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Abstract 

The problem of the binding of an excess electron to polar molecules and their 

clusters with sufficient attractive electrostatic potential has long fascinated researchers. 

Although excess electrons bound to such attractive potential tend to be very extended 

spatially and to have little spatial overlap with the valence electrons of the neutral 

molecules, inclusion of electron correlation effects is essential for quantitatively 

describing the electron binding. The major electron correlation contribution may be 

viewed as a dispersion interaction between the excess electron and the electrons of the 

molecule or cluster. Intrigued by the success of classical Drude model treatment of 

neutral atoms or molecules, a new one-electron model based on Drude oscillator was 

introduced, and its application on HCN-, (HCN)2
-, HNC-, (HNC)2

- and (H2O)n
- was 

studied. The newly developed water potential is used in carrying out parallel-tempering 

Monte-Carlo simulations of the (H2O)6
- cluster.  



 v 

Table of Content 

Acknowledgements............................................................................................................iii 
Abstract ..............................................................................................................................iv 
Table of Content..................................................................................................................v 
1. Introduction1....................................................................................................................1 
2. Electron-dipole model .....................................................................................................3 
3. Ab initio Treatment of Dipole-bound Anions.................................................................7 
4. One-electron model potentials approaches to dipole-bound anions..............................10 

I. General considerations:..............................................................................................10 
II. METHODOLOGY ...................................................................................................11 

A. Drude model for inter-molecular interactions......................................................11 
B. Drude model for electron-polar molecule interactions.........................................14 
C. Choice of Vrep, Vexch and model parameters.........................................................17 
D. Extension of the model potential to clusters ........................................................20 
E. Ab initio calculations and choice of basis sets......................................................22 

III. RESULTS................................................................................................................23 
A. Ab initio calculations............................................................................................24 
B. Model potential calculations.................................................................................26 

IV. CONCLUSION.......................................................................................................31 
5 Negatively charged water clusters..................................................................................32 

I. General Considerations:.............................................................................................32 
II. Applications of the Drude model to water clusters..................................................35 
III. COMPUTATIONAL METHODOLOGY ..............................................................37 

A. Model Potential ....................................................................................................37 
B. Details of (H2O)3

- and (H2O)4
- calculations..........................................................43 

IV. RESULTS...............................................................................................................45 
A. (H2O)2

- ..................................................................................................................45 
B. (H2O)3

- ..................................................................................................................46 
C. (H2O)4

- ..................................................................................................................48 
D. Electron densities and importance of single excitations. .....................................49 
E. Renormalized MP2-level model potential ............................................................51 

V. DISCUSSION AND CONCLUSIONS....................................................................52 
6. Parallel Tempering Monte Carlo Simulations of the Finite Temperature Behavior of 
(H2O)6

-...............................................................................................................................53 
I. General Considerations:.............................................................................................53 
II. Drude model .............................................................................................................55 

A. Drude Model for electron-molecule interactions.................................................55 
B. Drude Model For Water .......................................................................................57 
C. Modified Drude Model for Water ........................................................................58 
D. Basis set and Parameters......................................................................................61 

III. Parallel Tempering Simulations..............................................................................63 
IV. Results and Discussion............................................................................................66 
V. Conclusions..............................................................................................................70 

7. Use of the designation “dipole-bound” .........................................................................71 



 vi 

8. “Solvated-electron”  and related systems.......................................................................72 
9. Conclusions...................................................................................................................75 
Reference:..........................................................................................................................77 
List of Tables.....................................................................................................................84 
List of Figures...................................................................................................................99 
Appendix: ........................................................................................................................118 

Theoretical Calculations of Voltage-dependent STM Images of Acetylene on the 
Si(001) Surface............................................................................................................118 

I. INTRODUCTION ...............................................................................................119 
II. Calculations........................................................................................................121 
III. Results and Discussion......................................................................................124 
IV. Conclusions.......................................................................................................126 
Acknowledgements: ................................................................................................127 
References: ..............................................................................................................128 

 



 1 

1. Introduction1 

The problem of an electron in the field of a finite fixed dipole comprised of two 

charges +Q and –Q, separated by a distance R has been studied by numerous 

researchers.2-16 The finite dipole system has an infinity of critical dipole moments for 

electron binding with an infinite number of bound states appearing at each critical 

moment. The first three critical moments are 1.6248, 9.6375 and 19.181 D.3,4 It has also 

been established that the critical moments remain unchanged if a repulsive term falling 

off more rapidly with distance from the dipole than does the electrostatic interaction is 

added.4 These results imply that, in the absence of corrections to the Born-Oppenheimer 

(BO) approximation,17 “ real”  molecules with dipole moments greater than 1.625D must 

possess dipole-bound anion states. The point-dipole problem has the same critical 

moments as the finite-dipole problem, however, in the absence of a repulsive core, this 

problem is unphysical in the sense that binding energies become infinite and the 

wavefunctions are not normalizable.4,15,16 

 For molecules or clusters with dipole moments only slightly in excess of the 

critical value, the electron binding energies associated with dipole-bound anions are very 

small and corrections to the BO approximation become important. Indeed, Crawford and 

Garrett8,18,19 have shown that when electronic-rotational coupling is included, the critical 

dipole moments for binding an excess electron acquire a dependence on the moments of 

inertia of the molecule, and, as a result, they vary from molecule to molecule. As a “ rule 

of thumb”, real molecules have a first critical dipole moment of about 2.4 D. The other 

important change resulting from inclusion of corrections to the BO approximation is that 

the number of bound states is reduced from infinity to a finite number, indeed, only one, 
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unless the dipole is very large.20 This article will deal primarily with species for which 

the excess electron is sufficiently strongly bound that corrections to the BO 

approximation are negligible.  

The above introductory remarks have focused on the critical dipole moments for 

electron binding. Equally intriguing is the nature of the interaction between the excess 

electron and the electrons of the polar molecule or cluster of polar molecules. In a 

Hartree-Fock treatment, the orbital occupied by a dipole-bound electron is very diffuse 

and polarized away from the molecule on the positive end of the dipole. As a result, it 

was long believed that, because of the small overlap between the charge distribution of 

the excess electron and the electrons of the neutral molecule or cluster, electron 

correlation effects should play a relatively unimportant role in determining the electron 

binding energies and other properties of dipole-bound anions.21,22 However, over the past 

decade, a rather different picture has emerged, and, it is now known that electron 

correlation effects can drastically alter the properties of dipole-bound anions.23-30 The 

main correlation contribution is a dispersion-type interaction between the excess electron 

and the electrons of the polar molecule of the cluster.23-27 In many cases fourth- and 

higher-order correlation effects also make sizable contributions to the electron binding 

energies. Thus, an accurate description of the dipole-bound anions of these systems using 

conventional ab initio electron structure methods requires treating electron correlation 

effects to high order, e.g., by means of the CCSD(T) or CCSDT coupled-cluster 

methods,31,32 and using large, flexible basis sets. In light of this, it is of considerable 

interest that it is possible to develop one-electron models that recover most of the 

correlation contributions to the electron binding to such species.33-37 This finding, in turn, 
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may suggest new ways of tackling the dispersion problem in general. 

 Dipole-bound anions were long considered to be rather esoteric, albeit fascinating, 

entities, without much relevance to mainstream chemistry. However this is no longer the 

case, as they have been found to be important in a variety of chemical processes. The 

demonstration that dipole-bound anions can serve as precursors to formation of valence-

like anions38-40 has generated much interest in their role in electron capture in biological 

molecules such as uracil and thymine.41-46 In addition, many biologically important 

molecules can exist as zwitterions, which because of their large dipole moments, can 

form dipole-bound anions. 46-50 Dipole-bound anions have also been found to be 

important in charge-transfer processes. For example, photo-excitation of I-· (H2O)4
 leads 

to the charge transfer-complex I·(H2O)4
-, with the excess electron bound to the cyclic 

(H2O)4 cluster, distorted so that it has a large dipole moment. 51-56. Dipole-bound anions 

have also been invoked in explaining diffuse interstellar absorption bands.57 

The recent resurgence of interest in dipole-bound anions and the closely related 

“solvated-electron”  systems has been fueled by important advances on the experimental 

front. These advances include the use of Ar-atom vibrational predissociation 

spectroscopy, enabling one to obtain vibrational spectra of cold anionic clusters, 40,58,59 

femtosecond photodetachment spectroscopy,60 a new generation of experiments using 

electron transfer from highly excited Rydberg states,61,62 and improved field ionization 

methods63 for estimating the electron binding energies of weakly bound anions. 

2. Electron-dipole model 

Although the primary focus of the article is on electron correlation effects in 

electron-polar molecule interactions, it is instructive to first consider the energy levels of 
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an electron bound to a finite fixed dipole, where two fixed point charges +Q and -Q are 

separated by a distanceR
�

, with the quantity Q�� R
��

 giving the dipole moment. The 

Hamiltonian is the same as that for H2
+, except for the change of the sign of one of the 

“nuclei” .64  

 The Schrödinger equation in atomic units for an electron in such a system is: 

    21

2

Q Q
E

r r� �

� �
� � � � �� �

	 


� �
,    (1) 

where r+ and r- are the distances from the electron to the positive and negative charges, 

respectively. This equation is decoupled into three ordinary differential equations in 

elliptic coordinates� , �  and 
 , where: 

    
r r

R
� � ��

� ,             
r r
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� � ��

� ,   (2) 
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and 

   � � � � � �
�� �NL�
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.      (4)  

A  is a separation constant and 
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2
2

2

E
p

�
� . 

It is easily shown that m is the modulus of the magnetic quantum number since the 

obvious solution to Equation 3c is 

     � ��
exp( )im
 
� � .    (5) 

The problem is has a closed solution in the united atom limit ( 0R� ) and at infinite 

separation ( R�� ), however, there is no general solution to Equation 3a for 

intermediate distances. Fortunately, when the electron binding energy 0E � , thus 

0p � , the above equation reduces to an equation of �  only and is analytically solvable 

using an infinite series of Legendre functions. The critical dipole moment for electron 

binding thus does not depend on Q and R separately. The bound states can be labeled 

using three quantum numbers ( �n , �n  and m), with the constraint,  

    1���� mnnn ��      (6) 

Figure 1 reports as a function of the dipole moment (µ) the energies of the low-

lying levels of this model in the case that the two point charges are +1 and –1. In the large 

dipole limit, the spectrum corresponds to that of the H atom Stark-shifted by a   -1 point 

charge. 

All of the energy levels associated with the first critical moment (µ1 = 1.625 D) 

are � -like, with the most stable level correlating with the n = 1 hydrogenic level in the R 

�  �  limit. The higher-lying levels associated with this critical moment correlate with 

excited states of the H atom, with one level correlating with each of the n �  2 H-atom 

levels. All levels associated with the second critical moment of 9.637 D are � -like, with 

the lowest of these correlating with the 2p�  orbital of the H atom. Finally, the lowest 
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energy level associated with the third critical moment of 19.101 D, correlates with the 

unfavorably hybridized 2s-2p�  hydrogenic orbital. There is an infinity of larger critical 

dipole moments, but these are unimportant for most purposes. The reader may note that 

levels of the same apparent symmetry are shown as crossing in Figure 1.  This is not a 

violation of the non-crossing rule, as the electron finite-dipole problem, like H2
+, admits 

an additional constant of the motion. 64,65 

 Figure 2 displays the charge distributions of the ground electronic state of the 

electron-finite-dipole system for four different choices of the parameters: Q = 1 and �  = 3 

or 6 D (Figure 2a), and Q = 0.5 and �  = 3 or 6 D (Figure 2b). From Figures 2a and 2b, it 

is seen that the polarization of the wavefunction away from the negative end of the dipole 

is, as expected, much greater for smaller dipole moments and that the electron density is 

more localized for the higher charges (keeping the dipole moment fixed). 

The most serious shortcoming of the finite dipole model is that it gives electron 

binding energies much larger than those determined experimentally for real molecules 

with the same dipole moments. This is primarily a consequence of the neglect of 

repulsive interactions of the excess electron with the electrons of the neutral molecule. In 

general, there is appreciable electron density on the atom or atoms constituting the 

positive end of the dipole, and, as a result, there is an “excluded-volume effect” , which 

reduces electron binding. 

 This “excluded-volume effect”  can be readily incorporated into one-electron 

models by adding a repulsive term to the Hamiltonian describing the interaction of the 

excess electron with the distribution of charges of the neutral molecule.66 Figures 2c and 

2d report the electron charge distributions and binding energies for the four models 
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considered above modified to include a repulsive term centered on the positive end of the 

dipole. The repulsive core was represented by a single Gaussian function with an 

exponent of 10 and a prefactor of 1.0, and is roughly comparable to that appropriate for 

describing binding of an excess electron to HCN.33 As expected, introduction of the 

repulsive core leads to a decreased electron binding and a more extended charge 

distribution of the excess electron. 

 The point-dipole plus repulsive core model is a static model in that it does not 

allow for relaxation of the “core”  electrons upon the attachment of the excess electron, 

nor does it allow for correlation interactions between the dipole-bound electron and the 

core electrons. To include such effects it would appear to be necessary to adopt ab initio 

methods, treating explicitly all the electrons or at least the valence electrons together with 

the dipole-bound electron. However, as mentioned in the Introduction, it is, in fact, 

possible to describe relaxation and the dominant correlation effects within a one-electron 

model. Before describing one-electron model approaches, we first consider ab initio 

treatments of dipole-bound anions. 

3. Ab initio Treatment of Dipole-bound Anions 

In discussing ab initio approaches to characterizing dipole-bound anions, it is 

useful to start with the Koopmans’  Theorem (KT) approximation67 in which the electron 

affinity (the negative of electron binding energy) is given by 

KT
LUMOEA �� � ,     (7) 

where LUMO�  is the energy of the lowest unoccupied molecular orbital obtained from a 

Hartree-Fock calculation on the neutral molecule. This is a static approximation in that 
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the electron binds in the field of the static potential of the ground state of the neutral 

molecule or clusters and neither electron relaxation nor correlation effects are included. 

The “excluded volume” effect discussed above is automatically included in ab initio 

treatments. For molecules or clusters with dipole moments greater than 1.625 D, LUMO�  is 

necessarily negative, i.e., the LUMO is bound, provided the basis set is sufficiently 

flexible and the Born-Oppenheimer approximation is made.  

 The relaxation contribution to the electron binding can be obtained by carrying 

out Hartree-Fock calculations on the anion and neutral species, and using the expression 

( )relax KT HF HF
anion neutralE EA E E� � � � � .    (8) 

Electron correlation contributions to the binding energy can be calculated by a variety of 

methods, including many-body perturbation theory or coupled-cluster theory. Regardless 

of the theoretical method employed, it is useful to decompose the EA as follows: 

(2) (2) (3) (4)KT relax disp nondisp HOEA EA E E E E E E� �� � � � � � � � � � � � � . (9) 

In this expression, the second-order correlation correction, 
�

E(2), has been separated into 

dispersion and non-dispersion components.23 � E(3) and � E(4) give, respectively, the third- 

and fourth-order corrections to the electron binding energy, and � EHO collects together 

fifth- and higher-order corrections. � EHO can be estimated, for example, by comparing 

the EA from MP4(SDTQ) and CCSD(T) calculations.  

 High-level electronic structure calculations on a variety of dipole-bound anions 

have revealed that electron correlation effects play a major role in describing the binding 

of the excess electron in these systems. 23-26,28,30,33,34,68,69  This may be seen from 

examination of Table I, which summarizes the results of ab initio calculations of the 

vertical electron detachment energies, decomposed along the lines Eq. (9), of HCN-, 
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(HCN)2
-
, (H2O) 2

-, (HF) 2
-, (HF) 3

-, and CH3CN-.  Where available, experimental vertical 

electron detachment energies are included for comparison. Table I also reports, the dipole 

moments of the neutral molecules (or clusters) calculated at the Hartree-Fock and 

correlated (MP2 or QCISD31) levels of theory. The calculations have been carried out 

using flexible Gaussian-type orbital basis sets that are expected to give electron binding 

energies and dipole moments very close to the complete-basis-set limit values. The 

second-order contributions to the electron binding energies have been decomposed into 

dispersion and non-dispersion contributions using a procedure of Gutowski et al. 23,26,70 

 Analysis of the results in Table I reveals that, for the molecules and clusters 

considered, the relaxation contributions to the electron binding energies vary from 4 to 

10% of �KT, whereas, the second-order dispersion contributions are much more important, 

ranging from 47 to 107% of �KT. The non-dispersion contributions act so as to decrease 

the electron binding. This is attributed to the fact that for the species considered, electron 

correlation effects reduce the dipole moment of the neutral molecules.70 As a result, the 

second-order dispersion and non-dispersion contributions to the electron binding energies 

are of opposite sign, and thus partially cancel. The third-order corrections to the electron 

binding energies tend to be relatively small, but the fourth- and higher-order corrections 

are sizable in many cases. Indeed, for (H2O)2
-, � EHO is comparable to the KT binding 

energy. The origin of the large fourth- and higher-order corrections to the electron 

binding energies of many dipole-bound anions has proven elusive. We return to this issue 

later in the review. 

In general, good agreement is found between the electron binding energies from 

CCSD(T) calculations and those measured experimentally, and, in those cases where 
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there are sizable discrepancies (e.g., (HF)2
- and CH3CN-), it is expected that these would 

be resolved by carrying out CCSDT or multi-reference coupled-cluster calculations. (The 

CCSD(T) procedure treats triple excitations in a perturbative manner, whereas the 

CCSDT method treats these excitations non-perturbatively.) The important of 

nonperturbative triples for the dipole bound anions of HCN and HNC has been discussed 

by Peterson and Gutowski.32 The realization that CCSD(T) or CCSDT methods together 

with large flexible basis sets are required to describe accurately dipole bound anions is 

disconcerting as such calculations are computationally prohibitive for the large molecule 

or cluster systems currently being studied experimentally and theoretically 42,45,71-73 For 

these systems, it has often been necessary to compromise on the theoretical method 

employed. 

4. One-electron model potentials approaches to dipole-

bound anions 

I. General considerations: 

Given the diffuse, extended charge distribution of excess electrons bound to such 

clusters, these appear to be ideal systems to describe using model potential approaches.  

Indeed, there is a rich literature describing applications of model potentials for treating 

the interactions of an excess electron with water clusters and with bulk water.63,74-81In 

general, these approaches employ a standard classical force field for describing the 

interactions between the neutral monomers and a model potential for describing the 

interaction of the excess electron with the monomers. The excess electron is treated 

quantum mechanically. 
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All existing model potentials for electron-polar molecule systems allow for the 

electrostatic and, generally also, short-range repulsive interactions between the excess 

electron and the monomers. In some cases, polarization of the monomers and the 

exchange interaction between the excess electron and the monomers have also been 

included. However, none of the model potential approaches introduced to date has 

allowed explicitly for “dispersion”  interactions between the excess electron and the 

molecules in the cluster. This is a potentially serious limitation, since, as noted above, 

such interactions can significantly enhance electron binding. In this article we present a 

Drude-type model82 for describing the dispersion interaction between an excess electron 

and a polar molecule or cluster of polar molecules. The method is demonstrated in 

applications to HCN, (HCN)2, HNC and (HNC)2. The theoretical approach is described in 

the next section, followed by a presentation of the results for the test systems. 

II. METHODOLOGY 

A. Drude model for inter-molecular interactions 

 The Drude oscillator approach was originally introduced to describe dispersion 

interactions between atoms or molecules.82 In order to describe the dispersion interaction 

for a system of two molecules, a Drude oscillator is associated with each molecule. A 

Drude oscillator is a pair of charges +q and -q coupled through a harmonic oscillator. 

When observed from a distance longer than the dimension of the Drude oscillator, the 

Drude oscillator looks like a harmonic oscillating dipole, which is used to represent the 

spontaneous oscillating dipole of the molecule, the interaction of which is responsible for 
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the dispersion interaction. The interaction of two dipoles separated by a distance r 

significantly longer than the magnitude of the dipole can be represented as 

  
3

(sin sin cos 2cos cos )A B
AB A B A BU

r

� �
� � 
 � �� �     (10) 

where the angles �A , �B, and � is defined in Figure 3. 

 The Hamiltonian of two interacting Drude oscillators, positioned along the z axis, 

has the form 

  

2 2 2 2 2 2 2 2
1 2 1 1 1 2 2 2

2 2 2
1 2 1 2 1 2

3 3 3

1 1 1 1
( ) ( )

2 2 2 2
2

k x y z k x y z

x x q y y q z z q

r r r
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� � �

.  (11) 

Atomic units are used in this and all subsequent equations unless specified otherwise. The 

system of interacting oscillators can be viewed as non-interacting oscillators by making 

the following substitutions: 

  1 2
1

2

x x
X

�
� ; 1 2
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x x
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�
� ;
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�
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The corresponding angular frequency of the non-interacting oscillators can be shown to 

relate to the angular frequency of the isolated Drude oscillator as follows: 

   
2

1 3
1x

q

r k
� �� � ;

2

2 3
1x

q

r k
� �� �  

  
2

1 3
1y

q
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� �� �      (13) 
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2

1 3

2
1z

q

r k
� �� � ;

2

2 3

2
1z

q

r k
� �� �  

The ground state energy of the interacting oscillators is given by the sum of the zero-

point energies of all six normal modes in Equation (13). The expansion of the ground 

state energy using Taylor series and accurate to the third order q2/(kr3) gives: 

    
4 6

0 2 6 3 9

3
( ) 3 ( )

4

q q
E r o

k r k r

�
�� � � .   (14) 

The second term in Equation (14) is dispersion energy and higher order corrections to the 

ground state energy are all negative.  

 If an electrostatic field E is applied to a Drude oscillator along the z direction, the 

charge separation of the Drude oscillator takes the form 

     
qE

z
k

� .     (15) 

The perturbed oscillator has a dipole moment 

     
2q

qz E
k

� � �      (16) 

The polarizability of Drude oscillator thus has the form 

     
2q

k
� �      (17) 

Thus, the dispersion energy in Equation 14 becomes  

    
2

0 6

3
( )

4
E r

r

� �
� � .     (18) 

The negative sign indicates that the dispersion energy stabilizes the system. 
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B. Drude model for electron-polar molecule interactions 

 The Drude model can be extended to treat the interaction between an excess 

electron and an arbitrary polarizable molecule and cluster of polarizably molecules. We 

first restrict our discussion to a Drude model approach for the interaction between an 

excess electron and a molecule or cluster of molecules that have sufficient high dipole or 

high-order moments that an electron binds even without dispersion-type interactions. If 

the system of interest does not bind an electron without dispersion-type interactions, the 

Drude model can still be employed. In this case, the electron-Drude oscillator interaction 

has to be included into the zeroth order Hamiltonian instead of being treated as a small 

perturbation. 

 We first consider the case of the interaction of an excess electron with a single 

polar molecule. The extension to the case of an electron interacting with a molecular 

dimer is given in Subsection. D.  

 For an electron interacting with a polar molecule, the Hamiltonian may be written 

as 

el osc coupleH H H V� � � ,    (19)  

where Hel and Hosc are the Hamiltonians for the excess electron/polar molecule system 

and the Drude oscillator, respectively, and Vcouple is the coupling term, which incorporates 

the effects of both polarization and dispersion. 

Hel is defined as: 

21

2
el rep exchi

e
i i

Q
H V V

r
� � � � � �� ,   (20) 
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where it is assumed for simplicity that charge distribution of the neutral molecule is well 

represented as a set of point charges { Qi}  located at positions ri. V
rep and Vexch represent, 

respectively, the short-range repulsion and exchange interactions between the excess 

electron and the molecule core. (The various interaction terms are given in atomic units.) 

The Drude oscillator consists of two “ fictitious”  charges +q and –q separated by 

distance R and coupled harmonically through the force constant k. The +q charge is taken 

to be fixed, whereas the –q charge can be displaced. (See Fig. 4 for definitions of the 

coordinates.) The mass associated with the oscillator is taken to be mo. In the absence of 

an interaction with an external field (e.g., that imposed by the excess electron), the 

average of R is zero. The Hamiltonian for the three-dimensional Drude oscillator is given 

by  

   2 2 2 21 1
( )

2 2
osc

o
o

H k X Y Z
m

� � � � � � ,   (21) 

where 2 2 2 2( )X Y Z R� � � .  

The coupling term is taken to be  

    
3

couple q
V

r

�
�

r R
,     (22) 

where r is the vector position of the excess electron relative to the +q charge and R gives 

the position of the -q charge . This treatment ignores the higher order (i.e., nondipolar) 

moments induced on the molecule by the excess electron. 

 The energy levels of the Hamiltonian given by Eq. (19) are calculated using a 

product basis set of the form: 

i�� 
 �� ,      (23) 

where 
� is an orbital associated with Hel and �i is an eigenfunction Hosc.  
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In our application of the one-electron model potential approach to electron 

binding to polar molecules and their clusters, we will report electron binding energies 

calculated at zeroth- and second-order as well as with the configuration interaction 

method, which includes interactions to all orders.  The zeroth-order ground state energy 

E(0) is simply the sum of the ground state energies associated with the uncoupled 

electronic and oscillator Hamiltonians. There is no first-order correction to the energy. 

The second-order energy correction can be decomposed into two contributions: 

  
2 2

(2)

0 0, 000 0 00

00| |0 00| |couple couple

i ii i

V i V i
E

E E E E� �

�

� � �

� �
� �� � ,  (24) 

where |00> denotes the zeroth-order wavefunction and iE� represents the energy of the 

non-interacting electron-oscillator system with the electron in orbital 
� and the oscillator 

in level �i. The first term on the right hand side of the above equation gives the 

polarization energy of the oscillator due to its interaction with the excess electron. The 

second term, which involves excitations of both the excess electron and the oscillator, 

gives the dispersion energy. Given the form of Hcouple, only the lowest excited states of 

the harmonic oscillator (i.e., those involving one quanta of excitation) contribute to the 

second-order energy expression. 

 The polarization contribution in Eq. (24) is proportional to q2/k, which 

corresponds to the polarizability (�) of the oscillator. The mass associated with the Drude 

model does not enter into this term. However, it does enter the second term on the right-

hand side of Eq. (24), which involves contributions of the form  
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22

3

0

0
2

1 ( ) o

q s
k r

m
k�

�

� �� � �

,     (25) 

where � 0 and � � correspond to ground and excited states of Hel, and s = x, y, or z. 

0( ) om

k�� ��  can also be written as 0( )

o

�� �

�

�
 where o�  is the frequency of the Drude 

oscillator. Because the dipole-bound electron usually is weakly bound, the most 

important such terms are expected to have 0( ) 1om

k�� �� �� . Thus, to a good 

approximation, the dispersion contribution to the energy is proportional to 

2

3
0

0
s

r�

� �
�
� , and the sensitivity to the choice of the mass of the oscillator should be 

quite weak. If the excess electron were highly localized at a fixed distance from the 

Drude oscillator, the term for dispersion interaction would reduce to a London-type 

expression. 

C. Choice of Vrep, Vexch and model parameters 

In using Eq. (20) to study electron binding to polar molecules, it is necessary to 

choose functional forms for Vrep and Vexch and to adopt appropriate charges { Qi} . The 

extension to clusters of polar molecules will be discussed in section II.C. 

Following Schnitker and Rossky,75 the repulsive potential Vrep is determined by 

enforcing orthogonality between an orbital occupied by the excess electron and the filled 

orbitals of the neutral molecule. The starting point for the derivation of the repulsive 

potential is the following equation, 
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    m m
m

b
  ! � �� ,     (26) 

where !  is an orbital associated with the excess electron in an all-electron Hartree-Fock 

treatment, and
  is a pseudo-orbital which is identical to the true orbital outside the core, 

but which lacks the rapid oscillations inside the core region. The {  m}  are the filled 

molecular orbitals. When combined with F �! � ! , this leads to the equation: 

   { ( ) | }m m m
m

F � �   
 
 
 �
� � �� ,    (27) 

where F is the Fock operator, �  is the energy associated with orbital !, and m�  is the 

energy of the filled orbital m . The second term in the bracket of Eq. (27) defines Vrep: 

( ) |rep
m m m

m

V � �   
 
� � �� .    (28) 

To simplify the solution of Eq. (27), two approximations introduced by Schnitker 

and Rossky are adopted. Firstly,�  is neglected in the sum, which is justified since the 

excess electron interacts weakly with the neutral host (i.e., m� �� ); and secondly, the 

variation of 
  inside the core region is neglected. As is discussed below, the second 

approximation causes Vrep to be too repulsive. 

 With these approximations the second term in the bracket of Eq. (27) reduces to  

( ) ( )rep
j j

j

V r C "�� r
�

,     (29) 

where  

m
j m m j

m

C K c�� �� ,     (30) 

with 

( )m
m l l

l

K c d"�� # r r .     (31) 
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where m
jc is the coefficient of the j th basis function in the mth occupied MO. In Schnitker-

Rossky paper, the { ( )j r"
�

}  are Slater-type functions. Here generalized Gaussians of the 

form 

2

( ) i rl m n
j r x y z e �" ��
�

,     (32) 

are used instead.  Since Gaussian-type basis functions will also be used for representing 

the excess electron orbitals, this choice facilitates the evaluation of the integrals over Vrep. 

In the present work the repulsive potentials were determined from Hartree-Fock 

calculations using the aug-cc-pVTZ basis set83 and QCISD/aug-cc-pVTZ and MP2/aug-

cc-pVDZ optimized geometries for HNC84 and HCN27, respectively. The resulting 

potentials when employed in Eq. (20) result in significant underbinding of the excess 

electron. This is a consequence of their being too repulsive due to the neglect of the 

variation of 
  within the core.85 To deal with this problem, the repulsive potentials were 

“weakened” by multiplying by a constant factor so that the electron binding energies 

calculated for the monomers reproduce the KT results from all-electron Hartree-Fock 

calculations. 

 In their work on electron-water cluster systems, Schnitker and Rossky found the 

exchange contributions to the electron binding energies to be very small, and as a result, 

they omitted the Vexch term from their model Hamiltonian.75 This is a consequence of the 

small overlap between the orbital occupied by the excess electron and the charge 

distribution of the neutral molecules. We also adopt this approximation in the present 

treatment of electron-HCN and electron-HNC interactions. 

 In applying the model Hamiltonian approach to HCN and HNC, three atom-

centered point charges were employed to represent the monomer charge distributions. 
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The point charges were obtained by fitting the electrostatic potentials of HCN and HNC 

calculated at both Hartree-Fock and CCSD(T) levels of theory, using the aug-cc-pVTZ 

basis set, and employing the same geometries as used in determining the repulsive 

potentials.86 The fitted charges were constrained to reproduce the calculated (either HF or 

CCSD(T) level) dipole moments, and were also found to closely reproduce the molecular 

quadruple moments. 

 We next consider the choice of the mo, k, and q parameters associated with the 

Drude oscillator, again focusing on monomers. As discussed above, although the electron 

binding energies depend approximately linearly on q2/k, they are not expected to depend 

sensitively on the choice of q and ks separately or on the choice of mo. This was 

confirmed by exploratory calculations on HCN and HNC. All results reported here were 

obtained with the choice mo = 1, q = 1. Because the polarizabilities of HCN and HNC 

have considerable anisotropy, we have generalized Eq. (21) to employ separate kz and      

kx (= ky) force constants and chose q2/kz = � zz and q2/kx = q2/ky = � xx, where the � zz and � xx 

polarizability components are determined from MP2 calculations. The charges and other 

parameters used in the model potentials are summarized in Table II. 

D. Extension of the model potential to clusters 

 In applying the one-electron model potential approach to clusters of polar 

molecules, Eqs. (19)-(22) were extended so that the excess electron experiences 

repulsive, electrostatic, polarization, and dispersion interactions with each monomer. We 

also allowed for the effects intermonomer polarization. To treat the polarization and 

dispersion interactions a Drude oscillator was associated with each monomer. To 
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illustrate the approach, we consider the specific case of an electron interacting with two 

monomers, and then demonstrate the method on (HCN)2 and (HNC)2.  

The Hamiltonian for an excess electron interacting with a molecular dimer is:  

, , ,el osc1 osc2 1 2 couple 1 couple 2H H H H H H H� � � � � � ,   (33) 

where Hel is the electronic Hamiltonian extended to allow for the electrostatic and 

repulsive interactions with both monomers, Hosc1 and Hosc2 are the Drude oscillator 

Hamiltonians associated with the two monomers, H1,2 describes the coupling between the 

two monomers, and Hcouple,1
 and Hcouple,2 describe the coupling of the excess electron with 

oscillators “ 1“  and “ 2“ , respectively, with the latter coupling terms being of the form 

given by Eq. (22).  H1,2 is given by: 

(1) ( 2),2 ,1
(1) ( 2)

(2)(1) 2
1,2 2 12 1 2 1 12 2 12

2 13 3 5
12,2 ,1

3( )( )
Q Qi j

i j

ji

i jQ Q

QQ R
H q q q

R R R

�
� � �� �

R R R R R R
R R R R

� � �
� � ,(34) 

where ( )
iQ �  refers to a charge located on monomer l , and (1) ,iQ m

R  is the vector from the +q 

charge of the Drude oscillator associated with monomer m to the ( )
iQ �  charge. R1 and R2 

are the vectors associated with the two Drude oscillators, and R12 is the vector between 

the oscillators. (See Fig. 5 for the definitions of the various vectors.)  The first two terms 

on the right-hand side of the above equation give the interaction between the permanent 

charges on one monomer and the induced dipole on the other, and the last term gives the 

interaction between the Drude oscillators and is responsible for the dispersion interaction 

between the monomers as well as the enhancement of the induced dipole on one 

monomer due to the presence of the induced dipole on the other monomer. The coupling 

between the Drude oscillators is ignored in the present treatment, but would be 

straightforward to include.  
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There are several ways of partitioning the full Hamiltonian given by Eq. (33). In 

this study we use 

 0 ,1 ,2 1 2 1,20 0 0 0el couple couple osc osc

o o
H H H H H H H� � � � � � ,  (35) 

and 

,1 ,2 ,1 ,20 0 0 0couple couple couple couple

o o
V H H H H� � � � ,   (36) 

where the subscript o on the brackets indicates that the average is over the oscillator 

functions. The use of 1 2 1,2osc oscH H H� �  as the zeroth-order Hamiltonian for the Drude 

oscillators results in polarized oscillator wave functions, and the inclusion of the 

,10 0couple

o
H  and ,20 0couple

o
H  terms in H0 permits the excess electron to “see”  at 

zeroth-order the induced dipoles resulting from intermonomer polarization.  

 The basis set used in describing the electron-dimer system consists of products of 

the form  

(1) (2)
i j�� 
 � �� ,     (37) 

where �
  is an orbital associated with Hel, and (1)
i�  and (2)

j�  are polarized wavefunctions 

associated with the two Drude oscillators. The geometries used for (HCN)2 and (HNC)2, 

in both the model potential and ab initio calculations, were generated by optimizing the 

intermonomer separation at the MP2/aug-cc-pVTZ level, keeping the monomers rigid. 

The geometrical parameters are defined in Fig. 6 and their values listed in Table II. 

E. Ab initio calculations and choice of basis sets 

 To aid in assessing the results of the model potential calculations, all-electron ab 

initio calculations were carried out at the Hartree-Fock (HF), MP2, and CCSD(T) levels 
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of theory for each of the four systems considered. These calculations employed the aug-

cc-pVTZ basis set augmented with six diffuse s and six diffuse p shells on the "terminal" 

H atom. The exponents of the supplemental functions were in a geometrical ratio of five 

and ranged from 5*10-3 to 1.6*10-6 for the s functions and from 2*10-2 to 6.4*10-6 for the 

p functions. Test calculations revealed that the electron binding energies are essentially 

unchanged upon further expansion of the s + p space. Inclusion of diffuse d functions was 

also found to be relatively unimportant, contributing at most a few percent to the electron 

binding energies. The ab initio calculations were carried out using the Gaussian 98 

program.87 As will be shown later in the discussion, the agreement between the Drude 

model electron binding energy and CCSD(T) electron binding energies and, which is 

usually used a reference results are not very satisfactory. Intrigue by this finding, Prof. 

Gutowski carried out CCSDT calculation on HCN and HNC, and found the Drude model 

actually is giving better total binding energies. The CCSDT binding energies calculated 

by Prof. Gutowski will also be included in the following discussion.  

The one-electron model potential calculations used the same 6s+6p set of diffuse 

Gaussians as employed in the ab initio calculations.  The basis sets for the Drude 

oscillators was chosen to consist of the (l, m, n), 0 $ l + m + n $ 2, harmonic oscillator 

functions, where the l, m, and n, indices indicate the level of excitation of the oscillators 

in the X, Y, and Z degrees of freedom respectively. 

III. RESULTS 

 In reporting the results we will first consider the monomers followed by the dimers, 

in each case first reporting the results of the ab initio calculations. For the model-
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potential calculations, results obtained using atomic charges determined at both the HF 

and CCSD(T) levels of theory will be presented. 

A. Ab initio calculations 

 Table III reports ab initio electron binding energies results calculated at the KT, 

MP2, CCSD(T) and CCSDT levels of theory for HCN and HNC, the KT, MP2 and 

CCSD(T) levels of theory for (HCN)2 and (HNC)2. In addition, polarization 

contributions, associated with the changes in the electron binding energies in going from 

the KT to the �SCF approximation, in which the binding energy is calculated from the 

difference of the Hartree-Fock energies of the anion and neutral species, are reported. 

The MP2 contributions to the ab initio electron binding energies are decomposed into 

dispersion and non-dispersion contributions using a procedure introduced by Gutowski, 

et al.23,26,70 For HCN, HNC, and (HCN)2 our ab initio values for the electron binding 

energies are very close to those reported previously.26,27 We are unaware of any previous 

calculations on (HNC)2
–.   

1. HCN and HNC 

 In the KT approximation the electron binding energies of HCN and HNC are 

predicted to be only –11.7 and –2.7 cm-1, respectively. The larger (greater in magnitude) 

BEKT value for HCN is consistent with its larger dipole moment (3.33 vs. 2.86 D) in the 

Hartree Fock approximation. For both molecules the polarization contribution to the 

electron binding energy is much smaller in magnitude than the BEKT value. The inclusion 

of second-order electron correlation effects leads to a much larger change in the electron 

binding energy of HNC than that of HCN (–9.1 cm-1 vs. –0.5 cm-1). The decomposition of 

the second-order contributions into dispersion and non-dispersion components reveals 
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that these two components are comparable in magnitude for both molecules, but the non-

dispersion component is positive for HCN and negative for HNC. The dispersion 

contribution to the electron binding energy is necessarily negative.  The small second-

order correction to the electron binding energy of HCN is thus a result of a near 

cancellation between the dispersion and non-dispersion contributions.  Upon inclusion of 

electron correlation effects, the dipole moment of HCN is reduced whereas that of HNC 

is increased. Apparently the second-order non-dispersion contribution to the electron 

binding energy is dominated by the change in the dipole field experienced by the excess 

electron, and thus is positive for HCN and negative for HNC.   

 Higher-order electron correlation effects are predicted to lead to changes of -0.5 

and –23.8 cm-1 in the electron binding energies of HCN and HNC, respectively. These 

results are obtained by subtracting the MP2 binding energies from the CCSDT binding 

energies. The greater importance of higher-order electron correlation effects for the 

electron-HNC system is primarily due to the enhancement of the dipole moment of the 

neutral molecule due to electron correlation effects. The best estimate of the electron 

binding energy for HCN (–13.2 cm-1) is slightly more than the KT value, but for HNC it 

is about 12 times larger (at –35.7 cm-1) than the KT value. It is astonishing to see the 

large difference between CCSD(T) and CCSDT binding energy of HCN and HNC. There 

is a -4.2 cm-1 difference between CCSDT and CCSD(T) binding energy for the electron-

HCN system, a 5.6 cm-1 difference between CCSDT and CCSD(T) binding energy for the 

electron-HNC system. For the electron-HCN system, this lead to about 47% 

underestimation of electron binding energy at CCSD(T) level of theory.  
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2. (HCN)2 and (HNC)2 

 In the KT approximation the ab initio electron binding energies of (HCN)2 and 

(HNC)2 are calculated to be  –461 and –366 cm-1, respectively. These are 39 and 135 

times larger in magnitude than the corresponding binding energies of the monomers. 

Whereas second-order correlation effects lead to a large –504 cm-1 change in the binding 

energy of (HNC)2, they lead to only a relatively small –63 cm-1 change in that of (HCN)2. 

As for the monomers, the second-order dispersion and non-dispersion contributions are 

sizable for both dimers, with the two contributions being of the same sign (negative) for 

(HNC)2 and of opposite sign for (HCN)2. Again, the different signs of the non-dispersion 

contribution to the electron binding for the two dimers can be understood in terms of the 

changes in the dipole moments upon the inclusion of electron correlation effects, which 

cause a decrease of the dipole moment of (HCN)2 but an enhancement of that of (HNC)2. 

Higher-order correlation effects, when estimated by the difference between the MP2 

binding energies and the CCSD(T) binding energies, cause relatively small changes (-1 

and –93 cm-1 for (HCN)2 and (HNC)2, respectively) in the electron binding energies. 

CCSDT results for these systems are not available.  

B. Model potential calculations 

 As noted above, the model potential calculations were carried out using atomic 

charges determined from HF (model I) as well as from CCSD(T) (model II) calculations. 

For each choice of charges, electron binding energies are reported at the KT (i.e., 

neglecting electron-molecule polarization and dispersion interactions), "MP2", and 

single-plus-double excitation configuration interaction (SDCI) levels of theory.  
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 For the model potentials described above, the SDCI calculations correspond to 

full-CI calculations in the sense that all excitations possible with the adopted basis sets 

are included. However, for the electron/dimer systems, full-CI calculations would also 

include triple excitations, (i.e., simultaneous excitation of the electron and both Drude 

oscillators) were the coupling term between the Drude oscillators in Eq. (34) retained. 

1. HCN and HNC 

 By design, model I reproduces the ab initio KT binding energies of the monomers 

(as the repulsive potentials were scaled to give this result). Outside the core regions, the 

lowest bound orbitals of the model electronic Hamiltonians for HCN and HNC are nearly 

identical to the lowest unoccupied molecular orbitals (LUMOs) from the Hartree-Fock 

calculations on the neutral molecules. This is illustrated in Fig.7.  

 Model I gives polarization energies nearly identical to the ab initio values, which 

is not surprising, as q2/kx, q
2/ky and q2/kz were chosen to reproduce the monomer 

polarizabilities. Most encouragingly, the second-order dispersion contributions to the 

electron binding energies calculated using model I are close to the ab initio estimates, 

illustrating the success of the Drude model for treating the dispersion interactions. 

Nonetheless, the net binding energies calculated through second order using model I 

differ appreciably from the corresponding ab initio results. In addition, the full-CI 

binding energies calculated using model I differ appreciably from the results of the all-

electron CCSDT calculations, predicting a sizable over-binding for HCN and an under-

binding for HNC. The main reason for this is that model I does not account for the 

“ renormalization”  of the dipole moments resulting from inclusion of electron correlation 

effects and which, as noted above, is primarily responsible for the non-dispersion 
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contributions in the ab initio calculations. This problem is remedied in model II, which 

employs CCSD(T) charges for the monomers.  

 The charge renormalization built into model II leads to changes in the KT binding 

energies and in the spatial extent of the zeroth-order wavefunction describing the weakly 

bound electron. This, in turn, causes changes in the second- and higher-order corrections 

to the electron binding energies. For both HCN and HNC, the net electron  binding 

energies calculated through second order using model II are in fairly good agreement 

with the ab initio MP2 results. Moreover the electron binding energies calculated using 

the model II full CI method are in good agreement with those calculated using the ab 

initio CCSDT method. Specifically, for HCN and HNC the full-CI calculations with 

model II give electron binding energies of –12.3 and –29.3 cm-1, respectively, as 

compared to the corresponding ab initio CCSDT values of –13.2 and –35.7 cm-1. In 

assessing these results, it should be noted that HCN and HNC are undoubtedly two of the 

more challenging systems for describing the binding of an excess electron by either ab 

initio or model potential approaches. HCN is challenging because of its very small (%-

13.2 cm-1) binding energy and because of the near cancellation between the dispersion 

and “charge renormalization”  contributions to the electron binding energy. HNC 

represents an even more challenging case in that the inclusion of electron correlation 

effects leads to about a thirteen-fold increase in the electron binding energy (as evaluated 

using ab initio calculations). The zeroth-order Hartree-Fock wavefunction is such a poor 

starting point for these systems that the CCSD(T) result is not well converged. The model 

potential approach is providing a more realistic description of electron binding to HCN 

and HNC than are the ab initio CCSD(T) calculations. 
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2. (HCN)2 and (HNC)2 

From the results reported in Table III it is seen that models I and II are less 

successful for the dimers than the monomers. For example, model I underestimates the 

KT electron binding energies of the dimers by 14-20% and gives dispersion contributions 

to the binding energy about 50% smaller than the ab initio estimates.  The failure of 

model I to give the correct values of the electron binding energy in the KT approximation 

has a simple explanation, namely that this model does not reproduce the HF dipole 

moments of the dimers, in part because of the neglect of the third term on the right hand 

side of Eq. (34).  (The underbinding of the electron at the KT level, in turn, causes the 

dispersion contributions to be underestimated.) Similarly, model II does not reproduce 

the CCSD(T) dipole moments of the dimers. To remedy these deficiencies, models III 

and IV, in which the atomic charges are scaled so that the net (permanent plus induced) 

dimer dipole moments agree with the HF and CCSD(T) values, respectively, were 

introduced.  

 The KT values of the electron binding energies of the dimers calculated using 

model III are very close to the ab initio KT results. In addition this model gives 

polarization energies close to the ab initio results.  On the other hand, the dispersion 

contributions to the electron binding energies of the dimers calculated using model III are 

still considerably (30-39%) smaller than the corresponding values estimated by 

partitioning the ab initio MP2 energies.  However, the discrepancies between the model 

potential and ab initio estimates of the dispersion energy should not be ascribed solely to 

deficiencies in the model potential as the procedure used to decompose the ab initio 
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second-order contribution to the electron binding energy into dispersion and non-

dispersion components is not rigorous and may overestimate dispersion. 

 Of the four models considered, model IV, which reproduces the CCSD(T) dipole 

moments of the neutral dimers, should be the most realistic for describing the net electron 

binding energies of the dimers. Indeed, the electron binding energies calculated through 

second order using this model (–463 and –746 cm-1 for (HCN)2 and (HNC)2, 

respectively) are in good agreement with the corresponding ab initio values of –524 and -

870 cm-1. The SDCI binding energies calculated using model IV also compare favorably 

with the ab initio CCSD(T) results, with the two approaches giving nearly identical 

electron binding energies for (HCN)2, and reasonable, but poorer, agreement for (HNC)2  

(-792 cm-1 and –963 cm-1 for the model IV SDCI and ab initio CCSD(T) calculations, 

respectively). The smaller (in magnitude) electron binding energy of (HNC)2 predicted 

using the model potential in conjunction with the SDCI method compared to that 

obtained from the ab initio CCSD(T) calculations is not surprising given that similar 

behavior was found for the HNC monomer.  As demonstrated for the monomer, part of 

the discrepancy between the model potential and ab initio results for (HNC)2 could be 

due to an inadequacy of the ab initio CCSD(T) calculations.    

 The HCN, (HCN)2, HNC and (HNC)2 species considered in this paper all have 

dipole moments sufficiently large so as to guarantee electron binding. Exploratory 

calculations reveal that model IV also works well for describing electron binding to 

clusters of polar molecules with no net dipole moments, e.g., dimers with the dipoles of 

the monomers opposed (e.g., NCH…HCN and CNH…HNC) in which the excess 

electron is “ localized”  between the two dimers. 
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IV. CONCLUSION 

 It is now well established that the ab initio treatment of the interactions of excess 

electrons with polar molecules requires very flexible basis sets and the inclusion of high-

order correlation effects.  This limits such calculations to relatively small cluster systems.  

One-electron model potential approaches, on the other hand, can be applied to very large 

clusters.  However, for such approaches to reliably describe electron binding, they need 

to incorporate dispersion interactions between the excess electron and the molecules of 

the cluster.   

 In this study a new model potential approach for describing the interaction 

between an excess electron and polar molecules or clusters of polar molecules was 

described. The novel feature of this approach is the use of Drude-oscillators to account 

for polarization and dispersion interactions.  The new model potential was tested on the 

dipole-bound anions of HCN, HNC, (HCN)2 and (HNC)2, and was found to give binding 

energies in good agreement with those from high-level ab initio calculations in all the 

cases. Especially encouraging is that for HCN and HNC the model potential is giving 

better agreement with ab initio CCSDT results than ab initio CCSD(T) method does. 

 There are several potential sources of error in the model potentials used in the 

present study. These include the approximations in generating the repulsive core, the use 

of a simple three-point charge model to represent the charge distributions of the 

monomers, the use of a single polarizable center on each monomer, the neglect of 

exchange, and the neglect of the hyper- and higher-order polarizabilites.  However, none 

of these approximations is essential, and we envision the model described in this section 
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as the starting point for a family of increasingly “sophisticated”  model potentials for 

describing electron-polar molecule interactions.  

5 Negatively charged water clusters 

I. General Considerations: 

Electron-water systems have long fascinated researchers. Reactions involving 

electrons in bulk water are of fundamental importance in radiation chemistry, 

electrochemistry and biology.88-92 Yet, even the nature of an excess electron in bulk water 

remains controversial. 93-103 Although the long-held view is that an excess electron in 

bulk water is trapped in an approximately spherical cavity,104-107 giving the so-called 

hydrated electron, Domcke and coworkers have proposed that the excess electron is 

actually associated with a H3O species.100 (H2O)n
- clusters have also received 

considerable attention from the experimental and theoretical communities. 59,77,108-115 

There remain several fundamental questions about these species, including the size 

cluster for which the electron is more stable in an interior rather than a surface state, and 

how the anions observed experimentally are formed. 

(H2O)n
- clusters were first detected mass spectroscopically by Haberland and 

coworkers. 116 Figure 8 reproduces a mass spectrum of (H2O)n
- clusters from the Johnson 

group.113 This spectrum is noteworthy by the absence of a peak for the monomer, 

consistent with its dipole moment being too small to support a dipole-bound anion, and 

by the occurrence of magic numbers at n = 2, 6, 7, and 11, and a monotonically 

decreasing intensity distribution for n �  15. The origin of the magic numbers in the 

(H2O)n
- mass spectra is still a matter of debate, although, there seems to be a correlation 
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between the dipole moment of the neutral cluster and the intensity of the peak in the mass 

spectrum, at least for the smaller clusters. For example, the most stable forms of the n = 

2, 6, 7 and 11 clusters, which appear as magic numbers in the anion mass spectrum, have 

sizable dipole moments,117-119 whereas the most stable isomers of the (H2O)n, n = 3-5, and 

8 clusters, for which the corresponding anions are either absent or appear only weakly in 

the mass spectrum, have zero or small dipole moments. This suggests that the interaction 

of the excess electron with the dipole field of the neutral clusters may be an important 

factor in the initial electron capture process. On the other hand, Kim et al. have noted that 

the n = 10 cluster also has a sizable (� 2.7 D) dipole moment but appears only weakly in 

the mass spectrum, which would appear to contradict the hypothesis that there is a 

correlation between the dipole moment and anion formation.118,119 However, it is possible 

that the low yield of (H2O)10
-  in the mass spectrum is the consequence of a relatively low 

population of (H2O)10 in the neutral cluster distribution.  

The proceeding discussion assumes that the observed (H2O)n
- ions result from 

electron capture by preformed neutral (H2O)n clusters. In the experiments of Johnson et 

al., electrons are ejected into an expansion containing water and Argon, and the Ar-free 

(H2O)n
- clusters are believed to result from electron capture by (H2O)nArm clusters 

followed by evaporation of Ar atoms. The most abundant isotope of Ar has a mass nearly 

identical to that of the water dimer, and the weak peaks that appear to correspond to 

(H2O)4
-, (H2O)8

-, and (H2O)9
-, for the most part, are actually due to (H2O)2

-Ar, (H2O)4
-Ar 

and (H2O)7
-Ar, respectively. 113  

 Although there is a consensus that the observed forms of (H2O)n
-, n = 2-4, have 

chain-like structures, the situation regarding the larger clusters is less clear. 59,110,120-122 
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Neither the mass spectra nor the measured electron detachment energies allow one to 

definitely establish the geometrical structures. Recently, the Johnson group has succeeded 

in measuring vibrational spectra in the OH stretching region for the       (H2O)n
-Arm, n = 5-

9, clusters.58,59,123 The presence of attached Ar atoms assures that the clusters are cold (T 

� 50K). The comparison of measured spectra with ab initio calculated spectra for various 

isomers of the bare (i.e., non-Ar solvated) clusters greatly narrows down the possible 

structures. However, even with the availability of the IR data, the structures of the 

(H2O)n
-, n �  5, clusters remain subject to debate. For example, whereas Ayotte et al.59 

have proposed that the observed IR spectra of (H2O)6
- and it deuterium substituted 

isotopomers are due to a chain-like isomer, Kim and coworkers have suggested a more 

three-dimensional structure as the origin of the spectrum.110,120,122 One might expected 

that comparison of the experimental IR spectrum with the calculated spectra for different 

isomers would permit definitive assignment for a cluster the size of (H2O)6
-. However, 

due to the need to employ large, flexible basis sets, is has been necessary to adopt either 

density functional theory (e.g., Becke3LYP124-126) or the MP2 method for calculating the 

frequencies. Since the Becke3LYP method considerably overbinds the excess electron, 

while the MP2 procedure considerably underbinds it and since the vibrational frequencies 

and intensities depend on the degree of localization of the excess electron, neither of 

these methods can account for the observed IR spectrum in a quantitative manner. 59 

Density functional methods also suffer from the inability to treat long-range dispersion 

interactions. 127 The remedy, namely to calculate the vibrational spectrum at the 

CCSD(T) level, is too computationally demanding at present. This signals the need for 
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alternative theoretical approaches to treat the anion states of clusters of water and of other 

polar molecules. 

Models for including dispersion interaction between an excess electron interacting 

with a cluster of polar molecules have been introduced by two groups. The Drude-model 

approach presented above is due to our group. Sindelka et al. 36 have also recently 

introduced a model for calculating second-order dispersion interactions between an 

excess electron and a polar molecule or cluster of polar molecules. The main difference is 

that while Eq. 24 employs a discretization of the continuum, Sindelka et al . calculated the 

dispersion energy by doing an integral over the continuum. A second difference is that 

we have damped the short-range coupling between the electron and the polarizable 

monomers, while Sindelka et al. used an undamped interaction. However, this damping is 

relatively unimportant for the second-order energies. The two approaches also differ in 

terms of the choice of excitation energy associated with the monomer. However, as 

argued above, the dispersion energy is relative insensitive to the monomer excitation 

energy. 

II. Applications of the Drude model to water clusters 

We now consider in more detail the use of one-electron model potentials for 

describing the interaction of an excess electron with water. Water has been chosen for 

focus because of the large body of experimental and theoretical work done on excess 

electrons interacting with water in clusters, films, and the bulk, and because there are 

several unresolved issues concerning electron-water systems that can not be answered by 

current ab initio methods.  
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There is a rich history of one-electron model approaches to treating electron-water 

systems. In particular, we note the pioneering work of Landman and co-workers, 74 

Rossky et al., 75 Staib and Borgis, 76 and Berne and co-workers. 77 The key features of the 

models introduced by these researchers, as well as of a more recent model of Mosyak et 

al., 81 are summarized in Table IV.  These models have been used to address a variety of 

problems, including estimating the size water cluster for which it is more favorable for an 

excess electron to be bound in the interior as opposed to the surface, 128-130 calculating 

electron transport through water films, 131 and simulating the dynamics of the solvated 

electron following photo-excitation. 132,133 Most of these one-electron models allow for 

polarization of the water molecules by the excess electron, but none allow for dispersion 

interactions between the excess electron and the water molecules. As is clear from Table 

I, the dispersion contribution to the electron binding energy is typically an order of 

magnitude more important than polarization (at least for small clusters) and it is generally 

comparable to the electrostatic binding energies. This raises the possibility that dispersion 

interactions could significantly affect the dynamics of solvated electrons or impact the 

preference for electron binding in the interior vs. the surface of a cluster. 

 In this work, the Dang-Chang (DC) polarizable model for water,134 which has 

been found to do a good job at describing small water clusters and bulk water,134,135 is 

combined with the Drude model described in section 3. The unique feature of the current 

model is the use of Drude oscillators to treat electron-water monomer polarization and 

dispersion. The resulting one-electron model potential approach is applied to (H2O)3
-  and 

(H2O)4
-, and the results are compared with the predictions of ab initio CCSD(T) 
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calculations. The computational details are described in Section III, with the results being 

presented in Section IV, followed by Discussion and Conclusions sections. 

III. COMPUTATIONAL METHODOLOGY 

A. Model Potential 

The DC water model employs the experimental geometry of the gas phase 

monomer (ROH = 0.9572 Å, HOH angle = 104.52&) and is a rigid-monomer model.  

Point charges are located at the positions of the H atom (Q = 0.519e) and on the rotational 

axis, displaced 0.215 Å from the O atom (towards the H atom) (Q = -1.038e). This gives 

a dipole moment of 1.848 D, nearly identical to the experimental value of 1.825 D136 and 

quadruple moment components of Qxx = 2.235 D ·Å,  Qyy = -2.047 D ·Å, and Qzz  = -

0.188 D ·Å in fairly good agreement with experiment values of Qxx =  2.626 D ·Å, Qyy =  

-2.493 D ·Å, and Qzz = -0.134 D ·Å.137  The DC model also locates a polarizable center at 

the same position as the negative charge. The polarizability is taken to be isotopic, with 

the numerical value of 1.444 Å3, chosen to match the experiment.138 Finally; a single 

Lennard-Jones site is centered on the O atom (�  = 0.1825 kcal/mol, �  = 3.2340 Å). 

The water-water interactions thus include electrostatic (charge-charge), charge-

induced dipole, and Lennard-Jones type interactions.  The induced dipoles on the 

different monomers are allowed to interact, and the polarization equations given the 

individual induced dipole moments are solved self consistently. 

The Hamiltonian (in atomic units) for an excess electron interacting with a single 

water molecule and neglecting polarization and dispersion is taken to be  
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where the sum is over the charge sites of the monomer,  and exV  and repV  represent the 

exchange and electron-molecule repulsive interactions, respectively. The subscript “DC” 

implies that the charges and their locations are from the DC model. As will be discussed 

below, we also consider a second model based on Hartree Fock (HF) charges in which 

case the electronic Hamiltonian is designated el
HFH . repV  is generated following the 

procedure of Schnitker and Rossky,75 except that we represent it in terms of Gaussian 

instead of Slater functions.  Also, following Schnitker and Rossky, exV  is ignored as it is 

expected to be relatively unimportant for the electron binding to water clusters. 

Electron-molecule polarization and dispersion are accounted for by associating 

with the monomer a Drude oscillator consisting of two charges +q, -q, separated by a 

distance R and coupled harmonically through the force constant k. The reduced mass of 

the oscillator is mo. The Drude oscillator is located at the same position as the polarizable 

center in the DC model. This results in a coupling term of the form  
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,     (39) 

where r is the position of the electron relative to the oscillator, and 
2

(1 )bre��   is a 

damping factor, which attenuates unphysical short-range interactions between the excess 

electron and the Drude oscillator. The total Hamiltonian then becomes 

   el osc coupleH H H V� � � .    (40) 

Both the Drude oscillator and the excess electron are treated quantum mechanically using 

a product basis set of the form i�
 �  where �
  and i�  are eigenfunctions of elH   and  
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oscH , respectively. The electron binding energy for the full model Hamiltonian is 

calculated using the second-order perturbation theory and the configuration interaction  

(CI) methods. In addition, electron binding energies are also calculated using H el alone, 

i.e., neglecting coupling to the Drude oscillators. The latter binding energies are refered 

to as Koopmans’  theorem (KT)67 values, since they result from a static approximation 

neglecting polarization and dispersion. 

As shown in Reference 33, the second-order correction to the electron binding 

energy for the model Hamiltonian system can be decomposed into polarization and 

dispersion contributions.  The former is proportional to 2q k , which is simply the 

polarizability of the Drude oscillator, here set equal to either the HF or DC polarizability 

values of a water monomer. (Anisotropic polarizabilities can be accounted for by 

introducing separate kx, ky and kz force constants.)  The second-order dispersion 

contribution is: 
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where the first summation runs over s = x, y, and z, and the second runs over the excited 

electronic levels.  However, since the excess electron is weakly bound, the sum over 
�
 is 

dominated by terms for which 0( ) 1om

k�� �� �� , the dependence on mo should be quite 

weak. In this work, mo is taken to be the mass of an electron, and q is taken to be 1. Note 

that if the excess electron were highly localized, Eq. 41 would reduce to the London 

expression for dispersion. 
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 The extension of the Drude model to a cluster of molecules is straightforward. 

The Hamiltonian for the excess electron now includes electrostatic and repulsive 

interactions with each monomer, as well as interactions with a Drude oscillator on each 

molecule. The basis set for an electron interacting with n Drude oscillators consists of 

functions of the form (1) ( )n
l m�
 � ��  where �
  is again an electron orbital and j

l�  is the 

thl  level associated with the thj oscillator. 

 Intermolecular induction and polarization can be treated either through the 

standard approach for the DC model or via coupling between the Drude oscillators. The 

latter approach has the advantage of including, in a self-consistent manner, three- and 

higher-body induction and dispersion effects, both among the monomers as well as in the 

electron and monomer interactions. In the present study, we adopt an intermediate 

approach, in which the induction is treated using Drude oscillators but the intermolecular 

dispersion is accounted for via the Lennard-Jones terms in the DC water model.   This 

decouples electron-molecule and molecule-molecule dispersion, which should be a good 

approximation as three-body dispersion effects are expected to be relatively unimportant 

for water clusters. 

In applying the model Hamiltonian approach to clusters, we incorporate into the 

zeroth-order electronic Hamiltonian the interaction of the excess electron with the 

induced dipoles on the monomers. That is, the zeroth-order energy levels of the excess 

electron are calculated in the field of the charges plus the induced dipole moments. 

The electronic basis set is chosen to consist of even-tempered series of s and p 

primitive Gaussian-type functions, the number and exponents of which depend on the 

cluster being treated. Additional details are provided below after the specific water 
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clusters to be studied are introduced. A basis set of the form ( � l, � m, � n), 0 $ l + m + n $ 

2, where l, m, and n are quantum numbers associated with a three-dimensional harmonic 

oscillator in Cartesian representation, is employed on each Drude oscillator. Test 

calculations show that this oscillator basis set is adequate for describing electron-water 

polarization and dispersion as well as intermolecular induction.  

Although the ultimate goal of the model potential calculations is to provide a 

quantitatively correct description of electron binding to water clusters, it is important to 

check that the model employed correctly describes electron binding in the absence of 

electron-water polarization and dispersion. However, one cannot simply compare the 

electron binding energies calculated using  el
DCH , described above, with ab initio 

Koopmans’  therorem (KT) binding energies. The reason for this is that el
DCH  employs 

charges that give the correct dipole moment and realistic quadruple moment components, 

whereas ab initio KT binding energies are obtained using the Hatree-Fock (HF) 

procedure, which considerably overestimates the dipole moment for the water monomer. 

Thus to facilitate comparison, we have also carried out model potential calculations with 

the DC charges replaced by charges determined from Hartree-Fock electrostatic potential 

calculations on the water monomer. Even though this set of calculations using el
HFH  

neglects electron-water polarization and dispersion, it is still necessary to include 

intramolecular polarization as this is included in the ab initio Hartree-Fock calculations. 

This is accomplished by choosing 2 /q k  to reproduce the Hartree-Fock polarizability of a 

water monomer and allowing the permanent charges in the el
HFH  model to interact with 

the Drude oscillators. 
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In our earlier work on � �n
HCN

�
 and � �n

HNC
�
, n = 1, 2, it was found that the one-

electron model, with charges and polarizabilities from Hartree-Fock calculations, and 

with the repulsive potential derived using the procedure described in Reference 75, gave 

electron binding energies considerably lower in magnitude than the ab initio KT values.    

This was primarily a consequence of the approximations used in the generation of the 

repulsive core. This problem was solved by rescaling the repulsive potential so that the 

electron binding energies for the HCN and HNC monomers calculated using the model 

potential procedure reproduced the ab initio KT binding energies. The scaling factors 

obtained for the monomers also proved satisfactory for the dimers. Moreover, with this 

rescaling, the model potential method including coupling between the excess electrons 

and the Drude oscillators was found to give polarization and dispersion contributions to 

the electron binding energies close to the ab initio results. 

For water clusters, it is necessary to modify this strategy somewhat because the 

monomer does not bind an electron. (Actually, in the Born-Oppenheimer approximation, 

a water monomer does weakly bind an electron. However, were corrections to the Born-

Oppenheimer approximation made, the excess electron would no longer bind.) For that 

reason, we have used the water dimer, which does have a bound anion state, to determine 

the scaling factor for the repulsive potential. This scaling factor is used in all subsequent 

calculations of electron water interaction, including those discussed below based on the 

model potential employing DC charges and polarizability values.  

The calculations on the water dimer were also used to determine the value of b in 

the factor damping the coupling of the electron to the Drude oscillators. Specifically, b 
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was chosen so that the model potential CI binding energy reproduced the ab initio  

CCSD(T) result. This gave a b value of 0.43. 

B. Details of (H2O)3
- and (H2O)4

- calculations 

In this work, we consider both cyclic chain-like and crown-like local minima of 

the (H2O)3
- and (H2O)4

- clusters (see Figure 9). In the crown-like structures, the free OH 

groups all point in the same direction.  The neutral (H2O)3 and (H2O)4 clusters, at the 

optimized structures of the anions, have large dipole moments, and thus the excess 

electron can be viewed as being dipole-bound.21-24,68 Interestingly, for the neutral clusters, 

neither the chain-like nor the crown-like structures are potential energy minima. Thus the 

binding of the excess electron overcomes the tendency of these neutral clusters to 

rearrange. For (H2O)3
- we also present results for the transition state for interconversion 

of the chain-like and crown-like structures.139 

We now turn to the electronic basis sets used in the model potential and ab initio 

calculations. In the model potential calculations, the basis set consisted of two s Gaussian 

functions with exponents 0.02526 and 0.1027 and two p functions with exponents 0.141 

and 0.727 on each H atom140 together with a large set of diffuse s and p Gaussian 

functions on the O atom on the terminal water (at the + dipole end) in the chain like 

structures and on the rotational axis for the crown-like clusters. In the latter case the 

displacement of the center of the diffuse functions from the plane of the O atoms was 

optimized so as to maximize the electron binding energies. For the model potential 

calculations on (H2O)3
-, the large, single-center portion of the basis set was chosen to 

consist of an even-tempered series of six s and five p functions. For the calculations on 

the crown-like structure of (H2O)4
-, five s and four  p  functions were used, whereas for 
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the linear form of  (H2O)4
-,  four  s and three  p functions were used. (For species with a 

large dipole moment the dipole bound electron is more localized, and a smaller basis set 

can be employed.) The exponents of the basis functions are listed in Table V. Test 

calculations revealed that the adoption of still more flexible basis sets had very little 

effect on the electron binding energies.   

The ab initio calculations employed a flexible basis set suitable for describing the 

neutral water molecules together with the same single-center sets of diffuse s and p 

functions as used for the model potential calculations. A (11s6p2d/6s2p) � 

[5s4p2d/4s2p] contracted Gaussian basis set was first adopted for the water molecules. 

(The uncontracted basis set is given in parentheses and the contracted set in brackets. The 

O atom basis set is specified first, followed by the H atom basis set.) For the O atoms, the 

s and p functions were taken from the aug-cc-pVTZ basis set and the d functions from the 

aug-cc-pVDZ basis set.83 Similarly for the H atoms, the basis set was formed by 

combining the s functions from the aug-cc-pVTZ basis set with the p functions from the 

aug-cc-pVDZ basis set. This mixed basis set was found to give at the MP2 level a dipole 

moment and polarizability of the water monomer close to the corresponding experimental 

values, while being less computationally demanding than the full aug-cc-pVTZ basis set. 

The large sets of supplemental diffuse functions are centered in the same locations as in 

the model potential calculations.  

Ab initio results are reported at the KT, MP2, and CCSD(T) levels of theories. For 

the last two methods the electron binding energies are obtained by subtracting the energy 

of the neutral from that of the anion at the specified level of theory. The second-order 

contributions to the electron binding energies are divided into dispersion and non-
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dispersion components using the procedure of Gutowski et al. 23,26,70  This procedure 

associates the dispersion contribution with those terms in the expression for the second-

order correlation energy of the anion that involve simultaneous excitations from the 

dipole-bound orbital and one of the occupied orbitals of the water cluster. 

To facilitate comparison of the model potential and ab initio results, the same 

geometries were used for the two sets of calculations. The geometries of the anions were 

optimized at the ab initio MP2 level of theory under the constraint of rigid monomers, 

using the OH bond length and HOH angle values employed in the DC model.  These 

geometries were then used for the ab initio calculations on the neutral and anionic species 

and for the model potential calculations on the anions. 

IV. RESULTS 

A. (H2O)2
- 

Table VI summarizes the results for (H2O)2
-. By construction, the KT binding 

energy from the model potential employing the HF charges and polarizabilities, (model I) 

matches the ab initio KT value of 11.1 meV, and CI result from the model based on el
DCH  

(model II) reproduces the ab initio CCSD(T) binding energy of 33.0 meV. Experimental 

estimates of the vertical detachment energy of (H2O)2
- are 30±4 meV and 45±6 

meV.109,141 

It should be noted that the DC model tends to underestimate the induced dipole 

moments of water clusters. For example, for the dimer, with the geometry employed here, 

the DC model gives a net dipole moment of 4.02 D, compared with the dipole moment of 

4.13 D obtained from ab initio MP2 calculations; for the chain-like form of the tetramer, 
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the discrepancy is 0.29 D. In general, the underestimation of the dipole moments would 

be expected to lead to an underestimation of the electron binding energies. However, by 

choosing the scaling factor of the repulsive potential so that the KT binding energy 

calculated using model I reproduces the ab initio KT electron binding energy and the 

damping factor b so that the CI binding energy calculated using model II reproduces the 

ab initio CCSD(T) binding energy of the water dimer, we partially correct for this 

shortcoming of the DC model. 

B. (H2O)3
- 

Table VII reports for (H2O)3
-   the  electron binding energies obtained using 

models I and II and from the ab initio calculations. We consider first the results of the ab 

initio calculations. In the KT approximation the excess electron is bound by 3.3 and 66.7 

meV in the crown-like and chain-like forms of (H2O)3, respectively. The corresponding 

binding energies obtained from the CCSD(T) calculations are 13.0 and 127.0 meV. The 

MP2 binding energies are roughly intermediate between the KT and CCSD(T) values. As 

has been found for other dipole-bound anions, polarization (estimated by the difference 

between the KT and SCF�  binding energies) makes relatively small contributions to the 

electron binding energies.24 The decomposition procedure of Gutowski et al. gives 

second-order dispersion contributions to the electron binding energies of 4.0 and 43.8 

meV for the crown-like and chain-like forms of (H2O)3, respectively. These dispersion 

contributions are roughly comparable to the KT binding energies. The non-dispersion 

contributions to the electron binding energies act so as to reduce the binding energies by 

1.7 and 11.8 meV for the crown- and chain-like structures, respectively. This is primarily 
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a consequence of the reduction of the monomer dipole moments brought about by 

inclusion of electron correlation effects.  

The one-electron model-potential approach employing HF charges and the HF 

polarizability for the monomers (model I) gives KT binding energies very close to the 

corresponding ab initio values.  The polarization and dispersion contributions calculated 

using model I are also in excellent agreement with the ab initio results. 

The net electron binding energies calculated through second-order using model I 

are considerably (8-34%) larger than the ab initio MP2 results. This is largely due to the 

use of HF atomic charges in model I, whereas the ab initio MP2 calculations build in a 

charge renormalization, which causes a reduction of the dipole moments of the water 

monomers. 

We now examine the results obtained using the one-electron model potential with 

the DC charges and polarizability (model II). Most significantly, model II gives electron 

binding energies at the CI level very close to the ab initio CCSD(T) results. For the 

chain-like form of (H2O)3
-, the ab initio CCSD(T) and model potential calculations give 

electron binding energies of 127.0 and 128.6 meV, respectively. The corresponding 

results for the crown-like form of (H2O)3
- are 13.0 and 13.6 meV. The experimental value 

of the vertical electron detachment energy of (H2O)3
- (presumably with a chain-like 

geometry) is 150 ± 15 meV,142 which is somewhat larger than the model potential CI and 

ab initio CCSD(T) values for the chain-like form of the anion. This discrepancy is 

primarily a consequence of our use of rigid-monomers in both the model potential and ab 

initio calculations, which leads to an underestimation of the dipole moment of the neutral 

molecule. 
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Table VII also reports results for the transition state for interconversion of the 

crown-like and chain-like isomers of  (H2O)3
-. The electron binding energy for this 

transition state is intermediate between that of the two minimum energy structures. This 

is consistent with the trends in the dipole moments of the corresponding neutral clusters. 

Again there is excellent agreement between the electron binding energy from model II CI 

calculations and that from the ab initio CCSD(T) calculations. 

C. (H2O)4
- 

Table VIII reports for (H2O)4
- the  electron binding energies obtained using 

models I and II and from the ab initio calculations. The excess electron is bound much 

more strongly in the (H2O)4
- isomers than in their (H2O)3

- counterparts, consistent with 

the larger dipole moments for the neutral (H2O)4 than (H2O)3 clusters. At the ab initio KT 

level, the crown and chain-like forms of (H2O)4
- are bound by 12.5 and 110.2 meV, 

respectively. The corresponding values at the MP2 level are 20.9 and 170.3 meV, and at 

the CCSD(T) level, they are 36.5 and 209.7 meV.  The decomposition procedure of 

Gutowski et al. again reveals that there are large dispersion and non-dispersion 

contributions to the electron binding energies which act in opposite directions. However, 

because the dispersion contributions are larger in magnitude, there is a net enhancement 

of the electron binding energies upon inclusion of second-order correlation effects.  

Model I gives KT binding energies and second-order dispersion contributions to 

the binding energies close to the ab initio results. As expected, MP2 calculations with 

model I overestimate the electron binding energies as compared to the ab initio MP2 

results.  
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The CI calculations with model II give electron binding energies for the crown-

like and chain-like forms of (H2O)4
- very close to the ab initio CCSD(T) values. 

Specifically the model potential calculations give electron binding energies of 40.0 and 

212.5 meV for the crown-like and chain-like isomers, respectively, whereas the 

corresponding ab initio CCSD(T) values are 36.5 and 209.7 meV. The agreement is 

better than might have been expected, especially for the chain-like structure, given the 

considerable (�  0.29 D) underestimation of the net dipole moment of the neutral cluster 

by the DC model. It may be that the error due to the underestimation of the dipole 

moment is offset by slightly too weak a damping of the coupling of the electron to the 

Drude oscillator. 

We are unaware of an experimental measurement of the vertical detachment 

energy for the chain-like form of (H2O)4
-. However, we anticipate that the present 

calculations (both CCSD(T) ab initio and CI model potential) give the electron binding 

energies 10-20% smaller then the “ true”  value due to the use of rigid monomer 

approximation. 

D. Electron densities and importance of single excitations. 

Figure 10 reports the charge distribution of the crown-like form of (H2O)4
- 

obtained using the MP2 and CI methods in conjunction with model II. The charge 

distribution obtained in the KT approximation and using model II is nearly identical to 

that obtained using the MP2 method, and thus has not been plotted. The similar charge 

densities obtained from the KT and MP2 approximations is somewhat surprising given 

the sizable enhancement in electron binding energy in going from the KT to the MP2 

approximation. However, this is consistent with the observation that the wavefunction 
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through first order is dominated by the reference configuration, the coefficient of which is 

0.998 in the normalized wavefunction. Hence, even though dispersion interactions make 

a sizable contribution to the electron binding energy, they have very little impact on the 

distribution of the excess electron. 

In contrast to the relative insensitivity of the distribution of the excess electron to 

first-order corrections to the wavefunction, there is a large difference between the charge 

distributions obtained from the MP2 and full CI model potential calculations, with the 

charge distribution associated with the full CI wavefunction being much more localized.  

The coefficient of the reference configuration in the CI wavefunction for the crown-like 

form of (H2O)4
- is only 0.82. 

The large change in the wavefunction (and in the electron binding energy) in 

going from the MP2 to the CI method is due primarily to configurations in which the 

electron is excited but the Drude oscillators are unexcited. In a perturbative treatment, 

these single excitations first enter the wavefunction in second-order and the energy in 

fourth-order, and they be thought of as a renormalization in response to the dispersion 

interactions. The reason that these single excitations prove so important is apparent from 

examination of the perturbative expressions, from which it is seen that they enter with 

factors of � 0 - � j or � i - � j, where � 0 and � j are energies associated with Hel, in the energy 

denominators. In contrast, the terms involving excitation of both the electron and a Drude 

oscillator involve factors in the denominator of the form � 0 - � j + � D , where � D  is the 

energy spacing between levels of the Drude oscillator. Since the energy levels of the 

excess electron are closely spaced compared to those of the Drude oscillator, 

configurations in which the electron is excited but the Drude oscillators are unexcited 
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lead to sizable corrections to the wavefunction and the electron binding energy. The 

sizable high-order corrections to the electron binding energies of dipole-based anions 

found in all-electron ab initio calculations 23,24,26,27,68 have a similar origin, i.e., they arise 

from configurations, in which the excess electron is excited but the electrons of the 

molecule or cluster are unexcited. 

Figure 11 displays the charge distribution of the excess electron of the chain-like 

form of (H2O)4
- calculated using the MP2 and CI methods in conjuction with model II. 

As for the crown-like anion, the KT calculations using model II give nearly the same 

electron distribution as obtained from the MP2 calculations, whereas there is a 

considerable contraction of charge density upon inclusion of configurations involving 

excitation of the electron only  

E. Renormalized MP2-level model potential 

Because our long-range goal is to apply the one-electron Drude model to describe 

electron binding to large water clusters, the computational speed of the calculations is of 

importance. This leads us to ask whether the MP2 method can be “ renormalized”  to give 

near CI quality results. Here we consider a crude renormalization in which the 

magnitudes of the permanent charges in model II have been scaled so that for (H2O)2
- 

MP2 calculations approximately reproduce the electron binding energy from the ab initio 

CCSD(T) calculations. This renormalized model (hereafter designated as model III) 

underestimates the electron binding energies of the crown structures (by up to 20%) and 

overestimates the electron binding energies of the chain-like structures by up to 8% (see 

Table IX). Moreover, it gives electron distributions (Fig. 12 and Fig. 13) that are too 

extended (i.e., diffuse), compared to those from the CI calculations and using model II. 
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Nonetheless, model III should be useful for qualitative (even semi-quantitative) 

prediction of the electron binding energies of large water clusters.  

V. DISCUSSION AND CONCLUSIONS 

The present study shows that the Dang-Chang water model, coupled with a one-

electron model potential employing Drude oscillators to describe electron-molecule 

polarization and dispersion, is able to account in a near quantitative manner for the 

binding of an excess electron to small water clusters. Dispersion and high-order 

“ renormalization”  corrections lead to large enhancements of the electron binding energies 

compared to those predicted from a “purely”  electrostatic model neglecting dispersion 

interactions. Configurations in which the excess electron is excited but the Drude 

oscillators are unexcited are found cause sizable enhancements of the electron binding 

energies and significant contraction of the charge distributions of the excess electron. 

This contraction greatly increases the charge density near the H atoms near the end of the 

chains in the chain-like isomers and in the vicinity of the free OH groups in the crown-

like isomers. This, in turn, should prove important for the intensities of the OH stretching 

vibrations in IR spectroscopy of the anion and also for the presence of the OH stretching 

vibrational structure in the detachment spectra. 

For comparison with experimental electron detachment energies and for 

calculating vibrational spectra, it will be necessary to extend the present model to allow 

for flexible monomers. This flexibility is especially important for the electron binding 

energies as both the permanent and induced dipoles associated with the monomers 

change with distortions of the monomers.  
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Although the present investigation has focused on dipole-bound anions of water 

clusters, the Drude-model approach should also be suited for describing electron binding 

to mixed clusters containing polar molecules and other atoms or molecules that do not 

have low-lying valence-type anion states. For example, the Drude model has recently 

been applied to (H2O)2
-Arm, m �  12, clusters, again, using a one-electron Hamiltonian, 

but with polarization and dispersion interactions involving the Ar atoms as well as the 

water molecules being described by Drude oscillators.143 These calculations reveal that 

the variation in the electron binding energies caused by the clustering with Ar atoms is 

the result of an interplay of several factors, including, changed electrostatics due to the 

induced dipoles on the Ar atoms, an “excluded-volume” effect due to the repulsive 

potential on the Ar atoms, and polarization and dispersion interactions between the 

excess electron and the Ar atoms. They also reveal that if there are solvent atoms or 

molecules occupying the region of space that would be occupied by the excess electron in 

the absence of the solvent, then the binding energy may become so small that the excess 

electron would not remain bound if corrections to the BO approximation were included 

even though the dipole moment is larger than 2.4 D. 

6. Parallel Tempering Monte Carlo Simulations of the 

Finite Temperature Behavior of (H2O)6
- 

I. General Considerations: 

 Electrons in bulk water are of fundamental importance in radiation chemistry, 

electrochemistry, and biochemistry.88-92 The hydrated electron has been known since the 

early 1960’s.144  Anionic water clusters were first observed mass spectroscopically by 
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Haberland and coworkers in 1984.116 The (H2O)n
- mass spectrum is dominated by peaks 

at n = 2, 6, 7, and � 11.113,116,145 The origin of this intensity pattern is still under debate. 

Recent advances in vibrational predissociation spectroscopy using Ar solvation 

techniques have allowed the vibrational spectra of the n = 5 - 9 anionic water clusters to 

be determined in the OH stretch region.58,59 The vibrational spectra of the (H2O)n
- clusters 

in this size range are similar in appearance, suggesting a common structure motif. Ayotte 

et al.59 have proposed that chain-like structures are responsible for the observed spectra, 

but alternative models have been proposed.110,146,147 

 Although water clusters do not have low-lying unfilled valence orbitals, an excess 

electron can bind when the water monomers are arranged so that a sufficiently attractive 

electrostatic potential results. In those cases that the monomer dipoles are arranged so 

that the net dipole is in excess of about 2.5 D, an excess electron can bind to give a so 

called dipole-bound anion.8,21,22,35,62,148 It was long believed that theoretical methods 

allowing for the electrostatic interactions, and perhaps also, polarization of the water 

molecules by the excess electron, were adequate for describing (H2O)n
- species.21,22,74-

77,105 Within an ab initio electronic structure framework, this would lead one to believe 

that the Hartree-Fock method provides a good zeroth-order description of the 

wavefunction of the anion and of the electron binding energies of these species. This 

expectation has also served as the basis of several one-electron model approaches that 

have been developed for describing an excess electron interacting with water.74-77,81 

These model potentials have been used in Monte-Carlo and molecular dynamics 

simulations (MD) of excess electrons interacting with bulk water, water films, and water 

clusters.128-133  
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 Over the past few years it has been realized that dispersion interactions between 

an excess electron and the polar molecules in a cluster play a major role in the electron 

binding.23,24,26,27,32,36,149,150 Such interactions are obviously absent in the Hartree-Fock 

method and in traditional one-electron models. Indeed, it has been found that, within an 

ab initio framework, CCSD(T)31 or CCSDT calculations32 using large, flexible basis sets 

are required to adequately describe the effects of dispersion in these systems. 

23,24,26,27,32,149,150 Ab initio calculations at this level are computationally prohibitive for 

water clusters containing more than six molecules. Monte-Carlo or MD simulations on 

(H2O)n
- clusters based on accurate ab initio energetics (and also forces, in the case of MD 

simulations) are thus out of the question. 

 Recently, we introduced a new one-electron model for describing an excess 

electron interacting with polar molecules.33-35 This model, which employs quantum 

Drude oscillators to describe dispersion interactions, gives electron binding energies 

comparable to those from ab initio CCSD(T) calculations, while requiring orders of 

magnitude less CPU time. In the present work, the Drude model is used to carry out 

parallel tempering Monte-Carlo simulations151 on (H2O)6
-. Several modifications to the 

original Drude model code for water which lead to a significant speedup of the program 

are described.  

II. Drude model 

A. Drude Model for electron-molecule interactions 

The Drude model was originally introduced to describe the dispersion interactions 

between atoms or molecules.82 In the Drude model, two charges, +q, and –q, coupled 
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harmonically through a force constant k are placed on each atom or molecule. The 

polarizability (�) of a Drude oscillator is given by q2/k, generally taken to correspond to 

the experimental polarizability of the atom or molecule of interest. If the Drude 

oscillators are treated quantum mechanically, a London-type expression is obtained for 

the dispersion interaction between the oscillators. 

 In extending this approach to electron-polar molecule interactions, we introduced 

a coupling term of the form  

3
( )eD q

V f r
r

�
�

r R
,     (42)  

between the excess electron and a Drude oscillator.33,34 Here R is a vector giving the 

position of the +q charge of the Drude oscillator relative to the –q charge, which is held 

fixed, r is the position vector of the electron relative to the center of the Drude oscillator, 

and  f(r) is a damping function, chosen to be 1 – exp(-br2), used to cut off the unphysical 

short-range interactions.152 (In Eq. 42 and in subsequent equations atomic units are 

employed.) VeD
 was combined with a model Hamiltonian, Hel, allowing for the interaction 

of the excess electron with the charge distribution of the polar molecules and including 

pseudopotentials to represent short-range repulsion of the excess electron with the 

electron distributions of the monomers. The full system was described by the 

Hamiltonian 

   el osc eD DDH H H V V� � � � ,     (43) 

where Hosc and VeD were summed over all the Drude oscillators in the system, and VDD 

allowed for interactions between the Drude oscillators. 

In solving the resulting one-electron Schrödinger equation, a product basis of the 

form |
i(r)�j
(1)(R1)�k

(2)(R2)
…>, where 
i is a Gaussian type electron orbital and �j

(m)(Rm) is 
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the j th oscillator level associated with the mth Drude oscillator, was used. Information on 

the oscillator and electron basis set are given below. The electron binding energy was 

obtained by use of a configuration interaction single-plus-doubles (CISD) calculation, 

where the double excitations allowed and only allowed for simultaneous excitations of 

the excess electron and of one of the oscillators.  

B. Drude Model For Water 

In applying the Drude model to water, the polarizable Dang-Chang (DC) water 

model,134 which has been found to provide a good description of neutral water 

clusters,134,135,153 was employed to represent water-water interactions.34,35 The DC model 

employs a positive charge (0.519) on each H atom and a negative charge (-1.038) on the 

rotational axis, but displaced off the O atom toward the H atoms. The DC model also 

associates a Lennard-Jones site with the O atom of each monomer and an isotropic 

polarizable site at the same location as the negative charge. In our modification of the DC 

model for treating excess electron/water interactions, the polarizable site was replaced 

with a Drude oscillator with the same polarizability. The Drude oscillators were treated 

quantum mechanically, for describing both intermolecular induction and for describing 

the interaction of the excess electron with the oscillators. Intermolecular induction 

between water molecules was treated by iteratively solving the ground state wavefunction 

of the Drude oscillators (i.e., osc DDH V� ) until convergence was reached. This procedure 

gives net (permanent plus induced) dipoles on each water molecule in the cluster nearly 

identical to those calculated by solving the classical polarization problem for the original 

DC model. 
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The electronic Hamiltonian including contributions from the induced dipoles has 

the form: 

 2
3

0 01

2
i i ijel rep

cm
j ij i

qQ
H V

r r

�
� � � � � �� � iR r

 ,   (44) 

where the first sum is over the charge sites of the monomers and the second, which 

describes the coupling of the excess electron to the induced dipoles, is over the Drude 

oscillators. The subscript “cm” refers to the choice of atomic charges used in the model. 

Even though the final Drude model for water employed the DC charges, for the purpose 

of comparing with ab initio Koopmans’  Theorem (KT)67 calculations, and for 

determining the repulsive potential, it was also useful to consider a model employing 

charges derived from Hartree-Fock calculations on the water monomer. Vrep was derived 

following the procedure of Schnitker and Rossky.75 With this choice of Vrep, the excess 

electron is too weakly bound. To remedy this, the repulsive core was scaled so that for 

the water dimer the electron binding energy obtained from Eq. (44) when employing 

Hartree-Fock charges reproduces the ab initio KT result.  

C. Modified Drude Model for Water 

The most CPU-demanding step in a Drude model calculation of electron binding 

energy is the formation of the CISD matrix and the determination of its lowest 

eigenvalue. The size of the CISD matrix is of the order osc o eN n n� � , where Nosc is the 

number of oscillators, no is the number of harmonic oscillator basis functions associated 

with each oscillator, and ne is the number of electronic basis functions. Since the electron 

is weakly bound in a spatially extended orbital, a large set electronic basis functions is 

required. Based on the strategy for choosing the basis set used in our earlier study of 
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(H2O)2
-,  (H2O)3

-, and (H2O)4
-, it is anticipated that 80-90 Gaussian basis functions would 

be required to treat the binding of an excess electron to a cluster the size of (H2O)6. Our 

earlier work employed ten harmonic oscillator basis functions of the form 

2 2 2( )i j k x y zx y z e �� � � , where 0 2i j k$ � � $ , for each Drude oscillator. With these basis 

sets, the dimension of the CI matrix for (H2O)6
- would be on the order of 5000. Monte-

Carlo simulations requiring construction of a matrix of this size and extraction of its 

lowest eigenvalue at each step would be computationally prohibitive, particularly if the 

simulations were to be run long enough to ensure convergence.  

Significant reduction in CPU time would result if it were possible to employ only 

four, i.e. s, px, py, pz-like basis functions per oscillator. However, test calculations reveal 

that large errors result in the calculated dispersion energies if this smaller basis set is used 

for the oscillators. This is on account of the dual role of the oscillators in describing 

intramolecular induction as well as electron-molecule dispersion. In essence, the 

induction interactions cause a mixing between the s and p oscillator functions which, in 

turn, makes excitations into d-like oscillator functions important for describing electron-

water dispersion interctions. This analysis suggests that the errors due to the use of the 

four-function oscillator basis set could be significantly reduced were the intramolecular 

polarization described classically and the quantum Drude oscillators used to describe the 

electron-oscillator interactions only. In this approach, the electronic Hamiltonian 

becomes 

  2
3

1

2
jel repi i

cm
j ij i

Q r
H V

r r

� �' � � � � � �� � ,   (45) 
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where � j is the induced dipole moment on the j th water molecule calculated by solving the 

classical self-consistent polarization equations. 

 Test calculations on various (H2O)6
- isomers reveal that the modified Drude 

model with the smaller oscillator basis set gives nearly the same electron binding 

energies as the original approach (Eq. 44) in which both intramolecular induction and 

electron-molecule dispersion were treated quantum mechanically using Drude oscillators 

and ten basis functions were employed per oscillator. The adoption of the Hamiltonian 

described in Eq. 45 and the smaller four-function oscillator basis set results in over an 

order of magnitude reduction in the CPU time. Further performance improvement 

resulted from implementing a semi-direct CI method to obtain the lowest eigenvalue of 

the CI matrix. With these changes, the time to form the CISD matrix and to determine its 

lowest eigenvalue for a cluster of the size (H2O)6
- is reduced to about 1 sec on a 2 Ghz 

Pentium IV computer. However, the total CPU time, including evaluating the integrals 

over the repulsive cores, is about 10 seconds. 

  As will be discussed below, a multi-center expansion of Gaussians was used as 

the basis set for the excess electron. To facilitate integral evaluation, the repulsive core 

was also represented in terms of Gaussian functions. The CPU timings cited above were 

obtained using the 59-Gaussian function representation of the repulsive core on each 

water monomer developed in Ref. 34. Due to the complicated representation of the 

repulsive core, a large number of three-center integrals involving the repulsive core and 

the electronic basis functions result, making this the most time consuming part of the 

calculation after the changes described above have been implemented to speed up the 

formation of the CISD matrix and the determination of the lowest eigenvalue. To address 
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this problem, a new repulsive core with only three s Gaussians on each Hydrogen atom 

and no functions on the Oxygen atom was developed. As before, this new repulsive core 

was rescaled so that the electron-binding energy for (H2O)2
- obtained using Eq. 45 with 

Hartree-Fock charges reproduced that from the ab initio KT-level calculations. The 

electron binding energies for larger (H2O)n
- clusters obtained using this new repulsive 

core are nearly identical to those obtained using the 59-function representation of the 

repulsive core. All results discussed below were obtained using the new repulsive core. 

With the modified Drude model and the simplified repulsive core the total CPU time for 

an energy evaluation for (H2O)6
- is about 2 sec on a 2 GHz Pentium IV PC. 

D. Basis set and Parameters 

In describing the binding of excess electrons to water clusters, large, flexible basis 

sets must be employed. When using localized basis functions, as is done in this work, 

there rises the problem of where these functions should be centered. This is particularly 

problematical in Monte-Carlo (or molecular dynamics) simulations exploring a wide 

range of geometrical configurations. For example, in our T=190 K Monte-Carlo 

simulations of (H2O)6
-, the dipole moment of the neutral cluster varies from almost zero 

to about 10 Debye, and, thus, the basis set must be flexible enough to allow for a wide 

range of spatial distributions of the excess electron. At the same time, the number of basis 

functions has to be kept as small as possible to minimize computational cost. One 

approach would be to locate a large set of s and p Gaussian functions on each monomer. 

Such an approach would be both very demanding computationally and prone to linear 

dependency. The alternative of putting a large set of Gaussian functions on a single 

center would require inclusion of very high angular momentum functions to converge the 
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electron binding energy for an arbitrary geometry and thus would also be computationally 

demanding. A compromise, which works well for many systems, is to combine a large 

single-center expansion of diffuse s and p functions, perhaps floating, with smaller sets of 

s and p functions centered on each monomer. In our initial application of the Drude 

model to water clusters, the large single-center expansion of s and p functions was 

augmented with a 2s2p set of Gaussian functions on each Hydrogen atom.  

In the present study, the 2s2p basis set on each H atom was replaced by a 2s1p 

basis set, thereby reducing the overall CPU time for a Drude model calculation on 

(H2O)6
- by about a factor of two. The exponents of the two s Gaussian functions, 0.1027, 

and 0.02526, were taken from our earlier work, as was the exponent of the p function 

(0.141). In the latter case, the tighter p function was retained. In order to compensate for 

the small (� 5%) decrease in electron binding energies due to the removal of the second p 

function on each H atom, the repulsive scaling factor and the damping parameter b were 

adjusted slightly so that the electron binding energies of (H2O)2
- calculated using the 

Drude model, with and without inclusion of dispersion interactions, reproduced the 

corresponding values obtained with the original Drude model, using the larger 2s2p basis 

set on each H atom. (The same large single-center electron basis set was used in both 

cases.) This gave a scaling factor of 7.0 and a damping parameter of 0.5. 

 For the Monte-Carlo simulations described below, the large single-center set of 

diffuse functions was chosen to consist of an even-tempered sequence of five s functions 

with exponents ranging from 7.5*10-2 to 1.2*10-4, and an even-tempered sequence of four 

p functions with exponents ranging from 6.0*10-2 to 4.8*10-4, both located at the center 

of mass of the cluster. Table X compares the electron binding energies for five isomers of 
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(H2O)6
- as calculated using the modified Drude model both with the 5s4p single-center 

expansion and with a larger 8s7p single-center expansion, the location of which was 

variationally optimized. (In both cases, the electronic basis set also included the two s and 

one p function on each H-atom as described above.) Excellent agreement is found 

between the electron binding energies calculated using the Drude model with the larger 

8s7p basis set and those obtained from ab initio calculations. The Drude model 

calculations reveal that the dispersion and higher order contributions to the electron 

binding energies are exceedingly important, ranging from 164 to 391 meV, depending on 

the isomer. It is also found that the Drude model employing the smaller single-center 

expansion, located at the center of mass, underestimates the electron binding energies. 

However, with the exception of the chain isomer, the errors in the electron binding 

energies due to the restrictions on the electronic basis set are quite small (< 10%). For the 

chain isomer, the error is 19% (70 meV), reflecting the inadequacy of the relatively small 

(5s4p) single-center basis set, when located so far (�7Å) from the terminal acceptor 

monomer. Nonetheless, the smaller 5s4p single-center expansion should suffice for the 

purpose of the Monte-Carlo simulations, which are intended to provide information on 

the relative populations of different isomers as a function of temperature. 

III. Parallel Tempering Simulations 

 The Monte-Carlo simulations were carried out using the parallel tempering 

algorithm151 to avoid quasi-ergodic behavior caused by large energy barriers. With this 

algorithm, simulations for a series of replicas (each at a different temperature) are carried 

out in parallel, with most attempted moves being confined to individual replicas and 

carried out using the Metropolis algorithm. The remaining attempted moves involve 
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exchanges of configurations from replicas at adjacent temperatures. The acceptance 

criterion used for these moves assures detailed balance is obeyed.151 

 In this study, simulations of (H2O)6 and (H2O)6
- were carried out at eight 

temperatures, in a geometric ratio154 from 50 to 190 K. The highest temperature was 

chosen so that potential energy barriers are readily overcome. Exchanges between 

replicas were attempted every 60 trial moves. For the simulations on the neutral clusters, 

an acceptance ratio of 40-50% was observed for exchanges between each pair of 

“adjacent”  replicas. For the simulations on the anionic clusters, an acceptance ratio of 

about 30-40% was achieved for the exchanges with the exception of those between the 

157 and 190 K replicas, for which acceptance ratio was only about 10%. This is 

problematical only in that it makes the simulation less efficient, and more steps are 

required to reach ergodicity. 

 The water monomers were kept rigid at the DC geometry. Each individual trial 

move involved either a translation or a rotation of one or more water molecules. Both the 

number of water monomers and the specific water monomers in the moving unit were 

chosen at random. Test calculations show that larger step sizes can be used if two or more 

water molecules are sometimes moved as a subunit instead of individually as is usually 

done in Monte-Carlo simulations. The maximum translational and rotational steps were 

adjusted dynamically and independently every 1000 trial moves to maintain an 

acceptance ratio of 0.5 for the Metropolis algorithm. No evaporative events were found at 

any of the temperatures employed.  

In simulating the anionic water clusters, there is the distinct possibility of 

sampling configurations for which the “anion”  lies energetically above the neutral cluster 
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(at the same geometry). Such configurations would be subject to electron autoionization, 

giving the neutral cluster plus a free electron. In our simulations the electron cannot 

escape to an infinite distance from the cluster due to the constraints of the basis set. This, 

of course, could make recapture processes more prevalent than in the experiments. 

 The initial geometries for the simulations were chosen at random. The simulations 

were pre-equilibrated for 200,000 steps, after which the average potential energy and heat 

capacity at each temperature were no longer rapidly changing. The production 

simulations were carried out for 2,000,000 steps for each temperature, with 3997 

structures, chosen at a fixed interval, being saved for each replica. 

 In the simulations of the anion, the dipole moment of the corresponding neutral 

cluster was monitored, and the electron binding energy was recalculated only if the dipole 

moment change associated with an individual move or with a sequence of consecutive 

moves exceeded 2% in magnitude. For dipole moment changes smaller than this, the total 

energy was calculated by adding to the energy of the neutral cluster at the present 

geometry the electron binding energy from the previous iteration. This strategy was 

motivated by the observation, that, in general, for moves for which the dipole moment is 

not appreciably altered, the changes in the total energy tend to be dominated by the 

energy changes associated with the neutral cluster. In order to deal with the possibility 

that two completely different structures with similar dipole moments are connected by a 

pathway of very similar dipole moment intermediate configurations, the electron binding 

energies were always recalculated after ten consecutive trial moves even if the dipole 

moment did not change by more than 2%. This strategy led to a factor of two savings in 

CPU time for the high temperature simulations and a factor of five savings for the low 
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temperature simulations. This was taken into account in distributing the various replicas 

over CPUs, so that, more low-temperature replicas were run on a given CPU than were 

high temperature replicas. For the 3997 saved geometries, the electron binding energies 

were recalculated and compared with those estimated using the procedure described 

above. These calculations show that the errors in the electron binding energies and total 

energies due to reuse of the electron binding energies from previous geometries never 

exceeded 5% and 2%, respectively.  

IV. Results and Discussion 

 
 Of particular interest are the populations of various structures as a function of 

temperature. We first attempted to characterize the structures by determining the inherent 

structures,155 i.e., by optimizing sampled structures to the “closest”  local minima. 

However, this approach was found to greatly undercount chain-like structures for the 

anionic clusters since most such structures collapsed to non-chain structures during the 

conjugate-gradient-like minimization. To address this problem, we employed instead the 

moment of inertia to distinguish structures. The moment of inertia tensor of the cluster 

was calculated using ,i js s i jJ m s s� � �� , where m is the mass of the water monomer, and 

si and sj are Cartesian coordinates of the center of mass of a specific monomer, with the 

origin taken to be the center of the mass of the entire cluster. The principle axes were 

chosen so that the off-diagonal elements of the inertia tensor were zero. The three 

principal moments of inertia satisfy Jx � Jy � Jz. The motivation for this approach is the 

realization that chain-like structures should have larger Jz values than non-chain 

structures. Histograms giving the population as a function of Jz are plotted and analyzed. 
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 Roughly speaking, the Jz values can be mapped onto structures as reported in 

Table XI. This Table includes only a subset of possible isomers, in particular, those 

which acquire significant population in one or more replicas as well as the ring structure. 

Several configurations sampled in the simulations at T = 157, and 190 K together with 

their Jz values are shown in Figure 14. This figure and Table XI associated names such as 

“cage”, “prism” and “open-book”  to various configurations. However it should be noted 

that the cage, prism, and open-book structures for the anionic cluster have different 

arrangements of the H-bonds in the neutral clusters. 

Figure 15a reports for neutral cluster the Jz histograms for a subset of the eight 

replicas. The area under the various curves in Figure 15a were integrated with respect to 

Jz and the cumulative populations are plotted in Figure 15b. In the lowest temperature 

replica (50.0 K), there are pronounced peaks near Jz = 6.25 and 7.6, corresponding to 

prism-like, and cage-like structures, respectively. At a temperature of 60.5 K, nearly all 

the population is associated with prism-like structures. At T = 88.6 K the population of 

prism structures has fallen off somewhat and a small population of broken prism (with 

one Hydrogen-bond of the prism broken and Jz �  7.0) and distorted cage (Jz  �  8.5) 

structures has built up. As the temperature is further increased, the population shifts 

mainly to open-book and ring structures (Jz = 9-10). These results are consistent with 

previous Monte-Carlo simulations of (H2O)6.
135. Chain-like structures are not detected for 

the neutral cluster at temperatures as high as 190 K. 

Figure 16a reports for (H2O)6
- the Jz histograms for a subset of the eight replicas. 

The cumulative populations are shown in Fig. 16c. At the lowest temperature (50 K) 

considered, most (�  95%) of the population is associated to prism-like structures with Jz 
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values between 6 and 7. At 60.5 K, about 80% of the population remains associated with 

prism-like structures and with most of the remaining population being due to cage-like 

structures (Jz �  8.0). Inspection of the configurations sampled at 157 and 190 K reveals 

that open-book (Fig. 14c), cage-plus-tail (Fig. 14d), ring-plus-tail (Fig. 14e, 14f), ring-

plus-two-tails (Fig. 14g) and chain-like structures (Fig. 14h, 14i) are abundant. Although 

the chain-like structures account for only about 2% of the structures at 157 K, at 190 K 

they account for about 50% of the observed configurations. Since the basis set used for 

the simulations underestimate by about 70 meV the stability of the chain-like isomer (at 

its optimized geometry), it is expected that chain-like structures would be somewhat 

more important at the lower temperatures were a more flexible basis set adopted.  

These results show that for the (H2O)6
- there is an evolution from “compact”  

clusters to more “open” structures with increasing temperature. The evolution 

corresponds to the breaking of Hydrogen-bonds, with the maximum number (9) of the 

Hydrogen-bonds being for the prism-like structures that dominates at low temperature 

and the smallest number (5) of Hydrogen-bonds being for the chain-like structures that 

dominate at high temperatures.  

 Both the tweezers structure depicted in Table X and Figure 17e146,156 and the 

dbs4’dbs2 structure depicted in Table X and Figure 17d157 may be the dominant species 

observed experimentally. A common feature of these three structures is the four-

membered-ring at the “bottom” of the isomer and the two water molecules on the “ top”  

of the four-membered-ring. In the tweezers structure, the two “on top”  molecules are not 

bonded to one another and have their dipoles oriented so that the excess electron can be 

partially localized between them. In the dbs4’dbs2 structure the two “on-top”  monomers 
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are bonded together, and the single-donor OH groups of the four-membered-ring are 

oriented counter-clockwise when viewed from the “ top”  of the cluster. It is clear that 

there should be another isomer, denoted here as dbs4dbs2, with a clockwise orientation of 

the single-donor OH groups of the four-membered-ring. To the best of our knowledge, 

the dbs4dbs2 isomer has not been previously described in the literature. Our Drude model 

calculations predict that at their optimized structures the dbs4dbs2 is about 1.2 kcal/mol 

more stable than the dbs4’dbs2 isomer. 

 The tweezers structures have Jz values close to those of the cage structures, 

whereas the dbs4dbs2 and dbs4’dbs2 isomers have Jz values close to that of the prism 

isomers. Thus, the Jz values alone do not enable us to determine whether these isomers 

are present in the simulations. To address this issue, for each replica, we identified from 

the saved configurations all those with Jx, Jy, and Jz values, dipole moments, and total 

energies within specified tolerances (10% to 20%), of the corresponding values 

associated with the dbs4dbs2, dbs4’dbs2, and tweezers isomers at their optimized 

geometries. The structures thus selected were visually inspected to determine their 

structures. Table XII reports the number of times that each of these three structures was 

observed out of 3997 sampled configurations at each of the eight temperatures 

considered.  

 The tweezers structure was not detected in the sampled configurations from any 

of the replicas. Both the dbs4dbs2 and dbs4’dbs2 structures were detected, with one to 

three examples of the latter being detected in the T = 88.6 - 190 K replicas. The more 

stable dbs4dbs2 species was sampled in each of the T = 60.5 - 190 K replicas, occurring 

most frequently (20 times or 0.5% of the population) in the 157 K replica. Thus, none of 
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the dbs4dbs2, dbs4’dbs2, or tweezers structures acquire sizable population under 

equilibrium conditions. Although the experimental formation process may result in a non-

equilibrium distribution, it is likely that none of these isomers is responsible for the 

dominant (H2O)6
- ion observed experimentally.  

V. Conclusions 

Our Monte-Carlo simulations of the anionic (H2O)6
- cluster indicate that chain-

like structures account for about 50% of the configurations sampled at a T=190 K 

simulation. Although, early in the expansion neutral water clusters could have 

temperatures near this value, our simulations of the neutral cluster do not reveal any 

chain-like structures even at T=190 K. Rather, open-book and ring-like structures 

dominate for the neutral cluster at this temperature. Thus formation of (H2O)6
- clusters 

with chain-like structures via electron capture by neutral clusters with an isomer 

distribution reflecting that present in a 190 K equilibrium distribution, would require 

breaking one or two Hygrogen-bonds. In clusters with Ar atoms attached, the cluster 

temperature should be below 50 K, which implies that were equilibrium attained, prism-

like anionic clusters should dominate.  

The present study predicts the prism (Fig. 17a), cage (Fig. 17b), and dbs4dbs2 

(Fig. 17h) isomers of (H2O)2
- to be particularly stable with total binding energies being -

48.90,  -48.32, and -48.16 kcal/mol, respectively. The corresponding vertical electron 

detachment energies are 376 meV, 437 meV, 658 meV, as compared to the 480 meV 

experimental value.58 The Drude model calculations used rigid water monomers, and, 

based on test calculations on (H2O)3
- and (H2O)4

-, the calculated VDE’s would be 

expected to increase by 30 - 50 meV were this constraint relaxed. Hence both the prism 
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and cage structures of (H2O)6
- have electron binding energies fairly close to the 480 meV 

experimental value. Additional experimental and theoretical work will be required to 

establish whether either of these two isomers is indeed responsible for the dominant form 

of (H2O)6
- observed experimentally. 

7. Use of the designation “ dipole-bound”  

 In recent years there has been a tendency to reserve the term “dipole-bound” 

anion for species in which the electron binding energy is relatively weak, e.g., less than 

0.1 eV. 158,159 According to such a criterion, the ground state anions of the chain form of 

(H2O)6 and of NaCl, for example, would not be classified as dipole-bound. Although the 

excess electron is bound by over 0.4 eV in these species, 113,145,160  most of its charge 

density is still “outside”  of the valence region of the neutral molecule or cluster. Also the 

one-electron Drude-type model is as successful at describing binding of an excess 

electron to (H2O)6 and to  NaCl as to species such as CH3CN and (H2O)2, which display 

much weaker electron binding. For these reasons, we believe that it is also appropriate to 

refer to these more strongly bound anions as dipole-bound.   

It is interesting to consider the application of the one-electron Drude model to 

ionic species, using NaCl as the example. There are two ways of setting up a Drude 

model for describing an excess electron interacting with NaCl: (1) choosing atomic 

charges that reproduce the experimental dipole moment and employing a single 

polarizable site with the polarizability chosen to reproduce the experimental molecular 

polarizability, or (2) employing charges of +1 and –1 on the Na, and Cl, respectively, and 

introducing Drude sites on each ion and allowing polarization of each Drude oscillator by 

the other ion. (Since Na+ is much less polarizable than Cl-, to a good approximation, only 
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a single Drude oscillator located on the Cl- ion, need be employed.) In the second 

approach, it is necessary to damp the interactions of the ions with the Drude oscillators to 

obtain a correct value of the induced dipole moment. For ionic species such as NaCl, in 

contrast to the non-ionic species discussed above, the polarization and dispersion 

contributions to the electron binding energy are comparable in magnitude and are small 

compared to the electrostatic contribution to the binding of the excess electron. This is a 

consequence of the more highly-localized excess electron in NaCl compared to the more 

weakly-bound anions discussed above. 

8. “ Solvated-electron”  and related systems 

Arrangements of polar molecules with small, or even zero, net dipole moments 

can bind excess electrons.43,161,162 Geometries with the positive ends of the monomer 

dipoles pointing toward one another and with the excess electron “ trapped”  in the 

resulting attractive potential in the interior of the cluster are often referred to as 

“solvated-electron”  species. The hydrated electron103,105,107 is probably the most famous 

solvated-electron species. (Here we have assumed that the commonly accepted picture of 

the hydrated electron - in which the electron is bound in an approximately spherical 

cavity surrounded by water molecules with “ free”  OH groups pointing toward the center 

of the cavity - is correct. Recent theoretical studies have demonstrated that dimers of 

various biomolecules such as urea can also form solvated-electron anions.163 

To illustrate the properties of solvated-electron species, we consider the (HF)n
-, n 

= 2-6 clusters, with the molecules arranged so that the net dipoles are zero. These species 

have been examined in detail by Gutowski and co-workers,70,161 and the geometrical 

arrangements of the first three members of this species are shown in Figure 18. Although 
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these structures are obviously unstable for the neutral molecules, the resulting anions are 

stable in the sense that, they lie energetically below the neutral clusters at the same 

geometry arrangement. There are other geometrical arrangements of the (HF)n
- clusters 

that are intermediate between dipole-bound and symmetric solvated-electron in nature. 

The asymmetrically solvated species are typically more stable than the fully-symmetric 

solvated species. 161 There is experimental evidence for an asymmetrically solvated form 

of (HF)3
-. 161  

Table XIII summarizes the contributions, obtained from ab initio calculations, of 

various terms to the electron binding energies for (HF)n
-, n = 2-6, solvated-electron 

species. In each case, the results are reported at the geometry for which the anion, 

constrained to the symmetry indicated in the Table and described by MP2 calculations, 

has its potential energy minimum. From comparison of the results in this Table with 

those in Table I, it is seen that the dispersion contributions to the electron binding 

energies are even more important for the “solvated-electron”  systems than for the 

corresponding dipole-bound anions. For example for (HF)3
-, the second-order dispersion 

contribution to the electron binding energy is 427 meV for the solvated-electron species 

but only 77 meV for the corresponding dipole-bound anion. In part, this is a consequence 

of the strong dependence of the dispersion interaction between the excess electron and a 

particular monomer on the distance of the monomer from the excess electron. (See Eq. 

25.) In chain-like isomers, the dispersion contribution to the electron binding is greatest 

for the terminal monomer closest to the excess electron, and falls off rapidly, along the 

chain.  
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Skurski et al.164,165 have also considered species with two dipoles oriented as 

shown in Figure 19a which also have zero net dipole moment. These authors have 

referred to electrons bound to this charge arrangement as “bi-dipole”  bound. Molecules 

or clusters with charge arrangements such as those shown in Figures 19b and 19c, also 

have zero net dipole moments and may bind an excess electron to give a so-called 

quadrupole-bound anions.62,148,166-169 The ground state of (BeO)2 anion with a D2h 

geometry is an example of a quadrupole-bound anion.167,168 Although one can refer to 

(BeO)2
- as quadrupole bound, such species do not have a critical quadrupole moment 

analogous to the critical dipole moment for electron binding in dipole fields.148,166,169 It 

has been proposed that formamide dimer, p-dinitrobenzene, and even CS2 form 

quadrupole-bound anions.39,170-172 However, we are unaware of any conclusive ab initio 

calculations that demonstrate quadrupole bound anions for these species. 

The solvated-electron, bi-dipole-bound and quadrupole-bound anion species are 

closely related in that, the binding of an excess electron in each case (as well as in dipole-

bound anions) results from the existence of a highly attractive electrostatic potential over 

a sufficiently large region of space. If the highly attractive region does not “span” a large 

region of space, then by consequence of the uncertainty principle, “confinement”  of the 

electron is accompanied by a large increase in the kinetic energy causing it to become 

unbound. For this reason, the solvated-electron form of (HF)2
- becomes unstable to 

electron detachment when the H atoms of the two HF molecules are brought to a 

separation of about 5.2 Å.  
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9. Conclusions 

 In this thesis we have focused on recent theoretical work on dipole-bound anions 

and the closely related solvated-electron species. Particular emphasis has been placed on 

elucidating the role of electron correlation effects, especially dispersion-type interactions 

in describing the binding of an excess electron. Dispersion-type interactions make large 

contributions to the electron binding in both dipole-bound and solvated-electron anions. 

This is an important observation since, until very recently, all one-electron models 

introduced to treat excess electrons interacting with water and other polar molecules, 

have neglected dispersion-type interactions. It is demonstrated, that these interactions can 

be quantitatively described within a one-electron framework by the use of quantum 

Drude oscillators. The Drude model approach results in a huge reduction of computer 

time compared to traditional ab initio electronic structure methods. For example, for 

(H2O)12
-, a single-point Drude model calculation using the CI method requires only 

several seconds of CPU time on a Pentium IV PC, whereas an ab initio CCSD(T) 

calculation on this anion, described by a flexible basis set, would take several weeks of 

CPU time. 

 This made possible parallel tempering Monte-Carlo simulations on anionic water 

clusters. Simulations on (H2O)6
- carried out at eight different temperatures revealed three 

new forms of lowest energy isomers. This paved the road to further calculations that may 

lead to final elucidation of the experimental IR vibrational spectra.  

The importance of dispersion effects in the binding of excess electrons as dipole-

bound or solvated-electron anions is sometimes “masked” in ab initio treatments since 

charge renormalization effects often act so as to make the electrostatic potential less 
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attractive for the excess electron and thus to decrease electron binding. Higher-order 

electron correlation effects can also significantly impact electron binding energies and 

can cause a significant contraction of the charge distribution of the excess electron, which 

has important implications for vibrational spectroscopy of dipole-bound and solvated-

electron species. 

The need to include high-order correlation effects, e.g., by means of the CCSD(T) 

procedure, greatly restricts the size system for which accurate vibrational spectra can be 

calculated which is, for example, a significant handicap in making definitive assignments 

of the isomers responsible for the observed (H2O)6
- IR spectra.  The new generation of 

model potentials employing Drude oscillators has the potential of solving this problem, 

but first it will be necessary to remove the constraint of rigid water monomers and to 

derive expressions for analytical gradients.  The computational speed of the one-electron 

Drude model approach should permit coupling with approaches such as the vibrational 

SCF method208, which would allow for inclusion of anharmonicity effects in calculation 

of the spectra. 
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Table I: Contributions to the vertical detachment energy (cm-1 ) of the dipole-bound anions of selected polar molecules and their clusters as 

described by ab initio calculations.a 

System HF  (D) corr (D) EAKT Erelax E(2)-disp E(2)-nondisp E(3) E(4) EHO Etotal EAexpt j 

HCN-b 3.29 3.05h 11.2 0.4 11.2 -10.9 -0.1 1.2 -0.2 13.2  

(HCN)2
-c 7.60 6.88 h 483 49 215 -232 15 17 -17 530  

(H2O) 2
-d 4.41 4.18 i 111 7 114 -10 0 20 100 312 363±48k 

(HF) 2
-e 3.98 3.78 i 165 14 177 -73 -3 27 81 387 508±24l,m 

(HF) 3
-f 6.54 6.27 i 950 104 625 -227 -24 93 145 1666 1613-2420d 

CH3CN-g 4.34 3.94 i 53 3 57 -38 4 8 22 108 145-150n 

a The vertical detachment energies are the negatives of the electron binding energies. The second-order dispersion and non-dispersion 

contribution are estimated using a procedure of Gutowski and coworkers. 23,26,70 The EHO contributions are obtained by comparing the 

results of MP4 and CCSDT calculations for HCN and MP4 and CCSD(T) calculations for the other systems. 

b 32; c 27; d 26;  e 150; f 70; g 209; h MP2 dipole; i QCISD dipole.  

j Experimental vertical detachment energies. 

k 141; l A separate experiment 210 gave a VDE of 242±32 for (HF)2
-; m 211; n 63.
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Table II. Parameters used in the model potentials for HCN, (HCN)2, HNC and (HNC)2
a
. 

Molecule Bond length 
(Å) 

Monomer-
polarizability (a0

3)b 
HF charges CCSD(T) 

charges 
RHC 1.078 �xx 14.24 QH  0.269 QH  0.223 
RCN 1.183 �yy 14.24 QC  0.071 QC  0.103 

HCN, 
(HCN)2 

R12 2.183 �zz 24.63 QN -0.340 QN -0.326 
 

RHN 0.995 �xx 15.68 QH  0.315 QH  0.293 
RNC 1.170 �yy 15.68 QN -0.073 QN  0.011 

HNC, 
(HNC)2 

R12 2.076 �zz 23.53 QC -0.242 QC -0.304 
a.The origins for the Drude oscillators are located on the CN groups 2 Bohr from H 
atoms. 
bPolarizabilities calculated at the MP2/aug-cc-pVTZ level of theory. 
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Table III.  Excess electron binding energies for HCN, HNC, (HCN)2 and (HNC)2.
a 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Contributions to binding energy (cm-1) Molecule Approach  (Debye) 

KT Polariz. Disp.  
2nd order 

Non-
disp. 2nd 
order 

Total 
through 
2nd order 

Higher 
order 

Net 
binding 

ab initio 3.33(HF) 
3.01(CCSD(T)) 

  -11.7   -0.47   -13.0    12.5   -12.7   -0.5   -13.2 
   (-9.0) 

Model I 3.32   -11.7   -0.48   -11.0    -23.2 -10.5   -33.7 

HCN 

Model II 3.01 
 

    -3.50   -0.08     -3.67      -7.25   -5.0   -12.3 

ab initio 2.87(HF) 
3.11(CCSD(T)) 

    -2.72   -0.06     -4.13    -5.0   -11.9 -23.8   -35.7  
 (-41.3) 

Model I 2.87     -2.72   -0.06     -3.60      -6.4   -6.7   -13.1 

HNC 

Model II 3.11 
 

    -7.53   -0.29     -8.92    -16.7 -12.6   -29.3 

ab initio 7.54(HF) 
6.85(CCSD(T)) 

-461 -52 -222  211 -524   -1 (-525) 

Model I 7.24 -405 -40 -135  -581 -41 -622 

Model II 6.55 -259 -24 -103  -386 -41 -427 

Model III 7.54 -475 -48 -147  -670 -41 -711 

(HCN)2 

Model IV 6.85 
 

-315 -30 -117  -463 -41 -504 

ab initio 6.70(HF) 
7.31(CCSD(T)) 

-366 -43 -244 -217 -870 -93 (-963) 

Model I 6.31 -291 -32 -127  -450 -48 -498 

Model II 6.85 -396 -44 -151  -591 -48 -639 
Model III 6.71 -383 -43 -148  -574 -47 -621 

(HNC)2 

Model IV 7.31 -516 -57 -172  -746 -46 -792 
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aModels I and II employ monomer atomic charges from HF and CCSD(T) calculations, respectively, For the dimers, these models also 
include the effect of the lowest-order induced dipole moments. The induced dipoles in models III and IV have been scaled so that the 
model potentials give the same net dipole moments for the dimers as obtained from HF and CCSD(T) calculations, respectively. 
bWhen reporting net ab initio binding energies, CCSDT results are used where available, the CCSD(T) electron binding energies are 
put in parentheses.  
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Table IV. Characteristics of various one-electron models for describing negatively charged 

clusters of water molecules or an excess electron in bulk water. 

Potential Water-watera,b Electron-water 
Schnitker-
Rossky75 

SPC212, rigid, non-polarizable, � 
= 2.27D 2-body polarizable,c 

6( / )
4

1
2

cr re
r

� �� �� �	 
 

Barrett-
Landman74 

RWK2-M213, flexible, non- 
polarizable, � = 1.87D 
 

 

2-body polarizable, 22 2

1

2
j cr R R

�
�

� �� �� �	 


� ���
 

Staib-Borgis76 
 

pTIP4P79, rigid, polarizable via 
fluctuating charge, � = 1.85D 

fluctuating charge, self consistent 
polarizable 

Wallqvist -
Berne77 

modified central force 
potential214, flexible, non-
polarizable, � = 1.86D 
 

2-body polarizable,
12( / )

4
1

2
cr re

r

� �� �� �	 
 

Mosyak, et al.81  pfSPC81,215, flexible, polarizable,c 
� = 2.02D 

self-consistent polarizable,d 

1

2 j jE�� �� ,with 22 2

1

2
j cr R R

�
�

� �� �� �	 


� ���
 

Wang-Jordan34 Dang-Chang134, rigid, 
polarizable, � = 1.85D 

self-consistent polarization and dispersion 
via Drude oscillatorse 

aModels with fixed monomer geometries are designated as rigid, and those in which the 

monomer geometries can relax are designated as flexible. 

 bThe dipole moments are for the isolated monomers. 

cTwo-body polarizable models allow the excess electron to polarize the water molecules, 

(with polarizability centered on O), but neglect couplings between the induced dipoles. 

Models designated as self-consistent polarizable treat electron-water and water-water 

polarization self-consistently. 

dThe polarizable water model of Mosyak et al. introduces a polarizable site with 

polarizability � = 1.44 Å3 at the position of the O atom. 

eThe polarizable center is on the M site, which is on the C2 axis, 0.215 Å from the oxygen 

atom, displaced toward the H atoms. 34 
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Table V. Diffuse gaussian functions used in calculations on the (H2O)n
- clusters. 

(H2O)2
-  (H2O)3

-  Crown (H2O)4
-  Chain (H2O)4

- 
s p  s p  s p  s p 

2.5�10-2 6.0�10-2  7.5�10-2 6.0�10-2  3.0�10-2 3.0�10-2  3.0�10-2 3.0�10-2 

5.0�10-3 1.2�10-2  1.5�10-2 1.2�10-2  6.0�10-3 6.0�10-3  6.0�10-3 6.0�10-3 
1.0�10-3 2.4�10-3  3.0�10-3 2.4�10-3  1.2�10-3 1.2�10-3  1.2�10-3 1.2�10-3 
2.0�10-4 4.8�10-4  6.0�10-4 4.8�10-4  2.4�10-4 2.4�10-4  2.4�10-4  
4.0�10-5 9.6�10-5  1.2�10-4 9.6�10-5  4.8�10-5     
   2.4�10-5        
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Table VI. Electron binding energies (meV) for the water dimer.a  

Energy contribution Method 

KT Polariz. Disp. MP2b CCSD(T)/CIc 

ab initio 11.1 0.6 12.0 19.7 33.0 
Model I 11.1 0.6 11.1 22.8 40.0 
Model II   6.4 0.3   7.9 14.7 33.0 

ascaling factor 6.8, damping factor b=0.43. 

bMP2 denotes the electron binding energies calculated through second-order, and which 
sum the KT, polarization (Polariz.) , second-order dispersion (Disp.) , second-order 
nondispersion contributions. 
 
cThis column reports electron binding energies obtained from ab initio CCSD(T) and 
model-potential CI calculations,
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Table VII. Electron binding energies (meV) of the water trimer. 

Energy contribution Structure Method 

KT Polariz. Disp. MP2a CCSD(T)/CIb 

ab initio   3.3 0.1   4.0     5.7   13.0 
Model I   3.3 0.1   3.9     7.3   17.4 

Crown 

Model II   1.4 0.1   2.2     3.7   13.6  
ab initio 34.8 3.3 31.6   59.8   87.0 
Model I 34.8 3.0 28.7   66.6 101.7 

Transition 
State 

Model II 23.2 2.1 23.6   48.9   89.5  
ab initio 60.7 4.4 43.8   97.1 127.0 
Model I 60.4 4.3 40.6 105.3 142.1 

Chain 

Model II 45.0 3.5 36.5   85.0 128.6  
a MP2 denotes the electron binding energies calculated through second-order, and which 
sum the KT, polarization (Polariz.) , second-order dispersion (Disp.) , second-order 
nondispersion contributions. 
 
bThis column reports electron binding energies obtained from ab initio CCSD(T) and 
model-potential CI calculations. 
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Table VIII. Electron binding energies (meV) of the water tetramer. 

Energy Contribution Structure Method 

KT Polariz. Disp. MP2a CCSD(T)/CIb 

ab initio   12.5 0.8 12.1   20.9   36.5 
Model I   12.9 0.9 11.7   25.6   46.6 

Crown 

Model II     7.3 0.5   8.5   16.3   40.0  
ab initio 110.2 8.2 67.7 170.3 209.6 
Model I 109.2 8.1 62.6 179.9 227.2 

Chain 

Model II   87.8 7.3 59.7 154.7 212.5  
a MP2 denotes the electron binding energies calculated through second-order, and which 
sum the KT, polarization (Polariz.) , second-order dispersion (Disp.) , second-order 
nondispersion contributions. 
 
bThis column reports electron binding energies obtained from ab initio CCSD(T) and 
model-potential CI calculations. 
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Table IX. Comparison of electron binding energies (meV) from MP2 calculations with 

model III, CI calculations with model II, and ab initio calculations.  

Energy Contribution  Methods 

(H2O)2 
chain 

(H2O)3 
crown 

(H2O)3 
TS 

(H2O)3 
chain 

(H2O)4 
crown 

(H2O)4  
chain 

ab initio 
CCSD(T) 

 

33.0 13.0 87.0 127.0 36.5 209.6 

Model II 
CI 
 

33.0 14.0 89.8 127.8 40.5 210.8 

Model III 
MP2 

34.8 10.5 91.9 142.5 33.7 236.5 
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Table X. Electron binding energies (in meV) and total energies relative to dbs4dbs2 

isomer (in kcal/mol) calculated for selected (H2O)6
- isomers.a, b 

 
Binding Energy Relative Isomer Theory 

KT with 
correlation 

Energies 

Ab initio 256 465 0.00 

Drude-big 243 483 0.00 

dbs4dbs2 

Drude-sm 202 441 0.00 

Ab initio 312 605 3.52 

Drude-big 272 579 5.00 

tweezers 

Drude-sm 241 558 4.51 

Ab initio 230 381 8.83 

Drude-big 205 369 8.79 

 
chain 

Drude-sm 135 299 9.42 

Ab initio 185 342 0.43 

Drude-big 186 394 4.09 

dbs3dbs3 

Drude-sm 150 363 3.84 

Ab initio 194 549 10.81 

Drude-big 182 573 10.81 

se3se3 

Drude-sm 184 569 9.93 

 
aThe ab initio electron binding energies are from Ref. 54. The results including electron 
correlation were obtained at the CCSD(T) level of theory. 
bDrude model calculations used geometries from Ref. 4 adjusted so that the water 
monomers were restored to the geometries of an isolated, undistorted monomer. The two 
sets of Drude model results differ in terms of the size and location of the large single-
center expansion of diffuse s and p functions. The Drude-big calculations use a large 
8s5p single-center expansion, the center of which was optimized. The Drude-sm 
calculations used the smaller 5s4p single-center expansion described in the text and 
located at the center of mass.  
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Table XI. Jz values for selected isomers of (H2O)6
- 

Isomera Jz values 
prism; dbs4dbs2 6.0 � Jz � 7.5 
cage 7.5 � Jz � 8.5 
open-book 8.5 � Jz � 11.0 
cage+tail 8.5 � Jz � 10.0 
ring 9.0 � Jz � 10.0 
ring plus tail(s) 11.0 � Jz � 16.0 
chain Jz � 16 
a The various structures are defined in Fig. 1 
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Table XII, Number of configurations with dbs4dbs2, dbs4’dbs2, and tweezers structures 
out of a total of 3997 configurations saved for each temperature in the parallel 
tempering Monte-Carlo simulations of (H2O)6

-
 . 

Target configuration Temperature 
(K) dbs4dbs2 dbs4’dbs2 tweezers 

190.0 3 1 0 
157.0 20 2 0 
129.7 15 2 0 
107.2 11 3 0 
88.6 5 2 0 
73.2 7 0 0 
60.5 3 0 0 
50.0 0 0 0 
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 Table XIII: Electron binding energies (meV) of the (HF)n, n=2-6, solvated-electron 

species.a  

Species symm. EAKT � Erelax � E(2)-disp � E(2)-nondisp � E(3) � E(4+HO) EAtotal 

(HF)2 D�h 12.3 3.5 42.0 -16.7 -0.5 12.8 53.4 

(HF)3 D3h 243.8 158.9 427.1 -211.6 -17.4 32.1 632.9 

(HF)4 Td 807.9 404.4 685.4 -427.3 -26.1 32.2 1476.5 

(HF)5 D3h 1357.9 497.3 753.6 -513.1 -21.8 26.0 2099.9 

(HF)6 Oh 1930.7 556.2 796.6 -584.1 -18.0 24.0 2691.2 

 a) (HF)2 and (HF)3 results from Ref. 70. 
 b)

 (HF)3, (HF)4, and (HF)5 results from Ref. 84.  
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Figures 

Figure 1. Energies of an electron in the potential due to a finite dipole with Q=1.  The 

energies are calculated using a large set of primitive s, p, d, and f Gaussian-type functions 

centered on the positive charge. Energies less than about 10-4 eV are unreliable due to the 

limitations of the basis set. 
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Figure 2. Charge distributions of an excess electron bound to a finite dipole: (a) Q =1, � 

= 3 and 6 D, no repulsive core, (b) Q = 0.5, � = 3 and 6 D, no repulsive core, (c) Q =1, � 

= 3 and 6 D, repulsive core, and (d) Q = 0.5, � = 3 and 6 D, repulsive core. Binding 

energies are also reported. 

 

(a) 
(b) 

(c) (d) 
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Figure 3. Definition of �A, �B, �  and r used in Eq. 10 
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Figure 4. Drude model for describing the interaction between an excess electron and a 

neutral molecule with a permanent dipole described by two charges +Q and –Q, separated 

by a distance 1 2�r r . Here the fixed +q charge associated with the fictitious oscillator is 

located at the midpoint of the permanent dipole. The –q charge associated with the Drude 

oscillator is separated from the +q charge by R. 
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Figure 5. Treatment of polarization via the Drude model in the case of a molecular dimer, 

with the charge distribution of one monomer modeled by fixed point charges Q1
(1) and 

Q2
(1) =  –Q1

(1) and that of the other modeled by fixed point charges Q1
(2) and Q2

(2) =  –Q1
(2). 

The +q and –q charges are associated with the Drude oscillators. 
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Figure 6. Definition of bond lengths used in Table I. 
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Figure 7. Comparison of the LUMO from the Hartree-Fock calculations and the most 

strongly bound electronic orbital from model I for HCN (a) and HNC (b). 
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Figure 8. Time-of-flight mass spectrum of (H2O)n
- from Ref. 113. Note the magic numbers 

at  n = 2,6,7, and 11. Some of the minor peaks are due to mixed (H2O)n
-Arm clusters. In 

fact, the peaks with appear to correspond to (H2O)4
- and (H2O)8

- are derive almost 

entirely from (H2O)2
-Ar and (H2O)6

-Ar, respectively 
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Figure 9. MP2 optimized geometries of the (H2O)n
-, n=2-4 clusters: (a1) (H2O)2

-, Crown 

(b1) , transition state (b2) , and chain (b3) structures of (H2O)3
-,  crown (c1) and chain 

(c2) forms of  (H2O)4. For the crown and transition state structures, the small black dot 

indicates the center of the extended set of diffuse basis functions. 
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Fig 10. Plot of the electron density of the crown-like form of (H2O)4
- calculated using the 

CI (solid line) and MP2 (dashed line) methods in conjunction with model II. The density 

is ploted along the C4 axis, with the origin being located in the plane of the four O atoms. 

(The free OH hydrogen atoms are located 0.75Å above the O-atom plane.) 
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Figure 11. Plot of the electron density of the chain-like form of (H2O)4
- calculated using 

the CI (solid line) and MP2 (dashed line) methods in conjunction with model II. The plot 

is along the direction of the dipole of the water chain. The origin is taken to coincide with 

the O atom of the terminal, acceptor water molecule. 
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Figure 12. Plot of the electron density of the crown-like form of (H2O)4
- calculated using 

the CI (solid line) and MP2 (dashed line) methods in conjunction with model II and 

model III, respectively. Model III is identical to model II except that the charges have 

been adjusted to reproduce the binding energy obtained from the model II CI 

calculations. The density is plotted along the C4 axis, with the origin being located in the 

plane of the four O atoms. 
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Figure 13. Plot of the electron density of the chain-like form of (H2O)4
- calculated using 

the CI (solid line) and MP2 (dashed line) methods in conjunction with model II and 

model III, respectively. Model III is identical to model II except hat the charges have 

been adjusted to reproduce the binding energy obtained from the model II CI 

calculations. The plot is along the direction of the dipole of the water chain. The origin is 

taken to coincide with the O atom of the terminal, acceptor water molecule. 
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Figure 14. Representative configurations of (H2O)6
- sampled in the 157 and 190 K 

replicas. Note that these structures are not at the local potential energy minima. 
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Figure 15. Distribution of (H2O)6 structures as a function of Jz. (a) Number of 
configurations as a function of Jz., (b) Integration of (a) normalized to 1.0 
 
 
a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
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Figure 16. Distribution of (H2O)6
- structures as a function of Jz. (a) Full histogram, (b) 

5.5< Jz<10.0, (c) integration of (a) with y axis normalized to 1.0 
 
 
a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
c) 
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Figure 17.  Selected local minima of (H2O)6
- as described by the Drude model. The 

geometries were optimized using the smaller basis set for the excess electron, followed 

by single-point calculations of the total energies using the larger basis set. 
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Figure 18. Arrangements of (HF)n, n = 2-4, with overall net dipole moments of  zero. 

(a) n=2, (b) n=3, (c) n=4. 
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Figure 19. Schematic charge arrangements that can give bi-dipole-bound anion (a) and 

quadrupole bound anion (b) and (c) 
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Appendix:1  

Theoretical Calculations of Voltage-dependent STM Images of 

Acetylene on the Si(001) Surface 

 
 
 
 
 

Abstract 

Voltage-dependent STM images have been calculated for five chemisorbed forms 

of acetylene on the Si(001) surface. The calculated images are used to aid in assigning the 

species observed in recent scanning tunneling microscope (STM) measurements on the 

Si(001)/acetylene system. 

                                                 
1 Published as:  F. Wang, D. C. Sorescu, and K. D. Jordan, J. Phys. Chem. B 106 (6), 1316 (2002). 
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I. INTRODUCTION 

The reactions of hydrocarbons with silicon surfaces are of considerable interest as 

routes to forming silicon carbide thin films and hybrid semiconductor/hydrocarbon based 

materials.1,2   The reactions of ethylene and acetylene with the Si(001) surface, in 

particular, have been the subject of numerous experimental and theoretical studies.   

The Si(001)/acetylene system has proven surprisingly  controversial. Until 

recently, it was believed that the dominant form of C2H2 on the Si(001) surface resulted 

from the addition of acetylene molecules across an Si-Si surface dimers.3-7 Some early 

studies concluded that this addition process was accomplished by cleavage of the  

dimer.3-5  However, it is now well established that the Si-Si dimer remains intact 

following the adsorption of the acetylene molecule.6,7 In the present work this is referred 

to as the di-( species.  Recent STM measurements of Mezhenny et al.8 have revealed that 

the Si(001)/acetylene system is more complicated than previously believed. In particular, 

these measurements provided evidence for three different binding sites for acetylene on 

the surface. These were attributed to the di-(,  "end-bridge", and "r-bridge" structures 

depicted in Fig. 1.  (In the end-bridge structure the C2H2 molecule bridges the ends of two 

adjacent dimers in a dimer row, and in the r-bridge configuration the C2H2 molecule is 

oriented perpendicular to the dimer row and is tetra-coordinated to two dimers.)   

Mezhenny et al. also investigated these structures as well as a p-bridge tetra-coordinated 

structure with the C2H2 molecule parallel to the dimer row, using electronic structure 

theory.  Although the p-bridge structure was predicted to be a local potential energy 

minimum, it was found to lie considerably higher in energy than the other three structures 

and was deemed less important. 
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Xu et al., on the basis of photoelectron diffraction measurements, concluded that 

at high coverage the p-bridge structure is the dominant form of C2H2 on the Si(001) 

surface.9  On the other hand, Terborg et al., using the same technique, concluded that the 

dominant species is the di-( structure.10  Based on a comparison between calculated and 

measured vibrational spectra, Morikawa concluded that the di-( and end-bridge species 

co-exist on the surface.11 Morikawa did not find it necessary to invoke tetra-coordinated 

species in order to explain the vibrational spectra. 

There have been two attempts to use calculations of the STM images of various 

Si(001)/C2H2 species to assign the structure in the measured STM images.  Mezhenny et 

al.8 used the Tersoff-Hamann approach12 together with cluster models of the adsorbed 

species to calculate STM images for comparison with their experimental results. Based 

on these calculations, it was concluded that there is a sizable population of both di- and 

tetra-coordinated C2H2 species on the Si(001) surface. The second such undertaking, by 

Hofer et al.,13 employed a more sophisticated model of the STM tip and slab models with 

periodic boundary conditions.  (We became aware of this latter work when in the final 

stages of preparing the present manuscript.)  The calculated images of Hofer et al. also 

appear to be consistent with the interpretation that the observed STM images derive from 

both di- and tetra-coordinated C2H2, although the tetra-coordinated species were predicted 

to be much less stable. 

Motivated by the results of Mezhenny et al., Sorescu and Jordan14 carried out a 

detailed density functional theory (DFT) study of the Si(001)/acetylene system, locating a 

total of nine different minima as well as the barriers between the low energy minima.  

The calculations predicted that at low coverage the di-( structure is most stable, followed 
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by the end-bridge and r-bridge configurations, with the binding energies being -2.73,       

-2.44, and -2.13 eV, respectively.  (A negative binding energy implies a stable structure.)  

The p-bridge structure was predicted to be bound by only -1.29 eV. The barriers for 

rearrangement from the r-bridge to the end-bridge and from the p-bridge to the di-(  

species were calculated to be 0.30 eV and 0.82 eV, respectively. Based on these results, it 

appears unlikely that either the r-bridge or p-bridge structures would have appreciably 

population at room temperature. 

The electronic structure calculations of Sorescu and Jordan also predicted that a 

structure with two acetylene molecules bonded to two adjacent Si-Si dimers in an end-

bridge manner (see Fig. 1) is of comparable stability to the end-bridge structure (i.e., that 

the binding energy per acetylene molecule is comparable in the two cases).  Hereafter, 

this arrangement is designated as (end-bridge)2.  This raises the possibility that the 

structure in the STM images which has been attributed to tetra-coordinated species in fact 

arises from the (end-bridge)2 structure.  To investigate this possibility we have undertaken 

new calculations of the STM images of five different Si(001)/acetylene species, including 

the (end-bridge)2 species.  These calculations are based on slab-models with periodic 

boundary conditions, and allow for the influence of the electric field between the tip and 

surface.  The approach used is described briefly in Section II, followed by a presentation 

of the results. 

II. Calculations 

i) Geometries 

The geometries of the di-(, end-bridge, r-bridge, and p-bridge Si(001)/C2H2 

species were taken from the work of Sorescu and Jordan,14 who optimized the structures 
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using plane-wave DFT with slab models and periodic boundary conditions.  Specifically, 

we adopted the structures that these authors obtained using a supercell with eight Si-Si 

surface dimers, in a 4x4 arrangement, and employing a total of five silicon layers. 

Although the (end-bridge)2 species was also considered by Sorescu and Jordan, the 

calculations on this species employed a smaller supercell and were for saturation 

coverage.  For this reason, we have optimized the geometry of the (end-bridge)2  structure 

using the supercell with eight surface SiSi dimers.  Only a single (end-bridge)2 species is 

present in the supercell. Following Sorescu and Jordan, the bottommost silicon layer was 

terminated by H atoms, and the terminating H atoms and the Si atoms in the bottom two 

layers were kept frozen in the geometry optimizations (the latter in their bulk positions).  

A vacuum layer of about 8 
�

 separated the top of one slab and the bottom of the next.   

The Perdew-Wang91 (PW91) gradient-corrected exchange-correlation functional15 was 

employed together with ultrasoft pseudopotentials,16,17 a plane-wave cut-off of 200 eV, 

and )-point sampling.  These calculations were performed with the VASP program.17-19  

ii) Calculation of tunneling currents. 

Most calculations of STM images have been carried out using the approach of 

Tersoff and Hamann,12 which employs the local density of states method, assumes a 

simple model (s-level only) of the tip, and ignores electric field effects.  This was the 

approach used in the above-mentioned calculations of Mezhenny et al.   Hofer et al. used 

a similar approach but adopted a more realistic (atomistic) model of the tip.  Both of 

these studies neglected field effects which can be important for modeling STM images of 

molecules on semiconductor surfaces since the experimental studies are often carried out 

with biases between 1.5 and 2 Volts.  In fact, it has been demonstrated that the neglect of 
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electric field effects leads to qualitatively incorrect images for the Si(001)/ethylene 

system.20   

In the present study, we employ a high-voltage extension of the Tersoff-Hamann 

approach due to Stockbro21 to calculate the STM images of the di-(, end-bridge, r-bridge, 

p-bridge, and (end-bridge)2 forms of Si(001)/C2H2.  In this approach, the electric field 

between the tip and surface is accounted for self consistently, and higher spherical 

harmonics (i.e., l  > 0) can be used in the model of the tip.  As for the geometry 

optimizations, the STM calculations were carried out using the PW91 exchange-

correlation functional,15 ultra-soft Vanderbilt pseudopotentials,16 and plane-wave basis 

sets.  These calculations were performed using a modified version of the PWSCF 

code.21,22 

The calculations of the tunneling currents required several modifications of the 

procedure used for the geometry optimizations. First, the terminating H atoms were 

removed, and two additional layers of Si atoms at their bulk positions were added.  (The 

presence of the dangling bonds on the bottom layer has the effect of introducing free 

carriers, which is essential for calculating the tunneling currents.21) The bias voltage 

between the tip and the sample was simulated by putting a dipole layer in the middle of 

the vacuum layer, which was chosen to be 10 
�

.  (The use of a larger vacuum layer for 

the STM calculations than for the geometry optimization was necessary to permit reliable 

interpretation of the wavefunction in the region around which the tip is moving.) A plane-

wave cutoff of 272 eV and �  point sampling were used. 

Self-consistent electronic structure calculations were done at bias voltages of 0.68 

1.36, and 2.04 V.  The wave functions at the sample bias (-1.5 V) used in the experiments 
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were obtained by logarithmic interpolation of the results of the calculations at the 0.68, 

1.32, and 2.04 V bias.  The surface geometry was not relaxed in the external field as test 

calculations showed that such relaxation was relatively unimportant for the tunneling 

current. 

The tail of the wavefunction far from the sample surface is difficult to calculate in 

conventional DFT treatments.  The modified PWSCF code deals with this problem by 

integrating the wavefunction tails using an average effective potential method of 

Tersoff.23 This integration procedure was adopted for distances greater than 3.2 
�

 from 

the silicon surface.  Calculations were carried out using both s, and s plus p models of the 

tip.  These gave very similar images, and the results reported here were obtained with the 

s-type tip. 

III. Results and Discussion 

 Figure 2 reproduces the measured STM image of Mezhenny et al., and Figures 3-

8 give our calculated images for the bare Si(001)/(2x1) surface and the five Si(001)/C2H2 

species described above.  In comparing the measured and calculated images, it should be 

kept in mind that the measured image was obtained at room temperature, whereas the 

calculations implicitly assume a temperature of 0 K. This is an important consideration in 

that the bare dimers on the Si(001) surface, while believed to be buckled at low 

temperatures, are expected to appear symmetric at room temperatures due to the low-

barriers for flipping24,25 (see however, Ref. 26). The buckling of the bare surface is 

readily apparent in the calculated STM-images (Fig. 3-8). Since buckling changes the 

appearance of the STM image, the use of 0 K calculations could introduce some 

ambiguitities in the comparison with experiment. However, we note that there is evidence 
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of buckling in the observed STM images of the bare dimer regions of the 

Si(001)/acetylene surface. This may be the result of "pinning" caused by defects and 

adsorbed acetylene molecules. 

The calculations give a darker image at the di-( site (Fig. 3) than the surrounding 

bare surface, consistent with the observed image in the vicinity of what has been 

attributed to the di-( site.  Similarly, the corrugation calculated for the end-bridge form 

of Si(001)/C2H2 closely matches that of region II in the measured spectrum and which 

was attributed by Mezhenny et al. to an end-bridge site.  The two tetra-coordinated 

structures give similar images, in agreement with the earlier STM calculations.8,13 The 

calculated images for the tetra-coordinated C2H2 species qualitatively resemble that of 

region III in the measured STM spectrum, which was attributed by Mezhenney et al. and 

by Hofer et al. to a tetra-coordinated C2H2 entity.  However, our calculated images for the 

tetra-coordinated sites are not as dark compared to the bare surface as is region III in the 

experimental STM image.   

Figure 8 shows the calculated STM image for the (end-bridge)2 species with two 

C2H2 molecules bound in an end-bridge manner to a pair of adjacent Si-Si dimers.  This 

image is also in good agreement with that associated with region III of the experimental 

image, lending support to our proposal that the observed image is due to a site with two 

bound C2H2 molecules. 

The calculations also predict that the (end-bridge)2 species is energetically more 

stable than two separate end-bridge species. (The binding energy per acetylene molecule 

is calculated to be –2.61 eV in the (end-bridge)2 structure vs. –2.44 eV for the end-bridge 

structure. This leads naturally to the question why the measured STM images do not 
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show evidence of extended domains of (end-bridge)2 species? Additional studies 

examining the barriers for formation of isolated and neighboring (end-bridge)2 species 

could prove useful in answering this question.   

IV. Conclusions  

STM images have been calculated for five forms of acetylene on the Si(001) 

surface.  The calculations allow in a self-consistent manner for the influence of the 

electric field of the tip on the wavefunction of the surface. Based on the comparison of 

the calculated and measured STM images, we conclude, in agreement with Mezhenny et 

al. that there are two types of di-coordinated C2H2 (the so-called di-�  and end-bridge 

species) on the Si(001) surface.  Our calculations also predict that an (end-bridge)2 

species with  two C2H2 molecules bonded in a end-bridge manner to two adjacent Si-Si 

dimers is energetically more stable than two well-separated end-bridge species on the 

surface. Although the calculated STM images alone do not allow us to distinguish 

between the (end-bridge)2 and a tetra-coordinate C2H2 as the source of the third structure 

observed in the STM experiments, based on the energetics, we propose that the third 

structure is due to the (end-bridge)2 species. The inability of the calculated STM images 

to differentiate between the different assignments of this structure could be due to the 

calculations being carried out for T = 0 K whereas the experimental images were 

obtained at room temperature. Low-temperature STM measurements might thus prove 

useful for definitively establishing the identity of structure III observed in the 

experiments of Mezhenny et al.  
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Figure Captions: 

Fig. 1. Definitions of various Si(001)/C2H2 species. A, di-� ; B, end-bridge; C, p-bridge; 

D, r-bridge; E, (end-bridge)2. The black dots refer to the positions of the Si atoms of the 

surface Si-Si dimers, the light grey dots to the C atoms, and the darker grey dots to the H 

atoms. 

Fig. 2. Measured STM image of the Si(001)/C2H2 system at low coverage reproduced 

with permission from Ref. 8. (a) Shows the measured image, from which three types of 

C2H2 binding sites (I-III) are identified. (b) indicates the assignments proposed in Ref 8. 

(c) depicts the measured corrugation in the vicinity of the various binding sites. 

Fig. 3. (a) Calculated STM image (30 Å x 30 Å) of the bare Si(001)-(2x1) surface with a 

c(4x2) buckling pattern. The X’s mark the positions of the surface Si atoms. (b) reports 

the calculated corrugation for motion of the STM tip across the dimers perpendicular to 

the dimer rows. The trajectory of the tip is shown by the horizontal line in (a). 

Fig. 4. (a) Calculated STM image (30 Å x 30 Å) of the bare Si(001)-(2x1) surface with 

acetylene molecules bound in di-�  sites. The X’s denote the surface Si atoms, and the 

bright boxes and dark dots denote the position of the C and H atoms, respectively. (b) 

Comparison of the calculated and measured corrugation for motion of the STM tip 

perpendicular to the dimer rows (as indicated by the horizontal line in (a)). The light line 

refers to experiment (Ref. 8) and the dark line to the present calculations. 

Fig. 5. (a) Calculated STM image (30 Å x 30 Å) of the bare Si(001)-(2x1) surface with 

acetylene molecules bound in end-bridge sites. The X’s denote the surface Si atoms, and 

the bright boxes and dark dots the position of the C and H atoms respectively. (b) 

Comparison of the calculated and measured corrugation for motion of the STM tip 
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perpendicular to the dimer rows (as indicated by the horizontal line in (a)). The light line 

refers to experiment (Ref. 8) and the dark line to the present calculations. 

Fig. 6. (a) Calculated STM image (30 Å x 30 Å) of the bare Si(001)-(2x1) surface with 

acetylene molecules bound in p-bridge sites. The X’s denote the surface Si atoms, and the 

bright boxes and dark dots the position of the C and H atoms respectively. (b) 

Comparison of the corrugation calculated for motion of the STM tip perpendicular to the 

dimer rows for the p-bridge species (as indicated by the horizontal line in (a)) and that 

measured in Ref. 8. for site III (See Fig. 2). The calculated and measured results are 

designated by the dark and light lines, respectively. 

Fig. 7. (a) Calculated STM image (30 Å x 30 Å) of the bare Si(001)-(2x1) surface with 

acetylene molecules bound in r-bridge sites. The X’s denote the surface Si atoms, and the 

bright boxes and dark dots the position of the C and H atoms respectively. (b) 

Comparison of the corrugation calculated for motion of the STM tip perpendicular to the 

dimer rows for the r-bridge species (as indicated by the horizontal line in (a)) and that 

measured in Ref. 8. for site III (See Fig. 2). The calculated and measured results are 

designated by the dark and light lines, respectively. 

Fig. 8. (a) Calculated STM image (30 Å x 30 Å) of the bare Si(001)-(2x1) surface with 

acetylene molecules bound in (end-bridge)2 sites. The X’s denote the surface Si atoms, 

and the bright boxes and dark dots the position of the C and H atoms respectively. (b) 

Comparison of the corrugation calculated for motion of the STM tip perpendicular to the 

dimer rows for the (end-bridge)2 species (as indicated by the horizontal line in (a)) and 

that measured in Ref. 8. for site III (See Fig. 2). The calculated and measured results are 

designated by the dark and light lines, respectively. 
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