ANALYTICAL AND NUMERICAL OPTIMIZATION
OF AN IMPLANTABLE VOLUME CONDUCTION
ANTENNA

by
Brian Langan Wessel

BS, University of Pittsbugh, 2002

Submitted to the Graduate Faculty of
the School of Engineering in partial fulfillment
of the requirements for the degree of

Master of Sciences

University of Pittsburgh
2004

UNIVERSITY OF PITTSBURGH

SCHOOL OF ENGINEERING

This thesis was presented

by

Brian Langan Wessel

It was defended on
April 5, 2004
and approved by
Robert Sclabassi, Professor, Department of Neurological Surgery
Mingui Sun, Associate Professor, Department of Neurological Surgery
J. Robert Boston, Associate Chairman, Department of Electrical Engineering
Ching-Chung Li, Professor, Department of Electrical Engineering
Thesis Advisors: Robert Sclabassi, Professor, Department of Neurological Surgery,

Mingui Sun, Associate Professor, Department of Neurological Surgery

1

ANALYTICAL AND NUMERICAL OPTIMIZATION OF AN
IMPLANTABLE VOLUME CONDUCTION ANTENNA

Brian Langan Wessel, M.S.

University of Pittsburgh, 2004

As implantable devices become increasingly sophisticated, a means of communication is
required to transmit data to and from the device. A volume conduction antenna model has
been developed that meets the size and power constraints of an in vivo environment. This
thesis aims to optimize the shape, curvature, and orientation of these antennas. Analytical
and numerical analysis shows that the performance is independent of the conic section used
to simulate an antenna. Both analyses were also in agreement that highest curvatures achieve
maximum surface potentials, and that the angle is dependent on the distance of the antenna
from the surface of the head. Analytical analysis suggests that pointing the antenna elements
directly at the surface may not be the optimum angle, but rather at a smaller angle. Too
few data points were taken to make the same determination from the numerical case but
the optimum angle does deviate from the hypothesized angle in the same way, suggesting
a similar result. The numerical analysis was important as it facilitated the simulation of
the epoxy between the antenna elements. Incorporating epoxy into the simulation showed
30-35% increases in surface potential. A reflective sheet was then added showing further

increases in surface potential.

1l

PREFACE

I would like to extend my sincere thanks to Dr. Sclabassi and Dr. Sun for their guidance,
positive support, and continual attention to my growth and development as a student and
researcher. They were always available to talk and spend as much time as [needed to make
things clear.

I also thank the students in the Laboratory for Computational Neuroscience for listening
to my many and diverse questions and willingness to lend-a-hand.

Special thanks to my family: Mom, Dad, Frannie, Heather, Brenda and John, Heidi and
Tommy, Grandma and Grandpa, and everyone else for believing in me and always having
words of support.

Last, but not least, I would like to thank my thesis committee for spending their time
to read and listen to my thesis defense and offer constructive criticism to help stengthen the

research.

v

TABLE OF CONTENTS

PREFACE e
1.0 INTRODUCTION e
1.1 MOTIVATION e e

1.2 THEORY e
1.2.1 Volume Conductor

1.2.1.1 Quasi-static Assumption

1.2.1.2 Attenuation o

1.2.1.3 Half-cell Assumptions

1.2.2 The Finite Element Method (FEM)

1.2.3 The Boundary Element Method (BEM)

1.2.4 Comparison of the FEM and BEM

2.0 METHODS : ANALYTICAL AND NUMERICAL
2.1 CONSTRUCTION OF THE ANTENNA ELEMENTS

2.2 ANALYTICAL METHODS

2.3

2.2.1 Ideal Current Dipoles in an Infinite Homogeneous Medium

2.2.2
2.2.3
224
2.2.5
2.2.6

NUMERICAL METHODS
FEMLab oo

2.3.1

Nonideal Current Dipoles in an Infinite Homogeneous Medium . . .

Ideal Current Dipoles in a Spherical Homogeneous Medium

Nonideal Current Dipoles in a Spherical Homogeneous Medium

Ideal Current Dipoles in a Four Shell Spherical Head Geometry

Graphical User Interface

3.0 RESULTS e e 29

3.1 NONIDEAL DIPOLES IN A SPHERICAL MEDIUM: ANALYTICAL IN-
VESTIGATION e 29
3.1.1 Investigation of Optimum Angle 29
3.2 FINITE ELEMENT RESULTS: NUMERICAL INVESTIGATION 31
3.2.1 Proof of Concept in 2D L. 31
3.2.2 Proof of Conceptin3D 35
3.2.3 Finite Element Analysisin 3D 35
4.0 DISCUSSION 39
4.1 VERIFYING ANALYTICAL AND NUMERICAL RESULTS FOR THE
I-SHELL MODEL 39
4.1.1 Comparing FE with Epoxy to Analytical Solutions 42
4.1.2 Basis Functions oo Lo 44
4.2 SAMPLING THE SURFACE OF THE SHAPES 48
4.3 CONVERGENCE OF THE SOLUTION VS. CONDUCTIVITY DIFFER-
ENCE . . . e 48
4.4 IMPEDANCE 49
5.0 CONCLUSIONS e e 51
APPENDIX. MATLAB AND MEX CODE 52
1 Graphical User Interface L. 52
2 Shape Optimization 71
3 FE shapes creation L o 78
4 Four Shell Files 89
5 FE vs Frank Equation oo 93
.6 Extracting Points FEMLab output (Ctrl-F) 96
T Ideal vs Non-Ideal Dipoles (2D oo medium) 98
8 Ideal vs Non-Ideal Dipoles (3D spherical medium) 101
9 Hypothetical Angle 104
.10 Extracting Points from Slicesin 3D 109
.11 PDE Tool Code - Epoxy 111

vi

.12 PDE Tool Code - No Epoxy 119

.13 PDE Tool Code - Reflector, 125
14 PDE Multishell (with epoxy) L L. 131
.15 Plotting - Epoxy with % increase from analytical 139
.16 Plotting - No epoxy (FE) with % increase from analytical 143
A7 Conductivity Convergence 147
BIBLIOGRAPHY e 149

vil

1
2
3

LIST OF TABLES

Resistivities of relevant material properties ([7] compiled biological material)
Relevant Assumptions for Human Tissue [10]

Results for Proofs of Concept

viil

LIST OF FIGURES

Antenna elements shown on the sides of the implantable device.
Set theory description e

Top left: Tllustrates the use of control points around a bounding box (2*xmax
wide and ymax high) to determine parameters of the specified shape. Top
right: Shows a specific example of Top left using 5 control points. Bottom:

Shows how the antenna elements can be rotated by an angle W.

Vector field of ideal dipoles evenly spaced on hyperbolically shaped antenna
elements. The dipoles were placed in an orientation perpendicular to the an-

tenna elements and evenly spaced with-respect-to the arclength.

Dipole consisting of a sink —I, at the origin and a source I, at day, where

d—0. Also illustrated is a field point at vector ra, and polar angle 6 [7]. . . .

Two dipoles shown in a 3D coordinate system. The primed variables are the

locations of the dipoles and the unprimed variable is the location of interest. .

Top left: The field created by an ideal dipole. Top Right: Superposition of two
ideal dipoles. Bottom Left: Two monopoles (source and sink). Bottom Right:
Error between 2 dipoles and 2 monopoles (Appendix .7).

Coordinate system illustrating the variables from Equation (2.28)

Shaded plot showing the percent error for two sets of dipoles as compared to one
nonideal dipole. The error is concentrated in the region between the antenna

elements as the approximation breaks down in the near-field (Appendix .8). .

1X

16

17

19

21

23

24

10

11

12

13

14

15

16

17

18

19

20

Graphical User Interface allowing user to specify antenna element shape, size,
position, and orientation. It is also capable of simulating one or two dipoles

alone by user positioning in polar coordinates (Appendix .1). 26

Various conic sections. Top left: Semicircular; Top right: Parabolic; Bottom

left: Elliptical; Bottom right: Hyperbolic. 26
An example of a finite element mesh 28

Top left: Semicircular; Top right: Parabolical; Bottom left: Elliptical; Bottom
right: Hyperbolic (Appendix .2) 30

As the antenna moves towards the surface, the optimum angle increases and

is concave down. This graph is based on (3.1) and code is found in Appendix .9. 32

Shows that as the antenna is moved toward the surface, the optimum angle

rotates so that the antenna elements will point towards the surface (Appendix

The antenna elements are simulated without an insulator between the elements.
The polar plot displays the surface voltage. The right plot shows equipotential
lines surrounding the antenna elements. The polar plot has units of Volts

(Appendix .12). L 33

The antenna elements are simulated only with an insulator between the el-
ements. The polar plot displays the surface voltage. The right plot shows
equipotential lines surrounding the antenna elements. The polar plot has units

of Volts (Appendix .11). 34

An insulating material is placed below the antenna elements to act as a current
reflector. The polar plot displays the surface voltage. The right plot shows
equipotential lines surrounding the antenna elements. The polar plot has units

of Volts (Appendix .13). 34
Depicts the 2 planes where the slices were taken. 36

The antenna elements are simulated without an insulator between the ele-
ments. The polar plot displays the surface voltage (Code to extract slices from

FEMLab in Appendix .10). 36

21

22

23

24

25

26

27

28

29

30

31

The antenna elements are simulated without an insulator between the elements.

The polar plot displays the surface voltage. 37
The antenna elements are simulated with an insulator between the elements.

The polar plot displays the surface voltage. 37
The antenna elements are simulated with an insulator between the elements.

The polar plot displays the surface voltage. 38
Results for the FEA with epoxy between the antenna elements. Top left: Semi-
circular Top right: Parabolical Bottom left: Elliptical Bottom right: Hyperbolic 38
Comparison of Finite Element and Frank equation solution for (nonideal dipoles)
current sources around the center. The top plots show the potential plotted

on the surface of a spherical model of the head. The bottom plots show the
same voltage distribution plotted on a grid (Appendix .5). 40
Comparison of FEM and Frank equation solution for current sources near the
surface. The top plots show the potential plotted on the surface of a spherical
model of the head. The bottom plots show the same voltage distribution
plotted on a grid. 40
Comparison of FEM and Frank equation solution for current sheets near the
surface. L e 41
Finite element solution for all shapes, angles and curvatures where there is no
epoxy between the elements. These results should compare well with Figure

13. The error is shown in Figure 29 (Code found in Appendix .16). 41
Comparison of FEM and Frank equation solution for all shapes, angles and
curvatures. The percent increase represents how different the finite element
solution is compared to the analytical. 42
Comparison of FEM and Frank equation solution for all shapes, angles and
curvatures with epoxy. The percent increase represents how the epoxy does

not allow current to short between the antenna elements and thus forces it to

go around the antenna and give better surface voltages (Appendix .15). . . . 43
The black line shows the maximum value for each column which is confined to

only one row or in other words, one value of angle ¢ (Appendix .5). 44

x1

32

33

34

35

36

Top Plot: Error. Bottom Plot: Error with a sine curve overlaid (Appendix .5).

Different angles of the voltages plotted on a rectangular grid (Appendix .5). .
Graph shows that for an increasing conductivity difference, the solution does
not change (Appendix .17) Lo
Maximum element voltage plotted versus angle and curvature with no epoxy
between the antenna. Lo
Maximum element voltage plotted versus angle and curvature with epoxy be-

tween the antenna. L,

xii

45
46

49

50

1.0 INTRODUCTION

1.1 MOTIVATION

In 1990 there were more than half a million people suffering epileptic seizures despite appro-
priate pharmacotherapy [2], and it has been estimated that 100,000 to 200,000 of these are
potential surgical candidates [3]. For many of these people, their quality of life is severely
diminished by the afflictions of their disease. Surgery has become an effective tool in amelio-
rating severe symptoms expressed by patients [4], however it can be difficult to ascertain the
exact foci, or region of cells responsible for the epileptic expression. Operating procedures
normally involve destruction of the suspect epileptic region. However, it would be beneficial
to be able to control the epileptic region without destroying cells and/or monitor the region
to better locate the foci. An implantable device could accomplish both of these tasks. Thus
the device could be used in both long- and short-term settings.

Establishing volume conduction as a communication link would also benefit those with
spinal cord injuries. This could address the problem of the means by which activity in the
motor cortex would be coupled to muscle and how the sensory cortex could perceive the
surroundings. In general, the device would be capable of stimulating any part of the brain.
This feature could lead to next-generation devices capable of deep brain stimulation for
patients with Parkinson’s disease.

Thus, a need exists for bidirectional data communication between implantable and ex-
ternal devices, unconstrained by wires traversing the skin. Wires pose a problem as they can
create possibilities of infection or they may break. Computational advantages arise as there
is a nearly infinite amount of computing power outside of the body versus a limited amount

of such power inside due to the constraints of available space and energy. Peripheral comput-

Antenna Elements

Implantable Device

Figure 1: Antenna elements shown on the sides of the implantable device.

ing power can be concerned with problems of signal processing and other computationally
intensive procedures, whereas an in vivo device(s) can perform very specialized tasks thus
minimizing its size, weight, and energy consumption while greatly enhancing performance
Researchers have previously been successful in modeling these tissues as a volume con-
ductor for the study of bioelectric events. We apply these models to design an efficient
volume conduction antenna to both send and receive signals. Preliminary experimental re-
sults [5] have shown that two concave-shaped antenna elements located on the sides of an
implantable device (Figure 1) is an efficient design. Further, it is hypothesized that the
shape of the antenna elements will significantly affect how the current is distributed in the
near- and far-field, as is the case in RF designs. However, volume conduction does differ

from RF in the following ways [5]:

1. The strong shielding effect of ions in biological tissue is no longer a problem, instead,
these ions are now employed as information carriers.

2. The electronic circuit associated with the communication system is simple and does not
involve bulky components, allowing an aggressive reduction in size and weight.

3. The system does not require signal conversions to/from RF, increasing energy-efficiency.

Thus, volume conduction design differs from normal antenna design as it does not use RF
energy but rather, volume currents. In RF design, the size of the antenna is dependent on
the frequency of the signal. Further, to work in the frequency range having low attenuation,
the frequency should be below 10 kHz [23]. This results in an unreasonably large antenna

size, on the order of 10* m.

1.2 THEORY

1.2.1 Volume Conductor

Classical electrical engineering circuit design involves the analysis of networks of discrete
components such as resistors, capacitors, inductors and sources. The investigation of these
components led to constitutive relations thereby allowing the engineer to predict values in
the circuit. However, the human body defies this discretization. The conducting medium
can be thought of as a 3-dimensional distributed circuit. This circuit contains no inductance
but rather distributed resistance, capacitance, and sources [7].

Although the volume conductor is a distributed circuit, we must still ascertain and
verify important material properties. First, the assumption of linearity is imposed. As a
consequence, the rules of superposition and multiplication must hold. This is important
so that the combined effects of current sources and sinks can be scaled and superposed.
Although in reality, the properties of human tissue change depending on direction, these
anisotropies are small for the tissue in the head, furthermore, in [7] only muscle tissue is

cited as having significant anisotropies. Table 1 lists resistivity values for certain tissues.

Table 1: Resistivities of relevant material properties ([7] compiled biological material)

Material Resistivity - m References
brain 5.8 average of [9] and [8]
cerebral spinal fluid 0.7 9]
bone 177 8]
scalp 2.22 8]
epoxy (glass) 1x10'2 1]
metal (copper) 1x1078 1]

There are also ratios defined by [22] that specify the size of the brain, CSF, skull, and
scalp with respect to the radius of the head. The brain surface is 88.24%, CSF is 92.94%, skull

is 95.29% and scalp is 100% of the radius. Note that a radius of 7.5 cm was implemented.

Table 2: Relevant Assumptions for Human Tissue [10]

Condition Criteria

Neglect Propagation Effects | kR0 < 1

Neglect Capacitive Effects | we/o <1

Set £y, =0 wep /oy

1.2.1.1 Quasi-static Assumption Unlike in a discrete circuit, Kirchoff’s laws cannot
be applied here to solve a distributed circuit. Thus, one must solve partial differential
equations for the resultant fields. Taking into account capacitance and propagation of the

signal, one must solve the inhomogeneous Helmholtz equation to arrive at

(7) ! / | UG (1.1)

B Ao (1 + %) R
where R = |"—7"|, 7/ is the volume current source density, o is the conductivity, and k is a
complex dielectric constant. To simplify this equation, a quasi-static assumption can be made
which assumes that at each instant in time the potential field satisfies Poisson’s equation,
and that the boundary conditions are those which would exist if the source condition were
stationary [10]. Plonsey showed that the assumptions in Table 2 are valid for frequencies

below 1 kHz for biological material. Using these conditions, taking the Laplacian of (1.1),

and noting V?(1/R) = —4n§(7 — 1), one arrives at Poisson’s equation,
V20(7) = _2(r) : (1.2)
o

The boundary condition at the surface of the head must also be the same as that for the

static case,

Jwer Jwes

0'1(1+)Eln:O'Q(l"_

01 02

VEon (1.3)

where o; and o9 are the inner and outer conductivites, respectively, and Ey,, and Es, are

the inner and outer electric fields, respectively. Thus, for o9 = 0 and €5 = ¢y the equation

reduces to (1.4), where from the third entry in Table 2, one can arrive at the conclusion that

FE4, = 0, which is exactly the same as the static case.

01(1+jw€1

)Eln = jweo Loy, (1-4)
01

1.2.1.2 Attenuation In order to maintain a suitable SNR, the frequency range should
have low attenuation. Lindsey has shown that the frequency range below 10 kHz has constant
attenuation of about 54 dB for a current of 1 mA. Frequencies above 10 kHz exhibit an
increase of 2 dB/decade to 100 kHz [23]. These experiments were performed in the knee so

more work must be done to characterize attenuation in the head.

1.2.1.3 Half-cell Assumptions Unlike a classical circuit, the conductance in a volume
conductor arises due to ionic currents rather than electronic ones. Therefore, the antenna
elements also play the role of transduction because the current in the antenna is carried
by electrons whereas the current carried by the tissue is ions. In the case of the antenna,
there will be currents flowing to and from the surface of the electrode. However, the half-cell
potential, describing the transduction of electrons to ions, is calculated for a zero-current
situation. Thus since the antenna violates the zero-current assumption, the half-cell potential
must be modified by three terms to properly predict the behavior of the antenna element.
These correction terms are called the ohmic, concentration, and activation overpotentials and
describe the differences seen between the equilibrium zero-current and the observed half-cell
potential when the current is nonzero [11]. It will be assumed that these effects cancel as a

negative effect on one electrode will be a positive effect on the other [6].

1.2.2 The Finite Element Method (FEM)

The FEM can be summarized in the following statement: Project the weak (variational)
form of the differential equation onto a finite-dimensional function space [18]. The FEM is
useful for solving partial differential equations (PDE). A PDE is an equation involving a

function and its partial derivatives.

Figure 2: Set theory description

The derivation will be shown for three-dimensions but is appropriate for any number of
dimensions. It is easiest to understand this statement by working through an example using

the elliptic PDE, shown in the following equation:

V- (oVu)+au=f inQ , (1.5)

where v is a scalar field,a is a constant, ¢ is the conductivity, which in general can be

a matrix, and f is a source term. Note that when a is set equal to 0, (1.5) becomes the
Poisson equation, (1.2). The first step is to project (1.5) onto a subspace of V', where it is
contained. This subspace, of dimension N, also lies in V. This procedure is illustrated in
Figure 2. Mathematically, this is shown in the following equation (please note that d®z is a

volume integral, d?z is a surface integral, and dz is a line integral):

/Q(—avzﬁ)v + atw d*r = /vadgx) (1.6)

where u is an approximation to the solution, u. Green’s first identity, shown in the

following equation, is then applied:

/(UVQﬁJ + VoVia)diz = v@d% . (1.7)
Q i on

Equation (1.6) becomes

/Q(aﬁa) Vo + ativ d*z — O’—U d*r = / fod*z : (1.8)

The following boundary condition is then applied:

U?—i‘qu—g , (1.9)

where when q and g are equal to zero is equivalent to writing:

g

= (1.10)

r=R

In this case, Neumann boundary conditions were used on the outer boundary of the
geometry. In general, Neumann conditions are always used on the inner surfaces. The result

of substituting (1.9) into (1.8) is the following;:

/(aﬁﬁ) -V + aiiv d®x +]4 (gt — g)v d*x = / fod®z . (1.11)
Q do 0

The original problem can thus be rephrased as the following: Find u such that

</(cﬁﬂ) Vo + ativ — fo dx—]((—qu+ g)v ds) =0 W . (1.12)
Q dQ

Equation (1.12) is called the variational or weak form of the differential equation. As
previously mentioned, u and v belong to some function space V. The next step is to determine
a finite-dimensional subspace vy C V. To project the weak form of the differential equation
onto a finite-dimensional function space means requesting v and v to lie in vy. Since (1.12)
is true for all v, it is useful to define N basis functions that span v, thus ¢; € vy. One can

also expand u in the same basis:

i(x) = ZUJ'<Z5J'(~”U) : (1.13)

This is known as Galerkin’s method. Substituting for @ and v one gets

N
Z (/Q(aﬁsf)j)ﬁcbﬁa%@ d3m+]§ﬂ q0;Pi d%) U; = /Qf@ d3x+j§9 96; dx QPN

j=1

(1.14)
Using the following notations:
K= [0¥6) Vo, b0 (1.15)
Q
Mi,j = / @¢j¢i d*z) (1'16)
Q
Qi j Z/ a0 I’z (1.17)
o
F, = / fo; dx ,and (1.18)
Q
G, = / g >z . (1.19)
Bi9)
Equation (1.14) can be written in a compact matrix form:
(K+M+QU=F+G . (1.20)

Usually it is not necessary to distinguish between K, M, and @) or F and G so (1.20)

can be written as:
KU=F . (1.21)

1.2.3 The Boundary Element Method (BEM)

The boundary element method is similar to the FEM, however it seeks to find a relation

%u and u evaluated at a

involving only the surface distributions of the unknown function u, =

point P on the surface. Volume points can then be reconstructed if needed as a postprocessing

step. Much of the material describing the BEM was adapted from [19].

Before one applies the BEM to a problem they must first find a fundamental solution,
which becomes the weighting function, and plays a similar role as a particular solution
in differential equations. It is also commonly called the freespace Green’s function. This
function can also be thought of as the response a system has to a d-function input.

Equation (1.2) will be solved with v set equal to zero i.e., a fundamental solution of
Laplace’s equation will be found. The solution will be valid in 3. The fundamental solution

of the Laplace equation is a solution of:

Pu Pu 0*u

The method is to try and find a solution to V?u = 0 in R3 which contains a singularity
at the point (£,7n,7). It is expected that the solution is symmetric around the point (£, 7, 7)

since §(§ —x,n—1vy,y — z) is symmetric about this point. A local spherical coordinate system

is adopted about the singular point (£,7,7). Letting r = /(6 —)2 + (n — y)2 + (7 — 2)2,

we have

2, 8u)+ 1 8(68U)+ 1 82_1/1
r2 or* Or r2sin 00 sin ol r2sinf 0¢?

Viu = (1.23)

Note that the second and third terms are equal to zero due to symmetry, therefore

20u

5) = 0. This equation can be solved by simple integration:

Son(r

1 0, ,0u
/ﬁar(87") r’dr =0 . (1.24)

Canceling the r? variables, and applying the Fundamental Theorem of Calculus i.e.,

(J ¢'(x)dx = g(x) + D) with an arbitrary constant D:

50U
PeED=0 (1.25)

and redefining —D as A and integrating:

A
/0u = T—Qﬁr : (1.26)

where an arbitrary constant B is used:

u=2ip (1.27)
T

We must now find the constants A and B. To do this we can make use of the integral

property of the o-function. From (1.22) we must have

/ Viu = —/ ddS) = —1 where () is any domain containing r=0 . (1.28)
Q Q

It is wise to choose a simple domain to allow us to evaluate the integrals. If €2 is a small

sphere of radius € >0 centered at r=0, then according to (1.7), with ®=1

/VZU— —d2 , (1.29)
8Q

where 0f2 is a surface integral. Furthermore, n and r are in the same direction, so

/Vzu— —d2 : (1.30)
8(2

Integrating around the perimeter, where 2 = —7%, we get

/ /——rsm@d@dgb) —4mA . (1.31)

L So we have

Using (1.28), A = ;-

1
=—+B . 1.32
Y Arr + ()

where B is arbitrary but usually set equal to zero. The foundation is now laid to develop
the boundary element equation. The basic steps are quite similar to those used in the FEM.

We begin with Green’s second theorem:

ou ov

Viu — uV?)d® :]{ — —u—|d’x 1.33

[@vtu—utds = § WSt —ughd (1.33)

where V2u = 0. For the Galerkin FEM we chose v, the weighting function, to be ¢;,

one of the basis functions used to approximate u. For the BEM we choose v to be the
1

fundamental solution of Laplace’s equation derived in (1.32) i.e., v = 4.

10

Then using the property of the Dirac delta:

/Q (Vo) e = — / WS(E— o — oy — Pr = —u(Eny) (Emy) Q. (L34)

i.e., the domain integral has been replaced by a point value. Thus (1.33) becomes

w(&,m,) 7{ u—d2w = jgg v—d2 (&,m,7) € Q : (1.35)

This equation contains only boundary integrals (and no domain integrals as in the FEM).
It relates the value of u at some point inside the solution domain to integral expressions
involving v and % over the boundary of the solution domain. It is usually more helpful
to have an expression relating the value of u at some point on the boundary to boundary

integrals. For brevity, the result will not be derived but is as follows:

ov ou
P)u(P —d’r = —d’ 0 1.
AP(P)+ § uglite= ¢ WZhe (€ma) e (1.36)
where:
)
1 if Pe Q,
c(P) = % if Pe dQ) and df) smooth at P, (1.37)
W if Pe d) and df2 not smooth at P.

\

Once the surface distributions of u and % are known, the value of u at any point P
inside €2 can be found since all surface integrals in (1.36) are known. Thus we solve for the
boundary data first, and find the volume data as a separate step.

Since (1.36) contains only surface integrals, as opposed to volume integrals in a finite
element formulation, the overall size of the problem has been reduced by one dimension.
This can result in huge savings for a problem with a large volume to surface ratio. Also
the effort required to produce a volume mesh of a complex three-dimensional object is far
greater than that required to produce a mesh of the surface. Thus the BEM offers distinct
advantages over the FEM in certain situations. There are also disadvantages, and both will

be discussed in the next section.

11

1.2.4 Comparison of the FEM and BEM

For complex geometries, the forward problem is typically solved by the BEM or FEM which
solve for the potential on a 3D grid of data points. It is useful to compare the advantages

and disadvantages of each method [16], [19].
Meshing

e FEM: An entire domain mesh is required.
e BEM: A mesh of the boundary only is required.

e Comment: The reduction in the size of the mesh implies that the problem complexity
has been reduced by one dimension. This is advantageous as the creation of complex
3-dimensional meshes is time consuming. However, the FEM allows for the modeling of

complex geometries.
Solution Domain

e FEM: The entire domain solution is calculated as part of the solution.

e BEM: The solution on the boundary is calculated first, and then the solution at domain
points (if required) are found as a separate step.

e Comment: There are many problems where the details of interest occur on the boundary
or are localized to a particular part of the domain, and hence an entire domain solution
is not required. For problems involving infinite or semi-infinite domains, the BEM is

favored as solving the whole domain is intractable.
Approximations

e FEM: The differential equation is being approximated.

e BEM: Boundary conditions are being approximated.

e Comment: The use of Green’s second identity and a fundamential solution in the for-
mulation means that the BEM involves no approximations of the differential equation in

the domain; only in its approximations of the boundary conditions.
Matrix Form

e FEM: Sparse, banded, positive-definite, symmetric matrices are generated.

12

e BEM: Fully populated nonsymmetric matrices generated.

e Comment: The two methods generally produce matrices of different sizes due to the
differences in size of the domain mesh compared to the surface mesh. There are problems
where either method can give rise to the smaller system and quickest solution, depending
partly on the volume to surface ratio. For problems involving infinite or semi-infinite

domains, the BEM is to be favored.

Numerical Integration

e FEM: Element integrals are easy to evaluate.

e BEM: Integrals are more difficult to evaluate, and some contain integrands that become

singular.

e Comment: In general, BEM integrals are harder to evaluate. Also the integrals that are
the most difficult (those containing singular integrands) have a significant effect on the

accuracy of the solution, so these integrals need to be evaluated accurately.
Applicability

e FEM: Widely applicable. Handles nonlinear problems well.
e BEM: Cannot even handle all linear problems.

e Comment: A fundamental solution must be found (or at least an approximate one)
before the BEM can be applied. There are many linear problems (e.g., virtually any
nonhomogeneous equation) for which fundamental solutions are not known. There are
certain areas in which the BEM is clearly superior, but it can be rather restrictive in its

applicability.
Implementation
e FEM: Relatively easy to implement.

e BEM: Much more difficult to implement.

e Comment: The need to evaluate integrals involving singular integrands makes the BEM
at least an order of magnitude more difficult to implement than a corresponding finite

element procedure.

13

In general, the FEM requires more computation. However, as computers increase in
speed, this advantage diminishes and the FEM becomes more attractive for the advantages
listed above. In addition, there are many more standard FEM programs to choose, therefore
increasing user support. The BEM also works poorly in applications involving a large number
of shells which makes it especially restrictive in this case where more realistic head geometries
typically include 3 to 4 shells. For these reasons and the advantages above, the FEM was

chosen as the numerical tool for these simulations.

14

2.0 METHODS : ANALYTICAL AND NUMERICAL

2.1 CONSTRUCTION OF THE ANTENNA ELEMENTS

The construction of the antenna elements is illustrated in Figure 3. The same techniques
were used to create both the analytical and numerical antenna shapes. The control points
were found by adding Z,,q; and Y., and dividing the sum by the number of control points

(P.) plus one:

'xmax + yma:t
dipe = —————— 2.1
Pt 1 (21)
This gives the incremental distance to travel along the perimeter of the bounding box as
seen on the right side of Figure 3. The following give the equations for the sphere, parabola,

ellipse, and hyperbola respectively.

Cr e
ax; — % =0 ; (2.3)
Z—z + ‘Z—j =1 ,and (2.4)
§_§:1 . (2.5)

Thus we need to know R for the sphere, a for the parabola, and a and b for the ellipse

and hyperbola. The following equations derive the formulas used to calculate the salient

15

(02,0081
max L - — — — = 02 e (0201

|
! antenna shape (0.15.0.0
£0.10.0
! (0.050.0
yimax | y 01 y

#Hourves/shape =5

control points 1-02:01-03
d/(+ourves/shape+1 = 0.05

xmax{— — — — — /J 02

Identical points are then placed on the lower half for symmetry.

There is a control point at (0.0) by default

The antenna elements are rotated through an angle psi between O and 90 degrees

Figure 3: Top left: Illustrates the use of control points around a bounding box (2*xmax wide
and ymax high) to determine parameters of the specified shape. Top right: Shows a specific
example of Top left using 5 control points. Bottom: Shows how the antenna elements can

be rotated by an angle V.

parameters of the conic section equations. For the sphere, R can be calculated with the

following equation, where the subscript, ¢, stands for “control points” as per Figure 3:

R=+/z.2+y? . (2.6)

For the parabola, a can be calculated using

2
a=%" (2.7)

‘,'UC
For the ellipse, it is assumed that the z and y control points are at the inflection points,

thus

0.25
0.2
0.15
0.1
0.05

-0.05
-0.1
-0.15
-0.2
-0.25

o0 & O O O @0 0 Or B 0O B O 7 @02 O O O 0.0 O

z (cm)
)
6000 ® 000000 cc o s e oo o
© Gr O G O Or O Gr Or Or Or GOr Or Or Or Gr O Gr Or Or Or Gr Or G

&b
b &
&b
& &
&b
& &
)
& &
&
& 8
&b
B b 6
)
b &
% 5.6
b &
& 6
% b &
&6
b &
&b
% b 8
& b
b b

X (cm)

Figure 4: Vector field of ideal dipoles evenly spaced on hyperbolically shaped antenna ele-
ments. The dipoles were placed in an orientation perpendicular to the antenna elements and

evenly spaced with-respect-to the arclength.

The hyperbola is a distance %l from the x-axis, where d is specified by the user when

designing the distance between the antenna. Thus,

2 2
Y T
_(4)2 -5 = 1 7 (2.10)
2
where
- g (2.11)
Solving for a? we find
272
2 Ye b
= 22+ dr, (2.12)

For the ideal dipole case, the dipoles have moments which are vectors, so a position and
orientation must be specified. It was determined that putting the vectors at a perpendicular
orientation to the surface would be consistent with the notion that the current leaves the

surface of the antenna elements in a perpendicular direction. Determining this orientation

17

is done by simply taking the gradient of the function set equal to zero:

y—fl@)=0 (2.13)

W=V - f2) . (2.14)

An example of the application of (2.13) and (2.14) can be seen in Figure 4. The sources
and sinks were placed at evenly spaced intervals along the arc length of the shape. This same
length was also used as the spacing along the long axis. Had the sources been placed at even
intervals along the axis, the density of sources and sinks around the areas of high curvature
would have been exaggerated. Thus, it was assumed that the current density leaving the

antenna elements was uniform.

2.2 ANALYTICAL METHODS

Analytical methods are important because they offer fast, closed-form solutions. Methods
were developed that allow the antennas to be simulated with both ideal and nonideal current
dipoles. Nonideal current dipoles are characterized by having an arbitrary distance between

source and sink monopoles.

2.2.1 Ideal Current Dipoles in an Infinite Homogeneous Medium

Ideal current monopoles can be characterized by defining the current magnitude and con-

ductivity as seen in the following equation [7]:

I,
O, =

— 2.15
° Admor ()

The field produced by a current monopole and the electrostatic field from a point charge

are identical, provided that I, is replaced by @Q,, o is replaced by € (the permittivity), and

18

x".y.z"0

Figure 5: Dipole consisting of a sink —I, at the origin and a source [, at da,, where d—0.

Also illustrated is a field point at vector ra, and polar angle 6 [7].

J (current density) replaced by E. The following equation shows this similarity:

@Q . QO

= 2.16
° dme,r ()

This example of duality is convenient as there are many closed-form equations for electro-
static point charges that can be converted to electrostatic point current sources. Although,
a point current source cannot exist, the potential can be calculated from the presence of a
current sink and source together [7].

The ideal dipole equation for an infinite homogeneous medium will be derived here,
and the results will be used to determine whether it is a good or bad assumption to place
ideal dipoles on the surface of the antenna elements. This is of interest, as equations have
previously been derived for sophisticated models of the geometry of the head i.e., ideal dipoles
in four-shell models of the head.

A dipole of arbitrary orientation is illustrated in Figure 5, where the negative pole is
placed at the origin of the coordinate system. If the positive pole were at the origin, the
potential would be zero. Thus, the dipole potential arises due to the separation of the
positive and negative poles. This potential can be found by examining the potential for the

positive monopole and evaluating the change in potential brought about by moving the the

19

monopole from the origin to its dipole position. This can be approximated from the first
derivative of the potential. A derivative of ® is taken with respect to the direction a4 (a
directional derivative) and then multiplied by the magnitude, d. Thus, we have

O(zer)

b, = =9 . 2.1
d Oa,d (7)

The directional derivative in (2.17) equals the gradient in the direction @, so that

I
OFES 2) - da 2.18
= V(ED) dag (218)
and finally, since I,d = p:
oy = L vl (2.19)
=—V(-)-a . .
T dno Ny a
Using the relation
1 a
V- =— 2.20
=% (2.20)
(2.19) becomes
p ..
b, = . . 2.21
47 dpor2 (2:21)

Equation (2.21) can be simplified further given that the dipole is oriented along the z-axis
and located at the origin [7]:

p cost

o, (2.22)

" dror?
The reason that an ideal dipole was investigated first, rather than two monopoles, is
that neuronal activity in the brain is typically modeled by a configuration of ideal dipoles.
Thus, it was a simple extension to set up a model which incorporated ideal dipoles. For
instance, to implement these ideal current dipoles, a program was used, written by Sun for
EEG analysis (Appendix .1).
Conceptually it is clear that the use of two sets of dipoles will not return the same

solution as using two monopoles (source and sink). The following set of equations derives

20

Figure 6: Two dipoles shown in a 3D coordinate system. The primed variables are the

locations of the dipoles and the unprimed variable is the location of interest.

the field for two sets of dipoles in an infinite homogeneous medium. The coordinate system
can be seen in Figure 6.
Starting from (2.21) and using superposition, one can write the following equation for

the second dipole, where here it is assumed that the moments (p) are constant:

p ~ ~ p A A
Dogipotes = Wam - aq + Waacg s) (2.23)
where:
r=|F—7'| , (2.24)
and
Ty = ‘F— T3 ’] , (2.25)

where the primed variables represent the location of the dipoles.

2.2.2 Nonideal Current Dipoles in an Infinite Homogeneous Medium

Nonideal current dipoles are classified as a set of opposing monopoles spaced at arbitrary

distances. Each monopole obeys the laws of superposition and therefore the fields can simply

21

be added together. Beginning with (2.15) and Figure 6, using superposition and rearranging,

one can arrive at [7]:

(—=) (2.26)

where 2’ and z" are from (2.24) and (2.25), respectively.

Then comparing (2.23) and (2.26), one can find the error that arises from using two
dipoles as compared to two monopoles for the antenna elements. This is shown in Figure 7.
One can see that the error is quite large and so ideal dipoles are not an acceptable means of
simulation in this case. Therefore, the previous literature for describing bioelectric sources
as ideal dipoles in the head is not applicable for these simulations.

Although the equations for the infinite medium are insightful and provide a minimum
baseline for error, they do not elucidate the characteristics of the dipoles inside of the head.

To simulate the head, a spherical shape is assumed for the next section.

2.2.3 Ideal Current Dipoles in a Spherical Homogeneous Medium

There are many equations that have been developed to solve this problem. Probably the

simplest equation was developed by Sidman [12]:

1 2(6z — dz) €;S — dz
o= e /R A 2.27
47r0qi21m[q> +e+q+1—s] (2.27)

where d;, m;, and ¢;, i=1,2,3 (1=x,2=y,3=z), are, respectively, the vector elements of d_:
m, and € which represent the dipole location, current moment, and scalp location; o and ¢
are the conductivity and potential at €, respectively; and q and s are equal to | € — d | and

€ ci; respectively.

2.2.4 Nonideal Current Dipoles in a Spherical Homogeneous Medium

To increase simulation sophistication nonideal dipoles in a spherical medium were used.

The derivation of this equation is quite complicated, using Legendre polynomials. It was

22

o

q’one dipole twwo dipoles

Etrar -+ i

‘btwo monopoles monopoles'¢dipoles)

-100

Figure 7: Top left: The field created by an ideal dipole. Top Right: Superposition of two
ideal dipoles. Bottom Left: Two monopoles (source and sink). Bottom Right: Error between

2 dipoles and 2 monopoles (Appendix .7).

23

7
/o
‘//[
-6
.
.

Figure 8: Coordinate system illustrating the variables from Equation (2.28)

developed by Ernest Frank [13] and is

I |2 2 1 ro+R—axcos (3

0,0) = —|—+—+ 5l
$(0,5) dmo rb+ra+RnTb—|—R—b*0059 ’

(2.28)

where 1, and r, extend from the positive monopole to the field point and from the
negative monopole to the field point, respectively.

It is easiest to illustrate the variables before they are described as shown in Figure 8
From Figure 8 one can see that d does not have to go to zero and thus this is a nonideal
dipole arrangement inside of a spherical homogeneous medium.

With (2.27) and (2.28) one can find the error created by using dipoles. This error can
be seen in Figure 9. Looking at this error, one can draw the conclusion that although
(2.27) is quite useful for representing electrical activity due to neurons, it is not ideal for the

closed-form simulation of the antenna.

2.2.5 Ideal Current Dipoles in a Four Shell Spherical Head Geometry

A four shell model of the head is important because it incorporates the different layers of
tissue. The different tissues layers are brain, cerebral spinal fluid (CSF), bone, and scalp.
Their conductivities are given in Table 1. The closed-form computation of the voltage in this
case can be computationally intensive, but fortunately Sun found a compact mathematical

solution which can be run efficiently in C [15]. Although the source model is an ideal dipole,

24

Percent Error

z {cm)
.o o
- o

o

=50

y (cm)

Figure 9: Shaded plot showing the percent error for two sets of dipoles as compared to one
nonideal dipole. The error is concentrated in the region between the antenna elements as

the approximation breaks down in the near-field (Appendix .8).

the program still holds value as it can be used to compare an ideal dipole arrangement of
current sources and sinks on the antenna elements to FEM four shell results. A Mex function

was written to interface this code with MatLab script (Appendix .4).

2.2.6 Graphical User Interface

Initially it was difficult to visualize how the antenna was to be placed inside the head and
how the antenna elements would be simulated. It was decided that a graphical user interface
(Figure 10) would aid in this process. The total current traversing from the source to sink
was set to be 1 mA. Because it was hypothesized that the shape of the antenna would affect
the signal strength in both the near and far field, it was decided that conic sections would
provide a good framework to test the shapes of the antennas. Figure 11 shows a semicircle,
parabola, ellipse, and hyperbola.

Because the shapes have subtle differences, care was taken so that the dipoles were

oriented perpendicularly to the surface of the antenna elements. Further, the dipoles were

25

Figure 10: Graphical User Interface allowing user to specify antenna element shape, size,
position, and orientation. It is also capable of simulating one or two dipoles alone by user

positioning in polar coordinates (Appendix .1).

15

05

-05
-1

15

05

-05
-1

Figure 11: Various conic sections. Top left: Semicircular; Top right: Parabolic; Bottom left:

x 1077 semicircular

-2 —1 0 1 2
X107
x 107 alliptical
-2 -1 0 1 2
X107

Elliptical; Bottom right: Hyperbolic.

x107 parabolic
-2 -1) 1 2
x 107
x10 hyperbolic
-2 =1 0 1 2

X107

placed so that the current density would be constant. Figure 4 shows how these dipoles
were placed. For the semicircle the increment along the arc length could be calculated easily,
but for the parabola, ellipse and hyperbola an iterative method was used to specify dipole
placement. One interesting question is how many points is one required to seed on the shape
so that the results will reflect the different shapes. This aspect of the model is a problem
of sampling. The fewer the samples, the less computation needed to arrive at a solution. A
suitable solution to this problem has not been worked out at this point. A frequency domain
representation of the curves may lead to insights into the minium number of points required
to characterize the shape. To circumvent this problem, the number of monopoles was simply

made very dense so that this would not be a factor.

2.3 NUMERICAL METHODS

Numerical methods offer a way to simulate more complex geometries. Rarely can a closed-
form equation be derived to represent a real system. The numerical analysis was carried out
in FEMLab (Finite Element Method Laboratory). This program runs together with MatLab

and uses many similar features.

2.3.1 FEMLab

FEMLab has many modules for finite element solving (FEMLab standard package, Elec-
tromagnetics, Structural Mechanics, and Chemical Engineering). Initially it was thought
that the Electromagnetics module would be required but it was found that the module did
not have any increased functionality but only compiled commonly used finite element tech-
niques from the FEMLab standard package. The FEMLab module contains an application
mode called Conductive Media DC, which gives the user the ability to solve (1.2) for current

sources. If o is a tensor, (1.2) is written as:

V-oVd = —~ (2.29)

Equations (1.2) and (2.29) mean that the divergence of the electric field is nonzero where

27

Figure 12: An example of a finite element mesh

there are current sources. After discretizing the Poisson equation over a tetrahedral mesh
domain, the divergence of the electric field is approximated by (1.21) where IH(is typically
called the stiffness matrix, U is a vector composed of voltages at the nodes, and Fis a
source vector indicating the flux through the nodes where it is only nonzero for nodes that
are corners of elements containing a current source.

For the boundary conditions, equation (1.10) is utilized by FEMLab. The sphere and the
geometry within the sphere is separated into subdomains. For each subdomain a conductivity
and source current density can be specified. For the sphere and the epoxy the source current
density is set equal to zero. For the antenna elements the source current density is set such
that 1 mA will be sent and received. The values of the conductivities for the subdomains
was set according to Table 1. The geometry is meshed using a seven step process which is
transparent to the user [14]. Figure 12 shows an example of the resulting mesh.

For this problem the Good Broyden iterative solver was used to solve (1.21). I will not
go into the details of this, but normally these solvers are used to solve linear systems with
a positive definite matrix IH(, however for this condition to be true, the matrix must be
preconditioned. Incomplete LU factorization was used in this case to give IH(the appropriate

properties to be solved effectively by the Good Broyden method [14].

28

3.0 RESULTS

3.1 NONIDEAL DIPOLES IN A SPHERICAL MEDIUM: ANALYTICAL
INVESTIGATION

The following results were obtained using Equations (2.6)-(2.12) to specify the antenna
element points. These points were then plugged into (2.28). The z-axis shows the maximum
potential found on the surface of the sphere, the y-axis the orientation of the antenna, and
the x-axis an index of the relative curvature of the shape. To describe how the curvature
index is measured, Figure 3 shows five control points, therefore, in 1the curvature has an
index from 1 to 5. Notice that the circle only has 6 curvature indices, whereas the others have
10. This is because the curvature is uniform over the surface of the circle and is proportional
to %. Therefore, as the curvature is increased, the circle becomes smaller and smaller. For
indices higher than 6, the shape defined was too small to cross through the control points so
these points were not simulated. The more indices used to describe the curvature, the higher
the resolution of the results, however since the results are not changing quickly, it was found

that 10 control points was sufficient for the results of Figure 13.

3.1.1 Investigation of Optimum Angle

From the previous section one can see that the optimum angle seems to be around 45 degrees.
Further, it makes sense that this angle would be a function of the distance that the antenna
is from the surface. For instance, if the antenna was at the middle, it would make sense that
the optimum angle is 0 degrees. Further, if the antenna was near the surface, the optimum

angle should be steeper because the antenna elements would have to rotate to point at the

29

circular parabolic

530 s
£ £
@29+ @
2 e
o284 o
& e
5274 k=
T =
£26 T
%25 . %
%100 S

psi (angle) oo curvature (index) psi (angle) 0o curvature (index)

elliptical hyperbolic

L)
@™ w o

_potential difference (mV)
[=2]

o R R R R
=

oo

psi (angle) 0o curvature (index) psi (angle) 0o curvature (index)

Figure 13: Top left: Semicircular; Top right: Parabolical; Bottom left: Elliptical; Bottom
right: Hyperbolic (Appendix .2)

30

surface. A hypothetical optimum angle was derived purely based on distance:

\Ijhypothetical = arctan (di/2) s (3 1)

and a plot is shown in Figure 15. The results in Figure 15 agree with (3.1) in the sense
that the angle does increase, however the actual curve is concave up. This indicates that the
antenna elements destructively interfere with the generated surface voltages, requiring the

antenna elements to be rotated away from each other.

3.2 FINITE ELEMENT RESULTS: NUMERICAL INVESTIGATION

3.2.1 Proof of Concept in 2D

To show proof of concept that the far field can be affected by near field changes, a 2D

numerical analysis was done comparing;:

1. Antenna elements without epoxy (Figure 16).
2. Antenna elements with epoxy (Figure 17).

3. Antenna elements with epoxy and a reflector below (Figure 18).

Equipotential lines are plotted for all three with polar plots adjacent showing the poten-
tial on the surface. Note that the absolute value of the voltage was taken so that it could be
plotted in polar coordinates. Notice the voltage on the surface is lower for the case without
epoxy between the elements. Therefore, an insulator between the elements is important
for higher transmission efficiency. Notice also that without the reflector, the equipotential
lines are nearly symmetric from the top to the bottom of the antenna, however, with the
reflector, the equipotential lines are skewed towards the surface, thus improving directivity
of the antenna, proving that the reflector can interact with the near field and thus alter the

far field. This also translates into a higher surface potential.

31

Hypothetical Curve Based on Distance to Surface
T T T T

[{a]
[=]

ok *
P _

FaEF

o]
(=]
T

£ a (=23 ~l
(=] o o o

T T T T

*
*
*
*

*

| 1

o
o
T
*

Hypothetical Optimum Angle (clegrees)
*

(]
[=]
T

—_
o
T
*
1

1 |
0 10 20 30 40 50 60 70 80 90 100
Percent Radius (%)

Figure 14: As the antenna moves towards the surface, the optimum angle increases and is

concave down. This graph is based on (3.1) and code is found in Appendix .9.

32

Circular Parabolic

8 40 B 40 +

g g

o330 * T30 +

Q@ o

2 2

£ 20 * # g 20 + * *

£ £

E1D + 4+ * o+ E10 + o+ + +

B B

© O+— 4L v v o O+—+ — L v !

0 20 40 60 80 100 0 20 40 60 80 100
Percent Radius (%) Percent Radius (%)
Elliptical Hyperbolic

w m

g 40 + g 40 *

@ @

S.30 + =30 +

Q@ o

2 2

P 20 + o+ + & 20 * £ *

£ £

E10 + + + E10 + + 4+

= =

© 04—+ +—+ . . . © Ot—+ +—+ L . v

0 20 40 60 80 100 0 20 40 60 80 100

Percent Radius (%) Percent Radius (%)

Figure 15: Shows that as the antenna is moved toward the surface, the optimum angle rotates

so that the antenna elements will point towards the surface (Appendix .9).

boundary voltage
90

0.0004

270

Figure 16: The antenna elements are simulated without an insulator between the elements.
The polar plot displays the surface voltage. The right plot shows equipotential lines sur-
rounding the antenna elements. The polar plot has units of Volts (Appendix .12).

33

boundary voltage

0
0.0005

Figure 17: The antenna elements are simulated only with an insulator between the ele-
ments. The polar plot displays the surface voltage. The right plot shows equipotential lines

surrounding the antenna elements. The polar plot has units of Volts (Appendix .11).

Figure 18: An insulating material is placed below the antenna elements to act as a current
reflector. The polar plot displays the surface voltage. The right plot shows equipotential

lines surrounding the antenna elements. The polar plot has units of Volts (Appendix .13).

34

Table 3: Results for Proofs of Concept

Analysis Max. Surface Voltage (mV)
No Epoxy (2D) 0.3
Epoxy (2D) 0.5
Reflector (2D) 0.7
No Epoxy (3D) 12
Epoxy (3D) 16

3.2.2 Proof of Concept in 3D

Again, to show proof of concept that the far field can be affected by near field changes, a

3D numerical analysis was done comparing:

1. Antenna elements without epoxy (Figures 20 and 21).
2. Antenna elements with epoxy (Figures 22 and 23).

For the three-dimensional analysis, two slices were taken. These slices are shown in Figure
19. Again, as in the 2D case, note that the absolute value of the voltage was taken so that
polar plots could be made. It is clear that the simulations with epoxy between the elements
have higher surface voltages. Although no 3D simulations were done with a reflector, from
the given 2D and 3D results, it is evident that one can use an insulator between the elements

to increase the surface voltage. Table 3 compiles the results for the proofs of concept.

3.2.3 Finite Element Analysis in 3D

The results of the 3D FEA are shown in Figure 24. These results incorporate the epoxy into
the simulation. Fewer points were simulated due to the large amount of time and user input
required to carry out the simulation. Although the shape of these results is much like Figure

13, the FE results are approximately 30-35 percent larger than the analytical results.

35

=
§

Figure 19: Depicts the 2 planes where the slices were taken.

Q

Figure 20: The antenna elements are simulated without an insulator between the elements.
The polar plot displays the surface voltage (Code to extract slices from FEMLab in Appendix
.10).

36

boundary voltage (1)

004

Figure 21: The antenna elements are simulated without an insulator between the elements.

The polar plot displays the surface voltage.

baundary voltage (V)

270

Figure 22: The antenna elements are simulated with an insulator between the elements. The

polar plot displays the surface voltage.

37

boundary voltage ()

Figure 23: The antenna elements are simulated with an insulator between the elements.

polar plot displays the surface voltage.

CIRCULAR

285

potential difference (mV)
w

88

psi (angle) vo curvature (index)

ELLIPTICAL

2888

potential difference (mV)
w

5 8

psi (angle) oo curvature (index)

L
004

PARABOLIC

W
& &5

6 -

=

potential difference (mV)
8

kL
3
32
El
2

@

40

psi (angle) curvature (index)

HYPERBOLIC

S

0

psi (angle) curvature (incex)

The

Figure 24: Results for the FEA with epoxy between the antenna elements. Top left: Semi-

circular Top right: Parabolical Bottom left: Elliptical Bottom right: Hyperbolic

38

4.0 DISCUSSION

Several issues will be explored in the discussion. The first will be the verification of the
finite element results by creating similar geometries and source conditions in the analytical
domain. Second will be the parameters used in creating the finite element results. Specifi-
cally, convergence of the solution will be tested for increasing difference between the epoxy
and antenna element conductivities. Ideally, the different conductivities could be explicitly
expressed in the FEA but numerical instability does not allow this. Thus, as long as the

conductivities are sufficiently different, the solution should not vary to a significant degree.

4.1 VERIFYING ANALYTICAL AND NUMERICAL RESULTS FOR THE
1-SHELL MODEL

For comparability, it is important that similar geometries give similar results for the analyt-
ical and numerical cases. Further, it also proves that the FEA is being set up correctly. To
this end, FE models were made which were similar to closed-form models already created.

The following models were compared:

1. Nonideal dipole around the center of a sphere (Figure 25).
2. Nonideal dipole near the surface of a sphere (Figure 26).

3. Antenna elements at the surface (Figure 27).
4

. All shapes, curvatures and angles (Figure 28).

From Figures 25-27 one can see that the magnitudes are the same for all three types of
simulated shapes. For these cases it was easy to recreate the geometries from the analytical

model to the FE one, however this proved to be a more difficult task for the fourth case, which

39

non-ideal dipole araund center at pos =0
(colarbar inmV) and (1mA biw sourcés)

05

Frank's equation

0.5
0
-0.5
Franis squaton
15
1
=05
30
o5
1
15
3 2 1 0 1 2 3

theta (radians)

0 andneg =0

05

cm)

5

phi (radians)
o

0
DC Conductive Media
ol i 0.5
Y i
0
0.5
PN f
T o
a \ o -5
g
v {em) x(cm)

DC Conductive Media

3 E] 1 0 1 2 3

theta (radians)

Figure 25: Comparison of Finite Element and Frank equation solution for (nonideal dipoles)
current sources around the center. The top plots show the potential plotted on the surface of

a spherical model of the head. The bottom plots show the same voltage distribution plotted

on a grid (Appendix .5).

non-ideal dipole at near surface wherepos. =0 05 B5andneg =0 05 65
(colorbar in m¥) and {1mA baw sources) ' !
Frani's equation DC Concuctive Media
L 10 L 10
5 - 5 -
5 5
Eo Eo
] 0 : 0
5 51"
-5) -5
5 e 5N o
u\“ . y/// -10 PN ’/// 5 -10
e S : 0
v (cm) x{cm) y(em) x(em)
Frank's equation DC Conductive Media
15 15
1 Kl
=05 =05
F 7
& 5
B oo B0
“ 05 “os
1 1
| el = || el -
3 2 0 1 2 3 3 2 A4 0 1 2 3
theta (radians) theta (radians)

Figure 26: Comparison of FEM and Frank equation solution for current sources near the
surface. The top plots show the potential plotted on the surface of a spherical model of the
head. The bottom plots show the same voltage distribution plotted on a grid.

40

sheet of charge near surface / center located at pos, = 0 05 6S5andneg =0 -058 65
(colorbar inmV) and (1mA biw sources) ! !

Frank's aguation DC Conductive Modia
ST 10 e 10
5 - : 5. -
: 5 : 5
z : =]
Eo : & 0q
N : 0 ~ : 0
5 : B
_5 5
5 - £ -
5

-10 U\\S\(,,/D/ 5 -10

5 5
y{cm) x(cm) v emy x(cm)
Frank's equation DC Conductive Media
15 RE
B 1
05 _-05
@ [
5 &
B0 ® 0
£ g
05 05
1 4 1
e T e T Er
3 2 -1 0 1 2 3 3 -2] 0 1 2 3
theta (radians) theta (radians)

Figure 27: Comparison of FEM and Frank equation solution for current sheets near the

surface.

CIRCULAR PARABOLIC

y
y

]
=

]
®

8
B R

H
5]

potential difference (mV)
5

potential difference (mV)

60 -
4

psi (angle) curvature (index) psi (angle) curvature (index)

ELLIPTICAL HYPERBOLIC

e
]

nce (mV)
B 0N

nce (mV)
R B N
B R

B
B

2

5

e
£
5
=
e
2
]
a

potential differe:

psi (angle) curvature (index) psi (angle) curvature (index)

Figure 28: Finite element solution for all shapes, angles and curvatures where there is no
epoxy between the elements. These results should compare well with Figure 13. The error

is shown in Figure 29 (Code found in Appendix .16).

41

CIRCULAR AVG=-12.1288% PARABOLIC AVG=-11.3907%

Percent Increase (%)

BE &8 8 5 B o

a0

= 2 “U‘”-' 2
psi (angle) ° curvature (index) psi (angle) ° curvature (index)

ELLIPTICAL AVG=-10.65% HYPERBOLIC AVG=-10.4112%

(S

Percent Increase (%)
5 & b

Py
e S~
0

"] "
psi (angle) ° curvature (index) psi (angle)

curvature (index)

Figure 29: Comparison of FEM and Frank equation solution for all shapes, angles and
curvatures. The percent increase represents how different the finite element solution is

compared to the analytical.

is shown Figure 28. In the analytical model the antenna elements were modeled as sheets
and thus had an infinitesimal thickness. This cannot be done in a FE domain because if the
antenna element thickness was made too small, the solution did not converge. Therefore,
Figure 29 describes this error. The typical error value is about -11%, meaning the FE results

were lower in voltage. The percent error was calculated by the following equation:

FiniteElement — Analytical

«100 . (4.1)

% _
o error Analytical

4.1.1 Comparing FE with Epoxy to Analytical Solutions

Now that it has been established that the analytical can be compared to the FEM, it is
important to see how simulating the epoxy alters the result. Therefore, the percent increase
can be calculated using the results from (4.1) and Figures 13 and 24. Therefore, one can see

that the epoxy increases the surface voltage between 30 and 35 percent.

42

CIRCULAR PARABOLIC

ELLIPTICAL HYPERBOLIC

psi (angle) curvature (index) psi (angle) curvature (index)

Figure 30: Comparison of FEM and Frank equation solution for all shapes, angles and
curvatures with epoxy. The percent increase represents how the epoxy does not allow current
to short between the antenna elements and thus forces it to go around the antenna and give

better surface voltages (Appendix .15).

43

phi {radians)
(=]

-2 a 2
theta (radians)

Figure 31: The black line shows the maximum value for each column which is confined to

only one row or in other words, one value of angle ¢ (Appendix .5).

4.1.2 Basis Functions

Originally, the supplied volume for the current source and sink had been incorrectly specified.
This caused the volume current density to be underestimated. This error was quantified by
taking the maximum values for each column of the ¢ vs 6 array. Because of the symmetry
of the dipoles, this turned out simply to be one row i.e., a constant value of ¢. This can be

seen in Figure 31.

After finding the maximum values from the Frank equation (2.28) and FEA, they were
subtracted to find the error which resulted in the top plot of Figure 32.

From the bottom plot of Figure 32 it is easy to assume that the error is a sinusoid.
At first it was thought a mistake had been made because the error was sinusoidal, but it
was soon realized that if both plots were sinusoids with different amplitudes of the same
frequency then their difference (error) is also a sinusoid. Thus, it was found that at the
maximum, the voltage is sinusoidal. But was this true across all constant values of ¢? For
insight the voltage was plotted for all values of ¢ and visually inspected. Figure 33 shows

all rows together from several views. These are indeed all sinusoids of varying amplitude.

Thus, for this configuration of the current source the amplitude of the voltage on the
surface of the sphere is simply a modulated sine function. It would be interesting to know

why this occurs so a closed-form equation for an ideal dipole was manipulated to see how

44

Error
(]

Error
[

Figure 32: Top Plot:

the sine curve emerges. The equation for a unit-radius spherical volume conductor with a

homogeneous conductivity and an ideal dipole inside has the form in (2.27). The dipole

whose surface voltage

m = (0,m,,0) i.e.,

d

€ = (cos ¢ cos 0,

R ;
-4 1
F------ o mm oo T e R R T TR EE R FERE R g
* * i
® w1
S e L P EE PR LR PR R EEPEE F R Rttt EEL TP L T LR LR R P PR EE TP EE b
Dox %
1 Y Y
—------------1--------------.—-------------1: -------- S MR R R ST S =
! H H
: H X owox X
| | | | |
0 5 10 15 20 25 a0
) Indes
ERROR and Sine Curve ws Index [FEM-Frank]

ERRCR vs Index [FEM-Frank]

T T
—— 16976 SN[A0)
3 errar

Error. Bottom Plot: Error with a sine curve overlaid (Appendix .5).

had been found had the following simplifications:

the dipole moment is in (or opposite to) the direction of the y-axis

(0,0,d,) i.e., the dipole was placed on the z-axis

cos ¢ sin 6 | sin ¢)

q = |e-d| = |(cos ¢ cos 0 ,cos ¢ sin 0,sin ¢-d,)|

= (1-2d,

s=-e-d=d.sin ¢

sin ¢ +d?)/?

Plugging this back into the equation we get

45

surface voltage TOP surface woltage SIDE

1000

500
i
el
=

o 0
f=l
jol
Is)
=

-500

70 i { i { i { I _1 OOO i { I i i i i
0 10 20 30 40 50 60 o] 10 20 30 40 50 60 o
theta {index) phi (index)
surface voltage FROMT surface voltage ANGLE
1000 : : : PR

5007 -

valtage (index)
]

-500

1000
500

-500
-1000
0

voltage (index)

30

40 40

60 20

-1000
0

Figure 33:

g0 0

; theta (index)
theta (index) phi (index)

Different angles of the voltages plotted on a rectangular grid (Appendix .5).

46

1 2cospsinb cospsint

o = m + (4.2)
dmoq "7 (1~ 2d sing + .27 (1 - 2d,sing + d,2)"?
cosopsinfsingd,
(1 —2d,sin¢g + dz2)1/2[(1 — 2d,sing + dz2)1/2 + 1 —d.sing]
Pulling out the sinf term:
2
O = ——mysind{ oo S =+ (4.3)
dmoq (1 — 2d.sind + d,?) (1 — 2d,sin¢ + d.?)
cospsingd,

1/2

(1 — 2d.sing + d,2)"*[(1 — 2d,sing + d.2)"* + 1 — dsing]

From the equation above, one can see that when ¢ is constant, the voltage ® is a sine

wave that is only a function of §. So we can break ® into two parts:

O =D0yd, (4.4)
where,
by = sind : (4.5)
and
1 2
Dy = ——m, 0N+ oo (4.6)
Amoq " (1 - 2d,sing + d.?) (1 — 2d,sing + d,?)
cospsingd,
(1 - 2d,sing + d,2)"*[(1 — 2d,sing + d.2)""* + 1 — d_sing]
Plugging q and s back in:
Oy = sinb : (4.7)
and
2 1 s

1} : (4.8)

Thus one can see more clearly that ®y is modulated by ®,4 . These equations may be
useful to better interpolate between known potentials gathered from the head. Following
that the voltage on the head is created by a superposition of many current dipoles in the
head, these two equations could be used to reduce the possible number of ways in which
one can intelligently interpolate between measured voltages. Similar methods exist for MEG

analysis [20].

4.2 SAMPLING THE SURFACE OF THE SHAPES

It is important to note that 100 monopoles per curve were evenly placed according to the
arc length. This spacing was also used for the long axis. This is a measure of the density
of sources and sinks used. As previously mentioned, it is important that enough sources
and sinks be placed on the surface of the antenna elements so that the shape is captured.
The values for 40 and 10 monopoles per curve were also calculated. The max deviation was
0.05 and 0.25 mV, respectively. This corresponds to a percent error of 0.23 and 1.1 percent.
Thus, it does not seem necessary to have 100 monopoles per curve which is much more time

consuming than the lower values.

4.3 CONVERGENCE OF THE SOLUTION VS. CONDUCTIVITY
DIFFERENCE

This problem arose due to the disparity in conductivity values of the antenna elements and

the epoxy but only needed to be addressed for the 3D analysis. From Table 1 it is evident that

1

m) values are different by 20 orders of magnitude. When these

these conductivity (
two materials are juxtaposed together in the simulation it can cause numerical problems.
Therefore, a graph was made as can be seen in Figure 34 that shows the point at which
at which the solution converges. The curve seems to level off at a value of 4. This means

that the antenna element conductivity should be ten thousand times larger than the epoxy

conductivity. These values are centered around the sphere conducitivity. Therefore, to obtain

48

Max Voltage vs Log,)

c /o
metal ~epoxy’

Max Voltage

2 25 3 35 4 45 5 55 6 6.5)
Log, (o)

/o
metal ~epoxy’

Figure 34: Graph shows that for an increasing conductivity difference, the solution does not

change (Appendix .17) .

the antenna element conductivity, the sphere conductivity was multiplied by /10, 000. To
obtain the epoxy conductivity, the sphere conductivity was divided by /10, 000. Thus, the

antenna element conductivity is 10,000 times larger than the epoxy conductivity.

4.4 IMPEDANCE

From Figures 35 and 36 one can see that the average voltages required by the antenna are
about 70 and 120 mV. For a constant current of 1 mA, the distributed resistance seen by
the antenna is about 140 and 240 2. These will be important parameters to be verified
experimentally. Further, one will have to take these values into account when designing
the power source and ciruit to drive signal transmission. It is also important to note that
as the curvature is increased, the required source voltage increases. This is because as the
antennas close (increase curvature) the current is forced through a smaller area. Therefore,

to maintain a constant current of 1 mA, the voltage must increase accordingly.

49

circular parabolic

2 o
a8 3

3
=

Element Voltage (mV)
5
..,
5

Element Voltage (mV)
-
s

o
B

@
S/

60

20
psi (angle) 00 curvature (index) psi (angle) o0 curvature (index)

elliptical hyperhalic

@
E
@
E

@
3
@
3

©
s

Element Voltage (mV)
5
»
3

Element Voltage (mV)
s
s

a
@

psi (angle) v curvature (index) psi (angle) oo curvature (index)

Figure 35: Maximum element voltage plotted versus angle and curvature with no epoxy

between the antenna.

circular

parabolic

Element Voltage (mV)
Element Voltage (mV)

psi (angle) oo curvature (index)

elliptical

Element Voltage (mV)
Element Voltage (mV)

psi (@ngle) oo curvature findex) psi (angle) e curvature (index)

Figure 36: Maximum element voltage plotted versus angle and curvature with epoxy between

the antenna.

20

5.0 CONCLUSIONS

In conclusion, two- and three-dimensional finite element analyses show proof of concept that
changes to the near field geometry and properties of the antenna can alter the far field results.
It was determined that the correct model to analytically simulate the volume conduction
antenna was a nonideal dipole. It was also established that the analytical and numerical
results were in agreement for similar geometries, therefore the results could be compared and
appropriate conclusions drawn when performance changed. The analytical and numerical
analysis showed that building an antenna pointed at the surface but slightly away from the
other antenna and having large curvature results in the most efficient signal transmission.
Numerical results agree but are capable of simulating the antenna more realistically by
integrating the epoxy into the analysis. This more realistic analysis yielded a 30-35% increase

in surface potential.

o1

APPENDIX

MATLAB AND MEX CODE

.1 GRAPHICAL USER INTERFACE

Contains the following files:

shapescreator.m
shapescreator2d.m
shapesfun.m
shapesfundersq.m
shapesgui.m
shapesnext.m
shapesnumerical.m
shapesplt3d.m
frankpotential.c

potential.c

52

% shapescreator.m

% Brian Wessel
% creates a shape so that the user can reposition and orient it in space

a=1;
ndp = get(h15,’Value’);
xmax = str2num(get(h37,’String’));
zmax = str2num(get(h39,’String’));
d = str2num(get(h43,’String’));

7

clear xpoints
xpoints = [];

delxp = 1/100000;

% chooses the best arc length increment given the xmax and zmax so the shapes has enough points
if xmax<zmax
linc = xmax/2;

linc = zmax/2;

i=1;
fpsq = [I;
% numerically determines the x value for a specified unit of arc length
while xp<xmax
while lsum<linc
psq = shapesfundersq(xp,ndp,a,xmax) ;
lsum = lsum+delxp*(1+fpsq)0.5;
xp = xp + delxp;
if xp>xmax
break
end
end
lsum = 0;

if xp<xmax
xpoints(i) = xp;

end
i= i+
end
% % Shows the x values calculated by the numerical arc length calculation
% figure(70)
% stem(xpoints,xpoints.*xpoints) %only for a parabola
% axis equal
%
% % calculates the real arc length from zero given the X points chosen by arc length
% integralcheck(xpoints) %only works for a parabola
% creates negative values and adds a zero point for the xpoints
nxpoints = -xpoints;
xpoints = [fliplr(nxpoints) O xpoints];
length(xpoints);

shapepts = [1;
negshapepts = [1;

zpoints = -zmax:linc:zmax;
ypoints = [1;
% calculates ypoints according to which shape the user specifies.
if ndp == 3

ypoints = ones(length(xpoints),1)*d/2;

elseif ndp == 4 Y%circle points

ypoints = (xmax~2-(xpoints.*xpoints))."(0.5)-xmax-d/2;

elseif ndp == 5 Yparabola pts

ypoints = a*(xpoints.*xpoints) +d/2;

elseif ndp == 6 Yellipse points

ypoints = (a”2-a”2/xmax"2(xpoints.*xpoints))."(0.5)-a-d/2;
elseif ndp == 7 %hyperbola points

ypoints = (xmax"2+xmax"2/a"2x(xpoints.*xpoints))."~(0.5)-xmax+d/2;
end

% because a circle and ellipse are closed surfaces this code moves the negative values to the positive side of the axis for those two shapes only
if ndp==6 | ndp==
ypoints = -ypoints;
end
ymax = 2%xmax;

for j = 1:length(zpoints)
for k = 1:length(xpoints)
if ypoints(k)<(ymax+d)
shapepts = [shapepts; [xpoints(k) ypoints(k) zpoints(j)1];
negshapepts = [negshapepts; [xpoints(k) -ypoints(k) zpoints(j)]];
ond end
end

% The next 40 lines of code creates a surface from the xyz points
zlin = linspace(min(shapepts(:,3)),max(shapepts(:,3)),50);
xlin = linspace(min(shapepts(:,1)),max(shapepts(:,1)),50);
axes(al2)
,X] = meshgrid(zlin,xlin);
%hold on
Y = griddata(shapepts(:,3),shapepts(:,1),shapepts(:,2),Z,X,’linear’)
%h = surf(X,Y,2);
axis([-8 8 -8 8 -8 81);
axis on;
xlabel(’x’);
ylabel(’y’);
zlabel(’z’);

linspace (min(pts(:,3)),max(hapepts(:,3)),50);
linspace (min(pts(:,1)),max(pts(:,1)),50)

nzlin
nxlin

[nZ,nX] = meshgrid(nzlin,nxlin);

axes(a12)

nY = griddata(pts(:,3) pts(:,1) pts(:,2),Z,X);
%h = surf(nX,nY,nZ);

axis([-8 8 -8 8 -8 81);

axis on;

xlabel(x’);

ylabel(’y?);

23

zlabel(’z’);

XX = [X;nX];
YY = [¥;nY];
ZZ = [2z;nZ];

shading in
axis([-8 8 -8 8 -8 8]);
axis on;

xlabel(’x’);
ylabel(’y’);
zlabel(’z’);

%hold off

h = surf (XX,YY,22);
terp

o4

% shapescreator2d.m

% Brian Wessel
% creates shapes for ome to inspect the curvature and general

% shape resulting from input parameters

numpts = 81; %should be odd I think
Xmax str2num(get (h37,’String’));
zmax = str2num(get(h39,’String’));
d = str2num(get(h43,’String’));

if ndp==5|ndp==6|ndp==

a = str2num(get (h47,’String’));

end

% b = str2nun(get (h49, ’String’))
xpoints = -xmax:(2%xmax)/numpts:xmax;
zpoints = -zmax: (2*%zmax)/numpts:zmax;

Ysheet points
if ndp ==

ypoints = d/2*ones(length(xpoints),1);

end

%circle points (y = (xmax"2-x"2)".5 +d/2)
if ndp == 4

ypoints = (xmax~2-(xpoints.*xpoints))."(0.5)-xmax-d/2;
end
%parabola pts (y = kxx"2 +d/2)
if ndp ==

ypoints = a*(xpoints.*xpoints) +d/2;

end

#ellipse points (y = (xmax"2-x"2)".5 -d/2)
if ndp == 6

ypoints = (a"2-a~2/xmax"2+(xpoints.*xpoints))."(0.5)-a-d/2;

end

%hyperbola points (y = (xmax~2+xmax~2/a"2%(x"2))"0.5-a+d/2)
if ndp 7

ypoints = (xmax"2+xmax"2/a~2*(xpoints.*xpoints))."(0.5)-xmax+d/2;

end

datapts=[];

ymax = 2¥xmax;

% +1 is added to numpts because when I create xpoints and zpoints I go from xmax:(2*xmax)/numpoints:xmax
% (I don’t subtract 2*xmax/numpoints from the end to make it the same number of pts as numpts)
for j = 1l:numpts+l
for k = 1:numpts+l
if ypoints(k)<(ymax+d)
datapts = [datapts; [xpoints(k) ypoints(k) zpoints(j)11;

% creates a scatter plot to display the data

% axes(al14)

% scatter3(datapts(:,1),datapts(:,2),datapts(:,3));

% axis([-2*xmax 2*xmax -2*max(datapts(:,2)) 2*max(datapts(:,2)) -2*zmax 2*zmax])
% xlabel(’x’);

% ylabel(’y’);

% zlabel(’z’);

hold on

scatter3(datapts(:,1),-datapts(:,2),datapts(:,3));

grid on

axis equal

axis([-4*xmax 4*xmax -2*max(datapts(:,2)) 2*max(datapts(:,2)) -2*zmax 2*zmax])
/ hold off

232 s s

>

negdatapts = [datapts(:,1) -datapts(:,2) datapts(:,3)];

% The next 40 lines of code creates a surface from the xyz points
zlin = linspace(min(datapts(:,3)),max(datapts(:,3)),50);

xlin = linspace(min(datapts(:,1)),max(datapts(:,1)),50);
axes(al4)

[Z,X] = meshgrid(zlin,xlin);

Y = griddata(datapts(:,3),datapts(:,1),datapts(:,2),Z,X,’linear’);
surf (X,Y,2);

axis([-8 8 -8 8 -8 8]);

axis on;

xlabel(’x’);

ylabel(’y’);

zlabel(’z’);

hold on

nzlin = linspace(min(negdatapts(:,3)),max(negdatapts(:,3)),50);
nxlin = linspace(min(negdatapts(:,1)),max(negdatapts(:,1)),50);

[nZ,nX] = meshgrid(nzlin,nxlin);

nY = griddata(negdatapts(:,3),negdatapts(:,1),negdatapts(:,2),Z,X);
surf (nX,nY,nZ) ;

axis([-8 8 -8 8 -8 81);

axis on;

xlabel(’x’);

ylabel(’y?);

zlabel(’z’);

axis equal

axis([-4*xmax 4*xmax -2%max(datapts(:,2)) 2*max(datapts(:,2)) -2*zmax 2+*zmax])
hold off

shading interp

% XX = [X;nX];

% YY = [Y;nY];

% 2Z = [Z;nZ];

Q h = surf(XX,YY,Z2);

% axis([-8 8 -8 8 -8 8]);
% axis on;

% xlabel(’x’);

% ylabel(’y’);

% zlabel(’z’);

95

o6

% shapesfun.m

% Brian Wessel
% outputs a point for input parameters

function f = shapesfun(xx,n,a,xmax,d)

if n == 3 Jsheet points
f =d/2;

elseif n == 4,%circle points (y = (xmax"2-x"2)".5 +d/2)
£ = (xmax"2-(xx.*xx))."(0.5)-xmax-d/2;

= SYparabola pts (y = k*x"2 +d/2)n

elseif n 5,
£ = ak(xx.*xx)+d/2;

elseif n == 6, Yellipse points (y = (xmax"2-x"2)".5 -d/2)
£ = (a~2-a"2/xmax"2%(xx.*xx))."(0.5)-a-d/2;

elseif n == 7, %hyperbola points (y = (xmax"2+xmax"2/a"2%(x"2))"0.5-a+d/2)
£ = (xmax"2+xmax~2/a"2(xx.*xx)) .~ (0.5)-xmax+d/2;

end

o7

% shapesfundersq.m
% Brian Wessel
Calculates the square root of the derivative

% of the function evaluated at a point

function f = shapesfundersq(xx,ndp,a,xmax) ;

%sheet points
if ndp ==

f=0;
end

Y%circle points
if ndp ==

XX

0;
else
£ = xx"2/(xmax"2 - xx72);
end

if xmax
f =

end
‘%parabola pts
if ndp == 5
f = a"2%4*xx72;
end
%ellipse points
if ndp == 6

f = xx"2*xmax"2/a"2*(a"2-xx"2)"-1;

end
%hyperbola points
if ndp == 7
£ = xx"2%xmax~2/a"2%(a"2+xx"2)"
end

o8

% shapesgui.m
% Brian Wessel
% Began May 2002

% Main control for the GUI

headrad = 1; % proportionality factor to scale the head values

[X Y Z]=sphere(10);
£=2%(0:1/128:1);

xs=headrad*sin(theta)*cos(alpha) ;
ys=headrad*sin(theta)*sin(alpha) ;
zs=headradxcos (theta)*ones(1,129);

px=xs(1:2:129,1:2:129);
py=ys(1:2:129,1:2:129);
pz=zs(1:2:129,1:2:129) ;
x=cos(alpha);

y=sin(alpha);

e(1:3:387)=xs(64,:
e(87)=ys (64,

e(3:3:387)=zeros (1,129) ;

clear center

figure(’position’, [-100 -500 1000 1000]);axis(’off’);
%h20=uicontrol(’style’,’frame’,’position’, [422 310 455 1901);

hi=uicontrol(’style’,’pushbutton’, ’position’,...
[150 455 100 20],’string’,’place dipole(s)’, ’callback’, ’shapesnext’);

hi5=uicontrol(’style’,’popupmenu’, ’position’, [430 455 100 20],’string’,’1 dipole|2 dipoles|sheet|circular|parabolic|ellipticallhyperbolic’,’backgroundcolor’,[0 1 0],...
’callback’,’ndp = get(hi5,’’Value’’);if ndp==1|ndp==2,set([h37 h39 h43 h47],’’Backgroundcolor’’,[0 0 0]),end,if ndp==3|ndp==4,set([h37 h39 h43],’’Backgroundcolor’’,[0.2,1,0.9]),set ([h47],’’Backgroundcolor

ndp = 1;

inc3 = 0}

hi9=uicontrol(’style’,’text’, ’position’, [880 385 340 18],’string’,’ORIENTATION (DEGREES)’,’FontSize’,10,’backgroundcolor’,[0,.7,0.9]1);

hil4=uicontrol(’style’,’slider’,’position’,[880 350 100 30],’Min’,0,’Max’,360,’SliderStep’, [0.00277777777777777777 0.02777TT777777TTTT77],...
’callback’,’sliderl = get(h14,’’Value’’);,incl=sliderl-slideriold;,hi9=uicontrol(’’style’’,”’text’’, ’’position’’, [880 330 100 15],’’string’’,sliderl,’’backgroundcolor’’,[0,.7,0.9]);,rotate(h,[1 0 0]
hi9=uicontrol(’style’,’text’, ’position’, [880 330 100 15],’string’,slider1, ’backgroundcolor’,[0,.7,0.9]);

h25=uicontrol(’style’,’slider’,’position’, [1000 350 100 30],’Min’,0,’Max’,360,’SliderStep’, [0.00277777777777777777 0.027777T777T77T77777], ...
’callback’,’slider2 = get(h25,’’Value’’);,inc2=slider2-slider2old;,h26=uicontrol(’’style’’,’’text’’, ’’position’’, [1000 330 100 15],’’string’’,slider2,’’backgroundcolor’’,[0,.7,0.9]);,rotate(h,[0 1 O
h26=uicontrol(’style’,’text’, ’position’, [1000 330 100 15],’string’,slider2,’backgroundcolor’,[0,.7,0.91);

h27=uicontrol(’style’,’slider’,’position’,[1120 350 100 30],’Min’,0,’Max’,360,’SliderStep’, [0.00277777777777777777 0.027777T77TTT7TT7777], ...
’callback’,’slider3 = get(h27,’’Value’’);,inc3=slider3-slider3old;,h28=uicontrol(’’style’’,’’text’’, ’’position’’, [1120 330 100 15],’’string’’,slider3,’’backgroundcolor’’,[0,.7,0.9]);,rotate(h,[0 0 1
h28=uicontrol(’style’,’text’, ’position’, [1120 330 100 15],’string’,slider3,’backgroundcolor’,[0,.7,0.9]);

0
sliderdold
slider5old
slider6old
inc4 = 0;

h29=uicontrol(’style’,’text’, ’position’, [880 465 340 18],’string’,’POSITION (CM)’,’FontSize’,10,’backgroundcolor’,[0,.7,0.91);
h30=uicontrol(’style’,’slider’,’position’, [880 430 100 30],’Min’,0,’Max’,10,’SliderStep’,[0.01 0.1],...

>callback’,’sliderd = get(h30,’’Value’’);,inc4=slider4-slider4old; ,h31=uicontrol(’’style’’,’’text’’, ’’position’’, [880 410 100 15],’’string’’,slider4,’’backgroundcolor’’,[0,.7,0.91);,set(h,” ’XData’’
h31=uicontrol(’style’,’text’, ’position’, [880 410 100 15],’string’,slider4,’backgroundcolor’,[0,.7,0.91);
h32=uicontrol(’style’,’slider’,’position’, [1000 430 100 30],’Min’,0,’Max’,10,’SliderStep’,[0.01 0.1],...

’callback’,’slider5 = get(h32,’’Value’’);,inc5=slider5-slider5old;,h33=uicontrol(’’style’’,’ text’’, ’’position’’, [1000 410 100 15],’’string’’,slider5,’’backgroundcolor’’,[0,.7,0.91);,set(h,’ YData’
h33=uicontrol(’style’,’text’, ’position’, [1000 410 100 15],’string’,slider5,’backgroundcolor’,[0,.7,0.9]);
h34=uicontrol(’style’,’slider’,’position’,[1120 430 100 30],’Min’,0,’Max’,10,’SliderStep’,[0.01 0.1],...

’callback’,’slider6 = get(h34,’’Value’’);,inc6=slider6-slider6old;,h35=uicontrol(’’style’’,’ text’’, ’’position’’, [1120 410 100 15],’’string’’,slider6,’’backgroundcolor’’,[0,.7,0.91);,set(h,’ ’ZData’
h35=uicontrol(’style’, text’, ’position’, [1120 410 100 15],’string’,slider6,’backgroundcolor’,[0,.7,0.91);

h50=uicontrol (’style’,’text’, ’position’, [540 285 100 25],’string’,’black = not required turquoise = required’)

%create shape

h36=uicontrol(’style’,’text’, ’position’, [540 475 100 15],’string’,’xmax’,’backgroundcolor’,[0,0.7,0.9]);
h37=uicontrol(’style’,’edit’, ’position’, [640 455 100 20],’backgroundcolor’,[0.2,1,0.9]1);
h38=uicontrol(’style’,’text’, ’position’, [540 430 100 15],’string’,’zmax’,’backgroundcolor’,[0,0.7,0.9]);
h39=uicontrol(’style’,’edit’, ’position’, [540 410 100 20],’backgroundcolor’,[0.2,1,0.9]1);
h42=uicontrol(’style’,’text’, ’position’, [640 385 100 15],’string’,’d’,’backgroundcolor’,[0,.7,0.91);
h43=uicontrol(’style’,’edit’, ’position’, [640 365 100 20],’backgroundcolor’,[0.2,1,0.91);
h46=uicontrol(’style’,’text’, ’position’, [640 340 100 15],’string’,’a’,’backgroundcolor’,[0,.7,0.91);
h47=uicontrol(’style’,’edit’, ’position’, [640 320 100 20],’backgroundcolor’,[0.2,1,0.9]1);

set ([h37 h39 h43 h47],’Backgroundcolor’,[0 0 0]);

h45=uicontrol(’style’,’pushbutton’, ’position’,...
[770 455 100 20],’string’,’load data’, ’callback’, ’shapescreator’);

hé44=uicontrol (’style’,’pushbutton’, ’position’,...
[660 455 100 20],’string’,’update’, ’callback’, ’shapescreator2d’);

h48=uicontrol(’style’,’pushbutton’, ’position’,...
[770 330 100 20],’string’,’calculate potential’, ’callback’, ’shapesnumerical’);

h3=uicontrol(’style’,’pushbutton’, ’position’,...
[430 430 100 20],’string’,’new window’, ’callback’, ’shapesgui’);

al=axes(’position’, [0.03 0.56 .25 .45]);axis(’off’);
radi = headradones(length(theta),1);
polar(2+theta,radi,’--r’)

hold on;

polar (2+theta,radi*0.92,’--17)
polar(2+theta,radi*0.87,”--r’)

xval = [0 10];

yval = [0 0];

text(11.5,0,°X’, FontSize’,15);

text(6.5,12,’<-- POSITION -->’,’FontSize’,15);
text(0,12,’Y’, ’FontSize’,15);

plot(yval,xval);

plot(xval,yval);

hold off;

al2=axes(’position’, [0.68 0.6 .3 .4]);axis(’off’)
axis([-8 8 -8 8 -8 8])

xlabel (x’);

ylabel(’y’);

29

zlabel(’z’);
rotate3d;
center = [0 0 0];

ald=axes(’position’, [0.35 0.6 .3 .4]1);axis(’off’);

al3=axes(’position’, [0.62 0.02 .35 .35]);axis(’off’);
xlabel (Cx’);

ylabel(’y?);

zlabel(’z’);

rotate3d

al8=axes(’position’, [0.02 0.20 .3 0.3]);axis(’off’);
rotate3d

60

% shapesnext.m

% Dr. Sun created this code.
% Used to create the polar plots on the

% left side of the GUI

axes(al);

polar (2*theta,radi,’--r’)

hold on;

polar (2*theta,radi*0.92,’--1’)
polar (2*theta,radi*0.87,’--1’)

if ndp<3

[xx, yyl=ginput(2*ndp);

[xx yyl;

if ndp ==1,

d=[xx(1),yy(1),0];

xx(2)-xx(1),,yy(2)-yy(1),0];
p=potential(129,d,m,e);

elseif ndp ==2,
di=[xx(1),yy(1),0];
mi=[xx(2)-xx(1),yy(2)-yy(1),0];
pl=potential(129,d1,m1,e);
d2=[xx(3),yy(3),0];
m2=[xx(4)-xx(3) ,yy(4)-yy(3),0];
p2=potential(129,d2,m2,e);
P=p1+p2;

end

axes(al);
polar(alpha’,headrad+(0.01*p+ones(size(p))),’r’);
hold on;

uu=get (gca, ’children’);

set (uu(1),’linewidth’,2);

plot (xx(1),yy(1),%0°);

plot (xx(1:2),yy(1:2),’linewidth’,2);

if ndp == 2,
plot (xx(3),yy(3),70%);
plot (xx(3:4),yy(3:4),’linewidth’,2);
end
hold off;
%axis([-1.5 1.5 -1.5 1.5]);
%haxes(a2);
%plot(t,p);
%grid;
%axes (a3) ;
if ndp ==1,
d=[xx(1),yy(1),0];
xx(2)-xx (1) ,yy(2)-yy(1),0];

1

i=1:12

elec(387)=zs(i,:);
pot(:,i)=potential(129,d,m,elec);

dp ==2,

129

387)=xs(i,:);

:387)=ys(i,:);

elec(3:3:387)=2zs(i,:);
di=[xx(1),yy(1),0];
mi=[xx(2)-xx(1),yy(2)-yy(1),0];
pot1(:,i)=potential(129,d1,m1,elec);
d2=[xx(3),yy(3),0];
m2=[xx(4)-xx(3),yy(4)-yy(3),0];
pot2(:,i)=potential (129,d2,m2,elec);

end
pot=potl+pot2;

end
%imagesc(tl,t,pot);
%xlabel(’angle to z-axis (*pi)’);
%ylabel(’angle to x-axis (¥pi)’);
grid;

pv=pot (1:2:129,1:2:129);

elseif ndp>2

[xx, yyl=ginput(1);
[xx,yyl;
hold on;
%plot(xx(1),yy(1),°0°);
hold off;
end

% call to plot the dipole placement(s) potential in 3D
shapesplt3d

61

shapesnumerical .m

Brian Wessel
Used to create the input to calculate the surface

potential given the shape of the sphere

hinitialize variables
headradnew = 1;

%headradnew = 7.5;

ndp = get(h15,’Value’);

xmax = str2num(get(h37,’String’));
d = str2num(get (h43,’String’));

if ndp==5|ndp==6|ndp==

a = str2num(get (h47,’String’));
end

= [shapepts; ptsl;

pep
bothshapepts 5
centershapepts = []1;
negcentershapepts = [1;
unit = H
bothcentershapepts = [1;
centerunit = [];

normvec = [1;

% The following is the way in which the next code reads the data

7 aa bb
7dd cc
1xpt = length(xpoints);

1shpts = length(shapepts);

%Calculates the normal vectors of the positive section of the antenna and also the center points where these normal vectors are located
for i = 1:(length(shapepts)-length(xpoints))
if mod(i,length(xpoints)) =0
J o=
aa = shapepts(i,:);
bb = shapepts(i+1,:);
cc = shapepts(i+1+lxpt,
dd = shapepts(i+lxpt,:);
aacc = cc-aa;
ddbb = bb-dd;
centershapepts = [centershapepts; (aa(1)+bb(1))/2 shapesfun((aa(1)+bb(1))/2,ndp,a,xmax,d) (aa(3)+dd(3))/2];
normvec(j,:) = cross(aacc,ddbb);

end

negnormvec = [];
nlxpt = length(xpoints);

%Calculates the normal vectors of the negative section of the antenna and also the center points where these normal vectors are located
for i = 1:(length(negshapepts)-length(xpoints))
if mod(i,length(xpoints))~=0
J o=+
aa = negshapepts(i,:);
bb = negshapepts(i+l,:);
cc = negshapepts (i+1+1lxpt,
dd = negshapepts (i+lxpt,:);
= cc-aa;

b6 - tb-aa
negcentershapepts = [negcentershapepts; (aa(1)+bb(1))/2 -shapesfun((aa(1)+bb(1))/2,ndp,a,xmax,d) (aa(3)+dd(3))/2];

negnormvec(j,:) = cross(aacc,ddbb);
end
end

unitnormvec = [J];
negunitnormvec = [1;

fcreates unit vectors from the normal vectors (normvec)
for i = 1:length(normvec(:,1))

magnormvec = ((normvec(i,1))"2+(normvec(i,2)) 2+(normvec(i,3))"2)~0.5;
unitnormvec(i,:) = normvec(i, :)/magnormvec;
negmagnormvec = ((negnormvec(i,1))"2+(negnormvec(i,2))“2+(negnormvec(i,3))~2)"0.5;

negunitnormvec(i,:) = negnormvec(i, :)/negmagnormvec;
end

% switch placement for a circle and ellipse since I have to split them in half and pull them above and below the x-axis
% this code also consolidates the positive and negative unit normal vectors into a variable called unit

if ndp==4 | ndp == 6

unit(:,1) = [negunitnormvec(:,1);unitnormvec(:,1)];

unit(:,2) = [negunitnormvec(:,2);unitnormvec(:,2)1;

unit(:,3) = [negunitnormvec(:,3);unitnormvec(:,3)];
elseunit(: »1) = [unitnormvec(:,1);negunitnormvec(:,1)];

unit(:,2) = [unitnormvec(:,2);negunitnormvec(:,2)];

unit(:,3) = [unitnormvec(:,3);negunitnormvec(:,3)];
end

% consolidates the positive and negaitive center shape points and combines this with the unit vectors
% this is done so that all the points can be rotated at once

bothcentershapepts = [centershapepts;negcentershapepts];

centerunit = [bothcentershapepts;[unit(:,1) unit(:,2) unit(:,3)]];

% read in the angles

theta_r = 3.1415%1/180*get (h14,’Value’);

phi_r = 3.1415%1/180%get (h25, ’Value’);

psi_r = 3.1415%1/180%get (h27,’Value’)

%rotation matrices

temppts = [centerunit(:,1) centerunit(:,2)]*[cos(psi_r) sin(psi_r);-sin(psi_r) cos(psi_r)];
centerunit(:,1) = temppts(:,1);

centerunit(:,2) = temppts(:,2);

temppts = [centerunit(:,2) centerunit(:,3)]*[cos(theta_r) sin(theta_r);-sin(theta_r) cos(theta_r)];
centerunit(:,2) = temppts(:,1);

centerunit(:,3) = temppts(:,2);

temppts = [centerunit(:,3) centerunit(:,1)]*[cos(phi_r) sin(phi_r);-sin(phi_r) cos(phi_r)];
centerunit(:,3) = temppts(:,1);

centerunit(:,1) = temppts(:,2);

lcu = length(centerunit);

% separates the points from unit vectors and also adds the center values to the corresponding center shape points so
% that repositioning can be accomplished

bothcentershapepts = [(centerunit(1:1cu/2,1)) (centerunit(l:lcu/2,2)) (centerunit(i:1lcu/2,3))];
bothcentershapepts(:,1) = bothcentershapepts(:,1)+center(1,1);

bothcentershapepts(:,2) = bothcentershapepts(:,2)+center(1,2);

bothcentershapepts(:,3) = bothcentershapepts(:,3)+center(1,3);

unit = [centerunit(lcu/2+1:1lcu,1) centerunit(lcu/2+1:1cu,2) centerunit(lcu/2+1:1cu,3)];
Yend reorienting and repositioning

plots the shapes and corresponding unit vectors
creates a scale factor which accounts for errors in the coding of quiver3...the error(s) is that when the object is moved

in the y or z direction to a higher value, the vectors become longer in length. Thus, this code determines if the user has
selected to move the shape to a high value in these directions and scales down. Note that movement in the x direction does
nothing and if the object is moved in both the y and z direction, it has a cancelling effect and only small scaling (0.5) is
needed. This follows xor logic for the variables y and z

if center(1,2)>2 & center(1,3)<2

sf = d/2;

elseif center(1,2)<2 & center(1,3)>2
sf = d/2;

else sf = 0.

62

end

% xlabel(’x’);
% ylabel(’y’);
% zlabel(’z’);

% don’t need this now that I’m not using dipoles

% axes(al4

7 qu1ver3(bothcentershapepts(,1) ,bothcentershapepts(:,2) ,bothcentershapepts(:,3),unit(:,1),unit(:,2),unit(:,3),sf)
% axis equal

% hold o

| scatters(bothcentershapepts(: ,1) ,bothcentershapepts(:,2) ,bothcentershapepts(:,3),15,7=-r’);

% xmin = min(bothcentershapepts(:,1));

% xmax = max(bothcentershapepts(:,1));

% ymin = min(bothcentershapepts(:,2));

% ymax = max(bothcentershapepts(:,2));

% zmin = min(bothcentershapepts(:,3));

% zmax = max(bothcentershapepts(:,3))

% axis([(xmin-(xmax-xmin)/2) (xmax+(xmax-xmin)/2) (ymin-(ymax-ymin)/2) (ymax+(ymax-ymin)/2) (zmin-(zmax-zmin)/2) (zmax+(zmax-zmin)/2)1)
% hold off

% % used this code to make a figure for a paper

% figure(69)

% quiver3(bothcentershapepts(:,1),bothcentershapepts(:,2),bothcentershapepts(:,3),unit(:,1),unit(:,2),unit(:,3),sf)
% axis equal

% hold on

% scatterd(bothcentershapepts (:,

% xlabel(’x (cm)’);
% ylabel(’y (cm)?’);
% zlabel(’z (cm)’);

1) ,bothcentershapepts(:

,2) ,bothcentershapepts(:,3),15,’--r*);

% xmin = min(bothcentershapepts(:,1));

% xmax = max(bothcentershapepts(:,1));

% ymin = min(bothcentershapepts(:,2));

% ymax = max(bothcentershapepts(:,2));

% zmin = min(bothcentershapepts(:,3));

% zmax = max(bothcentershapepts(:,3));

% haxis ([(xmin-(xmax-xmin)/2) (xmax+(xmax-xmin)/2) (ymin-(ymax-ymin)/2) (ymax+(ymax-ymin)/2) (zmin-(zmax-zmin)/2) (zmax+(zmax-zmin)/2)])
% hold off

% code to calculate the normal vectors according to MatLab - doesn’t do a very good job
% newxpts = [];

% newypts = [1;

% newzpts = [];

% for i = 0:(length(centershapepts)/(length(xpt)-1)-1)

% newxpts = [newxpts, centershapepts((i*(length(xpt)-1)+1):(i+1)*(length(xpt)-1),1)]1;
% newypts = [newypts, centershapepts((ix(length(xpt)-1)+1):(i+1)*(length(xpt)-1),2)];
% newzpts = [newzpts, centershapepts((i*(length(xpt)-1)+1):(i+1)*(length(xpt)-1),3)];
z end

i tigure(s)

% [Nx,Ny,Nz] = surfnorm(newxpts’,newypts’,newzpts’);

% surfnorm(newxpts’,newypts’,newzpts’);

% axis equal

} § UNCOMMENT THE NEXT 69 LINES OR SO TO USE POTENTIAL.C
%% % code to call vector form homogeneous soluti.

clear totpoten
clear poten

%sets up parametric values to be read into potential.meglx
=2%(0:1/128:(1-1/128)); 128 pts code
t=2%(0:1/128:1);

%t1=0:1/128:0.99999;
£1=0:1/128:1;

128 pts code

xs—headradnew*sin(theta)*cos(alpha)
eadradnew*sin(theta) *sin(alpha) ;

7zs headradnew*cos (theta)*ones(1,128); 128 pts code
zs=headradnew*cos (theta)*ones(1,129) ;

poten = [1;

clear totpoten
itotpoten = zeros(128);
totpoten = zeros(129);

128 pts code

testpoten = potential(1,[0 0 0],[0 0 01,[1 1 11);

1:length(unitnormvec)
1:1

=xs(i,:);

1)
poten(:,i) = potent)al(lQQ bothcentershapepts(j,:),unit(j,:),elec);
end
totpoten = totpoten+poten;
end

| %create a dummy variable to be graphed so as to reinitialize axes a13
testpoten = zeros(129);

axes(al13)
% pv=testpoten(1:2:129,1:2:129);

px=xs(1:2:129,1:2:129) ; py=ys(1:2:129,1:2:129) ;pz=zs(1:2:129,1:2:129) ;
surface (px,py,pz,pv) ;

hcreat the real plot

faxes (a13)
figure(3)
% pv = [1;
% magesc(tl,t,totpoten);

pu=totpoten(1:2:129,1:2:129);
px=xs(1:2:129,1:2:129) ; py=ys(1:2:129,1:2:129) ;pz=zs (1:2:129,1:2:129) ;

3 surface (px,py,pz,pv’);

% rotate3d;

% grid on;

% shading interp

3 colormap(’jet’);

% %colorbar

% xlabel(°x (cm)’,’FontSize’,15);

ylabel(’y (cm)’,’FontSize’,15);
zlabel(’z (cm)’,’FontSize’,15);
set(gca, Visible’,’0n’);
rotate3d

i

clear Vr ra rb theta phi Px Py Pz theta phi

Using Ernest Frank’s arbitrary placed and spaced dipole (this code does not use the Mex function, thus it is slow)

% radius of the sphere

63

% %R =7.5;

% (n+1)"2 will be the number of points on the sphere
% % n = 30;

% % theta = pi*(-n:2:n)/n;

% % phi = (pi/2)*(-n:2:n)’/n;

% % Px = Rxcos(phi)*cos(theta);

% % Py = R*cos(phi)*sin(theta);

% % Pz = R+sin(phi)*ones(1,length(sin(phi)));

figure (1)
plot3(Px(:),Py(:),Pz(:))
title(’points to find the potenial at’)

current (in mA) I divide by the number of simulated non-ideal dipoles so that when I them all up, the resulting voltage is from
that total amount of current...so in this case, the total current is 1 mA
I = 1/(length(centershapepts))~2;

% the conductivity in [1/(ohms*cm)]
gamma = 1/222;

i % dipole placement (must adhere to the constraints of Ernest Frank’s assumptions) (They must be in the x-z plane)
--actually, his equation is general, he just uses the symmetry of the xz plane for ease of derivation

% realistic case

neg_i = [0.997 0 5.791/7.5;

[o 0 5.8751/7.5;

% pos_

power = 1;
test case

neg_i = [1%10~ (-power) 0 1%10~(-power-2)1;
pos_. [1%10~ (-power) 0 1%10" (- (power+1))];
neg_i = [-0.05 -0.05 0];

pos_ [0 0 0.05];

a = norm(neg_i);

b = norm(pos_i);

the distance between the source and sink - calculate this to ensure that both moments are the same
dab = (a~2+b"2-2*dot(neg_i,pos_i))~(0.5);

Vr_tot = zeros(length(Px));

% centershapepts = [0.9 0.0 0.0; 0.9 0.9 0];
% negcentershapepts = [0.0 0.9 0.0; -0.9 -0.9 0];

for k = 1:(length(bothcentershapepts)/2)
pos_i = bothcentershapepts (k,:);
neg_i = bothcentershapepts (k+length(bothcentershapepts)/2,:);
a = norm(neg_i);
b = norm(pos_i);
for i = 1:length(Px)
for j = 1:length(Px)
ra(i,j) = ((Px(i,j)-neg_i(1,1))"2 +(Py(i,j)-neg_i(1,2))"2 +(Pz(i,j)-neg_i(1,3))72)"0.5;
rb(i,j) = ((Px(i,j)-pos_i(1,1))"2 +(Py(i,j)-pos_i(1,2))"2 +(Pz(i,j)-pos_i(1,3))72)"0.5;
p = [Px(i,j) Py(i,j) Pz(i,jd];
sink = [neg_i(1,1) neg_i(1,2) neg_i(1,3)];
source = [pos_i(1,1) pos_i(1,2) pos_i(1,3)1;

costheta = dot(p,source)/(norm(p)*norm(source)) ;
cosbeta = dot(p,sink)/(norm(p)*norm(sink));

Vr(i,j) = I/(4+pixgamma)*[2/rb(i,j)-2/ra(i,j)+1/R*log((ra(i,]j)+R-a*cosbeta)/(rb(i,j)+R-b*costheta))] ;
end
end ™
Vr_tot = Vr_tot + Vr;
% end

figure(3)

axes (a13)
subplot(2,2,1)

surf (Px,Py,Pz,Vr_tot);

title(’Franks equation - m code’)
colorbar

x1label(°x (em)’);

ylabel(’y (cm)’);

zlabel(’z (cm)’);

axis equal

shading interp

figure(3)

axes (a13)

subplot(2,2,3)
imagesc(theta,flipud(phi),Vr_tot);
xlabel(’theta (radians)’);
ylabel(’phi (radians)’);
title(’Franks equation’)

%This code calls frankpotential.dll to increase the speed of processing
clear Vr ra rb theta phi Px Py Pz theta phi

% radius of the sphere

R = 7.5;

% (n+1)"2 will be the number of points on the sphere
n = 500;

% channel density (not used as an input but is interesting to know
channeldensity = (n+1)"2/(4*pi*R"2)

theta = pix(-n:2:n)/n;

phi = (pi/2)*(-n:2:n)’/n;

Px = Rxcos(phi)*cos(theta);

R*cos (phi)*sin(theta) ;

Pz = Rsin(phi)*ones(1,length(sin(phi)));

P = [Px,Py,Pz];

% figure(1)

% plot3(Px(:),Py(:),Pz(:))

% title(’points to find the potenial at’)

centershapepts = [0.9 0.0 0.0; 0.9 0.9 0];

negcentershapepts = [0.0 0.9 0.0; -0.9 -0.9 0];

% current (in mA) I divide by the number of simulated non-ideal dipoles so that when I them all up, the resulting voltage is from
% that total amount of current...so in this case, the total current is 1 mA

I = 1/(length(centershapepts))~2;

% % realistic case
) i= [0.997 0 5.791/7.5;

= [0 05.875]1/7.5;
-1

case
g_i = [1%10"(-power) O 1%10~(-power-2)];
_i = [1%10"(-power) 0 1%10~(-(power+1))];

64

% neg_i = [-0.05 -0.05 0];
% pos_i = [0 0 0.05];

% a = norm(neg_i);

% b = norm(pos_i);

k = length(bothcentershapepts) ;
Vr = frankpotential(I,bothcentershapepts(k/2+1:k,:),bothcentershapepts(1:k/2,:),P,R);

%figure(3)
axes(a13)
%subplot(2,2,2)
surf (Px,Py,Pz,Vr);
%title(’Franks equation - ¢ code’)
colorbar

xlabel(’x (cm)?’);
ylabelC’y (cm)?);
zlabel(’z_(cm)’);
axis equal

shading interp

% figure(3)

%axes (a13)
subplot (2,2,4)

% imagesc(theta,flipud(phi),Vr);
% xlabel(’theta (radiams)’);

% ylabel(’phi (radians)’);

% title(’Franks equation’)

é 4 babl. ’t need thi de at all
, % 7% probably won’t nee; is" code at a

o

é é % new code to call inhomogeneous (4 shell) model

é Z clear poten
% clear totpoten

MXPTS = 11;
increment = 2#3.14/MXPTS;

a = fix(MXPTS);

% for t = OI(MXPTS—ig
for p = 0:(a-1

theta = incrementxt;
phi = increment*p;

x = [x,cos(phi)*sin(theta)];
y = [y,sin(phi)];
z = [z,cos(phi)*cos(theta)];

figure(99)
scatter3(x,y,z);

00000];

1111 1];
22222];

totpoten = zeros(6,1);

for j = 1:length(bothcentershapepts)
Yfor j = 1:6
poten = pot_vec_order3(121,bothcentershapepts(j,:),unit(j,:),[x’ y’ z’1);
h % totpoten = totpotent+poten;
% % end

% shapesplt3d.m

% Brian Wessel

% Used to plot the solution in the frame
% below the polar plot
axes(a18)

rotate3d

surface (px,py,pz,pv’);
shading interp
colormap(’jet’);
xlabel(’x’);
ylabel(’y’);
zlabel(’z’);

grid on;

rotate3d;
set(gca,’Visible’,’0n’)

66

/* frankpotential.c
Brian Wessel */

#include "mex.h"

#include "math.h"

#define PI 4.*atan(1.0)

/*
* frankpotential.c --Calculates the potential on the scalp for a given set of non-ideal dipoles
*

*/
double norm(double a, double b, double c)

{
return(sqrt(pow(a,2)+pow(b,2)+pow(c,2)));

void frankpotential(double cur, double *neg, double *pos,double *chpts, double *pot,int 1,int m,double R)
{
int i,j,countin=0,countout=0;

double normsource,normsink,costheta,cosbeta,chptdotsink,chptdotsource,normchpt,rb,ra,a,b;

for (i=0;i<m;i++){

normsink = norm(*(neg: tout) , * (neg: tout+m) , * (neg: ‘tout+2%m))

normsource = norm(*(pos+countout) ,*(pos+countout+m) ,*(pos+countout+2*m)) ;

for (j=0;j<1¥1;j++){

ra = norm(*(chpts+countin)-*(neg+countout) ,*(chpts+countin+l*1)-*(neg+countout+m) ,*(chpts+countin+2*1x1)-*(neg+countout+2*m)) ;

rb = norm(*(chp tin)-* (p tout) ,* (chp: tin+1%1)-*(p tout+m) ,* (chp tin+2#1x1)-* (pos+countout+2+m))
a = norm(*(neg tout) , *(neg tout+m) , * (neg: tout+2%m))
b = norm(*(pos+countout),*(pos+countout+m) ,*(pos+countout+2*m)) ;
chptdotsink = ((*(chpts+countin) * *(neg+countout))+(*(chpts+countin+l*1) * #*(neg+countout+m))+(*(chpts+countin+2+1%1) * *(neg+countout+2+m)))
chptdotsource = ((*(chpts+countin) * *(pos+countout))+(*(chp tin+l*1) * *(p tout+m))+ (* (chp tin+2%1%1) * *(pos+countout+2*m)))
t = norm(*(chp tin) ,*(chp in+1%1) ,* (chpts+countin+2%1%1)) ;
cosbeta = chptdotsink/(normsink*normchpt) ;

costheta = chptdotsource/(normsourcenormchpt) ;

*(pot+countin) += cur/(4*PI*1/222)*(2/rb-2/ra+1/R*log((ra+R-a*cosbeta)/(rb+R-b*costheta)));

countint+;
countout++;

countin = 0;

/* the gateway function */
void mexFunction(int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs[])

double *neg,*pos,*chpts,*pot,cur,R;

int status,mrows,ncols,nchs;

/* check for proper number of arguments */

/* NOTE: You do not need an else statement when using mexErrMsgTxt
within an if statement, because it will never get to the else
statement if mexErrMsgTxt is executed. (mexErrMsgTxt breaks you out of

the MEX-file) */

if (nrhs!=5)
mexErrMsgTxt ("Five inputs required.");
if (nlhs!=1)

mexErrMsgTxt ("One output required.");

/* check to make sure the first input argument is a scalar */
if (!mxIsDouble(prhs[0]) || mxIsComplex(prhs[0]) |
mxGetN (prhs [0]) *mxGetM(prhs[0]) =1) {

mexErrMsgTxt ("Input x must be a scalar.");

/* get the scalar input cur */

cur = mxGetScalar(prhs[0]);

/* create a pointer to the input matrix neg */

neg = mxGetPr(prhs[1]);

67

/* create a pointer to the input matrix pos */
pos = mxGetPr(prhs[2]);

/* create a pointer to the input matrix chpts */

chpts = mxGetPr(prhs[3]);

/* get the # of channels */
nchs = mxGetM(prhs[3]);

/* get the scalar input R */
R = mxGetScalar(prhs[4]);

/* get the dimensions of the matrix input neg or pos (they have the same dimensions) */
mrows = mxGetM(prhs[1]);

ncols = mxGetN(prhs[1]);

/* set the output pointer to the output matrix */
plhs[0] = mxCreateDoubleMatrix(nchs,nchs, mxREAL)

/* create a C pointer to a copy of the output matrix */
pot = mxGetPr(plhs[0]);

/* call the C subroutine */

frankpotential (cur,neg,pos,chpts,pot,nchs,mrows,R) ;

68

/* potential.c
Dr. Mingui Sun */
/* NOTE: THE AVERAGING ACROSS CHANNELS HAS BEEN COMMENED OUT */
#include "mex.h"
#include <math.h>
#define max(A, B) ((a) > (B) 7 (A) : (B))
#define min(A, B) ((A) < (B) 7 (&) : (B))
#define PI 4.*atan(1.0)

void potential(int nchs, double *d,double *m,double *e,double *v)

int i,n;
double t,s,q, sq, et, dt, ave[4],**u,*xdmatrix();
void free_dmatrix();
u=dmatrix(0,nchs-1,0,3);
/* printf ("nchs=Vd, d=(%f %f %f), m=(4f %f %f), e=(4f %4f %f)\n",
nchs, d[0],d[1],d[2],m[0],m[1],m[2],e[0],e[1],e[2]); */
for(n=0; n<3; n++)ave[n] = 0.;
for(n=0; n<3*nchs; n+=3){
for(q=0,s=0,i=0; i<3; i++){

q
s += etxdt;

s
sq = sqrt(qQ);
for (i=0; i<3; i++){

et=e[n+i];
dt=d[il;
t= (2.x(et-dt)/q + et + (et*s-dt)/(sq+l.-s))/sq;

avel[i] +

uln/3][i]
}

for(n=0; n<3;n++)ave[n] /= (double) nchs;
for(i=0; i<nchs; i++){
v[il=0;
for (n=0; n<3; n++){
/* uli] [n] -= ave[n];
vIil+=m[n]*u[il [n];
*/

v[il+=(1./(4.*PI*(1./222.)))*m[n]*u[i] [n];
¥

b
/* for(n=0; n<nchs; n++)printf("v(%d)=%f\n",n,v[nl); */
free_dmatrix(u,0,nchs-1,0,3);

}

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])

double *d,*mo,*e,*v, tn;
int nchs;
unsigned’ int m,n;
/* Check for proper number of arguments */
if (orhs != 4) {
mexErrMsgTxt ("POTENTIAL requires four input arguments.");

} else if (nlhs > 1) {
mexErrMsgTxt ("POTENTIAL requires one output argument.");
¥

tn = mxGetScalar(prhs[0]);
nchs = (int) tn;

/* Check the dimensions of d. d must be 3 x 1 or 1 x 3. */

m = mxGetM(prhs[1]);

n = mxGetN(prhs[1]);

if (!mxIsNumeric(prhs[1]) || mxIsComplex(prhs[1]) ||
mxIsSparse(prhs[1]) || !mxIsDouble(prhs[1]) |

'((m == 3 && n == 1) =1 &k n == 3))) {
mexErrMsgTxt ("d must be a vector of length 3.");

|| (m ==

}

/* Check the dimensions of mo. mo must be 3 x 1 or 1 x 3. */

m = mxGetM(prhs[1]);

n = mxGetN(prhs[1]);

if (!mxIsNumeric(prhs[2]) || mxIsComplex(prhs[2]) |
mxIsSparse(prhs[2]) || !mxIsDouble(prhs[2]) |

'(m==3 & n==1) || (m==18& n==23))) {
mexErrMsgTxt ("mo must be a vector of length 3.");

}

/* Check the dimensions of e. e must be 3*nchs x 1 or 1 x 3*nchs */

m = mxGetM(prhs[31);
n = mxGetN(prhs[3]);
if (!mxIsNumeric(prhs[3]) || mxIsComplex(prhs[3]) |
mxIsSparse(prhs([3]) || !mxIsDouble(prhs[3]) |
m == 3#nchs && n == 1) || (m == 1 && n == 3%nchs))) {
printf("nchs = %d\n",nchs);
mexErrMsgTxt("e must be a vector of length 3#*nchs.");

¥

/* Create a matrix for the return argument */
plhs [0]=mxCreateDoubleMatrix(nchs,1,0);
d = mxGetPr(prhs[1]);
mo = mxGetPr(prhs([2]);
e = mxGetPr(prhs[3]);
v= mxGetPr (plhs[0]);
potential(nchs,d,mo,e,v);

double **dmatrix(nrl,nrh,ncl,nch)
int nrl,nrh,ncl,nch;

int i;
doubleé #*m;
n=(double **) malloc((unsigned) (nrh-nrl+1)*sizeof (doublex));

if (!m) printf("allocation failure 1 in dmatrix()");
m -= nrl;

for(i=nrl;i<=nrh;i++) {

m[i]=(double *) malloc((unsigned) (nch-ncl+1)*sizeof(double));
if (!m[i]) printf("allocation failure 2 in dmatrix()");
m[i] -= ncl;
Teturn m;
T .
void_free_dmatrix(m,nrl,nrh,ncl,nch)
double **m;
int nrl,nrh,ncl,nch;
{ i s
int i

69

for(i=nrh;i>=nrl;i--) free((char*) (m[il+ncl));
free((char*) (m+nrl));

70

.2 SHAPE OPTIMIZATION

Contains the following files:

e shapesfundersq.m (refer to .1)

shapesoptimize_sym.m

shapesptsopt_v2.m

shapestotarclength.m

frankpotential.c (refer to .1)

71

shapesoptimize_sym.m
Brian Wessel
Simulates the potential difference on a spherical surface

began 7/19/02
The antenna elements are symmetric

% ymax and xmax define the size (cm) of the box in which the shape is confined
= .1

% distance between the antenna elements
d =70.95;

%location of the antenna
center = ;
sheetresults = [];
circleresults = [1;
parabolaresults = [];
ellipseresults = [I;
hyperbolaresults = [1;
results = [];

totcurves = [];

% increment value for the rotation angle
psi_r_inc = 10;

% has to be an even number (the number of monopoles placed on each antenna plate x-section is then numbsections+1)
numbsections = 12;

% Determines how many curves will be used to increment through the curvature variable
desiredcurves = 10;
for ndp = 5:7 Y alters conic sections

ndp

% outputs control points on a box and the total number of curves that will be used
% (the total number of curves to be used is only different for the circle shape)
[totcurves(ndp) xpt ypt] = shapesptsopt_v2(xmax,ymax,ndp,desiredcurves);

for k= 1l:totcurves(ndp) % calculates a point on the box for a fixed shape (the total number of curves will be numcurves-1)
k

% Determines the shape parameters given the control points determined above

b = ypt(k)/2*(1+xpt (k) ~2/ypt(k)~2); % b is the radius of the sphere at the pts (xpt,ypt) and (0,0)
elseif ndp==5

a = ypt(k)/xpt(k)"2;
elseif ndp==6

a = xpt(k);

b = ypt(k);
elseif ndp==

a = d/2;

b = ((d"2/4*xpt (k) "2)/(ypt (k) "2+ypt (k) *d))~(0.5);

end

% uses the arclength to calculate the placement of the number of dipoles
% otherwise it uses a much simpler way for the sheet points
% also an easy way to calculate the total arclength of a circle is used
if ndp™=3

% calculates the total arc length in a curve from O to xmax then

% multiplies by 2 to get the total arclength from -xmax to xmax
% due to symmetry of the curves

clear xpoints
xpoints = [1;
delxp = 1¥10°(-5);

if ndp==
delxp = 1¥107(-6);
end

if ndp
clear xpoints
xpoints = [1;
totsum = shapestotarclength(ndp,0,xpt(k),(a)"2,(b)"2);
linc = 2*totsum/numbsections;

linc/delxp;

% calculates the circle arclength increment quickly
elseif ndp==
xy = [xpt(k) ypt(k)1;
rad = [0 b];
origin = [0 0];
cosgamma = dot(xy-rad,origin-rad)/(norm(xy-rad)*norm(origin-rad));
gamma = acos(cosgamma) ;
arclength = 2¥b*gamma;
linc = arclength/numbsections;

for p = 1:numbsections/2
xpoints(p) = bxsin((linc*p)/b);

fpsq = [1;
if ndp

% numerically determines the x value for a specified unit of arc length
while xp < xpt(k)
while lsum<linc
fpsq = shapesfundersq(xp,ndp,a,b);
lsum = lsum+delxp*(1+fpsq)~0.5;
xp = xp + delxp;
if xp > xpt(k)
break
end
end

lsum = 0;
if xp< xpt(k)

xpoints(i) = xp;
end

i= it
end

72

xpoints = [xpoints, xpt(k)];

xpt (k) *2/numbsections;
xpoints = linc:linc:xpt(k);

end

%

creates negative values and adds a zero point for the xpoints

xpoints = [fliplr(-xpoints) O xpoints];

zpoints

-zmax:linc:zmax;

ypoints = [1;

%

if ndp

elseif ndp

elseif ndp

calculates ypoints according to which shape the user specifies.
3

ypoints = zeros(length(xpoints),1);

4 Y%circle points

ypoints = abs((b2-(xpoints.*xpoints))."(0.5)-b);

5 Yparabola pts

ypoints = a*(xpoints.*xpoints);

elseif ndp == 6 Yellipse points

ypoints = abs((b"2-b"2/a"2* (xpoints.*xpoints))."(0.5)-b);

elseif ndp == 7 %hyperbola points

ypoints = (a”2+a"2/b~2x(xpoints.*xpoints))."(0.5)-a;

end

shapepts = [1;
negshapepts = [1;

%

creates the matrices containing the positive and negative antenna points

for j = 1:length(zpoints)

%

for w = 1:length(xpoints)
shapepts = [shapepts; [xpoints(w) ypoints(w) zpoints(j)1];
negshapepts = [negshapepts; [xpoints(w) -ypoints(w) zpoints(j)1];

end
pepts = [shapepts; pts];
figure(1)
scatter3(bothshapepts(:,1) ,bothshapepts (:,2) ,bothshapepts(:,3));

xlabel(’x’);
ylabel(’y?);
zlabel(’z’);
axis equal

rotates psi_r for a fixed shape and curvature

for psi_r = 0:psi_r_inc:90

psi_r

rshapepts = shapepts;

rnegshapepts = negshapepts;

jrotate the antenna

7 positive side

temppts = [rshapepts(:,1) rshapepts(:,2)]1*[cos(psi_r*pi/180) sin(psi_r#pi/180);-sin(psi_r*pi/180) cos(psi_r*pi/180)1;
rshapepts(:,1) = temppts(:,1);

rshapepts(:,2) = temppts(:,2);

% negative side

temppts = [; (:,1) pts(:,2)]*[cos(psi_r*pi/180) -sin(psi_rxpi/180);sin(psi_r*pi/180) cos(psi_r*pi/180)];
rnegshapepts(:,1) = temppts(:,1);

rnegshapepts(:,2) = temppts(:,2);

phi_r = pi/2; % rotates to y-axis

% pos side

temppts = [rshapepts(:,3) rshapepts(:,1)]*[cos(phi_r) sin(phi_r);-sin(phi_r) cos(phi_r)];
rshapepts(:,3) = temppts(:,1);

rshapepts(:,1) = temppts(:,2);

% neg side

temppts = [pts(:,3) pts(:,1)1*[cos(phi_r) sin(phi_r);-sin(phi_r) cos(phi_r)];
rnegshapepts(:,3) = temppts(:,1);

rnegshapepts(:,1) = temppts(:,2);

pepts = [rshapepts(:,1) rshapepts(:,2)+d/2 rshapepts(:,3)+center(1,3); pts(:,1) pts(:,2)-d/2 P
% figure(3)
% scatter3((:,1), pepts(:,2), (:,3))

% xlabel(’x’);

% ylabel(’y’);

zlabel(’z’);

axis([-zmax zmax -d/2-2%ymax d/2+2*ymax center(1,3)-2*xmax center(1,3)+2*xmax]);
% view(-90,0);

% axis equal

begin movie code

% 1lbpts = length(bothshapepts);

xlin = linspace(min(bothshapepts(1:1bpts/2,1)),max(bothshapepts(1:1bpts/2,1)),12);
if psi_r > 45
ylin = linspace(min(bothshapepts(1:1lbpts/2,2)),max(bothshapepts(1:1bpts/2,2)),6);

zlin = linspace(min(bothshapepts(1:1bpts/2,3)),max(bothshapepts(1:1bpts/2,3)),6);

figure(2)
%subplot(2,1,1)

i if psi_r > 45
[X,Y] = meshgrid(xlin,ylin);
mZ = griddata(bothshapepts(1:1bpts/2,1),bothshapepts(1:1bpts/2,2),bothshapepts(1:1bpts/2,3),X,Y, linear’);
surf(X,Y,nZ);

else
[Z,X] = meshgrid(zlin,x1in);
mY = griddata(bothshapepts(1:1lbpts/2,1),bothshapepts(1:1bpts/2,3),bothshapepts(1:1lbpts/2,2),X,Z, linear’);
surf (X,mY,Z);

end

axis([-1 1 -1 1 5.5 6.51);

%axis on;

/ xlabel(’x’);
ylabel(’y’);

zlabel(’z’);

hold on

nxlin = linspace(min(bothshapepts(1bpts/2+1:1bpts,1)),max(bothshapepts(1bpts/2+1:1bpts,1)),12);

if psi_r > 45
nylin = linspace(min(bothshapepts(1lbpts/2+1:1bpts,2)),max(bothshapepts(lbpts/2+1:1bpts,2)),6);

73

(:,3)+center(1,3)];

% else
nzlin = linspace(min(bothshapepts(lbpts/2+1:1bpts,3)),max(bothshapepts(lbpts/2+1:1bpts,3)),6);

end

if psi_r > 45
[0X,nY] = meshgrid(nxlin,nylin);
mnZ = griddata(bothshapepts(lbpts/2+1:1bpts,1),bothshapepts(lbpts/2+1:1bpts,2),bothshapepts(lbpts/2+1:1bpts,3),nX,nY, ’linear’);
% surf(nX,nY,mnZ);
% els:

7
%
%
i
%

2232 oo e

e
[nZ,nX] = meshgrid(nzlin,nxlin);

mnY = griddata(bothshapepts(lbpts/2+1:1bpts,1),bothshapepts(1bpts/2+1:1bpts,3),bothshapepts(1bpts/2+1:1bpts,2),nX,nZ, ’linear’);

surf (nX,mnY,nZ) ;

end
axis([-1 1 -1 1 5.5 6.51);

% axis on;

xlabel(’x’);

ylabel(’y?);

zlabel(’z’);

Y%axis equal

% axis([-4*xmax 4*xmax -2*max(datapts(:,2)) 2+*max(datapts(:,2)) -2*zmax 2+*zmax])
colormap(’gray’)

view(-72,0)

grid off

figure(2)

scatter3(bot pepts(:,1), pepts(:,2),bot. pepts(:,3))
% title(’circular’,’FontSize’,40);

% axis equal

% axis([-0.8 0.8 -1.2 1.2 5.5 6.5]);
% view(-55,10)

% grid off

% xlabel(’x (cm)’);

% ylabel(’y (cm)’);

zlabel(’z (cm)’);

set (gca, ’Color’,[.8,0.8,.8])

% set(gcf,’Color’,[.8,0.8,.8])

% the following 20 lines of code is actually used in making the movie

e

figure(1)
subplot(2,1,1)
scatter3(bot pepts(:,1),bot: pepts(:,2),bot! pepts(:,3))
if ndp==

shpe ’circular’;
elseif ndp==5

shpe = ’parabolic’;
elseif ndp==6

’elliptical’;

shpe = ’hyperbolic’;

end
title(shpe,’FontSize’,40);
axis equal

% axis([-0.8 0.8 -1.2 1.2 5.5 6.5]);
view(-55,10)
grid off
xlabel(’x (cm)’);
ylabel(C’y (em)’);
zlabel(’z (cm)’);
set(gca, ’Color’, [.8,0.8,.8])
set(gcf,’Color’,[.8,0.8,.8])

%This code calls frankpotential.meglx to increase the speed of processing
clear Vr ra rb theta phi Px Py Pz

% radius of the sphere

R =7.5;
% (n+1)"2 will be the number of points on the sphere
n = 50;

% channel density (not used as an input but is interesting to know
channeldensity = (n+1)"2/(4*pi*R"2)

theta = pix(-n:2:n)/n;

phi = (pi/2)*(-n:2:n)’/n;

Px = Rxcos(phi)*cos(theta);

Py = Rxcos(phi)*sin(theta);

Pz = Rxsin(phi)*ones(1,length(sin(phi)));

P = [Px,Py,Pz];

% figure(1)

% plot3(Px(:),Py(:),Pz(:))

% title(’points to find the potenial at’)
centershapepts = [0.9 0.0 0.0; 0.9 0.9 0];
negcentershapepts = [0.0 0.9 0.0; -0.9 -0.9 0];

current (in mA) I divide by the number of simulated non-ideal dipoles

so that when I them all up, the resulting voltage is from

% that total amount of current...so in this case, the total current is 1 mA

% I need to divide by the length of bothshapepts/2 and not just shapepts because I actually take points off of bothshapepts which are
% not reflected in shapepts

I = 1/(length(bothshapepts)/2);

% realistic case

% neg_i = [0.997 0 5.791/7.5;

% [0 0 5.875]/7.5;

S?1*10‘(-power) 0 1%10~ (-power-2)1;

= [1%10~(-power) 0 1¥10~(-(power+1))];
[-0.05 -0.05 0];

[0 0 0.05];

% a = norm(neg_i);

% b = norm(pos_i);

g = length(bothshapepts) ;

Vr = frankpotential(l, (g/2+1:g,:) ,bothshapepts(1:g/2,:),P,R)

9 figure(3)

surf (Px,Py,Pz,Vr);
%title(’Franks equation - ¢ code’)

% colorbar

% x1abel (’x (em)?);
% ylabel(’y (cm)’);
% zlabel(’z (cm)’);
% axis equal

% shading interp

74

%

figure(3)

haxes (a13)
subplot(2,2,4)
imagesc(theta,flipud(phi),Vr);
% xlabel(’theta (radians)’);
ylabel(’phi (radians)’);

% title(’Franks equation’)

sesese

results = [results ; max(max(Vr)) min(min(Vr)) ndp psi_r k a b MaxR xmax ymax zmax d numbsections desiredcurves center(1,3)];
end

end
end

% used in movie code

Yshapesmovieplayer (PotentialFrames)

save resultsX_parab_ell_hyp.dat results -ascii
% load results.dat

for j = 1:length(results)
if results(j,3
sheetresults = [sheetresults;results(j,:)];
elseif results(j,3)==4
circleresults = [circleresults;results(j,:)];
elseif results(j,3 5
parabolaresults
elseif results(j,3)==6
ellipseresults = [ellipseresults;results(j,:)];
7

[parabolaresults;results(j,:)];

elseif results(j,3)=

hyperbolaresults = [hyperbolaresults;results(j,:)];

= sheetresults;

shaperesults = circleresults;
elseif j

shaperesults = parabolaresults;
elseif j==6

shaperesults = ellipseresults;
elseif j==

shaperesults = hyperbolaresults;

end

figure(1)
subplot(2,2,3-3)
if j7=3
xlin
ylin

linspace(min(shaperesults(:,5)),max (shaperesults(:,5)),totcurves(j));
linspace(min(shaperesults(:,4)) ,max (shaperesults(:,4)),90/psi_r_inc+1);

[¥,X] = meshgrid(ylin,xlin);

Z = griddata(shaperesults(:,5),shaperesults(:,4),shaperesults(:,1)-shaperesults(:,2),X,Y);
surf(X,Y,2);
if j

title(’sheet’);
elseif j==4
title(’circular’);
elseif 5

title(’parabolic’);
6

elseif
title(’elliptical’);
elseif
title(’hyperbolic’);

end

hold on;

xlabel(’curvature (index)’);
ylabel(’psi (angle)’);
zlabel(’potential difference (mV)’);
%colorbar;

colormap gray;

rotate3d

en
scatter3(shaperesults(:,5) ,shaperesults(:,4),shaperesults(:,1)-shaperesults(:,2))
hold off;

end

5

% shapesptsopt_v2.m

Brian Wessel
Determines control points for specified boudning box, shape, and number

% of curves desired

function [totcurves,xpt,ypt] = shapesptsopt(xmax,ymax,ndp,desiredcurves);

if ndp==

totcurves = 1;
Xpt = xmax;
ypt = 0;

else

en
if ndp~=3
if ndp==
% must refigure the total number of curves so the circle does
% not bend in on itself if xpt becomes lower than ypt
% Look at 1/9/04 notes to see what it doesn’t matter if ymax>xmax
% or ymax<xmax
totcurves = floor(numcurves*xmax/(xmax+ymax)) ;
end
for k = 1:totcurves
if ymax>(k*(xmax+ymax)/numcurves) | ymax==(k*(xmax+ymax)/numcurves)
xpt(k) = xmax;
ypt (k) = k*(xmax+ymax)/numcurves;
1se
ypt(k) = ymax;
xpt (k) = (numcurves-k)*(xmax+ymax)/numcurves;
end
end
end

totcurves = desiredcurves;
% adding an extra because you don’t want the last point to be at x=0.
nuncurves=desiredcurves+1;

76

% shapestotarclength.m
% Brian Wessel
% Calculates arc length for certain parabolas, ellipses, and hyperbolas

function arclength = shapestotarclength(ndp,A,B,a,b);

if ndp ==
arclength = 1/4%(2xBx(1+4%axB~2)"(1/2)*a"(1/2)+log(2*a~ (1/2)*B+(1+4xa*B~2) " (1/2))-2%A* (1+4*a*A~2) " (1/2)*a~ (1/2)-1log(2*a" (1/2) *A+(1+4*a*xA~2)~(1/2)))/a~(1/2);
elseif ndp==

if a<b
B = b".5;
c=a;
a =b;
b=c;
end

argumentl = real(mfun(’EllipticE’,Bx(1/a)"~(1/2),(1/a*(a-b))"(1/2)));
argument2 = real(-mfun(’EllipticE’,0, (1/a*(a-b))"(1/2)));
arclength = a”(1/2)x(argumenti+argument2);

elseif ndp==
argumentl = -mfun(’EllipticE’,Bx(-1/a)~(1/2), ((a+b)/a)"(1/2));
argument2 = mfun(’EllipticE’,A*(-1/a)"(1/2), ((a+b)/a)"(1/2));
arclength = real(i*a”(1/2)*(argumenti+argument2));

end

7

.3 FE SHAPES CREATION

Contains the following files:

create_antennas_ptcontrol v5.m
normalpointsv2.m
results_shapes.m
shapesfundersq.m (refer to .1)
shapesptsopt_v2.m (refer to .2)
shapestotarclength.m (refer to .2)

view_solution_Max.m

78

create_antennas_ptcontrol_v5.m

/ Brian Wessel
creates antennas for input to FE program

% creates points using arc length hence point control

This seems like overkill but FE software is very sensitive

to points which are too close to eachother. Thus one must exactly

place the points along the shape of the curve at regular spacing so that none
end up too near eachother as would happen for curves with large curvature where
points are placed at regular spacing along the axis

ymax and xmax define the size of the box in which the shape is confined
so small because FEMLab requires SI units, thus in meters

clear all
close all
% xmax =
% ymax =
zmax =
d=0.9;

ant_thick = 0.03;

hxmax = 2e-3;
ymax = le-
zmax = 4.5e
d = 9e-3;

ant_thick
numangles =
epoxyheight=4e-3; % which is two times the old xmax ...reference 1/8/04 why I made this change
xmax = epoxyheight/2-ant_thick;

if xmax > d/2
rror (’xmax is greater than d/2 so the antenna elements will criss-cross at large angles!’)
end

if ymax > 2%xmax
error(’ymax is greater than 2+*xmax, so the epoxy will not cover the side of the antenna when the antenna is turned at a sharp angle (psi)!’)
end

centerchoice = menu(’Centering on or off?’,’on’,’off’);

shapechoice = menu(’Shape?’,’circle’,’parabola’,’ellipse’,’hyperbola’);

shapechoice = shapechoice+3;

kchoice = menu(’Curvature (k) ?°,°1°,°2°,°3°,°4°,°5”,°6°,°77,°8°,79°,°10°);

psichoice = menu(’Angle ?’,°0°,710,°20°,730°,°40,°50°,°60°,°70?,°80°,790°) ;

psichoice = (psichoice-1)*10;

% number of monopoles on each antenna and the number of curves to be simulated per shape (except the sheet of course)
numbsections = 6; % MUST BE EVEN b/c linc = 2*totsum/numbsections. It seems weird but having an even

% number of sections, will put an odd number of points because there is no middle section

% NOTE THAT THE NUBMER OF POINTS WILL BE NUMBSECTIONS+1
desiredcurves = 10; %if k only goes from 1:1 rather than 1:totcurves(ndp) than desiredcurves is overidden and

% therefore, only 1 curve will be created

if numangles
psi_r_inc = 91; % just enough that only zero degrees will be calculated
else
psi_r_inc = 90/(numangles-1); % increment value for the rotation angle in degrees
end

index = 0; 7% keeps track of the saving of epoxy and ae’s for later use

for ndp = shapechoice:7 % alters shapes
ndp

% outputs points on box and the total number of curves that will be used
[totcurves(ndp) xpt ypt] = shapesptsopt_v2(xmax,ymax,ndp,desiredcurves);

totcurves (ndp)
% display (’progran paused’
% pause

for k= kchoice:totcurves(ndp) 7% calculates a point on the box for a fixed shape (the total number of curves will be numcurves-1)
k

4
ypt (k) /2% (1+xpt (k) "2/ypt(k)~2); % b is the radius of the sphere at the pts (xpt,ypt) and (0,0)

elseif ndp==

a = ypt(k)/xpt(k)~2;
elseif ndp==t

a = xpt(k);

b = ypt(k);
elseif ndp==

b =d/2

a = ((d°2/4%xpt (1)"2)/ (ypt (k) “2+ypt () *d)) " (0.5) ;
end

h uses the arclength to calculate the placement of the number of dipoles
% otherwise it uses a much simpler way for the sheet points
% also an easy way to calculate the total arclength of a circle is used
if ndp~=3

% calculates the total arc length in a curve from O to xmax then

% multiplies by 2 to get the total arclength from -xmax to xmax

% due to symmetry of the curves

clear xpoints

clear ypoints

xpoints = [1;

delxp = 1%107(-6);

if ndp==f
delxp = 1%10"(-6);
end

if ndp "=4
clear xpoints
xpoints = [1;

totsum = shapestotarclength(ndp,0,xpt(k),(a)"2,(b)"2);
linc = 2*totsum/numbsections;

% calculates the circle arclength increment quickly

elseif ndp==
xy = [xpt(k) ypt(k)1;
rad = [0 b];

origin = [0 0];
cosgamma = dot (xy-rad,origin-rad)/(norm(xy-rad)*norm(origin-rad));
gamma = acos(cosgamma) ;
arclength = 2xbkgamma;
linc = arclength/numbsections;
for p = 1:numbsections/2
xpoints(p) = b*sin((linc*p)/b);

79

end
xp =
1sum
i=1;
fpsq = [1;
if ndp "=4
% numerically determines the x value for a specified unit of arc length
while xp < xpt(k) & i < (numbsections-3)
while lsum<linc
fpsq = shapesfundersq(xp,ndp,a,b);
lsum = lsum+delxp*(1+fpsq)~0.5;
xp = xp + delxp;
if xp > xpt(k)
break
end
end
lsum = 0;
if xp< xpt(k)
xpoints(i) = xp;
end
i= i+l
end
xpoints = [xpoints, xpt(k)];
end
else ndp

linc = xpt(k)*2/numbsections;
xpoints = linc:linc:xpt(k);
end

% creates negative values and adds a zero point for the xpoints

Jnxpoints = -xpoints;
xpoints = [fliplr(-xpoints) O xpoints];

% end calculation of xpoints using arc length

% calculates ypoints according to which shape the user specifies.
% all shapes intersect through the origin
if ndp == 3
ypoints = zeros(size(xpoints));
elseif ndp == 4 Ycircle points
ypoints = abs((b"2- (xpoints.*xpoints))."(0.5)-b);
elseif ndp == 5 Yparabola pts
ypoints = a*(xpoints.*xpoints);
elseif ndp == 6 Yellipse points
ypoints = abs((b"2-b~2/a"2*(xpoints.*xpoints))."(0.5)-b);
elseif ndp == 7 Yhyperbola points
ypoints = (b~2+b"2/a"2*(xpoints.*xpoints))."(0.5)-b;

subplot(2,2,ndp-3)
scatter(xpoints,ypoints,’.’)
axis([(-xmax-xmax/5) (xmax+xmax/5) -ymax/10 (ymax+ymax/5)1);
axis equal
if ndp==4
title(’semicircular’)
elseif ndp==5
title(’parabolic’)
elseif nd
title(’elliptical’)

else
title("hyperbolic’)

pause
%title([’shape’,num2str(ndp),’ ’,’curve number’,num2str(k)])
[nxpoints,nypoints] = normalpointsv2(ndp,a,b,ant_thick,xpoints,ypoints);
close(gcf)

scatter(xpoints,ypoints,’r.’);

axis equal

hold

scatter (nxpoints,nypoints, ’bx’);

axis equal

title([’shape’ ,nun2str(ndp),’ ’,’curve number’,num2str(k)])
pause

< MAKING ANTENNA ELEMENT USING FEMLgb FUNCTIONS
y

T am keeping the enclosing box x and y axes, so it is switched from normal

Il
t!

for psi_r = psichoice:psi_r_inc:90 % rotates psi_r for a fixed shape and curvature

index = index+1;

psi_r
A aex=[fliplr(nxpoints) ,xpoints] ;
A aey=[fliplr(nypoints),ypoints];

aex=[xpoints,fliplr(nxpoints)];
aey=[ypoints,fliplr(nypoints)];

% rotating neg. ae
phi = psi_r*pi/180;

rot_mat = [cos(phi) -sin(phi); sin(phi) cos(phi)l;

f%h Plot which checks for correct rotation
Jaey,’b’,raex,raey, ’r’)

80

axis equal
title(’check for correct rotation’);
pause

W A
% step 1 -- create antenna elements
ine2(raex,raey);
ael=line2(raex,-raey);

4% Plotting
close(gef)
scatter (raex,raey,’r.’);
axis equal
hold
scatter (raex,-raey,’b.’);
axis equal
%pause
geomplot (aer)
axis equal

hold

geomplot (ael)
axis equal

% pause

YYAANA y

o
%step2 -- create epoxy
%close(gef)

n

halfx = raex(numbsections+2:length(raex));

halfy = raey(numbsections+2:length(raey));

if centerchoice==1 % This choice will center the antenna element within the epoxy
% This regime is fundamentally different from noncentering because it should expose
% the difference between having a shield of epoxy vs free space and will give insight
% into how much a shield is effective at pushing the current to the far-field

code for creating outside antenna first...uses output of normalptsv2.m ¥

%if psi_r = 0, we don’t want to add extra epoxy or it will cause an error because the points
% will be too close to connect with a line...however, I should add about half the antenna thickness
% to each side so that it doesn’t make a sharp point near the tip of the antenna as in the case of the
% elliptically shaped antenna elements
i 0

if psi_r
xtra = ant_thick/2;
% xtra = ant_thick*4/5;

[halfx (halfx(length(halfx))-xtra) (halfx(length(halfx))-xtra) fliplr(halfx) (halfx(1)+xtra) (halfx(1)+xtra) 1;
[halfy halfy(length(halfy)) -halfy(length(halfy)) -fliplr(halfy) -halfy(1) halfy(1)];

epoxy = line2(totx,toty);
else'/. (for old way #1)this strange sin*blah is so that at large angles the epoxy does not overlap itself and

% therefore cause a problem.

% old way #1 -- xtra = halfx(1,1)+sin(psi_r*pi/180)#* (ymax+ant_thick);

% old way #2 -- xtra = max(raex)+1/5*xmax;

%xtra = min(raex)+2*xmax+ant_thick;
halfx fliplr(halfx);

halfy = fliplr(halfy);

widthant = max(halfx)-halfx(1);

% xout = ant_thick*cos(phi);
xout = ant_thick*cos(phi)*3/5;
% xtra = (epoxyheight-widthant)/2;
xtra = (epoxyheight-widthant)*4/5;
% yout = ant_thick*sin(phi);
yout = ant_thick*sin(phi)*3/5;
% h totx = [halfx max(halfx) (max(halfx)+xtra) (max(halfx)+xtra) max(halfx) fliplr(halfx) halfx(1) (halfx(1)-xtra) (halfx(1)-xtra) halfx(1)];
) é toty = [halfy (halfy(length(halfy))+ant_thick/2) (halfy(length(halfy))+ant_thick/2) -(halfy(length(halfy))+ant_thick/2) -(halfy(length(halfy))+ant_thick/2) -fliplr(halfy) -(halfy(1
% h

%ikSophisticated Modeling which is memory intensive
totx = halfx;
toty = halfy;
% totx = [totx (max(halfx)+xout)];
totx = [totx (halfx(length(halfx))+xout)];
toty = [toty (halfy(length(halfy))+yout)];
totx = [totx (max(halfx)+xtra)l;
= [toty (halfy(length(halfy))+yout)];
totx = [totx (max(halfx)+xtra)l;
= [toty -(halfy(length(halfy))+yout)];

% totx = [totx (max(halfx)+xout)];
totx = [totx (halfx(length(halfx))+xout)];
toty = [toty -(halfy(length(halfy))+yout)];

totx = [totx fliplr(halfx)];
toty = [toty -fliplr(halfy)];

totx = [totx (halfx(1)-xout)];
toty = [toty -(halfy(1)-yout)];
totx = [totx (halfx(1)-xtra)l;
toty = [toty -(halfy(1)-yout)];
totx = [totx (halfx(1)-xtra)l;
toty = [toty (halfy(1)-yout)];
totx = [totx (halfx(1)-xout)];
toty = [toty (halfy(1)-yout)];

Primitive Modeling

totx = [(max(halfx)+xtra)l;
toty = [min(halfy)-ant_thick/2];

totx = [totx (max(halfx)+xtra)l;
toty = [toty max(halfy)];

totx = [totx (max(halfx)+xtra+ant_thick)];
toty = [toty max(halfy)];
% totx = [totx (max(halfx)+xtra+ant_thick)];
% h toty = [toty -max(halfy)];
) totx = [totx (max(halfx)+xtra)l;
% % toty = [toty -max(halfy)]l;
é é totx = [totx (max(halfx)+xtra)l;
% % toty = [toty -(min(halfy)-ant_thick/2)];
1
Y totx = [totx (halfx(1)-xtra)l;
% % toty = [toty -(min(halfy)-ant_thick/2)];
b
%4 totx = [totx (halfx(1)-xtra)l;
% % toty = [toty (min(halfy)-ant_thick/2)];

81

epoxy = line2(totx,toty);
end

else

%if psi_r = 0, we don’t want to add extra epoxy or it will cause an error because the points
% will be too close to connect with a line
if psi_r 0
totx = [fliplr(halfx) halfx];
toty = [-fliplr(halfy) halfyl;
epoxy = line2(totx,toty);
else
% (for old way #1)this strange sin¥blah is so that at large angles the epoxy does not overlap itself and
% therefore cause a problem.
% old way #1 -- xtra = halfx(1,1)+sin(psi_r*pi/180)*(ymax+ant_thick);
% old way #2 -- xtra = max(raex)+1/5%xmax;
Yxtra = min(raex)+2*xmax+ant_thick;
xtra = min(raex)+2*xmax;
totx = [fliplr(halfx) halfx xtra xtral;
toty = [fliplr(halfy) -halfy -halfy(1,length(halfy)) halfy(1,length(halfy))];
epoxy = line2(totx,toty);

end create outside antenna first %%

A
%% code for creating inside antenna first...uses output of normalptsvé.m %%

halfx = raex(l:numbsections+1);

halfy = raey(l:numbsections+1);

if centerchoice==1 % This choice will center the antenna element within the epoxy

% This regime is fundamentally different from noncentering because it should expose
the difference between having a shield of epoxy vs free space and will give insight
% into how much a shield is effective at pushing the current to the far-field

%if psi_r = 0, we don’t want to add extra epoxy or it will cause an error because the points
% will be too close to connect with a line
if psi_r == 0
totx = [fliplr(halfx) halfx];
toty = [-fliplr(halfy) halfyl;
epoxy = line2(totx,toty);
EISEZ (for old way #1)this strange sin¥blah is so that at large angles the epoxy does not overlap itself and
% therefore cause a problem.
% old way #1 -- xtra = halfx(1,1)+sin(psi_r*pi/180)* (ymax+ant_thick);
% old way #2 -- xtra = max(raex)+1/5*xmax;

A é %xtra = min(raex)+2*xmax+ant_thick;

Y widthant = max(halfx)-halfx(1);
xtra = (2*xmax-widthant)/2;
totx = [halfx (max(halfx)+xtra) (max(halfx)+xtra) fliplr(halfx) (halfx(1)-xtra) (halfx(1)-xtra)];
toty = [halfy halfy(length(halfy)) -halfy(length(halfy)) -fliplr(halfy) -halfy(1) halfy(1)1;
epoxy = line2(totx,toty);

end

else

%if psi_r = 0, we don’t want to add extra epoxy or it will cause an error because the points
% will be too close to connect with a line
if psi_r == 0
totx = [fliplr(halfx) halfx];
toty = [-fliplr(halfy) halfyl;
epoxy = line2(totx,toty);
else
% (for old way #1)this strange sin*blah is so that at large angles the epoxy does not overlap itself and
% therefore cause a problem.
% old way #1 -- xtra = halfx(1,1)+sin(psi_r*pi/180)* (ymax+ant_thick);
% old way #2 -- xtra = max(raex)+1/5%xmax;

é é %xtra = min(raex)+2*xmax+ant_thick;

xtra = min(raex)+2%xmax;

totx = [fliplr(halfx) halfx xtra xtral;

toty = [fliplr(halfy) -halfy -halfy(l,length(halfy)) halfy(1,length(halfy))];
epoxy = line2(totx,toty);

% end create inside antenna first %%

% %% Plotting
A geomplot (epoxy)

A title(’epoxy’)

% axis equal

7 The following code should work but the epoxy cannot be extruded for some reason
halfx = raex(l:numbsections+1);
width = halfx(1,1)-halfx(1,numbsections+1);
halfy = raey(l:numbsections+1);
if width > Eﬁ*xmax—xmax/io)
totx = [halfx fliplr(halfx)];
toty = [halfy -fliplr(halfy)];
else
extend = xmax-width/2;
leftx = (-extend+halfx(numbsections+1));
rightx = (halfx(1)+extend);
totx = [halfx(1) halfx fliplr(halfx) halfx(1) rightx rightx];
toty = [(halfy(1)+ymax) halfy -fliplr(halfy) -(halfy(1)+ymax) -(halfy(1)+ymax) (halfy(1)+ymax)];

the epoxy should be directly behind the ae’s

% creating extrusion plane
c_wrkp=geomgetwrkpln(’quick’,{’xy’,-zmax});

% extruding epoxy and ant. elements

e_epoxy = extrude(epoxy,’wrkpln’,c_wrkp,’distance’,zmax*2);

e_aer = extrude(aer,’wrkpln’,c_wrkp,’distance’,zmax*2) ;

e_ael = extrude(ael, ’wrkpln’,c_urkp,’distance’,zmax*2) ;

% storing as positive and negative antenna elements and as insulation
pae{index} = e_aer;

nae{index} = e_ael;

ins{index} = e_epoxy;

Plotting
close(gcf)

82

geomplot (e_aer) ;
axis equal

hold on

geomplot (e_ael) ;
axis equal
geomplot (e_epoxy) ;
axis equal

hold off

pause

clear fem

v=1

% Geometry

fem.geom = pae{v};

fem.mesh = meshinit(fem);

% Integrate on subdomains
ae_vol(v)=postint(fem,’1’);

%_check insulation

cliar fem

% Geometry

fem.geom = ins{v};

fem.mesh = meshinit(fem, ’hauto’,3);
display(’insulation is compatible’)

pae{index} = rotate(pae{index},pi/2,[0 1 0 1,[0 0 01);
nae{index} = rotate(nae{index},pi/2,[0 1 0 1,[0 0 0])
ins{index} = rotate(ins{index},pi/2,[0 1 0 1,[0 0 0]

center = [0;0;6.5e-2];

paei = move(pae{1},center)
naei = move(nae{1},center)
insi = move(ins{1},center)

ae_vol

geomplot (insi),hold,geomplot (paei) ,geomplot (naei) ,axis equal

set(gef,’Color’, [1 1 1])

xlabel(’x (m)’,’FontSize’,20),ylabel(’y (m)’,’FontSize’,20),zlabel(’z (m)’,’FontSize’,20)
set(gca, ’FontSize’,15)

display(’program finished...ready to import into femlab’)
pause

A %
e the program at line 349°);
%

% find vglume of each antenna element

end

numangles: (totcurves (4)*10+3xtotcurves (5)*10)
v % display v to user

v

clear fem

% Geometry
fem.geom = pae{v};

fem.mesh = meshinit(fem);

% Integrate on subdomains

ae_vol (v)=postint (fem, 1) ;

for i=1:(numangles-1) % because the others are just rotated so the volume shouldn’t change
" ae_vol(v+i) = ae_vol(v);

display(’break at line 511’)
break

ﬂ flnd volume of each antenna element

= 1:numangles: (4*numangles)
v % display v to user

clear fem

% Geometry

fem.geom = pae{v};

fem.mesh = meshinit(fem);

% Integrate on subdomains

ae_vol(v)=postint (fem,’1’);

for i=1:(numangles-1) % because the others are just rotated so the volume shouldn’t change

ae_vol(v+i) = ae_vol(v);
end

subindex = 1;

for

index = 1:(4*numangles)
% rotate for preparation into FEMLab (I’1l have FEMLab move it to 6.5 cm in z direction

% rotate around y-axis

pae{index} = rotate(pae{index},pi/2,[0 1 0 1,[0 0 01);
nae{index} = rotate(nae{index},pi/2,[0 1 0 1,[0 0 01);
ins{index} = rotate(ins{index},pi/2,[0 1 0 1,[0 0 01);
) ‘% rotate around z-axi
) pae{index} = rotate(pae{lndex} pi/2,[0 0 1 1,[0 0 01);
3 nae{index} = rotate(nae{index},pi/2,[0 0 1 1,[0 0 01);
% ins{index} = rotate(ins{index},pi/2,[0 0 1 1,[0 0 01);
flgure(4)
elself index==
gure(5)
b ndex = subindex-6;
elseif index:
figure(6)
subindex = subindex-6;
elseif index: 9

figure(7)

subindex = subindex-6;
end
subplot (3,2, subindex)
geomplot (ins{index})
hold

geomplot (pae{index}) ;
axis equal

geomplot (nae{index}) ;
xlabel(’x (m)’)

83

end

%for i=1:(numangles*totcurves(ndp)),geomplot(pae{i}),axis equal,pause,end

ylabel(Cy (m)’)
zlabel(’z_(m)’)

axis equal

hol.

YA e

subindex = subindex+1;

84

% normalpointsv2.m

% Brian Wessel

Z program finds normal points to a shape using the
% gradient of the function

function [nxpoints,nypoints] = normalpointsv2(ndp,a,b,t,xpoints,ypoints)

The reason why I have to subtract b from ypoints for the circle and
ellipse is because the points must lie on the original shape for the
normal vector to be calculated correctly

eseae

This program uses a normal vector such that the resulting curve is larger
which makes it hard to control xmax and ymax so I made version 3

e

if ndp==
ypoints = ypoints-b;
nypoints = t*ypoints/b+(ypoints+b);
nxpoints = t*xpoints/b+xpoints;

ypoints = ypoints+b;
elseif ndp==!
¢ = -1./(4*axypoints+1)."(1/2);

nypoints = c*t + ypoints;
nxpoints = -2%a*c.*xpoints*t+xpoints;
elseif ndp==

ypoints = ypoints-b;
for i=1:length(xpoints)
c(i) = ((a~4*ypoints(i)~2)/(b~4*xpoints (i) 2+a~4*ypoints(i)~2))~(1/2);
if ypoints(i)==(
nypoints(i) = ypoints(i);
if xpoints(i)<0
nxpoints(i) = xpoints(i)-t;

else
nxpoints(i) = xpoints(i)+t;

end
else
nypoints(i) = -c(i)*t+ypoints(i);
nxpoints(i) = -c(i)*t*(b~2*xpoints(i))/(a"2*ypoints(i))+xpoints(i);
end
end

nypoints = nypoints+b;
elseif ndp==
ypoints = ypoints+b;
c = 1./((xpoints."2*b~4+a~4*ypoints.~2)./(a"4*ypoints."2)).~(1/2);
nypoints = -cxt+ypoints;
nxpoints = t*c.*xpoints*b./(a"2*(a"2+xpoints."2))." (1/2)+xpoints;
nypoints = nypoints-b;
end
\end{vebatim}
\newpage
\begin{verbatim}
% results_shapes.m

7 Brian Wessel
% plots the data given resultsX.dat

load resultsX.dat
%circle points
curve = [1 3561356135 86];

angle = [0 0 0 0 40 40 40 40 90 90 90 90];

for i = 1:length(curve)
for j = 1:length(resultsX(:,1))
if (resultsX(j,3)==4 & resultsX(j,4)==angle(i) & resultsX(j,5)==curve(i))
ana_maxv(i) = resultsX(j,1);
end
end
end

maxv = [15.9951 15.8749 16.6184 16.4645 15.291 16.2845 17.7529 18.041 17.2755 17.5412 17.9634 18.0391];

c_per = (maxv-ana_maxv)./ana_maxv¢100;

x1lin
ylin

[1356];
[0 40 90 90];

[Y,X] = meshgrid(ylin,xlin);

Z = griddata(curve,angle,2*maxv,X,Y);
subplot(2,2,1)

surf(X,Y,2);

hold on;

xlabel(’curvature (index)’);

ylabel (’psi (angle)’);

zlabel (’potential difference (mV)’);
title(’CIRCULAR’,’FontSize’,15)
Y%colorbar;

Colormap gray;

rotate3d

scatter3(curve,angle, 2*maxv)
hold off;

pause
%parabola points

curve = [1 4710147 10147 10];

angle = [0 0 0 0 40 40 40 40 90 90 90 90];

for i = 1:length(curve)
for j = 1:length(resultsX(:,1))
if (resultsX(j,3)==5 & resultsX(j,4)==angle(i) & resultsX(j,5)==curve(i))
ana_maxv(i) = resultsX(j,1);
end
end
end

maxv = [14.8218 16.1019 16.3218 16.059 16.0707 17.5165 18.5119 19.5355 16.8201 17.5545 17.9899 18.6729];
p_per = (maxv-ana_maxv)./ana_maxv*100;

xlin = [1 4 7 10];
ylin = [0 40 90];
[Y,X] = meshgrid(ylin,xlin);

Z = griddata(curve,angle,2*maxv,X,Y);
subplot(2,2,2)
surf(X,Y,2);

85

hold on;

xlabel (’curvature (index)’);
ylabel(’psi (angle)’);
zlabel(’potential difference (mV)’);
title(’PARABOLIC’ ,’FontSize’,15)
%colorbar;

colormap gray;

rotate3d
scatter3(curve,angle,2*maxv)

hold off;
pause

%ellipse points
[14710147 10147 10];
[0 0 0 0 40 40 40 40 90 90 90 90];
for i = 1:length(curve)
for j = 1:length(resultsX(:,1))
if (resultsX(j,3)==6 & resultsX(j,4)==angle(i) & resultsX(j,5)==curve(i))
ana_maxv(i) = resultsX(j,1);

curve
angle

end
end
end

maxv = [15.867 16.5356 16.2539 15.67 16.3824 17.2376 18.3474 19.3977 16.4966 17.5417 18.0732 18.6771];
e_per = (maxv-ana_maxv)./ana_maxv*100;

xlin = [1 4 7 10];
ylin = [0 40 901;

[Y,X] = meshgrid(ylin,xlin);

Z = griddata(curve,angle,2*maxv,X,Y);
subplot(2,2,3)

surf(X,Y,2);

hold on;
xlabel(’curvature (index)’);

ylabel (psi (angle)’);

zlabel (’potential difference (mV)’);
title CELLIPTICAL’,’FontSize’,15)
‘%colorbar;

colormap gray;

rotate3d

scatter3(curve,angle, 2*maxv)
hold off;

pause
%hyperbola points

curve = [1 471014710147 10];
angle = [0 0 0 0 40 40 40 40 90 90 90 90];

for i = 1:length(curve)
for j = 1:length(resultsX(:,1))
if (resultsX(j,3)==7 & resultsX(j,4)==angle(i) & resultsX(j,5)==curve(i))
ana_maxv(i) = resultsX(j,1);
end
end
end

maxv = [14.9403 16.2585 16.2866 15.7563 16.0993 17.4512 18.5534 19.387 16.9944 17.6567 18.3735 18.0686];
h_per = (maxv-ana_maxv)./ana_maxv*100;

xlin = [1 4 7 10];

ylin = [0 40 90];

[Y,X] = meshgrid(ylin,xlin);

Z = griddata(curve,angle,2*maxv,X,Y);
subplot(2,2,4)

surf(X,Y,2);

hold on;

xlabel (’curvature (index)’);
ylabel(’psi (angle)’);
zlabel(’potential difference (mV)’);
title (’HYPERBOLIC’,’FontSize’,15)

%colorbar;

colormap gray;

rotate3d
scatter3(curve,angle, 2*maxv)
hold off;

pause

» PERCENT INCREASE

curve [135613561356];
angle [0 0 0 0 40 40 40 40 90 90 90 90];
xlin [1356]

ylin
[Y,X] = meshgrid(ylin,xlin);

Z = griddata(curve,angle,c_per,X,Y);
subplot(2,2,1)

surf(X,Y,2);

hold on;
xlabel(’curvature (index)’);
ylabel(’psi (angle)’);

zlabel (’Percent Increase’);
title(’CIRCULAR’, ’FontSize’,15)
‘hcolorbar;

colormap gray;

rotate3d

scatter3(curve,angle,c_per)

hold off;

pause

curve = [1 47 10147 10147 10];
angle [0 0 0 0 40 40 40 40 90 90 90 90];

xlin = [1 4 7 10];
ylin = [0 40 90];

[Y,X] = meshgrid(ylin,xlin);

Z = griddata(curve,angle,p_per,X,Y);
subplot(2,2,2)
surf (X,Y,2);

hold on;
xlabel (’curvature (index)’);
ylabel(’psi (angle)’);
zlabel(’Percent Increase’);
title(’PARABOLIC’, FontSize’,15)
Y%colorbar;

colormap gray;

rotate3d
scatter3(curve,angle,p_per)

hold off;
pause

Z = griddata(curve,angle,e_per,X,Y);

86

subplot(2,2,3)
surf (X,Y,2);

hold on;
xlabel(’curvature (index)’);
ylabel(’psi (angle)’);

zlabel (’Percent Increase’);
title(’ELLIPTICAL’,’FontSize’,15)
Y%colorbar;

colormap gray;

rotate3d
scatter3(curve,angle,e_per)

hold off;

pause

subplot(2,2,4)

Z = griddata(curve,angle,h_per,X,Y);
surf (X,Y,2);

hold on;

xlabel (’curvature (index)’);
ylabel(’psi (angle)’);
zlabel(’Percent Increase’);

title (’HYPERBOLIC’,’FontSize’,15)
‘hcolorbar;

Colormap gray;

rotate3d
scatter3(curve,angle,h_per)

hold off;

87

% view_solution_Max.m
}} Brian Wessel
) January 11, 2004

% This program extracts the surface solution as outputted by FEMLab using
% ctrl-F while in FEMLab

theta = pi*(-n:2:n)/n;

phi = (pi/2)*(-n:2:n)’/n;

= Rxcos(phi)*cos(theta);

R*cos (phi)*sin(theta) ;

Pz = Rxsin(phi)*ones(1,length(sin(phi)));
P = [Px(:),Py(:),Pz(:)]";

result=postinterp(fem,’V’,P, ext’,1);

% % % choice = menu(’Choose Method’,’whole sphere data’,’half sphere data’);
g

if choice==1

C = reshape(result,n+1,n+1);
figure(2)

surf (Px,Py,Pz,C);
title(’FEMLab surface solution (Volts)’)
xlabel(Cx (m)’);

ylabel(C’y (m)’);

zlabel(’z (m)’);

shading interp

colorbar

axis equal

save C.mat C

= reshape(result,n+1,n+1);

C(1:(n+1),(n/2+2) : (n+1)) =fliplr(-C(1:(n+1),1:(n/2)));
for i = 1:(n+1)
for j = 1:(n+1)

if isnan(C(i,j))

C(i,j) = 0;

end

end
end

figure(2)

C = reshape(result,n+1,n+1);

surf (Px,Py,Pz,C);

title (’FEMLab surface solution (Volts)’)
xlabel(’x (m)’);

ylabel(’y (m)’);

zlabel(’z (m)’);

shading interp

colorbar

axis equal

display([’max(max(C)) = ’,num2str(max(max(C))),” min(min(C)) = ’,num2str (min(min(C)))1);
display([’The average absolute maxes = ’,num2str((max(max(C))+abs(min(min(C))))/2)1);

%save (’G:\FEMLab\Sphere_Models\1p7\sheetsurf.mat’,’C’)
%clear fem ans P* R n phi result theta
%save C

Whhend

88

.4 FOUR SHELL FILES

Contains the following files:

e test_potentialdshell _VII.m

e potentialdshell.c

89

% test_potentialdshell vII.m
% Brian Wessel

% CODE FOR THE 4 SHELL MODEL
clear all

R=1;

nchs = 1;

d=[000];
m=[010];
elec = [0 1 0];

pogen = potentialdshell(nchs,d,m,elec,R);
poten

break

figure(1)

subplot(2,2,1)

surf (Px,Py,Pz,poten) ;

view(-216,30)

%title(’Frank’’s equation (colorbar in mV) and (imA b/w plates)’,’FontSize’,25)
title(’Frank’’s equation (colorbar in mV) and (imA b/w plates)’)
set(gca,’FontSize’,15)

hc = colorbar;

set (hc, ’FontSize’,15)

xlabel(’x (cm)’,’FontSize’,18);

ylabel(’y (cm)’,’FontSize’,18);

zlabel(’z_(cm)’,’FontSize’,18);

axis equal

shading interp

figure(1)

subplot(2,2,3)

imagesc(theta,phi,poten);

set(gca, ’FontSize’,15)

xlabel(’theta (radians)’,’FontSize’,25);

ylabel(’phi (radians)’,’FontSize’,25);

% title(’Frank’’s equation’,’Fontname’,’Courier’,’FontSize’,25)
title(’Frank’’s equation’)

pause
gtext ([’non-dipole around center at pos_i = ’,num2str(pos_i),’ and neg_i = ’,num2str(neg_i)])
YANA %% END CODE FOR THE 4 SHELL MODEL

90

/* potentialdshell.c
created by Dr. Mingui Sun
modified by Wessel

/* NOTE: THE AVERAGING ACROSS CHANNELS HAS BEEN COMMENED OUT */
#include <m:

#include ”mex

#define dot(a, b) (a[0]*b[0]+a[1]*b[1]+a[2]*b[2])

#define alv (double *)malloc((unsigned) c*sizeof (double))

void potential(int nchs, double *d,double *m,double *ev,double *R,double *v)

int i,j,c = nchs;
double cni[3],*Q,*Q2,*Q3,*Q5,*x,*x2,*x3,
t,t2,%tX,S,*%vt,*vr,p,*q, **T,*xTT,*RR, **e, **dmatrix(),r = *R;
static double K=24.11438531695384,
cn[3]={0.0, 2.396851543074, 2.903046901856},
a[3]1={3.473289839721, -0.193784805097, 0.005423738295};

T = dmatrix(0,nchs-1,0,3);
e = dmatrix(0,nchs-1,0,3);
for (i=0;i<nchs;i++)
¢ e[i] [0]=ev[ix*3];

el[i] [1]=ev[i*3+1];

eli] [2]=ev[i*3+2];

tx=alv;

g=alv;

vt=alv; vr=alv; RR=alv; x=alv

Q=alv; Q2=alv; Q3=alv;Q5=alv; o= =alv; x3=alv; TT=alv;

//for(i=0;i<3;i++)T[i]l=alv;

p=dot (d,d);

t=sqrt(p);

if(t == 0.)
for(i=0;i<c

++)
v[i]=57.799%dot (m,e[i])/ (r*r*r);
return;

dor(i=03i<c;i+0) qlil=dot(d,eli]);
$3<3; 3+ T[] [31=e [1] [31#p-d[§1*q[il;

for(i=0;i<c;i++)for (j=
for(i=0;i<c;i++){
TT[i]=dot (m,T[i])/sqrt(dot(T[i],T[i]));
RR[i]=dot (m,d)/t;x[i]=q[i]/ (t*Tr);

¥

t/=r;
for(i=0; i<3;i++) cnilil=cnl[il-(al0]+ix(al1]+i*al[2]));
for (i=0;i<c;i++){

Q2[i]=1./(1.-2.*x[i]*t+t*t); Qlil=sqrt(Q2[il); Q3[i]=Q[i1*Q2[i]; Q5[i]=Q3[i]1*Q2[il;

t2=t*t;

x2[i]=x[i]*x[i];

tx[il=t*x[il;

S=sqrt(1-x2[i]);

x3[i]=x2[i]*x[i];

vr[i] = cn1[1]*x[i] +cn1[2]*t*(1.5%x2[i1-0.5) + a[0]*(Q[il-1.)/t

+ a[1]*(x[i]1-t)*Q3[i] + a[2]*(t*(x2[i]+t2-2.)+x[i]*(1.-t2))*Q5[i];

if (fabs(x[i])==1) vt[i] =0.; else {
vt[i] = S*(cn1[1] +3.*tx[il*cn1[2]/2.+al0]*Q[i]*(1.+Q[i])/(QLi]-tx[i]1*Q[i]+1.)
+ al11%Q3[i] + a[2]*Q5[il*(1.- 2.*t2 + tx[i]));

vlil= K*(TT[il*vt [i]1+RR[i]*vr[i])/(r+*r);
¥

free_dmatrix(T,0,nchs-1,0,3);
free_dmatrix(e,0,nchs-1,0,3);

¥

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])

double *d,*dm,*ev,*v, tn,*R;
int nchs;
unsigned’ int m,n;

/* Check for proper number of arguments */
if (nrhs != 5) {
mexErrMsgTxt ("POTENTIAL requires five input arguments.");

} else if (nlhs > 1)
mexErrMsgTxt ("POTENTIAL requires one output argument.");
}

tn = mxGetScalar(prhs[0]);
nchs = (int) tn;

/* Check the dimensions of d. d must be 3 x 1 or 1 x 3. */

m = mxGetM(prhs([1]);

n = mxGetN(prhs[1]);

if (!mxIsNumeric(prhs[1]) || mxIsComplex(prhs[1]) |
mxIsSparse(prhs[l]) il ‘mxIsDouble(prhs[i]) |

! ((m D I (m==1 & 3O 1L
mexErrMngxt('d must be a vector of length 3.");

}

/* Check the dimensions of mo. mo must be 3 x 1 or 1 x 3. */

m = mxGetM(prhs[1]1);
= mxGetN(prhs[1]);
1f (!mxIsNumeric(prhs[2]) || mxIsComplex(prhs[2]) ||
mxIsSparse(prhs[2]) |l !'mxIsDouble(prhs[2]) |
'((m==3gkn==1) || (m==1&n==3))) {
mexErrMngxt("mo must be a vector of length 3.");

¥
/* Check the dimensions of e. e must be 3*nchs x 1 or 1 x 3*nchs */

m = mxGetM(prhs[3]);
n = mxGetN(prhs[31);
if (!mxIsNumeric(prhs[3]) || mxIsComplex(prhs[3]1) ||
mxIsSparse(prhs[S]) || tmxIsDouble(prhs([3]) |
1((m == 3*nchs && n 1) || (m == 1 & n == 3*nchs))) {
printf("nchs = '/d\n" nchs)
mexErrMsgTxt ("e must be a vector of length 3*nchs.");

}

/* Create a matrix for the return argument */
plhs[0]=mxCreateDoubleMatrix(nchs,1,0);

d = mxGetPr(prhs[11);

dm = mxGetPr(prhs[2]);

ev = mxGetPr(prhs[3]);

R = mxGetPr(prhs[4]);

91

v = mxGetPr(plhs[0]);
potential(nchs,d,dm,ev,R,v);

double **dmatrix(nrl,nrh,ncl,nch)
¢ s

int nrl,nrh,ncl,nch;

{ it
int i;
double *¥m;
m=(double **) malloc((unsigned) (nrh-nrl+1)#*sizeof (doublex));

if (!'m) printf("allocation failure 1 in dmatrix()");
m -= nrl;

nrh;i++) {

(double *) malloc((unsigned) (nch-ncl+1)*sizeof(double));
if (Im[il) printf("allocation failure 2 in dmatrix()");

m[i] -= ncl;

for(i=nrl;

return m;
¥
void free_dmatrix(m,nrl,nrh,ncl,nch)
double **m;
int nrl,nrh,ncl,nch;
int i;
for(i=nrh;i>=nrl;i--) free((char*) (m[il+ncl));
free((charx) (m+nrl));

92

.5 FE VS FRANK EQUATION

Contains the following files:

o EF FEM _Cond_DC_1shellmodelv3.m

e frankpotential.c (refer to .1)

93

EF_FEM_| Cond DC_1shellmodelv3.m
Brian iesse
This is frcm the file ErnestFrankTest. I will be using this file

% to compare results with FEMLab results.

%testing Ernest Frank’s arbitrary placed and spaced dipole
clear all
choice = menu(’Choose the type of source’,’nonideal dipole around center’,’nonideal near surface’,’parallel sheets around center’,’parallel sheet near

nsp = 25;
if choice
pos.

[é 0.5 01;
neg_i = [0 -0.5 0];
% current (in mA) I divide by the number of simulated non-ideal dipoles so that when I them all up, the resulting voltage is from
7 that total amount of current...so in this case, the total current is 1 mA
1/(1ength(centershapepts)) 2
% 1 mA in THIS case puts the solution in terms of mV
elseif choice ==
s_i = 1[0 0.56.5];
[0 -0.5 6.5];
"% current (in mA) I divide by the mumber of similated mon-ideal dipoles so that when I them all up, the resulting voltage is from
that total amount of current...so in this case, the total current is 1 mA
= 1/(length(centershapepts))”2;

%1 mA in THIS case
elself cholce 3
xlim = 0. 45

11nspace(-xlim,x1im,nsp);

= 1;
for i'= l:nsp
for j = l:nsp

% this fllters out the values that are not between -0.2 and 0.2 in the z-direction
if abs(x(])) 0.2

neg_i(k,:) = [x(i) -0.5 x(j)];

k = k+l;
end

end
end
pos_i = [neg_i(:,1) neg_i(:,2)*-1 neg_ i(:,3)];
I = 1/length(pos_i)
elseif_choice4==

x = linspace(-xlim,xlim,nsp);

1;
for T'= 1 nsp
for j 1:nsp

% this fllters out the values that are not between -0.2 and 0.2 in the z-direction
if abs(x(j)) < 0.2

neg_i(k,:) = [x(i) -0.5 (x(j)+6.5)];
= k+1;

end
end
pos_i = [neg_i(:,1) neg_i(:,2)*-1 neg_ i(:,3)];
I = 1/length(pos_i)

% DEBUGGING CODE -- Shows the current sources I created above
Scatter3(neg_i(:,1),neg i(:,2),neg_i(:,3))

hold
scatter3(pos_i(:,1),pos_i(:,2),pos_i(:,3))
hold

axis equal

break

% radius of the sphere
R =
% (n+1)"2 will be the number of points on the sphere

n = 30;

% channel density (not used as an input but is interesting to know)
channeldensity = (n+1)~2/(4*pi*R~2)

theta = pix(-n:2:n)/n;

phi = (pi/2)*(-n:2:n)’/n;

Px = Rxcos(phi)*cos(theta);

Py = R#cos(phi)*sin(theta);

Pz = R#sin(phi)*ones(1,length(sin(phi)));

P = [Px,Py,Pz];
= frankpotential(I,neg_i,pos_i,P,R);

figure(1)
subplot(2,2,1)

surf (Px,Py,Pz,Vr);
view(-216,30)
title(’Frank’’s equation ’)
hc = colorbar;

set (hc, ’FontSize’,15)
xlabel(’x (cm)’);
ylabel(Cy (cm)’);
zlabel(’z_(cm)’);
axis equal

shading interp

figure (1)

subplot(2,2,3)
imagesc(theta,phi,Vr);
xlabel(’theta (radians)’);
ylabel(’phi (radians)’);
title(’Frank’’s equation’)

pause
if choice=:

gtext([non-ideal dipole around center at pos_i = ’,num2str(pos_i),’ and neg_i = ’,num2str(neg_i),])
elseif choice==2

gtext ([’non-ideal dipole at near surface where pos_i = ’,num2str(pos_i),’ and neg_i = ’,num2str(neg_i)])
elseif choice==3

gtext ([’ sheet of charge near center / center located at pos_i = ’,num2str([0 0.5 6.5]),” and neg_i = ’,num2str([0 -0.5 6.51)1)
elseif choi

gtext([sheet of charge near surface / center located at pos_i = ’,num2str([0 0.5 6.5]),’ and neg_i = ’,num2str([0 -0.5 6.5])1)

end

gtext ([’ (colorbar in mV) and (imA b/w sources)’])
%changes the background to white
set(gcf,’Color’, [1,1,1])

if choice==:
load(’

FEMLabFiles\2p7p1\C.mat’)

% elseif choice:
o load(? F:\
elseif choi

Vload(’F \FEMLabFlles\lpS\c mat’)

C = ones(n+1l,n+1);

warning(’no data available, surface data shown is junk’)

else1f cholce
ad (F: FEMLabF1les\2p4pl\C mat?)

EMLabFlles\ZpQ\C mat?)

94

surface’)

% end

if choice==1

load 2p7piC.mat
elself ChOl ce==2

2p9C.mat

elself cholce =3

#load ’F: \FEMLabFlles\lpS\c mat’)

C = ones(n+1,n+1);

warning(’no data available, surface data shown is junk’)
elseif choice==4

Toad 2p4dpiC.mat

end

figure(1)
subplot(2,2,2)
surf (Px,Py,Pz,C) ;
view(-216,30)

title(’DC Conducc1ve Media’)
hc = colorb:
set(hc,’FontS1ze’ 15)
xlabel(’x (cm)’);

ylabel(’y (cm)’);

zlabel(’z_ (cm)’);

axis equal

shading interp

figure(1)

subplot(2,2,4)
imagesc(theta,phi,C);
xlabel(’theta (radians)’);
ylabel(’phi (radians)’);
title(’DC Conductive Media’)

% sinusoid error
pause

sub = C-Vr;
= Vr./C;

md = mean(div);
mean (md) ;

figure(2)

subplot(2,1,1)

surf (Px,Py,Pz,sub) ;

view(-216,30)

title(’Frank Solution subtracted from FEMLab solution (ERROR) (numbers should all be zero ideally) (colorbar in mV) and (imA b/w plates)’)
hc = colorbar;

set (hc, ’FontSize’,15)

xlabel(’x (cm)’,’FontSize’,18);

ylabel(’y (cm)’,’FontSize’,18);

zlabel(’z_(cm)’,’FontSize’,18);
axis equal

shading interp

msub = mean(sub);

subplot(2,1,2)

plot(0:n,max(max(sub))*sin((0:1:n)*2xpi/n),0:n,max (max (sub)),’rx’)
tltle(’ERRUR vs Index [FEM-Frank] ’)

sincurve = [num2str(max(max(sub))),’*sin(2xpi/’,num2str(n),’*n)’];
legend(sincurve, ’error’)

xlabel (’index’)
ylabel(’Error’)

grid

Ynext 7 lines are just for making a plot for a presentation
figure(4)

subplot(2,1,1)

plot(0:n,msub, ’rx’)

title(’ERROR vs Index [FEM-Frank] *)

xlabelE’Ind x)

ylabel(’Error’)

grid

subplot(2,1,2)
plot(0:n,max(max(msub))*sin((0:1:n)*2*pi/n),0:n,msub, *rx’)
title(’ERROR and Sine Curve vs Index [FEM-Frank] ’)
sincurve = [num2str(max(max(msub))),’*sin(2*pi/’,num2str(n),’*n)’];
legend(sincurve,’error’)

xlabe1§>1ndex')
ylabel (’Error’)
grid

%changes the background to white
set (gcf,’Color’, [1,1,11)

i NORMALIZING THE IMAGESC DATA %

= min(min(Vr));
nVr = Vr/mVr;

mC
nC

max (max(C)) ;
C/mC;

figure(3)

subplot(2,1,1)

surf (Px,Py,Pz,nVr-nC) ;
view(-216,30)

title(’Frank Solution subtracted from FEMLab solution and Normalized (numbers should all be zero ideally) (colorbar in mV) and (imA b/w plates)’)
set(gca, ’FontSize’,15)

hc = colorbar;

set (hc, ’FontSize’,15)

xlabel(’x (cm)’,’FontSize’,18);
ylabel(’y (cm)’,’FontSize’,18);
zlabel(’z (cm)’,’FontSize’,18);
axis equal

shading interp

figure(5)
plot(0:n,max(Vr’~C), 0’ ,0:n,-max(Vr-C*), ’*’,0:n,max (Vr’-C) -max (Vr-C’) , *x* ,0:n,max (max (Vr’-C) -max (Vr-C*)) *sin((0: 1:n) #2*pi/n))
legend(’max(Vr’>~C)’,’-max(Vr-C’*)?, *max (Vr’>~C) -max (Vr-C’*)*, [num2str (max (max (Vr>~C) -max (Vr-C’))) , **sin(2*pi/’ ,num2str(n) , **n) 1)

95

.6 EXTRACTING POINTS FEMLAB OUTPUT (CTRL-F)

Contains the following file:

® exps.m

96

% exps.m
% Brian Wessel
% June 16, 2003

% This program extracts the surface solution as outputed by FEMLab using

% ctrl-F while in FEMLab

R = 7.5e-2;

n = 30;

theta = pi*(-n:2:n)/n;

phi = (pi/2)*(-n:2:n)’/n;

Px = R*cos(phi)*cos(theta);

Py = R#cos(phi)*sin(theta);

Pz = Rxsin(phi)*ones(1,length(sin(phi)));
P = [Px(:),Py(:),Pz(:)]1";

result=postinterp(fem,’V’,P, ’ext’,1);

choice = menu(’Choose Method’,’whole sphere data’,’half sphere data’);

if choice==1
C = reshape(result,n+1,n+1);
figure(2)
surf (Px,Py,Pz,C);
title ’FEMLab surface solution (Volts)’)
xlabel(’x (m)’);
ylabelC’y (m)’);
zlabel(’z (m)’);
shading interp
colorbar
axis equal

save C.mat C

C = reshape(result,n+1,n+1);
C(1:(n+1),(n/2+2): (n+1)) =fliplr(-C(1:(n+1),1:(n/2)));
for i = 1:(n+1)
for j = 1:(n+1)
if isnan(C(i,j))
C(@i,j) = 0;
end
end

end

figure(2)

surf (Px,Py,Pz,C);

title(’FEMLab surface solution (Volts)’)
xlabel(’x (m)’);

ylabel(’y (m)’);

zlabel(’z (m)’);

shading interp

colorbar

axis equal

%save (’G:\FEMLab\Sphere_Models\1p7\sheetsurf.mat’,’C’)
%clear fem ans P* R n phi result theta

%save C

.7 IDEAL VS NON-IDEAL DIPOLES (2D co MEDIUM)

Contains the following file:

e ContourPlotsV2.m

98

% ContourPlotsV2.m
7/ Brian Wessel
h Ideal vs NonIdeal Dipoles i.e., for an infinite medium

% in 2D

clear all

close all

% [X,Y] = meshgrid(-2:.2:2,-2:.2:3);

% Z = X.*exp(-X."2-Y."2);

% [C,h] = contour(X,Y,Z,linspace(min(nin(2)),max(max(Z)),50));
% clabel(C,h)

% colormap cool

Note, the equation for a dipole oriented along
the z-axis and placed at the origin is: Phi = p*cos(theta)/(4*pi*sigma*r~2)
Therefore, if we let p=4*pi*sigma, the equation becomes

b cos(theta)/r"2

% 1 dipole

figure (1)

subplot(2,2,1)

[X,Y] = meshgrid(-1.0001:.002:1,-1.0001:.002:1);
rc = length(X);

seseseae

for i = 1:rc
for j = 1:rc
if (X(1,3)<0 & Y(i,j)<0) | (X(i,j)>0 & Y(i,3)<0)
2(1,3) = cos(atan(X(i,)/Y(1,1))+pi)/ (X(1,1)"2+Y(1,1)"2);
1
©%°2(4,1) = cos(atan(X(i,)/¥(i,§)))/ (K(i,§)"24Y(1,)"2);

end
end
[C,h] = contourf(X,Y,Z,linspace(-100,100,10));
cmp=colormap(’gray’) ;
colormap (flipud(cmp))
set(gcf,’Color’,[1 1 1])

colorbar
axis equal

title(’\Phi_{one dipole}’)
% clabel(C,h)

figure(2)

[C,h] = contourf (X,Y,Z,linspace(-100,100,10));
cmp=colormap(’gray’) ;

colormap (f1ipud (cmp))

set(gcf,’Color’, [1 1 11)

colorbar

axis equal

title(’\Phi_{one dipole}’)

YA y
% 2 dipoles
figure (1)
subplot(2,2,2)

d=0.075;

Yp = Y+d;
Ym = Y-d;
for i = 1:rc
for j = 1:rc
if (X(1,j)<0 & Ym(i,j)<0) | (X(i,j)>0 & Ym(i,j)<0)
Zm(i,j) = cos(atan(X(i,j)/¥Ym(i,j))+pi)/(X(i,j) 2+¥m(i,j)"2);
1
©%n(1,3) = cos(atan(X(i,§)/¥n(i,1)))/ (X(1,3)"2+In(1,3)"2);
end
if (X(1,3)<0 & Yp(i,1)<0) | (X(i,1)>0 & Yp(i,})<0)
Zp(i,j) = cos(atan(X(i,j)/Yp(i,j))+pi)/(X(i,j) 2+¥p(i,j)"2);
1
S%2p(1,3) = cos(atan(X(i,1)/¥p(i,1)))/ (X(1,3)"2+¥p(i,3)"2);
end

end
end

Z = Zm+Zp;

[C,h] = contourf(X,Y,Z,linspace(-100,100,20));
cmp=colormap(’gray’) ;

colormap (f1ipud(cmp))

set(gef,’Color’, [1 1 11)

colorbar

axis equal

title(’\Phi_{two dipoles}’)

% clabel(C,h)

figure(3)

[C,h] = contourf(X,Y,Z,linspace(-100,100,20));
cmp=colormap(’gray’) ;

colormap (f1ipud(cmp))

set(gef,’Color’,[1 1 11)

colorbar
axis equal

title(’\Phi_{two dipoles}’)

% 2 monopoles

% The dipole moments must equal with the equation being

% Phi = I/(4*pixsigma*r), where in the other equation p = Ixd = 4xpi*sigma,
% then I must equal 4*pi*sigma/d, therefore, we have the equation being

% Phi = 1/(d#r)

Zdip = Z;
clear Z Zm Zp Ym Yp

figure(1)

subplot(2,2,3)

Z = d7(-1)./(X.72+(Y-d)."2)-d"(-1) ./ (X."2+(Y+d) ."2) ;
[C,h] = contourf(X,Y,Z,linspace(-100,100,10));
cmp=colormap(’gray’) ;

colormap (f1lipud(cmp))

set(gef,’Color’, [1 1 1])

colorbar
axis equal

title(’\Phi_{two monopoles}’)
% clabel(C,h)

figure(4)

Z =d"(-1)./(X."2+(Y-d) ."2)-d" (1) ./ (X."2+(Y+d) ."2) ;
[C,h] = contourf(X,Y,Z,linspace(-100,100,10));
cmp=colormap(’gray’) ;

colormap (flipud(cmp))
set(gcf, *Color’, [1 1 11)

colorbar
axis equal

title(’\Phi_{two monopoles}’)

% error between 2 dipoles and two monopoles

Zerr = Z-Zdip;

figure(1)

subplot(2,2,4)

[C,h] = contourf(X,Y,Zerr,linspace(-100,100,10));
cmp=colormap(’gray’) ;

colormap (f1lipud(cmp))

set(gcf,’Color’,[1 1 1])
colorbar

% clabel(C,h)

axis equal
title(’Error --> (\Phi_{monopoles}-\Phi_{dipoles})’)

figure(5)

[C,h] = contourf(X,Y,Zerr,linspace(-100,100,10));
cmp=colormap(’gray’) ;

colormap (£1ipud (cmp))

set(gef,’Color’, [1 1 1])

colorbar

axis equal

title(’Error --> (\Phi_{monopoles}-\Phi_{dipoles})’)

100

.8 IDEAL VS NON-IDEAL DIPOLES (3D SPHERICAL MEDIUM)

Contains the following files:

e ErnestFrankTestv2.m
e frankpotential.c (refer to .1)

e potential.c (refer to .1)

101

% ErnestFrankTestv2.m
7 Brian Wessel
Jtesting Ernest Frank’s arbitrary placed and spaced dipole

% version 2 changes phi and theta limits to plot the solution more intuitively
% on the imagesc plane

clear Vr ra rb theta phi
% radius of the sphere
R

% (n+1)"2 will be the number of points on the sphere
n = 75;

phi = pi*(-n:2:n)’/n-3%pi/2;

theta = (pi/2)*(-n:2:n)/n+pi/2;

Px = R#cos(phi)*cos(theta);

Py = Rxcos(phi)*sin(theta);

Pz = Rxsin(phi)*ones(1,length(sin(phi)));

% figure (1)
% plot3(Px(:),Py(:),Pz(:))
% title(’points to find the potenial at’)

Ycurrent (in mA)
I'=1;

%dipole placement (must adhere to the constraints of Ernest Frank’s assumptions) (They must be in the x-z plane)

% % realistic case
% neg_i = [0.997 0 5.791/7.5;

% pos_i = [0 0 5.875]1/7.5;

case

% neg_i = [1¥10~(-power) 0 1x10"(-power-2)1;
% pos_i = [1%10~(-power) 0 1%10~(-(power+1))]1;
% pos_i = [0 0.01 0];
% neg_i = [0 -0.01 0];

i=[01/7.5 6.5/7.5];
[0 -1/7.5 6.5/7.5];
a = norm(neg_i);
b = norm(pos_i);

% the distance between the source and sink - calculate this to ensure that both moments are the same

dab = (a"2+b"2-2xdot(neg_i,pos_i))~(0.5);

for i = 1:length(Px)

for j = 1:length(Px)

ra(i,j) = ((Px(i,j)-neg_i(1,1))"2 + (Py(i,j)-neg_i(1,2))"2 +(Pz(i,j)-neg_i(1,3))~2)"0.5;
rb(i,j) = ((Px(i,j)-pos_i(1,1))~2 +(Py(i,j)-pos_i(1,2))~2 +(Pz(i,j)-pos_i(1,3))"2)"0.
p = [Px(i,j) Py(i,j) Pz(i,)1;
sink = [neg_i(1,1) neg_i(1,2) neg_i(1,3)];
source = [pos_i(1,1) pos_i(1,2) pos_i(1,3)];

costheta = dot(p,source)/(norm(p)*norm(source)) ;
cosbeta = dot (p,sink)/(norm(p)*norm(sink)) ;

Vr(i,j) = I/(4*pix1/222)*[2/rb(i,j)-2/ra(i,j)+1/R*log((ra(i,j)+R-a*cosbeta)/(rb(i,j)+R-b*costheta))] ;
ond end
figure(1)
subplot(2,3,1)
surf (Px,Py,Pz,Vr);
title(’Franks equation’)
colorbar
xlabel(’x’);
ylabel(’y’);
zlabel(’z’);
axis equal
shading interp

subplot (2,3,4)
imagesc(theta,phi,Vr);
xlabel(’theta (radians)’);
ylabel(’phi (radians)’);
title(’Franks equation’)

%now testing potential.c

clear elec poten temppoten

% creates the current dipole moment vector
mvec = (pos_i-neg_i);

m = mvec/norm(mvec) ;
m = m*Ixdab;

poten = zeros(n+1);
ndp = 1

if ndp ==
% % for the case where two dipoles are placed at sink and source (like the antenna)
d = [neg_i ; pos_il;

else
% % for the case where only one dipole is placed for two monopoles
d = (neg_i+pos_i)/2;

zeros(n+1);

elec(3:3: (n+1)*3)=Pz(i,:);
temppoten(:,i) = potential((n+1),d(j,:),m,elec);

end
poten = poten+temppoten/ndp;
end

figure(1)

subplot(2,3,2)

surf (Px,Py,Pz,poten’) ;
colorbar

xlabel(’x’);

ylabel(’y?);

zlabel(’z’);
title(’potential.c’)

axis equal

shading interp
subplot(2,3,5)
imagesc(theta,phi,poten’);
xlabel(’theta (radians)’);
ylabel(’phi (radians)’);
title(’potential.c’)

% This shows that, at present, a proportionality factor is needed.
sub = Vr-poten’;
mean (sub) ;

102

max (sub) ;

% "format rat" ensures that if the numbers in sub are all approximately the same thing, it can display it as such and not just the differences

% % in the 10th decimal place
% format rat

subplot(2,3,3)

surf (Px,Py,Pz,sub);

shading interp

xlabel(’x’);

ylabel(’y?);

zlabel(’z’);

title(CError (Vfrank-Videal)’)
axis equal

colorbar

subplot(2,3,6)
imagesc(theta,phi,sub);
xlabel(’theta (radians)’);
ylabel(’phi (radians)’);
title(’Error’)

%Adding the dB interpretationf il

/ This isn’t working well, because I get log(zero) which is undefined
/% so it might be a better idea to just use percent difference

B = 20%1og10(abs (sub/max(max(Vr))));

figure(2)

subplot(2,1,1)

surf (Px,Py,Pz,DB);

shading interp

xlabel(’x’);

ylabel(’y’);

zlabel(’z’);

title(’dB Error --> 20%log10(|Verror|/max(max(Vr)))’)
axis equal

colorbar

subplot(2,1,2)
imagesc(theta,phi,DB) ;
xlabel(’theta (radians)’);
ylabel(’phi (radians)’);
title(’dB Error’)

figure(3)
B = 20%1ogl0(abs(sub./Vr));

figure(2)

subplot(2,1,1)

surf (Px,Py,Pz,DB) ;

shading interp

xlabel(’x’);

ylabel(’y?);

zlabel(’z’);

title(’dB Error --> 20%logl0(|Verror|./vVr)’)
axis equal

colorbar

subplot(2,1,2)
imagesc(theta,phi,DB);
xlabel(’theta (radians)’);
ylabel(’phi (radians)’);
title(’dB Error’)

. Percent Difference (PD) Approach

D = abs(sub./(Vr+1le-8))*100;

figure(4)

subplot(2,1,1)

surf (Px,Py,Pz,PD);

shading interp

xlabel(’x’);

ylabel(’y’);

zlabel(’z’);

title(’Percent Difference --> |Verror|/max(max(Vr))*100’)
axis equal

colorbar

subplot(2,1,2)
imagesc(theta,phi,PD);
xlabel(’theta (radians)’);
ylabel(’phi (radians)’);
title(’Percent Difference’)

%just a separate plot so I can put in Thesis
figure(5)

surf (Px,Py,Pz,PD) ;

shading interp

xlabel(’x (cm)’,’FontSize’,15);

ylabel(’y (cm)’,’FontSize’,15);

zlabel(’z (cm)’,’FontSize’,15);
%title(’Percent Difference --> Error./FrankSolution*100’,’FontSize’,15)
axis equal

colorbar

view(-55,78)

grid off

set(gef,’Color’, [1 1 11)

set(gca, ’FontSize’,15)

cmp=colormap (’autumn’)

colormap (flipud(cmp))

title(’Percent Error’)

103

.9 HYPOTHETICAL ANGLE

Contains the following files:

e shapesoptimize_sym_TEST_PSI.m

shapestotarclength.m (refer to .2)

shapesfundersq.m (refer to .1)

shapesptsopt_v2.m (refer to .2)

frankpotential.c (refer to .1)

104

shapesoptimize_sym_TEST_PSI.m

Brian Wessel

Opimizes the potential difference between the positve and negative potential
began 7/19/02

This code is for the symmetric case

This file is special because it changes the center

to test if the optimum psi is a function of the position

which I am hypothesizing that it should be since if the antenna

was placed at the center, the optimum angle should be O degrees

clear all
close all

and xmax define the size of the box in which the shape is confined

sheetresults = [];
circleresults = []

parabolaresults = [];
ellipseresults = [];
hyperbolaresults = [1;

results = [];

totcurves = [1;

% number of monopoles on each antenna and the number of curves to be simulated per shape (except the sheet of course)
numbsections = 12; % has to be an even number (the number of monopoles placed on each antenna plate is then numbsections+1
desiredcurves = 10;

psi_r_inc = 10; % increment value for the rotation angle

zvals = [0 0.5 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5]

% zvals = [0 6.
% varying the center according to specified vector of z values

for t = 1:length(zvals)
center = [0 0 zvals(t)];

for ndp = 4:7 % alters shapes
ndp

% outputs points on box and the total number of curves that will be used
[totcurves(ndp) xpt ypt] = shapesptsopt_v2(xmax,ymax,ndp,desiredcurves);

for k= l:totcurves(ndp) % calculates a point on the box for a fixed shape (the total number of curves will be numcurves-i
k

b = ypt(k)/2%(1+xpt (k) "2/ypt (k)"2); % b is the radius of the sphere at the pts (xpt,ypt) and (0,0)
elseif ndp==5
a = ypt(k)/xpt(k)~2;
elseif ndp:
a = xpt(k);
b = ypt(k);
elseif ndp:

a=d/2;
b = ((d°2/4%xpt (k)"2)/ (ypt (k) “2+ypt (k) *d)) " (0.5) ;
end

% uses the arclength to calculate the placement of the number of dipoles
% otherwise it uses a much simpler way for the sheet points
% also an easy way to calculate the total arclength of a circle is used
if ndp~=3

% calculates the total arc length in a curve from 0 to xmax then

% multiplies by 2 to get the total arclength from -xmax to xmax

% due to symmetry of the curves

clear xpoints

xpoints = [1;

delxp = 1%¥10"(-5);

if ndp:
delxp = 1¥10°(-6);
end

if ndp "=4

tsum = 0;

while (xpt(k)-xp)>delxp %using this break out statement because if xp gets too close to xpt(k), fpsq gets huge
£psq = shapesfundersq(xp,ndp,a,b);

totsum = totsum+delxp#(1+£psq)0.5;

xp = xp + delxp;

%
Clear xpoints
xpoints = [];

end
linc = 2*totsum/numbsections;

totsum = shapestotarclength(ndp,0,xpt(k),(a)"2, (b)"2);
linc = 2*totsum/numbsections;

linc/delxp;

% calculates the circle arclength increment quickly
elseif ndp==

xy = [xpt(k) ypt(k)];

rad = [0 b];

origin = [0 0];

cosgamma = dot(xy-rad,origin-rad)/(norm(xy-rad)*norm(origin-rad));
amma = acos(cosgamma) ;

arclength = 2%b*gamma;

linc = arclength/numbsections;

for p = 1:numbsections/2
xpoints(p) = b*sin((linc*p)/b);

% end,end,end %take out after testing

if ndp "=4
% numerically determines the x value for a specified unit of arc length
while xp < xpt(k)

105

while lsum<linc
fpsq = shapesfundersq(xp,ndp,a,b);
lsum = lsum+delxp*(1+fpsq)~0.5;
xp = xp + delxp;
if xp > xpt(k)
break
end
end
1lsum = 0;
if xp< xpt(k)
xpoints(i) = xp;
end
i = i+1;
end
xpoints = [xpoints, xpt(k)];
end
else ndp==
linc = xpt(k)*2/numbsections;
xpoints = linc:linc:xpt(k);
end

% creates negative values and adds a zero point for the xpoints

Jnxpoints = -xpoints;

xpoints = [fliplr(-xpoints) O xpoints];

length(xpoints) ;

zpoints = -zmax:linc:zmax;

ypoints = [1;

% calculates ypoints according to which shape the user specifies.
if ndp ==

ypoints = zeros(length(xpoints),1);
elseif ndp == 4 Y%circle points
ypoints = abs((b"2-(xpoints.*xpoints))."(0.5)-b);
elseif ndp == 5 Yparabola pts
ypoints = ax(xpoints.*xpoints);
elseif ndp == 6 Yellipse points
ypoints = abs((b~2-b~2/a"2*(xpoints.*xpoints)).~(0.5)-b);
elseif ndp == 7 %hyperbola points
ypoints = (a"2+a”2/b~2*(xpoints.*xpoints))."(0.5)-a;
end

% hold on,scatter(xpoints,ypoints),

b %for i = 1:length(xpoints),arcl(i) = shapestotarclength(ndp,0,xpoints(i),a"2,b"2);,if i>1,figure(10),plot(arcl(i)-arcl(i-1),i,’0’),hold on,end,end,
% end,end %delimit this code after testing

% %hold on,plot(xpoints,ypoints),end,end %delimit this code after testing

shapepts = [1;
negshapepts = [1;
for j = 1:length(zpoints)
for w = 1:length(xpoints)
shapepts = [shapepts; [xpoints(w) ypoints(w) zpoints(j)1];
negshapepts = [negshapepts; [xpoints(w) -ypoints(w) zpoints(j)1];

end
end
% = [shapepts; pts];
% figure(1)
% scatter3(bot pepts(:,1), pepts(:,2),bot. pepts(:,3));

% xlabel(’x’);
% ylabel(’y’);
% zlabel(’z’);
% axis equal

for psi_r = 0:psi_r_inc:90% rotates psi_r for a fixed shape and curvature
% [pointsl=shapesintersect() should go here if I end up wanting to use the assymetric case
psi_r
rshapepts = shapepts;
rnegshapepts = negshapepts;
jrotate the antenna
% positive side
temppts = [rshapepts(:,1) rshapepts(:,2)]*[cos(psi_r*pi/180) sin(psi_r*pi/180);-sin(psi_r*pi/180) cos(psi_r*pi/180)];
rshapepts(:,1) = temppts(:,1);
rshapepts(:,2) = temppts(:,2);
% negative side
temppts = [r pts(:,1) r pts(:,2)]x[cos(psi_r*pi/180) -sin(psi_r*pi/180);sin(psi_r*pi/180) cos(psi_r*pi/180)];
rnegshapepts(:,1) = temppts(:,1);
rnegshapepts(:,2) = temppts(:,2);

phi_r = pi/2;

% pos side

temppts = [rshapepts(:,3) rshapepts(:,1)]*[cos(phi_r) sin(phi_r);-sin(phi_r) cos(phi_r)];
rshapepts(:,3) = temppts(:,1);

rshapepts(:,1) = temppts(:,2);

% neg side

temppts = [: (:,3) (:,1)1*[cos(phi_r) sin(phi_r);-sin(phi_r) cos(phi_r)];
rnegshapepts(:,3) = temppts(:,1);

rnegshapepts(:,1) = temppts(:,2);

bothshapepts = [rshapepts(:,1) rshapepts(:,2)+d/2 rshapepts(:,3)+center(1,3);r pts(:,1) T pts(:,2)-d/2 1 pts(:,3)+center(1,3)];
b - noosh

d pep pep ptsl;

% sets the data within bounds and checks that the farthest point is not touching or outside the sphere
temppts=[];
for u = 1:length(bothshapepts)
MaxR(u) = norm(bothshapepts(u,:));
%if abs(bothshapepts(u,2))<(ymax+d/2) & abs(bothshapepts(u,3))>(center(1,3)-xmax) & abs(bothshapepts(u,3))<(center(1,3)+xmax)
% temppts = [temppts; bothshapepts(u,:)];
%end
end
MaxR = max(MaxR);
%bothshapepts = temppts;

figure(3)

scatter3(:,1), pepts(:,2), (:,3))

% xlabel(’x’);

ylabel(’y?’);

zlabel("z’);

axis([-zmax zmax -d/2-2+ymax d/2+2*ymax center(1,3)-2+xmax center(1,3)+2*xmax]);
% view(-90,0);

% axis equal

B

sesese

%This code calls frankpotential.meglx to increase the speed of processing

106

clear Vr ra rb theta phi Px Py Pz

% radius of the sphere

R =7.5;
% (n+1)°2 will be the number of points on the sphere
n = 50;

% channel density (not used as an input but is interesting to know
channeldensity = (n+1)°2/(4*pi*R~2);

theta = pix(-n:2:n)/n;

phi = (pi/2)*(-n:2:n)’/n;

Px = Rxcos(phi)*cos(theta);

Py = Rxcos(phi)*sin(theta);

Pz = Rxsin(phi)*ones(1,length(sin(phi)));
P = [Px,Py,Pzl;

% figure(1)

% plot3(Px(:),Py(:),Pz(:))

% title(’points to find the potenial at’)

% centershapepts = [0.9 0.0 0.0; 0.9 0.9 0];

% negcentershapepts = [0.0 0.9 0.0; -0.9 -0.9 0];

% current (in mA) I divide by the number of simulated non-ideal dipoles so that when I them all up, the resulting voltage is from

% that total amount of current...so in this case, the total current is 1 mA

% I need to divide by the length of bothshapepts/2 and not just shapepts because I actually take points off of bothshapepts which are
% not reflected in shapepts

I = 1/(length(bothshapepts)/2);

% realistic case

7 neg_i = [0.997 0 5.791/7.5;

% pos_i = [0 0 5.875]/7.5;

% power = 1;
 test case

§ neg_i = [1%10~(-power) 0 1¥10~(-power-2)1;

% pos_i = [1%10~(-power) 0 1*10~(-(power+1))];
% neg_i = [-0.05 -0.05 0];

% pos_i = [0 0 0.05];

% a = norm(neg_i);

% b = norm(pos_i);

g = length(bothshapepts) ;
Vr = frankpotential(I,bothshapepts(g/2+1:g,:),bothshapepts(1:g/2,:),P,R);

4 figure(3)

b imeatatd.e.

% surf (Px,Py,Pz,Vr);

% %title(’Franks equation - ¢ code’)
% colorbar

% x1abel(’x (cm)’);

% ylabel(C’y (cm)’);

% zlabel(’z (cm)?’);

% axis equal
shading interp

B

figure(3)

% %axes(a13)

% subplot(2,2,4)

% imagesc(theta,flipud(phi),Vr);
% xlabel(’theta (radians)’);

% ylabel(’phi (radians)’);

% title(’Franks equation’)

% the while loop is for multi-resolution (not going to use at this point)

% while (ymax<xmax)’ the current potential-previous > 1%10~(-3)
%

A % calculate potential

A if currentpotential-previous>1*10~(-3)

% % increase resolution

? end

A end

results = [results ; max(max(Vr)) min(min(Vr)) ndp psi_r k a b MaxR xmax ymax zmax d numbsections desiredcurves center(1,3)];
end
end
iter=1;
for qu = 1:length(results(:,1))
if results(qw,3)==ndp
tmpresults(iter,:) = results(qw,:);
iter = iter+1;
end
end
[CC,II] = max(tmpresults(:,1));
MaxAtPsi(ndp-3,t) = results(II,4)

tmpresults = [1;

end

pathl = [’C:\Documents and Settings\bwessel\Desktop\PsiTest\Triall\results’,num2str(zvals(t)),’.dat’]
save([’C:\Documents and Settings\bwessel\Desktop\PsiTest\Triall\MaxAtPsi.dat’], MaxAtPsi’,’-ASCII’)

save(pathl, ’results’,’-ASCII’)

% save ([’ /net/bwessel-1h/usr3/users/bwessel/matlab/Results/PsiTest/results’ ,num2str(zvals(t)),’.dat’], results’,’-ASCII’)
% save resultsX_parab_ell_hyp.dat results -ascii
% load results.dat

results = [];

end % end loop to iterate center position

for t = 1:length(zvals)
[’results’,num2str(zvals(t)),’.dat’]

results = load(patht,’.dat’])

for j = 1:length(results)
if results(j,3)==3
sheetresults [sheetresults;results(j,:)];
elseif results(j,3)
circleresults = [circleresults;results(j,:)];
elseif results(j,3)
parabolaresults = [parabolaresults;results(j,:)];
elseif results(j,3)
ellipseresults
elseif results(j,3)
hyperbolaresults = [hyperbolaresults;results(j,:)];
end

[ellipseresults;results(j,:)];

107

shaperesults = sheetresults;
elseif j==4

shaperesults = circleresults;
elseif j==!

shaperesults = parabolaresults;
elseif j==6

shaperesults = ellipseresults
elseif j==7

shaperesults = hyperbolaresults;
end

figure(1)

subplot(2,2,3-3)

if j°=3
xlin = linspace(min(shaperesults(:,5)),max(shaperesults(:,5)),totcurves(j));
ylin = linspace(min(shaperesults(:,4)),max(shaperesults(:,4)),90/psi_r_inc+1);

[Y,X] = meshgrid(ylin,xlin);
Z = griddata(shaperesults(:,5),shaperesults(:,4),shaperesults(:,1)-shaperesults(:,2),X,Y);

surf(X,Y,2);
if j

title(’sheet’);
elseif j==4
title(’circular’);
elseif j==5
title(’parabolic’);
elseif j==6
title(’elliptical’);
elseif j==
title(’hyperbolic’);

end
hold on;
xlabel(’curvature (index)’);
ylabel(’psi (angle)’);
zlabel (’potential difference (mV)’);
‘hcolorbar;
colormap gray;
4 rotate3d

en
scatter3(shaperesults(:,5),shaperesults(:,4),shaperesults(:,1)-shaperesults(:,2))
hold off;

end
pause

shaperesults=[];
circleresults = [];
parabolaresults = [1;
ellipseresults = [1;
hyperbolaresults = [1;

end

figure
normzvals = zvals/7.5%100;

subplot(2,2,1)

plot (normzvals,MaxAtPsi(1,:),’bx’)
title(’Circular’,’FontSize’,15)

ylabel(’Optimum Angle (degrees)’,’FontSize’,14)
xlabel(’Percent Radius (%)’,’FontSize’,14)
set(gca, ’FontSize’,14)

axis([0 100 0 45])

subplot(2,2,2)

plot (normzvals,MaxAtPsi(2,:),’b*’)
title(’Parabolic’,’FontSize’,15)
ylabel(’Optimum Angle (degrees)’,’FontSize’,14)
xlabel(’Percent Radius (%)’,’FontSize’,14)
set(gca,’FontSize’,14)

axis([0 100 0 45])

subplot(2,2,3)
plot(normzvals,MaxAtPsi(3,:), b*’)
title(’Elliptical’,’FontSize’,15)
ylabel(’Optimum Angle (degrees)’,’FontSize’,14)
xlabel (’Percent Radius (%)’,’FontSize’,14)
set(gca, ’FontSize’,14)

axis([0 100 0 45])

subplot(2,2,4)

plot (normzvals,MaxAtPsi(4,:), b*’)
title(’Hyperbolic’,’FontSize’,15)
ylabel(’Optimum Angle (degrees)’,’FontSize’,14)
xlabel (’Percent Radius (%)’,’FontSize’,14)
set(gca,’FontSize’,14)

axis([0 100 0 451)

set(gef,’Color’,[1 1 11)

108

.10 EXTRACTING POINTS FROM SLICES IN 3D

Contains the following file:

e slicedata.m

109

SliceData.m

Brian Wessel

h March 20, 2004

% extracts points from slices that were obtained
as output from FEMLab

oo

>

clear all

ind = menu(’Slice Plane?’,’X=0’,’Z=6.5e-2’)
maxR = [7.5e-2 ((7.5e-2)"2-(6.5e-2)"2)"(0.5)]
set(gcf, ’Color’, [1 1 11);

colormap cool

title(’?)

title(’boundary voltage (mV)’)

axis equal

xlabel(’x (m)’),ylabel(’y (m)’),zlabel(’z (m)’)

= get(gco,’XData’);
get(gco,’YData’);
= get(gco,’ZData’);
= get(gco,’Chata’);

p = XG5 YG) 25 2(:)°];

QN
u

2
C(:);
u = C(:)’-mean(C(:));

end

% finding boundary points and values
m=1;
for j = 1:length(p)

bpts = norm(p(:,j));

% display(’program paused’)
% pause
if (maxR(ind)-bpts)<ie-3
% (0.075-bpts)
% display(’true’)
% pause

boundv (m) = u(j);
boundp(1,m) = p(1,3);
boundp(2,m) = p(2,3);

% display(’program paused - inside loop’)
% pause

x=p(1,3);

y=p(2,3);

theta(m) = atan(y/x);
% fixing atan function so it goes from O to 2%pi rather than -pi/2 to pi/2
if x<0 & y>0
theta(m) = theta(m)+pij;
elseif x<0 & y<O
theta(m) = theta(m)-pi;
end

m = mHl;

GRAPHING
gu
subplot(2,2,1)
plot (abs (boundv))
title(’boundary voltage’)
subplot(2,2,2)

% polar(theta,boundv+1.1*min(boundv),’r.’)
polar (theta,abs (boundv) ,’r.’)
title(’boundary voltage’)

subplot(2,2,3)
stem3(boundp(1, :) ,boundp(2, :) ,boundv, ’ro’)
title(’boundary voltage’)

figure(3)

polar (theta,abs (boundv) ,’r.’)
title(’boundary voltage (mV)’)
set(gef, ’Color’, [1 1 11);

figure(4)

polar(theta,abs (boundv))

title(’boundary voltage’)

set(gcf, ’Color’, [1 1 11);
A

110

.11 PDE TOOL CODE - EPOXY

Contains the following files:

e create_antennas_noReflector.m

e commandline_v9.m

e shapesfundersq.m (refer to .1)

e shapestotarclength.m (refer to .2)
e shapesptsopt_v2.m (refer to .2)

e normalpointsv2.m (refer to .3)

111

create_antennas_noReflector.m
Brian Wessel

Z creates geometry for input to MatLab PDE solver

% where the antenna only has epoxy between the elements
clear all

close all

% ant_thick = 0.03;
results = [1;

Yxmax = 2e-3;

ymax = 1e-3

zmax = 4.5e-

d = 9e-3;
ant_thick = 7.5e-4;

% ant_thick = 2.5e-4;
numangles = 10;

epoxyheight=4e-3; % which is two times the old xmax ...reference 1/8/04 why I made this change
xmax = epoxyheight/2-ant_thick;

if xmax > d/2
error(’xmax is greater than d/2 so the antenna elements will criss-cross at large angles!’)
end

if ymax > 2%xmax
error(’ymax is greater than 2*xmax, so the epoxy will not cover the side of the antenna when the antenna is turned at a sharp angle (psi)!’)

centerchoice = menu(’Centering on or off?’,’on’,’off’);

shapechoice = menu(’Shape?’,’circle’,’parabola’,’ellipse’, ’hyperbola’);
shapechoice = shapechoice+3;

kchoice = menu(’Curvature (k) ?°,°1°,°27,°37,°47,°57,767,°7,787,797,710°);

% psichoice = menu(’Angle 7’,°0’,°10°,°20°,°30’,°40°,°507,°60°,°70°,°80°,790°);
% psichoice = (psichoice-1)*10;

centerchoice
shapechoice
kchoice=1;
psichoice=0;

% number of monopoles on each antenna and the number of curves to be simulated per shape (except the sheet of course)
numbsections = 20; % MUST BE EVEN b/c linc = 2*totsum/numbsections. It seems weird but having an even
% number of sections, will put an odd number of points because there is no middle section

% NOTE THAT THE NUBMER OF POINTS WILL BE NUMBSECTIONS+1
desiredcurves = 10; %if k only goes from 1:1 rather than 1:totcurves(ndp) than desiredcurves is overidden and

% therefore, only 1 curve will be created

if numangles
psi_r_inc = 91; % just enough that only zero degrees will be calculated
else
psi_r_inc = 90/(numangles-1); % increment value for the rotation angle in degrees
end

index = 0; % keeps track of the saving of epoxy and ae’s for later use

for ndp = shapechoice:7 % alters shapes
ndp
% outputs points on box and the total number of curves that will be used
[totcurves(ndp) xpt ypt] = shapesptsopt_v2(xmax,ymax,ndp,desiredcurves);
totcurves (ndp)

% display (’program paused’

% pause

for k= kchoice:totcurves(ndp) % calculates a point on the box for a fixed shape (the total number of curves will be numcurves-1)
k

a=t1
b=1;
if ndp==4

b = ypt(k)/2*(1+xpt (k) “2/ypt (k)~2);
elseif ndp==5

a = ypt(k)/xpt (k) "2;
elseif ndp==6

b is the radius of the sphere at the pts (xpt,ypt) and (0,0)

a = xpt(k);

b = ypt(k);
elseif ndp==

b =d/2

a = ((d°2/4%xpt (1)"2)/ (ypt (k) “2+ypt () *d)) " (0.5) ;
end

uses the arclength to calculate the placement of the number of dipoles
% otherwise it uses a much simpler way for the sheet points
% also an easy way to calculate the total arclength of a circle is used

if ndp~=3
% calculates the total arc lemgth in a curve from O to xmax then

% multiplies by 2 to get the total arclength from -xmax to xmax
% due to symmetry of the curves

clear xpoints
clear ypoints
xpoints = [1;

delxp = 1%107(-6);

if ndp==6

delxp = 1%¥10"(-6);
end
if ndp "=4

clear xpoints
xpoints = [1;

totsum = shapestotarclength(ndp,0,xpt(k),(a)"2,(b)"2);
linc = 2*totsum/numbsections;

% calculates the circle arclength increment quickly

elseif ndp==:
xy = [xpt(k) ypt(k)1;
rad = [0 b];

origin = [0 0];

cosgamma = dot(xy-rad,origin-rad)/(norm(xy-rad)*norm(origin-rad));
gamma = acos(cosgamma) ;

arclength = 2xbkgamma;

linc = arclength/numbsections;

for p = 1:numbsections/2
xpoints(p) = b*sin((linc*p)/b);
end

112

% numerically determines the x value for a specified unit of arc length
while xp < xpt(k) & i < (numbsections-3)
while lsum<linc
fpsq = shapesfundersq(xp,ndp,a,b);
lsum = lsum+delxpk(1+fpsq)~0.5;
xp = xp + delxp;
if xp > xpt(k)
break
end
end

lsum = 0;

if xp< xpt(k)
xpoints(i) = xp;

end

i= i+1;

end
xpoints = [xpoints, xpt(k)];

end

else ndp
linc = xpt(k)*2/numbsections;
xpoints = linc:linc:xpt(k);
end

% creates negative values and adds a zero point for the xpoints

Jnxpoints = -xpoints;
xpoints = [fliplr(-xpoints) O xpoints];

% end calculation of xpoints using arc length

% calculates ypoints according to which shape the user specifies.
% all shapes intersect through the origin
if ndp ==

ypoints = zeros(size(xpoints));

elseif ndp == 4 %circle points

ypoints = abs((b"2- (xpoints.*xpoints))."(0.5)-b);
elseif ndp == 5 Yparabola pts

ypoints = a*(xpoints.*xpoints);
elseif ndp == 6 Yellipse points

ypoints = abs((b"2-b~2/a"2*(xpoints.*xpoints))."(0.5)-b);
elseif ndp == 7 Yhyperbola points

ypoints = (b~2+b"2/a"2*(xpoints.*xpoints))."(0.5)-b;

subplot(2,2,ndp-3)
scatter(xpoints,ypoints,’.’)
axis([(-xmax-xmax/5) (xmax+xmax/5) -ymax/10 (ymax+ymax/5)]1);
axis equal
if ndp==4

title(’semicircular’)
elseif ndp==5

title(’parabolic’)
elseif ndp==6
title(’elliptical’)

Y/ else
A title(’hyperbolic’)
% 4
enc
!
7 pause
%title([’shape’,num2str(ndp),’ ’,’curve number’,num2str(k)])

[nxpoints,nypoints] = normalpointsv2(ndp,a,b,ant_thick,xpoints,ypoints);

close(gcf)

scatter (xpoints,ypoints,’r.’);
axis equal

hold

scatter (nxpoints,nypoints, *bx’);
axis equal

title([’shape’,nun2str(ndp),’ °’,’curve number’,num2str(k)])
pause

MAKING ANTENNA ELEMENT USING FEMLab FUNCTIONS
am keeping the enclosing box x and y axes, so it is switched from normal

for psi_r = psichoice:psi_r_inc:90 % rotates psi_r for a fixed shape and curvature

index = index+1;

psi_r
A aex=[fliplr(nxpoints),xpoints];
% aey=[fliplr(nypoints),ypoints];

aex=[xpoints,fliplr(nxpoints)];
aey=[ypoints,fliplr (nypoints)];

% rotating neg. ae
phi = psi_rpi/180;

rot_mat = [cos(phi) -sin(phi); sin(phi) cos(phi)];
ae = [aex;aeyl;

rae = rot_matkae;

raex = rae(1,:);

raey = rae(2,:)+d/2;

/% Plot which checks for correct rotation
plot (acx,aey, b’ ,raex,raey, ’r’)
axis equal
title(’check for correct rotation’);
pause

113

% step 1 -- create antenna elements
aer=line2(raex,raey);
ael=line2(raex,-raey);

fh#h Plotting
close(gct)
scatter(raex,raey,’r.’);
axis equal

hold

scatter (raex,-raey,’b.’);
axis equal

%pause

geomplot (aer)

axis equal

hold
geomplot (ael)
axis equal

% pause

Il hth

Wh
%step2 -- create epoxy
‘%close(gef)

n
halfx = raex(numbsections+2:length(raex));
halfy = raey(numbsections+2:length(raey));
if centerchoice==1 % This choice will center the antenna element within the epoxy
% This regime is fundamentally different from noncentering because it should expose
% the difference between having a shield of epoxy vs free space and will give insight
% into how much a shield is effective at pushing the current to the far-field

code for creating outside antenna first...uses output of normalptsv2.m %

%if psi_r = 0, we don’t want to add extra epoxy or it will cause an error because the points
% will be too close to connect with a line...however, I should add about half the antenna thickness
% to each side so that it doesn’t make a sharp point near the tip of the antenna as in the case of the
% elliptically shaped antenna elements
i 0

ant_thick/2;
xtra = ant_thick*4/5;
totx = [halfx (halfx(length(halfx))-xtra) (halfx(length(halfx))-xtra) fliplr(halfx) (halfx(1)+xtra) (halfx(1)+xtra) 1;
toty = [halfy halfy(length(halfy)) -halfy(length(halfy)) -fliplr(halfy) -halfy(1) halfy(1)];
% epoxy = line2(totx,toty);
EISEZ (for old way #1)this strange sin*blah is so that at large angles the epoxy does not overlap itself and

% therefore cause a problem.
% old way #1 -- xtra = halfx(1,1)+sin(psi_r*pi/180)*(ymax+ant_thick);
Y% old way #2 -- xtra = max(raex)+1/5*xmax;
Yxtra = min(raex)+2*xmax+ant_thick;
halfx = fliplr(halfx);
halfy = fliplr(halfy);
widthant = max(halfx)-halfx(1);
% xout = ant_thick#cos(phi);
xout = ant_thick*cos(phi)*3/5;
% xtra = (epoxyheight-widthant)/2;
xtra = (epoxyheight-widthant)*4/5;
yout = ant_thick#sin(phi);
= ant_thick*sin(phi)*3/5;

totx = [halfx max(halfx) (max(halfx)+xtra) (max(halfx)+xtra) max(halfx) fliplr(halfx) halfx(1) (halfx(1)-xtra) (halfx(1)-xtra) halfx(1)];

toty = [halfy (halfy(length(halfy))+ant_thick/2) (halfy(length(halfy))+ant_thick/2) -(halfy(length(halfy))+ant_thick/2) -(halfy(length(halfy))+ant_thick/2) -fli

totx = [totx (max(halfx)+xout)];
[totx (halfx(length(halfx))+xout)];
[toty (halfy(length(halfy))+yout)];
[totx (max(halfx)+xout+xtra)l;
[toty (halfy(length(halfy))+yout)];
[totx (max(halfx)+xout+xtra)l;
[toty -(halfy(length(halfy))+yout)];

totx = [totx (max(halfx)+xout)];

= [totx (halfx(length(halfx))+xout)];
= [toty -(halfy(length(halfy))+yout)];

totx = [totx fliplr(halfx)];

toty = [toty -fliplr(halfy)]l;

totx = [totx (halfx(1)-xout)];

toty = [toty -(halfy(1)-yout)];
totx = [totx (halfx(1)-xtra-xout)];
toty = [toty -(halfy(1)-yout)];
totx = [totx (halfx(1)-xtra-xout)];
toty = [toty (halfy(1)-yout)];

totx = [totx (halfx(1)-xout)];
[toty (halfy(1)-yout)];

Primitive Modeling

totx = [(max(halfx)+xtra)];
toty = [min(halfy)-ant_thick/2];

totx = [totx (max(halfx)+xtra)l;

toty = [toty max(halfy)l;

totx = [totx (max(halfx)+xtrat+ant_thick)];
toty = [toty max(halfy)]l;

totx = [totx (max(halfx)+xtratant_thick)];
toty = [toty -max(halfy)];

totx = [totx (max(halfx)+xtra)l;

toty = [toty -max(halfy)];

totx = [totx (max(halfx)+xtra)l;

toty = [toty -(min(halfy)-ant_thick/2)];

totx = [totx (halfx(1)-xtra)l;

toty = [toty -(min(halfy)-ant_thick/2)];
totx = [totx (halfx(1)-xtra)l;
toty = [toty (min(halfy)-ant_thick/2)];

114

else

%if psi_r = 0, we don’t want to add extra epoxy or it will cause an error because the points
% will be too close to connect with a line
if psi_r == 0

totx = [fliplr(halfx) halfx];
toty = [-fliplr(halfy) halfyl;
else
% (for old way #1)this strange sin*blah is so that at large angles the epoxy does not overlap itself and
% therefore cause a problem.
% old way #1 -- xtra = halfx(1,1)+sin(psi_r*pi/180)#* (ymax+ant_thick);
% old way #2 -- xtra = max(raex)+1/5%xmax;

%xtra = min(raex)+2*xmax+ant_thick;
xtra = min(raex)+2*xmax;
totx [fliplr(halfx) halfx xtra xtral;

toty = [fliplr(halfy) -halfy -halfy(1l,length(halfy)) halfy(i,length(halfy))];

YYAYA
% code for creating inside antenna first...uses output of normalptsvé.m %

halfx = raex(1:numbsections+1);

1 % This choice will center the antenna element within the epoxy

% This regime is fundamentally different from noncentering because it should expose

% the difference between having a shield of epoxy vs free space and will give insight
% into how much a shield is effective at pushing the current to the far-field

%if psi_r = 0, we don’t want to add extra epoxy or it will cause an error because the points
% will be too close to connect with a line
if psi_r == 0
totx = [fliplr(halfx) halfx];
toty = [-fliplr(halfy) halfy];
epoxy = line2(totx,toty);
else
% (for old way #1)this strange sin¥blah is so that at large angles the epoxy does not overlap itself and
% therefore cause a problem.
% old way #1 -- xtra = halfx(1,1)+sin(psi_r*pi/180)*(ymax+ant_thick);
% old way #2 -- xtra = max(raex)+1/5%xmax;

Y%xtra = min(raex)+2*xmax+ant_thick;

widthant = max(halfx)-halfx(1);

xtra = (2*xmax-widthant)/2;

totx = [halfx (max(halfx)+xtra) (max(halfx)+xtra) fliplr(halfx) (halfx(1)-xtra) (halfx(1)-xtra)];
toty = [halfy halfy(length(halfy)) -halfy(length(halfy)) -fliplr(halfy) -halfy(1) halfy(1)];
epoxy = line2(totx,toty);

else

%if psi_r = 0, we don’t want to add extra epoxy or it will cause an error because the points
% will be too close to connect with a line
if psi_r == 0
totx = [fliplr(halfx) halfx];
toty = [-fliplr(halfy) halfyl;
epoxy = line2(totx,toty);
EISEZ (for old way #1)this strange sin*blah is so that at large angles the epoxy does not overlap itself and
% therefore cause a problem.
% old way #1 -- xtra = halfx(1,1)+sin(psi_r*pi/180)* (ymax+ant_thick);
% old way #2 -- xtra = max(raex)+1/5*xmax;

%xtra = min(raex)+2%xmax+ant_thick;

xtra = min(raex)+2%xmax;

totx = [fliplr(halfx) halfx xtra xtral;

toty = [fliplr(halfy) -halfy -halfy(l,length(halfy)) halfy(1,length(halfy))];
epoxy = line2(totx,toty);

c
subplot(2,2,1)

scatter(xpoints,ypoints,’r.’);

axis equal

hold

scatter (nxpoints,nypoints, *bx’);

axis equal

title([’shape’,num2str(ndp),’ ’,’curve number’,num2str(k)])
pause

subplot(2,2,2)
plot(totx,toty ,’r’),axis equal

subplot(2,2,3)
scatter(-raey,-raex,’r.’);
axis equal

hold

scatter(raey,-raex,’b.’);

plot(toty,-totx,’r’)

axis equal

title([’shape’ ,num2str(ndp),’ ’,’curve number’,num2str(k)])

% CALCULATE THE AREA FOR EACH ANTENNA
% step 1 -- create antenna elements
aer=line2(raex,raey);

clear fem

% Geometry

fem.geom = aer;

fem.mesh = meshinit(fem);

% Integrate on subdomains

ae_vol = postint(fem,’1’);

BEGIN 2D FEA

%calling file rather than inserting code

commandline_v9

END 2D FEA

115

sheetresults = [1;
circleresults = [1;
parabolaresults = [];
ellipseresults = [1;
hyperbolaresults = [];

for j = 1:length(results)
if results(j,4
sheetresults = [sheetresults;results(j,:)];
elseif results(j,4)==4
circleresults [circleresults;results(j,:)];
elseif results(j,4)==5
parabolaresults
elseif results(j,4)==6
ellipseresults = [ellipseresults;results(j,:)];
7

[parabolaresults;results(j,:)];

elseif results(j,4)=

:,5)),totcurves(j));
:,6)),90/psi_r_inc+1);

hyperbolaresults = [hyperbolaresults;results(j,:)];
end
end
for j = 4:7
if j==3
shaperesults = sheetresults;
elseif j==4
shaperesults = circleresults;
elseif j
shaperesults = parabolaresults;
elseif j==6
shaperesults = ellipseresults;
elseif j==
shaperesults = hyperbolaresults;
end
figure(1)
subplot(2,2,j-3)
if j~=3
xlin = linspace(min(shaperesults(:,5)),max(shaperesults(
ylin = linspace(min(shaperesults(:,6)),max(shaperesults(
[Y,X] = meshgrid(ylin,xlin);
Z = griddata(shaperesults(:,5),shaperesults(:,6),shaperesults(:,1),X,Y);
surf(X,Y,2);
if j
title(’sheet’);
elseif j==4
title(’circular’,’FontSize’,15);
elseif j==5
title(’parabolic’,’FontSize’,15);
elseif j==t
title(’elliptical’,’FontSize’,15);
elseif j
title(’hyperbolic’,’FontSize’,15);
end
hold on;
xlabel(’curvature (index)’,’FontSize’,13);
ylabel(’psi (angle)’,’FontSize’,13);
zlabel (’potential difference (V)’,’FontSize’,13);
set(gca, ’FontSize’,13)
axis([0 10 0 90 6e-4 7.5e-4])
Ycolorbar;
colormap gray;
rotate3d
end
plot3(shaperesults(:,5),shaperesults(:,6),shaperesults(:,1),%0’)
hold off;
end

set (gcf, *Color’, [1 1 11)

116

% commandline_v9.m
% Brian Wessel
4 Feb. 18, 2004

Uses a better way to pull boundary
voltages from the resultant data

e

% clear all
? close all

% load raex.dat
% Toad raey.dat
% load totx.dat
% Toad toty.dat

/% creates shield
="1.9e-3;

totxé45)
totx(46)
totx(47)
% totx(48)
totx(49)
totx(50)

1.9e-3;

toty(46) =
/ toty(46) =
toty(47) =
toty(48) =
toty(49) =
% toty(50) =
% end create shield

scatter(raey,-raex,’b.’);

hold

plot(toty,-totx,’r’)

axis equal
scatter(-raey,-raex,’r.’);
axis equal

pause

% close(gcf)

%Constants
Of

% creating the positive ant. element

% x = [3.3e-2 3.5e-2 3.5e-2 3.3e-2];

%y = [-1le-2 -1e-2 1e-2 1le-2];

pae = [2 length(raex) raey (-raex+6.5e-2) zeros(1,2*(length(totx)-length(raey)))]’;
% creating the negative ant. element

nae = [2 length(raex) -raey (-raex+6.5e-2) zeros(1l,2x(length(totx)-length(raey)))]’;
% creating epoxy

% epoxy = [2 4 -3.3e-2 3.3e-2 3.3e-2 -3.3e-2 -le-2 -le-2 le-2 1le-2]’;

epoxy = [2 length(totx) toty (-totx+6.5e-2)]’;

% creating a circle with radius = 7.5e-2 m

circle = [1 0 0 7.5e-2 zeros(1,length(epoxy)-4)17;

% Testing code

% pdecirc(0, 0 ,7.5e-2)

% pdepoly([3.5e-2, 3.3e-2, 3.3e-2, 3.5e-2],[-1e-2 -1e-2 le-2 le-2])

% pdepoly([-3.5e-2, -3.3e-2, -3.3e-2, -3.5e-2],[-1e-2 -le-2 le-2 1e-2])

csg = [nae pae epoxy circlel;

% dgm = decsg(csg, [’circle+pae+naetepoxy’],[[’nae ’]’ [’pae ’]’ [’epoxy ’]’ [’circle’]’])
dgm = decsg(csg);

B

wgeom(dgm, ’geomfile’)
h break

subplot(1,2,1)
pdegplot (dgm)

% axis equal

>

e

[p,e,t]=initmesh(dgm,’ jiggle’,’off’, hgrad’,1.25);

% q=pdetriq(p,t);

% subplot(1,2,1)

% pdeplot(p,e,t, xydata’,q,’colorbar’,’on’, ’xystyle’,’flat’)
% axis equal

é pause

% subplot(1,2,2)

pl=jigglemesh(p,e,t,’opt’, minimum’,’iter’,inf);
q=pdetriq(p1,t);

% % figure(1)

% % pdeplot(pl,e,t,’xydata’,q,’colorbar’,’on’, ’xystyle’, ’flat’)
% % axis equal

% pause

P=pL;

% sphere | pae | epoxy | nae

% % c = [7100/222!1e2!1e-2!1e2°];

hha [’01010!10°];

% %h £ = [’0!(1e-3/2.0904e-006) !0! (-1e-3/2.0904e-006) ’1;

¢ = [num2str(s_s),’!’,num2str(s_ae),’ !’ ,num2str(s_e),’ !’ ,num2str(s_ae)]
a = E’O!Ololo’]

£ = [’0!’,num2str(curr/ae_vol),’!0! (-’ ,num2str(curr/ae_vol),’)’]

% Note only the last columns are the exterior boundaries
% The other internal ones must have contrived data

cols = size(dgm,2);

b = double([0 1 11 11 °0° 0’ *1’ 20°1?);

for ji=1:(cols-5)

% This is the contrived data I found from the output of the PDETool
b = [b double([0 1 1111 °0° 0’ *1> ?0°]*)];

end

b(:,cols-3) = double([1 0 1 1 °0° 0% 20’ 0’ *1> *0°]*);
b(:,cols-2) = double([1 0 1 1 *0° *0’° *0° *0° ’1’ °0°1’);
b(:,cols-1) = double([1 0 1 1 °0° 0% 20° *0° *1> *0°]*);
b(:,cols) = double([1 0 1 1 20’ 0% 20’ 0% *1’ *0°]*);

u = assempde(b,p,e,t,c,a,f);

% demean signal (artificial)

u = u-mean(u);

% [u,p,e,t]=adaptmesh(dgm,b,c,a,f,’Ngen’,2);
[cgxu, cgyul=pdecgrad(p,t,c,u);

% [ux,uy] = pdegrad(p,t,u);

% uu = [ux’,uy’];

wu = [egxu’,cgyu’l;

% demean signal (artificial)

wu(:,1) = uu(:,1)-mean(uu(:,1));

117

%

%

% finding boundary points and values

figure(2)

axis equal

figure(3)

axis equal

i=pdesde(e);

m=1;
for j = 1:length(p)
bpts = norm(p(:,j));

%

%

%

%
%

display(’program paused’)

pause

,2) = uu(:,2)-mean(uu(:,2));

pdeplot(p,e,t, ’xydata’,u, mesh’,’0ff’,’contour’, on’,’levels’,30);
title(’Voltage’)
set(gef,’Color’, [1 1 11)

pdeplot(p,e,t, xydata’ ,uu, mesh’,’off’,’contour’,’on’, ’levels’,200) ;
% title(’Current Density’);

if (0.075-bpts)<ie-3

(0.075-bpts)

display(’true’)

pause
boundv(m) =
boundp (1,m)
boundp (2,m)

display(’program paused - inside loop’)

pause

x=p(1,3);
y=p(2,3);

u(j);

p(1,3);
p(2,3);

theta(m) = atan(y/x);

% fixing atan function so it goes from O to 2#pi rather than -pi/2 to pi/2
if %<0 & y>0
theta(m) = theta(m)+pi;
0

elseif x<0 & y<

theta(m) = theta(m)-pij;

end

m = mH;
end

8!
subplot(2,2,1)
plot (abs (boundv)

subplot(2,2,2)

subplot(2,2,3)

figure(3)

pacl

%
%
%
%
)

display(’End of 2D FEA iteration - PROGRAM PAUSED’)

pause
subplot(2,2,3)
pdecont (p,t,u,20);
axis equal

)

. GRAPHING

title(’boundary voltage’)

% polar(theta,boundv+1.1xmin(boundv),’r.’)
% polar (theta,abs (boundv),’r.’)
title(’boundary voltage’)

stem3(boundp(1, :) ,boundp(2, :) ,boundv, *ro’)
title(’boundary voltage’)

polar (theta,abs (boundv) ,’r.’)
title(’boundary voltage’)
set(gcf, ’Color’, [1
A ANA

results = [results; (max(boundv)-min(boundv)) max(boundv) min(boundv) ndp k psi_rl;

111);

clear p pl g t u uu cgyu cgxu
k

118

.12 PDE TOOL CODE - NO EPOXY

Contains the following files:

e create_antennas_noEpoxy.m

e commandline v9.m (refer to .11)
e shapesfundersq.m (refer to .1)

e shapestotarclength.m (refer to .2)
e shapesptsopt_v2.m (refer to .2)

e normalpointsv2.m (refer to .3)

119

% create_antennas_noEpoxy.m

% Brian Wessel
% creates geometry for input to MatLab PDE solver

clear all
close all

%

% ant_thick = 0.03;
results = [];
%xmax = 2e-3;
ymax = le-3;
zmax = 4.5e-3;
d = 9e-3;
ant_thick = 7.5e-4;
% ant_thick = 2.5e-4;
numangles = 10;
epoxyheight=4e-3; % which is two times the old xmax ...reference 1/8/04 why I made this change
xmax = epoxyheight/2-ant_thick;
if xmax > d/2
error(’xmax is greater than d/2 so the antenna elements will criss-cross at large angles!’)
end

if ymax > 2%xmax
error(’ymax is greater than 2*xmax, so the epoxy will not cover the side of the antenna when the antenna is turned at a sharp angle (psi)!’)

end

% centerchoice = menu(’Centering on or off?’,’on’,’off’);

% shapechoice = menu(’Shape?’,’circle’,’parabola’,’ellipse’, hyperbola’);
% shapechoice = shapechoice+3

kchoice = menu(’Curvature (k) ?°,°1’,°2°,°3’,°4’,75°,767,°77,78°,79,710°);
psichoice = menu(’Angle ?’,°0°,710?,°20’,730°,740,°50°,°60°,70?,°807,790°) ;
psichoice = (psichoice-1)*10;

centerchoice=1;
shapechoice=4;
kchoice=1;
psichoiceZ0;

% number of monopoles on each antenna and the number of curves to be simulated per shape (except the sheet of course)
numbsections = 20; % MUST BE EVEN b/c linc = 2+totsum/numbsections. It seems weird but having an even
% number of sections, will put an odd number of points because there is no middle section

% NOTE THAT THE NUBMER OF POINTS WILL BE NUMBSECTIONS+1
desiredcurves = 10; %if k only goes from 1:1 rather than 1:totcurves(ndp) than desiredcurves is overidden and

% therefore, only 1 curve will be created

if numangles=='
psi_r_inc = 91; % just enough that only zero degrees will be calculated

psi_r_inc = 90/(numangles-1); % increment value for the rotation angle in degrees
end

index = 0; % keeps track of the saving of epoxy and ae’s for later use
for ndp = shapechoice:7 Y alters shapes
ndp

% outputs points on box and the total number of curves that will be used
[totcurves(ndp) xpt ypt] = shapesptsopt_v2(xmax,ymax,ndp,desiredcurves);

totcurves (ndp)
% display (’program paused’)
) pause

for k= kchoice:totcurves(ndp) 7% calculates a point on the box for a fixed shape (the total number of curves will be numcurves-1)
k

a=1;
b=1;
if ndp==4
b = ypt(k)/2*(1+xpt (k)"2/ypt(k)"2); % b is the radius of the sphere at the pts (xpt,ypt) and (0,0)
elseif ndp==

a = ypt(k)/xpt(k)"2;
elseif ndp==6

a = xpt(k);
b = ypt(k);

elseif ndp==
b=

d/2;
a = ((d72/4*xpt (k) ~2)/(ypt (k) “2+ypt (k) *d))~(0.5);
end

% uses the arclength to calculate the placement of the number of dipoles
% otherwise it uses a much simpler way for the sheet points
% also an easy way to calculate the total arclength of a circle is used

if ndp~=3
% calculates the total arc lemgth in a curve from O to xmax then

% multiplies by 2 to get the total arclength from -xmax to xmax
% due to symmetry of the curves

clear xpoints
clear ypoints
xpoints = [1;

delxp = 1%10°(-6);

if ndp==6

delxp = 1%¥10"(-6);
end
if ndp "=4

clear xpoints
xpoints = [1;

totsum = shapestotarclength(ndp,0,xpt(k),(a)"2,(b)"2);
linc = 2*totsum/numbsections;

% calculates the circle arclength increment quickly

elseif ndp==
xy = [xpt (k) ypt()];
rad = [0 b];

origin = [0 0];

cosgamma = dot(xy-rad,origin-rad)/(norm(xy-rad)*norm(origin-rad));
gamma = acos(cosgamma) ;

arclength = 2+b*gamma;

linc = arclength/numbsections;

for p = 1:numbsections/2
xpoints(p) = bxsin((linc*p)/b);
end

120

% numerically determines the x value for a specified unit of arc length
while xp < xpt(k) & i < (numbsections-3)
while lsum<linc
fpsq = shapesfundersq(xp,ndp,a,b);
lsum = lsum+delxpk(1+fpsq)~0.5;
xp = xp + delxp;
if xp > xpt(k)
break
end
end

lsum = 0;

if xp< xpt(k)
xpoints(i) = xp;

end

i= i+1;

end
xpoints = [xpoints, xpt(k)];

end

else ndp
linc = xpt(k)*2/numbsections;
xpoints = linc:linc:xpt(k);
end

% creates negative values and adds a zero point for the xpoints

Jnxpoints = -xpoints;
xpoints = [fliplr(-xpoints) O xpoints];

% end calculation of xpoints using arc length

% calculates ypoints according to which shape the user specifies.
% all shapes intersect through the origin
if ndp ==

ypoints = zeros(size(xpoints));

elseif ndp 4 ‘%circle points
ypoints = abs((b~2-(xpoints.*xpoints))."(0.5)-b);
elseif ndp == 5 Yparabola pts
ypoints = ax(xpoints.*xpoints);
elseif ndp == 6 Yellipse points
ypoints = abs((b~2-b~2/a"2*(xpoints.*xpoints)).~(0.5)-b);
elseif ndp == 7 Yhyperbola points
ypoints = (b~2+b"2/a"2*(xpoints.*xpoints))."(0.5)-b;

end
% subplot(2,2,ndp-3)
% scatter(xpoints,ypoints,’.’)
% axis([(-xmax-xmax/5) (xmax+xmax/5) -ymax/10 (ymax+ymax/5)]);
% axis equal
A if nd
A title(’semicircular’)
7 elseif ndp==5
A title(’parabolic’)
A elseif ndp==6
% title(’elliptical’)
% else
% title(’hyperbolic’)
7 Lo
enc
g end
f panse
%title([’shape’,num2str(ndp),’ ’,’curve number’,num2str(k)])

[nxpoints,nypoints] = normalpointsv2(ndp,a,b,ant_thick,xpoints,ypoints);
close(gct)

scatter(xpoints,ypoints,’r.’);

axis equal

hold

scatter (nxpoints,nypoints, *bx’) ;

axis equal

title([’shape’,num2str(ndp),’ ’,’curve number’,num2str(k)])
pause

MAKING ANTENNA ELEMENT USING FEMLab FUNCTIONS
am keeping the enclosing box x and y axes, so it is switched from normal

for psi_r = psichoice:psi_r_inc:90 % rotates psi_r for a fixed shape and curvature

index = index+1;

psi_r
% aex=[f1liplr (nxpoints) ,xpoints] ;
% aey=[fliplr(nypoints),ypoints];

aex=[xpoints,fliplr (nxpoints)];
aey=[ypoints,fliplr(nypoints)];

% rotating neg. ae
phi = psi_r*pi/180;

rot_mat = [cos(phi) -sin(phi); sin(phi) cos(phi)l;
ae = [aex;ae{];
rae = rot. matkae;
raex = rae(1,:);
raey = rae(2,:)+d/2;

% Y %% Plot which checks for correct rotation
9 plot (aex,aey, b’ ,raex,raey, 'r’)

% axis equal

% title(’check for correct rotation’);

121

pause
% step 1 -- create antenna elements
aer=line2(raex,raey);
ael=line2(raex,-raey);
%h% Plotting
close(gcf)
scatter(raex,raey,’r.’);
axis equal

hold
scatter(raex,-raey,’b.’);
axis equal

%pause

geomplot (aer)

axis equal

hold
geomplot (ael)
axis equal

%step2 -- create epoxy
‘%close (gct)

%
halfx =
halfy =

%% code for creating outside antenna first...uses output of normalptsv2.m %%%

raex(numbsections+2:length(raex));
raey (numbsections+2:length(raey));

if centerchoice==1 % This choice will center the antenna element within the epoxy
% This regime is fundamentally different from noncentering because it should expose
% the difference between having a shield of epoxy vs free space and will give insight
% into how much a shield is effective at pushing the current to the far-field

hif

psi_r = 0, we don’t want to add extra epoxy or it will cause an error because the points

% will be too close to connect with a line...however, I should add about half the antenna thickness

% to each side so that it doesn’t make a sharp point near the tip of the antenna as in the case of the
% elliptically shaped antenna elements

if psi_r 0

else

xtra = ant_thick/2;

% xtra = ant_thick*4/5;

totx = [halfx (halfx(length(halfx))-xtra) (halfx(length(halfx))-xtra) fliplr(halfx) (halfx(1)+xtra) (halfx(1)+xtra) 1;
toty = [halfy halfy(length(halfy)) -halfy(length(halfy)) -fliplr(halfy) -halfy(1) halfy(1)];

% epoxy = line2(totx,toty);

% (for old way #1)this strange sin*blah is so that at large angles the epoxy does not overlap itself and
% therefore cause a problem.

% old way #1 -- xtra = halfx(1,1)+sin(psi_r*pi/180)*(ymax+ant_thick);

% old way #2 -- xtra = max(raex)+1/5*xmax;

Jxtra = min(raex)+2*xmax+ant_thick;

halfx = fliplr(halfx);

halfy = fliplr(halfy);

widthant = max(halfx)-halfx(1);

% xout = ant_thick#cos(phi);
xout = ant_thick*cos(phi)*3/5;

% xtra = (epoxyheight-widthant)/2;
xtra = (epoxyheight-widthant)*4/5;
% yout = ant_thick*sin(phi);

yout = ant_thick*sin(phi)*3/5;
totx = [halfx max(halfx) (max(halfx)+xtra) (max(halfx)+xtra) max(halfx) fliplr(halfx) halfx(1) (halfx(1)-xtra) (halfx(1)-xtra) halfx(1)];

ophisticated Modeling which is memory intensive
= halfx;

= halfy;

A totx = [totx (max(halfx)+xout)];
totx = [totx (halfx(length(halfx))+xout)];

toty = [toty (halfy(length(halfy))+yout)];
totx = [totx (max(halfx)+xout+xtra)l;
toty = [toty (halfy(length(halfy))+yout)];
totx = [totx (max(halfx)+xout+xtra)];
toty = [toty -(halfy(length(halfy))+yout)];

% totx = [totx (max(halfx)+xout)];
[totx (halfx(length(halfx))+xout)];

toty = [toty -(halfy(length(halfy))+yout)];

totx = [totx fliplr(halfx)];

toty = [toty -fliplr(halfy)];

o
o
o
B

"

totx = [totx (halfx(1)-xout)];
toty = [toty -(halfy(1)-yout)];
totx = [totx (halfx(1)-xtra-xout)];
toty = [toty -(halfy(1)-yout)];
totx = [totx (halfx(1)-xtra-xout)];
toty = [toty (halfy(1)-yout)];
totx = [totx (halfx(1)-xout)];
toty = [toty (halfy(1)-yout)];

Primitive Modeling

totx = [(max(halfx)+xtra)l;
toty = [min(halfy)-ant_thick/2];

totx = [totx (max(halfx)+xtra)];
toty = [toty max(halfy)];

totx = [totx (max(halfx)+xtrat+ant_thick)];
toty = [toty max(halfy)];

totx = [totx (max(halfx)+xtrat+ant_thick)];
toty = [toty -max(halfy)];

totx = [totx (max(halfx)+xtra)l;

toty = [toty -max(halfy)];

totx = [totx (max(halfx)+xtra)l;

toty = [toty -(min(halfy)-ant_thick/2)];

totx = [totx (halfx(1)-xtra)l;
toty = [toty -(min(halfy)-ant_thick/2)];

totx
toty

[totx (halfx(1)-xtra)l;
[toty (min(halfy)-ant_thick/2)];

122

toty = [halfy (halfy(length(halfy))+ant_thick/2) (halfy(length(halfy))+ant_thick/2) -(halfy(length(halfy))+ant_thick/2) -(halfy(length(halfy))+ant_thick/2) -fli

else

%if psi_r = 0, we don’t want to add extra epoxy or it will cause an error because the points
% will be too close to connect with a line
if psi_r == 0

totx = [fliplr(halfx) halfx];

toty = [-fliplr(halfy) halfy];

else
% (for old way #1)this strange sin*blah is so that at large angles the epoxy does not overlap itself and

% therefore cause a problem.
% old way #1 -- xtra = halfx(1,1)+sin(psi_r*pi/180)*(ymax+ant_thick);
Y% old way #2 -- xtra = max(raex)+1/5*xmax;

Y%xtra = min(raex)+2*xmax+ant_thick;

xtra = min(raex)+2*xmax;

totx = [fliplr(halfx) halfx xtra xtral;

toty = [fliplr(halfy) -halfy -halfy(1,length(halfy)) halfy(1,length(halfy))];

ot

code for creating inside antenna first...uses output of normalptsvé.m 7

%% end create outside antenna first %%

%

hh

umbsections+1) ;

1 % This choice will center the antenna element within the epoxy

% This regime is fundamentally different from noncentering because it should expose

% the difference between having a shield of epoxy vs free space and will give insight
% into how much a shield is effective at pushing the current to the far-field

%if psi_r = 0, we don’t want to add extra epoxy or it will cause an error because the points
% will be too close to connect with a line
if psir == 0

totx = [fliplr(halfx) halfx];

toty = [-fliplr(halfy) halfy];

epoxy = line2(totx,toty);
else,
% (for old way #1)this strange sin*blah is so that at large angles the epoxy does not overlap itself and
% therefore cause a problem.
% old way #1 -- xtra = halfx(1,1)+sin(psi_r*pi/180)* (ymax+ant_thick);
% old way #2 -- xtra = max(raex)+1/5%xmax;

%xtra = min(raex)+2*xmax+ant_thick;

widthant = max(halfx)-halfx(1);

xtra = (2*xmax-widthant)/2;

totx = [halfx (max(halfx)+xtra) (max(halfx)+xtra) fliplr(halfx) (halfx(1)-xtra) (halfx(1)-xtra)l;
toty = [halfy halfy(length(halfy)) -halfy(length(halfy)) -fliplr(halfy) -halfy(1) halfy(1)];
epoxy = line2(totx,toty);

else

%if psi_r = 0, we don’t want to add extra epoxy or it will cause an error because the points
% will be too close to connect with a line
if psi_r = 0

totx = [fliplr(halfx) halfx];

toty = [-fliplr(halfy) halfyl;

epoxy = line2(totx,toty);

else
% (for old way #1)this strange sin*blah is so that at large angles the epoxy does mot overlap itself and

% therefore cause a problem.
% old way #1 -- xtra = halfx(1,1)+sin(psi_r*pi/180)*(ymax+ant_thick);
% old way #2 -- xtra = max(raex)+1/5%xmax;

%xtra = min(raex)+2*xmax+ant_thick;
xtra = min(raex)+2*xmax;
totx = [fliplr(halfx) halfx xtra xtral;
toty = [fliplr(halfy) -halfy -halfy(1,length(halfy)) halfy(i,length(halfy))];
epoxy = line2(totx,toty);
end

Whhh%h end create inside antenna first %Ak%%
.f?DDD GRAPHING CODE

subplot(2,2,1)
scatter(xpoints,ypoints,’r.’);
axis equal

hold

scatter(nxpoints,nypoints, ’bx’);

axis equal

title([’shape’,num2str(ndp),’ ’,’curve number’,num2str(k)])
pause

subplot(2,2,2)
plot(totx,toty ,’r’),axis equal

subplot(2,2,3)

scatter(-raey,-raex,’r.’);

axis equal

hold

scatter(raey,-raex,’b.’);

plot(toty,-totx,’r’)

axis equal

title([’shape’,num2str(ndp),’ ’,’curve number’,num2str(k)])

7 CALCULATE THE AREA FOR EACH ANTENNA
Z step 1 -- create antenna elements
aer=line2(raex,raey);

clear fem

% Geometry

fem.geon = aer;

fem.mesh = meshinit(fem);

% Integrate on subdomains

ae_vol = postint(fem,’1’);

BEGIN 2D FEA

%calling file rather than inserting code

commandline_v9_noepoxy

END 2D FEA

123

end
end
end

save resultsXIX.dat results -ascii

sheetresults = [];
circleresults = [1;
parabolaresults = [];
ellipseresults = []

hyperbolaresults =

for j = 1:length(results)
if results(j,4
sheetresults = [sheetresults;results(j,:)];
elseif results(j,4)==
circleresults = [circleresults;results(j,:)];
elseif results(j,4
parabolaresults = [parabolaresults;results(j,:)];
elseif results(j,4)==6
ellipseresults = [ellipseresults;results(j,:)];
elseif results(j,4
hyperbolaresults = [hyperbolaresults;results(j,:)];

end
end
for j
if
shaperesults = sheetresults;
elseif j==
shaperesults = circleresults;
elseif j
shaperesults = parabolaresults;
elseif j==t
shaperesults = ellipseresults;
elseif j==
shaperesults = hyperbolaresults;
end
figure(1)
subplot(2,2,3-3)
if j°=3

x1lin = linspace(min(shaperesults(:,5)),max(shaperesults(
ylin = linspace(min(shaperesults(:,6)),max(shaperesults(

[Y,X] = meshgrid(ylin,xlin);

:,5)),totcurves(j));
:,6)),90/psi_r_inc+1);

Z = griddata(shaperesults(:,5) ,shaperesults(:,6) ,shaperesults(:,1),X,Y);

surf (X,Y,2);
if j

title(’sheet’);
elseif j==4
title(’circular’,’FontSize’,15);
elseif j==5
title(’parabolic’,’FontSize’,15);
elseif j==
title(’elliptical’,’FontSize’,15);
elseif j
title(’hyperbolic’,’FontSize’,15);

en
hold on;

xlabel(’curvature (index)’,’FontSize’,13);
ylabel(’psi (angle)’,’FontSize’,13);
zlabel(’potential difference (V)’,’FontSize’,13);
set(gca, ’FontSize’,13)

axis([0 10 0 90 6e-4 7.5e-4])

Ycolorbar;

Colormap gray;

rotate3d

I

e
plot3(shaperesults(:,5),shaperesults(:,6),shaperesults(:
hold off;

end
set(gcf, Color’, [1 1 11)

,1),%0°

124

.13 PDE TOOL CODE - REFLECTOR

Contains the following files:

e create_antennas_hasReflector.m

e commandline v9.m (refer to .11)
e shapesfundersq.m (refer to .1)

e shapestotarclength.m (refer to .2)
e shapesptsopt_v2.m (refer to .2)

e normalpointsv2.m (refer to .3)

125

create_antennas_hasReflector.m
s, Brian Wessel .
creates geometry for input to MatLab PDE solver

% This code creates a reflector at the bottom of the epoxy

clear all
close all

% ant_thick = 0.03;
results = [];

Yxmax = 2e-3;

ymax = 1e-3

zmax =

d = 9e
ant thlck = T7.5e-4;

% ant_thick = 2.5e-4;
numangles = 10;

epoxyheight=de-3; % which is two times the old xmax ...reference 1/8/04 why I made this change
xmax = epoxyheight/2-ant_thick;

if xmax > d/2
rror (’xmax is greater than d/2 so the antenna elements will criss-cross at large angles!’)

end

if ymax > 2%xmax
error(’ymax is greater than 2*xmax, so the epoxy will not cover the side of the antenna when the antenna is turned at a sharp angle (psi)!’)

centerchoice = menu(’Centering on or off?’,’on’,’off’);

shapechoice = menu(’Shape?’,’circle’,’parabola’,’ellipse’, hyperbola’);
shapechoice = shapechoice+3;

% kchoice = menu(’Curvature (k) 7’,°1’,°2°,737,’

% psichoice = menu(’Angle 7,707,10",7207,307 740, 250
% psichoice = (psichoice-1)#10;

080,06,°77,787,79°,°10°) ;
,7607,7707,7807,7907) ;

centerchoice
shapechoice
kchoice=1;

psichoice=0;

% number of monopoles on each antenna and the number of curves to be simulated per shape (except the sheet of course)
numbsections = 20; % MUST BE EVEN b/c linc = 2*totsum/numbsections. It seems weird but having an even
% number of sections, will put an odd number of points because there is no middle section

% NOTE THAT THE NUBMER OF POINTS WILL BE NUMBSECTIONS+1
desiredcurves = 10; %if k only goes from 1:1 rather than 1:totcurves(ndp) than desiredcurves is overidden and

% therefore, only 1 curve will be created
if numangles==1
psi_r_inc = 91; % just enough that only zero degrees will be calculated

else
psi_r_inc = 90/(numangles-1); % increment value for the rotation angle in degrees
end

index = 0; % keeps track of the saving of epoxy and ae’s for later use
progress =
waltbar(progress/360 72D FE Progress’)
for ndp = shapechoice:7 % alters shapes
ndp
% outputs points on box and the total number of curves that will be used
[totcurves(ndp) xpt ypt] = shapesptsopt_v2(xmax,ymax,ndp,desiredcurves);

totcurves (ndp)
% display(’program paused’
) pause

for k= kchoice:totcurves(ndp) % calculates a point on the box for a fixed shape (the total number of curves will be numcurves-1)
k

4

ypt (k) /2% (1+xpt (k) "2/ypt (k) "2); % b is the radius of the sphere at the pts (xpt,ypt) and (0,0)

elseif ndp:
a= ypt(k)/xpt(k) 2;

% uses the arclength to calculate the placement of the number of dipoles
% otherwise it uses a much simpler way for the sheet points
% also an easy way to calculate the total arclength of a circle is used
if ndp~=3

% calculates the total arc length in a curve from O to xmax then

% multiplies by 2 to get the total arclength from -xmax to xmax

% due to symmetry of the curves

clear xpoints

clear ypoints

xpoints = [1;

delxp = 1%10°(-6);
if ndp==
delxp = 1%¥10°(-6);
end
if ndp “=4
clear xpoints
xpoints = [1;
totsum = shapestotarclength(ndp,0,xpt(k),(a)"2,(b)"2);
linc = 2*totsum/numbsections;
% calculates the circle arclength increment quickly
elseif ndp==4
= [xpt (k) ypt(k)];
rad = [0 b];
origin = [0 0];
cosgamma = dot(xy-rad,origin-rad)/(norm(xy-rad)*norm(origin-rad));
gamma = acos(cosgamma) ;
arclength = 2+b*gamma;
linc = arclength/numbsections;
for p = 1l:numbsections/2
xpoints(p) = bxsin((linc*p)/b);

126

end

xp =

1sun
i=1;
fpsq = [1;
if ndp “=4

% numerically determines the x value for a specified unit of arc length
while xp < xpt(k) & i < (numbsections-3)
while lsum<linc
fpsq = shapesfundersq(xp,ndp,a,b);
lsum = lsum+delxp*(1+fpsq)~0.5;
xp = xp + delxp;
if xp > xpt(k)
break
end
end

lsum = 0;
if xp< xpt(k)

xpoints(i) = xp;
end

i= i+l

end
xpoints = [xpoints, xpt(k)];
end

else ndp
linc = xpt(k)*2/numbsections;
xpoints = linc:linc:xpt(k);
end

% creates negative values and adds a zero point for the xpoints

Jnxpoints = -xpoints;
xpoints = [fliplr(-xpoints) O xpoints];

% end calculation of xpoints using arc length

% calculates ypoints according to which shape the user specifies.
% all shapes intersect through the origin
if ndp == 3
ypoints = zeros(size(xpoints));
elseif ndp == 4 Ycircle points
ypoints = abs((b"2- (xpoints.*xpoints))."(0.5)-b);
elseif ndp == 5 Yparabola pts
ypoints = a*(xpoints.*xpoints);
elseif ndp == 6 Yellipse points
ypoints = abs((b"2-b~2/a"2*(xpoints.*xpoints))."(0.5)-b);
elseif ndp == 7 Yhyperbola points
ypoints = (b~2+b"2/a"2*(xpoints.*xpoints))."(0.5)-b;

subplot(2,2,ndp-3)
scatter(xpoints,ypoints,’.’)
axis([(-xmax-xmax/5) (xmax+xmax/5) -ymax/10 (ymax+ymax/5)1);
axis equal
if ndp==4
title(’semicircular’)
elseif ndp==5
title(’parabolic’)
elseif nd
title(’elliptical’)

else
title("hyperbolic’)

pause
%title([’shape’,nun2str(ndp),’ ’,’curve number’,num2str(k)])
[nxpoints,nypoints] = normalpointsv2(ndp,a,b,ant_thick,xpoints,ypoints);

close(gcf)
scatter (xpoints,ypoints,’r.’);
axis equal

hold
scatter (nxpoints,nypoints, ’bx’) ;
axis equal

2] title([’shape’ ,num2str(ndp),’ ’,’curve number’,num2str(k)])
%9 pause

MAKING ANTENNA ELEMENT USING FEMLab FUNCTIONS

t] am keeping the enclosing box x and y axes, so it is switched from normal

for psi_r = psichoice:psi_r_inc:90 % rotates psi_r for a fixed shape and curvature

index = index+1;

psi_r
A aex=[fliplr(nxpoints),xpoints];
% aey=[fliplr(nypoints),ypoints];

aex=[xpoints,fliplr(nxpoints)];
aey=[ypoints,fliplr (nypoints)];

% rotating neg. ae

phi = psi_rpi/180;

rot_mat = [cos(phi) -sin(phi); sin(phi) cos(phi)];
ae = [aex;aeyl;

rae = rot_mat*ae;

raex = rae(1,:);

raey = rae(2,:)+d/2;

% %% Plot which checks for correct rotation
A plot(aex,aey,’b’,raex,raey,’r’)

127

axis equal
title(’check for correct rotation’);

pause

A
A % step 1 -- create antenna elements
% aer=line2(raex,raey);
% ael=line2(raex,-raey);

4% Plotting
close(gef)
scatter (raex,raey, ’r.’);
axis equal
hold
scatter (raex,-raey,’b.’);
axis equal
%pause
geomplot (aer)
axis equal

hold

geomplot (ael)
axis equal

% pause
YAy .
%step2 -- create epoxy
%close(gef)

YYNNAAA

A
halfx = raex(numbsections+2:length(raex));
halfy = raey(numbsections+2:length(raey));
if centerchoice==1 % This choice will center the antenna element within the epoxy
% This regime is fundamentally different from noncentering because it should expose
% the difference between having a shield of epoxy vs free space and will give insight
% into how much a shield is effective at pushing the current to the far-field

code for creating outside antenna first...uses output of normalptsv2.m ¥

%if psi_r = 0, we don’t want to add extra epoxy or it will cause an error because the points
% will be too close to connect with a line...however, I should add about half the antenna thickness
% to each side so that it doesn’t make a sharp point near the tip of the antenna as in the case of the
elliptically shaped antenna elements

if psi_r == 0

xtra = ant_thick/2;

% xtra = ant_thick*4/5;
totx = [halfx (halfx(length(halfx))-xtra) (halfx(length(halfx))-xtra) fliplr(halfx) (halfx(1)+xtra) (halfx(1)+xtra) 1;
toty = [halfy halfy(length(halfy)) -halfy(length(halfy)) -fliplr(halfy) -halfy(1) halfy(1)];
YA epoxy = line2(totx,toty);

>

else
% (for old way #1)this strange sin*blah is so that at large angles the epoxy does not overlap itself and

% therefore cause a problem.

% old way #1 -- xtra = halfx(1,1)+sin(psi_r*pi/180)*(ymax+ant_thick);
% old way #2 -- xtra = max(raex)+1/5%xmax;

Yxtra = min(raex)+2*xmax+ant_thick;

halfx = fliplr(halfx);

halfy = fliplr(halfy);

widthant = max(halfx)-halfx(1);

% xout = ant_thick#cos(phi);

xout = ant_thick*cos(phi)*3/5;

% xtra = (epoxyheight-widthant)/2;
xtra = (epoxyheight-widthant)*4/5;
% yout = ant_thick*sin(phi);

yout = ant_thick+sin(phi)*3/5;

Yreflector thickness and width
hick = 2e-3;

ruidth = 1e-2}

%

%

PA

% h

%W%Sophisticated Modeling which is memory intensive

totx = halfx;

toty = halfy;

% totx = [totx (max(halfx)+xout)];

totx = [totx (halfx(length(halfx))+xout)];

toty = [toty (halfy(length(halfy))+yout)];

totx = [halfx max(halfx) (max(halfx)+xtra) (max(halfx)+xtra) max(halfx) fliplr(halfx) halfx(1) (halfx(1)-xtra) (halfx(1)-xtra) halfx(1)];

toty = [halfy (halfy(length(halfy))+ant_thick/2) (halfy(length(halfy))+ant_thick/2) -(halfy(length(halfy))+ant_thick/2) -(halfy(length(halfy))+ant_thick/2) -fli

totx = [totx (max(halfx)+xout)];

toty = [toty (halfy(length(halfy))+rwidth)];
totx = [totx (max(halfx)+xout+rthick)];

toty = [toty (halfy(length(halfy))+rwidth)];
totx = [totx (max(halfx)+xout+rthick)];

toty = [toty -(halfy(length(halfy))+rwidth)];

% totx = [totx (max(halfx)+xout)];
totx = [totx (max(halfx)+xout)];

toty = [toty -(halfy(length(halfy))+rwidth)];

totx = [totx (halfx(length(halfx))+xout)];

toty = [toty -(halfy(length(halfy))+yout)];

totx = [totx fliplr(halfx)];

toty = [toty -fliplr(halfy)l;

[totx (halfx(1)-xout)];

[toty -(halfy(1)-yout)];

totx
toty
totx = [totx (halfx(1)-xtra-xout)];
toty = [toty -(halfy(1)-yout)];
totx = [totx (halfx(1)-xtra-xout)];
toty = [toty (halfy(1)-yout)];
totx = [totx (halfx(1)-xout)];
toty = [toty (halfy(1)-yout)];

Primitive Modeling

totx = [(max(halfx)+xtra)l;

toty = [min(halfy)-ant_thick/2];

totx = [totx (max(halfx)+xtra)];

toty = [toty max(halfy)];

totx = [totx (max(halfx)+xtratant_thick)];
toty = [toty max(halfy)];

totx = [totx (max(halfx)+xtrat+ant_thick)];
toty = [toty -max(halfy)];

totx = [totx (max(halfx)+xtra)l;

toty = [toty -max(halfy)];

totx = [totx (max(halfx)+xtra)l;
toty = [toty -(min(halfy)-ant_thick/2)];

128

totx = [totx (halfx(1)-xtra)l;
toty = [toty -(min(halfy)-ant_thick/2)];

totx
toty

[totx (halfx(1)-xtra)l;
[toty (min(halfy)-ant_thick/2)];

else

%if psi_r = 0, we don’t want to add extra epoxy or it will cause an error because the points
% will be too close to connect with a line
if psi_r == 0

totx = [fliplr(halfx) halfx];
toty = [-fliplr(halfy) halfyl;
else
% (for old way #1)this strange sin*blah is so that at large angles the epoxy does not overlap itself and
% therefore cause a problem.
% old way #1 -- xtra = halfx(1,1)+sin(psi_r*pi/180)* (ymax+ant_thick);
% old way #2 -- xtra = max(raex)+1/5*xmax;
%xtra = min(raex)+2*xmax+ant_thick;
xtra = min(raex)+2*xmax;
totx = [fliplr(halfx) halfx xtra xtral;
toty = [fliplr(halfy) -halfy -halfy(1,length(halfy)) halfy(1,length(halfy))];

YYAS

% code for creating inside antenna first...uses output of normalptsvéd.m %

end create outside antenna first %AALA%

halfx = raex(i:numbsections+1);

1 % This choice will center the antenna element within the epoxy

% This regime is fundamentally different from noncentering because it should expose

% the difference between having a shield of epoxy vs free space and will give insight
% into how much a shield is effective at pushing the current to the far-field

%if psi_r = 0, we don’t want to add extra epoxy or it will cause an error because the points
% will be too close to connect with a line
if psi_r == 0
totx = [fliplr(halfx) halfx];
toty = [-fliplr(halfy) halfyl;
epoxy = line2(totx,toty);
else
% (for old way #1)this strange sin*blah is so that at large angles the epoxy does not overlap itself and

% therefore cause a problem.
% old way #1 -- xtra = halfx(1,1)+sin(psi_r*pi/180)* (ymax+ant_thick);
% old way #2 -- xtra = max(raex)+1/5*xmax;

%xtra = min(raex)+2*xmax+ant_thick;

widthant = max(halfx)-halfx(1);

xtra = (2*xmax-widthant)/2;

totx = [halfx (max(halfx)+xtra) (max(halfx)+xtra) fliplr(halfx) (halfx(1)-xtra) (halfx(1)-xtra)l;
toty = [halfy halfy(length(halfy)) -halfy(length(halfy)) -fliplr(halfy) -halfy(1) halfy(1)];
epoxy = line2(totx,toty);

else

%if psi_r = 0, we don’t want to add extra epoxy or it will cause an error because the points
% will be too close to connect with a line
if psi_r 0
totx = [fliplr(halfx) halfx];
toty = [-fliplr(halfy) halfy];
epoxy = line2(totx,toty);
else
% (for old way #1)this strange sin*blah is so that at large angles the epoxy does not overlap itself and

% therefore cause a problem.
% old way #1 -- xtra = halfx(1,1)+sin(psi_r*pi/180)* (ymax+ant_thick);
% old way #2 -- xtra = max(raex)+1/5*xmax;

%xtra = min(raex)+2*xmax+ant_thick;

xtra = min(raex)+2*xmax;

totx = [fliplr(halfx) halfx xtra xtral;

toty = [fliplr(halfy) -halfy -halfy(1,length(halfy)) halfy(1l,length(halfy))];
epoxy = line2(totx,toty);

%h#% end create inside antenna first %%
% GOOD GRAPHING CODE
close (gct)
subplot(2,2,1)
scatter(xpoints,ypoints,’r.’);
axis equal
hold
scatter (nxpoints,nypoints, ’bx’);
axis equal
title([’shape’ ,num2str(ndp),’ ’,’curve number’,num2str(k)])
pause

subplot(2,2,2)
plot(totx,toty ,’r’),axis equal

subplot(2,2,3)
scatter(-raey,-raex,’r.’);
axis equal

hold

scatter(raey,-raex,’b.’);

plot(toty,-totx,’r’)

axis equal

title([’shape’ ,num2str(ndp),’ ’,’curve number’,num2str(k)])

It

%

% CALCULATE THE AREA FOR EACH ANTENNA
i step 1 -- create antenna elements
aer=line2(raex,raey) ;

clear fem

% Geometry

fem.geom = aer;

fem.mesh = meshinit(fem);

% Integrate on subdomains

ae_vol = postint(fem,’1’);

129

BEGIN 2D FEA

Y%calling file rather than inserting code

commandline_v9

END 2D FEA

progress = progress+l;
waitbar (progress/360)
end
end
end

save resultsII.dat results -ascii

sheetresults = [];
circleresults = [];
parabolaresults = [];
ellipseresults = [1;
hyperbolaresults = [1;

for j = 1:length(results)
if results(j,4)==3
sheetresults
elseif results(j,4
circleresults = [circleresults;results(j,:)];
elseif results(j,4)==!
parabolaresults
elseif results(j,4
ellipseresults = [ellipseresults;results(j,:)];
elseif results(j,4)==7
hyperbolaresults = [hyperbolaresults;results(j,:)];

[sheetresults;results(j,:)];

[parabolaresults;results(j,:)];

shaperesults = sheetresults;
elseif j
shaperesults = circleresults;

shaperesults = parabolaresults;
elseif j==

shaperesults = ellipseresults;
elseif j==

shaperesults = hyperbolaresults;
end

figure(1)

subplot(2,2,j-3)
if j°=3

xlin = linspace(min(shaperesults(:,5)),max(shaperesults(:,5)),totcurves(j));
ylin = linspace(min(shaperesults(:,6)),max(shaperesults(:,6)),90/psi_r_inc+1);

[Y,X] = meshgrid(ylin,xlin);

Z = griddata(shaperesults(:,5) ,shaperesults(:,6) ,shaperesults(:,1),X,¥);

surf (X,Y,2);

elsei:
title(’circular’,’FontSize’,15);
elseif j==5
title(’parabolic’,’FontSize’,15);
elseif j==t
title(’elliptical’,’FontSize’,15);
elseif j==
title(’hyperbolic’,’FontSize’,15);

title(’sheet’);
j==a

end

hold on;

xlabel (’curvature (index)’,’FontSize’,13);
ylabel(’psi (angle)’,’FontSize’,13);

zlabel (’potential difference (V)’,’FontSize’,13);
set(gca, ’FontSize’,13)

‘%colorbar;

Colormap gray;

rotate3d

end

plot3(shaperesults(:,5),shaperesults(:,6),shaperesults(:,1),’0")

hold off;
end

set(gef,’Color’,[1 1 11)

130

.14 PDE MULTISHELL (WITH EPOXY)

Contains the following files:

e create_antennas_noReflector.m

e commandline v9.m (refer to .11)
e shapesfundersq.m (refer to .1)

e shapestotarclength.m (refer to .2)
e shapesptsopt_v2.m (refer to .2)

e normalpointsv2.m (refer to .3)

131

Brian Wessel
/ creates geometry for imput to MatLab PDE solver

clear all
close all

% ant_thick = 0.03;

results = [];

progress=0;

hxmax = 2e-3;
ymax = 1e-3
zmax = 4.5e-3;
d = 9e-3;

ant thlck 7.5e-4;

% ant_thick = 2 Se-4;
numangles =

epoxyheight=de-3; % which is two times the old xmax ...reference 1/8/04 why I made this change
xmax = epoxyheight/2-ant_thick;

if xmax > d/2
irorCxmax is greater than d/2 so the antenna elements will criss-cross at large angles!’)
end

if ymax > 2*xmax
error (’ymax is greater than 2*xmax, so the epoxy will not cover the side of the antenna when the antenna is turned at a sharp angle (psi)!’)

centerchoice = menu(’Centering on or off?’,’on’,’off’);

shapechoice = menu(’Shape?’,’circle’,’parabola’,’ellipse’,’hyperbola’);
shapechoice = shapechoice+3;

kchoice = menu(’Curvature (k) ?7’,°1’,72’,73°,74°,°5%,” °7°,°87,797,°107) ;
psichoice = menu(’Angle ?°,°0’,°10°,720°, ’30’ ’40’,’50’ ’60’ ’70’ ’80°, ’90’)
psichoice = (psichoice-1)*10;

centerchoice:
shapechoice=:

kchoice=1;
psichoiceZ0;

% number of monopoles on each antenna and the number of curves to be simulated per shape (except the sheet of course)
numbsections = 20; % MUST BE EVEN b/c linc = 2+totsum/numbsections. It seems weird but having an even
% number of sections, will put an odd number of points because there is no middle section

% NOTE THAT THE JUBMER OF POINTS VILL BE NUMBSECTIONS*L
desiredcurves = 10; %if k only goes from 1:1 rather than 1:totcurves(ndp) than desiredcurves is overidden and

% therefore, anly 1 curve will be created

if numangles==1
psi_r_inc = 91;
else
psi_r_inc = 90/(numangles-1); % increment value for the rotation angle in degrees

/ just enough that only zero degrees will be calculated

end
index = 0; % keeps track of the saving of epoxy and ae’s for later use

for ndp = shapechoice:7 % alters shapes
ndp
% outputs points on box and the total number of curves that will be used
[totcurves(ndp) xpt ypt] = shapesptsopt_v2(xmax,ymax,ndp,desiredcurves);

totcurves (ndp)
% display(’program paused’
% pause

for k= kchoice:totcurves(ndp) % calculates a point on the box for a fixed shape (the total number of curves will be numcurves-1)
k

4
ypt(k)/Z*(1+xpt(k)’2/ypt(k)‘2); % b is the radius of the sphere at the pts (xpt,ypt) and (0,0)
elseif ndp==
a= ypt(k)/xpt(k) 2;
elseif ndp==6
a = xpt(k);
b = ypt(k);
elseif ndp==
b = d/2;
= ((a~2/4*xpt (k) "2)/ (ypt (k) "2+ypt (k) *d)) ~(0.5) ;

end

% uses the arclength to calculate the placement of the number of dipoles
% otherwise it uses a much simpler way for the sheet points
% also an easy way to calculate the total arclength of a circle is used
if ndp~=3

% calculates the total arc length in a curve from 0O to xmax then

% multiplies by 2 to get the total arclength from -xmax to xmax

% due to symmetry of the curves

clear xpoints

clear ypoints

xpoints = [];

delxp = 1%10°(-6);

if ndp==
delxp = 1%10°(-6);
end

if ndp "=4
clear xpoints

xpoints = [1;

totsum = shapestotarclength(ndp,0,xpt(k),(a)"2,(b)"2);
linc = 2%totsum/numbsections;

% calculates the circle arclength increment quickly
elseif ndp==4
= [xpt (k) ypt(k)];
rad = [0 b];
origin = [0 0];
cosgamma = dot(xy-rad,origin-rad)/(norm(xy-rad)*norm(origin-rad));
amma = acos(cosgamma) ;
arclength = 2+b*gamma;
linc = arclength/numbsections;

for p = 1:numbsections/2
xpoints(p) = b*sin((linc*p)/b);
end

132

xp
1lsum

i=1;
fpsq = [1;
if ndp "=4
% numerically determines the x value for a specified unit of arc length
while xp < xpt(k) & i < (numbsections-3)
while lsum<linc
fpsq = shapesfundersq(xp,ndp,a,b);
1sum = lsum+delxp*(1+fpsq)~0.5;
xp = xp + delxp;
if xp > xpt(k)
break

end
end

lsum = 0;
if xp< xpt(k)
xpoints(i) = xp;
end
i=i+1;
end
xpoints = [xpoints, xpt(k)];
end
else ndp==3
linc = xpt(k)*2/numbsections;
xpoints = linc:linc:xpt(k);
end

% creates negative values and adds a zero point for the xpoints

%nxpoints = -xpoints;
xpoints = [fliplr(-xpoints) O xpoints];

% end calculation of xpoints using arc length

% calculates ypoints according to which shape the user specifies.
% all shapes intersect through the origin
if ndp == 3

ypoints = zeros(size(xpoints));

elseif ndp == 4 Y%circle points
ypoints = abs((b~2-(xpoints.*xpoints)).~(0.5)-b);
elseif ndp == 5 Yparabola pts
ypoints = a*(xpoints.*xpoints);
elseif ndp == 6 Yellipse points
ypoints = abs((b"2-b~2/a"2%(xpoints.*xpoints)).~(0.5)-b);
elseif ndp == 7 ‘hyperbola points
ypoints = (b~2+b"2/a~2(xpoints.*xpoints)).~(0.5)-b;

end

% subplot(2,2,ndp-3)

% scatter(xpoints,ypoints,’.”)

% axis([(-xmax-xmax/5) (xmax+xmax/5) -ymax/10 (ymax+ymax/5)]1);
% axis equal

% if nds

% title(’semicircular’)

A elseif ndp==5

A title(’parabolic’)

% elseif ndp==

% title(’elliptical’)

% else

A title(’hyperbolic’)

y end

4 end

A end

é pause

%title([’shape’,num2str(ndp),’ ’,’curve number’,num2str(k)])

[nxpoints,nypoints] = normalpointsv2(ndp,a,b,ant_thick,xpoints,ypoints);
close(gcf)

scatter(xpoints,ypoints,’r.’);

axis equal

hold
scatter (nxpoints,nypoints,’bx’);
axis equal

title([’shape’ ,nun2str(ndp),’ ’,’curve number’,num2str(k)])
pause

5999999
liéégéég MAKING ANTENNA ELEMENT USING FEMLgb FUNCTIONS
y ax

am keeping the enclosing box x an es, so it is switched from normal

at the

for psi_r = psichoice:psi_r_inc:90 % rotates psi_r for a fixed shape and curvature

index = index+1;

psi_r
% aex=[fliplr(nxpoints),xpoints];
% aey=[fliplr(nypoints),ypoints];

aex=[xpoints,fliplr(nxpoints)];
aey=[ypoints,fliplr(nypoints)];

% rotating neg. ae
phi = psi_r#pi/180;

rot_mat = [cos(phi) -sin(phi); sin(phi) cos(phi)];
ae = [aex;ae{];
rae = rot_mat*ae;
raex = rae(1,:);
raey = rae(2,:)+d/2;

Y , Plot which checks for correct rotation
plot (aex,aey, b’ ,raex,raey, r’)

axis equal

title(’check for correct rotation’);

pause

133

VA

% % step 1 -- create antenna elements
% aer=line2(raex,raey);

% ael=line2(raex,-raey);

/% Plotting
close(gef)
scatter(raex,raey,’r.’);
axis equal

hold
scatter(raex,-raey,’b.’);
axis equal

%pause

geomplot (aer)

axis equal

hold
geomplot (ael)
axis equal

% pause

YANNAAA

Wh

%step2 -- create epoxy
%close(gef)

A

halfx = raex(numbsections+2:length(raex));

halfy = raey(numbsections+2:length(raey));

if centerchoice==1 % This choice will center the antenna element within the epoxy
% This regime is fundamentally different from noncentering because it should expose
% the difference between having a shield of epoxy vs free space and will give insight
% into how much a shield is effective at pushing the current to the far-field

code for creating outside antenna first...uses output of normalptsv2.m %

%if psi_r = 0, we don’t want to add extra epoxy or it will cause an error because the points
% will be too close to connect with a line...however, I should add about half the antenna thickness

% to each side so that it doesn’t make a sharp point near the tip of the antenna as in the case of the
% elliptically shaped antenna elements

if psi_r == 0
xtra = ant_thick/2;
% xtra = ant_thick*4/5;

totx = [halfx (halfx(length(halfx))-xtra) (halfx(length(halfx))-xtra) fliplr(halfx) (halfx(1)+xtra) (halfx(1)+xtra) 1;
toty = [halfy halfy(length(halfy)) -halfy(length(halfy)) -fliplr(halfy) -halfy(1) halfy(1)];
% epoxy = line2(totx,toty);
else
% (for old way #1)this strange sin*blah is so that at large angles the epoxy does not overlap itself and

% therefore cause a problem.
% old way #1 -- xtra = halfx(1,1)+sin(psi_r*pi/180)* (ymax+ant_thick);
% old way #2 -- xtra = max(raex)+1/5*xmax;

%xtra = min(raex)+2*xmax+ant_thick;
halfx = fliplr(halfx);

halfy = fliplr(halfy);

widthant = max(halfx)-halfx(1);

A

A xout = ant_thick*cos(phi);
xout = ant_thick*cos(phi)*3/5;
% xtra = (epoxyheight-widthant)/2;

xtra = (epoxyheight-widthant)*4/5;
yout = ant_thick*sin(phi);
= ant_thick*sin(phi)*3/5;
totx = [halfx max(halfx) (max(halfx)+xtra) (max(halfx)+xtra) max(halfx) fliplr(halfx) halfx(1) (halfx(1)-xtra) (halfx(1)-xtra) halfx(1)];

/Sophisticated Modeling which is memory intemsive

halfx;
halfy!

totx = [totx (max(halfx)+xout)];
[totx (halfx(length(halfx))+xout)];
[toty (halfy(length(halfy))+yout)];

[totx (max(halfx)+xout+xtra)l;
[toty (halfy(length(halfy))+yout)];
[totx (max(halfx)+xout+xtra)l;
[toty -(halfy(length(halfy))+yout)];

totx = [totx (max(halfx)+xout)];
[totx (halfx(length(halfx))+xout)];
[toty -(halfy(length(halfy))+yout)];

[totx fliplr(halfx)];

toty = [toty -fliplr(halfy)];

totx = [totx (halfx(1)-xout)];
toty = [toty -(halfy(1)-yout)];
totx = [totx (halfx(1)-xtra-xout)];
toty = [toty -(halfy(1)-yout)];
totx = [totx (halfx(1)-xtra-xout)];
toty = [toty (halfy(1)-yout)];

totx = [totx (halfx(1)-xout)];
toty = [toty (halfy(1)-yout)];

Primitive Modeling

totx = [(max(halfx)+xtra)l;
toty = [min(halfy)-ant_thick/2];

totx = [totx (max(halfx)+xtra)];

toty = [toty max(halfy)];

totx = [totx (max(halfx)+xtrat+ant_thick)];
toty = [toty max(halfy)];

totx = [totx (max(halfx)+xtrat+ant_thick)];
toty = [toty -max(halfy)];

totx = [totx (max(halfx)+xtra)l;

toty = [toty -max(halfy)];

totx = [totx (max(halfx)+xtra)l;

toty = [toty -(min(halfy)-ant_thick/2)];

[totx (halfx(1)-xtra)l;

totx ;
[toty -(min(halfy)-ant_thick/2)];

toty =

totx = [totx (halfx(1)-xtra)l;
toty = [toty (min(halfy)-ant_thick/2)];

134

toty = [halfy (halfy(length(halfy))+ant_thick/2) (halfy(length(halfy))+ant_thick/2) -(halfy(length(halfy))+ant_thick/2) -(halfy(length(halfy))+ant_thick/2) -fli

else

%if psi_r = 0, we don’t want to add extra epoxy or it will cause an error because the points
% will be too close to connect with a line
if psi_r == 0

totx = [fliplr(halfx) halfx];

toty = [-fliplr(halfy) halfy];

else
% (for old way #1)this strange sin*blah is so that at large angles the epoxy does not overlap itself and

% therefore cause a problem.

% old way #1 -- xtra = halfx(1,1)+sin(psi_r*pi/180)*(ymax+ant_thick);

Y% old way #2 -- xtra = max(raex)+1/5*xmax;

Yxtra = min(raex)+2*xmax+ant_thick;

xtra = min(raex)+2*xmax;

totx = [fliplr(halfx) halfx xtra xtral;

toty = [fliplr(halfy) -halfy -halfy(1,length(halfy)) halfy(1,length(halfy))];

ot

code for creating inside antenna first...uses output of normalptsvé.m 7

%% end create outside antenna first %%

%

hh

umbsections+1) ;

1 % This choice will center the antenna element within the epoxy

% This regime is fundamentally different from noncentering because it should expose

% the difference between having a shield of epoxy vs free space and will give insight
% into how much a shield is effective at pushing the current to the far-field

%if psi_r = 0, we don’t want to add extra epoxy or it will cause an error because the points
% will be too close to connect with a line
if psir == 0
totx = [fliplr(halfx) halfx];
toty = [-fliplr(halfy) halfy];
epoxy = line2(totx,toty);
else,
% (for old way #1)this strange sin*blah is so that at large angles the epoxy does not overlap itself and
% therefore cause a problem.
% old way #1 -- xtra = halfx(1,1)+sin(psi_r*pi/180)* (ymax+ant_thick);
% old way #2 -- xtra = max(raex)+1/5%xmax;

%xtra = min(raex)+2*xmax+ant_thick;

widthant = max(halfx)-halfx(1);

xtra = (2*xmax-widthant)/2;

totx = [halfx (max(halfx)+xtra) (max(halfx)+xtra) fliplr(halfx) (halfx(1)-xtra) (halfx(1)-xtra)l;
toty = [halfy halfy(length(halfy)) -halfy(length(halfy)) -fliplr(halfy) -halfy(1) halfy(1)];
epoxy = line2(totx,toty);

else

%if psi_r = 0, we don’t want to add extra epoxy or it will cause an error because the points
% will be too close to connect with a line
if psi_r == 0
totx = [fliplr(halfx) halfx];
toty = [-fliplr(halfy) halfy];
epoxy = line2(totx,toty);
else
% (for old way #1)this strange sin*blah is so that at large angles the epoxy does not overlap itself and
% therefore cause a problem.
% old way #1 -- xtra = halfx(1,1)+sin(psi_r*pi/180)*(ymax+ant_thick);
% old way #2 -- xtra = max(raex)+1/5%xmax;

%xtra = min(raex)+2*xmax+ant_thick;
xtra = min(raex)+2*xmax;
totx = [fliplr(halfx) halfx xtra xtral;
toty = [fliplr(halfy) -halfy -halfy(1,length(halfy)) halfy(i,length(halfy))];
epoxy = line2(totx,toty);
end

Whhh%h end create inside antenna first %Ak%%
.f?DDD GRAPHING CODE

subplot(2,2,1)
scatter(xpoints,ypoints,’r.’);
axis equal

hold

scatter(nxpoints,nypoints, ’bx’);

axis equal

title([’shape’,num2str(ndp),’ ’,’curve number’,num2str(k)])
pause

subplot(2,2,2)
plot(totx,toty ,’r’),axis equal

subplot(2,2,3)
scatter(-raey,-raex,’r.’);
axis equal

hold
scatter(raey,-raex,’b.’);

plot(toty,-totx,’r’)
axis equal
title([’shape’,num2str(ndp),’ ’,’curve number’,num2str(k)])

%

% CALCULATE THE AREA FOR EACH ANTENNA
% step 1 -- create antenna elements
aer=line2(raex,raey);

clear fem

% Geometry

fem.geom = aer;

fem.mesh = meshinit(fem);

% Integrate on subdomains

ae_vol = postint(fem,’1’);

BEGIN 2D FEA

%calling file rather than inserting code

commandline_v9_Multishell

END 2D FEA

progress = progress+l;

135

waitbar (progress/360)

end

break
save resultsMultishell_II.dat results -ascii

sheetresults = [];
circleresults = [];
parabolaresults = [1;
ellipseresults = [1;
hyperbolaresults =

for j = 1:length(results)
if results(j,4)==3
sheetresults = [sheetresults;results(j,:)];
elseif results(j,4
circleresults [circleresults;results(j,:)];
elseif results(j,4 5
parabolaresults = [parabolaresults;results(j,:)];
elseif results(j,4
ellipseresults
elseif results(j,4
hyperbolaresults = [hyperbolaresults;results(j,:)];

[ellipseresults;results(j,:)];
T

= sheetresults;

shaperesults = circleresults;
elseif j

shaperesults = parabolaresults;
elseif j==6

shaperesults = ellipseresults;
elseif j==

shaperesults = hyperbolaresults;

end

figure (1)

subplot(2,2,j-3)

if j7=3

x1lin = linspace(min(shaperesults(:,5)),max(shaperesults(:,5)),totcurves(j));
ylin = linspace(min(shaperesults(:,6)),max(shaperesults(:,6)),90/psi_r_inc+1);

[Y,X] = meshgrid(ylin,xlin);

Z = griddata(shaperesults(:,5),shaperesults(:,6),shaperesults(:,1),X,Y);
surf (X,Y,2);
if j
title(’sheet’);
elseif j
title(’circular’);
elseif j==
title(’parabolic’);

title(’elliptical’);
elseif j
title(’hyperbolic’);

end

hold on;

xlabel(’curvature (index)’);
ylabel(’psi (angle)’);
zlabel(’potential difference (mV)’);
%colorbar;

colormap gray;

rotate3d

en
plot3(shaperesults(:,5),shaperesults(:,6),shaperesults(:,1),’0’)
hold off;

end
set (gcf, ’Color’, [1 1 11)

136

commandline_v9_MultiShell.m
Brian Wessel
h Feb. 26, 2004

PO

% clear all
% close all
% load raex.dat
% load raey.dat
% load totx.dat
% Toad toty.dat

é W

to
% totx(46)
% totx(47)
% totx(48)

% totx(49)
% totx(50)

creates shield
5) = 1.9e-3;

% toty(46)
% toty(46)
% toty(47)
% toty(48)
% toty(49)
%

h end create shield

scatter(raey,-raex,’b.’);

g
% hold
% plot(toty,-totx,’r)
% axis equal

% scatter(-raey,-raex,’r.’);
% axis equal

% pause

% close(gcf)

%Wh% Constants
%" conductivities
s_br 1/5.8;

s_sk ;
ski = 100/222;
e = le-T;

s_ae

s_cst = 1/0.7;

s_i
s.

% % radii (actual)
7 Skin = 7.5000e-2; %
% skull
% csf = 6.9705e-2; %
% brain 6.6180e-2; %
% z_ant = 6.7942e-2;

(brain is smaller so the antenna will fit in between)
7.5000e-2;

e

7.1467e-2;
6.9705e-2; %

6.1180e-2; %
6.5942¢-2}

% amount of current/area (Therefore, I will need to know the area
% so that I can apply the correct amount of current.)

curr = le-3;

% creating the positive ant. element

% x = [3.3e-2 3.5e-2 3.5e-2 3.3e-2];

%y = [-le-2 -1e-2 le-2 1e-2];

% adding 5.5e-2 for now just to make sure that I am simulating correctly
pae = [2 length(raex) raey (-raex+z_ant) zeros(1,2*(length(totx)-length(raey)))]1’;

% creating the negative ant. element

nae = [2 length(raex) -raey (-raex+z_ant) zeros(1,2x(length(totx)-length(raey)))]’;
% creating epoxy

% epoxy = [2 4 -3.3e-2 3.3e-2 3.3e-2 -3.3e-2 -le-2 -le-2 le-2 1le-2]’;

epoxy = [2 length(totx) toty (-totx+z_ant)]’;

br = [1 0 0 brain zeros(1,length(epoxy)-4)];
cs = [1 0 0 csf zeros(1,length(epoxy)-4)1’;

sk = [1 0 0 skull zeros(1,length(epoxy)-4)]17;
ski = [1 0 0 skin zeros(1,length(epoxy)-4)]17;

% Testing code

% pdecirc(0, 0 ,7.5e-2)

% pdepoly([3.5e-2, 3.3e-2, 3.3e-2, 3.5e-2],[-1le-2 -le-2 le-2 le-2])

% pdepoly([-3.5e-2, -3.3e-2, -3.3e-2, -3.5e-2],[-1le-2 -le-2 le-2 le-2]

csg = [nae pae epoxy br cs sk skil;

% dgm = decsg(csg, [’circle+pae+naetepoxy’],[[’nae ’]1’ [’pae ’]’ [’epoxy ']’ [’circle’]’])
dgm = decsg(csg);

% wgeom(dgm,’geomfile’)

% break

% % % subplot(1,2,1)

% % pdegplot (dgm)

% % axis equal

% % display(’program pause’)
% % pause

[p,e,t]=initmesh(dgm,’jiggle’,’off’, hgrad’,1.25);

% q=pdetriq(p,t);

% subplot(1,2,1)

% pdeplot(p,e,t,’xydata’,q,’colorbar’,’on’, ’xystyle’, flat’)
% axis equal

pause
subplot(1,2,2)

% pl=jigglemesh(p,e,t,’opt’, ’minimum’,’iter’,inf);
q=pdetriq(pl,t);

figure(1)

i pdeplot (p1,e,t,’ xydata’,q,’colorbar’,’on’, xystyle’,’flat’)
% % pdeplot(pl,e,t)

% % axis equal

% pause
% % %h p=pl;
% br | pae | epoxy | nae | ski | sk | cs

= [1!1e2!1e-10!1e2!1!1!1°];

c
% a [’0!0!0!0!0!0!0°];

137

%t = [’0!(1e-3/2.0904e-006) !0! (-1e-3/2.0904e-006) 10!10!0°];

% br | pae | epoxy | nae | ski | sk | cs

¢ = [num2str(s_br),’!’,num2str(s_ae),’!’ ,num2str(s_e),’ !’ ,num2str(s_ae),’!’ ,num2str(s_ski),’!’,num2str(s_sk),’!’ ,num2str(s_csf)];
a = [’0!0!0!0!0!0!0°];

£ = [’0!’,num2str(curr/ae_vol),’!0! (-’ ,num2str(curr/ae_vol),?)'0!0!0°];

% Note only the last columns are the exterior boundaries

% The other internal ones must have contrived data

cols = size(dgm,2);

b = double([0 1 11 11 °0° 0’ *1’ °0°1?);

for ji=1:(cols-5)
% is is the contrived data I found from the output of the PDETool
b = [b double([0 1 1111 °0° 0’ *1’> *0°]*)];

end

b(:,cols-3) = double([1 0 1 1 °0° 0% 20’ *0° *1> *0°]*);
b(:,cols-2) = double([1 0 1 1 *0° *0’ *0° *0° ’1’ °0°]1’);
b(:,cols-1) = double([1 0 1 1 °0° 0% 20° *0° *1> *0°]*);
b(:,cols) = double([1 0 1 1 °0° 0% 20’ 0% *1> *0°]*);

u = assempde(b,p,e,t,c,a,f);

% demean signal (artificial)

u = u-mean(u);

% [u,p,e,t]=adaptmesh(dgm,b,c,a,f,’Ngen’,2);
[cgxu, cgyul=pdecgrad(p,t,c,u);

% [ux,uy] = pdegrad(p,t,u);

% uu = [ux’,uy’l;

wu = [egxu’,cgyu’l;

% demean signal (artificial)

(:,1) = uu(:,1)-mean(uu(:,1));

:,2) = uu(:,2)-mean(uu(:,2));

% figure(2)

% pdeplot(p,e,t,’xydata’,u, ’mesh’,’off’,’contour’,’on’,’levels’,60);

% title([’Voltage Conductivities:’,’brain=’,num2str(s_br),’ ant ele’’s=’,num2str(s_ae),’ epoxy=’,num2str(s_e),’ csf=’,num2str(s_csf),’ skull=’,num2str(s_sk),’ skin=’,num2str(s_ski)l);
% set(gcf,’Color’, [1 1 11)

% axis equal

A

%
%
%
%
%
Z / dis; ’ 4

o play(’program pause’)

% % pause

Q é figure(3)

% % pdeplot(p,e,t,’xydata’ ,uu, ’mesh’,’off’,’contour’,’on’,’levels’,200);
% % title(’Current Density’);

% % axis equal

i=pdesde(e,5) ;

% finding boundary points and values
m=1;
for j = 1:length(p)

bpts = norm(p(:,j));

3 display(’program paused’)
% pause
if (0.075-bpts)<le-3
% (0.075-bpts)
% display(’true’)
% pause

boundv(m) = u(j);
boundp(1,m) = p(1,3);
boundp(2,m) = p(2,3);

% display(’program paused - inside loop’)
% pause

x=p(1,3);

y=p(2,3);

theta(m) = atan(y/x);
% fixing atan function so it goes from O to 2#pi rather than -pi/2 to pi/2
if x<0 & y>0
theta(m) = theta(m)+pi;
elseif x<0 & y<O
theta(m) = theta(m)-pi;

end

%% GRAPHING

figure
% subplot(2,2,1)

% plot (abs(boundv))

% title(’boundary voltage’)

b subplot(2,2,2)

% polar(theta,boundv+1.1*min(boundv),’r.’)
polar (theta,abs (boundv) , ’r.’)
title(’boundary voltage’)

i % subplot(2,2,3)

stem3 (boundp (1, :) ,boundp(2, :),boundv, *ro’)
% title(’boundary voltage’)

74 tigure(3)

% % polar(theta,abs(boundv),’r.’)
% % title(’boundary voltage’)
% YNANAN

b WRBILH AN

display(’program pause’)
pause

results = [results; (max(boundv)-min(boundv)) max(boundv) min(boundv) ndp k psi_rl;

clear p pl q t u uu cgyu cgxu
pack

% display (’End of 2D FEA iteration - PROGRAM PAUSED’)
% pause

% subplot(2,2,3)

% pdecont(p,t,u,20);

% axis equal

138

.15 PLOTTING - EPOXY WITH % INCREASE FROM ANALYTICAL

Contains the following file:

e EpoxyResults.m

139

% EpoxyResults.m

% Brian Wessel
% plotting results

load resultsX.dat
%circle points
curve = [1 3561356135 6];

angle = [0 0 0 0 40 40 40 40 90 90 90 90];

for i = 1:length(curve)
for j = 1:length(resultsX(:,1))
if (resultsX(j,3)==4 & resultsX(j,4
ana_maxv(i) = resultsX(j,1);

==angle(i) & resultsX(j,5)==curve(i))

end
end
end

maxv = [15.9951 15.8749 16.6184 16.4645 15.291 16.2845 17.7529 18.041 17.2755 17.5412 17.9634 18.0391];
c_per = (maxv-ana_maxv)./ana_maxvx100;

xlin = [1 3 5 6];
ylin = [0 40 90 901;
[Y,X] = meshgrid(ylin,xlin);

Z = griddata(curve,angle,2*maxv,X,Y);
subplot(2,2,1)

surf (X,Y,2);

hold on;

xlabel(’curvature (index)’,’FontSize’,13);
ylabel(’psi (angle)’,’FontSize’,13);
zlabel(’potential difference (mV)’,’FontSize’,13);
title(’CIRCULAR’,’FontSize’,15)

axis([0 10 0 90 28 40])

‘hcolorbar;

colormap gray;

rotate3dd

scatter3(curve,angle, 2*maxv)

hold off;

pause

%parabola points

curve = [1 47 10147 10 1 4 7 10];

angle = [0 0 0 0 40 40 40 40 90 90 90 90];

for i = 1:length(curve)
for j = 1:length(resultsX(:,1))
if (resultsX(j,3)==5 & resultsX(j,4)==angle(i) & resultsX(j,5)==curve(i))
ana_maxv(i) = resultsX(j,1);
end
end
end

maxv = [14.8218 16.1019 16.3218 16.059 16.0707 17.5165 18.5119 19.5355 16.8201 17.5545 17.9899 18.6729];

p_per = (maxv-ana_maxv) ./ana_maxv+100;

[147 10];
[0 40 90];

[Y,X] = meshgrid(ylin,xlin);

xlin
ylin

Z = griddata(curve,angle,2*maxv,X,Y);
subplot(2,2,2)

surf (X,Y,2);

hold on;

xlabel(’curvature (index)’,’FontSize’,13);
ylabel(’psi (angle)’,’FontSize’,13);
zlabel(’potential difference (mV)’,’FontSize’,13);
title(’PARABOLIC’,’FontSize’,15)

axis([0 10 0 90 28 40])

%colorbar;

colormap gray;

rotate3d

scatter3(curve,angle,2*maxv)
hold off;

pause
%ellipse points

curve = [1 47 10147 10 1 4 7 10];
angle = [0 0 0 0 40 40 40 40 90 90 90 90];

for i = 1:length(curve)
for j = 1:length(resultsX(:,1))
if(resultsX(j,3)==6 & resultsX(j,4)==angle(i) & resultsX(j,5)==curve(i))
ana_maxv(i) = resultsX(j,1);
end
end
end

maxv = [15.867 16.5356 16.2539 15.67 16.3824 17.2376 18.3474 19.3977 16.4966 17.5417 18.0732 18.6771];

e_per = (maxv-ana_maxv) ./ana_maxv*100;

xlin = [1 4 7 10];
ylin = [0 40 901

[Y,X] = meshgrid(ylin,xlin);

Z = griddata(curve,angle,2+*maxv,X,Y);
subplot(2,2,3)

surf(X,Y,2);

hold on;

xlabel(’curvature (index)’,’FontSize’,13);
ylabel(’psi (angle)’,’FontSize’,13);
zlabel(’potential difference (mV)’,’FontSize’,13);
title CELLIPTICAL’, ’FontSize’,15)

axis([0 10 0 90 28 40])

‘hcolorbar;

colormap gray;

rotate3d

scatter3(curve,angle, 2*maxv)

hold off;

pause

140

%hyperbola points
curve = [147 10147 10147 10];

angle = [0 0 0 0 40 40 40 40 90 90 90 90];

for i = 1:length(curve)
for j = 1:length(resultsX(:,1))
if (resultsX(j,3)==7 & resultsX(j,4)==angle(i) & resultsX(j,5)==curve(i))
ana_maxv(i) = resultsX(j,1);

end
end

maxv = [14.9403 16.2585 16.2866 15.7563 16.0993 17.4512 18.5534 19.387 16.9944 17.6567 18.3735 18.0686];

h_per = (maxv-ana_maxv)./ana_maxv*100;

xlin = [1 4 7 10];
ylin = [0 40 901

[Y,X] = meshgrid(ylin,xlin);

Z = griddata(curve,angle,2*maxv,X,Y);
subplot(2,2,4)
surf(X,Y,2);

hold on;
xlabel(’curvature (index)’,’FontSize’,13);
ylabel(’psi (angle)’,’FontSize’,13);

zlabel (’potential difference (mV)’,’FontSize’,13);
title (’HYPERBOLIC’,’FontSize’,15)

axis([0 10 0 90 28 40])

%colorbar;

Colormap gray;

rotate3d

scatter3(curve,angle, 2*maxv)

hold off;
set(gct, Color’, [1 1 11)

pause
Whn 4% PERCENT INCREASE
figure(2)

curve = [1 3561356135 6];

angle = [0 0 0 0 40 40 40 40 90 90 90 90];

xlin = [1 3 5 6];

ylin = [0 40 90 901;

[Y,X] = meshgrid(ylin,xlin);

Z = griddata(curve,angle,c_per,X,Y);
subplot(2,2,1)

surf (X,Y,2);

hold on;
xlabel(’curvature (index)’,’FontSize’,13);
ylabel(’psi (angle)’,’FontSize’,13);
zlabel(’Percent Increase (%)’,’FontSize’,13);
title(’CIRCULAR’,’FontSize’,15)

axis([0 10 0 90 10 40])

Ycolorbar;

colormap gray;

rotate3d

scatter3(curve,angle,c_per)
hold off;

pause

curve = [1 4710147 101 47 10];
angle = [0 0 0 0 40 40 40 40 90 90 90 90];
xlin = [1 4 7 10];

ylin = [0 40 90];

[Y,X] = meshgrid(ylin,xlin);

Z = griddata(curve,angle,p_per,X,Y);
subplot(2,2,2)
surf(X,Y,2);

hold on;

xlabel(’curvature (index)’,’FontSize’,13);
ylabel(’psi (angle)’,’FontSize’,13);
zlabel(’Percent Increase (%)’,’FontSize’,13);
title (’PARABOLIC’, ’FontSize’,15)

axis([0 10 0 90 10 401)

Ycolorbar;

colormap gray;

rotate3d

scatter3(curve,angle,p_per)

hold off;

pause

Z = griddata(curve,angle,e_per,X,Y);
subplot(2,2,3)
surf(X,Y,2);

hold on;
xlabel(’curvature (index)’,’FontSize’,13);
ylabel(’psi (angle)’,’FontSize’,13);

Zlabel (’Percent Increase (%)’,’FontSize’,13);
title CELLIPTICAL’, ’FontSize’,15)

axis([0 10 0 90 10 40])

Ycolorbar;

Colormap gray;

rotate3d

scatter3(curve,angle,e_per)

hold off;

pause

subplot(2,2,4)

Z = griddata(curve,angle,h_per,X,Y);
surf(X,Y,2);

hold on;

xlabel(’curvature (index)’,’FontSize’,13);
ylabel(’psi (angle)’,’FontSize’,13);
zlabel(’Percent Increase (%)’,’FontSize’,13);
title (’HYPERBOLIC’, ’FontSize’,15)

axis([0 10 0 90 10 401)
%colorbar;

141

colormap gray;
rotate3d

scatter3(curve,angle,h_per)

hold off;
set(gcf, ’Color’, [1 1 11)

142

.16 PLOTTING - NO EPOXY (FE) WITH % INCREASE FROM
ANALYTICAL

Contains the following file:

e NoEpoxyResults.m

143

NoEpoxyResults.m

Brian Wessel
February 25, 2004

Results from 3D FE simulation using FEMLab
with no epoxy between the elements. By no
epoxy I mean that I set the conductivity
% of the epoxy equal to that of the sphere.

e re s s

clear all
close all

load resultsX.dat

circle = [11.9553 11.0397 11.3654 12.0697...
11.6078 11.677 12.7763 12.5281 12.2731];

parabola = [11.5227 11.0792 11.33 12.3377 12.0991 11.9801...
12.7381 12.6129 12.333 12.8672 13.1119 12.7074];

ellipse = [11.8072 11.1914 11.0606 12.6002 12.0718 11.9506...
12.7601 12.6485 12.3614 12.8284 13.1412 12.7101];

hyperbola = [11.5846 11.1361 11.346 12.3808 12.0797 11.9602...
12.7433 12.6861 12.438 12.8789 13.078 12.6006];

curve = [1 46 146146];

angle = [0 0 0 40 40 40 90 90 907;

for i = 1:length(curve)
for j = 1:length(resultsX(:,1))
if (resultsX(j,3)==4 & resultsX(j,4)==angle(i) & resultsX(j,5)==curve(i))
ana_maxv(i) = resultsX(j,1);
end

Ymaxv = [15.9951 15.8749 16.6184 16.4645 15.291 16.2845 17.7529 18.041 17.2755 17.5412 17.9634 18.0391];
maxv = circle;

c_per = (maxv-ana_maxv) ./ana_maxv+100;

xlin = [1 4 6];
ylin = [0 40 901;

[Y,X] = meshgrid(ylin,xlin);

Z = griddata(curve,angle,2*maxv,X,Y);
subplot(2,2,1)

surf(X,Y,2);

hold on;

xlabel(’curvature (index)’,’FontSize’,14);
ylabel(’psi (angle)’,’FontSize’,14);
zlabel(’potential difference (mV)’,’FontSize’,14);
title(’CIRCULAR’, ’FontSize’,15)

axis([0 10 0 90 22 27])

Ycolorbar;

colormap gray;

rotate3d

scatter3(curve,angle,2*maxv)

hold off;

Yparabola points

curve = [1 47 10147 10147 10];
angle = [0 0 0 0 40 40 40 40 90 90 90 90];

% maxv = [14.8218 16.1019 16.3218 16.059 16.0707 17.5165 18.5119 19.5355 16.8201 17.5545 17.9899 18.6729];
for i = 1:length(curve)
for j = 1:length(resultsX(:,1))
if (resultsX(j,3)==5 & resultsX(j,4)==angle(i) & resultsX(j,5)==curve(i))
ana_maxv(i) = resultsX(j,1);
end
end
end
maxv = parabola;
p_per = (maxv-ana_maxv)./ana_maxv*100;

xlin = [1 4 7 10];
ylin = [0 40 90];

[Y,X] = meshgrid(ylin,xlin);

Z = griddata(curve,angle,2*maxv,X,Y);
subplot(2,2,2)

surf (X,Y,2);

hold on;

xlabel(’curvature (index)’,’FontSize’,14);
ylabel(’psi (angle)’,’FontSize’,14);
zlabel(’potential difference (mV)’,’FontSize’,14);
title(’PARABOLIC’, ’FontSize’,15)

axis([0 10 0 90 22 27])

‘hcolorbar;

colormap gray;

rotate3dd

scatter3(curve,angle, 2*maxv)
hold off;
%ellipse points

curve = [1 47 1014710147 10];
angle = [0 0 0 0 40 40 40 40 90 90 90 90];

for i = 1:length(curve)
for j = 1:length(resultsX(:,1))
if (resultsX(j,3)==6 & resultsX(j,4)==angle(i) & resultsX(j,5)==curve(i))
ana_maxv(i) = resultsX(j,1);
end
end

end
% maxv = [15.867 16.5356 16.2539 15.67 16.3824 17.2376 18.3474 19.3977 16.4966 17.5417 18.0732 18.6771];
maxv = ellipse;

e_per = (maxv-ana_maxv)./ana_maxv¢100;

xlin = [1 4 7 10];
ylin = [0 40 90];

[Y,X] = meshgrid(ylin,xlin);

Z = griddata(curve,angle,2*maxv,X,Y);
subplot(2,2,3)

surf(X,Y,2);

hold on;

xlabel(’curvature (index)’,’FontSize’,14);
ylabel(’psi (angle)’,’FontSize’,14);
zlabel(’potential difference (mV)’,’FontSize’,14);
title CELLIPTICAL’, ’FontSize’,15)

axis([0 10 0 90 22 27])

144

Y%colorbar;

colormap gray;

rotate3d
scatter3(curve,angle, 2*maxv)

hold off;

%hyperbola points

curve = [1 4710147 10147 10];
angle = [0 0 0 0 40 40 40 40 90 90 90 90];
for i = 1:length(curve)
for j = 1:length(resultsX(:,1))
if (resultsX(j,3)==7 & resultsX(j,4
ana_maxv(i) = resultsX(j,1);

—angle(i) & resultsX(j,5)==curve(i))

end
end
end
maxv = hyperbola;
% maxv = [14.9403 16.2585 16.2866 15.7563 16.0993 17.4512 18.5534 19.387 16.9944 17.6567 18.3735 18.0686];

h_per = (maxv-ana_maxv) ./ana_maxv+100;

xlin = [1 4 7 10];
ylin = [0 40 90];

[Y,X] = meshgrid(ylin,xlin);

Z = griddata(curve,angle,2*maxv,X,Y);
subplot(2,2,4)

surf(X,Y,2);

hold on;

xlabel(’curvature (index)’,’FontSize’,14);
ylabel(’psi (angle)’,’FontSize’,14);
zlabel(’potential difference (mV)’,’FontSize’,14);
title (’HYPERBOLIC’, ’FontSize’,15)

axis([0 10 0 90 22 27])

Ycolorbar;

colormap gray;

rotate3d

scatter3(curve,angle,2*maxv)

hold off;

set(gef,’Color’,[1 1 11)

» PERCENT INCREASE

4 6];
0 90 90 90];

N

angle
xlin = [1 4 6];

ylin = [0 40 901;

[Y,X] = meshgrid(ylin,xlin);

Z = griddata(curve,angle,c_per,X,Y);
subplot(2,2,1)

surf(X,Y,2);

hold on;

xlabel (’curvature (index)’,’FontSize’,14);

ylabel(’psi (angle)’,’FontSize’,14);

zlabel (’Percent Increase (%)’,’FontSize’,14);

title([’CIRCULAR AVG= ’,num2str (mean(mean(c_per))),’%’], FontSize’,15)

Y%colorbar;
colormap gray;
rotate3d

scatter3(curve,angle,c_per)
axis([0 10 0 100 -100 0])
hold off;

curve = [1 471014710147 10];
angle = [0 0 0 0 40 40 40 40 90 90 90 90];
xlin = [1 4 7 10];

ylin = [0 40 90];

[Y,X] = meshgrid(ylin,xlin);

Z = griddata(curve,angle,p_per,X,Y);
subplot(2,2,2)
surf (X,Y,2);

hold on;

xlabel(’curvature (index)’,’FontSize’,14);

ylabel(’psi (angle)’,’FontSize’,14);

zlabel (’Percent Increase (%)’,’FontSize’,14);

title([’PARABOLIC AVG= ’,num2str (mean(mean(p_per))),’%’], FontSize’,15)
‘%colorbar;

colormap gray;

rotate3d

scatter3(curve,angle,p_per)

axis([0 10 0 100 -100 0])
hold off;

Z = griddata(curve,angle,e_per,X,Y);
subplot(2,2,3)
surf(X,Y,2);

hold on;

xlabel(’curvature (index)’,’FontSize’,14);

ylabel(’psi (angle)’,’FontSize’,14);

zlabel(’Percent Increase (%)’,’FontSize’,14);

title([’ELLIPTICAL AVG= ’,num2str(mean(mean(e_per))),’%’], FontSize’,15)

Ycolorbar;
Colormap gray;
rotate3d

scatter3(curve,angle,e_per)
axis([0 10 0 100 -100 0])
hold off;

subplot(2,2,4)
Z = griddata(curve,angle,h_per,X,Y);
surf (X,Y,2);

hold on;

xlabel(’curvature (index)’,’FontSize’,14);

ylabel(’psi (angle)’,’FontSize’,14);

zlabel(’Percent Increase (%)’,’FontSize’,14);

title([’HYPERBOLIC AVG= ’,num2str(mean(mean(h_per))),’%’], FontSize’,15)

Ycolorbar;
Colormap gray;
rotate3d

145

set(gca, *FontSize’,12)
scatter3(curve,angle,h_per)
axis([0 10 0 100 -100 0])
hold off;

set(gcf,’Color’,[1 1 1])

146

.17 CONDUCTIVITY CONVERGENCE

Contains the following file:

e CondConvergence.m

147

% CondConvergence n
% Brian Wes
h plottlng results of experiment
%first plot with a spread around sigma_sphere
spread = [1 5 10 50 100 500 1000 5000 10000 50000 1e5 5e5 1e6 5e6 1e7 5e7 1e8 5e8]
maxV = [13 6778 15.3221 15.7715 16.3031 16.3929 16.4507 ...
4306 16.3742 16.3320 16.2570 16.2255 16.1354
16 1207 16.0613 16.1184 16.1329 15. 7711 14:8409]°
figure (1)
plot(loglO(spread) ,maxV,’r.’)
title(’Max Voltage vs LoglO(spread)’)
xlabel (’Logl0(spread)’)
ylabel(’Max Voltage’)
axis equal

[log10(spread)’ ,maxV’]
%second plot with a constant sigma_ae but decreasing sigma_ins

maxV = [13.4051 18.7409 16.0970 16.4119 ...
1614556 16.4875 1614917 164948 .
16.4952 16.4955 16.4955]
sig_sphere = 100/232;
sig_ae = sig_sphere*50;
sig_ins = sig_sphere./[1 5 10 50 100 500 1000 5000 le4 5e4 1e5];

spread = sig_ae./sig_ins;

figure(2)

plot (logl0(spread) ,maxV,’ro’, *MarkerSize’,10)

title(’Max Voltage vs Log_{10}(\sigma_{epoxy}/\sigma_{epoxy})’,’FontSize’,20)
xlabel(*Log_{10} (\sigma_{metal}/\sigma_{epoxy})’,’FontSize’,20)

ylabel(’Max Voltage’,’FontSize’,20)

set(gca, *FontSize’,15)

axis equal

hgtext (*\sigma_{ae} = \sigma_{sphere}*50’)

148

1]

2]

3]

BIBLIOGRAPHY

Halliday D, Resnick R, and K Krane. Physics. Vol. 2, 4th ed., John Wiley & Sons, Inc.,
NY, 1992.

Hauser WA, Hesdorffer DC. Epilepsy: Frequency, Causes and Consequences. New York:
Demos Press, 1990.

Engel J Jr, Shewmon DA. Overview: who should be considered a surgical candidate?
In: Engel J Jr, ed. Surgical Treatment of the Epilepsies 2nd ed. New York: Raven Press,
1993:23-24.

Engel J Jr. A Greater Role for Surgical Treatment of Epilepsy: Why and When?. Epilepsy
Currents. Vol. 3, No. 2 (March/April) 2003:37-40.

Sun M, Mickle M, Liang W, Liu Q, Sclabassi RJ. Data Communication between Brain
Implants and Computer. IEEE Transactions on Neural Systems and Rehabilitation FEn-
gineering. Vol. 11, No. 2, June 2003.

Sun M, Liu Q, Liang W, Wessel BL, Roche P, Mickle M,Sclabassi RJ. Application of
the Reciprocity Theorem to Volume Conduction Based Data Communication Systems
between Implantable Devices and Computers. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, Vol. 11, No. 2, June 2003.

Malmivuo J, Plonsey R. Bioelectromagnetism. Oxford University Press, New York, 1995.

Rush S, Driscoll DA. EEG-electrode sensitivity—An application of reciprocity. IEEE
Trans. Biomed. Eng.. BME-16:(1) 15-22.

Barber DC, Brown BH. Applied potential tomography. J. Phys. E.: Sci. Instrum. Vol.
17: 723-733.

[10] Plonsey R, Heppner DB. Considerations of quasi-stationarity in electrophsyiological

systems. Bulletin of Mathematical Biophysics Vol. 29, 1967, 657-664.

[11] Webster, JG ed. Medical Instrumentation: Application and Design. 3rd ed.,John Wiley

& Sons, Inc. New York, 1998 .

149

[12] R. D. Sidman, V. Giambalvo, T. Allison and P. Bergey . ”A method of localization of
sources of human cerebral potentials evoked by sensory stimuli” Sensory Processes Vol.
2, 1978, pp. 116-129.

[13] Frank, E. ”Electric potential produced by two point current sources in a homogeneous
conducting sphere,” J. Appl. Phys. 23: 1225-1228 (1952).

[14] FEMLab Reference Manual. COMSOL, Nov, 2001, pp 3-124,5-287.

[15] Sun M.” An Efficient algorithm for computing multishell spherical volume conductor
models in EEG dipole source localization,” IEEE Transactions on Biomedical Engineer-
ing. Vol. 44, No. 12, December, 1997.

[16] Chari MVK, Salon SJ. Numerical Methods in Electromagnetism. Academic Press, San
Diego, 2001.

[17] Gulrajani RM. Bioelectricity and Biomagnetism. John Wiley & Sons, Inc. New York,
1998.

[18] http://www.mathworks.com/access/helpdesk/help/toolbox/pde/4fem2.shtml.

[19] Hunter, P and A Pullan. FEM/BEM Notes. The University of Auckland, New Zealand.
©1997-2003.

[20] Ahonen, AI, Hamalainen MS, Ilmoniemi RJ, Jajola MJ, Knuutila JET, Simola JT,
Vilkman VA. . “Sampling Theory for Neuromagnetic Detector Arrays.” IEEE Transactions
on Biomedical Engineering . Vol. 40, No. 9, September, 1993.

[21] Lindsey DP, McKee EL, Hull ML, Howell SM. .“A New Technique for Transmission of
Signals from Implantable Transducers.” IEEE Transactions on Biomedical Engineering .
Vol. 45, No. 5, May, 1998.

[22] Cuffin BN and D Cohen. .“Comparison of the magnetoencephalogram and electroen-
cephalogram.” FElectroencephalography and Clinical Neurophysiology . vol. 47, pp 132-146,
1979.

(23] Lindsey DP, McKee EL, Hull ML, Howell SM. .“A New Technique for Transmission of
Signals from Implantable Transducers.” IEEE Transactions on Biomedical Engineering .
Vol. 45, No. 5, May, 1998.

150

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	PREFACE
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Resistivities of relevant material properties (Malmivuo:1995 compiled biological material)
	2. Relevant Assumptions for Human Tissue Plonsey:1967
	3. Results for Proofs of Concept

	LIST OF FIGURES
	1. Antenna elements shown on the sides of the implantable device.
	2. Set theory description
	3. Top left: Illustrates the use of control points around a bounding box (2*xmax wide and ymax high) to determine parameters of the specified shape. Top right: Shows a specific example of Top left using 5 control points. Bottom: Shows how the antenna elements can be rotated by an angle .
	4. Vector field of ideal dipoles evenly spaced on hyperbolically shaped antenna elements. The dipoles were placed in an orientation perpendicular to the antenna elements and evenly spaced with-respect-to the arclength.
	5. Dipole consisting of a sink -Io at the origin and a source Io at dd, where d0. Also illustrated is a field point at vector rr and polar angle Malmivuo:1995.
	6. Two dipoles shown in a 3D coordinate system. The primed variables are the locations of the dipoles and the unprimed variable is the location of interest.
	7. Top left: The field created by an ideal dipole. Top Right: Superposition of two ideal dipoles. Bottom Left: Two monopoles (source and sink). Bottom Right: Error between 2 dipoles and 2 monopoles (Appendix .7).
	8. Coordinate system illustrating the variables from Equation (2.28)
	9. Shaded plot showing the percent error for two sets of dipoles as compared to one nonideal dipole. The error is concentrated in the region between the antenna elements as the approximation breaks down in the near-field (Appendix .8).
	10. Graphical User Interface allowing user to specify antenna element shape, size, position, and orientation. It is also capable of simulating one or two dipoles alone by user positioning in polar coordinates (Appendix .1).
	11. Various conic sections. Top left: Semicircular; Top right: Parabolic; Bottom left: Elliptical; Bottom right: Hyperbolic.
	12. An example of a finite element mesh
	13. Top left: Semicircular; Top right: Parabolical; Bottom left: Elliptical; Bottom right: Hyperbolic (Appendix .2)
	14. As the antenna moves towards the surface, the optimum angle increases and is concave down. This graph is based on (3.1) and code is found in Appendix .9.
	15. Shows that as the antenna is moved toward the surface, the optimum angle rotates so that the antenna elements will point towards the surface (Appendix .9).
	16. The antenna elements are simulated without an insulator between the elements. The polar plot displays the surface voltage. The right plot shows equipotential lines surrounding the antenna elements. The polar plot has units of Volts (Appendix .12).
	17. The antenna elements are simulated only with an insulator between the elements. The polar plot displays the surface voltage. The right plot shows equipotential lines surrounding the antenna elements. The polar plot has units of Volts (Appendix .11).
	18. An insulating material is placed below the antenna elements to act as a current reflector. The polar plot displays the surface voltage. The right plot shows equipotential lines surrounding the antenna elements. The polar plot has units of Volts (Appendix .13).
	19. Depicts the 2 planes where the slices were taken.
	20. The antenna elements are simulated without an insulator between the elements. The polar plot displays the surface voltage (Code to extract slices from FEMLab in Appendix .10).
	21. The antenna elements are simulated without an insulator between the elements. The polar plot displays the surface voltage.
	22. The antenna elements are simulated with an insulator between the elements. The polar plot displays the surface voltage.
	23. The antenna elements are simulated with an insulator between the elements. The polar plot displays the surface voltage.
	24. Results for the FEA with epoxy between the antenna elements. Top left: Semicircular Top right: Parabolical Bottom left: Elliptical Bottom right: Hyperbolic
	25. Comparison of Finite Element and Frank equation solution for (nonideal dipoles) current sources around the center. The top plots show the potential plotted on the surface of a spherical model of the head. The bottom plots show the same voltage distribution plotted on a grid (Appendix .5).
	26. Comparison of FEM and Frank equation solution for current sources near the surface. The top plots show the potential plotted on the surface of a spherical model of the head. The bottom plots show the same voltage distribution plotted on a grid.
	27. Comparison of FEM and Frank equation solution for current sheets near the surface.
	28. Finite element solution for all shapes, angles and curvatures where there is no epoxy between the elements. These results should compare well with Figure 13. The error is shown in Figure 29 (Code found in Appendix .16).
	29. Comparison of FEM and Frank equation solution for all shapes, angles and curvatures. The percent increase represents how different the finite element solution is compared to the analytical.
	30. Comparison of FEM and Frank equation solution for all shapes, angles and curvatures with epoxy. The percent increase represents how the epoxy does not allow current to short between the antenna elements and thus forces it to go around the antenna and give better surface voltages (Appendix .15).
	31. The black line shows the maximum value for each column which is confined to only one row or in other words, one value of angle (Appendix .5).
	32. Top Plot: Error. Bottom Plot: Error with a sine curve overlaid (Appendix .5).
	33. Different angles of the voltages plotted on a rectangular grid (Appendix .5).
	34. Graph shows that for an increasing conductivity difference, the solution does not change (Appendix .17) .
	35. Maximum element voltage plotted versus angle and curvature with no epoxy between the antenna.
	36. Maximum element voltage plotted versus angle and curvature with epoxy between the antenna.

	1.0 INTRODUCTION
	1.1 MOTIVATION
	1.2 THEORY
	1.2.1 Volume Conductor
	1.2.1.1 Quasi-static Assumption
	1.2.1.2 Attenuation
	1.2.1.3 Half-cell Assumptions

	1.2.2 The Finite Element Method (FEM)
	1.2.3 The Boundary Element Method (BEM)
	1.2.4 Comparison of the FEM and BEM

	2.0 METHODS : ANALYTICAL AND NUMERICAL
	2.1 CONSTRUCTION OF THE ANTENNA ELEMENTS
	2.2 ANALYTICAL METHODS
	2.2.1 Ideal Current Dipoles in an Infinite Homogeneous Medium
	2.2.2 Nonideal Current Dipoles in an Infinite Homogeneous Medium
	2.2.3 Ideal Current Dipoles in a Spherical Homogeneous Medium
	2.2.4 Nonideal Current Dipoles in a Spherical Homogeneous Medium
	2.2.5 Ideal Current Dipoles in a Four Shell Spherical Head Geometry
	2.2.6 Graphical User Interface

	2.3 NUMERICAL METHODS
	2.3.1 FEMLab

	3.0 RESULTS
	3.1 NONIDEAL DIPOLES IN A SPHERICAL MEDIUM: ANALYTICAL INVESTIGATION
	3.1.1 Investigation of Optimum Angle

	3.2 FINITE ELEMENT RESULTS: NUMERICAL INVESTIGATION
	3.2.1 Proof of Concept in 2D
	3.2.2 Proof of Concept in 3D
	3.2.3 Finite Element Analysis in 3D

	4.0 DISCUSSION
	4.1 VERIFYING ANALYTICAL AND NUMERICAL RESULTS FOR THE 1-SHELL MODEL
	4.1.1 Comparing FE with Epoxy to Analytical Solutions
	4.1.2 Basis Functions

	4.2 SAMPLING THE SURFACE OF THE SHAPES
	4.3 CONVERGENCE OF THE SOLUTION VS. CONDUCTIVITY DIFFERENCE
	4.4 IMPEDANCE

	5.0 CONCLUSIONS
	APPENDIX. MATLAB AND MEX CODE
	.1 Graphical User Interface
	.2 Shape Optimization
	.3 FE shapes creation
	.4 Four Shell Files
	.5 FE vs Frank Equation
	.6 Extracting Points FEMLab output (Ctrl-F)
	.7 Ideal vs Non-Ideal Dipoles (2D medium)
	.8 Ideal vs Non-Ideal Dipoles (3D spherical medium)
	.9 Hypothetical Angle
	.10 Extracting Points from Slices in 3D
	.11 PDE Tool Code - Epoxy
	.12 PDE Tool Code - No Epoxy
	.13 PDE Tool Code - Reflector
	.14 PDE Multishell (with epoxy)
	.15 Plotting - Epoxy with % increase from analytical
	.16 Plotting - No epoxy (FE) with % increase from analytical
	.17 Conductivity Convergence

	BIBLIOGRAPHY

