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The T cell Immunoglobulin Domain and Mucin Domain 3 (TIM-3) is a type I glycoprotein 

expressed primarily on the surface of activated T cells and myeloid cells. The extracellular 

domain of TIM-3 consists of an IgV domain and a mucin domain with several sites for N- and O-

linked glycosylation. The IgV domain is important for binding of TIM-3 to two of its known 

ligands, a β-galactoside binding lectin known as galectin-9 (Gal-9) and phosphatidylserine, a 

marker of early apoptosis. The cytoplasmic tail of TIM-3 has six conserved tyrosines, although 

their role in modulating downstream signaling pathways has yet to be determined. TIM-3 is 

widely regarded as a negative regulator of effector T cell function and viability. TIM-3 is also 

upregulated on exhausted T cells and is postulated to have a role in the development and/or 

maintenance of T cell exhaustion.  

However, the exact regulation of T cells by TIM-3 has not been fully established for 

several reasons. TIM-3 and at least one of its ligand is expressed on both T cells and antigen 

presenting cells (APC). Therefore, it is not clear whether TIM-3 antibodies or Tim-3 Ig fusion 

proteins block the ligation of TIM-3 on T cells or on APCs to enhance effector T cell function. 

Additionally, gal-9 can also induce apoptosis in cells lacking the expression of TIM-3 and has 

been shown to positively regulate other cell types such as dendritic cells and mast cells. As TIM-

3 is becoming an increasingly attractive therapeutic target because of its ability to reverse 

exhaustion in T cells, it is important to determine the regulatory nature of TIM-3 on T cells. To 
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do this, we expressed Tim-3 ectopically in Tim-3- Jurkat T cells and observed that Tim-3 

enhances instead of inhibits signaling downstream of the T-cell receptor and co-stimulator, 

CD28. Then, using a series of truncation and point mutants of Tim-3, we determined that Y256 

and Y263 are the most crucial of the six conserved tyrosines in mediating Tim-3 signaling. 

Another unexpected finding was that in addition to apoptosis, gal-9 also induces the secretion of 

pro-inflammatory cytokines from T helper subsets independently of Tim-3. 
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1.0  THE TIM GENE FAMILY 

Atopic diseases such as asthma and atopic dermatitis arise in genetically predisposed individuals 

under varying environmental conditions [1, 2]. Therefore, identifying a single chromosomal 

region that confers susceptibility to atopy has been challenging due to the contribution of both 

genetic and environmental factors. Nevertheless, in 2001, the T cell and Airway Phenotype 

Regulator (Tapr) region was identified in HBA mice, a congenic mouse strain produced by 

crossing asthma-susceptible BALB/c mice with asthma-resistant DBA/2 mice [3]. Tapr protects 

against airway hyperreactivity in HBA mice by limiting Th2 responses. However, it is 

genetically separable from the IL-4 cytokine gene cluster. It was within the Tapr that the T-cell, 

immunoglobulin domain and mucin domain (TIM) gene family was cloned. In mice, the TIM 

gene family is found on chromosome 11B1.1 which encodes for Tim-1, Tim-2, Tim-3 and Tim-

4, while the human chromosome 5q33.2 contains genes for for TIM-1, TIM-3 and TIM -4. With 

the exception of Tim-4, all Tim proteins are expressed on T cells. 

TIM proteins share a common architecture (Figure 1); an extracellular domain consisting 

of an IgV domain and a mucin domain with multiple sites for both N-linked and O-linked 

glycosylation, followed by a transmembrane domain and a cytoplasmic tail[2]. With the 

exception of TIM-4, the cytoplasmic tails of all TIM proteins have at least one tyrosine residue. 

Crystal structure definition reveals that the TIM  IgV domains consists of two anti-parallel β-
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sheets  formed by B,E and D strands in one sheet (BED) and G,F,C,C’ and C’’ strands in the 

other (GFC). The first and last of the six cysteine residues that are conserved in all TIM proteins, 

form a disulphide bond linking the BED and GFC β-sheets. Disulphide bonds formed between 

the four remaining cysteine residues, fold the long CC’ loop onto the GFC β-sheet to create a 

binding cleft unique to TIM-1, TIM-3 and TIM-4 [4, 5]. In canonical IgV domains, the CC’ loop 

does not fold onto the GFC β-sheet, allowing it to form other intermolecular interactions [6]. 

This unique binding cleft is stabilized by a hydrogen bond formed between an arginine residue in 

the F β-strand and lysine residue in the G β-strand [6].  

Upon closer examination, asparagine and arginine residues were found to coordinate a 

calcium ion within this cleft, and has therefore been named the metal ion-dependent ligand 

binding site (MILIBS)[7] (see Fig. 2A). Thus far only one ligand has been shown to bind to the 

MILIBS – phosphatidylserine (PS). PS is usually found in the inner leaflet of the plasma 

membrane but is redistributed to the outer leaflet during apoptosis or transiently during T cell 

activation [8, 9]. The acidic phosphate group of PS coordinates with the calcium ion deep within 

the MILIBS  while the carboxylate group of PS forms a hydrogen bond with a serine residue 

conserved in the CC’ loop of most TIM proteins. Recognition of PS in the outer leaflet of the 

plasma membrane requires hydrophobic residues located in either the CC’ and FG loop [10]. 

Residues in the BC loop also contribute towards the binding of TIM proteins to PS. Binding 

studies have shown that Tim-1 and Tim-4 bind to PS with a much higher affinity than Tim-3[10]. 

This is most likely due to variations within the BC, CC’ and FG loops. Thus far, PS remains the 

only common ligand to TIM-1, TIM-3 and TIM-4. 

Apart from their association with atopic diseases, TIM-1, TIM-2 and TIM-3 have also 

been implicated in autoimmune diseases, allograft tolerance, chronic viral infections and cancer, 
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indicating that TIM proteins have a broader role in immune regulation [11-16]. As this 

introduction is focused on the regulation of T cells by TIM family members, TIM-4 is will not be 

discussed in detail in this introduction. Also, when referring to human TIM family members, 

TIM will be in uppercase while mouse Tim family members will be in lowercase. 

 

 

 

              

 

Figure 1: Comparison of Tim family IgV domains  

(A) Tim-1 IgV domain (green) superimposed onto Tim-4 IgV domain (blue).  Phosphatidylserine is seen in the 

MILIBS, which is conserved in Tim-1, Tim-3 and Tim-4 (B) Tim-1 IgV domain (blue) superimposed onto the Tim-

2 IgV domain (purple). Unlike Tim-1, the CC’ loop is not folded onto the GFC β-sheet. 

A B 
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Figure 2: Phylogenic tree of mammalian TIM homologs. 

Diagram above shows the evolutionary relationship of TIM family members from various mammalian species to 

mouse Tim-1.Mouse Tim proteins bear the greatest homology to rat Tim proteins whereas human TIM proteins are 

evolutionarily closest to chimpanzee (PANTR). TIM-2 is the most closely related TIM family member to TIM-1 

(HAVCR-1), followed byTIM-3 (HAVCR2) and TIM-4. 

 

1.1 TIM-1 

1.1.1 Structure and function 

TIM-1 is preferentially expressed on Th2 cells and activated T cells. Epidemiological studies that 

date back to as early as 1997, have reported an association between HAV infection and reduced 
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incidence of allergy and asthma [17, 18]. In humans, the ortholog of mouse Tim-1 is the hepatitis 

A virus receptor (HAVCR1)[3]. An insertion/deletion polymorphism in TIM-1 has been found to 

confer protection against atopy in individuals who have been infected previously with the 

hepatitis A virus (HAV) [19]. With this revelation, we now appreciate how HAV may have a 

direct role in protection against atopic diseases and does not just serve as an indicator of poor 

hygiene. Another ortholog of mouse Tim-1 is rat Kim1, a kidney injury molecule that has been 

proposed as a biomarker for renal cell carcinoma [20]. There are two splice variants of human 

KIM-1, both of which are lacking some portion of the cytoplasmic tail – TIM-1a, which lacks the 

tyrosine phosphorylation motif and Tim-1b, which has the signaling motif but is susceptible to 

cleavage by metalloproteinases [21, 22]. Tim-1a is found primarily in the liver while Tim-1b is 

the variant most expressed in the kidney [22].  Apart from HAV, TIM-1 also binds to TIM-4, 

another TIM family member expressed primarily on dendritic cells, and phosphatidylserine (PS), 

a marker of early apoptosis[10, 23]. Recently, it was shown that the interaction between TIM-1 

and TIM-4 is mediated by exosomes and therefore, is indirect [24]. 

 The extracellular domain of TIM-1 is predicted to have sixty glycosylation sites, a 

majority of which are O-linked [3]. In both mice and humans, TIM-1 polymorphisms are 

localized within the mucin domain (Figure 4 and Table 1: Human TIM-1 polymorphisms). Two 

residues, His64 and Glu67 of the TIM-1 DE loop are thought to be important for this trans-TIM-

1 binding, since mutating histidine at position 64 to glutamic acid leads to significant reductions 

in homophilic Tim-1:Tim-1 binding and partially decreased levels of Tim-1:Tim-4 binding[4]. 

This could be of potential biologic relevance because this homophilic binding is conserved in 

humans. The authors also demonstrate that Tim-1 clusters mostly in the cytoplasm but relocates 

to the cell surface upon ionomycin or phorbol ester treatment[4]. Interestingly, the localization of 
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Tim-1 to these clusters appears to be dependent on the four critical residues of the MILIBS, 

another conserved feature of Tim proteins[7]. 

 

  

            

                                                      

 

Figure 3: The Tim-1 IgV domain 

Ribbon diagram of the Tim-1 IgV domain is shown on the left while the surface diagram is shown on the right. The 

BED β-sheet is highlighted in blue and GFC β-sheet in pink. Disulphide bonds are highlighted in orange, while the 

CC’, FG and BC loops are highlighted in green. The two residues that coordinate the Ca2+ ion in the MILIBS are 

highlighted in yellow.  A polymorphism in mkTim-1 (Lys88Gln), indicated approximately by the arrow, is required 

for binding of HAV to mkTim-1. Diagrams were generated using PDB ID: 2OR8 using the PyMol software. 
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       A        B 
MNQIQVFISGLILLLPGAVDSYVEVKGVVGHPVTLPCTYST--YRGITT
      T                        

  47  mTIM-1  

MHPQVVILSLILHLADSVAGSVKVGGEAGPSVTLPCHYS----GAVTS   44  hTIM-1                                           
 
  C              C’      C’’    D             E  
TCWGRGQCPSSACQNTLIWTNGHRVTYQKSSRYNLKGHISEGDVSLTI
 

EN 97  mTIM-1  

MCWNRGSCSLFTCQNGIVWTNGTHVTYRKDTRYKLLGDLSRRDVSLTIEN 94  hTIM-1 
 
         F               G                      
SVESDSGLYCCRVEIPGWFNDQKVTFSLQVK
                                                 T 

P----------EIPTRPPR 137 mTIM-1  

TAVSDSGVYCCRVEHRGWFNDMKITVSLEIVPPKVTTTPIVTTVPTVTTV 144 hTIM-1  
 
 
R----------------PTTTRPTATGRPTT--------ISTRS------ 157 mTIM-1  
 
RTSTTVPTTTTVPMTTVPTTTVPTTMSIPTTTTVLTTMTVSTTTSVPTTT 194 hTIM-1 
 
 
-----THVPTSTRVSTSTP------------------------------- 171 mTIM-1 
         I 
SIPTTTSVPVTTTVSTFVPPMPLPRQNHEPVATSPSSPQPAETHPTTLQG 244 hTIM-1 
  

 
-----PTSTHTWTHKPDWNGTVTSSGD-TWSNHTEAIPPGK--PQKNPTK 213 mTIM-1 
 
AIRREPTSSPLYSYTTDGNDTVTESSDGLWNNNQTQLFLEHSLLTANTTK 294 hTIM-1 
 
 
GFYVGICIAALLLLLLVSTVAITRYILMKRK-SASLSVVAFRVSKIEALQ 262 mTIM-1  
 
GIYAGVCISVLVLLALLG-VIIAKKYFFKKE-VQQLS-VSFSSLQIKALQ 341 hTIM-1 
 
 
NAAVVHSRAEDNIYIVEDRP------------------------------ 282 mTIM-1 
 
NAVEKEVQAEDNIYIENSLYATD--------------------------- 364 hTIM-1 

 

 

Figure 4: Alignment of TIM-1 sequences. 

There is a 42% sequence identity between mouse Tim-1(C57Bl6) and human TIM-1.β-strands are underlined, 

transmembrane domain highlighted in red, and conserved tyrosine residues highlighted in green . Residues that 

coordinate the Ca2+ ion in the MILIBS are highlighted in blue while the homophilic residues that allow Tim-3 to 

bind to PS on the membrane surface are highlighted in purple. Polymorphisms between C57Bl/6 and BALB/c 

highlighted in orange. 
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Table 1: Human TIM-1 polymorphisms  

 

1.1.2 Immune regulation 

1.1.2.1  Effector T cells 

Cross-linking Tim-1 in conjunction with TCR and CD28 enhances the proliferation of naïve 

CD4+ T cells and increases the production of IL-4 from Th2 cells [30]. When administered along 

with antigen, agonistic Tim-1 antibody abrogates the induction of respiratory tolerance by 

promoting the secretion of IL-4 and IFN-γ and proliferation of antigen-specific T cells [30, 31].  

Therefore, Tim-1 is a co-stimulatory receptor with the ability to prevent the induction of 

tolerance by enhancing T helper effector function. 

Location Polymorphism Disease association 

 
 
 
 

Mucin 

 
 

157insMTTTVP 
 

 
Generates the “long” form of  TIM-1 
Protects against atopy only in individuals with prior HAV 
infection [19] 
Increased risk for severe hepatitis [25] 
 

5509-5511delCAA Asthma[26] 
Rheumatoid arthritis [27, 28] 

5383-5397 

 
Atopic dermatitis 
Rheumatoid arthritis [27, 28] 
 

 
Promoter 

 
-1637A>G 

 
Rheumatoid arthritis [29] 
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The ability for Tim-1 to modulate T cell activation has been studied from a mechanistic 

perspective. In reporter assays, the ectopic expression of Tim-1 leads to NFAT/AP-1 

transcriptional activation which is dependent on Y276 in the cytoplasmic tail [32].  CD3 capping 

experiments showed that Tim-1 is recruited to the TCR signaling via its association with CD3.  

This study also showed that crosslinking of Tim-1 by an agonistic antibody induces the 

phosphorylation of Tim-1, ζ chain associate protein kinase 70 (ZAP-70) and IL-2-inducible T 

cell kinase (ITK). In addition, activation of Tim-1 recruits a complex consisting of ITK and 

phosphatidyl inositol-3 kinase (PI3K) to the TCR signaling complex [33].  More recent work has 

also suggested that the p85α subunit of PI3K is recruited to Y276 after it is phosphorylated by 

Lck [34]. Tim-4-Ig fusion proteins induces the phosphorylation of thymoma viral proto-

oncogene 1(Akt), mitogen activated protein kinase ½ (ERK1/2) and pro-apoptotic factor, B-cell 

chronic lymphocytic leukemia/lymphoma 2 (Bcl2) in CD3+ T cells [35].   

Although it appears that Tim-1 usually regulates T cell activation in a positive manner, 

this is not always the case.  The agonistic (3B3) and antagonistic (RMT1-10) monoclonal 

antibodies to Tim-1 show that Tim-1 can have both positive and negative regulatory effects on T 

cells [36]. 3B3 increases secretion of IFN-γ and IL-17, exacerbating EAE in mice, while RMT1-

10 promotes heart allograft tolerance by inhibiting the function of aggressive IL-17-secreting 

CD8+ T cells [37].  Further investigation revealed that while 3B3 and RMT1-10 both bind to the 

IgV domain of Tim-1 and induces CD3 capping, 3B3 binds to Tim-1 with much higher affinity 

and can cause cytoskeletal reorganization [36].  
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1.1.2.2  Mast cells and macrophages 

Tim-1 is expressed constitutively on the surface of peritoneal mast cells and bone marrow-

derived cultured mast cell but is downregulated following IgE and antigen stimulation.  

However, the addition of Tim-4 promotes the production of Th2 cytokines, such as IL-4, IL-6, 

and IL-13 without affecting degranulation, presumable through Tim-1[38].  In addition, 

macrophages also appear to be influenced by Tim-1. Treatment of the macrophage cell line, 

RAW264.7 with recombinant mouse Tim-1 (rmTim-1) resulted in increased production of TNF-

α, IL-6, and IL-10 and upregulation of B7-1, B7-H1, B7-H2 and PD-L2.  It is important to note 

that rmTim-1 was comparable to LPS in its ability to promote the upregulation of B7 family 

members in RAW264.7 cells[39]. 

1.1.2.3  Tolerance and Regulatory T cells (Tregs) 

The ability for Tim-1 to either promote or suppress the development of Tregs is also dependent 

on the nature of the crosslinking antibody.  In vivo, the agonistic Tim-1 antibody, 3B3, drives the 

polarization of alloreactive T cells towards Th1 and Th17 phenotypes but deprograms Tregs. 

3B3 abrogates tolerance induced in mice by co-stimulatory blockade, resulting in allograft 

rejection[40].  In contrast, the antagonistic anti-Tim-1 Ab, RMT1-10, prolonged the survival of 

fully-MHC mismatched cardiac by inhibiting Th1 responses while promoting Th2 responses. 

Unlike the agonistic antibody, RMT1-10 inhibited the function of allospecific effector T cells 

without modulating the function or development of Tregs [16].      
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1.1.2.4 Invariant NKT cells (iNKT) 

iNKT cells comprise a small subset of T cells that express both natural killer cell (NK) 

lineage markers and a semi-invariant TCR[41]. Recognition of glycolipid antigens is restricted to 

the non-classical class I MHC molecule, CD1d [42]. When activated, iNKT cells are able to 

secrete high levels of IL-4 and IFN-γ. Recently, iNKT cells were found to constitutively express 

Tim-1 and were able to bind without engulfing eryptotic red blood cells (ERBC)[43]. Tim-1 was 

shown to co-stimulate the activation of iNKT cells by CD1d and α-galactosylceramide. 

Likewise, ERBCs could also induce iNKT cells to proliferate. The in vivo relevance of iNKT cell 

recognition of apoptotic cells was further explored by using the agonistic anti-Fas mAb (Clone 

Jo2) to induce apoptosis in the liver and lung.  

In the liver, treatment with anti-Fas mAb increased the number of iNKT cells – an effect 

that was abolished with the co-administration of anti-Tim-1 antibody (Clone 3D10) [43]. Anti-

Tim-1 antibody alone did not increase the number of iNKT cells in the liver. To assess the 

involvement of iNKT cells in the development of hepatitis, serum ALT levels was measured in 

wild-type and Cd1d-/- mice following treatment with anti-Fas mAb and/or anti-Tim-1 antibody. 

The administration of anti-Tim-1 antibody decreased serum ALT levels induced by anti-Fas 

mAb treatment. CD1d-/- mice, which lack iNKT cells, had significantly reduced ALT levels 

following anti-Fas mAb treatment. Together, this indicates that iNKT cells play a role in 

promoting liver injury and that the ability for iNKT cells to recognize apoptosis hepatocytes is 

central to this role. A follow up study has showed that iNKT cells can also contribute towards 

hepatitis by binding to HAV[25]. Binding of HAV to TIM-1 improves the cytolytic function of 

iNKT cells against HAV-infected hepatocytes by inducing the production of IL-4, IFN-γ and 

granzyme B.  
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Intranasal administration of anti-Fas mAb induced airway inflammation as characterized 

by an increase in inflammatory infiltrate in the peribronchial space and the number of iNKT cells 

and neutrophils in the bronchoalveolar lavage fluid (BAL)[43]. This increase in the number of 

cells in the BAL fluid was not observed in mice treated with both anti-Tim-1 antibody and anti-

Fas mAb, as well as in anti-Fas mAb treated Cd1d-/- mice. To determine if iNKT cell activation 

by apoptotic lung epithelial cells could lead to airway hyperreactivity (AHR), airway resistance 

in the presence of increasing doses of metacholine was measured in mice treated with saline 

only, or with anti-Fas mAb and/or anti-Tim-1 antibody[43]. This study showed that similar to 

airway inflammation, anti-Fas mAb treatment induced AHR depended on Tim-1 and iNKT cells. 

Using cytokine knockout mice, it was determined that AHR induced by anti-Fas mAb induce 

requires the secretion of IL-4, IL-17, IL-17 and IFN-γ[43]. 

Therefore, iNKT cells are rapidly emerging as an important player in the induction of 

both liver injury and AHR. The next step would be to compare the signaling pathways 

downstream of TIM-1 in iNKT cells when it is stimulated by PS and HAV. 

1.1.2.5 Tim-1 as PS receptors 

The removal of apoptotic bodies is generally associated with the induction of tolerance as the 

phagocytosis of apoptotic bodies by dendritic cells can lead to T cell anergy and development of 

Tregs[44]. Additionally, impairment in the uptake of apoptotic bodies results in the abrogation of 

peripheral tolerance and induction of autoimmunity [45, 46]. Therefore, the identification of 

TIM-1 as a PS provides an additional pathway through which TIM-1 can promote peripheral 

tolerance.  Both human and mouse TIM-1 have been shown to bind to PS. NIH3T3 fibroblasts 

transfected with TIM-1 gained the ability to engulf apoptotic cells [10]. This ability was 
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diminished in the presence of TIM-1 mAb, which shows the engulfment is mediated TIM-1 

dependent. In injured kidneys, Kim-1 expressing, tubule epithelial cells were found to 

phagocytose apoptotic bodies and necrotic debris. Confocal imaging studies show that Tim-1 co-

localizes around the site of engulfment to facilitate the internalization of injured tubule cells 

expressing PS and oxidized lipoproteins [47].   

Tim-1 and Tim-4 crystal structures suggest that the MILIBS is constructed by CC’ and 

FG loops in the IgV domain is responsible for the recognition of PS.  The hydrophilic phosphate 

head of PS can enter the cavity and interact with the Ca2+ ion while the fatty acid tail can interact 

with the aromatic residues of the FG loop [7].  Single mutations of residues required for the 

coordination of the Ca2+ ion decreases Tim-1 and Tim-4 binding to liposomes containing PS, 

while a double mutation completely abolished PS binding[7]. The identification of calcium as the 

divalent cation in the MILIBS is consistent with a prior observation that binding of PS to Tim-1 

is abolished in the presence EDTA, which chelates calcium ions [7, 47].  Although purified 

fusion proteins of Tim-1 and Tim-4 binds only to PS and not to other phospholipids, kidney 

epithelial cells have been found to recognize both PS and phosphatidylethanolamine (PE) [47]. 
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1.2 TIM-2 

1.2.1 Structure and Function 

Unlike Tim-1 and Tim-3, Tim-2 is the only mouse Tim family member that does not have a 

human ortholog. For this reason, there are comparatively fewer studies on Tim-2. Tim-2 is 

highly glycosylated and only has one tyrosine residue which is part of a tyrosine phosphorylation 

motif (RTRCEDQVY). Similarly to Tim-1, Tim-2 is upregulated on activated T cells and Th2 

cells [48]. Its known ligands are Sema4A[49], a transmembrane protein expressed on dendritic 

cells and B cells, and H-ferritin[50], a component of an iron storing molecule. Structural 

analyses suggest that Tim-2 exists as a dimer which may facilitate its binding to multivalent 

ligands[4]. 

1.2.2 Immune regulation 

Overexpression of Tim-2 in Jurkat T cells was shown to inhibit TCR/CD28 induced NFAT/AP-1 

activity, suggesting that Tim-2 is a negative co-stimulator [51]. This is consistent with the 

observation that administration of Tim-2 Ig proteins ameliorates EAE in mice by generating 

splenocytes with high basal rate of proliferation and increased production of IL-4, IL-5 and IL-

10[48]. Administration of Sema4A Ig also ameliorated EAE in mice [52]. CD4+ T cells from the 

lymph nodes of Tim-2 deficient mice challenged with keyhole limpet hyalocynin (KLH) 

emulsified in CFA secreted much higher levels of Th2-associated cytokines, IL-4, IL-5, IL-6 and 

IL-10[53]. The levels of IL-2 and TNF-α were similar in culture of wild-type and Tim-2 
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deficient mice. Interestingly, anti-CD3 stimulation elicited similar levels of Th2-cytokine 

production from both wild type and Tim-2 deficient mice[52]. 

 

 

        

 

Figure 5: Tim-2 IgV domain 

Ribbon diagram of Tim-2 is shown on the left and surface diagram is shown on the right. The GFC β-sheet is 

highlighted in pink while the BED sheet is highlighted in blue. The CC’, FG and BC loops are highlighted in green. 

Although Tim-1 and Tim-2 have a high sequence identity(62%), Tim-2 does not have the unique binding cleft 

conserved in Tim-1, Tim-3 and Tim-4 primarily because its CC’ loop is seen folded downwards and away from the 

GFC β-sheet. Replacement of the HLG sequence in the Tim-2 BC loop with YR sequence of the Tim-1 BC loop 

significantly reduced dimerization of Tim-2. Diagrams generated using PDB ID 2OR7 using the PyMol software. 
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1.3 TIM-3 

1.3.1 Structure and function 

In comparison to TIM-1 and TIM-2, TIM-3 is the most distantly related family member (Figure 

2).  Although it was originally identified through a screen for Th1-specific markers, TIM-3 has 

been detected on T cells under inflammatory conditions and is constitutively expressed on 

immature myeloid cells [54-56]. Thus far, TIM-3 has two known ligands - a β-galactoside 

binding lectin, which binds to in a carbohydrate-dependent fashion and phosphatidylserine (PS), 

an early marker of apoptosis, which binds in a non-carbohydrate dependent manner [57, 58]. 

However, other non-gal-9 ligand(s) for TIM-3 have also been detected on naive, effector, 

memory, regulatory T cells and dendritic cells [5, 59]. Interestingly, a putative ligand for TIM-3 

is downregulated following activation in CD4+CD25-T cells but maintained on CD4+CD25+ T 

cells [60].  

There are both membrane-bound and soluble forms of TIM-3. The membrane-bound 

form of TIM-3 includes an N-terminal IgV domain, a mucin domain followed by a 

transmembrane domain and a short cytoplasmic tail. And although the soluble form, which is a 

splice variant of Tim-3 that lacks both mucin and transmembrane domains, it still possesses the 

ligand binding specificity of the membrane-bound form [59]. Similarly to TIM-1, TIM-2 and 

TIM-4, the IgV domain of TIM-3 consists of a two-layered β-sheet sandwich (Figure 6, left) held 
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together and stabilized by disulphide bonds between the B and F strands (Cys-38-Cys-111), 

hydrogen bonds (Trp-53 of the C-strand and Val-94 of the E-strand, Tyr-109 of the F-strand and 

Asp-105 of preceding F-strand) and a salt bridge (Arg-82 and Asp-105 preceding D and F 

strands)[5]. These interactions are found in other canonical IgV domains. However, two inter-

sheet disulphide bond formed by noncanonical cysteine residues invariant within the TIM family 

creates a unique cleft between the CC’ loop and FG loop. Mutations of residues within the cleft 

either reduced or abolish binding of Tim-3 Ig to putative ligands on the surface of 3T3 cells and 

naïve CD4+ T cells (Figure 6, right). Interestingly, this cleft does not have any potential N- or O-

linked glycosylation sites and therefore, is not required for binding to gal-9[5]. 

There are seven predicted polymorphic residues between the asthma resistant (HBA) and 

asthma susceptible (BALB/c) alleles of Tim-3[3]. These residues are located in the IgV domain 

but are positioned away from the unique binding cleft. Recently, it was shown that three of these 

residues which are located in the BC loop, contribute towards the differential binding of PS [58]. 

HEK293 cells expressing the BALB/c allele of Tim-3 were better at phagocytosing apoptotic 

thymocytes than those expressing the HBA allele [58]. As with Tim-1 and Tim-4, the binding of 

PS also requires the metal-ion ligand binding site (MILIBS),  located within the unique binding 

cleft [7]. This binding site is formed between Asn, Asp and a calcium ion which allows 

coordination with the charged head of PS (Figure 7). The binding of PS to Tim-3 on T cells has 

no known effect. 

The signaling pathways downstream of Tim-3 have yet to be dissected. There are six 

tyrosines in the cytoplasmic tail that do not constitute any obvious signaling motifs [61]. These 

tyrosines are well conserved in both mouse and human homologs of Tim-3 and have been shown 

to be inducibly phosphorylated when ectopically expressed in HEK293 cells [62]. 
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Figure 6: Tim-3 IgV domain 

The ribbon diagram of Tim-3 is shown on the left and the surface diagram, on the right. The BED β-sheet is 

highlighted in blue and the GFC β-sheet is highlighted in pink. Disulphide bonds are highlighted in orange while 

residues required for the binding of PS on the outer membrane surface and coordination of the Ca2+ are highlighted 

in red and yellow respectively. In the surface diagram, residues highlighted in black are required for binding of Tim-

3 Ig to non-galectin-9 ligands. Diagrams generated using PDB ID: 2OYP using the PyMol software. 
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                A       B         
MFSGLTLNCVLLLLQLLLARSLENAYVFEVGKNAYL
                       DG KV              P S T  

PCSYTLSTPGALVP 50  mTIM-3  

MFSHLPFDCVLLLLLLLLTRSSEVEYRAEVGQNAYLPCFYTPAAPGNLVP 50  hTIM-3        
 
 C              C’       C’’    D             E 
MCWGKGFCPWSQCTNELLRTDERNVTYQKSSRYQLKGDLNKGDVSLII
 

KN 100 mTIM-3  

VCWGKGACPVFECGNVVLRTDERDVNYWTS-RYWLNGDFRKGDVSLTIEN 99  hTIM-3  
                                       
          F               G 
VTLDDHGTYCCRIQFPGLMNDKKLELKLDIK
 

A------------------ 132 mTIM-3  

VTLADSGIYCCRIQIPGIMNDEKFNLKLVIKP------------------ 131 hTIM-3  
 
 
----------------AKVTPAQTAHGDSTT------------------- 147 mTIM-3  
 
----------------AKVTPAPTRQRDFTA------------------- 146 hTIM-3 
 
 
------ASPRTLTTERNG-------------------------------- 159 mTIM-3 
 
------AFPRMLTTRGHGP------------------------------- 159 hTIM-3 
                                      

 
------SETQTLVTLHNNNGTKISTWADEIKDS-----------GETIRT 192 mTIM-3 
 
------AETQTLGSLPDINLTQISTLANELRDSRLANDLRDS--GATIRI 201 hTIM-3 

 
 

AIHIGVGVSAGLTLALIIGVLILKWYSCKKKKLSSLSLITLANLPPGGLA 242 mTIM-3 
 
GIYIGAGICAGLALALIFGALIFKWYSHSKEKIQNLSLISLANLPPSGLA 251 hTIM-3  

 
 
NAGAVRIRSEENIYTIEENVYEVENSNEYYCYVNS-QQPS---------- 281 mTIM-3  
 
NAVAEGIRSEENIYTIEENVYEVEEPNEYYCYVSSRQQPSQPLGCRFAMP 301 hTIM-3  
 
 
 

Figure 7: Alignment of mouse and human TIM-3 sequences 

There is a 63% sequence identity between mouse Tim-3 (C57Bl/6) and human TIM-3. β-strands are underlined and 

named, the transmembrane domain is highlighted in red, and conserved tyrosine residues are highlighted in green . 

Residues that coordinate the Ca2+ ion in the MILIBS are highlighted in blue while the homophilic residues that allow 

Tim-3 to bind to PS on the membrane surface are highlighted in purple. Published amino acid polymorphisms 

between C57Bl/6 and BALB/c mice are highlighted in orange. 
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Table 2: Human TIM-3 polymorphisms 

Location Polymorphism Disease association 
 

Mucin 
 

4295G>T 
 

 
Allergic rhinitis 
Rheumatoid arthritis[28] 

 
Promoter 

-574T>G 

 
Asthma 
Allergic rhinitis 
Rhematoid arthritis 
 

 

1.3.2 Reagents and mouse models used to examine Tim-3/Tim-3L interactions 

1.3.2.1 Antibodies and Tim-3 fusion proteins 

To examine the role of Tim-3 both in vivo and ex vivo, a variety of reagents and antibodies have 

been used (Table 4). In general, both antibodies and Tim-3 fusion proteins are thought to 

modulate Tim-3 activity on T cells by blocking interaction with its ligand(s). Although all these 

antibodies appear to improve the capacity of T cells to secrete cytokines and proliferate 

following antigen receptor stimulation, no study has yet to test the possibility that these 

antibodies are blocking and/or agonistic. Additionally, whether these antibodies specifically 

interfere with Tim-3 binding to gal-9 or one of its other non-gal-9 ligand is not known.   
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Table 3: Antibodies and fusion proteins used to study TIM-3 function 

Antibody/ Fusion protein Species Outcome 

Tim-3 Ig Mouse Prevented the induction of tolerance 
by co-stimulation blockade; 
accelerated diabetes in NOD 
mice[63] 
 
Generated CD4+ T cells that secreted 
IL-2 and IFN-γ spontaneously and 
had a high basal rate of 
proliferation[64] 

5D12 C57Bl/6 Induce tyrosine phosphorylation in 
AE7 Th1 cell line and D2SC/1 
dendritic cell line; induce NF-κB 
activation in D2SC/1 cells[65] 
 
Prevented the development and 
expansion of MDSC in Tim-3 Tg 
mice[66] 

Tim-3 polyclonal antibody (R&D) C57Bl/6 Induced secretion of Th2 cytokines 
by IgE –sensitized mast cells; protect 
from IL-3 withdrawal apoptosis[38] 

RMT3-23  Accelerated allograft, enhanced 
effector function of allospecific T 
cells, prevented the expansion of 
allospecific Tregs, promoted Th1 and 
Th17 polarization[67] 

8H7 BALB/c Significantly reduced airway 
hyperreactivity transfer of OVA-
specific Th2 cells and OVA 
challenge[68] 

8B.2C12 BALB/c Exacerbated EAE[61] 

2E2 Human Restored function to exhausted T 
cells from HIV chronic progressors 
and patients with advanced melanoma 
ex vivo [69, 70] 
 
Reinvigorated PD-1+Tim-3+ CD8+ T 
cells from mice infected chronically 
with LCMV[13] 
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1.3.2.2 Galectin-9 (Gal-9)  

The interaction between Tim-3 and gal-9 was first recognized when Tim-3 Ig but not Tim-2 Ig 

precipitated bands migrating around 85 kilodaltons (kDa) and 40-60 kDa from the lysates of 

surface biotinylated CD8+ mouse lymphoma cells (TK-1)[57]. N-glycosidase (PNGase) 

treatment of these precipitates resulted in a sharper band migrating around 39kDa, which was 

identified as gal-9 by mass spectrometry. Gal-9 was then shown to induce apoptosis in in vitro 

polarized Tim-3+Th1 cells and ameliorated EAE in mice by eliminating IFN-γ-secreting, MOG 

(35-55)-specific T cells[57]. These observations helped shape the current hypothesis that Tim-3 

terminates Th1 immunity. 

Gal-9 belongs to galectin, a family of mammalian lectins that recognize the basic 

structure of N-acetyllactosamine (Galβ1-4GlcNac)[71, 72]. Galectins are classified according to 

their structure. There are prototype galectins (galectin-1,-2,-5,-7,-10,-11 and -13), chimera-type 

galectins (galectin-3) and tandem-repeat galectins (galectins-4,-6,-9, and -12)[73]. Prototype 

galectins exist as monomers or non-covalent homodimers, chimera-type galectins consist of a 

non-lectin domain attached to a single carbohydrate recognition domain (CRD), while tandem-

repeat lectins consist of two CRD linked together by a polypeptide chain. Although galectins 

bind to N-acetyllactosamine with relatively low affinity (Kd = 90-100µM), they are able to 

engage receptors decorated with polylactosamine residues with a much greater affinity (Kd≈ 

1µM)[72]. The multivalency of galectins also allows them to cross-link several cell-surface 

receptors simultaneously[74]. 
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Apart from being a Tim-3 ligand, gal-9 is also known as a neutrophil chemoattractant and 

a pro-apoptotic agent of activated CD4+T cells and cancer cells [75, 76]. In mice, gal-9 

administration ameliorates EAE as well as collagen-induced arthritis by inducing the apoptosis 

of alloreactive T cells and synoviocytes respectively [57, 77]. However, gal-9 has also been 

shown to have positive regulatory effects on immune cells.  Treatment of in vitro derived 

myeloid dendritic cells with gal-9 induces their maturation [78, 79]. Additionally, administration 

of gal-9 to tumor bearing mice suppressed tumor growth by improving CD8+ T cell cytolytic  

function and DC maturation[80]. It is possible that T cells and myeloid cells respond differently 

to gal-9 because they have different glycophenotypes [81].  

Gal-9 requires both CRDs to bind to Tim-3. However, an R to A mutation a position 64 

in the N-terminal CRD reduces the ability for gal-9 to bind to Tim-3 Ig to a greater degree than a 

similar point mutation as position 238 in the C-terminal CRD[57]. Although this suggests that 

the N-terminal CRD of gal-9 may be more important for binding to Tim-3, a recent study 

showed that the C-terminal CRD is more important for the induction of apoptosis in EL-4 

thymoma cells [82].  

1.3.2.3 Mouse models 

Tim-3-/- mouse [64] 

The Tim-3-/- mouse was generated by targeted deletion of the entire first exon and part of the 

second exon of the gene encoding Tim-3. Chimeric mice were then generated from Tim-3 

deficient embryonic stem cell clones and crossed with BALB/c females for six to eight 

generation to produce Tim-3-/- mice. Tim-3-/- mice are viable with a no gross abnormalities. 

Thymic development was comparable to wild-type mice, producing normal numbers and ratio of 



 

24 

 

peripheral CD4+ and CD8+ T cells. Tim-3 deficiency in vivo did not appear to affect the 

development of Th1 responses as both Tim-3-/- and wild-type mice had comparable contact 

hypersenstivity. When cultured with allogeneic C57Bl/6 stimulators, T cells from Tim-3-/- mice 

secreted IFN-γ and IL-4 at levels comparable to T cells from wild-type mice. It is possible that 

because the Tim-3-/- mouse was generated on a BALB/c background and BALB/c mice are 

inherently biased towards Th2 responses, the loss of Tim-3 in vivo will not have a measurable 

effect.  

 

Tim-3 Tg mouse[66] 

To generate Tim-3 Tg mice, the BALB/c Tim-3 cDNA was placed under the control of the 

human CD2 promoter on the C57Bl/6 genetic background. These mice were viable, fertile, and 

did not exhibit any gross alterations in the size of lymphoid organs. Tim-3 is expressed on 

double negative thymocytes in the thymus but only 30-40% of CD4+SP and CD8SP+ 

thymocytes. In comparison to control littermates, there was a slight decrease in the frequency of 

double negative thymocytes in Tim-3 Tg+ mice. In the periphery, Tim-3 is also expressed on 

only 30-40% of CD4+ T cells and CD8+ T cells and is absent from Tregs. However, the number 

and frequency of CD4+, CD8+ and regulatory T cells were no different than wild-type 

littermates. Peripheral T cells that express or lack the expression of Tim-3 will hereby be referred 

to as Tim-3 Tg+ and Tim-3 Tg-. The frequency of CD44high cells was higher in Tim-3 Tg+ 

population of both CD4+ and CD8+ T cell while the frequency of CD62low cells was higher only 

in the Tim-3 Tg+ CD8+ T cell population. Interestingly, the percentage of myeloid suppressor 

cells (CD11b+Gr-1+F4/80low) cells was higher in the spleens of Tim-3 Tg mice in comparison to 

WT mice.  
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 Splenocytes from both Tim-3 Tg and Gal-9 Tg mice were suppressed in their ability 

proliferate and secrete IFN-γ in response to anti-CD3 stimulation. In gal-9 Tg mice, gal-9 

expression is driven by the actin-promoter [66]. The suppressive cell type in these splenocyte 

cultures was identified to be myeloid-derived suppressor cells (MDSC), which are expanded in 

both Tim-3 Tg and Gal-9 Tg mice. MDSC are a heterogeneous population of myeloid cells that 

are expanded under high inflammatory conditions[83]. They are known to exert their 

immunosuppressive abilities onto T cells through IFN-g, ROS and arginine metabolism. 

Arginase II was highly upregulated on granulocytic MDSC and chemical inhibition of arginase 

(NOR-NOHA) abolished the ability for granulocytic MDSC from Gal-9 Tg mice to suppress T 

cells. The exacerbation of EAE in Tim-3 Tg mice treated with anti-Tim-3 Ab and Tim-3KO mice 

correlated with reduced frequencies of myeloid suppressor cells. Incubation of myeloid 

suppressor cells from gal-9 Tg mice (Gal9 Tg) with WT CD4+ T cells Their expansion and 

function were negatively affected in Gal-9 Tg X Tim-3-/- mice. The expansion of myeloid 

suppressor cells is dependent on Tim-3 expressing CD4+ T cells. Rag-/- mice that had received 

Tim-3 Tg+ CD4+ T cells had a greater frequency of myeloid suppressor cells than those that had 

received Tim-3 Tg- CD4- T cells. Tim-3+CD4+ T cells from Tim-3 Tg mice also helped 

stimulate anti-microbial activity of Mycobacterium tuberculosis (Mtb)-infected macrophages. 

This anti-microbial activity was shown to be dependent on caspase-1 and IL-1β but not 

dependent on IFN-γ or iNOS. 
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1.3.3 TIM-3 in Immune regulation 

1.3.3.1 EAE/MS 

The role of Tim-3 in vivo was first tested in experimental autoimmune encephalomyelitis (EAE), 

the mouse model of MS [61]. The choice of antigen used to induce EAE in these studies was 

proteolipid (PLP 139-151) emulsified in incomplete Freund’s adjuvant administered in 

combination with pertussis toxin. Tim-3 was upregulated on CD4+ and CD8+ T cells infiltrating 

the CNS at the onset of disease but was downregulated with disease progression, indicating a 

possible role for Tim-3 in the initiation of EAE. Treatment with Tim-3 antibody did not alter the 

time of onset of EAE but accelerated disease progression [54]. To determine if activated 

macrophages were responsible for this hyperacute phenotype, splenocytes were harvested after 

onset of disease and stained for a variety of cell-specific markers. As expected, there was a 

marked increase in the percentage of CD11b+ cells in splenocytes of anti-Tim-3 treated mice. By 

selectively eliminating CD11b+, B220+ and CD3+ splenocytes from mixed cultures, the 

expansion of CD11b+ cells from anti-Tim-3 treated mice was found to require direct interaction 

between T cells and non-T cells. 

Although the pathogenesis of EAE and MS are not identical, an initial study using T cell 

clones derived from the cerebrospinal fluid (CSF) of human patients with MS revealed an 

inverse correlation between Tim-3 expression and IFN-γ secretion[15]. T cell clones from the 

CSF of MS patients have lower levels of Tim-3 transcript but secrete higher levels of IFN-γ in 

comparison to those derived from healthy patients. As proof of principle, silencing Tim-3 

expression in CD4+ T cells from healthy subjects was sufficient to increase their secretion of 

IFN-γ in response to anti-CD3 stimulation[15]. However, CD4+ T cells isolated from peripheral 
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blood mononuclear cells (PBMC) of MS patients had lower levels of Tim-3 expression than 

those from healthy subjects but did not secrete higher levels of IFN-γ. Blocking Tim-3/Tim-3L 

on CD4+ T cells from PBMC CD4+ T cells from MS patients did not improve their secretion of 

IFN-γ in response to anti-CD3 stimulation[84]. These studies suggest that in MS patients, Tim-3 

regulates IFN-γ production only by CD4+ T cells in the CSF but not those circulating in the 

blood. 

1.3.3.2  Tolerance 

There are several mechanisms through which tolerance can be achieved in vivo – deletion of 

antigen-specific T cells, anergy, suppression by regulatory T cells and ignorance. Therefore, to 

investigate whether Tim-3 can modulate transplantation tolerance, several different tolerizing 

regimes have been employed. Sánchez-Fueyo et. al.used a combined treatment of donor specific 

transfusion (DST) and anti-CD154 (CD40L), which relies on CD4+CD25+ T cells to provide 

donor-specific allograft tolerance. In an accompanying paper, Sabatos et. al. treated mice with 

tolerogenic doses of PLP (139-151), a regimen that renders T cells unresponsive to stimulation. 

Administration of Tim-3-Ig fusion proteins to DST/anti-CD154 tolerized mice led to the 

rejection of donor islet allografts. The authors showed that Tim-3-Ig could only prevent tolerance 

towards allografts in vivo when present during and not after, CD4+CD25+ T cells have acquired 

their suppressive abilities[60]. It is not clear whether Tim-3-Ig treatment skews the ratio of 

effector:regulatory T cells or prevents the expression of an immunosuppressive cell-surface or 

secreted factor by CD4+CD25+ T cells.  

In a model of antigen-induced tolerance, Tim-3-Ig treatment generates splenocytes that 

proliferate and secrete high levels of IL-2 and IFN-γ independently of PLP (139-151) antigen 
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restimulation. Interestingly, the spontaneous proliferation and cytokine secretion by T cells can 

only been seen in mixed splenocyte cultures. When purified, CD3+ T cells from mice treated 

with Tim-3-Ig only displayed high basal proliferation but were unable to secrete detectable levels 

of IL-2 or IFN-γ. Addition of either B220+ or CD11b+ cells from mice treated with either Tim-

3-Ig or hIgG enhanced the proliferation of CD3+ T cells above that of splenocyte cultures and 

promoted their secretion of IL-2 and IFN-γ[59]. These biological responses could not be titrated 

with increasing concentrations of PLP (139-151), suggesting that Tim-3-Ig prevents tolerance in 

this model by lowering the threshold of activation of both antigen-specific and non-specific T 

cells, resulting in enhanced effector responses.  

In studies using gal-9 to modulate Tim-3 activity, mice receiving gal-9 were able to delay 

the rejection of fully allogeneic skin grafts for up to 6 days[85]. This delay was attributed to the 

ability for gal-9 to inhibit proliferation of lymphocytes in response to anti-CD3/CD28 

stimulation and reduce the number of CD8+Tim3+ T cells in the draining lymph nodes of gal-9 

treated mice day 7 post-transplantation. The authors also noted a reduction in serum IFN-γ levels 

of gal-9 treated mice with a slight increase in both IL-2 and IL-4 levels. In an accompanying 

paper, the authors showed that gal-9 prolongs skin allograft survival inducing apoptosis in 

CD8+CD44highCD62Llow T cells and reducing the cytolytic ability of those that survive[86].  

 Therefore, Tim-3 is required for the induction of peripheral tolerance as it negatively 

affects the function and viability of allospecific T cells and is possibly required for the 

development of peripheral Tregs. 
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1.3.3.3  TIM-3 in Immune Response to Cancer 

The relationship between Tim-3 and cancer has only been explored recently. Spontaneous NY-

ESO-1-specific CD8+ T cells from patients with advanced melanoma were found to upregulate 

Tim-3[70]. NY-ESO-1 is a cancer germline antigen (CGA) that drives spontaneous cellular and 

humoral responses and is only detectable in patients with advanced NY-ESO-1 expressing 

cancer. Unlike Gag-specific CD8+ T cells from chronic HIV progressors, spontaneous NY-ESO-

1-specific CD8+ T cells that expressed Tim-3 were also positive for PD-1 expression. Therefore, 

Tim-3 does not demarcate a distinct population from PD-1-expressing T cells in this disease 

setting. However, similarly to chronic viral infections, the Tim-3+PD-1+ subset in patients with 

advanced melanoma was the most defective in terms of IL-2, TNF-α and IFN-γ production. Tim-

3+PD-1+ NY-ESO-1-specific CD8+ T cells were also highly activated, as assessed by CD38, 

HLA-DR, CCR7 and CD45RA expression. Although the Tim-3-PD-1+ subset constitutes the 

majority of NY-ESO-1-specific CD8+ T cells, blockade of Tim-3/Tim-3L interactions had a 

greater restorative effect than blockade of PD-1/PD-1L alone. Consistent with previous reports, 

combined blockade of both receptors and their ligands had an even better restorative effect. 

Combined blockade could even rescue the ability of NY-ESO-1-specific CD8+ T cells to secrete 

IL-2, which is a cytokine that is the most sensitive to exhaustion. 

Most recently, Tim-3 was found to be highly upregulated on leukemia stem cells 

(LSC)[87]. LSCs are postulated to be the most likely cause for relapse of patients with acute 

myeloid leukemia (AML) and therefore, are the primary targets in attempts to cure human AML. 

Reconstitution of NOD-SCID mice with Tim-3+LSCs but not Tim-3-LSCs promoted the 

development of human AML. In xenotransplanted mice, a human anti-TIM-3 monoclonal 

antibody was successful at halting the development of AML but not normal hematopoiesis was. 
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Therefore, Tim-3 is an ideal target for the removal of LSCs, which will reduce the incidence of 

relapse amongst patients with AML. 

1.3.3.4 Chronic Viral infections 

Human Immunodeficiency Virus (HIV) 

The role of TIM-3 in chronic viral infection was first explored in the context of HIV. This study 

sought to examine the relationship between TIM-3 expression and T cell dysfunction in subjects 

infected with HIV [69]. Subjects were divided into three categories based on duration of 

infection, CD4+ T cell count and viral load.  Acute/early subjects were individuals who had been 

infected with HIV within 4 months prior to the study. Chronic progressors had been infected for 

more than 1 year and had a CD4+ T cell count that declined at >50 cells/mm3/year while viral 

controllers were defined as individuals who also had been infected with HIV for more than a 

year but had no decline in CD4+ T cell count and had a viral load of <5,000 copies/mL 

branched-chained DNA.  

In comparison to uninfected subjects, the frequencies of TIM-3+ CD4+ and TIM-

3+CD8+ T cells were significantly higher in both acutely and chronically infected subjects. 

However, the frequency of TIM-3+ T cells was not statistically different between uninfected 

subjects and viral controllers [69]. Amongst treatment-naïve, HIV-infected subjects, there was a 

significant correlation between the frequency of TIM-3+ T cells with either viral load or CD38, a 

T cell activation marker. Taken together, it would be reasonable to conclude that TIM-3 

frequency positively correlates with viral load. However, it was found that following HAART 

therapy, TIM-3 frequency remained significantly correlative with CD38 expression but not with 

viral load.  
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Staining for both TIM-3 and another receptor associated with exhaustion, PD-1, revealed 

three distinct populations - TIM-3+PD-1+, TIM-3+PD-1- and TIM-3-PD-1+. However, when 

this same analysis was applied to viral-specific CD8+ T cells, a majority of Pol-specific CD8+ T 

were TIM-3+PD-1- while Nef-specific CD8+ T cells were primarily PD-1+CD8- T cells. It has 

been shown that during chronic viral infection, CD8+ T cells specific for the immunodominant 

epitope are the first to be deleted[88]. Therefore, TIM-3 and PD-1 may demarcate CD8+ T cells 

at different stages of exhaustion.  

 The most important finding of this study was that by blocking TIM-3/TIM-3L 

interactions with anti-TIM-3 antibody (clone 2e2) or TIM-3 fusion proteins, it is possible to 

restore the ability for viral specific T cells to proliferate and secrete cytokines in response to 

antigen receptor stimulation. This has important implications for the disease management in 

chronic progressors of HIV. 

 

Lymphocytic choriomeningitis virus (LCMV) 

Two strains of LCMV – Armstrong (Arm) and Clone 13 (Cl-13), which differ at only 2 bases in 

the entire genome, has allowed researchers to study the role of inhibitory receptors during acute 

and chronic infections[89]. LCMV Arm infects mice acutely while LCMV Cl-13 infects mice 

chronically[90]. In mice infected with LCMV Arm, Tim-3-expressing GP33+ CD8+ T cells 

could be detected in in the spleen, lung and liver by day 8. By day 30, the frequency of Tim-

3+GP33+ T cells was greatly reduced in these organs [91]. However, in mice infected with 

LCMV Cl-13, Tim-3+GP33+ T cells were detected in spleen, lung and liver up to day 60. The 

Tim-3+PD-1+ population comprised the majority of total GP33+ CD8+T cells and were the most 

deeply exhausted, as assessed by the inability to secrete IL-2, TNF-α or IFN-γ upon antigen 



 

32 

 

restimulation. However, this subset had the highest frequency of IL-10 producing cells when 

compared to GP33+ Tim-3-PD-1+ and Tim-3-PD-1 CD8+ T cells. Recent work suggests that IL-

10 is involved in driving an infection from acute to chronic [92, 93].Therefore, whether Tim-3 

enhances the production of IL-10 at the later stages of an acute infection to allow viral 

persistence remains to be seen. 

 

Hepatitis Simplex Virus (HSV) 

CD4+ T cells in draining lymph nodes (DLN) and spleens of mice infected ocularly with HSV 

upregulated Tim-3 at 8 days post infection (DPI)[94]. Tim-3 expression levels peaked at 15 DPI 

but was significantly diminished by 40 DPI. Notably, the total number of Tim-3+CD4+ T cells 

peaked in the spleen 8 DPI but only in the DLN on 15 DPI.  On 8 DPI, approximately 50% of 

CD4+ T cells that invaded HSV-infected ocular and trigeminal ganglion were also Tim-3+. 

Administration of Tim-3 Ab (RMT3-23) every other day beginning 3 DPI until 13 DPI, 

exacerbated HSV-induced lesions in the cornea, and increased the percentages of both CD4+ T 

cells in the cornea and cytokine producing HSV-specific CD4+ T cells in both spleen and DLN. 

Therefore the authors reasoned that if Tim-3 is an inhibitory receptor, treatment of HSV-infected 

mice with its ligand, gal-9 would reduce the severity of HSK-induced lesions and extent of 

neovascularization. Although this hypothesis was accurate, gal-9 did not reduce the severity of 

HSK lesions by suppressing the function and proliferation of HSK-specific CD4+ T cells. 

Instead, it reduced the number of both total and Tim-3+CD4+ T cells in the cornea but increased 

the number and percentage of FoxP3+CD4+ T cells in the spleens of HSV-infected mice. The 

authors show that CD4+ T cells from HSV-infected mice were more sensitive to gal-9 induced 

apoptosis but did not show whether this was because of Tim-3 expression. Gal-9 treatment also 
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expanded the percentage of myeloid suppressor cells in the cornea and spleens of HSV-infected 

mice.  

 In a follow up paper, mice were infected with HSV in the hind footpad instead of the 

cornea. This time, Tim-3 expression was shown to be upregulated  specifically on SSIEFARL-

specific CD8+ T cells in both lymph nodes and spleens as early as 3 DPI (here forth referred to 

as HSV-specific CD8+ T cells)[95]. SSIEFARL is the immunodominant epitope in HSV-

infected C57Bl/6 mice [96]. A majority of HSV-specific CD8+ T cells were also CD44high and 

CD62Llow, which is reflective of an effector/activated phenotype. The authors strived to show 

that gal-9 specifically induced apoptosis of Tim-3+CD8+ T cells and consequently, HSV-

specific CD8+ T cells. Ex vivo, Tim-3+ and HSV-specific CD8+ T cells were treated with 

increasing concentrations of gal-9 and then co-stained for Tim-3 and annexin-V. Although the 

percentage of Tim-3+annexin-V- cells decreased with increasing concentrations of gal-9, there 

was not a concomitant increase in the percentage of Tim-3+annexin-V+ cells. Additionally, the 

authors did not compare the susceptibility of Tim-3+ and Tim-3+ CD8+ T cells gal-9. The 

authors then compared the percentage and function of HSV-specific CD8+ T cells in HSV-

infected WT mice to gal-9 KO mice. Despite an increased in the percentage of Tim-3+ HSV-

specific CD8+ T cells, this increase was also observed with Tim-3- HSV-specific CD8+ T cells. 

Interestingly, administration of exogenous gal-9 negatively affected HSV-specific CD8+ T cell 

response and delayed viral clearance. 

 These are the only two studies that employed both gal-9 and anti-Tim-3 antibody to 

modulate immune responses in vivo. As highlighted in the statement of the problem (38), the 

Tim-3 antibody enhanced effector T cell function while gal-9, did not inhibit effector function, 

which would be consistent with it being a Tim-3 agonist. Rather, it lowered the number of total 
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CD4+ T cells through apoptosis. Several possibilities that could explain these observations 

exists. The first is that Tim-3 is capable of inhibiting effector T cell function and apoptosis and 

that these effects are dependent on the site at which it is ligated or the affinity of binding. 

Second, the negative signal delivered to T cells relies on the binding of the Tim-3 ligand on T 

cells by Tim-3 on antigen presenting cells. Lastly, gal-9 binds to another receptor apart from 

Tim-3 to induce apoptosis in effector T cells. 

 

More than just a biomarker 

About a decade ago, seminal studies by Giorgi et. al. led to the current use of CD38 as a 

biomarker for disease progression in patients with HIV[97]. CD38, a T cell activation marker, 

has far greater prognostic value than CD4+ T cell count and viral load because under conditions 

of chronic immune activation, CD4+ and CD8+ T cells often become “exhausted”[98]. 

Exhausted T cells have an activated phenotype but are unable to proliferate and secrete cytokines 

that promote antiviral responses when stimulated through the TCR [99]. Therefore, CD4+ T cell 

counts may not be reflective of the anti-viral potential of the host’s immune system. T cell 

receptors associated with the exhaustion phenotype now include CD27, CTLA-4, PD-1, LAG-3, 

KLRG-1 and TIM-3[100-102]. Upregulation of more than one of these receptors on a T cell is 

correlative with greater functional impairment [13, 100]. Antibodies that block the interaction 

between some of these receptors and their ligands have been shown to restore TCR-

responsiveness to exhausted, antigen-specific T cells [13]. However, whether these receptors are 

actively contribute towards the development of exhaustion remains an active field of 

investigation. 
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1.4 SUMMARY 

Since its identification, the TIM family has emerged as an important regulator of adaptive and 

innate immune responses (Table 4). In mouse, Tim-1 activation by an agonistic antibody 

ameliorates EAE, exacerbates airway hyper-reactivity and prevents the development of 

peripheral tolerance. These effects are dependent on the co-stimulatory function of Tim-1 which 

enhances cytokine production and proliferation of Th2 cells but deprograms Tregs. Tim-2, which 

is also preferentially expressed on Th2 cells, inhibits their effector function. Tim-3, which was 

identified through a screen for Th1-specific markers, adversely affects Th1 production of IFN-γ, 

proliferation and viability. Inhibition of Tim-3/Tim-3L interactions exacerbates EAE and 

prevents the induction of allograft tolerance by co-stimulatory blockade. Tim-1 and Tim-3 can 

also enhance IgE and antigen-induced production of IL-4, IL-6 and IL-13 by bone marrow-

derived cultured mast cells (BMCMC)[38]. However, only Tim-3 engagement could protect 

BMCMC from undergoing apoptosis in the absence of IL-3. 

 TIM-1 and TIM-3 have also been proposed as biomarkers. KIM-1(TIM-1) is not 

expressed in normal kidney tissue but is upregulated and shed by injured proximal tubule 

epithelial cells undergoing dedifferentiation, such as in the case of acute renal failure (ARF)[103, 

104]. TIM-1 levels rise in the urine of patients with ARF as soon as 12 hours following an 

ischemic episode and it is the only biomarker that increases as a result of ARF and not because 

of other forms of kidney injury. It is important to have a reliable marker for ARF as early 

intervention is postulated to reduce mortality[103]. TIM-1 has also been suggested as a 

biomarker for renal cell carcinoma which can only be diagnosed early with the use of costly 

imaging methods[20].  Recently, several groups have observed that TIM-3 is upregulated on 
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dysfunctional CD4+ and CD8+ T cells from chronic progressors of HIV and is significantly 

lower in spontaneous controllers [69, 105] During chronic viral infection, T cells become 

exhausted due to persistent stimulation and are unable to complete their differentiation from 

effector to long-lived memory T cells. This system of clonal deletion ensures that viral-specific T 

cells remain unresponsive to antigen receptor stimulation until severe exhaustion sets in and they 

undergo apoptosis. However, blocking TIM-3/TIM-3L interactions has been shown to be 

effective at reversing exhaustion in T cells, which makes TIM-3 not only a good biomarker for 

diseases progression but can also serve as a therapeutic target. 

  Although we now have a broader understanding of how TIM-1 and TIM-3 modulate 

immune responses in mice and to a much lesser extent humans, we are still not equipped to 

design therapies around these cell-surface receptors for the  management or prevention of atopic 

diseases, autoimmune diseases, cancer and chronic viral infections. The wide distribution of 

TIM-1 and TIM-3 as well as their ligands across various immune and non-immune cell types 

requires that we perform a more rigorous analysis on how TIM-1 and TIM-3 signaling impacts 

the function of each specific cell type under various inflammatory conditions.  Also, we need to 

better characterize the ligands binding sites of each receptor and the downstream signals that 

result from that interaction. Modulating the function of a co-receptor in vivo is a precarious task 

as it can tip the immunological balance towards either autoimmunity or peripheral tolerance, and 

can lead to disastrous outcomes [106]. 

 

 

 

 



 

37 

 

Table 4: TIM-1 and TIM-3 regulation of immune responses 

  

 

 

 

 

 

 

 

 

 

 

Disease/ Cell type TIM-1 TIM-3 

EAE 
 

Multiple sclerosis 

Ameliorates/Exacerbates[36] 
 

Tim-1 mRNA upregulated in 
mononuclear cells in 

cerebrospinal fluid (CSF)[107] 

Exacerbates[57, 61] 
 

Transcript correlates with 
higher IFN-γ production only 
in T cells from the CSF and 

not peripheral blood[15, 107] 
Allograft Promotes rejection[40] 

Prolongs survival[16] 
Prolongs survival[63] 

Airway hyperreactivity Exacerbates[108] 
Ameliorates[11, 12] 

Ameliorates[68] 
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1.5 STATEMENT OF THE PROBLEM 

TIM-3 appears to negatively regulate effector T cells through two primary modes – apoptosis 

and inhibition of effector function. However, apoptosis is only observed when TIM-3+ T cells 

are treated with gal-9 [57, 94, 95] while the inhibition of effector T cell function can only be 

relieved in the presence of reagents that perturb TIM-3/TIM-3L interactions[63, 64, 69]. The 

lack of cross-regulation between gal-9 and TIM-3/TIM-3L blocking reagents has brought several 

important issues into focus. Firstly, gal-9 also binds to CD44, a receptor that is commonly used 

to distinguish between naïve and effector T cells in mice [109, 110]. Gal-9 is also able to induce 

apoptosis in cells lacking the expression of TIM-3 and has been shown to positively regulate 

dendritic cells and mast cells [38, 78, 111]. Secondly, TIM-3 and at least one of its ligand are 

expressed on both T cells and antigen presenting cells (APC) [5]. Therefore, it is not clear 

whether TIM-3 antibodies or soluble TIM-3 proteins block the ligation of TIM-3 on T cells or 

APCs to relief inhibition of effector T cells. Lastly, antibodies to human TIM-3 and its mouse 

homolog are poorly characterized. The binding epitopes of a majority of these antibodies are 

unknown and whether blocking antibodies can also induce TIM-3 signaling has not been 

determined. 

As TIM-3 is becoming an increasingly attractive therapeutic target, it is important to 

establish the regulatory nature of TIM-3 on T cells and APCs. To do this, we used anti-TIM-3 

antibodies and gal-9 to dissect the signaling pathways downstream of TIM-3 in T cells and 

APCs. Then we constructed a series of wild-type, truncation and tyrosine to phenylalanine point 

mutants of mouse TIM-3 to determine if any of these tyrosines, when phosphorylated, are 

required to modulate downstream signaling pathways of TIM-3 in both T cells and APCs.  We 
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also intend to examine if signaling pathways downstream of TIM-3 can enhance or antagonize 

CD3/CD28 and Toll-like receptor-4 signaling in T cells and APCs respectively.  

Results from these experiments we help us identify molecular mediators downstream of 

TIM-3 that allows it to negatively regulate effector T cells and positive regulate of APCs. We 

can then proceed to determine which of these signaling mediators contribute towards either the 

induction of apoptosis or inhibition of function in T cells. It will also help us determine if TIM-3 

activation by both galectin-9 and anti-TIM-3 antibodies can induce apoptosis and inhibit the 

function of effector T cells. Finally, it will allow us to further explore the co-operativity between 

the signaling pathways downstream of TIM-3 and either TCR/CD28 (T cells) or TLR-4 (APCs).  
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2.0  DISSECTING TIM-3 SIGNALING PATHWAYS IN T CELLS AND MYELOID 

CELLS 

2.1.1 Introduction 

Prior to the demonstration that gal-9 was able to induce TIM-3+Th1 cells to undergo apoptosis, 

several in vivo studies had already set the precedent that TIM-3 was a negative regulator of 

effector T cells[61, 63]. However, gal-9 has also been shown to positively regulate other cell 

types. In the presence of gal-9, human monocyte-derived dendritic cells (moDC) upregulated 

CD40, CD54, CD80, CD83, CD86 and HLA-DR in a dose-dependent manner. Gal-9 matured 

moDC also secreted IL-12 and were able to polarize allogeneic CD4+ T cells towards a Th1 

phenotype [78]. A Tim-3 polyclonal antibody was able to enhance the production of IL-4, IL-6 

and IL-13 by IgE-sensitized mast cells and protect them from apoptosis resulting from IL-3 

withdrawal [38]. In vivo, gal-9 administration to tumor bearing mice enhanced cytolytic function 

of CD8+ T cells and induced the maturation of dendritic cells, leading to prolonged survival[80].  

 Thus, we were interested in understanding how TIM-3 could possess such a Jekyll and 

Hyde effect on immune cells. There are six conserved tyrosines in both mouse and human TIM-3 

that when phosphorylated, could serve as docking sites for proteins with SH2-domains. As 

myeloid cells and lymphocytes have vastly different mechanisms for activation, it is conceivable 

that TIM-3 signaling can either enhance or antagonize Toll-like receptor (TLR) and T- cell 
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receptor pathways [112-115]. As an example, the SH2-doman containing phosphatase 1(SHP-1), 

has been reported to inhibit T cell activation through lipid rafts but promotes the production of 

IL-12p70 by APCs in a phosphatidylinositol-3-kinase (PI3K) manner [116-119]. Therefore, we 

hypothesize that TIM-3 recruits different signaling mediators in T cells and APCs, which leads 

to the apoptosis/inhibition of effector function in T cells and activation/differentiation in myeloid 

cells. 

 

2.1.2 Materials and Methods 

Antibodies and reagents 

A recombinant protease-resistant human gal-9 was obtained from Dr. Mitsuomi Hirashima, 

Kagawa University, Japan. TCA-extracted LPS (O26:B6) was obtained from Sigma-Aldrich, St. 

Louis, MO.Anti-Tim-3 monoclonal antibody (Clone 5D12) was a gift from Dr. Vijay Kuchroo, 

Harvard University. Rabbit polyclonal antiserum for Clnk was obtained from Dr. André Veillette 

from McGill University, Montreal, Canada. This antiserum does not recognize SLP-76 [120]. 

For stimulating T cell and dendritic cell lines, 24-well plates were first coated with anti-syrian 

hamster IgG (Jackson Immunoresearch, West Grove, PA) for binding to anti-CD3ε (Clone 

500.A2) and anti-CD28 (Clone 37.51) and goat anti-mouse IgG (Fc) (Pierce/ Thermo Scientific, 

Rockford, IL) for binding to anti-Tim-3 antibody. When working with dendritic cells and 

monocytes, endotoxin –free reagents and equipment were used. 
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Cell lines 

The mouse splenic DC cell line (D2SC/1) was obtained from Dr. Vijay Kuchroo (Harvard 

University) and was maintained in Iscove’s modified Dulbecco’s medium supplemented 

(IMDM) with 10% FCS. AE7 Th1 cells were re-stimulated with mitomycin-C (50µg/mL, Sigma 

Aldrich, St. Louis, MO) treated B10.A splenocytes and PCC (30µg/mL, Sigma Aldrich, St. 

Louis, MO) every 21 days. AE7 cells were maintained continually in the presence of 

recombinant human IL-2 (50IU/mL). 

 

Isolation of CD14+ human monocytes 

Buffy coats were spun over a Ficoll gradient to isolate peripheral blood mononuclear cells 

(PBMC). CD14+ monocytes were selected from PBMCs using the CD14+ monocyte isolation 

kit (Miltenyi Biotec). To induce their maturation, CD14+ monocytes were cultured with media 

alone, galectin-9 and LPS for 20 hours in 24-well plates. Cells were then harvested and stained 

with CD14, CD16, CD40, CD80 and CD86 to be analyzed by FACS. Supernatants were 

collected and kept at -80ºC until ready for analysis with Luminex. 

 

Intracellular staining for phosphorylated-ERK 

AE7 Th1 cells were spun onto 24 well plates coated with anti-Tim-3 antibody for 30 seconds (-

0.5s). At the stipulated times, paraformaldehyde (PFA) was added to these cultures to fix cells at 

a final concentration of 1.5% PFA. These cells were then permeabilized with cold methanol and 

then stained with anti-phospho ERK antibodies. Cells were then washed with FACS buffer twice 

before FACS analysis. 
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2.1.3 Results 

To address whether Tim-3 engagement induces distinct signaling in innate and adaptive immune 

cells, we stimulated a Tim-3–expressing CD4+ T cell clone and a DC cell line with anti–Tim-3 

and examined them for tyrosine phosphorylation. Differences were observed in the proximal 

signaling pathways triggered by Tim-3 in T cells and DCs (Figure 8). Specifically, tyrosine 

phosphorylation was induced in two molecules after Tim-3 engagement in T cells but not in 

DCs, and phosphorylation of a third molecule was induced in DCs but not in T cells. In contrast, 

engagement of Tim-3 led to similar degrees of extracellular signal–regulated kinase activation 

and degradation of the NF-κB inhibitor IκBα in the two cell types (Figure 8B and C). Although 

the magnitude of ERK phosphorylation induced by Tim-3 appeared to be lower in the DCs, 

phosphorylation induced with a positive control stimulus phorbol 12-myristate 13-acetate (PMA) 

was also lower in these cells. 
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Figure 8: Differential Tim-3 signaling in T cells versus DCs 

T cells (TH1 clone AE.7) or DCs (D2SC1) were stimulated for the indicated times with anti–Tim-3. (A) Cells were 

lysed with NP-40 lysis buffer and analyzed by SDS–polyacrylamide gel electrophoresis (PAGE) and Western 

blotting with phosphotyrosine mAb 4G10 (Upstate/Chemicon). The top two circles in the T cell lanes indicate the 

position of tyrosine-phosphorylated substrates uniquely induced in T cells; the bottom circle in the DC lanes 
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indicates a substrate uniquely induced in DCs. (B) Cells were fixed with paraformaldehyde and permeabilized with 

cold methanol for intracellular staining with a mAb to phospho-ERK (BD Biosciences). As a control, a sample of 

each cell type was also stimulated with PMA. (C) Cells were lysed with NP-40 lysis buffer and analyzed by SDS-

PAGE and Western blotting for total IκBα (Cell Signaling Inc.). Data in (A), (B), and (C) are representative of three 

independent experiments. This work appears in Anderson et. al.  Promotion of Tissue Inflammation by the Immune 

Receptor Tim-3 Expressed on Innate Immune Cells. (2007) Science 318 (5853): 1141-1143. 

(http://www.sciencemag.org/content/318/5853/1141.full) 

 

Identification of tyrosine phosphorylated bands in Tim-3 stimulated AE7 Th1 lysates 

To identify the proteins that were phosphorylated in AE7 cells by Tim-3, we incubated lysates of 

AE7 that were left unstimulated or stimulated for 5 minutes with either plate-bound anti-Tim-3 

mAb or anti-CD3/CD28, with 4G10 beads. Tyrosine phosphorylated proteins 

immunoprecipitated from these lysates were first separated on a 10% polyacrylamide gel and 

then silver stained (Figure 9A). A band migrating around 100 kDa that was precipitated only 

from the lysates of AE7 Th1 cells under anti-Tim3 mAb stimulation and not in other stimulation 

conditions was excised and sent for mass spectrometry. However, mass spectrometry analysis 

did not yield any promising leads.  

 Since one of the proteins that was inducibly phosphorylated in both anti-Tim-3 and anti-

CD3/28 stimulated AE7 cells migrated around 75 kDa, we decided to blot 4G10 

immunoprecipitates for SH2 domain containing leukocyte protein of 76kD (SLP-76). SLP-76 is 

an adaptor protein that is required for the nucleation of signaling mediators downstream of the 

TCR during T cell activation [121]. Although we did not consistently immunoprecipitate a 

greater amount of SLP-76 from AE7 cells stimulated with anti-Tim-3 antibody than unstimulated 

http://www.sciencemag.org/content/318/5853/1141.full�
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controls, we did observe a faster migrating band that was inducible tyrosine phosphorylated by 

both anti-Tim-3 and anti-CD3/CD28 stimulations (Figure 9). As there are no known splice 

variants if SLP-76, we scoured the literature for a protein that shared the N-terminal domain of 

SLP-76, which was the immunogen used to generate the SLP-76 antibody. We found that apart 

from SLP-76, the SLP-76 family of adaptor proteins consists of Blnk (SLP75 or Bash) and Clnk 

(MIST)[121]. All three share a common architecture, including the N-terminal domain that 

carries the tyrosine phosphorylation site. We decided to probe for Clnk as it is expressed in T 

cells maintained in the presence of IL-2  while Blnk is only expressed in B cells [120, 122]. 

However, a polyclonal rabbit antiserum for Clnk failed to recognize any of the 4G10 

immunoprecipitates of anti-Tim-3 antibody stimulated lysates (data not shown). As we also 

failed to detected Clnk in unstimulated AE7 whole lysates, it is possible that AE7 Th1 cells do 

not express Clnk or that the antiserum was no longer effective in recognizing Clnk. 
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Figure 9: Identification of tyrosine phosphorylated bands in AE7 Th1 cells 

A) AE7 Th1 cells were left unstimulated (1), stimulated with either anti-Tim-3 mAb (2) or anti-CD3/28 (3) for 5 

minutes. Cells were then lysed and cleared by centrifugation and protein-G beads. Tyrosine phosphorylated proteins 

were immunoprecipitated (IPs) from lysates with 4G10 beads. IPs were run on a 10% polyacrylamide gel and silver 

stained. Band indicated by an arrow was excised and sent for mass spectrometry. B) AE7 Th1 cells were left 

unstimulated (1), stimulated for 4 and 8 minutes with either anti-Tim-3 mAb (2,3) or anti-CD3/28 (4,5). Lysates 

were then cleared and IPed with 4G10 beads. IPs were ran on a 10% polyacrylamide gel and blotted for SLP-76 

indicated by the upper arrow. The lower arrow points towards the band that represents what was thought to be Clnk. 

Result representative of three independent experiments. 

 

Gal-9 activates human CD14+ monocytes phenotypically but not functionally 

To dissect the signaling pathway in myeloid cells using gal-9, we decided to use human CD14+ 

monocytes for practical reasons. The effects of gal-9 on human monocyte-derived dendritic cells 
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(moDC) had already been explored and human monocytes express TIM-3 constitutively without 

any need for further differentiation [78, 87].  

The first thing we wanted to do was determine if monocytes could modulated by gal-9 as 

well. We treated CD14+ monocytes with gal-9 for 20 hours and then examined their expression 

of CD14 and CD16 (subset markers) as well as CD40, CD80 and CD86 (maturation markers). In 

untreated monocyte cultures, we observed a heterogeneous population of CD14+CD16- and 

CD14+CD16+ monocytes. However, in the presence of high doses of gal-9 or LPS, expression 

of CD16 was lost (Figure 10, upper panel). High doses of gal-9 also induced the upregulation of 

CD40 and CD80, and to a much lesser extent, CD86 (Figure 10, lower panel). At a concentration 

ten times lower, LPS but not gal-9 could still induce the downregulation of CD14 and 

upregulation of CD40 and CD80. As our collaborators found that Tim-3 and LPS can have a 

synergistic effect on the secretion of TNF-α by splenic dendritic cells, we treated monocytes with 

low doses of gal-9 and LPS. However, instead of synergy, we found that gal-9 prevented the 

ability for LPS to modulate monocytes. 

We also decided to examine the cytokine profile of monocytes treated with gal-9 and/or 

LPS (Figure 11). Consistent with surface markers, we detected high levels of IL-6, IL-8 and IL-

10 in the cell supernatant of monocytes treated with both high and low doses of LPS. However, 

even though high doses of gal-9 could modulate the expression of surface markers, we could not 

detect secretion of any cytokines in the panel. Unexpectedly, the cytokine profile of monocytes 

treated with low doses of LPS and gal-9 was similar to monocytes treated with LPS only. 

Then, to determine if the effects of gal-9 on monocytes were dependent on TIM-3, we 

treated monocytes with a human anti-TIM-3 antibody along with gal-9. This antibody blocks the 

interaction of TIM-3/TIM-3L interactions [69]. However, we were unable to establish whether 
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Tim-3 antibody had any effect on monocytes as treatment with endotoxin-free preparations of its 

isotype control, mouse IgG1 appeared to activate CD14+ monocytes (Figure 12). 
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Figure 10: Gal-9 induces upregulation of maturation markers in CD14+ human monocytes 

Human CD14+ monocytes isolated from human PBMC were left unstimulated, or stimulated with LPS and/or 

endotoxin-free gal-9 (HG9) for 20 hours. Cells were then harvested and stained for subset markers A) CD14 and 

CD16 and maturation markers B) CD40, CD80 and CD86. Grey filled histogram represents isotype control staining. 

Results are representative of at least three experiments. 
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Figure 11: Cytokine profile of gal-9 activated human CD14+ monocytes 

Supernatant from one experiment in Figure 10 was subjected to Luminex to assess the levels of pro- and anti-

inflammatory cytokines listed in the upper right hand corner. 

 

 

 

Figure 12: Stimulation of human CD14+ monocytes with anti-TIM-3 

CD14+ monocytes isolated from PBMCs were treated on plate-bound anti-TIM-3 antibody or isotype control, 

mouse IgG1 either in the absence or presence of gal-9 for 20 hours. These cells were then stained for CD14 and 

CD16. 
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2.1.4 Discussion 

During an infection, blood monocytes have the ability to exit from the blood stream into 

inflamed tissues where they differentiate into DCs and macrophages to replenish the population 

that was lost[123]. However, under steady state, monocytes remain undifferentiated and serve as 

important effector cells[124]. In humans, blood monocytes can be classified according to their 

expression of CD14 and CD16 [125, 126]. CD14 is required for loading of LPS onto the TLR-

4/MD-2 complex while CD16, is also known as FcγRIII low-affinity receptor and assists in 

phagocytosis [127, 128]  Of all blood monocytes, CD14+CD16- monocytes compose the 

majority and are considered the “classical” monocytes. Classical monocytes are highly 

phagocytic and produce IL-10 instead of pro-inflammatory cytokines when stimulated with TLR 

ligands [126, 129]. CD16+ monocytes can be further divided into CD14+CD16+ and 

CD14+dimCD16+ subsets [130, 131]. CD14+CD16+ monocytes were first described as dendritic-

cell like due to their high expression of class II MHC and noted capacity to secrete TNF-α in 

response to TLR ligands[132, 133]. Although CD14+dimCD16+ are poorly phagocytic and lack 

the ability to secrete pro-inflammatory cytokines when treated with LPS, they are able to secrete 

TNF-α and IL-1β when treated with ligands to intracellular TLRs [131, 134].  

 We found that treatment of monocytes with gal-9 induced the upregulation of maturation 

markers and modulate the expression of CD14 and CD16 without inducing the secretion of either 

pro- or anti-inflammatory cytokines. In monocytes, the synergy between TIM-3 and TLR-4 

pathways was not observed. Instead, gal-9 prevented LPS from modulating the expression of 

CD14, CD16, CD40, CD80 and CD86. However, gal-9 did not affect the ability for LPS to 

modulate cytokine production. We are puzzled by the finding that gal-9 can induce phenotypic 
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but not functional changes. CD14+dimCD16+ monocytes are poor producers of cytokines when 

stimulated by LPS because they express low levels of CD14 [135] . However, if TIM-3 is 

downregulated by gal-9 treatment, we should see no effect at all both phenotypically and 

functionally. 

 Here, we also show that an anti-mouse Tim-3 monoclonal antibody (Clone 5D12) has the 

ability to induce different tyrosine phosphorylation patterns in T cell and dendritic cell lines. 

Although attempts to uncover the identity of these tyrosine phosphorylated proteins were not 

successful, we are the first to show that from a signaling perspective, Tim-3 has different 

downstream targets in T cells and dendritic cells. This may be a major reason for the diametric 

effects seen in gal-9 treatment of Th1 cells and dendritic cells. The next step is to determine 

whether this antibody can induce the same effect as gal-9 on T cells and myeloid cells using 

cytokine production, cell viability, proliferation and upregulation of activation/maturation 

markers. As outlined in the statement of problem, gal-9 and TIM-3 blocking reagents appear to 

modulate two different aspects of Th1-mediated immune responses. If TIM-3 can indeed induce 

both apoptosis and inhibit effector T cell function, it is important for us to understand how it 

does so both mechanistically and structurally. 
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3.0  GALECTIN-9 REGULATES T-HELPER FUNCTION INDEPENDENTLY OF 

TIM-3 

3.1 INTRODUCTION 

Galectin-9 (Gal-9) is a lectin composed of two non-identical carbohydrate recognition domains 

(CRD) separated by a linker peptide of variable lengths, depending on the isoform [136].Gal-9 is 

secreted through a non-classical route and can be found either in the cytoplasm or the 

extracellular matrix. Resting T cells express gal-9 but can further upregulate its expression when 

activated [137]. Although gal-9 is able to bind to CD44, another surface glycoprotein expressed 

by lymphocytes [109], its interaction with Tim-3 has been the most common focus in recent 

immunological studies.  

Tim-3 is a type I glycoprotein whose expression on T cells is controlled in part by the 

Th1-transcription factor, T-bet [138], consistent with the observation that both human and mouse 

Tim-3+ T cells have a Th1/Tc1 phenotype. Interestingly, Tim-3 has also been detected on Th17 

and regulatory T cells (Tregs), T lymphocyte subsets whose polarization does not depend on T-

bet [56, 77]. In addition to gal-9, Tim-3 has at least one other ligand, which remains to be 

identified. This putative ligand is expressed on activated T cells, macrophages and dendritic 

cells, and is predicted to bind to Tim-3 at a site distinct from gal-9 [5]. 
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Due to the lack of agonistic antibodies to Tim-3, gal-9 has been used in many studies 

focusing on the function of Tim-3. Administration of gal-9 to mice chronically infected with 

Herpes simplex virus reduces the number of CD4+ T cells but increases the percentage of Tregs 

and myeloid suppressor cells[94] . In tumor-bearing mice, gal-9 increases the percentage of Tim-

3+ CD8+T cells and dendritic cells. [80]. Thus, gal-9 can have either positive or negative effects 

on different cell types or the same cell type in different inflammatory settings [139].  

 Another method commonly employed to study the function of Tim-3 is the blockade of 

Tim-3/Tim-3 ligand interactions. Antibodies that block Tim-3/Tim-3L interactions restore the 

ability of exhausted T cells isolated from human subjects with HIV or multiple sclerosis (MS) to 

respond to anti-CD3 stimulation [69, 84]. Tim-3 Ig fusion proteins prevented the induction of 

tolerance in mice and hastened the onset of diabetes in NOD mice [63, 64]. Collectively, these 

studies support the current model that Tim-3 can negatively regulate immune responses. 

However, they do not specifically address whether the gal-9/Tim-3 interaction is required for the 

effects described above. Thus, the target epitope for these blocking antibodies is still not known, 

and whether soluble Tim-3 proteins preferably disrupt the interaction of Tim-3 with gal-9 or its 

other ligand(s) has not been established.  

In this study, we show that gal-9 can not only instruct T helper cells to undergo apoptosis 

but it can also induce them to secrete pro-inflammatory cytokines. These effects are dependent 

on the concentration of gal-9 but are independent of Tim-3. Thus, gal-9 can have either positive 

or negative effects on T helper cells, both of which can occur independently of Tim-3. 
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3.2 MATERIALS AND METHODS 

3.2.1 Antibodies and reagents 

Anti-mouse CD3ε (clone 500.A2), anti-FLAG (M2, Invitrogen, Carlsbad, CA), anti-mouse CD3ε 

(clone 2C11), anti-mouse CD28 (clone 37.51), anti-mouse IL-12p40 (clone 11B11) and anti-

mouse IL-4 (clone C17.8, Biolegend, San Diego, CA), anti-mouse Tim-3 (Clone 8B.2C12, 

eBioscience, San Diego, CA), recombinant protease-resistant human gal-9 (Dr. Mitsuomi 

Hirashima, Kagawa University, Japan), biotin-human gal-9 (Dr. Linda Baum, UCLA, LA), anti-

mouse IFN-γ (Clone XMG1.2) and recombinant mouse IL-12p70, GolgiPlug (BD Pharmingen, 

San Diego, CA) and anti-mouse Tim3 polyclonal Ab and recombinant mouse IL-4 (R&D 

Systems, MN). T-bet (4B10) and GATA-3 (HG3-31) antibodies obtained from Santa Cruz 

Biotechnology Inc. (Santa Cruz, CA). 

3.2.2 Cell lines  

AD10 Th1 clone were re-stimulated with mitomycin-C (50µg/mL, Sigma Aldrich, St. Louis, 

MO) treated B10.A splenocytes and PCC (30µg/mL, Sigma Aldrich, St. Louis, MO) every 21 

days. AD10 cells were maintained continually in the presence of recombinant human IL-2 

(50IU/mL). A fast-growing variant of the D10 Th2 clone was obtained from M. Krummel 

(University of California, San Francisco, CA) and maintained as described [140]. 
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3.2.3 FACS staining 

AD10 Th1, D10 Th2, primary Th1 and Th2 cells were washed once with FACS buffer (1%FBS, 

0.01% sodium azide in PBS) before incubation with either isotype controls, anti-Tim-3 or biotin-

human gal-9 for 30 minutes on ice. Cells were then washed once with FACS buffer and then 

incubated for another 10 minutes with fluorescently conjugated secondary antibodies. Cells were 

then washed 3 times, before being resuspended in FACS buffer and analyzed on the BD LSR II 

Flow Cytometer. Entire procedure was performed at 4ºC. 

3.2.4 Measurement of cytokine secretion 

Intracellular cytokine staining - AD10 Th1, D10 Th2 cells, primary Th1 and Th2 cells were 

treated with various concentrations of gal-9 [141] in cell culture media containing 50 μM 2-

mercaptoethanol unless noted otherwise. GolgiPlug was added 1 hour post-treatment. At the end 

of the stimulation period, cells were divided to stain for intracellular cytokines [142] or cell 

viability.  

ELISA - AD10 Th1 cells and primary Th1 cells were stimulated in 96-well plates (0.2X106 

cells/well) for 20 hours. Supernatants were then collected and frozen at -80ºC. Before analysis, 

supernatants were spun down at 1800 rpm to pellet cell debris. When necessary, supernatants 

were diluted with culture media before being analyzed with a mouse IFN-γ ELISA kit (BD 

Bioscience, San Jose, CA). 
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3.2.5 Measurement of apoptosis  

To measure internucleosomal DNA fragmentation, manufacturer’s protocol for Cell Death 

Detection ELISAPLUS was followed (Roche Diagnostics, Indianapolis, IN). Manufacturer’s 

protocol was followed for 7-AAD/annexin V staining (BD Pharmingen, San Diego, CA). 

3.2.6 Th1 and Th2 polarization 

Spleens harvested from C57Bl/6 mice or Tim-3 KO mice and wild-type littermates [63], were 

mechanically disrupted to liberate resident cells. CD4+ T cells were then isolated from 

splenocytes using magnetic bead isolation (CD4+ T cell isolation Kit II, Miltenyi Biotec, 

Auburn, CA). CD4+ T cells were then stimulated in 24 well plates coated with anti-CD3 (1 µg 

/mL) and anti-CD28 (5µg/mL) antibodies, under either Th1 polarizing conditions - anti-mouse 

IL-4 (10 µg /mL) and recombinant IL-12 p70 (5ng/mL) or Th2 polarizing conditions - anti-

mouse IL-12p40 (10 µg g/mL) and recombinant IL-4 (10ng/mL) for 3 days. On day 4, CD4+ T 

cells were removed 24 well plates and expanded until day 10 in culture media containing 

recombinant human IL-2 (50 IU/mL). For secondary and tertiary stimulations, the same process 

was adopted except that anti-CD3 and anti-CD28 were plated at 2 µg /mL. Functional assays 

were performed either 7 days after first round of polarization or 11 days after third round 

polarization. 
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3.2.7 Western blotting 

CD4+ T cells (10X106 cells) were subjected to nuclear fractionation after one round of 

polarization under Th1 or Th2 conditions using the NE-PER kit (Thermo Scientific, Rockford, 

IL). Nuclear lysates were divided, run on a 10% SDS-PAGE gel, and western blotted for either 

T-bet or GATA-3, after transfer to PVDF membrane. Equal loading was confirmed by blotting 

for lamin B. 

3.3 RESULTS 

3.3.1 Gal-9 modulates T helper cell function and viability in a dose-dependent manner 

In the first description of the gal-9: Tim-3 interaction, Th1 cells were shown to undergo 

apoptosis when treated with gal-9 [57]. This report contributed significantly to the current model 

that Tim-3 regulates the immune system by terminating Th1 responses. Because galectins can 

have pleiotropic effects on immune cells [139], we wanted to determine if gal-9 could mediate 

other effects on T helper  cells. We treated a Th1 clone (AD10) and a Th2 clone (D10) with 

various concentrations of gal-9, then assayed for cell viability and secretion of cytokines. AD10 

Th1 cells are Tim-3+ while D10 Th2 cells are Tim-3- (Figure 13A, upper panels). Both cell lines 

however, stained with gal-9 (Figure 13A, lower panels). In agreement with Zhu et. al., AD10 

cells treated with gal-9 underwent apoptosis (Figure 13B, lower panels). We also found that gal-

9 could induce the production of IFN-γ by AD10 cells (Figure 13B, upper panels). Higher 
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concentrations of gal-9 were required to induce apoptosis, while the production of IFN-γ was 

still observed in AD10 cells treated with non-lethal concentrations of gal-9. The same dose range 

of gal-9 was also sufficient to induce Tim-3 negative D10 Th2 cells to secrete TNF-α and 

undergo apoptosis (Figure 13C). Therefore, in addition to being a pro-apoptotic factor, gal-9 can 

also induce T helper cells to secrete pro-inflammatory cytokines. 
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Figure 13: Gal-9 induces cytokine secretion and apoptosis in Th1 and Th2 cells. 

(A) Staining of AD10 Th1 and D10 Th2 cells with isotype control (filled histogram) and Tim-3 pAb (empty 

histogram), upper panel, and streptavidin (filled histogram) and biotin-gal-9 (empty histogram). (B) AD10 Th1 cells 

were treated with gal-9 for 6 hours. Cells were then either fixed or permeabilized for staining with anti-mouse IFN-γ 

APC (top panel), or washed and stained with 7-AAD/annexin V (bottom panel). Data are representative of three 

independent experiments. (C) D10 Th2 were treated with gal-9 for 5 hours and stained as described for panel B, with 

anti-mouse TNF-α (upper panel) and 7-AAD/annexin V (bottom panel). Data are representative of two independent 

experiments.  GolgiPlug was added to both AD10 and D10 cultures one hour post-stimulation to facilitate retention 

and detection of cytokines. 

 

3.3.2 Gal-9 modulation of T helper cell function and viability is carbohydrate-dependent  

Carbohydrate-dependent binding of gal-9 to its binding partners can be competitively inhibited 

by lactose [143]. To confirm that the effects of gal-9 described above were carbohydrate-

dependent, we compared the ability of gal-9 treated AD10 Th1 cells to undergo apoptosis and 

secrete IFN-γ in the presence of PBS or lactose. We confirmed that gal-9 treatment induces IFN-

γ which was detectable intracellularly by six hours (Figure 14A, left panel) and in cell culture 

supernatant by 20 hours (Figure 14B, left panel). The addition of lactose prevented the secretion 

of IFN-γ by AD10 Th1 cells treated with gal-9 (Figure 14A-B, left panels). By six hours, gal-9-

treated AD10 cells displayed more internucleosomal DNA fragmentation than control cultures 

(Fig. 2A, right panel), which confirms that gal-9 induces apoptosis and not just PS exposure. 

However, by 20 hours, AD10 cells cultured in media only or with gal-9 were similarly enriched 
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with nucleosomes (Figure 14B, right panel). This suggests that the pro-apoptotic effects of gal-9 

become less dominant when AD10 cells begin to succumb to other apoptosis-inducing conditions 

such as IL-2 withdrawal, between 6-20 hours. The apoptosis observed after six hours of gal-9 

treatment was not dependent on IFN-γ since these experiments were performed in the presence 

of brefeldin A, which prevents cytokine secretion. Furthermore, the addition of blocking 

antibodies to IFN-γ did not diminish the capacity of gal-9 to induce apoptosis (data not shown). 

 Galectin-1, another member of the galectin family, has also been shown to induce 

apoptosis and cytokine secretion in Th2 cells [144]. However, galectin-1 has been reported to 

induce only PS exposure and not apoptosis, in the absence of reducing agents [145]. Therefore, 

we compared the ability of gal-9 to induce apoptosis in primary T cells cultured in Th1 

conditions, in the absence or presence of 2-mercaptoethanol, which is usually present in our cell 

culture medium. In Figure 14C-D, we show that gal-9 is able to induce apoptosis in one-round 

polarized primary Th1 cells to the same extent, in the absence and presence of 2-

mercaptoethanol. Therefore, unlike galectin-1, gal-9 can induce apoptosis of helper T cells 

independently of reducing agents.  
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Figure 14: Carbohydrate dependence of gal-9 effects on T cells. 

IFN-γ secretion was assayed at 6 hours with intracellular cytokine staining (A, left panel) and 20 hours with ELISA 

(B, left panel). Nucleosome enrichment was determined at 6 hours (A, right panel) and 20 hours (B, right panel). 

Data are representative of two independent experiments. (C-D) Apoptosis was examined in primary Th1 cells 

treated with gal-9 in the absence (upper panel) and presence (lower panel) of 2-mercaptoethanol (2-ME). Data are 

representative of three independent experiments. Error bars indicate S.D from replicate cultures. P values were 

calculated using two-way ANOVA. 

 

Gal-9 induced apoptosis is not dependent on caspases or IFN-γ 

Previously, gal-9 was found to induce apoptosis in human T cells through the calcium-caspase-

calpain-1 pathway [146]. Therefore, we wanted to determine if caspases were also required to 

mediate gal-9 induced apoptosis. We pre-treated AD10 Th1 cells with a pan-caspase inhibitor, Z-

VAD-FMK prior to treatment with gal-9 and found that unlike dexamethasone-treated cells, gal-

9 treated cells were still able to undergo apoptosis (Figure 15A-B). Another factor that could 

induce apoptosis in gal-9 cultures is IFN-γ[147]. As brefeldin A blocks the secretory pathway of 

Th1 cells and is present in assays presented in Figures 13 and 14, it is highly unlikely that IFN-γ 

is responsible for gal-9 induced apoptosis. Therefore, the mechanism of gal-9 induced apoptosis 

in Th1 cells remains to be elucidated. 
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Figure 15: Gal-9 mediated apoptosis is not dependent on caspases 

A) AD10 Th1 cells were pre-treated for 1 hour with either DMSO or Z-VAD-FMK prior to treatment with 

increasing doses of gal-9 or dexamethasone for 20 hours. Cells were then stained with 7-AAD and Annexin-V. B) 

 iMFI was calculated by multiplying the % of Annexin V+ cells with the MFI of Annexin V+ cells. This value was 

then normalized to the iMFI of DMSO/dexamethasone treated AD10 Th1 cells. p values were calculated using two-

way ANOVA. Error bars indicate standard deviation from two independent experiments. 
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3.3.3 Gal-9 modulates T helper cell function and viability in the absence of Tim-3 

The results above suggest that Tim-3 may not be the major mediator for gal-9 on T helper cells. 

To address this more directly, we assessed the effects of gal-9 on CD4+ T cells stimulated only 

once under Th1 and Th2 polarizing conditions. As expected, T-bet and GATA-3 were 

upregulated in Th1 and Th2 cells, respectively (Figure 16A). In agreement with previous reports, 

we found that these cells do not express Tim-3 on their surface (Figure 16B). However, they 

stained positively with gal-9, which suggests that other binding partner(s) of gal-9 are expressed 

on the surface of T helper cells after only one round of polarization under either Th1 or Th2 

conditions (Figure 16C). Despite the absence of Tim-3 on the cell surface, gal-9 treatment 

induced IFN-γ secretion (Figure 16D-E) and apoptosis (Figure 16F-G) in Th1 cells. Likewise, 

Th2 cells secreted TNF-α (Figure 16H-I) and underwent apoptosis (Figure 16J-K) in the 

presence of gal-9. These effects were abrogated in the presence of lactose (Figure 16D, F, H and 

J), consistent with our findings in the AD10 Th1 and D10 Th2 clones. 
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Figure 16. Effects of gal-9 on primary Th1 and Th2 cells. 

(A) T-bet and GATA-3 expression in nuclear lysates of primary Th1 or Th2 cells (upper panel). Lamin B expression 

is shown as a loading control (lower panels) (B) Primary Th1 and Th2 cells were stained with isotype control (filled 

histogram) and Tim-3 pAb (empty histogram), or (C) streptavidin (filled histogram) and biotin-gal-9 (empty 

histogram). Primary Th1 cells treated with gal-9 for 6 hours in the presence of PBS or lactose were either stained for 

intracellular IFN-γ (D) or 7-AAD/annexin V (F). Results are summarized in (E) and (G). Primary Th2 cells treated 

with gal-9 for 6 hours in the presence of PBS or lactose were either stained for intracellular TNF-α (H) or   

7-AAD/annexin V (J). Results are summarized in (I) and (K). Error bars indicate S.D from replicate cultures. Data 

are representative of two independent experiments. p values were calculated using two-way ANOVA. 

 

3.3.4 Tim-3 is not the major mediator of gal-9 effects on fully-differentiated Th1 cells 

 To further confirm that gal-9 does not require Tim-3 to modulate T helper function and viability, 

we stimulated CD4+ T cells from wild type and Tim-3 KO mice under Th1 polarizing conditions 

for three rounds to induce surface expression of Tim-3. We confirmed that only Th1 cells from 

wild type mice and not Tim-3 KO mice express Tim-3 ( 

Figure 17A). After twenty hours of treatment with gal-9, we were able to detect significant 

amounts of IFN-γ in the supernatant of both wild type and Tim-3 KO Th1 cells ( 

Figure 17B). We also found that wild type and Tim-3 KO Th1 cells were equally susceptible to 

gal-9 induced apoptosis as determined by 7-AAD/Annexin V staining ( 

Figure 17C-D). Therefore, gal-9 does not require Tim-3 to induce cytokine secretion and 

apoptosis in fully differentiated Th1 cells. 
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Figure 17: Effects of gal-9 on WT and Tim-3 KO fully differentiated Th1 cells. 

 (A) CD4+ T cells from spleens of wild type and Tim-3 KO mice were subjected to three rounds of Th1 polarization 

and stained with either rat IgG1 (filled histogram) or anti-Tim-3 (empty histogram). (B) Th1 cells from both 

BALB/c and Tim-3 KO mice were stimulated in duplicate sets for 20 hours. Supernatants were analyzed by ELISA 

for IFN-γ. (C) Th1 cells from (B) were stained with 7-AAD/annexin V. (D) Results from (C) are quantified as 

integrated MFI (% of annexin V+ cells X MFI annexin V+ cells) to reflect cells undergoing both early and late 

apoptosis. Increases in IFN-γ and apoptosis due to gal-9 treatment were found to be significant in both wild-type and 

Tim-3 KO Th1 cultures (p<0.001, two-way ANOVA). 
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3.3.5 Discussion 

In this study, we show for the first time that in addition to inducing apoptosis, gal-9 can promote 

the production of pro-inflammatory cytokines by both Th1 and Th2 cells. These effects occur in 

a dose-dependent fashion and do not require Tim-3. The ability of gal-9 to bind and modulate 

both T helper subsets is noteworthy, as Th1 and Th2 cells have distinct glycophenotypes [144]. 

These findings clearly highlight the complex nature of the biological effects of gal-9, and call 

into question the centrality of the gal-9:Tim-3 interaction for such effects. 

The pro-apoptotic activity of gal-9 was first identified using thymocytes, cells that are not 

known to express Tim-3 [148]. Following the identification of gal-9 as a ligand for Tim-3, 

numerous biological effects have been attributed to the gal-9:Tim-3 interaction. For example, 

gal-9 is thought to increase viral burden or ameliorate autoimmune disease in mice by inducing 

the apoptosis of Tim-3 expressing, antigen-specific, T cells [77, 95]. However, the loss of Tim-

3+ cells in vivo due to gal-9 induced apoptosis has yet to be demonstrated directly. The enhanced 

susceptibility of Tim-3 expressing cells to gal-9 induced apoptosis has been addressed in vitro. 

Th1 cells polarized from Tim-3 KO mice displayed less nucleosomal enrichment than Th1 cells 

from wild-type mice following gal-9 treatment, up to twelve hours, the last time point analyzed 

[57]. Here, we show that twenty hours after gal-9 treatment, there were no significant differences 

in the ability of Th1 cells from wild type and Tim-3 KO mice to undergo apoptosis. However, 

there are several differences between our approaches. Zhu et. al. used CD4+ T cells polarized 

under Th1 conditions with peptide-loaded splenocytes while we employed plate-bound anti-CD3 

and anti-CD28. Additionally, the previous study treated Th1 cells with mouse gal-9 (0.5μM) 

while we used human gal-9 (0.2μM). Lastly, Zhu et al. detected apoptosis using the nucleosome 



 

72 

 

enrichment assay, which we have found to be not as sensitive as 7-AAD/annexin V staining for 

detection of small changes in apoptosis (Figure 4C). 

Tim-3 is upregulated in vitro with repeated rounds of Th1 polarization and in vivo under 

chronic inflammatory conditions [95, 149]. Tim-3 expression on CD4+ and CD8+ T cells in 

chronic viral infections is associated with immune “exhaustion” [69, 149]. In such settings, Tim-

3+ cells only respond to TCR ligation when the interaction between Tim-3 and its ligand(s) is 

disrupted. This suggests that when Tim-3 is occupied by a ligand, it can antagonize signals 

emanating from the T-cell receptor without causing cell death. The ligand(s) that elicit this effect 

from Tim-3 remains unknown but gal-9 is an unlikely candidate at this point, as it has not been 

shown to negatively regulate T cell effector function in a manner that is independent of cell death 

or apoptosis. 

Our findings raise the question of how gal-9 is able to induce the bimodal effects that we 

have observed. We propose that for the induction of apoptosis, sufficient gal-9/receptor 

interactions must be formed on the surface of effector T cells, to reach a certain threshold for 

signaling. This could be achieved through the formation of high order lattice structures that allow 

gal-9 to crosslink multiple receptors in close proximity. Another possibility is that gal-9 binds to 

multiple distinct receptors with varying affinities to induce apoptosis or cytokine production. 

Thus, the bimodal effects we observe in Th1 cells may be the result of gal-9 having a greater 

affinity for the receptor required for cytokine production than the receptor required for apoptosis.  

While biochemical studies have validated the gal-9:Tim-3 interaction, the exact biological effects 

of this ligand/receptor pair have not been firmly established [57]. One of the main challenges 

stems from the fact that gal-9 can have a wide range of effects on immune cells [139]. In 

addition, both T cells and antigen presenting cells can upregulate expression of gal-9 and Tim-3 
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under similar conditions [56, 66, 136]. The ability of galectins to bind to more than one cell 

surface receptor to modulate T helper cells is not unusual [150, 151]. Galectin-1, a prototype 

member of the galectin family can induce apoptosis of T cells through CD7 and CD45 [152, 

153]. 

Therefore, when gal-9 is administered to wild type mice undergoing chronic 

inflammation, it is difficult to distinguish between the Tim-3 dependent and Tim-3 independent 

effects of gal-9 on T cells and antigen presenting cells. Further in vivo validation of our findings 

will require mice deficient for both Tim-3 and gal-9, or a panel of blocking antibodies to both 

Tim-3 and gal-9 with well-characterized epitopes. 
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4.0  PHOSPHOTYROSINE-DEPENDENT COUPLING OF TIM-3 TO TCR 

SIGNALING PATHWAYS 

4.1 INTRODUCTION 

During the expansion phase of an acute infection, newly activated viral antigen-specific CD8+T 

cells expand rapidly and acquire effector functions. This is then followed by a period of 

contraction, where all but 5% to 10% of these CD8+T cells succumb to apoptosis[154]. The 

remaining CD8+ T cells constitute the memory pool – multifunctional T cells that persist in the 

host in an antigen-independent manner with the ability to respond quickly upon re-exposure to 

viral antigen[155]. However, during chronic viral infection, effector CD8+ T cells generated 

during the expansion phase fail to develop into memory CD8+ T cells[156]. Instead, these 

effector CD8+ T cells appear to be exhausted[99]. 

T cell exhaustion is characterized as the progressive and stepwise loss in the ability to 

secrete IL-2, TNF-a, and IFN-g in response to antigenic stimulation, culminating in the most 

extreme cases in apoptosis[157]. This system of clonal deletion has been documented in 

conditions of persistent antigen stimulation such as high grade chronic viral infections in both 

mouse and human and, most recently, in patients with advanced melanoma[158, 159]. Exhausted 

CD8+T cells have a distinct molecular signature that resembles effector T cells more than 

memory T cells[160]. Of the 338 genes differentially upregulated in exhausted CD8+ T cells, 
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some are inhibitory receptors such as CTLA-4, LAG-3 and PD-1. Several studies have 

confirmed that PD-1 is upregulated on exhausted CD4+ and CD8+ T cells. However, blocking 

the interaction between PD-1 and its ligand does not always completely restore the effector 

functions to exhausted T cells, which suggests the involvement of other receptors [14]. Recently, 

it was shown that blocking Tim-3/Tim-3L interactions, along with PD-1/PD-1L, has an additive 

and sometimes synergistic effect on the invigoration of exhausted T cells [13, 70].  

Tim-3 is a type-I glycoprotein receptor whose expression often parallels that of PD-1 in 

conditions of chronic inflammation [13]. Prior to its implication in T cell exhaustion, Tim-3 was 

shown to be important in the induction of tolerance and suppression of effector T cell function 

[63, 64]. Recent studies show that Tim-3 promotes the inhibition of T cells by expanding 

myeloid-derived suppressor cells (MDSC)[66]. However, this effect is dependent on the 

interaction between gal-9 expressed by MDSC and Tim-3 on CD4+ T cells. MDSC inhibit T cell 

proliferation by producing arginase II, an enzyme that catalyzes arginine metabolism, which 

removes this semi-essential amino acid from the microenvironment[83]. However, there is 

insufficient data to determine if T cells suppressed by MDSC are exhausted or whether Tim-3 is 

even activated during this process. 

The cooperation between Tim-3 and PD-1 in maintaining T cell exhaustion indicates that 

these two receptors either employ the same signaling pathway (quantitative effect) or distinct 

signaling pathways (qualitative effect) when ligated [13]. Despite the wealth of literature on the 

in vivo effects of these receptors, little is known of their signaling mechanisms. The PD-1 

cytoplasmic tail contains ITIM and ITSM motifs. Ligation of either CD3 alone or with CD28 and 

PD-1 leads to the recruitment of the tyrosine phosphatase SHP-2[161]. However, PD-1 can only 

inhibit T cell function when it is ligated along with CD3 and CD28. Single point mutations 
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disrupting either motif show that, in T cells activated with anti-CD3 and CD28, SHP-2 is 

recruited predominantly to the ITSM motif of PD-1.  SHP-1 can also bind to the ITSM motif, 

although this has only been shown in pervanadate stimulated T cells[161]. The Tim-3 

cytoplasmic has six well-conserved tyrosines, although there are no obvious signaling motifs 

(Figure 18). One of these tyrosine residues has been shown to be phosphorylated in HEK293 

cells stimulated with pervanadate. However, the role of the cytoplasmic tail tyrosines in the 

downstream signaling of Tim-3 in T cells has not yet been determined. 

In this paper we explored the role of these tyrosines using a Jurkat cell system that we 

have used in the past to show that Tim-1 is a co-stimulatory molecule, while Tim-2 is inhibitory - 

observations that have since been validated by other groups. Interestingly, overexpression of 

Tim-3 enhances NFAT/AP-1- and NF-kB-driven luciferase reporters in T cells activated anti-

through TCR/CD3 and CD28. We also show that two or more tyrosines in Tim-3 can be 

phosphorylated and that the enhancement of CD3/CD28 signals is largely dependent on Y256 

and Y263. Although these tyrosines can be phosphorylated by both Lck and Fyn, Lck appears to 

be the more efficient kinase. A phosphopeptide containing Y256 and Y263 binds to the SH2 

domains of Lck and Fyn, although their interaction in vitro has yet to be established. Lastly, we 

show that the signaling pathway downstream of Tim-3 intersects with that of the TCR and CD28. 
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Co-inhibitory receptors 
 
-------------VLILKWYSCKK-KKLSSLSLITLANLPPGGLANAGAV 247 mTim-3 
-------------VFCSTSMSEARGAGSKDDTLKEEPSAAPVPSVAYEEL 228 mPD-1 
VS------------LGLFFYSFLVTAVSLSKMLKKRSPLTTGVYVKMPPT 207 mCTLA-4 
 
RIRSE-------ENIYTIEENVYEVENSN--------------------- 269 mTim-3 
DFQGR-------EKTPELPTACVHTEYAT--------------------- 250 mPD-1 
EPECE----------KQFQPYFIPIN------------------------ 223 mCTLA-4 
 
---------------------------EYYCYVNSQQPS----------- 281 mTim-3 
-----------------------------IVFTEGLGASAMGR------R 265 mPD-1 
--------------------------------------------------     mCTLA-4                                                                             
 
-------------------------     mTim-3 
GSADGLQGPRPPRHEDGHCSWPL-- 288 mPD-1 
-------------------------     mCTLA-4 
 
 
Co-stimulatory receptors 
 
GVGVSAGLTLALIIGVLILKWYSCKKKKLSSLSLITLANLPPGGLANAGA 246 mTim-3 
----VLFCYGLLVTVALCVIWTNSRRNRLLQSDYMNMTPRRPG-LTRKPY 204 mCD28 
----CAAFVVVLLFGCILIIWFSKKKYGSSVHDPNSEYMFMAA-VNTNKK 192 mICOS 
 
VRIRSEENIYTIEENVYEVENSNEYYCYVNSQQPS 281 mTim-3 
QPYAPARDFAAYRP---------------------  218 mCD28 
SRLAGVTS---------------------------  200 mICOS 
 

Figure 18: Alignment of cytoplasmic tail sequences of Tim-3 and known T-cell co- receptors 

Tyrosines in the Tim-3 cytoplasmic tail is in boldface. 

 

Signaling Motifs: 

SH2 binding (YxxM) 

SH3 binding (Pxxp) 

GRB2 binding (YxN) 

ITIM (V/I/LxYxxL) 

ITSM (TxYxxl) 
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4.2 MATERIALS AND METHODS 

4.2.1 Cell Lines 

Parental Jurkat T cells and variants were cultured in RPMI-1640 media, supplemented with 5% 

bovine growth serum (BGS; Hyclone). Mutant Jurkat lines were cultured in RPMI-1640 

supplemented with 10% BGS. AD10 cells were maintained in RPMI supplemented with 10% 

BGS, and re-stimulated every two weeks with mitomycin-C treated splenocytes from B10.A or 

B10.BR mice in the presence of pigeon cytochrome C (30 ug/mL; Sigma). A fast-growing 

variant of the D10.G41 Th2 T cell clone was maintained in RPMI supplemented with 10% BGS.  

4.2.2 Reagents and Antibodies  

Anti-Flag mAb was obtained from Sigma. Polyclonal anti-Tim-3 antibody used for western 

blotting was obtained from R&D. Monoclonal anti-Tim-3 antibody 5D12 was used for flow 

cytometry. Anti-phosphotyrosine antibody was from Millipore. HRP-conjugated anti-mouse-

HRP and Protein-A-HRP were from Pierce and GE Healthcare, respectively. Monoclonal 

antibody specific for the Jurkat TCR (C305.2) was obtained from Arthur Weiss. Anti-human 

CD28 was from Caltag/Invitrogen. Anti-mouse CD3, CD4 and CD28 were from BD 

Biosciences. Anti-IFNγ antibody conjugated to PE, Annexin V-FITC and 7-AAD were obtained 

from BD Bioscience.  
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4.2.3 DNA Constructs   

Murine Tim-3 carrying an extracellular Flag tag was generated by PCR and cloned into the 

pCDEF3 vector. Truncation mutants were also generated by PCR. Point mutants were generated 

using the QuikChange mutagenesis kit from Stratagene. Lck and Fyn constructs were obtained 

from Tom Smithgall, University of Pittsburgh. All constructs were verified by automated 

sequencing.  

4.2.4 Transfections  

Jurkat T cells were transfected by electroporation as described previously [162]. HEK293FT 

cells were obtained from Invitrogen and transfected using the calcium phosphate method, as 

described previously [163].  

4.2.5 Luciferase Assays   

The day after transfection, cells were stimulated in round bottom 96-well plates for six hours and 

kept frozen at -80ºC until analyzed. Luciferase assays were conducted as described previously 

[162, 163]. 
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4.2.6 Immunoprecipitation / SDS-PAGE / Western Blotting.   

Cells transfected with Flag-Tim-3 constructs were stimulated the next day with pervanadate 

[164], then lysed with NP-40 lysis buffer, as described previously [162]. IPs were carried out 

with anti-Flag agarose beads, then washed three times with NP-40 lysis buffer, followed by 

addition of reducing 2x SDS sample buffer. IPs and cell lysates (10% of total lysate before IP) 

were separated on 10% Laemmli gels and blotted to PVDF (Millipore). Blots were blocked with 

4% BSA in TBS-Tween for 1 hour at room temperature, then probed with anti-Tim-3 antibody 

and HRP-conjugated secondary antibody. After imaging, blots were stripped and re-probed with 

anti-phosphotyrosine antibody. Blots were imaged on a Kodak ImageStation 4000R. Images 

were exported in JPG format and assembled into final figures in Canvas 8.  

4.2.7 Intracellular Cytokine and Viability Staining.   

For intracellular staining of IFN-γ, cells were cultured in the presence of GolgiPlug (BD 

Biosciences) for the last four hours of a six hour stimulation. Cells were then fixed in 4% 

paraformaldehyde. Staining was performed with PE-conjugated anti-mouse-IFN (BD 

Biosciences) in the presence of 0.1% saponin. Viability staining was performed with Annexin V-

FITC and 7-AAD, according to the manufacturer’s intstructions. 
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4.2.8 Flow Cytometry 

Data were collected on a Becton-Dickinson LSR II flow cytometer, and analyzed using FlowJo. 

Figures were exported and assembled in Canvas 8. 

4.3 RESULTS 

4.3.1 The Tim-3 cytoplasmic tail couples to signaling pathways associated with T cell 

activation 

We previously reported that ligation of Tim-3 can augment the activation of dendritic cells, in 

contrast to its previously described ability to induce apoptosis of Th1 T cells [57, 65]. 

Paradoxically, we also found that Tim-3 ligation was capable of inducing NF-κB activation in 

both DCs and T cells [65]. We were intrigued by the fact that the Tim-3 cytoplasmic tail contains 

six conserved tyrosine residues, which might couple to intracellular signaling pathways that 

regulate T cell activation (either positively or negatively). We therefore expressed murine and 

human Tim-3 in T cell lines, to study the signals responsible for such effects, similar to previous 

work from our group on Tim-1 and Tim-2[32, 51]. As shown in  

Figure 19A (left panel), expression of full-length Tim-3 in Jurkat T cells which lack endogenous 

Tim-3, enhanced NF-κB and NFAT/AP-1 reporter activation, both in the basal state (i.e. with no 

further stimulation) and in conjunction with TCR/CD28 crosslinking ( 

Figure 19B).  
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To determine whether signaling to NF-κB requires the cytoplasmic tail of Tim-3, we 

generated two truncation mutations. Truncation 1 (T1) contains all but the three most C-terminal 

tyrosines, while truncation 2 (T2) lacks all but one tyrosine, which is predicted to reside very 

close to the membrane (Figure 20).The T1 construct functioned at least as well as wild-type Tim-

3 to augment NF-κB reporter activity (Figure 21B). Conversely, the shorter T2 truncation lost all 

ability to enhance NF-κB activity. All Flag-tagged Tim-3 constructs were expressed at 

equivalent levels (Figure 21A, right panel). The ability to enhance activation of NFAT/AP-1 and 

NF-κB is consistent with a role for Tim-3 in positively regulating T cell activation.  
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Figure 19: Mouse and human TIM-3 enhance TCR/CD28 activation. 

A) Left panel: Jurkat T cells transfected with either vector (solid line) or mouse Tim-3 (dotted line) were then 

stained with biotinylated anti-FLAG and/or stained with streptavidin-APC (solid histogram). Right panel: Jurkat T 

cells transfected with vector (solid histogram) or human TIM-3 (solid line) were stained with anti-TIM-3 PE. B) 

NFAT/AP-1 and NF-κB-luciferase reporter activity in anti-TCR/CD28 stimulated Jurkat T cells transfected with 

vector and or TIM-3. 
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     WT 

     T1 

                                                                          T2 

 

Figure 20: Schematic diagram of wild-type and mutant constructs of Tim-3 

The IgV, mucin and transmembrane domains are highlighted in grey, blue and green respectively. The cytoplasmic 

tail is highlighted in orange. The approximate points of truncation and the positions of the six tyrosines in Tim-3 

truncation mutants are shown. 

 

 

  

Figure 21: Examining the ability for Tim-3 truncation mutants to modulate T cell activation 

(A) Jurkat T cell transfected with both wild-type and Tim-3 truncation mutants were stained with anti-FLAG 

antibody (M2) and detected with streptavidin PE. (B)  NF-κB luciferase reporter activity in Jurkat T cells transfected 

with wild-type and Tim-3 truncation mutants following stimulation with anti-TCR/CD28. 

Y  Y Y Y Y Y 

Y Y Y 

Y 

256 263 
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4.3.2 Tyrosines 256 and 263 are required to mediate downstream signaling of Tim-3 

To investigate the role of individual tyrosine residues in Tim-3 signaling, we focused on two 

tyrosines retained in the T1, but not T2, Tim-3 construct. Therefore, we mutated tyrosines at 

position 256 and 263 to phenylalanine, both individually and together. Representative flow 

cytometry for expression of some of these constructs is shown in Figure 22A. By impairing the 

ability of these tyrosines to be phosphorylated, we hoped to abolish binding of any downstream 

mediators that may interact directly and indirectly with the Tim-3 cytoplasmic tail when it is 

phosphorylated. Interestingly, we observed that full-length Tim-3 carrying the Y256/263F 

double mutation loses some, but not all, of its ability to enhance NFAT/AP-1 activation by anti-

TCR/CD28 stimulation (Figure 22B). However, the Y256/263F double mutation on the T1 

background led to a much more dramatic loss of NFAT/AP-1 activation (Figure 22B). Mutating 

either Y256 or Y263 individually to phenylalanine did not affect the ability of Tim-3 to enhance 

NFAT/AP-1 activation (data not shown). We observed a partial effect of the Y256/263F mutant, 

with more of an effect on the T1 background, in cells transfected with an NF-κB luciferase 

reporter (Figure 22C), suggesting that common receptor-proximal signaling proteins couple Tim-

3 to both NFAT and NF-κB induction. Importantly, the same effects observed in Jurkat T cells 

with each Tim-3 construct described above were also obtained in a non-transformed T cell line - 

the TH2 clone D10.G41 - using the NFAT/AP-1 luciferase reporter as a readout (Figure 22D). 

Thus, Y256 and Y263 may be able to compensate for each other’s loss, while the more C-

terminal residues are also required for Tim-3 to signal optimally. 
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Figure 22: Stimulation of signaling pathways associated with T cell activation by Tim-3.  

(A) Jurkat T cells transfected with wild-type and mutant constructs were stained with secondary antibody only (red 

line) and anti-FLAG antibody (blue line) (B) Jurkat T cells were transfected with an NFAT/AP-1 luciferase reporter 

and the indicated Flag-Tim-3 constructs. The next day, cells were cultured in media alone (“No Stimulation,” white 

bars) or with anti-TCR/CD28 antibodies (black bars) for six hours. Luciferase activity was then determined. (C) 

Jurkat T cells were transfected with an NF-κB luciferase reporter and the indicated Flag-Tim-3 constructs and 

assayed as above. (D) D10 T cells were transfected with an NFAT/AP-1 luciferase reporter and the indicated Flag-

Tim-3 constructs and assayed as above. Results shown are the average of triplicate samples from a single 

experiment, representative of at least five experiments in each case.  

 

Inducible tyrosine phosphorylation of Tim-3  

We then proceeded to determine more directly whether the tyrosine residues in Tim-3 examined 

above could indeed become phosphorylated. We transfected the constructs discussed in Figure 

21 into cells and treated the cells with pervanadate, a protein tyrosine phosphatase inhibitor and 
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potent inducer of tyrosine phosphorylation. Flag-tagged Tim-3 constructs were 

immunoprecipitated from cell lysates and then probed with antibody to phosphotyrosine (4G10). 

As shown in Figure 23A, wild-type Tim-3 was efficiently phosphorylated, with a partial loss of 

phosphorylation of the T1 construct (compare anti-phosphotyrosine signals in the upper panel to 

total Tim-3 in the lower panel). However, the T2 construct was incapable of being 

phosphorylated, even by pervanadate, consistent with its one remaining tyrosine being closely 

juxtaposed to the predicted transmembrane domain (Figure 20).  

Next, we examined tyrosine phosphorylation of the Tim-3 constructs with individual 

tyrosine point mutations. Mutation of both Y256 and Y263 (“2YF”) abolished the 

phosphorylation of Tim-3 by pervanadate, with the mutation of Y256 having a partial effect 

(Figure 23B). By contrast, we observed no detectable effect of the Y263F mutation on overall 

levels of tyrosine phosphorylation, suggesting either that it is not recognized by the anti-

phosphotyrosine antibody or that it is phosphorylated at low stoichiometry. These findings are 

largely in agreement with our luciferase data and provide further support for the model that 

phosphorylation of the Tim-3 cytoplasmic tail is important for its function.  

Although a previous report suggested that tyrosine 256 in the cytoplasmic tail of Tim-3 

could be phosphorylated by the Tec family kinase Itk [165], our analysis of the sequence around 

tyrosines 256 and 263 with the ScanSite algorithm revealed that it was likely that a src family 

kinase could phosphorylate one or both of these sites. Thus, we expressed wild-type Tim-3, 

either alone or together with the Src family tyrosine kinases Lck or Fyn, in 293 cells, then 

stimulated the cells with pervanadate. As shown in Figure 24A, when Tim-3 was expressed 

alone, stimulation with pervanadate induced significant, although transient, tyrosine 

phosphorylation. However, when Lck was co-expressed with Tim-3, stimulation led to more 
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robust and sustained phosphorylation (Figure 24A). Similar results were obtained when the Fyn 

tyrosine kinase was co-expressed with Tim-3, although in this case, the basal level of Tim-3 

phosphorylation was consistently higher than when Lck was expressed with Tim-3. These results 

demonstrate that both Lck and Fyn can mediate phosphorylation of Tim-3. 

To understand how tyrosine phosphorylation of Tim-3 contributes to downstream 

signaling, we focused further on Lck and Fyn. J.CaM.1 is an Lck-deficient Jurkat T cell line with 

low endogenous levels of Fyn [166]. To determine if Tim-3 requires Lck and/or Fyn to enhance 

TCR/CD28 signaling, we transfected J.CaM.1 cells with wild-type Tim-3 and either Lck or Fyn, 

then assayed for modulation of NFAT/AP-1 activity in the presence or absence of signals from 

TCR/CD28. Transfection of J.CaM.1 cells with Tim-3 alone led to a small but reproducible 

increase in NFAT/AP-1 reporter activity (Figure 24B). Co-expression of Lck restored the ability 

of Tim-3 to activate NFAT/AP-1, either alone or together with anti-TCR/CD28, to levels similar 

to what we observed in parental Jurkat T cells (Figure 19). J.CaM.1 cells co-transfected with Fyn 

and Tim-3 also demonstrated enhanced NFAT/AP-1 activity (Figure 24B), although to a lesser 

extent than in the presence of Lck. Similar results were obtained in J.CaM.1 cells transfected 

with an NF-κB reporter (data not shown). These results suggest that while either Lck or Fyn can 

phosphorylate Tim-3, Lck is more efficient at mediating downstream signaling by Tim-3.  

 To identify downstream mediators that could bind to the Tim-3 cytoplasmic tail when 

phosphorylated, we probed an SH2 domain array with a recombinant peptide that contained 

phosphorylated Y256 and Y253 with flanking Tim-3 sequences (Figure 25). This array showed 

that the SH2 domains of Fyn and the regulatory subunit of phosphatidylinositol 3 kinase (PI3K), 

p85α and p85β had the strongest binding to the Tim-3 phosphopeptide. Other SH2 domains that 

interacted with the phosphopeptide include RasGAP, PLC-γ1, Lck and Yes. Addition of a 
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phosphotyrosine analogue, phenyl phosphate, competed with the Tim-3 phosphopeptide for 

binding to the SH2 domain of most of these proteins except for Fyn, and to a much lesser extent, 

p85. This suggests that Fyn can either bind to the Tim-3 cytoplasmic tail independently of 

phosphorylated tyrosines or binds to the Tim-3 cytoplasmic tail with very high affinity such that 

it cannot be competed off by phenyl phosphate. Further work is required to establish these 

interaction within a cell and their role in mediating the enhancement of TCR/CD28 signals by 

Tim-3. 

 

 

Figure 23: Tyrosine phosphorylation of the Tim-3 cytoplasmic tail. 

(A) 293FT cells were transfected with wild-type Tim-3 or the T1 or T2 truncations. The next day, cells were 

stimulated with pervanadate and lysed. Lysates were subjected to IP with anti-Flag antibody and blotted with anti-

phosphotyrosine antibody.  (B) 293FT cells were transfected with wild-type Tim-3 or the indicated tyrosine mutants. 

The next day, cells were stimulated with pervanadate and analyzed for tyrosine phosphorylation as above. Results 

shown are representative of at least three experiments in each panel.  
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Figure 24: Role of src family tyrosine kinases in Tim-3 signaling. 

 (A) 293FT cells were transfected with wild-type Tim-3, either alone or together with lck or fyn. The next day, cells 

were stimulated with pervanadate for the indicated times, and analyzed for tyrosine phosphorylation as above. (B) 

Lck-deficient J.CaM.1 cells were transfected with an NFAT/AP-1 luciferase reporter and the indicated constructs. 

The next day, cells were left unstimulated (white bars) or stimulated with anti-TCR/CD28 antibodies for six hours, 

followed by determination of luciferase activity. Results shown are the average of triplicate samples from a single 

experiment, representative of five that were performed.  
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Figure 25: SH2-domain array probed with a Tim-3 phosphopeptide 

An array containing the conserved binding sites of individual SH2 domains was probed only with biotinylated 

peptides consisting of phosphorylated Y256 and 263 with flanking Tim-3 sequences (A) or in the presence of phenyl 

phosphate (B). Bound peptides were then detected with streptavidin horseradish peroxidase and chemiluminescent 

substrate. 
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 Intersection of Tim-3 signaling with TCR/CD3 signaling pathways 

Next we focused further downstream in the TCR signaling pathway to better define the 

requirements for Tim-3 stimulatory and co-stimulatory signaling. We took advantage of the 

existence of mutant Jurkat T cell lines lacking expression of ZAP-70 and SLP-76, a critical 

tyrosine kinase and adaptor, respectively. As shown in Figure 26A, expression of wild-type Tim-

3 in ZAP70-deficient Jurkat T cells led to a modest, although reproducible, increase in basal 

NFAT/AP-1 reporter activity. This level of reporter activity was not enhanced any further with 

TCR/CD28 stimulation, consistent with the strict requirement for ZAP-70 in the TCR signaling 

pathway. However, in ZAP-70 mutant cells stably reconstituted with wild-type ZAP-70, we 

observed full basal and co-stimulatory Tim-3 activity, very similar to what was observed in 

parental Jurkat cells (Figure 19). Very similar results were obtained in a Jurkat mutant line 

lacking expression of the adaptor protein SLP-76, which is critical for nucleation of signaling 

complexes downstream of the TCR/CD3 complex [121]. Thus, expression of Tim-3 in Jurkat T 

cells lacking SLP-76 led to a small increase in NFAT/AP-1 reporter activity that was not 

enhanced by TCR/CD28 stimulation (Figure 26B). These results indicate that Tim3-mediated T 

cell activation shares signaling pathways employed by TCR/CD3. 

 



 

93 

 

 

Figure 26: Role of downstream TCR signaling molecules ZAP-70 and SLP-76 in Tim-3 signaling. 

 (A) ZAP70-deficient Jurkat T cells were transfected with an NFAT/AP-1 luciferase reporter and the indicated 

constructs. The next day, cells were left unstimulated (white bars) or stimulated with anti-TCR/CD28 antibodies for 

six hours, followed by determination of luciferase activity. (B) SLP76-deficient Jurkat T cells were transfected with 

an NFAT/AP-1 luciferase reporter and the indicated constructs, and analyzed as above. Results in each panel are 

representative of at least five experiments that were performed. 

4.3.3 Discussion 

Here we have demonstrated for the first time that ligation of the transmembrane protein Tim-3 

can enhance activation of T cells, which correlates with the induction of transcription factors 

important for T cell activation, i.e. NFAT, AP-1 and NF-kB. We have also shown that five 

tyrosine residues within the Tim-3 cytoplasmic tail regulate T cell signaling by Tim-3 in a 

complex fashion. Thus, the tyrosines at position 256 and 263 appear to be most critical for Tim-3 

function. However, mutation of 256 and 263 to phenylalanine has the most dramatic effects 

when the more distal three tyrosines are also removed by truncation. While this finding suggests 

a role for phosphorylation of the distal tyrosines, mutation of tyrosines 256 and 263 was 
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apparently sufficient to abolish inducible tyrosine phosphorylation of Tim-3. Thus, it is still 

formally possible that the distal part of the Tim-3 cytoplasmic tail amplifies signaling via a 

mechanism that is independent of tyrosine phosphorylation. However, there are no obvious 

signaling motifs in this part of the protein.   

A previous report showed that Y265 in human TIM-3 (corresponding to Y256 in the 

mouse Tim-3 analyzed here) is phosphorylated by the Tec family kinase Itk [62]. While our data 

do not rule out a role for Itk in phosphorylation of Tim-3, our results demonstrate that both Lck 

and Fyn are capable of mediating Tim-3 phosphorylation and NFAT activation, with Fyn 

possibly being the more efficient of the two. Currently, we are attempting to determine the role 

of Tim-3 tyrosine phosphorylation in coupling this protein to downstream signaling pathways 

leading to NFAT and NF-κB. The most likely possibility is that, upon phosphorylation, one or 

more of the tyrosines analyzed here mediate recruitment of SH2 domain-containing proteins. 

This might include a tyrosine kinase (e.g. Fyn or ZAP-70) or an adaptor protein (e.g. SLP-76).  

The requirements for Lck, ZAP-70 and SLP-76 in Tim3-mediated activation suggest that Tim-3 

intersects closely with TCR signaling pathways. This finding is reminiscent of previous work on 

another Tim family member - Tim-1. For example, we showed that Tim-1 also requires proximal 

T cell receptor signaling machinery in order to activate NFAT/AP-1 [34]. In addition, it has been 

reported that in human T cells Tim-1 can be co-capped with the TCR/CD3 complex [33]. There 

may therefore be some similarities in the signaling pathways employed by Tim-1 and Tim-3. 

Nonetheless, while Tim-1 augments activation of NFAT/AP-1, but not NF-κB [32], we show 

here that Tim-3 can activate all these pathways; also, among the Tim proteins only Tim-3 has 

been shown to cause cell death. Thus, significant differences in the signaling pathways employed 

by Tim-1 and Tim-3 must also exist. 
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We do not believe that our results can be attributed merely to over-expression in a 

particular cell line. First, our previous studies on the Tim family proteins Tim-1 and Tim-2 with 

this system have yielded results largely consistent with those obtained with other approaches [32, 

51, 167, 168]. Also, although many of our reporter activation studies were initially carried out in 

the Jurkat human leukemic line, we validated our findings in a non-transformed T cell clone 

(D10) that does not express endogenous Tim-3.  

Our novel finding that Tim-3 ligation can augment T cell activation would appear to be at 

odds with published data that points towards Tim-3 as an inhibitory molecule. However, it is 

possible that Tim-3 can have both inhibitory and stimulatory abilities as proposed for another 

Tim family member, Tim-1. These opposing effects can be produced by ligating Tim-1 with two 

antibodies that target its IgV domain but with varying avidities. The “stimulatory” antibody, 3B3 

binds Tim-1 with avidity 17 times higher than the “inhibitory” antibody RMT1-10[108]. It is 

postulated that 3B3 co-stimulates T cell activation by bringing Tim-1 closer to the TCR/CD-3 

complex, stabilizing it and therefore, allowing the formation of large supra-molecular clusters. 

RMT1-10 however, does not engage Tim-1 long enough to have such stabilizing effects. Instead, 

Tim-1 crosslinking by RMT1-10 leads to partial T cell activation, akin to partial and antagonistic 

ligands[108]. Thus, it is possible that depending on the ligand it associates with, Tim-3 can either 

have an inhibitory or stimulatory effect. 

 In support of this hypothesis is the observation that although Tim-3 is upregulated on 

viral antigen-specific CD8+ T cells in both acutely and chronically infected mice, only viral 

antigen-specific Tim-3+ CD8+ T cells in chronically infected mice become exhausted[91, 95]. A 

largely unappreciated fact is that exhausted T cells are effector T cells that are unable to 

completely differentiate into memory T cells[169]. Receptors and transcription factors associated 
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with T cell exhaustion i.e. PD-1, Blimp-1, T-bet are also upregulated during acute infection but 

do not seem to drive exhaustion unless there is persistent antigen stimulation [91, 170-172]. This 

suggests that during chronic inflammation, global changes occur both intracellularly and 

consequently, extracellularly to induce and maintain exhaustion in antigen-specific T cells. 

Therefore, it is distinctly possible that the ligands available to Tim-3 on the surface of T cells can 

vary between the different stages of activation leading up to exhaustion. 

 How then does Tim-3 contribute towards T cell exhaustion when it enhances instead of 

inhibits TCR/CD28 signals? We propose that early during the induction of T cell exhaustion, 

Tim-3 enhances T cells activation, which leads to the overexpression of T-bet. Studies have 

showed that T-bet is enriched in exhausted viral specific CD8+ T cells and in chronically 

infected Tbx21-/- mice depleted of CD4, this exhaustion is prevented. Interestingly, conditions 

that induce high levels of T-bet expression in CD8+ T cells favor the development of effector 

cells above memory T cells[172, 173]. Gene array studies show that of the genes differentially 

upregulated in exhausted CD8+ T cells, a greater majority of these genes overlapped with 

effector T cells than memory T cells[160]. This suggests that exhausted T cells are effector T 

cells that have not completely differentiated into memory cells. This is consistent with the 

observation that central memory T cells (TCM) are more superior in their ability to secrete IL-2 

and proliferate upon secondary stimulation to effector memory T cells (TEM)[174]. Likewise, the 

inability to produce IL-2 in response to antigen stimulation is the first defect that is seen in 

exhausted CD8+ T cells[88, 175].  
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5.0  SUMMARY 

The work presented in this dissertation challenges the widely accepted hypothesis that 

TIM-3 is a negatively regulator of effector T cells. Central to this hypothesis is the interaction of 

TIM-3 and its ligand, galectin-9 (Gal-9), which has been shown to induce apoptosis in IFN-γ-

secreting T cells [57]. Paradoxically, the gal-9/TIM-3 interaction does not appear to induce 

apoptosis in dendritic cells (DC). Instead, gal-9 induces their phenotypic and functional 

maturation [78]. Therefore, the gal-9/TIM-3 interaction appears to negatively regulate T cells but 

positively regulates DC. This led to my first hypothesis that the signaling pathway(s) 

downstream of TIM-3 differs in T cells and myeloid cells. In chapter 2, I tested this hypothesis 

by comparing the tyrosine phosphorylation patterns in a Th1 clone and a dendritic cell line 

incubated with a Tim-3-specific antibody. Using this approach, I was able to detect proteins that 

were differentially tyrosine phosphorylated in T cells and DC, supporting my hypothesis. 

However, attempts to identify these proteins by mass spectrometry were not fruitful. Since this 

work was performed, other groups have shown that gal-9 can also positively regulate Tim-3 

expressing T cells. Gal-9 expands regulatory T cells (Tregs) and enhances the cytolytic function 

of CD8+ T cells without any apparent effect on their viability. Therefore, this raised the question 

of whether TIM-3 is a positive or negative regulator of effector T cells.  
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To establish the regulatory nature of TIM-3 on T cells, I examined the ability for gal-9 to 

modulate cytokine production and viability of Tim-3 expressing Th1 cells. Previous studies 

using TIM-3/TIM-3 ligand blocking reagents have shown that TIM-3 has the ability to suppress 

effector T cell function [64, 69]. Therefore, as a TIM-3 specific agonist, I hypothesized that gal-9 

would possess the ability to induce apoptosis as well as inhibit the function of effector T cells. In 

chapter 3, I demonstrated that gal-9 induces the apoptosis of Tim-3 expressing Th1 cells, which 

is consistent with previous reports. Surprisingly, I found that gal-9 also induced the production of 

IFN-γ from fully polarized Tim-3+ Th1 cells. To ensure that these effects were Tim-3 specific, I 

treated Tim-3- Th2 cells with gal-9. Despite the lack of Tim-3 expression on these cells 

(confirmed by surface staining), gal-9 could still induce Th2 cells to undergo apoptosis and 

secrete cytokine, which suggests that Tim-3 is not required to mediate the effects of gal-9. I also 

showed that gal-9 can induce the production of IFN-γ and apoptosis in fully differentiated Th1 

cells from both wild-type and Tim-3-/- mice. Therefore, my work shows that gal-9 can both 

negatively (apoptosis) and positively (cytokine secretion) regulate effector T cells. However, 

these gal-9 mediated effects do not require Tim-3 expression. These findings have important 

implications for the way in which we investigate the function of TIM-3 in immune responses in 

the future. Many biological effects elicited by gal-9 in the past have been attributed to TIM-3 

based on the assumption that the interaction between gal-9 and TIM-3 is exclusive. Therefore, it 

is crucial that future studies take into consideration the possibility that gal-9 can bind to other 

cell-surface receptors apart from TIM-3 to mediate its effects. 

Since gal-9 is not a TIM-3 specific agonist and thus, cannot be used to study the signaling 

pathways downstream of TIM-3 in T cells, I employed a luciferase-based reporter system that 

has been used in the past to characterize to regulatory role of other TIM family proteins. In 
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chapter 4, I showed that ectopic expression of Tim-3 enhances the activation of NFAT/AP-1 and 

NF-κB signaling pathways in T cells stimulated with anti-TCR and anti-CD28.  This is at odds 

with published reports that point towards Tim-3 as a negative regulator of T cells. I then 

proceeded to demonstrate that of the 6 conserved tyrosines in the Tim-3 cytoplasmic tail, Y256 

and Y263 are the most crucial for mediating the enhancement of TCR/CD28 signaling by Tim-3. 

Src kinases Lck and Fyn can both phosphorylate these tyrosines, although Fyn appears to be the 

more efficient kinase. Lastly, I show that the downstream signaling of Tim-3 couples to ZAP-70 

and Slp-76 to enhance T cell activation. My findings here suggest that under certain conditions, 

TIM-3 has the potential to act as a co-stimulatory receptor. Future efforts will be focused on 

identifying the exact conditions that allow TIM-3 to act as either a positive or negative regulator 

of effector T cells.  

 Establishing the true nature of a co-receptor has always been complex. Initially, the co-

inhibitory receptor cytotoxic lymphocyte antigen-4 (CTLA-4) was classified as co-stimulatory 

because CTLA-4 specific antibodies that were thought to be agonistic were in fact, blocking 

[176]. Engagement of PD-1 by either PD-L1 or PD-L2 has been shown to both inhibit and 

enhance T cell proliferation and cytokine production, despite the observation by several groups 

that administration of anti-PD-1 exacerbates EAE in mice [177-182]. These inconsistencies are 

postulated to arise from the preparation of PD-ligand fusion proteins as either agonists or 

antagonists. However today, it is well-established that both CTLA-4 and PD-1 are inhibitory, as 

mice deficient in either co-receptor develop autoimmune disease. Despite its reputation as a 

negative regulator of T cells, Tim-3-/- mice do not suffer the same fate as mice lacking the 

expression of certain co-inhibitory receptors  [183, 184]. This suggests that the role of TIM-3 in 

immune responses is more complex than previously thought. To clarify the role of TIM-3 on T 
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cells, it is important to first establish the target epitopes of known TIM-3 blocking antibodies. 

This will then allow us to determine if any of the known TIM-3 ligand(s) is responsible for the 

suppression of T cell effector function, as often observed in the presence of APCs. Then, the 

effect of these ligand(s) on TIM-3 expressing T cells from wild-type and Tim-3-/- mice need to 

be compared in the absence of APCs. Finally, if Tim-3 can promote T cell exhaustion, CD8+ T 

cell responses should be comparable in acutely and chronically infected Tim-3-/- mice. 
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APPENDIX 

Table 5: Comparison of the structure and function of TIM family proteins  

 TIM-1 TIM-2 TIM-3 
Expression Primarily Th2 cells Primarily Th2 cells Th1, Th17, Tregs 

 
Structure 
1) MILIBS 

2) Glycosylation 
3) Number of tyrosines in 

the cytoplasmic tail 
 

 
Yes 

Heavily glycosylated 
One 

 
No 

Heavily glycosylated 
One 

 
Yes 

Lightly glycosylated 
Six 

Ligands 

 
Phosphatidylserine, 

Tim-4  
(indirect, mediated 
through exosomes)  

 

 
Sema4A, H-ferritin 

 
Galectin-9, 

Phosphatidylserine 

Inhibitory/Stimulatory 

 
Stimulatory 

(Agonistic Ab, 
ectopic expression in 
Jurkat T cells, Tim-4) 

Inhibitory 
(Antagonistic Ab) 

 

 
Inhibitory 

(Agonistic Ab, 
ectopic expression in 

Jurkat T cells) 

 
Inhibitory  

(Galectin-9 and Tim-
3/Tim-3 ligand blocking 

reagents) 

 
Disease Modulation 

EAE 
 
 
 
 

Tolerance 

   
Exacerbates 

(Agonistic Ab) 
Ameliorates 

(Antagonistic Ab) 
 

Abrogates airway 
tolerance 

(Agonistic Ab) 
Prolongs fully-MHC 
mismatched cardiac 

allograft 
(Antagonistic Ab) 

 
 

Ameliorates 
(Sema4A Ig) 

 
 

N/A 

 
 

Exacerbates 
(Blocking Tim-3 Ab) 

Ameliorates  
(Galectin-9) 

 
Abrogates allograft 

tolerance 
(Tim-3 Ig) 
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