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Abstract

Hepatic regeneration is essential for the success of living donor liver transplantation
(LDLT) in which the residual liver in donor and the segment that is transplanted into the
recipient will grow in size to accommodate the requirements of the donor and recipient.
We hypothesized that the clearance of drugs will be drastically reduced during the
immediate post operative period in donor and recipient due to reduced liver mass and the
decreased activity of the drug metabolizing enzymes in the liver. The objectives of this
dissertation are to evaluate 1) the mRNA expression and in vitro and in vivo activity
(pharmacokinetics of tacrolimus) of CYP3A; 2) the effect of hepatotropic drugs such as
cyclosporine and tacrolimus on the activity of CYP3A; 3) the expression, and in vitro and
in vivo activity (pharmacokinetics of mycophenolic acid) of various uridine diphosphate
glucuronosyltransferases; and 4) the in vivo metabolism of acetaminophen in rats, during

hepatic regeneration after partial hepatectomy.

Our results indicate that 1) the activity of most of the drug metabolizing enzymes was
decreased but recovered completely at different rates; 2) the mRNA expression mirrored

the changes in in vitro activity of these enzymes; 3) the clearance of tacrolimus and

il



mycophenolic acid was decreased but recovered completely at different rates; 4) the
magnitude of reduction in in vivo clearance of tacrolimus and mycophenolic acid was
much less than what was predicted from the loss of liver mass and reduction in enzyme
activity; 5) cyclosporine and tacrolimus did not have any significant effect on the
recovery of activity of CYP3A, and 6) there was increased production of toxic

metabolites of acetaminophen during regeneration.

The clinical implications of our study are as follows: 1) Drug dosing in LDLT patients
should be carefully monitored. A less than proportionate decrease in dose relative to
reduction in liver mass may be necessary for different drugs. 2) The drug elimination
capacity of the liver recovers completely with time and normal hepatic function will be
restored in subjects undergoing hepatic resection. 3) Recovery of hepatic function will
proceed normally in presence of hepatotropic substrates such as cyclosporine A and

tacrolimus.
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Chapter 1 Introduction

Background:

Liver Transplantation

Liver transplantation is the treatment of choice for patients with end-stage liver disease or
certain metabolic liver disorders where no other alternative therapies are available.
Successful liver transplantation has led to a one year patient and graft survival rate
exceeding 90%. Currently, the cadaveric livers are the primary source of organ for liver
transplantation. However, the numbers of available cadaveric organs are not sufficient for
the numbers of patients on the waiting list for liver transplantation. The increased number
of patients requiring transplantation and the stagnant number of cadaveric organs
available for transplantation has increased the waiting time and has led to a high mortality

for patients on the waiting list (Shiffman et al, 2002).

A number of techniques have been developed to deal with the shortage of cadaveric
organs (Wiesner et al., 2003): 1) Use of livers from marginal donors who are older than
55 years of age; who have fatty infiltration of the liver; who have diabetes mellitus; and
who are hepatitis ¢ virus (HCV) or hepatitis B virus (HBV) positive; 2) performing split
liver transplantation in which a cadaveric liver is split into 2 pieces, with one piece being
used for an adult recipient and the other being used for a pediatric recipient (Rogiers et al.,

1996; Busuttil and Gross, 1999; Rela et al. 1998); 3) performing domino transplantation
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in which the first patient receives a liver from a donor and donates her/his liver to another
patient (Stangou et al., 1998); 4) performing living donor liver transplantation (LDLT) in
which the right liver lobe (account for the removal of up to 60% to 65% of the liver), is

removed from the donor and transplanted into the recipient (Seaman, 2001).

Living Donor Liver Transplantation

Adult living donor liver transplantation is based on the ability of the adult liver to
regenerate to accommodate the requirements in both the donors and the recipients. Living
donor liver transplantation has emerged as an effective therapy for some patients with
end-stage liver diseases and is also a partial solution for the current shortage of cardaveric
organs. The living donor liver transplantation was initiated originally with the concept of
grafting a segment of a liver from a living donor into a child who needed liver
transplantation. The success of living donor liver transplantation in the pediatric patients
led to the application of this surgery to adult-to-adult living donor liver transplantation.
Interestingly, the recipients in the LDLT program had higher survival rates than those
receiving cadaveric grafts (Rosendale et al., 1997; Sindhi et al., 1999; Jurim et al., 1995)
due to less cold ischemia, better quality of the graft because of the healthy status of the
donor, appropriate size of the vessels, and stable status of the recipient in this relatively

elective procedure (Seaman, 2001).



In the United States, the first series of adult living donor liver transplantation was
conducted in 1998 (Wachs et al., 1998). Since then, there has been great interest in adult
living donor liver transplantation not only within the transplant medical community, but
also among patients and their families who desire to become liver donors (Shiffman et al.,

2002).

Hepatic Regeneration

Hepatic regeneration is very critical for the success of the adult living donor liver
transplantation. The unique ability of the liver to regenerate was first recognized in the
Greek mythology of Prometheus. The regenerative responses are proportional to the
amount of liver removed in animals and humans and even small resections (< 10%) can
trigger a response that restores the liver to full size (Michalopoulos and DeFrances, 1997).
The liver regeneration process involves proliferation of all the existing mature cellular
populations within the liver, including hepatocytes, biliary epithelial cells, fenestrated
endothelial cells, kupffer cells, and cells of Ito (Michalopoulos and DeFrances, 1997).
After partial hepatectomy, hepatocyte proliferation first begins in the periportal region,

which is the first to receive the portal blood flow.

The exact signals that trigger the onset of hepatic regeneration are still not well defined.

However, it is believed that hepatocyte growth factor (HGF) and its receptor, c-Met are



key components for the hepatic regeneration since a dramatic increase in plasma
concentration of HGF has been observed after hepatic resection both in humans and rats
(Schmidt et al., 1995; Tomiya et al., 1992). The rapid rise of HGF in the plasma is
believed to be the mitogenic stimulus leading hepatocytes into DNA synthesis
(Michalopoulos and DeFrances, 1997). However, the causes for the increase in plasma
HGF are not entirely clear. Several cytokines are also involved in hepatic regeneration.
Tumor necrosis factor o (TNF-a) and interleukin-6 (IL-6) are necessary for the remnant
liver to regenerate after two thirds hepatectomy. A significantly increased IL-6 plasma
concentration has been observed after partial hepatectomy in humans and rats
(Matsunami et al., 1992; Fulop et al., 2001). IL-6 has been reported to be mitogenic and
lack of IL-6 can suppress hepatocyte DNA synthesis (Kordula et al., 1990; Cressman et
al., 1996). A lack of TNF-a (either due to treatment with antibodies or in TNF-a
knock-out mice) also resulted in decreased DNA synthesis or inhibition of hepatic
regeneration after partial hepatectomy (Diehl et al., 1994; Akerman et al., 1992; Yamada
et al, 1997). In addition, epidermal growth factor, transforming growth factor,
norepinephrine and insulin are also involved in triggering hepatic regeneration

(Michalopoulos and DeFrances, 1997).

A large number of genes are either newly expressed or increased in their expression after

partial hepatectomy. The first phase of gene expression after partial hepatectomy, namely



the immediate early phase, occurs very rapidly after PHx and lasts for approximately 4
hours (Fausto, 2000). As many as 70 genes participate in the immediate early response to
partial hepatectomy (Haber et al., 1993). An important advance in understanding liver
regeneration is the observation that transcription factors such as NF-xB, AP-1, C/EBP-3

and STAT-3 are activated after partial hepatectomy (Fauto, 2000).

Our current understanding of liver regeneration forms the basis for the treatment of many
liver diseases, living donor liver transplantation and the application of hepatic tissue
engineering (Palmes and Spiegel, 2004). These advances have been achieved primarily

by studies of liver regeneration in animals (Palmes and Spiegel, 2004).

Models for Studying Hepatic Regeneration

In general, two strategies have been adopted for the experimental initiation of liver
regeneration in animals: surgical resection or injury by toxins (Palmes and Spiegel, 2004).
Partial hepatectomy, portal branch ligation, portosystemic shunting and direct
compensatory hyperplasia are surgical techniques that are used to initiate liver
regeneration, while carbon tetrahydrochloride, D-galactosamin, thioacetamide,
acetaminophen and ethanol are toxins that are used to initiate liver regeneration (Palmes

and Spiegel, 2004). The 2/3 hepatectomy procedure (Figure 1) in the rat devised many



years ago by Higgins and Anderson (1931) has found broad acceptance (Palmes and
Spiegel, 2004). The advantages of using a rat to study liver regeneration after 2/3
hepatectomy are: 1) a high level of accuracy (e.g., the liver deficit after 2/3 resection is
nearly always 68%), and reproducibility due to the uniform and consistent anatomy of the
rat; 2) a simple operation requring no more than basic surgical skills; 3) good tolerance
by the rats without perioperative mortality (Palmes and Spiegel, 2004). This experimental

approach was chosen for the current project.

Portal vein

Figure 1. Surgical model of 2/3 partial hepatectomy. Medial and left lobes are

surgically removed during PHx.

Drug Metabolism (aspects related to hepatic regeneration and living donor liver

transplantation)

1. Drug metabolizing enzymes and transporters

Cytochrome P450 (CYP) is the most important phase I enzyme and refers to a



superfamily of heme-containing enzymes located in the membrane of the endoplasmic
reticulum of the cell. CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2EI and CYP3A
enzymes are responsible for the majority of phase I metabolism (Bertz and Granneman,
1997). Among these enzymes, CYP3A is the most abundant isoform in human livers. It
constitutes about 30% of the CYPs in human liver followed by CYP2C, CYP1A2,
CYP2E1 and CYP2D6, which represent 20%, 13%, 7% and 2%, respectively (Shimada et
al., 1994; Eagling et al., 1998; Glue and Clement, 1999). Functionally, CYP3A4
metabolizes about 53% of the commonly prescribed drugs, followed by CYP2DG6,
CYP2C, CYP1A2 and CYP2E1 accounting for 25%, 18%, 3% and 1%, respectively

(Bertz and Granneman, 1997).

The subfamily of CYP3A includes CYP3A4, CYP3AS, and CYP3A7. CYP3A4 is the
major isoform in the liver as well as the small intestine of adult human. CYP3AS is
expressed in 20% of the population, while CYP3A7 is only expressed in the fetal liver
(Venkatakrishnan et al., 2001). CYP3A is involved in the metabolism of tacrolimus,
cyclosporine A, sirolimus and testosterone. In rats, CYP3A constitutes 17% of the total

CYPs and includes CYP3A1, CYP3A2 and CYP3A23 (Waxman, 1999).



Uridine Diphosphate Glucuronosyltransfereases (UGTs) are an important superfamily of
phase II membrane bound enzymes located in the endoplasmic reticulum. These enzymes
catalyze glucuronidation of endogenous and exogenous compounds such as estradiol,
acetaminophen, morphine, androsterone, testosterone and mycophenolic acid. UGTs exist
in two subfamilies designated as UGT1A and UGT2B (Mackenzie et al., 1997). There are
a total of 9 isoforms of UGT1 (UGT1A1, UGT1A2, UGT1A3, UGT1A4, UGT1AS,
UGT1A6, UGT1A7, UGT1AS8 and UGT1A9) in rats. However, UGT1A4 and UGT1A9
are pseudogenes in rats. Even though there are some differences in UGT1A isoforms
between humans and rats, most of UGT1A isoforms (UGT1A1, UGT1A3, UGTI1AS,
UGT1A6, UGT1A7 and UGT1A8) are common functional isoforms of UGT1A family in
human and rats (Mackenzie et al., 1997). Rats have six isoforms of the UGT2B family
(UGT2B1, UGT2B2, UGT2B3, UGT2B6, UGT2B8 and UGT2B12) (Mackenzie et al.,
1997). Since isoforms of the UGT2B subfamily were named in the order that they were
cloned, there is no information available on the corresponding isoforms of UGT2B in

humans.

In addition to drug metabolizing enzymes, drug transporters also influence the
pharmacokinetics of several drugs. Efflux of drugs from cells is mediated by several
members of ATP-binding cassette (ABC) superfamily such as P-glycoprotein, multidrug

resistance protein (Mrp) 1, Mrp2, Mrp3, Mrp4, Mrp5 and Mrp6. Among these tranporters,



P-glycoprotein, Mrpl, Mrp2 and Mrp3 contribute to a significant degree to the overall
elimination of drugs. P-glycoprotein plays an important role in limiting the bioavailability
of drugs from the gut, excretion of drugs into bile and protection of the brain by
functioning as a blood-brain barrier (Kimura et al., 2004). Multidrug resistance protein 1
and Mrp3 are found in basolateral membranes and play a role in uptake of drugs in most
tissues of human body. Multidrug resistance protein 2 is different from Mrpl and Mrp3 in
that it is located on the apical plasma membranes of polarized cells in liver, small

intestine and brain (Haimeur et al., 2004).

2. Regulation of Drug Metabolism (cytokines released during hepatic regeneration may

alter the activity of drug metabolizing enzyme)

Different types of tissue damage (injury or infection) leads to induction of a series of
secretory proteins, the acute-phase proteins (APP) (Morgan, 1997). The APP response to
inflammation is mediated by cytokines such as IL-6, IL-1, and TNF o (Baumann and
Gauldie, 1994; Koj, 1996; Moshage et al., 1990). An inflammatory response is initiated
by the release of TNF o and IL-1 which will stimulate the further release of IL-1 and IL-6
(Baumann and Gauldie, 1994; Watkins et al., 1995). Even though IL-1 and TNF a are

detectable in plasma, IL-6 levels are generally much higher (Lowry, 1993).



2.1 Cytochrome P450

Various reports have shown that IL-6, IL-1 and TNF a have selective suppressive effect
on the expression and activity of different CYPs in in vivo and in vitro systems such as
primary hepatocytes and microsomes (Morgan, 2001). The possible role of TNF-a in the
down-regulation of CYP was studied using TNF-a receptor deficient mice. The results
showed that TNF-a does not play a significant role in the down-regulation of CYP after
administration of lipopolysaccharide (Warren et al., 1999). However, strong evidence
indicated IL-6, the most important cytokine modulating acute-phase protein genes, to be a

key player in the down-regulation of hepatic CYPs (Siewer et al., 2000).

In addition, nitric oxide generated from hepatocytes and kupffer cell in response to
cytokines and inflammation is able to react with heme-containing proteins such as CYP
enzymes and can decrease CYP-mediated activities (Khatsenko et al., 1993; Hakkola et
al., 2003). Furthermore, nitric oxide can also inhibit the expression of some P450s
(Khatsenko and Kikkawa, 1997; Hara and Adachi, 2002). Therefore, inflammatory
cytokines and nitric oxide may contribute to the down-regulation of P450s during

inflammation (Hakkola et al., 2003).

Since most of the suppressive effects of cytokines on CYPs take place at the transcription
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level, there must be some regulatory factors involved in this process. Among many
characterized transcription factors, liver-enriched transcription factors such as hepatocyte
nuclear factor (HNF)-1la, HNF-40 and CCAAT/enhancer-binding proteins (C/EBPw)
appear to be involved in the liver-specific expression of CYP genes (HNF-1la: CYP2EL,
CYP7AI1 and CYP1A2; HNF-4a: CYP2C9 and CYP2D6; C/EBPu: CYP2B) (Akiyama
and Gonzalez, 2003). The nuclear receptors such as pregnane X receptor (PXR),
constitutive androstane receptor (CAR), farnesol X receptor (FXR) are also involved in
control of CYP genes (PXR: CYP3A4 and CYP2B6; CAR: CYP3A and CYP2B; FXR:

CYP7A1) (Akiyama and Gonzalez, 2003).

Nuclear receptors such as CAR and PXR are responsible for the induction of some CYPs
such as CYP2B and CYP3A at the transcriptional level. Phenobarbital and rifampicin are
representative ligands for the activation of CAR and PXR. The functional feature of CAR
and PXR is overlapped in the genes regulated by these receptors and the ligands to
activate these receptors. However, recent findings pointed that the expression of CAR and
PXR is down-regulated and these receptors are also responsible for the basal level of the
expression of CYPs during acute phase response in vitro and in vivo (Pascussi et al., 2000;

Beigneux et al., 2002).

2.2 Uridine Diphosphate Glucuronosyltransferases (UGTs)

11



Compared to the effects of cytokines and inflammation on the expression or activity of
CYPs, there are limited reports of their effects on the expression or activity of UGTs.
Levesque et al. (1998) reported that IL-1a inhibited the formation of dihydrotestosterone
glucuronide in LNCaP cells. After turpentine injection in rats, the rate of p-nitrophenol
glucuronidation (UGT1A®6 in rats) by hepatic microsomes was not changed, while the
formation of testosterone glucuronide (UGT2B1/3/6) was reduced to 65% of the control
level (Strasser et al., 1998). The mRNA expression of both UGT1A1 and UGT2B3 was
also decreased after injection of turpentine (Strasser et al., 1998). IL-6 suppressed the
mRNA expression of UGT1A1 and UGT2B3 in primary rat hepatocytes at 50 u/ml

(Strasser et al., 1998).

Studies on UGT gene expression and regulation have also been carried out in rodents.
The promoter region of UGT2B1 contained HNF1 and CCAAT-Enhancer Binding
Protein (C/EBP) binding sites (Mackenzie et al., 2003). Subsequent studies have shown
that nuclear protein complexes containing HNF-1a or C/EBP a respectively bind to these
sites and enhanced the transcriptional activity of the UGT2B1 promoter (Hansen et al.,
1997; Hansen et al., 1998). Disruption of the C/EBP o gene results in complete loss of
expression of UGT1A1 in mice (Lee et al., 1997). In addition to HNF-1a and C/EBP a,
other transcription factors such as Octamer Transcription Factor 1 (Oct-1) and Pre B cell
homeobox-2 (Pbx 2) regulate the expression of UGTs by interacting or interfering with

HNF1 (Mackenzie et al., 2003). The expression of UGTs can also be induced through
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activiation of nuclear receptors such as CAR and PXR by various inducers (ligands)

(Mackenzie et al., 2003).

3. Effects of immunosuppressive drugs (drug therapy may alter the activity of drug
metabolizing enzymes)
Cyclosporine A has been reported to have hepatotropic effect during hepatic regeneration
(Mazzaferro et al., 1990). Cyclosporine A infusion stimulated cell renewal significantly
and restored hepatocyte size in the infused lobes with a dose-response relationship from
0.6 mg/kg/day to 4 mg/kg/day in dogs (Mazzaferro et al., 1990). A study using male nude
rats with T-cell deficiency showed that tacrolimus affected hepatic growth (DNA
synthesis) by nonimmunoligical pathways (Francavilla et al., 1991). However, despite
these reports indicating a tropic effect on the hepatic regeneration under
immunosuppressive treatment, several studies have noticed that the liver weight
restitution or liver growth was not affected by cyclosporine A during hepatic regeneration

(Makowka et al., 1986; Kahn et al., 1990; Coughlin et al., 1987).

Chronic treatment with cyclosporine A at high doses (15 mg/kg subcutaneous dosing
daily) suppressed CYP3A protein expression and in vitro activity (Brunner et al., 1998).
Tacrolimus seems to interfere predominantly with the CYP isoforms 2A, 2B, 2C and 3A
in rats and with the CYP subtypes 1A, 2B, 2C and 3A in man (Lupp et al., 2003). On the

other hand, in vitro incubation with T cells showed that both cyclosporine A (100 nM)
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and tacrolimus (10 nM) suppressed the expression of IL-2, IL-3, IL-4, c-myc, and TNF «a
(Tocci et al., 1989). This may modulate the effects of cytokines on drug metabolizing
enzymes during hepatic regeneration. Conversely, since only serum levels of IL-6 and
three soluble cytokine receptors (TNF o receptor I and II, IL-6 receptor) were
significantly increased during hepatic regeneration (Fulop et al., 2001), the suppression
of TNF a and other ILs by cyclosporine A and tacrolimus may have no obvious effect on
the expression or activity of drug metabolizing enzymes. It is not clear whether the
indirect effect or direct effect of cyclosporine and tacrolimus will predominate in a

regenerating rat liver.

4. Invivo drug metabolism

Liver plays an important role in the elimination of endogenous and exogenous agents
such as drugs, hormones and other chemicals. Hepatic metabolism of drugs can be
influenced by hepatic blood fow (Q), intrinsic ability of the liver to metabolize drugs
(Clinr) and the unbound fraction of the drug in blood (f,). In the eliminating organ,
changes in blood flow will alter the clearance of drugs with a high extraction ratio (> 0.7,
extraction ratio is calculated as total body clearance divided by blood or plasma flow),
but will not alter the clearance of drugs with a low extraction ratio (< 0.2). Changes in f
or Cliy; will change the clearance of low clearance drugs, but will not affect the clearance
of high clearance drugs. Cliy (ml/min) is calculated as maximal velocity (Vm (mol/min))

14



divided by Km (mol/ml). Due to the effect of cytokines and immunosuppressive drugs on
drug metabolizing enzymes mentioned above, the activity of various drug metabolizing
enzymes is likely to be changed during hepatic regeneration. Vm can be altered due to the
altered activity of various drug metabolizing enzymes or the reduction in the mass of the
eliminating organ. The unbound fraction of a drug in blood can be altered in certain
disease states due to the change in the concentration of plasma proteins such as albumin
and a-1-acid glycoprotein or the presence of competing endogenous chemicals such as a
bilirubin and fatty acids. It has been reported that the concentration of albumin was
decreased by 20%, 24 hours after hepatic regeneration and the concentration of
alpha-1-acid glycoprotein was increased to 181%, 7 days after hepatic regeneration
(Fouad et al., 1992). In summary, we can anticipate changes in Q, Cliy, and f, during
hepatic regeneration and consequently changes in the pharmacokinetics of drugs that are

metabolized in the liver.

5. Methods for studying drug metabolizing activity

Generally two strategies have been used to study drug metabolism: in vitro and in vivo. In
the in vivo method, a probe substrate is administered to the subject or animal and multiple
blood or any relevant biological fluids are sampled during specific time points. Total
body clearance (or AUC) is then calculated based on concentration-time profile. This
approach gives a good prediction of the activity of drug metabolizing enzyme under the
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following conditions: 1) the substrate should be absorbed completely (IV administration);
and 2) almost 100% of drug is metabolized by the liver only and not eliminated through
the renal route (almost no parent drug recovered in the urine). In vitro methods typically
involve whole liver perfusion, liver slices, isolated hepatocytes, or subcellular fractions.
In the present study, we have used both in vivo method and in vitro method (subcellular

fraction) to evaluate the effect of hepatic regeneration on drug metabolism.

Drug Therapy in LDLT Patients

Liver transplant patients are often treated with several drugs. Transplant patients receive
one or more immunosuppressive drugs, antibiotics, antiviral drugs, antifungal drugs and
others. Remarkable advances in immunology and the discovery of more selective
immunosuppressive drugs have contributed significantly to the decreased incidence of
acute rejection. Introduction of cyclosporine in the early 1980s, the introduction of
tacrolimus in the mid-1990s and the introduction of mycophenolic acid in combination
with cyclosporine and prednisone in the late 1990s have markedly increased the graft and
patient survival (Wiesner et al., 2003). Currently, with tacrolimus-based
immunosuppressive regimens, chronic rejection has decreased to 5% (Wiesner et al.,
1999; Wiesner et al., 2003). Living donor liver transplant patients are normally treated

with immunosuppressive drugs such as tacrolimus and mycophnolic acid. In addition,
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acetaminophen is the most widely used analgesic in the USA and is sometimes used in

the transplant patients for analgesia or fever reduction.

1. Tacrolimus

Tacrolimus (FK506, Prograf, Fujusawa, Osaka, Japan) is isolated from Streptomyces

tsukubasensis and has a 23-member macrolide lactone structure (Figure 2).

0

OCHs, CHs,
Figure 2. Chemical structure of tacrolimus.

Tacrolimus is a potent immunosuppressive drug. The structures of nine metabolites of
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tacrolimus generated by liver microsomes of different species have been identified
(Iwasaki et al., 1993; Lhoest et al., 1993; Iwasaki et al., 1995). The reactions involved in
the metabolism of tacrolimus include, hydroxylation at C(12), C(19), and the C(36) and
C(37) vinyl group, as well as demethylation at C(13), C(15) and C(31) (Lampen et al.,
1995). Immunoinhibition with anti-CYP3A abolished the formation of almost all
tacrolimus metabolites (Sattler et al., 1992). Subsequent study using liver microsome and
cDNA expression system also documented that CYP3A is the major isoform involved in
the metabolism of tacrolimus (Shiraga et al., 1994). Among the metabolites of tacrolimus,
13-demethylated metabolite (M1) is the major metabolite and accounts for about 75% of

total metabolites in rats (Perotti et al., 1994).

Tacrolimus is metabolized extensively in rats, with limited excretion of the unchanged
drug in the urine, bile or feces; biliary excretion is the major route of elimination of
radioactively labeled drug and metabolites (Iwasaki et al., 1991). In humans, currently,
most of the pharmacokinetic data available on tacrolimus are based on an enzyme-linked
immunosorbent assay method. The rate of absorption of tacrolimus is variable with peak
blood or plasma concentrations being reached in 0.5 to 6 hours. Approximately 25% of
the oral dose of tacrolimus is bioavailable (Venkataramanan et al., 1995). Tacrolimus is
extensively bound to red blood cells, with a mean blood to plasma ratio of about 15.
Albumin and alpha 1-acid glycoprotein appear to primarily bind tacrolimus in plasma

(Venkataramanan et al., 1995). Less than 0.5% of unchanged drug was detectable in feces
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and urine (Moller et al., 1999). The mean disposition half-life is 12 hours and the total
body clearance based on blood concentration is approximately 0.06 L/h/kg
(Venkataramanan et al., 1995). The volume of distribution is within the range of 221 to
565 L (Staatz and Tett, 2002). The elimination of tacrolimus is decreased in the presence
of liver impairment and in the presence of several drugs (Venkataramanan et al., 1995).
Due to the interpatient and intrapatient variability in the pharmacokinetics and the narrow
therapeutic index, monitoring of the trough concentration of tacrolimus is necessary to

optimize dosing requirements.

The pharmacokinetic properties of tacrolimus have not been completely characterized in
living related liver transplant patients and the clinical experience in adult living donor
liver transplantation is limited. A recent population pharmacokinetic study (daily single
blood sampling for each patient) demonstrated that the rate of metabolism of tacrolimus
was quite different in recipients of partial liver grafts (Fukatsu et al., 2001). The use of
reduced dose of tacrolimus in LDLT patients indicates that the clearance of tacrolimus is
lower during the initial postoperative period in these patients (Fukatsu et al., 2001;
Trotter et al., 2002; Harihara et al., 2000; Troisi et al., 2002). Another study showed that
adult living donor liver transplant patients receiving the right lobe required 50% less
tacrolimus during the first 2 weeks postoperatively as compared with cadaveric liver
recipients (Morgan et al., 2001; Troisi et al., 2002). This requirement is probably due to

the reduced early postoperative hepatic function and the concomitant postoperative
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metabolic overload (Fukatsu et al., 2001; Troisi et al., 2002). The pharmacokinetics of

tacrolimus has not been completely characterized in LDLT patients.

2. Mycophenolic acid

Mycophenolic acid (Figure 3) (MPA, the active compound of the prodrug mycophenolate
mofetil (MMF, CellCept, Roche, Nutley, NJ), an uncompetitive, selective and reversible
inhibitor of inosine monophosphate dehydrogenase (IMPDH), is wused for
immunosuppressive therapy after transplantation. MPA is primarily metabolized to

7-O-glucuronide (MPAG) in the body.
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Figure 3. Chemical structure of mycophenolic acid.

Initially, UGT1AS8, 1A9 and 1A10 were thought to be responsible for the formation of
MPAG (Mackenzie, 2000). Since UGT1A8 and UGT1A10 were only found in the
gastrointestinal tract (Mojarrabi and Mackenzie, 1998), MPA is thought to be the probe
substrate for UGT1A9 in human livers. Subsequently, a study conducted using cDNA

expressed UGTs showed that almost all human UGTI1A and 2B are capable of
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metabolizing MPA to MPAG (Shipkova et al., 2001). The most recent report clearly
shows that UGT 1A9 is the main isoform involved, with at least 55% contribution to the
hepatic MPAG production. UGT 1A1 and 1A6 probably account for a part of MPAG
production in the liver, whereas UGT 1A7, 1A8, and 1A10 which are expressed in the

small intestine, could contribute to the intestinal first-pass of MPA (Picard et al., 2005).

Over 95% of the administered dose is eventually excreted as MPAG in humans
(Bullingham et al., 1996b; Morissette et al., 2001). A negligible amount of the drug is
excreted as MPA (<1% of dose) in 48-hour urine (Bullingham et al., 1996a). When MPA
was administered intravenously to Wistar or Sprague-Dawley rats, about 26% of the dose
was excreted in the bile, suggesting that the biliary excretion of MPAG is extensive in
these rat strains (Kobayashi et al., 2004) even though the glucuronide is preferentially
excreted into the urine (about 70% of dose) in humans (Bullingham et al., 1996a).
Mutidrug resistant protein 2 (Mrp2), an efflux transporter located on the apical side of
hepatocytes, has been shown to be essential for the biliary excretion of MPAG based on
studies in Mrp2 deficinent rats (Eisai hyperbilirubinemic rats) (Kobayashi et al., 2004).
Mrp3, an uptake transporter located on the basolateral side of hepatocyte, is also capable
of transporting several glucuronide conjugates (Hirohashi et al., 1999). It is likely that
Mrp3 can efficiently transport MPAG across the sinusoidal membrane and back into the
blood (Kobayashi et al., 2004). After biliary excretion, MPAG is either eliminated in the

feces or is hydrolyzed to MPA by [-glucuronidases in the gut and is reabsorbed.
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Mycophenolic acid repeatedly undergoes glucuronidation and Mrp2-mediated biliary
excretion in the liver and deglucuronidation and subsequent intestinal reabsorption in the
intestine until MPA molecules are finally excreted to the urine as MPAG (Kobayashi et
al., 2004). At clinically relevant concentrations, MPA and MPAG are about 97% and 82%

bound to albumin, respectively (Bullingham et al., 1998).

3. Acetaminophen

Acetaminophen (Figure 4) is primarily metabolized to glucuronide and sulfate conjugate
by UGT and sulfonyltransferase (SULT). There is a cytochrome P450-catalyzed
oxidative pathway of APAP metabolism, forming a reactive quinine form,

N-acetyl-p-benzoquinone imine (NAPQI) (Figure 4)

0 i
HN)kCH?’ N CHs
OH O

acetaminophen NAPQI

Figure 4. Chemical structure of acetaminophen and NAPQI.

CYP3A and 2E1 have been reported to contribute to the formation of NAPQI in human
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liver microsomes (Thummel et al., 1993). However, the Km (4.4 mM) for CYP2E1 was
25 times higher than Km (0.28 mM) for CYP3A4. The in vitro human liver microsomal
inhibition data showed that CYP3A4 was, at most, a minor contributor to the formation
of NAPQI (10%) at therapeutically relevant concentrations of APAP (0.1 mM) (Thummel
et al., 1993). NAPQI can be further metabolized to its sequential metabolites:

glutathione-, Cys- and NAC- (mercapturate-) conjugates.

After single dose, plasma acetaminophen concentrations in rats declined exponentially,
with a half life that increased with increasing doses (Galinsky and Levy, 1981), indicating
a non-linear pharmacokinetics in rats. The fraction of the dose that was converted to
acetaminophen sulfate decreased with increasing doses (Jollow et al., 1974; Galinsky and
Levy, 1981). Both acetaminophen glucuronide and acetaminophen sulfate formation in
rats are capacity-limited, just as in humans (Levy and Yamada, 1971; Slattery and Levy,

1979; Galinsky and Levy, 1981).

A majority of the drugs used in LDLT patients are primarily eliminated by hepatic
metabolism (Table 1). Therefore a thorough knowledge of hepatic metabolizing capacity

in LDLT patients is of importance in optimizing drug therapy in this patient population.
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Table 1. Common used drugs in transplantation.

Drug class Drug Major elimination route
Immunosuppressive drugs | Prednisone Liver
Cyclosporine A Liver
Tacrolimus Liver
Sirolimus Liver
Mycophenolic acid Liver
Antibiotics Trimethprim Kidney
Acyclovir Kidney
Ganciclovir Kidney
Antifungal drugs Itraconazole Liver
Ketoconazole Liver
Fluconazole Liver
Voriconazole Liver
Antihypentensive drugs Diltiazam Liver
Nifedipine Liver
Central Hypothesis

Liver resection will produce a reduction in the in vitro hepatic functional activity via

decreased expression of different drug metabolizing enzymes mediated by the acute
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phase cytokines such as I1-6 and TNF-a. This in combination with a reduced liver mass
will result in decreased clearance of drugs that are metabolized in the liver to a magnitude
that is much greater than the loss of liver mass. Immunosuppressive drugs that are
routinely used in liver transplant patient will increase activity of various metabolizing

enzymes due to their effect on cytokines and their hepatotropic effect.

Hypothesis 1 (Chapter 2)

We hypothesize that the hepatic expression and in vitro activity of CYP3A will be
impaired during the initial phase of hepatic regeneration due to the cytokines that
are released, but will recover over time as the cytokine levels return to normal. We
also hypothesize that treatment with cyclosporine A and tacrolimus will prevent the
reduction in the expression or activity of CYP3A during hepatic regeneration due to
their effect on proinflammatory cytokines and their hepatotropic effect. Partial
hepatectomy will be performed in male Sprague-Dawley rats to induce hepatic
regeneration since female Sprague-Dawley rats lack the expression of CYP3A or express
it at very low levels. The mRNA expression, protein expression and in vitro activity of
CYP3A will be measured using real-time PCR, western blot and liver microsomal
incubations with probe substrate, testosterone, respectively. Effects of cyclosporine A and
tacrolimus on the in vitro activity of CYP3A will also be evaluated at different time

points during hepatic regeneration.
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Hypothesis 2 (Chapter 3)

We hypothesize that the hepatic intrinsic clearance of tacrolimus, a substrate of
CYP3A enzyme will be impaired and the clearance of tacrolimus will be significantly
reduced during hepatic regeneration and the magnitude of reduction will be related
to the reduction in the activity measured in vitro and the reduction in liver mass.
Partial hepatectomy will be performed in male Sprague-Dawley rats to initiate hepatic
regeneration. In vitro metabolism of tacrolimus will be assessed in liver microsomes
based on the formation of 13-demethylated tacrolimus. Pharmacokinetics of tacrolimus
after IV administration will be assessed at different time points during hepatic

regeneration.

Hypothesis 3 (Chapter 4)

We hypothesize that the hepatic expression and in vitro activity of various forms of
UGT will be decreased during the initial phase of hepatic regeneration due to
decreased expression of transcription factors involved in their regulation as a result
of increased levels of cytokines such as IL-6 and TNF-a, but will recover completely
over time. Partial hepatectomy will be performed in male Sprague-Dawley rats to initiate
hepatic regeneration. The mRNA expression (UGT1A1, 1A2, 1A3, 1AS, 1A6, 1A7, 1AS,
2B1, 2B2, 2B3, 2B6, 2B8, and 2B12) and in vitro activity (UGT1A1, 1A6/7, 2BI,
2B1/3/6, 2B2 and 2B12) of different UGTs will be measured using specific primers and

specific substrates, respectively, at different time points during hepatic regeneration.
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Expression of some of the transcription factors such as CAR, PXR, HNF-1, C/EBP a will

also be evaluated.

Hypothesis 4 (Chapter 5)

We hypothesize that the hepatic intrinsic clearance of mycophenolic acid, a
substrate for several UGTs, will be decreased and the clearance of mycophenolic
acid will be significantly decreased during hepatic regeneration and the magnitude
of reduction in clearance will be related to the reduction in UGT in vitro and the loss
of liver mass. We also hypothesize that the clearance of MPAG will be significantly
reduced due to the reduction in liver mass and correspondingly decreased total
activity of transporters in the liver during hepatic regeneration. Partial hepatectomy
will be performed in male Sprague-Dawley rats to initiate hepatic regeneration. In vitro
metabolism of mycophenolic acid will be assessed in liver microsomes based on the
formation of mycophenlic acid glucuronide. Pharmacokinetics of mycophenolic acid
(UGT substrate) and its metabolite, mycophenolic acid glucuronide, will be evaluated at
different time points during hepatic regeneration. The protein and mRNA expression of
related drug transporters such as multidrug resistance associated protein (Mrp) 2 and Mrp

3 will be also measured at different time points during hepatic regeneration.

Hypothesis 5 (Chapter 6)

We hypothesize that the in vivo metabolism of acetaminophen will be altered during
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hepatic regeneration with increased formation of NAPQI related toxic metabolite
and APAP glucuronide and decreased formation of APAP sulfate due to the
dose-dependent pharmacokinetics of APAP. Partial hepatectomy will be performed in
male Sprague-Dawley rats to initiate hepatic regeneration. Twenty four-hour urine will be
collected to measure various metabolites of acetaminophen with different doses at

different time points during hepatic regeneration.

Hypothesis 6 (Chapter 2, 3, 4, 5, 6)

We hypothesize that the liver mass will recover to normal with time after partial
hepatectomy. With a full recovery in liver mass and normalization of cytokine levels
such as IL-6 and TNF-a, the activity of CYP3A, UGTs and clearance of tacrolimus

and MPA and metabolism of APAP will recover to normal.

The studies proposed in this document will significantly increase our understanding of

the pharmacokinetics of drugs during hepatic regeneration. Information gained from these

studies will help us in designing future studies to optimize drug therapy in LDLT patients.
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Chapter 2 Impaired Activity and Expression of CYP3A during Hepatic
Regeneration in Rats

Abstract

Objective Hepatic regeneration is very critical to the success of living donor liver
transplantation, which allows a reduced size liver to grow in size to accommodate the
requirements of both the donor and the recipient. The objectives of this study were to
evaluate 1) the activity and protein and mRNA expression of hepatic cytochrome P450
(CYP) 3A and 2) the effect of cyclosporine A and tacrolimus on the activity of hepatic
CYP3A in rats at various time points after initiation of hepatic regeneration by partial
hepatectomy (PHx).

Methods The activity of CYP3A was determined by the formation rate of
6B-hydroxytestosterone in liver microsomes incubated with the saturating concentration
(200 uM) of testosterone. The protein expression of CYP3A was evaluated using Western
blotting. The mRNA expression of CYP3A was detected by quantitative Real-time PCR.
The effect of cyclosporine A and tacrolimus on CYP3A activity was studied by oral
administration of cyclosporine A and tacrolimus immediately after PHx at a daily dose of
10 mg/kg, bid; and 2 mg/kg, bid, respectively for 24 hours, 6 days and 14 days.

Results The hepatic CYP3A activity, protein and mRNA expression were significantly
decreased at 24 hours and day 6, but recovered back to normal by day 14. Cyclosporine A
and tacrolimus didn’t have any additional effect on the activity of CYP3A or on the
recovery of CYP3A activity.

Conclusions During hepatic regeneration, the hepatic CYP3A was impaired transiently
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but recovered completely with time. In spite of incomplete recovery of liver mass by day
18, the functional capacity of the liver returned to normal in the liver donors.
Cyclosporine A and tacrolimus did not have any effect on hepatic CYP3A activity during
hepatic regeneration. These results indicate that the clearance of CYP3A substrates will
be transiently decreased in the LDLT patients, but will completely recover to normal with
time. Reduction in doses of drugs that are metabolized by CYP3A are required during the
first few weeks after transplantation. Further, hepatic regeneration, as determined by the
activity of CYP3A, will proceed normally in presence of immunosuppressive drug

therapy with cyclosporine A and tacrolimus.
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Introduction

Liver transplantation is an accepted life-saving therapy for patients with end-stage liver
diseases. The number of patients who need liver transplantation has increased 10-fold in
the recent years, but the number of cadaveric organs that are available has been stagnant.
In the year 2000, only about 25% of the 15,000 patients in the transplant waiting list
received a donor organ. Nearly 1800 patients died while waiting for a liver (Wiesner et al.,
2003). Living donor liver transplantation (LDLT) has emerged as an effective therapy for
some selected patients and is a partial solution to the current severe shortage of cadaveric
donor organs (Seaman et al., 2001). The number of LDLTs performed in the US has
increased from less than 100 in the year 1998 to more than 500 in the year 2001 (Wiesner

etal., 2003).

In LDLT, removal of the right hepatic lobe has become the preferred donor procedure
(Wachs et al., 1998; Hayashi and Trotter, 2002). After surgery, the donor and recipient
have a small liver that grows in size to accommodate the requirements of the donor and
recipient, respectively due to hepatic regeneration. Liver regeneration after partial
hepatectomy (PHx) involves proliferation of all the existing mature cellular populations,
including hepatocytes, biliary epithelial cells, fenestrated endothelial cells, kupffer cells,
and cells of Ito (Michalopoulos and DeFrances, 1997). Many genes such as c-fos, c-jun,
c-myc, belx, p53, p21, mdm2, cyclin DI, E, C and B are also activated during hepatic

regeneration (Fausto, 2000). Hepatic regeneration is believed to be triggered or activated
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by hepatocyte growth factor (HGF) (Lindroos et al., 1991), transforming growth factor-a.
(TGF-a)) (Mead and Fausto, 1989), tumor necrosis factor-o. (TNF- a) (Diehl et al., 1994)
and interleukin-6 (IL-6) (Matsunami et al., 1992). Elevated concentrations of HGF and
IL-6 are observed in plasma after PHx (Lindroos et al., 1991; Matsunami et al., 1992;
Fulop et al., 2001; Iwai et al., 2001). Several cytokines that are known to be up-regulated
during hepatic regeneration are known to alter the activity of some of the hepatic drug
metabolizing enzymes (Chen et al., 1995; Monshouwer et al., 1996; Abdel-Razzak et al.,

1993).

Cytochrome P450 3A plays a significant role in the metabolism of approximately 50% of
the drugs in use including several immunosuppressive drugs used in liver transplant
patients such as cyclosporine A, tacrolimus, and sirolimus (Combalbert et al., 1989;
Bertault-Peres et al., 1987; Vincent et al., 1992; Sattler et al; 1992). The regulation of
CYP3A activity during hepatic regeneration in LDLT patients is particularly important.
Even though the rate of hepatic regeneration may be different between the donor and the
recipient in LDLT program with the donor requiring more regeneration (60% liver
regeneration for the donor and 40% liver regeneration for the recipient), both the donor
and the recipient require hepatic regeneration to restore the liver size. Since cyclosporine
A and tacrolimus have been reported to be hepatotropic during hepatic regeneration in
cell renewal and DNA synthesis (Mazzaferro et al., 1990; Francavilla et al., 1991),

treating donors in LDLT with cyclosporine A and tacrolimus may be beneficial in
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accelerating the recovery of impaired drug metabolizing activity. On the other hand,
recipients normally receive immunosuppressive drugs during the process of hepatic
regeneration after transplantation, which may directly affect the drug metabolizing ability
of these patients. Limited data based on systemic studies of the regulation of CYP3A
activity, protein and mRNA expression levels during hepatic regeneration exist and
nothing is known about the effect of immunosuppressive drugs such as cyclosporine A
and tacrolimus on the hepatic CYP3A activity and expression during hepatic regeneration.
A thorough understanding of the alterations in the activity and expression of CYP3A
during hepatic regeneration and the effect of immunosuppressive drugs on the activity of

CYP3A is important to optimize drug therapy in LDLT patients.

In this study, we have utilized partially hepatectomized rats to study the effect of hepatic
regeneration and chronic treatment with cyclosporine A and tacrolimus on the in vitro
activity, protein and mRNA expression of CYP3A enzyme. We hypothesized that the
activity, protein content and mRNA expression of CYP3A will be decreased during the
initial phase of heptic regeneration due to the increased concentration of IL-6 and that
treatment with cyclosporine A and tacrolimus will prevent the reduction in the activity of
CYP3A enzyme during hepatic regeneration due to their effect on proinflammatory

cytokines and the hepatotropic effect on DNA synthesis.

Materials and Methods
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Chemicals

Testosterone and 6B-hydroxytestosterone were purchased from Steraloids Inc. (Newport,
RI). Cyclosporine A injection (250 mg/5 ml) (Lot No. 380518) was purchased from Ben
Venue Labs (Bedford, OH). Tacrolimus, 10 mg/ml tacrolimus injection (Lot No.
711337K), was a generous gift from Fujisawa Pharmaceutical Company (Osaka, Japan).
CYP3A monoclonal antibody raised in mouse was obtained from BD Gentest (Woburn,
MA). Horseradish peroxidase-conjugated sheep anti-mouse IgG was purchased from
Amersham Biosciences, (Piscataway, NJ). Western Chemiluminescence reagent was
bought from PerkinElmer Life Sciences, Inc. (Boston, MA). Reagents for reverse
transcription were purchased from Promega (Madison, WI). Forward and reverse primers
for CYP3A, beta-actin and beta-2-microglobulin (beta-2-m) were synthesized by Applied
Biosystems (Forest city, CA). Rat IL-6 and TNF a kits were purchased from Pierce
Biotechnology, Inc. (Rockford, IL). All other chemicals were purchased from Sigma

Chemical Co. (St. Louis, MO). All solvents used were of HPLC grade.

Animals

The study protocol was approved by the Institutional Animal Care and Use Committee
(IACUC) at the University of Pittsburgh. Partial hepatectomy was performed according
to the method of Higgins and Anderson (1931). Male Sprague-Dawley rats weighing
225-250 g were anesthetized with methoxyflurane inhalation and the ventral surface was

shaved along the mid line and swabbed with betadine. A midline incision of 3-4 cm was
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made. Blood vessels supplying the medial and left lateral lobes of the liver were sutured
and these lobes were excised. This resulted in the removal of 65-75% of the total liver,
leaving the right lateral lobe and the small caudate lobe. For the sham operation (served
as paired controls), the liver was manipulated similar to the partial hepatectomy
procedure, but was not excised. After surgery, the rats had free access to food and water
and were maintained on a 12-hour light and 12-hour night cycle. Rats were sacrificed by
CO; inhalation at 24 hours, day 6 or day 14 after PHx. On the day of sacrifice, the livers
from rats were perfused with ice-cold 0.15 M KCl, frozen in liquid nitrogen immediately
and stored at -80°C for extraction of total RNA and preparation of microsomes. In order
to minimize the variability, all rats for each time points were ordered on the same day.
Twelve rats were ordered every time (6 rats for PHx; 6 rats for sham) and the surgery was
conducted between 9:00 am and 11:00 am. For the rats that were sacrificed at 24 hours, 3
ml blood were collected at the time of sacrifice. The whole blood was centrifuge
immediately after collection at 3,000 rpm for 10 minutes and the serum was stored at

-20°C for cytokines measurement.

Liver Mass

The liver mass (L.M.) recovery was calculated in the following way: Wet weight of the
remaining liver lobes after PHx / Estimated total L.M. (calculated by multiplying B.W. at
the time of sacrifice X ratio of L.M. to B.W for normal rats). Here the ratio of L.M. to

B.W. of 0.04 was used for normal rats (Davies and Morris, 1993).
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Microsome Preparation

Liver microsomes were prepared by a differential centrifugation procedure. All
instruments and buffers were kept on ice during this procedure. The whole liver lobe was
used to prepare microsomes to avoid the possibility of uneven distribution of CYP3A.
The CYP3A activity among different lobes from the same rat (N = 5 rats) was also
evaluated. There was no difference in the CYP3A activity between the two different lobes
(1.36 £ 0.20 vs 1.23 + 0.17 nmol/mg protein/min, P > 0.5, paired t-test). Liver samples
were placed in 3-4X their weight of homogenization buffer (50 mM Tris HCI buffer, 1.0
% KCl and 1 mM EDTA, pH 7.4) and homogenized using an electrical homogenizer. This
homogenate was then centrifugated at 10,000 g for 20 min at 4°C. Supernatants were then
centrifuged at 105,000 g for 65 min at 4°C. The pellets were reconstituted using a manual
homogenizer in 2X their weight of a Tris HCI buffer (50 mM Tris HCI buffer, pH 7.4)
containing 20% glycerol. Microsomes were aliquoted and stored at -80°C until used in
incubation studies (It has been shown that the activity of microsomal protein didn’t
change significantly with ten freeze/thaw cycles, Pearce et al., 1996). The protein content
was determined by Lowry’s method with bovine serum albumin as the standard (Lowry et
al., 1951). Standards (200 pl) in triplicate and diluted samples (200 pl) in duplicate were
mixed with alkine copper sulphate solution (2.5 ml). Then, Folin reagent (250 pl) was
added to each tube and the samples were maintained for 45 min at room temperature. The

absorbance was measured at 490 nm with a 96 well plate reader.
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IL-6 and TNF-a measurement

For IL-6 and TNF-a measurement, fifty ul of pre-treatment buffer to each well followed
by adding 50 pl of standards and samples. The plate was covered and incubated at room
temperature for 2 hours (1 hour for TNF-o measurement). After incubation, the plate was
washed three times. One hundred pl of biotinylated antibody reagent (50 ul for TNF-a
measurement) was added to each well after washing. The plate was then covered and
incubated at room temperature for 1 hour again. After washing the plate for three times,
one hundred pl of prepared streptavidin-HRP solution was added to each well. After
incubating for 30 min, the plate was washed for three times. Then 100 pl of premixed
TMB substrate solution was added to each well. The plate was developed in the dark at
room temperature for 30 min (10 min for TNF-a measurement). After development, the
reaction was stopped by adding 100 pl of stop solution to each well. The absorbance was

measured on a plate reader at 440 nm minus 540 nm.

Microsome Incubation with Testosterone

The formation of 6B-hydroxytestosterone from testosterone was used as a marker of
CYP3A activity. The incubation was carried out in a glass culture tube containing a
saturating concentration of testosterone (200 uM) for activity measurement and a series
of concentrations of testosterone (0-250 puM) for Km determination, 0.5 mg/ml

microsomal protein (linear to 0.5 mg/ml, Figure 5) and 10 mM MgCl,, with the fluid
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volume being adjusted to 0.5 ml by the addition of 100 mM phosphate buffer (pH 7.4).
The tubes were pre-incubated for 10 minutes at 37°C in an oscillating water bath and
then one mM B-NADPH was added to initiate the reaction. After incubation for 10
minutes (linear to 20 min, Figure 6), the reaction was stopped by adding an equal volume
(0.5 ml) of ice-cold methanol. The reaction mixture was transferred to a fresh eppendorf
tube and the tube was then centrifuged at 13,000 rpm for 5 minutes. The supernatant was

analyzed for 6B-hydroxytestosterone using a HPLC method.
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Figure 5. Relationship between microsomal protein concentration and the amount of
6p-hydroxytestosterone formed in rat liver microsomes. Concentration of testosterone:

200 uM; incubation time: 10 min.
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Figure 6. Relationship between time of incubation and the amount of
6p-hydroxytestosterone formed in rat liver microsomes. Concentration of testosterone:

200 uM; microsomal protein concentration: 0.5 mg/ml.

HPLC Analysis of 6f-hydroxytestosterone

6p-hydroxytestosterone was measured by the method developed in our laboratory
(Kostrubsky et al., 1999). More specifically, one hundred ul of the incubation solution
was injected onto a LiChrospher 100 RP-18 column (250 mm x 4.6mm, 5 p) heated to
30°C. A mobile phase of methanol/water (60/40) was used at a flow rate of 1.2 ml/min.
The UV detector was set at 242 nm. The retention time for 6B-hydroxytestosterone was
about 4.9 minutes and the total run time was 20 minutes. The standard curve was linear
over the concentration of 0.25-5 pg/ml. The intra- and inter-day CV(%) at 0.25 pg/ml and

5 pg/ml was less than 3% (n =6).
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Western blot

Microsomal proteins (20 pg/lane) were electrophoretically resolved using 10% Bio-Rad
Ready gels and then transblotted for 3 hours at 4°C onto PVDF (polyvinylidene difluoride)
membrane (Millipore, Billerica, MA) with Tris-glycine buffer containing 20% methanol
and 0.1% SDS. The blots were then blocked for 1 hour in 5% blocking grade nonfat dry
milk (Bio-Rad, Hercules, CA) in TBS-Tween buffer (15 mM Trizma base, 154 mM
sodium chloride, 0.05% Tween 20, pH 7.4) at room temperature, incubated for 2 hours at
room temperature with mouse anti-CYP3A monoclonal antibodies diluted in 0.5% nonfat
dry milk (1:1000), and then washed three times for 15, 5 and 5 min, respectively, in
TBS-Tween buffer. After the above washes, the blots were incubated for 1 h at room
temperature with sheep anti-mouse IgG conjugated with horseradish peroxidase
(Amersham Biosciences Inc., Piscataway, NJ), diluted 1:10,000 in TBS-Tween buffer, and
then subjected to three additional washes (15, 5, and 5 min respectively). CYP3A

protein-antibody complexes were detected with ECL Western blotting reagents.

Extraction of RNA and Reverse Transcription

Total RNA was extracted from 50-100 mg livers with 1 ml Trizol (Invitrogen, Carlsbad,
CA) according to the instructions of the manufacturer. Extracted RNA was quantified
spectrophotometrically at 260/280 nm and the integrity was checked using agarose gel.
After removal of DNA using RNase-Free DNase, 2 ug of RNA was reversely transcribed

using 0.5 pg of random hexamer (Promega, Madison, WI) heated to 70°C for 5 minutes,
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and then cooled to 4°C. A reaction mixture containing 200 U Moloney murine leukemia
virus reverse transcriptase, | mM dNTPs and 25 U RNasin (Promega, Madison, WI) was
added to the previous mixture and incubated at 37°C for 60 minutes. The resulting cDNA
was diluted 10 folds and stored at -20°C. The control samples were also prepared with the

same procedure by replacing the reverse transcriptase with water (negative controls).

Real-Time PCR

Polymerase chain reaction (PCR) was performed on Applied Biosystems 7700 cycler
using 5 pl of cDNA, 7.25 pmol of forward and reverse primers and 12.5 pl of SYBR
Green PCR Master Mix (Applied Biosystems, Foster City, CA) for a total volume of 25
ul. Forward and reverse primers, designed using Primer Express 2.0 (Applied
Biosystems), are 5’-TCAAGGAGATGTTCCCCATCA-3’ (Forward),
5’>-TCTCCGCCTCTTGCTTCAA-3’ (Reverse) for rat CYP3A;
5’-CTGGCCTCACTGTCCACCTT-3’ (Forward), 5’-GGGCCGGACTCATCGTACT-3"
(Reverse) for B-actin  and 5’-CGTGCTTGCCATTCAGAAAA-3’ (Forward),
5’-GAAGTTGGGCTTCCCATTCTC-3’ for beta-2-m. The nucleotide-nucleotide Blast
has confirmed that there was no match between the primers and the rat genome except for
the target genes. Cycling conditions were 1 cycle at 95°C for 10 min, followed by 50
cycles with 15s at 95°C and 1 min at 60°C. The relative cDNA content was determined in
duplicate using standard curves created from cDNA and normalized to beta-2-m for each

sample. For each pair of primers, the control without reverse transcriptase was also used
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for PCR reactions in duplicate to confirm that there was no genomic DNA contamination

in the cDNA samples.

Data Analysis

All data are reported as mean + SD. Student’s t-test was used to evaluate the differences
between the activities in the regenerating lobes and the lobes from sham group at a
significant level of P < 0.05. Comparisons among groups were made via a one way
analysis of variance (P < 0.05). For sample size calculation, the initial formation rate of
6p-hydroxytestosterone from the lobes of sham (24 hours) (1.72 + 0.22 nmol/mg
protein/min), was used. With a power of 80% and a = 0.05, to detect a 25% difference, 4

rats were required. Experiments were completed with 4 to 6 rats in each group.

Results

Recovery of Liver Mass during Hepatic Regeneration.

Liver mass recovery after initiation of hepatic regeneration with or without cyclosporine
A or tacrolimus administration is illustrated in Figure 7. Liver mass was 31.3 + 2.0% at
24-hours, 50.5 + 4.0% on day 6 and 72.3 + 5.1% on day 14. The recovery of liver mass
approached a plateau by day 18. Cyclosporine A or tacrolimus did not have any effect on

the recovery of liver mass.

Serum concentration of IL-6 and TNF-o
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The serum concentration of IL-6 was signicantly increased 24 hours after hepatic
regeneration (PHx-24 hour vs. Sham: 124 + 28 pg/ml vs. 47 + 18 pg/ml, P < .01,
student’s t-test). However, the serum concentration of TNF-a was not altered 24 hours
after initiation of hepatic regeneration (PHx-24 hour vs. Sham: 89 + 20 pg/ml vs. 95 + 18

pg/ml, P > .05, student’s t-test).

In Vitro Activity of CYP3A as Measured by the Formation of 6f-hydroxytestosterone
from Testosterone

Figure 8 shows the activity of CYP3A enzyme during hepatic regeneration. CYP3A
activity decreased significantly at the 24th hour compared to the activity in the sham
group (t-test, P <.01, Figure 8) and didn’t significantly differ between day 6 and 24
hours. The activity eventually returned to normal level by day 14 (t-test, P > .05, Figure
8). No significant difference in Km was observed at 24-hour or 14 days of hepatic
regeneration compared to corresponding control values (24-hour: 34.7 + 12.0 vs. 25.2 +

7.7 uM; 14-day: 26.0 + 8.7 vs. 28.0 £ 5.1 uM; t-test, P > .05).

Immunochemistry of CYP3A
The results of the western blot for CYP3A are shown in Figure 9. The regenerating lobes
had a lower CYP3A protein at 24 hours and 6 days. The protein expression recovered

almost completely by day 14.
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Selection of Control Genes

The mRNA expressions of beta-actin and beta-2-m at different time points during hepatic
regeneration are shown in Figure 10. The mRNA expression of beta-actin almost doubled
at 24 hours (sham vs. PHx: 0.19 = 0.03 vs. 0.32 + 0.06, P <.01). The mRNA level of
beta-actin in the PHx group was similar to the paired sham group by day six. The mRNA
expression of beta-2-m, on the other hand was relative stable during hepatic regeneration
and was not significantly different between paired sham groups and PHx groups.
Therefore, beta-2-m was chosen as the normalization gene for the study of other target

genes.

mRNA Expression of CYP3A

The mRNA expression of CYP3A after initiation of regeneration is shown in Figure 11.
The mRNA expression of CYP3A was decreased to about 20% of control value in paired
sham group by twenty four hours (t-test, P <.01). The mRNA expression of CYP3A
stayed at the same level on day 6 (t-test, P > .05), and was lower than control level in
paired sham group (t-test, P <.05). After regeneration for 14 days, the mRNA expression

returned to control level (t-test, P > .05).

FEffect of Tacrolimus and Cyclosporine
Twenty fours hours, six days and fourteen days of oral administration of cyclosporine A

and tacrolimus didn’t have any effect on the recovery of CYP3A activity (Figure 12).
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Figure 7. Recovery of liver mass during hepatic regeneration. The liver mass
recovery was represented as percentage in the following way: Wet weight of the
remaining liver lobes after PHx/Estimated total liver mass (calculated by multiplying
body weight at the time of sacrificing X ratio of liver mass to body weight for normal
rats). Here the ratio of liver mass to body weight for a normal rat was assumed to be 0.04.

N =5 to 6 rats.
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Figure 8. CYP3A activity at different time points during hepatic regeneration.
Sham: liver lobes from sham groups; PHx: regenerated liver lobes after PHx. The activity
was measured using 6B-hydroxytestosterone formation rate at saturating testosterone
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Figure 9. Immunochemical analysis of the CYP3A protein expression at different
time points after initiation of regeneration. Equal amounts of microsomal protein were
loaded in each lane. Sham: pooled lobes from sham groups; PHx: pooled regenerated

lobes after PHx. Microsomal proteins from 6 rats were pooled together in each group.
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Figure 10. The mRNA expression of control genes at different time points after
initiation of regeneration. Panel A: beta-actin; Panel B: beta-2-microglobulin. Sham:
pooled lobes from sham groups; PHx: pooled regenerated lobes after PHx. The arbitrary
mRNA values were determined by real time PCR as described in the Methods using
pooled cDNAs generated from total RNAs from 6 normal livers as the standard. All data

are expressed as mean + SD. ** P < .01 vs. sham N =4 rats.
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Figure 11. The mRNA expression of CYP3A at different time points after initiation
of regeneration. Sham: pooled lobes from sham groups; PHx: pooled regenerated lobes
after PHx. The relative mRNA level was determined by real time PCR as described in the
Methods using pooled cDNAs generated from total RNAs from 6 normal livers as the
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Figure 12. Effect of drug treatments on CYP3A activity during hepatic
regeneration. PHx: regenerated liver lobes after PHx; Cys A: cyclosporine A (10
mg/kg/day, bid, po); tacrolimus: tacrolimus (2 mg/kg/day, bid, po). The activity was
measured using 6B-hydroxytestosterone formation rate under saturating testosterone

concentration (200 uM). P > .05, one-way ANOVA. N =4 to 6 rats.
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Discussion

In this study we have used partially hepatectomized rats to evaluate the effect of hepatic
regeneration on the in vitro activity of CYP3A wusing the formation rate of
6B-hydroxytestosterone. We have also evaluated the effect of cyclosporine and tacrolimus
on the CYP3A mediated drug metabolism in rats with regenerating livers as these drugs
are known to be hepatotropic and are expected to increase hepatic regeneration

(Mazzaferro et al., 1990; Francavilla et al., 1991).

Our results indicate that liver mass recovered gradually to about 72% of the original liver
mass over a two week period. This value stayed the same on day 18. This agrees with the
reported 78% liver mass recovery in rats by day 15 after PHx (Maza et al., 2001). This is
also consistent with a recent observation of recovery of up to 78.6% of ideal liver volume
in the donors in a living donor liver transplant program (Humur et al, 2004). Liver mass
recovery in rats was not augmented by chronic treatment with cyclosporine A or
tacrolimus, which is consistent with data published by Coughlin et al (Coughlin et al.,

1987).

The activity of CYP3A as measured by 6 B-(OH) testosterone and the expression of
CYP3A protein and mRNA were all reduced in the regenerating liver at 24 hours and on
day 6, but recovered to normal by day 14.This indicates a definite time dependent change

in CYP3A activity during hepatic regeneration. Our findings are consistent with some
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previous studies indicating suppression of CYP3A during the initial part of liver
regeneration (Starkel et al., 2000; Tamasi et al., 2001; Favre et al., 1998; Ishizuka et al.,
1997). However, most of these studies reported a much earlier recovery of CYP3A
activity using single point measurements. Our observation indicates that the activity and
expression of CYP3A to be suppressed much longer and possibly until the liver
regeneration is complete (14 days). The exact mechanism responsible for the lower
CYP3A expression and activity during regeneration is currently not known and future
studies are needed to address this. Interleukin-6 released during hepatic regeneration may
contribute to the observed decrease in CYP3A expression and activity. It is also likely
that newly divided cells may have a much lower enzyme expression and activity

compared to existing liver cells.

Cyclosporine A and tacrolimus can augment DNA synthesis and enhance regeneration by
non-immunological pathways (Francavilla et al., 1990). So we expected hepatotropic
effect of cyclosporine A and tacrolimus to be reflected on the recovery of CYP3A
activity. On the other hand, in vitro incubation with T cells showed that both cyclosporine
A (100 nM) and tacrolimus (10 nM) suppressed the expression of IL-2, IL-3, IL-4, c-myc,
and TNF o (Tocci et al., 1989). We also anticipated that the treatment with cyclosporine A
and tacrolimus would prevent the reduction in the activity of CYP3A due to their effect
on proinflammatory cytokines. However, in the present study, neither cyclosporine nor

tacrolimus, at the doses used, altered the activity of CYP3A in rats with regenerating
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livers. This indicates that any hepatotropic effect of cyclosporine and tacrolimus was not
reflected in terms of the activity of CYP3A. Moreover, since only serum levels of IL-6
and three soluble cytokine receptors (TNF a receptor I and II, IL-6 receptor) were
significantly increased during hepatic regeneration (Fulop et al., 2001), the suppression of
cyclosporine A and tacrolimus on TNF a and other ILs may have no obvious effect on the
expression or activity of drug metabolizing enzymes. Direct inhibition of CYP3A by
cyclosporine A as published previously was observed only at doses much higher than

what was used in the current study (Brunner et al., 1998).

To the best of our knowledge this is the first study to analyze the recovery profile of
CYP3A enzyme over time after initiation of regeneration at the level of mRNA
expression, protein expression and in vitro activity in an animal model. Our study points
to several important conclusions. CYP3A expression and activity are significantly
reduced after PHx but recovers completely with time. Second, in spite of an incomplete
recovery in liver mass on day 14, the functional capacity of the liver (in vitro activity)
returns to normal. Finally, chronic treatment with cyclosporine A or tacrolimus has no
effect on CYP3A activity in the regenerating rat livers. The clinical implications of our
study are 1) the clearance of CYP3A substrates will be transiently decreased in the LDLT
patients, but will completely recover to normal with time; 2) reduction in doses of drugs
that are metabolized by CYP3A is needed during the first few weeks after transplantation;

3) hepatic functional capacity will recover much earlier than the recovery of liver mass;
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and 4) hepatic regeneration, as determined by the activity of CYP3A, will proceed
normally in presence of immunosuppressive drug therapy with cyclosporine A and

tacrolimus.
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Chapter 3 In Vitro Hepatic Intrinsic Clearance and Pharmacokinetics of Tacrolimus
Are Transiently Altered during Hepatic Regeneration in Rats

(Part of this chapter is the reprint with permission of the American Society for
Pharmacology and Experimental Therapeutics. All rights reserved. Tian ef al., 2005)

Abstract

Objective The objective of this study was to evaluate the pharmacokinetics of tacrolimus
in rats at various time points after initiation of hepatic regeneration by partial
hepatectomy (PHx).

Methods The in vitro hepatic clearance of tacrolimus was measured with liver
microsomes incubated with different concentrations of tacrolimus. The pharmacokinetics
of tacrolimus was evaluated after intravenous administration of 0.6 mg/kg tacrolimus to
partially hepatectomized rats. Two hundred microlitter of whole blood was collected at 0,
0.5,1,2,4,6, 8, 12 and 24 hours through a jugular vein catheter. The blood concentration
of tacrolimus was analyzed by a microparticulate enzyme immunoassay (MEIA).

Results The hepatic intrinsic clearance of tacrolimus was decreased to 72% and 51% of
that in the control rats at the 24th hour and the 6th day, respectively, but recovered to
normal level by day 14. A two-compartment model (WinNonlin) fitted the data
adequately. The total body clearance of tacrolimus was reduced transiently but recovered
completely by day 18 (4.40 = 0.50 ml/min/kg (24 hours); 8.64 £ 0.55 ml/min/kg (day 18)
and 9.22 £+ 0.71 ml/min/kg (control)). Other pharmacokinetic parameters such as the area
under the blood concentration vs time curve (AUC), the terminal disposition rate constant

Copyright 2004 by the American Society for Pharmacology and Experimental Therapeutics
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(B) and the terminal disposition half life (T1/2(B)) were also significantly different
between control and PHx rats. The volume of distribution and other rate constants such as
K, and K;; were not altered at any time point after PHx.

Conclusions 1) During hepatic regeneration, the pharmacokinetics of tacrolimus was
altered transiently. 2) The magnitude of reduction in in vivo clearance of tacrolimus was
much less than what was predicted from the loss of liver mass and loss of enzyme activity
as measured by in vitro studies. 3) The hepatic clearance of other CYP3A substrates will
also be reduced transiently during the early hepatic regeneration process. 4) The
magnitude of reduction in in vivo clearance of other CYP3A substrates will be much less
than what was predicted than the loss of liver mass and loss of enzyme activity as
measured by in vitro studies. 5) A reduction in the dose of CYP3A substrates that is less
than the loss of liver mass is sufficient to achieve comparable blood levels of drugs in
LDLT patients and cadaveric liver transplant patients. 6) The ability of the liver to clear
drugs recovers completely with time and normal hepatic function will be restored in

subjects undergoing hepatic resection.
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Introduction

Cytochrome P450 3A enzymes account for more than 50% of the drugs metabolized
through phase I pathways and is also involved in the metabolism of several
immunosuppressive drugs such as cyclosporine A, tacrolimus and sirolimus. Even though
the rate of hepatic regeneration may be different between the donor and the recipient in a
LDLT program, with the donor requiring more regeneration (60% liver regeneration for
the donor and 40% liver regeneration for the recipient), both the donor and the recipient
require hepatic regeneration to restore the normal size of the liver. Recently, LDLT
patients have been reported to achieve higher blood levels of tacrolimus and cyclosporine
A for a given dose compared to cadaveric liver recipients (Trotter et al., 2002; Taber et
al., 2002; Morgan et al., 2001). Previous studies (chapter 2) in rats have shown
suppression of CYP3A during the initial phase of liver regeneration and complete
recovery of the activity and expression of CYP3A within 2 weeks after initiation of
hepatic regeneration. The impaired activity of CYP3A in the remaining liver along with a
reduced liver mass will contribute to the reduced clearance and increased blood levels of

drugs such as cyclosporine A and tacrolimus.

So it is important to understand whether the magnitude of change in the pharmacokinetics
of immunosuppressive drugs metabolized by CYP3A during the hepatic regeneration
process matches the predicted magnitude of change due to a decrease in liver mass and a

decrease in the intrinsic activity of CYP3A. Nothing is currently known about the
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pharmacokinetics of immunosuppressive drugs that are metabolized by CYP3A pathway,
during hepatic regeneration. Such knowledge will help in optimizing not only the
immunosuppressive drug therapy but also therapy with other drugs that are metabolized
by CYP3A during hepatic regeneration. In this study, we hypothesized that the clearance
and in vitro metabolism of tacrolimus will be decreased during hepatic regeneration due
to the decrease in liver mass and a reduction in the activity of CYP3A in the remaining

liver lobe.

Materials and Methods

Chemicals

Tacrolimus, (10 mg/ml tacrolimus injection - Lot No. 711337K) and 13-demethylated
tacrolimus were generous gifts from Fujisawa Pharmaceutical Company (Osaka, Japan).
Heparin injection (Lot No. 322024) was obtained from American Pharmaceutical Partners,
Inc. (Los Angeles, CA). IMx system and related reagents for measurement of tacrolimus
blood concentration were obtained from Abbott Laboratories (Abbott Park, IL). All other

chemicals were purchased from Sigma Chemical Co. (St. Louis, MO).

Animals
The study protocol was approved by the IACUC at the University of Pittsburgh. Partial
hepatectomy was performed according to the method of Higgins and Anderson in male

Sprague-Dawley rats weighing 225-250 g (Higgins and Anderson, 1931) as described in
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Chapter 2 (For sham operation, please refer to Animals under Methods and Materials
section in Chapter 2). Medial and left lateral lobes surgically removed during the partial

hepatectomy procedure served as the control in this study.

Microsome Preparation
Liver microsomes were prepared by a differential centrifugation procedure as described

under Methods and Materials section in Chapter 2.

Microsome Incubation with Tacrolimus

The formation of 13-demethlated tacrolimus (M1) from tacrolimus was also used as a
marker of CYP3A activity. The incubation was carried out using methods described in
Microsome Incubation with Testosterone under Methods and Materials section in
Chapter 2 with different concentration of tacrolimus (0-25 pM) and a fixed concentration
of the microsomal protein (2.4 mg/ml) (linear to 2.4 mg/ml, Figure 13) for 20 minutes
(linear to 20 min, Figure 14). The final solution was analyzed for concentration of M1

using HPLC.
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Figure 13. Relationship between microsomal protein concentration and the amount
of 13-demethylated tacrolimus formed in rat liver microsomes. Concentration of

tacrolimus: 25 uM; incubation time: 20 min.
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Figure 14. Relationship between time of incubation and the amount of
13-demethylated tacrolimus formed in rat liver microsomes. Concentration of

tacrolimus: 25 uM; microsomal protein concentration: 1.8 mg/ml;

Pharmacokinetic Study of Tacrolimus

Pharmacokinetic studies were carried out in rats in the control group, 24 hours after PHx,
14 days after PHx and 18 days after PHx. Since there was no significant difference
between control group and sham group in the in vitro intrinsic clearance of tacrolimus at
any time, pharmacokinetic studies were not conducted in sham group (Table 2). A silastic
tubing was inserted into the jugular vein 24 hours before the study. Rats were anesthetized

with methoxyflurane inhalation (in control rats not undergoing PHx) or continued
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methoxyflurane anesthesia in the rats undergoing surgery. Rats were restrained in the
triangular shaped plastic bag with an opening at the tip for the rat to inhale the anesthetic.
The extended toe pinch reflex was used to determine the depth of anesthesia. When
anesthesia was appropriate, rats were turned on their back and an incision was made at
the location of the jugular vein around the neck using sterile techniques with sanitized
instruments. The jugular vein was revealed, the blood supply was stopped, and a small
hole was made in the vein using fine tipped instruments. A PE-60 catheter tubing
connected to a syringe filled with 100U/mL heparinated saline was inserted. A small plug
was used to seal off the tubing. The tubing was secured with suture. A small incision was
made at the top of the rat’s back and the tubing was pulled through so the rat didn’t

damage the tubing.

On the study day, tacrolimus (0.6 mg/kg) was administered intravenously through the
jugular vein catheter. A sterile syringe (1 cc) was used for the collection of each blood
sample. First, fluid in the catheter and 0.1 ml blood was taken out by a lcc syringe
containing 0.2 ml 100 u/ml heparinized saline solution; then 0.2 ml blood sample was
withdrawn for tacrolimus analysis; and finally the initial fluid plus blood together with
0.2 ml 100 u/ml heparin saline was injected back. Multiple blood samples were collected
in heparinized tubes at 0, 0.5, 1, 2, 4, 6, 8, 12 and 24 hours after intravenous

administration of tacrolimus.
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HPLC Analysis of 13-demethylated Tacrolimus

As per the method described previously (Perotti et al., 1994b) with minor modifications,
one hundred pl of the incubation solution was injected onto a LiChrospher RP-18 column
(250 mm x 4.6 mm, 5 p) heated to 60°C. The UV detector was set at 214 nm. The mobile
phase consisted of a mixture of acetonitrile/method/diluted O-phosphoric acid, pH 3.0,
49/3/48. The initial flow rate was 1 ml/min for the first 20 minutes, stepped up to 1.5
ml/min within 0.5 min and maintained for the subsequent 23 minutes. The retention time
for M1 was 9.3 minutes and the total run time was 43 minutes. The standard curve was
linear over a range of 0.25-5 pg. The intra- and inter-day CV(%) at 0.5 pg and 5 ug was

less than 7% (n =5).

Microparticulate Enzyme Immunoassay of Tacrolimus Blood Concentration
Tacrolimus concentration in the blood was measured by a microparticulate enzyme
immunoassay (MEIA) using Abbott’s IMx analyzer. Each blood sample, calibrator or
control was individually mixed thoroughly. One hundred fifty pl of each sample (diluted
to the linear range with blank blood when necessary), the calibrator or control was
pipetted into a fresh 1.5 ml tube and 150 pl of IMx Tacrolimus II Whole Blood
Precipitation Reagent was added. Each tube was vortexed and centrifuged at 13,000 rpm
for 4 min. The tubes were uncapped and the supernatant was decanted into the sample
well of an IMx reaction cell. The measurement was done automatically using IMx

Tacrolimus II Reagent Pack containing mouse monoclonal anti-tacrolimus antibody
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coated microparticles and tacrolimus alkaline phosphatase conjugate in a IMx system.
The antibody used in the assay does not cross-react with the major metabolite,
(representing more than 75% of total metabolites formed) M1. Cross reactivity has been
observed only with a few minor metabolites. Based on this, the antibody used primarily
measures only tacrolimus. The calibration curve, ranging from 2 ng/ml to 30 ng/ml, was
generated using reagents supplied in the kit. The intra-day and inter-day CV (%) at 3
ng/ml, 12 ng/ml and 25 ng/ml was less than 14% (n =5). With each run of the samples,

three controls with concentrations of 5 ng/ml, 11 ng/ml and 22 ng/ml were also run.

Data Analysis

Enzyme kinetic analysis was performed using Prism 3.0 (GraphPad Software Inc., San
Diego, CA). The kinetic parameters (Ky, and Vax) for the formation of 13-demethylated
tacrolimus were calculated using nonlinear regression analysis. The intrinsic clearance
(Clint) was calculated as Vimax/Kn. Pharmacokinetics of tacrolimus was analyzed by fitting
a biexponential equation to the data using WinNonlin 3.1 (Pharsight Co., Mountain View,
CA). The selection of the kinetic model was made using AKAIKE information criterion
(AIC) and the precision of the estimated parameters. All data are reported by mean + SD.
Comparisons among groups were made via a one way analysis of variance with Tukey
post hoc analysis (P < 0.05). For sample size calculation, based on the initial

measurement of AUC in control group, 1089 + 83.05 hr*ng/ml, to observe a 20%
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difference between groups, with a power of 80% and o = 0.05, the sample size required was

3 rats. Experiments were completed with 4 to 6 rats in each group.

Results

Measurement of Vyuxy K, and CL;y, for the Formation of 13-demethylated Metabolite of
Tacrolimus in Hepatic Microsomes

Both Vmax and Km values were not different between control group and sham group at
all time points studied (Table 2). The Vmax for the formation of M1 in hepatic
microsomal fraction obtained at the 24th hour after PHx was significantly decreased
compared to control value (Table 2). On day 6, the Vmax still remained at a lower level
(50% of control level) but recovered completely by day 14 during hepatic regeneration
(90% of control level). However, the Km values were similar among all the groups. The
intrinsic clearance (CLjy) for the formation of M1 in the hepatic microsomal fraction was

significantly decreased during hepatic regeneration at the 24th hour and on day 6.

Pharmacokinetics of Tacrolimus

The blood concentration vs. time curve of tacrolimus after intravenous administration of
tacrolimus was well described by a biexponential process (Figure 15). The
pharmacokinetic parameters of tacrolimus at different time points after initiation of the
regeneration are summarized in Table 3. The area under the blood concentration vs time

curve (AUC), the total body clearance (CL), the terminal disposition rate constant () and
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the terminal disposition half life (T1/2(B)) were significantly different between control
and PHx rats. The total body clearance of tacrolimus at the 24th hour was much lower than
that in the control group. The clearance of tacrolimus increased significantly on day 14
from values observed at the 24th hour but was still lower than the clearance in the control
group. There was no significant difference in total body clearance on day 18 and control
group. The volume of distribution and other rate constants such as K;, and K,; were not

altered at any time point.
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Table 2. Mean (= SD) Vmax, Km and CL;, for the formation of 13-demethyled

metabolite (M1) of tacrolimus in hepatic microsomes (N = 4-6 rats).

Time after Groups Vm (nmol/mg | Km (uM) CLin¢ (ml/min/mg
PHx protein/min) protein)

Control 0.40 +0.06 4.87 +0.69 0.082 £ 0.007

24-hour Sham 0.41 £0.03 5.28 £0.55 0.079 £ 0.011
PHx 0.30 +0.03" 5.10+0.85 0.059 + 0.005%

Control 0.36 £0.07 5.29+£0.80 0.068 + 0.008

6-day Sham 0.38+0.05 5.16 £0.73 0.075+£0.018
PHx 0.18 +0.02° 5.18+0.74 0.035 + 0.003?

Control 0.42+0.03 5.04 +0.88 0.085+0.018

14-day Sham 0.40 +0.03 5.00 +0.68 0.081 £0.013

PHx 0.38+0.04 490+0.75 0.079 £0.011

AP <.01;° P <.05 (vs. control, Tukey post hoc analysis).
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Figure 15. Blood concentrations of tacrolimus vs time profile at different time points
after initiation of hepatic regeneration. Data was represented by mean + SD (N =4 to

6 rats).
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Table 3. Pharmacokinetic parameters of tacrolimus (0.6 mg/kg, i.v.) 24 hours, 14

days and 18 days after partial hepatectomy (N = 4 to 6 rats)

Parameters Control PHx (24-hour) PHx (14-day) PHx (18-day)
AUC 1089.29 £ 83.05 | 2297.60 +£260.51% | 1575.97 + 144.99% | 1160.75 £ 74.62
(hreng/ml)**

CL 9.22+0.72 4.40 +0.50% 6.39+0.61% 8.64 £0.55
(ml/min/kg)**

B ((hr)* 0.31+0.12 0.10 = 0.05° 0.24 = 0.04 0.24 +0.10

ti2,p (hr)* 2.53+0.97 8.67 + 4.48° 2.98+0.52 3.14+1.10

Kjo (hr)** 231+0.74 0.83 +0.25 2.88+0.51 2.67+0.28

K2 (hr') 1.12 +0.40 1.25+0.17 1.03 +0.50 1.43+0.54

Kz (hr') 0.40 +0.25 0.49 +0.20 0.35+0.04 0.29 +0.07

Vss (ml/kg) 718.53+25820 | 895.74+272.98 | 653.37 +192.74 658.31 + 274.50

** P < 0], * P<.05 for ANOVA; ?P < .01, bpP< 05 (vs. control) was obtained from

Tukey post hoc analysis.

Abbreviations: AUC, area under the blood concentration vs time curve; CL, total body

clearance; ti >, g = disposition half life; Vss = volume of distribution at steady state.
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Discussion

In this study we have used partially hepatectomized rats to evaluate the effect of hepatic
regeneration on the pharmacokinetics of tacrolimus. This study simulates what is likely to
happen to the drug metabolizing capacity in the donor in a living donor liver transplant
program. In addition to hepatic regeneration, additional factors such as cold ischemia,
warm reperfusion injury and immunosuppressive drug therapy can also modify drug
metabolizing capacity in the recipient. In this study, tacrolimus was used as a

representative marker drug for CYP3A.

Tacrolimus is primarily eliminated by hepatic metabolism (hepatic clearance is close to
total body clearance as only 0.5% unchanged tacrolimus was recovered in human after IV
dosing of tacrolimus (Moller et al., 1999)) through the formation of M1 (representing
75% of the total metabolites, Perotti et al., 1994) and the CYP3A enzyme appears to be
responsible for the formation of M1 (Shiraga T et al., 1994). Alterations in the hepatic
function due to drug or disease state have been associated with altered ability of the liver
to clear tacrolimus (Venkataramanan et al., 1995). In our studies, the magnitude in
reduction in the liver mass at 24 hrs was 69%. The ability of CYP3A in the liver to
metabolize testosterone in vitro (chapter 2) and to metabolize tacrolimus was also
reduced in the regenerating liver at 24 hours and on day 6. Taking into consideration the
reduction in liver mass and the decrease in the hepatic intrinsic clearance of tracrolimus

normalized to protein amount (assuming that hepatic M1 formation clearance
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approximates the hepatic intrinsic clearance of tacrolimus, because majority of tacrolimus
is metabolized to M1 and that all other pathways of tacrolimus metabolism will behave
similar to M1 pathways, as these metabolites are also formed by CYP3A), the whole liver
intrinsic clearance for tacrolimus must decrease to 21% of normal liver at the 24th hour
after initiation of hepatic regeneration (71% of control intrinsic clearance times 31% of
normal liver mass 24 hours after PHx). Based on the total body clearance of tacrolimus in
control rats (9.22 ml/min/kg) and the reported blood flow of 55.2 ml/min/kg (Davies and
Morris, 1993), assuming lack of any change in the unbound fraction of tacrolimus as red
blood cells are primarily responsible for binding tacrolimus in blood (Venkataramanan et
al., 1995) and hematocrit did not change during hepatic regeneration (Okano et al., 2001;
Kurata et al., 2000; Eguchi et al., 1998), the following relationship can be established for

tacrolimus at 24 hrs:

CL = Q*f*Cliny/(Q+£u*Cline) (6]
CL: hepatic clearance or total body clearance for tacrolimus

Q: hepatic blood flow

f,: unbound fraction of tacrolimus

Clin: hepatic intrinsic clearance for tacrolimus

CL = 9.22 ml/min/kg (data from control group) 2)

Q = 55.2 ml/min/kg (data from Davies and Morris, 1993) 3)

71



fu*Cline = 11.07 ml/min/kg (from equation 1, 2, and 3) (4)

At the 24th hour after PHx, we have:

CLphx predicted = Q*£,*0.21Cli/(Q+ £,%0.21Cliyy) (5)
(Hepatic intrinsic clearance at the 24th hour after PHx was only 21% of that observed in
the control group.) (remaining hepatic clearance (%) when normalized to per unit liver
mass: 71% (Table 2); remaining liver mass (%): 31% (Figure 7))

CLphx predicted: predicted total body clearance 24 hours after PHx = 2.22 ml/min/kg

At the 14th day after PHx, we have:

CLphx, predicied = Q* £,*0.67Clind/(Q+ £,*0.67Cline)

(Hepatic intrinsic clearance at the 14th day after PHx was about 67.24% of that observed
in the control group.) (remaining hepatic clearance (%) when normalized to per unit liver
mass: 92% (Table 3); remaining liver mass (%): 72% (Figure 7))

CLphx predicted: predicted total body clearance 14 days after PHx = 6.54 ml/min/kg

However, while the total body clearance of tacrolimus was significantly decreased (4.4
ml/min/kg) twenty four hours after PHx, the magnitude was much less than what was
predicted based on in vitro data. Taking account of the low activity (undectable activity in
microsomes) and small organ mass, the contribution of small intestine and kidney to the

metabolism of tacrolimus is expected to be negligible in rats after intravenous
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administration. When normalized to the predicted liver weight at the 24th hours, the
clearance per unit liver weight calculated as shown below was increased significantly

during hepatic regeneration (24-PHx vs. control: 0.33 ml/min/g vs. 0.23 ml/min/g).

Given the observed clearance in the control rats of 9.22 ml/min/kg, for a rat with 250 g
body weight and an average liver weight of 10 g (N= 6 rats), the clearance will be 0.23

ml/min/g liver (CL = (9.22 ml/min/kg*0.25 kg)/10 g liver).

Given the observed clearance in the rats with a regenerating liver (24 hr) of 4.40
ml/min/kg, for a rat with 250 g body weight and an average liver weight of 3.3 g(N =6
rats), the clearance will be 0.33 ml/min/g liver (CLppx = (4.40 ml/min/kg*0.25 kg)/3.3 g

liver) at the 24th hour after PHx.

These observations point to a significant reserve capacity of the liver to clear drugs from
the body during the regeneration process. Since tacrolimus is a low hepatic extraction
ratio drug (0.167, total body clearance 9.22 ml/min/kg divided by reported blood flow
55.2 ml/min/kg (Davies and Morris, 1993)), increased blood flow per unit weight of the
liver per se had little effect on the clearance of tacrolimus. It is interesting to note that
while higher blood level of tacrolimus normalized to unit dose have been reported in
LDLT recipients compared to those receiving cadaveric livers, this increase was also

much smaller (26%) (Trotter et al., 2002) than what is expected based on the smaller liver
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volume and the expected impairment in the metabolic activity of the liver. It is possible
that increased blood flow per unit weight of the liver due to PHx increases percentage of
hepatocytes involving in the drug metabolism (Under normal situation, a lower
percentage of hepatocytes will be involved in the drug metabolism). The precise
mechanism for this needs to be evaluated in future studies. Additionally, when comparing
the values of Ko, K2 and K3, the K,; has the smallest value which implies that the back
distribution of tacrolimus from compartment 2 to compartment 1 is the rate limitation
step of the elimination. This may also be the reason for the reserve capacity of the liver in

the metabolism of tacrolimus.

To the best of our knowledge this is the first study to evaluate the pharmacokinetics of
tacrolimus and to analyze the recovery profile of the pharmacokinetics of tacrolimus over
time after initiation of hepatic regeneration in an animal model. Our study provides
several implications for use of drugs metabolized by CYP3A in LDLT patients: 1) The
hepatic clearance of CYP3A substrates will also be reduced transiently during the early
hepatic regeneration process. 2) The magnitude of reduction in in vivo clearance of CYP3A
substrates will be much less than what was predicted than the loss of liver mass and loss of
enzyme activity as measured by in vitro studies. 3) A reduction in the dose of CYP3A
substrates that is less than the loss of liver mass is sufficient to achieve comparable blood
levels of drugs in LDLT patients and cadeveric liver transplant patients. 4) Caution must

be exercised in using in vitro data to predict in vivo clearance of drugs by the
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regenerating liver. 5) Living donor liver transplant patients would require a dose of
CYP3A substrates that is not proportion to the loss of the liver mass. Finally, drug dosing
in LDLT patients must be routinely monitored. 6) The ability of the liver to clear the drug
the drug recovers completely with time and normal hepatic function will be restored in

subjects undergoing hepatic resection.
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Chapter 4 Activity and Expression of Various Isoforms of Uridine Diphosphate
Glucuronosyltransferase (UGT) Are Differentially Regulated during Hepatic
Regeneration in Rats

Abstract

Objective The objective of this study was to evaluate the activity and expression of
various UGTs in rats at various time points after initiation of hepatic regeneration by
partial hepatectomy (PHx).

Methods The mRNA expression of various UGTs was assessed using real-time PCR with
specific primers. The in vitro activity of several UGTs was measured with liver
microsomes incubated with different substrates such as estradiol (UGTI1A1),
acetaminophen (UGT1A6/7), morphine (UGT2BI1), testosterone (UGT2B1/3/6),
androsterone (UGT2B2), and (-)- borneol (UGT2B12).

Results While the activity of UGT1A1, UGT2B1, UGT2B2, UGT2B1/3/6 and UGT2B12
was decreased, the activity of UGT1A6/7 was preserved during hepatic regeneration. All
UGTs with the altered activity or expression recovered differentially, with some returning
to normal levels by day 6 (UGT1A3, UGT2BI1, UGT2B2, and UGT2B12) and others
recovering by day 14 (UGT1A1, UGT2B1/3/6 and UGT2BS) after initiation of hepatic
regeneration.

Conclusion During hepatic regeneration, the hepatic UGT activity and the mRNA
expression of several UGTs were decreased and different isoforms recovered
differentially over time. The clearance of most of the substrates of UGT will be decreased

significantly in LDLT patients due to the loss of liver mass and decreased activity of the
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remaining liver mass. The activity of UGTs will normalize with time as the hepatic
regeneration progresses. Individualized dosing regimen for different UGT substrates may

be needed when using UGT substrates in LDLT patients.
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Introduction

Living donor liver transplant patients are normally treated with drugs such as tacrolimus,
sirolimus and cyclosporine, which are metabolized by phase 1 pathways and mycophenolic
acid, acetaminophen, and morphine, which are metabolized through phase 2 pathways
(glucuronidation). In addition, several endogenous compounds such as bilirubin, estradiol,
androsterone, and testosterone are metabolized by glucuronidation. Cytokines that are
released during the regeneration process are known to regulate uridine diphosphate
glucuronosyltransferases (UGTs) in the liver (Monshouwer et al., 1996; Strasser et al.,
1998). So we hypothesized that the activity and expression of all UGT isoforms will be
altered during hepatic regeneration. While the expression and activity of phase 1 enzymes
have been reported to be decreased during hepatic regeneration, there is controversial and
incomplete information on the activity and expression of uridine diphosphate
glucuronosyltransferases (UGTs) during hepatic regeneration. Some publications indicate
a change, while others indicate a lack of change in UGT expression or activity (Catania et
al., 1998; Iversen et al., 1985; Pellizzer et al., 1996; Zakko et al., 1996). Moreover,
previous studies on the expression of UGTSs have used northern blot. Compared to the
conventional northern blot method for the measurement of RNA expression, real-time
PCR is a more sensitive, quantitative, accurate and reliable assay for measurement of

mRNA.
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Systematic study of the activity and expression of UGTs is necessary to thoroughly
understand the regulation of UGT isoforms during hepatic regeneration. This information
is important in order to optimize drug therapy and understand the metabolism of various
drugs and endogenous compounds in LDLT patients. We hypothesized that the expression
and in vitro activity of various forms of UGT will be decreased during the initial pahse of
hepatic regeneration due to decreased expression of transcription factors involved in their
regulation as a result of increased cytokine levels. In this study, we have utilized partially
hepatectomized rats and real-time PCR to systematically study the effect of hepatic
regeneration on the activity and expression of different UGTs using specific markers and

specific primers.

Materials and Methods

Chemicals

Estradiol, estradiol-3-glucuronide, acetaminophen, acetaminophen glucuronide, morphine
sulfate, morphine-3-glucuronide, androsterone, testosterone glucuronide, (-)-borneol, and
UDPGA were purchased from Sigma Chemical Co. (St. Louis, MO). Testosterone was
obtained from Steraloids Inc. (Newport, RI). UDP—[U—MC]glucuronic acid was bought
from MP Biomedicals (Irvine, CA). Reagents for reverse transcription were purchased
from Promega (Madison, WI). Forward and reverse primers for UGTs, constitutive
androstane receptor (CAR), pregnane X receptor (PXR), hepatocyte nuclear factor 1

(HNF1) and beta-2-microglobulin (beta-2-m) were synthesized by Applied Biosystems
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(Forest city, CA). Forward and reverse primers for C/EBP a were synthesized by

Integrated DNA Technologies, Inc. (Coralville, IA). All solvents were HPLC grade.

Animals
Partial hepatectomy was performed and livers were collected using the methods described

in Chapter 2.

Preparation of Microsomes
Liver microsomes were prepared by differential centrifugation procedures described in

Chapter 2.

Incubation of UGT substrates in Microsomes

The microsomes were incubated with various substrates to measure the in vitro activity
(estradiol as a UGT1A1 marker; acetaminophen as a UGT1A6/7 marker; morphine as a
UGT2B1 marker; testosterone as a UGT2B1/3/6 marker; androsterone as a UGT2B2
marker; (-)- borneol as a UGT2B12 marker (Senafi et al., 1994; King et al., 1996; Kessler
etal., 2002; Mackenzie et al., 1996; Burchell, 1999). Incubation conditions were the same
as those reported in the literature: estradiol (150 pM), acetaminophen (10 mM); morphine
(10 mM); and testosterone (150 uM) (Alkharfy and Frye, 2002; Fisher et al., 2000;

Narayanan et al., 2000).
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For androsterone (200 uM) (reported Km: 7.2 pM, Rittmaster et al., 1989) and (-)-
borneol (500 uM) (reported Km: 36 uM, Green et al., 1995), the incubation procedure
was established as follows: A solution (250 pl) containing 1 mg/ml microsomal protein, 2
mM UDPGA (including 0.2 uCi UDP-[U-"*C]glucuronic acid/reaction for androsterone
or 0.1 uCi UDP-[U-"C] glucuronic acid/reaction for (-)- borneol), 10 mM MgCl,, Brij 58
(0.1 mg/mg protein) and 200 uM androsterone or 500uM (-)- borneol was incubated for
60 min at 37°C in a shaking water bath. Then 25 pl of 6% perchloric acid was added to
the incubation solution. After centrifugation at 13,000 rpm for 5 minutes, 100 pl of the

supernatant was analyzed by high performance liquid chromatographic (HPLC) methods.

Assays

The concentration of the glucuronide metabolites in the supernatant was measured based
on published HPLC methods, with minor modifications as shown in Table 4. The
correlation coefficients (r%) for the standard curves were > 0.98, and the coefficient of
variation was less than 3% for all the analytical methods used (n = 3). The peaks for both
androsterone glucuronide and borneol glucuronide were identified by comparing samples
incubated with or without radiolabeled UDPGA. No standard curves were established for
the measurement of the radioactivity of the glucuronide of androsterone and borneol;

however, the radioactivity was measured within the linear range of the detector.
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Table 4. Methods for measuring the in vitro activity of UGTs

UGT S: Substrate HPLC Method Reference
isoform M: Metabolite
1A1 S: estradiol Column: Alltima C18 (250 mm X 4.6 mm, 5 p Alkharfy and
M: Mobile phase: acetonitrile/50 mM ammonium Frye, 2002
estradiol-3-glucuronide | phosphate buffer (pH 3) (35/65, v/v), 1 ml/min (with minor
Fluorescence detector: excitation (210 nm), emission | modification)
(300 nm).
Retention time: 4.5 min.
Linear range: 30-750 pmol
CV(%) (n = 3): less than 3%
1A6/7 S: acetaminophen Column: LiChrospher RP-18 (250 mm X 4.6 mm, 5 p | Kessler etal.,
M: acetaminophen Mobile phase: acetonitrile/10 mM phosphoric acid 2002 (with
glucuronide (pH 2.3) (3.75/96.25, v/v), 1.7 ml/min minor
UV detector: 254 nm modification)
Retention time: 7.1 min
Linear range: 0.4-8 nmol
CV(%) (n=3): less than 3%
2B1 S: morphine Column: Alltima C18 (250 mm X 4.6 mm, 5 p Fisher et al.,
M: Mobile phase: acetonitrile/50 mM KH2PO4 (10/90, | 2000 (with
morphine-3-glucuronide | v/v), 1 ml/min minor
Fluorescence detector: excitation (210 nm), emission | modification)
(350 nm).
Retention time: 3.7 min
Linear range: 0.15-8 nmol
CV(%) (n = 3): less than 3%
2B2 S: androsterone Column: LiChrospher RP-18 (250 mm X 4.6 mm, 5 p | Rittmaster et
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M: androsterone

glucuronide

Mobile phase: acetonitrile/0.1% trichloroacetic acid
(40/60, v/v), 1 ml/min; scintillation cocktail: 3ml/min
Radioactivity detector (Packard 500TR): 14C

Retention time: 11.8 min

al., 1989
(with minor

modification)

2B1/3/6 S: testosterone Column: Alltima C18 (250 mm X 4.6 mm, 5 p Narayanan et
M: testosterone Mobile phase: phase A, acetonitrile/50 mM al., 2000
glucuronide ammonium phosphate (pH 4.5) (30/70, v/v); phase B, | (with minor
methanol. (0-7.5 min, 1 ml/min of phase A; 7.5-8 modification)
min, gradient from 1 ml/min phase A to 1.2 ml/min of
phase B; 8-17 min, 1.2 ml/min of phase B; 17-17.2
min, gradient from 1.2 ml/min of phase B back to 1.2
ml/min of phase A; 17.2-27 min, 1.2 ml/min of phase
A)
UV detector: 250 nm
Retention time: 6.3 min
Linear range: 0.15-4 nmol
CV(%) (n = 3): less than 3%
2B12 S: (-)-borneol Column: LiChrospher RP-18 (250 mm X 4.6 mm, 5 p | Same as the
M: borneol glucuronide | Mobile phase: acetonitrile/0.1% trichloroacetic acid | method for
(40/60, v/v), 1 ml/min; scintillation cocktail: 3ml/min | androsterone
Radioactivity detector (Packard 500TR): 14C glucuronide
Retention time: 6.6 min (UGT2B2)
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Extraction of RNA and Reverse Transcription
Total RNA extraction and reverse transcription were conducted using the methods

described in Chapter 2.

Real-Time PCR

PCR was performed as described in Chapter 2. Forward and reverse primers for UGT1A
and 2B family, CAR, PXR, HNF-1, C/EBP a and beta-2-microglobulin (beta-2-m), were
designed using the combination of Blast 2
(http://www.ncbi.nlm.nih.gov/blast/bl2seq/bl2.html), Amplify 1.2 (freeware from
http://engels.genetics.wisc.edu/amplify/) and Primer Express 2.0 (Applied Biosystems),

and are listed in Table 5.
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Table 5. Primers for real-time PCR analysis of mRNA expressions

Gene GenBank No. Primers Base Positions | Amplicon
Size

Beta-2-m NM 012512 Forward 5’-cgtgcttgccattcagaaaa-3’ 58-77 76
Reverse 5’-gaagttgggcttcecattctc-3’ 113-133

UGT1A1 NM 012683 Forward 5’-gccatgcagcctggattt-3’ 549-567 64
Reverse 5’-ctcttgggcacgtaggacaac-3’ 592-612

UGT1A2 D38066 Forward 5’-cgcaaattcttgtgcagctcta-3’ 368-390 76
Reverse 5’-accacatcgaaggaactggaa-3’ 423-443

UGT1A3 D38067 Forward 5’-ggccatgtacctgegtgtte-3’ 473-493 71
Reverse 5’-tgcttcaaattccagttcacaga-3’ 521-543

UGT1AS AF461734 Forward 5’-tcgacagttctcttaaggtcttgtatg-3° | 395-422 78
Reverse 5’-aaggagctggaattcagatget-3° 451-472

UGT1A6 NM 057105 Forward 5’-ccgctatcgctectttgg-3’ 356-374 73
Reverse 5’-ctgtactctcttagaggagccatcag-3” | 403-428

UGT1A7 NM 130407 Forward 5’-cagaccccggtgactatgaca-3’ 750-771 73
Reverse 5’-caacgtgaagtctgtgcgtaaca-3’ 800-822

UGTI1AS NM 175846 Forward 5’-gagggcatgaggtggtogta-3’ 154-174 72
Reverse 5’-cacggtaaaattcagcgactttc-3’ 203-225

UGT2B1 M13506 Forward 5’-ctgaagcagagccctgagaga-3’ 1626-1647 76

85



Reverse 5’-gggaaggcactggcatga-3’

1684-1701

UGT2B2 J02589 Forward 5’-ggcagggcagcagtcatc-3’ 2182-2200 86
Reverse 5’-cctacttcttgetcactctctgett-3° 2243-2267
UGT2B3/6 | M31109 (2B3) | Forward 5’- atgccaagaaatgggatcca-3’ 717-736 72
Reverse 5°- tgcccattgtctcagetaagg-3’ 768-788
M33746 (2B6) | Same primers as the pair for 2B3 728-747" 72
779-799
UGT2BS U27518 Forward 5’-tgaacaaaatgttcgggcaat-3’ 363-384 75
Reverse 5’-aagttccttgtttgaaacaacttetet-3° | 411-437
UGT2B12 U06273 Forward 5’-tgctgcaaataagtttctgctttaa-3’ 33-58 74
Reverse 5’-tgactatattccatcggecatace-3’ 83-106
CAR NM 022941 Forward 5’-cggagtataaacagcgcatactca-3” | 1190-1213 72
Reverse 5’-aagcagcggcatcatagca-3’ 1243-1261
PXR NM 052980 Forward 5’-cggctacctgeggtgttt-3° 725-742 63
Reverse 5’-caacagtgaggcctgcagaa-3’ 768-787
HNF 1 X54423 Forward 5’-ctcctcggtactgcaagaaacc-3’ 3061-3082 73
Reverse 5’-ttgtcaccccagettaagactct-3’ 3111-3133
C/EBP a NM 012524 Forward 5’-tatagacatcagcgcctacatcga-3’ 183-206 76
Reverse 5’-ccggetgtgcetggaagag-3° 241-258

“one mismatch at position 738.
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The specificity of each pair of primers was first evaluated using nucleotide-nucleotide
Blast to confirm that there was no match between the primers described in Table 5 and
the rat genome except for the individual UGTs (primers for UGTs) or for targeting genes
(primers for CAR, PXR, HNF-1, C/EBP a, beta-2-m). The primer specificity was further
checked (using Amplify 1.2) for any potential amplification of UGT isoforms other than
the target isoform. Because of the high homology between UGT2B3 and UGT2B6, the
primers were designed for both isoforms when using real-time PCR for specific
measurements. For each pair of primers, the control without reverse transcriptase was
also used for PCR reactions in duplicate to confirm that there was no genomic DNA

contamination in the cDNA samples.

Data Analysis

All data are reported as mean + SD. Comparisons between groups were made by
student’s t-test (P < 0.05). For sample size calculation, the initial formation rate of
estradiol-3-glucuronide from liver lobes of sham (6 days) (258.61 + 33.28 nmol/mg
protein/min) was used. With a power of 80% and a = 0.05, to detect a 25% difference, 4

rats were required. Experiments were completed with 4 to 6 rats in each group.

Results

Activity and Expression of UGTIAI during Hepatic Regeneration
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The activity of UGT1A1 was decreased 24 hours and 6 days after PHx and recovered by
day fourteen (Figure 16, panel A). The mRNA expression of UGT1A1 was also
decreased 24 hours after initiation of regeneration and returned to normal level by day 14

(Figure 16, panel B).

Activity and Expression of UGT1A6/7 during Hepatic Regeneration
The activity of UGT1A6/7 was preserved at all time points studied (Figure 17, panel A).
The mRNA expressions of both UGT1A6 and UGT1A7 also stayed at the control level as

measured in the paired sham group during hepatic regeneration (Figure 17, panel B).

Activity and Expression of UGT2B1 during Hepatic Regeneration
The activity of UGT2B1 was decreased 24 hours after PHx (Figure 18, panel A). The
mRNA expression of UGT2B1 was also decreased 24 hours after regeneration and

returned to normal level as measured in the paired sham group by day 6 (Figure 18, panel

Q).

Activity and Expression of UGT2B1/3/6 during Hepatic Regeneration
The activity of UGT1/3/6 measured using testosterone was decreased 24 hours and 6 days
after PHx and recovered by day fourteen (Figure 18, panel B). The mRNA expression of

UGT2B3/6 was also much lower at 24 hours and 6 days (Figure 18, panel D).
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Activity and Expression of UGT2B2 during Hepatic Regeneration
Both the activity and mRNA expression of UGT2B2 were decreased after initiation of

hepatic regeneration and recovered completely by day 6 (Figure 19).

Activity and Expression of UGT2B12 during Hepatic Regeneration
Both the activity and mRNA expression of UGT2B2 were decreased after initiation of

hepatic regeneration and recovered completely by day 6 (Figure 20).

Expression of other UGTs (UGTI1A2, UGTI1A3, UGTI1AS5, UGTIA8 and UGT2BS8)
during Hepatic Regeneration

UGT1A2 and UGT1A3 mRNA was up-regulated compared to sham groups during
hepatic regeneration (Figure 21, panel A and B). The mRNA expressions of UGT1AS,
and UGT1AS, were not altered at any time during the regeneration process (Figure 21,
panel C and D). UGT2B8 was down-regulated compared to sham groups (Figure 21,

panel E).

The mRNA Expression of CAR, PXR, HNF1 and C/EBP o during Hepatic
Regeneration

CAR, PXR and HNF1 genes were expressed stably 24 hours after PHx. The C/EBP a
gene was down-regulated 24 hours after initiating hepatic regeneration (Figure 22) and

recovered back to normal level by day 6.
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Figure 16. The activity and mRNA expression of UGT1A1 at different time points
after PHx. Sham: liver lobes from sham groups; PHx, the regenerated liver lobes after
PHx. The activity was measured using liver microsomes prepared as described in the

Methods section. The relative mRNA level was determined by real time PCR as
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described in Methods using pooled cDNAs generated from total RNAs from 6 normal
livers as the standard. The arbitrary mRNA values were normalized with their respective
beta-2-m values. All data are expressed as mean = SD. ** P <.01 vs. sham; * P <.05 vs.

sham (student’s t-test). N =4 to 6.
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Figure 17. The activity and mRNA expression of UGT1A6/7 at different time points

after PHx. Sham: liver lobes from sham groups; PHx, the regenerated liver lobes after
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PHx. The activity was measured using liver microsomes prepared as described in the
Methods section. The relative mRNA level was determined by real time PCR as
described in Methods using pooled cDNAs generated from total RNAs from 6 normal
livers as the standard. The arbitrary mRNA values were normalized with their respective
beta-2-m values. All data are expressed as mean = SD. P > .05 vs. sham (student’s t-test).

N=4to6.
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Figure 18. The activity and mRNA expression of UGT2B1/3/6 at different time

points after PHx. Sham: liver lobes from sham groups; PHx, the regenerated liver lobes

after PHx. The activity was measured using liver microsomes prepared as described in

the Methods section. The relative mRNA level was determined by real time PCR as

described in Methods using pooled cDNAs generated from total RNAs from 6 normal

livers as the standard. The arbitrary mRNA values were normalized with their respective

beta-2-m values. All data are expressed as mean = SD. ** P <.01 vs. sham; * P <.05 vs.

sham (student’s t-test). N =4 to 6.
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Figure 19. The activity and mRNA expression of UGT2B2 at different time points
after PHx. Sham: liver lobes from sham groups; PHx, the regenerated liver lobes after
PHx. The activity was measured using liver microsomes prepared as described in the
Methods section. The relative mRNA level was determined by real time PCR as
described in Methods using pooled cDNAs generated from total RNAs from 6 normal

livers as the standard. The arbitrary mRNA values were normalized with their respective
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beta-2-m values. All data are expressed as mean = SD. ** P <.01 vs. sham (student’s

t-test). N =4 to 6.
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Figure 20. The activity and mRNA expression of UGT2B12 at different time points
after PHx. Sham: liver lobes from sham groups; PHx, the regenerated liver lobes after
PHx. The activity was measured using liver microsomes prepared as described in the
Methods section. The relative mRNA level was determined by real time PCR as
described in Methods using pooled cDNAs generated from total RNAs from 6 normal

livers as the standard. The arbitrary mRNA values were normalized with their respective
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beta-2-m values. All data are expressed as mean = SD. ** P <.01 vs. sham; * P <.05 vs.

sham (student’s t-test). N =4 to 6.
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Figure 21. The mRNA expression of UGT1A2, 1A3, 1AS, 1A8, and 2B8 at different
time points after PHx. The relative mRNA level was determined by real time PCR as
described in the Methods section using pooled cDNAs generated from total RNAs from 6
normal livers as the standard. The arbitrary mRNA values were normalized with
respective to beta-2-m values. Sham: liver lobes from sham groups; PHx, the regenerated
liver lobes after PHx. All data are expressed as mean + SD. ** P <.01 vs. sham; * P <

.05 vs. sham (student’s t-test). N =4 to 6.
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Discussion

Limited and conflicting data have been published on the effect of hepatic regeneration on
the expression and the activity of UGTs. The conjugation of bilirubin (UGT1A1 activity)
in the liver has been reported to be preserved in rats after PHx (Catania et al., 1998),
while the UGTIA1 mRNA expression has been shown to be decreased (Pellizzer et al.,
1996). In two studies, the conjugation of p-nitrophenol (UGT1A6 activity) was reported
to be not altered after PHx in rats (Catania et al., 1998; Zakko et al., 1996). However,
Iversen et al. reported decreased UGT1AG6 (early stage) and induced UGT1AG6 (later stage)
activity for the glucuronidation of naphthol in rat livers at different time points after PHx
(Iversen et al., 1985). The glucuronidation of morphine (UGT2BI1 activity) has been
reported to be decreased after PHx in rats (Iversen et al., 1985), while Pellizzer et al.
reported the increased UGT2B1 mRNA expression in rat livers after PHx. The activity of
rat UGT2B3 (testosterone) in rat livers has been reported to be altered after initiation of
hepatic regeneration (Iversen et al., 1985) while Pellizzer et al. reported no change in the
UGT2B3 mRNA expression in rat livers after PHx (Pellizzer et al., 1996). In these
studies, the reported activity of different UGT isoforms during hepatic regeneration was
inconsistent with the mRNA expression of these enzymes. No conclusive information
about the regulation of UGTs can be obtained from published studies due to a lack of
systematic studies. In this study, we used several currently available specific UGT
markers to evaluate the activity of different UGT isoforms at different time points after

initiation of hepatic regeneration. Real-time PCR provided more accurate, sensitive and
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reliable measurements for the mRNA expression compared to northern blot. We used real
time PCR to assess the effect of hepatic regeneration on the mRNA expression of these
UGT isoforms. In addition, we measured the mRNA expression of additional UGTs using
real-time PCR in this study because specific substrates or antibodies are not available for
these isoforms. One major concern with mRNA measurements is the specificity of
primers due to the high homology of different UGTs. We successfully designed the
specific primers for all rat UGTs. The mRNA expression of all UGTs during hepatic

regeneration was evaluated using specific primers.

The estradiol-3-glucuronide formation rate has been verified and used as the marker for
the human UGT1A1 activity (Senafi et al., 1994). There was no direct documentation of
the specificity of estradiol as a substrate for the UGT1A1 activity in rats; however, rat
and human UGT1A1 share more than 70% identity in their deduced primary amino acid
sequences. Accordingly, rat and human UGT1A1 exhibited similar enzymatic efficiencies
toward estrogens (including estradiol), flavonoids, phenols, and several other class of
chemicals (King et al., 1996). It has been concluded that rat and human UGT1A1 are
functionally similar and can be considered orthologous enzymes (King et al., 1996).
Consequently it is highly possible that estradiol is also a rat UGT1A1 probe substrate.
Based on these data, we used the formation rate of estradiol-3-glucuronidation as the

marker of the UGT1AT1 activity in rats in this study.
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In contrast to the conflicting reports published from different studies, our results showed
consistent changes in both the activity and the mRNA expression for all isoforms that we
have studied. In addition, we also found that the mRNA expression of UGT1A2 and
UGT1A3 mRNA was up-regulated during hepatic regeneration. The significance of this
finding is unknown at this time due to the lack of rat UGT1A2 and UGT1A3 probe
substrates and unknown clinically relevant drugs metabolized by this isoform. Similarly,
because of the lack of known clinically relevant drugs metabolized by UGT2BS, the

significance of the down-regulation of UGT2BS is unknown at this time.

Differential regulation of UGT isoforms has been reported in other systems. Our data of
UGT1A6 and UGT2B1/3/6 were consistent with the observations in different systems.
Acute-phase response induced by turpentine injection, leads to no reduction in the
glucuronidation of p-nitrophenol (UGT1A6), while it impairs the glucuronidation of
testosterone (UGT2B1/3/6) (Strasser et al., 1998). IL-6 can suppress the mRNA
expression of UGT1A1 and UGT2B3 in rat hepatocytes (Strasser et al., 1998). Strasser et
al. suggested that the promoter regions of some UGT isoforms may contain specific
regulatory elements capable of responding to certain cytokines (Strasser et al., 1998).
Several cytokines including TNF-a and IL-6 are involved in initiation of hepatic
regeneration (Michalopoulos and DeFrances, 1997). Plasma concentration of IL-6 is
significantly increased after initiation of hepatic regeneration (Matsunami et al., 1992;

Fulop et al., 2001; Iwai et al., 2001). Cytokines such as TNF- o and IL-6 are reported to
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inhibit the activity of UGT (Monshouwer et al., 1996; Strasser et al., 1998). So IL-6 is
likely to be a contributor to the decreased activity and expression of UGTs after initiation

of hepatic regeneration.

Two nuclear receptors CAR and PXR have been implicated in the acute phase response
mediated decrease in CYP activity (Beigneux et al., 2002). Since both CAR and PXR are
also involved in the regulation of UGTs (Mackenzie et al., 2003), we expected altered
levels of CAR and PXR in rat livers during hepatic regeneration. However, there was no

change in CAR or PXR in the regenerating livers.

There is also direct evidence showing that the C/EBP o knock-out is the cause for the loss
of expression of UGT1A1 (bilirubin UGT) in mouse liver. In addition, HNF1 a binding
site has been found in human UGT2B7 (Lee et al., 1997; Ishii et al., 2000). This would
imply that C/EBP o and HNF1 o can also regulate the expression of UGTs (Mackenzie et
al.,2003). We tested the expression level of C/EBP a and HNF1 in rat livers during hepatic
regeneration. Only C/EBP a was down-regulated significantly after PHx. This suggests
that C/EBP a is possibly an important factor responsible for the lower level of expression
of UGTs during hepatic regeneration, even if not the only one. The differential activity and
expression of different isoforms of UGT is probably due to the fact that UGTs are
regulated by different factors. Additionally, it is likely that newly divided cells may have a

much lower enzyme expression and activity compared to existing liver cells.
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This study systematically evaluated the activity and the mRNA expression of various
UGTs during hepatic regeneration in rats and provided more consistent and accurate
measurements of the regulation of different UGT isoforms. To the best of our knowledge,
this is also the first study to measure various UGT isoforms in rats using real-time PCR
with specific primers. Congiu et al. documented the specific primers for measuring
human UGT isoforms using real-time PCR (Congiu et al., 2002); however, there were
several mismatches between the primers and the target isoforms and the size of amplicons
was out of the optimum range of 50-150 bp (efficient amplification within the range) for
most UGT isoforms. Our study points to several important conclusions. 1) During hepatic
regeneration, the mRNA expression of UGTs mirrors the activity of the corresponding
isoform during hepatic regeneration; 2) The lower activity of UGT1A1 can decrease the
conjugation of bilirubin and increase the concentration of biliribin in bile or serum during
the early post operative period in the LDLT patients; 3) The doses of drugs that are
metabolized by UGT will be decreased during early phase of LDLT; 4) Differential

adjustment in doses of drugs metabolized by UGT is necessary in LDLT patients.
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Chapter S In Vitro Hepatic Intrinsic Clearance and Pharmacokinetics of
Mycophenolic Acid Are Transiently Altered during Hepatic Regeneration in Rats

(Part of this chapter is the reprint with permission of the American Society for
Pharmacology and Experimental Therapeutics. All rights reserved. Tian ef al., 2005)

Abstract

Objective The objectives of this study were to evaluate 1) the hepatic metabolism of an
immunosuppressive drug, mycophenolic acid (MPA), and 2) the pharmacokinetics of
mycophenolic acid at various time points after initiation of hepatic regeneration in rats by
partial hepatectomy (PHx).

Methods The in vitro hepatic clearance of MPA was measured with liver microsomes
incubated with different concentrations of MPA. The pharmacokinetics of mycophenolic
acid was evaluated after intravenous administration of 20 mg/kg mycophenolic acid to
partially hepatectomized rats. One hundred microlitter of blood was collected at 0, 1, 5,
10, 15, 20, 30, 60, 90, 120, 240 and 480 minutes through a jugular vein catheter. The
blood concentrations of MPA and MPA glucuronide (MPAG) were measured by a HPLC
method. The plasma concentration vs. time profile was analyzed by a non-compartment
model using WinNonlin. The glucuronidation of MPA in small intestine and kidney was
assessed using kidney and intestine microsomes. The expression of multidrug
Resistance-Associated Protein (Mrp) 2 and Mrp 3 was evaluated using western blot and
quantitative PCR, respectively.

Results The hepatic intrinsic clearance of MPA was decreased to 52% and 51% of that in

Copyright 2004 by the American Society for Pharmacology and Experimental Therapeutics
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control rats at the 24th hour and the 6th day, respectively but recovered to normal level by
day 14. The total body clearance of MPA was reduced at twenty four hour after PHx but
recovered by day 6. The elimination clearance of MPA glucuronide was also impaired
during hepatic regeneration but recovered to normal with time.

Conclusions During hepatic regeneration, the in vitro hepatic intrinsic clearance was
significantly decreased and the clearance of MPA was also significantly but transiently
decreased. By day 6 after initiation of hepatic regeneration, the intrinsic clearance of
MPA recovered completely to normal. The ability of liver to clear MPA recovered much
earlier than the complete recovery of liver mass. The magnitude of reduction in in vivo
clearance of MPA was much less than what was predicted from the loss of liver mass and
loss of enzyme activity in the residual liver. Overall glucuronide conjugation capacity of
the regenerating liver recovered earlier than the CYP mediated metabolic capacity of the

regenerating liver.
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Introduction

The liver plays an important role in the elimination of drugs and xenobiotics. During
hepatic regeneration, the reduction in total liver mass due to partial hepatectomy (PHx)
and the decreased activity of some UGTs are expected to reduce the ability of the liver to
metabolize drugs. UGT is involved in the metabolism of the immunosuppressive drug,
mycophenolic acid (MPA). The activity and expression of various forms of UGT were
differentially regulated during hepatic regeneration (chapter 4). Therefore, it is important
to understand whether the intrinsic activity of UGT is altered and whether the magnitude
of change in the pharmacokinetics of immunosuppressive drugs metabolized by UGT
during the hepatic regeneration process agrees with the predicted changes due to a
decrease of liver mass and a decrease in the intrinsic activity of UGT during hepatic
regeneration. Nothing is known about the pharmacokinetics of immunosuppressive drugs
metabolized by UGT pathway during hepatic regeneration. Such knowledge will help in
optimizing not only the immunosuppressive drug therapy but also therapy with other
drugs that are metabolized by UGT pathway. We hypothesized that the in vitro intrinsic
clearance of MPA will be reduced and that the in vivo systemic clearance of MPA will be
reduced more than the loss of liver mass. We also hypothesized that the clearance of
MPAG will be significantly decreased due to a reduction in liver mass during hepatic
regeneration. In this study, we have utilized partially hepatectomized rats to study the
effect of hepatic regeneration on the hepatic intrinsic clearance and the pharmacokinetics

of MPA.
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Materials and Methods

Chemicals

Mycophenolic acid was purchased from Sigma Chemical Co. (St. Louis, MO).
Mycophenolic acid glucuronide was a generous gift from Roche Bioscience (Palo Alto,
CA). Heparin injection (Lot No. 322024) was obtained from American Pharmaceutical
Partners, Inc. (Los Angeles, CA). Mouse anti-human M,III-6 monoclonal antibody was
obtained from ID Labs Inc. (London, ON, Canada). Horseradish peroxidase-conjugated
donkey anti-rabbit IgG was purchased from Amersham Biosciences, (Piscataway, NJ).
Western Chemiluminescence reagent was obtained from Perkin Elmer Life Sciences, Inc.
(Boston, MA). All solvents used were of HPLC grade and were obtained from Fisher

Scientific Inc. (Pittsburgh, PA).

Animals

The study protocol was approved by the IACUC at the University of Pittsburgh. Partial
hepatectomy was performed according to the method of Higgins and Anderson in male
Sprague-Dawley rats weighing 225-250 g (Higgins and Anderson, 1931) as described in
Chapter 2. (For sham operation and definition of controls, please refer to Animals under
Methods and Materials section in Chapter 2 also). Livers and kidneys were harvested
as mentioned earlier (Animals under Methods and Materials section in Chapter 2) and

small intestines were collected and processed immediately using the method described in
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the next section (Preparation of microsomes).

Preparation of Microsomes

The livers and kidneys were prepared using the method mentioned in chapter 2
(Microsome Preparation under Methods and Materials). Intestinal microsomes were
prepared by the method described previously (Emoto et al., 2000): Immediately after
excision of the small intestine, it was placed on a ice-cold stainless dish and cut
longitudinally and washed with ice-cold salt solution containing 1 mM
phenylmethylsulfonylfluoride (PMSF) and 1 mM EDTA. The mucosal cells were gently
scraped off with a micro-cover glass. The scraped sample was mixed with 3X volumes
ice-cold 50 mM Tris-HCI buffer containing 150 mM KCI, 1 mM phenylmethylsulfonyl
fluoride (PMSF), 1 mg/ml trypsin inhibitor, 10 uM leupeptin, 0.04 unit/ml aprotinin, 1
UM bestatin. After homogenization, the solution was centrifuged using the same
procedure as that for preparation of liver microsomes. The pellets were reconstituted in
50 mM Tris-HCI buffer containing 150 mM KCI, 1 mM phenylmethylsulfonyl fluoride
(PMSF), 1 mg/ml trypsin inhibitor, 10 uM leupeptin, 0.04 unit/ml aprotinin and 1 uM
bestatin. Microsomes were stored at -80°C before use. Microsomal protein concentrations
were determined by Lowry’s method using bovine serum albumin as a standard (Lowry et

al., 1951). Microsomes were stored at -80°C until used in incubation studies.
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Measurement of Vyuxy Ky and CL;y, for the Formation of Mycophenolic Acid
Glucuronide in Hepatic Microsomes

The incubation was carried out in a glass culture tube using varying concentrations of
mycophenolic acid (MPA) (0-7.5 mM), 0.4 mg/ml microsomal protein (linear to 1 mg/ml,
Figure 23), 10 mM MgCl, and Brij58 (0.1 mg/mg microsomal protein) with the final
volume adjusted to 0.2 ml by the addition of 0.05 M phosphate buffer (pH 7.4). The tubes
were pre-incubated for 5 minutes at 37°C and 4 mM UDPGA was added to initiate the
reaction. After incubation for 30 minutes (linear to 60 min, Figure 24), the reaction was
stopped by the addition of equal volume (0.2 ml) of ice-cold methanol. The tubes were
centrifuged at 13,000 rpm at 4°C for 5 minutes and the supernatants were frozen
immediately at -80°C. The formation of MPA glucuronide (MPAG) was measured using
a HPLC method developed in our laboratory. (Column: LiChrospher column, C18, 5 ,
250 mm x 4.6 mm; column temperature: 38°C; mobile phase: 25% acetonitrile:75% water
containing 0.05% phosphoric acid, 1.00 ml/min; UV detector at 254 nm; injection
volume: 30 pl; retention time: 11.8 min; total run time: 57 min) The standard curve was
linear over the range of 1-100 pg/ml. The intra-day and inter-day CV(%) at 2.5 pg/ml, 25

ug/ml and 100 pg/ml was less than 4% (n = 4).
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Figure 23. Relationship between microsomal protein concentration and the amount
of MPAG formed in rat liver microsomes. MPA concentration: 2.5 mM; incubation

time: 30 min.

y=0.0732x + 0.0115
R*=096239

O T T T 1
0 20 40 60 80

Incubation time (min)

Amount of MPAG formed (Jg)
ra
o

Figure 24. Relationship between time of incubation and the amount of MPAG
formed in rat liver microsomes. MPA concentration: 2.5 mM; concentration of

microsomal protein: 0.5 mg/ml.
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Measurement of the Formation of Mycophenolic Acid Glucuronide in Small Intestine
and Kidney Microsomes

The incubation was conducted using the method described above with saturating MPA
concentration of 5 mM (Km is less than 1 mM for both small intestine and kidney
microsomes). The formation of MPAG was measured using the HPLC method as

described above.

Pharmacokinetics Study of MPA

Pharmacokinetic studies were carried out in rats in the control group, 24 hours after PHx,
6 days after PHx and 13 days after PHx. Since there was no significant difference
between control group and the sham group in the in vitro intrinsic clearance of MPA at
any time during hepatic regeneration, pharmacokinetic studies were not conducted in
sham group. A silastic tubing was inserted into the jugular vein 24 hours before the study.
Mycophenolic acid (20 mg/kg) was administered intravenously as a bolus through the
jugular vein catheter. Multiple blood samples (150 pl) were collected in heparinized tubes
at0, 1,5, 10, 15, 20, 30, 60, 90, 120, 240 and 480 minutes after intravenous
administration of MPA. The concentration of MPA and MPAG in plasma was determined
using a published method (Shipkova et al., 1998) with minor modifications as follows: to
50 pl plasma, 50 pl of acetonitrile containing 100 pg/ml diazepam (internal standard) was
added to precipitate the proteins. After centrifugation at 13,000 rpm for 5 min, 50 ul of

supernatant was injected onto a LiChrospher RP-18 column (250 mm x 4.6mm, 5 )
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heated to 38°C. The mobile phase consisted of solution A (250 ml of acetonitrile and 750
ml of 20 mmol/L phosphate buffer, pH 3.0) and solution B (700 ml of acetonitrile and
300 ml of 20 mmol/L phosphate buffer, pH 6.5) that formed the following gradient:0-4.5
min, 3% B; 4.5-5 min, 30% B; 5-12 min, 100% B; 12-17.5 min, 100% B; 17.5-18 min,
3% B; 18-25 min, 3% B. The flow rate was 1.2 ml/min. The UV detector was set at 215
nm. The retention time for MPAG, MPA, and diazepam was 5.7, 15.4 and 17.7 minutes,
respectively, and the total run time was 25 minutes. The linearity of the method was from
2 pg/ml to 100 pg/ml for both MPA and MPAG in plasma. The intra-day and inter-day

CV(%) at 2 pg/ml, 25 pg/ml and 100 pg/ml was less than 7% (n = 4).

Western Blot for Multidrug Resistance-Associated Protein (Mrp) 2 Protein Expression
Liver membrane preparations were made as previously described (Ogawa et al., 2000):
Liver was homogenized in 5 vols of 0.1 M Tris - HCI buffer (pH 7.4) containing 1 pg/ml
leupeptin and pepstatin A and 50 pg/ml phenylmethylsulfonyl fluoride with a
homogenizer. After an initial centrifugation at 1,500 g for 10 min, the supernatant was
centrifuged at 100,000 g for 30 min. The pellet was suspended in Tris - HCI buffer and
again centrifuged at 100,000 g for 30 min. The crude membrane fraction was resuspended
in 0.1 M Tris - HCI buffer (pH 7.4) containing the proteinase inhibitors. Protein
concentration was measured using Lowry’s method (Lowry et al., 1951). Western blot was
performed using the published method (Slitter et al., 2003) with minor modifications: 45

pg of membrane protein (without boiling, note: this is very critical) were
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electrophoretically resolved using Bio-Rad 7.5% Ready gels and then transblotted
overnight at 4°C onto PVDF (polyvinylidene difluoride) membrane (Millipore, Billerica,
MA) with Tris-glycine buffer containing 20% methanol and 0.1% SDS. The blots were
then blocked for 1 hour in 5% blocking grade nonfat dry milk (Bio-Rad, Hercules, CA) in
TBS-Tween buffer (15 mM Trizma base, 154 mM sodium chloride, 0.05% Tween 20, pH
7.4) at room temperature, incubated overnight at 4°C with mouse anti-human M,III-6
monoclonal antibodies diluted in 0.5% nonfat dry milk (1:2000), and then washed three
times for 15, 5 and 5 min, respectively, in TBS-Tween buffer. After the above washes, the
blots were incubated for 1 h at room temperature with sheep anti-mouse IgG conjugated
with horseradish peroxidase (Amersham Biosciences Inc., Piscataway, NJ), diluted
1:10,000 in TBS-Tween buffer, and then subjected to three additional washes (15, 5, and 5
min respectively). Mrp2 protein-antibody complexes were detected using ECL Western

blotting reagents.

Real-Time PCR for Mrp3 mRNA Expression

The total RNA extraction, reverse transcription and real-time PCR were performed using
the methods mentioned in chapter 2. Forward and reverse primers, designed using
Primer Express 2.0 (Applied Biosystems), are
5’-TCCCACTTCTCGGAGACAGTAAC-3’ (Forward),
5’-CTTAGCATCACTGAGGACCTTGAA-3’ (Reverse) for Mrp3 and

5’-CGTGCTTGCCATTCAGAAAA-3° (Forward),
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5’-GAAGTTGGGCTTCCCATTCTC-3’ for beta-2-microglobulin (beta-2-m). Cycling
conditions were 1 cycle in 50°C for 2 min, 1 cycle at 95°C for 10 min, 50 cycles at 95°C
with 1 min annealing at 60°C. The relative cDNA content was determined in duplicate
using standard curves created from cDNA and normalized to beta-2-m for each sample.
For each pair of primers, the control without reverse transcriptase was also used for PCR
reactions in duplicate to confirm that there was no genomic DNA contamination in the

cDNA samples.

Data Analysis

Enzyme kinetics analysis was carried out by nonlinear regression analysis using Prism
3.0 (GraphPad Software Inc., San Diego, CA). The intrinsic formation clearance (CLiy)
was calculated by dividing the Vax by the Ky, Pharmacokinetics of MPA was analyzed by
a non-compartmental model using WinNonlin 3.1 (Pharsight Co., Mountain View, CA).
Area under curve (AUC) was calculated using the trapezoidal method. All data are
reported as mean + SD. Comparisons among multiple groups were made by one way
analysis of variance with Tukey post hoc analysis (P < 0.05). Based on the initial
measurement of AUC in control group, 2174.00 + 229.02 min*pg/ml, to observe a 25%
difference between groups, with a power of 80% and a = 0.05, the sample size required

was 4 rats. Experiments were completed with 4 to 6 rats in each group.

Results
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Measurement of Vyuxy Ky and CL;y, for the Formation of MPAG in Hepatic
Microsomes

Both Vmax and Km values were not different between control group and sham group at
all time points studied. The Vmax for the formation of MPAG in hepatic microsomal
fraction obtained at 24 hours after PHx was significantly decreased compared to control
value (Table 6). On day 6, the Vmax still remained at the lower level (51% of control
level), but recovered completely by day 14 with hepatic regeneration (96% of control
level). However, the Km values were similar among all the groups. The intrinsic
clearance (CLiy) for the formation of MPAG in hepatic microsomal fraction was

significantly decreased during hepatic regeneration at the 24th hour and on day 6.

Pharmacokinetics of MPA

The plasma concentration vs. time curves of MPA and MPAG after intravenous
administration of MPA are shown in Figure 25. The pharmacokinetic parameters of MPA
at different time points after initiation of hepatic regeneration are summarized in Table 7.
The area under the plasma concentration vs time curve (AUC) for MPA, the total body
clearance (CL) for MPA, the mean residence time (MRT) for MPA, the area under the
plasma concentration vs time curve (AUC) for MPAG and the total body clearance (CL)
for MPAG were significantly different between control and PHx rats. The total body

clearance of MPA and MPAG at the 24th hour was significantly lower than that in the
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control group. The clearance of MPA and MPAG recovered completely by day 6. The

volume of distribution at steady state (Vss) was not altered.

Measurement of Expression of Mrp2 and Mrp3
The expression of Mrp2 was comparable among all the groups at the 24™ hour after
initiation of hepatic regeneration (Figure 26, panel A). The mRNA expression of Mrp3

also remained similar among groups at the 24th hour after PHx (Figure 26, panel B).

Measurement of the Formation of Mycophenolic Acid Glucuronide in Small Intestine
and Kidney Microsomes

The formation of MPAG by small intestine microsomes at the 24th hour after initiation of
hepatic regeneration was not different from that in sham group (N = 5 rats); (PHx 24-hour
vs. sham: 1.15 + 0.50 vs. 1.04 £+ 0.48 nmol/mg protein/min, P > .05, t-test). The formation
of MPAG by the kidney microsomes from PHx 24-hour group was similar to that in sham
group (N = 5 rats). (PHx 24-hour vs. sham: 0.29 + 0.07 vs. 0.23 £ 0.06 nmol/mg

protein/min, P > .05, t-test)
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Table 6. Mean (= SD) Vmax, Km and CL;, for the formation of mycophenolic acid

glucuronide (MPAG) in hepatic microsomes (N = 4-6 rats).

Time after PHx | Groups Vm (nmol/mg | Km (mM) CLijnt (nl/min/mg
protein/min) protein)

Control 1.75+0.40 1.07+£0.22 1.62 +£0.06

24-hour Sham 1.88 £0.24 1.07£0.18 1.79 £ 0.33
PHx 0.89 +0.17% 1.06 +0.21 0.85 £ 0.20°

Control 1.84+0.23 1.00+0.19 1.87+0.35

6-day Sham 1.90 £ 0.29 0.99+0.18 1.98 £0.57
PHx 0.94 +0.10°% 1.00 £ 0.23 0.96+0.17

Control 1.84 £0.23 0.90+£0.88 2.08+0.36

14-day Sham 1.77 £0.30 0.94+0.16 1.96 = 0.60

PHx 1.76 £0.19 1.01 £0.24 1.80 +£0.38

4P <.01 (vs. control, Tukey post hoc analysis).
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Figure 25. Plasma concentration of MPA (panel A) and MPAG (panel B) vs time
profile at different time points after initiation of hepatic regeneration. Data was

represented by mean + SD (N =4 to 5 rats).
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TABLE 7. Pharmacokinetic parameters of MPA (20 mg/kg, i.v.) 24 hours, 6 days

and 13 days after partial hepatectomy (N = 4 to 5 rats)

Parameters Control PHXx (24-hour) PHx (6-day) PHx (13-day)
AUC 2174.00 +£229.02 | 3411.10 +250.01* | 1821.50 + 124.67 1987.03 £70.71
(minepg/ml) **

CL 9.29 +£1.07 5.89 + 0.42° 10.67 +£0.43 10.07 +£0.24
(ml/min/kg)**

MRT (min)** 37.84 +2.07 53.04 + 8.41° 33.87+£9.40 36.37+3.93

Vss (ml/kg) 348.43 £44.18 293.01 +£60.39 369.97 + 88.76 429.03 +107.59
(AUCwmpaG)MPA 441791 +850.02 | 7667.38 4283.66 + 569.63 5153.61 +
(min*pg/ml)** 1088.84% 455.53

CLympaG 4.66 = 0.90 2.72+0.41% 4.73 £0.57 3.90+0.34

(ml/min/kg) **

#% P < 0] for ANOVA;*P<.01,°P<.05 (vs. control) was obtained from Turkey post

hoc analysis.

#% P < 0] for ANOVA;*P<.01,°P<.05 (vs. control) was obtained from Turkey post

hoc analysis. CLypag Was calculated using CLypag = fm*AUC*CL/(AUCumpac)Mpa

(assuming fm = 1 because more than 95% MPA is metabolized to MPAG (sum of the

amount excreted in urine and bile), Bullingham et al., 1996b).
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Abbreviations: AUC, area under the plasma concentration of MPA vs time curve; CL,
total body clearance of MPA; MRT = mean residence time of MPA ; Vss = volume of
distribution at steady state; (AUCwmpac)mpa, area under the plasma concentration of MPAG
vs time curve after intravenous administration of MPA; CLypag, total body clearance of

MPAG after intravenous administration of MPA.
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Figure 26. Immunochemical analysis of Mrp2 protein expression (panel A) and
mRNA expression of Mrp3 (panel B) from control livers, livers from the sham group,
and livers from the 24-hour PHx group. Equal amounts of protein were loaded in each
lane. Proteins from 6 rats were pooled together in each group. The relative mRNA level
was determined by real time PCR as described in Methods using pooled cDNAs
generated from total RNAs from 6 normal livers with different dilutions as the standard.
The arbitrary mRNA values were normalized with their respective beta-2-m values. N =

4-5.
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Discussion

In this study we have used partially hepatectomized rats to evaluate the effect of hepatic
regeneration on the metabolism and pharmacokinetics of MPA. This study simulates
what is likely to happen to the drug metabolizing capacity in the donor in a living donor
liver transplant program. A recent study showed that human UGT 1A9 is the main
isoform involved in the metabolism of MPA, with at least 55% contribution to the hepatic
MPAG production. Additionally, UGT 1A1 and 1A6 probably account for a part of hepatic
production of MPAG. UGT 1A7, 1A8, and 1A 10, which are located in the small bowel,
could contribute to intestinal first-pass effect of MPA (Picard et al., 2005). In this study,

MPA was used as a representative marker drug for UGT enzyme(s).

The magnitude of change in the total body clearance of MPA (37%) was much less than
that in the liver mass (70%) at the 24th hour. So we evaluated the ability of the liver to
metabolize MPA in vitro. The metabolism of MPA was also reduced in the regenerating
liver at 24 hours and on day 6, but recovered to normal by day 14. Taking into
consideration the decrease in the hepatic intrinsic clearance of MPA normalized to
protein amount (assuming that hepatic MPA glucuronide formation clearance
approximates the hepatic intrinsic clearance of MPA because 95% MPA is primarily
metabolized to MPA glucuronide and only less than 1% of MPA was recovered in
48-hour urine after both PO and IV dosing of MPA in humans, Bullingham et al., 1996a;

Bullingham et al., 1996b) and the reduction in liver mass, the whole liver intrinsic
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clearance for MPA must decrease to 16% of normal liver at the 24th hour after initiation
of hepatic regeneration. Based on the total body clearance of MPA in control rats (9.29
ml/min/kg) and the hepatic plasma flow 25.4 ml/min/kg in rats (estimated based on the
reported hepatic blood flow of 55.2 ml/min/kg and hematocrit of approximately 46% in rats
(Davies and Morris, 1993)), assuming lack of significant change in the unbound fraction
of MPA as albumin, the total body clearance of MPA at the 24th hour should have been
at most 2.12 ml/min/kg (If accounting for the three times increase of blood flow per unit
liver weight (only 30% liver remaining), the total body clearance should have been at
most 2.25 ml/min/kg) (using same equations and methods in the discussion part of
chapter 3 to calculate this), and the total body clearance of MPA at the 6th day should
have been at most 2.66 ml/min/kg. However, while the total body clearance of MPA was
significantly decreased twenty four hours after PHx, the magnitude of reduction was
much less than what was predicted based on in vitro data. Based on in vitro studies, even
though our data showed that small instestines have the same metabolizing ability as livers
(about four fold higer than that of kidneys) in rats when normalized to per unit organ
mass, it was clear that extrahepatic pathways did not change and did not compensate for
the reduction in hepatic metabolic capacity due to a much smaller organ mass. When
normalized to the predicted liver weight at the 24th hours, the clearance per unit liver
weight was increased significantly during hepatic regeneration (24-PHx vs. control: 0.49

ml/min/g vs. 0.23 ml/min/g). This further supported the hypothesis of the presence of
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significant reserve capacity of the liver to clear drugs due to increased percentage of

hepatocytes to metabolize drugs compared to normal situation.

Even though the pharmacokinetics of tacrolimus (chapter 3) and MPA were altered in a
similar manner at the 24th hour during hepatic regeneration, the recovery profile for the
pharmacokinetic parameters of tacrolimus and MPA was different at later stages of
hepatic regeneration: 1) the total body clearance of MPA recovered much earlier than that
of tacrolimus (6 days for MPA vs. 18 days for tacrolimus); and 2) total body clearance of
MPA recovered earlier than in vitro metabolism of MPA (6 days for in vivo vs. 14 days
for in vitro), but this is not the case for tacrolimus (18 days for in vivo vs. 14 days for in
vitro). The reason for the differential recovery of the pharmacokinetic profile of
tacrolimus and MPA may be due to the different reserve capacity of the regenerating
livers for different metabolic pathways in which different metabolizing enzymes with

different abundance are involved.

In addition, we also observed a lower total body clearance of MPAG at the 24th hour
during hepatic regeneration. In order to determine the reason(s) for this decrease, we
evaluated the expression of Mrp2 and Mrp3, two transporters that are involved in the
biliary excretion of MPAG (Kobayashi et al., 2004). However, no change was detected in
the expression of Mrp2 or Mrp3 at the 24th hour, which ruled out any possible roles of

Mrp2 and Mrp3 in the reduced clearance of MPAG. This observation is also consistant
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with the published data showing the lack of change in the protein expression of Mrp 2
(Chang et al., 2004; Vos et al., 1999). It is likely that the decrease in total body clearance
of MPAG is partially due to the dramatic reduction in the number of hepatocytes leading
to decreased bile formation in the regenerating liver. However, due to the small fraction
of the MPAG being excreted in the bile (26% of the dose), the decreased bile formation is
not the only mechanism or reason for the approximately two fold decrease in the total
body clearance of MPAG during hepatic regeneration. There are other unknown
mechanism(s) involved that are not apparent from this study such as the impaired
function of both Mrp2 and Mrp3 (even though we observed the preserved expression of
both transporters) because it takes time for newly generated cells to relocate to apical side

of hepatocytes.

To the best of our knowledge this is the first study to evaluate the pharmacokinetics of
MPA and to analyze the recovery profile of the pharmacokinetics of MPA over time after
initiation of hepatic regeneration in an animal model. Our study provides several
implications for use of drugs metabolized by UGTs in LDLT patients. First, since the
UGT activity is decreased after PHx, lower doses of UGT substrates may be necessary
during the early postoperative period for LDLT patients. Second, the magnitude of the
reduction in doses should be less than the magnitude of reduction in liver mass. Third,
caution must be exercised in using in vitro data to predict in vivo clearance of drugs by

the regenerating liver due to significant reserve capacity of the liver to clear drugs.
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Finally, the recovery is different between oxidative pathway and conjugation pathway.
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Chapter 6 Transiently Altered Acetaminophen Metabolism during Hepatic
Regeneration in Rats

Abstract

Objective The objectives of this study were to evaluate 1) the dose-dependent in vivo
metabolism of acetaminophen (APAP) 24 hours after hepatic regeneration, and 2) the
time-dependent in vivo metabolism of APAP during hepatic regeneration.

Methods The metabolism of APAP was evaluated by collecting urine (24 hrs) after
intravenous administration of different doses of APAP to partially hepatectomized rats.
The amount of APAP glucuronide, sulfate and mercapturate in the urine was measured by
HPLC and LC/MS.

Results The fraction of the dose that is converted to APAP sulfate was decreased 24 hours
after regeneration at the doses of 100 mg/kg and 300 mg/kg. The fraction of the dose that
is metabolized to APAP glucuronide and mercapturate was significantly increased 24
hours after regeneration at the doses of 10 mg/kg and 100 mg/kg. At a dose of 10 mg/kg,
the formation of APAP glucuronide and mercapturate significantly increased on day 6 and
recovered on day 14, while the formation of APAP sulfate was not altered at any time
during the hepatic regeneration.

Conclusions The metabolism of APAP was altered during hepatic regeneration. There
may be a higher risk for the APAP-induced toxicity during the early postoperative period
in LDLT patients. Acetaminophen must be avoided during hepatic regeneration. The

altered metabolism of APAP recovered to normal level by day 14 after initiation of
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regeneration. It is safe to use APAP once the regeneration process is recovered

completely.
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Introduction:

Acetaminophen (APAP) is the most widely used analgesic in the USA and overdoses of
APAP are the leading causes of hospital admission for acute liver failure (Gill and
Sterling, 2001). APAP is primarily metabolized by glucuronidation and sulfation in
human, accounting for approximately 50% and 35% of a therapeutic dose, respectively
(Forrest et al., 1982). Less than 10% of a therapeutic dose is metabolized to a reactive
quinine form, N-acetyl-p-benzoquinone imine (NAPQI), mainly by CYP2E1 (Manyike et
al., 2000), which can cause hepatotoxicity by forming adducts with critical proteins in the
liver (Hinson et al., 1995; Holtzman, 1995). At low subtoxic doses, NAPQI is inactivated
by GSTs through conjugation with reduced glutathione (GSH) (with subsequent
conversions to cysteine and mercapturate conjugates of acetaminophen) (Moldeus, 1978;
Van De Straat, 1986). Under an overdose situation, GSH is depleted so that NAPQI
accumulates and binds to proteins (Davis et al., 1974; Jollow et al., 1974; Potter et al.,

1974).

Humans have a limited capacity to conjugate APAP with sulfate. APAP sulfate formation
may become capacity-limited (saturating) upon administration of a 2 g dose to adults
(Levy and Yamada, 1971). A model that consists of two saturating biotransformation
pathways (conjugation of APAP with glucuronic acid and with sulfate) as well as two
apparent first-order processes (renal excretion of acetaminophen and oxidation of the

drug to NAPQI) has been proposed to describe the pharmacokinetics of APAP (Slattery

131



and Levy, 1979). The limited capacity of the direct conjugation pathways causes a greater

than proportional increase in the formation of NAPQI with increasing doses.

In rats, after a single dose, the plasma APAP concentrations declined apparently
exponentially, with a T1/2 that increased with increasing dose (Siegers et al., 1978;
Galinsky and Levy, 1981). Studies have also confirmed that in rats, just as in man (Davis
et al., 1976), the fraction of the dose that is converted to APAP sulfate decreases with
increasing doses. So the APAP kinetics is dose-dependent. In several species, the
metabolites of APAP are excreted through bile and urine. In principle, alterations in
hepatobiliary or urinary excretion of APAP metabolites, as determined in in vivo animal
studies, are indicative of changes in either APAP biotransformation or transport processes

for these metabolites.

During hepatic regeneration, the in vivo drug metabolizing activity of different enzymes
or isoforms may be altered differentially as discussed in previous chapters, causing a shift
in the relative contribution of different pathways to the overall disposition of a drug.
Moreover, the reduction of liver mass will further decrease the drug metabolizing ability
of the liver. Since the pharmacokinetics of acetaminophen is nonlinear and
dose-dependent, we hypothesized that the formation of acetaminophen sulfate will
decrease and the formation of glucuronide and NAPQI related metabolites (cysteine and

mercapturate) will increase with an increase in dose or a reduction in the metabolizing
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ability of the liver during hepatic regeneration. This change in the metabolic pathway,

may predispose a LDLT patients to induced toxicity due to acetaminophen.

Materials and Methods

Chemicals

Acetaminophen and acetaminophen glucuronide were purchased from Sigma Chemical
Co. (St. Louis, MO). Acetaminophen sulfate, 3-cysteinyl acetaminophen, acetaminophen
mercapturate, “Hs-labeled 3-cysteinyl acetaminophen and “Hs-labeled acetaminophen

mercapturate were purchased from Toronto Research Chemicals (North York, ON,

Canada).

Experiment Procedure

The study protocol was approved by the IACUC at the University of Pittsburgh. The
sham operation and PHx were conducted as described in Chapter 2. Ten rats were
ordered every time (5 rats for PHx; 5 rats for sham) and the surgery was conducted
between 9:00 am and 11:00 am. APAP (APAP powder was dissolved in polyethylene
glycol-0.9% saline (50:50, v/v) to make a final concentration of 5 mg/ml, 50 mg/ml and
150 mg/ml) was injected through the jugular vein in sham operated (N = 5) and PHx (N =
5) rats. Urine samples were collected for 24-hour using metabolic cages after IV

administration of APAP. The urine samples were stored at -20° C until analysis.
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HPLC method

After centrifugation at 13,000 rpm for 5 minutes, 40 pl of the supernatant (1 to 5 dilution
for 100 mg/kg dosing or 1 to 15 dilution for 300 mg/kg dosing) was injected into HPLC.
Acetaminophen glucuronide and sulfate were quantified by HPLC, as described
previously (Wilson et al., 1982) (Column: LiChrospher column, C18, 5 p, 250 mm x 4.6
mm; mobile phase: methanol/glacial acetic acid/0.1 M KH,PO4 (7/0.75/92.25, v/v/v); UV,
248 nm; retention time: 7.2 min for glucuronide and 13.3 min for sulfate). Quantitation
was performed by comparison of the peak area for unknown samples to standard samples
(linear from 0.8 pg to 6 pg for glucuronide; from 2.4 ng to 24 pg for sulfate) for APAP
glucuronide and sulfate. The intra- and inter-day CV (%) for APAP glucuronide at 0.8 pg,
2 ng and 6 ng were less than 9% (n =3). The intra- and inter-day CV (%) for APAP

sulfate at 2.4 pug, 6 ug and 24 pg were less than 7% (n = 3).

LC/MS method

After centrifugation at 13,000 rpm for 5 minutes, 6 pl of supernatant (1 to 10 dilution for
100 mg/kg dosing or 1 to 100 dilution for 300 mg/kg dosing), 6 pul of internal standard
(*Hs-labeled 3-cysteinyl acetaminophen, 40 pg/ml or “Hs-labeled acetaminophen
mercapturate, 8 pg/ml) and 48 pl of water were mixed. 20 pl of the mixture was injected
into LC/MS. The analysis of acetaminophen cysteine and mercapturate was performed on
a Thermo Finnigan MSQ LC/MS, operated in the positive ion electrospray mode with

selective ion monitoring. A YMC-AQ 2.1-pm, C18 (150 mm X 2 mm) column was used
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for nominal chromatographic separation. The mobile phase consisted of methanol/1%
acetic acid (20/80, v/v) delivered at a flow rate of 150 pl/min. The following mass
spectrometric conditions were used: capillary and cone voltages of 3.0 kV and 50 V (for
mercapturate) or 100 V (for cysteine), and a temperature of 300° C. The following pairs
of ions (unlabeled and deuterated internal standard) were detected by selective ion
monitoring: mass-to-charge ratio (m/z) 271 and 274 (3-cysteinyl) and m/z 313 and 316
(mercapturate). The retention time for 3-cysteinly APAP and APAP mercapturate was 4.7

min and 11.7 min, respectively.

The concentrations of all the metabolites were measured by comparison of the peak area
ratios after the unknown samples to the standard curves for each metabolite. For
measurement of 3-cysteinyl APAP and APAP mercapturate in urine, the respective inter-

and intra-day CV (%) was less than 13% and 8% (n = 4), respectively.

Data analysis

The amount of APAP equivalent to the amount of each metabolite in the 24-hour urine
was calculated by considering the difference in molecular weight between the metabolite
and the parent drug. The fraction excreted in 24-hour urine for each metabolite was
calculated as equivalent APAP amount divided by the IV dose of APAP. All data are
reported as mean + SD. Comparisons between two groups were made by student’s t-test

(P < 0.5). For sample size calculation, the initial fraction of the formation of APAP
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mercapturate from the sham group (24-hour time point) at the APAP dose of 10 mg/kg,
1.01 + 0.1%, was used. With a power of 80% and a = 0.05, to detect a 25% difference, 4

rats were required. Experiments were completed with 5 rats in each group.

Results

Formation of Acetaminophen Glucuronide (Dose-dependent effect)

The fraction of the dose that is excreted as APAP glucuronide in the 24 hr urine increased
gradually with the increase in doses from 10 mg/kg to 300 mg/kg in the sham groups
(Figure 27). During regeneration, there was a significant increase in the fraction of APAP
glucuronide excreted in 24-hour urine at the doses of 10 mg/kg and 100 mg/kg compared
to sham groups dosed with same amount of APAP. However, at a higher dose level, 300
mg/kg, the formation of APAP glucuronide was the same for the PHx (24-hour) group as

that for the sham group.

Formation of Acetaminophen Sulfate (Dose-dependent effect)

The fraction of the dose that is excrted as APAP sulfate in the 24 hr urine decreased with
an increase in dose from 10 mg/kg to 300 mg/kg in the sham groups (Figure 28). Twenty
four hours after the initition of regeneration, the fraction of APAP sulfate in 24-hour urine
was not altered at the dose of 10 mg/kg. However, 24 hours after initiation of
regeneration, the formation of APAP sulfate was significantly decreased at the doses of

100 mg/kg and 300 mg/kg.
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Formation of Acetaminophen Mercapturate (Dose-dependent effect)

The formation of APAP mercapturate also showed a dose-dependency (Figure 29). With
an increase in the dose, the fraction of APAP converted to APAP mercapturate was
increased in sham groups. At 24 hr after initiation of hepatic regeneration at the dose of
10 mg/kg, the formation of APAP mercapturate was much higher in PHx (24-hour) group
than in the sham group. The formation of APAP mercapturate was also much higher in
PHx (24-hour) group than that in the sham group at the dose of 100 mg/kg. However, 24
hr after initiation of hepatic regeneration, the formation of APAP mercapturate was not

changed at the dose of 300 mg/kg.

Formation of Acetaminophen Glucuronide (Time-dependent effect)

At the dose of 10 mg/kg, greater amount of APAP was excreted as APAP glucuronide at
the 24th hour and 6th after regeneration than that observed in sham groups (Figure 30).
However, the percentage of dose excreted as APAP glucuronide returned to control level

14 days after regeneration.

Formation of Acetaminophen Sulfate (Time-dependent effect)
At a dose of 10 mg/kg at the all time points after initiation of regeneration, the percentage
of dose excreted as APAP sulfate was not changed when compared to sham groups

(Figure 31).
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Formation of Acetaminophen Mercapturate (Time-dependent effect)
The formation of APAP mercapturate was significantly increased 24 hours and 6 days
after regeneration (Figure 32), but recovered to control level (as measured in the sham

group) 14 days after initiation of regeneration.
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Figure 27. Formation of APAP glucuronide in 24-hour urine (dose-dependent effect).
Sham: liver lobes from sham groups; PHXx, the regenerated liver lobes after PHx. All data
are expressed as mean + SD. ** P < .01 vs. sham; * P <.05 vs. sham (student’s t-test). N

= 5 rats.
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Figure 28. Formation of APAP sulfate in 24-hour urine (dose-dependent effect).
Sham: liver lobes from sham groups; PHXx, the regenerated liver lobes after PHx. All data

are expressed as mean + SD. * P <.05 vs. sham (student’s t-test). N = 5 rats.
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Figure 29. Formation of APAP mercapturate in 24-hour urine (dose-dependent
effect). Sham: liver lobes from sham groups; PHx, the regenerated liver lobes after PHx.

All data are expressed as mean + SD. ** P <.01 vs. sham (student’s t-test). N = 5 rats.
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Figure 30. Formation of APAP glucuronide in 24-hour urine at the dose of 10 mg/kg
(time-dependent effect). Sham: liver lobes from sham groups; PHx, the regenerated liver
lobes after PHx. All data are expressed as mean + SD. ** P < .01 vs. sham (student’s

t-test). N = 5 rats.
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Figure 31. Formation of APAP sulfate in 24-hour urine at the dose of 10 mg/kg
(time-dependent effect). Sham: liver lobes from sham groups; PHx, the regenerated liver
lobes after PHx. All data are expressed as mean + SD. P > .05 vs. sham (student’s t-test).

N = 5 rats.
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Figure 32. Formation of APAP mercapturate in 24-hour urine at the dose of 10 mg/kg
(time-dependent effect). Sham: liver lobes from sham groups; PHx, the regenerated liver
lobes after PHx. All data are expressed as mean + SD. ** P < .01 vs. sham (student’s

t-test). N = 5 rats.
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Discussion

Acetaminophen is commonly recommended for analgesia or fever reduction. APAP
toxicity, due to overdose, has been well documented. We used partially hepatectomized
rats to study the in vivo metabolism of APAP during hepatic regeneration. We used a
clinically relevant dose, 10 mg/kg, to study the time profile of APAP metabolism during
hepatic regeneration. To study the dose-dependent effect 24 hours after initiation of
regeneration, we used a clinically relevant dose of 10 mg/kg and two higher doses:

subtoxic dose 100 and toxic dose 300 mg/kg.

In this study, we observed dose-dependent formation of APAP glucuronide, APAP sulfate,
and APAP mercapturate in the sham group, which is consistent with the reported
non-linear pharmacokinetics of APAP in rats (Galinsky and Levy, 1981). A recent study
showed significant time-dependent changes in APAP metabolism after liver
transplantation (Park et al., 2003). At the early postoperative period (day 2 and day 10),
the fraction of the dose that is excreted as 3-cysteinyl and mercapturate was significantly
higher than day 180. The formation of APAP sulfate and glucuronide in the 24 hr urine
was much lower on day 2 and 10. This may be due to impaired glucuronidation and

sulfation and increase in the activity of CYP2E1 (Park et al., 2003; Burckat et al., 1998)

We observed a higher fraction of APAP glucuronide and mercapturate being formed at
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doses of 10 mg/kg and 100 mg/kg 24 hours after initiation of regeneration, however, the
mechanism(s) responsible for our observations are different from those for the altered
APAP metabolism after liver transplantation. This is due to 1) the increased amount of
APAP that is perfused through the liver when normalized to unit liver mass and the result
of non-linear pharmacokinetics of APAP (increased drug amount per unit liver mass will
cause more APAP glucuronide and mercapturate to be formed). 2) the dramatic decease in
the number of hepatocytes caused by the reduction of the liver mass will lead to
decreased bililary excretion of APAP glucuronide (A study conducted in rats showed that
the biliary excretion of APAP glucuronide (Mrp 2 substrate) (6.0-10 % of the dose) was
equal to the urinary excretion of APAP glucuronide (6.0-10 % of the dose) at the dose of
10 -100 mg/ml (Watari et al., 1983; Brouwer and Jones et al., 1990.). At the highest dose
of 300 mg/kg, we didn’t see the change in the formation for both metabolites
(glucuronide and mercapturate) 24 hours after regeneration, probably because of the
saturation of both pathways to a similar magnitude. Even though APAP mercapturate is
also excreted through the biliary excretion and is a Mrp 2 substrate, in rats, the percentage
of the dose excreted in bile (less than 0.2% of the dose at the dose of 150 mg/kg to 300
mg/kg) is much less than what is excreted in urine (1.2 — 2% of the dose at the dose of
150 mg/kg to 300 mg/kg) (Kwak et al., 1998; Chen et al., 2003). So the decreased biliary
excretion due to the decreased number of hepatocytes did not alter the urinary excretion
of mercapturate. 3) the activity of drug metabolizing enzymes such as the CYP2EI,

UGT1AG6/7 and sulfotransfereases (SULTs) were altered differentially and will lead to the
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shift in the relative contribution of different pathway to the overall elimilation of APAP.
The CYP2E1 activity as measured by the formation of 6-hydroxychlorzoxazone was
decreased to about the 57% of the control level as measured in sham group (PHx-24 hr vs.
sham: 0.40 £+ 0.12 vs. 0.69 £ 0.23 nmol/mg protein/min, P < .05, student’s t-test; N = 6
rats, our observations), while the glucuronidation of acetaminophen was preserved after
initiation of hepatic regeneration as shown in Chapter 5. Currently, there is no
information on the activity of SULTs during hepatic regeneration; however, the mRNA
expression of the isoforms of phenol SULT family (SULT1A1, 1B1, 1C1, and 1E2) which
may be responsible for the formation of APAP sulfate has been showed to be decreased
after initiation of hepatic regeneration (Dunn et al., 1999). Since the glucuronidation of
APAP was preserved (chapter 4) and the activity of CYP2E1 (our observations) and
expression SULTs were decreased (Dunn et al., 1999), there was increased amount of

APAP glucuronide excreted in urine after initiation of hepatic regeneration.

A lower fraction of the dose was excreted as APAP sulfate 24 hours after initiation of
regeneration at doses of 100 mg/kg and 300 mg/kg compared to sham group. This is
likely due to increased amount of drug being delivered per unit liver mass and the
nonlinear pharmacokinetics of APAP (with the increase in dose, the fraction excreted as
sulfate will decrease). This may be related to higher fraction (about 80%) of APAP

excreted as APAP sulfate and inability to differentiate small changes.
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This is the first study to document the altered metabolism of APAP during hepatic
regeneration. Our data point to several important conclusions: 1) The metabolism of
APAP will be altered during hepatic regeneration; 2) The formation of APAP glucuronide
and mercapturate will be increased during hepatic regeneration at a clinically relevant
dose; 3) There may be a higher risk for the APAP-induced toxicity in LDLT patients
during the early post operative period; 4) The altered metabolism of APAP will recover to
normal some time after regeneration and 5) Acetaminophen must be avoided during the

hepatic regeneration in LDLT patients.
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Chapter 7 Summary and Conclusions

The goal of this dissertation is to evaluate the drug metabolizing capacity in

regenerating liver in rats.

Current observations

The liver has a unique ability to regenerate. During hepatic regeneration, the clearance of
several drugs are expected to be significantly altered due to 1) reduction in liver mass, 2)
reduction in metabolic capacity of the phase I and phase II drug metabolizing enzymes, 3)
increased hepatic blood flow (ml/kg) and 4) changes in plasma protein binding of a drug.
Based on the inhibitory effects of some of the cytokines released during hepatic
regeneration on the in vitro activity of both CYP and UGT isoforms and the changes in
the expression of many known and unknown regulatory factors and other genes due to the
acute phase response triggered by partial hepatectomy, we hypothesize that the in vitro
activity of both CYP and UGT isoforms will be decreased during hepatic regeneration.
Taking into consideration the reduction in liver mass, we further hypothesize that the in
Vvivo clearance of drugs will be reduced more than the loss of liver mass during hepatic
regeneration. The direction and magnititude of changes in clearance will be drug specific

and will be influenced by changes in blood flow and changes in free fraction of drugs.
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In intial experiments, we evaluated the effects of hepatic regeneration on the in vitro
activity of CYP3A, the most significant CYP isoform, which contributes to the
metabolism of more than 50% of the marketed drugs. We also measured the protein and
mRNA expression level of CYP3A over a similar time period. Since during the hepatic
regeneration process, the patients are expected to take immunosuppressive drugs such as
cyclosporine A and tacrolimus which are known to be inhibitors of CYP3A but inducers
of DNA synthesis, we also evaluated the effect of cyclosporine A and tacrolimus on
CYP3A activity during hepatic regeneration. The changes in CYP3A during hepatic
regeneration were consistent at the levels of activity, protein content and mRNA
expression. The activity of CYP3A enzyme was impaired during the initial phase of
hepatic regeneration but recovered completely at a later time. At the doses used,
cyclosporine A and tacrolimus didn’t have any effect on CYP3A recovery in the

regenerating liver.

Secondly, in order to evaluate the feasibility of predicting in vivo changes in clearance
during hepatic regeneration, we evaluated the pharmacokinetics of a CYP3A substrate,
tacrolimus. The hepatic intrinsic clearance calculated as Vm/Km for the metabolism of
tacrolimus and total body clearance of tacrolimus were significantly decreased 24 hours
after PHx. Even though the hepatic intrinsic clearance for the metabolism of tacrolimus
recovered completely 14 days after PHx, the total body clearance of tacrolimus returned

to normal level only by day 18. Moreover, the observed clearance of tacrolimus was
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greater than the predicted total body clearance based on our in vitro data. This indicates
caution in using in vitro data to predict the in vivo clearance of CYP3A substrates because

of the reserved hepatic capacity to metabolize drugs during hepatic regeneration.

Thirdly, glucuronidation of several drugs has been reported to be differentially altered
during hepatic regeneration. In this study, we evaluated either activity and/or mRNA
expression level of various UGT isoforms after initiation of regeneration. The activity of
different isoforms was altered differentially during hepatic regeneration with some having
altered activity or expression while activity or expression of others was preserved. The
mRNA expression of different UGT isoforms mirrored the activity of these isoforms.
Moreover, different isoforms also recovered differentially during hepatic regeneration
with some recovering 6 days after regeneration and others recovering 14 days after
regeneration. The differential regulation of different UGT isoforms may be due to the

differential expression of HNF-1 a and C/EBP o.

Fourthly, we evaluated the clearance and in vitro metabolism of MPA, an
immunosuppressive drug, during hepatic regeneration. The hepatic intrinsic clearance for
the metabolism of MPA and the total body clearance of MPA were much lower 24 hours
after regeneration. However, the recovery of the pharmacokinetic parameters including
total body clearance was much earlier than the hepatic intrinsic clearance in vitro. The

observed in vivo clearance of MPA during hepatic regeneration was greater than what was
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predicted based on in vitro metabolism of MPA. The extrahepatic metabolism of MPA
didn’t account for the increased clearance of MPA as the in vitro glucuronidation of MPA
in small intestine and kidney was not altered during hepatic regeneration. Additionally,
the total body clearance of MPA glucuronide (MPAG) was also significantly decreased
during hepatic regeneration due to the dramatically decreased number of hepatocytes
leading to decreased biliary excretion of MPAG. Two transporters, namely Mrp2 and
Mrp3, which are involved in the biliary excretion of MPAG didn’t contribute to the

decreased clearance of MPAG.

When comparing the in vitro and in vivo data for the metabolism of both tacrolimus and
mycophenolic acid, we also observed that 1) there was a difference between the in vivo
recovery of oxidative pathway and conjugation pathway and 2) there was a disconnect
between the in vitro recovery and the in vivo recovery. The clearance of CYP3A and UGT
substrates studied eventually returned to normal in spite of incomplete recovery of liver

mass.

Finally, we evaluated the in vivo metabolism of APAP during hepatic regeneration. The
dose-dependent effect of APAP metabolism with a higher fraction of APAP glucuronide
and mercapturate was observed after regeneration at low, subtoxic and toxic doses of
APAP. The time-dependent effect of APAP showed more APAP glucuronide and

mercapturate formation at the early stage of regeneration. The altered metabolism of
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APAP returned to normal even before the complete recovery of liver mass.

Note: The summary of recovery of liver mass and in vitro activity of different drug

metabolizing enzymes is shown on Figure 33.
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Figure 33. Summary of recovery of liver mass and in vitro activity of different drug
metabolizing enzymes after hepatic regeneration. Percentage was calculated using

mean value of PHx group divided by mean value of sham group.

Clinical implications:

1) Hepatic functional capacity will recover prior to the recovery of liver mass.

2) Reduction in doses of drugs that are metabolized by CYP3A or UGT is necessary
during the first few weeks after transplantation in living donor liver transplant donors

and recipients. Additional factors such as cold ischemia, warm reperfusion injury and
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3)

4)

5)

6)

immunological response may further alter the dosing regimen of drugs in the
recipients.

Reduction in clearance of the drug in vivo is not proportional to the reduction in liver
mass. LDLT patients would require a dose of CYP3A or UGT substrates that is not in
proportion to the loss of the liver mass.

Differential adjustment in doses of drugs metabolized by different UGTs as compared
to CYPs is necessary, as UGT pathway appear to recover faster than CYPs.

The lower activity of UGT1A1l may lead to decreased conjugation of bilirubin and
increase in the concentration of biliribin in bile or serum during the early part of
hepatic regeneration process.

Liver regeneration with regards to drug metabolizing ability proceeds normally in the

presence of immunosuppressive therapy with cyclosporine A or tacrolimus.

Future directions

The studies presented in this dissertation have evaluated the drug metabolizing ability

during hepatic regeneration. This studies conducted in the partially hepatectomized rats

have significantly enhanced our understanding of both in vitro and in vivo drug

metabolizing ability with regarding to phase I and phase II pathways. Some of this

knowledge may be applied to LDLT patients, however, additional studies related to the

mechanism and clinical relevance of our findings are needed in the future for better

understanding the drug metabolizing ability during hepatic regeneration:
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A. The direct cause for the decreased activity and expression of some CYP and UGT
isoforms needs to be identified and elucidated. Even though some cytokines are
known to decrease the activity and expression of certain drug metabolizing enzymes,
the direct role of cytokines as the gene regulation mediators during hepatic

regeneration remains to be determined.

B. Even though the differential regulation of UGTs during hepatic regeneration to be
probably due to the differential expression of HNF-1 a and C/EBP a, the data
presented in this dissertation is premature and the functional activity data of both
regulatory factors in the UGT isoforms need to be extensively studied. Currently,
there is only one functional activity study of the role of C/EBP a in the expression of
UGT1A1 using C/EBP a knock-out mice. More UGT isoforms need to be evaluated

using knock-out animals.

C. The UGT isoforms we studied are rat isoforms. Even though humans and rats share
most of UGT1A1 isoforms such as UGT1A1, 1A3, 1AS, 1A6, 1A7 and 1AS, not a
single UGT2B isoform is shared between humans and rats. However, the substrates
used for rat UGT2B isoforms in the studies are also known to be metabolized by
glucuronidation in humans. So the change in specific human UGT isoforms may need

to be evaluated using specific substrates in humans.
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D. We interpretated the discrepancy between the in vitro metabolism and in vivo
clearance using the reserved hepatic capacity to metabolize drugs during hepatic
regeneration. However, there is no any direct evidence to support this notion and the

mechanism of hepatic capacity preservation is still unkown.

E. The pharmacokinetic study using high clearance drug with extraction ratio near 1 is
needed to see the effect of changes in blood flow during hepatic regeneration on drug

clearance.

F. We studied only IV dosing of drugs in this project. However, the change in clearance
of drugs given orally due to the decreased first-pass effect caused by PHx needs to be
evaluated during hepatic regeneration due to the decreased intrinsic clearance of
drugs during hepatic regeneration. We anticipate that there will be more difference
between PHx and control group in the clearance of drugs administrated orally than

intravenously administration.

G. The animal model used in this project reflects the donors and not the recipients. Other
factors such as preexisting disease, cold ischemia, warm reperfusion injury and drug
therapy such as antifungal drugs and antiviral drugs may also affect the drug

metabolizing enzymes in Vitro or in vivo in the recipients. The situations are expected
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to be more complex in recipients and studies need to be conducted in different animal

models reflecting the recipients.

. In addition to the enzyme that were evaluated in this project, other phase I and II
enzymes also contribute to the clearance of drugs used in transplantation. Future

studies should evaluate regulation and activity of such enzymes.

In this study we primarily addressed hepatic drug metabolism. In addition to drug
metabolism, drug transporters also play a significant role in the overall
pharmacokinetics of drugs. Future studies should evaluate the regulation and activity

of drug transporters during hepatic regeneration.

157



Bibliography

Abdel-Razzak Z, Loyer P, Fautrel A, Corcos L, Turlin B, Beaune P and Guillouza A
(1993) Cytokines down-regulate expression of major cytochrome P-450 enzymes in adult
human hepatocytes in primary culture. Mol Pharmacol 44:707-715.

Akerman P, Cote P, Yang SQ, McClain C, Nelson S, Bagby GJ and Diehl AM (1992)
Antibodies to tumor necrosis factor-alpha inhibit liver regeneration after partial
hepatectomy. Am J Physiol 263:G579-G585.

Akiyama TE and Gonzalez FJ (2003) Regulation of P450 genes by liver-enriched
transcription factors and nuclear receptors. Biochim Biophys Acta 1619:223-234.

Alkharfy KM and Frye RF (2002) Sensitive liquid chromatographic method using
fluorescence detection for the determination of estradiol 3- and 17-glucuronides in rat and
human liver microsomal incubations: formation kinetics. J Chromatogr B Analyt Technol
Biomed Life Sci 774:33-38.

Bak T, Wachs M, Trotter J, Everson G, Trouillot T, Kugelmas M, Steinberg T and Kam I
(2001) Adult-to-adult living donor liver transplantation using right-lobe grafts: results and
lessons learned from a single-center experience. Liver Transpl 7:680-686.

Baumann H and Gauldie J (1994) The acute phase response. Immunol Today 15:74-80.

Beigneux AP, Moser AH, Shigenaga JK, Grunfeld C and Feingold KR (2002) Reduction
in cytochrome P-450 enzyme expression is associated with repression of CAR
(constitutive androstane receptor) and PXR (pregnane X receptor) in mouse liver during
the acute phase response. Biochem Biophys Res Commun 293:145-149.

Bertz RJ and Granneman GR (1997) Use of in vitro and in vivo data to estimate the
likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 32:210-258.

Biancofiore G, Bindi ML, Baldassarri R, Romanelli AM, Catalano G, Filipponi F, Vagelli
A and Mosca F (2002) Antifungal prophylaxis in liver transplant recipients: a randomized
placebo-controlled study. Transpl Int 15:341-347.

Broelsch CE, Whitington PF, Emond JC, Heffron TG, Thistlethwaite JR, Stevens L, Piper
J, Whitington SH and Lichtor JL (1991) Liver transplantation in children from living
related donors. Surgical techniques and results. Ann Surg 214:428-437.

Broelsch CE, Malago M, Testa G and Valentin Gamazo C (2000) Living donor liver

158



transplantation in adults: outcome in Europe. Liver Transpl 6 (Suppl 2):S64-S65.

Brouwer KL and Jones JA (1990) Altered hepatobiliary disposition of acetaminophen
metabolites after phenobarbital pretreatment and renal ligation: evidence for impaired
biliary excretion and a diffusional barrier. J Pharmacol Exp Ther 252:657-664.

Brunner LJ, Bennett WM and Koop DR (1998) Cyclosporine suppresses rat hepatic
cytochrome P450 in a time-dependent manner. Kidney Int 54:216-223.

Brunner LJ, Werner U and Gravenall CE (2000) Effect of dose on cyclosporine-induced
suppression of hepatic cytochrome P450 3A2 and 2Cl11. Eur J Pharm Biopharm
49:129-135.

Bullingham R, Monroe S, Nicholls A, and Hale M (1996a) Pharmacokinetics and
bioavailability of mycophenolate mofetil in healthy subjects after single-dose oral and
intravenous administration. J Clin Pharmacol 36:315-324.

Bullingham RE, Nicholls A, and Hale M (1996b) Pharmacokinetics of mycophenolate
mofetil (RS61443): a short review. Transplant Proc 28:925-929.

Bullingham RE, Nicholls AJ and Kamm BR (1998) Clinical pharmacokinetics of
mycophenolate mofetil. Clin Pharmacokinet 34:429-455.

Burchell B (1999) Transformation reactions: glucuronidation, in Handbook of drug
metabolism (Woolf TF ed) pp 164, Marcell Dekker, New York.

Burckart GJ, Frye RF, Kelly P, Branch RA, Jain A, Fung JJ, Starzl TE and
Venkataramanan R (1998) Induction of CYP2EI activity in liver transplant patients as
measured by chlorzoxazone 6-hydroxylation. Clin Pharmacol Ther 63:296-302.

Busuttil RW and Goss JA (1999) Split liver transplantation. Ann Surg 229:313-321.
Catania VA, Luquita MG, Sanchez Pozzi EJ and Mottino AD (1998) Enhancement of
intestinal UDP-glucuronosyltranferase activity in partially hepatectomized rats. Biochim
Biophys Acta 1380:345-353.

Chang TH, Hakamada K, Toyoki Y, Tsuchida S and Sasaki M (2004) Expression of
MRP2 and MRP3 during liver regeneration after 90% partial hepatectomy in rats.
Transplantation 77:22-27.

Chen C, Hennig GE and Manautou JE (2003) Hepatobiliary excretion of acetaminophen

159



glutathione conjugate and its derivatives in transport-deficient (TR-) hyperbilirubinemic
rats. Drug Metab Dispos 31:798-804.

Chen W, Koenigs LL, Thompson SJ, Peter RM, Rettie AE, Trager WF and Nelson SD
(1998) Oxidation of acetaminophen to its toxic quinone imine and nontoxic catechol
metabolites by baculovirus-expressed and purified human cytochromes P450 2E1 and
2A6. Chem Res Toxicol 11:295-301.

Chen JQ, Strom A, Gustafsson JA and Morgan ET (1995) Suppression of the constitutive
expression of cytochrome P-450 2C11 by cytokines and interferons in primary cultures of
rat hepatocytes: comparison with induction of acute-phase genes and demonstration that
CYP2C11 promoter sequences are involved in the suppressive response to interleukins 1
and 6. Mol Pharmacol 47:940-947.

Congiu M, Mashford ML, Slavin JL and Desmond PV (2002) UDP
glucuronosyltransferase mRNA levels in human liver disease. Drug Metab Dispos
30:129-134.

Coughlin JP, Austen WG Jr, Donahoe PK and Russell WE (1987) Liver regeneration
during immunosuppression. J Pediatr Surg 22:566-570.

Cressman DE, Greenbaum LE, DeAngelis RA, Ciliberto G, Furth EE, Poli V and Taub R
(1996) Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice.
Science 274:1379-1383.

Davies B and Morris T (1993) Physiological Parameters in Laboratory Animals and
Humans. Pharm Res 10:1093-1095.

Davis DC, Potter WZ, Jollow DJ and Mitchell JR (1974) Species differences in hepatic
glutathione depletion, covalent binding and hepatic necrosis after acetaminophen. Life Sci
14:2099-2109.

Davis M, Simmons CJ, Harrison NG and Williams R (1976) Paracetamol overdose in
man: relationship between pattern of urinary metabolites and severity of liver damage. Q

J Med 45:181-191.

Diehl AM (1991) Nutrition, hormones, metabolism, and liver regeneration. Semin Liver
11:315-320.

Diehl AM, Yin M, Fleckenstein J, Yang SQ, Lin HZ, Brenner DA, Westwick J, Bagby G
and Nelson S (1994) Tumor necrosis factor-alpha induces c-jun during the regenerative

160



response to liver injury. Am J Physiol 267:G552-G561.

Dunn RT 2nd, Kolaja KL and Klaassen CD (1999) Effect of partial hepatectomy on the
expression of seven rat sulphotransferase mRNAs. Xenobiotica 29:583-593.

Eagling VA, Tjia JF and Back DJ (1998) Differential selectivity of cytochrome P450
inhibitors against probe substrates in human and rat liver microsomes. Br J Clin
Pharmacol 45:107-114.

Eguchi S, Sugiyama N, Kawazoe Y, Kawashita Y, Fujioka H, Furui J and Kanematsu T
(1998) Total blood exchange suppresses the early stage of liver regeneration following
partial hepatectomy in rats. Artif Organs 22:847-853.

Emond JC, Heffron TG, Kortz EO, Gonzalez-Vallina R, Contis JC, Black DD and
Whitington PF (1993) Improved results of living-related liver transplantation with routine
application in a pediatric program. Transplantation 55:835-840.

Emoto C, Yamazaki H, Yamasaki S, Shimada N, Nakajima M and Yokoi T (2000)
Characterization of cytochrome P450 enzymes involved in drug oxidations in mouse
intestinal microsomes. Xenobiotica 30:943-953.

Encke J, Uhl W, Stremmel W and Sauer P (2004) Immunosuppression and modulation in
liver transplantation. Nephrol Dial Transplant Suppl 4:iv22-5.

Falany CN and Tephly TR (1983) Separation, purification and characterization of three
isoenzymes of UDP-glucuronyltransferase from rat liver microsomes.
Arch Biochem Biophys 227:248-258.

Fausto N (2000) Liver regeneration. J Hepatol 32(1 Suppl):19-31.

Favre C, Monti JA, Scapini C, Pellegrino J, Carnovale CE and Carrillo MC (1998)
Putrescine decreases cytochrome P450 3A4 levels during liver regeneration in the rat. J
Hepatol 28:700-708.

Fisher MB, Campanale K, Ackermann BL, VandenBranden M and Wrighton SA (2000)
In vitro glucuronidation using human liver microsomes and the pore-forming peptide
alamethicin. Drug Metab Dispos 28:560-566.

Fouad FM, Farrell PG, Marshall WD, Scherer R and Ruhenstroth-Bauer G (1992)
Partially hepatectomized rats: a model for the study of the effect of toxins on the plasma

protein profiles of nascent hepatocytes. J Toxicol Environ Health 36:43-57.

161



Francavilla A, Starzl TE, Barone M, Zeng QH, Porter KA, Zeevi A, Markus PM, van den
Brink MR and Todo S (1991) Studies on mechanisms of augmentation of liver
regeneration by cyclosporine and FK 506. Hepatology 14:140-143.

Fukatsu S, Yano I, Igarashi T, Hashida T, Takayanagi K, Saito H, Uemoto S, Kiuchi T,
Tanaka K, Inui K, Tanaka K and Inui K (2001) Population pharmacokinetics of
tacrolimus in adult recipients receiving living-donor liver transplantation. Eur J Clin
Pharmacol 57:479-484.

Fulop AK, Pocsik E, Brozik M, Karabelyos C, Kiss A, Novak I, Szalai C, Dobozy O and
Falus A (2001) Hepatic regeneration induces transient acute phase reaction: systemic
elevation of acute phase reactants and soluble cytokine receptors. Cell Biol Int
25:585-592.

Galinsky RE and Levy G (1981) Dose- and time-dependent elimination of acetaminophen
in rats: pharmacokinetic implications of cosubstrate depletion. J Pharmacol Exp Ther
219:14-20.

Gill RQ and Sterling RK (2001) Acute liver failure. J Clin Gastroenterol 33:191-198.
Forrest J, Clements J and Prescott L (1982) Clinical pharmacokinetics of paracetamol.
Clin Pharmacokinet 7:93-107.

Glue P and Clement RP (1999) Cytochrome P450 enzymes and drug metabolism--basic
concepts and methods of assessment. Cell Mol Neurobiol 19:309-323.

Green MD, Clarke DJ, Oturu EM, Styczynski PB, Jackson MR, Burchell B and Tephly
TR (1995) Cloning and expression of a rat liver phenobarbital-inducible
UDP-glucuronosyltransferase (2B12) with specificity for monoterpenoid alcohols.

Arch Biochem Biophys 322:460-468.

Gregus Z, Madhu C and Klaassen CD (1988) Species variation in toxication and
detoxication of acetaminophen in vivo: a comparative study of biliary and urinary
excretion of acetaminophen metabolites. J Pharmacol Exp Ther 244:91-99.

Gross CR, Malinchoc M, Kim WR, Evans RW, Wiesner RH, Petz JL, Crippin JS,
Klintmalm GB, Levy MF, Ricci P, Therneau TM and Dickson ER (1999) Quality of life
before and after liver transplantation for cholestatic liver disease. Hepatology
29:356-364.

Groth CG, Backman L, Morales JM, Calne R, Kreis H, Lang P, Touraine JL, Claesson K,

162



Campistol JM, Durand D, Wramner L, Brattstrom C and Charpentier B (1999) Sirolimus
(rapamycin)-based therapy in human renal transplantation: similar efficacy and different
toxicity compared with cyclosporine. Sirolimus European Renal Transplant Study Group.
Transplantation 67:1036-1042.

Haber BA, Mohn KL, Diamond RH and Taub R (1993) Induction patterns of 70 genes
during nine days after hepatectomy define the temporal course of liver regeneration. J
Clin Invest 91:1319-1326.

Haimeur A, Conseil G, Deeley RG and Cole SP (2004) The MRP-related and
BCRP/ABCG2 multidrug resistance proteins: biology, substrate specificity and regulation.
Curr Drug Metab 5:21-53.

Hakkola J, Hu Y and Ingelman-Sundberg M (2003) Mechanisms of down-regulation of
CYP2EI expression by inflammatory cytokines in rat hepatoma cells. J Pharmacol Exp
Ther 304:1048-1054.

Hansen AJ, Lee YH, Gonzalez FJ and Mackenzie PI (1997) HNF1 alpha activates the rat
UDP glucuronosyltransferase UGT2B1 gene promoter. DNA Cell Biol 16:207-214.

Hansen AJ, Lee YH, Sterneck E, Gonzalez FJ and Mackenzie PI (1998) C/EBPalpha is a
regulator of the UDP glucuronosyltransferase UGT2B1 gene. Mol Pharmacol
53:1027-1033.

Hara H and Adachi T (2002) Contribution of hepatocyte nuclear factor-4 to
down-regulation of CYP2D6 gene expression by nitric oxide. Mol Pharmacol
61:194-200.

Harihara Y, Sano K, Makuuchi M, Kawarasaki H, Takayama T, Kubota K, Ito M, Mizuta
K, Yoshino H, Hirata M, Kita Y, Hisatomi S, Kusaka K, Miura Y and Hashizume K (2000)
Correlation between graft size and necessary tacrolimus dose after living-related liver
transplantation. Transplant Proc 32:2166-2167.

Hayashi PH and Trotter JF (2002) Review article: adult-to-adult right hepatic lobe living
donor liver transplantation. Aliment Pharmacol Ther 16:1833-1841.

Higgins GM and Anderson RM (1931) Experimental pathology of the liver. I: restoration
of the liver of the white rat following partial surgical removal. Arch Pathol 12:186-202.

Hinson JA, Pumford NR and Roberts DW (1995) Mechanisms of acetaminophen toxicity:
immunochemical detection of drug-protein adducts. Drug Metab Rev 27:73-92.

163



Hirohashi T, Suzuki H and Sugiyama Y (1999) Characterization of the transport
properties of cloned rat multidrug resistance-associated protein 3 (MRP3). J Biol Chem
274:15181-15185.

Holtzman JL (1995) The role of covalent binding to microsomal proteins in the
hepatotoxicity of acetaminophen. Drug Metab Rev 27:277-297.

Humur A, Kosari K, Sieaff TD, Glessing B, Gomes M, Dietz C, Rosen G, Lake J and
Payne WD (2004) Liver regeneration after adult living donor and deceased donor
split-liver transplants. Liver Transpl 10:374-378.

Ishii Y, Hansen AJ and Mackenzie PI (2000) Octamer transcription factor-1 enhances
hepatic  nuclear  factor-lalpha-mediated activation of the human UDP
glucuronosyltransferase 2B7 promoter. Mol Pharmacol 57:940-947.

Ishizuka M, Yoshino S, Yamamoto Y, Yamamoto H, Imaoka S, Funae Y, Masuda M,
Iwata H, Kazusaka A and Fujita S (1997) Isozyme selective alterations of the expression

of cytochrome P450 during regeneration of male rat liver following partial hepatectomy.
Xenobiotica 27:923-931.

Iversen PL, Liu Z and Franklin MR (1985) Selective changes in cytochrome P-450 and
UDP-glucuronosyltransferase subpopulations following partial hepatectomy in rats.
Toxicol Appl Pharmacol 78:10-18.

Iwai M, Cui TX, Kitamura H, Saito M and Shimazu T (2001) Increased secretion of
tumour necrosis factor and interleukin 6 from isolated, perfused liver of rats after partial
hepatectomy. Cytokine 13:60-64.

Iwasaki K, Shiraga T, Nagase K, Hirano K, Nozaki K and Noda K (1991)
Pharmacokinetic study of FK 506 in the rat. Transplant Proc 23:2757-2759.

Iwasaki K, Shiraga T, Nagase K, Tozuka Z, Noda K, Sakuma S, Fujitsu T, Shimatani K,
Sato A and Fujioka M (1993) Isolation, identification, and biological activities of
oxidative metabolites of FK506, a potent immunosuppressive macrolide lactone. Drug
Metab Dispos 21:971-977.

Iwasaki K, Shiraga T, Matsuda H, Nagase K, Tokuma Y, Hata T, Fujii Y, Sakuma S,
Fujitsu T and Fujikawa A (1995) Further metabolism of FK506 (tacrolimus).
Identification and biological activities of the metabolites oxidized at multiple sites of
FK506. Drug Metab Dispos 23:28-34.

164



Jollow DJ, Thorgeirsson SS, Potter WZ, Hashimoto M and Mitchell JR (1974)
Acetaminophen-induced hepatic necrosis. VI. Metabolic disposition of toxic and nontoxic
doses of acetaminophen. Pharmacology 12:251-271.

Jover R, Bort R, Gomez-Lechon MJ and Castell JV (1998) Re-expression of C/EBP alpha
induces CYP2B6, CYP2C9 and CYP2D6 genes in HepG2 cells. FEBS Lett 431:227-230.

Jurim O, Shackleton CR, McDiarmid SV, Martin P, Shaked A, Millis JM, Imagawa DK,
Olthoff KM, Maxfield A and Pakrasi AL (1995) Living-donor liver transplantation at
UCLA. Am J Surg 169:529-532.

Kahn D, Makowka L, Lai H, Eagon PK, Dindzans V, Starzl TE and Van Thiel DH (1990)
Cyclosporine augments hepatic regenerative response in rats. Dig Dis Sci 35:392-398.

Kaptein A, Paillard V and Saunders M (1996) Dominant negative stat3 mutant inhibits
interleukin-6-induced Jak-STAT signal transduction. J Biol Chem 271:5961-5964.

Kasahara M, Kiuchi T, Uryuhara K, Takakura K, Egawa H, Asonuma K, Uemoto S,
Inomata Y and Tanaka K (1998) Auxiliary partial orthotopic liver transplantation as a
rescue for small-for-size grafts harvested from living donors. Transplant Proc
30:132-133.

Kawasaki S, Makuuchi M, Matsunami H, Hashikura Y, Ikegami T, Nakazawa Y, Chisuwa
H, Terada M and Miyagawa S (1998) Living related liver transplantation in adults. Ann
Surg 227:269-274.

Kessler FK, Kessler MR, Auyeung DJ, and Ritter JK (2002) Glucuronidation of
acetaminophen catalyzed by multiple rat phenol UDP-glucuronosyltransferases. Drug
Metab Dispos 30:324-330.

Khatsenko OG, Gross SS, Rifkind AB and Vane JR (1993) Nitric oxide is a mediator of
the decrease in cytochrome P450-dependent metabolism caused by immunostimulants.
Proc Natl Acad Sci U SA90:11147-11151.

Khatsenko O and Kikkawa Y (1997) Nitric oxide differentially affects constitutive
cytochrome P450 isoforms in rat liver. J Pharmacol Exp Ther 280:1463-1470.

Kimura Y, Matsuo M, Takahashi K, Saeki T, Kioka N, Amachi T and Ueda K (2004) ATP
hydrolysis-dependent multidrug efflux transporter: MDR1/P-glycoprotein. Curr Drug
Metab 5:1-10.

165



King CD, Green MD, Rios GR, Coffman BL, Owens IS, Bishop WP and Tephly TR
(1996) The glucuronidation of exogenous and endogenous compounds by stably
expressed rat and human UDP-glucuronosyltransferase 1.1. Arch Biochem Biophys
332:92-100.

Kobayashi M, Saitoh H, Kobayashi M, Tadano K, Takahashi Y and Hirano T (2004)
Cyclosporin A, but not tacrolimus, inhibits the biliary excretion of mycophenolic acid
glucuronide possibly mediated by multidrug resistance-associated protein 2 in rats. J
Pharmacol Exp Ther 309:1029-1035.

Koj A (1996) Initiation of acute phase response and synthesis of cytokines. Biochim
Biophys Acta 1317:84-94.

Kordula T, Rokita H, Koj A, Fiers W, Gauldie J and Baumann H (1991) Effects of
interleukin-6 and leukemia inhibitory factor on the acute phase response and DNA
synthesis in cultured rat hepatocytes. Lymphokine Cytokine Res 10:23-26.

Kostrubsky VE, Ramachandran V, Venkataramanan R, Dorko K, Esplen JE, Zhang S,
Sinclair JF, Wrighton SA and Strom SC (1999) The use of human hepatocyte cultures to
study the induction of cytochrome P-450. Drug Metab Dispos 27:887-894.

Kurata Y, Makinodan F, Matsumoto J, Toyota N and Tanaka K (2000) Partial
hepatectomy of marmoset: clinical and pathological effects and utility in microsomal
enzyme analysis. Exp Anim 49:91-96.

Kwak MK, Lee WI, Kim ND and Lee MG (1998) Metabolic changes of acetaminophen
after intravenous administration to rats pretreated with 2-(allylthio)pyrazine. Biopharm
Drug Dispos 19:273-277.

LaBrecque DR, Feigenbaum A and Bachur NR (1978) Diurnal rhythm: effects on hepatic
regeneration and hepatic regenerative stimulator substance. Science 199:1082-1084.

Lampen A, Christians U, Guengerich FP, Watkins PB, Kolars JC, Bader A, Gonschior AK,
Dralle H, Hackbarth I and Sewing KF (1995) Metabolism of the immunosuppressant
tacrolimus in the small intestine: cytochrome P450, drug interactions, and interindividual
variability. Drug Metab Dispos 23:1315-1324.

Lecointre K, Furlan V and Taburet AM (2002) In vitro effects of tacrolimus on human
cytochrome P450. Fundam Clin Pharmacol 16:455-460.

166



Lee YH, Sauer B, Johnson PF and Gonzalez FJ (1997) Disruption of the c/ebp alpha gene
in adult mouse liver. Mol Cell Biol 17:6014-6022.

Levesque E, Beaulieu M, Guillemette C, Hum DW and Belanger A (1998) Effect of
interleukins on  UGT2B15 and UGT2B17 steroid uridine diphosphate
glucuronosyltransferase expression and activity in the LNCaP cell line. Endocrinology
139:2375-2381.

Levy G and Yamada H (1971) Drug biotransformation interactions in man. 3.
Acetaminophen and salicylamide. J Pharm Sci 60:215-221.

Lhoest G, Maton N and Verbeeck RK (1993) Isolation and identification of a novel
isomerized epoxide metabolite of FK-506 from erythromycin-induced rabbit liver
microsomes. Drug Metab Dispos 21:850-854.

Lindroos PM, Zarnegar R and Michalopoulos GK (1991) Hepatocyte growth factor
(hepatopoietin A) rapidly increases in plasma before DNA synthesis and liver
regeneration stimulated by partial hepatectomy and carbon tetrachloride administration.
Hepatology 13:743-750.

Lo CM, Fan ST, Liu CL, Wei WI, Lo RJ, Lai CL, Chan JK, Ng IO, Fung A and Wong J
(1997) Adult-to-adult living donor liver transplantation using extended right lobe grafts.
Ann Surg 226:261-269.

Lowry SF (1993) Cytokine mediators of immunity and inflammation. Arch Surg
128:1235-1241.

Lupp A, Kuhn UD, Herwig R, Karge E, Rost M, Scheele J and Fleck C (2003)
Cyclosporine A and tacrolimus: in vitro investigations on the differential interactions with
the cytochrome P450 system in rat and human liver. Exp Toxicol Pathol 54:467-473.

Mackenzie PI, Mojarrabi B, Meech R and Hansen A (1996) Steroid UDP
glucuronosyltransferases: characterization and regulation. J Endocrinol 150:S79-86.

Mackenzie PI, Owens IS, Burchell B, Bock KW, Bairoch A, Belanger A, Fournel-Gigleux
S, Green M, Hum DW, Iyanagi T, Lancet D, Louisot P, Magdalou J, Chowdhury JR,
Ritter JK, Schachter H, Tephly TR, Tipton KF and Nebert DW (1997) The UDP
glycosyltransferase gene superfamily: recommended nomenclature update based on
evolutionary divergence. Pharmacogenetics 7:255-269.

167



Mackenzie PI (2000) Identification of uridine diphosphate glucuronosyltransferases
involved in the metabolism and clearance of mycophenolic acid. Ther Drug Monit
22:10-13.

Mackenzie PI, Gregory PA, Gardner-Stephen DA, Lewinsky RH, Jorgensen BR,
Nishiyama T, Xie W and Radominska-Pandya A (2003) Regulation of UDP
glucuronosyltransferase genes. Curr Drug Metab 4:249-257.

Makowka L, Svanas G, Esquivel C, Venkataramanan R, Todo S, Iwatsuki S, Van Thiel D
and Starzl TE (1986) Effect of cyclosporin on hepatic regeneration. Surg Forum
37:352-354.

Makuuchi M, Kawarazaki H, Iwanaka T, Kamada N, Takayama T and Kumon M (1992)
Living related liver transplantation. Surg Today 22:297-300.

Manyike PT, Kharasch ED, Kalhorn TF and Slattery JT (2000) Contribution of CYP2E1
and CYP3A to acetaminophen reactive metabolite formation. Clin Pharmacol Ther
67:275-282.

Marcos A, Ham JM, Fisher RA, Olzinski AT and Posner MP (2000) Single-center
analysis of the first 40 adult-to-adult living donor liver transplants using the right lobe.
Liver Transpl 6:296-301.

Masson S, Daveau M, Hiron M, Lyoumi S, Lebreton JP, Teniere P and Scotte M (1999)
Differential regenerative response and expression of growth factors following
hepatectomy of variable extent in rats. Liver 19:312-317.

Matsunami H, Kawasaki S, Ishizone S, Hashikura Y, Ikegami T, Makuuchi M,
Kawarasaki H, Iwanaka T, Nose A and Takemura M (1992) Serial changes of h-HGF and
IL-6 in living-related donor liver transplantation with special reference to their
relationship to intraoperative portal blood flow. Transplant Proc 24:1971-1972.

Maza AM, Gascon AR, Hernandez RM, Solinis MA, Calvo MB and Pedraz J (2001)
Influence of hepatic regeneration after partial hepatectomy on theophylline
pharmacokinetics in rats. Eur J Drug Metab Pharmacokinet 26:53-58.

Mazzaferro V, Porter KA, Scotti-Foglieni CL, Venkataramanan R, Makowka L, Rossaro
L, Francavilla A, Todo S, Van Thiel DH and Starzl TE (1990) The hepatotropic influence
of cyclosporine. Surgery 107:533-539.

McAlister VC, Peltekian KM, Malatjalian DA, Colohan S, MacDonald S,

168



Bitter-Suermann H and MacDonald AS (2001) Orthotopic liver transplantation using
low-dose tacrolimus and sirolimus. Liver Transpl 7:701-708.

Mead JE and Fausto N (1989) Transforming growth factor alpha may be a physiological
regulator of liver regeneration by means of an autocrine mechanism. Proc Natl Acad Sci
USAB86:1558-1562.

Michalopoulos GK and DeFrances MC (1997) Liver regeneration. Science 276:60-66.

Mojarrabi B and Mackenzie PI (1998) Characterization of two UDP
glucuronosyltransferases that are predominantly expressed in human colon. Biochem
Biophys Res Commun 247:704-709.

Moldeus P (1978) Paracetamol metabolism and toxicity in isolated hepatocytes from rat
and mouse. Biochem Pharmacol 27:2859-2863.

Moller A, Iwasaki K, Kawamura A, Teramura Y, Shiraga T, Hata T, Schafer A and Undre
NA (1999) The disposition of 14C-labeled tacrolimus after intravenous and oral
administration in healthy human subjects. Drug Metab Dispos 27:633-636.

Monshouwer M, Witkamp RF, Nujmeijer SM, Van Amsterdam JG and Van Miert AS
(1996) Suppression of cytochrome P450- and UDP glucuronosyl transferase-dependent
enzyme activities by proinflammatory cytokines and possible role of nitric oxide in
primary cultures of pig hepatocytes. Toxicol Appl Pharmacol 137:237-244.

Morgan ET (1997) Regulation of cytochromes P450 during inflammation and infection.
Drug Metab Rev 29:1129-1188.

Morgan ET (2001) Regulation of cytochrome p450 by inflammatory mediators: why and
how? Drug Metab Dispos 29:207-212.

Morgan GR, John D, Diflo T and Teperman L (2001) Tacrolimus dosage adjustments in
adult right lobe liver transplant recipients (abstract). Am J Transpl 1:369.

Morissette P, Albert C, Busque S, St-Louis G and Vinet B (2001) In vivo higher
glucuronidation of mycophenolic acid in male than in female recipients of a cadaveric
kidney allograft and under immunosuppressive therapy with mycophenolate mofetil. Ther
Drug Monit 23:520-525.

Moshage HJ, Princen HM, van Pelt J, Roelofs HM, Nieuwenhuizen W and Yap SH (1990)
Differential effects of endotoxin and fibrinogen degradation products (FDPS) on liver

169



synthesis of fibrinogen and albumin: evidence for the involvement of a novel monokine
in the stimulation of fibrinogen synthesis induced by FDPS. Int J Biochem 22:1393-1400.

Mueller L, Grotelueschen R, Meyer J, Vashist YK, Abdulgawad A, Wilms C, Hillert C,
Rogiers X and Broering DC (2003) Sustained function in atrophying liver tissue after
portal branch ligation in the rat. J Surg Res 114:146-155.

Narayanan R, LeDuc B and Williams DA (2000) Determination of the kinetics of rat
UDP-glucuronosyltransferases (UGTs) in liver and intestine using HPLC. J Pharm
Biomed Anal 22:527-540.

Nikolov EN and Dabeva MD (1983) Turnover of ribosomal 28S and 18S rRNA during rat
liver regeneration. Biosci Rep 3:781-788.

Ogawa K, Suzuki H, Hirohashi T, Ishikawa T, Meier PJ, Hirose K, Akizawa T, Yoshioka
M, and Sugiyama Y (2000) Characterization of inducible nature of MRP3 in rat liver. Am
J Physiol 278: G438-G446.

Okano T, Ohwada S, Nakasone Y, Sato Y, Ogawa T, Tago K and Morishita Y (2001)
Blood transfusion causes deterioration in liver regeneration after partial hepatectomy in
rats. J Surg Res 101:157-165.

Palmes D and Spiegel HU (2004) Animal models of liver regeneration. Biomaterials
25:1601-1611.

Park JM, Lin YS, Calamia JC, Thummel KE, Slattery JT, Kalhorn TF, Carithers RL Jr,
Levy AE, Marsh CL and Hebert MF (2003) Transiently altered acetaminophen
metabolism after liver transplantation. Clin Pharmacol Ther 73:545-553.

Pascussi JM, Gerbal-Chaloin S, Pichard-Garcia L, Daujat M, Fabre JM, Maurel P and
Vilarem MJ (2000) Interleukin-6 negatively regulates the expression of pregnane X
receptor and constitutively activated receptor in primary human hepatocytes. Biochem
Biophys Res Commun 274:707-713.

Pearce RE, McIntyre CJ, Madan A, Sanzgiri U, Draper AJ, Bullock PL, Cook DC, Burton
LA, Latham J, Nevins C and Parkinson A (1996) Effects of freezing, thawing, and storing
human liver microsomes on cytochrome P450 activity. Arch Biochem Biophys
331:145-169.

Pellizzer AM, Smid SA, Strasser SI, Lee CS, Mashford ML and Desmond PV (1996)
UDP-glucuronosyltransferase in the regenerating rat liver. J Gastroenterol Hepatol

170



11:1130-1136.

Perotti BY, Okudaira N, Prueksaritanont T and Benet LZ (1994a) FK 506 metabolism in
male and female rat liver microsomes. Drug Metab Dispos 22:85-89.

Perotti BY, Prueksaritanont T and Benet LZ (1994b) HPLC assay for FK 506 and two
metabolites in isolated rat hepatocytes and rat liver microsomes. Pharm Res 11:844-847.

Picard N, Ratanasavanh D, Premaud A, Le Meur Y and Marquet P (2005) Identification
of the udp-glucuronosyltransferase isoforms involved in mycophenolic Acid phase ii
metabolism. Drug Metab Dispos 33:139-146.

Potter WZ, Thorgeirsson SS, Jollow DJ and Mitchell JR (1974) Acetaminophen-induced
hepatic necrosis. V. Correlation of hepatic necrosis, covalent binding, and glutathione
depletion in hamsters. Pharmcology 12:129-143.

Ratcliffe J, Longworth L, Young T, Bryan S, Burroughs A, Buxton M and
Cost-Effectiveness of Liver Transplantation Team (2002) Assessing health-related quality
of life pre- and post-liver transplantation: a prospective multicenter study. Liver Transpl
8:263-270.

Rela M, Vougas V, Muiesan P, Vilca-Melendez H, Smyrniotis V, Gibbs P, Karani J,
Williams R and Heaton N (1998) Split liver transplantation: King's College Hospital
experience. Ann Surg 227:282-288.

Rittmaster RS, Leopold CA, Thompson DL (1989) Androgen glucuronyl transferase
activity in rat liver, evidence for the importance of hepatic tissue in 5 alpha-reduced
androgen metabolism. J Steroid Biochem 33:1207-1212.

Rogiers X, Malago M, Gawad K, Jauch KW, Olausson M, Knoefel WT, Gundlach M,
Bassas A, Fischer L, Sterneck M, Burdelski M and Broelsch CE (1996) In situ splitting of
cadaveric livers. The ultimate expansion of a limited donor pool. Ann Surg 224:331-339.

Rosendale JD, McBride MA and Kauffman HM (1997) Comparison of cadaveric and
living liver donors. Transplant Proc 29:3408-3409.

Sattler M, Guengerich FP, Yun CH, Christians U and Sewing KF (1992) Cytochrome

P-450 3A enzymes are responsible for biotransformation of FK506 and rapamycin in man
and rat. Drug Metab Dispos 20:753-761.

171



Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M, Gherardi E and
Birchmeier C (1995) Scatter factor/hepatocyte growth factor is essential for liver
development. Nature 373:699-702.

Seaman DS (2001) Adult living donor liver transplantation: current status. J Clin
Gastroenterol 33:97-106.

Senafi SB, Clarke DJ and Burchell B (1994) Investigation of the substrate specificity of a
cloned expressed human bilirubin UDP-glucuronosyltransferase: UDP-sugar specificity
and involvement in steroid and xenobiotic glucuronidation. Biochem J 303:233-240.

Shiffman ML, Brown RS Jr, Olthoff KM, Everson G, Miller C, Siegler M and Hoofnagle
JH (2002) Living donor liver transplantation: summary of a conference at The National
Institutes of Health. Liver Transpl 8:174-188.

Shimada T, Yamazaki H, Mimura M, Inui Y and Guengerich FP (1994) Interindividual
variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs,
carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30
Caucasians. J Pharmacol Exp Ther 270:414-423.

Shipkova M, Niedmann PD, Armstrong VW, Schutz E, Wieland E, Shaw LM and
Oellerich M (1998) Simultaneous determination of mycophenolic acid and its
glucuronide in human plasma using a simple high-performance liquid chromatography
procedure. Clin Chem 44:1481-1488.

Shipkova M, Strassburg CP, Braun F, Streit F, Grone HJ, Armstrong VW, Tukey RH,
Oellerich M and Wieland E (2001) Glucuronide and glucoside conjugation of
mycophenolic acid by human liver, kidney and intestinal microsomes. Br J Pharmacol
132:1027-1034.

Shiraga T, Matsuda H, Nagase K, Iwasaki K, Noda K, Yamazaki H, Shimada T and Funae
Y (1994) Metabolism of FK506, a potent immunosuppressive agent, by cytochrome P450
3A enzymes in rat, dog and human liver microsomes. Biochem Pharmacol 47:727-735.

Siegers CP, Strubelt O and Schutt A (1978) Relations between hepatotoxicity and
pharmacokinetics of paracetamol in rats and mice. Pharmacology 16:273-278.

Siewert E, Bort R, Kluge R, Heinrich PC, Castell J and Jover R (2000) Hepatic

cytochrome P450 down-regulation during aseptic inflammation in the mouse is
interleukin 6 dependent. Hepatology 32:49-55.

172



Sindhi R, Rosendale J, Mundy D, Taranto S, Baliga P, Reuben A, Rajagopalan PR, Hebra
A, Tagge E and Othersen HB Jr (1999) Impact of segmental grafts on pediatric liver
transplantation--a review of the United Network for Organ Sharing Scientific Registry
data (1990-1996). J Pediatr Surg 34:107-110.

Slattery JT and Levy G (1979) Acetaminophen kinetics in acutely poisoned patients. Clin
Pharmacol Ther 25:184-195.

Slitt AL, Cherrington NJ, Maher JM and Klaassen CD (2003) Induction of multidrug
resistance protein 3 in rat liver is associated with altered vectorial excretion of
acetaminophen metabolites. Drug Metab Dispos 31:1176-1186.

Sobczak J, Tournier MF, Lotti AM and Duguet M (1989) Gene expression in regenerating
liver in relation to cell proliferation and stress. Eur J Biochem 180:49-53.

Staatz CE and Tett SE (2002) Comparison of two population pharmacokinetic programs,
NONMEM and P-PHARM, for tacrolimus. Eur J Clin Pharmacol 58:597-605.

Stangou AJ, Heaton ND, Rela M, Pepys MB, Hawkins PN and Williams R (1998)
Domino hepatic transplantation using the liver from a patient with familial amyloid
polyneuropathy. Transplantation 65:1496-1498.

Starkel P, Laurent S, Petit M, Van Den Berge V, Lambotte L and Horsmans Y (2000)
Early down-regulation of cytochrome P450 3A and 2E1 in the regenerating rat liver is not
related to the loss of liver mass or the process of cellular proliferation. Liver 20:405-410.

Strasser SI, Mashford ML and Desmond PV (1998) Regulation of uridine diphosphate
glucuronosyltransferase during the acute-phase response. J Gastroenterol Hepatol
13:88-94.

Strong RW, Lynch SV, Ong TH, Matsunami H, Koido Y and Balderson GA (1990)
Successful liver transplantation from a living donor to her son. N Engl J Med
322:1505-1507.

Taber DJ, Dupuis RE, Fann AL, Andreoni KA, Gerber DA, Fair JH, Johnson MW and
Shrestha R (2002) Tacrolimus dosing requirements and concentrations in adult living
donor liver transplant recipients. Liver Transpl 8:219-223.

Tamasi V, Kiss A, Dobozy O, Falus A, Vereczkey L and Monostory K (2001) The effect

of dexamethasone on P450 activities in regenerating rat liver. Biochem Biophys Res
Commun 286:239-242.

173



Thummel KE, Lee CA, Kunze KL, Nelson SD and Slattery JT (1993) Oxidation of
acetaminophen to N-acetyl-p-aminobenzoquinone imine by human CYP3A4. Biochem
Pharmacol 45:1563-1569.

Tian H, Ou J, Strom SC and Venkataramanan R (2005) Pharmacokinetics of Tacrolimus
and Mycophenolic Acid Are Altered but Recover at Different Times during Hepatic
Regeneration in Rats.Drug Metab Dispos 33:329-335.

Tocci MJ, Matkovich DA, Collier KA, Kwok P, Dumont F, Lin S, Degudicibus S,
Siekierka JJ, Chin J and Hutchinson NI (1989) The immunosuppressant FK506
selectively inhibits expression of early T cell activation genes. J Immunol 143:718-726.

Todo S, Furukawa H, Jin MB and Shimamura T (2000) Living donor liver transplantation
in adults: outcome in Japan. Liver Transpl 6 (Suppl 2):S66-S72.

Tomiya T, Tani M, Yamada S, Hayashi S, Umeda N and Fujiwara K (1992) Serum
hepatocyte growth factor levels in hepatectomized and nonhepatectomized surgical
patients. Gastroenterology 103:1621-1624.

Troisi R, Militerno G, Hoste E, Decruyenaere J, Colpaert K, Monsieurs K, Colle I, Van
Vlierberghe H and de Hemptinne B (2002) Are reduced tacrolimus dosages needed in the
early postoperative period following living donor liver transplantation in adults?
Transplant Proc 34:1531-1532.

Trotter JF, Stolpman N, Wachs M, Bak T, Kugelmas M, Kam I and Everson GT (2002)
Living donor liver transplant recipients achieve relatively higher immunosuppressant
blood levels than cadaveric recipients. Liver Transpl 8:212-218.

Van De Straat R, De Vries J, Kulkens T, Debets AJ and Vermeulen NP (1986)
Paracetamol, 3-monoalkyl- and 3,5-dialkyl derivatives. Comparison of their microsomal
cytochrome P-450 dependent oxidation and toxicity in freshly isolated hepatocytes.
Biochem Pharmacol 35:3693-3699.

Venkatakrishnan K, Von Moltke LL and Greenblatt DJ (2001) Human drug metabolism
and the cytochromes P450: application and relevance of in vitro models. J Clin
Pharmacol 41:1149-1179.

Venkataramanan R, Swaminathan A, Prasad T, Jain A, Zuckerman S, Warty V,
McMichael J, Lever J, Burckart G and Starzl T (1995) Clinical pharmacokinetics of
tacrolimus. Clin Pharmacokinet 29:404-430.

174



Vos TA, Ros JE, Havinga R, Moshage H, Kuipers F, Jansen PL and Muller M (1999)
Regulation of hepatic transport systems involved in bile secretion during liver
regeneration in rats. Hepatology 29:1833-1839.

Wachs ME, Bak TE, Karrer FM, Everson GT, Shrestha R, Trouillot TE, Mandell MS,
Steinberg TG and Kam 1 (1998) Adult living donor liver transplantation using a right
hepatic lobe. Transplantation 66:1313-1316.

Warren GW, Poloyac SM, Gary DS, Mattson MP and Blouin RA (1999) Hepatic
cytochrome P-450 expression in tumor necrosis factor-alpha receptor (p55/p75) knockout
mice after endotoxin administration. J Pharmacol Exp Ther 288:945-950.

Watari N, Iwai M and Kaneniwa N (1983) Pharmacokinetic study of the fate of
acetaminophen and its conjugates in rats. J Pharmacokinet Biopharm 11:245-272.

Watkins LR, Maier SF and Goehler LE (1995) Immune activation: the role of
pro-inflammatory cytokines in inflammation, illness responses and pathological pain
states. Pain 63:289-302.

Watson CJ, Friend PJ, Jamieson NV, Frick TW, Alexander G, Gimson AE and Calne R
(1999) Sirolimus: a potent new immunosuppressant for liver transplantation.
Transplantation 67:505-509.

Waxman DJ (1999) P450 gene induction by structurally diverse xenochemicals: central
role of nuclear receptors CAR, PXR, and PPAR. Arch Biochem Biophys 369:11-23.

Wiesner RH, Batts KP and Krom RA (1999) Evolving concepts in the diagnosis,
pathogenesis, and treatment of chronic hepatic allograft rejection. Liver Transpl Surg
5:388-400.

Wiesner RH, Rakela J, Ishitani MB, Mulligan DC, Spivey JR, Steers JL and Krom RA
(2003) Recent advances in liver transplantation. Mayo Clin Proc 78:197-210.

Wilson JM, Slattery JT, Forte AJ and Nelson SD (1982) Analysis of acetaminophen
metabolites in urine by high-performance liquid chromatography with UV and
amperometric detection. J Chromatogr 227:453-462.

Winston DJ and Busuttil RW (2002) Randomized controlled trial of oral itraconazole
solution versus intravenous/oral fluconazole for prevention of fungal infections in liver

transplant recipients. Transplantation 74:688-695.

175



Yamada Y, Kirillova I, Peschon JJ and Fausto N (1997) Initiation of liver growth by
tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis
factor receptor. Proc Natl Acad Sci U S A 94:1441-1446.

Zakko WF, Green RM, Gollan JL and Berg CL (1996) Hepatic regeneration is associated
with preservation of microsomal glucuronidation. Hepatology 24:1250-1255.

176



	Table of Contents 
	Chapter 1 Introduction 
	Chapter 2 Impaired Activity and Expression of CYP3A during Hepatic Regeneration in Rats 
	Chapter 3 In Vitro Hepatic Intrinsic Clearance and Pharmacokinetics of Tacrolimus Are Transiently Altered during Hepatic Regeneration in Rats
	Chapter 4 Activity and Expression of Various Isoforms of UGT Are Differentially Regulated during Hepatic Regeneration in Rats 
	Chapter 5 In Vitro Hepatic Intrinsic Clearance and Pharmacokinetics of Mycophenolic Acid Are Transiently Altered during Hepatic Regeneration in Rats
	Chapter 6 Transiently Altered Acetaminophen Metabolism during Hepatic Regeneration in Rats 
	Chapter 7 Summary and Conclusions 
	Bibliography 

	List of Tables 
	Table 1. Common used drugs in transplantation
	Table 2. Mean ( ± SD) Vmax, Km and CLint for the formation of 13-demethyled metabolite (M1) of tacrolimus in hepatic microsomes (N = 4-6 rats)
	Table 3. Pharmacokinetic parameters of tacrolimus (0.6 mg/kg, i.v.) 24 hours, 14 days and 18 days after partial hepatectomy (N = 4 to 6 rats)
	Table 4. Methods for measuring the in vitro activity of UGTs
	Table 5. Primers for real-time PCR analysis of mRNA expressions  
	Table 6. Mean ( ± SD) Vmax, Km and CLint for the formation of mycophenolic acid glucuronide (MPAG) in hepatic microsomes (N = 4-6 rats)
	Table 7. Pharmacokinetic parameters of MPA (20 mg/kg, i.v.) 24 hours, 6 days and 13 days after partial hepatectomy (N = 4 to 5 rats) 

	List of Figures 
	Figure 1. Surgical model of 2/3 partial hepatectomy
	Figure 2. Chemical structure of tacrolimus
	Figure 3. Chemical structure of mycophenolic acid
	Figure 4. Chemical structure of acetaminophen and NAPQI
	Figure 5. Relationship between microsomal protein concentration and the amount of 6β-hydroxytestosterone formed in rat liver microsomes
	Figure 6. Relationship between time of incubation and the amount of 6β-hydroxytestosterone formed in rat liver microsomes
	Figure 7. Recovery of liver mass during hepatic regeneration
	Figure 8. CYP3A activity at different time points during hepatic regeneration
	Figure 9. Immunochemical analysis of the CYP3A protein expression at different time points after initiation of regeneration
	Figure 10. The mRNA expression of control genes at different time points after initiation of regeneration
	Figure 11. The mRNA expression of CYP3A at different time points after initiation of regeneration
	Figure 12. Effect of drug treatments on CYP3A activity during hepatic regeneration
	Figure 13. Relationship between microsomal protein concentration and the amount of 13-demethylated tacrolimus formed in rat liver microsomes
	Figure 14. Relationship between time of incubation and the amount of 13-demethylated tacrolimus formed in rat liver microsomes
	Figure 15. Blood concentrations of tacrolimus vs time profile at different time points after initiation of hepatic regeneration
	Figure 16. The activity and mRNA expression of UGT1A1 at different time points after PHx
	Figure 17. The activity and mRNA expression of UGT1A6/7 at different time points after PHx
	Figure 18. The activity and mRNA expression of UGT2B1/3/6 at different time points after PHx
	Figure 19. The activity and mRNA expression of UGT2B2 at different time points after PHx
	Figure 20. The activity and mRNA expression of UGT2B12 at different time points after PHx
	Figure 21. The mRNA expression of UGT1A2, 1A3, 1A5, 1A8, and 2B8 at different time points after PHx
	Figure 22. The mRNA expression of CAR, PXR, HNF1 and C/EBP α 24 hours after PHx
	Figure 23. Relationship between microsomal protein concentration and the amount of MPAG formed in rat liver microsomes
	Figure 24. Relationship between time of incubation and the amount of MPAG formed in rat liver microsomes
	Figure 25. Plasma concentration of MPA (panel A) and MPAG (panel B) vs time profile at different time points after initiation of hepatic regeneration
	Figure 26. Immunochemical analysis of Mrp2 protein expression (panel A) and mRNA expression of Mrp3 (panel B) 
	Figure 27. Formation of APAP glucuronide in 24-hour urine (dose-dependent effect)
	Figure 28. Formation of APAP sulfate in 24-hour urine (dose-dependent effect)
	Figure 29. Formation of APAP mercapturate in 24-hour urine (dose-dependent effect)
	Figure 30. Formation of APAP glucuronide in 24-hour urine at the dose of 10 mg/kg (time-dependent effect)
	Figure 31. Formation of APAP sulfate in 24-hour urine at the dose of 10 mg/kg (time-dependent effect)
	Figure 32. Formation of APAP mercapturate in 24-hour urine at the dose of 10 mg/kg (time-dependent effect)
	Figure 33. Summary of recovery of liver mass and in vitro activity of different drug metabolizing enzymes after hepatic regeneration


