_ QL / —0lt+) p=a(t=3) LB+ +8(t—]) gmiwr g (4.8)
m

Again using Taylor Series,

2

T, T, T
oz(t+2)—oz(t)+2oz(t)—|—2*4

o’ (t) + ...
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and,

Ignoring higher terms and adding the two equations,

2
T T T
alt+ =)+ alt+ =) ~ 2a(t) + —a’(t)
2 2 4
Substituting in equation (4.8), we obtain,
1 2 Sy .
Wi(t,w) =~ Dy /e‘2a(t>_4a ©) I (8) =397 gr (4.9)
T
_ 2L / (20g(AD) y 2o (t) (T (1) T o (4.10)
T

Taking the Fourier transform we obtain:

1 2 209’ (1) —¢'2 () —w? (1)
Wiltw) ~ - A2(t) 2T 2=

2w Oé”(t)
A ety
o (t)

(4.11)

a(t) = —log(A(t)), Therefore,

and

Let 202 (t) = ((A8y2 _ ’i/(g) ), which we note is the instantaneous bandwidth of the Wigner

distribution. Substituting this value in (4.11),

A2(t _ (w=¢')?
Wit )~ 55

= (4.12)
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If A(t) is relatively constant equation(4.12) becomes the same as (4.6). But if A(t)
changes with time we obtain a Gaussian function centered around the instantaneous fre-

quency.The more slowly varying is A(t), the better the concentration along the IF

4.1 IDEAL CASES

To further illustrate the method and to prove that given ideal IF estimates the method
recovers the restored signal almost perfectly (based on numerical simulations) for the class of
signals having moderate AM and continuous FM and where the TFD follows the IF(equation

4.12) we provide a few examples.

1. Chirp with Constant Amplitude (figures 4.1, 4.2)
2. Chirp with Gaussian amplitude (figures 4.3, 4.4)

3. Chirp with Sinusoidal amplitude (figures 4.5, 4.6)
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Aliased Signal Aliased Analytic Signal

Frequency (Hz)
Frequency (Hz)

Time (s) Time (s)

Upsampled Demodulated Signal Phase Signal with Corrected Upsampled Phase

Frequency (Hz)
Frequency (Hz)

Time (s) Time (s)

Reconstructed Signal

Frequency (Hz)

2 3 4 5 6 7 8 9 10
Time (s)

Figure 4.1: Ideal Case 1: Constant Amplitude, Log-magnitude spectrogram of (a) the aliased

signal, (b)the analytic signal, (c) upsampled demodulated signal, (d) phase signal with corrected

phase and (e) reconstructed signal
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IS
S

20

Frequency (Hz)
Frequency (Hz)

Time (s)

Time (s)

Error Reconstructed Signal

15

1

o
@

Frequency (Hz)
Amplitude
o

-0.5

-1

15 L L L L I I

0 1 2 3 4 5 6 7 8 9 10
Time (s) Time (s)
Unaliased Signal (with correct Fs) Error
1 15 T T
— Restored
— Onglna\

Error

1

o
o

i
L

Time (s) Time (s)

ummwmwm&MM/’ \/’V""'\“MMMMMW,J

Amplitude
Amplitude
=)

W

0.2
0
-0.2
-0.4
-0.6
-0. 8

Figure 4.2: Ideal Case 1: Constant Amplitude, (a) Log-magnitude spectrogram of the restored

signal (b) log-magnitude spectrogram of the “true” unaliased signal (with correct sampling rate) (c)
error between (a) and (b). Time-series of the (d) reconstructed signal, (e) “true” unaliased signal

(with correct sampling rate) and (f) the error between (d) and (e)
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Gaussian Amplitude Aliased Signal Aliased Analytic Signal

Frequency (Hz)
Frequency (Hz)

0 1 2 3 4 5 6 7 8 9 10
Time (s) Time (s)

Upsampled Demodulated Signal Phase Signal with Corrected Upsampled Phase

Frequency (Hz)
Frequency (Hz)

Time (s) Time (s)

Reconstructed Signal

115

Frequency (Hz)

110

Time (s)

Figure 4.3: Ideal Case 2: Gaussian Amplitude, Log-magnitude spectrogram of (a) the aliased
signal, (b)the analytic signal, (c) upsampled demodulated signal, (d) phase signal with corrected

phase and (e) reconstructed signal
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Figure 4.4: Ideal Case 2: Gaussian Amplitude, (a) Log-magnitude spectrogram of the restored
signal (b) log-magnitude spectrogram of the “true” unaliased signal (with correct sampling rate) (c)
error between (a) and (b). Time-series of the (d) reconstructed signal, (e) “true” unaliased signal

(with correct sampling rate) and (f) the error between (d) and (e)
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Sinusoidal Amplitude Aliased Signal Aliased Analytic Signal

T
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Reconstructed Signal
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Figure 4.5: Ideal Case 3: Sinusoidal Amplitude, Log-magnitude spectrogram of (a) the aliased
signal, (b)the analytic signal, (c) upsampled demodulated signal, (d) phase signal with corrected

phase and (e) reconstructed signal
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Figure 4.6: Ideal Case 3: Sinusoidal Amplitude, (a) Log-magnitude spectrogram of the restored

Time (s)

signal (b) log-magnitude spectrogram of the “true” unaliased signal (with correct sampling rate) (c)
error between (a) and (b). Time-series of the (d) reconstructed signal, (e) “true” unaliased signal

(with correct sampling rate) and (f) the error between (d) and (e)

34



4.2 NON-IDEAL CASES

We can see from these simulations that the magnitude of the error increases as the amplitude
deviates from the constant amplitude condition, and varies with time.
The technique was implemented on various signals shown on the following pages. These

include:

—_

. Chirp with Gaussian amplitude (figure 4.7)

2. Chirp with Sinusoidal amplitude (figure 4.8)

3. Chirp with amplitude as a combination of sinusoids (figure 4.9)
4. Signal with cubic phase (figure 4.10)

5. Chirp with constant amplitude and multiple turns in aliasing (figure 4.11)

4.3 A FEW LIMITATIONS

A couple of examples where this technique is limited:

e Signal which is comprised of number of tones which jump, i.e. when the signal does not
have continuous trajectory (figure 4.12)

e Signal which inherently has increasing slope till % and then decreasing, without actual
aliasing taking place. In such a case, the technique will wrongly identify the signal to be

aliased and will try to correct it.
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Aliased Real Signal (Gaussian Amplitude) Aliased Analytic Signal (Gaussian Amplitude)
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Figure 4.7: Case 1: Gaussian Amplitude, Log-magnitude spectrogram of (a) the aliased signal,
(b)the analytic signal, (c) demodulated signal, (d) phase signal with corrected phase, (e) recon-

structed signal and (f) unaliased signal (with correct sampling rate)
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Aliased Real Signal (Sinusoidal Amplitude)
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Figure 4.8: Case 2: Sinusoidal Amplitude, Log-magnitude spectrogram of (a) the aliased signal,
(b)the analytic signal, (c) demodulated signal, (d) phase signal with corrected phase, (e) recon-

structed signal and (f) unaliased signal (with correct sampling rate)
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Figure 4.9: Case 3: Amplitude as a Combination of Sinusoids : Log-magnitude spectrogram of (a)

the Aliased signal, (b)the analytic signal, (c) demodulated signal, (d) phase signal with corrected

phase, (e) reconstructed signal and (f) unaliased signal (with correct sampling rate)
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Figure 4.10: Case 4: Cubic Phase, Log-magnitude spectrogram of (a) the Aliased signal, (b)the

analytic signal, (c) demodulated signal, (d) phase signal with corrected phase, (e) reconstructed

signal and (f) unaliased signal (with correct sampling rate)
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Figure 4.11: Case 6: Aliasing with Multiple Turns, Log-magnitude spectrogram of (a) the aliased
signal, (b)the analytic signal, (c) demodulated signal, (d) phase signal with corrected phase, (e)

reconstructed signal and (f) unaliased signal (with correct sampling rate)
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Arbitrary Jumps - Discontinuous Trajectory
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Figure 4.12: Log-magnitude spectrogram of (a) Signal with discontinuous trajectory and (b) its

analytic signal
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4.4 ANALYSIS OF “TURNS” IN IF

In this thesis we presented a method which attempts to identify aliasing in real signals by
taking into account the “turns” in IF at the boundaries. Here a quantitative analysis for the
IF' turns is given which explains how we decide when the aliasing occurs.

Figure (4.13) shows an aliased analytic signal. The ideal IF for this signal and its first

derivative are shown in figure (4.14).

Aliased Analytic Signal
50

40

30

20
{14
10
{12
0
110

Frequency (Hz)

-10

-20

-30

Figure 4.13: Aliased analytic signal

We can see clearly that the point where the aliasing occurs in the analytic signal coincides
with the point where the differential of the IF changes sign.

We now consider an unaliased analytic signal shown in figure (4.15). The ideal IF for
this signal and its derivative are also shown in the figure. In this case, the derivative is
continuous and remains positive, reiterating that there were no sudden turns in IF and thus
no aliasing.

Now consider the non-ideal cases, i.e. where we obtain the IF estimates from the spec-

trogram. The first derivative of the original IF estimates for the aliased analytic signal
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Figure 4.14: (a) Ideal IF for the aliased signal and (b) its derivative

(figure (4.13)) is shown in figure (4.16 (a)). Again, the figures agree with those for the ideal

cases - aliasing occurs when the first derivative of IF changes signs.

In our method, we calculate the slope at each point of time. Under ideal conditions, the
value of the slope at each point of time is different from the value at the previous time sample.
But the IF estimates we obtain from the analytic-spectrogram method are not accurate and
most of the times the IF follows a step pattern, i.e. it maintains a particular value for 3-4
time samples. Thus we obtain the derivative as shown in figure (4.16(a)). To overcome this
and to see clearly the point of aliasing, we modify the derivative of the IF by partitioning
the zero values (between every 2 non-zero values) into two parts and equating the first part
to the earlier non-zero value and the second half to the next non-zero value. The smoothed

version of the original IF is shown in figure (4.16).

Similarly, the first derivative of the corrected IF estimates and its smoothed version are

shown in figure (4.17).

To further illustrate this point, we show the IF estimates and its smoothed derivative of
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Figure 4.15: (a) Unaliased analytic signal, (b) its ideal IF and (c) first derivative of IF

an aliased sinusoidal amplitude chirp in figure (4.18).

Another alternative was to obtain all the points where the IF reached the maximum and
the minimum values. If there were points after these extremals (in time) where the IF values
were lower (higher) than the maximum (minimum) values, we consider aliasing to have taken
place. The number of times such cases are obtained gives the number of potential turns in

the IF. Both methods give perfect results for all types of signals which show such aliasing.
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Figure 4.16: (a) First derivative of the original IF estimates and (b) its “smoothed” version
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Figure 4.17: (a) First derivative of the corrected IF estimates and (b) its “smoothed” version
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Figure 4.18: (a) Sinusoidal amplitude aliased analytic signal, (b) its IF estimates and (c) smoothed
first derivative of the IF estimate
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4.5 APPLICATION : MULTI-COMPONENT SIGNALS

This method can be extended to multi-component signals. The steps to be followed are

explained here using an example of an aliased two-component signal given by:

x(t) = 15cos(27t?) + 25cos(2m(10t + 2.5t%))

The aliased real and analytic signals are shown in figure (4.19). Here again for our calcula-

tions we use ideal IF estimates.

Aliased Signal Aliased Analytic Signal

Frequency (Hz)
|
Frequency (Hz)
|

Time (s)

Figure 4.19: Combination of two chirps: Log-magnitude spectrogram of (a)aliased analytic signal

and (b)the analytic signal

1. Estimate IF and phase for the first component, demodulate this component and
low-pass filter the demodulated signal. Estimate the corrected IF and phase and upsample
the demodulated signal and the phase and then use them to remodulate to obtain the first
reconstructed signal component. The results for this step are shown in the figure (4.20)

2. Repeat the previous step for the second component. The results for the second

component are shown in the figure (4.21)
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Upsampled Lowpass Filtered Demodulated Signal (using first phase) First Reconstructed Component

Frequency (Hz)
Frequency (Hz)

Time (s) Time (s)

Figure 4.20: Combination of two chirps: Log-magnitude spectrogram of (a) the upsampled low-pass

filtered demodulated signal using first phase, and (b) the first reconstructed chirp component

Upsampled Lowpass Filtered Demodulated Signal (using second phase) Second Reconstructed Chirp

Frequency (Hz)
Frequency (Hz)

Time (s) Time (s)

Figure 4.21: Combination of two chirps: Log-magnitude spectrogram of (a) the upsampled low-pass

filtered demodulated signal using second phase, and (b) the second reconstructed chirp component

3. Add the two reconstructed components to obtain the final reconstructed signal as

shown in figure (4.22).

The results were then compared to the original unaliased signal and the errors are shown

in figure (4.23). From these figures, it is clear that it is possible to extend our method
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Reconstructed Signal

Frequency (Hz)

Figure 4.22: Combination of two chirps: Log-magnitude spectrogram of the reconstructed signal

to multi-component signals by estimating the IF of each component, and demodulating
and filtering each component separately, then correcting the components and reconstructing
the signal from the corrected components. These examples show that with more elaborate
techniques for separating the components, and accurate IF estimates, accurate results can

be obtained for restoring aliased multi-component signals.
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Reconstructed Signal Unaliased Signal (with correct Fs)
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Figure 4.23: Combination of two chirps: (a) Log-magnitude spectrogram of the restored signal
(b) log-magnitude spectrogram of the “true” unaliased signal (with correct sampling rate) (c) error
between (a) and (b). Time-series of the (d) reconstructed signal, (e) “true” unaliased signal (with

correct sampling rate) and (f) the error between (d) and (e)
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4.6 IF ESTIMATE AND OTHER SOURCES OF ERROR

As seen from the examples illustrating the ideal IF cases, it is clear that the results were
significantly improved as the IF estimate became better. In our method the window of the
spectrogram had a significant affect on the IF estimates obtained. For future work we could
focus on other techniques for IF estimations to obtain the one which gives almost ideal results
for IF.

But even in ideal conditions, we did not obtain perfect results. This could be due to
the analytic signal calculations. This is true because when we developed our method for
quadrature signals, which does not require analytic signal calculations, we obtained perfect
results using the same code (figures (4.24,4.25)).

In this thesis we introduced a method which challenged the long standing notion that
once sampled at a rate lower than the sampling rate, the signal cannot be retrieved. We
presented the idea that by estimating the IF for certain signals, we can possibly identify
and compensate for aliasing. We showed this using both ideal and estimated IF. We also

demonstrated that the idea could be extended to multi-component signals.
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Aliased Exponential Signal Upsampled Demodulated Signal
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Figure 4.24: Quadrature Signal : Log-magnitude spectrogram of (a) the aliased signal, (b) upsam-

pled demodulated signal, (c) phase signal with corrected phase and (d) reconstructed signal
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APPENDIX

SOURCE CODE

function [y_r,n,str] = aliasing(x)
Yoo ToToTo o o Too 1o o JoToo o o To o To o o To o Jo o o To o o o oo o o o To o o o o To o o

% Function for identifying and compensating for aliasing

yA Input parameters:

yA X : input signal

yA Output parameters:

pA str : string specifying "aliasing" or "no aliasing"

yA n : number of sudden turns

yA y_r: reconstructed signal (same as input signal

yA in case of no aliasing)

% Aasma Walia, M. S. Thesis under the guidance of Prof. P. J. Loughlin

y=hilbert(x); % analytic signal
sg=sgram?2(y,256,255,1) ;
[T,Fl=size(sg); % time & frequency vectors for plots

T=0:T-1; F=0:F-1;
m=(2*pi)/(F(length(F))-F(1)); YJiconvert freq. vector from bins to samples
b=-pi-m*F(1); F=m*F+b; [A, k] = max(sg’) ;
for i=2:1:length(k) % frequency estimates
if abs(F(k(i))-F(k(i-1)))>2
sg(i,k(1))=0;
[A,k]=max(sg’);
end;
end;
[A,k]=max(sg’); L=[];
for I = 1:1:1length(k)
L=[L F(k(I))];
end;
L1=L; LL=L; n=0;
[c,1]=max(L1);
p=find(Li<max(L1));
m=find (p>1);
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while (m)
n=n+1;L=L1;
[A,i]l=max(L);
i=find(L==A4);
L1=L(1:min(i)-1);
Lm=LL;LL=L1;k=min(i);
Value=(n*pi-L(min(i)-1))/((max(i)+min(i))/2-((min(i))))
while k<=(min(i)+max(i))/2
LL=[LL LL(k-1)+Value];
k=k+1;
end;
while k<=max(i)+1 & k<=length(L) % modify IF estimates
LL=[LL LL(k-1)-Value]; % for windowing errors
k=k+1;
end;
LL=[LL L(max(i)+2:1length(L))];
if LL(max(i)+2)>LL(max(i)+1)
LL=L;
end;
k=min(i);
while k<=max(i)+1 & k<=length(L) % correct IF estimates
Li=[L1 Li1(k-1)+Value];
k=k+1;
end;
L1=[L1 (n*pi-L(max(i)+2:1length(L))+n*pi)];
[c,1]=max(L1) ;p=find (Li<max(L1)); m=find(p>1);
if n==1
Lm=LL;
end;
end;
IF_o=Lm; % modified IF estimates
IF_c=L1; % corrected IF estimates
if (n==0)
str="no aliasing’
y_r=x;
else
str=’aliasing occurs’
Phi_Hat=cumsum(IF_o);
yl=exp(-j*Phi_Hat) ;
y_d=y.*yl;
Phi_Hat_Hat=cumsum(IF_c);
Phi_Corrected=interpolate(Phi_Hat_Hat,n);
y_d_u=interpolate(y_d,n);
y_r=y_d_u.*exp(j*Phi_Corrected) ;
end;
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function [result] = interpolate(input,n)
Toloo oo oo oo oo ToToToToTo oo o o o o o o o o o o o o oo To To To To ToTo T T
% Function for upsampling the input by 2*n

yA Input parameters:

yA input : input signal

yA n : for 2*n upsampling rate
yA Output parameters:

yA result : upsampled signal (2*n-1)
yA times longer than input

/» Aasma Walia, M. S. Thesis under the guidance of Prof. P. J. Loughlin

inputl=input; for k=1:n
result=[];
for i=1:length(input)1-1
result=[result inputl(i) (inputl(i)+inputl(i+1))/2];
end;
result=[result inputl(length(inputl))];
inputl=result;
end;
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