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THE GENETICS OF INSULIN RESISTANCE: ANALYSIS OF THE PEROXISOME 
PROLIFERATOR-ACTIVATED RECEPTOR PATHWAY 
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University of Pittsburgh, 2005 
 
 

Polycystic ovary syndrome (PCOS) is a heterogeneous familial disorder characterized by insulin 

resistance and an increased risk of type 2 diabetes mellitus (T2DM), a disorder with epidemic 

public health significance. The aim of this dissertation was to determine the risk of T2DM 

among Caucasian and African American women with PCOS compared to controls and to assess 

potential genetic variants that may affect development of T2DM.  T2DM was defined as a 

fasting plasma glucose level ≥ 126 mg/dL or self-report of physician diagnosis.  Genetic variants 

analyzed for association with PCOS and subclinical coronary heart disease (CHD) risk measures 

were the peroxisome proliferator-activated receptor-gamma (PPAR-γ) single nucleotide 

polymorphism (SNP) P12A, insulin receptor substrate-1 (IRS-1) SNP G972R, one novel SNP of 

lipoprotein lipase (LPL), and three novel SNPs from acetyl-CoA carboxylase-beta (ACC-β).  

Significant association of genotype frequency with PCOS was determined by Pearson’s χ2 tests.  

Generalized linear modeling was utilized to test for association of genotype with subclinical 

measures of CHD, including insulin resistance (HOMA-IR) and C-reactive protein (CRP).  The 

8-year prevalence of T2DM was 13.4% in PCOS cases and 5.8% in controls.  After adjusting for 

age and BMI, women with PCOS had an estimated 2-fold risk of developing T2DM compared to 

normal control women.  When stratified by body mass index (BMI) and controlling for age, 

PCOS cases with BMI > 35 kg/m2 were estimated to have 5x higher risk of developing T2DM.  

There were no significant associations between genotype frequencies and PCOS for Caucasian or 

African American subjects.  However, the G972R variant of IRS-1 and PCOS significantly 

interacted to affect CRP concentrations indicating that cases with the R allele had significantly 

elevated CRP compared to all other permutations of G972R and PCOS status interaction.  The 
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final CRP model explained 22% of variability in CRP concentrations.  In conclusion, the 

significant risk of T2DM attributed to women by PCOS was not explained by genetic SNPs 

analyzed here, however, a significant association of G972R and G972RxPCOS interaction with 

CRP concentrations was found, further supporting the growing body of evidence of associations 

between insulin resistance and systemic inflammation. 
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1.0 INTRODUCTION 

 
 
 
 
Polycystic ovary syndrome (PCOS) is a heterogeneous disorder characterized by chronic 

anovulation, hyperandrogenism (HA), and insulin resistance (IR).  The estimated prevalence is 

5-10% among women of reproductive age (1).  Given this high prevalence and the association of 

PCOS with an increased risk to develop coronary heart disease (CHD) and type 2 diabetes 

mellitus (T2DM), women with PCOS may represent a large, unique group of women at high-risk 

for the development of CHD.  Thus, understanding the etiology of PCOS may have a large 

public health impact for women. 

 
 
 
 

1.1 PHENOTYPIC ASPECTS OF PCOS 

 
 
Risk factors associated with PCOS (i.e., elevated cholesterol, elevated low density lipoprotein 

(LDL) decreased high density lipoprotein (HDL), and decreased insulin sensitivity) are 

associated with increased risk of developing T2DM (2, 3) and an adverse cardiovascular risk 

profile (4-6).  Talbott and colleagues (7) evaluated the age-specific CHD risk profiles in women 

with PCOS and age- and neighborhood-matched controls.  A total of 244 cases and 244 controls 

(mean age = 36 years) were compared across four specific age groups (19-24 years, 25-34 years, 

35-44 years, and 45+ years).  Compared to controls, PCOS women had substantially higher LDL 

and total cholesterol levels at each age group under 45+ years after adjustment for body mass 

index (BMI), hormone use, and insulin levels.  After age 45, little difference was noted between 

cases and controls.  Furthermore, a recent study examining carotid intima-media thickness (IMT) 

in PCOS demonstrated increased IMT in PCOS women compared to their age-matched controls 

(0.75 vs. 0.70, n = 105) (8).  These studies suggest that PCOS women exhibit significantly 
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adverse lipid and CHD risk factor profiles even at the younger ages, implying that there may be 

an underlying genetic disorder. 

In determining CHD risk factors that may be under, at least, partial genetic control, 

hyperinsulinemic IR (HI/IR) associated with PCOS may defer increased risk of CHD to women 

with PCOS (4).  (See Appendix C for an in-depth discussion of insulin action in PCOS.)  Within 

the cluster of defining characteristics of PCOS (e.g., elevated androgen levels and chronic 

anovulation), HI/IR appears to be a central mediating factor (9).  One major hypothesis of how 

HI/IR may be related to elevated rates of CHD is based on the insulin-glucose-androgen 

pathway.  Elevated insulin levels promote increased ovarian theca cell androgen secretion.  The 

resulting HA may then directly or indirectly suppress ovulation at the level of the ovary (10).  

Higher levels of insulin may also promote obesity by interfering with signaling pathways in fatty 

acid (FA) metabolism with the end result being an overweight phenotype. 

Research during the past several years has led to an explosion in the understanding of 

adipose tissue and the active role it plays in insulin sensitivity (See Appendix B for a discussion 

of Cellular Aspects of Insulin Resistance).  Thiazoladinedione compounds (glitazones) have 

insulin sensitizing effects among individuals with T2DM.  Troglitazone has been shown to 

ameliorate IR in skeletal muscle cells when present in co-culture with adipocytes (11) and to 

improve ovulation, hirsutism, HA, and IR in women with PCOS (12).  Studies have identified 

that one target molecule for the glitazones is the nuclear hormone receptor peroxisome 

proliferator-activated receptor gamma (PPAR-γ); a transcription factor activated by various FA 

and FA metabolites (PPAR-γ agonists).  The role of PPAR-γ as a critical modulator of fat cell 

differentiation and function provides a direct link between FA concentrations and the regulation 

of gene transcription in adipocytes (13).  Glitazones have two main effects on IR: (1) decreasing 

serum free fatty acid (FFA) and triglyceride levels and (2) increasing adipogenesis.  Studies have 

shown that treatment of IR rodents with potent PPAR-γ agonists increase the number of small 

(insulin sensitive) adipocytes while decreasing the number of large (insulin insensitive) 

adipocytes in white adipose tissue depots (13), thereby increasing insulin sensitivity.  Also, 

smaller white adipocytes utilize more glucose and secrete fewer FAs and less transcription 

nuclear factor alpha (TNFα), a proinflammatory cytokine, than large white adipocytes. 
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1.2 GENOTYPIC ASPECTS OF PCOS 

 
 

Clinical observations and family studies have indicated a genetic predisposition toward the 

development of PCOS and several candidate PCOS susceptibility genes have been explored with 

limited success (14-16).  Efforts to establish a definitive mode of inheritance have been 

challenging for several reasons as recently noted by Legro (17).  Firstly, PCOS is associated with 

infertility, which makes it difficult to find a large family in which PCOS is highly prevalent.  

Secondly, assigning phenotypes to certain family members (e.g., premenarchal girls, 

postmenopausal women, and men) is not straightforward and reliance of self-reported 

information may be inaccurate.  Thirdly, varying conclusions reached by different studies may 

merely reflect differences in ascertainment and disease heterogeneity.  Recent evidence suggests 

that PCOS may be autosomal dominant and studies using both genetic association and linkage 

mapping techniques have continued to examine the genetic background of potential phenotypic 

pathways often displayed in PCOS (i.e., the metabolic/gonadotropic/reproductive axis 

dysfunction).  A review of pertinent genetic studies of PCOS using both linkage and association 

techniques are reviewed in Appendix A. 

 
 
 
 

1.3 SELECTED CANDIDATE GENES 

 
 
With the exception of the IRS-1 gene, this study will focus on genes in the PPAR-γ pathway 

because this pathway has biological relevance to FA metabolism and HI/IR (18).  Research on 

the PCOS phenotype has indicated that IR may be related to abnormal signal transduction 

downstream of PPAR-γ (13). 

 Four candidate genes have been selected to be examined for association with PCOS and 

PCOS-related phenotypes.  These candidate genes are: PPAR-γ, lipoprotein lipase (LPL), acetyl-

CoA carboxylase beta (ACC-β), and IRS-1. 
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1.3.1 PPAR-Gamma 
 
 
The PPAR-γ is a receptor that binds peroxisome proliferators, such as the glitazones and FAs.  

The P12A (or Pro12Ala) polymorphism of this gene is associated with insulin sensitivity in 

various populations.  The Ala-allele of the PPAR-γ polymorphism is associated with improved 

whole body insulin sensitivity among both Swedish Caucasians (19) and middle-aged and elderly 

Finns (20).  Witchel et al. (21) found that in children and adolescent girls, the P12A 

polymorphism might be a genetic marker indicating increased risk for obesity persisting into 

adolescence. 

In contrast, Beamer et al. (22) showed that subjects with at least one Ala allele had a 

significantly higher mean BMI than subjects homozygous for the Pro allele.  Several studies 

have been published on the P12A polymorphism with conflicting results, some finding 

significant results (23, 24) and some finding no significant differences (40) between carriers of 

the P12A polymorphism and non-carriers, warranting its inclusion in this study. 

Recently, two cross-sectional studies attempted to elucidate the relationship between the 

P12A polymorphism and insulin sensitivity in women with PCOS.  Korhonen et al. (23) 

genotyped 135 PCOS-affected women and 115 healthy control subjects for the P12A 

polymorphism and found a significantly different allele distribution between cases and controls.  

PCOS cases had a significantly lower frequency of the Ala isoform.  They concluded PPAR-γ 

may play a role in the pathogenesis of PCOS and the Ala isoform is most likely protective 

against the development of PCOS.  This study supports the inclusion of PPAR-γ in the current 

research, but focused its population on Finnish women and results may have been due to 

geographic isolation.  The current study will include, not only women of other ethnicities, but 

their family members so linkage can be studied for determining mode of inheritance.  Another 

study of P12A in women with PCOS recruited 218 PCOS-affected women of varying races 

(Caucasian, African American, Hispanic, South Asian, and Middle Eastern) to examine how the 

Ala isoform influenced insulin resistance in women compared to women with the Pro allele (24).  

Twenty-eight (12.8%) of these women had the Ala allele, all in the heterozygous state.  

Nondiabetic Caucasians with an Ala allele (Pro/Ala) were more insulin sensitive than those in 

the Pro/Pro group.  The authors concluded the Ala isoform in P12A modified insulin resistance 

in Caucasian women.  One limitation of this study was the inability of the authors to use data 
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from all ethnicities originally included.  Due to the Ala allele being present in only African 

Americans, Caucasians, and Hispanics, the other ethnicities were excluded from Ala frequency 

analysis.  Due to too few subjects with the Ala allele in the African American and Hispanic 

groups, only Caucasian women were included in the Ala comparison analysis. 

 
 

1.3.2 Lipoprotein lipase 

 
 

LPL is a serine esterase expressed in adipocytes and striated muscle.  PPAR-γ selectively 

induces the expression of LPL in adipose tissue without changing its expression in muscle tissue.  

LPL is located on the luminal surface of capillary endothelial cells and is involved in lipid 

transport (Figure 1-1).  Many cell types synthesize LPL, including macrophages, skeletal muscle 

cells and cardiac muscle cells with, its highest expression level found in adipose tissue.  All these 

tissues have a high demand for fatty acids (25).  LPL’s main function is the hydrolysis of 

triglycerides in triglycerides-rich lipoproteins, such as chylomicrons and very low density 

lipoproteins (26).  The released free fatty acids (FFAs) are oxidized to generate ATP in muscle, 

re-esterified and stored in adipose tissue or are secreted in milk by the mammary gland.  Hence, 

LPL is pivotal in lipoprotein and energy metabolism 
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Figure 1-1.  Lipoprotein lipase in the blood 
(Reprinted from the internet.  No copyright.) 
 
 
 
 Glucose and long chain fatty acids (LCFAs) are competitive substrates in insulin-

dependent tissues (27) and FFAs greatly interfere with glucose utilization.  Boden et al. (28) 

demonstrated a negative dose-dependent relationship between plasma FFA concentrations and 

glucose uptake.  The reciprocal relationship between plasma FFA and insulin stimulated glucose 

uptake may be particularly important in obese patients, with therapy directed toward lowering 

high plasma FFA concentration having a beneficial effect on glucose tolerance.  Roden et al. (29) 

suggested that an increased FFA concentration causes insulin resistance by both inhibition of 

glucose transport or phosphorylation and through subsequent reduction in rates of glucose 

oxidation and muscle glycogen synthesis. 

LPL activity has been shown to increase as women enter menopause, predisposing 

postmenopausal women to gain body fat (30).  Kim et al. (31) found in their study with 

transgenic mice that induced tissue-specific overexpression of LPL caused tissue-specific IR.  In 

skeletal muscle, IR was associated with decreases in insulin-stimulated glucose uptake, while, in 

liver, IR was associated with the impaired ability of insulin to suppress endogenous glucose 
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production associated with defects in insulin activation of insulin receptor substrate-2-associated 

phosphatidylinositol 3-kinase activity.  The role of LPL has not been examined in women with 

PCOS even though it has a pivotal role in fat/energy metabolism like that similar to the PCOS 

phenotype. 

 
 

1.3.3 Acetyl-CoA carboxylase-Beta 

 
 

Acetyl-Coenzyme A carboxylase (ACC) is a complex multifunctional enzyme system 

that has not yet been studied in women with PCOS.  ACC is a biotin-containing enzyme whose 

activation increases malonyl-CoA activity, the rate-limiting step in fatty acid synthesis, and 

increases circulating FA levels.  The beta form (ACC-β) may be involved in the provision of 

malonyl-CoA or in the regulation of FA uptake and oxidation by mitochondria.  ACC-β is 

relevant to this study because it has been identified as perhaps being critical for its role in FA 

oxidation (30).  Since insulin sensitivity depends upon skeletal muscle reactivity in women with 

PCOS, ACC-β may be dysfunctional in women with PCOS and their family members. 

When FFAs are released by increased LPL activity, FA accumulates intracellularly and 

promotes beta-oxidation.  Enhanced beta-oxidation leads to an accumulation of acetyl-CoA and, 

thus, acetyl-CoA carboxylase, which then inhibits pyruvate dehydrogenase activity resulting in 

decreased glucose oxidation via the Krebs cycle (32).  This “lipid signaling model of insulin 

secretion” (33) is proposed to end in decreased insulin sensitivity, like that seen in women with 

PCOS. 

 
 

1.3.4 Insulin Receptor Substrate-1 

 
 

The IRS-1 protein functions immediately downstream of the insulin receptor.  A common 

polymorphism, G972R (or Gly972Arg), is a mild loss-of-function mutation that has been 

associated with decreased insulin sensitivity (34) and T2DM (35).  Recently, this polymorphism 

has been associated with phenotypic features of PCOS as well (34), (36).  Ibanez et al. (37) 

found that among girls with premature pubarche due to premature adrenarche, the frequency of 

this variant was increased.  Since premature pubarche precedes the development of PCOS in 
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some girls, the increased frequency of the IRS-1 variant suggests that it may play a role in 

PCOS.  Conversely, a study by Ehrmann et al. (38) of the IRS-1 polymorphism G972R found no 

association of this polymorphism with any clinical or hormonal measure in 227 nondiabetic 

Caucasian and African American PCOS cases.  However, since the G972R allelic frequencies in 

this population were 0.95(Gly) and 0.05(Arg), the ability to analyze differences in clinical or 

hormonal parameters between groups might have been severely impaired by low allele number 

in the Arg group. 

The IRS-1 gene has also been selected due to its potential interaction with PPAR-γ. 

Stumvoll et al. (39) studied the gene-gene interaction between the P12A variant of PPAR-γ and 

the G972R variant of IRS-1.  Significant increases in insulin sensitivity were found between the 

X/Ala and Pro/Pro carriers within the Arg972 background that was not present in the whole 

population or within carriers of the Gly972 background.  They concluded that both genotypes 

were modifiers of insulin sensitivity and suggested that the Ala allele of PPAR-γ becomes 

particularly advantageous within the background of the possibly disadvantageous G972R 

polymorphism and the P12A effect becomes more detectable.  Since we postulate a polygenic 

mode of inheritance, gene-gene interaction of IRS-1 and PPAR-γ is relevant to the study of 

insulin resistance in PCOS-affected women and their families. 
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2.0 RISK OF TYPE 2 DIABETES MELLITUS AND IMPAIRED GLUCOSE 
FUNCTIONING AMONG PCOS CASE AND CONTROLS SUBJECTS: RESULTS 

OF AN EIGHT-YEAR FOLLOW-UP 

 
 
 
 

2.1 ABSTRACT 

 
 
Background: Polycystic ovary syndrome (PCOS) is a heterogeneous familial disorder 

characterized by chronic anovulation, hyperandrogenism/hyperandrogenemia, and insulin 

resistance. PCOS is associated with an increased risk of developing type 2 diabetes mellitus 

(T2DM) and may be associated with an increased risk of coronary heart disease. 

Study Design: Longitudinal cohort analysis 

Specific Aims: The aim of this analysis was to determine the risk of T2DM among women with 

PCOS compared to controls over an 8-year period. 

Methods: Ninety-seven women with PCOS and 95 controls were followed prospectively and 

assessed for risk of T2DM using Kaplan-Meier survival analysis and Cox proportional hazards 

regression modeling.  Baseline measures of insulin sensitivity, blood lipids, and obesity were 

assessed as covariates of T2DM development. 

Results: At baseline, PCOS cases were significantly heavier than controls (body mass index, 

p<0.0001) and had a higher cardiovascular disease (CVD) risk profile with significantly higher 

triglycerides (p = 0.0002), lower HDL levels (p = 0.003), and higher LDL levels (p = 0.07).  

Insulin sensitivity, measured by glucose:insulin ratio (p = 0.003) and the homeostasis model of 

assessment (HOMA) (p = 0.002), was significantly lower in PCOS cases than controls.  In 

survival analysis, the 8-year event-free rate of T2DM was 86.6% in PCOS cases compared to 

94.2% in controls (p = 0.05).  After adjusting for age and BMI, women with PCOS had an 

estimated 2-fold risk of developing T2DM compared to normal control women (adj. HR=2.00, 



p=0.22).  When stratified by BMI, PCOS cases with BMI > 35 kg/m2 were estimated to be at 5.1 

times higher risk of developing T2DM (95% CI: 1.67-15.78, P=0.004), whereas PCOS women 

with BMI < 35 were at similar risk (adj. HR=1.45, P=0.56) compared to control subjects. 

Conclusions: Women with PCOS have significantly greater risk of developing T2DM compared 

to age-adjusted control women.  The risk of T2DM is 5 times greater in obese women with 

PCOS.  Thus, our results emphasize the importance of lifestyle interventions with weight loss to 

lower the risk of T2DM among women with PCOS. 
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2.2 INTRODUCTION 

 
 
Polycystic ovary syndrome (PCOS) is a heterogeneous familial disorder characterized by chronic 

anovulation, hyperandrogenism (HA), and insulin resistance (IR).  Numerous clinical studies 

have demonstrated that hyperinsulinemia and insulin resistance are central to the 

pathophysiology of PCOS. With weight loss or use of medications that decrease insulin 

resistance, insulin and androgens concentrations decrease (1).  The estimated prevalence of 

PCOS is approximately 5-10% among women of reproductive age in the United States (2). 

Women with PCOS have an increased risk to develop T2DM (3, 4).  In four studies which 

utilized oral glucose tolerance tests (OGTT) to assess for impaired glucose tolerance, the 

prevalence or incidence of T2DM was increased in women with PCOS (5-8) (See Table 2-1). 

 To date, there have been only four studies assessing incidence or prevalence of T2DM 

among PCOS cases.  Legro et al (6) cross-sectionally studied 254 women with PCOS from two 

populations (mean ages 27 and 28 years) and 80 control women (mean age 30 years).  All 

subjects underwent a standard oral glucose tolerance test (OGTT).  Overall, the authors found 

that 38.6% (n = 98) of pcos women had either impaired glucose tolerance (IGT) (31.1%) or 

T2DM (7.5%) compared to 14.0% of controls with IGT.  No controls presented with T2DM.  In 

a second cross-sectional study, Weerakiet et al. (8), the prevalence of IGT and T2DM was 

investigated among 79 Asian women with PCOS (mean age: 28 years) who were administered an 

OGTT.  Overall prevalence of IGT was 20.3% and of T2DM was 17.7%. 

 The remaining two investigations were longitudinal studies of prevalence and incidence 

of T2DM among PCOS-affected women.  Ehrmann et al. (5) investigated IR at baseline among 

122 women with clinical and hormonal evidence of PCOS by standard OGTT.  At that time, 12 

presented with non-insulin dependent diabetes mellitus (NIDDM) (9.8%).  Follow-up 

recruitment of this original cohort was conducted among women without NIDDM at baseline (n 

= 110) and 25 (23%) women from the original cohort were reassessed (mean follow-up: 2.4 

years).  Of the 25 women seen at follow-up, those who presented with normal glucose 

concentrations at baseline were distributed as follows at their second visit: 5 remained (45%) 

normoglycemic, 5 (45%) developed IGT, and 1 (9%) developed NIDDM.  Of the remaining 14 

with IGT at baseline, 3 reverted to a normoglycemic state (21%), 7 developed IGT (50%), and 4 
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developed NIDDM (29%).  Incidence rates among baseline normoglycemic subjects was 6 cases 

in 17.75 person years and among baseline IGT subjects was 4 in 10.75 person-years. 

 Norman et al (7) prospectively followed 67 PCOS cases (mean baseline age: 32.5 years) 

with normal glucose concentrations (n = 54) or IGT (n = 13) as determined by a 75-g glucose 

tolerance test (mean follow-up: 6.2 years).  Among women normoglycemic at baseline, 5 (9%) 

developed IGT and 4 (8%) progressed to NIDDM.  Among women with IGT at baseline, 7 

(54%) developed NIDDM.  Of the two incidence studies, this analysis was most similar to that 

conducted by Norman et al. in its longitudinal aspect. 

Risk factors associated with an adverse cardiovascular risk profile, i.e., elevated 

cholesterol, elevated LDL, decreased HDL, and decreased insulin sensitivity, are often observed 

in women with PCOS (9-11).  Specifically, Talbott and colleagues (12) compared the age-

specific coronary heart disease risk profiles in women with PCOS to those in age- and 

neighborhood-matched controls.  After adjustment for BMI, hormone use, and insulin levels, 

women with PCOS had substantially higher LDL and total cholesterol levels at each age group 

less than 45+ years compared to controls.  After age 45, significant differences disappeared for 

LDL and total cholesterol levels, but remained significant for other measures assessed including 

BMI, triglycerides, and blood pressure.  Furthermore, a recent study examining carotid intima-

media thickness (IMT), a phenotypic marker for atherosclerosis, in women over age 45 with 

PCOS demonstrated increased IMT in women with PCOS compared to similarly-aged controls 

(0.78 vs. 0.70; p=0.005) (13).  These studies suggest a latency effect of PCOS on adverse lipid 

and coronary heart disease risk factor profiles at relatively young ages. 

The previous two studies of incidence of T2DM have some limitations.  Neither study 

had controls by which to compare increased rates of development of T2DM among PCOS-

affected women.  Furthermore, the women in the previous studies are relatively young and may 

not yet have been exhibiting the full impact of adverse metabolic functioning of the PCOS/BMI 

interaction.  There was also a limitation of small proportions of subjects with follow-up 

assessment in both studies. 

To address these limitations, the present analysis of 97 PCOS cases and 95 age- and 

neighborhood-matched controls followed prospectively examined the time to development of 

T2DM over an 8 year time span. The natural history of PCOS is, therefore, important in 

determining the true risk of developing T2DM among PCOS-affected women.  The aim of this 
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analysis was to confirm that the risk to develop T2DM was increased in women with PCOS and 

to identify additional predictive factors. 

 
 
 
 

2.3 METHODS 

 
 
2.3.1 Subjects 
 
 
The present analysis was conducted using women recruited for the Cardiovascular Health and 

Risk Measurement Study (CHARM) (NIH NHLBI 446640-10).  The CHARM study was 

established in 1992 to investigate cardiovascular risk in women.  Due to previous doctor 

diagnosis of PCOS, the women recruited for CHARM were considered at high-risk for 

developing CVD.  Women diagnosed with PCOS between 1970 and 1993 (median age: 35.5 at 

the time of recruitment) were identified from the records of an academic reproductive endocrine 

practice located at Magee-Womens Hospital, Pittsburgh, PA.  The presumptive clinical diagnosis 

of PCOS was made if there was a history of chronic anovulation in association with either (A) 

clinical evidence of androgen excess (hirsutism) or biochemical evidence of an elevated total 

testosterone concentration (>57.64 ng/dl (2nmol/l)).  Eligible women (N = 496) were contacted 

by phone between 1992 and 1994 for a telephone interview (n = 184) and for further recruitment 

for a clinical visit (n = 312).  During that time, age (± 5 years)- and race-matched neighborhood 

control subjects were selected and recruited using a combination of voter’s registration tapes for 

1992 from the Greater Pittsburgh area and Cole’s Cross Reference Directory of Households and 

were similarly recruited.  After initial phone contact, 244 PCOS-affected women and 244 

controls completed a clinic visit where they consented to a fasting blood draw, waist and hip 

measurements, standard blood pressure assessment and a questionnaire-based interview. 

In 2001-02, 104 cases and 96 controls were re-evaluated and baseline measures were 

repeated.  Due to differential follow-up and eligibility glucose requirements for this analysis, 

matching was broken between cases and controls.  The follow-up visit included medical history 

and diagnosis of T2DM made by a physician and year of diagnosis (fasting glucose ≥ 7.0 mmol/l 
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or ≥ 126 mg/dL).  Women who failed to report a year of diagnosis (N=5) were assigned one 

occurring at midpoint between last year seen and year of follow-up through linear interpolation.  

Of the 200 women seen at follow-up, 8 (7 cases, 1 control) were excluded prior to analysis due to 

baseline-assessed physician diagnosed IDDM (n=1) or T2DM (n=3) or on the basis of baseline 

glucose > 126 mg/dl (n=2), <30 mg/dl (n=1) or missing glucose value at baseline (n=1).  Patients 

presenting with IFG (fasting glucose between 90 and <110 mg/dL) at baseline were included in 

follow-up.  The present analysis is comprised of the remaining 192 women with prospective 

follow-up data (97 cases and 95 controls).  Included in this analysis are 174 Caucasian (81 cases, 

93 controls) and 18 African American (16 cases, 2 controls) women.  Written, informed consent, 

as approved by the University of Pittsburgh Institutional Review Board, was obtained from all 

participants in this analysis. 

 
 

2.3.2 Laboratory Analysis 
 
 
All blood lipid assessments and fasting glucose were measured at the Heinz Nutrition Laboratory 

under the direction of Dr. Rhobert Evans.  The laboratory is carefully monitored and participates 

in the Centers for Disease Control standardization programs. 

 
 

2.3.2.1 Blood lipids 
High density (HDL) and low density (LDL) lipoproteins were determined after selective 

precipitation by heparin/manganese chloride and removal by centrifugation of very low density 

(VLDL) (14).  Duplicate samples, standards and control sera were included in each run.  The 

coefficient of variation between runs was 2.1%.  Triglycerides were determined enzymatically 

using the procedure of Bucolo et al. (15).  Duplicate samples, standards and control sera were 

included in each run.  The coefficient of variation between runs was 1.7%. 

 
 

2.3.2.2 Insulin and glucose measurement 
Baseline serum insulin levels were measured using competitive RIA (Diagnostic Products Corp, 

Malvern, PA) (16)).  There was no cross-reactivity with C-peptide or glucagon; however, there 
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was 40% cross-reactivity with proinsulin.  The interassay coefficient of variation range was 4.9 - 

10.0%.  Glucose was quantitatively determined by an enzymatic determination read at 340/380 

nm with a procedure utilizing the coupled enzyme reactions catalyzed by hexokinase and 

glucose-6-phophate dehydrogenase (17).  The coefficient of variation between runs was 1.8%. 

Fasting glucose and insulin were used to assess the glucose:insulin ratio (GIR) and 

homeostasis assessment model (HOMA), measures of insulin resistance.  Insulin resistance was 

defined as GIR < 4.5 mg/dl over μU/mL or an elevated HOMA score.  In HOMA, values are 

calculated from the fasting concentrations of insulin and glucose using the following formula: 

(fasting serum insulin (μU/mL) x fasting plasma glucose (mmol/L))/22.5 (18).  HOMA (μU/mL 

x mmol/L) has been shown to be significantly correlated with clamp IR in a large number of 

subjects with both normal and impaired glucose tolerance (19, 20) and with the index of 

sensitivity obtained from the fasting intravenous glucose tolerance testing among normal and 

insulin resistant volunteers, as well as diabetics (21). 

Normal glucose sensitivity was defined as a fasting glucose concentration<110 mg/dl.  

Impaired fasting glucose (IFG) was defined as a fasting glucose concentration > 110 and < 126.  

Development of T2DM from baseline (year 0) to follow-up (year 8) was defined as either 

physician diagnosis of T2DM between the initial and follow-up visits or a follow-up fasting 

glucose level > 126 mg/dl. 

 
 

2.3.3 Data analyses 
 
 
Baseline characteristics were compared between cases and controls by use of χ2 tests for 

categorical variables and Wilcoxon one-way analysis of variance for continuous variables (due to 

skewed distributions).  The cumulative incidence of T2DM was estimated by the Kaplan-Meier 

methods and compared between cases and controls by the log-rank statistic.  Cox proportional 

hazards regression was used to estimate the adjusted hazard ratio of developing T2DM in 

relation to PCOS.  Ties were handled using the Breslow statistic.  Covariates of insulin 

sensitivity in women with PCOS (i.e., age and BMI) and variables that differed in prevalence 

between cases and controls upon univariate analyses (i.e., race, systolic blood pressure) were 

evaluated for confounding, with age and BMI ultimately included in adjusted models.  Race was 

not significantly associated with insulin sensitivity and was excluded from further analysis.  
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Systolic blood pressure was not included as a covariate due to its strong correlation with BMI (r 

= 0.54; p < 0.001), and the limited number of variables efficiently controlled for given the 

sample size of 192 women.  All analyses were performed using SAS, version 8 (SAS Institute, 

Inc., Cary, NC). 

 
 
 
 

2.4 RESULTS 

 
 
2.4.1 Baseline characteristics in Women with PCOS cases and Controls 
 
 
At baseline, PCOS cases were significantly younger than controls (38.0 + 5.9 vs. 40.0 + 5.2 

years; p = 0.017), as well as heavier (BMI 31.6 + 9.6 vs. 26.2 + 6.0 kg/m2, p < 0.0001; WHR 

0.82 vs. 0.75; p < 0.0001) (Table 2-2).  Race was distributed differently among cases and controls 

with 83.5% of cases and 97.9% of controls being Caucasian (p = 0.0006).  Mean systolic blood 

pressure was significantly greater among cases than in controls (115 + 16 vs. 110 + 13 mmHg; p 

= 0.009), while diastolic blood pressure was not significantly different between women with 

PCOS and control subjects. 

Women with PCOS had significantly higher triglyceride concentrations (117 + 83 vs. 77 

+ 34 mg/dl; p = 0.0002), lower HDL concentrations (52 + 14 vs. 58 + 14 mg/dl; p = 0.003), and 

higher LDL concentrations (122 + 30 vs. 113 + 28 mg/dl; p = 0.07) suggestive of a higher CVD 

risk profile.  The age at which menses ceased was significantly lower among cases than controls 

(38.7 vs. 44.9 years; p = 0.02); the reasons for which were similar between cases (8 by surgery, 6 

natural menopause, 1 from drug therapy, and 2 via accidents) and controls (10 by surgery, 12 

natural menopause, 1 due to drug therapy, and 2 missing) (p = 0.30) (Data not shown).  Baseline 

hormone use, defined as either oral contraceptive or hormone replacement therapy, (16.5% vs. 

18.9%; p = 0.65) and rates of smoking (17.5% vs. 16.8%; p = 0.97) were similar between cases 

and controls. 

Insulin sensitivity, as measured by fasting insulin (17.1 vs. 11.6 µU/ml; p = 0.0003), GIR 

(6.3 vs. 7.8 mg/dl over µU/ml; p = 0.003), and HOMA-IR (3.6 vs. 2.4 mmol/l x µU/ml; p = 
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0.002), was significantly lower in PCOS cases than controls.  In contrast, fasting glucose levels 

were similar between PCOS women and control women (p = 0.69), a result due, at least in part, 

to the requirement that all subjects in this analysis at year 0 (baseline measurement) had a 

glucose level below 126 mg/dl. 

African American cases and controls were assessed separately for baseline characteristics 

and there were no statisitically significant differences (Data not shown).  However, it should be 

noted that larger mean values were found in African American subjects compared to the entire 

population with regard to BMI (cases: 38.9, controls: 41.5 kg/m2), SBP (cases: 126.6, controls: 

111.0 mmHg), fasting insulin (cases: 20.0, controls: 16.5 µU/ml), and HOMA-IR (cases: 4.2, 

controls: 3.5). 

 
 

2.4.2 HOMA-IR Levels Between PCOS Cases and Controls by BMI 
 
 
To investigate the relationship between HOMA-IR and PCOS status by body weight (Figure 2-1), 

subjects were categorized into three groups according to baseline BMI as follows: normal [BMI 

< 25 kg/m2], overweight and obese [25 < BMI < 35 kg/m2], and morbidly obese [BMI > 35 

kg/m2].  Whereas there was essentially no difference in HOMA scores between PCOS cases and 

controls in normal and overweight/obese women, HOMA scores were markedly, albeit non-

significantly, higher in morbidly obese PCOS women compared to morbidly obese controls. 

 
 

2.4.3 Incidence of T2DM Among Control and PCOS Case Subjects Over Time 
 
 
Among the 189 subjects with normal glucose levels (<110 mg/dl) at baseline (94 cases and 95 

controls), 10 PCOS (10/94; 10.6%; 9 Caucasian, 1 AA) and 5 control women (5/95; 5.3%; 5 

Caucasian) developed T2DM over an 8-year time span.  Additionally, 6 cases (6/94; 6.2%; 6 

Caucasian) and 2 controls (2/95; 2.1%; 2 Caucasian) developed IFG in that same time period 

(Data not shown).  All participants with IFG at baseline (N=3 cases) subsequently developed 

T2DM (100%).  In survival analysis, the overall 8-year event-free rate of T2DM was 86.6% in 

PCOS cases compared to 94.2% in controls (p = 0.05) (Figure 2-2). 
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Using baseline glucose levels to stratify PCOS case and control subjects, those subjects 

with a baseline glucose level < 85 (N= 68 and 67, respectively) had similar rates of freedom 

from development of T2DM over 8 years of follow-up (92.6% and 95.2%, respectively; p = 

0.48) (Figure 2-3, top panel).  Conversely, cases and controls with baseline glucose measurements 

≥ 85 mg/dl (N=29 and 28, respectively) had diverging rates of freedom from T2DM over the 

same follow-up.  Only 72.4% of women with PCOS were free from T2DM at follow-up 

compared to 91.6% of controls (p = 0.04) (Figure 2-3, bottom panel) indicating not only increased 

risk of developing T2DM, but the risk of developing T2DM faster than their unaffected 

counterparts. 

 
 

2.4.4 Hazard ratios of Incident T2DM by PCOS status 
 
 
Adjusting for age and BMI, women with PCOS had an estimated 2-fold risk of developing 

T2DM compared to control women (adjusted HR=2.00, 95% confidence interval (95% CI): 0.67-

5.99, P=0.22) (Table 2-3).  When stratified by baseline glucose (< 85 mg/dl; ≥ 85 mg/dl), the 

unadjusted HR was elevated in cases (HR = 4.29).  After adjustment for age and BMI, the HR 

was attenuated (HR = 2.38; p = 0.31) indicating similar risk.  Furthermore, considerable overlap 

in the relatively wide confidence intervals was consistent with the interpretation of similar risk 

when comparing PCOS case and control subjects.  In contrast, there was a strong indication that 

the effect of PCOS on developing T2DM was modified by BMI.  Compared to control subjects, 

PCOS cases with BMI > 35 were estimated to be at 5.1 times higher risk of developing T2DM 

(95% confidence interval: 1.67-15.78, P=0.004), whereas PCOS women with BMI < 35 were at 

similar risk (adj. HR=1.45, 95% confidence interval: 0.41-5.08, P=0.56).  These data indicate 

that, in women with PCOS, the risk of developing T2DM is increased in the presence of morbid 

obesity. 
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2.5 DISCUSSION 

 
 
It has been recognized that women with PCOS have an increased risk to develop diabetes.  

Incidence rates of T2DM in two prior studies were 9% (5) and 16% (7) among women with 

PCOS at baseline, regardless of basal glucose tolerance.  Even though these studies had small 

cohort sizes, the risk of developing T2DM starting from either IGT or normal glucose tolerance 

were similar to the 13.4% rate of progression found in our population. 

These analyses offer insight into the natural development of T2DM in women with PCOS 

due to both their older age at first visit (38.0 years for cases and 40.0 years for controls) and their 

length of follow-up time (8 years) (i.e., age at follow-up: cases = 46.6 + 5.98 years, controls = 

48.1 + 5.36 years; p = 0.08).  BMI as a contributing factor to development of T2DM in PCOS-

affected women, as found in this analysis, was supported in studies of both incidence and 

prevalence of T2DM (5, 7).  This study demonstrated that BMI appears to significantly interact 

with PCOS to affect risk of T2DM.  The fact that women with PCOS had substantially higher 

BMI is both a strength and limitation in these analyses as it is both a confounder and an effect 

modifier of PCOS on development of T2DM.  The inclusion of controls in this analysis allows 

interpretation of the effect of increased BMI and PCOS separately and through interaction.  

Specifically, BMI is not the only contributing factor to the development of T2DM.  Compared to 

controls (HR=1.0), while PCOS alone does confer a 50% higher risk of developing T2DM in this 

analysis, a much higher ~5.1-fold risk is observed in morbidly obese women. 

One possible explanation for the increased incidence of T2DM found in PCOS cases is 

the association of insulin resistance with polycystic ovary syndrome.  Approximately 50% to 

70% of affected women have IR (22).  Compared to the prevalence of IR found in the US 

general population that amount of insulin resistance within this subgroup results in a 2- to 4-fold 

higher risk among PCOS cases for development of IR (23), which itself is a risk factor for the 

development of T2DM. 

Another factor which may contribute to increased risk of T2DM is the hyperinsulinemia 

that co-exists with insulin resistance in PCOS-affected women.  One major hypothesis of how 

HI/IR is related to the PCOS phenotype is based on the insulin-glucose-androgen pathway.  

Elevated glucose levels may produce secondary HI in an attempt to decrease circulating glucose 
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levels.  HI may then create a state of IR by over-stimulating insulin-sensitive tissues (i.e., the 

androgen-secreting ovarian theca cell) in an attempt to produce enough insulin to subdue rising 

glucose levels at the periphery causing increased androgen production.  The resulting HA may 

then directly or indirectly suppress ovulation at the level of the ovary (24).  Androgen levels in 

women with PCOS have been positively correlated with measures of hyperinsulinemia in several 

studies (25-29) and, thus, may be associated with development of T2DM. 

The main limitation of these analyses is the small cohort size so our results from these 

analyses must be tempered.  A second limitation is the reliance of development of T2DM on 

self-reported diagnosis.  To verify accuracy of self-report, all subjects were asked to bring 

current medications with them to each clinic visit as well as being asked date of diagnosis and 

length of medication use.  Another limitation of this analysis is the inclusion of women taking 

hormones (OC/HRT). 

In summary, women with PCOS had significantly greater risk of developing T2DM compared to 

age-adjusted control women.  Risk of future development of T2DM in PCOS-affected women 

seems to be greatly modified by obesity.  Future studies of incidence of T2DM related to 

polycystic ovary syndrome should focus on larger groups of older women followed through 

premenopausal, perimenopausal, and menopausal stages of development.  In addition, our results 

suggest that extensive weight control efforts be made among women with PCOS to minimize the 

propensity to develop insulin resistance and T2DM. 
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Table 2-1. Studies of Incidence and Prevalence of T2DM Among PCOS-Affected Women 
Ehrmann (1999) (5) 
 
Objective: To 
characterize the 
prevalence and 
incidence 
of glucose intolerance 
in a cohort of women 
with PCOS. 
 

Population: 122 women with 
clinical and hormonal evidence 
of PCOS 
Methods: All women had a 
standard oral glucose tolerance 
test (OGTT) with measurement 
of glucose and insulin levels. At 
follow-up, 25 of the original 
cohort of women were 
subsequently re-evaluated to 
characterize the natural history 
of glucose tolerance in PCOS. 

Results: Glucose tolerance was abnormal 
in 55 (45%) of the 122 women with 43 
(35%) having impaired glucose tolerance 
(IGT) and 12 (10%) having NIDDM at 
the time of initial study. After a mean 
follow-up of 2.4 ± 0.3 years (range 0.5–
6.3), 25 women had a second OGTT. Of 
the 11 normoglycemic (NG) at baseline, 5 
remained NG (45%), 5 had IGT (45%) 
and 1 had NIDDM (9%).  Of the 14 
women with IGT at baseline, 3 (20%) 
became NG,7 (50%) had IGT, and 4 
(30%) had NIDDM. 

Legro (1999) (6) 
 
Objective: To 
determine the 
prevalence of glucose 
intolerance and 
parameters associated 
with risk for glucose 
tolerance among 
PCOS-affected women. 

Population: 254 PCOS women, 
aged 14-44 yr 
Methods: All women were 
prospectively evaluated at 2 
centers (n = 110) for regional 
diversity. A subset of PCOS 
women were compared to 80 
control women of similar 
weight, race, and age. 
Participants were administered 
a standard OGTT. 

Results: The prevalence of glucose 
intolerance was 31.1% impaired glucose 
intolerance and 7.5% T2DM. In non-
obese PCOS women (body mass index, 
<27 kg/m2) had 10.3% IGT and 1.5% 
T2DM. The prevalence of glucose 
intolerance was significantly higher in 
PCOS vs. control women (χ2 = 7.0; P = 
0.01; odds ratio = 2.76; 95% confidence 
interval = 1.23-6.57). 

Norman (2001) (7) 
 
Objective: To 
determine the 
prevalence of glucose 
intolerance among 
PCOS-affected women 

Population: 67 PCOS cases 
Methods: All participants 
received a standard OGTT and 
lipids assessment at baseline 
and at follow-up after an 
average time of 6.2 years. All 
women followed prospectively 
had normal glucose tolerance (n 
= 54) or IGT (n = 13) at the 
start of the study. 

Results: Change in glycemic control from 
baseline was frequent, with 5/54 (9%) of 
normoglycemic women at baseline 
developing IGT and a further 4/54 (8%) 
developing T2DM. For women with IGT 
at baseline, 7/13 (54%) had NIDDM at 
follow-up. Body mass index (BMI) at 
baseline was an independent significant 
predictor of adverse change in glycemic 
control. 

Weerakiet (2001) (8) 
 
Objective: To 
determine prevalence 
of glucose metabolism 
abnormalities in Asian 
women with PCOS and 
to assess the different 
impact of using 1985 
and 1999 WHO and 
ADA criteria for the 
diagnosis of T2DM. 

Population: 79 PCOS cases 
Methods: All women 
underwent a standard OGTT. 
Fasting insulin and testosterone 
levels were also measured. 

Results: Prevalence of IGT and T2DM 
was 22.8 and 15.2% with the 1985 WHO 
criteria, and 20.3 and 17.7% according to 
the 1999 WHO consultation criteria, 
respectively.  Using ADA criteria, fasting 
glucose levels determined a prevalence of 
6.3% for T2DM. PCOS cases with 
glucose metabolism abnormalities had 
higher BMI and elevated fasting glucose 
and 2-h post-load glucose levels than 
those with NGT. The prevalence of 
glucose intolerance was significantly 
positively associated with BMI. 
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Table 2-2. Prevalence of Baseline Characteristics Among Caucasian Subjects 
 
Baseline Characteristic 

Cases 
(N = 97) 

Controls 
(N = 95) 

P- 
Value 

Age (mean years ± SD) 38.02 (5.89) 39.97 (5.21) .017 
Body mass index (mean ± SD) 31.56 (9.55) 26.22 (6.00) <.0001 
Waist:Hip ratio .82 (.10) .75 (.06) <.0001 
Race (n) ----- ----- .0006 
     African-American 16 2 ----- 
     Caucasian 81 93 ----- 
SBP (mean mmHg ± SD) 115.40 (15.75) 109.74 (12.57) .009 
DBP (mean mmHg ± SD) 73.48 (11.23) 70.23 (7.86) .096 
Triglycerides (mean mg/dl ± SD) 116.61 (82.52) 76.51 (34.03) .0002 
HDL (mean mg/dl ± SD) 51.57 (13.93) 57.53 (14.10) .003 
LDL (mean mg/dl ± SD) 121.79 (29.61) 113.26 (27.99) .07 
Smoking (%) 17.53 16.84 .97 
Taking hormones (OC/HRT; %) 16.49 18.95 .65 
Fasting glucose (mean mg/dl ± SD) 82.29 (13.54) 81.54 (7.95) .691 
Fasting insulin (mean µU/ml ± SD) 17.09 (11.73) 11.61 (4.08) .0003 
Glucose:Insulin ratio (mean ± SD) 6.26 (2.66) 7.75 (2.20) .0003 
HOMA-IR (mean ± SD) 3.62 (3.14) 2.37 (.92) .002 
 

 25



 

Figure 2-1. Average HOMA Scores Among PCOS Cases and Controls By BMI Strata 
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Figure 2-2. Proportion of PCOS Cases and Controls Free of T2DM By Year of Follow-up 
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Figure 2-3. Proportion of PCOS Cases and Controls Free of T2DM By Year of Follow-up 
Stratified by Baseline Glucose 
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Table 2-3. Hazard Ratios of Incident T2DM by PCOS Status 
 
Subject Group 

 
N 

Incidence 
Rate 

Unadj. 
HR 

Adj. 
HR 

95% 
C.I. 

P – value 

       
All Subjects       
     Controls 95 5.8% 1.0 ----- ----- ----- 
     Cases 97 13.4% 2.66 2.00a 0.67 – 5.99 0.22 
Baseline glucose < 85       
     Controls 67 4.8% 1.0 ----- ----- ----- 
     Cases 68 7.3% 1.67 1.35a 0.30 – 6.15 0.70 
Baseline glucose ≥ 85       
     Controls 28 8.4% 1.0 ----- ----- ----- 
     Cases 29 27.6% 4.29 2.38a 0.44 – 12.91 0.31 
PCOS/BMI Interaction       
     Controls, BMI<35 85 6.4% 1.0 ----- ----- ----- 
     Controls, BMI ≥ 35 10 0% 0.0 ----- ----- ----- 
     Cases, BMI<35 64 7.8% 1.34 1.30b 0.37 - 4.56 0.68 
     Cases, BMI ≥ 35 33 24.2% 4.67 4.61b 1.50 – 14.15 0.008 
       
     All Controls 95 5.8% 1.0 ----- ----- ----- 
     Cases, BMI < 35 64 6.0% 1.49 1.45b 0.41 – 5.08 0.56 
     Cases, BMI ≥ 35 33 21.3% 5.20 5.14b 1.67 – 15.78 0.004 
 

aAdjusted for age, body mass index 

bAdjusted for age 
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3.0 GENE EFFECTS OF ACETYL-COA CARBOXYLASE BETA AND LIPOPROTEIN 
LIPASE AMONG WOMEN WITH POLYCYSTIC OVARY SYNDROME: NO 

EVIDENCE OF AN ASSOCIATION 

 
 
 
 

3.1 ABSTRACT 

 
 
Introduction: One potential mechanism leading to insulin resistance is ectopic fat storage of fat in 

muscle and liver.  Since one characteristic of women affected by polycystic ovary syndrome 

(PCOS) is insulin resistance, we speculated that genetic variants in genes encoding proteins 

involved in fat metabolism could be considered as candidate genes for PCOS.  Genes included in 

these analyses are the P12A variant of PPAR-γ, the G972R variant of insulin receptor substrate-

1, three single nucleotide polymorphisms (SNPs) of acetyl-coA carboxylase beta (ACC-β), and 

one SNP of lipoprotein lipase (LPL). 

Methods: DNA was assessed for 305 Caucasian and African American (AA) PCOS cases and 

controls (148 PCOS, 157 controls).  Case and control frequencies for each allele, P12A/G972R 

combinations and the ACC-β gene were computed and compared by use of χ2 tests.  Linkage 

disequilibrium within the ACC-β locus was calculated for all pairs of SNPs.  A non-parametric 

T5 statistic was used to test for significant ACC-β haplotype frequency differences between 

cases and controls. 

Results: There were no significant differences in allele frequency for any genotypes between 

Caucasian cases and controls.  However, the G194216A variant of ACC-β allele frequency was 

significantly different among AA cases and controls.  Linkage disequilibrium was significant 

between two ACC-β SNPs, T204540C and G194216A in both Caucasian and AA subjects.  

When comparing PCOS cases to same race controls, ACC-β haplotype frequencies were 

similarly distributed.  However, not surprisingly, the distribution of ACC-β haplotype 
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frequencies were significantly different between AA and Caucasian subjects (p<0.001).  When 

comparing the P12A/G972R combinations, only the Ala/Ala genotype/Gly/Gly genotype 

combination presented with a potential association (OR=4.37; 95% CI: 0.42 – 216.99) in 

Caucasian subjects, but was too rare (4 cases and 1 control) to truly assess its impact. 

Discussion: Allele frequencies for P12A, G972R, ACC-β SNPs (T204540C, G194216A, and 

G263491A), and LPL SNP A7634966C were not significantly different between controls and 

PCOS-affected women.  There were also no significant associations of the ACC-β haplotype or 

P12A/G972R combined genotypes with PCOS.  Future studies may be necessary to validate the 

results of this study, especially regarding ACC-β whose effects on PCOS merit further study. 
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3.2 INTRODUCTION 

 
 

Polycystic ovary syndrome (PCOS) is characterized by chronic anovulation, 

hyperandrogenism (HA), and insulin resistance (IR).  Affected women may be obese and 

manifest dyslipidemia.  One hypothesis for causal mechanisms leading to decreased insulin 

sensitivity in humans is ectopic fat storage of lipids in skeletal muscle or liver rather than just 

adipose tissue.  This theory is based on findings of increased triglyceride content in the 

skeletal muscle of subjects with obesity or type 2 diabetes (T2DM) (1) as well as increased 

intramuscular triglyceride levels found in non-obese, insulin resistant, first-degree relatives of 

type 2 diabetics (2).  These results suggest that fat deposition within skeletal muscle may be 

an early change in body composition associated with insulin resistance, obesity and type 2 

diabetes rather than a later development resulting from excess adiposity.  The similar 

phenotype (i.e., abdominal obesity, insulin resistance, and elevated lipid levels) shared by 

polycystic ovary syndrome and T2DM raises the possibility that ectopic fat storage occurs in 

women with PCOS as well as type 2 diabetics. 

Since PCOS is a familial disorder, genes associated with lipogenesis are of interest 

due to their potential connection with both fat deposition and insulin sensitivity.  The 

peroxisome proliferator-activated receptor gamma (PPAR-γ) is a nuclear transcription factor 

activated by thiazoladinediones (TZDs) and specific fatty acids (3).  This factor plays a major 

role in adipogenesis and influences fatty acid metabolism and insulin 

resistance/hyperinsulinemia (4).  Once activated, it heterodimerizes with the retinoid X 

receptor and binds to the peroxisome proliferator receptor elements of DNA to promote 

transcription of numerous target genes (5).  PPAR-γ2 is expressed in adipose tissue where it 

plays a key role in regulation of adipogenic differentiation (6) and energy storage (5).  The 

loss-of-function P12A polymorphism of PPAR-γ2 has been studied in association with T2DM 

in several populations with inconsistent findings.  Reports suggest an association of decreased 

risk of T2DM in carriers of the P12A variant (7), an association of increased risk of 

development of T2DM among P12A carriers (8, 9) or a lack of association of the P12A 

variant with T2DM (10-14). 
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Studies published on the association of the P12A polymorphism with PCOS (15, 16) 

have also been inconclusive.  Korhonen et al. (16) genotyped 135 PCOS-affected women and 

115 healthy controls from Finland for the P12A polymorphism and found a significantly 

different allele distribution between cases and controls.  PCOS cases had a significantly lower 

frequency of the Ala isoform.  They concluded PPAR-γ2 may play a role in the pathogenesis 

of PCOS and the Ala isoform is most likely protective against the development of PCOS.  

Conversely, Orio et al. (15) investigated the P12A polymorphism in 100 PCOS-affected 

women and 100 controls from Italy matched for age and body mass index and found no 

association with PCOS.  The inconsistency of these studies supports further investigation of 

the potential role of the P12A variant of PPAR-γ2 among women with PCOS. 

A common polymorphism of the insulin receptor substrate-1 (IRS-1), G972R, is a 

mild loss of function mutation that has been associated with decreased insulin sensitivity (17), 

T2DM (18), and PCOS (17, 19).  Furthermore, the P12A and G972R genotypes may interact 

to effect insulin sensitivity.  Stumvoll et al. (20) studied the gene-gene interaction between the 

P12A variant of PPAR-γ and the G972R variant of IRS-1 among 318 normoglycemic, 

unrelated volunteers.  Insulin sensitivity was significantly greater in individuals carrying the 

heterozygous or homozygous Ala allele versus Pro/Pro homozygotes (p=0.01) when 

compared within the X/Arg background.  This association was not observed in the whole 

population or within the Gly/Gly background.  The authors concluded that the Ala12 allele of 

PPAR-γ may become particularly advantageous in individuals with decreased insulin 

sensitivity, i.e., heterozygous or homozygous carriers of the Arg allele.  Unlike previous 

investigations of P12A and G972R genotype frequencies among women with polycystic 

ovary syndrome, this study includes separate analyses of Caucasian and African American 

women with PCOS and control subjects. 

Lipoprotein lipase (LPL), a serine esterase expressed in adipocytes and striated 

muscle, plays a pivotal role in fat and energy metabolism.  LPL’s main function is the 

hydrolysis of triglycerides in triglyceride-rich lipoproteins, such as chylomicrons and very 

low density lipoproteins (21).  Genetic variants of the LPL gene have been associated with 

risks for components of the metabolic syndrome (22).  The potential role of the LPL gene has 

not been examined in women with PCOS. 
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Thiazoladinediones produce their insulin sensitizing effects partly by inducing 

mitochondrial carnitine palmitoyl transferase 1 (CPT1) activity (23).  CPT1 activity is 

increased through the inhibition of malonyl-CoA, which itself can play a pivotal role in 

glucose-sensitive insulin secretion.  Acetyl-Coenzyme A carboxylase (ACC) is a complex 

multifunctional enzyme system resulting in increased activity of malonyl-CoA, the rate-

limiting step in fatty acid synthesis.  The beta form (ACC-β) may be involved in the provision 

of malonyl-CoA or in the regulation of fatty acid uptake and oxidation by mitochondria and 

is, thus, critical for its role in fatty acid oxidation (24).  A loss-of-function mutation in the 

ACC-β gene could potentially increase overall insulin sensitivity through decreased malonyl-

CoA production, as is seen in TZD treatment.  Since insulin resistance is prevalent among 

PCOS-affected individuals, genetic variants of the ACC-β gene may be associated with 

PCOS.  Furthermore, it has been postulated that insulin resistance may be related to gene 

transcription downstream of PPAR-γ (25), such as the LPL and ACC-β genotypes selected for 

this analysis. 

The specific aims of this analysis are 1) To test the association of P12A of PPAR-

gamma, G972R of IRS-1, ACC-β SNPs (G263491A, T204540C, and G194216A) and LPL 

SNP A7634966C with polycystic ovary syndrome among Caucasian and African American 

case and control subjects; 2) to evaluate the association of the ACC-β haplotype with 

polycystic ovary syndrome among Caucasian and African American case and control 

subjects; and 3) to examine the association of P12A/G972R interaction among Caucasian and 

African American polycystic ovary syndrome cases and controls. 

 
 
 
 

3.3 METHODS 

 
 
3.3.1 Subjects 
 
 
The present analysis was conducted using women recruited for the Cardiovascular Health and 

Risk Measurement Study (CHARM).  The CHARM study was established in 1992 to 
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investigate the effect of polycystic ovary syndrome on cardiovascular risk factors and 

associated disease (CVD) in women.  Due to previous medical diagnosis of PCOS, the 

population of women recruited for CHARM were considered at high-risk for developing CVD.  

Women diagnosed with PCOS between 1970 and 1993 who were at least 30 years of age at the 

time of recruitment were identified from the records of an academic reproductive endocrine 

practice located at Magee-Womens Hospital, Pittsburgh, PA.  The clinical diagnosis of PCOS 

was made if there was (1) a history of chronic anovulation in association with either (A) 

clinical evidence of androgen excess (hirsutism) or biochemical evidence of an elevated total 

testosterone concentration (>57.64 ng/dl (2nmol/l)) or (B) a ratio of luteinizing to follicle 

stimulating hormone > 2.0.  Eligible women were contacted by phone between 1992 and 1994 

for a telephone interview and for further recruitment for a clinical visit.  During that time, age 

(± 5 years)- and race-matched neighborhood control subjects were selected using a combination 

of voter’s registration tapes for 1992 from the Greater Pittsburgh area and Cole’s Cross 

Reference Directory of Households and were similarly recruited.  After initial phone contact, 

244 PCOS-affected women and 244 controls completed a clinical visit where they received a 

fasting blood draw, waist and hip measurements, standard blood pressure assessment and a 

questionnaire-based interview. 

In 1996-1999, the same population of women was re-contacted for a second clinical 

visit also including a fasting blood draw, waist and hip measurements, standard blood pressure 

assessment and a questionnaire-based interview.  Of the original 488 women seen between 

1992 and 1994, 335 were enrolled for a second clinical visit.  At this second visit, 329 women 

consented to a blood draw for DNA analysis.  After genomic DNA extraction, 24 samples were 

devoid of leukocytes and were unusable for further analyses.  The present analysis is comprised 

of the remaining 305 follow-up visit women (148 cases and 157 controls), of which 252 were 

Caucasian and 53 were African American.  All participants gave written, informed consent as 

approved by the Institutional Review Board of the University of Pittsburgh. 
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3.3.2 Genotype Analyses 

 
 
Genomic DNA was assessed for blood samples drawn from 305 CHARM study case and 

control subjects seen at the second visit between 1996 and 1999.  Buffy coats were collected 

from 20 cc whole blood from each CHARM individual seen at the second visit and 

immediately frozen at –80° C at the University of Pittsburgh, Graduate School of Public 

Health, Heinz Nutrition Laboratory.  Genomic DNA was subsequently extracted in 2004 using 

established methods (26), and was available on 305 individuals.  Ambiguous samples were 

analyzed a second time.  PPAR-γ variant P12A: Molecular genetic analysis of PPAR-γ variant 

P12A was performed using the polymerase chain reaction (PCR) primers, sense (5’-

GGCCAATTCAAGCCCAGTC-3’) and anti-sense (5’-GATATGTTTGCAGACA-

GTGTATCAGTGAAGGAATCGCTTTCCG-3’), producing a 270-bp PCR product.  Carrier 

status of the P12A variant of the PPAR-gamma gene was determined by restriction fragment 

length polymorphism (RFLP) analysis (27).  IRS-1 variant G972R: Genetic analysis of the 

IRS-1 variant G972R was performed using PCR primers sense (5’-CTTCTGTCAG-

GTGTCCATCC-3’) and anti-sense (5’-TGGCGAGGTGTCCACGTAGC-3’).  Identification of 

the IRS-1 variant G972R involved BstNI restriction enzyme digestion of a 262-bp PCR 

product.  Carrier status of the G972R variant of the IRS-1 gene was determined by restriction 

fragment length polymorphism (RFLP) analysis (28).  ACC-β: Three SNPs were identified 

from the ACC-β gene located on chromosome 12.  PCR primers for these novel SNPs were as 

follows: SNP rs2268403 (A/G) (sense – AGGGAAGAGGCCATTTCGTTGGTA-3’ and anti-

sense – 5’-GGGTTCTTGGCTGT-GAACCAAACA-3’), SNP rs2268393 (C/T) (sense – 5’-

TGCCA-GTTGCACAGAATTCCAA-CC-3’ and anti-sense 5’-ACAATGGGAACAGCT-

ACACCACCT-3’), and SNP rs3742023 (A/G) (sense – 5’-ATTACCTTGCTCGTCC-

TGTCACCA-3’ and anti-sense – 5’-TATGAGGTTAAAGCCAGGCTGTCC) were identified 

and created using the Primer Quest primer creation program on Integrated DNA Technologies 

website (www.idtdna.com).  Thermocycling conditions for all ACC-β SNPs were 94°C for 3 

minutes, followed by 30 cycles of 94°C for 30 seconds, 60°C for 30 seconds, 72°C for 1 

minute, finalized by a 7 minute soak at 72°C.  Restriction enzymes used for each SNP were 

EarI, AfeI, and NcoI, respectively (New England Biolabs, Inc., Beverly, MA).  PCR 

thermocycling of ACC-β variant rs2268403 created a 474-bp product in which an EarI 
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restriction site presented concurrently with the G  A change at nucleotide 194216 to generate 

the G194216A mutation (rs2268403).  After EarI digestion at 37°C for 2 hours and 3% agarose 

gel electrophoresis, the expected product sizes were 368 and 106 bp for the G194216 variant; 

368, 199, 169, and 106 bp for the heterozygote; and 199, 169, and 106 for G194216A (Figure 

3-1). After thermocycling of ACC-β SNP rs2268393, the PCR product was 225-bp and the 

sequence contained an AfeI restriction site introduced by the T  C variant at nucleotide 

204540 to generate the T204540C mutation.  Digestion by AfeI (37°C for 2 hours) produced the 

expected lengths of 225 bp for the T204540; 225, 118, and 107 bp for heterozygotes; and 118 

and 107 bp for the T204540C mutation (Figure 3-2). PCR thermocycling of ACC-β SNP 

rs3742023 created a 213-bp fragment containing an NcoI restriction site introduced by the G  

A change at nucleotide 263491.  Expected product sizes were 213 for the G263491 

homozygous; 213, 150, and 63 for the heterozygote; and 150 and 63 for the G263491A 

mutation (Figure 3-3). LPL: One SNP on the lipoprotein lipase gene on chromosome 8 was also 

analyzed.  LPL SNP rs3735964 was assessed by PCR thermocycling with Primer Quest primers 

identified and created by Integrated DNA Technologies sense (5’-

TGCAATGAGCCAGATGGAGTACCA-3’) and anti-sense (5’-TGCTGAAGGACA-

ACACACATGCAG-3’).  PCR thermocycling of rs3735964 created a 237-bp product in which 

an EarI restriction site presented concurrently with the A  C change at nucleotide 7634966 to 

generate the A7634966C mutation.  After EarI digestion at 37°C for 2 hours and 3% agarose 

gel electrophoresis, the expected product sizes were 237 bp for the A7634966 variant; 237, 

167, and 70 bp for the heterozygote; and 167 and 70 bp for A7634966C (Figure 3-4). 

 
 
3.3.3 Data analyses 

 
 

Allele frequencies: Allele frequencies for each SNP were computed by gene counting and 

compared between cases and controls by use of χ2 tests.  Genotype conformation to Hardy-

Weinberg equilibrium proportions were tested using Fisher’s exact test.  All single nucleotide 

polymorphisms in this study were in Hardy-Weinberg equilibrium (http://ihg.gsf.de/cgi-

bin/hw/hwa1.pl).  Haplotype estimation: Linkage disequilibrium, or D′, was calculated using 

the R/Genetic Analysis Package for all pairs of SNPs within the ACC-β locus.  Subsequently, 
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haplotype frequencies for ACC-β were estimated using the PHASE software program (29, 30) 

and tested for significant difference between same-race cases and controls using χ2 tests.  

PHASE uses the expectation-maximization algorithm to obtain maximum-likelihood 

estimates of haplotype frequencies.  The association of pairwise comparisons of ACC-β SNPs 

in case and control subjects was tested using Fisher’s exact test (31, 32).  Haplotypes are 

described here by a three-digit code, where the first digit indicated the allele present in 

T204540C, the second indicated G194216A, and the last referred to G263491A.  A “0” in 

T204540C meant the estimated allele present was a “T” and a “1” represented a “C”.  In 

G194216A and G263491A, a “0” represented a “G”, and a “1” indicated an “A” allele.  For 

example, an ACC-β haplotype of “100” meant that the subject has the “C” allele for 

T204540C, a “G” allele for G194216A, and a “G” allele for G263491A.  Association 

analyses: A non-parametric T5 statistic, which is implemented in the EH program (33, 34), 

was used to test for significant differences in haplotype frequencies between cases and 

controls (35).  To compute T5, EH was run separately for cases, for controls, and for cases 

and controls combined.  Each run produced a log-likelihood, the combination of which is used 

to compute the T5 statistic.  Under the hypothesis of allowable allelic association, T5 is 

defined as 2[ln(Lcase) + ln(Lcontrol) – ln(Lcombined)], and has an approximate χ2 distribution with 

df equal to number of haplotypes tested.  StatXact was used to test for significance between 

ACC-β haplotype combinations among PCOS cases and controls and to calculate odds ratios 

with 95% confidence intervals. 

 
 
 
 

3.4 RESULTS 

 
 
3.4.1 Estimated Allele Frequencies Among Caucasian and AA Subjects 
 
 

As can be seen from Table 3-1, there were no significant differences in allele frequency 

between cases and controls among Caucasian subjects.  Among African American subjects, 

the G194216A SNP of ACC-β was borderline statistically significant (p=0.05) with 100% of 
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cases compared to 91% of controls having the more common G allele.  There were no other 

significantly different allele frequencies between African American cases and control 

subjects. 

 
 

3.4.2 Linkage Disequilibrium between ACC-Beta SNPs 
 
 

When assessing LD between the three ACC-β SNPs, T204540C and G194216A seemed to 

have significant linkage in both Caucasian and African American subjects (Table 3-2). D′, the 

standardized measure of linkage disequilibrium, for T204540C and G194216A was 0.969 

among Caucasians and 0.998 among African Americans. 

 
 

3.4.3 Estimated haplotype frequencies for ACC-Beta 
 
 

When comparing women with PCOS to control women of the same race, ACC-β haplotype 

frequencies showed similar distribution (Table 3-3). The most common haplotype among 

Caucasian cases and controls and African American cases was 010 for G194216A, 

T204540C, and G263491A, respectively, with 36.1% of Caucasian cases, 37.2% of Caucasian 

controls, and 50.3% of African American cases with the observed haplotype.  Among African 

American controls, the 000 haplotype was most common and was observed in 35.4% of this 

subgroup, while the 010 haplotype was found in 34.8%.  The 111 haplotype, though 

represented in this table was not found in any individuals. 

Even though haplotype distributions were not significantly different between same-

race cases and controls, the distribution of haplotype frequencies were significantly different 

between African American and Caucasian subjects (p<0.001), which was not unexpected 

given the common finding that genotype frequencies often vary between individuals of 

different ethnic backgrounds. 
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3.4.4 The Association of ACC-Beta Haplotypes with PCOS 
 
 

Among Caucasian and African American subjects, there were no significant 

associations of any ACC-β haplotype with polycystic ovary syndrome (Table 3-4). A potential 

association of the 010/010 haplotype combination was present among African American 

women only (OR=5.56; 95% CI: 0.92 – 57.95), but failed to reach significance due to the 

small sample of African American women in this analysis and the rarity of the haplotype (8 

cases and 2 controls).  When testing for an overall association of the ACC-β haplotype with 

polycystic ovary syndrome using results from EH program analysis (Table 3-5), there was  

no evidence of an association among Caucasian (p = 0.50) or African American women  

(p = 0.25). 

 
 

3.4.5 The Interaction Between P12A and G972R genotypes with PCOS 
 
 

The P12A variant of the PPAR-gamma gene and the G972R variant of the IRS-1 gene 

combinations were analyzed to determine if an interactive effect of their combined genotypes 

was present when comparing PCOS-affected women and control subjects (Table 3-6). The 

Pro/Pro and Pro/Ala genotypes did not seem to have any interactive effect with the IRS-1 

gene in association with PCOS within Caucasian or African American subjects.  The Ala/Ala 

genotype/ Gly/Gly genotype combination may have a potential association (4.37 (0.42 – 

216.99)) with PCOS within Caucasian subjects, but was too rare (4 cases and 1 control) for 

this analysis to truly assess its impact.  Within African American participants, there were no 

significant differences between the combination genotype frequencies in comparing PCOS 

cases and controls, but it is noteworthy that the combined P12A/G972R genotype frequencies 

seemed to be distributed differently between Caucasian and African American subjects. 
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                           3.5 DISCUSSION
 
 
In summary, allele frequencies for P12A, G972R, the three ACC-β SNPs (T204540C, 

G194216A, and G263491A), and LPL SNP A7634966C were not significantly different 

between controls and PCOS-affected women.  There were also no significant associations of 

the ACC-β haplotype or combinations of ACC-β haplotypes with PCOS.  Furthermore, the

 P12A and G972R combined genotypes frequencies did not seem to interact with case/control status.  

Significant results in previous studies could have been due to differing PCOS diagnostic criteria.

due to differing PCOS diagnostic criteria. 
The potential for association of PCOS with PPAR-γ and associated genes was 

grounded not only in the significant findings of similar studies among diabetic populations (7, 

36), but also upon knowledge of cellular mechanisms by which insulin resistance may occur; 

insulin resistance greater than anticipated for BMI is typical for women with PCOS.  

Although the precise molecular mechanism responsible for insulin resistance in obesity 

remains to be elucidated, current evidence suggests that elevated free fatty acids are major 

players in this association.  Evidence for this association is comprised from various sources, 

as follows: 1) most obese people have elevated FFA plasma levels (37, 38) and 2) both 

chronic and acute (39-42) plasma FFA elevations produce acute insulin resistance.  One 

hypothesis to explain the relationship between FFAs and insulin resistance is that ectopic fat 

storage of fat impairs insulin signaling (43-46).  Results of studies have suggested that FFA 

may produce insulin resistance by protein kinase C activation and this may occur via 

serine/threonine phosphorylation of the insulin receptor and/or IRS-1, which has been shown 

to inhibit insulin signaling.  Using the hypothesis of intramuscular triglyceride stores as a 

marker of insulin resistance, an association between the IRS-1 loss-of-function mutation is not 

unexpected among women with PCOS, especially given the strong genetic basis for its 

development as demonstrated by family studies (47-52) and presence of insulin resistance 

among lean women with PCOS (53-56). 

PPAR-γ has a central role in adipogenesis (57-59) based on two main processes.  It 

functions as a transcription factor that alters expression of genes involved in adipogenesis and 

energy metabolism.  As such, it promotes increased expression of target genes that promote 

fatty acid trapping and storage in adipocytes, such as fatty acid binding protein (59), LPL 
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(60), and acyl-CoA synthase (61).  Among other actions, it also represses genes that induce 

lipolysis and the release of fatty acids, such as the beta3-adrenergic receptor (62) and 

cytokines leptin (63, 64) and TNF-α (65, 66).  These results can be supported by the 

demonstrated effects of TZDs on PPAR-γ activation (67, 68).  Treatment with TZDs seems to 

favor redistribution of white adipose tissue, with decreased visceral depots relative to 

subcutaneous fatty regions (67-70).  This fat cell redistribution includes a shift in the cell type 

population resulting in more small adipocytes and fewer large, insulin insensitive adipocytes 

(71-73).  By decreasing insulin resistance through use of TZDs, androgen concentrations 

decrease leading to ovulation and fertility in women with PCOS.  The PCOS phenotype seems 

to be intricately bound to fatty acid metabolism through the PPAR-gamma pathway.  The 

several unsuccessful attempts to identify a “PCOS gene” has led to reconsideration of PCOS 

as a polygenic multifactorial disorder with phenotypic and genotypic heterogeneity. 

As one gene whose transcriptional activity is regulated by PPAR-gamma, LPL 

expression is attenuated through hormones, notably insulin, and this directly impacts fatty 

acid utilization (74, 75).  Specifically, fasting promotes decreased LPL activity in adipose 

tissue and increased activity in cardiac tissue, while feeding causes increased adipose enzyme 

and decreased muscle LPL (75-77).  LPL expression and variants affecting its expression are 

further regulated by disease states, notably atherosclerosis and diabetes (78-80, 83).  

Transcriptional control of LPL also impacts fatty acid usage.  Metabolites that induce LPL 

gene transcription include the peroxisome proliferator’s response element in liver and adipose 

tissues and in macrophages in response to fibrates, some fatty acids, glucose, and TZDs (60, 

79, 81).  Decreased LPL activity has been seen in individuals with type 2 diabetes and insulin 

resistance (82-85).  Furthermore, the resultant decrease in LPL activity contributes to 

hypertriglyceridemia, decreased HDL levels, and increased risk of coronary heart disease 

(86).  Since LPL is regulated by diabetes as well as other diseases, a mutation affecting the 

activity of the LPL gene would not be surprising among PCOS-affected women.  This 

analysis did not find such an effect, but it cannot be ruled out as only one SNP was used to 

test our hypothesis. 

A second, complementary theory of how obesity impacts insulin sensitivity is as a fuel 

partitioning disorder.  According to Neel’s hypothesis of the thrifty genotype (87), the ability 

to store excess energy was advantageous in ancestral societies subjected to periods of 
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starvation.  This hypothesis purports that multiple cellular mechanisms are present to sense 

increased availability of food and to trigger biological responses designed to most efficiently 

store energy.  Malonyl-CoA has been identified as a biochemical sensor (88) believed to 

switch from fatty acid to glucose oxidation.  During states of high concentrations of glucose 

and insulin, malonyl-CoA accumulation inhibits CPT1 and reduces lipid oxidation, preferring 

lipid storage into triglycerides.  By virtue of the effect malonyl-CoA on LCFA transport into 

mitochondria, it has been shown to regulate intracellular FA oxidation in several tissues, 

including the liver (89), muscle (90), the pancreatic beta-cell (91), and endothelium (92) and 

probably works similarly in the adipocyte (93) and the central nervous system.  ACC-β has a 

direct link to fatty acid utilization through its control over malonyl-CoA production.  Its 

indirect relationship with PPAR-gamma through CPT1 makes it highly feasible as a candidate 

gene affecting expression of the PCOS phenotype, yet an effect of ACC-β was not seen in this 

population.  This was the first study to associate ACC-β with PCOS and we found that it 

seemed not to be associated with case status among Caucasians.  There was a borderline 

significantly higher allele frequency for the common G allele of the G194216A SNP among 

African American cases compared to controls (1.00 vs. 0.91), a result due to the absence of 

the less common allele among cases.  Furthermore, the ACC-β haplotype had no association 

with PCOS demonstrating an overall lack of association.  Results from this population 

regarding the ACC-β gene will need to be validated before conclusions can be reached, 

especially for the G194216A polymorphism. 

The main limitation of this analysis was the lack of power needed to detect a 

difference in allele frequencies among PCOS cases and controls.  The lack of significance 

found between cases and controls for all genotypes could be more due to small sample size 

than an actual lack of significance.  Furthermore, the sample size could prevent detection of a 

minor weak effect.  Using these analyses most common allele frequencies, the current sample 

size of Caucasian subjects had 67% power to detect a 15% allele frequency difference 

between cases and controls and 37% power to detect a 10% difference in allele frequencies.  

The borderline significant 9% difference in allele frequency between African American cases 

and controls had a 10% power to detect, suggesting this result may need to be repeated in a 

larger population for validity.  Future studies may be necessary to validate the results of this 

study, especially regarding ACC-β whose effects on PCOS merit further study. 
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Figure 3-1. Gel electrophoresis of ACC-Beta SNP G194216A 
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Figure 3-2. Gel electrophoresis ACC-Beta SNP T204540C
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Figure 3-3. Gel electrophoresis of ACC-Beta SNP G263491A 
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Figure 3-4. Gel electrophoresis of LPL SNP A7634966C 
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Table 3-1. Estimated Allele 1 Frequencies in Caucasian and AA PCOS Cases and Controls 

 
Allele 1 Frequency (N) In Caucasian subjectsb 

SNP Cases       
(n = 244) 

Controls  
(n = 260) 

χ2(a) P-value 

PPAR-γ (P12A) 0.80 (196) 0.81 (210) 0.93 0.62 
IRS-1 (G972R) 0.92 (225) 0.93 (242) 1.88 0.45 
ACC-β (G263491A) 0.68 (166) 0.67 (173) 0.64 0.73 
ACC-β (G194216A) 0.83 (202) 0.82 (213) 0.77 0.69 
ACC-β (T204540C) 0.55 (134) 0.54 (141) 0.07 0.98 
LPL (A7634966C) 0.91 (221) 0.90 (234) 1.65 0.56 

Allele 1 Frequency (No./Total) In African American subjectsb 

SNP Cases        
(n = 52) 

Controls  
(n = 54) 

χ2(a) P-value 

PPAR-γ (P12A) 0.96 (50) 0.98 (53) 0.39a 0.61 

IRS-1 (G972R) 0.94 (49) 0.87 (47) 1.52 0.58 
ACC-β (G263491A) 0.81 (42) 0.78 (42) 0.5 0.88 
ACC-β (G194216A) 1.00 (52) 0.91 (49) 5.32a 0.05 

ACC-β (T204540C) 0.60 (31) 0.50 (27) 1.14 0.58 
LPL (A7634966C) 0.90 (47) 0.91 (49) 0.004 1.00 

 
a. Pearson χ2 used instead of Fisher’s exact for χ2 value only 
b. Allele 1 defined as most common allele - The ACC-β single nucleotide polymorphisms 

(G263491A, G194216A, and T204540C) were also assessed for their most common 
allelic frequencies (G, G, and C, respectively) and were not found to be significantly 
different between case and control subjects (p = 0.73, p = 0.69, and p = 0.98, 
respectively).  The LPL SNP, A7634966C, was similarly distributed between PCOS 
cases and controls with 91% of cases and 90% of controls having the more common C 
variant (χ2 = 1.65; p = 0.56). 
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Table 3-2. Pairwise Linkage Disequilibrium between ACC-Beta SNPs in Caucasian 
Subjects 

 
Caucasian   African American 
PCOS Controls   PCOS Controls   

Pairwise 
Comparison 

P-value P-value D′ 
  

P-
value 

P- value D′ 

G263491A vs. 
G194216A 

0.18 0.83 0.329   ----- 1.00 0.027

G263491A vs. 
T204540C 

0.99 0.62 0.055   0.3 0.25 0.011

G194216A vs. 
T204540C 

<0.0001 <0.0001 0.969   ----- 0.36 0.998

 
P-values determined using Two-sided Fisher’s Exact test 
D’ calculated using R/gap 
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Table 3-3. Estimated ACC-Beta Haplotype Frequencies in Caucasian and AA Subjects 

 
ACC-β Haplotypes Caucasian 

Case 
Frequencies 

(n=122) 

Caucasian 
Control 

Frequencies 
(n=130) 

G194216A T204540C G263491A     
0 0 0 0.182 (22) 0.170 (22) 
0 0 1 0.107 (13) 0.108 (14) 
0 1 0 0.361 (44) 0.372 (48) 
0 1 1 0.177 (22) 0.169 (22) 
1 0 0 0.128 (16) 0.118 (16) 
1 0 1 0.033 (4) 0.061 (8) 
1 1 0 0.009 (1) 0.001 (0) 
1 1 1 0.001 (0) 0.001 (0) 

 AA Case 
Frequencies 

(n=26) 

AA Control 
Frequencies 

(n=27) 

0 0 0 0.304 (8) 0.354 (10) 
0 0 1 0.099 (3) 0.078 (2) 
0 1 0 0.503 (13) 0.348 (9) 
0 1 1 0.093 (2) 0.127 (3) 
1 0 0 ----- 0.053 (2) 
1 0 1 ----- 0.014 (0) 
1 1 0 ----- 0.021 (1) 
1 1 1 ----- 0.003 (0) 
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Table 3-4. Association of ACC-Beta Estimated Haplotype Combinations with PCOS 

 
Haplotypes 
(G194216A, 
T204540C, 
G263491A) 

Cases 
(n=122)

Controls 
(n=130) 

ORa Exact 95% C.I. 

            

11x xxx 34 / 88 38 / 92 0.94 0.52 – 1.68 
10x xxx 81 / 41 82 / 48 1.16 0.67 – 2.01 
1xx xxx 39 / 83 38 / 92 1.14 0.64 – 2.02 
0xx xxx 25 / 97 31 / 99 0.82 0.43 – 1.56 
100 xxx 39 / 83 41 / 89 1.02 0.58 – 1.80 
110 xxx 1 / 121 0 / 130 ----- ----- 
101 xxx 1 / 121 6 / 124 0.17 0.01 – 1.45 

African American subjects 
Haplotypes 
(G194216A, 
T204540C, 
G263491A) 

Cases 
(n=26) 

Controls 
(n=27) 

ORa Exact 95% C.I. 

11x xxx 6 / 20 8 / 19 0.71 0.17 – 2.88 
10x xxx 17 / 9 16 / 11 1.3 0.37 – 4.60 
1xx xxx 3 / 23 2 / 25 1.63 0.17 – 20.97 
0xx xxx 15 / 11 18 / 9 0.68 0.19 – 2.39 
100 xxx 0 / 26 4 / 23 0 0.00 – 1.50 
110 xxx 0 / 26 0 / 27 ----- ----- 
101 xxx 0 / 26 1 / 26 ----- ----- 

 
 
aThe reference group for each odds ratio estimate is the remaining number of subjects without 
the haplotype combination being evaluated.  Run using StatXact. 
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Table 3-5. Association of ACC-Beta Haplotype Frequencies among Caucasian and AA 
Subjects 

 
Association in Caucasians 

Status N Ln(L) χ2 P-value 
PCOS cases 122 -299.57 39.3 0.5 

Controls 130 -322.83 47.49   
PCOS + controls 252 -625.4 80.94   

Association in African Americans 
PCOS cases 26 -45.19 1.56 0.25 

Controls 27 -59.88 4.04   
PCOS + controls 53 -109.9 4.07   

 
Calculated using t5 statistic provided by EH software package 

 52



Table 3-6. Association of P12A/G972R genotype combinations with PCOS 

 
Genotype Combination Caucasian 

Cases 
(n=122) 

Caucasian 
Controls 
(n=130) 

ORa (95% CI) 

11/11 64/58 70/60 0.94 (0.56 – 1.60) 
11/12 12/110 12/218 1.07 (0.42 – 2.73) 
11/22 2/120 0/130 ----- 
12/11 37/85 41/89 0.94 (0.53 – 1.67) 
12/12 3/119 5/125 0.63 (0.10 – 3.33) 
22/11 4/118 1/129 4.37 (0.42 – 216.99) 
22/12 0/122 1/129 ----- 

Genotype Combination AA Cases   
(n = 26) 

AA Controls 
(n=27) 

ORa (95% CI) 

11/11 21/5 20/7 1.47 (0.33 – 6.87) 
11/12 3/23 5/22 0.57 (0.08 – 3.40) 
11/22 0/26 1/26 ----- 
12/11 2/24 1/26 2.17 (0.10 – 132.66) 
12/12 0/26 0/27 ----- 
22/11 0/26 0/27 ----- 
22/12 0/26 0/27 ----- 

 
 
a. calculated using StatXact  
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4.0 THE ASSOCIATION OF GENETIC VARIANTS OF PPAR-GAMMA, INSULIN 
RECEPTOR SUBSTRATE-1, LIPOPROTEIN LIPASE, AND ACETYL-COA 
CARBOLXYLASE-BETA WITH INSULIN SENSITIVITY AND SYSTEMIC 

INFLAMMATION AMONG WOMEN WITH POLYCYSTIC OVARY SYNDROME 
AND CONTROL SUBJECTS 

 
 
 
 

4.1 ABSTRACT 

 
 
Background: Polycystic ovary syndrome (PCOS) is a heterogenous condition associated with 

obesity and insulin resistance (IR).  Previous studies of obese and type 2 diabetic populations 

have found that intramuscular fat storage is strongly correlated with IR, suggesting a shared or 

related genetic component.  Genotypes associated with fatty acid metabolism may elucidate how 

fat storage may impact insulin sensitivity among PCOS cases. 

Study Design: Retrospective case-control 

Specific Aim: To evaluate the association of the P12A variant of PPAR-γ, G972R of IRS-1, 

ACC-β, one LPL SNP, and the P12A/G972R variant combinations with insulin sensitivity 

(HOMA-IR) and C-reactive protein (CRP) concentrations among PCOS case and control 

subjects. 

Methods: DNA was obtained from 304 Caucasian and African American (AA) PCOS case and 

control subjects (147 PCOS, 157 controls).  Fasting blood lipids, insulin, glucose, obesity and 

CRP were evaluated for association with genotype.  One-way analysis of variance tested for each 

genotype on HOMA-IR and CRP with PCOS status.  Multivariate generalized linear regression 

modeling was used to test the significance of genotype on HOMA-IR and CRP while controlling 

for relevant covariates. 

Results: PCOS cases had significantly higher CRP concentrations (p=0.004) and HOMA-IR 

scores (p=0.0003) than controls.  Univariate modeling indicated that the IRS-1 variant G972R 

significantly impacted CRP levels and HOMA-IR.  Generalized linear modeling determined that 
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BMI and triglyceride levels attenuated the association of G972R with HOMA-IR, removing the 

statistical significance of all other covariates (age, PCOS, G972R, and G972RxPCOS 

interaction).  Generalized linear modeling of CRP included age, BMI, race, G972R, PCOS, and 

the G972RxPCOS interaction.  In this final model, BMI (p<0.001) and race (p-0.003) were 

significant predictors of CRP concentrations.  More importantly, the G972RxPCOS interaction 

was a significant predictor of CRP (p=0.005).  The final model accounted for 22% of variability 

seen in CRP concentrations. 

Conclusions: Using multivariable linear regression modeling, neither the IRS-1 variant G972R 

nor PCOS were significantly predictors of CRP.  However, the interaction of G972R and PCOS 

significanctly predicted CRP concentrations where the R972 allele was associated with higher 

CRP concentrations among PCOS cases. 
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4.2 INTRODUCTION 

 
 
The molecular mechanisms responsible for insulin resistance (IR) are poorly characterized.  One 

potential mechanism involves storage of fat in aberrant locations, such as muscle and liver.  

Previous studies of individuals with IR, obesity and type 2 diabetes (T2DM) suggest that a 

genetic predisposition leads to ectopic fat deposition rather than this process being solely due to 

acquired adiposity (1, 2).  In this analysis, genotypes selected for their association with fatty acid 

(FA) metabolism are the P12A variant of peroxisome proliferator-activated receptor gamma 

(PPAR-γ), the G972R variant of insulin receptor substrate-1 (IRS-1), three single nucleotide 

polymorphisms of acetyl-CoA carboxylase beta (ACC-β), and one SNP of lipoprotein lipase 

(LPL).  These genotypes are biologically relevant due to their potential role in the pathogenesis 

of type 2 diabetes and the expression of PCOS. 

PPAR-γ is a nuclear transcription factor activated by thiazoladinediones (TZDs) and specific 

fatty acids (3).  It appears to be the major regulator of adipogenesis and, therefore, has biological 

relevance to FA metabolism and insulin resistance/hyperinsulinemia (HI/IR) (4).  Research has 

indicated that PCOS-related insulin resistance may be associated with gene transcription 

downstream of PPAR-γ (5).  The genotypes in this analysis are either downstream and under the 

transcriptional control of PPAR-γ (i.e., ACC-β and LPL) or have been demonstrated to interact 

with PPAR-γ (i.e., IRS-1).  Inconsistent findings have been reported regarding the association of 

the P12A polymorphism of this gene with insulin sensitivity (6-11), obesity (11-16), and blood 

lipid concentrations (17, 18).  Furthermore, the P12A polymorphism has been shown to have 

both a positive association (19, 20) as well as a lack of association (21, 22) with PCOS. 

The IRS-1 gene was selected for its independent association with PCOS.  The IRS-1 gene 

functions immediately downstream of the insulin receptor.  A common mild loss-of-function 

mutation (G972R) that has been associated with decreased insulin sensitivity (23), T2DM (24) 

and PCOS (23, 25-27).  Stumvoll et al. (28) studied the gene-gene interaction between the P12A 

variant of PPAR-γ and the G972R variant of IRS-1 and found significantly increased insulin 

sensitivity among the X/Ala carriers compared to Pro/Pro genotyped individuals within the 

X972Arg background that was not present either in the whole population or against the 
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Gly972Gly background.  The authors concluded that the X/Ala + X/Arg genotype combination 

was particularly advantageous in the face of the nonprotective Arg972 allele. 

Lipoprotein lipase (LPL) is a serine esterase expressed in adipocytes and striated muscle.  

LPL gene activity is selectively induced by PPAR-γ in adipose tissue and its main function is the 

hydrolysis of triglycerides in triglycerides-rich lipoproteins, such as chylomicrons and very low 

density lipoproteins (29).  The FFAs released by triglyceride hydrolysis are oxidized to generate 

ATP in muscle.  In adipose tissue, FFA are re-esterified and stored in adipose tissue.  Hence, 

LPL is pivotal in lipoprotein and energy metabolism. 

ACC is a complex multifunctional enzyme system that is indirectly affected by PPAR-γ’s 

control of carnitine palmitoyl transferase-1 (CPT-1) synthesis.  ACC is a biotin-containing 

enzyme that catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the rate-limiting step in 

fatty acid synthesis, which then directly affects CPT-1 production (30).  The beta form (ACC-β) 

may be involved in the provision of malonyl-CoA or in the regulation of fatty acid uptake and 

oxidation by mitochondria.  ACC-β is relevant to this study due to its critical role in fatty acid 

oxidation (31).  The potential roles of LPL and ACC-β have not previously been examined in 

women with PCOS. 

The specific aims of this study were to evaluate the association of the P12A variant of 

PPAR-γ, G972R of IRS-1, ACC-β SNPs (G263491A, T204540C, and G194216A) and 

haplotypes, LPL SNP A7634966C, and the P12A/G972R variant combinations with insulin 

sensitivity and systemic inflammation (as measured by C-reactive protein) among Caucasian and 

AA control and PCOS case subjects. 

 
 
 
 

4.3 METHODS 

 
 
4.3.1 Subjects 
 
 
The present analysis was conducted using women recruited for the Cardiovascular Health and 

Risk Measurement Study (CHARM).  The CHARM study was established in 1992 to investigate 
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the effect of polycystic ovary syndrome on cardiovascular risk factors and associated disease 

(i.e., CVD) in women.  Women with PCOS, the population of women recruited for CHARM 

may be considered at high-risk for developing CVD.  Women diagnosed with PCOS between 

1970 and 1993 who were at least 30 years of age at the time of recruitment were identified from 

the records of an academic reproductive endocrine practice located at Magee-Womens Hospital, 

Pittsburgh, PA.  The clinical diagnosis of PCOS was made if there was (1) a history of chronic 

anovulation in association with either (A) clinical evidence of androgen excess (hirsutism) or 

biochemical evidence of an elevated total testosterone concentration (>57.64 ng/dl (2nmol/l)) or 

(B) a ratio of luteinizing to follicle stimulating hormone > 2.0.  Eligible women were contacted 

by phone between 1992 and 1994 for a telephone interview and for further recruitment for a 

clinical visit.  During that time, age (± 5 years)- and race-matched neighborhood control subjects 

were selected using a combination of voter’s registration tapes for 1992 from the Greater 

Pittsburgh area and Cole’s Cross Reference Directory of Households and were similarly 

recruited.  After initial phone contact, 244 PCOS-affected women and 244 controls completed a 

clinical visit where they received weight and height measurement, a fasting blood draw, waist 

and hip measurements, standard blood pressure assessment and a questionnaire-based interview. 

In 1996-1999, the same population of women was re-contacted for a second clinical visit also 

which included weight and height assessment, a fasting blood draw, waist and hip measurements, 

standard blood pressure assessment and a questionnaire-based interview, including questions on 

age at visit and self-reported race (Caucasian, AA, Asian, or other).  Of the original 488 women 

seen between 1992 and 1994, 335 were enrolled for a second clinical visit.  At this second visit, 

329 women consented to a blood draw for DNA analysis.  After genomic DNA extraction, 24 

samples were devoid of leukocytes and were unusable for further analyses.  One subject was 

excluded on the basis of an insulin score well over 3 SD from the mean, which significantly 

affected insulin-based outcome measures.  For this analysis, obesity was defined by body mass 

index (BMI) (weight in kg/height in m2) and by waist-to-hip ratio (waist in cm/hip in cm).  A 

BMI <25 kg/m2 was normal weight, <35 kg/m2 was defined as overweight, and ≥ 35 kg/m2 was 

defined as obesity.  The present analysis is comprised of the remaining 304 follow-up visit 

women (147 cases and 157 controls), of which 251 were Caucasian (121 cases and 130 controls) 

and 53 were AA (26 cases and 27 controls).  All participants gave written, informed consent as 

approved by the Institutional Review Board of the University of Pittsburgh. 
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4.3.2 Laboratory analyses 
 
 

4.3.2.1 Blood lipids 
All blood lipid assessments (mg/dl) and fasting glucose (mg/dl) were measured at the Heinz 

Nutrition Laboratory under the direction of Dr. Rhobert Evans.  The laboratory is carefully 

monitored and participates in the Centers for Disease Control standardization programs.  High 

density (HDL) and low density (LDL) lipoproteins were determined after selective precipitation 

by heparin/manganese chloride and removal by centrifugation of very low density (VLDL) (32).  

Duplicate samples, standards and control sera were included in each run.  The coefficient of 

variation between runs was 2.1%.  Triglycerides were determined enzymatically using the 

procedure of Bucolo et al. (33).  Duplicate samples, standards and control sera were included in 

each triglyceride run.  Coefficient of variation between runs was 1.7%. 

 
 

4.3.2.2 Insulin and glucose measurement 
Serum insulin levels (mU/L) were assessed using RIA (Linco, Research, Inc., St. Charles, MO).  

Cross-reactivity of the antibody with pro-insulin was less than 0.2%.  The interassay coefficient 

of variation was 2.6 + 0.7%.  Standards, blanks, and quality controls were run concurrently with 

all samples.  Glucose (mg/dl) was quantitatively determined by an enzymatic determination read 

at 340/380 nm with a procedure utilizing the coupled enzyme reactions catalyzed by hexokinase 

and glucose-6-phophate dehydrogenase (34).  The coefficient of variation between runs was 

1.8%.  Fasting glucose and insulin were used to assess homeostasis assessment model (HOMA-

IR), a measure of insulin resistance.  In HOMA-IR, values were calculated from the fasting 

concentrations of insulin and glucose using the following formula: (fasting serum insulin (mU/L) 

x fasting plasma glucose (mmol/L))/22.5 (35).  HOMA-IR (mU · mmol/L2) has been shown to be 

significantly correlated with clamp IR in a large number of subjects with both normal and 

impaired glucose tolerance (6, 9) and with the index of sensitivity obtained from the fasting 

intravenous glucose tolerance testing among normal and insulin resistant volunteers, as well as 

diabetics (36).  Abnormal glucose status (AGS) for this analysis was defined as a glucose level > 

110 mg/dl. 
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4.3.2.3 C-reactive protein 
C-reactive protein (CRP; mg/L) was measured by ultrasensitive competitive immunoassay based 

on purified protein and polyclonal anti-CRP antibodies (Calbiochem, La Jolla, CA).  The CRP 

assay had a sensitivity of 0.08 μg/ml and an average interassay coefficient of variation of 8.0%.  

This assay is sensitive to values within the normal range and CRP levels obtained at one point in 

time have been shown to be both reproducible and representative over extended periods of time 

(37). 

 
 

4.3.2.4 Genotype Analyses 
Genomic DNA was assessed for blood samples drawn from 147 PCOS case and 157 control 

subjects (Caucasian and AA) seen at the second visit between 1996 and 1999.  Buffy coats were 

collected from 20 cc whole blood from each CHARM individual seen at the second visit and 

immediately frozen at –80° C at the University of Pittsburgh, Graduate School of Public Health, 

Heinz Nutrition Laboratory.  Genomic DNA was subsequently extracted in 2004 using 

established methods (38).  Ambiguous samples were analyzed a second time.  P12A: Molecular 

genetic analysis of P12A was performed using the polymerase chain reaction (PCR) primers, 

sense (5’-GGCCAATTCAAGCCCAGTC-3’) and anti-sense (5’-

GATATGTTTGCAGACAGTGTATCAGTGAAGGAATCGCTTTCCG-3’), producing a 270-

base pair (bp) PCR product.  Carrier status of the P12A variant of the PPAR-γ gene was 

determined by restriction fragment length polymorphism (RFLP) analysis (12).  G972R: The 

G972R polymorphism in IRS-1 involved BstNI restriction enzyme digestion of a 262-bp PCR 

product amplified by PCR primers sense (5’-CTTCTGTCAGGTGTCCATCC-3’) and anti-sense 

(5’-TGGCGAGGTGTCCA-CGTAGC-3’).  Carrier status of the G972R variant of the IRS-1 

gene was determined by restriction fragment length polymorphism (RFLP) analysis (39).  ACC-

β: Three single nucleotide polymorphisms were identified along the ACC-β gene located on 

chromosome 12 (Figures 4-1 and 4-2).  PCR primers for rs2268403 (A/G) (sense – 

AGGGAAGAGGCCATTTCGTTGGTA-3’ and anti-sense – 5’-GGGTTCTT-

GGCTGTGAACCAAACA-3’), rs2268393 (C/T) (sense – 5’-TGCCAGTTGCACA-

GAATTCCAACC-3’ and anti-sense 5’-ACAATGGGAACAGCTACACCACC-T-3’), and 

rs3742023 (A/G) (sense – 5’-ATTACCTTGCTCGTCCTGTCACCA-3’ and anti-sense – 5’-

TATGAGGTTAAAGCCAGGCTGTCC) were identified and created using the Primer Quest 
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primer creation program on Integrated DNA Technologies website (www.idtdna.com).  

Thermocycling conditions for ACC-β SNPs were 94°C for 3 minutes, followed by 30 cycles of 

94°C for 30 seconds, 60°C for 30 seconds, 72°C for 1 minute, finalized by a 7 minute soak at 

72°C.  Restriction enzymes used for each SNP were EarI, AfeI, and NcoI, respectively (New 

England Biolabs, Inc., Beverly, MA).  PCR cycling of rs2268403 created a 474-bp product in 

which an EarI restriction site presented concurrently with the G  A change at nucleotide 

194216 to generate the G194216A mutation (rs2268403).  After EarI digestion at 37°C for 2 

hours and 3% agarose gel electrophoresis, the expected product sizes were 368 and 106 bp for 

the G194216 variant; 368, 199, 169, and 106 bp for the heterozygote; and 199, 169, and 106 for 

G194216A.  After thermocycling of rs2268393, the expected product was 225-bp and the 

sequence contained an AfeI restriction site introduced by the T  C variant at nucleotide 204540 

to generate the T204540C mutation.  Digestion by AfeI (37°C for 2 hours) produced the expected 

lengths of 225 bp for the T204540; 225, 118, and 107 bp for heterozygotes; and 118 and 107 bp 

for the T204540C mutation.  The rs3742023 SNP, after PCR thermocycling, was contained 

within a 213-bp fragment itself containing an NcoI restriction site introduced with the G  A 

nucleotide 263491 alteration.  Expected product sizes were 213 for the G263491 homozygous; 

213, 150, and 63 for the heterozygote; and 150 and 63 for the G263491A mutation.  LPL: One 

SNP was identified along the lipoprotein lipase gene located on chromosome 8 (Figure 4-3). 

Single nucleotide polymorphism rs3735964 was assessed by PCR thermocycling with Primer 

Quest primers identified and created by Integrated DNA Technologies (sense (5’-

TGCAATGAGCCAGATGGAGTACCA-3’) and anti-sense (5’-

TGCTGAAGGACAACACACATGCAG-3’)).  PCR cycling of rs3735964 created a 237-bp 

product in which an EarI restriction site presented concurrently with the A  C change at 

nucleotide 7634966 to generate the A7634966C mutation.  After EarI digestion at 37°C for 2 

hours and 3% agarose gel electrophoresis, the expected product sizes were 237 bp for the 

A7634966 variant; 237, 167, and 70 bp for the heterozygote; and 167 and 70 bp for A7634966C 

(Figure 4-4). 
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4.3.3 Data analyses 
 
 

4.3.3.1 Genotype frequencies 
Genotype frequencies for each SNP were computed by gene counting and compared between 

cases and controls by use of Pearson’s χ2 tests.  Genotype conformation to Hardy-Weinberg 

equilibrium proportions were tested using Fisher’s exact test.  All single nucleotide 

polymorphisms in this study were in Hardy-Weinberg equilibrium. 

 
 

4.3.3.2 Haplotype estimation 
The haplotype frequencies for ACC-β were estimated using the PHASE software program (40, 

41).  PHASE uses the expectation-maximization algorithm to obtain maximum-likelihood 

estimates of haplotype frequencies.  Haplotypes were described here by a three-digit code, where 

the first digit indicated the allele present in T204540C, the second indicated G194216A, and the 

last referred to G263491A.  A “0” in T204540C meant the estimated allele present is a “T” and a 

“1” represented a “C”.  In G194216A and G263491A, a “0” represented a “G”, and a “1” 

indicated an “A” allele.  For example, an ACC-β haplotype of “100” for the ACC-β gene meant 

that the subject had the “C” allele for T204540C, a “G” allele for G194216A, and a “G” allele 

for G263491A. 

 
 

4.3.3.3 Association analyses 
One-way analysis of variance was used to test for significant differences in mean HOMA-IR and 

CRP concentrations within case status among the each genotype variant and the ACC-β 

haplotype groups.  Multivariable generalized linear regression modeling was used to test the 

significance of genotype, the P12A/G972R genotype combination and ACC-β haplotype 

differences on HOMA-IR and CRP while controlling for BMI, race, current smoking, family 

health history of selected chronic diseases including PCOS, triglycerides, and HDL cholesterol.  

Statistical significance defined as a p-value <0.05.  Analysis packages used in this manuscript 

were SAS, version 8 (SAS Institute, Inc., Cary, NC) and PHASE, version 2.1. 
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4.4 RESULTS 

 
 
4.4.1 Demographic Characteristics among Caucasian and AA Subjects 
 
 
In Table 4-1, PCOS cases were significantly more obese (BMI 31.8 + 8.8 vs. 28.1 + 6.7 kg/m2, 

p<0.0001; WHR 0.82 + 0.08 vs. 0.79 + 0.08, p=0.01) than controls and presented with lower 

HDL concentrations (54.2 + 15.5 vs. 58.1 + 14.9 mg/dl; p=0.01).  Both diastolic (75.9 + 9.6 vs. 

74.2 + 9.1 mmHg; p=0.10) and systolic (116.5 + 15.4 vs. 114.8 + 14.3 mmHg; p=0.25) blood 

pressures were similar between cases and controls.  Caucasian cases also had higher CRP 

concentrations (3.8 + 5.3 vs. 2.6 + 3.0 mg/L; p=0.004).  Insulin levels were significantly elevated 

among PCOS cases compared to controls (19.5 + 13.1 vs. 15.0 + 9.8 mg/dl, p=0.0001) and 

insulin sensitivity was significantly lower among PCOS cases (HOMA-IR 5.2 + 5.3 vs. 3.8 + 4.7 

mU · mmol/L2, p=0.0003).  PCOS cases were significantly more likely to have first-degree 

family members with PCOS (14.3% vs. 3.2%; p=0.002) as well as being more likely to present 

with abnormal glucose status (17.2% vs. 5.9%; p=0.002).  Women with PCOS and controls were 

similar in their rates of smoking, oral contraceptive use and hormone replacement therapy use 

(NS). 

 
 
4.4.2 Estimated Allelic Frequencies among Caucasian and AA Subjects 
 
 
Among Caucasian participants, similar genotype frequencies existed between cases and control 

subjects for all genotypes and no significance was found between case and control allele 

frequencies (Table 4-2).  Genotype frequencies of AA case and control subjects, while not 

statistically significant, had larger differences than Caucasian subjects.  AA cases had a 

borderline statistically significantly higher rate of the G/G allele in the G194216A SNP of ACC-

β than same race controls (100% vs. 81%; p=0.05). 
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4.4.3 Genotype Associations with Outcome Variables 
 
 
All genotypes were assessed for potential impact on HOMA-IR and CRP (Data not shown) and 

only the G972R variant of IRS-1 was significantly associated.  The main effect of IRS-1 variant 

G972R was assessed by comparing mean HOMA-IR and CRP levels between G/G genotype 

carriers and G/R+R/R genotype carriers (Table 4-3).  The mean HOMA-IR score was 

significantly higher among G/R+R/R carriers than G/G carriers (6.3 ± 8.4 and 4.2 ± 4.2 mU · 

mmol/L2, respectively; p=0.01).  Comparing genotypes within case status, the G/R+R/R variant 

was uniformly associated with higher HOMA-IR scores than the G/G variant within both cases 

and controls.  Due to this, the IRS-1 variant G972R by PCOS interaction was not found to be 

significant (p=0.61).  CRP concentrations were similarly assessed by comparing mean 

differences across genotype. The G/R+R/R variant was associated with significantly higher CRP 

levels than the G/G isoform (4.8 ± 7.9 and 3.0 ± 3.4 mg/L, respectively; p=0.01).  CRP levels 

were also found to be significantly higher among PCOS case than control subjects (p=0.004).  

The G972RxPCOS combined effect determined a differential effect of genotype on controls and 

cases.  Similar CRP levels were observed between controls carrying the G/R+R/R and G/G 

genotypes (2.8 ± 3.2 vs 2.6 ± 3.0 mg/L).  However, CRP concentrations varied between case 

subjects carrying G/R+R/R and G/G genotypes (7.1 ± 10.6 vs 3.3 ± 2.6 mg/L).  The G972R x 

PCOS interaction was statistically significant in this analysis (p=0.01). 

Predictors of HOMA-IR were assessed to determine the basis for significance in varying 

HOMA-IR scores observed between cases and controls (Table 4-4).  In the first model (Model 1) 

evaluating main effects only, age was not predictor of HOMA-IR (p = 0.41), however, BMI (β = 

0.18; p < 0.0001) and triglycerides (β = 0.02; p<0.0001) were both highly significant predictors 

of HOMA-IR.  In Model 2, main effects of IRS-1 variant G972R and PCOS and 

themG972RxPCOS interaction were added to Model 1.  In this model, neither G972R (p=0.14), 

PCOS (p = 0.58), nor the G972RxPCOS interaction (p = 0.96) were significant predictors of 

HOMA-IR scores.  Overall, this final model accounted for 25% of variability in HOMA-IR (R2 = 

0.247). 

Table 4-5 explored the main effects and interaction effects of IRS-1 variant G972R and 

significant covariates on CRP.  As in HOMA-IR, age was not a significant predictor of CRP (p = 

0.94), yet BMI (β = 0.18; p < 0.0001) and race (β = 1.85; p = 0.009) were significant main 
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effects predictors.  When genotype, PCOS, and the G972R x PCOS interaction term were added 

to the model, neither G972R nor PCOS were significant predictors.  However, the G972RxPCOS 

interaction term (β = 3.68; p = 0.005) was statistically significant, indicating that PCOS cases 

with the R972 allele had statistically significantly higher CRP concentrations than all other 

comparison groups.  The final model, including all main effects and the G972R x PCOS 

interaction effect accounted for 22% of the variability seen in CRP levels (R2 = 0.223). 

 
 
 
 

4.5 DISCUSSION 

 
 
The P12A variant of PPAR-gamma has been found in several studies to significantly associate 

with obesity (11-16).  In the current analyses, BMI was strongly correlated with the PCOS 

phenotype, so much so as to potentially obscure the relationship between subclinical causal 

mechanisms of diabetic or CVD outcomes and PCOS, such as HOMA-IR or CRP. 

LPL SNP A7634966C, the ACC-β SNPs (G263491A, T204540C, and G194216A) or ACC-

β haplotype were evaluated for significant association with HOMA-IR and CRP.  Studies of 

variants among the LPL gene have indicated an association with insulin sensitivity among type 2 

diabetics (43) and Mexican Americans with atherogenic profiles (44), as well as adverse lipid 

profiles among atherogenic men and women from Geneva (45).  The ACC-β gene has been less 

extensively studied in relation to metabolic phenotypes among humans, but has been found to 

relate to fat storage (46), obesity(47), and T2DM (47) among ACC-β -/- mutant mice.  The ACC-

β SNPs chosen for these analyses were selected for their distribution across the ACC-β gene to 

allow a “genotype” analysis (i.e., haplotype analysis).  However, these analyses did not reveal 

any significant associations of LPL SNP A7634966C or the ACC-β gene with PCOS or 

associated outcomes (i.e., HOMA-IR or CRP).  The smaller sample size could have limited the 

power of this analysis and results should be verified among a larger population. 

The G972R isoform of IRS-1 has previously been significantly associated with obesity (42) 

and, in these analyses, the G972R genotype seemed to significantly interact with PCOS to affect 

CRP concentrations.  Even after adjustment for age, BMI, race, and triglycerides, G972R and the 
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PCOS/G972R interaction remained significant with CRP levels.  The conclusion being that 

G972R interacted with case status to affect CRP levels so that women with PCOS who are 

carriers of the R972 allele may be at increased risk of having elevated CRP concentrations.  This 

intriguing data is consistent with the emerging relationships between obesity, inflammation, and 

insulin resistance. 

Even though C-reactive protein has been genetically studied in relation to inflammatory 

genetic markers, namely the CRP gene (48-50) and the interleukin-6 gene (51, 52), and CRP 

gene activity is under the transcriptional control of nuclear transcription factors (i.e., PPAR-γ), 

CRP activity has not been studied in association with insulin resistance-related genetic 

polymorphisms before now.  Furthermore, this study includes genotypes that, since their 

discovery by Haga et al. in 2002 (53) by genome wide scans among 24 unrelated Japanese 

women, have not been studied for their affect on insulin sensitivity or systemic inflammation.  

We suggest that future studies based upon these results might elucidate connective mechanisms 

not previously explored. 

The main limitation of this study is its lack of power to detect significant differences among 

PCOS-affected AA subjects and their controls.  Compared to Caucasian case and controls 

subjects, AA subjects did not significantly differ by case status in measurement of any outcome 

variable.  Given the smaller sample size of AA subjects (26 cases and 27 controls), this analysis 

had 39% power to detect a 4.5 kg/m2 difference in BMI, the variable closest to statistical 

significance (p=0.08), and would have required approximately 120 case and control subjects 

(1:1) to have 70% power to detect this same difference.  Caucasian cases and controls had 88% 

power to detect a 2% mean difference in BMI, indicating sufficient power within this subgroup. 

In summary, the P12A variant of PPAR-γ, the G972R variant of IRS-1, the three single 

nucleotide polymorphisms of ACC-β (G263491A, T204540C, and G194216A), and the 

A7634966C SNP of LPL did exhibit a potential for significantly impacting on the expression of 

HOMA-IR and CRP.  Overall, the main finding of this study is the novel association of CRP 

concentrations with the interaction of IRS-1 variant G972R and PCOS over and above age, BMI 

and race.  These results indicate that among women with PCOS, carriers of the R972 allele of 

IRS-1 variant G972R have significantly increased risk of presenting with elevated CRP 

concentrations compared to any other G972RxPCOS interaction classification.  These analyses 
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introduce a previously unexplored avenue for future research into the relationship between 

insulin resistance and inflammatory factors. 
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  ↓ 
 

Figure 4-1. The human chromosome 12 

 
The red arrow indicates the location of the ACC-β gene. 
 
 
 
 
 
 
 
 
  G194216A   T204540C     G263491A 

↓    ↓             ↓ 
 

Figure 4-2. The ACC-Beta gene 
 
Each vertical line along the ACC-β gene (running 5’ to 3’) indicates a known allelic variant.  The 
black arrows indicate the location of the three SNPs in this analysis. 
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Figure 4-3. The human chromosome 8 
 
The red arrow indicates the location of the LPL gene. 
 
 
 
 
 
 
 
 
 
        A7634966C 

   ↓ 
 

 
 
All figures obtained from www.ncbi.nih.gov.  

Figure 4-4. The LPL gene 
 
Each vertical line along the LPL gene (running from 5’ to 3’) figure denotes a known allelic 
variant.  The black arrow indicates the location of SNP A7634966C. 
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Table 4-1. Prevalence of Demographic Characteristics Among Caucasian and AA Subjects 
Outcome Variable Cases 

(N = 147) 
Controls 
(N = 157) 

P-value 

Age (mean years ± SD) 41.5 ± 7.2 42.8 ± 7.1 0.12 
Body mass index (mean kg/m2 ± SD) 31.8 ± 8.8 28.1 ± 6.7 <0.001 
Waist:Hip ratio (mean ± SD) 0.82 ± 0.08 0.79 ± 0.08 0.01 
SBP (mean mmHg ± SD) 116.5 ± 15.4 114.8 ± 14.3 0.25 
DBP (mean mmHg ± SD) 75.9 ± 9.6 74.2 ± 9.1 0.10 
Race   0.91 

Caucasian 121 130 ----- 
African American 26 27 ----- 

C-reactive protein (mean mg/L ± SD) 3.8 ± 5.3 2.6 ± 3.0 0.004 
Cholesterol (mean mg/dl ± SD) 209.4 ± 36.8 202.8 ± 33.8 0.13 
Triglycerides (mean mg/dl ± SD) 139.9 ± 83.1 122.0 ± 65.9 0.07 
HDL (mean mg/dl ± SD) 54.2 ± 15.5 58.1 ± 14.9 0.01 
LDL (mean mg/dl ± SD) 127.6 ± 34.3 119.8 ± 31.3 0.07 
HDL2 (mean mg/dl ± SD) 14.8 ± 9.7 17.1 ± 12.4 0.09 
Smoking (%; N) 31.5 (29/147) 27.6 (29/157) 0.83a 
Taking OC (%; N) 10.9 (16/147) 13.4 (21/157) 0.51a 
Taking HRT (%; N) 11.6 (17/147) 14.0 (22/157) 0.52a 
First degree relative with PCOS (%; N) 14.3 (21/147) 3.2 (5/157) 0.002a 
Fasting glucose (mean mg/dl ± SD) 98.9 ± 28.0 95.0 ± 28.9 0.20 
Fasting insulin (mean mlU/ml ± SD) 19.5 ± 13.1 15.0 ± 9.8 <0.001 
HOMA-IR (mean mU · mmol/L2 ± SD) 5.2 ± 5.3 3.8 ± 4.7 <0.001 
Abnormal glucose status (%; N)b 17.2 (25/145) 5.9 (9/155) 0.002a 
 

a. P-value calculated using StatXact Fisher’s exact test for two independent binomials 

b. Abnormal glucose status defined as fasting glucose ≥ 110 mg/dL 
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Table 4-2. Estimated Genotype Frequencies Among Caucasian and AA Subjects 
Caucasian subjects 
Genotypesa Cases Controls χ2 P-valueb 
LPL SNP     
A7634966C – C/C (vs. X/A) 0.81 (98/121) 0.81 (106/130) 0.007 0.91 
ACC-β SNPs     
G263491A – G/G (vs. X/A) 0.42 (51/121) 0.42 (55/130) 0.0006 0.98 
T204540C – X/C (vs. T/T) 0.81 (98/121) 0.80 (104/130) 0.04 0.84 
G194216A – G/G (vs. X/A) 0.68 (82/121) 0.65 (84/130) 0.28 0.60 
PPAR-γ SNP     
P12A – Pro/Pro (vs. X/Ala) 0.64 (77/121) 0.63 (82/130) 0.008 0.93 
IRS-1 SNP     
G972R – Gly/Gly (vs. X/Arg) 0.86 (104/121) 0.86 (112/130) 0.002 0.96 
African American subjects 
LPL SNP     
A7634966C – C/C (vs. X/A) 0.81 (21/26) 0.81 (22/27) 0.004 0.95 
ACC-β SNPs     
G263491A – G/G (vs. X/A) 0.65 (17/26) 0.59 (16/27) 0.21 0.65 
T204540C – X/C (vs. T/T) 0.85 (22/26) 0.78 (21/27) 0.40 0.52 
G194216A – G/G (vs. X/A) 1.00 (26/26) 0.81 (22/27) 5.32 0.05c 
PPAR-γ SNP     
P12A – Pro/Pro (vs. X/Ala) 0.92 (24/26) 0.96 (26/27) 0.39 0.53 
IRS-1 SNP     
G972R – Gly/Gly (vs. X/Arg) 0.88 (23/26) 0.78 (21/27) 0.07 0.30 

 

a. Genotype represents most common genotype  

b. Pearson χ2 test used 

c. P-value calculated using StatXact Fisher’s exact test for two independent binomials 
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Table 4-3. The Effect of the G972R variant of IRS-1 on HOMA-IR and CRP Among PCOS 
Case and Control Subjects 

HOMA-IR CRP IRS-1 
Variant 
G972R 

PCOS  
Status Mean  

(± SD) 
P-value Mean  

(± SD) 
P-value 

      
G/G  4.2 (± 4.2) Main effect 3.0 (± 3.4) Main effect 

G/R + R/R  6.3 (± 8.4) (0.01) 4.8 (± 7.9) (0.01) 
      
 Control 3.8 (± 4.7) Main effect 2.6 (± 3.0) Main effect 
 Case 5.2 (± 5.3) (0.0003) 3.8 (± 5.3) (0.004) 
      

G/G Control 3.6 (± 3.9) Genotype x 2.6 (± 3.0) Genotype x 
G/R + R/R Control 5.3 (± 7.6) PCOS 2.8 (± 3.2) PCOS 

G/G Case 4.8 (± 4.3) Interaction 3.3 (± 2.6) Interaction 
G/R + R/R Case 7.4 (± 9.3) (0.61) 7.1 (± 10.6) (0.01) 

      
 

Generalized linear modeling used. 
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Table 4-4. Predictors of HOMA-IR Among PCOS Case and Control Subjects 

 

Model 1 Model 2  
Predictor β P-value β P-value 
     
Age (in years) -0.03 0.41 -0.03 0.41 
BMI 0.19 <0.0001 0.18 <0.0001 
Triglycerides 0.02 <0.0001 0.02 <0.0001 
     
G972R of IRS-1   1.65 0.10 
PCOS   0.31 0.58 
     
 

Generalized linear modeling used. 
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Table 4-5 Predictors of CRP Among PCOS Case and Control Subjects 

 

Model 1 Model 2  
Predictor β P-value β P-value 
     
Age (in years) -0.003 0.94 -0.0009 0.98 
BMI 0.19 <0.0001 0.18 <0.0001 
Race 1.65 0.009 1.85 0.003 
     
G972R of IRS-1   -0.47 0.60 
PCOS   0.07 0.89 
G972R of IRS-1 x PCOS   3.68 0.005 
     
 

Generalized linear modeling used. 
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5.0 SUMMARY AND CONCLUSIONS 

 
 
The research addressed in this dissertation has been segmented into three complementary topics 

as follows: 

1. the increased risk of T2DM conferred to women by a diagnosis of PCOS; 

2. the potential association of novel lipogenic genotypes with PCOS; and  

3. the association of these novel lipogenic genotypes with subclinical measures of 

insulin resistance and systemic inflammation among PCOS-affected women, by 

which an increased risk of T2DM might be explained. 

 
 
 
 

5.1 ASSOCIATION OF PCOS WITH T2DM 

 
 
It has been recognized that women with PCOS have increased risk of developing T2DM.  

Incidence rates of T2DM in two prior studies were 9% (1) and 16% (2) among women with 

PCOS at baseline, regardless of basal glucose tolerance.  Even though these studies had small 

cohort sizes, younger age groups, and shorter follow-up periods, the risks of their populations 

developing T2DM starting from either IGT or normal glucose tolerance were similar to the 

13.4% rate of progression found in our population.  Our population allowed insight into the 

natural development of T2DM in women with PCOS, mainly due to older age at first visit (38.0 

years for cases and 40.0 years for controls) and length of follow-up time (8 years) (i.e., age at 

follow-up: cases = 46.6 ± 5.98 years, controls = 48.1 ± 5.36 years; p = 0.08). 

BMI was found in these analyses to be a contributing factor toward development of T2DM; 

a fact supported by previous studies (1, 2).  However, unlike previous investigations where only 

women with PCOS were included, these analyses were capable of investigating how BMI 
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interacted with PCOS through determination of its effect on risk of T2DM in control subjects.  

We found that BMI was both a confounder and an effect modifier of PCOS on development of 

T2DM.  Specifically, BMI was not the only contributing factor to the development of T2DM.  

Compared to controls (HR=1.0), PCOS conferred ~1.5 times the risk of developing T2DM and a 

much higher ~5.1-fold risk was observed in morbidly obese cases. 

One explanation for the increased incidence of T2DM found in PCOS cases was the 

association of IR with PCOS, which is found in approximately 50% to 70% of affected women 

(3).  Compared to the prevalence of IR found in the general US population, PCOS confers a 2- to 

4-fold higher risk of developing IR (4).  Further, IR alone is a risk factor for the development of 

T2DM and, given that PCOS affects ~5% of the reproductive-aged female population in the US, 

the increased risk of developing T2DM attributed to PCOS could affect up to 3.5% of the US 

female population. 

Other factors which may contribute to increased risk of T2DM are the hyperinsulinemia and 

hyperandrogenemia that co-exists with IR in PCOS-affected women.  One major hypothesis of 

how insulin sensitivity is related to the PCOS phenotype is based on the insulin-glucose-

androgen pathway.  In this hypothesis, it is postulated that primary peripheral IR may increase 

circulating insulin levels to compensate for decreased insulin sensitivity or dysfunctional glucose 

metabolism.  In an effort to subdue rising glucose concentrations at the periphery, secondary 

hyperinsulinemia may produce HA by over-stimulating insulin-sensitive, androgen-secreting 

tissues (i.e., the ovarian theca cell).  The resulting hyperandrogenemia may then directly or 

indirectly suppress ovulation at the level of the ovary (5) causing infertility.  Androgen levels in 

women with PCOS have been positively correlated with measures of hyperinsulinemia in several 

studies (6-10) and, thus, may be associated with development of T2DM. 

 
 
 
 

5.2 ASSOCIATION OF GENOTYPE WITH PCOS 

 
 
The strong genetic basis of PCOS has been well demonstrated by family studies of first degree 

relatives of affected women (11-16), as well as by the presence of IR among lean women with 
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PCOS (17-20).  In this study, allele frequencies for the P12A variant of PPAR-γ, the G972R 

isoform of IRS-1, three ACC-β SNPs (T204540C, G194216A, and G263491A) and their 

haplotypes, LPL SNP A7634966C, and the P12A-G972R combined genotypes were assessed for 

association with PCOS.  No genotype frequencies were significantly different between controls 

and PCOS-affected women.  There were also no significant associations of the ACC-β haplotype 

or combinations of ACC-β haplotypes with PCOS.  Furthermore, the genotype frequencies for 

the P12A + G972R combined genotypes did not seem to interact with case/control status.  

Significant results in previous studies of P12A (21, 22) could have been, at least partially, due to 

differing diagnostic criteria used for PCOS (i.e., diagnosis based upon polycystic-appearing 

ovaries rather than clinical and hormonal measures). 

Women with PCOS are generally more overweight than age- and race-matched control 

subjects putting them at increased risk for IR and, though it is not clear how obesity and IR are 

interrelated, evidence suggests that elevated FFA may be mediators in this association.  This 

interrelationship can be evidenced in findings that most obese people have elevated FFA plasma 

levels (23, 24) and that both chronic and acute elevation of plasma FFA produce acute IR (25-

28).  The potential in this study for association of PCOS with the selected candidate genes was 

based upon significant findings of similar studies among diabetic populations (29, 30) and upon 

knowledge of cellular mechanisms by which IR may occur.  Two main theories of obesity-

related IR were addressed in this analysis and determined the selected candidate genotypes.  The 

first hypothesis explored was the ectopic fat storage hypothesis, which establishes that IR is the 

result of a skeletal muscle composition disorder where lipid storage inside muscle tissue causes 

metabolic dysfunction.  The second hypothesis that may be considered mutual and 

complementary was Neel’s hypothesis of the thrifty genotype (31), which purports that the 

ability to store excess energy was advantageous in ancestral societies subjected to periods of 

starvation, but is disadvantageous during periods of energy excess, as is commonly found in 

modern society.  Both of these hypotheses imply the genetic basis of metabolic dysfunction as a 

causal mechanism of certain disease like obesity, T2DM, and PCOS. 

PPAR-γ plays a central role in adipogenesis (32-34) based on two main processes.  Firstly, 

the insulin sensitizing effects of activated PPAR-γ are based on increased expression of target 

genes that promote FA trapping and storage in adipocytes, such as LPL (35).  Secondly, these 

effects are the result of repression of genes that induce lipolysis and the release of FAs (36), 
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leptin (37, 38) and TNF-α (39, 40).  Among diabetic populations, TZDs effect PPAR-γ activation 

(41, 42) to increase insulin sensitivity via these processes.  TZDs function via redistribution of 

white adipose tissue resulting in decreased visceral depots relative to subcutaneous fatty regions 

(41-44).  This fat cell redistribution includes a shift in the cell type population resulting in more 

small adipocytes and fewer large, insulin insensitive adipocytes (45-47).  The insulin sensitizing 

effects of TZDs on PCOS-affected women through these mechanisms also seem to increase 

fertility and ovulation.  The PCOS phenotype seems to be intricately bound to FA metabolism 

through the PPAR-γ pathway and, considering PPAR-γ’s apparent master gene status, divergent 

results between studies are not necessarily an indication of anomaly so much as an indication of 

the complexity of PCOS.  Its phenotypic diversity is probably a reflection of its genotypic 

heterogeneity and the lack of significance of the P12A variant in this analysis was most probably 

due to the use of unrelated cases and controls, thereby increasing the genetic heterogeneity 

within this population. 

LPL is a candidate gene whose expression is partially regulated by PPAR-γ and is included 

in this study due to its direct impact on FA metabolism.  FA utilization is impacted by expression 

and transcription of LPL.  The expression of LPL is attenuated by insulin, directly impacting FA 

utilization (48, 49), and by diseases such as atherosclerosis and diabetes (50-52).  Metabolites 

that induce LPL gene transcription include the PPARs in liver and adipose tissue and in 

macrophages in response to fibrates, some FAs, glucose, and TZDs (35, 51, 53).  Decreased LPL 

activity has been seen in individuals with T2DM and IR (54-57).  Furthermore, the resultant 

decrease in LPL activity contributes to hypertriglyceridemia, decreased HDL levels, and 

increased risk of CHD (58).  Since LPL is regulated by insulin resistance disorders, a mutation 

affecting the activity of the LPL gene would not be surprising among PCOS-affected women.  

This analysis did not find such an effect, but it cannot be ruled out as only one SNP was used to 

test our hypothesis.  Testing multiple SNPs may give more power to test for a gene effect on 

disease. 

According to Neel’s thrifty genotype theory (31), multiple cellular mechanisms are present 

to sense increased availability of food and to trigger biological responses designed to most 

efficiently store energy.  Malonyl-CoA has been identified as a biochemical sensor used to 

trigger a switch from FA to glucose oxidation for fuel usage (59) via deactivation of carnitine 

palmitoyl transferase-1 (CPT-1).  During states of high glucose or insulin concentrations, 
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malonyl-CoA accumulation inhibits CPT-1 levels, increases glucose oxidation and reduces lipid 

oxidation, preferring lipid storage as triglyceride.  The regulation of malonyl-CoA in muscle is 

controlled by specific central players, including acetyl-CoA carboxylase (ACC), the rate-limiting 

enzyme in malonyl-CoA synthesis; cytosolic citrate, an activator of ACC; and AMPK, an 

enzyme activated by decreases in the cell’s energy state (60-63).  Currently it is postulated that 

muscle contraction (i.e., glucose depletion) regulates ACC inhibition solely by activating 

AMPK, which phosphorylates ACC and decreases malonyl-CoA levels.  Conversely, an 

abundance of glucose increases malonyl-CoA concentration via increased cytosolic citrate levels 

(64) and decreased AMPK activation (65), thereby increasing the conversion of FA into 

triglyceride resulting in obesity.  ACC-β impacts FA utilization through its direct positive control 

of malonyl-CoA production and its indirect relationship with PPAR-γ, affected through CPT1’s 

up-regulation by PPAR-γ, making it highly feasible as a candidate gene affecting expression of 

the PCOS phenotype.  A mutation in the ACC-β gene could affect energy homeostasis by 

upsetting the normal balance between glucose and FA homeostasis, proffering an increased risk 

profile for CHD to carriers of a mutation increasing ACC-β activity.  Even though an effect of 

ACC-β was not seen in this population, it does not rule out this gene as one of interest in future 

studies among populations with more ethnic diversity.  This is the first study to attempt to 

associate ACC-β with PCOS and is important in addressing first impressions of the potential 

contribution this gene could make among affected women.  The current sample size of Caucasian 

subjects, allowed 67% power to detect a 15% allele frequency difference between cases and 

controls and 37% power to detect a 10% difference in allele frequencies.  The significant 9% 

difference in allele frequency between AA cases and controls had a 10% power to detect, 

suggesting this result may need to be repeated in a larger population for validation. 

 
 
 
 

5.3 ASSOCIATION OF GENOTYPE WITH SUBCLINICAL MEASURES OF CHD 

 
 
The P12A variant of PPAR-γ has been significantly associated with obesity (66-71).  In the 

current analyses, it is clear that BMI is intimately associated with the PCOS phenotype, so much 
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so as to potentially obscure the relationship between subclinical causal mechanisms of diabetic 

or CVD outcomes and PCOS.  Results of multivariate analyses performed in this study supported 

the fact that P12A is a genotype very strongly associated with BMI.  The removal of significance 

of every other factor that, prior to inclusion of BMI was significantly associated with CRP, may 

indicate that the adverse effect of the P12A genotype may be through its action on body 

composition. 

Studies of variants among the LPL gene have indicated an association with insulin 

sensitivity among Type 2 diabetics (72) and Mexican Americans with atherogenic profiles (73), 

as well as adverse lipid profiles among atherogenic men and women from Geneva (74).  The 

ACC-β gene has been less extensively studied in relation to metabolic phenotypes among 

humans, but has been found to relate to fat storage (75), obesity(76), and type 2 diabetes (76) 

among ACC-β -/- mutant mice.  The ACC-β SNPs chosen for these analyses were selected for 

their distribution across the ACC-β gene to allow a “genotype” analysis (i.e., haplotype analysis).  

However, in these analyses, neither LPL SNP A7634966C nor the ACC-β SNPs (G263491A, 

T204540C, and G194216A) nor the ACC-β haplotype were significantly associated with 

HOMA-IR or CRP in modeling of PCOS adjusted for genotype. 

The G972R isoform of IRS-1 has also been significantly associated with obesity (77).  Using 

multivariable modeling, IRS-1 variant G972R seemed to significantly impact CRP among PCOS 

cases compared to controls.  Even after adjusting for body mass index and race, G972R remained 

concurrently significant with the PCOS/G972R interaction, implying that not only may G972R 

impact expression of CRP levels, but that G972R interacted with case status to affect CRP levels.  

The possibility that an insulin pathway specific genotype could independently effect systemic 

inflammation, over and above obesity and race, has not previously been demonstrated and is the 

most compelling result of these analyses. 
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5.4 OVERALL STUDY STRENGTHS 

 
 
These analyses had three main strengths.  Firstly, the length of follow-up for assessment of 

health outcomes was a strength mainly due to the fact that other populations of women with 

PCOS who have been assessed for development of T2DM were not followed for as long a time.  

During our follow-up, progression of disease was consistently tracked and reported through 

repeated clinic visits.  Repeated clinic visits also provided a built-in verification of the presence 

of a diagnosed disease.  Secondly, the use of controls followed concurrently with the cases 

provided an excellent backdrop for determining increased rate of disease progression, disease 

development, or subclinical measures due to PCOS.  Not only could cases be compared to 

themselves at a previous visit, but to a control subject about whom the same level of medical 

history was known.  Thirdly, consistency in clinical assessment and disease reporting was upheld 

for all subjects at all visits, which after the considerable length of follow-up, is significant for 

assessing effects of PCOS on health.  Additionally, this study included genotypes that, since their 

discovery by Haga et al. in 2002 (83) by genome wide scans among 24 unrelated Japanese 

women, have not been studied for their affect on insulin sensitivity or systemic inflammation 

and, thus, provides a first impression of the potential for inclusion in future research. 

 
 
 
 

5.5 OVERALL STUDY LIMITATIONS 

 
 
Sample size was a major limitation of this analysis.  When attempting to determine both 

outcomes and genotype frequency differences for significance between PCOS cases compared to 

controls, a true difference could really have been present, but could not be established using the 

relatively small subcohort sizes necessary to carry out the appropriate analyses.  Future analysis 

of ACC-β and LPL genotype frequencies may be of interest among PCOS populations of races 

other than Caucasian to more accurately determine if there is an effect of genotype among these 

populations toward development of PCOS. 
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A second major limitation of this study was the reliance of patient self-report to determine 

the diabetic status of subjects, rather than medical chart review to get an accurate assessment 

both of actual physician diagnosis and date of onset.  Using clinic-recorded current medication in 

combination with patient self-report of medical diagnosis strengthened the accuracy of presence 

of T2DM.  Date of diagnosis of T2DM was also based upon patient self-report, however, the fact 

that women seen in this study were administered similar questionnaires with the same questions 

about diagnosis of diabetes and date of diagnosis over three points in time increased the accuracy 

of this estimate.  There were five women assessed who had to be assigned a date of diagnosis 

through linear interpolation using the midpoint of their last clinic visit and the last year of 

follow-up.  Since women could have been diagnosed with T2DM at either the second or third 

visit and did not need to be followed a full eight years once they were considered affected, they 

may have been diagnosed between the first and second visit and not have remembered their year 

of diagnosis.  However, the time span between 1992-1994 and 1996-1999 visits for any 

individual woman had the possibility to be relatively accurate.  Since, in practice, women 

recruited first for the 1992-1994 visit were generally recruited first in each follow-up visit, the 

average follow-up time for this population when seen in 1996-1999 was ~3.5 years.  Linear 

interpolation of this data may be a reliable estimate of year of onset. 

Another potential limitation of this analysis was the inclusion of women taking hormones 

(OC/HRT) in assessment of development of T2DM and subclinical measures.  Since similar rates 

of hormone use was recorded between cases and controls, the effect of use was not considered to 

be a major methodological limitation. 

 
 
 
 

5.6 OVERALL SUMMARY AND CONCLUSIONS 

 
 
Women with PCOS had significantly greater risk of developing T2DM compared to age-adjusted 

control women.  Not surprisingly, risk of future development of T2DM in PCOS-affected 

women seemed to be greatly modified by obesity.  Future studies of incidence of T2DM related 

to polycystic ovary syndrome should focus on larger groups of older women followed through 
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premenopausal, perimenopausal, and menopausal stages of development.  In addition, our results 

suggest that extensive weight control efforts be made among women with PCOS to minimize the 

propensity to develop IR and T2DM. 

In attempting to determine if specific genotypes impacted the PCOS phenotype, we 

concluded that there was no association of genotype with PCOS.  The P12A variant of PPAR-γ, 

the G972R variant of IRS-1, the three single nucleotide polymorphisms of ACC-β (G263491A, 

T204540C, and G194216A), and the A7634966C SNP of lipoprotein lipase (LPL) were not 

significantly associated with PCOS.  However, when assessing if genotype impacted insulin 

sensitivity or inflammation among PCOS-affected women, there was a novel association of CRP 

with IRS-1 variant G972R by PCOS interaction over and above age, BMI and race.  Even though 

CRP has been studied in relation to inflammatory genetic markers, namely the CRP gene (78-80) 

and the interleukin-6 gene (81, 82), and CRP gene activity is under the transcriptional control of  

nuclear transcription factors, such as PPAR-γ, CRP activity has not been studied in association 

with insulin sensitivity-related genetic polymorphisms before now.  This finding of significantly 

elevated CRP levels in association with the interaction of the G972R variant of IRS-1 and PCOS 

introduces a previously unexplored avenue for future research into the relationship between IR 

and inflammatory factors.  It also provides a basis upon which the G972R variant of IRS-1 may 

be associated with development of T2DM through subclinical factors.  By touching upon the 

interrelationships between IR, obesity, and inflammation, these analyses may be a new starting 

point for future analyses among high-risk populations. 
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APPENDIX A 

 
 
 
 

EVIDENCE OF A GENETIC BASIS OF PCOS: PEDIGREE STUDIES 
 

 
Since 1979, studies have been attempting to elucidate a mode of inheritance for PCOS.  

Since the premise of this analysis is that it is a genetically-based disorder, this appendix includes 
a review of historically-relevant genetic family studies providing evidence of this genetic basis 
for PCOS.  Strengths that these studies shared include recruitment and enrollment of first degree 
family members and a general trend of improving upon the efforts of past studies with the end 
result being very well-designed studies.  However, in researching this literature, what stood out 
the most was that the research effort is still in its infancy.  Over time, the definition of PCOS has 
changed almost with every new study, potential confounders of study results have changed with 
the disorder definition, and the lack of standardized methods for measuring heritability while 
accounting for these confounders have hindered these studies from getting any conclusive or 
reproducible results.  With the introduction of biochemical evidence by the 1990 National 
Institutes of Health Consensus Criteria as a defining characteristic of a PCOS diagnosis in the 
US, the thought was to somehow make results more comparable and, hopefully, more 
conclusive.  Yet, this has not happened.  PCOS is a much more complex disorder than first 
thought and we are still left wondering if we simply have not well defined the true nature of the 
disorder.  PCOS is most likely phenotypically and genetically heterogeneous and is, thus, 
difficult to study as so many phenotypic subgroups exist. 

Major limitations of previous family genetic studies include small numbers of 
participants, lack of hormonal data, inclusion of men with premature baldness without knowing 
that a genetic basis for its inclusion as the “male phenotype” exists, and a lack of controlling for 
such confounders as medications, other diseases that present with the same phenotype, race, or 
BMI.  This study, while not capable of clearing up questions from the past, is the first study to 
investigate the role of PPAR-γ in women with PCOS from a “pathway perspective” by 
examining genes influenced or otherwise controlled by PPAR-γ as if following a pathway of 
insulin signaling.  Positive results from this study will open up a new avenue of thought 
regarding the definition of PCOS while negative results will allow research to move forward 
onto other paths of research. 
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Ferriman and Purdie 
(1979) 
 
Title: 
The inheritance of 
polycystic ovarian disease 
and a possible relationship 
to premature balding 
 
 
Objective: 
To examine the etiology, 
definition and 
pathogenesis 
of polycystic ovarian 
disease and to find a link 
to baldness 

Population 
 
Inclusion criteria: 
* 825 1º female relatives 
of 284 hirsute women and 
274 1º male relatives of 
136 hirsute women 
* 179 non-hirsute controls 
aged 20 to 40 years from 
the same outpatient clinics 
used to identify hirsute 
women, but without 
hirsutism (HIR), 
oligomenorrhea (OM), or 
infertility (provided 
reference values) 
* All subjects of European 
descent 
* Subject medication use 
not investigated 
 
* Exclusion criteria: 
Premature menopause,  
ovarian dysgenesis, 
anorexia nervosa, 
amonorrhea-gallactorrhea, 
GNRH deficiency, and 
organic thyroid, adrenal, 
pituitary or hypothalamic 
disorders 

Methods 
Cases: 
* Ovarian size in probands 
determined by 
gynaecography 
* Family history elicited 
for all family members 
from probands regarding 
the relations with affected 
status, i.e., female with 
HIR, OM or infertility or 
male with premature 
balding (in their 20’s or 
30’s) (PMPB) 
* A HIR or baldness score 
assessed for all subjects 
 
Controls: 
* Women recruited from 2 
ante-natal clinics and one 
general medical clinic 
* Aged 20 to 40 years 
* Asked the same family 
history questions as the 
cases 
* They were used for 
reference values only 
 

Results 
* There is the existence of 
a genetically-based 
disorder consisting of 
OM, infertility, and, 
commonly, enlarged 
ovaries 
* Relative prevalence 
from mothers and sisters 
suggest a modified 
dominant from of 
inheritance 
* Neither the prevalence  
of HIR among 1º female 
relatives nor of premature 
balding among 1º male 
relatives differed from 
controls 

Strengths  
* Inclusion of all male and 
female 1º family members 
in analysis 
* Large number of 
participants 
* Acknowledgement of 
possible etiological 
differences between women 
with and without HIR and 
stratified analysis of each 
Limitations 

* Proband diagnosis based 
on ovarian morphology 
only 
* All data of family 
members from self-
reported questionnaire of 
proband 
* Mode of inheritance 
determination based only 
on 1º relatives 
* Data collected 
differently on men with 
baldness (proband self-
report) than on their 
controls (interview) 
* Prolactin assays rarely 
performed during 
screening which allowed 
subjects with 
hyperprolactinemia into 
the study 

 
Mandel et al. (1983) 

Population 
* Four families in whom 
at least two siblings had 

Methods 
Cases and controls: 
* Fasting blood drawn 

Results 
* Elevated concentrations 
of DHEA-S indicated 

Strengths 
* Fasting blood draw on 
all participants 
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Title: 
HLA genotyping in family 
members and patients 
with familial polycystic 
ovarian disease 
 
Objective: 
To determine whether the 
familial occurrence of 
PCO is related to the 
major histocompatability 
complex (HLA) 

clinical evidence of PCO 
(N=8) 
* 15 PCO subjects without 
affected siblings 
* 10 normal cycling 
women without evidence 
of endocrine disorder and 
not taking medication 
(provided reference 
values) 
* Subject ethnicities not 
mentioned 
* Confounding 
medications not 
mentioned except in 
controls 
* Affected status 
definition: 
PCOS cases and sisters 
had to have HIR with OM 
or amonorrhea from 
menarche 
* Exclusion criteria: 
21-hydroxylase deficiency 

between 8 and 9 AM 
before and 60 min post-
ACTH administration to 
exclude 21-hydroxylase 
deficiency  
* Blood also drawn to: 
- Obtain HLA-A, -B, -C, 
and -DR genotypes for 
analysis 
- Measure serum levels of 
lutenizing hormone (LH), 
follicle stimulating 
hormone (FHS), 
testosterone (T), 
androstenedione (A), 
dehydroepiandrosterone 
(DHEA), 
dehydroepiandrosterone 
sulfate (DHEA-S), 
cortisol (F), progesterone 
(P), and 17-
hydroxyprogesterone (17-
OHP) 
 

excess adrenal androgen 
secretion 
* HLA genotyping in 
these families 
demonstrated that PCO 
does not exhibit linkage to 
the HLA system 

* Familial and non-
familial testing of HLA 
for a more complete 
assessment of the 
relationship between HLA 
and PCO 
 
Limitations 
* Small number of 
subjects 
* Blood drawn at random 
times of the female 
menstrual cycle in females 
(probands and sisters).  
This causes more 
variation in circulating 
androgens between 
individuals than there 
really might be 
* Controlling for 
spontaneous ovulation 
(easily tested by serum P 
levels) by either exclusion 
or separate analysis was 
not addressed. 
* Medication use that may 
have affected androgen 
levels not checked or 
excluded in any subjects 

 
Hague et al. (1988) 

 
Title: 
Familial PCO: A genetic 
disease? 

Population 
* 50 PCOS cases (17 with 
congenital hyperplasia) 
* 137 reproductive aged 
females in families of 
probands 
* 158 volunteer women 

Methods 
* Transabdominal pelvic 
scans where ovaries were 
identified and measured in 
3 planes, where possible 
* Detailed pedigrees 
obtained by proband 

Results 
* Mode of inheritance is 
not autosomal dominant 
or X-linked dominant 
* Other mechanisms were 
considered to explain this 
(i.e., meiotic drive due to 

Strengths 
* Defined affected status 
very clearly defined 
(PCO) 
* Large number of family 
members and controls 
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Objective: 
To determine the heredity 
of PCO 

with normal ovaries used 
for reference values  
* All subjects of European 
descent 
* Medications not 
mentioned 
* Affected status 
definition: 
PCO based on ultrasound 
* Exclusion criteria: 
None mentioned 

interview 
Measured symptoms of 
PCOS (i.e., HIR, OM, 
amonorrhea, infertility, 
and obesity) in all subjects 

genetic segregation 
distortion, vertical 
transport of infective 
agent, environmental 
factors) 

Limitations 
* Inclusion of women 
with PCO due to 
congenital adrenal 
hyperplasia (i.e., classical 
and nonclassical 21-
hydroxylase deficiency 
and 11-hydroxylase 
deficiency) 
* Ultrasonographer not 
blinded to subject 
affection status 
* Medication use was not 
addressed, but may have 
affected androgen levels 

 
Lunde et al. (1989) 

 
Title: 
Familial clustering in the 
polycystic ovarian 
syndrome 
 
Objective: 
To assess the degree of 
familial clustering and 
mode of inheritance of 
PCOS 

Population 
* 1º and 2º relatives of 
132 Norwegian PCOS 
patients aged 19 to 37 
years on whom ovarian 
wedge resection had been 
performed between 1970 
and 1980 (Group I) 
* 71 controls aged 17 to 
39 years (Group II) 
* All subjects of 
Norwegian descent 
* Medications not 
mentioned 
* Affected status 
definition: 
All women: Multicystic 
ovaries on gross 
examination and at least 2 
of the following: 
menstrual irregularity, 

Methods 
* Completed 
questionnaire on presence 
of infertility and HIR in 
patient and control 
parents, siblings, uncles, 
aunts, and grandparents 
* For female relatives, a 
question on menstrual 
irregularities was 
included; for male 
relatives, a question on 
premature balding was 
asked. 
* Age was recorded for all 
relatives 
* The questionnaire was 
then discussed with entire 
Group II and 89 of Group 
I. 
* To evaluate proband 

Results 
* A significantly higher 
proportion of relatives of 
PCOS cases were reported 
to have PCOS-related 
signs and symptoms when 
compared to controls 
* There was evidence of 
familial clustering 
* An X-linked mode of 
inheritance is not 
supported by these data 
* An autosomal dominant 
mode of inheritance was 
supported by these data 

Strengths 
* Large number of 
participants 
* Inclusion of 1º and 2º 
male and female relatives 
* Proband questionnaire 
information reliability 
verified by parent and 
sibling examination of 12 
male and 28 female 
relatives of 15 PCOS 
cases selected for 
geographical convenience 
 
Limitations 
* Diagnosis of male and 
female relative HIR 
largely based on 
interviews with probands 
* There was no blood 
drawn for hormonal 
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obesity, HIR, and 
infertility 
All men: PMPB prior to 
30 years old 
* Exclusion criteria: 
None mentioned 

interview reliability about 
1º relatives, parents and 
siblings of 15 probands 
were examined 
* Menarche was recorded 
and classified in both 
groups 
* Body hair growth 
evaluated and HIR scored 
in 89 probands, all 
controls, and parents and 
siblings of 15 probands 

assessment.  PCOS 
proband diagnosis based 
only on ovarian 
morphology 
* All data of family 
members from self-
reported questionnaire by 
PCOS women 
* The reliability of 
questionnaire information 
was high for 1º relatives 
only, so suggested mode 
of inheritance was based 
on this group only 
* Mode of inheritance 
included the male “PCOS 
phenotype” of premature 
balding.  This unclear 
phenotype definition 
could have confounded 
analyses. 

 
Carey et al. (1993) 

 
Title: 
Evidence for a single gene 
effect causing PCO and 
male pattern baldness 
 
Objective: 
To determine the mode of 
inheritance of PCO and 
PMPB, within the families 
of affected individuals by 
classic segregation 

Population 
* 14 PCOS cases with 
PCO having at least 1 
sister with or without 
PCO, of which 10 had 
families of sufficient size 
to examine an extended 
pedigree 
* 62 1º relatives of the 10 
probands 
* 107 extended family 
members also contacted 
and interviewed, including 
data on 24 deceased 
family members 

Methods 
* Transabdominal pelvic 
ultrasound of all women 
* Nine of the 14 probands 
had irregular menses and 
were interviewed with a 
full history taken 
(regarding menstrual 
disturbance) 
* Subjective assessment 
by subject of degree of 
acne and HIR 
* Measured in a general 
exam was height, weight, 
blood pressure 

Results 
* The authors proposed 
PCOS and PMPB are 
caused by alleles of one 
gene, which affects 
androgen production 
* Different PCOS/PMPB 
frequencies are caused by 
different thresholds of 
phenotypic expression 
* A variable phenotype 
due to modification of 
other genes 
* Data consistent with an 
autosomal dominant 

Strengths 
* Blood drawn for 
hormonal and biochemical 
assessment and women 
whose blood was drawn 
mid-cycle were excluded 
* 75-g oral glucose 
tolerance test (OGTT) was 
used to assess insulin 
sensitivity and resistance 
in obese probands, rather 
than relying on self-report 
* 10 families were 
completely screened 
yielding 58 kindreds plus 

                                  104



 

analysis * No reference values 
used 
* Ethnicities of the 14 
families: 10 Caucasian, 2 
Iranian, 1 Afro-Caribbean, 
1 Asian 
* Women on oral 
contraceptives (OCs) 
analyzed separately 
* Affected status 
definition: 
Probands: PCO by pelvic 
ultrasound 
Female relatives: PCO by 
pelvic ultrasound or 
history of menstrual 
irregularity and/or 
unwanted hair with or 
without acne 
Men: PMPB as fronto-
parietal hair loss before 
age 40 years 
Exclusion criteria: 
Blood obtained from 
women at mid-cycle were 
excluded from analysis, 
hyperprolactinemia, late 
onset 21-hydroxylase 
deficiency, and type A 
insulin resistance  

measurements, degree of 
HIR and acne, history of 
miscarriage and infertility 
* Blood was drawn to 
assess LH, FSH, T, 
prolactin and 17alpha-
hydroxyprogesterone 
* Family members were 
assessed for acanthosis 
nigricans as a measure of 
hyperinsulinemia (HI) and 
insulin resistance (IR) 

disorder probands (~6 subjects/ 
family) 
* Each person was 
screened and interviewed 
separately 
1º and 2º family members 
were included for mode of 
inheritance analyses 
* Included analysis of 
which PCOS symptoms 
(ovarian morphology, 
irregular menses, HIR) 
were most highly 
correlated with PCO 
 
Limitations 
* Blood obtained from all 
women at random cycle 
times 
* Hyperinsulinemia (HI) 
and insulin resistance (IR) 
measured by presence of 
acanthosis nigricans alone 
in all but obese family 
members 
* Men were included in 
this study as affected if 
they had PMPB. 
Conclusions on mode of 
inheritance, then, are 
based on the inclusion of 
these men and may be 
inaccurate due to that. 

 
Jahanfar et al. (1995) 

Population 
* 19 pairs of MZ twins 
* 15 pairs of DZ twins 

Methods 
* Subject interviewed for 
zygosity, menstrual 

Results 
* Eleven pairs of twins (5 
MZ and 6 DZ pairs) were 

Strengths 
* The authors adjusted 
analysis for BMI for 
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Title: 
A twin study of polycystic 
ovary syndrome 
 
Objective: 
Used the classic twin 
model to investigate the 
etiology of PCO by 
comparing monozygotic 
(MZ) and dizygotic (DZ) 
twin pairs to elucidate the 
contribution of genetic 
and environmental factors 
in PCO 

* 20 control subjects with 
regular cycle lengths and 
no evidence of HIR or 
acne (19<BMI<27 kg/m2) 
used to construct 
reference values for 
biochemical parameters 
* All subjects were 
Australian 
* OCs were stopped at 
least 3 months before 
blood was drawn 
* Affected status 
definition: 
PCO on ultrasound 
* Exclusion criteria: 
Late onset 21-hydroxylase 
deficiency 

history, height, weight, 
waist and hip 
circumferences, and 
presences of HIR and acne 

* Transabdominal 
ultrasound by blinded 
technician 
* Blood draw after 
overnight fast to measure 
LH, FSH, SHBG, total T 
and DHEA-S, insulin, 
glucose, prolactin, 
androstanediol 
gluconoride, insulin like 
growth factor binding 
protein-1 (IGFBP-1) and –
3 (IGFBP-3) 

scan discordant (one twin 
with PCO, the other not 
on ultrasound) 
* Model fitting analysis 
suggested fasting insulin 
levels, androstanediol 
gluconoride, and BMI 
were significantly 
influenced by genetics 
* Results suggest that 
PCO is unlikely to be 
inherited via a single 
autosomal genetic defect 
and may be the result of 
combined genetic and 
environmental factors or a 
possible sex-linked 
disorder associated with 
nonrandom X-
chromosome inactivation 

variable traits (i.e., SHBG 
and insulin) 
* They did not use clinical 
evidence of OM or HA to 
test models of PCO as one 
twin with hair or acne had 
cosmetic procedures to 
help the presence of either 
or both 
* Blood was drawn in the 
follicular phase for all 
unaffected women 
* The ultrasound 
technician blinded to 
clinical or biochemical 
results 
* A test of precision was 
performed of ultrasound 
results and interpretation 
 
Limitations 
* Small number of 
subjects 
* Variable analyses other 
than that for SHBG and 
insulin were not BMI 
adjusted and BMI was not 
assessed between cases 
and controls for 
significant differences.  
However, the ranges of 
BMI between the controls 
(19<BMI<27 kg/m2) and 
cases (16<BMI<37 
kg/m2) were clearly not 
similar 
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and should have been 
made more similar 
between cases and 
controls for more accurate 
reference values 

 

Norman et al. (1996) 

 
Title: Hyperinsulinemia is 
common in family 
members of women with 
polycystic ovary 
syndrome 
 
Objective: 
To determine if a disorder 
of insulin secretion was 
common in male and 
female family members of 
PCOS probands 

Population 
* Five families  
* 5 probands; 33 family 
members (older than 12 
years) 
* Control subjects for 
PCOS, baldness, insulin 
and lipids were used for 
reference values 
* All subjects Australian 
* Women stopped OCs at 
least 6 months prior to 
blood draw 
* Affected status 
definition: 
All women: T> 1ng/mL or 
A> 2ng/mL plus SHBG< 
20mmol/L plus ovarian 
morphology on ultrasound 
(i.e., 8 or more cysts with 
increased stromal echo on 
1 or 2 ovaries) 
All men: exam, photo or 
clear history (i.e., from 
individual or family) of 
baldness before age 40 
years 
* Exclusion criteria: 
Smoking 

Methods 
* Female members had 
ovarian scanning (vaginal 
or transabdominal (where 
subject refused or was too 
young for vaginal)) 
* Males assessed for 
premature baldness 
* All subjects had fasting 
blood obtained for 
androgens, SHBG, lipids, 
and insulin 
* 75-g OGTT performed 
every 30 minutes for 2 
hours 
* All subjects were 
nonsmokers to avoid the 
confounding effect of 
smoking on insulin 
resistance (a relationship 
known since at least 1986) 

Results 
* Hyperinsulinemia (HI) 
was considered a potential 
metabolic and genetic 
marker for people who 
may be carriers of a 
family tendency for PCO 
* HI was common in 
siblings regardless of 
obesity 
* PCO and premature 
male pattern baldness 
(PMPB) common in 
PCOS families 
* Insufficient subjects to 
establish mode of 
inheritance 

Strengths 
* All subjects had OGTT 
to test insulin and glucose 
levels 
* Smokers excluded to 
avoid confounding of IR 
* Fasting blood drawn on 
all subjects 
* All ultrasound scans 
performed in the follicular 
phase 
* Reference values were 
adjusted for BMI (i.e., 
insulin, triglycerides, 
LDL, HDL) and for sex 
(i.e., androgens) 
* Clear definitions of 
reference values used, 
overweight status, and 
control selection 
 
Limitations 
* Small number of 
participants affecting two 
main parts of this study: 
insufficient to establish 
form of inheritance and 
insufficient to examine the 
relationship between HI 
and oligmenorrhea 
* Blood was drawn at 
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random cycle times in 
women 
* PMPB used as male 
phenotype while it has not 
been established it has the 
same genetic basis as 
PCOS 

 
Waterworth et al. (1997) 

 
Title: 
Linkage and association 
of insulin gene VNTR 
regulatory polymorphism 
with polycystic ovary 
syndrome 
 
Objective: 
To study INS VNTR as a 
candidate genetic locus 
for susceptibility to PCOS 

Population 
* 147 individuals from 17 
families with several 
PCOS cases 
* A case-control study of 
two additional clinic 
populations: one from the 
Samaritan and St. Mary’s 
Hospitals, London 
presenting with 
anovulation and/or HIR 
and one from the 
Middlesex Hospital, 
London presenting with 
anovulation and PCO 
* Ethnicities of families: 
14 European descent, 2 
Asian, and 1 Iranian 
* Ethnicity of Case-
Control and Middlesex 
subjects: All Europid 
* Medications not 
mentioned 
* Affected status 
definition for family 
study: 
All women: PCO on 
ultrasound 
All men: Male-pattern 

Methods 
* Blood drawn for 
assessment of 8 markers 
ranging from the tyrosine 
hydroxylase site to 2 
markers in the insulin 
growth factor 2 region and 
spanning INS (i.e., the 
insulin gene locus) 
 

Results 
* The authors found 
positive evidence for 
linkage of PCOS to the 
INS VNTR locus on 
chromosome 11p15.5 
* The INS VNTR III/III 
genotype was associated 
with increased risk of 
PCOS in two independent 
case-control studies 
* Multilocus linkage 
disequilibrium mapping 
may suggest VNTR is the 
predisposing locus 
* The authors concluded 
PCOS is partly due to an 
inherited alteration in 
insulin production 

Strengths 
* The insulin gene locus 
was studied from several 
angles at once: linkage 
with families, association 
with unrelated individuals, 
and association with 
family members 
 
Limitations 
* PMPB was used as the 
male phenotype to 
increase the number of 
affected individuals in 
each family, but at the 
expense of a clear 
phenotype 
* Small number of 
subjects for linkage 
analysis (~8 people per 
family) 
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balding with onset before 
age 30 
* Affected status 
definition for Case-
Control study: 
Anovulation and/or HIR 

and PCO on ultrasound 

* Affected status for 
Middlesex study: 
Anovulatory cycles 
(anovulatory = OM = 
intermenstrual interval of 
more than 6 weeks) with 
PCO on ultrasound 
* Exclusion criteria: 
“…other causes of 
anovulation and HIR such 
as late onset congenital 
adrenal hyperplasia” 

 
Legro et al. (1998) 

 
Title: 
Evidence for a genetic 
basis for 
hyperandrogenemia in 
polycystic ovary 
syndrome 
 
Objective: 
To determine the genetic 
basis of endocrinological 

Population 
* 80 PCOS cases 
* 115 sisters of PCOS 
cases (used to establish 
prevalence of PCOS 
related phenotype due to 
genetics) 
* 70 age-, ethnicity-, and 
weight- comparable 
controls without history of 
hypertension or diabetes 
mellitus, either personally 
or in 1º relatives (used for 
reference values) 
 

Methods 
* All control women and 
probands examined by a 
study investigator 
* One fasting blood draw 
done on all participants 
between 8 and 10 AM. 
* Out of town sisters 
(N=39) had blood drawn 
at an outside site and were 
not examined by a study 
investigator 
* Height, weight, and 
blood pressure assessed 
for all subjects (not 

Results 
* Familial aggregation of 
hyperandrogenemia (HA) 
in PCOS kindreds suggest 
a genetic trait 
* The authors proposed 
that HA be used as the 
defining characteristic of 
PCOS 

Strengths 
* Women not fitting all 
criteria were analyzed and 
addressed separately (i.e. 
on OCs, insulin 
sensitizers, unable to get 
blood, OM without HA) 
* Reference values from 
controls of similar age, 
ethnicity, and weight 
* Controls tested for lack 
of IR by 75-g 2 hour 
OGTT 
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abnormalities in families 
with PCOS 

* Ethnicities for probands: 
75 non-Hispanic white, 4 
Hispanic, 1 African 
American 
* Ethnicities for controls: 
61 non-Hispanic white, 7 
Hispanic, 2 African 
American 
* Probands and controls 
only (not sisters) required 
to stop OCs at least 3 
months before blood 
draw.  Sisters on meds 
were considered 
“unknown” status 
* Affected status 
definition: 
Elevated total or free T 
plus oligomenorhea (less 
than or equal to 6 menses 
per year) or amonorrhea 
(e.g., NIH 1990 
Consensus criteria) 
* Exclusion criteria: 
Nonclassical 21-
hydroxylase deficiency, 
hyperprolactinemia, or 
androgen secreting tumors 

mentioned how in out of 
town sisters) 
* Blood was assayed for 
total and free T, DHEA-S, 
LH, and FSH 

Limitations 
* Blood drawn at random 
times to monthly cycle for 
probands and sisters 
without testing for 
spontaneous ovulation 
* Did not include familial 
males in this study 

 

Govind et al. (1999) 

 
Title: 
PCO are inherited as an 

Population 
* 29 probands 
* 134 1º proband family 
members 
* 10 controls 
* 44 1º control family 
members 
* Reference values from a 

Methods 
* Screening interview of 
all probands and controls 
* Transvaginal ultrasound 
used to determine ovarian 
morphology and volume 
and performed by one 
observer (precision of 

Results 
* PCOS/PMPB are of 
autosomal dominant 
inheritance 
* Sisters of women with 
PCOS are more likely to 
have endocrine 
abnormalities 

Strengths 
* Blood drawn in 
follicular phase in women 
with at least somewhat 
regular cycles and 
randomly in women with 
oligo/amonorrhea 
* Women on hormones 

                                  110



 

autosomal dominant trait: 
Analysis of 29 polycystic 
ovary syndrome and 10 
control families 
 
Objective: 
To obtain evidence of the 
genetic basis of PCOS and 
PMPB 

group of 218 normally 
cycling women sampled 
within 7 days of menses 
* Ethnicities for probands: 
27 Caucasian and 2 
Asians 
* Ethnicities for controls: 
10 Caucasian 
Women could continue 
hormones, but those were 
analyzed separately for 
LH and testosterone 
* Affected status 
definition: 
Women: PCO by pelvic 
ultrasound 
5 mothers and one sister 
had undergone a 
hysterectomy and bilateral 
salpingo oopherectomy: 
status defined according 
to history 
Men: PMPB defined by 
significant frontoparietal 
hair loss (type IV of 
Hamilton) before 30 years 
* Exclusion criteria: 
Late onset 21-hydroxylase 
deficiency 
Recent ovulation excluded 
in PCOS by progesterone 
measurement 

which was checked by 
independent observers) 
* Single fasting blood 
draw to assess LH, FSH, 
progesterone, DHEA-S, 
SHBG, and testosterone 

* PMPB men have higher 
testosterone than non-
PMPB men 

analyzed separately for 
LH and testosterone 
* Blinded verification of 
PCO 
 
Limitations 
* PMPB in men used as 
phenotype without any 
proof it is genetically 
related to PCOS 
* Cases and controls not 
race matched 
* Spontaneous ovulation 
in PCOS cases not tested 
for and excluded in 
analysis 
* Did not adjust for 
weight, which the authors 
identified as a possible 
mediator of peripheral 
insulin resistance 

 
Urbanek et al. (1999) 

 

Population 
* 150 probands with 
available nuclear families 
* 134 sisters of probands 

Methods 
* Blood drawn for 
screening of all women 
for exclusion criteria and 

Results 
* The strongest evidence 
for linkage was with the 
follistatin gene, even after 

Strengths 
* Large number of 
subjects 
* Only PCOS was 
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Title: 
Thirty-seven candidate 
genes for polycystic ovary 
syndrome: strongest 
evidence for linkage is 
with follistatin 
 
Objective: 
To test 37 candidate genes 
for linkage and 
association with PCOS or 
hyperandrogenemia 

* 163 trios (proband and 
both parents) for 
transmission 
disequilibrium testing 
(TDT) 
* Ethnicities of families: 
148 European, 2 
Caribbean 
* Confounding 
medications: OCs and 
insulin sensitizing agents 
* Affected status 
definition: 
For probands: <= 6 
menses per year plus 
evidence of HA (i.e., total 
or free T more than 2SD 
above the control mean) 
For sisters: HA with or 
without OM 
    * Women considered 
unaffected if they had 
normal androgen levels, 
were not taking any 
confounding medications, 
and had regular menstrual 
cycles (i.e. menses every 
27-35 days) 

    * Women not of 
reproductive age or not 
considered affected or 
unaffected were 
considered unknown 
For men: considered 
unaffected 
* Exclusion criteria: 

affected status 
* Blood drawn from all 
subjects for genetic testing 
of 37 candidate genes 

correction for multiple 
testing 
* Linkage results for 
CYP11A were nominally 
significant before, but not 
after correction 
* The strongest effect in 
the TDT test was observed 
in the INSR region, also 
not significant after 
correction 
* They concluded a 
systematic screen of 
candidate genes can 
provide strong evidence 
for genetic linkage in 
complex diseases and can 
identify genes for future 
research 

considered an affected 
phenotype 
* Well-designed with a 
focus on studying each 
candidate gene from a 
family approach as well as 
a case-control approach 
(i.e., affected sib-pair 
analysis to test linkage 
and transmission 
disequilibrium test 
analysis to test 
association) 
 
Limitations 
* By using only siblings 
to test linkage, they lost 
power in their analysis 

                                  112



 

Nonclassical 21-
hydroxylase deficiency, 
hyperprolactinemia, 
androgen secreting tumors 

 

Urbanek et al. (2000) 

 
Title: 
Allelic variants of the 
follistatin gene in 
polycystic ovary 
syndrome 
 
Objective: 
To detect variation in the 
follistatin gene and to 
assess its relevance to 
PCOS via pedigree and 
case-control studies 

Population 
* Screened the follistatin 
gene for DNA sequence 
variants in 19 families 
with multiple affected 
daughters (N=85 affected 
members) and in 31 
unrelated women with 
PCOS and 15 control 
women 
* Tested a common 
variant in the follistatin 
gene for association with 
PCOS in 249 PCOS 
families (N=324 affected 
members) 
* Examined follistatin 
messenger RNA 
expression levels in 
cultured fibroblast cells 
from 18 PCOS cases and 
13 control women 
* Ethnicities of families: 
90 European descent, 5 
Caribbean or Mexican, 2 
African American, 1 
Asian Indian, 1 unknown 
* Confounding 
medications: OCs or 
insulin sensitizing drugs 
* Affected status 
definition: 

Methods 
* Blood drawn for 
screening of all women 
for exclusion criteria and 
affected status 
* Blood drawn from all 
subjects for genetic testing 
of follistatin variants 

Results 
* Most of the follistatin 
gene variants are rare (i.e., 
13 of 20 variants occurred 
at a frequency of less than 
5% of parental 
chromosomes) 
* Only one sequence 
polymorphism was 
detected in the coding 
region and the intron/exon 
boundaries of the 
follistatin gene of 31 
PCOS and 15 control 
women 
* No significant 
differences were found in 
the number of 
transmissions of markers 
in the follistatin gene 
among the 249 PCOS 
families with 324 affected 
members 
* No substantial 
difference was found in 
follistatin expression 
between the 18 PCOS 
cases and 13 controls 
* Contributions, if any, 
from the follistatin gene to 
the etiology of PCOS are 
likely to be small 

Strengths 
* Various methods 
employed to test follistatin 
variants, including family 
and case-control studies 
* Males excluded from 
analysis 
 
Limitations 
* Only 284 of 324 
“affected” women had 
PCOS, the rest had HA 
only.  While this does 
introduce more variance 
into analysis, which 
increase the chances of an 
inconclusive result, the 
fact that only 40 of 324 
women (~12% of the total 
population) had HA only 
would probably not have 
changed study results if 
they had been removed 
from analysis. 
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Probands: OM (<=6 
menses/year) and HA (i.e., 
total or free T more than 2 
SD above the control 
mean) 
Sisters: HA with or 
without OM 
* Exclusion criteria: 
Probands: 
Hyperprolactinemia and 
nonclassical congenital 
adrenal hyperplasia 
Sisters: normal androgens 
but irregular cycles, on 
confounding medications, 
not of reproductive age 
* All brothers 

 
Kahsar-Miller et al. 

(2001) 

 
Title: Prevalence of 
polycystic ovary 
syndrome (PCOS) in first-
degree relatives of 
patients with PCOS 
 
Objective: 
To determine the rate of 
clinically evident PCOS in 
1º female relatives of 
PCOS probands 

Population 
* 195 PCOS cases 
(Caucasian and African 
American) + female 
relatives (i.e., 78 mothers 
and 50 sisters of 93 
probands) 
* 119 controls (aged 18 to 
50 years) recruited for 
determination of normal 
androgen level ranges 
* Ethnicities of probands: 
166 non-Hispanic white, 
29 black 
* Ethnicities of controls: 
not mentioned 
* Confounding 
medications: controls 
excluded for OCs; no 

Methods 
Cases: 
* Probands interviewed 
about family prevalence 
of HIR and menstrual 
irregularities and to get 
permission to contact their 
mothers and sisters 
* Clinical evaluations 
conducted on all 
consenting family 
members to assess 
personal menstrual history 
as well as HIR and acne, 
height and weight 
* Serum obtained for 
measurement of total and 
free T, SHBG   
* Thyroid stimulating 

Results 
* High degree of familial 
aggregation of PCOS (5- 
to 6-fold increased 
incidence among 1º 
female relatives) 
* Unclear mode of 
inheritance 
* 35% of mothers and 
40% of sisters of probands 
will be affected by PCOS 

Strengths 
* Authors acknowledge 
family bias toward 
treatment if a family 
members also has PCOS 
and changed the affected 
status to include those 
family members 
* A strict definition of 
“affected” status was used 
for probands and their 
family members 
* Analysis for differences 
in participating and 
nonparticipating family 
members of probands was 
done to ascertain self-
selection bias 
* They addressed possible 
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androgens assessed for 
family members on OCs  
* Affected status 
definition: 
For probands: 1990 NIH 
Consensus criteria (i.e., 
evidence of ovulatory 
dysfunction with HIR 
and/or HA) 
For relatives: modified to 
address previous treatment 
of HIR or acne 
* Exclusion criteria: 
Nonclassical adrenal 
hyperplasia, Cushing 
syndrome, 
hyperprolactinemia, 
hypothyroidism 

hormone, prolactin, and 
17-OHP to test for 
exclusion criteria 
 
Controls: 
Controls underwent a 
cursory physical 
examination, HIR scoring, 
and blood sampling 

differences in the results 
between this study and 
others as due to ethnicity 
or environment (e.g., diet) 
 
Limitations 
* The small number of 
sisters recruited prevent 
an analysis of mode of 
inheritance 

 
Mao et al. (2001) 

 
Title: 
Study on the mode of 
inheritance for familial 
polycystic ovary 
syndrome 
 
Objective: 
To investigate the mode of 
inheritance of PCOS 

Population 
* 139 PCOS cases 
* 1º family relatives 
* Ethnicity: All subjects 
Chinese 
* Confounding 
medication: OCs stopped 
for at least 3 months 
* Affected status 
definition of cases: 
Irregular menses (cycle 
<21 days or >35 days or 
bleeding for ≥10 days) 
and blood hormones 
(LH/FSH ≥2, T 
≥2.2nmol/L, A >9nmol/L) 
and PCO by ultrasound 
OR males with PMPB 

Methods 
* Outcome measures were irregular 
menses in women and PMPB in 
men 

* Questionnaires from 
probands about family 
members 
* Information verified by 
family member interview 

Results 
* Prevalence rates of 
irregular cycles among 
mothers and sisters were 
37.4% and 33.1%, 
respectively 
* Prevalence rates of 
PMPB among fathers and 
brothers were 19.4% and 
6.5%, respectively 
* Simple segregation 
analysis indicated that the 
segregation ratio of PCOS 
trait in siblings was 
0.3023 
* Complex segregation 
analysis indicated that 
PCOS fit in with the 

Strengths 
* Large number of 
families enrolled 
 
Limitations 
* PMPB was included as 
an affected phenotype in 
this study of PCOS mode 
of inheritance.  There is 
no evidence of a similar or 
shared genetic basis for 
PCOS and PMPB. 

                                  115



 

* Exclusion criteria: Other 
diseases related to 
androgen excess, like 
Cushing’s syndrome, etc. 

inheritance model of co-
dominant disorder with 
full penetrance and 
sporadic cases 

 
Colilla et al. (2001) 

 
Title: 
Heritability of insulin 
secretion and insulin 
action in women with 
polycystic ovary 
syndrome and their first 
degree relatives 
 
Objective: 
To examine the extent of 
heritability of defects in 
both insulin action and 
insulin secretion among 
PCOS families 

Population 
* 33 PCOS cases 
* 48 non-diabetic 1º 
relatives 
* Ethnicities of relatives: 
31 Caucasian, 12 African 
American, 4 Asian, 1 
Hispanic 
* Confounding 
medications: All steroid 
preparations (including 
OCs) and insulin altering 
medications stopped >= 2 
months before screening 
and enrollment 
* Affected status 
definition: 
Historical, physical 
examination, and 
hormonal evidence of 
androgen excess and NIH 
consensus criteria (i.e., 
history of OM, infertility, 
HIR, acne or androgenetic 
alopecia and HA 
measured by free T>= 
34.7 pmol/L) 
* Exclusion criteria: 
Nonclassical 21-
hydroxylase deficiency, 
congenital adrenal 
hyperplasia, Cushings 

Methods 
* All subjects had a 
fasting intravenous 
glucose tolerance testing 
(IVGTT) where 2 IVs 
were placed, one in each 
arm (one to administer 
glucose and tolbutamide, 
one to draw blood for 
insulin and glucose 
levels).  Blood was drawn 
34 times from  –20 to 240 
minutes.  From IVGTT, 
they measured 1) first 
phase insulin secretion, 2) 
insulin sensitivity index, 
and 3) insulin secretion X 
insulin sensitivity to 
assess beta cell secretory 
function adjusted for 
insulin resistance 
* Blood drawn was 
assayed for insulin, 
glucose, testosterone, 
SHBG 

Results 
* Significant heritability 
was found for insulin 
secretion among siblings 
* The parameter 
quantifying insulin 
secretion in relation to 
insulin sensitivity was 
significant among siblings 
* The authors concluded 
that there is an heritable 
component to beta cell 
dysfunction in families of 
women with PCOS 

Strengths 
* The authors measured 
environmental influences 
on beta cell dysfunction 
(i.e. spousal correlations 
vs. parent-offspring and 
sibling correlations) 
* IVGTT is a very 
thorough method of 
measuring insulin and 
glucose levels 
* Age, sex and race 
adjusted for BMI in all 
analyses 
 
Limitations 
* Small number of 
subjects studied 
* Many of the subjects 
were both obese and 
profoundly insulin 
resistant, limiting 
variability of this measure 
* The authors did not 
address ethnic differences 
in insulin sensitivities that 
have been shown to exist.  
They could have 
addressed this by doing 
stratified analyses using 
ethnicity. 
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syndrome, diabetes 
mellitus, 
hyperprolactinemia 

 

Legro et al. (2002) 

 
Title: 
Insulin resistance in the 
sisters of women with 
polycystic ovary 
syndrome: Association 
with hyperandrogenemia 
rather than menstrual 
irregularity 
 
Objective: 
To determine if sisters of 
PCOS probands have 
evidence of PCOS 
 
Hypothesis: IR produced 
anovulation in sisters with 
PCOS 

Population 
* 336 PCOS probands 
* 307 sisters of 219 
probands 
* 47 controls (for 
reference values) 
* Ethnicities for sisters 
and controls: non-
Hispanic white 
* Confounding 
medications: subjects 
taking OCs, hypertension, 
and insulin sensitizing 
medications were 
considered “phenotype 
unknown” 
* Affected status 
definition: 
Total T> 58 ng/dL or free 
T> 15ng/dL and OM 
* Exclusion criteria: 
Nonclassical 21-
hydroxylase deficiency, 
hyperprolactinemia, 
androgen secreting tumors 

Methods 
Cases: 
* Sisters were evaluated 
onsite at one of 3 study 
centers (N=122) or offsite 
in a local hospital or 
clinical laboratory 
(N=185) 

* Fasting blood draws on 
all subjects 
* Those seen on site also 
had blood pressure 
assessment, waist and hip 
girth measurements at the 
study center 
* Offsite subjects had self-
reported height and 
weight (N=166) 
measurements  
 
Controls: 
* Examined by a study 
investigator and had no 
HIR 

* Tested for glucose 
tolerance by 75-g 2 hour 
OGTT 
* Assays determined from 
single fasting sample for 
glucose, insulin, LH, FSH, 
total and free T, and 
DHEA-S 

Results 
* yperandrogenism (HA) 
identifies sisters at risk for 
insulin resistance (IR) 
while menstrual 
irregularity does not  
* IR clusters in families 
with PCOS 

Strengths 
* The authors controlled 
for ethnic differences in 
insulin sensitivity in 
PCOS probands by 
recruiting only non-
Hispanic white women 
* Analysis of continuous 
response variables were 
adjusted for age and BMI 
* Controls had no history 
of non-insulin dependent 
diabetes mellitus 
(NIDDM) or hypertension 
personally or in their 1º 
relatives 
* Fasting blood was 
drawn from each subject 
for biochemical 
assessment 
 
Limitations 
* Controls were age, 
weight and ethnicity 
comparable to PCOS 
probands, but not their 
sisters 
* Blood drawn at random 
times in all women 
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 APPENDIX B 

 
 
 
 

CELLULAR ASPECTS OF ADIPOSITY AND INSULIN RESISTANCE 
 
 
An analysis of the Third National Health Examination Survey data determined a prevalence of diabetes 

2.9 times higher in persons who are overweight rather than non-overweight (1).  Prospective studies, like 

those involving Pima Indians, have supported this association (2).  Body weight/fat is associated with 

diabetes via the presence of insulin resistance (3), which is itself a predisposing factor for type 2 diabetes 

(T2D) (4-6).  Evidence from obesity research confirms skeletal (7), adipose, and liver (8) tissue have 

insulin resistance in states of overweight.  When obese subjects develop T2D, glucose, insulin, and free 

fatty acids (FFAs) simultaneously increase, yet the defining insulin resistance, as measured by decreased 

total body glucose disposal, is thought to occur predominantly in skeletal tissue.  There are several factors 

associated with both increased body fatness and insulin resistance, including systemic inflammation 

(CRP, PAI-1, TNF-α), endothelial dysfunction, dyslipidemia, hyperinsulinemia, and altered coagulation 

and fibrinolytic factors (Figure B-1). 
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Figure B-1.  Obesity and Insulin Resistance 
(Reprinted, with permission, from Obesity Research, Volume 11 © 2003 by the North American 
Association for the Study of Obesity www.obesityresearch.org from Cabellero (2003) Obes Res 11:1278-
89.) 
 
 
 
Several theories exist to explain the relationship between body fatness and insulin resistance.  One long-

standing theory, the portal hypothesis, states that visceral fat accumulation almost primarily accounts for 

complications due to obesity by contributing to an increase in portal vein plasma FFA concentrations (9).  

One problem with the portal hypothesis is that it does not address the effect of overall body fatness or 

subcutaneous truncal fat in insulin resistance.  Recent research has found in obese women that both body 

fatness, as measured by whole body magnetic resonance imaging (MRI) (10), and truncal subcutaneous 

fat mass, as measured by the sum of skinfolds (11), were significantly related to insulin resistance.  

Subcutaneous truncal fat has also been associated with insulin resistance in both obese nondiabetic (12, 

13) and T2D.(14-16) men. 

Two alternative hypotheses exist to explain the relationship between subcutaneous truncal fat and/or 

overall body fatness on insulin sensitivity– the ectopic fat storage syndrome hypothesis and the adipocyte 

as an endocrinologically-active organ.  In this dissertation, the selection of candidate genes as well as the 

theories of how obesity and insulin resistance relate are most supported by the ectopic fat storage 

syndrome hypothesis. 
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Ectopic fat storage, or intramuscular lipid storage, as a cause of insulin resistance, is supported by 

the finding of increased skeletal muscle triglyceride content in subjects with obesity or T2D.  Muscle TG 

levels are predictive of insulin resistance in both humans and animals, as measured by muscle biopsy, CT 

and spectral magnetic resonance (sNMR) (17).  In an extensive review of the relationship between muscle 

triglyceride and insulin resistance, Kelley et al. (15) addressed several paths of thought concluding that 

inflexibility of muscle lipid utilization as fuel in obese and type 2 diabetic subjects was the main defect by 

which all study results could be explained.  The main premise of this concept was that insulin resistance 

entails disturbances of both glucose and fatty acid metabolism.  In normal skeletal muscle, there is 

flexibility in type of fuel usage dependent upon the environment of the muscle (i.e., pre- or post- 

absorptive) with the ability to seamlessly switch between fuel types (i.e., glucose or fatty acids).   These 

impairments seem to be indirectly centered on the ability of mitochondria to oxidize fatty acids, perhaps 

through mediation of lipid metabolite levels, such as ceramide or diacylglycerol, both of which are known 

to attenuate insulin signaling (18).  Various methods exist to image intramyocellular lipid, including 

noninvasive methods, such as magnetic resonance spectroscopy or computer tomography, and invasive 

methods, such as muscle biopsy.  Magnetic resonance spectroscopy is able to distinguish between 

intramyocyte and extramyocyte lipid, where it is possible to identify peaks corresponding with the 

methalene carbon of triglyceride (19).  Extramyocyte triglyceride is contained within adipocytes within 

muscle and intramyocyte TG (IMTG) is found within muscle fibers.  IMTG is the form increased in 

obesity and is correlated with severity of IR (20).  From increases of IMTG found in non-obese, insulin 

resistant, first-degree relatives of type 2 diabetics (21), it is suggested that among insulin resistant 

populations, regional deposition of fat within skeletal muscle may be an early body composition 

abnormality, rather than arising later as a consequence of excess adiposity.  This further supports the idea 

that disturbed lipid metabolism by skeletal muscle may have a pivotal role in development of obesity and 

type 2 diabetes. 

In the hypothesis that the adipocyte is an active endocrine organ, the adipocyte responds to various 

stimuli to integrate metabolic, hormonal, and neural stimuli by releasing hormones (22-44).  This view is 

quickly gaining popularity as several adipocyte-secreted factors (i.e., adipokines), including interleukin-6 

(45), leptin (23), and tumor necrosis factor-α (23) are significantly associated with obesity, insulin 

resistance, and type 2 diabetes.  These two hypotheses are not mutually exclusive and highlight the 

complexity of determining causes of insulin resistance among individuals. 
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B.1 BASIC CELLULAR MECHANISMS OF THE INSULIN PATHWAY 

 

 
B.1.1 Insulin receptor 
 
 
Insulin is the most potent anabolic hormone known and is essential for normal tissue development, 

growth, and maintenance of whole-body glucose homeostasis.  Insulin is secreted by the beta cell of the 

pancreatic islets of Langerhans in response to elevated circulating glucose levels and amino acids after 

eating.  Insulin regulates glucose homeostasis at many sites, thereby reducing hepatic glucose output (via 

decreased gluconeogenesis and glycogenolysis) and increasing the rate of glucose uptake.  Insulin 

resistance primarily occurs when normal levels of circulating insulin are not sufficient to regulate these 

processes.  Thus, insulin resistance is a defect in signal transduction. 

The insulin receptor is comprised of two cysteine-rich extracellular alpha subunits and two 

membrane-spanning beta subunits linked by disulfide bonds to form a beta-alpha-alpha-beta 

heterotetramer.  This receptor is a large glycoprotein weighing 300-400 kiloDaltons (kDa) mostly 

concentrated on adipocyte and hepatocyte cells (200,000 – 300,000 per cell).  The tyrosine kinase activity 

of the insulin receptor was first recognized in 1981 (46) and is defined as the enzymatic (kinase) activity 

enabling the insulin receptor to transfer a phosphate moiety from adenosine triphosphate (ATP) to a 

specific amino acid residue (tyrosine).  When phosphorylated, this tyrosine is part of a recognition motif 

for several insulin substrates.  A large body of evidence suggests that the receptor tyrosine kinase activity 

and multisite autophosphorylation is required for biological activity and action of the insulin and insulin-

like growth factor (IGF)-1 receptors (47-49).  The autophosphorylation sites in the insulin receptor beta-

subunit include Tyr1146, Tyr1150, Tyr1151 (50).  These residues correspond to major 

autophosphorylation sites in the kinase domain of the prototype tyrosine kinase pp60c-src.  Insulin 

receptor autophosphorylation, which directly regulates the receptor’s kinase activity, seems to occur 

through a transmechanism, whereby insulin binding to the alpha subunit of one alpha-beta dimer 

stimulates autophosphorylation of the adjacent covalently-linked beta subunits.  The insulin receptor, 

though, is regulated by more than insulin binding and tyrosyl-autophosphorylation.  Prior to stimulation 

by insulin, the receptor is basally phosphorylated on serine and threonine residues.  Signaling systems that 

stimulate serine or threonine kinases, including the insulin receptor itself, increase the Ser/Thr 

phosphorylation of the beta-subunit (46, 51), which has been associated with decreased tyrosine kinase 

activity of the insulin receptor.  Chronically elevated insulin levels, such as those found in states of 

insulin resistance, may stimulate serine kinases perhaps through the IGF-1 receptor, which itself can be 
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stimulated by high insulin levels.  This interaction could provide a mechanism for insulin-induced insulin 

resistance.  Studies of women with PCOS have indicated that associated IR may be most likely due to 

post-receptor binding dysfunction rather than substrate-receptor binding {Dunaif, 1992 #503}. 

 
 

B.1.2 Insulin Receptor Activity (Signaling) 
 
 
Once the receptor is bound, the insulin signal is transmitted through a cellular network of protein kinase 

cascades based on both tyrosine and serine/threonine kinases.  Many of insulin’s actions are the result of 

dephosphorylation reactions, including: 1) the activation of glycogen synthase, pyruvate kinase and 

pyruvate dehydrogenase and 2) the inhibition of triacylglycerol lipase, phosphorylase and its kinase (52). 

Insulin action begins when insulin binds to its receptor.  The tyrosine kinase of the insulin receptor is 

initially stimulated by insulin binding and is subsequently augmented by insulin-stimulated receptor 

autophosphorylation.  The discovery of tyrosine kinase activity of the insulin receptor allowed 

identification of down-stream elements in insulin action.  Two mechanisms that have emerged as the 

foundation for insulin signal transmission are: 1) the substrate hypothesis and 2) the association 

hypothesis.  The substrate hypothesis involves the tyrosine phosphorylation of cellular proteins by the 

activated insulin receptor kinase.  The association hypothesis is based on the idea that 

autophosphorylation of the beta subunit mediates non-covalent, stable interactions between the receptor 

and cellular proteins and is not dependent on phosphorylation.  Common insulin receptor substrates 

include the insulin receptor substrate-1 (IRS-1), which may function as a central molecule in insulin 

signal transmission by binding to src homology-2 (SH-2) domain-containing proteins during insulin 

stimulation and regulating associated catalytic activities that mediate the insulin response.  These SH-2 

domains are phosphotyrosine binding sites located in a variety of proteins that control the activation of 

tyrosine kinases in the insulin and other tyrosine-based receptors.  IRS-1 binds strongly to the 

phosphatidylinositol 3’-kinase (PI3K) enzyme (53).  PI3K is believed to be an important mediator of 

cellular growth and metabolism (54) and its activity increases several-fold after stimulation by insulin, 

suggesting IRS-1 and/or the insulin receptor somehow activate PI3K in vivo (55). 

 
 

B.1.3 Insulin synthesis 
 
 
Beta cells are the only body cells capable of synthesizing insulin, a process begun with proinsulin mRNA, 

by uniquely being able to initiate transcription of the preproinsulin gene.  In the beta cell nucleus, the 

preproinsulin mRNA is matured by the sequential addition of a 5’-methylguanine cap, a poly-A tail, and 
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the excision of noncoding introns.  Mature mRNA is translocated to the cytoplasm for translation of 

preproinsulin on membrane-bound ribosomes.  Beta cell cytoplasm contains large amounts of 

preproinsulin mRNA (~10% of total mRNA) that are dormant in glucose concentrations > 3.3 mM.  The 

initiation of translation ultimately leads to insulin biosynthesis where translocation of glucose to the 

ribosomes increases within minutes when glucose concentrations are greater than 3.3mM (56).  After 

translation of approximately 50 residues, the nascent chain emerging from the ribosomal complex binds 

to the signal recognition sequence of a ribonucleoprotein complex and elongation is stopped as the 

translation complex binds to the endoplasmic reticulum, or ER.  Within the ER, translation of 

preproinsulin mRNA is completed and the conversion to proinsulin occurs – a process taking about 30 to 

60 seconds. 

Proinsulin is then transported along the microtubule network in transport vesicles to the cis part of 

the Golgi aPPAR-atus – a process that is guanine triphosphate- and calcium-dependent (57).  In the trans 

network of the Golgi aPPAR-atus, proinsulin is converted to insulin and the inactive by-product C-

peptide by prohormone-converting endopeptidases PC3 and PC2 and exprotease carboxypeptidase H.  

Insulin is then packaged into secretory vesicles in cisternae of the Golgi aPPAR-atus to be ready for 

export to the plasma membrane.  Insulin “grains” accumulate in the cisternae forming clathrin-coated 

vesicles.  From the trans-Golgi network, the vesicles are carried via microtubules that form the beta cell 

cytoskeleton. 

 
 

B.1.4 Beta Cell Dysfunction 
 
 
The beta cell cytoskeleton is important for insulin secretion as disruption of its function inhibits post-

translational processing and mobilization of insulin to the plasma membrane.  This network consists of 

polymerized structures of actin filaments and microtubules and it bridges the ER, the Golgi aPPAR-atus 

and the plasma membrane.  Furthermore, the application of glucose to these cells has been shown to 

increase amounts of polymerized tubulin in the beta cell (58).  Polymerization of tubulin and mobilization 

of vesicles is regulated by microtubule-associated proteins that are bound to tubulin.  These proteins are 

believed to be phosphorylated by cAMP-responsive protein kinases (59, 60).  Likewise, the amount of 

polymerized actin in islet cells increases from 40% to 70% upon glucose stimulated insulin secretion (59, 

61). 

Insulin secretion via secretory vesicles requires recruitment from the cytosolic pool, translocation to 

the plasma membrane, and physical association with the plasma membrane (i.e., vesicles dock and fuse 

with the plasma membrane and their content spill into extracellular space, a process also known as 
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exocytosis).  Phosphorylation of microtubulins and filaments aid in navigation of vesicles toward the cell 

membrane.  Kinesin, the force-generating microtubule-associated adenosine triphosphatase (ATPase), has 

been identified as important in mobilization of insulin secretory vesicles.  In the resting beta cell, kinesin 

is phosphorylated by casein kinase 2 and is rapidly desphosphorylated by calcineurin (62) with increased 

calcium levels.  A small pool of insulin vesicles are contained with in the beta cell for “ready release” and 

fusion of these vesicles with the plasmalemma allows insulin release (63).  Soluble N-ethylmaleimide-

sensitive factor attachment protein (SNAP) receptors (SNARES) are important for directing specificity of 

vesicles to the membrane (60).  The vesicle-SNARE (v-SNARE) is recognized by the target-SNARE (t-

SNARE) on the plasma membrane.  Docking of the vesicles with the plasma membrane involves 

formation of a core complex linking the syntaxin and synaptosomal-associated protein 25 (SNAP-25), the 

t-SNARE, with vesicle-associated protein 2 (VAMP-2)/synaptobrevin-2, the v-SNARE (64, 65). 

Beta cells are responsible for maintaining a narrow range of blood glucose levels, working through a 

feedback loop, as follows: 1) hyperglycemia signals beta cells to produce insulin and suppress glucagon; 

2) suppressed glucagon switches off glucose production from liver and increases glucose uptake in 

muscle, fat and liver; 3) hypoglycemia signals beta cells to decrease insulin secretion and increase 

glucagon, thus stimulating glucose production in the liver.  When functioning properly, the rate of hepatic 

glucose production equals the rate of glucose disposal and fasting glucose levels are maintained between 

80 and 115 mg/dl.  In type 2 diabetes and other states of inadequate insulin, hepatic glucose production 

exceeds glucose disposal resulting in fasting hyperglycemia (66). 

In the normal beta cell, insulin secretion is initiated when glucose enters the cell, accelerates 

metabolism, and closes adenosine triphosphate (ATP)-sensitive potassium channels (67).  Potassium 

channels have high-affinity sulfonylurea receptors which are sensitive to sulfonylureas and other 

secretagogues (which close channels) and diazide (which opens channels).  Closure of potassium channels 

depolarize the cell membrane and set up oscillating fluxes of calcium, which then trigger oscillating 

releases of insulin granules from the cell (67-69).  Evidence exists that Ca++-dependent protein 

phosphorylation aids in the initiation of exocytosis.   

Early in type 2 diabetes, there is a lack of responsiveness of the beta cells to glucose, which later 

turns to a reduction in beta cell mass (70).  The initial lesion may be comprised of an abnormality in 

glucose transport, secretagogue pathways, ion channels, or other processes involved in insulin synthesis, 

processing, storage and release (66).  Genetically increased apoptosis may be responsible for beta cell loss 

(71, 72) with cofactors such as cell exhaustion from long-term hypersecretion and deposition of 

amyloidlike material in pancreatic islets.  Further contributing factors probably include glucotoxicity 

and/or lipotoxicity (70, 72, 73). 
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Regardless of the cause, the first indication of beta cell dysfunction is a delay in the acute insulin 

response to glucose.  In the normal response to insulin, a first phase secretion response starts immediately, 

peaks in 10 minutes, and ends in 20 minutes and is followed by a second secretion phase, which begins at 

15-20 minutes and peaks over the next 20 to 40 minutes (74).  In type 2 diabetics, the first phase response 

to glucose is lost and must be gone approximately 5 years before fasting hyperglycemia appears (72).  

The result is an excessive rise in postprandial glucose and, in response to that, a hypersecretion of second-

phase insulin (72, 75). 

 
 

 125



 

B.2 THE INSULIN PATHWAY AND LIPID METABOLISM 

 
 

B.2.1 Fat cell regulation of insulin sensitivity 
 
 
Adipose tissue has an important role in insulin sensitivity and the relationship can be outlined as follows: 

circulating free fatty acids that have been derived from adipose tissue are elevated in many states of 

insulin resistance and may contribute to insulin resistance by (i) inhibiting glucose uptake, glycogen 

synthesis, and glucose oxidation and (ii) increasing hepatic glucose output (76). 

Cross-talk between tissues in regulation of glucose metabolism involves the following steps: 

1) Insulin is secreted from pancreatic beta cells as a result of elevated circulating glucose levels. 

2) Insulin decreases glucose production from the liver, and increases glucose storage, uptake, and 

utilization in adipose and muscle tissue. 

3) The fat cell regulates metabolism by releasing FFAs that reduce glucose uptake in muscle, insulin 

secretion from the beta cell, and increase glucose production from the liver. 

4) The fat cell can also secrete adipokines, like leptin, adiponectin, and TNF, which regulate food intake, 

energy expenditure, and insulin sensitivity. 

Plasma glucose is kept in tight regulation despite periods of feeding and fasting.  This balance is 

governed by: 1) glucose absorption from the intestine, 2) production by the liver, and 3) uptake and 

metabolism by peripheral tissues.  Insulin increases glucose uptake in muscle and fat, by stimulating 

GLUT4 translocation from intracellular sites to the cell surface, and inhibits hepatic glucose production in 

order to regulate blood glucose concentrations.  Moreover, insulin has other non-metabolically centered 

functions, including cell growth and differentiation, as well as promoting the storage of substrates in fat, 

liver and muscle by stimulating lipogenesis, glycogen and protein synthesis and by inhibiting lipolysis, 

glycogenolysis and protein breakdown.  Insulin resistance results in profound dysregulation of these 

processes, producing elevations in fasting and postprandial glucose and lipid levels.  Even though up to 

75% of insulin-dependent glucose disposal occurs in skeletal muscle (77), only mice with a knockout of 

the insulin receptor in adipose tissue have impaired glucose tolerance when compared to skeletal muscle 

knockout mice.  These results may suggest that skeletal tissue IR is more due to insulin receptor 

dysfunction in adipose tissue than in skeletal tissue.  Thus, adipose tissue is crucial in regulating both 

lipid and glucose metabolism. 

Elevated FFAs are associated with insulin-resistant states and have been implicated in contributing to 

diabetes and obesity by inhibiting glucose uptake, glycogen synthesis and glucose oxidation, and by 
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increasing hepatic glucose output (76).  Furthermore, they are also associated with reduced insulin-

stimulated IRS-1 phosphorylation and IRS-1-associated PI3K activity (78).  The link between increased 

circulating FFAs and insulin resistance may involve accumulation of triglycerides and fatty-acid derived 

metabolites (diacylglycerol, fatty acyl-CoA, and ceramides) in liver and muscle. 

 
 

B.2.2 Lipid Metabolism 
 
 
Lipids are digested and absorbed in the gastrointestinal tract and are transported via plasma to various 

organs for energy use or storage.  The liver, adipose tissue and the mammary gland all use exogenous 

lipids to synthesize triglycerides.  The liver also produces endogenous lipids to synthesize cholesterol.  

Overall, free fatty acids, although very important for fuel, form a small part of blood lipids.  They are 

transported in plasma bound non-covalently to albumin.  Major classes of lipids in plasma include: 

triglycerides, phospholipids, cholesterol and its esters, and free or non-esterified fatty acids (Figure B-2). 

Triglycerides (TGs), phospholipids, and cholesterol and its ester are transported in the blood as 

lipoproteins.  Lipoproteins have a hydrophobic core comprised of TG and cholesterol ester, which is 

surrounded by a monolayer of apoproteins, cholesterol and phospholipids.  The monolayer allows this 

macromolecule to be miscible in plasma for transport of endogenous and exogenous lipids.  While in this 

complex, lipids and proteins associate and are stabilized by non-covalent forces.  The protein components 

of lipoproteins, called apoproteins, form the lipoprotein structure providing recognition sites for cell 

surface receptors and can act as regulators of certain enzymes. 
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Figure B-2. Normal lipid metabolism 
Bold terms are the main products at each step in the pathway.  Apo – apolipoprotein; C – cholesterol; CE 

– cholesterol esters; CETP – cholesterol ester transfer protein; FA – fatty acid; HDL – high density 

lipoprotein; IDL – intermediate density lipoprotein; LCAT – lecithin acyltransferase; LDL – low density 

lipoprotein; LPL – lipoprotein lipase; PL – phospholipids; TG – triglycerides; VLDL – very low density 

lipoprotein.  (Reprinted, with permission, from Current Hypertension Reports, Volume 1 © 1999 by 

Current Science, Inc. www.biomedcentral.com/currdiabetesrep from Nicholas (1999) Curr Hyperten Rep 

1: 131-36.) 

 
 
 
B.2.3 Lipid digestion 
 
 
The products of lipid digestion in the jejunum are free fatty acids, cholesterol and 2-monoacylglycerol.  

When mixed with bile salts, they create mixed micelles, which are soluble in an aqueous environment.  
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Fatty acids are converted into their CoA esters in the mucosal cell and are esterified by the addition of 

various acyl transferases 2-monoacylglycerol to form triglycerides (triacylglycerol).  Cholesterol is 

esterified into cholesterol esters and lysophospholipids are converted to phospholipids.  Intestinal mucosal 

cells synthesize apolipoprotein B (apoB).  The lipids are then repackaged to form chylomicrons, 

containing the core of triacylglycerol and cholesterol esters, now with lipid soluble vitamins, carotene, 

and others.  Chylomicrons are then secreted by enterocytes into the intestinal lacteals, where intestinal 

lymph can enter the blood stream through the thoracic duct.  During transport into the blood, these 

chylomicrons acquire apoE (to be recognized by specific hepatic receptors) and apoCII (an activator of 

lipoprotein lipase).  During their transport in the vascular system, chylomicrons are hydrolyzed by 

lipoprotein lipase (LPL).  LPL is present in capillary beds of most organs and tissues where it is bound to 

glycosaminoglycans on the luminal surface of the endothelial cells.  ApoCII interacts with both LPL and 

the chylomicron to orient the catalytic site with its lipid substrate.  The LPL found in the liver is different 

from that found in the vascular endothelium in that liver LPL is not heparin sensitive.  Also, only hepatic 

LPL is involved in the TG hydrolysis of chylomicron remnants.  LPL in different tissues is influenced by 

nutritional and hormonal status.  It is insulin sensitive and, in the fed state, LPL activity in adipose tissue 

increases.  Thus, in the fed state when blood insulin levels are high, dietary FA are transported to the 

adipocyte for storage as TG. 

 
 
B.2.4 Transport of endogenous lipids 
 
 
After a carbohydrate-rich meal, glucose in the liver is converted to fatty acid via acetyl CoA.  At this 

time, the fatty acids in the liver are esterified to form TG.  In the normal healthy condition, TG does not 

accumulate in the liver and is removed from the liver through secretion of very-low-density-lipoproteins 

(VLDL).  This nascent VLDL is converted to mature active VLDL by acquiring apoE and apoCII from 

high-density-lipoprotein (HDL).  The triglyceride-rich core of VLDL is transformed by being hydrolyzed 

to low-density-lipoprotein (LDL).  As TGs are removed, VLDL becomes smaller and denser.  ApoE and 

apoCII, which originally came from HDL, are returned to HDL.  Cholesterol esters are transferred from 

HDL to VLDL, while TG and phospholipids transfer concurrently from VLDL to HDL.  As a result of 

intravascular hydrolysis and protein and lipid exchanges, VLDL is converted to LDL.  Thus, through the 

metabolism of VLDL, fatty acids synthesized endogenously are transported from liver to peripheral 

tissues, like muscle and adipose tissue.  

The lipoproteins principally involved in cholesterol transport are LDL and HDL.  LDL is the product 

of VLDL metabolism.  It retains most of the apoB found in VLDL as well as cholesterol esters, but has 
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lost most of the TG found in VLDL.  Since LDL particles are relatively small, they enter the extracellular 

space and are in direct contact with the plasma membrane of various cells.  LDL’s primary function is to 

supply peripheral tissues with cholesterol, the structural component of cells plasma membranes.  Cells 

obtain most of their cholesterol from circulating LDL, conserving energy in the process.  To expedite the 

process of delivering cholesterol to cells while preventing cholesterol accumulation, the cell surface has 

specific LDL receptors that bind and internalize LDL via endocytotic vesicles.  These vesicles fuse with 

lysosomes which are then hydrolyzed by lysosomal enzyme.  Unesterified cholesterol released from the 

lysosome into the cell sap suppresses the synthesis of b-hydroxy-b-methyl glutaryl (HMG) CoA reductase 

causing reduced cholesterol synthesis.  The LDL receptor is also under feedback control.  In a low 

cholesterol state, HMG CoA reductase and LDL receptor synthesis are increased to augment cellular 

cholesterol.  Concurrently, esterification of cholesterol is reduced. 

 
 

B.2.5 Metabolism of HDL 
 
 
HDLs are synthesized in the liver and released by exocytosis.  They are comprised of protein and 

phospholipids.  Nascent HDL is converted to HDL through acquisition of cholesterol.  HDL easily 

accepts unesterified cholesterol – either circulating or on the cell surface membrane.  During metabolism 

of chylomicrons and VLDL, their TGs are removed by LPL leaving excess free cholesterol, which is then 

removed via HDL.  Many studies have recognized the correlation between HDL levels and coronary heart 

disease (CHD).  HDL is protective against the formation of CHD by channeling cholesterol toward the 

liver for excretion instead of toward adipose tissue for storage. 

 
 
 
 

B.3 FATTY ACID OXIDATION IN SKELETAL MUSCLE 

 

 
Insulin normally inhibits lipolysis (79) which lowers plasma FFA concentrations depriving cells of the 

primary source of circulating lipid fuel.  Insulin also forces glucose into cells, stimulating glucose storage 

and oxidation.  This increased intracellular glucose metabolism results in malonyl-CoA synthesis and 

generates elevated glycerol-3-phosphate, a compound used to esterify intracellular LCFA-CoA in cells, 

but not MCFA.  Thus, in a hyperinsulinemic state, availability of FFAs to muscle is drastically reduced, 

which further reduces LCFA oxidation and makes available more glycerol-3-phosphate for LCFA 
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esterification into triglycerides.  In cases of starvation or exercise, the opposite process occurs, permitting 

increased LCFA flux into the mitochondria.  In the case of exercise, reduced activity of acetyl-CoA 

carboxylase-β decreases malonyl-CoA concentrations, thus relieving residual carnitine palmitoyl 

transferase-1 (CPT-1) activity and increasing fatty acid oxidation.  Intracellular events can effect changes 

in the extracellular FFA on fuel oxidation.  Rasmussen et al. (80) comment on how inhibition of LCFA 

oxidation by increased malonyl-CoA might stimulate IMTG synthesis in the face of adequate 

extracellular FFA (81).  Even though fatty acids are easily available during exercise (82), it is possible 

that the ongoing hydrolysis of IMTG continues even when plasma FFA levels are suppressed.  If this is 

accurate, then the regulation of CPT-1 by malonyl-CoA would safeguard muscle mitochondria from 

excess LCFA entry in states of adequate glucose concentrations.  Currently, the function of IMTG 

remains unclear, but is potentially important for its association with insulin resistance (83).  In doing 

research involving the functioning of CPT-1 activity, the measurement of LCFA and MCFA oxidation is 

an elegant approach (84). 

 
 
B.3.1 FFA Oxidation and the PPAR-Gamma/RXR Complex 
 
 
Once inside the muscle cell, FFAs can follow one of two pathways, via incorporation into lipids by 

esterification for storage and structural purposes or by beta-oxidation in mitochondria and peroxisomes.  

After the production of fatty acyl-CoA derivatives (FACoA) by acetyl-CoA synthase (ACS), entry of 

FACoA into mitochondria is mediated by CPT-1, a crucial point in regulation of lipid and glucose 

metabolism (85).  Control of gene expression involved in fatty acid metabolism occurs through members 

of the PPAR- subfamily of nuclear receptors, acting as heterodimeric partners with the retinoid X receptor 

(RXR) (86). 

 
 
B.3.2 The PPAR Gene Subfamily 
 
 
The PPAR gene subfamily of nuclear receptors has three main domains: 1) the amino-terminal A/B 

domain, which includes a ligand-independent transactivation function and contains putative 

phosphorylation sites; 2) the DNA-binding domain, which includes two zinc finger motifs; and 3) the 

carboxyl-terminal ligand-binding domain, which involves a ligand-binding domain.  The PPARs form 

heterodimers with the retinoid-X-receptor (RXR) (87).  This PPAR/RXR complex binds to a DNA 

consensus sequence, or the peroxisome proliferators response element (PPRE).  Several PPAR-sensitive 

genes encode for proteins involved in lipid metabolism.  These proteins include those directly involved in 
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inter-organ lipid transport (apolipoproteins A-I, A-II, C-III), in lipid uptake (lipoprotein lipase, fatty acid 

translocase, fatty acid transport protein), and in fatty acid metabolism (acyl-CoA oxidase, acyl-CoA 

synthetase, CPT-1, long-chain acyl-CoA dehydrogenase).  Other PPAR responsive genes are the 

mitochondrial uncoupling proteins, malonyl-CoA decarboxylase, and the pyruvate dehydrogenase (PDH) 

kinase isoform PDK4 (88-90).  These same genes may also be involved in regulation of both the flux 

through and the cross-talk between glucose and fatty acid metabolic pathways. 

Phosphorylation of PPARs affect their trans-activating capacity and this process may be influenced 

by ligand-binding (91, 92).  PPAR-γ is phosphorylated by mitogen-activated protein kinases (MAPKs) 

(93) through binding to serine residues in the N-terminal region of PPAR-.  The multilevel control of 

PPAR- activity ensures fine-tuning and adjustment of lipid metabolism to changes in energy demand. 
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B.4 LIPOTOXICITY AND INSULIN RESISTANCE 

 
 

Obesity is currently considered the number one preventable cause of disease in humans (NIH, March 

2004).  Complications associated with obesity include dyslipidemia, insulin resistance, type 2 diabetes, 

and heart disease, as well as the metabolic syndrome X.  In animal research, genetically obese Zucker 

diabetic fatty rats with the same symptoms of metabolic syndrome are considered to have “lipotoxicity” 

(94-98).  Lipotoxicity in these animals has been attributed to products of excessive non-beta-oxidative 

metabolism of FA excess in skeletal muscle, pancreatic islets, and myocardium (95-98).  High levels of 

these products are thought to cause lipotoxic-associated complications by disrupting cell function and 

ultimately by promoting programmed cell death (“lipoapoptosis”) (96, 97) (Figure B-3). 

 
 
 

 

Figure B-3.  Lipotoxicity and Insulin Resistance 
(Copyright 2002, The Endocrine Society reprinted from Evans (2002) Endocr Rev 23:599-622.) 
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B.5 THE INSULIN PATHWAY AND SYSTEMIC HOMEOSTASIS 

 
 
B.5.1 Glucose Homeostasis 
 
 
Insulin resistance is defined as a dysfunction in the ability of insulin to maintain whole-body glucose 

homeostasis.  The three events that are coordinated to maintain normal glucose homeostasis are the 

secretion of insulin by pancreatic beta cells, the suppression of hepatic glucose production, and the 

stimulation of glucose uptake by liver and muscle (99).  In a study by Shulman (100), glycogen synthesis 

represented the main pathway for non-oxidative glucose disposal in normal subjects and the rate glycogen 

formation was 60% reduced in diabetic subjects, providing evidence that glycogen synthesis was 

profoundly disturbed in individuals with type 2 diabetes to the point of being the major intracellular 

metabolic defect accounting for type 2 diabetes.  To further investigate this finding, investigators assessed 

potential rate-limiting steps for insulin-stimulated muscle glucose metabolism, namely glycogen synthase, 

hexokinase, and GLUT4, as each of these has been found defective in patients with type 2 diabetes (101).  

If glycogen synthase is the major defect in glycogen synthesis, then it would be expected that the 

concentration of glucose-6-phosphate (G6P) would be higher in type 2 diabetics.  However, Rothman et 

al. (102) found G6P levels in type 2 diabetics (n=6) to be lower than those found in normal subjects (n=6) 

(p<0.01).  These findings indicate reduced activity of either muscle glucose transport and/or hexokinase 

activity to be most likely for development of insulin resistance.  To distinguish between potential defects 

in hexokinase and glucose transport, Cline et al. (101) used a novel carbon-13 and phosphorous-31 

nuclear magnetic resonance approach to measure glucose, G6P, and glycogen concentrations.  In diabetic 

patients, they found ~80% lower rates of whole-body glucose metabolism, muscle glycogen synthesis, 

and G6P concentrations.  They concluded that glucose transport was the rate-controlling step in insulin-

stimulated muscle glycogen synthesis in diabetic subjects.  Due to this, the current focus of research is on 

mechanisms responsible for a defect in insulin-stimulated GLUT4 transporter activity. 

 
 
B.5.2 Glucose Homeostasis and FFAs 
 
 
Over 50% of the current US population is overweight (103), putting a higher percentage of individuals at 

risk for insulin resistance and type 2 diabetes (104) than ever before.  Even though it’s not clear how 

obesity produces insulin resistance, evidence suggests that elevated free fatty acids are major players in 

this association.  Evidence for this association is comprised from various sources, as follows: 1) most 
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obese people have elevated FFA plasma levels (4, 105) and 2) both chronic and acute (106-109) plasma 

FFA elevations produce acute insulin resistance. 

FFAs have effects on total body rates of glucose uptake, glycogen synthesis, and glycolysis.  In fact, 

elevated FFAs have been shown to inhibit all three pathways equally and to the same degree (108).  Thus, 

the FFA-induced defect is localized at the glucose transport and/or phosphorylation level.  The finding 

that acutely increased intramyocellular triglyceride levels develop concurrently with insulin resistance, 

while establishing an association, does not prove a cause-effect relationship.  One hypothesis to explain 

the relationship between FFAs and insulin resistance is that an insulin resistance causing signal is 

generated during the synthesis or breakdown of intramyocellular triglyceride (110-113).  Results of 

studies have suggested that FFA may produce insulin resistance by PKC activation and this may occur via 

serine/threonine phosphorylation of the insulin receptor and/or IRS-1, which has been shown to inhibit 

insulin signaling.  FFAs have also been shown to cause hepatic insulin resistance by suppressing hepatic 

glucose production (114-118). 

 
 

B.5.3 Glucose Homeostasis and PPAR-Gamma 
 
 
The general theory by which PPAR-γ activation improves sensitivity of glucose metabolism to insulin is 

as follows:  

1) PPAR-γ increases adipose tissue remodeling and fat mass accretion brought about by enhanced 

adipocyte differentiation through induction of target genes mainly involved in lipid metabolism;  

2) Fatty acids derived from hydrolysis of triglyceride-rich lipoproteins are redirected towards adipose 

tissue rather than skeletal muscle, which increases glucose metabolism in muscle;  

3) There is a concomitant increase in gene expression regarding glucose uptake and insulin signaling in 

both adipose tissue and muscle, and a modulation of fat-derived signaling molecules that could affect 

peripheral glucose processing.   

 
 
Furthermore, PPAR-γ seems to protect beta cells against intracellular triglyceride accumulation often 

associated with type 2 diabetes, hence improving beta cell function (119) (Figure B-4) .
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Figure B-4.  Effect of PPAR-gamma activation on insulin sensitivity 
(Reprinted, with permission, from the Annual Review of Nutrition, Volume 22 © 2002 by Annual 

Reviews www.annualreviews.org from Picard and Auwerx (2002) Annu Rev Nutr 22:167-97.) 

 
 
 
B.5.4 Fatty Acid Homeostasis 
 
 
Usually, FA delivery to nonadipose tissue is tightly controlled by the need for fuel.  Plasma FFA levels 

rise during exercise and fasting leaving practically no unoxidized FA in these cells.  During chronic 

overnutrition, FA influx into tissues may exceed FA usage and compensatory up-regulation of FA 

oxidation is required to maintain intracellular FA homeostasis.  Excess FAs probably provide signals for 

metabolic adjustments by being PPAR- ligands (120-123).  PPAR-γ is a transcription factor that up-

regulates CPT-1 and acyl-CoA oxidase (ACO) (122, 123).  In most normal nonadipose tissue, PPAR-γ 

and fatty acid synthesis enzymes are expressed at low levels compared to adipocytes (124). 

 
 
B.5.5 Abnormal FA homeostasis 
 
 
The normal liporegulatory system exists only in tissues of normally leptinized organisms.  When leptin 

resistance is present, FA-mediated up-regulation of oxidative enzymes does not occur (125).  Surplus FAs 
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may then enter lipogenesis and nonoxidative metabolism pathways (95, 97), such as lipid peroxidation 

and ceramide-mediated apoptosis.  The main cause of lipid accumulation in nonadipocytic tissue is the 

high rate of lipogenesis derived from elevated FFA levels and triacylglycerol levels in addition to 

intracellular FA synthesis (95).  PPAR-γ, a lipogenic transcription factor, functions as an up-regulator for 

lipogenic enzymes (121, 122, 126), acetyl-CoA carboxylase and fatty acid synthase, both of which 

catalyze FA synthesis, and glycerol-phosphate acyl transferase, which catalyzes FA esterification.  High 

levels of PPAR-γ in nonadipocytic tissue, such as pancreatic islets, in Zucker diabetic fatty rats is 

accompanied by increased expression of the adipocyte determination and differentiation factor 1 (ADD-

1)/sterol regulatory element binding protein (SREBP)-1 (127, 128).  SREBP-1 is a candidate for the 

proximal transcription factor that increases lipogenic capacity, because it can be up-regulated by diet-

induced hyperinsulinemia (129, 130). 

There are currently various products of non-beta-oxidative FA metabolism capable of injuring cells, 

including triacylglycerol (TG) excess (steatosis) (131), ceramide excess (96, 132, 133), and products of 

lipid peroxidation (134).  TG excess in nonadipocytic tissue could potentially directly interfere with 

specific cell functions, including muscular contraction, and may also cause fibrosis in this tissue (131).  

Ceramide accumulation in beta cells has been long implicated in the apoptotic pathway of autoimmune 

destruction of beta cells and has been known to attribute to increased sphingomyelin breakdown (135).  

Ceramide itself can be formed directly by de novo synthesis from FAs (96).  This pathway appears to be 

central to FA-induced apoptosis (96, 97).  Furthermore, ceramide increases expression of inducible nitric 

oxide synthase (iNOS) through nuclear factor kappa B activation (136), thereby increasing the production 

of nitric oxide (NO) (137).  NO consequently forms potent oxidants that cause apoptosis (138, 139).  This 

pathway is shared between obesity-related type 2 diabetes and autoimmune type 1 diabetes.  Lipotoxicity 

and lipoapoptosis can be blocked at several sites, including the restoration of leptin action, the reduction 

of lipid excess, blockade of ceramide formation, and inhibition of iNOS formation (96, 97, 136). 

 
 
 
 

B.6 THE INSULIN PATHWAY AND OXIDATIVE STRESS 

 
 

A large body of evidence suggests that hyperglycemia causes the generation of reactive oxygen species 

(ROS) and this ultimately leads to increased oxidative stress in numerous tissues.  Without the necessary 

compensatory response from the endogenous antioxidant network, the system becomes overwhelmed and 

goes into redox imbalance, which then leads to activation of stress-sensitive intracellular signaling 
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pathways.  One main consequence of this is the production of gene products that cause cell damage and 

are largely responsible for late complications of diabetes.  Other consequences of the same or similar 

signaling pathways include the mediation of insulin resistance and impaired insulin secretion.  The 

presence of antioxidant protection against effects of both hyperglycemia and free fatty acids supports a 

causal relationship between oxidative stress and worsening of these metabolic abnormalities. 

Insulin resistance often precedes the development of the more severe type 2 diabetes by many years, 

is highly prevalent in the general population (~10 - 25%), and is multifactorial (140, 141).  It is caused by 

both genetic and acquired factors.  Hyperglycemia produces oxidative stress via increased production of 

mitochondrial ROS (142), nonenzymatic glycation of protein (143, 144), and glucose autoxidation (145, 

146).  Elevated FFA can cause oxidative stress via increased mitochondrial uncoupling (147, 148) and 

beta-oxidation (149, 150), leading to increased ROS.  Hyperglycemia- and FFA-induced oxidative stress 

has been shown to lead to activation of stress-sensitive signaling pathways.  This, then, worsens insulin 

secretion and action, leading to type 2 diabetes.  Hyperglycemia has been shown to cause major 

complications of diabetes including nephropathy, retinopathy, neuropathy, and macro- and micro-vascular 

damage (140, 142, 151, 152). 

Oxidative stress has been associated not only with type 2 diabetes, but also with insulin resistance in 

vivo (153-157).  Oxidative stress leads to activation of multiple serine kinase cascades (158-160).  Many 

potential targets of these kinases are in the insulin signaling pathway, including the insulin receptor and 

IRS proteins.  In 3T3-L1 adipocytes, induction of oxidative stress with H2O2 inhibits insulin-stimulated 

glucose transport (161-163).  The effect is selective for insulin-stimulated signaling compared with 

platelet-derived growth factor-stimulated signaling (164) and was reversed by pre-incubation with the 

antioxidant LA (162).  In L6 muscle cells, activation of p38 MAPK by oxidative stress (H2O2) is linked 

to H2O2-mediated inhibition of insulin-stimulated glucose transport (165).  Inhibition of insulin signaling 

was reversed by a specific p38 MAPK inhibitor (165). 

 
 

B.6.1 Oxidative Stress and Beta cell Dysfunction 
 
 
The beta cell is particularly sensitive to damages from oxidative stress.  Through the effects of GLUT2 

(the high Km glucose transporter) (166-169), glucokinase (the glucose sensor) (170-173), and glucose 

metabolism, beta cells are responsible for sensing and secreting insulin in response to circulating glucose 

(174).  Mitochondrial metabolism is necessary for linking stimulus to secretion (174-177).  Therefore, 

ROS have the ability to damage mitochondria and thus to attenuate insulin secretion (178).  Several 

studies have found that beta cell dysfunction is the result of:1) chronic exposure to elevated glucose 
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levels, 2) chronic exposure to FFA, and 3) the combined effects of elevated glucose and FFAs.  These 

effects appear to be dependent upon the oxidative stress induction of the NF-kappaB and additional 

stress-sensitive targets (179-181).  There is evidence suggesting chronic hyperglycemia found in type 2 

diabetics contributes to impaired beta cell function (182, 183). 

 
 
 
 

B.7 THE INSULIN PATHWAY AND THE ENDOTHELIUM 

 
 

The endothelium is a dynamic autocrine/paracrine organ that regulates vascular tone and interaction of the 

vessel wall with substances in circulation.  In the endothelium, vasodilators and vasoconstrictors are 

produced and their balance is maintained in the normal system.  Of the 4 major vasodilators, nitric oxide 

(NO) is the main one and, has multiple vascular-protective actions.  Among these actions is the inhibition 

of: 1) vascular smooth muscle cell growth and migration, 2) platelet aggregation and thrombosis, 3) 

monocyte adhesion, 4) inflammation, and 5) oxidation (184).  Vasoconstrictors, the main one being 

angiotensin II, promote vascular damage and inflammation. 

 
 
B.7.1 The Endothelium and Type 2 Diabetes 
 
 
It has been demonstrated that endothelial dysfunction is an early step in the atherosclerotic process 

leading to coronary artery disease (CAD) (185).  While obesity itself attributes a risk of CAD 2 to 3 times 

higher than that found in the general population, increased adiposity with T2D has a risk estimate 3 to 4 

times higher than that found in obesity alone (186).  Several in vivo and in vitro studies have 

demonstrated endothelial dysfunction (ED) in subjects with type 2 diabetes (187, 188).  It has been 

hypothesized that ED in type 2 diabetes could be a result of either decreased synthesis of nitric oxide 

(NO), increased inactivation of NO, or decreased responsiveness to NO. 

While the exact pathogenesis of ED in diabetes is unknown, multiple mechanisms are likely to be 

involved, including abnormalities in adipokine production, especially TNF-α.  TNF-α may be associated 

with cardiovascular disease (CVD) (189-192).  In one study, plasma levels of TNF-α were elevated in 

subjects with premature CVD, independent of insulin sensitivity (192).  Conversely, TNF-α levels have 

been found to decrease after weight reduction and in parallel with improvement of endothelial function 

(193).  The effects of TNF-α on vascular endothelium may be direct as well as indirect through promoting 
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the release of mediators from adipocytes or other host cells.  At the molecular level, TNF-α has been 

found to increase leukocyte adhesion to endothelium. 

 
 
 
 

B.8 NUTRIENT SENSING PATHWAYS AND INSULIN RESISTANCE 

 
 

Insulin resistance is considered a cardinal feature of metabolic defects found in obesity and is postulated 

to develop as an adaptation to increased nutrient availability.  Energy balance and metabolic homeostasis 

are maintained by complex regulatory systems.  Normally, the body senses changes in energy balance and 

activates appropriate responses, which include decreased food intake, increased energy expenditure, and 

regulation of substrate oxidation and intermediate metabolism.  So, why is obesity now considered the 

number one preventable cause of death?  Much evidence has suggested that obesity is a fuel partitioning 

disorder.  According to Neel’s hypothesis of the thrifty genotype (194), the ability to store excess energy 

was advantageous in ancestral societies subjected to periods of starvation.  This hypothesis purports that 

multiple cellular mechanisms are present to sense increased availability of food and to trigger biological 

responses designed to most efficiently store energy (Figure B-5). 
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Figure B-5.  ACC regulation in skeletal muscle 
(Copyright 2003, The Endocrine Society reprinted from Ruderman, Saha, Kraegen (2003) Endocrinology 

144:5166-71.) 

 
 
 
To sense nutrient availability, cells must possess biochemical sensors that detect nutrient levels and 

initiate adaptive responses.  Malonyl-CoA has been identified as a biochemical sensor (195) believed to 

switch from fatty acid to glucose oxidation.  During states of high concentrations of glucose and insulin, 

malonyl-CoA accumulation inhibits CPT1 and reduces lipid oxidation, preferring lipid storage into 

triglycerides.  By virtue of the effect malonyl-CoA on LCFA transport into mitochondria, it has been 

shown to regulate intracellular FA oxidation in several tissues, including the liver (85), muscle (196), the 

pancreatic beta cell (197), and endothelium (198) and probably works similarly in the adipocyte (199) and 

the central nervous system.  The regulation of malonyl-CoA in muscle is controlled by specific central 

players, including acetyl-CoA carboxylase (ACC), the rate-limiting enzyme in malonyl-CoA synthesis; 

cytosolic citrate, an allosteric activator of ACC; and AMPK, an enzyme activated by decreases in the 

cell’s energy state as measured by increases in the AMP/ATP and creatine:creatine phosphate ratios (200-

203).  Current thought is that muscle contraction regulates ACC solely by activating AMPK.  Activated 

AMPK phosphorylates ACC at Ser79 and inhibits it’s activation by citrate.  Conversely, an abundance of 
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glucose increases malonyl-CoA concentration via increased cytosolic citrate levels (204) and decreased 

AMPK activation (112).  Glucose deprivation works through the same pathway in the opposite direction. 

Generally, activation of AMPK switches on catabolic pathways that generate ATP, while switching 

off anabolic pathways and other nonessential processes that consume ATP.  It does this by direct 

phosphorylation of regulatory proteins and by indirect effects on gene expression.  The downstream 

effects of AMPK activation include inhibition of fatty acid, cholesterol, and protein synthesis (205, 206).  

The direct targets for phosphorylation by AMPK that are responsible for the inhibition of translation 

remain unclear.  Another effect of AMPK activation is the numerous genes regulated AMPK (i.e., IRS1, 

ACC-β, GLUT4).  The genes that are up-regulated by AMPK in muscle are similar to those induced by 

endurance exercise training, including GLUT4 and mitochondrial oxidative enzymes (207)  In most cases, 

direct AMPK target proteins responsible for effects on gene expression are not known (Figure B-6). 

 
 
 

 
 

Figure B-6.  Signals of nutrient abundance 
(Copyright 2003, The Endocrine Society reprinted from Obici and Rossetti (2003) Endocrinology 

144:5172-8.) 

 
 
 
AMPK activation causes metabolic changes that would benefit subjects with type 2 diabetes and the 

metabolic syndrome, such as increased glucose uptake and metabolism by muscle and other tissues, 
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decreased glucose production by the liver, and decreased synthesis and increased fatty acid oxidation.  

Results from experiments with mice (208-211) suggest the AMPK system is the probable target of 

antidiabetic drug metformin (212-214). 

Direct evidence of the relationship of malonyl-CoA and AMPK to obesity was provided by Winder et al. 

(215) in a study of the effects of AMPK activator, AICAR, on rats.  The authors found that rats 

administered AICAR consumed less food than pair-fed rats and, while their mean end weights were 

similar, AICAR administered rats had over 30% diminished epididymal and retroperitoneal fat pads.  

These results are supported by Saha et al. (216) where rat fat pads were diminished by 30-40%.  In the 

hypothalamus, malonyl-CoA and AMPK fuel-sensing and signaling mechanisms play a role in initiating 

signaling events that regulate food intake.  AMPK activity has been found to decrease in various rodent 

hypothalamic nuclei as a result of 1) re-feeding after fasting (217), glucose (217) and insulin 

administration (218), and leptin injection (217); 2) hypothalamic concentration of malonyl-CoA 

diminishes with starvation (219); and 3) the central administration of C75, a FA synthase inhibitor, 

prevents the diminished malonyl-CoA in the hypothalamus during starvation (219).  These studies 

suggest that factors that elevate malonyl-CoA concentrations in hypothalamic nuclei diminish food 

intake, just as factors that decrease concentrations in hypothalamic nuclei increase food intake. 

 
 
B.8.1 The Hexosamine Biosynthesis Pathway 
 
 
The hexosamine biosynthesis pathway (HBP) is a second nutrient sensing pathway by which insulin 

action and energy homeostasis may be modulated.  The HBP is activated by increased glucose flux.  The 

mechanisms of the HBP pathway are as follows: 1) After transport and phosphorylation of glucose to 

glucose-6-phosphate (G6P), G6P is used to synthesize glycogen and used in glycolysis; 2) One to 3% of 

incoming glucose is converted to fructose-6-phosphate (F6P) and enters the HBP; 3) the glutamine: F6P 

amino transferase (GFAT) catalyzes the first committed step of HBP and regulates the flux through this 

pathway (220-222).  HBP plays an important role in insulin action modulation in both adipose and muscle 

tissue.  Glucose-induced insulin resistance is blunted by inhibition of GFAT activity and expression 

(223), suggesting the damaging effects of hyperglycemia are mediated by HBP activation.  HBP induces 

insulin resistance by inhibiting multiple sites of the insulin-signaling cascade.  Several investigations have 

shown that insulin-dependent glucose uptake and glycogen synthesis are both down-regulated by HBP 

activation (224, 225). 

HBP plays a prominent role in energy balance, suggested by its role in inducing leptin expression 

(226).  Transgenic mice over-expressing GFAT in adipose and muscle tissues, have elevated plasma 
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leptin levels (227).  HBP controls expression of leptin via transcriptional activation of the leptin promoter 

(228).  Elevated leptin levels, in the normal system, cause decreased food intake, yet obese individuals 

usually have elevated leptin levels, suggesting leptin resistance.  It is still not clear how nutrient-induced 

leptin actions fail to fully initiate counter-regulatory responses to nutrient excess in obesity-susceptible 

individuals. 

 
 
 
 

B.9 INSULIN SIGNALING AND TYPE 2 DIABETES MELLITUS 

 
 

Type 2 diabetes is caused by the combined effects of peripheral insulin resistance and defects in beta cell 

secretion.  Murine knockout and transgenic model studies suggest that disruptions of the insulin/IGF-1 

signaling mechanisms, and alterations in the functions of IRS proteins, might contribute to these defects.  

On a cellular level, insulin/IGF-signaling regulates multiple processes, including carbohydrate and lipid 

metabolism, gene transcription, DNA synthesis, anti-apoptosis, and cell proliferation.  Insulin and IGF-1 

and -2 bind to members of the insulin tyrosine kinase family, and while the insulin and IGF-1 receptors 

are relatively specific for insulin and IGF-1, respectively, IGF-2 provides cross-talk between these two 

receptors.  Although the current view asserts that diabetic complications arise from deleterious effects of 

hyperglycemia, type 2 diabetes might be best understood as a global disorder of insulin/IGF-1 signal 

transduction that dysregulates gene expression and cell function in various tissues. 

In animal studies of absent insulin receptors, mice without insulin receptors in skeletal muscle do not 

develop diabetes, but exhibit elevated fat mass, FFAs and serum triglycerides (229).  Mice lacking hepatic 

insulin receptors also fail to develop diabetes, but display a complex metabolic phenotype, including 

glucose intolerance and decreased serum triglycerides and FFAs (230).  Also, overexpression of dominant 

negative dysfunctional insulin receptors results in disturbed lipid metabolism and eventual glucose 

intolerance (231).  Results of these studies suggest a multisystem interaction in insulin resistance and the 

development of type 2 diabetes by either exacerbating compensatory mechanisms or by directly 

interfering with insulin secretion.  Specifically, combined insulin resistance in beta cells and 

hepatic/muscle might be an important component of type 2 diabetes. 
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B.10 GENETIC, LIPID METABOLISM, AND INSULIN RESISTANCE 

 
 

B.10.1 PPAR-Gamma, Lipid Metabolism and IR 
 
 
PPAR-γ belongs to a nuclear receptor subfamily, of which all members contain a ligand-dependent 

transactivation domain in its C-terminal region, a highly conserved DNA binding domain comprised of 

two zinc fingers, and a ligand-dependent activation domain in the NH2-terminal region (232).  There are 

three different PPAR-γ mRNAs (233, 234) – 1,2, and 3.  The P12A variant of PPAR-γ is a mutation in the 

PPAR-γ2 receptor.  Natural ligands for all PPAR-γs include fatty acids and their derivatives (235).  The 

PPAR-γ2 isoform is expressed mostly in white adipose tissue, but is also detectable in brown adipose and 

skeletal muscle tissues (236).  Compared with lean subjects, PPAR-γ2 only has increased expression in 

obese subjects (124).  Furthermore, it has been found that, compared to subcutaneous fat, PPAR-γ 

expression is increased in visceral fat pockets of obese subjects (237). 

 
 
B.10.2 PPAR-Gamma and Adipogenesis 
 
 
PPAR-γ has a central role in adipogenesis (238-240).  The effects of PPAR-γ on adipogenesis are based 

on two main processes.  First, these effects are based on increased expression of genes that promote fatty 

acid trapping and storage in adipocytes, such as fatty acid binding protein (240), LPL (126), and acyl-

CoA synthase (241).  Second, these effects are the result of repression of genes that induce lipolysis and 

the release of fatty acids, such as the beta3-adrenergic receptor (242) and cytokines leptin (243, 244) and 

TNF-α (245, 246).  These results can be supported by the demonstrated effects of thiazoladinediones 

(TZDs) on PPAR-γ activation (247, 248).  Treatment with TZDs seems to favor redistribution of white 

adipose tissue, with decreased visceral depots relative to subcutaneous fatty regions (247-250).  This fat 

cell redistribution includes a shift in the cell type population resulting in more small adipocytes and fewer 

large, insulin insensitive adipocytes (251-253).  The loss of mature, large adipocytes is thought to be 

caused by PPAR-γ-mediated induction of apoptosis (251, 253). 
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B.10.3 PPAR-Gamma2 Point Mutation P12A 
 
 
This mutation is a partial loss-of-function mutation associated with decreased receptor activity (254, 255) 

resulting in greater insulin sensitivity, lower BMI, and an improved lipid profile (255-259).  This 

relationship is attenuated by certain factors, including BMI, suggesting resultant insulin sensitivity is 

primarily due to body fat mass (255), selected population for study and ethnicity (260).  Depending upon 

the population and ethnicity studied, the P12A mutation has been associated with inverse findings (261-

263) or no significant findings at all (264-267).  These conflicting findings may be explained as gene-

gene or gene-environment interactions.  In addition to the P12A effects on body fatness and insulin 

sensitivity, it has also been shown to effect insulin secretion in healthy (268) and diabetic individuals 

(258) in response to free fatty acids. 

 
 
B.10.4 Lipoprotein lipase, Lipid Metabolism and IR 
 
 
The two main roles of lipoproteins are 1) to prevent the dispersal of lipids by exchange or diffusion and 2) 

to deliver lipids to specific target tissues.  Functions of apolipoproteins include being ligands or cell 

surface receptors as well as cofactors for cell surface lipases, like LPL.  LPL’s activity occurs in the 

luminal surface of capillary endothelial cells (269) and it attaches to triacylglycerol (TAG) in particles to 

provide non-esterified fatty acids (NEFA) and 2-monoacylglycerol to tissues (270-273).  Both of these 

compounds are used in tissues as storage for energy as TAG and as energy for the heart, as well as the 

regulation of thermogenesis in brown adipose tissue (270).  Lipoprotein molecules become smaller after 

hydrolysis by LPL and further hydrolysis causes loss of TAG and the apoE moiety, resulting in a LDL 

molecule (270). 

Another function of LPL is as a bridge between lipoproteins and specific cell surface proteins (274, 

275).  It can promote the proliferation of vascular smooth muscle cells (276) and has several other 

important functions, including 1) inducing the expression of the TNF-γ gene (277); 2) synergizing with 

interferon-γ in stimulation of macrophage NO synthetase expression (278, 279); 3) activating endothelial 

nitrite reductase (NAD(P)H) oxidase (280); and 4) reducing secretion of apoE (281).  In summary, LPL is 

glycosylated, exists as a dimer, and is engaged in several molecular functions, include those with 

lipid/water interfaces, cofactor apoC2, heparin sulphate-proteoglycans (HSPG), substrate molecules at the 

active site, and specific lipoprotein receptors (272, 273, 282).  Several natural mutations have been 

identified and seem to affect the function of the LPL enzyme. 
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LPL expression is attenuated through hormones, notably insulin, and this directly impacts fatty acid 

utilization (272, 273).  Specifically, fasting promotes decreased LPL activity in adipose tissue and 

increased activity in cardiac tissue, while feeding causes increased adipose enzyme and decreased muscle 

LPL (272, 283, 284).  Cold exposure also stimulates LPL activity, but in brown adipose tissue only (285, 

286).  LPL expression is further regulated by disease states, noteably atherosclerosis and diabetes (287-

289).  Transcriptional control of LPL also impacts fatty acid usage.  Metabolites that induce LPL gene 

transcription include the PPRE in liver and adipose tissues and in macrophages in response to fibrates, 

some fatty acids, glucose, and TZDs (126, 288, 290).  Cytokines also induce LPL gene transcription, 

especially TNF-α, by eliminating binding of nuclear factor-Y and Oct-1 to the LPL promoter in 3T3-L1 

cells, and interferon-γ, via suppression of macrophage LPL gene transcription (291) 

Decreased LPL activity has been seen in individuals with type 2 diabetes and insulin resistance  

(292-295).  During these states, the increased production of adipokines, like TNF-α and IL-6, has been 

postulated to be the cause or reduced LPL expression (293, 296).  Furthermore, the resultant decrease in 

LPL activity contributes to hypertriglyceridemia, decreased HDL levels, and increased risk of coronary 

heart disease (297). 

 
 
 
 

B.11 ADIPOKINES IN INSULIN RESISTANCE AND TYPE 2 DIABETES MELLITUS 

 
 

Cytokines are known products of both inflammatory and immune systems.  Cytokines secreted from 

adipose tissue, or adipokines, are theorized to be responsible for initiating a proinflammatory state, also 

called systemic inflammation, which may affect the development of insulin resistance and endothelial 

dysfunction (i.e., the first stage of the development of atherosclerosis).  Increased systemic inflammation 

has been found among individuals with obesity, insulin resistance, and T2D.  The importance of fat is 

mediated through the relation of FFAs to adipose tissue and the production of fat factors that affect 

inflammation of the vessel wall.  FFAs are implicated among those substances that cause postprandial 

endothelial dysfunction associated with a high-fat meal (298).  Elevated serum levels of TG and FFA 

found in states of obesity and T2D have led researchers to believe that it is lipotoxicity that is responsible 

for the initiation and progression of hepatic and peripheral insulin resistance and pancreatic beta cell 

dysfunction (299). 

Cytokines are currently viewed as major players in the development of atherosclerosis and diabetes 

(300, 301).  TNF-α and IL-6 are the most investigated adipokines and are correlated with all measures of 
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obesity and are strongly related to insulin resistance (189, 302-308).  The direct correlation between 

visceral adiposity and circulating adipokine levels supports the assumption that adipokines may be 

important in the metabolic changes that commonly occur in insulin resistance states (299).  Other 

adipokines that have been widely studied in relation to insulin resistance include adiponectin (26, 309, 

310), leptin (45), and plasminogen activator inhibitor-1 (311).  Resistin may also be associated with 

insulin resistance, although results of studies have been controversial (312-319). 
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APPENDIX C 

 
 

INSULIN RESISTANCE IN POLYCYSTIC OVARY SYNDROME 
 
 
In 1990, the National Institutes of Health established the new diagnostic criteria for PCOS (1).  The basis 

of diagnosis is based on clinical evidence of hyperandrogenemia (elevation in plasma concentration of an 

androgen) and/or hyperandrogenism (hirsutism) and chronic oligo-anovulation (often defined as six or 

fewer menses in the last 12 months), with the exclusion of other causes of hyperandrogenism such as non-

classical adrenal steroid 21-hydroxylase deficiency, hyperprolactinemia or androgen-secreting neoplasm.  

PCOS is often difficult to diagnose due to its intersecting phenotypic traits that can easily be mimicked by 

other endocrine disturbances (or phenocopies).  These disturbances are (1) an altered LH/FSH ratio; (2) 

cystic ovaries; (3) hyperandrogenism; and (4) oligomenorrhea.  Conditions that mimic PCOS include late-

onset adrenal hyperplasia (LOAH), Cushing’s syndrome, and androgen producing tumors of the ovary or 

adrenal glands.  As yet, a clearly defined and universally agreed upon cause for PCOS does not yet exist. 

PCOS is also associated with metabolic disturbances somewhat reflective of metabolic 

cardiovascular syndrome or “syndrome X”.  Burghen and colleagues (2) were the first to report women 

with PCOS had higher basal and glucose-stimulated insulin levels than weight-matched controls.  They 

also found blood levels of insulin and androgen in PCOS patients correlated (3).  The elevated insulin 

levels were initially attributed to the insulin resistance of obesity.  However, insulin excess was found to 

occur in nonobese patients with PCOS (4), and the insulin resistance of PCOS was found to be excessive 

for the degree of obesity (5).  Since then, several studies have demonstrated in various ethnic groups that 

PCOS-affected women are commonly affected by hyperinsulinemia and insulin resistance, altered first-

phase insulin secretion, impaired glucose tolerance, dyslipidemia, hypertension and impaired fibrinolysis. 
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C.1 GLUCOSE TOLERANCE IN PCOS 

 
 
In normal glucose regulation, individuals maintain normal serum glucose levels by increasing pancreatic 

insulin secretion.  Responses to insulin include glucose uptake into peripheral organs, mostly muscle and 

fat cells, and suppression of gluconeogenesis and glucose secretion.  When peripheral insulin resistance 

exists, serum glucose levels can still be maintained if the pancreas can secrete additional insulin to 

overcome the resistant state.  Once the pancreas can no longer adequately compensate, postprandial 

glucose levels rise, this is defined as impaired glucose tolerance (IGT).  Glucose tolerance is one 

metabolic parameter impacted by PCOS.  Glucose tolerance has been systematically studied in women 

with PCOS since 1987.  Dunaif et al. (6) found that affected women had significantly increased glucose 

levels during an oral glucose tolerance test compared with age- and weight-matched ovulatory 

hyperandrogenic and control women.  They showed that 20% of the obese PCOS women had either IGT 

or NIDDM using National Diabetes Data Group criteria.  There were, however, no significant differences 

in glucose tolerance between lean PCOS and age- and weight-matched controls.  This observation 

suggests obesity is a greater mediating factor for IGT than PCOS.  In 1999, Legro et al. (7) conducted a 

prospective study of the prevalence of glucose intolerance and parameters associated with risk for glucose 

intolerance in PCOS-affected women.  Of 254 women with PCOS, aged 14 to 44 years, 31.1% had IGT 

and 7.5% had NIDDM.  Lean PCOS-affected women (BMI<27 kg/m2), 10.3% had IGT and 1.5% had 

NIDDM.  Compared to control women (N=80) of similar weight, ethnicity, and age, the prevalence of 

glucose intolerance was significantly higher in women with PCOS.  The variables most associated with 

postchallenge glucose levels were fasting glucose levels, PCOS status, waist-to-hip ratio, and body mass 

index.  They concluded women with PCOS are at significantly elevated risk for IGT and NIDDM at all 

weights and at a young age (i.e., the third or fourth decades of life) (8).  Dunaif et al. (8) found the 

prevalence of glucose intolerance is significantly higher in obese PCOS women than in their normal 

weight counterparts, in whom IGT occurs occasionally.  This finding is consistent with the synergistic 

effect of obesity and PCOS in determining IGT.  In a 10-year follow-up study of women with PCOS, 

fasting and glucose-stimulated insulin and C-peptide were significantly increased in PCOS women when 

compared to their baseline levels, suggesting a worsened insulin resistant state (9).  Studies of insulin 

secretion have demonstrated the importance of beta-cell function in the development of IGT and NIDDM 

(10).  Recently, Collila et al. (11) found that beta-cell dysfunction is heritable in families of women with 

PCOS and this may be a factor in future development of NIDDM. 
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In summary, it is accepted that PCOS is often associated with profound insulin resistance as well as 

defects in insulin secretion.  These abnormalities, with concurrent obesity found in ~50% of PCOS 

women, explain the increased prevalence of glucose intolerance in PCOS. 

 
 
 
 

C.2 INSULIN ACTION IN PCOS 

 
 
C.2.1  Insulin action in vivo in PCOS 
 
 
In normally working systems, insulin has several actions, including glucose transport, glycogen synthesis, 

protein synthesis, and mitogenesis.  Insulin is the most potent anabolic hormone known, and promotes the 

synthesis and storage of carbohydrates, lipids and proteins, while inhibiting their degradation and release 

into the circulation.  Insulin stimulates the uptake of glucose, amino acids and fatty acids into cells, and 

increases the expression or activity of enzymes that catalyze glycogen, lipid and protein synthesis, while 

inhibiting the activity or expression of those that catalyze degradation.  Research on the effects of insulin 

on glucose metabolism is usually examined in studies of insulin resistance, which can be examined using 

the euglycemic glucose clamp technique.  Euglycemic glucose clamp studies have demonstrated 

significant and substantial decreases in insulin-mediated glucose disposal in PCOS (5, 12).  The decrease 

seen in PCOS (i.e., ~35-40%) is of similar magnitude to that seen in NIDDM (8).  Obesity (as a measure 

of fat mass), body fat location (waist-to-hip girth ratio), and muscle mass independently contribute to 

overall insulin sensitivity (13-15).  Alterations in these parameters could influence IR in PCOS.  Women 

with PCOS have increased prevalence of obesity (16), (17) and women with upper (abdominal) rather 

than lower (hip/thigh) obesity have an increased frequency of hyperandrogenism (15).  Studies of lean 

women with PCOS compared to normal control women of similar weight and body composition have 

confirmed affected women are insulin resistant independent of potentially confounding parameters (18).  

Research in cultured cells have confirmed the impression from in vivo studies that an intrinsic defect in 

insulin action is present in PCOS (19).  While mechanisms for dysfunctional insulin action are unknown 

in PCOS, it is clear that PCOS affects insulin sensitivity over and above obesity alone, further supporting 

an intrinsic defect in insulin action in PCOS. 
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C.2.2 Insulin secretion in PCOS 
 
 
Hyperinsulinemia in PCOS is primarily a result of a compensatory increase in insulin secretion secondary 

to substantial peripheral insulin resistance.  Basal insulin secretion is increased and hepatic extraction of 

insulin is decreased in PCOS (20).  Obesity further exacerbates IR and hepatic glucose production defects 

are seen in obese PCOS women (17, 21).  Insulin secretion increases as insulin sensitivity decreases to 

maintain glucose homeostasis.  This relationship is called the disposition index and is a hyperbolic 

function.  In both nonobese and obese PCOS women, insulin secretion is inappropriately low for the 

degree of IR (i.e. values fall below the disposition index curve), suggesting a beta-cell dysfuction (22, 

23).  This suggests PCOS women may be at unusually high risk for developing glucose intolerance. 

 
 
C.2.3 Insulin clearance in PCOS 
 
 
Hyperinsulinemia can result from decreases in insulin clearance as well as from increased insulin 

secretion.  Decreased insulin clearance is usually present in insulin-resistant states since insulin clearance 

is receptor-mediated, and acquired decreases in receptor number and/or function are often present in 

insulin resistance secondary to hyperinsulinemia and/or hyperglycemia (24, 25).  Very few studies have 

examined the issue of insulin clearance in PCOS.  Morin-Papunen et al. (26) recently studied the effects 

of metformin vs. ethinyl estradiol-cyproterone acetate in obese and nonobese women with PCOS.  

Metformin is believed to improve hyperinsulinemia and hyperandrogenemia by decreasing central obesity 

and the release of free fatty acids from adipose tissue (27, 28).  In nonobese women with PCOS, 

euglycemic clamp research of posthepatic insulin clearance has not found abnormalities in women with 

PCOS (5, 29).  Circulating insulin to C-peptide molar ratios are increased in PCOS, suggesting decreased 

hepatic extraction of insulin, but these ratios reflect insulin secretion as well as extraction and are 

unreliable measures of insulin clearance (30, 31).  O’Meara et al. (32) designed a study of insulin 

clearance in women with PCOS and found decreased hepatic insulin extraction by model analysis of C-

peptide levels.  Hence, in PCOS, hyperinsulinemia is most probably the result of both increased basal 

insulin secretion and decreased hepatic insulin clearance. 
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C.3 MOLECULAR MECHANISMS OF INSULIN RESISTANCE IN PCOS 

 
 
Insulin resistance may be due to several factors along the insulin signaling pathway.  The insulin 

signaling pathway may be considered “dysfunctional” at the point of the insulin receptor (binding of 

insulin to the receptor) or at the intracellular level (post-receptor).  In PCOS, the dysfunction in insulin 

signaling seems to be due to post-receptor defect. 

The insulin dysfunction in PCOS is postulated to be the main factor elevating androgen levels.  In 

1921, Achard and Theirs reported on a bearded woman who was also diabetic.  Kahn and colleagues (33) 

reported on three lean adolescent women with acanthosis nigricans.  Acanthosis nigricans is the presence 

of hyperpigmentation and thickening in skin folds of the neck, axilla, or beneath the breasts.  This type of 

insulin resistance soon became known as Type A syndrome or HAIR-AN (hyperandrogenism, insulin 

resistance, and acanthosis nigricans).  This idea led to the discovery of the influence of insulin on 

steroidogenesis.  The relationship of acanthosis nigricans to insulin resistance seems likely to be related to 

hyperinsulinemia, since the basis of acanthosis nigricans is epidermal hyperplasia and insulin promotes 

epidermal cell growth in culture (34).  Insulin resistance was then found to be the best biochemical 

correlate of acanthosis nigricans (35).  Hyperinsulinemia appears to be a major factor in the ovarian 

dysfunction of PCOS.  Any treatment lowering insulin levels, will concurrently lower androgen levels as 

well, as is seen in weight loss (36).  Recent research suggests insulin is capable of enhancing a variety of 

steroidogenic pathways in ovarian thecal cells, ovarian granulose cells, adrenalcortical cells, and the 

periphery (37).  Furthermore, insulin seems to be capable of exerting these effects directly (38).  Thus, 

insulin excess could contribute to functional adrenal hyperandrogenism. 

 
 

C.3.1 Constraints of insulin action studies in PCOS 
 
 
General consensus in the literature is that insulin resistance is commonly found in obese women with 

PCOS.  The pathogenesis of IR in PCOS is controversial and one suggestion is that obesity is responsible 

for insulin action dysfunction in these women.  Many conflicting results from these studies can be 

explained by differing diagnostic criteria, especially those differences found between studies conducted in 

the United States and the United Kingdom, and by the inclusion of lean and obese women in the subject 

population.  Studies using ovarian morphology as the basis for PCOS diagnosis have found that only 

anovulatory women with PCO morphology are insulin resistant.  Hence, studies that have defined PCOS 

by PCO morphology could have included women that were not insulin resistant.  Also, studies including 
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ovulatory women with hyperandrogenism would bias the study with non-IR subjects.  However, 

regardless of study locale, there is strong evidence supporting the association of anovulation with IR. 
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