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Many initiatives encourage research investigators to share their raw research datasets 

in hopes of increasing research efficiency and quality. Despite these investments of 

time and money, we do not have a firm grasp on the prevalence or patterns of data 

sharing and reuse.  Previous survey methods for understanding data sharing patterns 

provide insight into investigator attitudes, but do not facilitate direct measurement of 

data sharing behaviour or its correlates.  In this study, we evaluate and use bibliometric 

methods to understand the impact, prevalence, and patterns with which investigators 

publicly share their raw gene expression microarray datasets after study publication. 

To begin, we analyzed the citation history of 85 clinical trials published between 

1999 and 2003.  Almost half of the trials had shared their microarray data publicly on 

the internet.  Publicly available data was significantly (p=0.006) associated with a 69% 

increase in citations, independently of journal impact factor, date of publication, and 

author country of origin. 

Digging deeper into data sharing patterns required methods for automatically 

identifying data creation and data sharing. We derived a full-text query to identify 

studies that generated gene expression microarray data.  Issuing the query in PubMed 

Central®, Highwire Press, and Google Scholar found 56% of the data-creation studies 

in our gold standard, with 90% precision.  Next, we established that searching 

ArrayExpress and the Gene Expression Omnibus databases for PubMed® article 

identifiers retrieved 77% of associated publicly-accessible datasets. 

We used these methods to identify 11603 publications that created gene 

expression microarray data.  Authors of at least 25% of these publications deposited 

their data in the predominant public databases.  We collected a wide set of variables 

about these studies and derived 15 factors that describe their authorship, funding, 
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institution, publication, and domain environments. In second-order analysis, authors 

with a history of sharing and reusing shared gene expression microarray data were 

most likely to share their data, and those studying human subjects and cancer were 

least likely to share. 

We hope these methods and results will contribute to a deeper understanding of 

data sharing behavior and eventually more effective data sharing initiatives. 
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1.0  INTRODUCTION 

Many initiatives encourage research data sharing in hopes of increasing research 

efficiency and quality, but the effectiveness of these early initiatives is not well 

understood.  Sharing and reusing scientific datasets have many potential benefits: in 

addition providing detail for original analyses, raw data can be used to explore related or 

new hypotheses, particularly when combined with other publicly available data sets. 

Real data is indispensable when investigating and developing study methods, analysis 

techniques, and software implementations. The larger scientific community also 

benefits: sharing data encourages multiple perspectives, helps to identify errors, 

discourages fraud, is useful for training new researchers, and increases efficient use of 

funding and patient population resources by avoiding duplicate data collection.   

Eager to encourage the realization of such benefits, funders, publishers, 

societies, and individual research groups have developed tools, resources, and policies 

to encourage investigators to make their data publicly available.  Despite these 

investments of time and money, we do not yet understand the rewards, prevalence or 

patterns of data sharing and reuse, the effectiveness of initiatives, or the costs, benefits, 

and impact of repurposing biomedical research data. 

Studies examining current data sharing behavior would be useful in three ways.  

First, an estimate of the prevalence with which data is shared, either voluntarily or under 

mandate, would provide a valuable baseline for assessing future adoption and 

continued intervention.  Second, analyses of current behavior will likely identify subfields 

(perhaps research areas with a particular disease or organism focus, or those in well 

funded research groups) with relatively high prevalence of data sharing; digging into 

these can illuminate valuable best practices.  Third, the same analyses will likely reveal 

subareas in which researchers rarely share their research datasets.  Future research 

could focus on these challenging areas, to understand their unique obstacles for data 

sharing and refine future initiatives accordingly.  You can not manage what you do not 

measure: understanding the rewards, prevalence, and patterns of data sharing and 
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withholding will facilitate effective refinement of data sharing initiatives to better address 

real-world needs.   

1.1 BACKGROUND 

Widespread adoption of the Internet now allows research results to be shared more 

readily than ever before.  This is true not only for published research reports, but also 

for the raw research data points that underlie the reports.  Investigators who collect and 

analyze data can submit their datasets to online databases, post them on websites, and 

include them as electronic supplemental information – thereby making the data easy to 

examine and reuse by other researchers. 

Reusing research data has many benefits for the scientific community.  New 

research hypotheses can be tested more quickly and inexpensively when duplicate data 

collection is reduced.  Data can be aggregated to study otherwise-intractable issues, 

and a more diverse set of scientists can become involved when analysis is opened 

beyond those who collected the original data.  Ethically, it has long been considered a 

tenet of scientific behavior to share results [1], thereby allowing close examination of 

research conclusions and facilitating others to build directly on previous work.  The 

ethical position is even stronger when the research has been funded by public money 

[2], or the data are donated by patients and so should be used to advance science by 

the greatest extent permitted by the donors [3]. 

However, whereas the general research community benefits from shared data, 

much of the burden for sharing the data falls to the study investigator.  A major cost is 

time: the data have to be formatted, documented, and released. Further, it is sometimes 

complicated to decide where to best publish data, since supplementary information and 

laboratory sites are transient [4-6]. Beyond a time investment, releasing data can induce 

fear. There is a possibility that the original conclusions may be challenged by a re-

analysis, whether due to possible errors in the original study [7], a misunderstanding or 

misinterpretation of the data [8], or simply more refined analysis methods. Future data 

miners might discover additional relationships in the data, some of which could disrupt 
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the planned research agenda of the original investigators. Investigators may fear they 

will be deluged with requests for assistance, or need to spend time reviewing and 

possibly rebutting future re-analyses. They might feel that sharing data decreases their 

own competitive advantage, whether future publishing opportunities, information trade-

in-kind offers with other labs, or potentially profit-making intellectual property. Finally, it 

can be complicated to release data. If not well-managed, data can become disorganized 

and lost. Some informed consent agreements may not obviously cover subsequent 

uses of data. De-identification can be complex. Study sponsors, particularly from 

industry, may not agree to release raw detailed information. Data sources may be 

copyrighted such that the data subsets cannot be freely shared. 

Recognizing that these disincentives make the establishment of a voluntary data 

sharing culture unlikely without policy guidance, many initiatives actively encourage or 

require that investigators make their raw data available for other researchers.  There is 

a well known adage inspired by William Thomson (Lord Kelvin) [9]: you cannot manage 

what you do not measure. For those with a goal of promoting responsible data sharing, 

it would be helpful to evaluate the effectiveness of requirements, recommendations, and 

tools. When data sharing is voluntary, insights could be gained by learning which 

datasets are shared, on what topics, by whom, and in what locations. When policies 

make data sharing mandatory, monitoring is useful to understand compliance and 

unexpected consequences. 

Unfortunately, it is difficult to monitor data sharing because data can be shared in 

so many different ways.  Previous assessments of data sharing have included manual 

curation [10-12] and investigator self-reporting [13].  These methods are only able to 

identify instances of data sharing and data withholding in a limited number of cases, and 

therefore are unable to support widespread inquiry into patterns of data sharing 

behavior.  We hope this project supplements previous research to address these 

limitations. 
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1.1.1 The potential benefits of data sharing 

Sharing information facilitates science. Reusing previously-collected data in new studies 

allows these valuable resources to contribute far beyond their original analysis [14].  In 

addition to being used to confirm original results, raw data can be used to explore 

related or new hypotheses, particularly when combined with other publicly available 

data sets. Real data is indispensable when investigating and developing study methods, 

analysis techniques, and software implementations. The larger scientific community 

also benefits: sharing data encourages multiple perspectives, helps to identify errors, 

discourages fraud, is useful for training new researchers, and increases efficient use of 

funding and patient population resources by avoiding duplicate data collection. 

Believing that that these benefits outweigh the costs of sharing research data, 

many initiatives actively encourage investigators to make their data available. Some 

journals require the submission of detailed biomedical data to publicly available 

databases as a condition of publication [15, 16]. Since 2003, the NIH has required a 

data sharing plan for all large funding grants and has more recently introduced stronger 

requirements for genome-wide association studies [17, 18]; other funders have similar 

policies.  Several government whitepapers [14, 19] and high-profile editorials [19-25] 

call for responsible data sharing and reuse, large-scale collaborative science is 

providing the opportunity to share datasets within and outside of the original research 

projects [20, 21], and tools, standards, and databases are developed and maintained to 

facilitate data sharing and reuse.   

1.1.2 Current data sharing practice:  forces in support 

As highlighted above, sharing research data has many potential benefits to society. 

Although sharing of data has always been an aspiration of the scientific enterprise, it 

has only been common in a few subdisciplines.  Forces are now converging to make it 

an achievable and everyday practice.  

Datasets are larger than they have ever been – and larger than any single team 

of scientists can analyze exhaustively. The ubiquitous sharing and reuse of DNA 
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sequences in Genbank® has clearly demonstrated the power of openly shared data. 

Other high-throughput hypothesis-generating datasets, such as genome-wide 

association studies [17, 22], gene expression microarrays [23], proteomics mass 

spectra [24], and brain images [25] allow data to be repurposed to answer multiple 

research questions. Extensive datasets are also generated within the clinical setting, 

particularly through the adoption of electronic health records. Stakeholders have begun 

to develop recommendations and guidelines for the complex ethical, legal, and technical 

issues surrounding the reuse and sharing of health data beyond primary healthcare 

[26]. 

Research is increasingly performed within networks of multi-disciplinary teams. 

The NIH Roadmap [27] and other initiatives [21, 28-30] have recognized that significant 

scientific progress requires collaboration. Collaborations develop and adopt 

frameworks, standards, tools, and policies to share data among investigators. This work 

can facilitate sharing their data beyond the boundaries of the original research partners. 

Today’s collaborative science on large datasets is performed within an extremely 

tight biomedical funding environment. Many funding agencies have instituted data-

sharing policies [31], hoping to accelerate scientific progress while avoiding the cost of 

duplicative collection efforts. The NIH Data Sharing Policy, adopted in 2003, requires a 

data sharing plan for all research grants over $500K [17].   The NIH stipulates additional 

requirements for specific domains. For example, all funded genome-wide association 

studies (GWAS) are now expected to share their data in the centralized NCBI database, 

dbGaP [18, 22]. Complementing and extending these funding agency requirements, 

many biomedical journals require or recommend that data be shared as a condition of 

publication [15, 16, 19].  Some journals delineate the responsibilities in detail and 

include procedures for addressing data sharing noncompliance [16, 33]. 

Open, centralized databases such as Genbank, Uniprot, and the Gene 

Expression Omnibus have evolved into de facto homes for specific types of data [34]. 

Standards for minimum data inclusion and data formats have been developed for many 

types of datasets. The challenge of integrating datasets has spurred research progress 

on ontologies and semantic description methods. Projects such as NCBI’s Entrez 

database suite [35], the Semantic Web for Life Sciences [36], the National Center for 
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Biomedical Ontology’s Bioportal framework [37], and caBIG [29, 38, 39] provide visions 

for the future of research when data is more universally available and interoperable. 

Data sharing and integration are being actively pursued outside of biomedical 

research, in other scientific fields (physics, astronomy, environmental science) and also 

by the general public [40]. Several websites encourage uploading and visualizing all 

sorts of data: the “Tasty Data Goodies” at Swivel (http://www.swivel.com) and IBM’s 

Many Eyes (http://www.many-eyes.com) are popular examples. Widespread adoption of 

Web 2.0 technologies, including blogging, tagging, wikis, and mashups, suggest that 

our next generation of scientists will expect and embrace a world of research remixes 

[40]. 

Finally, I note the complementary forces of open access and pre-print 

publications, open notebook science projects [41], open source code [42], Creative 

Commons copyright licenses (http://creativecommons.org/) for many kinds of original 

content (including data), and two recent public access policies. The NIH Public Access 

Policy requires all NIH-funded investigators to submit their peer-reviewed manuscripts 

to PubMed Central to ensure public access, as of April 2008 [43]. In February 2008, the 

faculty of Harvard University voted to make all faculty scholarly publications freely 

available in an online open-access repository [44], the first such resolution by a 

university in the United States. While these policies do not apply to data beyond that 

provided within the manuscripts, they clearly demonstrate a political will to support 

sharing research results “to help advance science and improve human health” 

(http://publicaccess.nih.gov) and “promote free and open access to significant, ongoing 

research” [44]. 

1.1.3 Current data sharing practice:  forces in opposition 

While many forces are converging to enhance our ability to share data, there are 

significant social, organizational, technical and legislative factors that may impede them.  

Investigators may restrict access to data to maximize the professional and 

economic benefit that they accrue from data they generate, even though they also gain 

advantage by accessing data produced by others.  
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A review of genomic data sharing highlighted the complexity of stakeholder 

interests both for and against data sharing [45], beyond those of the original 

investigators.  Study subjects may have personal interests in privacy and confidentiality 

that exceed their personal interests in contributing to new methods of detecting and 

treating disease. Academic health centers may view data sharing as a threat to 

intellectual property, with the potential to impede spin-offs and start-ups that bring 

revenue and act as incubators for future research. Industrial sponsorship may hinder 

plans for sharing data. Changes in the regulatory environment make the sharing of data 

more complex, and may necessitate more stringent oversight to ensure compliance and 

minimize risk. Finally, limitations imposed by specific technologies undermine the ability 

of a uniform approach to generalize across different data types and regulatory 

requirements.  

It is often difficult to effectively incent and mandate data sharing.  Mandates are 

often controversial [46-48] while requests and unenforced mandates are often ignored 

[49].  The effect of funder policies like the NIH Data Sharing Policy have not been 

systematically studied, but anecdotal evidence suggests that many researchers view 

funder policies as optional, since they data sharing plans are not considered as part of 

scientific evaluation and there are no penalties for noncompliance [50]. 

I believe that a critical element in balancing these opposing forces is a better 

understanding of current data sharing behavior, patterns, and predictors to be used for 

communicating and refining sharing best-practices. 

 

1.2 PREVIOUS RESEARCH ON DATA SHARING BEHAVIOR 

A few investigations into data sharing behavior and attitudes have initiated work in this 

area.  Findings and outstanding challenges are highlighted below. 
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1.2.1 Measuring and modeling data sharing behavior 

Most measurements of data sharing prevalence have manually searched for shared 

datasets across a subset of journals [10, 11, 49], or systematically contacted authors to 

ask for shared datasets [51].  These studies have found that data sharing levels are 

high (but less than 100%) in a few cases, but overall prevalence is low.  For example, 

Ochsner et al. [10] found that despite the maturity of gene expression microarray data 

sharing infrastructure and multitude of funder and journal mandates, overall rates of 

sharing gene expression microarray data online is about 50%. 

These analyses have not correlated their prevalence findings with other variables 

to detect patterns.  Multivariate analyses have relied upon surveyed attitudes and 

intentions (described below), rather than measured characteristics.  

1.2.2 Measuring and modeling data sharing attitudes and intentions 

The largest body of knowledge about motivations and predictors for biomedical data 

sharing and withholding comes from Campbell and co-authors. They surveyed 

researchers, asking whether they have ever requested data and been denied, or 

themselves denied other researchers from access to data. Results indicated that 

participation in relationships with industry, mentors’ discouragement of data sharing, 

negative past experience with data sharing, and male gender were associated with data 

withholding [13]. In another survey, among geneticists who said they intentionally 

withheld data related to their published work, 80% said it was too much effort to share 

the data, 64% said they withheld data to protect the ability of a junior team member to 

publish, and 53% withheld data to protect their own publishing opportunities [52]. 

Occasionally, the administrators of centralized data servers publish feedback 

surveys of their users. As an example, Ventura reports a survey of researchers who 

submitted and reviewed microarray studies in the Physiological Genomics journal after 

its mandatory data submission policy had been in place for two years. Almost all (92%) 

authors said that they believed depositing microarray data was of value to the scientific 
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community and about half (55%) were aware of other researchers reusing data from the 

database [53]. 

In related research, the information science and management of information 

systems communities have developed several models of knowledge sharing.  These 

models often use either case studies [54] or opinions and attitudes gathered through 

validated survey instruments ([44, 55-57], and many more).  Studied domains include 

knowledge sharing within an organization, volunteering knowledge in open social 

networks, physician knowledge sharing in hospitals, participation in open source 

projects, academic contributions to institutional archives, and other related activities. 

1.2.3 Identifying instances of data sharing 

While surveys have provided insight into sharing and reuse behavior, other issues are 

best examined by studying the demonstrated behavior of scientists. Unfortunately, 

observed measurement of data behavior is difficult because of the complexity in 

identifying all episodes of data sharing and reuse. Although indications of sharing and 

reuse usually exist within a published research report, the descriptions are in 

unstructured free text and thus complex to extract. 

Most studies of data sharing to date have used a manual review to identify 

shared datasets (e.g. [10, 11, 49]). 

One automated approach for identifying data sharing behavior is to follow the 

“primary citation” field of database submission entries.  Unfortunately, this is imperfect, 

since these references often missing when data is submitted prior to study publication. 

Populating the submission citation fields retrospectively requires intensive manual effort, 

as demonstrated by the recent Protein Data Bank remediation project [57, 58], and thus 

is not usually performed. No effective way exists to automatically retrieve and index 

data housed on personal or lab websites or journal supplementary information. 

Related research has examined the degree to which data remains available after 

it has been shared. Multiple studies underscore the transience of supplementary 

information [5], website URLs [6], and corresponding author email addresses [44]. 
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1.2.4 Evaluating the impact of data sharing policies 

Despite many funder and journal policies requesting and requiring data sharing, the 

impact of these policies have only been measured in small and disparate studies. 

McCain manually categorized the journal “Instruction to Author” statements in 1995 [15]. 

A more recent manual review of gene sequence papers found that, despite 

requirements, up to 15% of articles did not submit their datasets to Genbank [11].  

Analyses of reproducibility in the political science literature suggests that only actively 

enforced journal policies are effective [49]. 

Studying the impact of data sharing policies is difficult because policies are often 

confounded with other variables. If, for example, impact factor is positively correlated 

with a strong journal data sharing policy as well as a large research impact, it is difficult 

to distinguish the direction of causation. Evaluating data sharing policies would ideally 

involve a randomized controlled trial, but unfortunately this is impractical. 

In related work, evaluations have been done to estimate the impact of reporting 

guidelines [59].  

1.2.5 Estimating the costs and benefits of data sharing 

Estimating the costs and benefits of data sharing would be challenging even with a 

comprehensive dataset of occurrences. A complete evaluation would require comparing 

projects that shared with other similar projects that did not, across a wide variety of 

variables including person-hours-till-completion, total project cost, received citations and 

their impact, the number and impact of future publications, promotion, success in future 

grant proposals, and general recognition and respect in the field. 

Pienta [60] is currently investigating these questions with respect to social 

science research data and publications. Zimmerman [61] has studied the ways in which 

ecologists find and validate datasets to overcome the personal costs and risks of data 

reuse. 
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Examining variables for their benefits on research impact is a common theme 

within the field of bibliometrics. Research impact is usually approximated by citation 

metrics, despite their recognized limitations. 

1.2.6 Related research fields 

Evaluation of data sharing and reuse behavior is related to a number of other active 

research fields: code reusability in software engineering, motivation in open source 

projects, online knowledge sharing communities, and corporate knowledge sharing, 

tools for collaboration, evaluating research output, the sociological study of altruism, 

information retrieval, usage metrics, data standards, the semantic web, open access, 

and open notebook science. 

 

1.3 RESEARCH DESIGN AND METHODS 

The long-term goal of this research is to accelerate research progress by increasing 

effective data reuse through informed improvement of data sharing and reuse tools and 

policies. The objective of this research project is to examine the feasibility of evaluating 

data sharing behavior based on examination of the biomedical literature.  

This research addressed the following specific aims: 

1.3.1 Aim 1: Does sharing have benefit for those who share? 

I investigated the association between sharing raw microarray data and subsequent 

citation rate of published studies.  I used datasets generated by a small, relatively 

homogeneous set of cancer gene expression microarray clinical trials.  Multivariate 

analysis was used to statistically controlling for potential confounders.  The results of 

Aim 1 provided motivation for Aim 2 and preliminary work for Aim 3.  
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1.3.2 Aim 2: Can sharing and withholding be systematically measured?  

Because the manual methods used to conduct Aim 1 did not scale to larger analyses, I 

investigated automatic methods for measuring data sharing and withholding behavior.  

First, articles that generated gene expression microarray data were identified using NLP 

on full-text research.  Second, to assess whether the authors of these data-generating 

studies shared or withheld their data, I investigated using database submission citation 

links as evidence of data sharing.  The results of Aim 2 were used to generate a dataset 

for Aim 3. 

1.3.3 Aim 3: How often is data shared?  What predicts sharing?  How can we 
model sharing behavior? 

First, I applied the classification systems described in Aim 2 to a wide spectrum of the 

biomedical literature to identify articles that generated gene expression microarray data 

and, subsequently, which of the articles that generated data also shared it.  Then, for 

each of the articles, I collected and analyzed features related to the authors, their 

institutional and funding environment, the study itself, and the publishing mechanism.  I 

used univariate and multivariate statistics to investigate which of these features are 

associated with dataset sharing.  Finally, I used exploratory factor analysis to derive a 

model that could be used to explain data sharing decisions based on my measured 

variables. 

1.4 RELATED RESEARCH APPLICATIONS OF METHODS 

1.4.1 Citation analysis for adoption and impact of open science 

Citation analysis has been used to assess several aspects of the adoption and impact 

of open science, particularly literature open access.  Eysenbach [62] found that authors 
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who chose to make their articles open access in the Proceedings of the National 

Academy of Sciences received more citations within the first year after publication, 

Wren [63] correlated journal impact factor with the adoption rate of author-shared 

reprints, and many others.  Other research have used citations to see how scientists 

use each other’s work [64] and the relative impact of various study designs [65]. 

Many authors study factors that underlie citation rate; these highlight important 

factors to include as potential confounders whenever a detailed citation analysis of a 

new variable [66, 67].  Ongoing research attempts to identify the best way to represent 

various issues such as author ambiguity [68], author productivity [69, 70], institutional 

environment [71], journal impact factor [72-76] and clean and comprehensive citation 

data [77]. 

Finally, several researchers have proposed methods for citations of data to make 

studying the issue of reuse easier in the long run, such as [43] and [78], and examined 

the extent to which citations are an accurate proxy for peer ratings of quality [79]. 

1.4.2 Natural language processing of the biomedical literature 

Natural language processing of the biomedical literature is traditionally organized into 

information retrieval, entity recognition, information extraction, hypothesis generation, 

and heterogeneous integration [80].  Most work has been on abstracts, because they 

are free, easy to obtain, and in a standardized format from MEDLINE®.  Unfortunately, 

a great deal of information resides only in article full text. The TREC Genomics 

2006/2007 tasks opened up a selection of free text for Information Retrieval research, 

and the Open Access subset at PubMed Central is another homogeneous, free, easy 

subset to obtain.  Consequently, more research is beginning to focus on full-text [81]. 

Most research has focused on the needs of biologists or curators [82], but 

starting to be some investigations into automated techniques to help find articles for 

review based on the text [91-94], identification of the relationships between citing and 

cited articles [83, 84], and analysis of the methods section to enumerate the diversity of 

wet lab method use [85]. 
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Techniques vary depending on the task, but stemming, synonyms, and n-grams 

are a mainstay [86].   Query expansion to include all query aspects have also been 

shown to help [87].  The availability of full text articles in PMC, Google Scholar, and 

other portals is spurring new approaches [88].  

Finally, NLP techniques applied to clinical text might be of informative.  For 

example, Melton et al. [89] also faces the issue of identifying records based on snippets 

of full text, though in their case it is adverse reactions in clinical discharge summaries. 

1.4.3 Regression and factor analysis for deriving and evaluating models of 
sharing behavior 

Most models of sharing behavior are based on established surveys, and thus evaluate 

their models using confirmatory analysis [101-105].  However, a few research projects 

instead use linear regression, such as [13, 56, 90-92].  Siemsen et al. [93] compare a 

regression model to that derived from constraining factor analysis.  Finally, several 

studies involve exploratory factor analysis [71, 94, 95]. 

1.5 OUTLINE OF THE DISSERTATION 

This chapter has provided an introduction to the dissertation and its topic.  Each aim is 

described separately as a self-contained research report including an introduction, 

methods, results, and discussion.  Aim 1 is covered in Chapter 2, Aim 2 in Chapters 3 

and 4, and Aim 3 in Chapter 5.  An overall discussion of contributions, implications, and 

future work is provided in the final chapter. 
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2.0  AIM 1:  SHARING DETAILED RESEARCH DATA IS ASSOCIATED WITH 
INCREASED CITATION RATE 

Background 

Sharing research data provides benefit to the general scientific community, but the 

benefit is less obvious for the investigator who makes his or her data available. 

Principal Findings 
We examined the citation history of 85 cancer microarray clinical trial publications with 

respect to the availability of their data. The 48% of trials with publicly available 

microarray data received 85% of the aggregate citations. Publicly available data was 

significantly (p = 0.006) associated with a 69% increase in citations, independently of 

journal impact factor, date of publication, and author country of origin using linear 

regression. 

Significance 
This correlation between publicly available data and increased literature impact may 

further motivate investigators to share their detailed research data. 

2.1 INTRODUCTION 

Sharing information facilitates science. Publicly sharing detailed research data–sample 

attributes, clinical factors, patient outcomes, DNA sequences, raw mRNA microarray 

measurements–with other researchers allows these valuable resources to contribute far 

beyond their original analysis [14]. In addition to being used to confirm original results, 

raw data can be used to explore related or new hypotheses, particularly when combined 

with other publicly available data sets. Real data is indispensable when investigating 
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and developing study methods, analysis techniques, and software implementations. The 

larger scientific community also benefits: sharing data encourages multiple 

perspectives, helps to identify errors, discourages fraud, is useful for training new 

researchers, and increases efficient use of funding and patient population resources by 

avoiding duplicate data collection. 

Believing that that these benefits outweigh the costs of sharing research data, 

many initiatives actively encourage investigators to make their data available. Some 

journals, including the PLoS family, require the submission of detailed biomedical data 

to publicly available databases as a condition of publication [15, 96, 97]. Since 2003, the 

NIH has required a data sharing plan for all large funding grants. The growing open-

access publishing movement will perhaps increase peer pressure to share data. 

However, while the general research community benefits from shared data, much 

of the burden for sharing the data falls to the study investigator. Are there benefits for 

the investigators themselves? 

A currency of value to many investigators is the number of times their 

publications are cited. Although limited as a proxy for the scientific contribution of a 

paper [98], citation counts are often used in research funding and promotion decisions 

and have even been assigned a salary-increase dollar value [99]. Boosting citation rate 

is thus is a potentially important motivator for publication authors. 

In this study, we explored the relationship between the citation rate of a 

publication and whether its data was made publicly available. Using cancer microarray 

clinical trials, we addressed the following questions: Do trials which share their 

microarray data receive more citations? Is this true even within lower profile trials? What 

other data-sharing variables are associated with an increased citation rate? While this 

study is not able to investigate causation, quantifying associations is a valuable first 

step in understanding these relationships. Clinical microarray data provides a useful 

environment for the investigation: despite being valuable for reuse and extremely costly 

to collect, is not yet universally shared. 
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2.2 MATERIALS AND METHODS 

2.2.1 Identification and Eligibility of Relevant Studies 

We compared the citation impact of clinical trials which made their cancer microarray 

data publicly available to the citation impact of trials which did not. A systematic review 

by Ntzani and Ioannidis [100] identified clinical trials published between January 1999 

and April 2003 which investigated correlations between microarray gene expression and 

human cancer outcomes and correlates. We adopted this set of 85 trials as the cohort 

of interest. 

2.2.2 Data Extraction 

We assessed whether each of these trials made its microarray data publicly available by 

examining a variety of publication and internet resources. Specifically, we looked for 

mention of Supplementary Information within the trial publication, searched the Stanford 

Microarray Database (SMD) [101], Gene Expression Omnibus (GEO) [102], 

ArrayExpress [103], CIBEX [104], and the NCI GeneExpression Data Portal 

(GEDP)(gedp.nci.nih.gov), investigated whether a data link was provided within 

Oncomine [105], and consulted the bibliography of data re-analyses. Microarray data 

release was not required by any journals within the timeframe of these trial publications. 

Some studies may make their data available upon individual request, but this adds a 

burden to the data user and so was not considered “publicly available” for the purposes 

of this study. 

We attempted to determine the date data was made available through notations 

in the published paper itself and records within the WayBackMachine internet archive 

(www.archive.org/web/web.php). Inclusion in the WayBackMachine archive for a given 

date proves a resource was available, however, because archiving is not 

comprehensive, absence from the archive does not itself demonstrate a resource did 

not exist on that date. 
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The citation history for each trial was collected through the Thomson Scientific 

Institute for Scientific Information (ISI) Science Citation Index at the Web of Science 

Database (www.isinet.com). Only citations with a document type of ‘Article’ were 

considered, thus excluding citations by reviews, editorials, and other non-primary 

research papers. 

For each trial, we also extracted the impact factor of the publishing journal (ISI 

Journal Citation Reports 2004), the date of publication, and the address of the authors 

from the ISI Web of Science. Trial size, clinical endpoint, and microarray platform were 

extracted from the Ntzani and Ioannidis review [100]. 

2.2.3 Analysis 

The main analyses addressed the number of citations each trial received between 

January 2004 and December 2005. Because the pattern of citations rates is complex–

changing not only with duration since publication but also with maturation of the general 

microarray field–a confirmatory analysis was performed using the number of citations 

each publication received within the first 24 months of its publication. 

Although citation patterns covering a broad scope of literature types are left-

skewed [106], we verified that citation rates within our relatively homogeneous cohort 

were roughly log-normal and thus used parametric statistics. 

Multivariate linear regression was used to evaluate the association between the 

public availability of a trial's microarray data and number of citations (after log 

transformation) it received. The impact factor of the journal which published each trial, 

the date of publication, and the country of authors are known to correlate to citation rate 

[107], so these factors were included as covariates. Impact factor was log-transformed, 

date of publication was measured as months since January 1999, and author country 

was coded as 1 if any investigator has a US address and 0 otherwise. 

Since seminal papers–often those published early in the history a field or in very 

high-impact journals–receive an unusually high number of citations, we performed a 

subset analysis to determine whether our results held when considering only those trials 

which were published after 2000 and in lower-impact (<25) journals. 
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Finally, as exploratory analysis within the subset of all trials with publicly 

available microarray data, we looked at the linear regression relationships between 

additional covariates and citation count. Covariates included trial size, clinical endpoint, 

microarray platform, inclusion in various public databases, release of raw data, mention 

of supplementary information, and reference within the Oncomine [105] repository. 

Statistical analysis was performed using the stats package in R version 2.1 [108]. 

P-values are two-tailed. 

2.3 RESULTS 

We studied the citations of 85 cancer microarray clinical trials published between 

January 1999 and April 2003, as identified in a systematic review by Ntzani and 

Ioannidis [100] and listed in Supplementary Text S1. We found 41 of the 85 clinical trials 

(48%) made their microarray data publicly available on the internet. Most data sets were 

located on lab websites (28), with a few found on publisher websites (4), or within public 

databases (6 in the Stanford Microarray Database (SMD) [101], 6 in Gene Expression 

Omnibus (GEO) [102], 2 in ArrayExpress [103], 2 in the NCI GeneExpression Data 

Portal (GEDP) (gedp.nci.nih.gov); some datasets in more than one location). The 

internet locations of the datasets are listed in Supplementary Text S2. The majority of 

datasets were made available concurrently with the trial publication, as illustrated within 

the WayBackMachine internet archives (www.archive.org/web/web.php) for 25 of the 

datasets and mention of supplementary data within the trial publication itself for 10 of 

the remaining 16 datasets. As seen in Table 1, trials published in high impact journals, 

prior to 2001, or with US authors were more likely to share their data. 

 

 



Table 1:  Characteristics of eligible publications 

 
 

 

The cohort of 85 trials was cited an aggregate of 6239 times in 2004–2005 by 

3133 distinct articles (median of 1.0 cohort citation per article, range 1–23). The 48% of 

trials which shared their data received a total of 5334 citations (85% of aggregate), 

distributed as shown in Figure 1. 

 

 
Figure 1:  Distribution of 2004-2005 citation counts of 85 publications 
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Whether a trial's dataset was made publicly available was significantly associated 

with the log of its 2004–2005 citation rate (69% increase in citation count; 95% 

confidence interval: 18 to 143%, p=0.006), independent of journal impact factor, date of 

publication, and US authorship. Detailed results of this multivariate linear regression are 

given in Table 2. A similar result was found when we regressed on the number of 

citations each trial received during the 24 months after its publication (45% increase in 

citation count; 95% confidence interval: 1 to 109%, p = 0.050). 

 

 
Table 2:  Multivariate regression on citation count of 85 publications 

 
 

 

To confirm that these findings were not dependent on a few extremely high-

profile papers, we repeated our analysis on a subset of the cohort. We define papers 

published after the year 2000 in journals with an impact factor less than 25 as lower-

profile publications. Of the 70 trials in this subset, only 27 (39%) made their data 

available, although they received 1875 of 2761 (68%) aggregate citations. The 
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distribution of the citations by data availability in this subset is shown in Figure 2. The 

association between data sharing and citation rate remained significant in this lower-

profile subset, independent of other covariates within a multivariate linear regression 

(71% increase in citation count; 95% confidence interval: 19 to 146%, p = 0.005). 

 

 

 
Figure 2:  Distribution of 2004-2005 citation counts of 70 lower-profile publications 

 

 

Lastly, we performed exploratory analysis on citation rate within the subset of 

trials which shared their microarray data; results are given in Table 3. The number of 

patients in a trial and a clinical endpoint correlated with increased citation rate. 

Assuming shared data is actually re-analyzed, one might expect an increase in citations 

for those trials which generated data on a standard platform (Affymetrix), or released it 

in a central location or format (SMD, GEO, GEDP) [109]. However, the choice of 

platform was insignificant and only those trials located in SMD showed a weak trend of 

increased citations. In fact, the 6 trials with data in GEO (in addition to other locations 

for 4 of the 6) actually showed an inverse relationship to citation rate, though we 
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hesitate to read much into this due to the small number of trials in this set. The few trials 

in this cohort which, in addition to gene expression fold-change or other preprocessed 

information, shared their raw probe data or actual microarray images did not receive 

additional citations. Finally, although finding diverse microarray datasets online is non-

trivial, an additional increase in citations was not noted for trials which mentioned their 

Supplementary Material within their paper, nor for those trials with datasets identified by 

a centralized, established data mining website. In summary, only trial design features 

such as size and clinical endpoint showed a significant association with citation rate; 

covariates relating to the data collection and how the data was made available only 

showed very weak trends. Perhaps with a larger and more balanced sample of trials 

with shared data these trends would be more clear. 

 

 
Table 3:  Exploratory regression on citation count for 41 publications with shared data 

 
 

2.4 DISCUSSION 

We found that cancer clinical trials which share their microarray data were cited about 

70% more frequently than clinical trials which do not. This result held even for lower-

profile publications and thus is relevant to authors of all trials. 
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A parallel can be drawn between making study data publicly available and 

publishing a paper itself in an open-access journal. The association with an increased 

citation rate is similar [110]. While altruism no doubt plays a part in the motivation of 

authors in both cases, studies have found that an additional reason authors choose to 

publish in open-access journals is that they believe their articles will be cited more 

frequently [62, 111], endorsing the relevance of our result as a potential motivator. 

We note an important limitation of this study: the demonstrated association does 

not imply causation. Receiving many citations and sharing data may stem from a 

common cause rather than being directly causally related. For example, a large, high-

quality, clinically important trial would naturally receive many citations due to its medical 

relevance; meanwhile, its investigators may be more inclined to share its data than they 

would be for a smaller trial-perhaps due greater resources or confidence in the results. 

Nonetheless, if we speculate for a moment that some or all of the association is 

indeed causal, we can hypothesize several mechanisms by which making data 

available may increase citations. The simplest mechanism is due to increased 

exposure: listing the dataset in databases and on websites will increase the number of 

people who encounter the publication. These people may then subsequently cite it for 

any of the usual reasons one cites a paper, such as paying homage, providing 

background reading, or noting corroborating or disputing claims ([112] provides a 

summary of research into citation behavior). More interestingly, evidence suggests that 

shared microarray data is indeed often reanalyzed [53], so at least some of the 

additional citations are certainly in this context. Finally, these re-analyses may spur 

enthusiasm and synergy around a specific research question, indirectly focusing 

publications and increasing the citation rate of all participants. These hypotheses are 

not tested in this study: additional research is needed to study the context of these 

citations and the degree, variety, and impact of any data re-use. Further, it would be 

interesting to assess the impact of reuse on the community, quantifying whether it does 

in fact lead to collaboration, a reduction in resource use, and scientific advances. 

Since it is generally agreed that sharing data is of value to the scientific 

community [19, 53, 113-116], it is disappointing that less than half of the trials we looked 

at made their data publicly available. It is possible that attitudes may have changed in 
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the years since these trials were published, however even recent evidence (in a field 

tangential to microarray trials) demonstrates a lack of willingness and ability to share 

data: an analysis in 2005 by Kyzas et al. [117] found that primary investigators for 17 of 

63 studies on TP53 status in head and neck squamous cell carcinoma did not respond 

to a request for additional information, while 5 investigators replied they were unable to 

retrieve raw data. 

Indeed, there are many personal difficulties for those who undertake to share 

their data [14]. A major cost is time: the data have to be formatted, documented, and 

released. Unfortunately this investment is often larger than one might guess: in the 

realm of microarray and particularly clinical information, it is nontrivial to decide what 

data to release, how to de-identify it, how to format it, and how to document it. Further, it 

is sometimes complicated to decide where to best publish data, since supplementary 

information and laboratory sites are transient [4, 5]. Beyond a time investment, releasing 

data can induce fear. There is a possibility that the original conclusions may be 

challenged by a re-analysis, whether due to possible errors in the original study [118], a 

misunderstanding or misinterpretation of the data [8], or simply more refined analysis 

methods. Future data miners might discover additional relationships in the data, some 

of which could disrupt the planned research agenda of the original investigators. 

Investigators may fear they will be deluged with requests for assistance, or need to 

spend time reviewing and possibly rebutting future re-analyses. They might feel that 

sharing data decreases their own competitive advantage, whether future publishing 

opportunities, information trade-in-kind offers with other labs, or potentially profit-making 

intellectual property. Finally, it can be complicated to release data. If not well-managed, 

data can become disorganized and lost. Some informed consent agreements may not 

obviously cover subsequent uses of data. De-identification can be complex. Study 

sponsors, particularly from industry, may not agree to release raw detailed information. 

Data sources may be copyrighted such that the data subsets can not be freely shared, 

though it is always worth asking. 

Although several of these difficulties are challenging to overcome, many are 

being addressed by a variety of initiatives, thereby decreasing the barriers to data 

sharing. For example, within the area of microarray clinical trials, several public 
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microarray databases (SMD [119], GEO [102], ArrayExpress [103], CIBEX [104], 

GEDP(gedp.nci.nih.gov)) offer an obvious, centralized, free, and permanent data 

storage solution. Standards have been developed to specify minimal required data 

elements (MIAME [120] for microarray data, REMARK [121] for prognostic study 

details), consistent data encoding (MAGE-ML [122] for microarray data), and semantic 

models (BRIDG (www.bridgproject.org) for study protocol details). Software exists to 

help de-identify some types of patient records (De-ID [123]). The NIH and other 

agencies allow funds for data archiving and sharing. Finally, large initiatives (NCI's 

caBIG [39]) are underway to build tools and communities to enable and advance 

sharing data. 

Research consumes considerable resources from the public trust. As data 

sharing gets easier and benefits are demonstrated for the individual investigator, 

hopefully authors will become more apt to share their study data and thus maximize its 

usefulness to society. 
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3.0  AIM 2A:  USING OPEN ACCESS LITERATURE TO GUIDE FULL-TEXT 
QUERY FORMULATION  

Background 
Much scientific knowledge is contained in the details of the full-text biomedical 

literature.  Most research in automated retrieval presupposes that the target literature 

can be downloaded and preprocessed prior to query. Unfortunately, this is not a 

practical or maintainable option for most users due to licensing restrictions, website 

terms of use, and sheer volume.  Scientific article full-text is increasingly queryable 

through portals such as PubMed Central, Highwire Press, Scirus, and Google Scholar.  

However, because these portals only support very basic Boolean queries and full text is 

so expressive, formulating an effective query is a difficult task for users.  We propose 

improving the formulation of full-text queries by using the open access literature as a 

proxy for the literature to be searched.  We evaluated the feasibility of this approach by 

building a high-precision query for identifying studies that perform gene expression 

microarray experiments. 

Methodology and Results 
We built decision rules from unigram and bigram features of the open access literature.   

Minor syntax modifications were needed to translate the decision rules into the query 

languages of PubMed Central, Highwire Press, and Google Scholar.  We mapped all 

retrieval results to PubMed identifiers and considered our query results as the union of 

retrieved articles across all portals.  Compared to our reference standard, the derived 

full-text query found 56% (95% confidence interval, 52% to 61%) of intended studies, 

and 90% (86% to 93%) of studies identified by the full-text search met the reference 

standard criteria.  Due to this relatively high precision, the derived query was better 

suited to the intended application than alternative baseline MeSH® queries. 
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Significance 
Using open access literature to develop queries for full-text portals is an open, flexible, 

and effective method for retrieval of biomedical literature articles based on article full-

text.  We hope our approach will raise awareness of the constraints and opportunities in 

mainstream full-text information retrieval and provide a useful tool for today’s 

researchers. 

3.1 BACKGROUND 

Much scientific information is available only in the full body of a scientific article. Full-text 

biomedical articles contain unique and valuable information not encapsulated in titles, 

abstracts, or indexing terms.  Literature-based hypothesis generation, systematic 

reviews, and day-to-day literature surveys often require retrieving documents based on 

information in full-text only. 

Progress has been made in accurately retrieving documents and passages 

based on their full-text content. Research efforts, relying on advanced machine-learning 

techniques and features such as parts of speech, stemmed words, n-grams, semantic 

tags, and weighted tokens, have focused on situations in which complete full-text 

corpora are available for preprocessing.   Unfortunately, most users do not have an 

extensive, local, full-text library. Establishing and maintaining a machine-readable 

archive involves complex issues of permissions, licenses, storage, and formats.  

Consequently, applying cutting-edge full-text information retrieval and extraction 

research is not feasible for mainstream scientists. 

Several portals offer a simple alternative: PubMed Central, Highwire Press, 

Scirus, and Google Scholar provide full-text query interfaces to an increasingly large 

subset of the biomedical literature. Users can search for full-text keywords and phrases 

without maintaining a local archive; in fact, they need not have subscription nor access 

privileges for the articles they are querying.  Portals return a list of articles that match 

the query (often with a matching snippet).  Users can manually review this list and 

download articles subject to individual licensing agreements. 
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It is difficult, however, to formulate an effective query for these portals: Full-text 

has so much lexical variation that query terms are often too broad or too narrow.  This 

standard information retrieval problem has been extensively researched for queries 

based on titles, abstracts, and indexing terms.  Much less research has been done on 

query expansion and refinement for full-text.  Today's full-text portals offer very basic 

Boolean query interfaces only, with little support for synonyms, stemming, n-grams, or 

"nearby" operations. 

We suggest that open access literature can help users build better queries for 

use within full-text portals.  An increasingly large proportion of the biomedical literature 

is now published in open access journals such as the BMC family, PLoS family, Nucleic 

Acids Research, and the Journal of Medical Internet Research [124].  Papers published 

in these journals can be freely downloaded, redistributed, and preprocessed by anyone 

for any purpose.  Furthermore, the NCBI provides a daily zipped archive of biomedical 

articles published by most open access publishers in a standard format, making it easy 

to establish and maintain a local archive of this content.  If a proposed seed query has 

sufficient coverage, we believe that the open access literature could provide valuable 

information to expand and focus the query when it is applied to the general literature 

though established full-text portals.  

We propose a method to facilitate the retrieval of biomedical literature through 

full-text queries run in publicly accessible interfaces.  In this initial implementation, users 

provided a list of true positive and true negative PubMed identifiers within the open 

access literature. Standard text mining techniques were used to generate a query that 

accurately retrieved the documents based on the provided examples.  We chose text-

mining techniques that resulted in query syntax that was compatible with full-text portal 

interfaces, such as Boolean combinations, n-grams, wildcards, stemming, and stop 

words.  The returned query was ready to be run through the simple interfaces of 

existing, publicly available full-text search engines. Full-text document hits could then be 

manually reviewed and downloaded by the user, subject to article subscription 

restrictions. 
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To evaluate the feasibility of this query-development approach, we applied it to 

the task of identifying studies that use a specific biological wet-laboratory method: 

running gene expression microarray experiments. 

3.2 METHOD 

3.2.1 Query development corpus 

To assemble articles on the general topic of interest, we used the title and abstract filter 

proposed by Ocshner et al. [10].  We limited our results to those in the open access 

literature by running the following PubMed query: 

 

"open access" [filter] AND  

(microarray [tiab] OR microarrays [tiab] OR genome-wide [tiab]  

OR "expression profile" [tiab] OR "expression profiles" [tiab]  

OR "transcription profile" [tiab] OR "transcription profiling" [tiab]) 

 

We translated the returned PubMed identifiers to PubMed Central (PMC) 

identifiers, then to locations on the PubMed Central server. We downloaded the full text 

for the first 4000 files from PubMed Central and extracted the component containing the 

raw text in xml format.  

To automatically classify our development corpus, we used raw dataset sharing 

into NCBI’s Gene Expression Omnibus(GEO) database [125] as a proxy for running 

gene expression microarray experiments.  This approach will incorrectly classify many 

gene-expression data articles, because either the authors did not share their gene 

expression data (about 50% [10]) or they did share but did not have a link to their gene 

expression study in GEO (about 35% [126]).  Nonetheless, we expected the number of 

false negative instances to be small compared to the number of true negatives and thus 

sufficiently accurate for training.  We implemented this filter by querying PubMed 
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Central with the development-corpus identifiers and the filter AND “pmc_gds” [filter], 
using the NCBI’s EUtils web service.  We considered articles returned by this filter to be 

positive examples, or gene expression microarray sharing/creation articles, and articles 

not returned in this subset to be negative examples. 

3.2.2 Query development features 

We assembled unigram and bigram features of the article full-text.  Specifically, we 

removed all xml and split on spaces and all punctuation except hyphens.  We excluded 

any unigram or bigram that included a word less than 3 characters long, more than 30 

characters long, or that did not include at least one alphabetic character.  We excluded 

unigrams and bigrams that included PubMed (and PubMed Central) stop words [127].  

Due to the nature of our specific-use case for the query, we also excluded a manually 

derived list of bioinformatics data words, such as “geo”, “omnibus”, “accession number”, 

“Agilent,” and journal and formatting words, such as “bmc”, “plos”, “dtd”, and “x000b0.” 

We eliminated unigrams and bigrams that did not have at least 20% precision, 

20% recall, and a 35% f-measure on the entire training set. 

3.2.3 Query development algorithm 

Preliminary investigations using established rule-generation algorithms (JRip, Ridor, 

and others) in Weka returned queries with high f-measure but relatively low precision.  

Attempts to alter parameters to achieve high precision and acceptable recall were not 

successful, even with cost-weighted learning.  Therefore, we decided to use a simple 

technique to build our own binary rules:  assemble features with the highest recall joined 

with AND, assemble features with the highest precision joined by OR, and then AND the 

two assemblies together.  This is illustrated in Figure 3.  

 



 
Figure 3:  Method for building boolean queries from text features 

 

 

We determined NOT phrases through a manual error analysis of the false 

positives in the development set. 

3.2.4 Query syntax 

The search syntax supported by established full-text portals is usually not well 

documented.  We read available help files and experimented to determine capabilities, 

limitations, and syntax.  We then translated the derived rules into the slightly different 

syntaxes of each of the query engines:  PubMed Central, Highwire Press, Scirus, and 

Google Scholar. 

3.2.5 Query evaluation corpus 

We evaluated the performance of our derived query against the reference standard 

established by Ochsner et al. [10]. Although many of the reference articles have full-text 

freely available in PubMed Central, none are open access and thus none were in the 

development set. 

Because the emphasis of Ochsner et al. was precision rather than recall, their 

analysis failed to identify a number of true positives.  We searched for these 

misclassifications automatically by identifying whether any of the articles that were 

considered non-data-generating actually had linked database submissions in GEO: an 
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indication that they did in fact generate data.  We also manually examined all 

classification errors. 

3.2.6 Query execution 

We ran our query for all journals that included their complete content in PubMed Central 

first, then Highwire Press, and finally Google Scholar.  This order allowed us to 

maximize the degree to which the query execution could be automated, as per the 

terms of use of the websites.  We ran the queries in each location for articles published 

in 2007. 

We used the EUtils library to automatically execute the query and obtain the 

results from PubMed Central.  For the other query engines, we manually executed the 

query and manually saved the resulting html files on our computer.  We parsed these 

html files with python scripts to extract the citations and submitted the citation lists to the 

PubMed Citation Matcher to obtain PubMed identifier (PMID) lists. 

3.2.7 Query evaluation statistics 

We calculated the precision and recall of the developed filters and compared this 

performance to that of the two most obvious baseline Medical Subject Heading (MeSH) 

filters: 

“Gene Expression Profiling” AND “Oligonucleotide Array Sequence Analysis” 

“Gene Expression Profiling” OR “Oligonucleotide Array Sequence Analysis” 

 

We also used Fisher’s exact test to verify that the filter was indeed adding value.  

For our use case, an eventual study of data sharing prevalence, we hoped to achieve 

recall of at least 50% and precision of at least 90%. 
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3.3 RESULTS 

3.3.1 Queries 

We applied our query-formulation approach to the task of identifying studies that 

performed gene expression microarray experiments.  Using the open access literature 

as a development corpus and links to a gene expression microarray database as a 

proxy endpoint, we derived the full-text queries shown in Table 4. 

 

 
Table 4:  Derived microarray data creation queries for full-text portals 

Portal Query 

PubMed Central ("gene expression" [text] AND "microarray" [text] AND "cell" [text] AND "rna" [text]) 

AND ("rneasy" [text] OR "trizol" [text] OR "real-time pcr" [text])  

NOT ("tissue microarray*" [text] OR "cpg island*" [text]) 

HighWire Press Anywhere in Text, ANY:  ("gene expression"  AND microarray AND cell AND rna) 

AND (rneasy OR trizol OR "real-time pcr") NOT (“tissue microarray*” OR “cpg 

island*”)  

Google Scholar +"gene expression” +microarray  +cell +rna +(rneasy OR trizol OR "real time pcr")  

-"cpg island*" -"tissue microarray*" 

Scirus Anywhere in Text, ALL: ("gene expression"  AND microarray AND cell AND rna)  

(rneasy OR trizol OR "real-time pcr") ANDNOT ("cpg island*" OR "tissue 

microarray*")  

 

3.3.2 Evaluation portal coverage 

Our evaluation corpus spanned 20 journals.  We preferred to execute queries in 

PubMed Central when possible, since it allows automated query and results processing: 

As seen in Table 5, three of the 20 journals have deposited all of their content in 

PubMed Central.  HighWire Press is also easy to use, though it does require manual 
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querying and saving of results.  Eight of the non-PubMed Central journals made their 

articles queryable by HighWire Press.  The remaining journals listed their content in 

Scirus.  Unfortunately, we were unable to reliably query full-text through Scirus, so we 

queried the remaining journals through Google Scholar for this study. 

 
 

Table 5:  Full-text portal coverage of reference journals, by portal preference 

Portal Journal 
PubMed Central Am J Pathol 
 EMBO J 
  PNAS 
Highwire Press Blood 
  Cancer Res. 
  Endocrinology 
  FASEB J 
  J. Biol. Chem. 
  J. Endocrinol. 
  J. Immunol. 
  Mol. Cell. Biol. 
  Mol. Endocrinol. 
Scirus/Google Scholar Cell 
  Molecular Cell 
  Nature 
  Nature Cell Biology 
  Nature Genetics 
  Nature Medicine 
  Nature Methods 
  Science 

 

 

3.3.3 Query performance 

Ochsner et al. [10] identified 768 articles generally related to gene expression 

microarray data.  Through a manual review, they determined that 391 of the articles 

documented the execution of a gene expression microarray experiment for a true 



 

 
36

positive rate of 51%.  Our query replicated these results with a precision of 83%, recall 

of 62%, and f-measure of 69%.   

Since the emphasis of the Ochsner review was precision rather than recall, we 

found that they were missing quite a few true positives. We searched for these 

misclassifications automatically by identifying whether any of the articles that were 

considered non-data-generating actually had linked database submissions in GEO: an 

indication that they did in fact generate data.  Forty-four articles were reclassified based 

on this analysis.  Our queries found seven of these reclassified articles and missed 37, 

resulting in a precision of 86% and recall of 57%. 

We then manually examined all 41 remaining errors to see if any were due to 

erroneous manual classification.  Based on our manual examination, we reclassified 28 

articles as true positives, a true positive rate of 60%.  Our query retrieved 12 of these 

and missed 18.  Using this gold standard, the queries achieved a precision of 90% (95% 

confidence intervals: 86% to 93%), recall of 56% (52% to 61%), and f-measure of 69%.  

This performance was much improved over chance (p<0.001).  We used the 

performance against this final gold standard for the remaining analyses. 

To investigate if the queries would be effective in each of the full text portals, we 

examined the performance by portal, as shown in  Table 6. 

 

 
Table 6:  Query accuracy by portal source 

 N precision recall f-measure 

PubMed Central 149 96% 50% 65% 

Highwire Press 498 91% 61% 73% 

Google Scholar 121 67% 30% 42% 

Weighted average 768 90% 56% 69% 

 

 

The performance of all of these portals was improved over chance (p < 0.001), 

indicating that even the relatively poor performance of Google Scholar was adding 

value. 
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Finally, we compare the results of the derived query to two naïve queries based 

on Medical Subject Heading (MeSH) terms.  As seen in Table 7, the derived query had 

better precision than either of the MeSH queries at an acceptable recall for our intended 

task. 

 

 
Table 7:  Query accuracy compared to baseline MeSH queries 

 N precision recall f-measure 

“gene expression profiling” [mesh] OR 

“Oligonucleotide Array Sequence Analysis” [mesh] 

768 81% 66% 73% 

“gene expression profiling” [mesh] AND 

“Oligonucleotide Array Sequence Analysis” [mesh] 

768 88% 24% 38% 

Derived query 768 90% 56% 69% 

 

3.4 DISCUSSION 

We described a mechanism for formulating effective queries for use in publicly 

available, established full-text search portals, using the open access literature as 

training material.  As a proof of concept, we applied this approach to a task that requires 

searching the full text of research articles: identifying studies that ran gene expression 

microarray experiments.  The query we derived achieved 90% precision and 56% recall, 

making it a better fit for our intended application than lower-precision baseline MeSH 

queries.  Although the evaluation demonstrates the usefulness of this approach in only 

one situation, we believe the method for deriving full-text queries could have 

widespread potential. 
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Effectively querying full-text is difficult: Synonyms, variant spellings, acronyms, 

and inexperience make it difficult to form effective queries [128].  Although difficult, 

searching full-text is often the only way to identify methods [85], detect harm [129], 

extract detailed data, or identify all of the biomedical concepts or genes explored in the 

study [130, 131].  There is also evidence that searching full-text is more effective than 

searching meta-data or abstracts for identifying articles of overall relevance [132, 133]. 

Domain-specific biomedical NLP and data integration systems, such as 

Textpresso [134], Pharmspresso [135], BioText [81], and BioLit [136], illustrate the 

potential value of accessing, exploring, and analyzing full-text, though none of these 

tools is designed to facilitate searching across domain-independent open-access and 

closed-access biomedical literature.  Other systems have been built to take a 

preassembled corpus of positive and negative examples to build a filter query for 

execution in PubMed [137, 138], but to our knowledge, none suggest an easily 

accessed open-source training set nor result in a full-text query for use in domain-

independent, publicly accessible online portals.  

Existing full-text search portals, such as Google Scholar, Scirus, Highwire Press, 

and PubMed Central, differ in their features and performance [154, 155], though we 

believe their full-text searching capabilities have not yet been compared.   We found 

differences in retrieval performance, but because our dataset was relatively small, it was 

not clear if any differences between portals were due to the portal or the subset of 

journals we searched. 

While portals provide a source of articles, many prohibit systematic downloads 

[139].  Furthermore, it is unclear whether standard licensing agreements and fair use 

allow text mining, “a question on which informed people continue to disagree [157, 158]. 

Luckily, open access articles are available for download and all kinds of reuse.   

Evidence suggests that these articles have similar textual characteristics to traditional 

journal articles [140], and so we used them as a proxy for all articles. 

Our method offers several advantages over alternatives: It is easy to maintain, it 

is free and open to query both open- and subscription-based content, and the user can 

be in direct control of recall/precision balance by setting recall and precision thresholds.  

It does have several limitations, however.  This technique can only identify articles with 
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full-text available for query in full-text portals, although we estimate that this is a 

sizeable amount of the total literature when results from PubMed Central, Highwire 

Press, Scirus, and Google Scholar are aggregated.  A related limitation is that the 

distribution of articles in full-text portals could influence the distribution of retrieved 

articles.  Articles published within the last year are unlikely to be retrieved, since many 

journals take full advantage of the NIH Public Access embargo period [141].  

Furthermore, while a few journals have made their entire back archives digitally 

queryable, we suspect that recall of articles more than 10-years old would be relatively 

poor.   

We also recognize that since this technique uses open access articles as a proxy 

for all articles, our queries would be most refined in areas that are well represented in 

open access articles.  To the extent that there are topics poorly covered by open access 

articles, this technique could have difficulty deriving keywords to find them.   

The system could be expanded in many ways.  Its input could instead involve a 

seed query and a list of "true positive" passages.  Other publicly available resources 

could also be consulted, including the UMLS®, WordNet, MEDLINE fields, and MeSH 

terms.  Active learning might allow for further refinement.  The system could run parts of 

speech analysis or domain-specific named entity recognition on the open access 

training set, if that helped to identify valuable features.  It could extract features only 

from a certain subsection of manuscripts, if there were reason to believe that all relevant 

information would be in the Methods section, for example. The system could be 

enhanced to use bootstrapping to identify phrase variants [88].  Since some portals 

have some wildcard capabilities, we would like to experiment with learning regular 

expressions [142], though there is some evidence that this may not help [143]. Finally, 

more sophisticated natural language processing algorithms would become easier if this 

method were implemented within a system like LingPipe [143]. 

To better understand the relative strengths and weaknesses of this approach, it 

would be informative to compare its performance to other systems and algorithms on a 

standard task, such as the TREC Genomics corpus [86, 133], or a query that has been 

developed just on abstracts [144]. 
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While our system will undoubtedly underperform compared with those at the 

cutting edge of research, we believe it will raise awareness of the constraints in 

mainstream full-text information retrieval and provide a useful tool for today’s 

researchers. 
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4.0  AIM 2B:  RECALL AND BIAS OF RETRIEVING GENE EXPRESSION 
MICROARRAY DATASETS THROUGH PUBMED IDENTIFIERS 

Background 

The ability to locate publicly available gene expression microarray datasets effectively 

and efficiently facilitates the reuse of these potentially valuable resources.  Centralized 

biomedical databases allow users to query dataset metadata descriptions, but these 

annotations are often too sparse and diverse to allow complex and accurate queries.  In 

this study we examined the ability of PubMed article identifiers to locate publicly 

available gene expression microarray datasets, and investigated whether the retrieved 

datasets were representative of publicly available datasets found through statements of 

data sharing in the associated research articles.  

Results 

In a recent article, Ochsner and colleagues identified 397 studies that had generated 

gene expression microarray data.  Their search of the full text of each publication for 

statements of data sharing revealed 203 publicly available datasets, including 179 in the 

Gene Expression Omnibus (GEO) or ArrayExpress databases.  Our scripted search of 

GEO and ArrayExpress for PubMed identifiers of the same 397 studies returned 160 

datasets, including six not found by the original search for data sharing statements.  As 

a proportion of datasets found by either method, the search for data sharing statements 

identified 91.4% of the 209 publicly available datasets, compared to 76.6% found by our 

search for PubMed identifiers.  Searching GEO or ArrayExpress alone retrieved 63.2% 

and 46.9% of all available datasets, respectively.  Studies retrieved through PubMed 

identifiers were representative of all datasets in terms of research theme, technology, 

size, and impact, though the recall was highest for datasets published by the highest-

impact journals. 
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Conclusions 
Searching database entries using PubMed identifiers can identify the majority of publicly 

available datasets.  We urge authors of all datasets to complete the citation fields for 

their dataset submissions once publication details are known, thereby ensuring their 

work has maximum visibility and can contribute to subsequent studies. 

4.1 BACKGROUND 

The number of publicly available biomedical research datasets, such as those based on 

gene expression microarray experiments, continues to increase.  The ability to access 

and process these large datasets enables other scientists to perform their own data 

driven studies, reduces duplicate data collection, allows the study of issues that require 

combining multiple datasets, and facilitates the training of future scientists through the 

analysis of real experimental data.  

To realize these potential benefits, it is necessary that datasets can easily be 

found when needed. Biomedical databases typically include structured data fields 

indicating number of data samples, experimental platform and organism and tissue-type 

or disease of study.  The experimental design, controls, and interventions involved are 

usually described in free-text fields. Unfortunately, the content of these descriptions is 

often sparse and diverse [145].  As a result, although basic queries of the structured 

fields can be effective, more complex queries may require pre-processing steps [146] 

and lack the accuracy required for some applications [147, 148]. 

Many publicly available datasets are associated with rich annotation outside the 

database: the published article describing the primary generation and analysis of the 

data.  Centralized biomedical databases often include a “primary citation” field to link to 

the original published article or articles.  This unambiguous link permits a user to query 

the article metadata, indexing terms, abstracts, or even the full text of the article, and 

then receive links to datasets relevant to the query.  

The usefulness of Medical Subject Heading (MeSH) indexing terms for 

annotating gene expression datasets has been described by Butte and colleagues [147, 
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149, 150].  For example, they found that 53% of gene expression microarray datasets in 

the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus 

(GEO) database were linked to articles with disease related MeSH terms [147], that 

control/intervention gene expression data are publicly available for diseases contributing 

to 30% of all disease-related mortality in the United States }[149], and that 

approximately 10% of microarray experiments in GEO have MeSH terms related to 

pharmacological substances [150].  We expect that the use of MEDLINE annotations for 

dataset retrieval will increase, particularly as combining text and data analysis becomes 

more common [80, 136, 148, 151-154]. 

To identify the links between articles and their accompanying datasets, ideally a 

scientist could simply query PubMed, PubMed Central, or a specialized value added 

interface (e.g. MedMiner [155], BioText [81], or others [156]) and receive links to related 

datasets. This is possible within the Entrez network of databases. By appending “AND 

pubmed_gds [filter]” to any PubMed query, the set of returned articles is limited to those 

identified as a primary citation in a Gene Expression Omnibus GEO DataSet record.  

While viewing PubMed results, selecting “GEO Datasets” in the Database dropdown list 

under “Find related data” in the right-hand column will retrieve the associated datasets.  

The data can then be explored or downloaded.  In many cases, this primary citation 

query process can be automated.  The Entrez databases can be queried through a web 

service eUtilities interface 

(http://www.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html). Other databases offer 

similar web services or application programming interfaces.  

As with any information retrieval strategy, retrieving datasets through their 

citation field identifiers has limitations.  Not all publicly available datasets are submitted 

to centralized databases, and many are hosted on publisher or laboratory websites.  

Dataset citation fields are often empty because datasets are frequently submitted to 

databases before the research article has been published and assigned a PubMed ID.  

If we use a retrieval strategy based on article metadata, how many datasets are we 

missing?  Are the datasets that are found a representative sample?  If not, what are the 

biases? 

http://www.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html
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To address these questions, in this study we have compared searching for 

publicly available datasets through statements of data sharing in published articles as 

reported by Ochsner et al. [10] to searching through queries of centralized databases 

with article PubMed identifiers.  We have focused on gene expression microarray data, 

which is expensive to collect, is often shared, has well established data-sharing 

standards, and is valuable for reuse. The National Center for Biotechnology Information 

(NCBI) Gene Expression Omnibus [125] (GEO) and the European Bioinformatics 

Institute (EBI) ArrayExpress [157] databases have emerged as the dominant centralized 

repositories for sharing gene expression microarray data. Both include fields for primary 

article citations as PubMed IDs and support querying of those links. 

4.2 METHODS 

4.2.1 Reference standard 

Ochsner and colleagues [10] manually curated gene expression microarray studies 

published in 20 journals during 2007.  They began with a PubMed filter to identify 

studies related to gene expression microarray data, reviewed the gene expression 

articles to identify the subset of studies that generated primary gene expression 

datasets, and finally searched the full text of the published research articles for 

statements that the datasets were publicly available either in centralized databases, as 

supplementary information, or on public websites.   

4.2.2 Database search for PubMed identifiers 

We attempted to replicate the results of Ochsner et al. with a scripted query of gene 

expression databases.  We began with their list of PubMed identifiers for articles 

identified as generating primary gene expression datasets.  We then ran scripts to query 
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the “article submission citation” field of the GEO and ArrayExpress databases with this 

list of PubMed IDs, and tabulated the datasets thereby retrieved. 

We issued scripted queries for GEO and ArrayExpress through their web 

programmatic interfaces.  For example, to query GEO for PubMed IDs 17510434 and 

17603471, we wrote programmatically retrieved the following page: 
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=(17510434%5Buid%5D

+OR+17603471%5Buid%5D)+AND+pubmed_gds%5Bfilter%5D 

and then extracted the <IDList> from the resulting XML.  To search 

ArrayExpress, we issued a query for each PubMed ID: 
http://www.ebi.ac.uk/microarray-as/ae/xml/experiments?keywords=17510434 

http://www.ebi.ac.uk/microarray-as/ae/xml/experiments?keywords=17603471 

and confirmed the returned pages listed the PubMed ID in the bibliography field.  

We performed these queries with custom Python scripts. 

4.2.3 Data extraction 

For each of the datasets found in centralized databases, we collected the PubMed 

ID(s), the number of samples in the dataset, the gene expression platform, and the 

species. We considered the variable for dataset size to be “missing” for datasets shared 

outside centralized databases because the number of dataset samples was rarely 

explicitly and consistently stated on journal or laboratory websites. 

For each PubMed identifier we collected the name of the journal that published 

the article, its 2007 Thomson ISI Journal Impact Factor, whether the article was indexed 

with the MeSH keyword that identifies cultured cells, and whether the article was found 

by the PubMed “cancer” filter (cancer was the most frequent disease classification for 

microarray data identified by Butte [147]).  We collected PubMed Central citation 

statistics using the Entrez EUtils web service.   

We determined whether each journal published articles within one specific 

discipline or had a multidisciplinary scope.  We also recorded whether the journal 

requires authors to include a gene expression microarray database submission 

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=(17510434%5Buid%5D+OR+17603471%5Buid%5D)+AND+pubmed_gds%5Bfilter%5D
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=(17510434%5Buid%5D+OR+17603471%5Buid%5D)+AND+pubmed_gds%5Bfilter%5D
http://www.ebi.ac.uk/microarray-as/ae/xml/experiments?keywords=17510434
http://www.ebi.ac.uk/microarray-as/ae/xml/experiments?keywords=17603471
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accession number in their articles as a condition of publication, following our earlier 

analysis of journal requirements [16]. 

If identical datasets were found in more than one location, we made note of this 

and collected data for the most complete location.  Data collection was performed in 

May 2009 by manual download and with customized scripts (Python 2.5.2 and the 

EUtils python library [158]. 

4.2.4 Statistical analysis 

We calculated the proportion of datasets that were retrievable by the Ochsner search 

and PubMed identifier queries, using the union of datasets found by either method as a 

denominator.  We estimated the odds that defined subsets of gene expression 

microarray datasets (those investigating cancer, performed on an Affymetrix platform, 

involving humans, or involving cultured cells) would be retrieved by querying a database 

for their PubMed identifiers, relative to the odds they would be found by the Ochsner 

search but overlooked by the scripted query for PubMed identifiers.  Fisher’s exact test 

was used to determine whether the odds were significantly different than 1.0, with 95% 

confidence intervals.  Histograms and Wilcoxon Rank Sum tests were used to 

determine whether the distributions of journal impact factors, number of citations, and 

number of data samples were significantly different between datasets found or 

overlooked by the PubMed identifier query.  Statistics were calculated using the sciplot 

[159], Hmisc, and Design [160] libraries in R version 2.7.0 [108]. 

4.3 RESULTS 

A previous article by Ochsner et al. [10] identified 397 published studies that generated 

gene expression microarray data.  Their examination of data sharing statements 

revealed that 186 (47%) of these studies had made their datasets publicly available.  

Fourteen studies had more than one associated dataset (13 studies had two associated 
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datasets, one study had five).  The combined 203 datasets were found in a variety of 

locations: 147 (72%) in the Gene Expression Omnibus (GEO) database, 32 (16%) in the 

ArrayExpress database, 12 (6%) hosted on journal websites, and 12 (6%) on laboratory 

websites and smaller online data repositories. Combined, GEO and ArrayExpress 

housed 179 (88%) of the datasets found by the Ochsner search. 

In order to determine the effectiveness of retrieving microarray datasets through 

an automated search, we attempted to locate these publicly available datasets using 

scripted queries of centralized microarray databases.  We queried the GEO and 

ArrayExpress databases with the PubMed identifiers of the 397 data producing studies.  

Our scripted queries returned 160 datasets in total: 132 datasets in GEO and 98 

datasets in ArrayExpress, including 70 datasets in both databases (ArrayExpress 

imports selected GEO submissions). 

We compared the retrieval results of the two search strategies: Ochsner‘s search 

for data sharing statements within the full text of the published studies and our query of 

centralized databases for PubMed identifiers.  As shown in Table 8, the query of 

databases using PubMed identifiers returned 6 datasets that were overlooked by 

Ochsner’s search.  Data submission dates suggested that one of these six was 

submitted after publication of the Ochsner paper.  Ochsner’s search found 31 datasets 

in GEO and ArrayExpress that were not found by the PubMed identifier search strategy: 

18 of these database entries listed no article citation, 10 listed a different citation by the 

same research group, two listed incomplete citations lacking a PubMed ID, and one 

dataset entry included citations to papers by what appears to be a different group of 

authors. 
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Table 8: Comparison of dataset retrieval by two retrieval strategies 
a) a search of article full-text for statements of data sharing, and b) a scripted query of 
centralized microarray databases for PubMed identifiers. 

 b) Number of datasets  
Found by querying 
databases for PubMed IDs 

Number of datasets  
Not Found by querying 
databases for PubMed IDs 

Total 

a) Number of datasets 
Found by searching full-
text for statements of 
data sharing 

154 49  
(31 in GEO and 
ArrayExpress  
+ 18 elsewhere) 

203 

Number of datasets  
Not Found by searching 
full-text for statements of 
data sharing 

6 An unknown number of 
data-producing studies have 
publicly available data not 
found by either search 
method 

at least 6 

Total 160 at least 49 at least 209 

 

 

 

The union of retrieval results from both search strategies yielded 209 datasets.  

We defined this union as the set “all publicly available datasets” for subsequent 

analysis. As illustrated in Figure 4, 91% of the 209 publicly available datasets were 

identified by the Ochsner search, compared to 77% found by queries of GEO and 

ArrayExpress for PubMed identifiers.  PubMed identifier queries of either GEO or 

ArrayExpress alone retrieved 63% and 47% of all available datasets, respectively. 

 



 
Figure 4:  Datasets found or missed by PubMed ID queries, by database 

 (bars indicate 95% confidence intervals of proportions) 
 

 

Next, we looked at univariate patterns to determine whether the datasets 

retrieved through our search differed from those found only by the Ochsner search.  The 

odds that a dataset was about cancer, performed on an Affymetrix platform, involved 

humans, or involved cultured cells were not significantly different whether the dataset 

was retrievable through our search method or not (p>0.3).  The recall for datasets from 

disciplinary journals was similar to the recall from multidisciplinary journals (p>0.1).  In 

ANOVA analysis, the distribution of species was not significantly different between the 

two search strategies (p>0.9).   

Datasets found through PubMed identifiers were more likely to be associated 

with articles in higher impact journals than datasets overlooked by this retrieval method 

(p=0.01).  Our PubMed identifier search found 92% of datasets from articles published 

in journals with impact factors greater than 20, 88% of those with impact factors 

between 10 and 20, and 73% of those with impact factors between three and 10.  

Journal data sharing policy and journal scope were strongly associated with journal 

impact factor (p<0.001), but stratifying our dataset by these features only slightly 

reduced the association between impact factor and recall (minimum p-value for stratified 

analysis was 0.06).  
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There was no association between the number of citations received by a study or 

the study sample size and whether or not the dataset was found by our PubMed 



identifier query.  Histograms of the impact factors (Figure 5a), citations (Figure 5b), and 

dataset sample size (Figure 5c) found and overlooked by our query illustrate these 

patterns. 

 

(a) 

 

(b) 

 

(c) 

 
Figure 5:  Datasets found or missed by PubMed ID queries, by impact and size 
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The ability to retrieve online datasets through PubMed identifiers differed across 

the twenty journals in our sample, as illustrated in Figure 6, although this difference was 

not statistically significant in an ANOVA test (p=0.9).  

 

 

 
Figure 6:  Datasets found or missed by PubMed ID queries, by journal 

(bars indicate 95% confidence intervals of proportions) 

 

In Figure 6, light grey bars represent the proportion of online datasets available in 

the Gene Expression Omnibus or ArrayExpress databases.  Dark grey bars represent 

the proportion of online datasets that include their publication PubMed identifier in the 

GEO or ArrayExpress entry, and thus can be found by our retrieval method.  The 

number of online datasets in our sample follows the journal title, in parentheses. 

Finally, we found some evidence that journal policy may be associated with 

whether a dataset is deposited into a database, complete with PubMed identifier 

citation.  Our scripted queries found 78% of known publicly available datasets for 

articles published in journals that require a GEO or ArrayExpress submission accession 

number as a condition of publication.  This is a higher retrieval rate than we found for 
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publicly available datasets in journals without such a policy (65%), but the difference 

was not statistically significant (p=0.19).   

4.4 DISCUSSION 

In this study we found that scripted queries of centralized microarray databases using 

PubMed identifiers retrieved 76.6% of all publicly available datasets associated with the 

publications.  The spectrum of datasets was similar to that found by a reference search 

[10] in terms of array platform, cell source, subject of study, sample size, and study 

impact. 

Dataset retrieval through PubMed identifiers achieved the highest recall when 

applied to studies from the highest-impact journals.  Additional research is needed to 

understand the reasons behind this finding since it is not fully explained by journal policy 

or scope, and may have to do with the implementation details of journal policy 

requirements.  The importance of the retrieval bias depends on the intended use of the 

query results.  For example, while there is likely no problem using the query to retrieve 

datasets for a combination analysis, caution is required when using the results for policy 

evaluation because query results are not fully representative of all online datasets,  

Our evaluation has several limitations.  The evaluation dataset was not chosen 

randomly and does not contain a representative distribution of journals:  in particular, 

our evaluation subset lacked any journal with an impact factor below 2.5.  Also, our 

reference standard classifications may contain errors, if there exist studies with publicly 

available data that were identified by neither the Ochsner search nor our PubMed 

identifier query. 

We found that the number of gene expression microarray dataset entries with 

citation links could be increased by about 25% if all datasets now published on the 

internet were uploaded to centralized databases, and all primary article citation fields 

were fully completed.  This is consistent with the findings of manual update efforts on 

the PDB database [57, 161].  We believe encouraging authors and enabling curators to 

document all link between datasets and research articles is effort well spent.  In addition 
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to use in retrieval, a clear relationship between a dataset and its research article allows 

synergistic documentation, integration for text mining and data mining, and facilitates 

rewards for publicly sharing data [162, 163]. 

This study considers the issue of retrieving datasets that are currently available 

on the internet.  As noted by Ochsner et al., data from half of the published gene 

expression microarray studies does not appear to be publicly shared online [10].  

Addressing incentives and policies for increasing the proportion of publicly available 

datasets is outside the scope of the current study but represents a crucial issue for 

unleashing the potential of research resources. 

4.5 CONCLUSIONS 

Efficient and accurate dataset retrieval can improve the efficiency of scientific progress, 

to the extent that it permits detailed review, facilitates integration, and reduces duplicate 

data collection. Our study suggests that querying gene expression microarray 

databases for PubMed identifiers is a feasible approach for identifying the majority of 

publication-related publicly available datasets, particularly when results from GEO and 

ArrayExpress are combined.  The retrieved datasets are representative of all related 

publicly available datasets.  We urge the authors of all datasets to complete the citation 

fields for their dataset submissions once publication details are known, thereby ensuring 

their work can have maximum visibility and fully contribute to future scientific studies.  
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5.0  AIM 3:  WHO SHARES?  WHO DOESN’T?  FACTORS ASSOCIATED WITH 
SHARING GENE EXPRESSION MICROARRAY DATA 

Many initiatives encourage research investigators to share their raw research datasets 

in hopes of increasing research efficiency and quality. Despite these investments of 

time and money, we do not have a firm grasp on the prevalence or patterns of data 

sharing and reuse; the effectiveness of initiatives; or the costs, benefits, and impact of 

repurposing biomedical research data.  Previous survey methods for understanding 

data sharing patterns provide insight into investigator attitudes, but do not facilitate 

direct measurement of data sharing behaviour or its correlates.  In this study, we use 

bibliometric methods to understand the prevalence and patterns with which 

investigators publicly share their raw gene expression microarray datasets after study 

publication. 

We used automated methods to identify 11,603 publications that created gene 

expression microarray data and estimated that the authors of at least 25% of these 

publications deposited their data in the predominant public databases.  We collected a 

wide set of variables about these studies and derived 15 factors that describe 

authorship, funding, institution, publication, and domain environments.  Most factors 

were found to be statistically associated with the prevalence of data sharing.  In 

particular, publishing in a journal with a relatively strong data sharing policy, having 

funding from many NIH grants, publishing in an open access journal, and having prior 

experience sharing data were associated with the highest data sharing rates.  In 

contrast, increased first author age and experience, having no experience reusing data, 

and studying cancer and human subjects were associated with the lowest data sharing 

rates.  
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In second-order analysis, previously sharing gene expression data was most 

positively associated with high data sharing rates, whereas publishing a study on cancer 

or human subjects was strongly associated with a negative probability of data sharing. 

We hope these methods and results will contribute to a deeper understanding of 

data sharing behavior and eventually more effective data sharing initiatives. 

5.1 INTRODUCTION 

Sharing and reusing primary research datasets has the potential to increase research 

efficiency and quality. Raw data can be used to explore related or new hypotheses, 

particularly when combined with other available datasets. Real data is indispensable for 

developing and validating study methods, analysis techniques, and software 

implementations. The larger scientific community also benefits: Sharing data 

encourages multiple perspectives, helps to identify errors, discourages fraud, is useful 

for training new researchers, and increases efficient use of funding and population 

resources by avoiding duplicate data collection. 

Eager to realize these benefits, funders, publishers, societies, and individual 

research groups have developed tools, resources, and policies to encourage 

investigators to make their data publicly available. For example, some journals require 

the submission of detailed biomedical datasets to publicly available databases as a 

condition of publication [15, 16]. Many funders require data sharing plans as a condition 

of funding: Since 2003, the National Institutes of Health (NIH) in the USA has required a 

data sharing plan for all large funding grants [17] and has more recently introduced 

stronger requirements for genome-wide association studies [164].  Several government 

whitepapers [14, 19] and high-profile editorials [165, 166] call for responsible data 

sharing and reuse.  Large-scale collaborative science is increasing the need to share 

datasets [20, 167], and many guidelines, tools, standards, and databases are being 

developed and maintained to facilitate data sharing and reuse [120, 125].  

Despite these investments of time and money, we do not yet understand the 

impact of these initiatives.  There is a well-known adage: You cannot manage what you 
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do not measure. For those with a goal of promoting responsible data sharing, it would 

be helpful to evaluate the effectiveness of requirements, recommendations, and tools. 

When data sharing is voluntary, insights could be gained by learning which datasets are 

shared, on what topics, by whom, and in what locations. When policies make data 

sharing mandatory, monitoring is useful to understand compliance and unexpected 

consequences. 

Dimensions of data sharing action and intension have been investigated by a 

variety of studies.  Manual annotations and systematic data requests have been used to 

estimate the frequency of data sharing within biomedicine [10, 11, 51, 117], though few 

attempts were made to determine patterns of sharing and withholding within these 

samples.  Blumenthal [13], Campbell [52], Hedstrom [168], and others have used 

survey results to correlate self-reported instances of data sharing and withholding with 

self-reported attributes like industry involvement, perceived competitiveness, career 

productivity, and anticipated data sharing costs.  Others have used surveys and 

interviews to analyze opinions about the effectiveness of mandates [53] and the value of 

various incentives [168-171].  A few inventories list the data-sharing policies of funders 

[172, 173] and journals [15, 174], and some work has been done to correlate policy 

strength with outcome [16, 175].  Surveys and case studies have been used to develop 

models of information behavior in related domains, including knowledge sharing within 

an organization [191, 192], physician knowledge sharing in hospitals [176], participation 

in open source projects [177], academic contributions to institutional archives [56, 178], 

the choice to publish in open access journals [179], sharing social science datasets 

[168], and participation in large-scale biomedical research collaborations [54]. 

Although these studies provide valuable insights and their methods facilitate 

investigation into an author’s intentions and opinions, they have several limitations.  

First, associations between an investigator’s intention to share data do not directly 

translate to an association with actually sharing data [180].  Second, associations that 

rely on self-reported data sharing and withholding likely suffer from underreporting and 

confounding, since people admit withholding data much less frequently than they report 

having experienced the data withholding of others [13]. 
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We suggest a supplemental approach for investigating research data-sharing 

behavior.  We have collected and analyzed a large set of observed data sharing actions 

and associated study, investigator, journal, funding, and institutional variables. In this 

report we explore common factors behind these attributes and look at the association 

between these factors and data sharing prevalence. 

We chose to study data sharing for one particular type of data: biological gene 

expression microarray intensity values.  Microarray studies provide a useful 

environment for exploring data sharing policies and behaviors.  Despite being a rich 

resource valuable for reuse [181], microarray data are often, but not yet, universally 

shared.  Best-practice guidelines for sharing microarray data are fairly mature [120, 

182].  Two centralized databases have emerged as best-practice repositories: the Gene 

Expression Omnibus (GEO) [125] and ArrayExpress [157].  Finally, high-profile letters 

have called for strong journal data-sharing policies [34], resulting in unusually strong 

data sharing requirements in some journals [183]. 

5.2 METHODS 

We identified a set of studies in which the investigators had generated gene expression 

microarray datasets, and then we identified the subset that had made their datasets 

publicly available on the internet. We analyzed attributes related to the investigators, 

journals, funding, institutions, and topic of the studies to determine which factors were 

associated with an increased frequency of data sharing.  

5.2.1 Studies for analysis 

The set of “gene expression microarray creation” articles was identified by searching the 

full-text of PubMed Central, Highwire Press, Scirus, and Google Scholar with portal-

specific variants of the following query: 
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("gene expression"  AND "microarray"  AND "cell"  AND "rna" )  
AND ("rneasy"  OR "trizol"  OR "real-time pcr" )  

NOT ("tissue microarray*"  OR "cpg island*") 

 

We found PubMed identifiers for the retrieved articles whenever possible and 

considered the union of these PubMed identifiers to be our studies for analysis.  As 

discussed in Chapter 3, we previously evaluated the accuracy of this approach and 

found that it identified articles that created microarray data with a precision of 90% (95% 

confidence interval, 86% to 93%) and a recall of 56% (52% to 61%), compared to 

manual identification of articles that created microarray data. 

Because Google Scholar only allows viewing of 1000 results per query, we were 

not able to identify all of its hits.  We tried to identify as many as possible by iteratively 

appending a variety of attributes to the end of the query, including various publisher 

names, journal title words, and years of publication, thereby retrieving distinct subsets of 

the results 1000 hits at a time. 

5.2.2 Study attributes 

Our dependant variable was whether the gene expression microarray research articles 

had an associated dataset in a public centralized repository.  As we showed in Chapter 

4, we found that querying the NCBI’s Gene Expression Omnibus and EBI’s 

ArrayExpress with article PubMed identifiers located a representative 77% of all publicly 

available datasets associated with the published articles.  

We implemented this same approach on the study articles; we queried GEO by 

submitting our PubMed identifiers to PubMed, then filtering them using the  

“pubmed_gds [filter]” query.  We queried ArrayExpress by searching for each PubMed 

identifier in an offline copy of their public database.  Those articles with an associated 

dataset in one of these two centralized repositories were considered to have “shared 

their data” for our endpoint, and those without such a link were considered not to have 

shared their data. 
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For every study article, we collected 124 attributes that were used as 

independent variables, as listed in the Appendix. The independent variables were 

collected automatically from a wide variety of sources.  Basic bibliometric metadata was 

extracted from the MEDLINE record, including journal, year of publication, number of 

authors, Medical Subject Heading (MeSH) terms, number of citations from PubMed 

Central, inclusion in PubMed subsets for cancer, whether the journal is published with 

an open-access model and if it had data-submission links from Genbank, PDB, and 

SwissProt.  The corresponding address was parsed for institution and country, following 

the methods of Yu et al.[184]. 

Institutions were cross-referenced to the SCImago Institutions Rankings 2009 

World Report(http://www.scimagoir.com/) to estimate the relative degree of research 

output and impact of the institutions.  The gender of the first and last authors were 

estimated using the Baby Name Guesser website at 

http://www.gpeters.com/names/baby-names.php.  ISI Journal Impact Factors and 

associated metrics were extracted from the 2008 ISI Journal Citation Reports. 

NIH grant details were extracted by cross-referencing grant numbers in the 

MEDLINE record with the NIH award information at 

http://report.nih.gov/award/state/state.cfm.  From this information, we tabulated the 

amount of total funding received for each of the fiscal years from 2003 to 2008. We also 

estimated the date of renewal by identifying the most recent year in which a grant 

number was prefixed by a “1” or “2” —indication that the grant is “new” or “renewed,” 

respectively. 

We quantified the content of journal data-sharing policies based on the 

“Instruction for Authors” for the most commonly occurring journals.  We attempted to 

estimate if the paper itself reused publicly available gene expression microarray data by 

looking for its inclusion in the list that GEO keeps of reuse at 

http://www.ncbi.nlm.nih.gov/projects/geo/info/ucitations.html.  

A list of prior publications in MEDLINE was extracted from Author-ity clusters, 

2009 edition [185], for the first and last author of each article in our study.  To limit the 

impact of extremely large “lumped” clusters that erroneously contain the publications of 

more than one actual author, we excluded prior publication lists for first or last authors in 
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the largest 2% of clusters and instead considered this data to be missing.  For all 

papers in an author’s publication history with PubMed identifiers numerically less than 

the PubMed identifier of the paper in question, we queried for whether any of these prior 

publications had been published in an open source journal, were included in our “gene 

expression microarray creation” subset themselves, or had reused gene expression 

data.  We recorded the date of the earliest publication by the author and the number of 

citations to date that their earlier papers received in PubMed Central. 

Data collection scripts were coded in Python version 2.5.2 (many libraries, 

including EUtils, BeautifulSoup, pyparsing and nltk [186]) and SQLite version 3.4. 

5.2.3 Statistical methods 

Statistical analysis was performed in R version 2.10.1 [108].  P-values were two-tailed.  

Data was visually explored using Mondrian version 1.1 [187] and the Hmisc package 

[188].  We applied a square-root transformation to variables representing count data to 

improve their normality prior to calculating correlations.  

To calculate variable correlations, we used the hector function in the polycor 

library.  This computes polyserial correlations between pairs of numeric and ordinal 

variables and polychoric correlations between two ordinal variables.  We modified it to 

calculate Pearson correlations between numeric variables using the rcorr function in the 

Hmisc library.  We used a pairwise-complete approach to missing data and used the 

nearcor function in the sfsmisc library to make the correlation matrix positive definite.  A 

correlation heatmap was produced using the gplots library. 

We used the nFactors library to calculate and display the scree plot for our 

correlations. 

Since our correlation matrix was not well-behaved enough for maximum-

likelihood factor analysis, first-order exploratory factor analysis was performed with the 

fa function in the psych library, using the minimum residual (minres) solution and a 

promaxoblique rotation.  Second-order factor analysis also used the minres solution but 

a varimax rotation, since we wanted these factors to be orthogonal.  We computed the 
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loadings on the original variables for the second-order factors using the method 

described by Gorsuch[189]. 

To compute the factor scores for the original dataset, we first had to impute the 

missing values.  We did this using Gibbs sampling with two iterations through the mice 

library. 

Using this complete dataset, we computed scores for each of our datapoints onto 

all of the first and second-order factors using Bartlett’s algorithm as extracted from the 

factanal function.  We submitted these factor scores to a logistic regression using the 

lrm function in the rms package.  Continuous variables were modeled as cubic splines 

with 4 knots using the rcs function from the rms package, and all two-way interactions 

were explored. 

Finally, we performed hierarchical supervised clustering on the datapoints to 

learn which factors were most predictive and then estimated the data sharing 

prevalence in a contingency table of these two clusters split at their medians. 

5.3 RESULTS 

Our queries for identifying microarray data-producing articles returned PubMed 

identifiers for 11,603 studies. 

MEDLINE fields were still “in process” for 512 records, resulting in missing data 

for our MeSH-derived variables (Human, Mice, effectiveness, etc.). Impact factors were 

found for all but 1,001 articles.  Journal policy variables were missing for 4,107 articles.  

The institution ranking attributes were missing for 6,185.  We cross-referenced NIH 

grant details for 3,064 studies (some grant numbers could not be parsed, because they 

were incomplete or strangely formatted). We were able to determine the gender of the 

first and last authors, based on the forenames in the MEDLINE record, for all but 2,841 

first authors and 2,790 last authors.  All but 1,765 first authors and 797 last authors 

were found to have a publication history in the 2009 Author-ity clusters.  A summary of 

the variables can be found in the Appendix and their correlations in Figure 7. 
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PubMed identifiers were found in GEO or ArrayExpress primary citation fields for 

2,901 of the 11,603 articles in our dataset, indicating that 25% (95% confidence 

intervals: 24% to 26%) of the studies deposited their data in GEO or ArrayExpress and 

completed the “citation” fields with the primary article PubMed identifier.  This is our 

estimate for the prevalence of gene expression microarray data deposited into the two 

predominant, centralized, publicly accessible databases.  This data-sharing rate 

increased with each subsequent article publication year, as seen in Figure 8.  The data 

sharing rate also varied across journals. Figure 9 shows the data sharing rate across 

the 50 journals with the most studies in our dataset. 
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Figure 7:  Covariance matrix of independent variables.   
Positive

 

 correlations are red and negative correlations are blue. 
 



 

 
Figure 8:  Proportion of articles with shared datasets, by year 
(error bars are 95% confidence intervals of the proportions) 
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Figure 9:  Proportion of articles with shared datasets, by journal 

(error bars are 95% confidence intervals of the proportions) 
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Many of our other attributes were also associated with the prevalence of data 

sharing in univariate analysis.  Illustrations of these relationships are given in the 

Appendix. 

5.3.1 First-order factors 

We tried to use a scree plot to determine the number of factors for our first-order 

analysis.  Since the scree plot did not have a clear drop-off, we experimented with a 

range of factor counts near the optimal coordinates index (as calculated by nScree in 

the nFactors R-project library) and finalized on 15 factors.  Our correlation matrix was 

not sufficiently well-behaved for maximum-likelihood factor analysis, so we used a 

minimum residual (minres) solution.  We chose to rotate our factors with the promax 

oblique algorithm, because we expected our first-order factors to have significant 

correlations with one another.  The rotated first-order factors are given in Table 9 with 

loadings larger than 0.4 or less than -0.4.  We named the factors based on the variables 

they load most heavily, using abbreviations for publishing in an Open Access journal 

(OA) and previously depositing data in the Gene Expression Omnibus (GEO) or 

ArrayExpress (AE) databases. 
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Table 9:  First-order factor loadings 
Large NIH grant 
    0.97 num.post2005.morethan1000k.tr 
    0.96 num.post2005.morethan750k.tr 
    0.92 num.post2004.morethan750k.tr 
    0.91 num.post2004.morethan1000k.tr 
    0.91 num.post2005.morethan500k.tr 
    0.89 num.post2006.morethan1000k.tr 
    0.89 num.post2006.morethan750k.tr 
    0.86 num.post2004.morethan500k.tr 
    0.85 num.post2006.morethan500k.tr 
    0.84 num.post2003.morethan750k.tr 
    0.84 num.post2003.morethan1000k.tr 
    0.80 num.post2003.morethan500k.tr 
    0.74 has.U.funding 
    0.71 has.P.funding 
    0.58 nih.sum.avg.dollars.tr 
    0.56 nih.sum.sum.dollars.tr 
    0.44 nih.max.max.dollars.tr 
 
Has journal policy 
    1.00 journal.policy.contains..geo.omnibus 
    0.95 journal.policy.at.least.requests.sharing.array 
    0.95 journal.policy.mentions.any.sharing 
    0.93 journal.policy.contains.word.microarray 
    0.91 journal.policy.requests.sharing.other.data 
    0.85 journal.policy.says.must.deposit 
    0.83 journal.policy.contains.word.arrayexpress 
    0.72 journal.policy.requires.microarray.accession 
    0.71 journal.policy.requests.accession 
    0.58 journal.policy.contains.word.miame.mged 
    0.48 journal.microarray.creating.count.tr 
    0.45 journal.policy.mentions.consequences 
    0.42 journal.policy.general.statement 
 
NOT institution NCI or intramural 
    0.59 pubmed.is.funded.non.us.govt 
    0.55 institution.is.higher.ed 
   -0.89 institution.nci 
   -0.86 pubmed.is.funded.nih.intramural 
   -0.42 country.usa 
 

Count of R01 & other NIH grants 
    1.15 has.R01.funding 
    1.14 has.R.funding 
    0.89 num.grants.via.nih.tr 
    0.86 nih.cumulative.years.tr 
    0.82 num.grant.numbers.tr 
    0.80 max.grant.duration.tr 
    0.66 pubmed.is.funded.nih 
    0.50 nih.max.max.dollars.tr 
    0.45 num.nih.is.nigms.tr 
    0.44 country.usa 
    0.42 has.T.funding 
    0.41 num.nih.is.niaid.tr 
 
Journal impact 
   0.88 journal.5yr.impact.factor.log 
    0.88 journal.impact.factor.log 
    0.85 journal.immediacy.index.log 
    0.70 journal.policy.mentions.exceptions 
    0.54 journal.num.articles.2008.tr 
    0.51 journal.policy.contains.word.miame.mged 
   -0.61 journal.policy.contains.word.arrayexpress 
   -0.48 pubmed.is.open.access 
 
Last author num prev pubs & first year pub 
    0.84 last.author.num.prev.pubs.tr 
    0.74 last.author.year.first.pub.ago.tr 
    0.73 last.author.num.prev.pmc.cites.tr 
    0.68 last.author.num.prev.other.sharing.tr 
    0.48 country.japan 
    0.44 last.author.num.prev.microarray.creations.tr 
 
Journal policy consequences & long half-life 
    0.78 journal.policy.mentions.consequences 
    0.73 journal.cited.halflife 
    0.60 pubmed.is.bacteria 
    0.42 journal.policy.requires.microarray.accession 
   -0.54 pubmed.is.open.access 
   -0.45 journal.policy.general.statement 
 
Institution high citations & collaboration 
    0.76 institution.mean.norm.citation.score 
    0.72 institution.international.collaboration 
    0.64 institution.mean.norm.impact.factor 
    0.41 country.germany 
   -0.67 country.china 
   -0.61 country.korea 
   -0.56 last.author.gender.not.found 
   -0.43 country.japan 
 

continued…
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Table 9 (continued) 
 
NO geo reuse & YES high institution output 
    0.66 institution.research.output.tr 
    0.58 institution.harvard 
    0.46 has.K.funding 
    0.42 institution.stanford 
   -0.79 pubmed.is.geo.reuse 
   -0.62 country.australia 
   -0.46 institution.rank 
 
NOT animals or mice 
    0.51 pubmed.is.humans 
    0.43 pubmed.is.diagnosis 
    0.40 pubmed.is.effectiveness 
   -0.93 pubmed.is.animals 
   -0.86 pubmed.is.mice 
 
Humans & cancer 
    0.84 pubmed.is.humans 
    0.75 pubmed.is.cancer 
    0.67 pubmed.is.cultured.cells 
    0.52 institution.is.medical 
    0.47 pubmed.is.core.clinical.journal 
   -0.68 pubmed.is.plants 
   -0.49 pubmed.is.fungi 
 

Institution is government & NOT higher ed 
    0.92 institution.is.govnt 
    0.70 country.germany 
    0.65 country.france 
    0.46 institution.international.collaboration 
   -0.78 institution.is.higher.ed 
   -0.56 country.canada 
   -0.51 institution.stanford 
   -0.42 institution.is.medical 
 
NO K funding or P funding 
    0.56 has.R01.funding 
    0.49 has.R.funding 
    0.41 num.post2006.morethan500k.tr 
    0.41 num.post2006.morethan750k.tr 
    0.40 num.post2006.morethan1000k.tr 
   -0.65 has.K.funding 
   -0.63 has.P.funding 
 
Authors prev GEOAE sharing & OA & arry creation 
    0.83 last.author.num.prev.geoae.sharing.tr 
    0.74 last.author.num.prev.microarray.creations.tr 
    0.73 last.author.num.prev.oa.tr 
    0.60 first.author.num.prev.geoae.sharing.tr 
    0.47 first.author.num.prev.oa.tr 
    0.46 first.author.num.prev.microarray.creations.tr 
    0.40 institution.stanford 
   -0.44 years.ago.tr 
 
First author num prev pubs & first year pub 
    0.83 first.author.num.prev.pubs.tr 
    0.77 first.author.year.first.pub.ago.tr 
    0.73 first.author.num.prev.pmc.cites.tr 
    0.52 first.author.num.prev.other.sharing.tr 

 

 

After imputing missing values, we calculated scores for each of the 15 factors for 

each of our 11,603 datapoints.   In univariate analysis, several of the factors 

demonstrated a correlation with frequency of data sharing, as seen in Figure 10.  

Several factors seemed to have a linear relationship with data sharing across their 

whole range.  For example, whereas the data sharing rate was relatively low for studies 

that had the lowest score on the factor “Authors prev GEOAE sharing & OA & 

microarray creation” (in Figure 10, the first line under the heading “Authors prev GEOA 

sharing…”), the data sharing rate was higher for studies that had scores within the 25th 

to 50th percentile of all the studies in our sample, higher still for studies with “Authors 

prev GEO sharing…” factor scores in the third quartile, and studies that had a very high 



score on the factor, above the 75th percentile, had a relatively high rate of data sharing.  

A trend in the opposite direction can be seen for the factor “Humans & cancer”:  the 

higher a study scored on that factor, the less likely they were to have shared their data. 

 

 
Figure 10: Association between shared data and first-order factors 

Percentage of studies with shared data is shown for each quartile for each factor.  
Univariate analysis. 
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Most of these factors were significantly associated with data-sharing behavior in 

a multivariate logistic regression: p=0.18 for "Large NIH grant", p<0.05 for "No GEO 

reuse & YES high institution output" and "No K funding or P funding", and p<0.005 for 

the other first-order factors.  The increase in odds of data sharing is illustrated in Figure 

11, as each factor in the model is moved from its 25th percentile value to its 75th 

percentile value. 

 

 
Figure 11: Odds ratios of data sharing for first-order factor, multivariate model 

Odd ratios are calculated as factor scores are each varied from  
their 25th percentile value to their 75th percentile value. 

Horizontal lines show the 95% confidence intervals of the odds ratios.   

 

5.3.2 Second-order factors 

The heavy correlations between these factors suggest that second-order factors may be 

illuminating.  Scree plot analysis of the correlations between the first-order factors 

suggested that we explore a solution containing five second-order factors.  We 
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calculated the factors using a “varimax” rotation to find orthogonal factors.  The loadings 

on the first-order factors are given in Table 10. 
 

Table 10:  Second-order factor loadings, by first-order factors 
Amount of NIH funding 
    0.88 Count of R01 & other NIH grants 
    0.49 Large NIH grant 
   -0.55 NO K funding or P funding 
 
Cancer & humans 
    0.83 Humans & cancer 
 
OA journal & previous GEO-AE sharing 
    0.59 Authors prev GEOAE sharing & OA & microarray creation 
    0.43 Institution high citations & collaboration 
    0.31 First author num prev pubs & first year pub 
   -0.36 Last author num prev pubs & first year pub 
 
Journal impact factor and policy 
    0.57 Journal impact 
    0.51 Last author num prev pubs & first year pub 
 
Higher Ed in USA 
    0.40 NO geo reuse + YES high institution output 
   -0.44 Institution is government & NOT higher ed 

 

Since interactions make these second-order variables slightly difficult to interpret, 

we followed the method explained by Gorsuch [189] to calculate the loadings of the 

second-order variables directly on the original variables.  The results are listed in Table 

11.  We named the second-order factors based on the loadings on the original 

variables. 
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Table 11:  Second-order factor loadings, by original variables 
Amount of NIH funding 
    0.87 nih.cumulative.years.tr 
    0.85 num.grants.via.nih.tr 
    0.84 max.grant.duration.tr 
    0.82 num.grant.numbers.tr 
    0.80 pubmed.is.funded.nih 
    0.79 nih.max.max.dollars.tr 
    0.70 nih.sum.avg.dollars.tr 
    0.70 nih.sum.sum.dollars.tr 
    0.59 has.R.funding 
    0.59 num.post2003.morethan500k.tr 
    0.58 country.usa 
    0.58 has.U.funding 
    0.57 has.R01.funding 
    0.55 num.post2003.morethan750k.tr 
    0.53 has.T.funding 
    0.53 num.post2003.morethan1000k.tr 
    0.49 num.post2004.morethan500k.tr 
    0.45 num.post2004.morethan750k.tr 
    0.44 has.P.funding 
    0.43 num.post2004.morethan1000k.tr 
    0.43 num.nih.is.nci.tr 
    0.35 num.post2005.morethan500k.tr 
    0.32 num.nih.is.nigms.tr 
    0.31 num.post2005.morethan750k.tr 
 
Cancer & humans 
    0.60 pubmed.is.cancer 
    0.59 pubmed.is.humans 
    0.52 pubmed.is.cultured.cells 
    0.43 pubmed.is.core.clinical.journal 
    0.39 institution.is.medical 
   -0.58 pubmed.is.plants 
   -0.50 pubmed.is.fungi 
   -0.37 pubmed.is.shared.other 
   -0.30 pubmed.is.bacteria 
 
OA journal & previous GEO-AE sharing 
    0.40 first.author.num.prev.geoae.sharing.tr 
    0.37 pubmed.is.open.access 
    0.37 first.author.num.prev.oa.tr 
    0.35 last.author.num.prev.geoae.sharing.tr 
    0.32 pubmed.is.effectiveness 
    0.32 last.author.num.prev.oa.tr 
    0.31 pubmed.is.geo.reuse 
   -0.38 country.japan 
 

Journal impact factor and policy 
    0.48 journal.impact.factor.log 
    0.47 jour.policy.requires.microarray.accession 
    0.46 jour.policy.mentions.exceptions 
    0.46 pubmed.num.cites.from.pmc.tr 
    0.45 journal.5yr.impact.factor.log 
    0.45 jour.policy.contains.word.miame.mged 
    0.42 last.author.num.prev.pmc.cites.tr 
    0.41 jour.policy.requests.accession 
    0.40 journal.immediacy.index.log 
    0.40 journal.num.articles.2008.tr 
    0.39 years.ago.tr 
    0.36 jour.policy.says.must.deposit 
    0.35 pubmed.num.cites.from.pmc.per.year 
    0.33 institution.mean.norm.citation.score 
    0.32 last.author.year.first.pub.ago.tr 
    0.31 country.usa 
    0.31 last.author.num.prev.pubs.tr 
    0.31 jour.policy.contains.word.microarray 
   -0.31 pubmed.is.open.access 
 
Higher Ed in USA 
    0.36 institution.stanford 
    0.36 institution.is.higher.ed 
    0.35 country.usa 
    0.35 has.R.funding 
    0.33 has.R01.funding 
    0.30 institution.harvard 
   -0.37 institution.is.govnt 



 

We then calculated factor scores for each of these second-order factors using 

the original attributes of our 11,603 datapoints.  In univariate analysis, scores on several 

of the five factors showed a clear linear relationship with data sharing frequency, as 

illustrated in Figure 12. 

 

 
Figure 12: Association between shared data and second-order factors 

Percentage of studies with shared data is shown for each quartile for each factor.  
Univariate analysis. 

 

 

All five of the second-order factors were associated with data sharing in 

multivariate logistic regression, p<0.001.The increase in odds of data sharing is 

illustrated in Figure 13, as each factor in the model is moved from its 25th percentile 

value to its 75th percentile value. 
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Figure 13: Odds ratios of data sharing for second-order factor, multivariate model 

Odd ratios are calculated as factor scores are each varied from  
their 25th percentile value to their 75th percentile value. 

Horizontal lines show the 95% confidence intervals of the odds ratios. 
 

 

Finally, to understand which of these factors is most predictive of data sharing 

behaviour, we performed supervised hierarchical clustering using our second-order 

factors.  Splits on “OA journal & previous GEO-AE sharing” and “Cancer & Humans” 

were clearly the most informative, so we simply split these two factors at their medians 

and looked at the data sharing prevalence.  As shown in Table 12, studies that scored 

high on the “OA journal & previous GEO-AE sharing” factor and low on the “Cancer & 

Humans” factor were almost three times as likely to share their data, compared to a 

“Cancer & Humans” study published without a strong “OA journal & previous GEO-AE 

sharing” background. 
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Table 12:  Data sharing prevalence by two second-order factors  
95% confidence intervals in brackets.   

 
number of studies with shared data/ 
number of studies 

Above the median 
value for the factor  
“Cancer & Humans” 

Below the median 
value for the factor 
“Cancer & Humans” 

Total 

Above the median value for the factor 
“OA and previous GEO-AE sharing” 

626/2614 = 
24% [22%, 26%] 

1193/3187 = 
37% [36%, 39%] 

1819/5801 =  
31% [30%, 33%] 

Below the median value for the factor 
“OA and previous GEO-AE sharing” 

428/3187 = 
13% [12%, 15%] 

654/2615 = 
25% [23%, 27%] 

1082/5802 =  
19% [18%, 20%] 

Total 1054/5801 =  
18% [17%, 19%] 

1847/5802 = 
32% [31%, 33%] 

2901/11603 = 
25% [24%, 26%] 

 

5.4 DISCUSSION 

This study explored the association between attributes of a published experiment and 

the probability that its raw data was shared in a publicly accessible database.  We found 

that 25% of studies that perform gene expression microarray experiments have 

deposited their raw research data in a primary public repository.  The proportion of 

studies that shared their gene expression datasets increased over time, from less than 

5% in early years, before mature standards and repositories, to over 30% in 2009.  

Many factors derived from an experiment’s topic, impact, funding, publishing, 

institutional, and authorship environments were associated with the probability of data 

sharing.  In particular, authors publishing in an open access journal, or with a history of 

sharing and reusing shared gene expression microarray data, were most likely to share 

their data, and those studying cancer or human subjects were least likely to share. 

Although the current results should be considered preliminary, it is disheartening 

to discover that datasets of human and cancer studies have particularly low rates of 
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data sharing.  This sort of data is surely some of the most valuable for reuse, to the 

extent that it can help confirm, refute, advance, and train scientists in bench-to-bedside 

translational research. Further research will be required to understand the interplay of 

an investigator’s motivation, opportunity, and ability that result in a low rate of data 

sharing in these studies [50, 190].  We can make some guesses: As is appropriate, 

concerns about privacy of human subjects’ data undoubtedly affect a researcher’s 

willingness and ability (perceived or actual) to share raw study data.   We do not 

presume to recommend a proper balance between privacy and the societal benefit of 

data sharing, but we do feel strongly that researchers should seriously consider the re-

identification risk of their data on a study-by-study basis [191], evaluate the risks and 

benefits across the wide range of stakeholder interests [45], and consider an ethical 

framework to make these difficult decisions [192].  Data-sharing rates could also be low 

for reasons other than privacy.  Cancer researchers may perceive their field as 

particularly competitive, or cancer studies may have relatively strong links to industry–

two attributes previously associated with data withholding [193, 194].  

NIH funding levels are associated with increased prevalence of data sharing, 

though the overall probability of sharing remains low.  Data sharing is infrequent even in 

studies funded by grants clearly covered by the NIH Data Sharing Policy, such as those 

that receive more than one million dollars per year and awarded or renewed since 2006.  

This result is consistent with reports that the NIH Data Sharing Policy is often not taken 

seriously because compliance is not enforced. [50] 

We are intrigued that publishing in an open access journal, previously sharing 

gene expression data, and previously reusing gene expression data were associated 

with data sharing outcomes. The results are consistent with the results of our pilot 

study, in which we found a strong association between “author experience” and data 

sharing rates [195]. More research is required to understand the drivers behind the 

association.  Does the factor represent an attitude towards “openness” by the decision-

making authors?  Does the act of sharing data lower the perceived effort of sharing data 

again?  Does it dispel fears induced by possible negative outcomes from sharing data?  

To what extent does recognizing the value of shared data through data reuse motivate 

an author to share his or her own datasets? 
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People often wonder whether the attitude towards data sharing varies with age.  

Although we were not able to capture author age, we did estimate the number of years 

since first and last authors had published their first paper.  Our analysis suggests that 

first authors with many years in the field are less likely to share data than those with 

fewer years of experience, but no such association for last authors.  More work is 

needed to confirm this finding given the confounding factor of previous data-sharing 

experience. 

Gene expression publications associated with Stanford University have a very 

high level of data sharing.  The true level is actually much higher than that reflected in 

our study: Stanford University hosts a public microarray repository, and many articles 

that did not have a dataset link from GEO or ArrayExpress do mention submission to 

the Stanford Microarray Database.  If one were looking for a community on which to 

model best practices for data sharing adoption, Stanford would be a great place to start. 

Analyzing data sharing through bibliometric and data-mining attributes has 

several advantages: We can look at a very large set of studies and attributes, our 

results are not biased by survey response self-selection or reporting bias, and the 

analysis can be repeated over time with little additional effort. 

However, this approach does suffer its own limitations.  Our filters for identifying 

microarray creation studies do not have perfect precision, so we may have included 

some non-data-creation studies in our analysis.  Because studies that do not create 

data will not have data deposits, their inclusion alters the composition of what we 

consider to be studies that create but do not share data.  Furthermore, our method for 

detecting data deposits overlooks data deposits that are missing PubMed identifiers in 

GEO and ArrayExpress, so our dataset misclassifies some studies that did in fact share 

their data as non-data-sharing.   

We made decisions to facilitate analysis, such as assuming that PubMed 

identifiers were monotonically increasing with publication date and using the current 

journal data-sharing policy as a surrogate for the data-sharing policy in place when 

papers were published.  These decisions may have introduced errors. 

Missing data may have obscured important information.  For example, articles 

published in journals with policies that we did not examine had a lower rate of data 
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sharing than articles published in journals whose “Instructions to Authors” policies we 

did quantify.  It is likely that a more comprehensive analysis of journal data-sharing 

policies would provide additional insight.  Similarly, the data we included on funders was 

limited: We only included funding information on NIH grants.  Inclusion of more funders 

would help us understand the general role of funder policy and funding levels. 

The Author-ity system provides accurate author publication histories: A previous 

evaluation on a different sample found that only 0.5% of publication histories 

erroneously included more than one author, and about 2% of clusters contained a 

partial inventory of an author’s publication history due to splitting a given author across 

multiple clusters [185].  However, because the lumping does not occur randomly, our 

attributes based on author publication histories may have included some bias.  For 

example, the documented tendency of Author-ity to erroneously lump common 

Japanese names[185] may have confounded our author-history variables with author-

ethnicity. 

Previous work [193] found that investigator gender was correlated with data 

withholding.  It is important to look at gender in multivariate analysis, since male 

scientists are more likely than women to have large NIH grants[196].  We found little 

evidence that gender of the first or last author was associated with data sharing, 

although we recognize limitations in our approach to determining gender.  The Baby 

Name Guesser algorithm empirically estimates gender by analyzing popular usage on 

the internet.   Although coverage across names from all ethnicities seems quite good, 

we were less able to determine gender for Asian names.  This may have confounded 

our gender analysis, and our “gender not found” variable might have served as an 

unexpected proxy for author ethnicity.  

In previous work we used h-index and a-index metrics to measure “author 

experience” for both the first and last author (In biomedicine, customarily, the first and 

last authors make the largest contributions to a study and have the most power in 

publication decisions.).  A recent paper [197] suggests that a raw count of number of 

papers and number of citations is functionally equivalent to the h-index and a-index, so 

we used the raw counts in this study for computational simplicity.  Our reliance on 

citations from PubMed Central (to enable scripted data collection) meant that older 
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studies and those published in areas less well represented in PubMed Central were 

characterized by an artificially low citation count. 

We believe our large sample of 11,603 studies captured a fairly diverse and 

representative subset of gene expression microarray studies, though our method of 

obtaining it through full-text query may have introduced a slight bias towards open 

access journals, as we discussed in Chapter 3. 

This study did not consider directed sharing, such as peer-to-peer data exchange 

or sharing within a defined collaboration network, and thus underestimates the amount 

of data sharing in all its forms. 

Furthermore, this study underestimated public sharing of gene expression data 

on the Internet.  It did not recognize data listed in journal supplementary information, on 

lab or personal web sites, in specialized domains, or in institutional repositories 

(including the well-regarded and well-populated Stanford Microarray Database).  Our 

study methods did not acknowledge deposits into the Gene Expression Omnibus or 

ArrayExpress, unless the database entry was accompanied by a citation to the research 

paper, complete with PubMed identifier.  Finally, our study did not find deposits that had 

been submitted to GEO as a series, unless they had been assembled into a DataSet, a 

curation step for which GEO admits a current backlog 

(http://www.ncbi.nlm.nih.gov/geo/info/faq.html). 

Due to these limitations, care should be taken in interpreting the estimated levels 

of absolute data sharing and the data-sharing status of any particular study listed in our 

raw data.  Nonetheless, we believe the aggregate data does support relative trends. 

Finally, in regression studies it is important to remember that associations do not 

imply causation.  It is possible, for example, that receiving a high level of NIH funding 

and deciding to share data are not causally related, but rather result from the exposure 

and excitement inherent in a “hot” subfield of study. 

We plan to continue analyzing this data.  In the spirit of the topic, we have made 

our raw data available online and encourage others to use it and report their findings.  

We hope these analyses will contribute to a deeper understanding of information 

behavior around research data sharing and eventually a culture that embraces the full 

potential of research output. 
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6.0  CONCLUSIONS  

Aims 1, 2, and 3 were successfully completed, as described in the previous chapters.  

Here I summarize my findings, describe my contributions and their impact to date, 

suggest future work, and share some personal reflections. 

6.1 SUMMARY 

The purpose of this project was not to assess all data sharing behavior in biomedical 

research, but rather to explore three aspects of such an evaluation:    

• Aim 1: Does sharing have benefit for those who share?  

• Aim 2: Can sharing and withholding be systematically measured?  

• Aim 3: How often is data shared?  What predicts sharing?  How can we model 

sharing behavior? 

To begin, we analyzed the citation history of 85 clinical trials published between 

1999 and 2003.  Almost half of the trials had shared their microarray data publicly on 

the internet.  Publicly available data was significantly (p=0.006) associated with a 69% 

increase in citations, independently of journal impact factor, date of publication, and 

author country of origin. 

Digging deeper into data sharing patterns required methods for automatically 

identifying data creation and data sharing.  Data creation is usually only communicated 

in a published study’s full-text article.  Because full text is increasingly queryable 

through portals such as PubMed Central, Highwire Press, and Google Scholar, we 

proposed a method to derive full-text queries from analysis of the open access 

  80



literature.   The derived full-text query found 56% of data-creation studies in our gold 

standard, with 90% precision.  Next, we established that searching the two 

predominant, public, centralized gene expression microarray databases for biomedical 

literature PubMed identifiers retrieved 77% of associated publicly-accessible datasets. 

We used these methods to identify 11603 publications that created gene 

expression microarray data and estimated that the authors of at least 25% of these 

publications deposited their data in the predominant public databases.  We collected a 

wide set of variables about these studies and derived 15 factors that describe their 

authorship, funding, institution, publication, and domain environments.  Most factors 

were associated with the prevalence of data sharing.  In second-order analysis, authors 

with a history of sharing and reusing shared gene expression microarray data were 

most likely to share their data, and those studying human subjects and cancer were 

least likely to share. 

6.2 CONTRIBUTIONS, IMPLICATIONS, AND FUTURE WORK 

The goal of this project has been accomplished: useful evidence on data sharing 

patterns has been collected through methods that can be applied broadly, repeatably, 

and cost-effectively.  In this section, I summarize the contributions of this project, 

reactions to the portions that have already been published, suggest a few paths to 

confirm the preliminary results and extend the analysis, and speculate about 

implications of the results should they be confirmed. 

6.2.1 Contributions 

This research work has made several contributions in the form of papers and 

associated datasets.  Several of these have been met with a warm reaction, suggesting 

they have made a valuable contribution to ongoing dialog about scientific data sharing: 

• an assessment of citation benefits of data sharing, published in PLoS ONE  
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o Peter Suber, in Open Access News:  “Many studies have shown a correlation 

between OA articles and citation impact.  I believe this is the first study to 

document a similar correlation between OA data and citation impact.” 

o viewed over 13000 times at PLoS ONE 

o 45 citations from items in Google Scholar, including citations from research 

articles, books, and editorials 

• an award-winning proposal (Thomson-Reuters Dissertation Proposal Scholarship for 

2009), openly available online  

o used as a case-study in a PhD-level course at the School of Information 

Studies, McGill University 

• a generalizable approach for developing practical full-text queries for use in 

established academic literature portals, to be submitted for publication 

o in use by a colleague at the National Core for Neuroethics at the University of 

British Columbia 

• an evaluation of the precision, recall, and bias of using PubMed identifiers to find 

publicly available gene expression microarray datasets, accepted for publication 

• an estimate of the prevalence and patterns of gene expression microarray dataset 

sharing and preliminary models of data sharing behavior, to be submitted for 

publication 

• a publicly available dataset associating microarray study publications with data 

sharing status 

• open source Python data collection code and R-project statistical analyses 

6.2.2 Findings 

6.2.2.1 Data sharing is associated with an increased citation rate 
 

Based on 85 cancer clinical trials, we found that publications that made their datasets 

publicly available received 69% more citations than similar publications that did not 

share their data.  Several editorials have cited this evidence when debuting stricter data 
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sharing policies, suggesting this finding has been helpful for those trying to promote 

data sharing. 

Before an estimate of the association between data sharing and citation rate can 

have profound implications, however, the estimates need to be confirmed.  Ideally it 

would be confirmed with a larger dataset, more covariates, and different methods 

across several domains and datatypes.  As a first step towards this ambitious goal, I 

plan to use the dataset and covariates collected in this project to investigate the 

association between the data sharing choices and citation rates of the 11603 gene 

expression microarray data-creation studies.  Future work will be needed to adapt the 

automated retrieval methods for use outside biomedicine and gene expression 

microarray data. 

I hypothesize that the association between data sharing and citation rate will be 

confirmed, though I suspect the citation benefit will be smaller than the initial estimate of 

69%.  My guess is that cancer clinical trial data might be reused more than datasets of 

non-human organisms, since bioinformaticians may wish to demonstrate their novel 

tools and methods are applicable to translational research.  I also expect, given the 

current reuse patterns for gene expression microarray data, that as the number of gene 

expression microarray datasets continues to increase over time, any given dataset is 

reused less often.  Furthermore, the initial estimate calculation did not include 

potentially important covariates for predicting citation rate, such as level of NIH funding 

– including these variables may decrease the estimated association between data 

sharing and citation rate. 

I also hypothesize that there are domains and datatypes for which there is no 

citation benefit for sharing data.  In some areas, the cultural norm is to cite an accession 

number rather than the originating paper.  In others, typical reuse involves a very broad 

analysis across all data items in the database:  it is impossible to cite all associated 

papers. 

It is important to note that we do not understand how motivating a citation benefit 

of a given size would be to individual authors.  Furthermore, an estimate of citation 

benefit is just one aspect of potential benefits to individual investigators for sharing data.  
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To present a complete picture, this finding should be integrated with other individual 

benefits, individual costs, societal benefits, and societal costs. 

6.2.2.2 Data creation studies can be identified through full-text queries 
We described and evaluated a method to identify articles that create gene expression 

datasets using open access literature full text as training data and full-text portals as an 

execution environment.   

How useful will this method be, outside of this study?  Identifying data creation 

studies could be useful for investigators looking for data to reuse, for those monitoring 

the adoption of various research methods, and for extracting evidence types for 

biocurators.   

The most important implication of this work, however, is in the general process 

we used. Most research in automated retrieval presupposes that the target literature 

can be downloaded and preprocessed prior to query. Unfortunately, this is not a 

practical or maintainable option for most users due to licensing restrictions, website 

terms of use, and sheer volume.  Scientific article full text is increasingly queryable 

through online portals such as PubMed Central, Highwire Press, Scirus, and Google 

Scholar.  Recognizing that these full-text portals can be used for broad systematic 

retrieval of the biomedical literature based on words and phrases in article full text, 

particularly when queries are developed, refined, and evaluated by applying machine 

learning techniques to open access articles, potentially opens up large areas of 

research and application.   

Further research could increase the impact of this approach.  A review is needed 

to describe the scope and breadth of full-text proxy engines.  The methods presented 

here could easily be offered to the general public as an openly-available web service.  

Derived queries could be improved through application of more advanced text mining 

techniques.  Finally, the methods will have to be refined for domains without well-

organized portals like PubMed Central and Highwire Press. 
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6.2.2.3 Datasets can be identified by their PubMed identifiers 
We described and evaluated a method to identify articles that shared gene expression 

microarray datasets in centralized repositories, using PubMed identifiers.  The method 

is not novel, but knowing the recall and bias may encourage adoption of this method by 

others.  We hope to combine this method and others like it in a web service to help 

researchers find datasets for reuse. 

 Unfortunately, this method is difficult to apply to datatypes without centralized 

databases and to domains not covered by MEDLINE.  Future research is needed to 

determine mechanisms for assessing dataset quality. 

6.2.2.4 Many attributes are correlated with data sharing behaviour 
We collected a large dataset and found that many attributes were correlated with data 

sharing behaviour, particularly a history of sharing and reusing shared gene expression 

microarray data and a focus on human subjects and cancer.  These results are 

preliminary:  Confirmation is needed before any of the associations inform policy or 

decisions. 

The immediate implications of this study are those of a proof of concept and 

published dataset:  many new avenues of research.  Structural equation modeling can 

be used to explore causality within the variables.  The environmental factors can be 

further examined and perhaps applied in new contexts.  A deeper look into journal and 

funder policies could be used to explore the direct impacts that their policies have on 

data sharing rates.  The dataset, perhaps supplemented with semi-structured 

interviews, could be used to understand the relationship between capabilities and 

inclinations for the data producing investigators.  

6.2.3 The next frontier 

This study has focused on data sharing.  I plan to turn, next, to the study of data reuse.  

Who reuses data?  When?  Why?  Who doesn’t?  Which datasets are most likely to be 

reused?  How many datasets could be reused but aren’t?  Why aren’t they?  What can 

we do about it?  What should we do about it? 
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6.3 CODE AND DATA AVAILABILITY 

The code and data behind this project are available at http://www.researchremix.org. 

6.4 HOPE 

I hope this research project will contribute to a deeper understanding of data sharing 

behavior and eventually more effective dissemination of research output.  More 

generally, I hope this work facilitates and inspires an increased focus on using research 

methods to study and inform the practice of research.  We owe it to ourselves as 

scientists, as tax-payers, and as patients to pursue biomedical research as effectively 

as possible.  It is only by questioning our assumptions, considering alternatives, and 

evaluating our choices and results that we can choose methods and practices are most 

effective for achieving our desired outcomes. 
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APPENDIX 

UNIVARIATE SHARING PATTERNS ON ORIGINAL VARIABLES 

The appendix includes a 5-part figure (divided at page breaks) illustrating the 

association between the probability that a study shares its gene expression microarray 

dataset and each of our independent variables that describe the study environment. 

Overall prevalence of data sharing was 25%.  The frequency of data sharing is 

shown for each quartile for continuous variables.  Horizontal lines illustrate 95% 

confidence intervals of the data sharing frequencies. 

 

  87



 
Figure 14: Association between shared data and original independent variables 

The frequency of data sharing is shown for each quartile for continuous variables.  
Horizontal lines illustrate 95% confidence intervals of the data sharing proportions. 
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Figure 14 (continued) 
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Figure 14 (continued) 
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Figure 14 (continued) 
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