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ABSTRACT 

SELECTIVE ANTIBODY REMOVAL FROM BLOOD, PLASMA AND BUFFER USING 
HOLLOW FIBER-BASED SPECIFIC ANTIBODY FILTERS 

Mariah Sydney Hout, Ph.D. 

University of Pittsburgh, 2003 

Therapeutic antibody removal is performed to facilitate ABO-incompatible kidney 

transplants and heart and kidney xenotransplants, and to treat Goodpasture syndrome, 

myasthenia gravis, hemophilia with inhibitors, and thrombocytopenic purpura. Antibody removal 

is achieved non-selectively, via plasma exchange, or semi-selectively, via plasma perfusion 

through immunoadsorption columns containing immobilized protein A. We are developing 

hollow fiber-based specific antibody filters (SAFs) that selectively remove antibodies of a given 

specificity directly from whole blood, without separation of the plasma and cellular blood 

components and with minimal removal of plasma proteins other than the targeted antibodies. The 

working unit of the SAF is a hollow fiber dialysis membrane with antigens, specific for targeted 

antibodies, immobilized on the inner fiber wall. Several thousand SAF fibers are connected in 

parallel to produce a filter similar in construction to a hollow fiber hemodialyzer. A principal 

goal of our research is to identify the primary mechanisms that control antibody transport within 

the SAF, and to use this information to guide the choice of design and operational parameters 

that maximize the SAF-based antibody removal rate. We approached this goal by formulating a 

simple mathematical model of SAF-based antibody removal and performing in vitro antibody 

removal experiments to test key predictions of the model. Our model revealed three antibody 
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transport regimes, defined by the magnitude of the Damköhler number Da (antibody-binding 

rate/antibody diffusion rate): reaction-limited (Da ≤ 0.1), intermediate (0.1 < Da < 10), and 

diffusion-limited (Da ≥ 10). For a given SAF geometry, blood flow rate, and antibody 

diffusivity, the highest antibody removal rate was predicted for diffusion-limited antibody 

transport. We performed in vitro antibody removal experiments in which SAFs containing 

immobilized bovine albumin (BSA) were used to remove anti-BSA antibodies from buffer. The 

measured anti-BSA removal rates were consistent with antibody transport in the intermediate 

regime. We concluded that initial SAF development work should focus on achieving diffusion-

limited antibody transport by maximizing the SAF antibody-binding capacity. If diffusion-

limited antibody transport is achieved, the antibody removal rate can be raised further by 

increasing the number and length of the SAF fibers and by increasing the blood flow rate through 

the SAF. 
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1.0 INTRODUCTION 

Antibodies are specialized glycoproteins that mediate humoral immunity by binding 

specifically to the antigens that induced their synthesis, either neutralizing the microorganisms 

bearing the antigens or initiating their destruction by phagocytosis, complement-mediated lysis, 

or antibody-dependent cell-mediated cytotoxicity (1). Though normally beneficial, antibodies 

may be harmful if they bind to antigens on self-cells or self-tissues (self-antigens). The healthy 

immune system has self-tolerance mechanisms that delete self-reactive lymphocytes or regulate 

their activity; when these mechanisms fail due to an autoimmune disease, self-antigen-binding 

antibodies may be produced. Additionally, organ transplant recipients may experience damage to 

the transplanted donor organ by antibodies that bind to non-self antigens on cells within the 

donor organ (donor-specific antibodies). Donor-specific antibodies are produced as part of the 

healthy immune system’s response to the non-self antigens within the donor organ, and are not 

indicative of an immune system disorder. 

Therapeutic removal of self-antigen-binding antibodies is performed to treat autoimmune 

diseases like Goodpasture syndrome (2), myasthenia gravis (3), hemophilia with inhibitors (4), 

and idiopathic thrombocytopenic purpura (5), while therapeutic removal of donor-specific 

antibodies is performed to facilitate ABO-incompatible kidney transplants (6) and heart (7) and 

kidney (8) xenotransplants (pig-to-baboon). Antibody removal is usually achieved non-

selectively, via plasma exchange, or semi-selectively, via plasma perfusion through 

immunoadsorption columns containing immobilized protein A or anti-human immunoglobulin 
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(9-13). Most complications of plasma exchange are related to the replacement fluid; replacement 

with albumin solution may cause deficiency syndromes since beneficial antibodies and clotting 

factors are not replenished, while replacement with donor plasma may trigger hypersensitivity 

reactions or allow infectious disease transmission (9). Patients treated using protein A or anti-

human immunoglobulin immunoadsorption columns benefit from selective IgG or IgM removal 

and require little to no replacement fluid (10-13). However, only a small fraction of the total 

antibody population (often only antibodies of one specificity) need be removed to effect the 

treatments listed above, and antibody removal platforms with even greater selectivity are desired. 

We are developing hollow fiber-based specific antibody filters (SAFs) that selectively 

remove antibodies of a given specificity directly from whole blood, without separation of the 

plasma and cellular blood components and with minimal removal of plasma proteins other than 

the targeted antibodies (14,15). The working unit of the SAF is a hollow fiber dialysis membrane 

with antigens, specific for targeted self-antigen-binding or donor-specific antibodies, 

immobilized on the inner fiber wall (Figure 1-1). Several thousand SAF fibers are connected in 

parallel to produce a filter similar in construction to a hollow fiber hemodialyzer. During SAF-

based antibody removal blood flows through the fiber lumens, and the targeted antibodies bind to 

the immobilized antigens and become trapped within the SAF. Hydrophilic cellulose-based SAF 

fibers are used to minimize non-specific protein adsorption within the SAF, and hence the levels 

of non-targeted antibodies and other plasma proteins are relatively unchanged following SAF-

based antibody removal. 

Several studies, including two conducted by our own group (14,15), have shown that 

SAFs and similar filters can selectively remove antibodies and other substances from blood, 

plasma, and buffer (16-19). However, SAF-based antibody removal must be reasonably fast as 
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well as selective if the platform is to be clinically valuable. A principal goal of our research is to 

identify the primary mechanisms that control antibody transport within the SAF, and to use this 

information to guide the choice of design and operational parameters that maximize the SAF-

based antibody removal rate. We approached this goal by performing studies with the following 

specific aims: 

1. Show “proof of concept” by using SAF prototypes with immobilized A and B blood 

group antigens to remove anti-A and anti-B antibodies from type A and O whole human 

blood samples. 

2. Develop a mathematical antibody transport model that describes antibody diffusion, 

convection, and reversible binding within the SAF fibers. Use the model to predict the 

magnitude of the SAF-based antibody removal rate, and to identify the removal rate-

controlling antibody transport mechanisms, for clinically relevant SAF geometries, blood 

flow rates, antibody diffusivities, and antibody-binding rates. 

3. Identify an appropriate model antibody/antigen system for use during quantitative in vitro 

antibody removal experiments. Fabricate SAF prototypes with the model antigens 

immobilized on the lumenal surfaces of the hollow fibers. 

4. Perform in vitro antibody removal experiments in which SAF prototypes with 

immobilized model antigens are used to remove model antibodies from aqueous buffer. 

Test key predictions of the mathematical antibody transport model, including the 

dependence of the antibody removal rate on the buffer flow rate and the SAF antibody-

binding capacity. 
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5. Use the information gained from the combined mathematical and experimental studies to 

suggest design, development, and operational approaches that can be taken to maximize 

the antibody removal rates achieved by SAFs developed for clinical use. 

Targeted Antibody (Ab) Immobilized Antigen (Ag)

Non-Targeted Antibody
or Other Plasma Protein

Membrane Wall

free Ab 

bound Abimmobilized Ag 

Blood Flow

Targeted Antibody (Ab) Immobilized Antigen (Ag)
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Figure 1-1 Schematic depicting antibody removal in the lumen of a 
SAF fiber. The relative dimensions of the fiber lumen and the 
antibodies and antigens are not to scale. 
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2.0 BACKGROUND 

2.1 Antibody Structure and Function 

Antibodies have distinct structural features that allow them to bind to antigens and to 

initiate the destruction of antigens and antigen-bearing microorganisms (1). Each antibody 

molecule consists of one or more copies of a characteristic Y-shaped unit formed by four 

polypeptide chains, two identical light chains and two identical heavy chains. The stem of the Y 

is comprised of the carboxyl-terminal parts of the two heavy chains, and each arm is comprised 

of the amino-terminal part of a heavy chain and an entire light chain (Figure 2-1). One antigen-

binding site is located near the tip of each arm, and moieties that dictate the antibody’s effector 

functions are located on the stem. Brief digestion of an antibody molecule by papain breaks the 

arms from the stem; the arms are referred to as Fab fragments, since they have antigen-binding 

activity, while the stem is referred to as an Fc fragment, since the stem fragments crystallize 

during cold storage. 

Each light chain and heavy chain has a variable region, in which the amino acid sequence 

varies for antibodies of different antigen-binding specificities, and a constant region, in which 

the amino acid sequence is conserved for all antibodies of a given class and subclass, bearing 

light chains of a given subtype (Figure 2-1) (1). The variable region consists of the first 100-110 

amino acids of the chain (beginning with the amino-terminal residue), and the constant region 

consists of the remaining 110 amino acids (light chains) or 330 or 440 amino acids (heavy 

chains). At the tip of each arm, an antigen-binding site is formed by three hypervariable regions 
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within the variable region of the light chain and three within the variable region of the heavy 

chain. The hypervariable regions constitute 15-20% of the variable region, and relatively 

invariant framework sequences constitute the rest. 
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Figure 2-1 Basic structure of an antibody molecule. Hatching 
indicates the variable region of each chain. The number of 
interchain disulphide bonds varies with antibody class and 
subclass; intrachain disulphide bonds are not shown. N: amino-
terminal end of the polypeptide chain. C: carboxyl-terminal end 
of the chain. 

Humans have five antibody classes, and each class has its own arsenal of effector 

functions (1). The class of a given antibody molecule is determined by the amino acid sequence 

of its heavy chain constant region; the five classes, IgG, IgM, IgA, IgE, and IgD, have heavy 

chains named �, �, �, �, and����respectively. IgG, IgE, and IgD antibodies exist as monomers of 

the Y-shaped unit shown in Figure 2-1, while IgM antibodies exist mostly as pentamers and IgA 

antibodies exist as monomers in blood but as dimers in external secretions. When bound to 

antigens, both IgG and IgM antibodies activate complement by binding to C1 molecules via C1-
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binding sites on the Fc regions of the antibodies. Stable C1/antibody binding requires that each 

C1 molecule bind to at least two Fc regions, and hence IgM antibodies are more potent 

complement activators than IgG antibodies since one IgM antibody molecule provides five Fc 

regions in close proximity. IgG antibodies also acts as opsonins by binding to Fc� receptors on 

phagocytes, and confer fetal and neonatal immunity by crossing the placenta. Dimeric IgA is the 

predominant antibody class in external secretions like breast milk, saliva, tears, and mucus, and 

in these secretions IgA antibodies crosslink large antigens like viruses and bacteria. Crosslinking 

prevents viruses and bacteria from attaching to mucosal cells, and the large antibody/antigen 

complexes formed become trapped in mucus and are eliminated. IgE antibodies mediate 

hypersensitivity reactions by binding to Fc� receptors on the membranes of mast cells and 

basophils, causing the cells to degranulate and release histamine. IgD antibodies, along with 

monomeric IgM antibodies, are present in membrane-bound form on mature B-cells. The 

effector functions of soluble IgD antibodies have not yet been identified. 

Antibodies bind to distinct sites on antigens called epitopes, and hence antibodies are 

specific for epitopes and not for entire antigen molecules (1). Antibody/antigen binding depends 

on multiple noncovalent bonds between the amino acids that form the antigen-binding site and 

those that form the epitope. Since the strength of a noncovalent bond is significant only when the 

interacting groups are close, strong antibody/antigen binding is achieved when antigen-binding 

sites and epitopes have a high degree of structural complementarity. An antigen molecule may 

have multiple copies of a given epitope, or may have several different epitopes that induce 

synthesis of antibodies with different antigen-binding sites (Figure 2-2). A population of 

antibodies in which all of the antibodies bind to the same antigen, but subpopulations bind to 
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structurally different epitopes on the antigen, is referred to as a polyclonal antibody population, 

since each subpopulation is produced by a different B-cell clone. 
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Figure 2-2 Induction of polyclonal antibody synthesis by an antigen with 
multiple different epitopes. The role of antigen-specific TH-cells is not shown. 
The relative dimensions of the epitopes, cells, antibodies, and antigens are not 
to scale. 

Antibodies specific for a given epitope are produced when mature B-cells, bearing 

membrane-bound antibodies of the same specificity, encounter the epitope-bearing antigen in the 

blood, lymph, or lymphoid organs (Figure 2-2) (1). Mammalian immune systems can produce 

B-cells of an estimated 108 different specificities, and hence a large number of potential antigens 

can be recognized; most of this diversity is accomplished during B-cell maturation, by random 

rearrangement of the gene segments encoding the variable regions of the light and heavy chains 

that comprise the membrane-bound antibodies. Binding of antigen to membrane-bound 

antibodies causes B-cells to proliferate and then differentiate into memory B-cells and plasma 

cells (antibody-producing cells). Plasma cells begin secreting antibodies about 5-7 days after 
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mature B-cells are stimulated with antigen, and continue secreting antibodies for 1-2 weeks 

before dying. Memory B-cells live much longer and may confer lifelong immunity to a given 

antigen or antigen-bearing microorganism. 

2.2 Donor-Specific Antibodies in Allograft and Xenograft Rejection 

Donor-specific antibodies mediate hyperacute rejection of ABO-incompatible allografts, 

discordant xenografts, and HLA-incompatible allografts implanted in pre-sensitized recipients 

(20,21). Hyperacute rejection occurs when the transplant recipient has pre-formed antibodies that 

bind to antigens on the graft’s endothelial cells (donor-specific antibodies) (22). Upon initiation 

of blood flow through the graft, antibody/antigen complexes form rapidly and activate the 

complement system via the classical pathway. Endothelial cells are injured when neutrophils, 

attracted by C5a, infiltrate the graft and release lytic enzymes. Formation of the membrane attack 

complex (MAC) may cause additional endothelial cell injury, especially in xenografts whose 

complement regulatory proteins may be incapable of blocking MAC formation by human 

complement components. Platelets adhere to the injured endothelium, aggregate, and stimulate 

thrombin formation. Blood clots form within the graft capillaries and prevent adequate perfusion 

of the graft, causing necrosis of graft cells. Graft function may occur temporarily and decline 

rapidly, or the graft may never function. This reaction typically occurs within 24 hours of 

transplantation (1,20,23). 

Anti-A and anti-B antibodies mediate hyperacute rejection of ABO-incompatible 

allografts; these antibodies bind to A and B blood group antigens found on the surfaces of red 

blood cells, lymphocytes, endothelial cells, and platelets (Table 2-1) (24). The A and B antigens 

are glycoproteins and glycolipids bearing immunodominant carbohydrate epitopes characterized 

by the terminal trisaccharides GalNAc�1-3[Fuc�1-2]Gal�- (A antigen) and Gal�1-3[Fuc�1-
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2]Gal�- (B antigen) (25). An individual’s blood type is determined by the identities of the blood 

group antigens expressed on his or her tissues; thus type A individuals express A antigens, type 

B individuals express B antigens, type AB individuals express both A and B antigens, and type O 

individuals express neither A nor B antigens. Humans older then 6 months of age continually 

produce antibodies that bind to the blood group antigens that are not expressed on their own 

tissues (26); thus grafts from type A donors are ABO-incompatible with type B and O recipients 

(who produce anti-A antibodies), grafts from type B donors are ABO-incompatible with type A 

and O recipients (who produce anti-B antibodies), and grafts from type AB donors are ABO-

incompatible with type A, B and O recipients (who produce either anti-B or anti-A antibodies, or 

both). Anti-A and anti-B antibody production in humans occurs in response to intestinal bacteria 

bearing the A and B epitopes, and does not require exposure to ABO-incompatible red blood 

cells or other tissues (26). 

Table 2-1 Antibodies Mediating Allograft and Xenograft Rejection 

Graft Type Antigens Antibodies Rejection Type Antibody Production 
Stimulant 

ABO-incompatible 
allograft 

A 
B 

Anti-A 
Anti-B 

Hyperacute 
Acute 
Chronic 

Intestinal bacteria 

Discordant 
xenograft �-Gal Anti-�-Gal Hyperacute 

Acute Intestinal bacteria 

HLA-incompatible 
allograft HLA Anti-HLA 

Hyperacute 
Acute 
Chronic 

Non-self HLA (via blood 
transfusion, pregnancy, 
or previous transplant) 

Anti-�-Gal antibodies mediate hyperacute rejection of discordant xenografts (grafts from 

New World monkeys or non-primate mammals implanted in humans, chimpanzees, or baboons); 

these antibodies bind to �-Gal antigens found on the surfaces of endothelial cells, epithelial cells, 

fibroblasts, smooth muscle cells, and red blood cells in New World monkeys and non-primate 
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mammals (Table 2-1) (21). The �-Gal antigens are glycoproteins and glycolipids bearing 

immunodominant carbohydrate epitopes characterized by the terminal disaccharide Gal�1-

3Gal�- (�-Gal). Humans, chimpanzees and baboons do not express �-Gal antigens and hence 

produce anti-�-Gal antibodies (27,28). Anti-�-Gal antibody production in humans, chimpanzees, 

and baboons occurs in response to intestinal bacteria bearing �-Gal epitopes, and does not 

require exposure to cells or tissues from New World monkeys or non-primate mammals (29). 

Anti-HLA antibodies mediate hyperacute rejection of HLA-incompatible allografts 

implanted in pre-sensitized recipients; these antibodies bind to HLA antigens found on the 

surfaces of most nucleated cells (class I HLA antigens) or on the surfaces of macrophages, 

dendritic cells, B-cells, and activated endothelial cells (class II HLA antigens)�(Table 2-1) (20). 

HLA antigens are trans-membrane glycoproteins that present peptides from processed 

endogenous and exogenous antigens to TH-cells and TC-cells (30). In humans, the major class I 

HLA antigens are named HLA-A, HLA-B, and HLA-C, and the major class II HLA antigens are 

named HLA-DR, HLA-DQ, and HLA-DP. The genes that code for the production of HLA 

antigens are highly polymorphic; over 59 different HLA-A alleles, 111 different HLA-B alleles, 

and 37 different HLA-C alleles have been identified (1). Individuals exposed to non-self HLA 

antigens via blood transfusion, pregnancy, or a prior transplant may produce antibodies that bind 

to those HLA antigens, thus becoming pre-sensitized. If such an individual receives a graft 

bearing the same non-self HLA antigens, the pre-formed anti-HLA antibodies may mediate 

hyperacute rejection of the graft. 

Grafts implanted in patients without pre-formed donor-specific antibodies may stimulate 

production of donor-specific antibodies after the transplant (1,23). These grafts may undergo 

acute rejection, which occurs within days or weeks of transplantation, and/or chronic rejection, 
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which occurs within months or years of transplantation. Acute rejection is mediated by both 

donor-specific T-cells and donor-specific antibodies (22,31). During acute rejection, donor-

specific TC-cells mediate graft cell apoptosis via the perforin/granzyme pathway, and donor-

specific TH-cells produce IFN-�, which activates macrophages that release lytic enzymes, nitric 

oxide, and TNF-�. Donor-specific antibodies damage the graft endothelial cells and parenchymal 

cells via complement activation as described above, and antibody/antigen complexes involving 

IgG antibodies bind natural killer cells that mediate graft cell apoptosis via the 

perforin/granzyme pathway (antibody-dependent cell-mediated cytotoxicity) (32-34). Acute 

rejection episodes are frequently reversible by prompt and aggressive immunosuppression. 

Conversely, chronic rejection is often unresponsive to immunosuppression and may necessitate 

re-transplantation (22). Chronic rejection is characterized by intimal hyperplasia of the arteries of 

the graft, interstitial fibrosis, atrophy of the graft parenchyma, and declining graft function, and 

is thought to represent a pathologic tissue remodeling response to vascular trauma experienced 

by the graft peri-transplant and post-transplant. The production of donor-specific antibodies post-

transplant correlates strongly with the incidence of chronic rejection (35). 

As of February 2003, the United Network for Organ Sharing (UNOS) reported that 

80,451 individuals were on the waiting list for organ transplantation in the United States; 53,634 

individuals were waiting for kidney transplants, 16,910 individuals were waiting for liver 

transplants, 3,833 individuals were waiting for heart transplants, and 3,827 individuals were 

waiting for lung transplants (36). In 2001, only 23,848 organ transplants were performed, using 

grafts procured from 6,081 deceased donors and 6,526 living donors; 6,190 individuals died 

while on the waiting list (37). Due to this critical shortage of donor organs, many investigators 

are seeking to expand the conditions under which transplantation can be performed. As described 
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in more detail in the following sections, pre-transplant removal of anti-A and anti-B antibodies 

facilitates ABO-incompatible kidney (38) and liver (39) transplants, and pre-transplant removal 

of anti-HLA antibodies facilitates receipt of HLA-incompatible transplants by pre-sensitized 

recipients (40). Additionally, a good deal of research is devoted to the use of swine organs for 

transplantation in humans, and pre-transplant removal of anti-�-Gal antibodies is employed as a 

key step in this procedure (21). 

2.2.1 ABO-Incompatible Transplantation With Pre-Transplant Anti-A and Anti-B 
Removal 

a) ABO-Incompatible Kidney Transplantation 

ABO-incompatibility was recognized as a major risk factor in kidney transplantation 

during the early development of transplantation methodology (24). Starzl et al reported a series 

of 7 ABO-incompatible kidney transplants performed at the University of Colorado Medical 

Center, in which two grafts were lost due to hyperacute rejection and were explanted within 

several hours of transplantation (41). Five ABO-compatible, but not ABO-identical, kidney 

transplants were performed by the same group of investigators (4 type O grafts to type A 

recipients, 1 type A graft to a type AB recipient), and all of the grafts showed good early 

function (41). Wilbrandt et al reported a series of 12 ABO-incompatible kidney transplants 

performed at Cleveland Clinic, in which all of the grafts were lost within 19 months and 9 of the 

grafts were lost within 3 months (42). Six of the grafts never functioned and were explanted 

within 17 days. Post-explant examination revealed thrombosis of the renal artery in 9 of the 

grafts. Cook et al reported 25 ABO-incompatible kidney transplants performed accidentally at 

the University of California in Los Angeles (43). Twenty-four of 25 grafts were lost within one 

year of transplantation, and eight of those grafts were lost within 2 weeks of transplantation. 
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Slapak et al reported the first use of plasma exchange to reverse the rejection of an ABO-

incompatible kidney graft (44). A graft from a type A donor was accidentally implanted in a type 

O recipient, and the recipient experienced four episodes of rejection at 2 days, 17 days, 36 days, 

and 83 days post-transplant. During 3 of the rejection episodes, plasma exchange was performed 

daily for six consecutive days resulting in marked clinical improvement (decreased creatinine 

level and increased urine production). The graft was functioning at 20 months post-transplant. 

Slapak et al then deliberately implanted a type A kidney in a type O recipient, following two 

plasma exchange sessions to reduce the recipient’s anti-A antibody titer (45). The recipient had 

experienced no rejection episodes at 4 months post-transplant. 

Based on the experiences of Slapak and his colleagues, several groups of investigators 

performed ABO-incompatible kidney transplants following pre-transplant removal of anti-A and 

anti-B antibodies from the recipients’ blood. Between 1982 and 1986, Alexandre et al performed 

17 ABO-incompatible living-related donor kidney transplants at University Hospital Saint Luc in 

Belgium (46). Each recipient underwent pre-transplant plasma exchange and splenectomy, and 

15 grafts were functioning at 7 to 58 months post-transplant. Bannet et al performed 6 ABO-

incompatible living-related donor kidney transplants at the Albert Einstein Medical Center, using 

plasma perfusion through Biosynsorb A and B columns to remove anti-A and anti-B antibodies 

pre-transplant (47). (Biosynsorb A and B columns contain synthetic A and B antigens 

immobilized within silica beads, and are no longer commercially available (24).) Five grafts 

were functioning at 2 to 32 months post-transplant, although the anti-A and anti-B titers of each 

recipient returned to pre-transplant levels within two weeks of transplantation. Mendez et al used 

the same columns for pre-transplant anti-A and anti-B removal in a series of 6 ABO-

incompatible living-related donor kidney transplants performed at St. Vincent Medical Center 
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(48). In each case, the recipient underwent 3 to 5 antibody removal sessions during which whole 

blood was perfused through a Biosynsorb column for 3 to 4 hours. Transplantation was 

performed when the anti-A and anti-B titers were lower than 4. Five of the six grafts were 

functioning at 1 year post-transplant.  

Between 1989 and 1999, Toma et al performed 105 ABO-incompatible living donor 

kidney transplants at Tokyo Women’s Medical University in Japan (49). Before transplantation, 

the recipients’ anti-A and anti-B titers were reduced to 16 or lower via double filtration 

plasmapheresis and plasma perfusion through Biosynsorb A and B columns. At 1, 5, and 10 

years, the patient survival rates were 92%, 92%, and 89%, respectively, and the graft survival 

rates were 77%, 71%, and 51%, respectively. The investigators compared the ABO-incompatible 

patient and graft survival rates to the survival rates obtained in 620 ABO-compatible living 

donor kidney transplants performed at the same center during the same time period. At 1, 5, and 

10 years, the ABO-incompatible graft survival rates were significantly lower than the ABO-

compatible graft survival rates. (At 1, 5, and 10 years, the ABO-compatible graft survival rates 

were 95%, 80%, and 62%, respectively.) However, the investigators found no significant 

difference between the ABO-incompatible and ABO-compatible patient survival rates. The 

percentage of recipients who experienced acute rejection episodes was significantly higher in the 

ABO-incompatible group than in the ABO-compatible group, and the graft survival rates for 

ABO-incompatible recipients who experienced acute rejection episodes were significantly lower 

than the graft survival rates for ABO-incompatible recipients who did not experience acute 

rejection. In most of the ABO-incompatible recipients, the post-transplant anti-A and anti-B 

titers either remained low during the first few months post-transplant (75% of the recipients) or 

rose temporarily and fell spontaneously within several months post-transplant (12% of the 
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recipients) (50). However, in 9% of the recipients the titers rose rapidly post-transplant and the 

grafts were lost within 2 months. In the remaining 4% of the recipients, the titers rose slowly 

post-transplant and the grafts were lost within 1 year. Additionally, the graft survival rates for 

ABO-incompatible recipients with maximum pre-antibody removal anti-A and anti-B IgG titers 

greater than 128 were significantly lower than the graft survival rates of recipients with 

maximum pre-removal titers less than 16 or between 32 and 64 (51). The minimum pre-

transplant anti-A and anti-B IgG titers, and the maximum and minimum pre-transplant anti-A 

and anti-B IgM titers, did not correlate with graft survival rate. 

b) ABO-Incompatible Liver Transplantation 

ABO-incompatible liver transplants are sometimes performed when the recipient is in 

imminent danger of dying and an ABO-compatible graft is not available. Chui et al reported 7 

ABO-incompatible liver transplants performed at Royal Prince Alfred Hospital in Australia 

between 1986 and 1996 (52). All of the recipients presented with fulminant hepatic failure and 

had class 4 UNOS status (i.e. had life expectancies of seven days without transplantation). No 

attempt was made to reduce the recipients’ anti-A and anti-B titers pre-transplant. Two grafts 

were lost within 1 month and one was lost within 11 months, while 3 grafts were functioning 

well at 52 months. (One recipient died with a functioning graft.) Bjoro et al reported 10 ABO-

incompatible liver transplants performed in the Nordic countries (Denmark, Finland, Norway, 

and Sweden) between 1990 and 2001, again performed without pre-transplant reduction of the 

recipients’ anti-A and anti-B titers (53). The graft survival rate at 1 year was 30%, compared to a 

1-year graft survival rate of 75% for 143 ABO-identical grafts transplanted at the same centers. 

Recently, Hanto et al reported much better results in a series of 14 ABO-incompatible liver 

transplants performed between 1992 and 2001 at the University of Cincinnati Medical Center 
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(39). Each recipient underwent pre-transplant plasma exchange to reduce anti-A and anti-B titers, 

post-transplant plasma exchange to maintain low anti-A and anti-B titers for 2 weeks post-

transplant, and splenectomy. The 1 and 5-year graft survival rates were 71.4% and 61.2%, 

respectively, and none of the grafts were lost due to rejection (graft loss was only due to recipient 

death unrelated to graft rejection). At 2 weeks post-transplant, 7 recipients had anti-A or anti-B 

IgG titers greater then 16 but did not experience antibody-mediated rejection. The investigators 

speculated that these recipients were exhibiting accommodation, a phenomenon in which a graft 

is not rejected and continues to function despite the presence of anti-graft antibodies and 

complement (54). 

c) ABO-Incompatible Bone Marrow Transplantation 

In contrast to ABO-incompatible solid organ transplantation, ABO-incompatible bone 

marrow transplantation is performed regularly (55). In bone marrow transplantation, ABO-

incompatibility is characterized as minor, major, or bidirectional. Minor ABO-incompatible bone 

marrow transplants involve the transplant of marrow from type O donors into type A, B, or AB 

recipients; in this situation, donor-derived antibodies and B-cells may bind to A and B antigens 

on recipient cells. Major ABO-incompatible bone marrow transplants involve the transplant of 

marrow from type A, B, or AB donors into type O recipients; in this situation, recipient-derived 

antibodies may bind to A and B antigens on donor cells. Finally, bidirectional ABO-

incompatible bone marrow transplants involve the transplant of marrow from type A donors into 

type B recipients or from type B donors into type A recipients; in this situation, both of the 

above-described activities may take place. To facilitate minor ABO-incompatible bone marrow 

transplants, donor plasma is removed from the bone marrow pre-transplant via centrifugation. To 

facilitate major ABO-incompatible bone marrow transplants, recipients either undergo pre-
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transplant plasma exchange or the donor marrow is depleted of red blood cells pre-transplant. 

Both of the above-described procedures are performed to facilitate bidirectional bone marrow 

transplants. 

Stussi et al reported a series of 361 ABO-identical, 98 minor ABO-incompatible, 96 

major ABO-incompatible, and 17 bidirectional ABO-incompatible bone marrow transplants 

performed at University Hospital of Zurich and University Hospital of Basel in Switzerland 

between 1980 and 1998 (55). The investigators found no significant differences in the incidence 

of moderate to severe graft-versus-host disease among the four groups. Additionally, there was 

no effect of ABO-incompatibility on the relapse rate or on the time to platelet and neutrophil 

engraftment. However, bidirectional ABO-incompatible recipients had significantly higher 

mortalities than the other 3 groups of recipients.   

2.2.2 Xenotransplantation With Pre-Transplant Anti-�-Gal Removal 

Current efforts in xenotransplantation are focused on the transplantation of swine organs 

into humans (21). Non-primates with suitably sized organs, such as pigs, are available in large 

numbers and do not engender the risk of lethal virus transmission associated with transplantation 

of non-human primate organs into humans. As discussed in section 2.2, anti-�-Gal antibodies 

mediate hyperacute rejection of grafts from non-primate mammals implanted in humans, 

chimpanzees, or baboons. (Baboons are frequently used in animal models of pig-to-human 

xenotransplantation.) Several groups have used plasma exchange or blood or plasma perfusion 

through �-Gal-containing immunoadsorption columns to remove anti-�-Gal antibodies from 

baboon blood or plasma. Kozlowski et al performed in vivo removal of baboon anti-�-Gal 

antibodies by perfusing whole blood or plasma through columns containing synthetic �-Gal 
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antigens immobilized within silica beads (56). Post-immunoadsorption anti-�-Gal IgM and IgG 

antibody levels were less than 20% of pre-immunoadsorption levels using either whole blood or 

plasma perfusion, but whole blood perfusion was associated with significant hemolysis and the 

need for post-immunoadsorption red blood cell transfusions. Taniguchi et al performed in vivo 

removal of baboon anti-�-Gal antibodies by perfusing plasma through columns containing 

synthetic �-Gal antigens immobilized within macroporous glass beads (57). Anti-pig IgM and 

IgG antibody levels were reduced significantly via immunoadsorption, but rebounded within 1 

week of the final immunoadsorption session despite pharmacologic immunosuppression and 

splenectomy. Prior to pig-to-baboon kidney transplants, Kobayashi et al used double filtration 

plasmapheresis (DFPP) to reduce the baboons’ anti-pig IgM and IgG antibody levels to below 

15% of pre-DFPP levels (58). Hyperacute rejection of the pig kidneys was prevented, but the 

grafts were lost within 1 week due to severe humoral rejection. Immunohistochemical 

examination of the explanted grafts revealed IgM and IgG antibodies bound to the graft 

endothelial cells. Cooper et al perfused baboon blood through donor-specific pig kidneys to 

remove baboon anti-�-Gal antibodies prior to pig-to-baboon heart transplants (7). None of the 

transplanted hearts functioned for longer than 5 days.  

Unfortunately, acute loss of the graft due to antibody-mediated rejection is a common 

outcome in pig-to-primate transplants, despite prevention of hyperacute rejection via pre-

transplant anti-�-Gal removal or complement inhibition (59). Currently, several groups have 

focused on the production of transgenic pigs that do not express �-Gal antigens. Lai et al 

produced miniature pigs with 1 allele of the �-1,3galactosyltransferase locus knocked out (60), 

and Phelps et al produced pigs with both alleles knocked out (61). (The enzyme �-

1,3galactosyltransferase adds the terminal Gal�1-3 residues to oligosaccharide precursors to 
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form the �-Gal antigens (62).) If consistent production of healthy pigs completely lacking �-Gal 

antigens is achieved, organs from these pigs may be used for pig-to-primate transplantation and 

pre-transplant removal of anti-�-Gal may be unnecessary. 

2.2.3 Implantation of HLA-Incompatible Allografts in Pre-Sensitized Recipients With 
Pre-Transplant Anti-HLA Removal 

Pre-sensitized organ transplantation candidates may wait years for a suitable donor organ 

to become available. (A suitable organ would be one from a donor who does not express the 

HLA antigens to which the recipient’s anti-HLA antibodies bind.) Pre-transplant anti-HLA 

removal has been used to de-sensitize these candidates and expedite transplantation. Palmer et al 

decreased the anti-HLA titers and panel-reactive antibody (PRA) scores in 7 kidney transplant 

recipients by performing plasma perfusion through immunoadsorption columns containing 

immobilized protein A (63). Each patient had a positive cross-match with his or her donor prior 

to immunoadsorption, and a negative cross-match post-immunoadsorption. One graft never 

functioned and another was lost at 1 year post-transplant, but the remaining 5 grafts were 

functioning at 3 to 23 months post-transplant. Ross et al performed plasma perfusion through 

protein A-containing immunoadsorption columns to reduce the PRA scores of 5 kidney 

transplant candidates whose scores had been greater than 80% for 1.75 to 5 years (64). One 

patient lost the graft at 8 weeks post-transplant, but the other 4 patients had functioning grafts at 

3 to 34 months post-transplant. Most recently, surgeons at Johns Hopkins Hospital in Baltimore 

instituted a protocol in which plasma exchange is used to de-sensitize kidney transplant 

candidates who have positive cross-matches to living donors (40). Eighteen kidney transplant 

recipients underwent this procedure between 1998 and 2001, and on average 3 plasma exchange 

treatments were required to attain a negative cross-match between each recipient and his or her 
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donor. One graft was lost due to donor non-compliance, but the other 17 grafts were functioning 

at 1 to 44 months post-transplant. 

2.3 Self-Antigen-Binding Antibodies in Autoimmune Disease 

Autoimmune diseases involve antibody-mediated or cell-mediated immune responses 

directed against self-antigens (1). Autoimmune diseases are classified as organ-specific (directed 

against a self-antigen isolated within a single organ) or systemic (directed against one or several 

self-antigens distributed within multiple organs and tissues). Examples of organ-specific 

autoimmune diseases include myasthenia gravis, Goodpasture syndrome, and idiopathic 

thrombocytopenic purpura (ITP), while examples of systemic autoimmune diseases include 

rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) (Table 2-2). The American 

Association of Blood Banks (AABB) and the American Society for Apheresis (ASFA) have 

classified autoimmune diseases based on the effectiveness of therapeutic apheresis (plasma 

exchange or immunoadsorption) in treating the diseases (65). For category I diseases, such as 

myasthenia gravis and Goodpasture syndrome, therapeutic apheresis is standard and acceptable 

as a primary therapy. For category II diseases, such as hemophilia with inhibitors, ITP, and RA, 

therapeutic apheresis is generally accepted but is considered to be supportive to other primary 

treatments. For category III diseases, such as SLE and hemolytic disease of the newborn, 

existing evidence is insufficient to establish the efficacy of therapeutic apheresis. 

Myasthenia gravis (66) and Goodpasture syndrome (67) are customarily treated using 

plasma exchange in addition to immunosuppression and other pharmacological treatments. Anti-

acetylcholine receptor antibodies mediate myasthenia gravis; these antibodies bind to 

acetylcholine receptors (AchR) on the motor end plates of muscles (Table 2-2) (1). Anti-

AchR/AchR binding inhibits muscle activation and induces complement-mediated destruction of 
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acetylcholine receptors, and myasthenia gravis patients experience varying degrees of skeletal 

muscle weakness involving the facial, limb, and respiratory muscles (68). Plasma exchange is 

most often used in patients experiencing myasthenic crisis, characterized by acute weakness of 

the respiratory muscles and often requiring mechanical ventilation (68). In a retrospective study 

of 27 myasthenic crisis patients treated with plasma exchange, over 70% of the patients were 

extubated within 2 weeks (69). Benny et al used plasma perfusion through protein-A containing 

immunoadsorption columns to treat 12 myasthenia gravis patients, and 9 patients demonstrated 

improvement in symptom scores following treatment (3). During each immunoadsorption 

procedure approximately 8.4 L of plasma was treated, and each patient underwent 2 or 3 

procedures. The mean percent reduction in anti-AchR titer achieved via immunoadsorption was 

68%. 

Anti-glomerular basement membrane antibodies mediate Goodpasture syndrome; these 

antibodies bind to type IV collagen within the basement membranes (GBM) of the kidney 

glomeruli and the lung alveoli (Table 2-2) (2,70). Anti-GBM/GBM binding causes 

glomerulonephritis and lung hemorrhage. Patients with Goodpasture syndrome typically undergo 

daily plasma exchange treatments for several weeks using 5% albumin as the replacement fluid 

(67). Levy et al reported the long-term outcome for 71 Goodpasture syndrome patients treated 

using plasma exchange and immunosuppression (71). In patients with pre-treatment creatinine 

concentrations less than 500 �mol/L, the patient and renal function survival rates were 100% and 

95%, respectively, at 1 year post-treatment, and 94% and 94%, respectively, at 5 years post-

treatment. In patients with pre-treatment creatinine concentrations greater than 500 �mol/L, the 

patient and renal function survival rates were 83% and 82%, respectively, at 1 year post-

treatment, and 80% and 50%, respectively, at 5 years post-treatment.  
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Table 2-2 Antibodies Mediating Autoimmune Diseases 

Disease Antigens/Tissues 
Affected Antibodies 

Antibody 
Removal 

Indicated? 

AABB and 
ASFA 

Category 

Myasthenia gravis Acetylcholine 
receptors (AchR) Anti-AchR Yes I 

Goodpasture 
syndrome 

Glomerular 
basement 
membranes 
(GBM) 

Anti-GBM Yes I 

Hemophilia with 
inhibitors 

Factor VIII 
Facto IX 

Anti-Factor VIII 
Anti-Factor IX Yes II 

Idiopathic 
thrombocytopenic 
purpura 

Platelets Anti-platelet Yes II 

Rheumatoid 
arthritis IgG antibodies 

Anti-IgG 
(rheumatoid 
factors) 

Yes II 

Systemic lupus 
erythematosus 

DNA 
Histone 
Red blood cells 
(RBC) 
Platelets 

Anti-DNA 
Anti-histone 
Anti-RBC 
Anti-platelet 

Possibly III 

Hemolytic disease 
of the newborn 

A antigens 
B antigens 

IgG anti-A 
IgG anti-B Possibly III 
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Hemophilia with inhibitors (72), ITP (73), and RA (73) are treated using plasma 

perfusion through protein A-containing immunoadsorption columns in addition to 

immunosuppression and other pharmacological treatments. The Immunosorba® protein A-

containing immunoadsorption column (Fresenius HemoCare, Inc.) is FDA-approved for the 

treatment of hemophilia with inhibitors, and the Prosorba® protein A-containing column 

(Fresenius HemoCare, Inc.) is FDA-approved for the treatment of ITP and RA. Anti-Factor VIII 

and anti-Factor IX antibodies mediate hemophilia with inhibitors; these antibodies bind to 

infused Factor VIII and Factor IX in hemophilia patients and render coagulation factor 

replacement therapy ineffective (Table 2-2) (72). The Malmö Treatment Model for the induction 

of tolerance in hemophilia (with inhibitors) patients was developed in the early 1980s, and 

involves plasma perfusion through protein A-containing immunoadsorption columns and 

administration of cyclophosphamide and intravenous immunoglobulin (74). Freiburghaus et al 

reported that 16 of 23 hemophilia patients treated with this protocol achieved tolerance (defined 

as the elimination of anti-Factor VIII and anti-Factor IX antibodies and the normalization of the 

half-lives of infused Factor VIII and Factor IX) (74). Jansen et al used plasma perfusion through 

immunoadsorption columns containing immobilized anti-human immunoglobulin to treat 10 

hemophilia (with inhibitors) patients (75). The anti-Factor VIII antibody titer was reduced by 50-

97% following each immunoadsorption session. Seven patients achieved remission, defined by 

sustained absence of anti-Factor VIII antibodies. 

Anti-platelet antibodies mediate idiopathic thrombocytopenic purpura (ITP); anti-

platelet/platelet binding causes phagocytosis of platelets by macrophages bearing Fc� receptors 

(Table 2-2). Snyder et al used plasma perfusion through Prosorba® columns to treat 72 ITP 

patients with pre-immunoadsorption platelet counts less than 50,000/�l (5). In 18 patients 
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platelet counts increased to greater than 100,000/�l, and in 15 patients platelet counts increased 

to between 50,000/�l and 100,000/�l. Christie at al used the same columns to treat 10 ITP 

patients, and platelet counts in 6 patients increased to twice the pre-immunoadsorption counts 

(76). 

Anti-IgG antibodies of IgM isotype (rheumatoid factors) mediate rheumatoid arthritis 

(RA) (Table 2-2) (1). Anti-IgG/IgG complexes are deposited in the joints of RA patients, 

causing chronic inflammation and synovial hypertrophy. Felson et al performed a randomized, 

controlled, double-blind trial to evaluate the efficacy of plasma perfusion through Prosorba® 

columns in the treatment of refractory RA (77). Thirty-two percent of the Prosorba®-treated 

patients experienced improvement as defined by the American College of Rheumatology (ACR) 

response criteria, compared to only 11.4% of the control patients. 

An array of self-antigen-binding antibodies of different specificities mediate systemic 

lupus erythematosus (SLE), and SLE patients experience diverse symptoms ranging from non-

specific symptoms such as fatigue and fever to organ-specific symptoms such as arthritis, skin 

rash, glomerulonephritis, and pleurisy (Table 2-2) (1,73). Unfortunately, most controlled trials 

evaluating the efficacy of therapeutic apheresis in the treatment of SLE have shown no clinical 

benefit (73). Wei at al performed a randomized, controlled, double-blind trial to evaluate the 

efficacy of plasma exchange in the treatment of mild SLE (78). Twenty patients underwent either 

6 4-L plasma exchanges or 6 control procedures over a 2-week period. Although IgG, IgM, and 

IgA antibody levels were reduced by the plasma exchanges, patients in the control and plasma 

exchange groups experienced the same degree of clinical improvement. Lewis et al performed a 

randomized, controlled trial comparing the efficacy of standard therapy (prednisone and 

cyclophosphamide) to that of standard therapy plus plasma exchange in the treatment of severe 
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SLE (79). Plasma exchange did not reduce the incidence of renal failure or death. To date, 

randomized, controlled trials evaluating the efficacy of immunoadsorption in SLE treatment have 

not been reported, but several anecdotal studies have shown promising results. Braun et al used 

plasma perfusion through protein A-containing Immunosorba® columns to treat 8 SLE patients 

who were resistant to standard therapy (80). Seven patients achieved remission quantified by a 

decrease in the SLE activity measure (SLAM), and 2 patients who had dialysis-dependent renal 

insufficiency pre-immunoadsorption recovered renal function post-immunoadsorption. Using the 

same columns, Palmer et al treated 10 patients with rapidly progressive glomerulonephritis and 

acute renal failure, and 9 patients regained renal function post-immunoadsorption (81).  

2.4 Therapeutic Antibody Removal 

In the United States, therapeutic antibody removal is usually achieved non-selectively, 

via plasma exchange, or semi-selectively, via plasma perfusion through immunoadsorption 

columns containing immobilized protein A (65). Immunoadsorption columns containing 

immobilized anti-human immunoglobulin are also commercially available and are used outside 

the United States (82). In addition, several groups of investigators have developed bead-based 

and membrane-based antibody filters that use immobilized antigens to achieve selective antibody 

removal. Each of these antibody removal methods will be discussed in more detail in the 

following sections. 

2.4.1 Plasma Exchange 

Plasma exchange involves withdrawal of venous blood from a patient, separation of the 

plasma from the cellular blood components via centrifugation or membrane filtration, and return 

of the cellular blood components to the patient along with albumin solution or donor plasma as 
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replacement fluid (9). Three to 4.5 L of plasma (approximately 1 to 1.5 times the total volume of 

plasma in an average human) is removed and exchanged with replacement fluid during a typical 

plasma exchange session, and sessions are generally performed 2-4 times per week. The 

preferred replacement fluid is 5% albumin, but donor plasma is used for patients at risk of 

bleeding or requiring daily plasma exchanges for several weeks. Continuous flow centrifuges 

operate at inlet blood flow rates of 60-110 ml/min and outlet plasma flow rates of 35-60 ml/min, 

and hence 3 L of plasma can be removed within 90 min (83). Centrifuges separate blood 

components according to their specific gravities, and the concentration of pathogenic antibodies 

in the removed plasma is approximately equal to the concentration in the plasma before 

plasma/cell separation. Membrane-based plasma separators operate at inlet blood flow rates of 

50-200 ml/min and outlet plasma flow rates of 15-50 ml/min, and hence 3 L of plasma can be 

removed within 100 min (84). Membrane-based plasma filters separate blood components based 

on the ability of each component to permeate the membranes, and some proteins (especially high 

molecular weight proteins like IgM antibodies) may be present at lower concentrations in the 

removed plasma than in the plasma before plasma/cell separation (84). 

2.4.2 Protein A Columns 

Two protein A-containing immunoadsorption columns, the Prosorba® column and the 

Immunosorba® column, are commercially available through Fresenius HemoCare (Redmond, 

WA) (85). As discussed in section 2.3, the columns are FDA-approved for the treatment of 

rheumatoid arthritis and idiopathic thrombocytopenic purpura (Prosorba®) and hemophilia with 

inhibitors (Immunosorba®). The Prosorba® column contains 200 mg of purified protein A 

immobilized within 123 g of silica beads, and one Prosorba® column can bind about 0.6 g of 

IgG antibodies at saturation (12). One treatment consists of perfusing up to 2 L of plasma 
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through the column at a flow rate of 10-20 ml/min. A single treatment using a Prosorba® column 

causes a small reduction in the concentration of IgG antibodies in the patient’s blood, and the 

efficacy of Prosorba®-based treatment is thought to be based on the removal of immune 

complexes and on subtle immunomodulatory effects rather than on the removal of IgG 

antibodies (10). The recommended course of treatment for RA is one Prosorba® perfusion per 

week for 12 weeks, and the recommended course of treatment for ITP is 2-3 Prosorba® 

perfusions per week for 2-3 weeks (86). 

The Immunosorba® column contains purified protein A immobilized within Sepharose® 

beads following cyanogen bromide activation of the beads, and one Immunosorba® column can 

bind about 1.2 g of IgG antibodies at saturation (12). Two Immunosorba® columns are used 

intermittently during each treatment; while plasma is perfused through one column, adsorbed 

antibodies are eluted from the other to prepare it for re-use when the first column becomes 

saturated. One treatment consists of perfusing up to 10 L of plasma through the columns at a 

flow rate of 10-20 ml/min (85). A single treatment using Immunosorba® columns causes a 

substantial reduction in the concentration of IgG antibodies in the patient’s blood, due to the 

“unlimited” capacity of the columns and the large volume of plasma treated (10). A set of 2 

Immunosorba® columns can be re-used up to 20 times by the same patient (10). 

2.4.3 Anti-Human Immunoglobulin Columns 

Ig-Therasorb®, an immunoadsorption column containing immobilized anti-human 

immunoglobulin, is commercially available through PlasmaSelect (Teterow, Germany) (82). The 

anti-human immunoglobulin is obtained by immunizing sheep with human antibodies, and Ig-

Therasorb® columns bind human IgG (all subclasses), IgM, and IgA antibodies. Each column 

contains anti-human immunoglobulin immobilized within 150 ml of Sepharose® beads, and one 
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Ig-Therasorb® column can bind approximately 4 g of IgG antibodies at saturation (12). Like the 

Immunosorba® system, the Ig-Therasorb® system employs 2 columns that are used 

intermittently during each treatment. One treatment consists of perfusing up to 8 L of plasma 

through the columns at a flow rate of 20-25 ml/min (75). 

2.4.4 Bead-Based Selective Antibody Filters 

Several groups of investigators have developed bead-based antibody filters that use 

immobilized antigens to achieve selective antibody removal (Table 2-3). As discussed in section 

2.2.1, Biosynsorb columns (no longer available), containing synthetic A and B antigens 

immobilized within silica beads, were developed for the removal of anti-A and anti-B antibodies 

from plasma and were used to facilitate ABO-incompatible kidney transplants (48,49,87). Each 

column contained 75 g of silica beads with 0.7 �mol of synthetic A or B antigens immobilized 

within each gram of beads (88). A thin coating of porous polystyrene was applied to the beads to 

allow whole blood perfusion of the columns (88). For the same application, Rieben at al 

developed columns called BioSorbent A and BioSorbent B, containing synthetic A and B 

antigens immobilized within macroporous glass beads (89). As a preliminary step toward the 

development of columns for selective anti-HLA removal, DeVito et al immobilized human 

HLA-A2 antigens within Sepharose® beads and showed that incubation of the beads with 

plasma significantly reduced anti-HLA-A2 titers in plasma samples from 3 individuals (90). 

Human HLA-A2 antigens were isolated from human spleen cells and purified using immobilized 

monoclonal anti-HLA-A2 antibodies, but the authors surmised that obtaining large quantities of 

HLA antigen variants in the future may be simpler due to advances in recombinant DNA 

technology. 
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Table 2-3 Bead-Based Selective Antibody/Ligate Filters 

Immobilized 
Antigen/Ligand 

Removed 
Antibody/Ligate Matrix Blood/Plasma 

Compatible References 

A 
B 

Anti-A 
Anti-B Silica beads Blood 

Plasma (48,49,87) 

A Anti-A Macroporous 
glass beads Plasma (89) 

HLA Anti-HLA Sepharose® Plasma (90) 

�-Gal Anti-�-Gal Sepharose® Plasma (91) 

�-Gal Anti-�-Gal Macroporous 
glass beads Plasma (57) 

�-Gal Anti-�-Gal Silica beads Blood 
Plasma (8) 

AchR Anti-AchR Not reported Plasma (92) 

Heparinase Heparin Agarose Blood (93) 

Anti-�2-
microglobulin �2-microglobulin Agarose Blood (94) 

 

 30



 

Several groups have focused on developing bead-based filters for selective anti-�-Gal 

removal. Gerber at al immobilized synthetic �-Gal disaccharide and/or trisaccharide antigens 

within Sepharose® beads via polyacrylamide spacers, and found that beads containing a mixture 

of immobilized disaccharides and trisaccharides achieved the best removal of anti-�-Gal from 

human plasma (91). Taniguchi et al immobilized synthetic �-Gal disaccharide antigens within 

macroporous glass beads via polyacrylamide spacers, and used columns containing these beads 

to remove anti-pig antibodies from baboon plasma in vivo (57). Xu et al immobilized 2 different 

synthetic �-Gal trisaccharides within silica beads, and found that beads containing trisaccharide 

type 2 (Gal�1-3Gal�1-4GlcNAc) removed more anti-�-Gal from human plasma than beads 

containing trisaccharide type 6 (Gal�1-3Gal�1-4Glc) (8). 

Takamori et al synthesized part of the �-subunit of the human acetylcholine receptor 

(AchR) and immobilized the synthetic peptide within beads (matrix material not reported) for the 

selective removal of anti-AchR antibodies from human plasma (92). Treatment of myasthenia 

gravis patients using plasma perfusion through AchR peptide-containing columns reduced the 

patients’ anti-AchR antibody titers and caused clinical improvement in the patients. 

Ameer et al developed a novel device for blood purification that allows both plasma/cell 

separation and bead-based plasma treatment to occur within a single device (93-95). The vortex-

flow plasmapheretic reactor (VFPR) consists of a solid rotating inner cylinder inside a hollow 

stationary outer cylinder, and blood flows through the annular compartment between the two 

cylinders. A microporous membrane divides the annular compartment into an inner cell 

compartment and an outer plasma compartment. Blood enters the VFPR and plasma flows across 

the membrane into the plasma compartment, which contains either heparinase or anti-�2-

microglobulin immobilized within agarose beads. After flowing through the plasma 
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compartment, the treated plasma is recombined with the cellular blood components and returned 

to the patient. The rotating inner cylinder creates Taylor vortices that fluidize the beads. The 

heparinase-containing VFPR is intended for heparin neutralization, and the anti-�2-

microglobulin-containing VFPR is intended for selective removal of �2-microglobulin.  

2.4.5 Membrane-Based Selective Antibody Filters 

Several groups of investigators have developed membrane-based antibody filters that use 

immobilized antigens to achieve selective antibody removal (Table 2-4). Our own group 

immobilized A and B antigens on the inner fiber walls of cellulose hollow fiber dialysis 

membranes to produce filters for anti-A and anti-B removal (14). Filters with 0.9 m2 of blood 

contacting surface area significantly reduced the anti-A and anti-B titers of up to 900 ml of type 

O whole human blood. Karoor et al immobilized synthetic �-Gal trisaccharide antigens on the 

inner fiber walls of cellulose hollow fiber dialysis membranes, and within the pores of 

polysulfone and nylon hollow fiber microfiltration membranes, to produce filters for anti-�-Gal 

removal (96). Nylon microfiltration membranes containing �-Gal antigens immobilized via 

spacer molecules had an anti-�-Gal IgM-binding capacity of 89 mg of IgM per ml of membrane 

or about 2.1 �g of IgM per cm2 of internal surface area. Singh et al immobilized insulin on the 

inner fiber walls of cellulose hollow fiber dialysis membranes to produce filters for anti-insulin 

removal, and removed up to 98% of anti-insulin antibodies from 200 ml samples of human 

plasma (the surface area of the filters was not reported) (16). Larue at al immobilized human IgG 

and human serum albumin (HSA) on the inner fiber walls of cellulose hollow fiber dialysis 

membranes to produce filters for anti-IgG and anti-HSA removal (17). To demonstrate the 

selectivity of antibody removal by the filters, the filters were used to remove anti-IgG and anti-
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HSA antibodies from a dog immunized with human IgG and HSA. The IgG-containing filter, 

used first, caused the anti-IgG titer to fall from 128 to 2 but caused no reduction in the anti-HSA 

titer. The HSA-containing filter, used second, caused the anti-HSA titer to fall from 256 to 2. 

To produce filters for IgG removal, Klein et al immobilized protein A within the pores of 

polysulfone hollow fiber membranes after coating the membranes with hydroxyethylcellulose 

(HEC) (97). At saturation, the membranes bound 16 mg of IgG per ml of membrane or about 1.3 

�g of IgG per cm2 of internal surface area. Similarly, Charcosset et al immobilized protein A 

within the pores of polysulfone/HEC hollow fiber membranes (98). The membranes bound 8.8 

mg of IgG per ml of membrane or about 0.5 �g of IgG per cm2 of internal surface area. 

Two groups have developed heparin filters comprised of hollow fiber dialysis membranes 

with heparin-binding ligands immobilized on the inner fiber walls: Yang et al used immobilized 

protamine to remove heparin from canine blood during ex vivo studies (18), and Ma et al used 

immobilized poly(L-lysine) to remove heparin from phosphate-buffered saline and bovine blood 

(19). The heparin-binding capacity of the poly(L-lysine)-containing dialysis membranes was 

0.54 �g/cm2.  

Soltys et al immobilized anti-low-density lipoprotein (LDL) antibodies within the pores 

of microporous polyvinylidene diflouride flat sheet membranes to produce filters for LDL 

removal (99). The LDL-binding capacity of the membranes was 2.0 mg of LDL per ml of 

membrane or about 0.18 �g of LDL per cm2 of internal surface area. 
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Table 2-4 Membrane-Based Selective Antibody/Ligate Filters 

Immobilized 
Antigen/Ligand 

Removed 
Antibody/Ligate 

Membrane 
Material/Type 

Blood/Plasma 
Compatible References 

A 
B 

Anti-A 
Anti-B Cellulose/Dialysis Blood (14,15) 

�-Gal Anti-�-Gal 

Cellulose/Dialysis 
Polysulfone/ 
Microfiltration 
Nylon/ 
Microfiltration 

Blood (96) 

Insulin Anti-insulin Cellulose/Dialysis Blood (16) 

Human albumin 
(HSA) Anti-HSA Cellulose/Dialysis Blood (17) 

Protein A IgG Polysulfone/ 
Microfiltration Not reported (97) 

Protein A IgG Polysulfone/ 
Microfiltration Not reported (98) 

Protamine Heparin Cellulose/Dialysis Blood (18) 

Poly(L-lysine) Heparin Poly(ethylene-
vinyl alcohol) Blood (19) 

Anti-low-density 
lipoprotein (LDL) LDL Polyvinylidene 

diflouride Plasma (99) 
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2.5 Specific Antibody Filters (SAFs) 

The specific antibody filters (SAFs) under development in our laboratory are comprised 

of hollow fiber dialysis membranes with antigens, specific for targeted antibodies, immobilized 

on the inner fiber walls (14,15). Each SAF contains several thousand fibers connected in parallel, 

and is similar in construction to a hollow fiber hemodialyzer. For extracorporeal therapeutic 

antibody removal, the SAF will be incorporated within a simple perfusion loop similar to the 

loops used for hemodialysis (Figure 2-3). Blood will be withdrawn from the patient, perfused 

through the SAF, and returned to the patient. As blood flows through the fiber lumens, the 

targeted antibodies will bind to the immobilized antigens and become trapped within the SAF. 

Separation of the plasma from the cellular blood components will not be required. The 

parameters relevant to SAF-based antibody removal, and their characteristic magnitudes, are 

listed in Table 2-5. 

SAF:
Number of fibers: N
Length: L
Inner radius: a
Binding capacity: csi

Q

Q

Patient:
Blood volume: V
Ab concentration: cbl
Pre-removal Ab concentration: cbli

SAF:
Number of fibers: N
Length: L
Inner radius: a
Binding capacity: csi

Q

Q

Patient:
Blood volume: V
Ab concentration: cbl
Pre-removal Ab concentration: cbli

SAF:
Number of fibers: N
Length: L
Inner radius: a
Binding capacity: csi

Q

QQ

Patient:
Blood volume: V
Ab concentration: cbl
Pre-removal Ab concentration: cbli  

Figure 2-3 Schematic depicting SAF-based therapeutic 
antibody removal. Ab: antibody. 
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The clinical usefulness of SAF-based antibody removal will be assessed based on the 

post-removal concentration of self-antigen-binding or donor-specific antibodies in the patient’s 

blood (compared to the pre-removal concentration) and the length of time required to accomplish 

the concentration reduction, assuming that the SAF is appropriately biocompatible and non-

toxic. As discussed in Chapter 1.0, the primary focus of the research reported in this dissertation 

is to identify the primary mechanisms that control antibody transport within the SAF, and to use 

this information to guide the choice of design and operational parameters that maximize the 

SAF-based antibody removal rate (and hence minimize the length of time required for SAF-

based antibody removal). In Chapters 4.0 and 5.0, we will describe the analytical and 

experimental studies we performed to approach these goals. To date we have not performed 

extensive studies aimed at maximizing the SAF antibody-binding capacity (and hence 

minimizing the post-removal blood antibody concentration), although we have performed a 

“proof of concept” study (reported in Chapter 3.0) showing that a SAF containing immobilized 

A and B blood group antigens can remove a significant fraction of the anti-A and anti-B 

antibodies from about 1 L of whole human blood. 

However, based on the expected magnitudes of the SAF antibody-binding capacity, the 

pre-removal concentration of pathogenic antibodies in the patient’s blood, and the 

antibody/antigen equilibrium dissociation constant, we can estimate the post-removal blood 

antibody concentration for a SAF with a reasonable blood-contacting surface area.  Since 

antibody/antigen binding is reversible, during a SAF-based antibody removal session the 

concentration of pathogenic antibodies in the patient’s blood will fall, and the concentration of 

antibodies bound to the SAF fibers will rise, until the rate of antibody/antigen association is 

equal to the rate of antibody/antigen dissociation (i.e. until equilibrium is reached). The 
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Langmuir adsorption isotherm equation relates the bound antibody concentration at equilibrium 

to the blood antibody concentration at equilibrium (107): 
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where cb
eq (�g/cm2) is the bound antibody concentration at equilibrium, cbl

eq (�g/ml) is the blood 

antibody concentration at equilibrium, cs
i (�g/cm2) is the antibody-binding capacity of the SAF 

(defined as the mass of antibodies bound to the SAF fibers at saturation per unit of blood 

contacting surface area), and Kd (�g/ml) is the antibody/antigen equilibrium dissociation 

constant. The concentration of bound antibodies at equilibrium can be expressed in terms of the 

pre-removal blood antibody concentration (cbl
i) and the equilibrium blood antibody 

concentration: 
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where V (ml) is the patient’s total blood volume and SA (cm2) is the blood-contacting surface 

area of the SAF.  Substituting equation (2-2) into equation (2-1), we can solve for cbl
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We can use equation (2-3) to estimate the ratio of the post-removal to the pre-removal 

blood antibody concentration, for a given pre-removal blood antibody concentration, SAF 

antibody-binding capacity, SAF surface area, and antibody/antigen equilibrium dissociation 

constant. To use equations (2-1) and (2-3) we must assume that the populations of antibodies and 

immobilized antigens are homogeneous, so that Kd is the same for every antibody/antigen pair. 

Clinically, the antibody population will be polyclonal and hence heterogeneous, and the 
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population of immobilized antigens will be heterogeneous if the immobilization technique allows 

multiple orientations of the immobilized antigens. We must also assume that the time required 

for a substantial increase in the blood antibody concentration due to antibody synthesis and 

antibody transport from the extravascular to the intravascular compartment is small compared to 

the time required to conduct the antibody removal session. This assumption has been validated 

by comparison of the measured percent removals of IgG, IgM, and IgA antibodies during plasma 

exchange to the percent removals predicted when antibody synthesis and extravascular to 

intravascular antibody transport are neglected (108). 

We used equation (2-3) to estimate the ratio of the post-removal to the pre-removal blood 

antibody concentration, as a function of the pre-removal concentration, for a patient treated using 

a SAF with a surface area of 5 m2 and an antibody-binding capacity of 1 �g/cm2 (Figure 2-4). 

An equilibrium dissociation constant of 1.5 �g/ml was used based on the reported dissociation 

constants for antibody/antigen systems with either the antibodies or the antigens immobilized 

(Table 2-5) (1,106,107). We chose 1 �g/cm2 as an order of magnitude estimate of the antibody-

binding capacity of the SAF, since the approximate surface concentration of a monolayer of IgG 

molecules is 0.6 �g/cm2 (101,102), and since several investigators have developed affinity 

membranes with antibody-binding capacities between 0.5 and 2 �g/cm2 (2.4.5) (96-98). 

Clinically, the pre-removal blood antibody concentration will most likely lie between 0.5 and 70 

�g/ml, based on the reported concentrations of anti-�-Gal antibodies in human and baboon blood 

(56,96) and anti-malaria antibodies in human blood (104) (Table 2-5).  

For patients with pre-removal blood antibody concentrations less than 10 �g/ml, the 

estimated post-removal blood antibody concentration will be less than 30% of the pre-removal 

concentration, assuming that the antibody removal session continues until equilibrium is reached 
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(Figure 2-4). However, for patients with pre-removal concentrations greater than 10 �g/ml, the 

estimated post-removal concentration will be between 30% and 90% of the pre-removal 

concentration. To treat these patients, we may need to use 2 SAFs intermittently during each 

antibody-removal session, perfusing the patient’s blood through one SAF while bound antibodies 

are eluted from the other to prepare it for re-use when the first SAF becomes saturated. This 

technique is currently used in the Immunosorba® and Ig-Therasorb® antibody removal systems 

(12), but may be more difficult to use in the SAF system since the SAF will need to be emptied 

of whole blood (instead of plasma) before the antibodies are eluted. 

We also used equation (2-3) to estimate the ratio of the bound antibody concentration at 

equilibrium to the antibody-binding capacity of the SAF, as a function of the pre-removal blood 

antibody concentration (again for a patient treated using a SAF with a surface area of 5 m2 and an 

antibody-binding capacity of 1 �g/cm2, and for an antibody/antigen equilibrium dissociation 

constant of 1.5 �g/ml) (Figure 2-5). For patients with pre-removal blood antibody 

concentrations less than 1.5 �g/ml (i.e. less than Kd), the concentration of bound antibodies at 

equilibrium is small compared to the antibody-binding capacity of the SAF. For patients with 

pre-removal blood antibody concentrations greater than Kd, the concentration of bound 

antibodies at equilibrium approaches the antibody-binding capacity of the SAF. Therefore, the 

SAF antibody-binding capacity required to reduce the blood antibody concentration by a given 

percentage is not linearly proportional to the pre-removal blood antibody concentration. For 

example, using a 5 m2 SAF, the capacity required to reduce the blood antibody concentration to 

30% of the pre-removal concentration is 0.4 �g/cm2 if the pre-removal concentration is 1 �g/ml, 

and is 1 �g/cm2 if the pre-removal concentration is 10 �g/ml. 
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Figure 2-4 Theoretical reduction in self-antigen-binding or donor-
specific antibody concentration following SAF-based antibody removal, 
assuming that the removal session continues until equilibrium is 
reached. 
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Figure 2-5 Theoretical concentration of bound antibodies relative to the 
SAF antibody-binding capacity following SAF-based antibody removal, 
assuming that the removal session continues until equilibrium is reached. 

 40



 

Table 2-5 Characteristic Magnitudes of Parameters Relevant to SAF-Based Antibody Removal 

SAF Geometry and Binding Capacity References 

Number of fibers N 6000-32,000 (100) 

Fiber length L (cm) 25 (100) 

Fiber inner radius a (cm) 0.01 (100) 

Blood-contacting surface area SA (m2) 1-5 (100) 

Antibody-binding capacity cs
i  (nmol/m2 or 

�g/cm2) 
IgG: 40 nmol/m2 (.6 �g/cm2) 
IgM: 12 nmol/m2 (1.1 �g/cm2) 

(101,102) 

Patient Parameters and Blood Flow Rate  

Total blood volume V (L) 3.5-5.5 (103) 
Concentration of donor-specific or self-
antigen-binding antibodies in blood cbl

i 
(�g/ml) 

IgG: 0.5-40 
IgM: 5-70 (59,96,104) 

Blood flow rate Q (ml/min) 50-500 (100) 

Antibody and Antibody/Antigen Parameters  

Antibody diffusivity D (cm2/s) IgG, water, 22 ºC: 3.9*10-7 
IgM, water, 22 ºC: 1.4*10-7 (105) 

Association rate constant kf (L/mol*s or 
ml/�g*s) 

104-106 L/mol*s  
(10-5-10-2 ml/�g*s) (106,107) 

Equilibrium dissociation constant Kd  
(mol/L or �g/ml) 

10-9-10-7 mol/L  
(0.15-90 �g/ml) (106,107) 
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3.0 ANTI-A AND ANTI-B REMOVAL FROM HUMAN BLOOD USING SPECIFIC 
ANTIBODY FILTERS CONTAINING IMMOBILIZED A AND B ANTIGENS 

End stage renal disease (ESRD), characterized by complete and irreversible kidney 

failure, causes retention of metabolic wastes, water, and salts, and eventually causes death unless 

renal function is replaced using hemodialysis or kidney transplantation (109). Compared to long-

term hemodialysis, kidney transplantation provides an enhanced quality of life, enhanced 

longevity (110), and lower healthcare costs, and hence ESRD patients with high probabilities of 

post-transplant survival (as determined by standardized pre-transplant evaluations (111)) are 

designated as candidates for living donor or cadaveric donor kidney transplantation (111,112). 

Living donor kidney transplantation is preferred to cadaveric donor transplantation because 

living donor grafts exhibit higher survival rates than do cadaveric donor grafts, even when the 

living donors are not genetically related to the transplant recipients (113). Thus a kidney 

transplant candidate with a suitable related or unrelated living donor receives the living donor 

kidney, provided that the donor is ABO-compatible with the candidate and the candidate does 

not have pre-formed antibodies that bind to the donor’s HLA antigens (111). As discussed in 

Chapter 2.0, ABO-incompatible kidney transplantation is rarely performed since pre-formed 

anti-A and anti-B antibodies in the recipient’s blood may mediate hyperacute rejection of an 

ABO-incompatible donor kidney (24,38). A kidney transplant candidate with an otherwise 

suitable, but ABO-incompatible, living donor does not receive the living donor kidney, but 

instead is listed with the United Network for Organ Sharing (UNOS), along with over 50,000 

other kidney transplant candidates (36), and waits an average of 5 years for an ABO-compatible 
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cadaveric donor kidney to become available (114). While waiting the transplant candidate spends 

an average of 9-12 hours per week undergoing maintenance hemodialysis (109). The survival 

rates for ESRD patients on hemodialysis are 78% at 1 year, 63% at 2 years, and 33% at 5 years 

(115).  

Based on the frequencies of ABO blood groups in the United States, an estimated 36% of 

potential living donor-kidney transplant candidate pairs are ABO-incompatible (116,117). Thus 

the number of kidney transplant candidates who receive living donor kidneys might be raised 

significantly by the development of techniques to facilitate ABO-incompatible kidney 

transplantation. Several groups of investigators have performed ABO-incompatible kidney 

transplants following pre-transplant removal of anti-A and anti-B antibodies from the recipients’ 

blood (46-49). The largest series of such transplants was performed in Japan: between 1989 and 

1999, Toma et al performed 105 ABO-incompatible living donor kidney transplants at Tokyo 

Women’s Medical University (49). Before transplantation, the recipients’ anti-A and anti-B titers 

were reduced to 16 or lower via double filtration plasmapheresis and plasma perfusion through 

Biosynsorb A and B columns. At 1 and 5 years post-transplant, the graft survival rates were 77% 

and 71%, respectively. At 3 years post-transplant, the graft survival rates for ABO-compatible 

living donor and cadaveric donor kidney transplants performed in the United States are 81-85% 

and 70%, respectively (113). Since the 3 to 5 year graft survival rates are similar for ABO-

incompatible living donor transplants (performed according to the Toma protocol) and ABO-

compatible cadaveric donor transplants, and since the survival rates for ESRD patients on 

hemodialysis are discouraging, a kidney transplant candidate who has an ABO-incompatible 

living donor may prefer to receive the ABO-incompatible living donor kidney (with treatment 
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according to the Toma protocol) rather than wait for an ABO-compatible cadaveric donor kidney 

to become available.  

The methods that are currently available for extracorporeal anti-A and anti-B removal 

include plasma exchange and plasma perfusion through immunoadsorption columns containing 

immobilized protein A or anti-human immunoglobulin (9-13). The Biosynsorb A and B columns 

used by Toma et al (49), which contain synthetic A and B antigens and selectively remove anti-A 

and anti-B antibodies from plasma, are no longer commercially available (24). The goal of this 

study was to assess the feasibility of selectively removing anti-A and anti-B antibodies directly 

from whole human blood using specific antibody filters (SAFs) containing immobilized protein-

based A and B antigens. We fabricated SAFs by immobilizing A and B antigens on the lumenal 

surfaces of the hollow fibers comprising commercially available hemodialyzers. Initially, we 

performed a series of paired antibody removal experiments to compare the anti-A and anti-B 

removal accomplished by SAFs containing immobilized A and B antigens to the non-specific 

removal accomplished by control SAFs (unmodified hemodialyzers or SAFs containing 

immobilized bovine serum albumin). We performed preliminary biocompatibility testing by 

comparing the SC5b-9 generation induced by the SAFs containing immobilized A and B 

antigens to the SC5b-9 generation induced by the control SAFs. We then assessed the antibody-

binding capacity of a SAF containing immobilized A and B antigens by sequentially circulating 

100 ml blood samples through the SAF until the titers of a newly introduced blood sample were 

not reduced. Finally, we purified the A and B antigens by removing a low molecular weight 

component that did not bind anti-A and anti-B antibodies, and assessed the antibody-binding 

capacity of a SAF containing immobilized purified A and B antigens. 
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3.1 Methods 

3.1.1 Acquisition of Protein-Based A and B Antigens 

The commercially available product Neutr-AB® (Dade Behring, Switzerland) was used 

as the source of protein-based A and B antigens. Neutr-AB® contains A antigen-bearing proteins 

obtained from pig intestinal mucosa, and B antigen-bearing proteins obtained from horse 

intestinal mucosa (118).  

3.1.2 SAF Fabrication 

Gambro (Lakewood, CO) 400 HG hemodialyzers were used as SAF modules. Each 

module contained approximately 7742 Hemophan® fibers of 0.02 cm nominal inner diameter 

and 18.5 cm length, providing a blood-contacting surface area of 0.9 m2 (100). Neutr-AB® or 

bovine serum albumin (BSA) (Sigma Chemical Co., St. Louis, MO) was immobilized on the 

lumenal surfaces of the fibers using a modified version of the cyanogen bromide activation 

method developed by Axen et al (119). Unless otherwise noted, chemicals were obtained from 

Sigma Chemical Company (St. Louis, MO). During the following fiber activation steps, the 

blood and shell compartments of the SAF module were connected in series using tygon tubing. 

Both compartments of the module were first rinsed copiously with de-ionized water. To swell the 

fibers, 3.5 L of 0.2 N NaOH was circulated through the module for five hours, on ice, at 136 

ml/min. The module was flushed with 3.5 L of 0.1 M sodium bicarbonate buffer, pH 8.5 

(henceforth called bicarbonate buffer), at 225 ml/min and at 4 ˚C. An activating solution of 16 g 

CNBr in 200 ml of 0.2 N NaOH was circulated through both compartments at 136 ml/min, on 

ice, for 1.5 hours. The activating solution pH was kept above 11.0 by the addition of cold 10 N 

NaOH. The module was flushed with 3.5 L of de-ionized water and 3.5 L of bicarbonate buffer, 
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at 225 ml/min and at 4 ˚C. Excess fluid was removed from the module using filtered compressed 

air.  

The shell compartment was then filled with bicarbonate buffer and closed. One hundred 

ml of a 7-mg/ml antigen solution (Neutr-AB® or BSA dissolved in bicarbonate buffer) was 

circulated through the blood compartment at 77 ml/min, at room temperature, overnight (at least 

12 hours). Both compartments were drained, and samples were collected from the blood and 

shell compartments for measurement of antigen concentration. The blood and shell 

compartments were again connected in series and the SAF was washed three times, by 

circulating 500 ml of bicarbonate buffer through the SAF at 136 ml/min for one hour (each 

wash). Excess fluid was removed from the SAF using filtered compressed air, and the SAF was 

stored at 4 ˚C until use.  

The mass of antigen immobilized within the SAF was calculated by subtracting the mass 

of antigen recovered by the washings, the mass of antigen in the antigen solution after the 

immobilization step, and the mass of antigen in the shell compartment after the immobilization 

step, from the mass of antigen initially in the antigen solution. The mass of antigen in each 

solution was calculated using the solution volume and the protein concentration, determined by 

measuring the absorbance at 280 nm with a UV/VIS spectrophotometer (Perkin Elmer, Norwalk, 

CT). 

3.1.3 Neutr-AB® Purification 

Aqueous gel filtration chromatography revealed that Neutr-AB® contained two 

significant protein fractions with molecular weights of approximately 35,000 and 6000 Da. One 

hundred and ten ml of Neutr-AB® was placed within a section of Spectra/Por® dialysis tubing 

with a 12,000-14,000 Da molecular weight cutoff (Thomas Scientific, Swedesboro, NJ) and 
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dialyzed extensively against 0.1 M sodium bicarbonate buffer, pH 8.5. The concentration of the 

recovered high molecular weight (purified) Neutr-AB® was 2.4 mg/ml. A 0.7-mg/ml sample of 

low molecular weight Neutr-AB® was recovered from the dialysate. 

As described below, the antigenic quality of the purified Neutr-AB was higher than that 

of the un-purified Neutr-AB® (3.1.8, 3.2.4). A SAF containing immobilized purified Neutr-AB® 

was fabricated as described above (3.1.1), except that the concentration of the antigen solution 

(purified Neutr-AB® in bicarbonate buffer) at the beginning of the immobilization step was 2.4 

mg/ml instead of 7 mg/ml. As described below (3.1.12, 3.2.5), the antibody-binding capacity of 

this SAF was compared to that of a SAF containing immobilized un-purified Neutr-AB®, also 

fabricated using a 2.4-mg/ml antigen solution (un-purified Neutr-AB® in bicarbonate buffer).  

3.1.4 Blood Acquisition 

Type O fresh blood was drawn from healthy, non-pregnant, consenting donors over age 

18, with the approval of the University of Pittsburgh Institutional Review Board. Fresh blood 

was drawn no more than 2 hours before the initiation of the antibody removal experiment, and 

was anticoagulated using heparin (Elkins-Sinn, Inc., Cherry Hill, NJ) at a concentration of 10 

U/ml. Overfilled bags of type O and type A banked blood were obtained from the Central Blood 

Bank of Pittsburgh and stored at 4	C until use. Banked blood was anticoagulated using citrate 

phosphate dextrose (CPD). Plasma for blood typing, titer measurement, and cross-matching was 

obtained by centrifugation of blood samples for 15 minutes, at 1380xG, in a bench-top centrifuge 

(Fisher Scientific, Pittsburgh, PA).  
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3.1.5 Blood Typing 

Blood was typed according to the standard blood bank procedure (120). For each blood 

sample to be typed, plasma was obtained via centrifugation and 100 �l of plasma was added to 

each of two 12 x 75 mm disposable glass test tubes. Fifty �l of type A1 reagent red blood cells 

(Immucor Inc., Norcross, GA) was added to one test tube, and 50 �l of type B reagent red blood 

cells was added to the other test tube. The tubes were mixed gently, centrifuged for 1 minute at 

1380xG, and examined for red cell agglutination. Plasma from type A blood caused 

agglutination of type B red cells only; plasma from type B blood caused agglutination of type A1 

red cells only; plasma from type O blood caused agglutination of both type A1 and type B red 

cells; and plasma from type AB blood caused agglutination of neither type A1 nor type B red 

cells.  

3.1.6 Cross-matching 

For experiments requiring the use of blood samples from multiple donors, all blood 

samples were cross-matched according to the standard blood bank procedure (120). The 

following procedure was performed for each pair of blood samples (called sample 1 and sample 

2) to be cross-matched. Plasma was obtained from each blood sample via centrifugation. A 2-4% 

suspension of washed red blood cells was obtained from each blood sample by washing red 

blood cells (obtained via centrifugation) 3 to 5 times in 0.9% NaCl, then suspending 200 �l of 

washed red blood cells in 4.8 ml of 0.9% NaCl. One hundred �l of plasma from sample 1 was 

added to one 12 x 75 mm disposable glass test tube, and 100 �l of plasma from sample 2 was 

added to a second test tube.  Fifty �l of the 2-4% suspension of red cells from sample 1 was 

added to the test tube containing plasma from sample 2, and 50 �l of red cells from sample 2 was 
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added to the test tube containing plasma from sample 1. The tubes were mixed gently, 

centrifuged for 1 minute at 1380xG, and examined for red cell agglutination. If no agglutination 

was observed, 100 �l of antibody enhancer (LISS, Immucor Inc., Norcross, GA) was added to 

each tube, and the tubes were mixed gently and incubated at 37 °C for 15 minutes. The tubes 

were centrifuged for 1 minute at 1380xG, and examined again for red cell agglutination. If no 

agglutination was observed, the cells in each tube were washed 3 times with 0.9% NaCl, and the 

supernatant was decanted completely after the third wash. One hundred �l of anti-human 

globulin (Immucor Inc., Norcross, GA) was added to each tube. The tubes were mixed gently, 

centrifuged for 1 minute at 1380xG, and examined for red cell agglutination. If no agglutination 

was observed, the 2 samples had a negative cross-match and could be used safely in the same 

experiment. To check the validity of the cross-match, 50 �l of Coombs control cells (Immucor 

Inc., Norcross, GA) was added to each tube. The tubes were mixed gently, centrifuged for 1 

minute at 1380xG, and examined for red cell agglutination. If the control cells failed to 

agglutinate, the cross-match was repeated. 

3.1.7 Measurement of Anti-A and Anti-B Antibody Titers 

Anti-A and anti-B antibody titers were measured using plasma serial dilutions and the 

standard blood bank hemagglutination assay used for blood typing (120). Using this method the 

titer was assumed to reflect the concentration of IgM anti-A and anti-B antibodies only. For each 

blood sample to be assayed, plasma was obtained via centrifugation and serial dilutions of the 

plasma were prepared in 0.9% NaCl. Each diluted sample was assayed for the ability to 

agglutinate type A1 or type B reagent red blood cells, as described above (3.1.5). The anti-A titer 

was taken as the reciprocal of the largest dilution that agglutinated type A1 reagent red blood 
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cells, and the anti-B titer was taken as the reciprocal of the largest dilution that agglutinated type 

B reagent red blood cells. If an undiluted plasma sample did not agglutinate type A1 or type B 

reagent red blood cells, the blood sample was assigned an anti-A or anti-B titer of 0.  

3.1.8 Antigenic Quality Measurement 

A hemagglutination inhibition assay was used to compare the antigenic qualities of the 

un-purified Neutr-AB®, the purified (high molecular weight) Neutr-AB®, and the low molecular 

weight Neutr-AB®. The antigenic quality of each form of Neutr-AB® was quantified by 

determining the minimum Neutr-AB® concentration required to completely inhibit the 

agglutination of type A1 or type B reagent red blood cells by human plasma, after mixing equal 

volumes of Neutr-AB® and plasma. For the un-purified Neutr-AB®, samples with total protein 

concentrations between 0.01 mg/ml and 5 mg/ml were prepared using 0.9% NaCl as the diluent. 

For the purified Neutr-AB®, samples with total protein concentrations between 0.001 mg/ml and 

0.5 mg/ml were prepared. The low molecular weight Neutr-AB® was not diluted. For each 

sample of Neutr-AB®, 200 �l of Neutr-AB® was added to 200 �l of plasma in a 12 x 75 mm 

disposable glass test tube. The tube was mixed gently and incubated at room temperature for 5 

minutes. The plasma/Neutr-AB® solution was tested for the ability to agglutinate type A1 and 

type B reagent red blood cells, as described above (3.1.5). The anti-A and anti-B inhibition 

concentrations were taken as the minimum concentrations of Neutr-AB® required to inhibit the 

agglutination of type A1 and type B reagent red blood cells.  

3.1.9 In Vitro Perfusion Loop 

In vitro antibody removal experiments were performed using the simple perfusion loop 

shown in Figure 3-1. The loop consisted of a glass blood reservoir, a Masterflex peristaltic pump 
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(Cole-Parmer Instrument Company, Vernon Hills, IL), a glass bead flow meter (Cole-Parmer 

Instrument Company, Vernon Hills, IL), and a SAF. The components of the loop were connected 

using tygon tubing. The SAF was oriented horizontally as shown in Figure 3-1. Blood was 

pumped solely through the blood compartment of the SAF, and ultrafiltrate was collected from 

the shell compartment and returned to the reservoir. The entire loop, including both the blood 

and shell compartments of the SAF, was flushed with 0.9% NaCl prior to each experiment. Air 

was removed from the system during priming with blood. 

Pump

SAF

Flow Meter

Blood 
Reservoir

Pump

SAF

Flow Meter

Blood 
Reservoir

 

Figure 3-1  Perfusion loop used for in vitro antibody 
removal experiments. 

3.1.10 Initial Paired Antibody Removal Experiments 

The first series of antibody removal experiments was performed to compare the anti-A 

and anti-B removal accomplished by SAFs containing immobilized A and B antigens (SAF-AB) 

to the non-specific removal accomplished by control SAFs (unmodified hemodialyzers or SAFs 

containing immobilized bovine serum albumin, SAF-Ctrl). SAFs containing immobilized A and 

B antigens and control SAFs were tested under identical conditions. A 250 ml sample of type A 
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or O fresh or banked whole blood (from one donor) was obtained as described above (3.1.4). 

One hundred ml of the blood was circulated through the SAF containing immobilized A and B 

antigens at 100 ml/min for 30 minutes. Aliquots were taken from the reservoir every 15 minutes 

and the anti-A and anti-B titers were measured. One hundred ml of the blood was then circulated 

through the control SAF at 100 ml/min for 30 minutes, and aliquots were taken from the 

reservoir every 15 minutes for titer measurement. For each experiment, pre-perfusion, post-SAF-

AB perfusion, and post-SAF-Ctrl perfusion plasma samples were saved to allow comparison of 

SAF-AB- and SAF-Ctrl-induced complement activation. 

3.1.11 Biocompatibility Testing 

Following each of the initial antibody removal experiments described above (3.1.10), pre-

perfusion, post-SAF-AB perfusion, and post-SAF-Ctrl perfusion plasma samples were assayed 

for complement activation product SC5b-9 concentration using commercially available 

immunoassay kits (Quidel Corporation, San Diego, CA). The assays were performed in the 

Biomaterials and Tissue Engineering Laboratory, directed by William Wagner, in the McGowan 

Institute for Regenerative Medicine at the University of Pittsburgh.  

3.1.12 SAF Capacity Experiments 

The second series of antibody removal experiments was performed to estimate the 

antibody-binding capacities of SAFs containing immobilized A and B antigens (SAF-AB) or 

immobilized purified A and B antigens (SAF-ABp). SAFs containing immobilized A and B 

antigens and control SAFs (SAF-Ctrl) were tested under identical conditions. Up to 3 L of type 

O banked whole blood (from up to 6 different donors) was obtained as described above (3.1.4), 

and all of the blood samples used in each experiment were cross-matched prior to the experiment 
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as described above (3.1.6). Blood from each donor was split so that half could be circulated 

through the SAF-AB and half could be circulated through the SAF-Ctrl. (When testing the SAFs 

containing immobilized purified A and B antigens, blood from each donor was split into thirds so 

that 1/3 could be circulated through the SAF-AB, 1/3 could be circulated through the SAF-ABp, 

and 1/3 could be circulated through the SAF-Ctrl). Capacity experiments were performed by 

sequentially circulating multiple 100 or 150 ml samples of blood through the SAF at a flow rate 

of 100 ml/min. When the anti-A and anti-B titers of a given blood sample dropped to 2 or below, 

the entire flow loop was drained, including both the blood and shell compartments of the SAF, 

and a new blood sample was circulated through the SAF. The SAF was not washed between 

successive blood samples to avoid measurement of an artificially high capacity caused by 

removal of some of the bound antibodies during the washing. This procedure was repeated until 

the titer of a newly introduced blood sample was not reduced. The capacity of the SAF was taken 

as the volume of blood processed before titer reduction ceased. 

3.2 Results 

3.2.1 Initial Paired Antibody Removal Experiments 

Anti-A and anti-B antibodies were successfully removed from 100 ml of freshly drawn 

type O whole human blood by a SAF containing approximately 99 mg of immobilized A and B 

antigens (SAF-AB) (Figure 3-2). After 30 minutes, the SAF-AB reduced the anti-A titer from 8 

to 1 and the anti-B titer from 16 to 1. Anti-A and anti-B antibodies were not measurably removed 

from 100 ml of blood (from the same donor) by a control SAF containing immobilized bovine 

serum albumin (BSA). After 30 minutes, the control SAF had not measurably reduced the anti-A 

titer or the anti-B titer. 
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Figure 3-2 Anti-A and anti-B removal from 100 ml of freshly drawn type 
O whole human blood using a SAF with approximately 99 mg of 
immobilized A and B antigens (SAF-AB). Non-specific anti-A and anti-B 
removal using a control SAF with immobilized BSA (SAF-Ctrl) is also 
shown. Closed symbols: SAF-AB. Open symbols: SAF-Ctrl. 

Six paired antibody removal experiments were performed using blood from 6 different 

donors, and in each experiment the SAF-AB accomplished a larger anti-A and anti-B titer 

reduction than did the SAF-Ctrl (Table 3-1). The mass of A and B antigens immobilized within 

each SAF-AB ranged from 69 to 99 mg, with a mean of 86 mg. The SAF-ABs accomplished a 

mean anti-A titer reduction of 70% and a mean anti-B titer reduction of 94%, while the SAF-

Ctrls accomplished a mean anti-A titer reduction of 0% and a mean anti-B titer reduction of 

33%. Using the paired t-test, the percent anti-A titer reduction and anti-B titer reduction 

accomplished by the SAF-ABs was statistically greater than the percent reduction accomplished 

by the SAF-Ctrls (p < 0.005). 
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Table 3-1 Antibody Removal During Initial Paired Antibody Removal Experiments 

Trial Blood 
Source 

Control 
Filter 

Initial 
Anti-A 
Titer 

Initial 
Anti-B 
Titer 

Final 
Anti-A 
Titer 

(SAF-AB) 

Final 
Anti-B 
Titer 

(SAF-AB) 

Final 
Anti-A 
Titer 

(SAF-
Ctrl) 

Final 
Anti-B 
Titer 

(SAF-
Ctrl) 

1 Fresh 
type O 

SAF-
BSA 8 16 1 1 8 16 

2 Fresh 
type O 

SAF-
BSA 16 8 8 2 16 4 

3 Bank 
type A 

SAF-
BSA N/A 8 N/A 0 N/A 4 

4 Fresh 
type O Dialyzer 16 8 2 0 16 4 

5 Fresh 
type O Dialyzer 8 8 4 0 8 8 

6 Bank 
type O Dialyzer 16 16 4 1 16 8 

3.2.2 Biocompatibility Testing 

In each paired antibody removal experiment, the SC5b-9 concentration increased 

following both SAF-AB perfusion and SAF-Ctrl perfusion (Table 3-2). (SC5b-9 concentration 

data from trial six were not obtained due to a technical error.) The SAF-ABs induced a mean 

increase in SC5b-9 concentration of 500%, while the SAF-Ctrls induced a mean increase in 

SC5b-9 concentration of 800%. Using the paired t-test, the percent increase in SC5b-9 

concentration induced by the SAF-ABs was not statistically different from the percent increase 

induced by the SAF-Ctrls (p > 0.1).  
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Table 3-2 Complement Activation During Initial Paired Antibody Removal Experiments 

Trial 
Initial SC5b-9 
Concentration 

(ng/ml) 

Final SC5b-9 Concentration 
(ng/ml) (SAF-AB) 

Final SC5b-9 Concentration 
(ng/ml) (SAF-Ctrl) 

1 26.4 80.7 84.1 

2 14.2 39.6 26.2 

3 15.5 38.0 107.8 

4 1.2 14.5 22.2 

5 10.9 100.7 152.3 

3.2.3 SAF Capacity Experiment 1: Capacity of a SAF Containing Immobilized A and B 
Antigens 

Anti-A and anti-B antibodies were successfully removed from 4 100 ml samples of type 

O banked human blood by a SAF containing approximately 100 mg of immobilized A and B 

antigens (Figure 3-3). The anti-A titers of the first three blood samples were reduced from 64 to 

1 (98%), 64 to 1 (98%), and 64 to 2 (97%), respectively. The anti-A titer of the fourth sample 

was reduced from 16 to 4 (75%), and the anti-A titers of the fifth and sixth samples were not 

measurable reduced. The anti-B titers of the first four samples were reduced from 8 to zero 

(100%), and the anti-B titers of the fifth and sixth samples were reduced from 8 to 2 (75%) and 8 

to 1 (88%), respectively. Anti-A and anti-B antibodies were not measurably removed from 6 100 

ml samples of type O banked human blood (from the same donors) by a control SAF containing 

immobilized BSA.  The anti-A and anti-B titers of each sample were not measurably reduced 

(data not shown). 
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Figure 3-3 Anti-A and anti-B removal from 6 100 ml samples of type O 
banked human blood using a SAF with approximately 100 mg of 
immobilized A and B antigens (SAF-AB). Zero percent titer reduction is 
indicated by the absence of a bar. 

3.2.4 Purification of A and B Antigens (Neutr-AB®) 

The concentration of un-purified Neutr-AB® required to inhibit the agglutination of type 

A1 and type B reagent red blood cells by human plasma varied from 0.05 to 4 mg/ml, depending 

on the plasma sample used to perform the hemagglutination inhibition assay (3.1.8) (Table 3-3). 

The concentration of purified Neutr-AB® required to inhibit agglutination by the same plasma 

samples varied from 0.01 to 0.25 mg/ml. The assay was performed using 3 different plasma 

samples, with initial anti-A and anti-B titers of 0 and 64 (type A), 64 and 32 (type O, 1), and 32 

and 32 (type O, 2). Neither the un-purified Neutr-AB® inhibition concentration nor the purified 

Neutr-AB® inhibition concentration increased with increasing initial anti-A or anti-B titer. The 

sample-to-sample variation in the inhibition concentration was likely due to sample-to-sample 

variation in the affinities of the anti-A and anti-B antibodies for Neutr-AB®, or sample-to-
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sample variation the concentration of IgG anti-A and anti-B antibodies. At a concentration of 0.7 

mg/ml, the low molecular weight Neutr-AB® was unable to inhibit the agglutination of type A1 

or type B red cells by any of the tested plasma samples. 

Table 3-3 Standard and Purified Neutr-AB® Inhibition Concentrations 

 Un-purified Neutr-
AB® 

Purified (High MW) Neutr-
AB® Low MW Neutr-AB® 

Plasma 
Sample 

Anti-A 
Inhibition 

Conc. 
(mg/ml) 

Anti-B 
Inhibition 

Conc. 
(mg/ml) 

Anti-A 
Inhibition 

Conc. 
(mg/ml) 

Anti-B 
Inhibition 

Conc. 
(mg/ml) 

Anti-A 
Inhibition 

Conc. 
(mg/ml) 

Anti-B 
Inhibition 

Conc. 
(mg/ml) 

A N/A 0.3 N/A 0.025 N/A > 0.7 

O, 1 0.2 0.05 0.025 0.01 > 0.7 > 0.7 

O, 2 0.75 4 0.05 0.25 > 0.7 > 0.7 

For each plasma sample used, the un-purified Neutr-AB® inhibition concentration was 

higher than the purified Neutr-AB® inhibition concentration (Figure 3-4). The un-purified 

Neutr-AB® anti-A inhibition concentration was between 8 and 15 times the purified Neutr-AB® 

anti-A inhibition concentration, and the un-purified Neutr-AB® anti-B inhibition concentration 

was between 5 and 16 times the purified Neutr-AB® anti-A inhibition concentration. 

3.2.5 SAF Capacity Experiment 2: Capacity of a SAF Containing Immobilized Purified A 
and B Antigens 

Anti-A and anti-B antibodies were successfully removed from 6 150 ml samples of type 

O banked human blood by a SAF containing approximately 40 mg of immobilized purified A 

and B antigens (purified Neutr-AB®) (Figure 3-5). The anti-A titers of the first through sixth 

blood samples were reduced from 32 to 1 (97%), 32 to 2 (94%), 32 to 2 (94%), 16 to 1 (94%), 16 

to 2 (88%), and 8 to 2 (75%), respectively. The anti-B titers of the first through sixth blood 
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samples were reduced from 32 to 0 (100%), 16 to 0 (100%), and 8 to 0 (100%), 4 to 0 (100%), 4 

to 0 (100%), 8 to 1 (88%), respectively. Anti-A and anti-B antibodies were successfully removed 

from one 150 ml sample of type O banked human blood by a SAF containing approximately 40 

mg of immobilized un-purified A and B antigens (un-purified Neutr-AB®). The anti-A and anti-

B titers of the first sample were reduced from 32 to 8 (75%) and 32 to 4 (88%), respectively. The 

anti-A and anti-B titers of the second through sixth samples were not measurably reduced. Anti-

A and anti-B antibodies were not measurably removed from 6 150 ml samples of type O banked 

human blood (from the same donors) by a control SAF containing immobilized BSA.  The anti-

A and anti-B titers of each sample were not measurably reduced (data not shown).  
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Figure 3-4 Ratio of the un-purified Neutr-AB® inhibition concentration to the 
purified Neutr-AB® inhibition concentration, for three different plasma 
samples with initial anti-A and anti-B titers of 0 and 64 (type A), 64 and 32 
(type O, 1), and 32 and 32 (type O, 2). 
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Figure 3-5 Anti-A and anti-B removal from 6 150 ml samples of type O banked 
human blood using a SAF with approximately 40 mg of immobilized un-purified 
A and B antigens (SAF-AB) and a SAF with approximately 40 mg of 
immobilized purified A and B antigens (SAF-ABp). Zero percent titer reduction 
is indicated by the absence of a bar. 

3.3 Discussion 

Specific antibody filters (SAFs) containing immobilized protein-based A and B antigens 

selectively removed anti-A and anti-B antibodies directly from whole human blood. In an initial 

series of six paired antibody removal experiments, the anti-A and anti-B removal accomplished 

by SAFs containing immobilized A and B antigens (SAF-AB) was significantly higher than the 

non-specific anti-A and anti-B removal accomplished by control SAFs (SAF-Ctrl). Additionally, 

the percent increase in SC5b-9 concentration induced by the SAF-ABs was not statistically 

different from the percent increase induced by the SAF-Ctrls. 

A SAF containing approximately 100 mg of immobilized A and B antigens reduced the 

anti-A and anti-B titers of 400 ml of type O whole human blood by 75 to 100%. Assuming that 
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the SAF antibody-binding capacity is linearly proportional to the blood-contacting surface area, a 

SAF with approximately 12 times the surface area of the prototype SAF (i.e. with a blood-

contacting surface area of about 11 m2) would be required to significantly reduce the anti-A and 

anti-B titers of 5 L of whole human blood (the blood volume of an average adult patient). 

However, purifying the A and B antigens prior to immobilization improved the SAF antibody-

binding capacity. A SAF containing approximately 40 mg of immobilized purified A and B 

antigens reduced the anti-A and anti-B titers of 900 ml of type O whole human blood by 75 to 

100%, implying that a SAF with only 6 times the blood-contacting surface area of the prototype 

SAF (i.e. with a blood-contacting surface area of about 5.5 m2) would be required to significantly 

reduce the anti-A and anti-B titers of 5 L of whole human blood.  

The SAF antibody-binding capacity may possibly be further improved by using synthetic 

A and B antigens instead of naturally occurring protein-based A and B antigens (such as those 

that comprise Neutr-AB®). Synthetic antigens can be obtained at near 100% purity, and can be 

synthesized on spacer arms of varying lengths to allow optimization of the distance between the 

antigen and the membrane. Reactive groups on the spacer arms would allow oriented 

immobilization of the synthetic antigens, instead of the randomly oriented immobilization that 

occurs when protein-based antigens are immobilized via numerous available primary amines on 

the proteins. Finally, SAFs could be fabricated containing only A antigens or only B antigens, 

since the only situation in which both anti-A and anti-B removal would be necessary would be 

the transplant of a type AB kidney into a type O patient. Based on the frequencies of ABO blood 

groups in the United States, only 1% of potential living donor-kidney transplant candidate pairs 

would involve a type AB donor and a type O recipient (116,117). Based on these considerations, 

our continuing SAF development work will be focused on the use of synthetic A and B antigens. 
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During SAF-based antibody removal, antibody-antigen complexes formed on the lumenal 

surfaces of the SAF fibers will activate the complement system via the classical pathway, and the 

degree of complement activation may be greater than the degree produced during other 

extracorporeal therapies like hemodialysis and cardiopulmonary bypass (121). The preliminary 

biocompatibility testing we performed did not show increased complement activation by the 

SAFs with immobilized A and B antigens compared to the control SAFs. In our continuing 

studies we will perform more extensive biocompatibility testing, using both in vitro and in vivo 

experimental formats. However, we do not expect complement activation to be a significant 

problem since SAF-based antibody removal will be performed only during the peri-transplant 

period, and will not be performed chronically like hemodialysis. Also, Sakhrani et al used whole 

blood perfusion through Biosynsorb columns to remove anti-A or anti-B antibodies prior to 

ABO-incompatible kidney transplants (thus presumably activating the complement system via 

the classical pathway), and reported that the side effects were mild in most of the treated patients 

(87). 
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4.0 ANTIBODY TRANSPORT MODEL 

As discussed in Chapter 2.0, SAF-based antibody removal must be reasonably fast as 

well as selective if the platform is to be clinically valuable. In this chapter, we describe the 

development of a mathematical antibody transport model that accounts for antibody diffusion, 

convection, and reversible binding within the SAF fibers. The model is used to predict the 

magnitude of the SAF-based antibody removal rate, and to identify the removal rate-controlling 

antibody transport mechanisms, for clinically relevant SAF geometries, blood flow rates, 

antibody diffusivities, and antibody-binding rates. In Chapter 5.0, we describe in vitro antibody 

removal experiments performed to test key predictions of the mathematical model. Since the in 

vitro experiments involve SAF-based removal of antibodies from aqueous buffer (instead of 

blood), in this chapter we address antibody removal from aqueous buffer as well as antibody 

removal from blood. 

4.1 Model Geometry 

The SAF is modeled as a bundle of N identical cylindrical fibers of length L (cm) and 

inner radius a (cm) (Figure 4-1). Antibody solution (blood or aqueous buffer) enters the blood 

compartment of the SAF at free antibody concentration ci (�g/ml) and flow rate Q (ml/min), and 

is distributed evenly among the fibers so that the flow rate through each fiber lumen is Q/N. The 

shell compartment of the SAF (the space outside the fibers) is filled with isotonic buffer and 

closed. Within each fiber lumen antibodies undergo axial convection and radial diffusion, and at 
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the fiber wall the antibodies bind reversibly to the immobilized antigens (Figure 4-2). Antibody 

solution exits each fiber at “mixing cup” free antibody concentration co (�g/ml), and the SAF-

based antibody removal rate is equal to the antibody solution flow rate Q multiplied by the 

difference between ci and co. 
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Figure 4-1 Schematic depicting blood flow through the blood compartment of a SAF. The 
shell compartment is filled with isotonic buffer and closed. The relative dimensions of the 
SAF fibers and the SAF housing are not to scale. 

4.2 Transport Formulation 

The quasi-steady mass conservation equation is used to describe the transport of free 

antibodies in the fiber lumen (122): 
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where c(r, z) (�g/ml) is the concentration of free antibodies in the fiber lumen, vz(r) (cm/s) is the 

axial component of the antibody solution velocity, and D (cm2/s) is the diffusion coefficient of 
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the antibodies in the antibody solution. Boundary conditions at the fiber wall, centerline, and 

inlet are required to solve equation (4-1) for c(r, z). An expression for the antibody solution 

velocity profile vz(r) is also needed. As discussed further below, the boundary condition at the 

fiber wall involves the bound antibody concentration cb (�g/cm2), and thus is time-dependent 

since cb increases with time. However, the quasi-steady form of the mass conservation equation 

is appropriate since the time scale for a substantive change in cb is long compared to the 

residence time. 
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Figure 4-2 Schematic depicting antibody removal in the lumen of a single SAF 
fiber, with model parameters described in the preceding text. The relative 
dimensions of the fiber lumen and the antibodies and antigens are not to scale. 

At the inner fiber wall, the radial antibody flux is equal to the antibody-binding rate per 

unit of fiber surface area:  
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where kf (ml/�g*s) is the intrinsic association rate constant for the antibody/antigen system, kr  

(s-1) is the intrinsic dissociation rate constant for the antibody/antigen system, cb (�g/cm2) is the 

bound antibody concentration, and cs
i
 (�g/cm2) is the antibody-binding capacity of the SAF. The 

antibody concentration profile in each fiber is symmetric with respect to radial position, and the 

antibody solution enters each fiber with a flat concentration profile:  
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Finally, cb(z, t) is determined by integrating the radial antibody flux at the fiber wall over time: 
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4.3 Flow of Blood or Aqueous Buffer in SAF Fibers 

The physical properties (density and viscosity) of blood and dilute aqueous buffer (water) 

are listed in Table 4-1. 

Table 4-1 Physical Properties of Blood and Water (123-125) 

Fluid Density 
(g/ml) Viscosity at 22 	C, cP Viscosity 37 	C, cP 

Blood (40% 
Hematocrit) 1.058 4.8 (at high shear rates) 3.5 (at high shear rates) 

Water 1.0 1.0 0.7 

The SAFs used clinically will contain between 6000 and 32,000 fibers of 25 cm length 

and 0.01 cm inner radius (Table 2-5). For water flow through a small SAF (6000 fibers), the 

Reynolds number in each SAF fiber lumen is below 14 when the water flow rate is below 500 

ml/min (Figure 4-3). For water flow through a large SAF (32,000 fibers), the Reynolds number 
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is below 3 when the water flow rate is below 500 ml/min. Under the same conditions as those 

described above, the Reynolds number for blood flow is less than that for water flow since blood 

is more viscous (and only slightly more dense) than water (Figure 4-3). Hence, the flow of blood 

or aqueous buffer is laminar within each fiber lumen. Blood is a non-Newtonian fluid, but 

behaves as a Newtonian fluid for when the shear rate is greater than 100 s-1 (126). For flow 

through a small SAF (6000 fibers), the shear rate at the inner wall of each fiber exceeds 100 s-1 

when the flow rate exceeds 30 ml/min, and for flow through a large SAF (32,000 fibers) the 

shear rate at the inner wall of each fiber exceeds 100 s-1 when the flow rate exceeds 150 ml/min 

(Figure 4-4). Hence blood can be considered a Newtonian fluid as it flows through the SAF 

provided that the flow rate is sufficiently high. For laminar flow of a Newtonian fluid in a 

circular tube, the entrance length, relative to the total length of the tube, can be estimated 

(127,128): 
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where Le is the entrance length (cm) and Re is the Reynolds number. For the small SAF (6000 

fibers), the entrance length is less than 0.1% of the SAF fiber length (for Re less than 14). For the 

large SAF (32,000 fibers), the entrance length is less than 0.06% of the SAF fiber length (for Re 

less than 3).  

Hence the flow of blood or dilute aqueous buffer in each fiber lumen is laminar and fully 

developed, and the fluid velocity profile is the parabolic velocity profile characteristic of 

laminar, fully developed flow of a Newtonian fluid in a circular tube (122):  
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where vavg (cm/s) is the average fluid velocity in the fiber.  
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During SAF-based antibody removal the net ultrafiltration rate (flow rate of buffer or 

plasma water from the blood compartment to the shell compartment) is zero since the shell 

compartment is filled with isotonic buffer and closed. However, buffer or plasma water re-

circulates between the blood and shell compartments because the hydrostatic pressure in the 

lumen of each fiber decreases along the length of the fiber, while the hydrostatic pressure in the 

shell compartment is constant (and equal to the average of the inlet and outlet lumenal pressures 

(129)). This re-circulation (Starling re-circulation) has a negligible effect on the fluid flow in the 

fiber lumens if the ratio of the lumenal flow resistance (Rl) to the trans-membrane flow resistance 

(Rt) is less than one (129): 
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where � is the blood or buffer viscosity (cP) and Lp (ml/mmHg*hr) is the hydraulic permeability 

of a single SAF fiber. For Hemophan® hollow fiber dialysis membranes (used in the in vitro 

experiments reported in Chapters 3.0 and 5.0), the hydraulic permeability of a single fiber of 25 

cm length and 0.01 cm inner radius is 9*10-4 ml/hr*mmHg (100). Thus for blood flow at 37 ºC, 

Rl/Rt is equal to 0.04. (In vivo SAF-based antibody removal will occur at 37 ºC to avoid 

delivering cool blood to the patient.) For water flow at 22 ºC, Rl/Rt is equal to 0.01. (The in vitro 

antibody removal experiments described in Chapter 5.0 were performed at 22 ºC for simplicity.) 

In both cases, the Starling re-circulation has a negligible effect on the fluid flow in the fiber 

lumens. 

 68



 

 

0

2

4

6

8

10

12

14

0 100 200 300 400 500

Q (ml/min)

R
e

SAF 1, blood

SAF 1, water

SAF 1: N = 6000
SAF 2: N = 32,000
L = 25 cm
a = 0.01 cm

SAF 2, water

SAF 2, blood

 

Figure 4-3 Reynolds numbers in the fiber lumens of 2 SAFs 
containing the smallest (SAF 1) and largest (SAF 2) number of 
fibers expected for clinical SAFs.  
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Figure 4-4 Wall shear rates in the fibers comprising 2 SAFs containing the 
smallest (SAF 1) and largest (SAF 2) number of fibers expected for 
clinical SAFs.  
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4.4  Dimensional Analysis 

We used the dimensionless variables and groups listed in Table 4-2 to simplify the 

solution and interpretation of the transport model. We normalized the radial position by the inner 

radius of each SAF fiber, and we normalized the axial position by the length of each fiber: r* = 

r/a and z* = z/L. We normalized the free antibody concentration by the inlet free antibody 

concentration, and we normalized the bound antibody concentration by the SAF antibody-

binding capacity: c* = c/ci, and cb* = cb/cs
i. The dimensionless form of the mass conservation 

equation involves the Graetz number (Gz): 
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The Graetz number (Gz = �a2vavg/LD) represents the ratio of the characteristic radial diffusion 

time to the residence time (122). As Gz approaches infinity, ∂c*/∂z* approaches zero since the 

time required for the antibodies to diffuse to the immobilized antigens is much longer than the 

time the antibodies spend in the SAF. Using a small SAF (6000 fibers), the Graetz number for 

IgG antibodies is between 7 and 143 when the antibody solution flow rate is between 25 and 500 

ml/min, and the Graetz number for IgM antibodies is between 19 and 397 for the same antibody 

solution flow rate range (Figure 4-5). Using a large SAF (32,000 fibers), the Graetz number for 

IgG antibodies is between 1 and 26 when the antibody solution flow rate is between 25 and 500 

ml/min, and the Graetz number for IgM antibodies is between 3 and 74 for the same antibody 

solution flow rate range. (For these calculations to apply to antibody removal from blood at 37 

ºC, we must assume that the antibody diffusivity in flowing blood is equal to the antibody 

diffusivity in flowing water, and we must neglect the effect of temperature on antibody 
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diffusivity. These calculations are only strictly correct for antibody removal from aqueous buffer 

at 22 ºC.) 

Table 4-2 Dimensionless Variables and Groups 

Variable Description 

ic
cc �*  Free Antibody Concentration 

i
s

b
b c

cc �*  Bound Antibody Concentration 

a
rr �*  Radial Position 

L
zz �*  Axial Position 

LD
va

Gz avg
2

�

�  Graetz Number 

D
ack

Da
i

sf
�  Damköhler Number 

The dimensionless form of the wall boundary condition involves the Damköhler number 

(Da): 

 
1*at  ***

*
*1

���
�

�
��
�

�
�	�






	 r

c
Kccc

r
c

Da i

d
b  (4-2a)

where Kd (�g/ml) is the equilibrium dissociation constant for the antibody/antigen system. The 

Damköhler number (Da = kfcs
ia/D) represents the ratio of the characteristic antibody-binding 

rate to the characteristic radial antibody diffusion rate. As Da approaches infinity, antibodies that 

reach the fiber wall bind “instantaneously” and antibody transport in the fiber lumen is controlled 

by the rate of antibody diffusion (diffusion-limited). Conversely, as Da approaches zero, 

antibodies that bind to antigens are replaced “instantaneously” by diffusion of antibodies farther 

from the fiber wall, and antibody transport in the fiber lumen is controlled by the rate of 
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antibody-binding (reaction-limited). For kf between 10-5 and 10-2 ml/�g*s (104 to 106 L/mol*s), 

the Damköhler number for SAF-based IgG removal is between 0.1 and 300, and the Damköhler 

number for SAF-based IgM removal is between 1 and 800 (Figure 4-6). (Again, for these 

calculations to apply to antibody removal from blood at 37 ºC, we must assume that the antibody 

diffusivity in flowing blood is equal to the antibody diffusivity in flowing water, and we must 

neglect the effect of temperature on antibody diffusivity. These calculations are only strictly 

correct for antibody removal from aqueous buffer at 22 ºC.) To make these estimates, we chose 1 

�g/cm2 as an order of magnitude estimate of the antibody-binding capacity of the SAF, since the 

approximate surface concentration of a monolayer of IgG molecules is 0.6 �g/cm2 (101,102). We 

chose the antibody/antigen association rate constant range based on the reported rate constants 

for antibody/antigen systems with either the antibodies or the antigens immobilized (106,107). 
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Figure 4-5 Graetz numbers for IgG and IgM antibodies for flow 
through 2 SAFs containing the smallest (SAF 1) and largest (SAF 
2) number of fibers expected for clinical SAFs. 
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Figure 4-6 Damköhler numbers for SAF-based removal of IgG and 
IgM antibodies, over the clinically relevant range of 
antibody/antigen association rate constants. 

The dimensionless forms of the centerline and inlet boundary conditions are 

straightforward: 
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The equation for the dimensionless bound antibody concentration involves the Graetz 

number and the ratio of the mass of free antibodies in one fiber volume (Vfci) to the mass of 

antibody-binding sites on the wall of one fiber (SAfcs
i); 
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where Vf (ml) and SAf (cm2) are the lumenal volume and surface area of a single SAF fiber, 

respectively. Thus cb* rises slowly with time if the mass of antibody-binding sites on the fiber is 

large compared to the mass of antibodies in the antibody solution. Also, cb* rises slowly with 
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time if Gz is large, since ∂c*/∂z* is small for large Gz and most of the antibodies that enter the 

SAF leave without binding to antigen. 

4.5 Numerical Solution for Small cb* 

We used FlexPDE (PDE Solutions, Inc., Antioch, CA), a finite element-based partial 

differential equation solver, to obtain numerical solutions for c*(r*, z*) for any combination of 

Da and Gz and for cb
* near zero (i.e. far from saturation of the SAF). We then calculated the 

“mixing cup” antibody concentration at the SAF outlet, co (�g/ml) (122): 
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Finally we determined the antibody removal rate R (�g/min) (R = Q(ci - co)) and the antibody 

clearance K (ml/min) (K = R/ci = Q(1 - co/ci)). The clearance represents the volume of antibody 

solution completely depleted of antibodies per unit time, and is a more useful indicator of SAF 

performance than the antibody removal rate since the clearance depends only on the percent 

reduction in antibody concentration accomplished by the SAF, and is independent of the actual 

antibody concentration levels in the blood (130). For cb* near zero (i.e. far from saturation of the 

SAF), the mass conservation equation and the boundary conditions are linear with respect to the 

free antibody concentration, and hence co is linearly proportional to ci and the clearance is 

independent of ci. 

4.6 Analytical Solutions for Large and Small Da and Small cb* 

We obtained analytical solutions for c*(r*, z*), co/ci, and K for large and small 

Damköhler numbers and for cb* near zero (i.e. far from saturation of the SAF). As Da 
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approaches infinity, the left side of equation (4-2a) approaches zero and the wall boundary 

condition can be simplified: 
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Thus for large Da, antibodies that reach the fiber wall bind “instantaneously” and the free 

antibody concentration at the fiber wall is equal to the equilibrium free concentration, calculated 

using the Langmuir adsorption isotherm equation (107). For large Da and for cb* equal to zero, 

c*(1, z*) is equal to zero. With this simplified boundary condition, we calculated c*(r*, z*) and 

co/ci using the infinite series Graetz solution for radial diffusion in a circular tube with constant 

wall concentration (131). The solution in this limiting case (Da→∞) was designated the 

diffusion-limited solution, since the antibody removal rate was determined by the diffusion rate 

and was independent of the binding rate. The expressions for c*(r*, z*) and co/ci, and the needed 

eigenvalues, eigenfunctions, coefficients, and derivatives, are presented in Skelland (131). 

As Da approaches zero, ∂c*/∂r* approaches zero throughout the fiber lumen (equation 

(4-2a)). In this case we treated the antibody-antigen binding as a homogeneous reaction:  
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The solution for co/ci was straightforward: 
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The solution in this limiting case (Da→0) was designated the reaction-limited solution, since the 

antibody removal rate was determined by the antibody-binding rate and was independent of the 

diffusion rate (note that Da/Gz is independent of D). 
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4.7 Model Predictions 

4.7.1 Dimensionless Free Antibody Concentration Profiles 

Figure 4-7 shows the dimensionless free antibody concentration profiles at the SAF fiber 

outlet for Damköhler numbers between 0.1 and 100, and for reaction-limited and diffusion-

limited antibody transport. In each simulation the Graetz number is equal to 12.5 and cb* is equal 

to zero. The numerically generated concentration profiles for finite Da approach the analytically 

generated diffusion-limited and reaction-limited profiles for large and small Damköhler 

numbers, respectively. In each profile, except the reaction-limited profile, the dimensionless 

antibody concentration is highest at the fiber centerline and lowest at the fiber wall due to 

binding of free antibodies at the wall. The diffusion-limited profile is the sharpest, with the 

dimensionless outlet concentration decreasing from about 0.6 at the fiber centerline to zero at the 

fiber wall. The profiles flatten with decreasing Damköhler number, and for reaction-limited 

antibody transport the dimensionless outlet concentration is about 0.95 at all radial positions (Da 

= 0.1). 

4.7.2 Dependence of the Dimensionless Clearance on the Damköhler Number 

Figure 4-8 shows the dependence of the dimensionless clearance (K/Q) on the 

Damköhler number, for Graetz numbers of 12.5, 25.1, and 50.2. In each simulation cb* is equal 

to zero. Recall that the clearance represents the volume of antibody solution completely depleted 

of antibodies per unit time. Hence the dimensionless clearance represents the fraction of the 

antibody solution flow completely depleted of antibodies, and equals one if the antibody 

concentration at the SAF outlet equals zero. Figure 4-8 reveals the approximate boundaries of 

three antibody transport regimes, defined by the magnitude of the Damköhler number: reaction-
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limited (Da ≤ 0.1), intermediate (0.1 < Da < 10), and diffusion-limited (Da ≥ 10). The 

dimensionless clearance is very low (< 0.05) in the reaction-limited regime. In the intermediate 

regime, the dimensionless clearance is higher (up to 0.6 at Gz equal to 12.5 and Da equal to 10) 

and increases substantially with increasing Damköhler number. The dimensionless clearance is 

highest in the diffusion-limited regime and no longer increases with increasing Damköhler 

number. As expected, at all Damköhler numbers the dimensionless clearance decreases with 

increasing Graetz number.  
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Figure 4-7 Dimensionless antibody concentration profiles within a SAF 
fiber at the fiber outlet, for Damköhler numbers between 0.1 and 100 and 
for diffusion-limited and reaction-limited antibody transport. The Graetz 
number is 12.5 and the dimensionless concentration of bound antibodies 
is near zero. 

4.7.3 Dependence of Dimensionless Clearance on the Graetz Number 

Figure 4-9 shows the dimensionless clearance, relative to the dimensionless clearance at 

Graetz number equal to 10, as a function of the Graetz number. In each simulation cb* is equal to 
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zero. The dimensionless clearance is shown in normalized form to allow visual comparison of 

the simulations at different Damköhler numbers. As also shown in Figure 4-8, the dimensionless 

clearance decreases with increasing Graetz number at all Damköhler numbers; however, the rate 

at which the dimensionless clearance decreases with increasing Graetz number is slowest for 

diffusion-limited transport. For Da equal to one, increasing the Graetz number from 10 to 50 

causes a 74% reduction in K/Q, while for diffusion-limited transport, the same increase in Gz 

causes only a 56% reduction in K/Q. 
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Figure 4-8 Dependence of the dimensionless clearance (K/Q) on the 
Damköhler number (Da), for Graetz numbers (Gz) equal to 12.5, 25.1, and 
50.2. Dashed lines indicate the dimensionless clearance for diffusion-
limited antibody transport at each Graetz number. The dimensionless 
concentration of bound antibodies is near zero. 

4.7.4 Dependence of Clearance on the Antibody Solution Flow Rate 

The increase in clearance with increasing antibody solution flow rate is greatest for 

diffusion-limited antibody transport (Figure 4-10), since the decrease in dimensionless clearance 
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with increasing flow rate (and Graetz number) is least for diffusion-limited transport (as 

explained above). For a SAF with the same geometry as the prototypes used in our in vitro 

studies (Chapter 5.0), increasing the flow rate from 50 to 100 ml/min increases the clearance 

from 15.0 to 17.0 ml/min (12.5%) when Da is equal to one, and from 33.6 to 47.6 ml/min (34%) 

when the transport is diffusion-limited. Therefore diffusion-limited antibody transport is doubly 

advantageous, producing the highest clearance at a given flow rate and the greatest increase in 

clearance when the flow rate is raised. 
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Figure 4-9 Dependence of the dimensionless clearance (K/Q), relative 
to the dimensionless clearance at Graetz number (Gz) equal to 10, on 
Graetz number, for Damköhler numbers of 1 and 10 and for diffusion-
limited antibody transport. The dimensionless concentration of bound 
antibodies is near zero. 
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Figure 4-10 Dependence of clearance (K) on antibody solution flow rate 
(Q), for Damköhler numbers (Da) of 1 and 10 and for diffusion-limited 
antibody transport. The SAF geometry is identical to the geometry of the 
SAF prototypes used for the in vitro experiments reported in Chapter 5.0. 
The dimensionless concentration of bound antibodies is near zero. 

4.8 Discussion 

Our transport model revealed three antibody transport regimes, defined by the magnitude 

of the Damköhler number Da: reaction-limited (Da ≤ 0.1), intermediate (0.1 < Da < 10), and 

diffusion-limited (Da ≥ 10). For a given SAF geometry, blood flow rate, and antibody 

diffusivity, the highest antibody clearance, and hence the highest antibody removal rate, is 

predicted for diffusion-limited antibody transport. In each regime, the antibody clearance 

increases with increasing blood flow rate. However, the greatest percent increase in clearance 

accomplished by raising the blood flow rate occurs when the antibody transport is diffusion-

limited. At a given blood flow rate, the clearance for diffusion-limited antibody transport can be 

increased even further by using a SAF with more fibers (i.e. decreasing the Graetz number at the 
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same blood flow rate). Diffusion-limited antibody transport in the SAF fibers may be achievable 

for medium to high affinity IgG antibodies (kf >5*10-4 ml/�g*s) and IgM antibodies (kf >2*10-4 

ml/�g*s), if the SAF fibers have enough antibody-binding sites to obtain near monolayer 

coverage of bound antibodies at saturation (Figure 4-6).   

The above insights suggest a unified approach to the design of SAF modules for clinical 

applications: 

1. Optimize the form of the antigen (i.e. natural or synthetic, with or without a spacer 

molecule), and the method for immobilizing the antigen on the inner fiber walls, to obtain the 

highest possible antibody-binding capacity and hence to maximize the chances of achieving 

diffusion-limited antibody transport. 

2. Use the highest possible blood flow rate, within the limits of biocompatibility and patient 

stability. 

3. Use a SAF with the largest possible number of fibers possible, within the limits of 

biocompatibility and cost. 
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5.0 IN VITRO MEASUREMENT OF THE SAF-BASED ANTIBODY REMOVAL 
RATE IN A MODEL ANTIBODY/ANTIGEN SYSTEM 

As discussed in Chapter 4.0, antibody transport in the SAF fibers may be primarily 

controlled by the rate of antibody-antigen binding (reaction-limited transport) or by the rate of 

radial antibody diffusion (diffusion-limited transport), or both rates may be important 

(intermediate transport). For a given SAF geometry, blood flow rate, and antibody diffusivity, 

the antibody removal rate is highest when the antibody transport is diffusion-limited. 

Additionally, when diffusion-limited antibody transport is achieved, the antibody removal rate is 

independent of the antibody-binding rate and hence is the same for any antibody/antigen system 

and for any patient within one antibody/antigen system. In this chapter, we describe a series of in 

vitro antibody removal experiments performed to determine whether diffusion-limited antibody 

transport is achieved in SAF prototypes containing immobilized protein-based antigens. The in 

vitro antibody removal experiments were performed using a model antibody/antigen system 

instead of a human disease-related system, to eliminate the need for a human source of 

antibodies and to allow all of the experiments to be performed using antibodies and antigens 

from single lots. We chose bovine serum albumin (BSA) as our model antigen, since BSA is a 

large molecular weight protein (132) like the ligands used in immunoadsorption columns (such 

as protein A and anti-human immunoglobulin), is inexpensive and non-toxic, and can be 

immobilized on cellulose-based SAF fibers using conventional protein immobilization methods. 

We used polyclonal anti-BSA antibodies as our model antibodies, and compared both the 
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magnitudes and the parameter-dependencies of the measured anti-BSA removal rates to the 

predictions of our mathematical model.  

5.1 Methods 

5.1.1 SAF Fabrication 

Gambro (Lakewood, CO) 500 HG hemodialyzers were used as SAF modules. The 

modules contained approximately 6656 Hemophan® fibers of 0.02 cm nominal inner diameter 

and 25.6 cm length, providing a blood-contacting surface area of 1.1 m2 (100). Bovine albumin 

(BSA) (Sigma Chemical Co., St. Louis, MO) or human albumin (HSA) (Alpine Biologics Inc., 

Orangeburg, NY) was immobilized on the lumenal surfaces of the fibers using a modified 

version of the cyanogen bromide activation method developed by Axen et al (119). Unless 

otherwise noted, chemicals were obtained from Sigma Chemical Company (St. Louis, MO). 

During the following fiber activation steps, the blood and shell compartments of the SAF module 

were connected in series using tygon tubing. Both compartments of the module were first rinsed 

copiously with de-ionized water. To swell the fibers, 3.5 L of 0.2 N NaOH was circulated 

through the module for four hours, on ice, at 136 ml/min. The module was flushed with 3.5 L of 

0.1 M sodium bicarbonate buffer/0.5 M NaCl, pH 8.3 (henceforth called bicarbonate buffer), at 

225 ml/min and at 4 ˚C. An activating solution of 25 g CNBr in 250 ml of 0.2 N NaOH was 

circulated through both compartments at 136 ml/min, on ice, for 1.5 hours. The activating 

solution pH was kept above 11.0 by the addition of cold 10 N NaOH. The module was flushed 

with 3.5 L of de-ionized water and 3.5 L of bicarbonate buffer, at 225 ml/min and at 4 ˚C. Excess 

fluid was removed from the module using filtered compressed air.  
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The shell compartment was then filled with bicarbonate buffer and closed. One hundred 

ml of 20-mg/ml antigen solution (BSA, HSA, or a mixture of BSA and HSA, dissolved in 

bicarbonate buffer) was circulated through the blood compartment at 77 ml/min, at room 

temperature, overnight (at least 12 hours). Both compartments were drained, and the mechanical 

integrity of the fibers and the seal separating the blood and shell compartments was verified by 

checking for antigen in the buffer drained from the shell compartment. The blood and shell 

compartments were again connected in series and the SAF was washed four times, by circulating 

500 ml of bicarbonate buffer through the SAF at 136 ml/min for one hour (each wash). Un-

reacted active sites on the fibers were capped by circulating 250 ml of 1 M ethanolamine, pH 8.3, 

through the SAF at 77 ml/min for two hours. The SAF was flushed with 3.5 L of bicarbonate 

buffer (at 225 ml/min), 2 L of 0.1 M glycine, pH 2.5 (at 77 ml/min), and 7 L of phosphate-

buffered saline (PBS) (137 mM NaCl/2.7 mM KCl/10 mM Na2HPO4/1.76 mM KH2PO4), pH 7.4 

(at 225 ml/min). Finally, 3.5 L of PBS was circulated through the SAF at 136 ml/min overnight 

(at least 12 hours). Excess fluid was removed from the SAF using filtered compressed air, and 

the SAF was stored at 4 ˚C until use.  

5.1.2 Antibody Solution Preparation 

Affinity purified, polyclonal sheep anti-BSA antibodies of IgG isotype were obtained 

from Bethyl Laboratories, Inc. (Montgomery, TX). The antibodies were supplied as a 1-mg/ml 

stock solution in PBS/0.1% NaN3, and stored at 4 ˚C until use. For each antibody removal 

experiment, an appropriate volume of stock solution was added to PBS, pH 7.4, to obtain the 

desired concentration and volume of anti-BSA solution. All antibodies used were from the same 

lot. 
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5.1.3 Antibody Concentration Measurement 

An in-house enzyme-linked immunosorbent assay (ELISA) (133) was used to measure 

the anti-BSA concentrations of samples collected during each experiment. Anti-BSA standards 

with concentrations between 2 and 40 ng/ml were prepared for construction of a reference curve. 

Each of the following solutions was added to the plate at 100 �l/well. Ten �g/ml BSA in 0.1 M 

sodium carbonate buffer, pH 9.6, was added to each well of a high-binding Costar 96-well EIA 

plate (Fisher Scientific, Pittsburgh, PA) and the plate was incubated at 37 ˚C for 1 hour. The 

plate was washed 5 times with 10 mM tris/100 mM NaCl/0.05% Tween 20, pH 7.4. The anti-

BSA samples to be assayed (diluted appropriately in PBS/0.05% Tween 20, pH 7.4) and the anti-

BSA standards were added to the plate in duplicate, and the plate was incubated for 1 hour at 37 

˚C and washed 5 times. Horseradish peroxidase-conjugated anti-sheep IgG antibodies (Bethyl 

Laboratories, Inc., Montgomery, TX), diluted to 1 �g/ml in PBS/0.05% Tween 20, pH 7.4, were 

added to the plate, and the plate was incubated for 1 hour at room temperature and washed 6 

times. TMB peroxidase substrate (KPL, Gaithersburg, MD) was added to the plate, and the plate 

was incubated for 15 minutes at 37 ˚C. Finally, 1 M phosphoric acid was added to the plate, and 

the optical density of each well was measured at 450 nm using a microplate reader (Molecular 

Devices, Sunnyvale, CA). The concentration of each test sample was calculated by comparison 

to the reference curve. 

5.1.4 Adsorption Isotherm Experiments 

The adsorption isotherm for binding of anti-BSA antibodies to immobilized BSA was 

measured by incubating samples of Hemophan® fibers, with BSA immobilized on the outer 

surfaces of the fibers, in anti-BSA solutions of varying concentrations. Bovine serum albumin 
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(BSA) was immobilized on the outer surfaces of the fibers comprising a Gambro 500 HG 

hemodialyzer using a modified version of the cyanogen bromide activation method developed by 

Axen et al (119). The immobilization was performed as described above (5.1.1), except that the 

20-mg/ml antigen solution was circulated through the shell compartment (instead of the blood 

compartment) after the fiber activation steps. The SAF was disassembled and the fibers were 

carefully extracted from the housing. Anti-BSA solutions at concentrations of 0.5, 1, 5, 10, 15, 

and 20 �g/ml were prepared using PBS/0.05% Tween 20, pH 7.4, as the diluent. For each anti-

BSA solution, 3 ml was placed in a 12 x 75 mm disposable glass test tube containing 200 

Hemophan®/BSA fibers of 2 cm length, and 3 ml of was placed in a second test tube containing 

200 un-modified Hemophan® fibers of 2 cm length. The tubes were capped and rocked gently 

for 6 hours at room temperature, and the anti-BSA concentration in the supernatant of each tube 

was measured using the ELISA described above (5.1.3). The bound antibody concentration was 

calculated by multiplying the difference between the initial and final anti-BSA concentrations by 

the antibody solution volume (3 ml) divided by the fiber surface area (27 cm2). The data was fit 

to the Langmuir adsorption isotherm equation (equation (2-1)) using a non-linear regression tool 

in Matlab (The Mathworks, Inc., Natick, MA), and the antibody-binding capacity (cs
i) and the 

equilibrium dissociation constant (Kd) were determined. 

5.1.5 In Vitro Perfusion System 

In vitro antibody removal experiments were performed using the simple perfusion system 

shown in Figure 5-1. The system consisted of a glass antibody solution reservoir, a Masterflex 

peristaltic pump (Cole-Parmer Instrument Company, Vernon Hills, IL), a glass bead flow meter 

(Cole-Parmer Instrument Company), a SAF, and a sampling port at the SAF outlet. The 

components were connected using tygon tubing. The shell compartment of the SAF was filled 
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with PBS and closed, and the antibody solution was pumped solely through the blood 

compartment. The entire perfusion system, except the reservoir, was de-aired and primed with 

PBS prior to the antibody removal experiment. At the start of the experiment the reservoir was 

filled with anti-BSA solution and the solution was pumped through the blood compartment of the 

SAF at the prescribed flow rate. 
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Figure 5-1 Perfusion system for in vitro antibody removal 
experiments. 

5.1.6 In Vitro Antibody Removal Experiments 

During each antibody removal experiment, approximately one L of antibody solution was 

pumped through a freshly fabricated SAF in single pass mode at constant flow rate. (A control 

SAF with immobilized HSA was the only SAF used in multiple anti-BSA removal experiments.) 

Eight 1 ml outlet samples and two inlet samples were collected and assayed for anti-BSA 

concentration. The clearance was calculated using the mean concentrations of both inlet samples 

and the second through eighth outlet samples. Negligible rise of the outlet anti-BSA 

concentration with time verified that cb* remained near zero during each experiment. 
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The first series of experiments was performed to determine the dependence of antibody 

clearance on inlet anti-BSA concentration. Anti-BSA removal experiments were performed at 

inlet concentrations of 0.5, 1, and 2 �g/ml, at a flow rate of 47 ml/min, using SAFs with 

immobilized BSA. The chosen anti-BSA inlet concentrations were within the range of specific 

antibody concentrations reported in the literature (56,104). To check for non-specific anti-BSA 

removal, an experiment was performed using a SAF with immobilized HSA (which does not 

bind the anti-BSA used, data not shown), at an inlet concentration of one �g/ml and a flow rate 

of 47 ml/min.  

The second series of experiments was performed to determine the dependence of 

antibody clearance on antibody solution flow rate. An anti-BSA removal experiment was 

performed at a flow rate of 110 ml/min and an inlet concentration of 2 �g/ml, using a SAF with 

immobilized BSA, and the measured clearance was compared to the previously measured 

clearance at 47 ml/min. Again the SAF with immobilized HSA was used to check for non-

specific anti-BSA removal at 110 ml/min.  

The third series of experiments was performed to determine the dependence of antibody 

clearance on antibody-binding capacity. To fabricate a SAF with decreased anti-BSA-binding 

capacity, we used an antigen solution containing 10 mg/ml BSA and 10 mg/ml HSA. Using this 

SAF, we measured the clearance at an inlet concentration of one �g/ml and a flow rate of 47 

ml/min, and compared the measured clearance to that measured for the SAFs with immobilized 

BSA only. 
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5.2 Results 

5.2.1 Anti-BSA/Immobilized BSA Adsorption Isotherm 

The measured anti-BSA binding capacity of the Hemophan®/BSA fibers was 0.92 

�g/cm2, and the equilibrium dissociation constant was 3.1 �g/ml (Figure 5-2). The measured 

anti-BSA binding capacity is reasonable since the approximate surface concentration of a 

monolayer of IgG molecules is 0.6 �g/cm2 (101,102). The measured equilibrium dissociation 

constant is also reasonable, based on the reported dissociation constants for antibody/antigen 

systems with either the antibodies or the antigens immobilized (Table 2-5) (1,106,107).  
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Figure 5-2 Anti-BSA/BSA adsorption isotherm for Hemophan® fibers 
with BSA immobilized on the outer surfaces of the fibers. Closed 
symbols: fibers with immobilized BSA. Open symbols: un-modified 
Hemophan® fibers.    
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5.2.2 Outlet Anti-BSA Concentration as a Function of Throughput 

During each anti-BSA removal experiment, the anti-BSA concentration at the SAF outlet 

increased sharply with the first 200 ml of throughput (volume of antibody solution perfused 

through the SAF) as the priming solution was flushed from the perfusion system (Figure 5-3). 

The outlet concentration remained relatively constant for the remainder of the experiment (up to 

800 ml throughput), indicating that the increase in bound anti-BSA concentration during the 

experiment was negligible compared to the anti-BSA-binding capacity of the SAF (i.e. cb* was 

near zero throughout the experiment). 
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Figure 5-3 Anti-BSA outlet concentration relative to inlet concentration 
(co/ci) during a typical anti-BSA removal experiment. Throughput is the 
volume of anti-BSA solution perfused through the SAF. Closed 
symbols: SAF with immobilized BSA. Open symbols: control SAF with 
immobilized HSA. Each experiment was performed at an anti-BSA 
solution flow rate of 47 ml/min and an anti-BSA inlet concentration of 
one �g/ml. 
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5.2.3 Dependence of Anti-BSA Clearance on ci 

As expected for cb* approximately equal to zero, the anti-BSA clearance was 

independent of anti-BSA inlet concentration for inlet concentrations between 0.5 and 2 �g/ml 

(Figure 5-4). At an anti-BSA solution flow rate of 47 ml/min, the average of the clearances 

measured at inlet concentrations of 0.5, 1, and 2 �g/ml was 26.3 ml/min, and the non-specific 

clearance by the control SAF (at an inlet concentration of one �g/ml) was 2.8 ml/min. The 

measured clearance using the SAFs with immobilized BSA, minus the non-specific clearance, 

was approximately 73% of the predicted diffusion-limited clearance and was within 2% of the 

clearance predicted for Damköhler number equal to 3.  
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Figure 5-4 Dependence of anti-BSA clearance (K) on anti-BSA inlet 
concentration (ci). Each experiment was performed at an anti-BSA 
solution flow rate of 47 ml/min. Dashed lines indicate the predicted 
clearances for Damköhler number (Da) equal to 1, 3, and 5, and for 
diffusion-limited antibody transport.   
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5.2.4 Dependence of Anti-BSA Clearance on Anti-BSA Solution Flow Rate 

Anti-BSA clearance increased to 36.2 ml/min when the anti-BSA solution flow rate was 

raised to 110 ml/min (Figure 5-5). The non-specific clearance by the control SAF was 6.8 

ml/min at a flow rate of 110 ml/min.  The measured clearance using the SAF with immobilized 

BSA, minus the non-specific clearance, was approximately 60% of the predicted diffusion-

limited clearance and was within 5% of the clearance predicted for Damköhler number equal to 

3.  
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Figure 5-5 Dependence of anti-BSA clearance (K) on anti-BSA 
solution flow rate (Q). Simulated dependences of clearance on flow 
rate, for Damköhler number (Da) equal to 1, 3, and 5, and for diffusion-
limited antibody transport, are also shown. 

5.2.5 Dependence of Anti-BSA Clearance on Antibody-Binding Capacity 

At an anti-BSA solution flow rate of 47 ml/min, the anti-BSA clearance decreased to 16.2 

ml/min when the anti-BSA-binding capacity decreased by approximately 50% (Figure 5-6). The 
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measured anti-BSA clearance using the SAF with immobilized HSA and BSA, minus the non-

specific clearance by the control SAF, was within 10% of the clearance predicted for Damköhler 

number equal to 1. 
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Figure 5-6 Dependence of anti-BSA clearance (K) on antigen 
composition. Each experiment was performed at an anti-BSA 
solution flow rate of 47 ml/min. Dashed lines indicate the predicted 
clearances for Damköhler number (Da) equal to 1, 3, and 5, and for 
diffusion-limited antibody transport. 

5.3 Discussion 

Transport of anti-BSA antibodies in SAF prototypes with immobilized BSA occurred in 

the intermediate regime, at a Damköhler number approximately equal to 3, and hence both the 

anti-BSA-binding rate and the radial anti-BSA diffusion rate were important determinants of the 

anti-BSA removal rate. At anti-BSA solution flow rates of 47 and 110 ml/min, we found close 

agreement between the measured anti-BSA clearances and the model-predicted clearances for 

Damköhler number equal to 3. Additionally, the anti-BSA clearance was highly dependent on 
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the anti-BSA-binding capacity of the SAF, as expected for antibody transport in the intermediate 

regime. Based on our initial estimates of the expected Damköhler number for SAF-based IgG 

removal, we expected the anti-BSA transport in the SAF prototypes to be diffusion-limited. 

Several factors may have contributed to the low Damköhler number achieved in our model 

system. In our SAF prototypes, BSA was immobilized on the fibers via accessible primary 

amines on the BSA. Since BSA contains 59 primary amine-containing lysine residues (132), of 

which about 30-35 are on the surface and available as immobilization points (134), the 

population of immobilized BSA was heterogeneous and a fraction of the BSA may have been 

unable to bind anti-BSA. Additionally, immobilization of the BSA may have reduced the 

intrinsic anti-BSA/BSA association rate constant and produced a low affinity antibody-antigen 

system. Finally, the anti-BSA population used may have had a low intrinsic affinity for BSA. 

Several antigens used for immunoadsorption are available in synthetic form, and can be 

immobilized via spacer molecules to ensure that most of the epitopes are accessible to the 

antibodies (89,91). SAFs containing these antigens may have antibody-binding capacities high 

enough to produce diffusion-limited transport of medium and high affinity antibodies. During 

development of SAFs for clinical use, equilibrium antibody-binding experiments must be 

performed to measure the antibody-binding capacity of the SAF fibers and ensure that the 

immobilization method is optimal. 

Our antibody transport model can be used to determine the SAF-based antibody removal 

rate if the SAF geometry, blood flow rate, antibody diffusivity, and antibody-binding rate are 

known. The model can also be used to help assess how close a given system is to achieving 

diffusion-limited antibody transport. For example, if the anti-BSA/BSA system were a system of 

clinical relevance, we would continue the SAF prototype development with the goal of tripling 
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the anti-BSA-binding capacity of the SAF fibers and increasing the Damköhler number to 9. 

Further development to increase the Damköhler number past 9 or 10 would be unwarranted, 

since the model predicts little enhancement in clearance obtained by raising the Damköhler 

number above 10.  

Our transport model does not account for the inherent heterogeneity of polyclonal 

antibodies. As antibody populations do not display a Gaussian distribution of affinities in vivo 

(23), appropriate mathematical representation of antibody heterogeneity is difficult and requires 

extensive knowledge of the antibody/antigen system being studied. Use of an “average” value for 

kf may over-predict the clearance since the clearance depends non-linearly on kf (i.e. the slow 

clearance of low affinity antibodies is not balanced by the fast clearance of high affinity 

antibodies).  

SAF antibody clearance from flowing whole blood may be higher than clearance from 

plasma or buffer due to enhancement of the antibody diffusivity in flowing blood compared to 

the diffusivity in flowing cell-free solutions. At a shear rate of 500 s-1, the IgG diffusivity in 

flowing human blood may be about 6 times its magnitude in stationary blood or about three 

times its magnitude in water (135). Transport of buffer-dissolved anti-BSA antibodies in our 

SAF prototypes with immobilized BSA occurred at a Damköhler number approximately equal to 

3, and we estimate that kfcs
i was approximately equal to 5.9*10-5 cm/s in that system (D equal to 

3.9*10-7 cm2/s). At a blood flow rate of 110 cm3/min, using a SAF with the same geometry as the 

prototypes used in our in vitro studies and the same magnitude for kfcs
i, the predicted antibody 

clearance increases from 31 to 42 ml/min when the antibody diffusivity increases from 3.9*10-7 

to 11.7*10-7 cm2/s. Under the same conditions, the predicted clearance for diffusion-limited 

antibody transport increases from 50 to 71 ml/min. The higher percent increase in clearance for 
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diffusion-limited antibody transport, compared to the increase for intermediate antibody 

transport, reflects the greater dependence of clearance on the antibody diffusion rate in the 

diffusion-limited regime. 

A single compartment pharmacokinetic model is typically used to describe the drop in the 

pathogenic antibody concentration in the patient’s blood volume during an antibody removal 

session (136):  

 
bl

bl Kc
dt

dcV ��  (5-1)

where V is the blood volume (cm3) and cbl is the patient’s blood antibody concentration (�g/cm3). 

If the clearance is constant throughout the antibody removal session, the antibody concentration 

decays exponentially with time, with a time constant equal to V/K. For a clearance of 29.4 

ml/min, at a blood flow rate of 110 ml/min (as achieved with our SAFs with immobilized BSA), 

the time constant for treatment of a 5 L blood volume is 170 minutes or 2.8 hours. For diffusion-

limited transport at the same blood flow rate, the time constant is 101 minutes or 1.7 hours. In 

practice, the clearance will decrease as the concentration of bound antibodies becomes non-

negligible compared to the capacity of the SAF (i.e. as cb* becomes non-negligible). To limit this 

reduction, the SAF must contain an abundance of antibody-binding sites compared to the mass of 

pathogenic antibodies in the patient’s blood at the beginning of the antibody removal session. 

Alternatively, two SAFs can be simultaneously employed during each removal session, with one 

SAF removing antibodies while the other is undergoing antibody elution and regeneration. This 

strategy is currently employed for IgG removal using the Excorim protein A columns (3). 
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6.0 CONCLUSIONS 

1. Removal of anti-A and anti-B antibodies from whole human blood using SAFs containing 

immobilized protein-based A and B antigens is feasible, and may be preferable to the non-

selective or semi-selective anti-A and anti-B removal methods that are currently available. 

2. Antibody transport in the SAF fibers may be primarily controlled by the rate of antibody-

antigen binding (reaction-limited transport) or by the rate of radial antibody diffusion 

(diffusion-limited transport), or both rates may be important (intermediate transport). For a 

given SAF geometry, blood flow rate, and antibody diffusivity, the antibody removal rate is 

highest when the antibody transport is diffusion-limited. Additionally, when diffusion-

limited antibody transport is achieved, the antibody removal rate is independent of the 

antibody-binding rate and hence is the same for any antibody/antigen system and for any 

patient within one antibody/antigen system.  

3. Transport of anti-BSA antibodies in SAF prototypes with immobilized BSA occurred in the 

intermediate regime, at a Damköhler number approximately equal to 3, and hence both the 

anti-BSA-binding rate and the radial anti-BSA diffusion rate were important determinants of 

the anti-BSA removal rate. Based on our initial estimates of the expected Damköhler number 

for SAF-based IgG removal, we expected the anti-BSA transport in the SAF prototypes to be 

diffusion-limited. Several factors may have contributed to the low Damköhler number 

achieved in our model system, including randomly-oriented immobilization of the BSA.  
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4. Initial SAF development work should focus on achieving diffusion-limited antibody transport 

by increasing the SAF antibody-binding capacity. If diffusion-limited transport is achieved, 

modifications to the SAF geometry and blood flow through the SAF can further increase the 

antibody removal rate. 
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APPENDIX A 

FlexPDE Script for Numerical Solution of the Antibody Transport Model 

{***************************************************************************** 

 This program simulates steady state antibody removal by a hollow fiber-based SAF. 

 Blood is perfused through the SAF at constant inlet concentration and constant  

 flow rate. The dimensionless outlet antibody concentration, dimensionless antibody 

 clearance, and dimensional clearance are determined as functions of the Damkohler  

 number and the Graetz number. 

*****************************************************************************} 

title "Antibody Removal by SAF" 

coordinates 

 xcylinder(z,r) 

{ r = dimensionless radial coordinate, z = dimensionless axial coordinate } 

variables 

C  { dimensionless concentration of free antibodies } 

definitions 

Q = 47  { blood flow rate, ml/min } 

a = 0.01  { SAF fiber radius, cm } 

L = 25.6 { SAF fiber length, cm } 

N = 6656 { number of SAF fibers } 
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D = 3.9*10^(-7) 

{ diffusion coefficient of antibodies in blood, cm2/s} 

kfcs = 1.17*10^(-4) 

{ forward binding velocity, cm/s } 

vbar = Q/(60*N*pi*a^2) 

{ average velocity of blood in the SAF, cm/s } 

Gz = pi*vbar*a**2/(L*D) 

{ Graetz number } 

Da = kfcs*a/D  

{ Damkohler number } 

v = 2*(1-r^2) { dimensionless velocity profile } 

Cout = surf_integral(v*c,"outlet")/surf_integral(v,"outlet") 

{ mean dimensionless concentration at SAF outlet } 

KdivQ = 1 – Cout 

{ dimensionless antibody clearance } 

K = KdivQ*Q  

{ dimensional antibody clearance, ml/min } 

equations 

Gz/pi*v*dz(C) = 1/r*dr(r*dr(C)) 

boundaries 

Region  { define cylinder of radius = 1 centered at 0,0} 

start (1,0) line to (1,1) 

 

natural(C) = Da*C 
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line to (0,1) 

value(C) = 1 line to (0,0) 

natural(C) = 0  

line to finish  

feature start "outlet" (1,0) 

line to (1,1) 

plots   {show final solution} 

elevation(C) from (1,0) to (1,1) 

elevation(C) from (0,1) to (1,1) 

report Gz report Da report Cout report KdivQ report K  

end 34287 
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