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ABSTRACT

VOLATILITY AND JUMPS IN HIGH FREQUENCY FINANCIAL DATA:

ESTIMATION AND TESTING

Nan Zhou, PhD

University of Pittsburgh, 2011

It has been widely accepted in financial econometrics that both the microstructure noise

and jumps are significantly involved in high frequency data. In some empirical situations,

the noise structure is more complex than independent and identically distributed (i.i.d.)

assumption. Therefore, it is important to carefully study the noise and jumps when using

high frequency financial data. In this dissertation, we develop several methods related to

the volatility estimation and testing for jumps.

Chapter 1 proposes a new method for volatility estimation in the case where both the

noise level and noise dependence are significant. This estimator is a weighted combination

of sub-sampling realized covariances, constructed from discretely observed high frequency

data. It is proved to be a consistent estimator of quadratic variation in the case with either

i.i.d. or dependent noise. It is also shown to have good finite-sample properties compared

with existing estimators in the literature.

Chapter 2 focuses on the testing for jumps based on high frequency data. We generalize

the methods in Aı̈t-Sahalia and Jacod (2009a) and Fan and Fan (2010). The generalized

method allows more flexible choices for the construction of test statistics, and has smaller

asymptotic variance under both null and alternative hypotheses. However, all these methods

are not effective when the microstructure noise is significant. To reduce the influence from

noise, we further design a new statistical test, which is robust with the i.i.d. microstructure

noise. This new method is compared with the old tests through Monte Carlo studies.
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1.0 SUB-SAMPLING REALIZED VOLATILITY ESTIMATION USING

HIGH-FREQUENCY DATA WITH DEPENDENT NOISE

1.1 INTRODUCTION

In financial econometrics, the modeling of volatility has been an important topic. The

real-time estimates and forecasts of volatility based on discretely observed data are essential

in many practical applications, like the pricing of financial instruments, portfolio allocations,

performance evaluation, and risk management. While the price process of financial instru-

ments is usually observable, the volatility is always latent, and thus brings more complexity

to the study of volatility.

A classical method to deal with this fundamental latency of volatility is by building

parametric models with some strong but necessary assumptions. These models include Auto

Regressive Conditional Heteroskedasticity (ARCH) (e.g. Engle (1982)), Stochastic Volatility

Model (e.g. Heston (1993) and Hagan et al. (2002)), and Local Volatility Model (e.g. Dupire

(1994) and Derman et al. (1996)). Other related work is in Andersen et al. (2002), Chernov

et al. (2003), Eraker et al. (2003), etc. An alternative approach is to derive the ‘Implied

Volatility’ from market prices of derivative products. See the papers by Bates (1996) and

Garcia et al. (2004).

In the last decade, the wide availability of reliable high frequency financial data has

led to substantial improvement in the study of volatility. One popular application using

high frequency data is to estimate the quadratic variation (QV), which is the integral of the

squared volatility over a fixed time interval as in section 1.2.2. A classic estimator is Realized

Volatility (RV), which is the sum of the frequently sampled squared returns (e.g. Andersen

et al. (2001), Meddahi (2002) and Barndorff-Nielsen and Shephard (2002)). A weakness of
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this estimator is its high sensitivity to market microstructure noise when applied to very

high frequency data such as 1 minute or less (e.g. Zhou (1996), Fang (1996) and Andersen

et al. (2000)). The empirical evidence of microstructure noise is discussed in the beginning

of section 1.3.

To reduce the bias introduced by microstructure noise, the classical solution uses mod-

erate high frequency data, which is normally chosen between 5 to 30 minutes (see Bandi

and Russell (2003)). However, this kind of solution uses less than one percent of available

data, and thus results in very inefficient estimation. Recently, some prominent approaches

are proposed to design new statistical estimators based on high frequency data, which are

consistent estimators and are robust to noise in the data. Roughly, there are three main

trends: Zhang et al. (2005, 2006)’s two-scales and multi-scales Realized Volatility (TSRV,

MSRV), Barndorff-Nielsen et al. (2008, 2009, 2011a, 2011b)’s Realized Kernel, and Jacod

et al. (2009)’s Pre-averaging approach. All of these approaches could construct consistent

and efficient estimators, which converge to the true volatility at a rate of n−1/4. This is the

best attainable convergence rate even in the simplest parametric model by the maximum

likelihood estimation as we show in section 1.3.1.

Most of these nonparametric approaches assume the noise is i.i.d. However, as studied

in section 1.4.1, the dependence among the microstructure noise could be significant in some

empirical situations. For this case, Aı̈t-Sahalia et al. (2011) generalizes the TSRV into a sub-

sampling version, which uses two sparse scales. The generalized TSRV becomes consistent in

the case with dependent noise, as the number of sub-sampling interval increases to infinite.

In this paper, we develop a new estimator called SRC, which is a weighted combination of

sub-sampling realized covariances with different lags, constructed from high frequency data.

For lag = 0, the realized covariance converges in probability to quadratic variation plus the

bias that depends on both noise variance and noise covariance. When the lag is greater than

0, the quadratic variation disappears in the asymptotic mean, and the mean of the realized

covariance is related to the noise covariance with different lags. Therefore, choosing some

specific weight function, the combination of sub-sampling realized covariances with different

lags could converge in probability to the quadratic variation. The asymptotic properties of

SRC and the central limit theorem are studied in section 1.5. Through the Monte Carlo

2



simulations, this new estimator is shown to have better finite-sample performance compared

with the existing methods, especially when the noise dependence is not small.

The rest of this chapter is organized as follows. Section 1.2 describes the model assump-

tions and necessary notations. Section 1.3 reviews the TSRV when assuming the microstruc-

ture noise is i.i.d. In section 1.4, we empirically study the noise dependence structure, based

on the transactions data of 30 Dow Jones Industrials Average (DJIA) stocks. We also review

the generalization of TSRV for the case with dependent noise. We develop the new estima-

tors and study their asymptotic properties in section 1.5. The finite-sample performance of

the new estimators are studied by simulations based on different noise levels and sample sizes

in section 1.6. The empirical analysis is provided in the section 1.7. Section 1.8 concludes

with directions for future work.

1.2 SEMIMARTINGALE AND QUADRATIC VARIATION

1.2.1 Price Process

The fundamental theory of asset prices in the frictionless arbitrage free market re-

quires that the log-price process Xt follows a semimartingale on a filtered probability space:

(Ω,F , {Ft}t≥0, P ). The most familiar semimartingale is Brownian semimartingale without

jumps:

Assumption 1.1.

Xt = X0 +

∫ t

0

bsds+

∫ t

0

σsdWs,

where bt is a predictable locally bounded drifted function, σt is an adapted cadlag volatility

process, and Wt is standard Brownian Motion.

To derive some asymptotic results, we need some further reasonable assumptions on σ:

Assumption 1.2. σt does not not vanish and it satisfies:

σt = σ0 +

∫ t

0

b′sds+

∫ t

0

σ′sdW
′
s,

3



where b′t and σ′t are adapted cadlag function. W ′
t is another Brownian Motion, which could

be correlated with Wt.

Assumption 1.2 is fulfilled for many financial models in the literature, and it simplifies

the proofs in this paper considerably. To find a more general treatment, including the case

of volatility with jumps, discussions could be found in Barndorff-Nielsen et al. (2006) and

Jacod (2007).

1.2.2 Quadratic Variation and Realized Volatility

Over a fixed time interval [0, T ], which is typically several days in practical applications,

high frequency data are observed and recorded for a sequence of deterministic partitions

0 = t0 ≤ t1 ≤ . . . ≤ tn = T . To focus on the core issue, we suppose that the data are

equally distributed: ti− ti−1 = ∆n = [t/n], which might be 1 hour, 1 minute or smaller. This

equality assumption does not influence the asymptotic mean of the estimators in this paper,

but only changes the asymptotic variance by a constant scale. A more natural way is to

work with financial data observed in real tick time, which allows the spacing to be stochastic

and endogenous. The study of stochastic transaction time could be found in section 5.3 in

Barndorff-Nielsen et al.(2008). To simplify notation, we write ∆ instead of ∆n, and denote

Xi = Xti and ∆iX = Xi −Xi−1.

Quadratic Variation (QV):

A key quantitative measurement of the price process is the quadratic variation:

QV (X) =

∫ T

0

σ2
s ds. (1.1)

From the probabilistic view, the QV could also be defined as

QV (X) = p lim−→
n→∞

ti≤T∑
i=1

(Xi −Xi−1)2, as max
i
{ti − ti−1} → 0. (1.2)

Here,

A = p lim−→
n→∞

An denotes An converges in probability to A.

4



This definition could be found in section 5.5 in Casella and Berger (2002).

Realized Volatility (RV):

A typical and intuitive method to estimate the QV is the RV:

[X,X]nt =

n=[t/∆]∑
i=1

(
Xi∆ −X(i−1)∆

)2
, (1.3)

which has the following asymptotic properties:

[X,X]nt =

∫ t

0

σ2
s ds+Op(n

−1/2),

n
(

[X,X]nt −
∫ t

0

σ2
s

)
Ls−→ N

(
0, 2t2

∫ t

0

σ4
s ds

)
.

(1.4)

The advantage of this estimator is obvious: it is model free, unbiased and consisten-

t under mild conditions. These properties are independently discussed by Andersen and

Bollerslev (1998), Comte and Renault (1998), and Barndorff-Nielsen and Shephard (2001,

2002a, 2002b). Theoretical and empirical properties of the RV have also been studied in

numerous articles (see Jacod (1994), Jacod and Protter (1998), Andersen et al. (2001),

Barndorff-Nielsen and Shephard (2002), and Mykland and Zhang (2006)). The multivariate

generalizations to realized covariation were discussed in Andersen et al.(2003) and Barndorff-

Nielsen and Shephard (2004).

1.3 TSRV WITH IID MICROSTRUCTURE NOISE

From (1.4), RV is an unbiased estimator with asymptotic variance 2t2

n

∫ t
0
σ4
s ds, which

is decreasing with the sample size. Therefore, we would like to use the available data as

frequently as possible to reduce the estimation error. However, empirical study shows that

the RV is unacceptably sensitive to market frictions when using ultra high frequency data

over time intervals such as 1 minute or less.

5



The existence of microstructure noise could be easily illustrated by the volatility signature

plot (see Andersen (2009) and Aı̈t-Sahalia et al. (2011)) which is the plot of RV estimator

vs. different time frequencies (∆n). In Figure 1.3, we create the volatility signature plots

based on the one year transaction data of SPY from Jan 2001 to Jan 2002, which is collected

from the NYSE Trade and Quote (TAQ) database. SPY is an actively traded exchange-

traded fund (ETF), and it represents an ownership in a portfolio of the equity securities

that comprise the Standard & Poor’s 500 Index, which usually be regarded as the overall

market benchmark. It is obvious from Figure 1.3 that the RV diverges with the decreasing

of sampling freuquency at a rate proportional to 1/∆n instead of converging to a constant,

which is expected to be the integrated volatility as in (1.4).

To mathematically discuss the potential influence from market microstructure noise in

high frequency data, we start from a common and simple assumption that the observed log

price Yi in high frequency data is the unobservable efficient log price Xi contaminated by

some noise component as another independent process Ei due to imperfections of the trading

procedure:

Assumption 1.3. Xt is the underlying unobservable log-price process, and we can observe

the process

Yt = Xt + Et,

where E is independent of X (E ⊥ X).

This independence assumption was questionable from a market microstructure theory

viewpoint (e.g., Kalnina and Linton (2008)). However, the empirical work of Hansen and

Lunde (2005) suggests that this assumption is not too damaging statistically when we ana-

lyze high frequency data.

Assumption 1.4. We mostly work under a white noise assumption:

E[E] = 0, V ar[E], V ar[E2] <∞, and Et ⊥ Es.

A feature of white noise is that [E,E]t = ∞. Thus white noise does not belong to

the semimartingale, which means the market with noise would allow arbitrage opportunities

from an econometrics view.

6



Then instead of (1.4), we get:

[Y, Y ]nt = 2nE(E2) +

∫ t

0

σ2
s ds+Op(

√
n). (1.5)

According to the result in (1.5), we expect to have ln([Y, Y ]nt ) ≈ ln(2EE2) + ln(n). So a

regression of ln([Y, Y ]nt ) on ln(n) should have slope coefficient close to 1, and intercept close

to ln(2EE2). Figure 1.5 shows the empirical result from the transaction records of 30 DJIA

stocks over the last 10 trading days in April 2004: the estimated slope is equal to 1.02, and

the null value of 1 is not rejected.

The model in (1.3) and the result in (1.5) are both theoretically and empirically studied

in Aı̈t-Sahalia et al. (2005), Zhang et al. (2005), Zhang (2006), and Bandi and Russell

(2004). The study of a more general noise structure is in Jacod (1996), Delattre and Jacod

(1997), and Li and Mykland (2007).

Remark 1.1. Numerical facts of Microstructure Noise:

To approximately estimate and compare the true integrated volatility and microstructure

noise, we use the data of ”VIX”, which is the Chicago Board Options Exchange Volatility

Index. VIX represents a measure of the market’s expectation of the (annualized) implied

volatility of the S&P 500 index over the next 30-day period. The VIX Index was introduced

by Whaley (1993). The simple average of the VIX over the last ten trading days in April

2004 is 16.18 as show in the Figure 1.4, which means the annualized σs ≈ 16.18%√
262

= 0.01 and

the integrated volatility over one day is approximately 0.0001. The approximate estimate of

the microstructure noise level is obtained from the intercept on the Figure 1.5:
√
E[E2] ≈√

exp(−9.2)/2 = 0.007, which means the standard deviation is around 0.7% of original stock

price, since ln(S) + ε = ln(Seε) ≈ ln(S(1 + ε)).

Remark 1.2. Resources of Microstructure Noise:

In the field of financial economics, it is commonly accepted that microstructure noise could

be induced by some important sources such as:

1. Frictions inherent in the trading process: bid-ask spread, price discreteness (transaction

price changes as multiples of ticks), price rounding, trades occurring on different markets

or networks;
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2. Informational effects: differences in trade sizes or informational content of price changes,

gradual response of prices to a block trade, the strategic component of the order flow,

inventory control effects;

3. Measurement or data recording errors: prices entered as zero, misplaced decimal points.

More details for microstructure noise is in a survey in Amihud et. al. (2006), a survey

in O’Hara (2007), and an empirical analysis in Aı̈t-Sahalia and Yu (2009).

1.3.1 Benchmark: Maximum Likelihood Estimator of QV

Before facing a more complex situation, it is helpful to have a discussion based on the

simplest parametric case, which could be regarded as our benchmark.

The simplest case for a continuous process with observation noise is

Xt = σWt + Et, (1.6)

where Et ∼ N(0, a2), X ⊥ E, Et ⊥ Es, and σ is a constant. Then we have:


X1/n −X0

X2/n −X1/n

...

X1 −X(n−1)/n

 ∼ N

0,
σ2

n
+


2a2

−a2 2a2

0 −a2 2a2

... · · · · · · . . .



 .

Let σ̂2
MLE and â2

MLE denote the MLEs based on results above. Their asymptotic prop-

erties are easily derived from classical results of the MA(1) process, when a2 > 0,

 n1/4(σ̂2
MLE − σ2)

n1/2(â2
MLE − a2)

 D−→ N

0,

 8aσ3 0

0 2a4

 .

Here,
D−→ means convergence in distribution.

The special case when there is no market microstructure noise results in a faster conver-

gence rate:

n1/2(σ̂2
MLE − σ2)

D−→ N(0, 2σ4).
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It shows that even with the simplest stochastic process and i.i.d. microstructure noise,

the convergence rate of σ̂2
MLE decreases from n1/2 to n1/4. It also gives us a benchmark that

n1/4 is the best achievable convergence rate when microstructure noise exists. These results

have been discussed in Stein (1987), Jacod (2001), and Barndorff-Nielsen et. al. (2008).

1.3.2 Two Scales Realized Volatility

As we discussed above, using the highest frequency data contaminated with noise, the

realized volatility becomes

[Y, Y ]t =

n=[t/∆]∑
i=1

(
Yi∆ − Y(i−1)∆

)2
= 2nE(E2) +

∫ t

0

σ2
s ds+Op(

√
n).

It has a bias term (first term in above formula), which increases linearly with sample size n

and overwhelms the effect of integrated volatility. Thus, the RV no longer approximates the

integrated volatility as we expected.

To avoid the bias, a popular suggestion has long been known: do not compute RV at too

high frequency. A sub-sampling interval from 5 mins to 30 mins has been suggested (e.g.

Andersen et al. (2001), Barndorff-Nielsen and Shephard (2002)):

[Y, Y ]
(K−sparse)
t =

[n/K]∑
i=1

(
YiK − YiK−K

)2
= 2[n/K]E(ε2) +

∫ t

0

σ2
s ds+Op(

√
n/K). (1.7)

Zhang (2005) further generalizes it into an averaged version, which uses all available data

and is thus more efficient:

[Y, Y ]
(K)
t =

n∑
i=K

(
Yi − Yi−K

)2

= K

∫ t

0

σ2
s ds+ 2(n−K + 1)E(E2) +Op(

√
n);

[Y, Y ]
(K−avg)
t =

1

K
[Y, Y ]

(K)
t =

∫ t

0

σ2
s ds+ 2

n−K + 1

K
E(E2) +Op(

√
n/K2).

(1.8)
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Compared with (1.5), the bias term is reduced in (1.8), but still exists. To completely remove

the bias, first, we can construct an estimator of the noise variance:

Ê(E2) =
1

2n
[Y, Y ]t

p→ E(E2). (1.9)

Then, combining (1.9) and (1.8), a straight bias-adjusted estimator is proposed:

TSRV (Y,K) = [Y, Y ]
(K−avg)
t − 2

n−K + 1

K
Ê(ε2)

= [Y, Y ]
(K−avg)
t − n−K + 1

nK
[Y, Y ]t.

(1.10)

It has been proved that the number of sub-samples is optimally selected as K = cn2/3,

and c =
(

T
12E[ε2]2

∫ T
0
σ4
sds
)−1/3

, and we have the following theorem:

Theorem 1.1. Under assumption 1.1, 1.2, 1.3, and 1.4, we have

n1/6
(
TSRV (Y,K)−

∫ T

0

σ2
sds
)

Ls−→
[ 8

c2
(E[ε2])2 + c

4T

3

∫ T

0

σ4
sds
]
N(0, 1). (1.11)

Here,
Ls−→ means convergence stably in law, as defined below:

Definition 1.1. Let Zn denote a sequent a random variables defined on a probability space

(Ω,F , P ) and taking the value in (E, E): a complete separable metric space with Borel σ-

algebra. Zn is said to converge stably in law with limit Z, denoted as Zn
Ls−→ Z, if for

every F −measurable bounded random variable Y, and any bounded continuous function g,

we have limn→∞ E[Y g(Zn)] = E[Y g(Z)].

Remark 1.3. This definition is useful when we need to turn some infeasible estimation

procedure into feasible one in practice. More details and the rationale were discussed in the

Appendix A.1.
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This estimator is originally developed in Zhang (2005). To the best of our knowledge,

this is the first consistent estimator of QV when assuming the existence of microstructure

noise and non-constancy of the volatility.

Motivated by the benefit of combining two scales, Zhang (2006) proposed an improved

estimator (MSRV), which is a weighted average of [Y, Y ]
(K−avg)
t for multiple time scales. It

has been proved that the MSRV has a convergence rate of n−1/4, which is an improvement

over the TSRV’s rate of n−1/6. This is also the best achievable convergence rate, as shown

in section (1.3.1).

1.4 EXTENDED TSRV WITH DEPENDENT MICROSTRUCTURE NOISE

1.4.1 Dependence of Noise Structure

Until now, our discussion has been based on the i.i.d. assumption for the microstructure

noise. We now turn to examining empirically if this assumption needs to be relaxed in

practical applications.

To check whether the real data are consistent with this assumption, we collected the

transactions and quotes data of 30 DJIA stocks from NYSE’s TAQ database, over the first

10 trading days of January, 2010. To save the space, we list the information for six represents

of those DJIA stocks: 3M Inc. (trading symbol: MMM), IBM (trading symbol: IBM),

Johnson & Johnson (trading symbol: JNJ), J.P. Morgan & Co (trading symbol: JPM),

General Electric (trading symbol: GE) and Intel (trading symbol: INTC). The reason to

choose them is that their data have different level of time dependence. Other stocks have

similar behaviors as one of them.

Figure 1.6 plots their prices over the first trading day. Table 1.5 reports the fundamental

summary statistics on transaction data of these six stocks. We define the effective transac-

tions as these leading to a price change. Averages are taken over the 10 trading days for

each stock. Min and max are also computed over all the full ten days samples. First five

orders of correlations are also included in the last five rows. It is interesting to find that
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the more liquid (more daily average effective transactions) of the stocks, the more likely to

depart from the i.i.d. noise assumption.

In Figure 1.1, the top panel represents the autocorrelation plot of 3M and IBM. That

part of plot corroborates with the i.i.d. noise structure assumption. The bottom panels show

the corresponding autocorrelation plot of GE and Intel. However, it is clear that the i.i.d

assumption does not fit these data well, and the autocorrelation is significant for some price

process.

A simple generalization to capture the dependence structure is AR(1) or a mixed time

series:

Assumption 1.5.

Ei = Ui + Vi, (1.12)

where

• U is white noise: Ui ⊥ Uj;

• V is AR(1): Vi = ρVi−1 + εi, |ρ| < 1

Under this assumption, we have the autocovariance:

Cov(∆iY,∆jY ) =


∫ ti1
ti−1

σ2
sdWs + 2E[U2] + 2(1− ρ)E[V 2], if i = j;

−E[U2]− (1− ρ)2E[V 2], if |i− j| = 1;

−ρj−i−1(1− ρ)2E[V 2]. if |i− j| > 1.

(1.13)

This model can easily be fitted by the method of moments. The estimates of E[U2],

E[V 2] and ρ for INTC are 3.3 ∗ 10−8, 2.25 ∗ 10−8 and −0.69. Figure 1.2 shows the sam-

ple ACF and the corresponding fitted ACF by the model above, illustrating the good fit

of this simple generalization. It again confirms the necessity to consider the dependence

microstructure noise, and to generalize the integrated volatility estimators. To estimate

the quadratic variation in the case with significant noise dependence, we do not change the

model assumption of the underlying stock price as in assumption 1.1. The assumption 1.3

of the noise structure is generalized as below:
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Figure 1.1: Plots of autocorrelation function of historical log price returns
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Figure 1.2: Comparison of autocorrelation function from Intel (red) and fitted value (grey)

Assumption 1.6. The noise process Et is a stationary process, which satisfies: E ⊥ X,

and it is strong mixing with the mixing coefficients decaying exponentially (Hall and Heyde

(1980)). From Theorem A.6, there exists a constant ρ < 1, such that for all i,

|Cov(Ei, Ei+k)| ≤ ρkV ar(E). (1.14)

Assumption 1.7. An alternative assumption is: the noise process Et is a stationary process,

E ⊥ X and |cov(E1, En)| → 0 as n→∞. Finally, we write Vh = Cov(Ei, Ei+h).
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1.4.2 Properties of Old TSRV

To study the influence of the new noise structure to TSRV, we briefly illustrate as below:

TSRV (Y,K)

=
1

K

{
[Y, Y ](K) − n−K + 1

n
[Y, Y ]

}
=

1

K

{(
[X,X](K) + 2[X,E](K) + [E,E](K)

)
− n−K + 1

n

(
[X,X] + 2[X,E] + [E,E]

)}
=

1

K

{(
[X,X](K) − n−K + 1

n
[X,X]

)
︸ ︷︷ ︸

Ddiscrete

+
(

[E,E](K) − n−K + 1

n
[E,E]

)
︸ ︷︷ ︸

Dnoise

+ 2
(

[X,E](K) − n−K + 1

n
[X,E]

)
︸ ︷︷ ︸

Dmix

}
.

(1.15)

as n→∞, K →∞, and K/n→ 0,

E(
1

K
Ddiscrete)→

∫ T

0

σ2
sds;

E(
1

K
Dmix) = 0;

E(
1

K
Dnoise) = (n−K + 1)E(EK − E0)2 − n−K + 1

n
nE(E1 − E0)2

= (n−K + 1)(VK − V1).

(1.16)

Therefore,

E
(
TSRV (Y,K)

)
=

∫ T

0

σ2
sds+ (VK − V1)O(n). (1.17)

Through this result, the dependence in microstructure noise introduces a bias term ad-

ditionally to the integrated volatility. And this bias is linearly increasing with the sample

size n. In the previous i.i.d. assumption of noise structure, both VK and V1 are zero, and

thus the bias disappears.
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1.4.3 Extended TSRV

From previous experience, sub-sampling is a common method to reduce the bias from

the noise. In addition, from the assumption 1.6, the time dependence decreases exponen-

tially. This motivates an extension of the TSRV to construct a new estimator based on

sub-sampling:

STSRV (Y, J,K) =
1

K

{
[Y, Y ](K) − n−K + 1

n− J + 1
[Y, Y ](J)

}
.

Lemma 1.1. Under assumptions 1.1, 1.2, 1.3 and 1.5, as n→ 0 and K → 0, we have:

[X,E](K) =
n∑

i=K

(Xi −Xi−K)(Ei − Ei−K) = Op(
√
K). (1.18)

Proof. This is the same as lemma 1 in Aı̈t-Sahalia et. al.(2011).

From Lemma 1.1, it is easy to see that

[Y, Y ](K) = [X,X](K) + [E,E](K) +Op(
√
K).

• Signal-Noise Decomposition:

STSRV (Y, J,K)

=
1

K

{
[Y, Y ](K) − n−K + 1

n− J + 1
[Y, Y ]J

}
=

1

K

(
[X,X](K) − n−K + 1

n− J − 1
[X,X]J

)
︸ ︷︷ ︸

SignalTerm

+
1

K

(
[E,E](K) − n−K + 1

n− J − 1
[E,E]J

)
︸ ︷︷ ︸

NoiseTerm

+Op

(√ 1

J

)
.

(1.19)

• Noise Term:

E[NoiseTerm]

=
1

K
E
[
[E,E]K − n−K + 1

n− J − 1
[E,E]J

]
=
n−K + 1

K

(
E(Ei − Ei−K)2 − E(Ei − Ei−J)2

)
= 2

n−K + 1

K
(VJ − VK).

(1.20)
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Lemma 1.2. If lim sup J
K
< 1, then as J,K →∞

K√
n

(
NoiseTerm− E[NoiseTerm]

)
D−→ εnoiseZnoise, (1.21)

where ε2noise = 8V 2
0 + 16

∑∞
i=1 V

2
i .

Proof. This is the same as Proposition 1 in Aı̈t-Sahalia et. al.(2011).

• Signal Term:

Lemma 1.3. For 1 ≤ J ≤ K and K
n
→ 0, as J,K, n →∞

1√
K
n

(1 + 2 J3

K3 )

(
SignalTerm−

∫ T

0

σ2
sds
)

D−→ εsignalZsignal, (1.22)

where ε2signal = 4
3
T
∫ T

0
σ4
sds.

Theorem 1.2. As 1 ≤ J ≤ K and K
n
→ 0,

STSRV (Y, J,K) =

∫ T

0

σ2
sds+ n−1/6

{
2
n−K + 1

K
(VJ − VK) +

√
n

K
εnoiseZnoise

+

√
K

n
(1 + 2

J3

K3
)εsignalZsignal

}
.

(1.23)

Proof. This is easily proved following lemma 1.2 and lemma 1.3.

17



1.5 A NEW METHOD: SUB-SAMPLING REALIZED COVARIANCE

ESTIMATOR WITH DEPENDENT NOISE

1.5.1 Construction of Sub-sampling Realized Covariance

In the situation of i.i.d. microstructure noise, the number of noise terms involved in the

estimator is determined by the sub-samples. The contribution of Ei+K − Ei is similar to

Ei+1−Ei, and Ei−Ej is uncorrelated with Ek−El as soon as i, j < k, l. However, under the

time dependence noise structure, Ei − Ej and Ek − El are always correlated. The only fact

we know is that their correlation decreases exponentially with the distance between them.

Therefore, to reduce the correlation of noise term, we can either increase the interval size

(sub-sampling), or increase the distance between these two terms. Following this logic, we

define a family of estimators based on realized covariances as below:

γ
(K)
0 (Y, Y ) =

n∑
i=K

(Yi − Yi−K)2,

γ
(K)
1 (Y, Y ) =

n∑
i=2K

(Yi − Yi−K)(Yi−K − Yi−2K),

...

γ
(K)
h (Y, Y ) =

n∑
i=(h+1)K

(Yi − Yi−K)(Yi−hK − Yi−(h+1)K),

...

(1.24)

The realized covariance estimators have the following asymptotic properties:

Lemma 1.4. Under assumptions 1.1, 1.2, 1.3 and 1.5,

E[γ
(K)
0 (Y, Y )] = K

∫ T

0

σ2
sds+ (n−K + 1)(2V0 − 2VK) +Op

(√
1

n

)
,

E[γ
(K)
1 (Y, Y )] = (n− 2K + 1)(−V0 + 2VK − V2K),

...

E[γ
(K)
h (Y, Y )] = (n− (h+ 1)K + 1)(−V(h−1)K + 2VhK − V(h+1)K),

...

(1.25)
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From these results, only the realized variance γ0 includes the part of integrated volatility,

and other realized covariances are different measurements of the covariance of the noise.

1.5.2 Sub-sampling Realized Covariance Estimator - SRC(Y,K)

We construct a family of estimators from a weighted combination of the realized covari-

ances:

SRC(Y,K) =
1

K

{
γ

(K)
0 (Y, Y ) + 2(n−K + 1)

H∑
h=1

1

n− (h+ 1)K + 1
γ

(K)
h (Y, Y )

}
. (1.26)

If we denote the vector of realized covariances as

Γ(K)(X, Y ) =
(
γ

(K)
0 (X, Y ), γ

(K)
1 (X, Y ), · · · , γ(K)

H (X, Y )
)T
,

then we can rewrite the SRC(Y,K) in a matrix formula:

SRC(Y,K) =
1

K
W TΓ(K)(Y, Y ),

where

W =

[
1, K(

0

H
), · · · , K(

h− 1

H
), · · · , K(

H − 1

H
)

]
.

There are several choices for the kernel function K(x):

• Truncated Kernel: W (x) = I{x = 0};

• Infinite-lag Kernel: Bartlett, W (x) = 1− x; Epanechnikov, W (x) = 1− x2;

• Smooth Kernel: Cubic, W (x) = 1− 3x2 + 2x3, Tukey-Hanningn,W (x) = sin2[π/2(1−

x)n].

In this paper, we will focus on the kernel as in (1.26):

W =
(

1, 2
n−K + 1

n− 2K + 1
, · · · , 2 n−K + 1

n− (H + 1)K + 1

)
or W =

(
1, 2, · · · , 2

)
+O(

1

n
).
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Remark 1.4. This type of estimator is related to the Heteroskedastic Autocorrelation

(HAC) estimators discussed by, for example, Gallant (1987), Newey and West (1987), and

Andrews (1991). Its application in econometrics was first proposed in Zhou (1996), who used

the first order covariance to reduce the bias from noise. Hansen and Lunde (2006) used this

type of estimators with K(x) = 1 for general H to characterize the second-order properties of

market microstructure noise. However, both of these estimators are inconsistent. The more

general and consistent estimators was recently studied in Barndorff-Nielsen et. al. (2008).

Theorem 1.3. Asymptotic Properties of Γ(K)(Y ):

Under assumptions 1.1, 1.2, 1.3 and 1.5, as n→∞,

(1) Signal Term:

√
n

T


Γ(K)(X,X)−



∫ T
0
σ2
sds

0

· · ·

0




Ls−→ N

(
0,

1

6
K(

∫ T

0

σ4
sds)ΩX

)
,

where

ΩX =



8

2 4

0 1 4
... 0 1

. . .

0 · · · · · · 1 4


.

(2) Mixed Term:

as K →∞,

Γ(K)(X,U) + Γ(K)(U,X) = Op(
√
K).
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If K = 1, we have the special case:

Γ(X,U) + Γ(U,X)
D−→ N

(
0, (

∫ T

0

σ2
sds)ΩXU

)
,

where

(ΩXU)ij = Cov(Ei − Ei−1, Ej − Ej−1) = −V|i−j−1| + 2V|i−j| − V|i−j+1|

(3) Noise Term:

E[Γ(U,U)] =n
(
2V0 − 2VK ,−V0 + 2VK − V2K , · · · ,−V(H−1)K + 2VHK − V(H+1)K

)T
+O(1);

V ar[Γ(U,U)] =nV ar(E2)ΩU +O(K),

(1.27)

where

ΩU =


2

0 1

0 0
. . .

0 0 0 1


Proof. See Appendix A.2.

Based on Theorem 1.3, we can derive the large n and large K asymptotic variance of

SRC(Y,K)−
∫ T

0
σ2
sds− 2n−K+1

K
(VHK − V(H+1)K) as:

1

6

K

n
T (

∫ T

0

σ4
sds)W

TΩXW +O(
1

K
) +

n

K2
V ar(E2)W TΩUW.

To minimize the asymptotic variance above, we can select K = cn2/3, in which case we have

the following theorem:

Theorem 1.4. Central Limit Theorem for SRC(K)(Y ):

Under assumptions 1.1, 1.2, 1.3 and 1.5, as n→ 0, K = cn2/3, we have

n1/6
{
SRC(Y,K)−

∫ T

0

σ2
sds
}

D−→ N
(

0,
1

6
T (

∫ T

0

σ4
sds)W

TΩXW + V ar(E2)W TΩUW
)
.

(1.28)
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Proof. This follows easily from Theorem 2 and lemma .3.

Therefore, the SRC(Y,K) is a consistent estimator in the case where the noise has a

time dependence structure. To compare our new estimator with other existing methods, we

will present the simulation results in the next section.

1.6 SIMULATIONS AND COMPARISONS

For practical applications, it is important to consider these estimators’ finite sample

performance. It is also useful to check their sensitivity to different noise levels and different

dependence levels. Therefore, in this section, we conduct an extensive Monte Carlo study

to examine the performance of our new estimator SRC(Y,K), and compare it with other

estimators: RV, sparse realized volatility (SRV), TSRV, and RTSRV.

1.6.1 Monte Carlo Setup

To generate the simulated data, we use the stochastic volatility model of Heston:

dXt = (µ− vt/2)dt+ σtdWt ⇔ dSt = µStdt + σtStdWt,

dvt = a(v̄ − vt)dt+ r
√
vtdWt.

(1.29)

We used the following parameters: a = 5, v̄ = .05/262, r = 0.5, ρ = −0.5 as in Zhang

(2011). For each experiment, 5000 sample paths are generated using the Euler scheme with

time interval ∆ =1 second. Figure 1.7 is an example of a simulated path over one day

without observation noise, along with the underlying, but unobservable volatility process.

The plot is created as 3-mins OHLC (Open/High/Low/Close) candlestick charts. It is easy

to see the mean-reversing of the volatility process, and the negative correlation between the

log-price process and volatility process.

For the case of i.i.d. microstructure noise, we generate the observation process by the

underlying process Xt plus a white noise process: Yi = Xi + Ei, where Ei ⊥ Xi, and

Ei are i.i.d. ∼ N(0, σ2
E).
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For the case of dependent microstructure noise, we generate the noise process following

an AR(1) setup:

Ei = Ui + Vi, (1.30)

where

• U is white noise: Ui ⊥ Uj;

• V is AR(1): Vi = ρVi−1 + εi, |ρ| < 1.

1.6.2 Results: No Noise

Figure 1.8 compares the different estimators, using the simulated data without observa-

tion noise. In this ideal situation, all these estimators are converging to the real integrated

volatility, as the sub-sampling interval decreases. It is obvious that TSRV and SRC do not

improve the estimation of RV, and the RV is the best choice here.

1.6.3 Results: i.i.d. Noise

Figure 1.9 compares the different estimators, using the simulated data with i.i.d noise.

To consider different situations, we compare the results under different noise levels: 0.0001,

0.0005 and 0.001, which is around 1, 2 and 3 multiples (noise-signal-ratio) of the volatility

in each sub-sampling.

From the left panel, RV diverges as the sub-sampling interval decreases from 500 seconds

to 1 seconds. The right panel shows the comparisons of TSRV and SRC. The adjTSRV is

an adjusted version of TSRV with the same asymptotic properties (Zhang (2005)). They

all converge to the true QV as expected, when the sub-sampling decreases. It is interesting

that although our new estimator SRC is designed for the dependent noise, SRC works better

with smaller finite-sample bias in the case with high noise level.

1.6.4 Results: Dependent Noise

To evaluate the performance of these estimators, we compare their relative bias and

relative MSE separately for each stock, with different sample sizes. The relative bias is
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calculated as an approximation of E
(

estimator−
∫ T
0 σ2

sds∫ T
0 σ2

sds

)
over these 5000 sample paths; the

relative MSE is calculated as an approximation of V ar
(

estimator−
∫ T
0 σ2

sds∫ T
0 σ2

sds

)
.

To compare their small sample properties, we did experiments with with different sample

sizes (1 day with n = 23, 400, 4 hours with n = 14, 400, 2 hours with n = 7, 200, 1 hour with

n = 3, 600, 30 mins with n = 1, 800, 15 mins with n = 900, and 10 mins with n = 600). We

use three levels of microstructure noise: low (E(E2) = 0.00005), medium (E(E2) = 0.0005),

and high (E(E2) = 0.002) to evaluate their sensitivity to noise level.

Figure 1.10 shows how the relative MSE changes with different sub-sampling choice,

using the 1 day simulated data with medium level noise. The optimal choice of sub-sampling

size could be theoretically derived, but it is not the focus of this chapter. From the figure

we can see that the new estimator SRC has smaller relative MSE compared with the revised

TSRV, and that it favors more frequent sub-sampling.

Table 1.1 shows the Monte Carlo results in the case of medium level noise. The volatility

used in the Stochastic Volatility Model is on average 0.05 annually, which is
√

0.05
262∗23400

≈

0.0001 for every second. The autocorrelation of the noise dependence is assumed as -0.6,

which is similar to the one from our empirical estimation.

It is obvious that the new estimator SRC(K,1) has smaller relative MSE compared with

other estimators. And we observe that the relative bias of the new estimator is much smaller.

Actually, this observation is consistent with the our logic for constructing this new estimator:

reduce the bias of noise by combining different realized covariances, while the revised TSRV

mostly relies on the sub-samplings.

Table 1.2 shows their performance with ultra high frequency data. ∆ = 5 secs means,

on average, we can observe 1 data point per 5 seconds.

Table 1.3 and 1.4 show the results separately for the low noise level (
√
E[E2] = 0.00005)

and high level of noise (
√
E[E2] = 0.002). The new method SRC consistently has the

smallest relative bias and relative MSE. Additionally we observe that when the noise level

is very low, the simple sub-sampling RV (Sparse RV) is comparable with TSRV and SRC,

especially when the sample size is not large.
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1.7 EMPIRICAL ANALYSIS

Based on the theoretical studies in this and the previous chapters, we now turn to the

comparisons of the empirical performance of the RV, TSRV and our new SRC estimators. We

collect the transaction data of SPY from the first eight trading days in 2001 from NYSE’s

TAQ database. The reason that we analyze this data is that SPY is an actively traded

exchange-traded fund (ETF), and it represents an ownership in a portfolio of the equity

securities that comprise the Standard & Poor’s 500 Index, which usually be regarded as the

overall market benchmark. We also collect the transaction data of 30 DJIA stocks from

NYSE’s TAQ database, over the first ten trading days of January, 2010.

• Marketwise: SPY

Figure 1.11 and 1.12 are results of different estimators based on SPY data on the first

eight days in 2001, which represents the marketwise averaged noise and dependence level.

We can see the divergence of RV with the decrease of sample interval. Also from Figure

12, TSRV and SRC are stable with respect to the sub-sampling choices, while the RV is

quite jagged.

• High Noise Dependence: INTC

Figure 1.13 and 1.14 show results of different estimators based on Intel, over the first

eight days in 2010. As discussed before and shown in Figure 1.1, the autocorrelation is

very strong among the log-return price of Intel. In this situation, the TSRV becomes

worse, and its bias increases with the sample sizes, but is smaller than the RV estimator.

Our new method SRC estimator is robust for this case with high noise dependence.

• Low Noise Dependence: MMM

Figure 1.15 is for the MMM’s stock. We already discussed and showed in Figure 1.1

that MMM does not have significant time dependence structure. In this case, the figure

shows that the TSRV and SRC estimators are very close.
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1.8 CONCLUSION AND FUTURE WORK

In this chapter, we have reviewed different approaches to estimate the quadratic variation

using high frequency data. The presence and significant influence of the microstructure noise

has also been empirically studied.

To reduce the bias introduced by the noise in the estimator of QV, Zhang (2005) proposed

the fist consistent estimator TSRV based on high frequency data with the assumption of

i.i.d. noise. TSRV has been generalized to a sparse version in Zhang (2011) to make it is

still consistent in the case with dependence noise structure.

We propose a new estimator SRC, which is constructed by a weighted combination of

sub-sampling realized covariances. The advantage of bringing in the covariance is that the

realized covariances introduce more information of high order noise dependence, which is

significantly nonzero for some stocks like INTC.

Here, we only focus on a special case of the new Sub-sampling Realized Covariance

Estimator, which uses the truncated kernel. Similar to the discussion in Barndorff-Nielsen

et al. (2008), different kernel functions will give different results, and some might increase

the convergence rate from n1/6 to n1/4. Further discussion in this direction will be a part of

our future work.
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1.9 TABLES AND FIGURES

Table 1.1: Performance with different T: Medium Noise Level = 0.0005, ρAR = −0.6

T RV SRV TSRV(Y,K) STSRV(Y,J,5J) SRC(Y,K)

15 mins Relative Bias 216 0.0209 0.2111 0.2609 0.0370

Relative MSE 223 0.5214 0.3887 0.4231 0.5366

1 hours Relative Bias 240 0.1251 0.2858 0.1423 0.0164

Relative MSE 259 0.4544 0.4448 0.2654 0.2927

2 hour Relative Bias 247 0.0764 0.2128 0.1340 0.0035

Relative MSE 274 0.3731 0.3648 0.2127 0.2064

4 hours Relative Bias 233 0.4609 0.1647 0.0887 0.0018

Relative MSE 249 0.7808 0.2876 0.1720 0.1459

1 day Relative Bias 23.39 0.1252 0.0863 0.0640 0.0015

Relative MSE 249.82 0.2889 0.1832 0.1400 0.1186
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Table 1.2: Performance with different ∆n: Medium Noise Level = 0.0005, ρAR = −0.8

∆n RV SRV TSRV(Y,K) STSRV(Y,J,5J) SRC(Y,K)

30 secs Relative Bias 8 0.0418 0.1139 0.2146 0.0095

Relative MSE 9 0.3367 0.1961 0.3207 0.2291

5 secs Relative Bias 63 0.1455 0.1411 0.1014 0.0111

Relative MSE 67 0.3187 0.2553 0.1808 0.1750

1 sec Relative Bias 23.39 0.1252 0.0863 0.0640 0.0015

Relative MSE 249.82 0.2889 0.1832 0.1400 0.1186
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Table 1.3: Performance with different T: Heston Model, Low Noise Level = 0.00005

T RV SRV TSRV(Y,K) STSRV(Y,J,5J) SRC(Y,K)

15 mins Relative Bias 2.17 0.0236 0.0883 0.1834 0.0826

Relative MSE 2.26 0.2950 0.1919 0.2745 0.1690

1 hours Relative Bias 2.40 0.0158 0.0835 0.0964 0.0152

Relative MSE 2.62 0.1591 0.1250 0.1832 0.0940

2 hour Relative Bias 2.49 0.0209 0.0591 0.0932 0.0179

Relative MSE 2.75 0.1158 0.1017 0.1453 0.0722

4 hours Relative Bias 2.38 0.0195 0.0623 0.0937 0.0212

Relative MSE 2.60 0.0862 0.0861 0.1250 0.0538

1 day Relative Bias 2.32 0.0721 0.0529 0.0462 0.0144

Relative MSE 2.46 0.0277 0.0711 0.1049 0.0431
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Table 1.4: Performance with different T: Heston Model, High Noise Level = 0.002

T RV SRV TSRV(Y,K) STSRV(Y,J,5J) SRC(Y,K)

2 hour Relative Bias 247 0.0764 0.3917 0.1928 0.0200

Relative MSE 274 0.3731 0.5612 0.3117 0.3400

4 hours Relative Bias 212 0.0726 0.4643 0.1747 0.0089

Relative MSE 245 0.4342 0.5660 0.2594 0.2213

1 day Relative Bias 928 0.2771 0.2433 0.1093 0.0048

Relative MSE 993 0.4545 0.3891 0.2070 0.1951

Table 1.5: Descriptive Statistics for DJIA stocks in first 10 days of 2010

Descriptive Statistics MMM IBM JNJ JPM GE INTC

Avg. Effective Transaction 19026 33043 44671 143447 134031 154835

Avg. time between Transaction 1.30 0.73 0.55 0.17 0.19 0.17

Min log-return -0.01 -0.01 -0.01 -0.02 -0.02 -0.02

Max log-return 0.01 0.01 0.01 0.02 0.02 0.02

Avg. daily 1st order Corr. -0.38 -0.44 -0.53 -0.57 -0.64 -0.65

Avg. daily 2nd order Corr. 0.01 0.05 0.13 0.18 0.27 0.30

Avg. daily 3nd order Corr. -0.00 -0.01 -0.07 -0.10 -0.18 -0.20

Avg. daily 4nd order Corr. 0.00 -0.00 0.04 0.06 0.12 0.14

Avg. daily 2nd order Corr. 0.01 0.01 -0.02 -0.03 -0.09 -0.11
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Figure 1.3: Volatility Signature Plot: RV vs. Sub-sampling ∆

This plot shows the RV estimator [Y, Y ]nt plotted against the sub-sampling interval ∆. The

RV estimator is computed based on SPY transaction price from Jan 2001 to Jan 2002. The

plot illustrates the divergence of RV as ∆→ 0, which is also very common for many other

financial data.
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Figure 1.4: Historical data of VIX from the year of 2004 to 2009
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Figure 1.5: Plot of ln(RV) vs. ln(sample size)

This plot is from Aı̈t-Sahalia, Mykland, and Zhang (2011). It shows a regression of

ln([Y, Y ]nt ) against ln n.
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Figure 1.6: Plots of Six DJIA Stock Prices on the first trading day in 2010
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Figure 1.7: One path example of Stochastic Volatility Models

Figure 1.8: Comparisons of RV, TSRV, adjTSRV, and SRC
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Figure 1.9: Comparisons of RV, TSRV, adjTSRV, and SRC under i.i.d noise
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Figure 1.10: Comparisons of RV, TSRV, adjTSRV, and SRC under time dependence noise
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Figure 1.11: Comparisons of RV, adjusted TSRV, and SRC for SPY, computed on a daily

basis
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Figure 1.12: Robustness of RV, adjusted TSRV, and SRC for SPY, computed on a daily

basis

39



Figure 1.13: Comparisons of RV, adjusted TSRV, and SRC for Intel, computed on a daily

basis for 2010 data
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Figure 1.14: Log scale Comparisons of RV, adjusted TSRV, and SRC for Intel, computed

on a daily basis for 2010 data
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Figure 1.15: Log Scale Comparisons of RV, adjusted TSRV and SRC for MMM, computed

on a daily basis for 2010 data
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2.0 TESTING FOR JUMPS USING HIGH FREQUENCY DATA WITH

NOISE

2.1 INTRODUCTION

2.1.1 Motivations: Nontrivial Jumps

Efforts to prove the existence of jumps and study their implications have a long history,

going back to Merton (1976). The studies of Barndorff-Nielsen and Shephard (2006), An-

dersen et al. (2007) and Huang and Tauchen (2005) have given nonparametric evidence for

the presence of nontrivial jumps.

Sometimes, the jump is large enough to be detected by a simple glance as the plots on the

top panel of Figure 2.1, and these large jumps could be easily associated with macroeconomic

news. For example, the timing of the jump in the DM/$ exchange rate, as in the first plot

of Figure 2.1, as evidenced by the apparent discontinuity at 13:30, corresponds exactly to

the release of the U.S. trade deficit for the month of October. Quoting from the Wall Street

Journal: ”The trade gap swelled to a record $17.63 billion in October, sending the dollar and

bonds plunging.”. The timing of the jump in the stock market on June 30, 1999 corresponds

exactly to the time of the 0.25% increase in the Fed funds rate at 13:15. The timing of

the jump in the Bond market corresponds to the release of the National Association of

Purchasing Managers (NAPM) index at 9:00.

However, most of the time, a visual inspection can not give clear evidence for whether

a small or medium size jump belongs to a jump component, as shown in these plots on the

bottom panel of Figure 2.1. Thus, it is important to provide the formal statistical testing of

jumps.

43



Figure 2.1: Evidence of Jumps in Real High Frequency Financial Data

This plot is from Anderson (2006). It shows the five-minute increments in the log prices

for FX, equity and bond markets. For ease of comparison, the log price has been normalized

to zero at the beginning of each day, so that a unit increment on the plots corresponds to a

1% return in the log prices.

High frequency data enables researchers to develop nonparametric approaches to accu-

rately test and estimate jumps: Barndorff-Nielsen and Shephard (2006, 2006b) designed

realized bipower variation (RBV) and realized multipower variation (RMV) which could

separate the continuous part of the total realized variation. Further, they constructed sta-

tistical tests using the ratio or difference of RBV and total quadratic variation, and studied

their asymptotic distributions under the null hypothesis (no jump). Aı̈t-Sahalia and Jacod

(2009a, 2009b, 2009c) provided a series of studies about jumps based on an Itô semimartin-

gale: in Aı̈t-Sahalia and Jacod(2009a), they constructed a nonparametric test statistic for

the presence of both finite large or infinite many small jumps by the ratio of realized p-

power variation (p > 3) with two different time scales (∆n and k∆n); in Aı̈t-Sahalia and

Jacod(2009b), they defined a generalized index of jump activity to study the behavior of

infinite but small jumps; in Aı̈t-Sahalia and Jacod(2009c), they construct a new statistical

test for the presence of Brownian Motion, in favor of the pure jump process, which is mean-
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ingful, because the mathematical treatment of pure jump models is quite different from the

models combining Brownian Motion and jumps.

The statistical test in Aı̈t-Sahalia and Jacod(2009a) is very powerful because it works as

soon as the price process follows an Itô semimartingale, and it depends neither on the law

of the process nor on the coefficients of the equation which it solves. Also, the availability of

asymptotic distributions under both alternatives enables us to construct tests with a given

significance level, and to calculate the corresponding test power.

However, there is a trade-off between asymptotic means and asymptotic variances for

this test statistic that the difference of asymptotic means and the asymptotic variances are

increasing at the same time with p and k, some of the parameters in the test statistic. To

make this hypothesis test more powerful in the application, Fan and Fan (2009) proposed a

new test statistic based on the idea of variance reduction. The principles and details for the

classical variance reduction method - ’control variable’ can be found in Glasserman (2004).

This method consistently smaller asymptotic variances compared with the old one. They

further developed an approach to detect the jump locations, using a multiple comparison

method.

Other related works include Carr and Wu (2003), Mancini (2004), and Johannes et. al.

(2004). These works have given much insight into the effect of jumps with different be-

haviors, but few of the resulting procedures is robust with respect to microstructure noise.

As we know, the only systematic study to estimate jumps from noisy data is by Fan and

Wang (2007), who developed wavelet methods for jump testing and estimating based on a

Compound Poisson process.

2.1.2 Contributions of My Work and Structure of This Paper

Our purpose in this chapter is to develop a general study considering both microstructure

noise and jumps based on high frequency data. There are mainly two contributions:

1. This paper generalizes the statistical tests of jumps in Aı̈t-Sahalia and Jacod (2009a) and

Fan and Fan (2010), based on discretely observed high frequency data, without consid-
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ering microstructure noise. Compared with the previous work, our approach gives more

flexible choices for different sampling frequencies and has smaller asymptotic variance

under both null and alternative hypotheses (thus smaller type II error).

2. This paper further designs a new statistical test of jumps. The power of this new test

is its robustness with the i.i.d. microstructure noise, which is very common in practical

applications. This test considers both the jumps and microstructure noise, and thus is

more robust and powerful compared with the old test.

The rest of this paper is organized as follows. Section 2.2 describes the model assump-

tions of Itô semimartingale and related notations. Section 2.3 discusses the two-scales sub-

sampling methods. The construction of Realized Multi-Power Covariances(RMPC) and their

asymptotic properties are studied in section 2.4. In section 2.5.1, we re-examine the prop-

erties of RMPC in the case of i.i.d. microstructure noise, and show that the old jump test

is invalid. A new test method is proposed in section 2.5.2. We also study its asymptotic

properties. In section 2.6, we describe the Monte Carlo simulations to compare the new

method RPMC with the old one. section 2.7 concludes with a summary and points to future

work.

2.2 NOTATION, DEFINITION, AND BACKGROUND

2.2.1 Itô semimartingales

In this paper, the underlying process X is assumed to be a 1-dimensional Itô semimartin-

gale defined on a filtered probability space (Ω, F, (Ft)t≥0, P ). Mathematically, it is written

as:

Xt = X0 +

∫ t

0

bsds+

∫ t

0

σsdWs +

∫ t

0

∫
R
x1(|x|<a)(µ− ν)(ds, dx) +

∫ t

0

∫
R
x1(|x|>a)µ(ds, dx),

(2.1)

where

• Ws is the standard Wiener process or Brownian Motion;
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• bs and σs are optional (for ex., cadlag function) processes;

• µ is the random measure defined on Ω⊗ (R+ × R): if we denote the size of the jump of

X at time t as ∆Xt = Xt −Xt−, then µ(ω, ds, dx) =
∑

s>0,∆Xs(ω)6=0 1(s,∆Xs(ω))(ds, dx)

• ν is the predictable compensator of µ, which is the unique measure on R+×R which can

be written as ν(dt, dx) = dt×λ(dx), where λ is σ-finite or infinite measure without atoms,

and, for any Borel set A of R and a positive time t, the difference µ((0, t]×A)−ν((0, t]×A)

is a martingale on (Ω, F, P ).

• a could be any deterministic value. It is used to distinguish ”small jumps” and ”big

jumps”, which are represented respectively by the last two integrations in (2.1).

There are finitely many large jumps to ensure that the large jump integral is finite, but

there may be infinitely many small jumps.

This is a standard setup and more details are in Jacod and Shiryaev (2003). Before we

continue our discussion, we need to present some basic assumptions which are similar with

those in Jacod (2007).

Assumption 2.1. 1. The process Xt has the form (2.1), and the volatility process σt also

follows another Itô semimartingale of the form:

σt = σ0 +

∫ t

0

b̃sds+

∫ t

0

σ̃sdW̃s +

∫ t

0

∫
R
x1(|x|<a)(µ̃− ν̃)(ds, dx) +

∫ t

0

∫
R
x1(|x|>a)µ̃(ds, dx).

(2.2)

2. The process b̃t is locally bounded, which means there exists an increasing sequence of

stopping times (τn) with τn →∞, and (b̃t∧τn) is bounded by a constant for ∀n. So is the

process bt;

3. All paths of bt, b̃s, σs, σ̃ are left continuous with right limits;

4. There exist deterministic nonnegative function f(x) and f̃(x) satisfying∫
R(f(x) ∨ a)λ(dx) <∞ and

∫
R(f̃(x) ∨ a)λ̃(dx) <∞;

5.
∫ t

0
|σs|ds > 0 a.s. for any t > 0

Assumption 2.2. The processes of X and σt have no common jumps.
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2.2.2 Measurements of Volatility and Jumps

The common measurements of volatility is the integrated volatility
∫ t

0
σ2
s ds as discussed

in 1.2. Here, we introduce a number of processes which are similar to the integrated volatility,

and all measure different aspects of the variability of X, focusing on continuous and jump

components (if jump indeed exists) separately:

A(p)t =

∫ t

0

|σs|pds, B(p)t =
∑
s≤t

|Xs −Xs−|p, for ∀ p > 0. (2.3)

Under Assumption 2.1,

• A(p) measures the integrated p-th absolute power volatility for the continuous component

in the semimartingale. It is finite-valued as soon as p > 0

• B(p) measures the summation of p-th absolute power jumps for the jump component.

If the jump component is trivial (µ is a.s. zero on Ω⊗ (R+ × R)), then B(p) = 0.

When p = 2, we have:

p lim−→
n→∞

[X,X]nt = A(2)t +B(2)t.

It has an additional jump component, compared with the results of RV in (1.4).

2.3 JUMP TESTING BY RATIO OF REALIZED ABSOLUTE POWER

USING DIFFERENT SCALES

2.3.1 Realized Absolute P-th Power

To test the existence of jumps, Aı̈t-Sahalia (2007) constructs a nonparametric method,

using the ratio of the realized absolute p-th power at two different sample scales. The esti-

mator is:

B̂(p,∆n)t =

[n=T/∆]∑
i=1

|Xi −Xi−1|p.
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To see the underlying logic, we can roughly write this estimator as:

B̂(p,∆n)t ≈
[n=T/∆]∑
i=1

|σi
√

∆Zi + Ji|p ≈
∑
i

|σi
√

∆Zi|p +
∑
j

|Jj|p,

B̂(p,∆n)t = ∆p/2−1E(|Z|p)A(p)t +B(p)t +Op(n
−1/2).

We have the following convergences in probability, locally uniform in t:

as n→∞,



p > 2, B̂(p,∆n)t
p−→ B(p)t;

p = 2, B̂(p,∆n)t
p−→ A(2);

p < 2, B̂(p,∆n)t
p−→∞,

and ∆
1−p/2
n

mp
B̂(p,∆n)t

p−→ A(p)t;

X is continuous, ∆
1−p/2
n

mp
B̂(p,∆n)t

p−→ A(p)t.

(2.4)

where mp = E(|Z|p) = 2p/2√
π

Γ(p+1
2

) is the pth absolute moment of a standard Gaussian random

variable. These properties could also be found in Lepingle (1976) for all semimartingales.

2.3.2 Test Statistics in Aı̈t-Sahalia and Jacod (2009a)

For testing the existence of jumps, they use the ratio of volatility estimates from two

different time scales (∆n vs. k∆n):

Ŝ(p, k,∆n) =
B̂(p, k∆n)

B̂(p,∆n)
,

where k is a positive number.

Corollary 2.1.

Ŝ(p, k,∆n) −→p

 kp/2−1, under H0;

1, under Hα.

Proof. This is the same as theorem 1 in Aı̈t-Sahalia et. al.(2009a).

If we choose k = 2 and p = 4, from the result above, we know that the test statistic

converges to 2 for the paths with jumps; and converges to 1 for the paths without jump.
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2.4 JUMP TESTING FROM REALIZED MULTI-POWER COVARIANCES

(RPMC)

2.4.1 Construction of RMPC

To retrieve useful information from these measurements defined in (2.3), we define a

general family of estimators as:

R̂MPC(X,m,~k, ~p, ~d) =
n∑

i=|~k|+|~d|

( m∏
j=1

|Xri,j −Xli,j |pj
)
, (2.5)

where

• m is the number of terms in each cross products;

• ~k = [k1, . . . , km]′ are the sampling intervals for the cross terms, ki is the positive integer,

and |~k| =
∑m

i=1 ki;

• ~p = [p1, . . . , pm]′ are the powers for the cross terms and pi > 0;

• ~d = [d1, . . . , dm−1]′ are the distances between the adjacent cross terms, di is the positive

integer, and |~d| =
∑m−1

i=1 ki;

• ri,1 = i∆, li,1 = (i− k1)∆, and ∆ is the smallest time interval;

• ri,j = ri,j−1 − kj−1 − dj−1 and li,j = li,j−1 − dj−1 − kj, for j = 2, . . . ,m.

This is the most general framework of estimators similar as the RV, and its construction

is showed in Figure 2.2.

2.4.2 Specific Examples

To illustrate its generality, we list several specific examples here:

• When m = 1, k = 1, ~p = p, d = 0, R̂MPC(X, 1, 1, p, 0) reduces to be

B̂(p,∆n)t =
n∑
i=1

(
|Xi∆ −X(i−1)∆|p

)
,

which is the denominator in the test statistics constructed by Aı̈t-Sahalia and Jacod

(2009a); that paper proved the following asymptotic properties.
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Figure 2.2: Illustration of the construction of Realized Multi-Power Covariances

This example is constructed by the summation of the cross products. Here,

m = 3, k1 = k2 = k3 = 5, d1 = d2 = 1.
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• When m = 1, k > 1, ~p = p, d = 0, 1
k
R̂MPCn(X, 1, k, p, 0) reduces to be the most optimal

choice in the weighted estimator
∑K

l=1 ajB̂(p,K∆)l constructed by Fan and Fan (2010),

and it has similar asymptotic result as above, just replacing ∆ by K∆ in (2.4);

• When m > 1, k = 1, ~p = ~r, ~d = 0, R̂MPCn(X,m, 1, ~r, 0) reduces to be the multipower

variation in BNS (2006).

2.4.3 Construction of Test Statistics

Based on the estimators constructed and studied in the last two sections, we construct

a new test statistic:

Ŝ(X,K1, K2, p) =
1
K2
R̂MPCn(X, 1, K2, p, 0)

1
K1
R̂MPCn(X, 1, K1, p, 0)

, K2 > K1. (2.6)

Let us compare the new test statistic with those of Aı̈t-Sahalia and Jacod (2009a):

Ŝ(X,K, p)AJ =

∑n=[t/∆sparse]
i=1 |Xi∆sparse −X(i−1)∆sparse |p∑n=[t/K∆sparse]

i=1 |XiK∆sparse −X(i−1)K∆sparse |p
, K = K2/K1, ∆sparse = K1∆.

(2.7)

and those of Fan and Fan (2010):

Ŝ(X,K, p)FF =

∑n=[t/∆sparse]
i=1 |Xi∆sparse −X(i−1)∆sparse |p

1
K

∑n=[t/∆sparse]
i=K |Xi∆sparse −X(i−K)∆sparse |p

, K = K2/K1, ∆sparse = K1∆.

(2.8)

Both of the numerator and denominator in our new test statistic in equation (2.6) utilize all

available high frequency data observed at every time interval of ∆, while the numerator and

denominator in equation (2.7) separately use only 1
K1

and 1
K1K2

proportion of all available

data, and both of them in equation (2.8) use 1
K1

proportion of all available data.

The asymptotic properties of RMPC and the new test statistics are given below:
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2.4.4 Central Limit Theorem on Paths with Jumps

Lemma 2.1. First Convergence in Probability for RMPC:

If Assumption 2.1 holds, p > 0 and ∆→ 0. Then we have the following conditional conver-

gence in probability:

(a) For p > 2, 1
K
R̂MPCn(X, 1, K, p, 0)|Ωj

p−→ B(p) =
∑

s≤t |Xs −Xs−|p;

(b) For p = 2, 1
K
R̂MPCn(X, 1, K, p, 0)|Ωj

p−→ A(p)+B(p) =
∫ t

0
|σs|pds+

∑
s≤t |Xs −Xs−|p;

(c) For p < 2, 1
K
R̂MPCn(X, 1, K, p, 0)|Ωj

p−→∞, and

∆1−p/2 1
K
R̂MPCn(X, 1, K, p, 0)|Ωj

p−→ mpA(p),

where Ωj denotes the collection of all paths with nontrivial jumps.

Proof. This is the same as (2.4).

Theorem 2.2. First Central Limit Theorem for RMPC:

Under same assumptions as in lemma 2.1, and additionally p > 2, we have the following

central limit theorem:

1√
∆

[ 1

K
R̂MPCn(X, 1, K, p, 0)−B(p)

]
|Ωj

L⇒
∑

s≤t:|Xs−Xs−|>0

[
p|Js|p−1

K−1∑
d=0

(
Ud
s + Us

)] ∆
= Yp,K .

(2.9)

where Us and Ud
s are defined on an extension probability space (Ω̃, F̃ , (F̃t)t>0, P̃ ):

• Us
L
=
√
κσs−Z

L
s +
√

1− κσsZR
s ; Ud

s
L
=
√
dσs−Z̄

L
s +
√
K − d− 1σsZ̄

R
s

• {Z̄L
s , Z

L
s , Z

R
s , Z̄

R
s }s

i.i.d∼ N(0, 1) ⊥ {κs}s
i.i.d∼ U(0, 1);

• Jump locations {s : s ≤ t, |Xs − Xs−| > 0} might be finite or infinite depending on the

jump properties.

Proof. The proof is an extension of the proof of Theorem 2.12 (i) of jacod (2006). It could be

easily proved step by step following Theorem 8 in Aı̈t-Sahalia and Jacod (2009a) or Theorem

4 in Fan and Fan (2010).

Corollary 2.3. Conditional on Ωj,

(a) Yp,K is independent with Yp,K − Yp,1 for ∀K > 1;
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(b) COV
[
(Yp,K − Yp,1), (Yp,K − Yp,1)

]
= (K1−1)(3K2−K1−1)

6K2
D(p),

where D(p) = p2
∑

s≤t:|Xs−Xs−|>0

|Js|2p−2(σ2
s− + σ2

s).

Theorem 2.4. First Central Limit Theorem for Test Statistics:

Conditional on Ωj:

1√
∆

[
Ŝ(X,K1, K2, p)− 1

] Ls⇒ Sjp,K1,K2
, (2.10)

where

Ẽ
(
Sjp,K1,K2

)
= 0, (2.11)

Ẽ
(
(Sjp,K1,K2

)2
)

=
2K1(K2 −K1)2 + (K2 −K1)

6K2
1K2

D(p)

B(p)2

∆
= V j. (2.12)

Proof. See Appendix A.2.

2.4.5 Central Limit Theorem on Continuous Paths

Theorem 2.5. Second Convergence in Probability for RMPC:

Under same assumptions as in lemma 2.1, we have the following conditional convergence in

probability with different value of p:

∆1−p/2 1

K
R̂MPCn(X, 1, K, p, 0)|Ωc

p−→ Kp/2−1mpAp. (2.13)

where Ωc is the collection of all continuous paths.

Corollary 2.6. Second Central Limit Theorem for RMPC:

Under same assumptions as in lemma 2.1, and additionally p > 2, we have the following

central limit theorem conditional on Ωc:

1

∆

 ∆1−p/2 1
K1
R̂MPCn(X, 1, K1, p, 0)−Kp/2−1

1 mpAp

∆1−p/2 1
K2
R̂MPCn(X, 1, K2, p, 0)−Kp/2−1

2 mpAp

 L⇒MVN
(

0,Σc

)
, (2.14)

where

Σc =
[ K−2

1 Σ(K1) K−1
1 K−1

2 Σ(K1, K2)

K−1
1 K−1

2 Σ(K1, K2) K−2
2 Σ(K2)

]
;
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Σ(K) = 2
K−1∑
d=1

mp(d,K − d, d) +Kp(m2p −m2
p);

Σ(K1, K2) = 2

K1−1∑
d=1

mp(d,K1 − d,K2 −K1 + d) + (K2 −K1 + 1)mp(0, K1, K2 −K1).

mp is the p-th absolute moment of standard Gaussian random variable as before; mp(a, b, c)

is a generalized version defined by mp(a, b, c) = E(|aZ1+bZ2|p|bZ2+cZ3|p), where Z1, Z2, Z3

are i.i.d. standard Gaussian random variables.

Proof. The proof is similar to Theorem 2 in Fan and Fan (2010).

Theorem 2.7. Second Central Limit Theorem for Test Statistics:

Conditional on Ωc:

1√
∆

[
Ŝ(X,K1, K2, p)− (

K2

K1

)p/2−1
] L⇒ Scp,K1,K2

, (2.15)

where

Ẽ
(
Scp,K1,K2

)
= 0, (2.16)

Ẽ
(
(Scp,K1,K2

)2
)

=
A2p

m2
pA

2
p

(
1

K1

)p(
K1

K2

)2
[
Σ(K2) + (

K1

K2

)pΣ(K1)− 2(
K1

K2

)p/2Σ(K1, K2)
] ∆

= V c.

(2.17)

Proof. See Appendix A.2.

Considering the asymptotic properties and practical applications, our new test statistic

designed here has at least two important advantages:

First, it is more flexible to choose different time scales of any integer K2 > K1 > 0. For

example, we can use the ratio of our estimators under the scale of 45 seconds and 30 seconds

to construct the test statistic, while when choosing 30 seconds for the denominator, only

60 seconds, 90 seconds and etc. are available to be used for the numerator in the old test

statistics.

Second, it could be proved both theocratically and empirically that the new test statistic

has smaller asymptotic variance under both null and alternative hypotheses:
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• If we take K1 = ∆, K2 = K∆, where 1
∆

is the highest available frequency (ex. ∆ =

1/23400 = 1 second), then our new test statistic reduces to version using the highest

available frequency in Fan and Fan (2010);

• However, both Aı̈t-Sahalia and Jacod (2009a) and Fan and Fan (2010) discussed that

we can not use such high frequency data in the application, because of the presence

of microstructure noise (which we will discuss in section 2.5.1). 1 min to 3 mins time

interval is more common. In this situation, if we take K1 = ∆sparse, K2 = K ∗ K1,

where the K is the same one as that in Aı̈t-Sahalia and Jacod (2009a) and Fan and

Fan (2010), then the asymptotic variance of our test statistic under null hypothesis is( (K−1)2

3K
+ K−1

6K∆2
sparse

) D(p)
B(p)2

≈ (K−1)2

3K
D(p)
B(p)2

. Compared with K−1
2

D(p)
B(p)2

and (2K−1)(K−1)
6K

D(p)
B(p)2

,

our new test statistic reduces the variance under null hypothesis by factors of 2K−2
3K

and

2K−2
2K−1

respectively.

• Theoretical proof of the variance reduction under alternative hypothesis is more complex,

so I will give the numerical results instead in section 2.6.

2.4.6 Testing for Jumps

Finally, it is time to design our tests for jumps:

H0 : X(ω) has no jump⇔ B(ω)(p)t = 0;

Hα : X(ω) has jumps⇔ B(ω)(p)t > 0.
(2.18)

The test statistics:

Ŝ(X,K1, K2, p) =
1
K2
R̂MPCn(X, 1, K2, p, 0)

1
K1
R̂MPCn(X, 1, K1, p, 0)

L−→

 N(1, V j), under H0;

N(kp/2−1, V c), under Hα.

Decision Rule-Rejection Region:

RR = {Ŝ(p, k,∆n) > x},

where x ∈ (1, (K2

K1
)p/2−1).

Here, V c and V j are functions of D(p), A(p), and B(p), which are unknown and need to

be estimated in practice. We use similar estimators as those constructed by Aı̈t-Sahalia and
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Jacod (2009a):

D̂(p) =
n∑
i=1

[
|∆ix|2p−2 1

‖ Ii ‖ ∆

(∑
j∈Ii

(∆iX)21{|∆iX| ≤ α∆γ}
)]
. (2.19)

where α is a deterministic positive value; γ ∈ (0, 1
2
); Ii is the local window around i∆, with

its window size ‖ Ii ‖ satisfying ‖ Ii ‖→ 0 as ∆→ 0. An estimator of A(p) could be

Â(p) =
∆1−p/2

mp

n∑
1

|∆iX|p1{|∆iX| ≤ α∆γ}. (2.20)

An alternative estimator of A(p) could be found from the family of estimators as discussed

in section 2.2.2, for example, Â′p = cR̂MPCn(X,m > 1, 1, ~p = [ p
m
, . . . , p

m
]′), where c is a

normalizing constant. When m = 2 or 3, this estimator is almost the same as Realized

Bipower or Realized Multipower as designed in BNS(2006a,2006b).

B̂(p) = R̂MPCn(X, 1, 1, p, 0), p > 2. (2.21)

Let

V̂ j =
2K1(K2 −K1)2 + (K2 −K1)

6K2
1K2

D̂(p)

B̂(p)2
,

V̂ c =
Â(2p)

m2
pÂ(p)2

(
1

K1

)p(
K1

K2

)2
[
Σ(K2) + (

K1

K2

)pΣ(K1)− 2(
K1

K2

)p/2Σ(K1, K2)
]
.

then, we have the following corollary,

Corollary 2.8. Under same assumptions as in lemma 2.1, and additonally p > 2,

(V̂ j)−1/2
(
Ŝ(X,K1, K2, p)−1

)
|Ωj and (V̂ c)−1/2

(
Ŝ(X,K1, K2, p)−(K2

K1
)p/2−1

)
|Ωc both converge

stably in law to a standard normal distribution.

Proof. This corollary is immediately from theorem 2.4 and theorem 2.7, combined with

the properties for stable convergence.

Type I & Type II Errors:

The two error functions of this jump testing are:

Type I error: αn(x) = P(Ŝ(X,K1, K2, p) ≤ x|H0);

Power Function: βn(x) = P(Ŝ(X,K1, K2, p) ≤ x|H1).
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Theorem 2.9. Assume that Assumption 1 holds and the critical value c ∈ (1, (K2

K1
)p/2−1).

Then we have:

(a) If P(Ωj) > 0,αn(x) → 0, that is, the rejection region has an asymptotic size 0 if there

are jumps in the path;

(b) βn(x)→ 1, as n→∞

Similarly, these results hold if the null and alternative hypotheses are switched.

Proof. The proof is similar to Theorem 6 in Aı̈t-Sahalia and Jacod (2009a) and Theorem 3

in Fan and Fan (2010).

2.5 A NEW TEST BASED ON RMPC WITH IID NOISE

2.5.1 Influence of Microstructure Noise

As we already discussed in section 1.3, the real world is not as ideal as we expect, the

observation noise is very common in high frequency financial data as in (1.3): Yt = Xt + εt.

Instead of the underlying Xt, we can only observe the noisy Yt. Therefore, all these results

for the estimators constructed based on Xt in section 2.3 and section 2.4 should be revised

for the real world based on Yt. To simplify our explanations, we fix p = 4.

Compared with the asymptotic properties for the estimators based on the ideal world

(Xt) in lemma 2.1 and Corollary 2.2:

1

K
R̂MPCn(X, 1, K, 4, 0)|Ωj

p−→ B4 =
∑
s≤t

|Xs −Xs−|4,

and

1

∆

1

K
R̂MPCn(X, 1, K, 4, 0)|Ωc

p−→ 3KA4 = 3K

∫ t

0

σ4
sds.

(2.22)
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The estimators for the real world (Yt) become:

1

K
R̂MPCn(Y, 1, K, 4, 0)

=
1

K

n∑
i=K

(∆Yi)
4 =

1

K

n∑
i=K

(∆Xi + ∆εi)
4

=
1

K

n∑
i=K

[
(∆Xi)

4 + 4(∆Xi)
3∆εi + 6(∆Xi)

2(∆εi)
2 + 4∆Xi(∆εi)

3 + (∆εi)
4
]

(2.23)

=⇒ E
[ 1

K
R̂MPCn(Y, 1, K, 4, 0)

]
=[3K∆A4 +B4] +

n−K + 1

K
E((∆ε)4)

+ [6E((∆ε)2)(A2 +B2)] +Op(n
−1/2).

(2.24)

where the first and third terms correspond with the results in (2.22), which behaves differ-

ently for continuous paths and jump paths. However, the last two terms are coming from

microstructure noise (ε) regardless of the existence of jump and they overwhelm the first two

terms when sample size is large and noise is not small. In this case, the old test statistic:

Ŝ(Y,K1, K2, 4) =
1

K2
R̂MPCn(Y,1,K2,4,0)

1
K1

R̂MPCn(Y,1,K1,4,0)
always converges in probability to K1

K2
as n → ∞ and

n/max{K1, K2} → ∞. Thus, it loses the power to distinguish continuous and jumps paths.

This influence of microstructure noise to our jump testing is obvious when we apply the

old test to real data as in Figure 2.3, where many test statistics cluster at K1
K2

= 0.5.
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Figure 2.3: Evidence of Noise in Jump Test

This plot is constructed in Aı̈t-Sahalia and Jacod (2009a). It shows the empirical

distribution of the old test statistic Ŝ(Y,K1, K2, 4) for different values of the sampling

interval ∆n, based on 2005 DJIA data.
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2.5.2 New Test Statistics based on RMPC

An obvious approach to solve the problem is to counteract the biasing effect from mi-

crostructure noise through the linear combination of different estimators. To achieve this

purpose, we need to introduce another specific construction from our general framework of

estimators:

1

K
R̂MPCn(Y, 2, K, 4, d) =

1

K

n∑
i=K+d

(∆Yi)
2(∆Yi−d)

2

=
1

K

n∑
i=K+d

(∆Xi + ∆εi)
2(∆Xi−d + ∆εi−d)

2

≈ [K∆A4] + 2E[(∆ε)2](A2 +B2) +
n−K − d+ 1

K
E[(∆iε)

2(∆i−dε)
2].

(2.25)

In addition, it is not hard to see that R̂MPCn(Y,1,1,4,0)
n

is an efficient estimator of E[∆ε4]

and R̂MPCn(Y,2,1,2,d)
n−1−d is an efficient estimator of E[(∆ε2)2]. Therefore, our new estimator

considering the bias adjustment as:

NB(Y,K) = [
1

2K
R̂MPCn(Y, 1, 2K, 4, 0)− 3

1

K
R̂MPCn(Y, 2, K, 4, K)]

≈ 3K∆A4 +B4,

(2.26)

or

NBadj(Y,D1, D2, d)

=[
1

D1

R̂MPCn(Y, 1, D1, 4, 0)− 3
1

D2

R̂MPCn(Y, 2, D2, 4, d)]

− [
n−D1 + 1

D1

R̂MPCn(Y, 1, 1, 4, 0)

n
− 3

n−D2 − d+ 1

D2

R̂MPCn(Y, 2, 1, 2, d)

n− 1− d
]

≈3(D1 −D2)∆A4 +B4,

(2.27)

which is a small sample adjusted version.

Its asymptotic properties are as below:

Lemma 2.2. Convergence in Probability of Estimator:

As n→∞, NBadj(Y,D1, D2, d)
p−→ B4;

If B4 = 0, then 1
∆(D1−D2)

NBadj(Y,D1, D2, d)
p−→ 3A4.
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Proof. See Appendix A.2.

Now we can construct our new test statistic:

SNew(Y,K1, K2, 4) =
NBadj(Y,K +D2, K, 1)

NBadj(Y,K +D1, K, 1)
. (2.28)

This test statistic has the asymptotic property as we expect to distinguish continuous paths

and paths with jumps:

Theorem 2.10. Convergence in Probability of Test Statistics:

As n→ 0, SNew(Y,K1, K2, 4)
p−→

 1, on continuous paths;

D2

D1
, on paths with jumps.

(2.29)

Proof. This result immediately follows Lemma 2.2, using Theorem 5.5.4 in Casella and Berger

(2002).

2.6 SIMULATIONS AND COMPARISONS

2.6.1 Continuous Stochastic Volatility Models without Noise

dXt

Xt

= σt dW
1
t ,

vt = σ2
t , dvt = κ(v̄ − vt)dt+ γ

√
vtdW

2
t ,

E[dW 1
t dW

2
t ] = ρdt.

(2.30)

We simulate 100 sample paths of prices over a one-day period with parameters v̄ = 0.42, γ =

0.5, κ = 5 and ρ = −0.5. This setup was similar to that in Aı̈t-Sahalia and Jacod (2009a) and

Fan and Fan (2010), and all parameters are realistic for a stock studied in Aı̈t-Sahalia and

Kimmel (2007). The sampling frequencies are taken as K1∆n =5 seconds, 30 seconds, 1 min-

utes and 2 minutes. In each of these simulations, we study our test statistic Ŝ(X,K1, K2, p)

for K2

K1
= 2 and 3.
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Figure 2.4 shows one continuous path generated from the stochastic volatility model in

(2.30).

Figure 2.5 shows the Monte Carlo simulation of our new test statistics based on these

continuous paths. It is consistent with the results in Theorem 2.7, which says the test statis-

tics is asymptotically normally distributed around (K2

K1
)p/2−1.

Table 2.1 compares our new test statistics (RMPC) with the previous methods in Aı̈t-

Sahalia and Jacod (2009a) (AJ) and Fan and Fan(2009) (FF) under the assumption that

the path does not have a jump component. While all of them have the asymptotic mean

close to K2

K1
, the asymptotic standard deviation for RMPC is consistently smaller than that

of AJ and FF. The problem of optimal sampling frequency to achieve the most powerful test

statistic is also another interesting topic, but not our focus in this chapter.

2.6.2 Stochastic Volatility Models with Compound Poisson Processes

without Noise

To conduct the Monte Carlo simulations for comparisons of methods conditional of paths

with jumps, we consider the following model:

dXt

Xt

= σt dW
1
t + JtdNt,

vt = σ2
t , dvt = κ(v̄ − vt)dt+ γ

√
vtdW

2
t ,

E[dW 1
t dW

2
t ] = ρdt.

(2.31)

where Nt is an independent Poisson process with intensity λ = 3, Jt measures the jump size,

and W 1
t and W 2

t are both Brownian Motions.

Figure 2.6 shows one continuous path generated from the stochastic volatility model in

(2.31).
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Figure 2.7 shows the Monte Carlo simulation of our new test statistics based on these

continuous paths. It is consistent with the results in Theorem 2.4 that the test statistics is

asymptotically normally distributed around 1.

Table 2.2 compares our new test statistics (RMPC) with the methods of AJ and FF

under the assumption that the path has nontrivial jump component. While all of them have

the asymptotic mean close to 1, the asymptotic standard deviation of RMPC is consistently

smaller than that of AJ and FF again.

2.6.3 Jump test for High Frequency Data with i.i.d. Microstructure Noise

To compare the old with the new test statistics, we use the same setup of stochastic

volatility model with Poisson Processes as in (2.30) to generate the underlying log price Xt.

As for the microstructure noise, we simply generate the noise from the normal distribution

with different noise levels (Eε2 = 0.012, 0.0052, and 0.00052).

Table 2.3 and Table 2.4 summarize the comparison results under different noise levels and

different choices of sampling frequencies. It is obvious that the new test statistic is indeed

robust with observation noise, and is consistently much better than the old test statistic.

2.7 CONCLUSION AND FUTURE WORK

2.7.1 Asymptotic Results, Optimal Sampling Size and Convergence Rates

1. In this chapter, we have studied the asymptotic means of the proposed estimators and

the new test statistic SNew(Y,K1, K2, 4), and we also compared the asymptotic variance

of the new test statistics with the old one through Monte Carlo sfimulations. For the

next step, we plan to do an analytic study on the asymptotic distributions, and compare

the old and new test statistics when applied to the real high frequency data on the stock

market, foreign exchange market, and bond market.
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2. We have given a general framework, which provides a whole family of estimators with

flexible choices of different sampling frequencies. On the other hand, it is interesting

to study how to optimally choose the sampling frequencies. The common method is to

minimize the mean square error (MSE) or minimize the Kullback-Leibler divergence of

the asymptotic distributions under null and alternative hypotheses.

3. As studied in section 1.3.1, under the influence of microstructure noise, the best attain-

able convergence rate of RV is n1/4, which is also the same even for the simplest available

parametric model: dXt = σ1dWt and Yt = Xt + σ2Zt. Is n1/4 the best attainable conver-

gence rate in the testing of jumps? If so, how should we construct our new test statistic?

These questions will be studied in my future work.

2.7.2 Empirical Study of Microstructure Noise

Until now, we only study the simplest case of microstructure noise: it is independent with

stock price, and itself is i.i.d distributed. However, the real world is much more complex. It

is reasonable to empirically study two possible dependent structures:

1. As in the paper of Aı̈t-Sahalia, Mykland, and Zhang (2011), there is some evidence of

serially dependent structure for the microstructure noise.

2. Li and Mykland (2007) argue that it is reasonable to believe that there might be some

dependent relationship between microstructure noise and the underlying stock prices.

Following the notation in Li and Mykland (2007), the law of Yt could be:

P (Yt ≤ y|Xt) = Q(Xt, y) (2.32)

Therefore, our next step is to study whether our new test statistic is robust with respect to

these dependent structure. If not, how to adjust our test statistic under different dependent

structure?
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2.8 TABLES AND FIGURES

Figure 2.4: One Continuous Path from Our Simulations
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Figure 2.5: Monte Carlo asymptotic distribution of our new test statistics for continuous

paths
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Figure 2.6: One Path with Jumps from Our Simulations
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Figure 2.7: Monte Carlo asymptotic distribution of our new test statistics for paths with

jumps
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Table 2.1: Monte Carlo Mean and Standard Deviation for continuous paths

Frequency Method K2

K1
= 2 K2

K1
= 3

5 sec AJ 2.0078(0.1472) 3.0345( 0.244)

5 sec FF 2.0028(0.1020) 3.0074(0.1962)

5 sec RMPC 1.9976(0.0673) 2.9999(0.164)

30 sec AJ 2.0404(0.3308) 2.9211(0.615)

30 sec FF 1.9668(0.2388) 2.9228(0.4762)

30 sec RMPC 1.9790(0.1757) 2.9396(0.4057)

1 min AJ 1.947(0.4146) 2.9524(0.8095)

1 min FF 1.9286(0.3376) 2.933(0.6317)

1 min RMPC 1.9712(0.2291) 2.9988(0.5251)

2 min AJ 2.1359(0.5702) 3.1174(1.0488)

2 min FF 2.0587(0.3941) 3.1189(0.8084)

2 min RMPC 2.0493(0.2987) 3.1114(0.745)
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Table 2.2: Monte Carlo Mean and Standard Deviation for paths with jumps

Frequency K=2 K=3

5 sec AJ 1.0070(0.0715) 1.0151(0.1121)

5 sec FF 1.0090(0.0604) 1.0194(0.0811)

5 sec RMPC 1.0076(0.0407) 1.018(0.066)

30 sec AJ 1.0163(0.1804) 1.0994(0.3473)

30 sec FF 1.0424(0.2218) 1.0892(0.3756)

30 sec RMPC 1.0354(0.1840) 1.0799(0.3395)

1 min AJ 1.0937(0.3039) 1.2568(0.766)

1 min FF 1.1241(0.4369) 1.2377(0.6124)

1 min RMPC 1.0676(0.183) 1.168(0.3288)

2 min AJ 1.1614(0.5306) 1.4684(0.8733)

2 min FF 1.2497(0.563) 1.4544(0.7383)

2 min RMPC 1.178(0.292) 1.3737(0.5236)
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Table 2.3: Monte Carlo Comparisons of Old Test Statistic and New Test Statistic, Eε2 =

0.012

sampling frequency Expectation New Test Old Test

K +K2 K K +K1 K K2

K1
Path Mean Std. Mean Std.

30 10 20 10 2 Cont 1.94 0.17 1.23 0.15

1 Jump 1.03 0.06 1.02 0.05

20 10 15 10 2 Cont 1.99 0.27 0.98 0.13

1 Jump 1.03 0.04 1.00 0.04

40 10 20 10 3 Cont 2.86 0.33 1.53 0.28

1 Jump 1.05 0.11 1.02 0.10

50 10 20 10 4 Cont 3.78 0.52 1.84 0.40

1 Jump 1.07 0.17 1.03 0.13

Table 2.4: Monte Carlo Comparisons of Old Test Statistic and New Test Statistic, Eε2 =

0.0052

sampling frequency Expectation New Test Old Test

K +K2 K K +K1 K K2

K1
Path Mean Std. Mean Std.

6 2 4 2 2 Cont 1.76 0.08 1.15 0.14

1 Jump 1.12 0.03 1.00 0.04

20 10 15 10 2 Cont 2.01 0.14 1.49 0.12

1 Jump 1.03 0.03 1.01 0.04

25 10 15 10 3 Cont 2.99 0.28 2.00 0.25

1 Jump 1.05 0.05 1.01 0.07

30 10 15 10 4 Cont 3.96 0.47 2.53 0.36

1 Jump 1.06 0.09 1.03 0.08
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APPENDIX

ADDITIONAL RESULTS AND PROOFS

A.1 STABLE CONVERGENCE IN LAW

Let Xn denote a sequence a random variables defined on a probability space (Ω,F , P )

and taking the value in (E, E), a complete separable metric space with Borel σ-algebra.

Definition .1. Xn is said to converge stably in law, denoted as Xn
Ls−→ X if there exists

a probability measure µ on (Ω× E,F × E), such that µ(A× E) = P (A) for all A ∈ F , and

for n→∞,

E(Y f(Xn)) =

∫
Y (ω)f(x)µ(dω, dx).

for all bounded continuous function f on E and bounded random variable Y on (Ω,F).

Lemma .1. Stable convergence implies weakly convergence: If Xn
Ls−→ X =⇒ Xn

D−→ X.

Proof. Let Y ≡ 1 a.s., from the definition and Theorem 25.8 in Billingsley, it is easy to

prove.

Why do we need this definition? From Slutsky’s Theorem, we know that if Xn
D→ σZ, and

Sn
p→ σ, then Xn/Sn

D→ Z. However, in many cases, we have the conditional convergence,

Xn|Σ
D→ ΣZ, but Σ is a random variable with an unknown law. But we can find a sequence

of statistics Σn such that (Xn,Σn)
D→ (X,Σ). So we want the new statistics Zn = XnΣ−1

n

could converges in law to N(0, 1). This is the why we need the stable convergence.
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This concept was first introduced by Renyi (1963), for the same reasons as ours. For more

details, see Jacod and Shiryaev (2003, p 512 - 518); and for an early use in econometrics, see

Phillips and Ouliaris (1990).

Most important is that the analog of Slutsky’s theorem for ordinary convergence in law

holds for stable convergence in law:

Lemma .2. If Xn
Ls→ X and Yn/Y

D→ 1, then XnYn
D→ XY .

Lemma .3. If Xn
Ls→ X and Yn

D→ Y , then Xn + Yn
Ls→ X + Y .

A.2 PROOFS

A.2.1 Proof of Lemma 1.3

γ
(K)
0 (Y, Y ) =

n∑
i=K

(Yi − Yi−K)2,

γ
(K)
1 (Y, Y ) =

n∑
i=2K

(Yi − Yi−K)(Yi−K − Yi−2K),

...

γ
(K)
h (Y, Y ) =

n∑
i=(h+1)K

(Yi − Yi−K)(Yi−hK − Yi−(h+1)K),

...

(.1)

It is easy to prove some basic results:

E[γ
(K)
0 (Y, Y )] = E

[
γ

(K)
0 (X,X) + γ

(K)
0 (E,E) + 2γ

(K)
0 (X,E)

]
= K

∫ T

0

σ2
sds+Op

(√
1

n

)
+ (n−K + 1)E[(Ei − Ei−K)2]

= K

∫ T

0

σ2
sds+ (n−K + 1)(2V0 − 2VK) +Op

(√
1

n

)
,

...

(.2)
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E[γ
(K)
1 (Y, Y )] = E

[
γ

(K)
1 (X,X) + γ

(K)
1 (E,E) + 2γ

(K)
1 (X,E)

]
= (n− 2K + 1)E[(Ei − Ei−K)(Ei−K − Ei−2K)]

= (n− 2K + 1)(−V0 + 2VK − V2K),

...

E[γ
(K)
h (Y, Y )] = (n− (h+ 1)K + 1)(−V(h−1)K + 2VhK − V(h+1)K),

...

(.3)

A.2.2 Proof of Theorem 1.3

Under assumption 1.6, as n→∞,

(1) Signal Term:

√
n

T


1

K


γ

(K)
0 (X)

γ
(K)
1 (X)

· · ·

γ
(K)
H (X)

−


∫ T
0
σ2
sds

0

· · ·

0




Ls−→ N

(
0,

1

6
K(

∫ T

0

σ4
sds)ΩX

)
.

where

ΩX =



8

2 4

0 1 4
... 0 1

. . .

0 · · · · · · 1 4


.

Consider a H-dimensional function f = (f1, · · · , fH) : RH → RH with f1(X1, · · · , XH) =

(X1)2, f2(X1, · · · , XH) = X1X2, f3(X1, · · · , XH) = X1X3, · · · , fH(X1, · · · , XH) =

X1XH . Denote ρ⊗Kσ (f) =
∫
f(x)ρ⊗Kσ (dx) with ρ⊗Kσ the K-fold tensor product of the law
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N(0, σ2). Define

V ′(f,K,∆)t =

[t/∆]−H+1∑
i=1

f(∆iX/
√

∆, · · · ,∆i+H−1X/
√

∆)

and

V (f,K,∆)t =
n−K+1∑
i=1

CT
i f(∆iX/

√
∆, · · · ,∆i+H−1X/

√
∆).

(.4)

where

Ci = (C1
i , · · · , CH

i )T , and Ch
i = 1 if 0 ≤ i∆ ≤ · · · ≤ (i+ h)∆ ≤ T, = 0 otherwise.

From Theorem 7.1 of Jacod (2007), the H-dimensional processes

1√
∆

(
∆V ′(f,K,∆)t −

∫ t

0

ρ⊗Kσs (f)ds

)
(.5)

converges stably in law to a continuous process V ′(f,K) defined on an extension (Ω̃, F̃ , P̃ )

of the original space (Ω,F , P ), which conditionally on the σ-field F is a centered Gaussian

RH- valued process with independent increments, satisfying

Ẽ[V ′(fi, K)V ′(fj, K)] =

∫ t

0

Rij
σs(f,K)ds, (.6)

where Rij
σ (f,K) is defined as

Rij
σ (f,K) =

H−1∑
d=−H+1

Ẽ[fi(σZH , · · · , σZ2H−1)fj(σZH+d, · · · , σZ2H−1+d)]

− (2H − 1)Ẽ[fi(σZH , · · · , σZ2H−1)]Ẽ[fj(σZH+d, · · · , σZ2H−1+d)],

(.7)

where (Zi) are independent standard Gaussian random variables. By the definition of f ,

we can derive that

ρ⊗Kσs (f) =
(
E(σ2

sZ
2
1),E(σ2

sZ1Z2), · · · ,E(σ2
sZ1ZH)

)T
= (σ2

s , 0, · · · , 0)T ,∫ t

0

ρ⊗Kσs (f)ds =

(∫ t

0

σ2
sds, 0, · · · , 0

)T
,

(.8)
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and

R11
σ (f,K)

=
1

K2
Cov

(
(∆K

i X)2, (∆K
i−K+1X)2 + . . .+ (∆K

i+K−1X)2
)

=
1

K2
σ4V ar(Z2)

(
K−1∑
d=1−K

d2

)

=
1

K2
σ4V ar(Z2)

(
(K − 1)K(2K − 1)

6
+K2

)
=

1

K2
σ4V ar(Z2)

∫ K

−K
x2dx+O(K2)

=
4

3
KA4 +O(K2),

Rhh
σ (f,K)

=
1

K2
Cov

(
∆K
i X∆K

i−KX , ∆K
i−K+1X∆K

i−2K+1X + . . .+ ∆K
i+K−1X∆K

i−1X
)

=
1

K2
σ4V ar(Z1Z2)

∫ K

−K
x2dx+O(K2))

=
2

3
KA4 +O(K2),

(.9)

R12
σ (f,K)

=
1

K2
Cov

(
∆K
i X∆K

i−hKX , (∆K
i−K+1X)2 + . . .+ (∆K

i+K−1X)2
)

=
1

K2
σ4
i V ar(Z1Z2)

∫ K

0

2x(K − x)dx+O(K2)

=
1

3
KA4 +O(K2),

R(h−1)h
σ (f,K)

=
1

K2
Cov

(
∆K
i X∆K

i−hKX , ∆K
i−K+1X∆K

i−(h+1)K+1X + . . .+ ∆K
i−1X∆K

i−hK−1X
)

=
1

K2
σ4V ar(Z1Z2)

∫ K

0

x(K − x)dx+O(K2)

=
1

6
KA4 +O(K2).

(.10)
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Therefore,

1√
∆

(
1

K
V ′(f,K,∆)t −

∫ t

0

ρ⊗Kσs (f)ds

)
Ls→ N

(
0,

1

6
K(

∫ T

0

σ4
sds)ΩX

)
. (.11)

Finally, it is easy to prove Γ
(K)
H (X) = V (f,K,∆)t = V ′(f,K,∆)t + Op(K∆), and the

theorem could be proved from lemma .3.

(2) Mixed Term:

We prove the result for the γ
(K)
0 (X,E). Others could be proved similarly.

γ
(K)
0 (X,E) =

n∑
i=K

(Xi −Xi−K)(Ei − Ei−K) =
n∑
i=0

(Ci − Ci−K)Ei,

where Ci = ∆K
i X = Xi−Xi−K if 0 ≤ i−K < i ≤ n, and = 0 otherwise. Then we have:

E
(
γ

(K)
0 (X,E)|X

)
= E

( n∑
i=0

(−Ci−K + Ci)Ei

)2

|X


≤ V0

(
n∑
i=0

(−Ci−K + Ci)
2 + 2

n∑
d=1

ρd|
∑
i

(−Ci−K + Ci)(−Ci−K+d + Ci+d)|

)

≤ V0

n∑
i=0

(−Ci−K + Ci)
2(1 + 4

n∑
d=1

ρd)

≤ V0K
[X,X](K)

K
(1 + 4ρ/(1− ρ)).

(.12)

The last two steps use the Cauchy-Schwarz inequality. Then using Markov’s Inequality,

we can prove the result.

A.2.3 Proof of Theorem 2.4

Write Un = (∆n)−1/2
(
R̂MPCn(X,1,K2,p,0)

K2

)
and Vn = (∆n)−1/2

(
R̂MPCn(X,1,K1,p,0)

K1

)
. Then

Ŝ(X,K1, K2, p)− 1

=
1
K2
R̂MPCn(X, 1, K1, p, 0)

1
K1
R̂MPCn(X, 1, K1, p, 0)

− 1

= (∆n)1/2 Un − Vn
1
K1
R̂MPCn(X, 1, K1, p, 0)

.

(.13)

Then Un−Vn converges stably in law to Yp,K as in (2.9). Theorem 2.4 follows from corollary

2.3.
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A.2.4 Proof of Theorem 2.7

Write U ′n = (∆n)−1/2
(

∆1−p/2 1
K2
R̂MPCn(X, 1, K2, p, 0)−Kp/2−1

2 mpAp

)
and

V ′n = (∆n)−1/2
(

∆1−p/2 1
K1
R̂MPCn(X, 1, K1, p, 0)−Kp/2−1

1 mpAp

)
. Then

Ŝ(X,K1, K2, p)− (
K2

K1

)p/2−1

=
1
K2
R̂MPCn(X, 1, K1, p, 0)

1
K1
R̂MPCn(X, 1, K1, p, 0)

− (
K2

K1

)p/2−1

= (∆n)1/2
U ′n − K2

K1
V ′n

1
K1
R̂MPCn(X, 1, K1, p, 0)

.

(.14)

Then Theorem 2.7 follows from corollary 2.6.
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