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Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease affecting 

approximately one million individuals in the United States.  Individuals with lupus are at an 

extremely increased risk (up to 50-fold) to develop coronary heart disease (CHD) compared to 

the general population.  Traditional risk factors are insufficient to explain the increase in risk.  

The presence of anti-phospholipid antibodies (seen at a higher rate in SLE patients than in the 

general population) is suspected to play a role.  CHD is the leading cause of death for both men 

and women of all ethnic groups in the United States.  Understanding the genetic causes of CHD 

in high risk populations, such as individuals with SLE, can help facilitate the understanding of 

CHD in the general population.  Due to the large public health significance of CHD, 

investigating the contributing factors and disease etiology could have a major impact on risk 

assessment and possible treatment of CHD.  One gene involved in lipid metabolism, a major part 

of the development of atherosclerotic plaques and CHD, is paraoxonase-1 (PON1).  PON1 

encodes the enzyme paraoxonase, which inhibits the oxidation of low density lipoprotein (LDL) 

to help prevent its uptake by macrophages, thereby reducing the incidence of atherosclerotic 

plaques.  Eight genetic variants in the PON1 gene were examined to determine their impact on 

SLE disease status, the presence of anti-phospholipid antibodies (APA), and PON activity.  

Polymorphisms in PON1 were not found to have a significant impact on SLE disease status or 

the presence of APA, however three of the polymorphisms studied were found to have a 
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significant impact on PON activity.  While SLE and CHD are complex diseases, likely resulting 

from gene-gene and gene-environment interactions, the identification of these associations 

between PON1 polymorphisms and PON activity may help to clarify the role of PON in CHD 

development and possibly lead to more accurate risk assessment and/or the investigation of 

treatment options for this common disease.   
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1. BACKGROUND AND SIGNIFICANCE 

 

1.1. INTRODUCTION 

Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease that affects 

40 to 50 per 100,000 individuals in the U.S. population (Lawrence et al., 1998).  SLE affects 

primarily women, with female-to-male prevalence ratios estimated at 10-15:1 (Lahita, 1999).  

All ethnic groups are susceptible to SLE; however the incidence in individuals of African 

descent (9.2/100,000) is greater than in whites (3.5/100,000) (McCarty et al., 1995).  Patients 

with SLE have increased morbidity and mortality from coronary heart disease (CHD), with risks 

up to 50 times that of the general population (Manzi, 1997).  Clinical atherosclerotic events have 

been documented in 6 – 12% of SLE patients, while up to 40% of SLE patients are estimated to 

have sub-clinical plaque formation (reviewed in Urowitz and Gladman, 2000).  Atherosclerosis 

and the development of CHD result from genetic and environmental factors combined.  The 

formation of atherosclerotic lesions is thought to be initiated by the oxidation of low density 

lipoprotein (LDL) and subsequent development of foam cells, formed when monocyte-derived 

macrophages take up oxidized LDL.  These foam cells then accumulate in the arterial wall, 

creating an atherosclerotic lesion (Steinberg et al., 1989; Witztum and Steinberg, 1991; Witztum, 

1994).  High density lipoprotein (HDL), on the other hand, has a strong inverse correlation with 

atherosclerosis and CHD.  Its proposed role, in addition to reverse cholesterol metabolism, is to 

protect LDL from oxidative modification, with the involvement of several HDL-associated 

enzymes (Mackness and Durrington, 1995a).   
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Established risk factors for CHD in the general population are insufficient to explain the 

increased risk for atherosclerosis and CHD in SLE patients.  One possible explanation is the 

presence of anti-phospholipid antibodies (APA) in up to 50% of SLE patients vs. 1 – 5 % of the 

general U.S. Caucasian population.   APA are antibodies against phospholipids or plasma 

proteins bound to anionic phospholipids.  Several studies have demonstrated a relationship 

between the LDL oxidation and APA in SLE patients.  It has been proposed that immune 

response by APA to oxidized LDL may play a role in the pathogenesis of atherosclerosis in SLE 

patients.  In fact, it has been shown that in vitro, these antibodies appear to enhance uptake of 

oxidized LDL by macrophages, supporting foam-cell formation (Vaarala et al., 1993; Craig et 

al., 1999; George et al., 1999; Wu et al., 1999; Hayem et al., 2001; Svenungsson et al., 2001).   

 

One factor which may play a role in both LDL oxidation and APA production is paraoxonase 

(PON).  PON, when bound to HDL, has been shown to inhibit LDL oxidation, and low PON 

activity has been associated with increased risk for CHD (Mackness and Durrington, 1995; 

Watson et al., 1995; Durrington et al., 2001).  Three PON genes, PON1, PON2, and PON3, have 

been identified and are linked on chromosome 7.  Genetic variation in these genes has been 

shown to affect PON activity, the extent of LDL oxidation, and the risk for CHD in non-SLE 

patients (Aviram et al., 1998; Mackness et al., 1997, 1998; Durrington et al., 2001; Sanghera et 

al., 1997, 1998).  In the present study, several polymorphisms in the promoter region and coding 

region of PON1 were examined to determine their effects on paraoxonase activity, the presence 

of APA and their association with SLE risk in a cohort of SLE patients and non-SLE controls. 
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1.2. ROLE OF PARAOXONASE (PON) IN LIPID METABOLISM 

Until the 1980s, paraoxonase had been primarily investigated in the field of toxicology due to its 

ability to detoxify by hydrolysis a vast number of organophosphate compounds used as 

insecticides and nerve gases.  The crystal structure of PON1 was recently obtained.  It consists of 

a β-propeller with a unique active site and a catabolic mechanism based on a His-His dyad 

(Harel et al., 2004).  A variety of physiological roles for PON have been proposed, primarily 

related to the anti-atherosclerotic activity of PON.  It is thought that PON protects against the 

action of oxidized LDL by protecting LDL and HDL from oxidation, participating in the 

destruction of oxidized phospholipids, and decreasing macrophage uptake of oxidized LDL 

(Watson et al., 1995; Aviram, 2004; Aviram and Rosenblat, 2004).  Secondary effects of this 

activity include reduction of monocyte adhesion to endothelial cells and macrophage chemotaxis 

that would normally occur due to oxidized phospholipids.  PON1 is found almost exclusively on 

plasma HDL and is expressed in liver.  One study suggests that optimal PON activity requires 

the co-assembly of PON1 and apoA-I on nascent HDL (Oda et al., 2001).  It has been suggested 

that the hydrophobic N-terminus of PON1 binds it to HDL, but the exact mechanism by which 

PON binds to HDL is unknown.  Proposed mechanisms for the influence of PON activity on the 

formation of atherosclerotic lesions include phospholipase A2 action (hydrolysis of platelet 

activating factor and oxidized lipids) and hydrolysis and inactivation of homocysteine 

thiolactone, a risk factor for atherosclerotic vascular disease (Aviram and Rosenblat, 2004).  In 

association with HDL, PON1 is thought to play a role in several HDL functions, such as 

mediation of cholesterol trafficking and limiting the oxidation of LDL (Aviram and Rosenblat, 

2004; Harel et al., 2004).  A proposed mechanism for PON activity is shown in Figure 1.  HDL-

associated PON1 can inhibit foam cell formation via 1) hydrolysis of macrophage oxidized 
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lipids, 2) reduction of macrophage-mediated oxidation of LDL, 3) reduction of oxidized LDL via 

hydrolysis of oxidized lipids in oxidized LDL, and 4) reduction of oxidized LDL uptake via the 

macrophage CD-36 scavenger receptor secondary to cellular oxidized lipid hydrolysis in the 

receptor area (Aviram and Rosenblat, 2004).   

 

 

 

 

Figure 1: Role of Paraoxonase in Macrophage Foam Cell Formation (From Aviram and Rosenblat, 2004)   

 
 
 

1.3. PON ACTIVITY 

In 1986, McElveen et al. reported that serum PON enzyme activity was lower in patients who 

had a myocardial infarction than in control subjects.  Further study showed that PON activity 

was lower in populations with familial hypercholesterolemia, diabetes mellitus, and renal disease 

than in matched controls (both groups have increased risks to develop atherosclerosis).   This 

difference was not due to decreased amounts of PON protein, but lower activity of the PON per 
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unit protein (Mackness et al., 1991; Mackness and Durrington, 1995b; Mackness and Mackness, 

2004).  PON1 activity may differ between individuals by as much as 13-fold, and is known to be 

influenced by many environmental and genetic factors.  These include statins, inflammatory 

factors, infection, growth hormone and homocysteinemia (decrease PON activity) and 

dexamethasone, aspirin, vitamins C and E, and exercise (increase PON activity) (reviewed in 

Getz and Reardon, 2004).   

Traditionally, PON activity has been measured in vitro using synthetic substrates, including 

paraoxon, phenylacetate, and diazinon.  The relationship of PON activity against these substrates 

to PON’s physiological activity is unclear.  It has been shown that the active site requirements 

for arylesterase/paraoxonase hydrolysis are different from those for the inhibition of LDL 

oxidation (Aviram et al., 1998).  It has been reported that PON activity, rather than haplotype 

analysis is a predictor of vascular disease (Jarvik et al., 2003b).   

 

1.4. MOLECULAR ASPECTS OF PON1 

The PON genes (PON1, PON2 and PON3) are linked on chromosome 7q21.3-22.1 and are 

homologous (Primo-Parmo et al., 1996).  It is thought that the three genes arose by gene 

duplication of a common evolutionary ancestor (Aviram and Rosenblat, 2004).  PON1 is located 

at chromosome 7q21.3.  The PON1 gene encodes a 355 amino acid protein, from which the 

amino-terminal methionine residue is removed during secretion and maturation.  There are 

several known single nucleotide polymorphisms (SNPs) in PON1.  The complete sequence of the 

PON1 gene has been determined from 23 Caucasians and 24 African Americans.  This analysis 

identified about 200 SNPs in PON1.  A complete list of PON1 SNPs can be found in the 

SeattleSNPs Variation Discovery Resource, at http://pga.gs.washington.edu/data/pon1/.  Two 
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well-studied coding-region polymorphisms are Q192R (exon 6) and L55M (exon 3).  

Polymorphisms in the promoter region of PON1 have also been studied in recent years. 

 

1.4.1. Q192R Polymorphism 
 

At codon 192 in PON1, there is a well-studied polymorphism, Q (glutamine) to R (arginine).  

The Q genotype predominates in populations of European descent, while the R genotype 

predominates in populations of Asian and African descent (LaDu, 1992).  In vitro, the 192Q 

isoform has a higher rate of hydrolysis of diazoxon, sarin and soman, while the 192R isoform 

hydrolyzes paraoxon and chlorpyrifos oxon at a higher rate.  Both have been shown to hydrolyze 

phenylacetate at approximately the same rate (reviewed in Nakanishi, 2003).  It has been 

suggested that the Q allele offers a protective effect against LDL oxidation, while the R allele is 

related to risk for CHD.  Mackness et al. (1998) reported that the 192QQ genotype is most 

effective at protecting LDL against oxidative modification in vitro, while the 192RR was least 

efficient.  This was supported by Aviram et al. (1998) in a later study.  However, case-control 

studies have been conflicting.   Some have found the 192R allele to be associated with increased 

risk for CHD (Ruiz et al., 1995; Odawara et al., 1997; Sanghera et al., 1997; Zama et al., 1997; 

Chen et al., 2003), while others have found no association (Ko et al., 1998; Ombres et al., 1998; 

Aynacioglu and Kepecki, 2000; Gardemann et al., 2000; and Imai et al., 2000).  Furthermore, a 

recent study of PON1 polymorphisms and longevity in a combined cohort form Northern Ireland 

and Italy found that in individuals 80 years of age and older, the R allele conferred a small but 

significant survival advantage (p=0.02) (Rea et al., 2004).  Clearly, evidence is conflicting.  

Recently, a large cohort study and meta-analysis of prior studies found that the Q192R 

distribution between British women with heart disease was no different from those without CHD.  
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In addition, meta-analysis of 39 published studies (10,738 cases and 17, 068 controls) found no 

robust evidence that the PON1 192 polymorphism is associated with CHD risk in Caucasian 

males or females (Lawlor et al., 2004).  Further case-control studies, such as that presented here, 

may help to clarify the role of the PON1 192 polymorphism in CHD risk.   

 

1.4.2. W194X Polymorphism 
 

While investigating PON activity relative to the Q192R polymorphism, Jarvik et al. (2003a) 

found a few samples for which observed PON activity did not correlate with expected PON 

activity based on genotype at codon 192.  Five individuals known to have a 192QR genotype had 

PON activity more consistent with either the 192QQ or 192RR genotype.  They hypothesized 

that a known coding polymorphism near the 192 polymorphism (W194X; tryptophan to a stop 

codon at codon 194) caused the unexpected, altered PON activity.   The five individuals with 

discordant activity were screened for the W194X polymorphism.  A single Caucasian individual 

(with PON activity consistent with the 192QQ genotype) was found to have the 194stop allele 

associated with the 192R allele.  Thus, the group concluded that the 194stop resulted in a loss of 

function of the 192R allele (Jarvik et al., 2003a).  This SNP has not been studied in other 

published literature, and was investigated in the present study. 

 

1.4.3. L55M Polymorphism  
 

At codon 55 in PON1, there is a well-studied polymorphism, L (leucine) to M (methionine).  The 

L55M polymorphism seems to determine PON1 concentration via interaction with another 

polymorphism in the promoter region (C-107T) (Brophy et al., 2001).  This SNP has not been 
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found to have an effect on the catalytic properties of PON1, but has been associated with 

variation in PON1 levels, with the M allele associated with lower levels.  The 55M allele has 

been reported to be less stable than the 55L allele (reviewed in Costa et al., 2003).  Oliveira et al. 

(2004) found that the PON1 L55M polymorphism was an independent marker for CHD, while 

the Q192R polymorphism and two PON2 polymorphisms (G148A and C311S) were not.  This 

study found that the MM genotype was protective against CHD (Odds Ratio=0.59, 95% 

confidence interval 0.42 – 0.82; p = 0.002).  On the other hand, Mackness et al. (1998) reported 

that in vitro, HDL associated with the 55LL isoform protected LDL from oxidation twice as well 

as HDL associated with either 55LM or 55MM.  In addition, the Helsinki Sudden Death study 

recently conducted an association study of L55M genotype and alcohol consumption with CHD.  

Compared to the 55LL homozygotes, carriers of the 55M allele tended to have larger areas of 

atherosclerotic lesions, the size of which decreased dose-dependently by reported alcohol 

consumption (Rontu et al., 2004).  Mackness et al. (2001) found no relationship between the 

L55M polymorphism and paraoxonase activity and plasma PON1 concentrations.  Like the 

Q192R data, studies examining the effects of the L55M SNP have provided conflicting results, 

and further investigation is needed to determine the role of L55M in CHD development.   

 

1.4.4. Promoter Polymorphisms 
 

The first published investigation of polymorphisms in the promoter region of PON1 was reported 

by Leviev and James (2000).  Their hypothesis was that variations in serum PON levels may be 

attributable to polymorphism in the promoter.  Three polymorphisms were identified at that time 

(T-107C, G-824A, and G-907C) and characterized with respect to their influence on promoter 

activity.  This study found a dominant effect of the -107 polymorphism on PON expression, with 
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a minor contribution from the -907 polymorphism.  The SNP at position -107 lies within the 

GGCGGG consensus sequence of the binding site for the transcription factor Sp1 (polymorphic 

site is italicized).  Variations within the Sp1-binding site have been shown to affect the promoter 

activity of other genes.  A second study by Suehiro et al. (2000) looked at the C-107T 

polymorphism and also identified two other SNPs in the promoter region (G-126C and G-160A).  

This study found that the SNPs at positions -126 and -160 (as well as the Q192R SNP) had no 

effect on serum PON1 concentration.  However, the C-107T SNP was associated with partial 

regulation of the transcription of PON1 in HepG2 cells (liver cell line).  In addition, it was found 

that the G-126C and G-160A polymorphisms were in almost complete linkage.  Further study by 

Leviev, Righetti and James (2001) showed that the C-107T SNP was an independent risk factor 

for CHD in a study of 897 participants, 699 cases and 198 controls.  The higher expresser -107C 

allele was associated with decreased risk in participants age 60 or under (χ2 = 4.42, p = 0.034), 

but did not have an effect on participants age 61 or older.   

 

In a study of 376 white individuals, Brophy et al. (2001) found that while the C-107T SNP had a 

significant effect on PON activity, the G-160A SNP had a lesser effect.  The G-907C SNP had 

no effect on PON activity.  Further study by Deakin et al. (2003) found that the SNPs at positions 

-107, and -824, but not -907, had an impact on promoter activity in vitro.  The C-107T and G-

824A SNPs each independently influenced promoter activity, each causing a two-fold increase in 

activity when the high-expresser alleles (-107C and -824A) were present, and a four-fold 

increase when they were both present.   

 

9 



 

The SNP at position -160 was genotyped in the present study.  Additional PON1 promoter 

polymorphisms (A-1739G, C-1432G, T-1439C, and A-1074G) were also genotyped as part of 

the present study.  Studies of the latter four SNPs have not been published previously. 
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1.5. SPECIFIC AIMS 

 

Specific aims of this study were to: 

 

1. To determine the allele frequency and genotype distributions of three SNPs in the coding 

region of PON1 and five SNPs in the promoter region of PON1 in white and black 

subjects.   

Hypothesis: The distribution of PON1 SNPs is significantly different between whites and 

blacks. 

2. To determine the association of the studied SNPs in PON1 with SLE disease.  

Hypothesis: Genetic variation in the PON1 gene may affect the risk of SLE. 

3. To determine the association of the studied SNPs in PON1 with the occurrence of anti-

phospholipid antibodies (APA).   

Hypothesis: Genetic variation in the PON1 gene may affect the risk of SLE through its 

influence on the production of APA. 

4. To determine the association of the studied SNPs in PON1 with PON activity.   

Hypothesis: Genetic variation in the PON1 gene may affect the risk of SLE through its 

influence on PON activity. 
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2. MATERIALS AND METHODS 

 

2.1. CASE-CONTROL SAMPLES 

DNA samples from 380 women with SLE (334 European Americans and 46 African Americans) 

and 497 healthy control women (455 European Americans and 42 African Americans) were used 

in the present study.  The SLE cases were recruited by Dr. S. Manzi for a study designed to 

determine the prevalence of cardiovascular disease and associated risk factors in women with 

SLE (funded by AHA, Arthritis Foundation, and the National Institutes of Health).  Cases were 

18 years of age or older (mean age 44.03±11.31 years), and met the 1982 American College of 

Rheumatology criteria for definite or probable SLE (Tan et al., 1982).  All of the women with 

SLE were participants in the Pittsburgh Lupus Registry, which included 983 living participants 

seen at the University of Pittsburgh Medical Center or by practicing rheumatologists in the 

Pittsburgh metropolitan area.  Demographic and clinical details of the population have been 

described elsewhere (Manzi and Wasco 2000; Selzer et al., 2001).   Controls with no apparent 

history of SLE were obtained from the Central Blood Bank of Pittsburgh (mean age 42.73±12.53 

years).  Blood samples were obtained from the baseline visit.  All participants provided written 

informed consent.  The study was approved by the University of Pittsburgh Institutional Review 

Board.   

 

2.2. ANTIPHOSPHOLIPID ANTIBODY (APA) MEASUREMENTS 

All patients and controls were screened for the presence of anti-cardiolipin antibodies (ACL 

antibodies; IgG>15 GPL units, IgM>10 MPL units; Incstar, Stillwater, Minn., USA), lupus 

anticoagulant (LAC; partial thromboplastic time or Russel’s viper venom time with mix), and 
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anti-β2-glycoprotein I (aβ2GPI; Quantalite, β2GPI screen, INOVA Diagnostics, San Diego, 

California, USA).  All samples were screened in duplicate.  The presence or absence of the 

antibody was determined by comparing the optical density (OD) with the decision point 

calibrator provided in the kit, as described elsewhere (Kamboh et al., 1999; Sanghera et al., 

2001).  Participants positive for any of the antibodies (ACL/IgG, ACL/IgM, aβ2GPI, or LAC) 

were considered positive for APA.   

 

2.3. PON ACTIVITY MEASUREMENTS 

Paraoxonase activity was determined using the method described by Furlong et al. (1989) and 

Richter and Furlong (1999) to measure hydrolysis of paraoxonase.  Briefly, for each sample, 20 

μL of plasma was diluted in 180 μL dilution buffer (containing 9mM Tris pH 8.0 and 1mM 

CaCl2) and mixed.  Substrate solution (containing 2M NaCl, 0.1M Tris HCl pH 8.5, 2mM CaCl2 

and 1.2mM paraoxon) was added to the plasma, transferred to the plate reader, mixed for 5 

seconds at 37°C, and read at 405 nm, one measurement every 15 seconds for three minutes.  

Output was in optical density (OD)/minute.  PON activity (in micromoles of substrate 

hydrolyzed per minute per liter of plasma) was determined using the equation mOD/min x 6.  

Samples were run in triplicate and a mean activity was determined and used in PON activity 

analysis.   

 

2.4. GENETIC VARIATION IN PON1 INCLUDED IN PRESENT STUDY 

Five variants in the promoter region of PON1 and three variants in the coding region of PON1 

were genotyped in the present study.  These variants are shown in the map in Figure 2.   
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PON1
2937 0 bp

mRNA
Codon 192 (Q/R)
Codon 194 (W/X)Codon 55 (L/M)-1739 (A/G)

-1439 (T/C)
-1432 (C/G)

-1074 (A/G)
-160 (G/A)

 

Figure 2: Map of PON1 Variants Examined in Present Study 

 
 
 

2.5. GENOTYPING 

Genomic DNA was isolated from buffy coat using the QIAamp kit (QIAGEN).  Target 

fragments were amplified using polymerase chain reaction (PCR).  Briefly, 1-5 μg of genomic 

DNA was amplified in a 50 μl reaction mixture consisting of 5 μl of 10X PCR buffer (100 mM 

Tris-HCl, pH = 8.3, 500 mM KCl), 1.0–2.5 mM MgCl2, 0–2.5 mM dimethylsulfoxide (DMSO), 

1.25 mM each dNTP (Pharmacia), 0.2 μM each primer, and 1.25 units of Taq DNA polymerase 

(Invitrogen).  After initial denaturation at 95◦C, the reaction mixture was subjected to multiple 

cycles of denaturation, annealing, and extension.  The final step was an extension step at 72◦C.  

Temperatures and times for each step were variable based on the fragment.  PCR conditions for 

amplifying DNA in the present study are summarized in Table 1.  The correct size and purity of 

amplified PCR product was verified by running 5 ml of PCR product on a 2% agarose gel.   
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Table 1: PCR Conditions for Amplifying Fragments Containing SNPs 

SNP Thermocycler Conditions  Primer Sequence 5’ 3’  
(B = biotin) 

G-1739A 95◦C x 5’  (94◦C x 30”  56◦C x 30”  72◦C x 30”) x 35 cycles  72◦C x 5’ F: GGGGGATTAAGAGTTTTCCTTT 
R: TAGCTGCTAAACCAAACAATCA 

G-1074A 95◦C x 5’  (94◦C x 30”  56◦C x 30”  72◦C x 30”) x 35 cycles  72◦C x 5’ F: GGCTTAAGAGCAAGTGTTCAGA 
R: ATTGCCAGCCAATACCAAC 

T-1439C & 
C-1432G 

95◦C x 5’  (95◦C x 30”  59◦C x 30”  72◦C x 30”) x 45 cycles  72◦C x 5’ F: ATAGCCACATTGGACACAGATCA 
R: B-GGCCACCAACTGAATACCACT 

G-160A 95◦C x 5’  (94◦C x 30”  56◦C x 30”  72◦C x 30”) x 40 cycles  72◦C x 5’ F: AAATGGGACTTTTGGCTGAA 
R:GGGGATAGACAAAGGGATCG 

L55M 95◦C x 9’  (95◦C x 1’  60◦C x 1’  72◦C x 1’) x 35 cycles  72◦C x 10’ F: GAAGAGTGATGTATAGCCCCAG 
R: TTTAATCCAGAGCTAAAAGCC 

Q192R & 
W194X 

95◦C x 5’  (94◦C x 30”  61◦C x 30”  72◦C x 30”) x 40 cycles  72◦C x 5’ 
 

F: TATTGTTGCTGTGGGACCTGAG 
R: CACGCTAAACCCAAATACATCTC 

 

Genotyping of the eight SNPs was determined by restriction digestion (four SNPs), fluorescence 

polarization (two SNPs), and pyrosequencing (two SNPs).   

 

2.5.1. Genotyping by Restriction Fragment Length Polymorphism (RFLP) 
 

Four SNPs were genotyped using restriction fragment length polymorphism (RFLP); G-160A, 

L55M, Q192R, and W194X.  Restriction endonucleases were used when the genetic variant 

creates or abolishes a restriction site.  Fragments containing polymorphic sites were amplified 

using PCR (see Table 1), then digested with a particular restriction endonuclease.  The 

endonuclease cut the fragment at both alleles (homozygote for restriction site polymorphism), 

cut the fragment at one allele (heterozygote), or did not cut either allele (homozygote for 

polymorphism without the restriction site).  Digested products were run out on a 3% NuSieve 

agarose gel.  Analysis of the number of fragments present as well as the size of these fragments 

allowed for genotype determination.  Digestion conditions are summarized in Table 2.   
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Table 2: RFLP Endonucleases and Digestion Conditions 

SNP Endonuclease Restriction Site Manufacturer Digestion 
Conditions 

G-160A BstUI 5’-CG▼CG-3’ 
3’-GC▲GC-5’ 

New England Biolabs 60◦C x 16 hours 

L55M Hsp92II 5’-CATG▼-3’ 
3’-▲GTAC-5’ 

Promega 37◦C x 16 hours 

Q192R AlwI 5’-GGATC (N)4
▼-3’ 

3’-CCTAG (N)5▲-5’ 
New England Biolabs 37◦C x 16 hours 

W194X BstNI 5’-CC▼WGG-3’ 
3’-GGW▲CC-5’ 

New England Biolabs 60◦C x 16 hours 

 
 

 

Genotypes of the Q192R SNP were determined by scoring the bands visualized on the agarose 

gel following restriction digestion with AlwI.  An example of each genotype result is shown in 

Figure 3. 

 

 

   

Molecular 
Ladder 

RR QR QQ 

200bp 
300bp 

100bp 

50bp 

109bp 

36bp 
63bp 

Figure 3: RFLP Result for Q192R SNP  

The uncut, 109bp PCR product represents the Q allele.  The AlwI endonuclease cut the 109bp fragment into a 
63bp fragment and a 36bp fragment, when the R allele was present.  
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Genotypes of the W194X SNP were determined by scoring the bands visualized on the agarose 

gel following digestion with BstNI.  The stop codon was not detected in a sample of 753 samples 

(282 white SLE cases, 400 white SLE controls, 38 black cases and 33 black controls).  Since all 

samples analyzed had the same genotype, no further analysis of this data was performed.  An 

example of the RFLP result is shown in Figure 4.   

 

 

 

26bp 

73bp 

Molecular 
Ladder 

WW 
300bp 

200bp 

100bp 

50bp 

Figure 4: RFLP Result for W194X SNP  

The original PCR product is 109 bp in length.  The BstNI endonuclease cut the fragment into 73 bp and 26 bp 
fragments when the W allele was present.  An uncut 109 bp fragment would represent the stop codon, 
however this allele was not detected in the population studied. 

 

 

Genotypes of the L55M SNP were determined by scoring the bands visualized on the agarose gel 

following digestion with Hsp92II.  An example of each genotype result is shown in Figure 5.   
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Molecular 
Ladder 

LL LM MM

200 bp 
300 bp 

165bp 
128bp 

50bp 

100 bp 

27bp 

Figure 5: RFLP Result for L55M SNP  

The uncut PCR product is 165 bp in length, which represents the L allele.  The Hsp92II endonuclease cut the 
fragment into 128 bp and 27 bp fragments when the M allele was present.   

 

 
 

Genotypes of the G-160A SNP were determined by scoring the bands visualized on the agarose 

gel when digested samples were electrophoresed.  An example of each genotype result is shown 

in Figure 6.   
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GA GG AA 

200 bp 
300 bp 

215 bp 
157 bp 

100 bp 

58 bp 
50bp 

Figure 6: RFLP Result for G-160A SNP  

The uncut PCR product was 215 bp in length, representing the A allele.  The BstU1 endonuclease cut the 
fragment into 157 bp and 58 bp fragments when the G allele was present.   

 

 

2.5.2. Genotyping with Fluorescence Polarization (FP) 
 

The G-1739A and G-1074A SNPs were genotyped using fluorescence polarization (FP).  FP is 

based on the premise that when a fluorescent molecule is excited by plane polarize light, it emits 

polarized fluorescent light into a fixed plane relative to the molecule itself.  The FP of a molecule 

is proportionate to the molecule’s rotational relaxation time (the time it takes to rotate through an 

angle of 68.5°).  The rotational relaxation time is affected by the viscosity of the solvent, 

absolute temperature, molecular volume and gas constant.  When viscosity and temperature are 

held constant, FP is directly proportional to the molecular volume.  Large molecules rotate more 

slowly through space (FP is preserved) while small molecules rotate more quickly (FP is lost, the 

molecule becomes more depolarized).  The assay used in this study (HEFP-SNP Genotyping 

Assay, LJL Biosystems, US) uses this premise to facilitate high-throughput genotyping.  In 

summary, fluorescently labeled ddNTPs are added to amplified fragments of DNA containing 
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the SNP of interest.  The ddNTPs are added with a primer upstream of the SNP site in a 

terminator base extension reaction.  The specific fluorescent ddNTP incorporated at the 

polymorphic site alters the molecular weight of ddNTP labels by at least 10-fold, causing 

increased FP.  The genotype can then be determined by exciting the dye on the terminator to 

determine if FP is observed (Chen et al., 1999; Kwok, 2002; Chen, 2003).  A schematic 

illustrating these steps is shown in Figure 7.   

 

 

 

Genomic DNA 

1) PCR Amplification 

G
C T

A

PCR Product (G-allele) PCR Product (A-allele)

2) Enzymatic degradation of excess primers and dNTPs 

3) Heat Inactivation of enzymes 

 C T 

4) Add primer extension reagents 

r110-A 
tamra-G 

 G-tamra A-r110 

High FP value for tamra High FP value for r110

Figure 7: FP Genotype Detection Schematic (adapted from Kwok, 2002) 

As illustrated in Figure 3, genomic DNA is amplified in PCR reaction (Step 1).  Excess primers and dNTPs 
from PCR reaction are degraded using Shrimp-Alkaline Phosphatase (SAP) and Exonuclease I (ExoI) (Step 
2).  SAP and ExoI enzymes are inactivated with heat (Step 3).  Primer and thermosequenase extension 
reagents are added with fluorescent dyes (Step 4).  This is followed by excitation and emission studies on a 
fluorescence plate reader to determine the FP value of each sample.  Homozygote for the G allele will have 
high FP for the tamra dye.  Homozygotes for the A allele will have high FP for the r110 dye.  Heterozygotes 
will have intermediate FP.     
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In the present study, Step 2 (degradation of excess primers and dNTPs) was performed using 

0.1μL (1 unit) of ExoI (in 20 mM Tris-HCl, pH 7.5, 0.5 mM EDTA, 5 mM 2-mercaptoethanol 

and 50% glycerol), 1 μL (1 unit) of SAP (in 25 mM Tris-HCl, pH 7.5, 1 mM MgCl2, 0.1 mM 

ZnCl2 and 50% glycerol), and 1 μL of 10X Buffer (200 mM Tris-HCl, pH 8.0 and 100 mM 

MgCl2).  This mixture was incubated at 37°C for 90 minutes.  Step 3 (inactivation of ExoI and 

SAP) was performed by incubating at 95°C for 15 minutes and held at 4°C.  Step 4 (template 

directed dye incorporation) was performed by adding 1 μL (1 μM) sequencing primer (shown in 

Table 3), 0.025 μL (0.8 units) of Thermosequenase (in 20 mM Tris-HCl, pH 8.5, 0.1 mM EDTA, 

0.5% Tween™ 20, 0.5% Nonidet P-40, 1 mM DTT, 100 mM KCl, 50% glycerol), 1 μL Reaction 

Buffer (25 mM TAPS buffer, pH 9.3 at 25 °C, 50 mM KCl, 2 mM MgCl2, 1 mM 2-

mercaptoethanol, 200 µm dATP, dGTP, dTTP, 100 µM [a-32P]-dCTP (0.05-0.1 Ci/mmol), and 

400 µg/ml activated DNA), and 0.05 μL of a mixture of 3μM tamra-ddGTP and 3μM r110-

ddATP fluorescent dyes.  This mixture was incubated at 94°C for 1 minute, then cycled 35 times 

at 94°C for 10 seconds then 55°C for 30 seconds, and finally held at 4°C. ExoI, SAP, 10X 

Buffer, Thermosequenase, Reaction Buffer, and dyes were obtained from Amersham 

Biosciences, Piscataway, NJ.  All steps were performed in black skirted 96-well microtiter plates 

from MJ Research, Waltham, MA.  Fluorescence polarization was measured using the Analyst 

plate reader and Criterion Host software version 2.0 (LJL Biosystems, Sunnyvale, CA).  Alleles 

were called automatically from raw FP values using Allele Caller™ software (LJL Biosystems, 

Sunnyvale, CA).   
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Table 3: Primers used for FP Genotyping 

SNP FP Primer 
G-1739A 5’-CTTTGGACACATTTTGAAAAGACT-3’ 
G-1074A 5’-GCCAAAGAAGCTTCCCCCCAGAAA-3’ 

 

 

Examples of the graphic output generated by the Allele Caller software are shown in Figure 8 

and Figure 9.   

 

 
 

 
Figure 8: Graphic Output of FP Genotype Analysis for A-1739G   

The vertical axis represents the G allele while the horizontal axis represents the A allele.  Samples clustering 
along the vertical axis (blue) have high FP for the tamra dye and are classified as GG homozygotes, samples 
clustering along the horizontal axis (red) have high FP for the r110 dye and are classified as AA homozygotes, 
and samples with intermediate FP (green) are classified as AG heterozygotes.  Samples unable to be 
genotyped (including negative control) are shown in white.   
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Figure 9: Graphic Output of FP Genotype Analysis for A-1074G   

The vertical axis represents the G allele while the horizontal axis represents the A allele.  Samples clustering 
along the vertical axis (blue) have high FP for the tamra dye and are classified as GG homozygotes, samples 
clustering along the horizontal axis (red) have high FP for the r110 dye and are classified as AA homozygotes, 
and samples with intermediate FP (green) are classified as AG heterozygotes.  Samples unable to be 
genotyped (including negative control) are shown in white.   

 
 

 

2.5.3. Genotyping with Pyrosequencing (PSQ) 
 

Pyrosequencing (PSQ) is a method for obtaining genotype information using the principle of 

sequencing by synthesis.  PSQ is capable of analyzing all types of genetic variations, such as bi-, 

tri-, and tetra-allelic polymorphisms, multiple SNPs, mutations, and insertion/deletions.  PCR 

products (with bound biotin) in all wells of a 96-well plate are converted to single stranded 

templates. The template is isolated with a vacuum prep tool and a sequencing primer is then 

annealed onto these templates.  Analysis begins with the dispensation of the enzyme-substrate 

reagents into the wells containing test samples.  Light is produced when a nucleotide forms a 

base pair with its complement.  The light and base are registered by a charge coupled device 

(CCD) camera, and is interpreted as a peak.  If the next nucleotide added to the template is not 
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complimentary to the nucleotide base, no light is detected by the CCD.  The height of the peak is 

proportional to the number of bases that have been integrated.  Software used with the PSQ-

96MA automatically analyzes the quantitative data.  The data can be evaluated by the user as 

well.  The software allows for multiplex genotyping of up to three polymorphisms in a single 

well.  The T-1439C and C-1432 G SNPs were genotyped using the PSQ system in a single, 

simplex assay.   

Isolation of the biotinylated, single stranded template was performed by first mixing 20 μL of 

PCR product with 40 μL binding buffer (10 mM Tris-HCl pH 7.6, 2M NaCl, 1 mM EDTA, 0.1% 

Tween 20), 2 μL Streptavidin Sepharose (Amersham Biosciences, Piscataway, NJ) and 18 μL 

high purity water.  The mixture was shaken by vortexing for a minimum of 10 minutes.  The 

beads containing the immobilized templates were captured onto the filter probes after applying 

vacuum, and then washed with 70% ethanol for 5 sec, denaturation solution (0.2M NaOH) for 5 

sec and washing buffer (10 mM Tris-Acetate pH 7.6) for 10 sec. The vacuum was then released 

and the beads were released into a PSQ 96 Plate Low containing 9.5 annealing buffer μL (20 

mM Tris-Acetate, 2 mM MgAc2 pH 7.6) and 0.5 μM sequencing primer in each well. The 

sequencing primer for this assay is shown in Table 4.  The annealing reaction was performed by 

incubating the plate on a heating block with lid at 90°C for 2 minutes, removing the entire block 

including the plate and incubating on the bench for 5 minutes, then removing the plate from the 

block and incubating on the bench at room temperature for 5 minutes.  Pyrosequencing reactions 

were performed according to the manufacturer’s instructions using the PSQ 96 SNP Reagent Kit 

which contained the enzyme and substrate mixture and nucleotides. The assay was performed 

using the nucleotide dispensation order GCTCTCGCATACT.   
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Table 4: Primer used for PSQ Genotyping 

SNP PSQ Sequencing Primer 
T-1439C/ C-1432G 5’-CACAGATCATCATTCCC-3’ 
 

Genotypes of the T-1439C and C-1432G SNPs were determined using PSQ.  The C allele at 

position -1439 was not detected in a sample of 822 samples (313 white SLE cases, 430 white 

SLE controls, 39 black cases and 40 black controls).  Since all samples analyzed had the same 

genotype, no further analysis of this data was performed.  Examples of pyrograms generated by 

the PSQ system software while analyzing the T-1439C and C-1432G SNPs are shown in Figure 

10.   
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PON1 SNP7 03-08-05A - Well A1 
Entry: pon1 -1439/-1432 01-13 

Sample: 1 
Notes: SLE 03-07 

-1439: T/T (Passed), -1432: C/C (Passed) 
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PON1 SNP7 03-08-05A - Well C1 

Entry: pon1 -1439/-1432 01-13 
Sample: 3 

Notes: SLE 03-07 
-1439: T/T (Passed), -1432: C/G (Passed) 
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PON1 SNP7 03-08-05A - Well F3 
Entry: pon1 -1439/-1432 01-13 

Sample: 22 
Notes: SLE 03-07 

-1439: T/T (Passed), -1432: G/G (Passed) 

1300

1400

1500

1600

E S G C T C T C G C A T A C T

T/T G/G

5 10  

Figure 10: Pyrogram Output of PSQ Genotype Analysis for T-1439C and G-1432C   

Dispensation order of nuleotides and time intervals are shown along the horizontal axis.  Light output read by 
the CCD is shown along the vertical axis.  The yellow shaded area indicates the critical analysis region 
necessary to determine genotype.  High C peak height at the sixth nucleotide dispensation and no G peak at 
the seventh position indicates a CC genotype (top figure).  High C peak height at the sixth nucleotide 
dispensation and a G peak 1/3 the height of the C peak at the seventh position indicates a CG genotype 
(middle figure).  Equal C peak and G peak heights at the sixth and seventh positions indicates a GG genotype 
(bottom figure).   
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2.6.  STATISTICAL METHODS 

 

2.6.1. General Statistical Calculations 
 

Allele frequency for each polymorphism was calculated by allele counting.  Observed genotype 

frequencies were compared to the Hardy-Weinberg equilibrium, and the significance of 

deviations was tested by the χ2 goodness-of-fit test.  Comparison of allele frequencies between 

cases and controls within race (white or black) and between racial groups were calculated using a 

standard Z-test of two binomial proportions.   

 

2.6.2. SNP Association Studies 
 

The relationships between each SNP and SLE disease status and antibody status were determined 

by using the χ2 goodness-of-fit test and standard Z-test of two binomial proportions.  Due to 

small African American sample size, antibody association studies were performed only on white 

samples.  Association studies of continuous variables (PON activity) were performed by first 

transforming the data by taking the square root to ensure normal distribution.  All analyses were 

performed separately for blacks and whites.  Logistic regressions were performed using the R 

statistical software package (version 2.0.1, http://www.r-project.org) (Ihaka and Gentleman, 

1996).   

 

2.6.3. Linkage Disequilibrium and Haplotype Analysis 
 

Linkage disequilibrium between markers was estimated by both ׀D’׀ calculation (Lewontin, 

1964) and associated p-value using the R statistical software package (version 2.0.1, 
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http://www.r-project.org/) (Ihaka and Gentleman, 1996).  Haplotype analysis was performed 

using EH (Estimate Haplotype-frequencies, version 1.2).  The EH program estimates allele 

frequencies for each marker, then estimates haplotype frequencies with allelic association (H1) 

and without (H0). The EH program then provides log likelihood, chi-square and the number of 

degrees of freedom under both hypotheses (H0 and H1) (Xie and Ott, 1993). 
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3. RESULTS 

 

3.1. DISTRIBUTION OF PON1 POLYMORPHISMS IN WHITES AND BLACKS 

 
3.1.1. Distribution of the Q192R Polymorphism in Whites and Blacks 
 

The allele frequency of the Q192R polymorphism was significantly different between white and 

black samples, with a higher frequency of the R allele in blacks (0.481) than whites (0.259; Z-

test, p<0.0001).  The overall genotype distribution was also significantly different between races.  

The frequency of the QQ genotype was significantly higher in the white samples than in the 

black samples (54.1% vs. 24.7%; χ2-test, p<0.0001).  These results are summarized in Table 5.   

 

Table 5: Distribution of the Q192R SNP in Whites and Blacks 

 WHITES BLACKS 
GENOTYPE N % N % 

QQ 418 54.1 20 24.7 
QR 310 40.1 44 54.3 
RR 45 5.8 17 21.0 

TOTAL 773  81  
χ2=39.15, p<0.0001 

ALLELE 
FREQUENCY 

WHITES BLACKS 

Q 0.741 0.519 
R 0.259 0.481 

Z = -5.440, p<0.0001 
 
 

3.1.2. Distribution of the L55M Polymorphism in Whites and Blacks 
 

The allele frequency of the L55M polymorphism was significantly different between white and 

black samples, with a higher frequency of the M allele in whites (0.358) than blacks (0.210; Z-

test, p<0.0001).  The overall genotype distribution was also significantly different between races.  
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The frequency of the LL genotype was significantly higher in the black samples than in the white 

samples (63.0% vs. 41.4%; χ2-test, p=0.0007).  These results are summarized in Table 6.   

 

Table 6: Distribution of the L55M SNP in Whites and Blacks 

 WHITES BLACKS 
GENOTYPE N % N % 

LL 307 41.4 51 63.0 
LM 338 45.6 26 32.1 
MM 96 13.0 4 4.9 

TOTAL 741  81  
χ2=14.643, p=0.0007 

ALLELE 
FREQUENCY 

WHITES BLACKS 

L 0.642 0.790 
M 0.358 0.210 

Z=4.310, p<0.0001 
 

 

3.1.3. Distribution of the A-1739G Polymorphism in Whites and Blacks 
 

The allele frequency of the A-1739G polymorphism was significantly different between white 

and black samples, with a higher frequency of the G allele in whites (0.564) than blacks (0.201; 

Z-test, p<0.0001).  The overall genotype distribution was also significantly different between 

races.  The frequency of the AA genotype was significantly higher in the black samples than in 

the white samples (65.9% vs. 21.0%; χ2-test, p<0.0001).  These results are summarized in Table 

7.   
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Table 7: Distribution of the A-1739G Polymorphism in Whites and Blacks 

 WHITES BLACKS 
GENOTYPE N % N % 

AA 161 21.0 54 65.9 
AG 347 45.2 23 28.0 
GG 259 33.8 5 6.1 

TOTAL 767  82  
χ2=82.1417, p<0.0001 

ALLELE 
FREQUENCY 

WHITES BLACKS 

A 0.564 0.799 
G 0.436 0.201 

Z=10.753, p<0.0001 
 

 

3.1.4. Distribution of the C-1432G Polymorphism in Whites and Blacks 
 

The allele frequency of the C-1432G polymorphism was significantly different between white 

and black samples, with a higher frequency of the G allele in blacks (0.646) than whites (0.383; 

Z-test, p<0.0001).  The overall genotype distribution was also significantly different between 

races.  The frequency of the CC genotype was significantly higher in the white samples than in 

the black samples (36.7% vs. 14.6%; χ2-test, p<0.0001).  These results are summarized in Table 

8.   
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Table 8: Distribution of C-1432G SNP in Whites and Blacks 

 WHITES BLACKS 
GENOTYPE N % N % 

CC 272 36.7 13 14.6 
CG 371 50.0 37 41.6 
GG 99 13.3 39 43.8 

TOTAL 742  89  
χ2=33.542, p<0.0001 

ALLELE 
FREQUENCY 

WHITES BLACKS 

C 0.617 0.354 
G 0.383 0.646 

Z=-6.561, p<0.0001 
 

 

3.1.5. Distribution of the A-1074G Polymorphism in Whites and Blacks 
 

The allele frequency of the A-1074G polymorphism was significantly different between white 

and black samples, with a higher frequency of the G allele in blacks (0.394) than whites (0.272; 

Z-test, p=0.0025).  The overall genotype distribution was also significantly different between 

races.  The frequency of the GG genotype was significantly higher in the black samples than in 

the white samples (12.5% vs. 6.2%; χ2-test, p=0.0036).  These results are summarized in Table 9.   
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Table 9: Distribution of the A-1074G SNP in Whites and Blacks 

 WHITES BLACKS 
GENOTYPE N % N % 

AA 377 51.9 27 33.8 
AG 305 42.0 43 53.8 
GG 45 6.2 10 12.5 

TOTAL 727  80  
χ2=11.256, p=0.0036 

ALLELE 
FREQUENCY 

WHITES BLACKS 

A 0.728 0.606 
G 0.272 0.394 

Z=-3.023, p=0.0025 
 

 
3.1.6. Distribution of the G-160A Polymorphism in Whites and Blacks 
 

The allele frequency of the G-160A polymorphism was significantly different between white and 

black samples, with a higher frequency of the A allele in blacks (0.380) than whites (0.264; Z-

test, p=0.0032).  The overall genotype distribution was also significantly different between races.  

The frequency of the AA genotype was significantly higher in the black samples than in the 

white samples (13.3% vs. 6.8%; χ2-test, p=0.0049).  These results are summarized in Table 10.   

 

Table 10: Distribution of the G-160A SNP in Whites and Blacks 

 WHITES BLACKS 
GENOTYPE N % N % 

GG 414 54.0 31 37.3 
GA 300 39.2 41 49.4 
AA 52 6.8 11 13.3 

TOTAL 766  83  
χ2=10.628, p=0.0049 

ALLELE 
FREQUENCY 

WHITES BLACKS 

G 0.736 0.620 
A 0.264 0.380 

Z=-2.950, p=0.0031 
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3.2. LINKAGE DISEQUILIBRIUM BETWEEN PON1 POLYMORPHISMS  

 

All SNPs studied in the white samples (Table 11) and black samples (Table 12) showed 

significant linkage disequilibrium.  P-values are shown on the left and D-values are shown on the 

right.  Significant p-values are highlighted.   

 

 
Table 11: Linkage Disequilibrium between PON1 Polymorphisms in Whites 

WHITE -1739 -1432 -1074 -160 55 192 
-1739 - 0.7004 0.613 0.5641 0.6039 0.1545 
-1432 <0.0001 - 0.836 0.8323 0.6986 0.1426 
-1074 <0.0001 <0.0001 - 0.9339 0.7484 0.3213 
-160 <0.0001 <0.0001 <0.0001 - 0.7227 0.3009 
55 <0.0001 <0.0001 <0.0001 <0.0001 - 0.8926 
192 <0.0001 0.0126 <0.0001 <0.0001 <0.0001 - 

 

 

Table 12: Linkage Disequilibrium between PON1 Polymorphisms in Blacks 

BLACK -1739 -1432 -1074 -160 55 192 
-1739 - 0.8001 0.8769 0.7236 0.341 0.7662 
-1432 <0.0001 - 0.8375 0.6818 0.5124 0.3101 
-1074 <0.0001 <0.0001 - 0.7442 0.7397 0.1266 
-160 0.0003 <0.0001 <0.0001 - 0.8771 0.0411 
55 <0.0001 <0.0001 0.0002 <0.0001 - 0.4686 
192 <0.0001 0.0029 0.1917 0.6787 0.0044 - 
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3.3. DISTRIBUTION OF PON1 POLYMORPHISMS BETWEEN SLE CASES AND 
CONTROLS 

 

3.3.1. Distribution of the Q192R Polymorphism 
 

No significant associations were found between the Q192R SNP and SLE disease status.  Due to 

the previously observed effect of R allele on PON activity, the R-carriers (QR+RR) were 

grouped for analysis.  The difference in distribution between the R-carriers and QQ homozygotes 

was not significantly different between cases and controls in the white population or the black 

population.  The allele frequency was not significantly different between cases and controls in 

white or black samples. These results are summarized in Table 13.    
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Table 13: Distribution of the Q192R SNP in SLE Cases and Controls 

GENOTYPE CASES CONTROLS 
WHITES N % N % 

QQ 165 50.6 252 56.6 
QR 140 42.9 170 38.2 
RR 21 6.4 23 5.2 

TOTAL 326  445  
χ2=2.85, p=0.24 

QQ vs. QR+RR: χ2=2.74, p=0.098 
ALLELE FREQUENCY CASES CONTROLS 

Q 0.721 0.757 
R 0.279 0.243 

Z=-1.586, p=0.113 
 CASES CONTROLS 

BLACKS N % N % 
QQ 11 25.6 9 23.7 
QR 22 51.2 22 57.9 
RR 10 23.3 7 18.4 

TOTAL 43  38  
χ2=0.42, p=0.81 

  QQ vs. QR+RR: χ2=0.422, p=0.843 
ALLELE FREQUENCY CASES CONTROLS 

Q 0.512 0.526 
R 0.488 0.474 

Z=-0.178, p=0.859 
 
 

 

3.3.2. Distribution of the L55M Polymorphism 
 

No significant associations were found between the L or M allele or the LM or MM genotypes 

and SLE disease status.  A borderline significant association was found between the LL and LM 

+ MM genotypes and the presence of SLE disease in the white samples (χ2=4.00, p=0.046).  The 

allele frequency was not significantly different between cases and controls in white or black 

samples. These results are summarized in Table 14.  
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Table 14: Distribution of the L55M SNP in SLE Cases and Controls 

GENOTYPE CASES CONTROLS 
WHITES N % N % 

LL 142 45.7 164 38.3 
LM 132 42.4 205 47.9 
MM 37 11.9 59 13.8 

TOTAL 311  428  
χ2=4.01, p=0.13 

ALLELE FREQUENCY CASES CONTROLS 
L 0.669 0.623 
M 0.331 0.377 

Z=-1.832, p=0.067 
 CASES CONTROLS 

BLACKS N % N % 
LL 29 67.4 22 57.9 
LM 12 27.9 14 36.8 
MM 2 4.7 2 5.3 

TOTAL 43  38  
χ2=0.81, p=0.67 

ALLELE FREQUENCY CASES CONTROLS 
L 0.814 0.763 
M 0.186 0.237 

Z=0.793, p=0.428 
 

 

 

3.3.3. Distribution of the A-1739G Polymorphism 
 

No significant associations were found between the A or G allele and SLE disease status.  

Genotype distribution between the cases and controls was significantly different in the white 

samples (χ2=6.43, p=0.040).   The allele frequency was not significantly different between cases 

and controls in white or black samples.  These results are summarized in Table 15.   
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Table 15: Distribution of the A-1739G SNP in SLE Cases and Controls 

GENOTYPE CASES CONTROLS 
WHITES N % N % 

AA 78 23.4 83 18.9 
AG 134 40.2 216 49.3 
GG 121 36.3 139 31.7 

TOTAL 333  438  
χ2=6.43, p=0.040 

ALLELE FREQUENCY CASES CONTROLS 
A 0.435 0.436 
G 0.565 0.564 

Z=-0.039, p=0.969 
 CASES CONTROLS 

BLACKS N % N % 
AA 29 67.4 25 64.1 
AG 12 27.9 11 28.2 
GG 2 4.7 3 7.7 

TOTAL 43  39  
χ2=0.35, p=0.841 

ALLELE FREQUENCY CASES CONTROLS 
A 0.814 0.782 
G 0.186 0.218 

Z=0.509, p=0.610 
 

 

3.3.4. Distribution of the C-1432G Polymorphism 
 

No significant associations were found between the C or G allele or any of the genotypes and 

SLE disease status.  The allele frequency was not significantly different between cases and 

controls in white or black samples.  These results are summarized in Table 16.  
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Table 16: Distribution of the C-1432G SNP in SLE Cases and Controls 

GENOTYPE CASES CONTROLS 
WHITES N % N % 

CC 111 35.6 161 37.4 
CG 157 50.3 214 49.8 
GG 54 14.1 55 12.8 

TOTAL 312  430  
χ2=0.42, p=0.812 

ALLELE FREQUENCY CASES CONTROLS 
C 0.607 0.623 
G 0.393 0.377 

Z=-0.625, p=0.532 
 CASES CONTROLS 

BLACKS N % N % 
CC 4 10.3 9 22.5 
CG 20 51.3 14 35.0 
GG 15 38.5 17 42.5 

TOTAL 39  40  
χ2=2.19, p=0.335 

ALLELE FREQUENCY CASES CONTROLS 
C 0.359 0.400 
G 0.641 0.600 

Z=-0.532, p=0.595 
 
 

3.3.5. Distribution of the A-1074G Polymorphism 
 

No significant associations were found between the A or G allele or the different genotypes and 

SLE disease status.  The allele frequency was not significantly different between cases and 

controls in white or black samples.  These results are summarized in Table 17. 
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Table 17: Distribution of A-1074G SNP in SLE Cases and Controls 

GENOTYPE CASES CONTROLS 
WHITES N % N % 

AA 155 50.0 220 53.0 
AG 132 42.6 173 41.7 
GG 23 7.4 22 5.3 

TOTAL 310  415  
χ2=1.63, p=0.443 

ALLELE FREQUENCY CASES CONTROLS 
A 0.726 0.744 
G 0.274 0.256 

Z=-0.546, p=0.585 
 CASES CONTROLS 

BLACKS N % N % 
AA 11 26.2 16 42.1 
AG 25 59.5 18 47.4 
GG 6 14.3 4 10.5 

TOTAL 42  38  
χ2=2.27, p=0.321 

ALLELE FREQUENCY CASES CONTROLS 
A 0.560 0.658 
G 0.440 0.352 

Z=-1.276, p=0.202 

 
 
3.3.6. Distribution of the G-160A Polymorphism 
  

In whites, no significant associations were found between the A or G allele or the different 

genotypes and SLE disease status.  In blacks, a borderline significant difference between the 

genotype distribution in cases and controls was found (χ2=5.98, p=0.050).  In addition, the black 

SLE cases were significantly more likely to be carriers of the A allele than controls (χ2=5.28, 

p=0.022).  The allele frequency was significantly different, with the A allele more frequent in the 

cases than controls (Z=-2.396, p=0.017).  These results are summarized in Table 18. 
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Table 18: Distribution of the G-160A SNP in SLE Cases and Controls 

GENOTYPE CASES CONTROLS 
WHITES N % N % 

GG 167 51.7 247 55.8 
GA 132 40.9 168 37.9 
AA 24 7.4 28 6.3 

TOTAL 323  443  
χ2=1.32, p=0.517 

ALLELE FREQUENCY CASES CONTROLS 
G 0.721 0.747 
A 0.279 0.253 

Z=-1.135, p=0.256 
 CASES CONTROLS 

BLACKS N % N % 
GG 11 25.6 20 50.0 
GA 24 55.8 17 42.5 
AA 8 18.6 3 7.5 

TOTAL 43  40  
χ2=5.98, p=0.050 

ALLELE FREQUENCY CASES CONTROLS 
G 0.535 0.713 
A 0.465 0.288 

Z=-2.396, p=0.017 
 
 
 

3.4. HAPLOTYPE DISTRIBUTION IN SLE CASES AND CONTROLS 

 

3.4.1. Haplotype Distribution in Whites 
 

There are 64 possible haplotypes for the six SNPs analyzed in the present study.  The G-160A 

SNP was not included in the analysis due to its strong linkage disequilibrium with the A-1074G 

SNP (D’=0.93).  This decreased the degrees of freedom to increase the ability to detect 

significance.  With this SNP excluded, there are 32 possible haplotypes for the 5 SNPs.  Fourteen 

of these haplotypes were seen at frequencies of 1% or greater (these haplotypes are shown in 

Table 17).  Of these fourteen haplotypes, four had significantly different frequencies in white 
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SLE cases and controls (highlighted in Table 17).  The overall distribution of haplotypes was 

different between white SLE cases and controls, with borderline significance (p=0.051).   

 

3.4.2. Haplotype Distribution in Blacks 
 

There are 64 possible haplotypes for the six SNPs analyzed in the present study.  The G-160A 

SNP was not included in the analysis due to its strong linkage disequilibrium with the A-1074G 

SNP.  This decreased the degrees of freedom to increase the ability to detect significance.  With 

this SNP excluded, there are 32 possible haplotypes for the 5 SNPs.  Fifteen haplotypes had 

frequencies of 1% or greater (these haplotypes are shown in Table 18).  One of the haplotypes 

(highlighted in Table 17) had a significantly different frequency in black SLE cases and controls.  

The overall distribution of haplotypes was not significantly different between black SLE cases 

and controls.   
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Table 19: Haplotype Distribution in Whites 

Haplotype Distribution
Allele 

at 
Allele 

at 
Allele 

at 
Allele 

at 
Allele 

at Total Case Control   
-1739 -1432 -1074 55 192 n=633 n=257 n=376 p-value* 

A C A L Q 0.0289 0.0346 0.0260 0.3866 
G C A L Q 0.0927 0.0979 0.0883 0.5653 
A G A L Q 0.0639 0.0609 0.0629 0.8839 
A C G L Q 0.0126 0.0043 0.0158 0.0327 
A G G L Q 0.1384 0.1393 0.1427 0.8663 
G G G L Q 0.0405 0.0619 0.0233 0.0013 
A C A M Q 0.0301 0.0179 0.0393 0.0199 
G C A M Q 0.2677 0.2464 0.2868 0.1089 
G G A M Q 0.0144 0.0035 0.0216 0.0022 
A G G M Q 0.0152 0.0168 0.0129 0.5863 
A C A L R 0.0452 0.0450 0.0427 0.8422 
G C A L R 0.1096 0.1212 0.0992 0.2219 
A G A L R 0.0464 0.0411 0.0496 0.4703 
A G G L R 0.0501 0.0593 0.0449 0.2622 

  
Association Studies   

ln(L) -2518.93 -1012.98 -1483.51   
χ2 1002.65 468.65 571.62 p**=0.051   

 
*p-value calculated using Z-test 
**p-value calculated using T5 statistic; 2[ln(L)cases + ln(L)controls – ln(L)cases+controls]; χ2-
distribution, df=31 
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Table 20: Haplotype Distribution in Blacks 

Haplotype Distribution
Allele 

at 
Allele 

at 
Allele 

at 
Allele 

at 
Allele 

at Total Case Control   
-1739 -1432 -1074 55 192 n=68 n=35 n=33 p-value* 

A C A L Q 0.0299 0.0316 0.0638 0.3801 
G C A L Q 0.0764 0.0446 0.0903 0.2888 
A G A L Q 0.0928 0.0543 0.0712 0.6852 
A C G L Q 0.0265 0.0209 0.0223 0.9542 
A G G L Q 0.1087 0.1797 0.1008 0.1812 
G G G L Q 0.0124 0.0177 0.0000 0.2615 
A C A M Q 0.0247 0.0251 0.0000 0.1791 
G C A M Q 0.1101 0.1114 0.1212 0.8587 
A G G M Q 0.0405 0.0000 0.0466 0.0726 
A C A L R 0.0950 0.0494 0.1115 0.1824 
A G A L R 0.1145 0.1224 0.1334 0.8477 
G G A L R 0.0216 0.0000 0.0308 0.1477 
A G G L R 0.2090 0.2246 0.1788 0.5047 
A G A M R 0.0272 0.0621 0.0000 0.0313 
A G A M R 0.0107 0.0152 0.0000 0.2986 

  
Association Studies   

ln(L) -268.64 -133.49 -127.43   
χ2 101.83 58.49 56.44 p**=0.991

*p-value calculated using Z-test  
**p-value calculated using T5 statistic; 2[ln(L)cases + ln(L)controls – ln(L)cases+controls]; χ2-
distribution, df=63 
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3.5. IMPACT OF PON1 POLYMORPHISMS ON ANTIBODY STATUS 

 

3.5.1. Association of the Q192R Polymorphism with Antibody Status 
 

The allele and genotype frequencies of the Q192R SNP were not significantly different between 

individuals with positive antibody status (one or more antibodies positive) and individuals with 

negative antibody status (all antibodies negative).  These results are summarized in Table 21.  

Antibody association studies also were performed separately in SLE cases and controls (Table 22 

and Table 23).  No significant associations between the Q192R polymorphism and antibody 

status were found.   

 

Table 21: Distribution of the Q192R SNP in Antibody Positive and Antibody Negative Individuals 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
GENOTYPE GENOTYPE ANTIBODY +

QQ QR RR Total QQ QR RR Total 
χ2 p 

ACL 111 82 14 207 163 137 19 319 0.62 0.734 
LAC 74 54 10 138 163 137 19 319 0.71 0.702 
β2GPI 86 84 12 182 163 137 19 319 0.69 0.708 
ALL 3 17 13 4 34 163 137 19 319 1.76 0.415 
ANY 199 152 24 375 163 137 19 319 0.42 0.809 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
ALLELE FREQUENCY ALLELE FREQUENCY ANTIBODY +

Q R Q R 

Z p 

ACL 0.734 0.266 0.726 0.274 0.29 0.775 
LAC 0.732 0.268 0.726 0.274 0.19 0.851 
β2GPI 0.703 0.297 0.726 0.274 -0.77 0.44 

 ALL 3  0.691 0.309 0.726 0.274 -0.60 0.55 
ANY 0.733 0.267 0.726 0.274 0.29 0.77 
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Table 22: Distribution of the Q192R SNP in Antibody Positive and Antibody Negative SLE Cases 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
GENOTYPE GENOTYPE ANTIBODY +

QQ QR RR Total QQ QR RR Total 
χ2 p 

ACL 37 39 9 85 72 58 6 136 4.00 0.135 
LAC 40 36 7 83 72 58 6 136 1.64 0.441 
β2GPI 49 48 9 106 72 58 6 136 2.23 0.328 
ALL 3 13 11 3 27 72 58 6 136 1.95 0.377 
ANY 79 79 15 173 72 58 6 136 3.01 0.222 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
ALLELE FREQUENCY ALLELE FREQUENCY ANTIBODY +

Q R Q R 

Z p 

ACL 0.665 0.335 0.743 0.257 -1.74 0.082 
LAC 0.699 0.301 0.743 0.257 -0.99 0.322 
β2GPI 0.689 0.311 0.743 0.257 -1.31 0.192 

 ALL 3  0.685 0.315 0.743 0.257 -0.85 0.397 
ANY 0.685 0.315 0.743 0.257 -1.59 0.111 

 

 

Table 23: Distribution of the Q192R SNP in Antibody Positive and Antibody Negative Controls 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
GENOTYPE GENOTYPE ANTIBODY +

QQ QR RR Total QQ QR RR Total 
χ2 p 

ACL 73 43 5 121 91 79 12 182 3.34 0.189 
LAC 34 18 3 55 91 79 12 182 2.38 0.304 
β2GPI 37 36 3 76 91 79 12 182 0.85 0.653 
ALL 3 4 2 1 7 91 79 12 182 0.99 0.608 
ANY 120 73 9 202 91 79 12 182 3.01 0.222 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
ALLELE FREQUENCY ALLELE FREQUENCY ANTIBODY +

Q R Q R 

Z p 

ACL 0.781 0.219 0.717 0.283 1.800 0.072 
LAC 0.782 0.218 0.717 0.283 1.416 0.157 
β2GPI 0.724 0.276 0.717 0.283 0.162 0.872 

 ALL 3  0.714 0.286 0.717 0.283 -0.024 0.981 
ANY 0.775 0.225 0.717 0.283 1.844 0.065 
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3.5.2. Association of the L55M Polymorphism with Antibody Status 
 

The allele and genotype frequencies of the L55M SNP were not significantly different between 

individuals with positive antibody status for LAC, β2GPI, all three or any antibodies and 

individuals with negative antibody status (all antibodies negative).  The allele frequency of the 

L55M SNP was significantly different between individuals positive for the ACL antibody and 

individuals with negative antibody status (p=0.0303).  These results are summarized in Table 24.  

Antibody association studies also were performed separately in SLE cases and controls (Table 25 

and Table 26).  No significant associations between the L55M polymorphism and antibody status 

were found.   

 

 

Table 24: Distribution of the L55M SNP in Antibody Positive and Antibody Negative Individuals 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
GENOTYPE GENOTYPE ANTIBODY +

LL LM MM Total LL LM MM Total 
χ2 p 

ACL 73 95 32 200 140 135 35 310 4.66 0.097 
LAC 48 67 17 132 140 135 35 310 2.94 0.230 
β2GPI 68 78 19 165 140 135 35 310 0.72 0.697 
ALL 3 13 14 3 30 140 135 35 310 0.12 0.941 
ANY 136 170 50 356 140 135 35 310 3.56 0.169 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
ALLELE FREQUENCY ALLELE FREQUENCY ANTIBODY +

L M L M 

Z p 

ACL 0.603 0.398 0.669 0.331 -2.17 0.030 
LAC 0.617 0.383 0.669 0.331 -1.47 0.142 
β2GPI 0.648 0.352 0.669 0.331 -0.65 0.517 
ALL 3 0.667 0.333 0.669 0.331 -0.03 0.975 
ANY 0.621 0.379 0.669 0.331 -1.83 0.067 
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Table 25: Distribution of the L55M SNP in Antibody Positive and Antibody Negative SLE Cases 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
GENOTYPE GENOTYPE ANTIBODY +

LL LM MM Total LL LM MM Total 
χ2 p 

ACL 30 38 11 79 63 55 15 133 1.79 0.408 
LAC 33 37 9 79 63 55 15 133 0.69 0.709 
β2GPI 42 49 11 92 63 55 15 133 0.07 0.966 
ALL 3 12 9 2 23 63 55 15 133 0.24 0.888 
ANY 67 72 21 160 63 55 15 133 0.91 0.632 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
ALLELE FREQUENCY ALLELE FREQUENCY ANTIBODY +

L M L M 

Z p 

ACL 0.620 0.380 0.680 0.320 -1.25 0.212 
LAC 0.652 0.348 0.680 0.320 -0.59 0.555 
β2GPI 0.668 0.332 0.680 0.320 -0.27 0.790 
ALL 3 0.717 0.283 0.680 0.320 0.51 0.609 
ANY 0.644 0.356 0.680 0.320 -0.92 0.358 

 

 

Table 26: Distribution of the L55M SNP in Antibody Positive and Antibody Negative Controls 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
GENOTYPE GENOTYPE ANTIBODY +

LL LM MM Total LL LM MM Total 
χ2 p 

ACL 43 56 21 120 76 80 20 176 2.92 0.232 
LAC 15 30 8 53 76 80 20 176 3.79 0.151 
β2GPI 26 39 8 73 76 80 20 176 1.41 0.493 
ALL 3 1 5 1 7 76 80 20 176 2.36 0.307 
ANY 69 98 29 196 76 80 20 176 2.74 0.254 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
ALLELE FREQUENCY ALLELE FREQUENCY ANTIBODY +

L M L M 

Z p 

ACL 0.592 0.408 0.659 0.341 -1.65 0.099 
LAC 0.566 0.434 0.659 0.341 -1.71 0.087 
β2GPI 0.623 0.377 0.659 0.341 -0.76 0.448 
ALL 3 0.500 0.500 0.659 0.341 -1.17 0.242 
ANY 0.602 0.398 0.659 0.341 -1.61 0.107 
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3.5.3. Association of the A-1739G Polymorphism with Antibody Status 
 
 
The allele and genotype frequencies of the A-1739G SNP were not significantly different 

between individuals with positive antibody status (one or more antibodies positive) and 

individuals with negative antibody status (all antibodies negative).  These results are summarized 

in Table 27.  Antibody association studies also were performed separately in SLE cases and 

controls (Table 28 and Table 29).  No significant associations between the A-1739G 

polymorphism and antibody status were found.   

 

 

Table 27: Distribution of the A-1739G SNP in Antibody Positive and Antibody Negative Individuals 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
GENOTYPE GENOTYPE ANTIBODY +

AA AG GG Total AA AG GG Total 
χ2 p 

ACL 41 85 76 202 64 154 96 314 3.12 0.210 
LAC 28 60 50 138 64 154 96 314 1.58 0.454 
β2GPI 43 75 59 177 64 154 96 314 2.15 0.342 
ALL 3 6 16 10 32 64 154 96 314 0.05 0.976 
ANY 80 159 133 372 64 154 96 314 2.95 0.228 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
ALLELE FREQUENCY ALLELE FREQUENCY ANTIBODY +

A G A G 

Z p 

ACL 0.413 0.587 0.449 0.551 -1.14 0.254 
LAC 0.423 0.577 0.449 0.551 -0.73 0.467 
β2GPI 0.455 0.545 0.449 0.551 0.18 0.856 
ALL 3 0.438 0.563 0.449 0.551 -0.18 0.854 
ANY 0.429 0.571 0.449 0.551 -0.74 0.457 
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Table 28: Distribution of the A-1739G SNP in Antibody Positive and Antibody Negative SLE Cases 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
GENOTYPE GENOTYPE ANTIBODY +

AA AG GG Total AA AG GG Total 
χ2 p 

ACL 17 34 32 83 32 53 49 134 0.34 0.843 
LAC 17 36 31 84 32 53 49 134 0.44 0.801 
β2GPI 30 39 34 103 32 53 49 134 0.87 0.649 
ALL 3 5 13 7 25 32 53 49 134 1.36 0.506 
ANY 40 69 64 173 32 53 49 134 0.02 0.988 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
ALLELE FREQUENCY ALLELE FREQUENCY ANTIBODY +

A G A G 

Z p 

ACL 0.410 0.590 0.437 0.563 -0.55 0.580 
LAC 0.417 0.583 0.437 0.563 -0.41 0.681 
β2GPI 0.481 0.519 0.437 0.563 0.95 0.340 
ALL 3 0.460 0.540 0.437 0.563 0.30 0.764 
ANY 0.431 0.569 0.437 0.563 -0.15 0.882 

 
 
 
Table 29: Distribution of the A-1739G SNP in Antibody Positive and Antibody Negative Controls 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
GENOTYPE GENOTYPE ANTIBODY +

AA AG GG Total AA AG GG Total 
χ2 p 

ACL 24 51 44 119 32 101 47 180 5.47 0.065 
LAC 11 24 19 54 32 101 47 180 2.42 0.298 
β2GPI 13 36 25 74 32 101 47 180 1.63 0.442 
ALL 3 1 3 3 7 32 101 47 180 0.97 0.617 
ANY 40 90 69 199 32 101 47 180 4.75 0.093 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
ALLELE FREQUENCY ALLELE FREQUENCY ANTIBODY +

A G A G 

Z p 

ACL 0.416 0.584 0.458 0.542 -1.02 0.310 
LAC 0.426 0.574 0.458 0.542 -0.59 0.556 
β2GPI 0.419 0.581 0.458 0.542 -0.81 0.420 
ALL 3 0.357 0.643 0.458 0.542 -0.77 0.440 
ANY 0.427 0.573 0.458 0.542 -0.86 0.391 
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3.5.4. Association of the C-1432G Polymorphism with Antibody Status 
 
 

The allele and genotype frequencies of the C-1432G SNP were not significantly different 

between individuals with positive antibody status (one or more antibodies positive) and 

individuals with negative antibody status (all antibodies negative).  These results are summarized 

in Table 30.  Antibody association studies also were performed separately in SLE cases and 

controls (Table 31 and Table 32).  In SLE cases, no significant associations between the C-

1432G polymorphism and antibody status were found.  In controls, the genotype distribution was 

significantly different between individuals positive for all three antibodies and those negative for 

all three antibodies (χ2=7.0461, p=0.0295).  Also in controls, the allele frequency of the C-1432G 

SNP was significantly different between individuals positive for the β2GPI antibody and 

individuals negative for all three antibodies (Z=1.983, p=0.0473).  In addition, the allele 

frequency of the C-1432G SNP was significantly different between individuals positive for all 

three antibodies and individuals negative for all three antibodies (Z=3.847, p=0.0001).  No other 

significant associations were found. 
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Table 30: Distribution of the C-1432G SNP in Antibody Positive and Antibody Negative Individuals 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
GENOTYPE GENOTYPE ANTIBODY +

CC CG GG Total CC CG GG Total 
χ2 p 

ACL 80 94 24 198 98 157 41 296 2.75 0.253 
LAC 49 69 14 132 98 157 41 296 1.19 0.553 
β2GPI 65 80 22 167 98 157 41 296 1.61 0.447 
ALL 3 13 15 4 32 98 157 41 296 0.73 0.694 
ANY 141 173 42 356 98 157 41 296 3.03 0.220 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
ALLELE FREQUENCY ALLELE FREQUENCY ANTIBODY +

C G C G 

Z p 

ACL 0.641 0.359 0.596 0.404 1.43 0.152 
LAC 0.633 0.367 0.596 0.404 1.03 0.302 
β2GPI 0.629 0.371 0.596 0.404 0.99 0.321 
ALL 3 0.641 0.359 0.596 0.404 0.71 0.477 
ANY 0.639 0.361 0.596 0.404 1.59 0.112 

 
 
 
Table 31: Distribution of the C-1432G SNP in Antibody Positive and Antibody Negative SLE Cases 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
GENOTYPE GENOTYPE ANTIBODY +

CC CG GG Total CC CG GG Total 
χ2 p 

ACL 26 42 9 77 39 59 18 116 0.61 0.739 
LAC 29 41 8 78 39 59 18 116 1.16 0.561 
β2GPI 32 45 15 92 39 59 18 116 0.08 0.961 
ALL 3 8 14 4 26 39 59 18 116 0.09 0.956 
ANY 57 81 20 158 39 59 18 116 0.51 0.774 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
ALLELE FREQUENCY ALLELE FREQUENCY ANTIBODY +

C G C G 

Z p 

ACL 0.610 0.390 0.591 0.409 0.37 0.709 
LAC 0.635 0.365 0.591 0.409 0.88 0.382 
β2GPI 0.592 0.408 0.591 0.409 0.02 0.984 
ALL 3 0.577 0.423 0.591 0.409 -0.19 0.853 
ANY 0.617 0.383 0.591 0.409 0.62 0.539 
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Table 32: Distribution of the C-1432G SNP in Antibody Positive and Antibody Negative Controls 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
GENOTYPE GENOTYPE ANTIBODY +

CC CG GG Total CC CG GG Total 
χ2 p 

ACL 54 51 15 120 54 95 22 171 5.83 0.054 
LAC 20 28 6 54 54 95 22 171 0.58 0.750 
β2GPI 33 33 6 72 54 95 22 171 4.69 0.096 
ALL 3 5 1 0 6 54 95 22 171 7.05 0.030 
ANY 84 92 22 198 54 95 22 171 4.62 0.099 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
ALLELE FREQUENCY ALLELE FREQUENCY ANTIBODY +

C G C G 

Z p 

ACL 0.663 0.338 0.594 0.406 1.68 0.093 
LAC 0.630 0.370 0.594 0.406 0.67 0.501 
β2GPI 0.688 0.313 0.594 0.406 1.98 0.047 
ALL 3 0.917 0.083 0.594 0.406 3.84 0.000 
ANY 0.657 0.343 0.594 0.406 1.77 0.077 

 
 
 
3.5.5. Association of the A-1074G Polymorphism with Antibody Status 
 

The allele frequency of the A-1074G SNP was not significantly different between individuals 

with positive antibody status (one or more antibodies positive) and individuals with negative 

antibody status (all antibodies negative).  These results are summarized in Table 33.  Antibody 

association studies also were performed separately in SLE cases and controls (Table 34 and 

Table 35).  In SLE cases, no significant associations between the A-1074G polymorphism and 

antibody status were found.  In controls, the allele frequency was significantly different between 

individuals positive for the LAC antibody and those negative for all three antibodies (Z=-2.053, 

p=0.0401).  No other significant associations were found.   

 

 

53 



 

Table 33: Distribution of the A-1074G SNP in Antibody Positive and Antibody Negative Individuals 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
GENOTYPE GENOTYPE ANTIBODY +

AA AG GG Total AA AG GG Total 
χ2 p 

ACL 108 71 13 192 155 132 16 303 2.26 0.323 
LAC 60 54 13 127 155 132 16 303 3.56 0.169 
β2GPI 83 67 12 162 155 132 16 303 0.91 0.633 
ALL 3 14 11 3 28 155 132 16 303 1.43 0.488 
ANY 180 140 26 346 155 132 16 303 1.64 0.440 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
ALLELE FREQUENCY ALLELE FREQUENCY ANTIBODY +

A G A G 

Z p 

ACL 0.747 0.253 0.729 0.271 0.63 0.529 
LAC 0.685 0.315 0.729 0.271 -1.28 0.199 
β2GPI 0.719 0.281 0.729 0.271 -0.33 0.746 
ALL 3 0.696 0.304 0.729 0.271 -0.52 0.607 
ANY 0.723 0.277 0.729 0.271 -0.24 0.809 

 
 
 
Table 34: Distribution of the A-1074G SNP in Antibody Positive and Antibody Negative SLE Cases 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
GENOTYPE GENOTYPE ANTIBODY +

AA AG GG Total AA AG GG Total 
χ2 p 

ACL 40 33 4 77 62 60 8 130 0.37 0.831 
LAC 41 30 7 78 62 60 8 130 1.44 0.487 
β2GPI 47 38 8 93 62 60 8 130 0.89 0.641 
ALL 3 11 9 2 22 62 60 8 130 0.38 0.826 
ANY 83 64 13 160 62 60 8 130 1.27 0.530 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
ALLELE FREQUENCY ALLELE FREQUENCY ANTIBODY +

A G A G 

Z p 

ACL 0.734 0.266 0.708 0.292 0.57 0.567 
LAC 0.718 0.282 0.708 0.292 0.22 0.827 
β2GPI 0.710 0.290 0.708 0.292 0.05 0.963 
ALL 3 0.705 0.295 0.708 0.292 -0.04 0.968 
ANY 0.719 0.281 0.708 0.292 0.29 0.771 
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Table 35: Distribution of the A-1074G SNP in Antibody Positive and Antibody Negative Controls 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
GENOTYPE GENOTYPE ANTIBODY +

AA AG GG Total AA AG GG Total 
χ2 p 

ACL 67 38 9 114 92 72 8 172 2.85 0.240 
LAC 19 24 6 49 92 72 8 172 5.56 0.062 
β2GPI 36 29 4 69 92 72 8 172 0.15 0.930 
ALL 3 3 2 1 6 92 72 8 172 1.77 0.413 
ANY 97 76 13 186 92 72 8 172 0.88 0.643 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
ALLELE FREQUENCY ALLELE FREQUENCY ANTIBODY +

A G A G 

Z p 

ACL 0.754 0.246 0.744 0.256 0.27 0.787 
LAC 0.633 0.367 0.744 0.256 -2.05 0.040 
β2GPI 0.732 0.268 0.744 0.256 -0.27 0.787 
ALL 3 0.667 0.333 0.744 0.256 -0.56 0.577 
ANY 0.726 0.274 0.744 0.256 -0.55 0.585 

 
 
 
 
3.5.6. Association of the G-160A Polymorphism with Antibody Status 
 

The allele frequency of the G-160A SNP was not significantly different between individuals with 

positive antibody status (one or more antibodies positive) and individuals with negative antibody 

status (all antibodies negative).  These results are summarized in Table 36.  Antibody association 

studies also were performed separately in SLE cases and controls (Table 37 and Table 38).  No 

significant associations between the G-160A polymorphism and antibody status were found.   
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Table 36: Distribution of G-160A SNP in Antibody Positive and Antibody Negative Individuals 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
GENOTYPE GENOTYPE ANTIBODY +

GG GA AA Total GG GA AA Total 
χ2 p 

ACL 118 69 16 203 167 129 18 314 3.03 0.220 
LAC 68 58 12 138 167 129 18 314 1.57 0.456 
β2GPI 96 66 13 175 167 129 18 314 0.89 0.641 
ALL 3 18 12 3 33 167 129 18 314 0.73 0.694 
ANY 201 139 29 369 167 129 18 314 1.67 0.434 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
ALLELE FREQUENCY ALLELE FREQUENCY ANTIBODY +

G A G A 

Z p 

ACL 0.751 0.249 0.737 0.263 0.51 0.614 
LAC 0.703 0.297 0.737 0.263 -1.04 0.298 
β2GPI 0.737 0.263 0.737 0.263 0.00 1 
ALL 3 0.727 0.273 0.737 0.263 -0.17 0.862 
ANY 0.733 0.267 0.737 0.263 -0.17 0.867 

 
 

Table 37: Distribution of the G-160A SNP in Antibody Positive and Antibody Negative SLE Cases 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
GENOTYPE GENOTYPE ANTIBODY +

GG GA AA Total GG GA AA Total 
χ2 p 

ACL 44 32 5 81 68 58 8 134 0.299 0.861 
LAC 43 33 7 83 68 58 8 134 0.613 0.736 
β2GPI 52 42 8 102 68 58 8 134 0.361 0.835 
ALL 3 13 11 2 26 68 58 8 134 0.111 0.946 
ANY 89 66 14 169 68 58 8 134 0.931 0.628 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
ALLELE FREQUENCY ALLELE FREQUENCY ANTIBODY +

G A G A 

Z p 

ACL 0.741 0.259 0.724 0.276 0.387 0.699 
LAC 0.717 0.283 0.724 0.276 -0.158 0.875 
β2GPI 0.716 0.284 0.724 0.276 -0.192 0.848 
ALL 3 0.712 0.288 0.724 0.276 -0.175 0.861 
ANY 0.722 0.278 0.724 0.276 -0.055 0.956 
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Table 38: Distribution of the G-160A SNP in Antibody Positive and Antibody Negative Controls 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
GENOTYPE GENOTYPE ANTIBODY +

GG GA AA Total GG GA AA Total 
χ2 p 

ACL 74 37 11 122 99 71 10 180 3.35 0.188 
LAC 25 25 5 55 99 71 10 180 1.92 0.382 
β2GPI 44 24 5 73 99 71 10 180 1.00 0.607 
ALL 3 5 1 1 7 99 71 10 180 2.31 0.315 
ANY 112 73 15 200 99 71 10 180 0.78 0.678 

ANTIBODY POSITIVE ANTIBODY NEGATIVE 
ALLELE FREQUENCY ALLELE FREQUENCY ANTIBODY +

G A G A 

Z p 

ACL 0.758 0.242 0.747 0.253 0.308 0.758 
LAC 0.682 0.318 0.747 0.253 -1.301 0.193 
β2GPI 0.767 0.233 0.747 0.253 0.478 0.633 
ALL 3 0.786 0.214 0.747 0.253 0.348 0.728 
ANY 0.743 0.258 0.747 0.253 -0.158 0.875 

 

 

3.6. IMPACT OF PON1 POLYMORPHISMS ON PARAOXONASE ACTIVITY 

 

3.6.1. PON Activity Data Analysis 
 

PON activity data was transformed by taking the square root to ensure normal distribution.  

Covariates possibly affecting PON activity (age, BMI and smoking) were investigated, but were 

not found to significantly affect PON activity (p>0.05 for each).  Further analysis was therefore 

not adjusted for these covariates.  ANOVA analyses were performed on the transformed data to 

determine the significance of PON1 SNPs’ effects on PON activity.  Within each genotype, PON 

activity was consistently lower in cases than in controls in whites and blacks.   
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3.6.2. Association of the Q192R Polymorphism with PON Activity 
 

PON activity was significantly different across genotypes for the Q192R SNP, with the RR 

genotype having the highest PON activity in all groups (p<0.0001 in white SLE cases, white 

controls, black SLE cases and black controls).  This is summarized in Table 39.  In addition, 

multiple linear regression analysis showed that the Q192R SNP had the most significant impact 

on PON activity of all the SNPs studied. 

   

Table 39: Impact of Q192R SNP on PON Activity (+/-SD) 

  PON1 192 GENOTYPE   
WHITE 

SUBJECTS QQ QR RR p-value* 
SLE CASES n=146 n=133 n=18   

  352.30+/-249.82 821.55+/-323.46 1306.46+/-478.29 <0.0001 
CONTROLS n=246 n=161 n=20   

  457.03+/-342.80 992.28+/-415.50 1695.89+/-704.50 <0.0001 
  PON1 192 GENOTYPE   

BLACK 
SUBJECTS QQ QR RR p-value* 
SLE CASES n=7 n=21 n=10   

  430.75+/-560.11 966.18+/-418.60 1311.78+/-308.28 <0.0001 
CONTROLS n=9 n=22 n=7   

  753.77+/-764.74 1021.04+/-393.11 2055.61+/-514.55 <0.0001 
*p-value determined from ANOVA analysis 
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3.6.3. Association of the L55M Polymorphism with PON Activity 
 

PON activity was significantly different across genotypes for the L55M SNP, with the LL 

genotype having the highest PON activity in white SLE cases (p<0.0001), white controls 

(p<0.0001), and black SLE cases (p=0.0009).  PON activity was not significantly different across 

L55M genotypes in black controls.  This is summarized in Table 40. 

 

 

Table 40: Impact of the L55M SNP on PON Activity (+/-SD)  

  PON1 55 GENOTYPE   
WHITE 

SUBJECTS LL LM MM p-value* 
SLE CASES n=124 n=120 n=34   

  789.97+/-452.20 563.51+/-341.75 238.78+/-118.48 <0.0001 
CONTROLS n=157 n=195 n=58   

  933.78+/-574.19 683.16+/-445.09 281.05+/-140.79 <0.0001 
  PON1 55 GENOTYPE   

BLACK 
SUBJECTS LL LM MM p-value* 
SLE CASES n=24 n=10 n=2   

  1189.45+/-466.48 591.87+/-466.10 436.01+/-14.03 0.0009 
CONTROLS n=22 n=14 n=2   

  1284.98+/-698.99 1020.76+/-683.21 710.72+/-499.89 0.3001 
*p-value determined from ANOVA analysis of transformed (square root) PON activity 
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3.6.4. Association of the A-1739G Polymorphism with PON Activity 
 

PON activity was significantly different across genotypes for the A-1739G SNP, with the AA 

genotype having the highest PON activity in white SLE cases (p<0.0001), white controls 

(p<0.0001), and black controls (p=0.0155).  PON activity was not significantly different across 

L55M genotypes in black SLE cases.  This is summarized in Table 41. 

 

 

Table 41: Impact of the A-1739G SNP on PON Activity (+/-SD) 

  PON1 -1739 GENOTYPE   
WHITE 

SUBJECTS AA AG GG p-value* 
SLE CASES n=68 n=121 n=103   

  792.62+/-482.30 639.66+/-392.40 481.22+/-341.52 <0.0001 
CONTROLS n=78 n=209 n=133   

  974.36+/-635.22 734.84+/-482.26 517.91+/-390.49 <0.0001 
  PON1 -1739 GENOTYPE   

BLACK 
SUBJECTS AA AG GG p-value* 
SLE CASES n=25 n=11 n=1   

  1068.44+/-488.48 840.33+/-571.23 275.12 0.1347 
CONTROLS n=25 n=11 n=3   

  1375.83+/-729.10 840.41+/-301.75 461.09+/-261.32 0.0155 
*p-value determined from ANOVA analysis of transformed (square root) PON activity 
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3.6.5. Association of the C-1432G Polymorphism with PON Activity 
 

PON activity was not significantly different across genotypes for the C-1432G SNP, with the 

exception of the white controls (p=0.0203).  In this group, the GG genotype had the highest PON 

activity.  PON activity was not significantly different across C-1432G genotypes in white SLE 

cases, black SLE cases or black SLE cases.  This is summarized in Table 42. 

 

 

Table 42: Impact of the C-1432G SNP on PON Activity (+/-SD) 

  PON1 -1432 GENOTYPE   
WHITE 

SUBJECTS CC CG GG p-value* 
SLE CASES n=90 n=134 n=36   

  586.67+/-427.37 617.73+/-397.76 649.74+/-431.88 0.5100 
CONTROLS n=153 n=208 n=52   

  642.24+/-481.67 758.46+/-500.39 805.36+/-654.87 0.0203 
  PON1 -1432 GENOTYPE   

BLACK 
SUBJECTS CC CG GG p-value* 
SLE CASES n=4 n=16 n=14   

  700.96+/-514.69 817.98+/-459.85 1058.77+/-416.44 0.2603 
CONTROLS n=9 n=17 n=14   

  874.48+/-370.05 1133.07+/-536.67 1375.57+/-898.77 0.3946 
*p-value determined from ANOVA analysis of transformed (square root) PON activity 
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3.6.6. Association of the A-1074G Polymorphism with PON Activity 
 

PON activity was not significantly different across genotypes for the A-1074G SNP.  This is 

summarized in Table 43. 

 

 

Table 43: Impact of the A-1074G SNP on PON Activity (+/-SD) 

  PON1 -1074 GENOTYPE   
WHITE 

SUBJECTS AA AG GG p-value* 
SLE CASES n=139 n=117 n=20   

  613.76+/-413.36 613.34+/-377.45 738.18+/-583.91 0.5243 
CONTROLS n=209 n=169 n=19   

  716.15+/-499.57 733.23+/-533.96 744.84+/-433.66 0.8213 
  PON1 -1074 GENOTYPE   

BLACK 
SUBJECTS AA AG GG p-value* 
SLE CASES n=10 n=20 n=6   

  901.77+/-476.65 965.12+/-488.12 866.57+/-402.98 0.9826 
CONTROLS n=16 n=18 n=4   

  891.51+/-387.38 1359.23+/-826.58 1178.77+/-646.34 0.2564 
*p-value determined from ANOVA analysis of transformed (square root) PON activity 
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3.6.7. Association of the G-160A Polymorphism with PON Activity 
 

PON activity was not significantly different across genotypes for the G-160A SNP.  This is 

summarized in Table 44. 

 

 

Table 44: Impact of the G-160A SNP on PON Activity (+/- SD) 

  PON1 -160 GENOTYPE   
WHITE 

SUBJECTS GG GA AA p-value* 
SLE CASES n=150 n=118 n=21   

  605.41+/-425.00 608.15+/-372.87 765.45+/-582.56 0.3003 
CONTROLS n=235 n=166 n=24   

  688.82+/-496.39 757.25+/-559.59 695.38+/-397.68 0.3058 
  PON1 -160 GENOTYPE   

BLACK 
SUBJECTS GG GA AA p-value* 
SLE CASES n=10 n=20 n=7   

  844.07+/-386.83 1074.96+/-626.91 979.11+/-424.27 0.8033 
CONTROLS n=20 n=17 n=3   

  1070.69+/-563.76 1126.42+/-751.58 2028.88+/-286.07 0.0869 
*p-value determined from ANOVA analysis of transformed (square root) PON activity 
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3.6.8. Interactions between and Independence of SNPs and Effects on PON Activity 
 

Interaction studies were performed between coding SNPs (Q192R and L55M) and promoter 

SNPs to determine the effects of interactions on PON activity.  In white controls, the Q192R and 

C-1432G SNPs showed significant interaction (p=0.017).  In white cases, the Q192R SNP 

showed significant interaction with both the C-1432G SNP (p=0.028), the A-1074G SNP 

(p=0.004) and the G-160A SNP (p=0.008).  No significant interactions were seen between the 

L55M SNP and the promoter SNPs in the white SLE cases or white controls.  In black samples, 

no significant interactions were seen between the Q192R SNP and the promoter SNPs.  In black 

cases, the L55M and G-160A SNPs showed significant interaction (p=0.037).  P-values from 

generated by ANOVA interaction analysis are summarized in Table 45, with significant values 

highlighted.   

 

Table 45: Interaction between Coding SNPs and Promoter SNPs and PON Activity 

WHITE CONTROLS A-1739G C-1432G A-1074G G-160A 
Q192R 0.092 0.017 0.076 0.065 
L55M 0.460 0.818 0.483 0.409 

WHITE CASES A-1739G C-1432G A-1074G G-160A 
Q192R 0.460 0.028 0.004 0.008 
L55M 0.650 0.282 0.064 0.058 

BLACK CONTROLS A-1739G C-1432G A-1074G G-160A 
Q192R 0.773 0.164 0.528 0.459 
L55M 0.189 0.908 0.446 0.835 

BLACK CASES A-1739G C-1432G A-1074G G-160A 
Q192R 0.080 0.314 0.504 0.872 
L55M 0.643 0.452 0.231 0.037 
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Multiple linear regression was performed to determine whether the significant effects of SNPs on 

PON activity were independent of one another.  The Q192R SNP had an independent, significant 

impact on PON activity in all groups studied.  It accounted for the greatest portion of the 

variation on PON activity (approximately 41% - 50%).  The L55M SNP had an independent, 

significant impact on PON activity in white cases, white controls, and black cases.  This SNP 

had accounted for less of the variation in PON activity than the Q192R SNP (approximately 20% 

in whites and 35% in black cases).  The A-1432G SNP was not independently significant in 

white controls.  The A-1739 SNP had an independent, significant impact on PON activity in 

white cases and white controls.  The A-1739G SNP accounted for approximately 10% of the 

variation in PON activity in white cases and white controls.   

 

 

Table 46: Multiple Linear Regression Analysis 

  
WHITE 

CONTROLS WHITE CASES 
BLACK 

CONTROLS BLACK CASES 
SNP p-value R2x100 p-value R2x100 p-value R2x100 p-value R2x100 

A-1739G <0.0001 11.01 0.0019 8.67 0.2938 20.66 0.3125 11.12 
C-1432G 0.1867 1.88 - - - - - - 

L55M 0.0002 20.99 <0.0001 21.98 0.9571 6.65 0.0123 34.58 
Q192R <0.0001 44.49 <0.0001 50.43 0.0031 41.33 0.0001 48.85 
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4. DISCUSSION AND SUMMARY 

 

Coronary heart disease (CHD) is a leading cause of death in the United States.  According to the 

American Heart Association, cardiovascular diseases are the number one cause of death in males 

and females of all ethnic groups, with CHD accounting for 53% of those deaths.  Since the 

1970s, numbers of people affected with CHD have continued to rise universally, resulting in 

major public health concerns (American Heart Association, 2004).  In addition to environmental 

and biological risk factors known to play a role in CHD, genetics have a significant impact on 

CHD risk and development.  The importance of understanding the genetics of CHD has become 

evident as more and more individuals develop the disease.  Studying the genetics of common 

complex diseases such as CHD can facilitate the understanding of disease etiology, leading to the 

opportunity for research into appropriate treatments.  Association studies such as the one 

presented here will allow for a better understanding of the risks associated with individual genes 

and the impact of common genetic variation on disease risk.  Identification of candidate genes 

for CHD, particularly those directly involved in lipid metabolism (like PON1) has allowed for a 

wealth of research and many opportunities for future study.   

 

Case-control cohorts play an important role in understanding the effects of candidate genes on 

disease risk through association studies.  Due to the markedly increased risk of CHD in SLE, a 

cohort of SLE cases was selected to investigate PON1 as a candidate gene for CHD.  The 

Pittsburgh SLE population used in this study has been well-studied, and a wealth of clinical and 

biological data are available on these patients.  Prior to beginning association analyses, 

homogeneity tests were performed to determine the genotype distribution in individuals of 

European descent and individuals of African descent.  Since genotype distributions and allele 
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frequencies were significantly different between these populations, all further analyses were 

performed separately in white and black samples.   

 

In this study, we examined eight SNPs in PON1 (three in the coding region and five in the 

promoter).  Six of these SNPs were informative because they were commonly distributed.  No 

significant associations were seen between the Q192R, C-1432G, or A-1074G SNPs and SLE 

disease in white or black samples.   

 

Some borderline significant associations were seen between PON1 SNPs and SLE disease in the 

white population.  A borderline significant association was found between the LL and LM+MM 

genotypes and the presence of SLE disease in white samples (χ2=4.00, p=0.046).  These data 

suggest that the M allele is protective against SLE disease (OR=0.73, 95% Confidence Interval 

0.54-0.98).  The 95% confidence interval of the odds ratio approaches 1, reflecting the borderline 

significance of this association.  In addition, a significant effect of the L55M SNP on PON 

activity was seen in this study, with the L isoform associated with higher PON activity in white 

cases (p<0.0001), white controls (p<0.0001), and black cases (p=0.0009).  The sample size of the 

black controls (n=38) may have been too small to detect statistically significant differences; 

however a trend is present with the L isoform having higher PON activity (LL homozygous 

individuals have highest PON activity [1284.98+/-698.99], followed by LM heterozygotes 

[1020.76+/-683.21] and finally MM homozygotes [710.72+/-499.89]).  Although it has not has 

been previously shown to have a significant impact on PON activity, the L55M SNP has been 

shown to impact PON serum levels (reviewed in Costa et al., 2003).  Since PON serum levels 

were not measured in this study, it is possible that individuals with the L isoform have higher 
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PON levels, resulting in higher PON activity, rather than an intrinsic difference in the catalytic 

ability of PON.  Measurement of PON levels in serum in these patients could help to determine 

the mechanism behind this difference.  Higher PON levels in individuals with the L isoform 

could explain the higher PON activity and would be consistent with previous studies.  The 

association of the M allele with SLE disease status could be due to lower PON levels or PON 

activity associated with the M allele.  SLE cases have been shown in this study to consistently 

have lower PON activity; it is possible that the lower activity M allele is a risk factor for SLE 

disease due to its effects on PON activity.  However, due to the borderline association seen in 

this study, further study with a larger sample of SLE cases would be helpful at clarifying this 

association.   

 

Another borderline association with SLE disease in whites was found at the -1739 position.  The 

genotype distribution of the A-1739G SNP was significantly different in white cases vs. white 

controls (χ2=6.43, p=0.040).  In white cases, 23.4% were AA homozygotes (compared to 18.9% 

of controls), 40.2% were AG heterozygotes (compared to 49.3% of controls) and 36.3% were 

GG homozygotes (compared to 31.7% of controls).  These data suggest that the heterozygous 

state is protective against SLE disease (Odds Ratio=0.66, 95% Confidence Interval 0.45-0.97).  

The 95% confidence interval of the odds ratio approaches 1, reflecting the borderline 

significance of this association.  However, this would not fit into a model of lower PON activity 

conferring SLE disease risk since the AG genotype has intermediate activity in both cases and 

controls.  Further study of this SNP with a greater number of cases and controls could help to 

clarify this association.  To our knowledge, the impact of the A-1739G SNP on PON activity has 

not been reported.  In this study, it showed a significant effect on PON activity in white cases 
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(p<0.0001), white controls (p<0.0001) and black controls (0.0155).  The sample size of the black 

cases (n=37) may have been too small to detect statistically significant differences; however a 

trend is present with the A isoform having higher PON activity.  Although the A-1739G was in 

linkage disequilibrium with both the coding SNPs in both whites and blacks, interaction studies 

did not show significant interactions between the coding SNPs and A-1739G in whites or blacks.  

Therefore, the A-1739G SNP has an independent effect on PON activity.  Future study to 

determine the cause of the impact of this SNP on PON activity could include PON serum level 

measurement (to determine whether the SNP impacts the serum level of PON or the catalytic 

properties of PON1) and molecular biological expression studies to determine how the SNP 

affects gene expression and, ultimately, PON activity.  This could offer some additional 

information about how the SNP might contribute to SLE disease risk as well.     

 

In blacks, a significant difference between the allele frequency in SLE cases and controls was 

found (Z=-2.396, p=0.017), with the A allele more frequent in the cases than controls.  In 

addition, the genotype distribution between cases and controls was borderline significantly 

different (χ2=5.98, p=0.050).  Black SLE cases were significantly more likely to be carriers of 

the A allele than controls (χ2=5.28, p=0.022).  These data suggest that the -160A allele is a risk 

allele for SLE disease (Odds Ratio=2.91, 95% Confidence Interval 1.15-7.33).  The wide 95% 

confidence interval of the odds ratio and the fact that the lower limit approaches 1 reflects the 

small sample size used in calculating the odds ratio.  Larger sample size could make the 

confidence interval narrower to clarify the association with greater confidence.  While no 

significant differences in PON activity were seen associated with the G-160A SNP, the trend in 

PON activity associated with the SNP was different in cases and controls.  In black SLE cases, 
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the individuals with the -160GA genotype had the highest PON activity (1074.96+/-626.91), 

followed by the -160AA homozygotes (979.11+/-424.27) and finally the -160GG homozygotes 

(844.07+/-386.83).  In black controls, however, the -160AA homozygotes had the highest PON 

activity (2028.88+/-286.07), followed by the -160AG heterozygotes (1126.42+/-751.58) and 

finally the -160GG homozygotes (1070.69+/-563.76).  Larger black sample sizes would be 

helpful in clarifying the role of the G-160A SNP in PON activity in the SLE cases and controls.  

However, given the results of this study, it appears that there may be some gene-gene or gene-

environment interaction affecting the PON activity of SLE cases carrying the A allele (perhaps 

the presence of APA) that alters the trend of PON activity when compared to controls.   

 

PON activity has been shown to play a role in CHD risk, with low PON activity associated with 

greater risk for CHD.  Significant differences between several of the PON1 SNPs and PON 

activity were seen in the present study.  The Q192R SNP has been well-studied and has 

previously been shown to have a significant impact on PON activity (reviewed in Nakanishi, 

2003).  When paraoxon is used as a substrate, the R isoform is associated with greater PON 

activity.  The results presented here show this pattern as well, and are consistent with previous 

studies (reviewed in Nakanishi, 2003).  Although case-control studies have provided conflicting 

data on whether or not this SNP is a significant independent factor for CHD, in a high-risk 

population such as the SLE cohort, it may be possible to discern whether or not the SNP confers 

a risk for CHD.  Further analysis of this data with information regarding cardiovascular events 

could establish whether the Q192R SNP could be used as a marker for CHD risk assessment in 

SLE patients.  Although the Q192R SNP is significantly associated with PON activity and PON 

activity is significantly lower in SLE cases than controls, no association of this SNP was 
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observed with SLE disease risk.  This further reinforces that SLE is most likely a multifactorial 

disease; while the Q192R SNP may affect PON activity and possibly influence disease risk, it 

cannot be seen as an independent risk factor for SLE disease. 

 

Interaction studies showed that the Q192R SNP did have significant interaction with some of the 

promoter SNPs.  In white controls, it interacted with the C-1432G SNP (p=0.017).  In the initial 

PON activity analysis, the C-1432G SNP had a significant impact on PON activity (p=0.020).  

However, when multiple linear regression was performed for the C-1432G SNP to adjust for the 

effects of other significant SNPs, it was found not to be an independent factor (p=0.187).  This 

suggests that the two SNPs may interact with each other, however the Q192R SNP has a greater 

impact on PON activity than the C-1432G SNP.  Other significant interactions were seen in 

white cases.  The Q192R SNP showed significant interactions with all of the promoter SNPs 

except for the A-1739G SNP.  In addition, multiple linear regression showed that the A-1739G 

SNP has an independent effect on PON activity.  As discussed above, further study of the 

biological mechanisms and importance of this SNP’s impact on PON activity and SLE disease 

risk would help to clarify its role and possible clinical significance.   

 

Haplotype analysis in the white population showed some significant differences between cases 

and controls.  The -1739A,-1432C, -1074G, 55L, 192Q haplotype was seen significantly more 

often in controls (frequency = 1.58%) than in cases (frequency = 0.43%; p=0.0327).  The -

1739G,-1432G, -1074G, 55L, 192Q haplotype was seen significantly more often in cases 

(frequency = 6.19%) than in controls (frequency = 2.33%; p=0.0013).  The -1739A,-1432C, -

1074A, 55M, 192Q haplotype was seen significantly more often in controls (frequency = 3.93%) 
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than in cases (frequency = 1.79%; p=0.0199).  The -1739G,-1432G, -1074A, 55M, 192Q 

haplotype was seen significantly more often in controls (frequency = 2.16%) than in cases 

(frequency = 0.35%; p=0.0022).  Overall, the haplotype distribution in whites was borderline 

significantly different (p=0.051).  In blacks, one haplotype had a significantly different 

frequency in SLE cases than controls.  The -1739A,-1432C, -1074A, 55M, 192R haplotype was 

seen significantly more often in cases (frequency = 6.21%) than in controls (frequency = 0.00%; 

p=0.0313).   

 

These differences in haplotype distribution indicate that PON1 may play a role the SLE risk.  

Larger sample size could help to determine the true significance of borderline associations.  With 

further study, these markers may be informative for determining SLE risk.  These results bring 

about the question of how PON1 could be involved in SLE etiology.  Due to the borderline 

nature of the significant differences, it is unlikely that PON1 is an independent factor for 

development of SLE.  As SLE is a complex disease, there are very likely a number other genetic 

and/or environmental factors that may be involved that cannot be determined from the present 

study.   

 

The general lack of strong association between PON1 polymorphisms and SLE disease could be 

due to several reasons.  One possibility is that, although PON1 is a candidate gene for SLE, these 

SNPs are unrelated to SLE disease risk.  As discussed, there are nearly 200 SNPs in PON1 and 

this study focused on a small percentage of that genetic variation.  Other SNPs in PON1 may 

play a role, or perhaps individuals with SLE have other, less common or yet-undiscovered 

changes in PON1 has affected their disease status.  Gene-gene and gene-environment 
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interactions not investigated in this study are thought to play a large role in the development of 

complex diseases like SLE and CHD.  Unfortunately, the number of factors involved could be 

infinite, where association studies such as this are very limited in scope and inability to identify 

other players in disease risk.   

 

As discussed, individuals with SLE have a higher rate of APA than individuals in the general 

population.  APA are significant risk factors for CHD.  Very few significant associations were 

found between PON1 SNPs and the presence of APA.  The allele frequency of the L55M SNP 

was significantly different between individuals positive for the ACL antibody (L: 0.603, M: 

0.398) and individuals negative for all antibodies (L: 0.669, M: 0.331; p=0.030).  The genotype 

distribution (χ2=7.05, p=0.030) and allele frequency of the C-1432G SNP were significantly 

different between controls positive for all three antibodies (C: 0.917, G: 0.083) vs. controls 

negative for all antibodies (C: 0.594, G: 0.406; p=0.000).  The allele frequency of the C-1432G 

SNP was also significantly different between controls positive for the β2GPI antibody (C: 0.688, 

G: 0.313) vs. controls negative for all antibodies (C: 0.594, G: 0.406; p=0.000).  Lastly, the allele 

frequency of the A-1074G SNP was significantly different between controls positive for the 

LAC antibody (A: 0.633, G: 0.367) and controls negative for all three antibodies (A: 0.744, G: 

0.256; p=0.040).  No discernable pattern was discerned between these significant differences; 

therefore it is unlikely that these differences represent an underlying biological difference by 

which PON1 affects the development of APA.  Future study with larger sample sizes could help 

to determine whether these differences are meaningful or are statistical coincidence.   

While PON1 has not been implicated in the presence of APA, APA have been shown to impact 

PON activity (Delgado Alves et al., 2002).  Further analysis of available data could help to 
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determine the effect of APA on PON activity.  Since, for the most part, SNP distributions were 

not significantly different between cases and controls, analysis of PON activity and antibody 

status could help to define the interaction between APA and PON activity.  In addition, analysis 

of PON activity measurements between cases and controls in conjunction with cardiovascular 

events could help to establish a profile of SLE patients at high risk for CHD.  This could have 

clinical implications for SLE patients and, with further study, for determining an individual’s 

risk to develop CHD in the general population, when combined with other known risk factors.  

Genotype data may be useful in predicting PON activity, which in turn could help to predict 

CHD risk.   

 

In summary, we have performed association studies between six polymorphisms in PON1 and 

SLE disease status, antibody status, and PON activity.  Significant findings from this study 

include: 

1. The PON1 polymorphisms examined in the present study have significantly different 

allele frequencies and genotype distributions in subjects of European descent and subjects 

of African descent.   

2. The PON1 polymorphisms examined in the present study are not significantly associated 

with SLE disease status. 

3. The PON1 polymorphisms examined in the present study are not significantly associated 

with the presence of APA. 

4. Three PON1 polymorphisms (Q192R, L55M and A-1739G) significantly impact in vitro 

PON activity.   
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