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AN ACCESS CONTROL AND TRUST MANAGEMENT FRAMEWORK FOR

LOOSELY-COUPLED MULTIDOMAIN ENVIRONMENTS
Yue Zhang, PhD
University of Pittsburgh, 2011
Multidomain environments where multiple organizations interoperate with each other are
becoming a reality as can be seen in emerging Internet-based enterprise applications. Access
control to ensure secure interoperation in such an environment is a crucial challenge. A
multidomain environment can be categorized as tightly-coupled and loosely-coupled. The access
control challenges in the loosely-coupled environment have not been studied adequately in the
literature.

In a loosely-coupled environment, different domains do not know each other before they
interoperate. Therefore, traditional approaches based on users’ identities cannot be applied
directly. Motivated by this, researchers have developed several attribute-based authorization
approaches to dynamically build trust between previously unknown domains. However, these
approaches all focus on building trust between individual requesting users and the resource
providing domain. We demonstrate that such approaches are inefficient when the requests are
issued by a set of users assigned to a functional role in the organization. Moreover, preserving
principle of security has long been recognized as a challenging problem when facilitating
interoperations. Existing research work has mainly focused on solving this problem only in a

tightly-coupled environment where a global policy is used to preserve the principle of security.



In this thesis, we propose a role-based access control and trust management framework
for loosely-coupled environments. In particular, we allow the users to specify the interoperation
requests in terms of requested permissions and propose several role mapping algorithms to map
the requested permissions into roles in the resource providing domain. Then, we propose a
Simplify algorithm to simplify the distributed proof procedures when a set of requests are issued
according to the functions of some roles in the requesting domain. Our experiments show that
our Simplify algorithm significantly simplifies such procedures when the total number of
credentials in the environment is sufficiently large, which is quite common in practical
applications. Finally, we propose a novel policy integration approach using the special semantics
of hybrid role hierarchy to preserve the principle of security. At the end of this dissertation a

brief discussion of implemented prototype of our framework is present.
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1.0 INTRODUCTION

Multidomain environments in which multiple organizations interoperate with each other are
becoming a reality, as seen in the emerging Internet-based enterprise applications. In these types
of environments, it is a significant challenge to ensure that cross-domain accesses to facilitate
information sharing are employed in a secure way. This is referred to as the multidomain secure
interoperation problem [1]. Gong et al. introduce the following two principles for secure
interoperation in multi-domain environments [1]:

¢ Principle of Autonomy: If an access is permitted within an individual system, it must also be
permitted under secure interoperation.

¢ Principle of Security: If an access is not permitted within an individual system, it must not be
permitted under secure interoperation.

A multidomain environment can be characterized into tightly-coupled environment and
loosely-coupled environment. In a tightly-coupled environment, the access control and
interoperation needs are typically predefined, and a global policy is created by integrating all the
individual policies to facilitate those interoperation needs. In a loosely-coupled environment,

different domains join and leave a multidomain environment dynamically and the interoperation



needs are dynamic and cannot be predefined. In the literature, several approaches have been
proposed to address the access control challenges in tightly-coupled environments. Gong et al. [1]
have studied the computational complexity of the global policy using Access Control Matrix
(ACM) model. Bonati et al. [2] and Dawson et al. [3] have studied the policy integration
problem applied to domains employing Multi-Level Security (MLS) models. Basit et al. [4] have
studied how to specify a global policy by integrating different individual access control policies
using Role Based Access Control (RBAC) model [5]. Unfortunately, the access control
challenges in loosely-coupled environments have not been studied adequately in the literature.
Piromruen et al. have proposed a secure interoperation framework focusing on how to establish
secure interoperation between the requesting domain and the providing domains based on RBAC
[42]. Their approach does not assume the existence of a global policy. However, they assume the
naive RBAC policy is used to make interoperation authorization decisions and do not consider
the fact that user identities are usually not known to the resource providing domain. Shehab et
al.’s SEcure Role mApping Technique (SERAT) focuses on finding the cross-domain
authorization paths in a decentralized way [43]. However, they assume that a permitted
interoperation set is pre-defined in the environment. There are also several research efforts on
trust management [19, 20, 21, 22] which aim to make authorization decisions between
previously unknown domains. However, they are not discussed in the context of a
loosely-coupled environment and can only solve part of the challenges in loosely-coupled

environments.



Role Based Access Control (RBAC) models have received much attention as a general
approach to access control [5, 6, 7]. The survey conducted by NIST [8] shows that in many
organizations the access control decisions is based on a person’s roles and responsibilities within
the organization, making role-based approach suitable for expressing security requirements. One
important feature of RBAC is the role hierarchy. The use of role hierarchy can greatly simplify
the policy specification task, since the administrators do not need to assign the permissions of the
junior role to the senior role explicitly. Recently, many extensions of RBAC have been proposed
to support the specification of more fine-grained policy requirements. Generalized Temporal
Role Based Access Control (GTRBAC) model [9] is one of such RBAC extensions supporting
temporal constraints on policies. In many situations, it is desirable to restrict the authorizations
based on temporal constraints. For example, a user Alice may be assigned to DayNurse role
only during daytime. Several researchers [10, 11] have also identified various limitations of the
standard role hierarchy used in RBAC. Joshi et al. have proposed the notion of hybrid hierarchy
[12] that overcomes some of those limitations of the standard role hierarchy. As a result,
GTRBAC is a good choice for defining the local policies in each individual domain. However,
the interoperation authorization decisions cannot be made directly on them since the user
identities are not known in a loosely-coupled environment. In this thesis, we assume that
GTRBAC is used in each individual domain to specify its local policy and the focus of this thesis
is to study and propose solutions for access control challenges specific to the loosely-coupled

environment.



In a loosely-coupled multidomain environment where each domain employs GTRBAC
and hybrid hierarchy, there exist several specific access control challenges. In a traditional single
domain system, users usually know the role structure of the organization and hence could request
to assume the corresponding roles directly in order to perform the jobs. In a loosely-coupled
environment, however, it is typically not practical to assume that users have already known the
role structure of external domains. As a result, it is desirable to allow users to request the
permissions directly. And the resource-providing domains need to identify a set of its local roles
containing the requested permissions for the external users to assume.

Once the initial interoperation requests have been translated into a set of requested roles,
the providing domain needs to make decisions on whether to authorize the requests or not based
on their local policies and the interoperation requirements. Since the identity of the requesting
users may not be known to the external domain, traditional identity-based access control
approaches are not suitable [22]. A trust management approach is needed to facilitate access
requests from previously unknown users. In role based multidomain environments, it is very
common that several different users assigned to the same role (or a very small set of related roles)
would request to acquire the same external resource several times in a period. In this thesis, we
refer to such interoperation request scenario as Role-based interoperation Access Requests (rar),
and refer to the role(s) that requesting users assigned to as requesting role(s). In such a scenario,
different users all request the same external resource because the functionality of the requesting

role requires obtaining the external resource, and it is common that several users have been



assigned to the same role(s) (i.e. occupying the same position) in the same period. For example,
assume Bob is travelling outside and needs to go to the emergency room in the local hospital.
The assigned nurse there needs to obtain Bob’s health information from his home hospital.
Moreover, there might be several persons assigned to the nurse position (e.g. some during
daytime, and some during night time) when taking care of Bob. They all need to acquire Bob’s
health information when they are on duty. From access control perspective, obviously it is not
secure to allow the first nurse who has obtained Bob’s health information to disclose it to the
subsequent nurses. A more secure way is to require each nurse issuing a separate request and
each request to be evaluated and authorized separately for each nurse. Here, we reach the
role-based interoperation request scenario: different persons assigned to the same role (nurse)
need to request the same external resource (Bob’s health information) several times (when each
person is taking the position) in a period (the time period when Bob is taken cared of). Using
traditional role-based distributed proof approaches (e.g. DCCD), each single user needs to prove
separately that he/she has the credentials required for the accessing requested resources.
However, they will typically request the same external resources since they are assigned to the
same requesting role(s) whose functionalities require acquiring those external resources.
Unfortunately, few existing approaches have made use of this property to simplify the distributed
proof procedures.

Lastly, several researchers have shown that the introduction of global policy in

tightly-coupled environments could violate the principle of security. Although there is typically



no global policy in the loosely-coupled environment, the existence of multiple authorized
interoperations could also violate the principle of security. Proper mechanisms need to be used to
address such a problem.

In this thesis, we address the access control and trust management challenges in
loosely-coupled environments as discussed above, and develop an access control and trust
management framework consisting of three major components: (1) Role Mapping; (2) Trust
Management; and (3) Policy Integration. First, we develop several role mapping algorithms to
identify a set of roles that contain all the requested permissions. We show that it is more
convenient to specify the interoperation requests in terms of requested permissions. Recall that in
RBAC, permissions are made available through roles. Therefore, the resource providing domain
needs to find out which of its local roles contain the requested permissions. This problem
becomes more challenging when hybrid role hierarchy is used. Motivated by this, we propose 3
greedy role mapping algorithms to identify such roles according to the local policy. The proposed
algorithms are able to handle three scenarios: (1) when exactly matched role set exists; (2) no
exactly matched role set exists and the principle of least privilege is important; (3) no exactly
matched role set exists and the availability is more important. Second, we develop a Simplify
algorithm to simplify the role-based distributed proof procedure. In particular, we base our work
on the role-based distributed proof procedure proposed by Li et al. (i.e. RT families of trust
management language [22] and Distributed Credential Chain Discovery (DCCD) algorithm [26]).

We first show that there is a common type of interoperation request in loosely-coupled



environment. That is, role-based interoperation access request where the access requests are
issued according to the functional needs of the roles in the organization rather than from the
individual behaviors. In this case, we show that DCCD approach is inefficient since it can only
authorize the resource to the unknown users but not roles in unknown domains. Motivated by
this, we propose a Simplify algorithm to simplify the distributed proof procedure as defined in
DCCD approach by analyzing the policies of the requesting roles and requested roles. We
conduct several experiments using simulation and the experimental results show that our
approach significantly outperforms DCCD when the total number of credentials in the
environment is sufficiently large, which is quiet common in loosely-coupled environments. Third,
we develop a novel policy integration approach using the special semantic of hybrid role
hierarchy to preserve the principle of security. Researchers have shown that violations of
principle of security could be introduced in the global policy that is used to facilitate
interoperations in tightly-coupled environments. They have proposed several solutions to detect
and remove such violations in the global policy. We show that violations of principle of security
could also be introduced in loosely-coupled environment although there is no global policy in it.
And the existing approaches dealing with tightly-coupled environment cannot be applied.
Motivated by this, we develop a novel policy integration approach that is able to preserve
principle of security during interoperations. We use hybrid hierarchy to facilitate authorized
interoperations and the special semantics of hybrid hierarchy guarantees that there is no violation

of principle of security. To do this, we need to make several changes to the local GTRBAC



policy, which should be done properly by only the authorized administrators according to

appropriate administrative models. However, as far as we know there are no existing

administrative models in the literature that is able to deal with hybrid hierarchy. We also propose
an administrative model for RBAC with hybrid hierarchy.
From all the above disscussions, the goal of this thesis is to propose an access control and

trust management framework for loosely-coupled multidomain environment that is able to: (1)

allow the users to specify the requested permissions directly; (2) simplify the trust management

process assuming the user’s requests are made according to the functionalities of their assigned
roles ; (3) preserve the principle of security without using the global policy. In particular, the
research presented in this thesis makes a number of contributions as follows:

[ We clearly characterize the tightly-coupled and loosely-coupled environments, and
analyze the access control challenges specific to each. Such analysis helps us to
develop access control mechanisms that are especially suitable for loosely-coupled
environments.

[ We assume that users express the interoperation access requests in terms of requested
permissions rather than requested roles in role-based multi-domain environments.
Based on this, we develop three role mapping algorithms that are able to identify a set
of roles containing the requested permissions according to the local policy of the
resource providing domain. Such role mapping approaches are desirable in general

RBAC systems and more so in multi-domain environments employing with RBAC.



[ We show that a special type of interoperation requests — those issued according to the
functionalities of the roles in an organization — is very common in role-based
loosely-coupled environments and show that existing distributed proof systems are
inefficient in dealing with such requests. Therefore, we propose a Simplify algorithm
that significantly outperforms traditional role-based distributed proof procedures (in
particular, DCCD approach [26]) when the total number of credentials is sufficiently
large.

[ We show violations of principle of security could be introduced in loosely-coupled
environment and develop a Policy Integration component to prevent such violations.
We also develop an administrative model for the required administrative operations
involved in the Policy Integration component.

To our knowledge, no prior research has addressed the above issues in a unified manner,
in the sense of analyzing the access control challenges for the loosely-coupled environment and
developing an access control and trust management framework based on those identified
challenges. Given the growing emphasis on interoperations over loosely-coupled multidomain
environments, we believe the work presented in this thesis represents an important step towards
addressing the access control issues in the loosely-coupled environments.

The rest of this thesis is organized as follows. In section 2, we present relevant
background and related work on access control issues in multidomain environments. In section 3,

we discuss the differences between tightly-coupled and loosely-coupled environments and



identify the access control challenges specific to each. In section 4, we present our access control
and trust management framework for loosely-coupled environments. Finally, in section 5, we

conclude our work and point out possible future directions.
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2.0 BACKGROUND AND RELATED WORK

Access control is a fundamental security issue related to ensuring that only authorized accesses
and activities are allowed in a computing environment. Authorizing an entity for accessing
computing resources may involve satisfying complex policy rules. Recently, with the increased
progress in large scale distributed applications, access control in multidomain environments has
become a very significant challenge. In this section, we overview the general access control
models in single domains, and the access control and trust management approaches in

multidomain environments.

2.1 ACCESS CONTROL MODELS IN SINGLE DOMAIN SYSTEMS

Within a single domain, it is crucial to ensure that any access to its data and resources is properly
authorized according to the access control policy. Several access control models have been
proposed in the literature to specify and enforce various access control policy requirements in a
single domain. Traditional access control approaches are broadly categorized as Discretionary

Access Control (DAC) [44, 45, 46] and Mandatory Access Control (MAC) [46, 47, 48, 49]. In

11



DAC, the basic premise is that subjects have ownership over objects of the system and subjects
can grant access rights to or revoke them from other subjects on the objects they own. It has been
shown that the major problem of DAC is that it does not ensure information flow control [55].
In MAC, all subjects and objects are classified based on some predefined clearance/sensitivity
levels that are used in an access decision [46, 49, 50]. These levels generally form a lattice
structure, and hence a MAC policy is sometimes known as a lattice-based policy [49]. Unlike
DAC, MAC provides deals with more specific security requirements, such as information flow
control policy. However, enforcement of MAC policies is often a difficult task. In particular, for
many commercial organizations [51], they do not provide viable solutions because they lack
adequate flexibility. Furthermore, organizational security needs are often a mixture of policies
that may need to use both DAC and MAC, which necessitates seeking solutions beyond those
provided by DAC and MAC only [46].

Role Based Access Control (RBAC) approaches have been shown to offer many benefits
over other models in terms of their applicability for a wider range of security requirements [5, 6,
7]. One feature of RBAC is the notion of role hierarchy. However, researchers have found some
limitations of the standard role hierarchy supported in RBAC. Hybrid hierarchy has been
proposed to overcome the shortcomings of the standard role hierarchy. Recently, the General
Temporal Role Based Access Control (GTRBAC) model has been proposed to add temporal

constraints into RBAC. In our proposal, we assume each individual domain employs the

12



GTRBAC model with hybrid hierarchy. Next, we will briefly overview RBAC, hybrid hierarchy,

GTRBAC, and the role-based administrative models.

2.1.1 Role Based Access Control (RBAC)

In RBAC, users are assigned memberships to roles and these roles are in turn assigned
permissions as shown in Figure 2.1. A user can acquire all the permissions of a role of which he
is a member. A role-based approach naturally fits into an organizational context as users are
assigned organizational roles that have well-defined duties and responsibilities, and are

associated with user qualifications [8].

Role Hierarchies

User Role Role Permission
Assignments Assignments
Users Roles Permissions

Constraints

Figure 2. 1. Constraints and hierarchy in RBAC

According to a survey conducted by the US National Institute of Standards and
Technology (NIST) [8], RBAC has been found to address many needs of the commercial and

government sectors. This study shows that access control decisions in many organizations are
13



based on “the roles that individual users take on as part of the organization.” Many
organizations surveyed indicate that they had unique security requirements and the available

products did not have adequate flexibility to address them.

Users Permissions Users Permissions
Uy 0y Uy 0y
U2 Role r 02 U2 02
un Om uﬂ Om
n+m nxXm
assignments assignments

@ (b)

Figure 2. 2. Number of permission assignments in () RBAC and (b) non-RBAC

One of the key advantages of an RBAC model is the efficiency it provides in security
administration. The role in the middle approach to access control removes the direct association
of the users from the objects. This greatly simplifies management of authorization in RBAC
systems. For example, when a user changes his role, all that needs to be done is to remove his
membership from the current role and assign him to the new role. In case authorizations were
specified in terms of direct associations between the users and the individual objects, this change
would require revoking from the users all their permissions over the objects and explicitly

granting the users the new permissions over the new set of objects. Figure 2.2 illustrates such
14



advantage of using RBAC approach. Using a role-based approach, the number of actual
assignments is considerably reduced. Generally, a system has very large number of subjects and

objects and hence using RBAC has benefits in terms of managing permissions.

Senior
Engineer

Senior
Administrator

Administrator

Engineer

Figure 2. 3. A Simple Role Hierarchy

Another key advantage of RBAC is the use of role hierarchy. Role hierarchies that exist
in many organizations based on the principle of generalization and specialization [41]. For
example, in a company there may be several roles arranged in a role hierarchy as shown in
Figure 2.3: Employee, Engineer, Senior Engineer, Administrator, Senior Administrator, and
Manager. Since everyone is an employee, the Employee role models the generic set of access
rights available to all. A Senior Engineer role will have all the permissions that an Engineer role

will have, who in turn will have the permissions available to the Employee role. Thus, permission

15



inheritance relations can be organized in role hierarchies. This further simplifies management of
access permissions.

Separation of Duty (SoD) has been considered a very desirable organizational security
requirement [52, 53, 54]. SoD constraints are enforced mainly to avoid possible fraud in
organizations. RBAC can be used to enforce such requirements easily — both statically and
dynamically. For example, a user can be prevented from being assigned to two roles, one of
which is related to authorizing a check and the other to cashing it, to prevent a possible fraud by

using a static SoD which says that a user cannot be assigned to two roles,.

2.1.2  Hybrid Hierarchy

Standard role hierarchy supported in RBAC combines the semantics of permission inheritance
and activation inheritance together. Several researchers have emphasized the need for separating
the permission inheritance and activation inheritance semantics to provide flexibility in
expressing fine-grained policies [10, 11]. Sandhu show that under the standard hierarchy
semantics, certain Separation of Duty (SoD) constraints cannot be defined on hierarchically
related roles, thus, restricting its effectiveness in supporting a broader set of fine-grained
constraints and, in particular, in representing MAC policies [10]. To address such shortcomings,
Sandhu has proposed the ER-RBAC96 model [10] that incorporates a distinction between a
usage hierarchy that applies only the permission-inheritance semantics and activation hierarchy

that uses the combined hierarchy semantics. Later, Joshi et al. [12] have established a clear
16



distinction among the  following three  types of hierarchical relations:
permission-inheritance-only relation (I-relation, >;), activation-only relation (A-relation, >,), and
the combined permission-inheritance and activation relation (IA-relation,>). They further
propose the notion of hybrid hierarchy [12] where the above three hierarchical relations co-exist,
while only IA-relations exist in the standard role hierarchy. Semantically, x >j y (read as x is
I-senior to y) means that permissions available to y are also available to x; x >, y (read as X is
A-senior to y) means that users who can activate x can also activate y; x >y (read as x is I1A-senior
to y) means that permissions available to y are also available to x and users who can activate x
can also activate y. It has been shown that such a fine-grained hierarchy can allow specification
of a wide range of security requirements, including the specification of Dynamic Separation of
Duty (DSoD), and user-centric as well as permission-centric cardinality constraints on roles [7,
12]. In their critiqgue of the standard RBAC model, Li et al. have emphasized that such a
distinction should be incorporated in the standard RBAC model to provide clearer semantics to
support uniformity in implementations of the RBAC models [13].

Joshi et al. have shown that in hybrid hierarchy a hierarchical relation between any pair
of roles which are not directly related could be derived [14]. It is obvious that the three hierarchy
types are transitive. For instance, if (x > y) and (y > z) then it implies (x > z). Similarly, since
IA-relation can be considered as both I-relation and A-relation, we have the following relations as
shown in Figure 2.4(a): (x <f;>y) A (y <fy>2z) => (x <f> z), where, (<fi>e{>}) v (<f,>¢
{=}) and <f> = <f;> if <f,>e {>}, otherwise <f> = <f,>,
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A special derivation relation in hybrid hierarchy is where an A-relation is followed by an
I-relation, as shown in Figure 2.4(b). Here, a user assigned to x cannot acquire permissions of z
by only activating x. However, any user assigned to x can acquire permissions of z by activating
y, which means x can still “inherit” permissions of z even if there is no I-relation between them.
In this situation, we say that x has a “conditioned” relation with z, written as x[y] > z [14].

If an I-relation is followed by an A-relation as shown in Figure 2.4(c), there is not any
derived relation between x and z. In this case, a user assigned to x cannot acquire permissions of
z, since he can only acquire permissions of y but cannot activate y. To summarize, we define the
derived relation between any pair of roles x and y as follows:

Definition 2.1 (Derived Relation): Let x and y be roles such that (x >4 y), that is, x has a derived

relation with y. Then the following holds: (x> y)V (x> y)V (x>y)V(Fa ER, x[a] =i y)
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, ¥
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() Unconditioned relations (b) X[y]> z (c) No relation

Figure 2. 4. Derived relations in a hybrid hierarchy
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Lemma 2.1: Let ry and r, be a pair of roles in the hybrid hierarchy; then users assigned to r; can
acquire permissions of r», iff. the following holds:

There exists at least one hierarchical path from r; to r, such that no I-relation precedes an
A-relation in the path.

The proof of Lemma 2.1 follows directly from the semantics of hybrid hierarchy as discussed

above.

2.1.3  Generalized Temporal Role Based Access Control (GTRBAC)

The GTRBAC model is an extension of RBAC that support temporal constraints [9]. Such a
flexibility of supporting various temporal constrains is very helpful in our framework. Nearly all
access decisions and related policy updates should be restricted by proper temporal constraints.
For example, in our Trust Management components, we add a new RTy rule in the providing
domain to facilitate the simplified proof. Such new rules should not exist forever. If any of the
related trust policy changes, the simplified proof may not be valid and needs to be reevaluated. In
such a case, we can use trigger feature in GTBAC to disable the new rule once the relevant
policies have changed. Another example, in the Policy Integration component we need to update
the local RBAC policy to facilitate the authorized interoperation, that is, creating an access role
and connecting them between requesting roles and requested roles (details in Section 4). Such
new roles and hierarchical relations should be restricted by proper temporal constraints too. If the

authorized interoperation is only authorized for a period of time, obviously the corresponding
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access roles and hierarchical relations should also be valid for that period only. The duration
constraints in GTRBAC can be used to specify such restrictions. We assume each individual
domain employs GTRBAC in our framework. Specifically, there are 6 types of temporal

constraints defined in GTRBAC [9]:
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Periodicity Constraints

A periodicity constraint contains a periodicity expression and an event expression. For example,
given a periodicity constraint <Monday, enable Doctor> (Hereafter we will use a slightly
different format without changing its semantic for each type of the constraint compared to the
original paper for better readability), the system should enable Doctor on every Monday, and
disable it on any other day.

Duration Constraints

A duration constraint contains a duration expression and an event expression. For example, <2
hours, enable Doctor> means that the system should disable the Doctor role 2 hours after it is
enabled. When applying a duration constraint to role activation, it takes four different formats: (1)
total role activation duration per role: for example, <10 hours, activate Doctor> means that the
total activation time of Doctor role is 10 hours; (2) total role activation duration per user-role:
for example, <10 hours, activate Doctor by Alice> means that the total activation time of Doctor
by Alice is 10 hours; (3) maximum role duration per activation per role: for example, <10 hours,
activate Doctor per session> means that the Doctor could be activated for at most 10 hours in a
single session; (4) maximum role duration per activation per user-role: for example, <10 hours,
activate Doctor by Alice per session> means that Doctor could only be activated for at most 10

hours in any of Alice’s sessions.
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Cardinality Constraint

The cardinality constraint is used to restrict the number of activations. It can be applied in four
different scenarios: (1) total number of activations per role: for example, <10, activate
Doctor>means that Doctor can be activated for at most 10 times; (2) total number of activations
per user-role: for example, <10, activate Doctor by Alice> means that Doctor can be activated
by Alice for at most 10 times; (3) max number of concurrent activations per role: for example,
<10, concurrent activate Doctor> means that at any time Doctor should occur in no more than
10 sessions; (4) max number of concurrent activations per user role: for example, <10,
concurrent activate Doctor by Alice> means that at any time Doctor should be activated in no
more than 10 of Alice’s sessions.

Constraints on Constraints

For each of the periodicity, duration, and cardinality constraints, we can add periodicity or
duration constraint on the constraint itself. Periodicity Constraint on constraints specifies the
enabling time of the corresponding constraints. For example, <Weekends, <2 hours, enable
Doctor>> specifies that the inner duration constraint is enabled only during weekends. Duration
Constraint on Constraints specifies how long a constraint is valid. For example, <10 hours, <10,
activate Doctor>> means that once the inner constraint is enabled, it should be disabled after 10

hours.
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Run-time Requests

GTRBAC supports administrators and users to issue run-time requests to change the system state.
An administrator can issue all the 10 types of event expressions. For example, an administrative
run-time request <enable constraint, <Monday, enable Doctor>, after 10 min> enables the inner
constraint after 10 minutes. A user can only issue role activation and role de-activation events as
run-time requests.

Triggers

A trigger consists of a precondition and a body, both of which are a set of event expressions. If
all the operations in the precondition occur, all the operations in the body should be issued. For
example, a trigger <enable Doctor — enable DoctorIlnTraining> specifies that once Doctor is
enabled DoctorInTraining should also be enabled.

As shown in Figure 1.1, the GTRBAC engine enforces the GTRBAC policy by updating
the RBAC policy according to the semantics of the temporal constraints. For example, enforcing
a periodical constraint <Monday, enable Doctor> involves automatically updating the enabling
state of the role Doctor in the RBAC policy. In our work, we assume a GTRBAC engine is
always running and updating the RBAC policy at fixed frequency. Whenever we mention an

“RBAC policy”, we mean the current RBAC policy.
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2.1.4 Role-based Administrative Models

In our framework, the local RBAC policies need to be changed to facilitate the Policy Integration
component. To support evolution of RBAC policies, administration of RBAC policies becomes
more and more important. The use of role itself to manage RBAC has become an appealing idea
recently. Sandhu et al. [15] have proposed an ARBAC97 (Administrative RBAC '97) model
consisting of URA97 (User-Role Assignment ’97), PRA97 (Permission-Role Assignment *97),
and RRA97 (Role-Role Assignment *97) model, which use RBAC to manage RBAC policies.
They further extend this model to ARBAC99 [16] and ARBACO02 [17]. Crampton et al. [18]
have proposed a SARBAC (Scoped Administration model for RBAC) model using the concept
of administrative scope. SARBAC has been shown to be capable of addressing several
shortcomings of ARBAC model and is better in terms of completeness, simplicity, practicality
and versatility. Both ARBAC family of models and SARBAC assume that only standard role
hierarchy is used. We briefly overview the SARBAC model next.

The basic idea of SARBAC is to use some roles to “administer” some other roles [18]. In
this way, the administration can be decentralized. The central idea of SARBAC is the notion of
administrative scope, which defines the range of roles that can be administered by the given role,
as shown next.

Definition 2.2 [18] (Administrative Scope): Given a role a, its administrative scope, S(a), is

defined as:
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S(@@={reR:r<a, fr\tac |a}

Where, 1r = {x&eR: x>r}, |[r={xeR: x<r}
Informally, r&S(a) if every path upwards from r goes through a. This ensures that any change to
r made by a will not have unexpected side effects due to inheritance elsewhere in the hierarchy.
The strict administrative scope of r is defined as S(r)\{r}, which we denote by S*(r). If r€S" (a),
a is referred to as the administrator of r [18]. The SARBAC model consists of three parts: Role
Hierarchy Administration (RHA) model, User Role Assignment (URA) model, and Permission
Role Assignment (PRA) model. SARBAC-RHA defines four administration operations:
AddRole(a, r, Ar, V), DeleteRole(a, r), AddEdge(a, c, p), and DeleteEdge(a, ¢, p), where Ar
is the set of the immediate juniors of the role r, and /r is the set of the immediate seniors of the
role r. Table 2.1 describes the conditions that are required for these operations to succeed. For
example, the first rule in Table 2.1 specifies that an administrator role a is able to add a new role
r (whose senior and junior roles are Vr and Ar respectively), if and only if Ar is within the
strict administrative scope of a and Vr is within the administrative scope of a. The rationale
here is that a can administrate both Vr and Ar so it should also be able to add a new role
between them. Similarly, the operations and their success conditions in SARBAC-URA are
summarized in Table 2.2, where /A C is a set of constraints needed to be satisfied by users or
permissions and ua-constraints assign some constraints to each of the role r. Let R’ = {ry, ..., r}

be a subset of R and let AR’ denote ry A ... Ary, we have the following definition:

25



Definition 2.3 (SARBAC Constraint): An SARBAC constraint has the form AC, where C € R.
A SARBAC constraint AC is satisfied by a user u if C £ | R(u). A SARBAC constraint /AC is
satisfied by a permission p if C S1R(p), here for any Y €X, 1Y = {x& X: 3yEY such that x >y},
and |Y = {xeX:dy € Y such that x <y}.

According to definition 2.3, a user is said to satisfy a set of roles if she is assigned to any one of
these roles, or the senior role of any of these roles. Intuitively, this constraint guarantees that if a
user satisfies a set of roles, she is the member of all these roles. For example, the first row of
Table 2.2 shows that if role a wants to assign user u to role r, r must be within the administrative
scope of a; and u must satisfy the “pre-condition” associated with role r. SARBAC-PRA is very

similar to SARBAC-URA by substituting "permissions” for “users”.

Table 2. 1. Hierarchical Operations in SARBAC-RHA

Operation Conditions
AddRole (a, r, Ar, V) Arc S (a),VrcS(a)
DeleteRole (a, r) r € S'(a)
AddEdge (a, c, p) c,p € S@
DeleteEdge (a, ¢, p) c,p € S@

Table 2. 2. User-Role operations in SARBAC-URA

Operation Conditions
AssignUser(a, u, r) reS(a), u satisfies AC, (r, AC) €ua-constraints
RevokeUser(a,u,r) |r € S(a)
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2.2 SECURE INTEROPERATION IN MULTIDOMAIN ENVIRONMENTS

As indicated by the principle of autonomy and principle of security, the access control policies in
the multidomain environment should be consistent with the access control policies in the
individual domains. In the literature, there are two major research areas related to access control
in multidomain environments: (1) global policy based approaches; and (2) trust management
approaches. In this section, we describe these two areas in detail and also briefly review other

related secure interoperation approaches.

2.2.1 Global Policy Based Approaches

A key approach to access control in multidomain environments involves mapping all the
individual policies into one centralized global policy, based on which all the interoperation
requests are authorized. We refer to such kind of approaches as “global policy based approach”
in this thesis. Such work includes Gong et al.’s computational complexity analysis [1] based on
the Access Control Matrix (ACM) model, Bonati et al.’s policy algebra [2], Dawson et al.’s
approach [3] based on the Multi-Level Security (MLS) model, and Shafiq et al.’s secure
interoperation framework [4] based on the RBAC model. A global policy should not violate the
principle of autonomy and principle of security. Intuitively, principle of autonomy indicates that
we may facilitate the interoperation by mapping different policies, but it should not result in the

removal of any existing authorization relations in the local policies. Principle of autonomy is
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typically implicitly guaranteed in the global policy by not changing any local policies when
mapping. Principle of security indicates that during the interoperation no new authorization
relation should be added within each individual domain. The use of global policy in multidomain
environments where RBAC is employed could introduce two types of violations of principle of
security. The first type of violation is referred to as cyclic inheritance conflicts [4]. In such a case,
the cross-domain hierarchical relationship may introduce a cycle in the global policy enabling a
subject lower (or junior) in the hierarchy to acquire the permissions of the subject higher (senior)
in the hierarchy. Figure 2.5(a) shows such an example. In Figure 2.5(a), role r, of d; is made
senior to r3 of d, to facilitate some interoperation needs, and r, is also made senior to r; to
facilitate another interoperation need. A cycle (r,, rs, I4, 1) is introduced in this case, and r, can
now inherit the permissions of r;, which violates the principle of security. The second type of
violation is referred to as a violation of Separation of Duty (SoD) [4]. In such a case, the
cross-domain hierarchical relationship may enable one subject to acquire permissions that violate
the SoD constraint. Figure 2.5(b) shows such an example. In figure 2.5(b), r, and r, in domain d;
are restricted by the SoD constraint. r; is made senior to r3 in d, to facilitate an interoperation
need, and r3 is made senior to r; to facilitate another interoperation need. Now the users of r; can
acquire the permissions of r,, thus violating the SoD constraint. Several techniques have been
proposed in the literature to detect and remove such violations introduced in the global policy.
For example, Shafiq et al. propose an Integer Programming based approach to detect and remove

cyclic inheritance cycle and violation of SoD in the global policy [4].
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Figure 2. 5. Example of (a) Cyclic inheritance conflict; (b) Violation of SoD

2.2.2  Trust Management Approaches in Multidomain Environments

Global policy based approaches assume that the interoperation needs can be predefined in order
to create the global policy. Another popular approach related to the cross-domain authorization is
the trust management based approach [19, 20, 21, 22], which aims to make authorization
decisions on dynamic interoperation requests involving domains previously unknown to each
other. In such a case, each individual domain typically does not know the identity of the external
users who issue the interoperation requests, and hence the authorization decisions are typically
made based on the properties of the entities, and such properties are typically encoded in
credentials in the literature [19, 20, 21, 22]. In a trust management system, each individual
domain typically specifies several rules defining which credentials are needed to access its
resources. External users requesting the resources need to prove that they have the required

credentials for an access right over the resources as defined by the policy of the
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resource-providing domain. Whether a user should be given a certain credential could in turn be
defined by the policy of the domain issuing that credential, which may further require another set
of credentials to be validated. For this reason, such trust management systems are sometimes
referred to as distributed proof systems in the literature [23, 24, 25]. We refer to such a process of
submitting and verifying the proof of credentials needed for requested resources according to the
relevant policies distributed over the network as distributed proof checking procedure. In our
framework, we propose to use a role based trust management language RT, [22] as the basis for
the proposed Trust Management component.

RTo [22] is a role based trust management language that models all the resources using
roles. For example, if Alice is given a credential certifying that she is a member of IEEE, Alice is
said to be the member of role “IEEE.member”. In RT,, entities are made members of roles
through four types of credentials, as shown below [22]:
® Type 1 (Simple Membership): A.r<~D
® Type 2 (Simple Containment): A.r<—B.r;
® Type 3 (Linked Roles): A.r—A.r.r;
® Type 4 (Role Intersections): A.r<f;Nf,N...NT,, where f; (i=1, 2, ..., n) is a simple role, or a
linked role

The four types of credentials in RT, are specified using logical rules. Therefore, we use
the following phrases interchangeably in this proposal: RT, policies, RT, rules, and RTy

credentials, and we will omit the prefix “RT,” if the context is clear. Type 1 rule specifies that
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entity D is made the member of role A.r; Type 2 rule specifies that any member of B.r; is also a
member of A.r; Type 3 rule specifies that any member of r, defined by members of A.ry is also a
member of A.r; and Type 4 rule specifies that members of all roles f; through f, are also the
members of A.r. Here, A, B, and D are entities. The body of the type 1 rule (i.e. D) can be the
identifier of either a user or a domain. The entities in all other places (i.e. A, B) can only be the
identifiers of domains. A role in RTj is defined by the domain defining it and a role identifier (i.e.
A.r). Hereafter, we will use both domain identifier and role identifier to represent a role if we
want to emphasize its domain. Otherwise, we will only use the role identifier to represent a role
for simplicity.

Given a set of related RT, policies, the requesting user needs to prove that she is
authorized to the requested resources (i.e. she is the member of the role associated to the
requested resources) by showing a chain of credentials that link the requesting entity to the
requested role. In a multidomain environment, the credentials may be distributed in different
domains, making the discovery of such credential chains a great challenge. Li et al. have
proposed a distributed credential chain discovery approach to efficiently find such credential
chains if they exist [26]. In their approach, they use a graph model to represent all the credentials
in the environment. Given an individual interoperation request (i.e. a user’s request to assume a
role), they check whether the requesting user is the member of the requested role in the graph.

They propose a forward search, a backward search, and a bi-directional search to check the role
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memberships in the graph. The time complexities of all the three search algorithms they have

proposed are cubic to the number of credentials.

2.2.3  Tightly and Loosely-Coupled Environments

In the literature, a multidomain environment is sometimes characterized as “tightly-coupled” or
“loosely-coupled”. In [27], Joshi et al. describe the “tightly-coupled environment” as “there
exists one master system and the master mediates accesses to individual systems through a global
policy”, and describe the “loosely-coupled environment” as one where “independent systems
dynamically come together to share information for a period of time”. It is clear that their
characterization of “tightly-coupled” environment refers to the multidomain environment that has
been studied extensively in the literature by using global policy based approaches. The
loosely-coupled environment, on the other hand, is an area that has not been studied adequately
in the literature. Our focus in this proposal is the access control challenges in loosely-coupled
environments. We will give a clearer characterization of tightly-coupled and loosely-coupled
environments in section 3. We do not claim that our characterization is the “only acceptable” one
for these two terms, nor that our classification using these two terms are the only way to classify
multidomain environments. Rather, our aim is to provide a clearer distinction between these two
types of environments so that it can help us to better understand the access control challenges in

each.
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3.0 ACCESS CONTROL CHALLENGES IN LOOSELY-COUPLED ENVIRONMENTS

In this section, we first characterize the tightly-coupled and loosely-coupled multidomain
environments. We then identify the specific access control challenges in loosely-coupled

environments, which are the focus of this dissertation.

3.1 TIGHTLY-COUPLED ENVIRONMENTS

Characteristic: The domains in a tightly-coupled environment are typically closely related to
each other and collaborate to pursue some specific common tasks. Such common tasks cannot be
completed without proper interoperations, and such interoperation needs are static and can be
predefined.

Example (from [4]): Consider the interoperation among various offices of a county for the
collection and sale of real-estate tax (the common tasks) on property parcels located within the
jurisdiction of a concerned county. The concerned county offices would include: County Clerk
Office (CCO), County Treasure Office (CTO), and County Attorney Office (CAO). These offices

interoperate and share information among each other for budget planning, tax billing and
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collection, sale of delinquent taxes, auditing, and other legal purposes. Integration of these local
databases is necessary to complete their tax processing tasks.

This is an example of a tightly-coupled environment, and the common tasks in this
environment is the collection and sale of tax. The three domains have to interoperate with each
other to complete their tasks. And the interoperation needs in such an environment are static. For
example, the Delinquent Tax Clerk in the CTO always need to consult with the County Clerk in
the CCO to collect the tax record, and the Redemption Cost Assessor in the CCO always need to
consult with the Deputy County Attorney Tax Section in the CAO to estimate the tax redemption
cost [4]. These interoperations are typically predefined before these organizations interoperate.
Challenges: There are two major access control challenges to ensure secure interoperations in
tightly-coupled environments.

The first challenge is how to make an access control decision for a particular
interoperation request. For example: should a user of DelinquentTaxClerk in the CTO be
authorized to acquire the permissions of CountyClerk in the CCO? Since the interoperation
needs are predefined in tightly-coupled environments, the administrators can create a global
policy by mapping the local roles in order to facilitate those predefined interoperations. And all
the interoperation requests can be checked against such a global policy. In this example, since it
is predefined that Delinquent Tax Clerk in the CTO needs to access the records of County Clerk
in the CCO to process the job, the administrators would make DelinquentTaxClerk senior to

CountyClerk in the global policy to facilitate such an interoperation need. As a result, all the
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users assigned to DelinquentTaxClerk are authorized to acquire the permissions of
CountyClerk, and all other users in the CTO are not authorized to acquire permissions of

CountyClerk in the CCO.

Delinquent Tax
Manager
Delinquent Tax
Clerk et

County Treasure Office (CTO)

Property Delinquent
Tax Manager
Redemption Cost Lien Sale Officer

Assessor

County Clerk Office (CCO)

Interoperation
Links

Deputy County
Attorney Tax
Para Legal
Tax Section

County Attorney Office (CAO)

Figure 3. 1. An example of the cyclic inheritance conflict in a tightly-coupled environment

The second challenge is how to preserve the principle of security in the global policy. As
discussed before, two types of violations of principle of security can be introduced in the global
policy. Figure 3.1 shows an example of the cyclic inheritance conflict introduced in the global
policy in a tightly-coupled environment. According to the predefined interoperation needs related
to tax processing, Delinquent Tax Clerk in the CTO needs to access the records of Property
Delinquent Tax Manager in the CCO to collect the tax record, Redemption Cost Assessor in the

CCO needs to access the records of Deputy County Attorney Tax in the CAO to estimate the tax
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redemption cost, and Para Legal Tax Section in the CAO needs to access the records of
Delinquent Tax Manager in the CTO to collect the relevant records for preparing tax sales pleas
[4]. These interoperation needs are facilitated by the three hierarchical relations shown in Figure
3.1. A cyclic inheritance conflict is introduced in this global policy (bold arrows in Figure 3.1)
and the principle of security is violated. Figure 3.2 shows an example of the violation of SoD
introduced in the global policy in a tightly-coupled environment. In domain CTO, Tax
Assessment Clerk (TAC) and Tax Billing Clerk (TBC) of CTO are restricted by an SoD
constraint, specifying that no single user should acquire the permissions of both the roles.
According to the predefined interoperation needs related to tax processing, TBC in the CTO
needs to consult the Property Tax Manager (PTM) in the CCO for the billing purpose, and PTM
needs to consult TAC for estimating the tax [4]. These interoperation needs are facilitated by two
hierarchical relations shown in Figure 3.2. In such a case, the user assigned to TBC can now
acquire the permissions of TAC, violating the SoD constraint defined over TAC and TBC. Note
that if we represent an SoD constraint using a bi-directional arrow (as shown in Figure 3.2), it
can be detected in the way similar to detecting the cyclic inheritance conflicts, i.e., detecting the
inheritance cycle in the global policy. To remove such violations, we need to break such
inheritance cycles. If we remove some interoperation links in the cycle, the interoperation needs
cannot be facilitated. If we remove some local link in the cycle, the principle of autonomy is
violated. As a result, there is a trade-off between maximizing the interoperations and preserving

the principle of autonomy.
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Figure 3. 2. An example of the violation of SoD in a tightly-coupled environment

3.2 LOOSELY-COUPLED ENVIRONMENTS

Characteristic: The domains in a loosely-coupled environment are typically independent of each
other and are able to carry out their major functions without interoperating with each other. There
are typically no specific common tasks that need to be done through interoperations of all
participating domains. Rather, the interoperation needs are usually driven “on demand” to
facilitate dynamic data sharing needs. Therefore, the interoperation needs in loosely-coupled
environments are dynamic and may not be predefined.

Example: Consider a distributed health care system (e.g. HL7 [28]) consisting of different
hospitals, clinic, healthcare stations, and other related organizations. Each domain operates on its
own to carry out its daily healthcare services related functions. Moreover, they may interoperate
and share their information such as Electronic Health Records (EHR) whenever needed, to

facilitate dynamic information sharing needs that arise, for instance, when a registered patient is
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taken cared of at another hospital while travelling away from home. Interoperation in such an
environment is transient, and need based.

This is an example of a loosely-coupled environment since the interoperation needs are
dynamic and cannot be predefined. For example, assume Bob travels outside his hometown and
needs to go to an emergency unit. The local hospital (Hospital A) may need to access his health
information from his home hospital (Hospital B) to provide him with a proper treatment. This
particular interoperation need is driven by a specific event (Bob needs to go to the emergency
ward), and we cannot predefine that Hospital A should always be authorized to access Bob’s
health information from Hospital B. Normally, there are no specific common tasks that require
the interoperation of all these healthcare domains, and they are able to operate on their own to
carry out their daily functions without interoperating with each other.

Challenges: A loosely-coupled environment has its specific access control challenges. Although
the description of some of the challenges looks similar to those in tightly-coupled environments,
different approaches are needed due to the unique features of loosely-coupled environments.

The first challenge is how to model the access requests in loosely-coupled environments.
The access request in a single system or tightly-coupled environment configured with RBAC is
straightforward. In a single system, users know the functional structure of the organization and
know which roles they need to assume to perform specific tasks. In a tightly-coupled
environment, the requesting users typically also know the functional structures of other domains

and know which roles they need to assume to facilitate the interoperation. For example, users of
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Delinquent Tax Clerk in the CTO know that Property Delinquent Tax Manager in the CCO has
access to the records necessary to process the job. As a result, users of DelinquentTaxClerk can
issue a request to assume the role of PropertyDelinquentTaxManager. In a loosely-coupled
environment, however, the access request cannot be modeled by the requested roles since the
domains usually do not know the policy structure of other domains. For example, when Bob goes
to the emergency room in Hospital A, the healthcare workers there look up and find that Bob is
registered in Hospital B (his home hospital). However, they do not know the policy of Hospital B.
Therefore, they are not able to request to assume specific roles in Hospital B. Instead, they are
only able to request to access Bob’s health information. From an RBAC perspective, this
example shows that it is more convenient to model the interoperation requests using the target
permissions but not target roles in a loosely-coupled environment. And it should be the
responsibility of the domains containing the requested permissions to identify some of their local
roles for external users to assume. For example, Hospital B knows that role Nurse(patient=Bob)
has the permissions to view Bob’s health information, and may allow healthcare workers in
Hospital A to acquire the permissions through it.

The second challenge is how to make an access control decision for a particular
interoperation request. This challenge looks the same as the first challenge in tightly-coupled
environments. However, unlike in tightly-coupled environments, we cannot let administrators
define a global policy to facilitate interoperation because the interoperation needs in a

loosely-coupled environment cannot be predefined. For example, at the time when both Hospital
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A and Hospital B join the environment, one cannot predefine that Hospital A is authorized to
access Bob’s health information from Hospital B. This is because such a cross-domain access is
only necessary when Bob needs to go to the emergency ward in Hospital A and this may never
happen. In the literature, researchers have shown that trust management approaches are
particularly useful to facilitate such distributed authorizations when the interoperation needs are
dynamic and the requesting users are unknown. For example, when the healthcare workers in
Hospital A request to access Bob’s health information in Hospital B, Hospital B may require that
only the users with valid healthcare licenses are allowed to access Bob’s health information.
Hence, Hospital B will need to ask healthcare workers in Hospital A to present their licenses in
order to gain the desired accesses. Once the license has been verified, the interoperation request
is authorized and the healthcare workers in Hospital A can access Bob’s health information from
Hospital B. This challenge shows that a Trust Management component is necessary in a
loosely-coupled environment.

The third challenge is how to preserve the principle of security during interoperations
among various domains. Recall that two types of violations of principle of security could be
introduced in the global policy: i.e. cyclic inheritance conflicts and violations of SoD. As global
policy based approaches cannot be applied to loosely-coupled environments, it seems that
loosely-coupled environments will not suffer from such violations. However, if there are multiple
interoperations generated within the same time period, the authorized interoperations could also

introduce these two types of violations. Figure 3.3 shows an example of cyclic inheritance
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conflicts in a loosely-coupled environment. Assume that Bob is registered and taken cared of at
his home hospital (Hospital B), where both the doctor and resident are authorized to access his
health care information. Typically, doctors have more privileges than residents, such as adding a
new entry to his record, so Doctor can be made senior to Resident in Hospital B’s local policy.
In Hospital A located at another city, healthcare workers are responsible for maintaining patients'
health information. There may be doctors who are specialists in cancer treatment and they need
special privileges to maintain cancer-related information. Therefore, SpecialistDoctor can be
made senior to HealthCareWorker in Hospital A. Now assume Bob needs to go to the
emergency ward in Hospital A when he travels to that city. To take care of Bob, a healthcare
worker in Hospital A needs to access Bob’s healthcare records and also needs to add a new entry
to Bob’s records. If such an interoperation need is authorized, HealthCareWorker of Hospital A
needs to be made senior to Doctor of Hospital B to facilitate it (interoperation 1 in Figure 3.3).
Assume that at the same time, hospital B receives a cancer patient but is unable to make a proper
treatment plan since they are not experts in cancer. The doctor in hospital B can ask the resident
to get some help from the specialist doctors in Hospital A (e.g. by accessing some cancer-specific
information in Hospital A to choose a proper treatment). If such an interoperation need is
authorized, Resident of Hospital B needs to be made senior to SpecialistDoctor of Hospital A
to facilitate it (interoperation 2 in Figure 3.3). At this time instant when both interoperations 1
and 2 in Figure 3.3 are authorized, an inheritance cycle is introduced in (shown by the 4 arrows).

Figure 3.4 shows an example of the violation of SoD in a loosely-coupled environment. In a
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hospital domain, an SoD constraint is defined over Doctor role and BillingClerk role specifying
that no single user can take the Doctor and BillingClerk roles at the same time. Assume the
Billing Clerk needs to acquire a patient’s insurance information through the InsuranceAgent
role in a insurance company. To facilitate this interoperation, BillingClerk is made senior to
InsuranceAgent (interoperation 1 in Figure 3.4). At the same time, assume the Insurance Agent
in the same insurance company needs to consult the Doctor for some patient’s health information
in order to estimate the insurance coverage. To facilitate such an interoperation,
InsuranceAgent is made senior of Doctor (interoperation 2 in Figure 3.4). At this time instant
when both interoperations 1 and 2 in Figure 3.4 are authorized, a violation of SoD occurs since
Billing Clerk can now acquire the permissions of Doctor. Unlike in a tightly-coupled
environment, there is no static global policy in loosely-coupled environments. Therefore, the
existing violation detection and removal approaches employed in global policy based approaches
in the literature cannot be applied here. This challenge shows that a proper mechanism to ensure

principle of security is necessary in a loosely-coupled environment.
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Figure 3. 3. An example of the cyclic inheritance conflict in a loosely-coupled environment
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4.0 THE PROPOSED ACCESS CONTROL AND TRUST MANAGEMENT

FRAMEWORK

In this section, we propose our access control and trust management framework for
loosely-coupled environments. We aim to address the key access control challenges in

loosely-coupled environments listed in section 3.2.

(€3] rar=<Ry.q, Pges™ | check
Role Mapping RBAC Policy

rar=< Rreqv Rdes[>

Trust Management
Simplify add simplified proof
(2) uar=<u, Ry, Rges™> <Fo Policy
deny fail to prove ! Proof Engine check
| can prove
authorize
< Policy Integration
Requesting Domain Resource Providing Domain

Figure 4. 1. Interaction and data flow among the components

44



4.1 OVERVIEW

The overall protocol and structure of our framework are shown in Figure 4.1. As mentioned in
Section 1, it is more convenient for the requesting users to specify the requested permissions
rather than the requested roles in loosely-coupled environments. Moreover, we have shown that
the Role-based interoperation Access Request (rar) is convenient in loosely-coupled
environments. Therefore, we first define rar formally in this section, as follows:

Definition 4.1(a) (Role-based interoperation Access Request): A Role-based interoperation
Access Request, rar, is defined as a tuple < dreq, Rreq, Odests Pdest, T>, where dyeq IS the requesting
domain, Rreq IS @ set of roles in dreq such that the function of each role in Ryq requires accessing
the common requested external resources, dqest IS the resource providing domain, Pges is a
permission set in dgest representing access to the requested resources, and T is the valid time
period of the request.

Since rar is defined by the requesting roles according to the role structure in the
requesting domain, it should be issued on behalf of the requesting domain rather than the
individual users. Note that the requesting domain needs to specify a valid time period T for the
rar since the interoperation needs in loosely-coupled environments are dynamic. Since our focus
is how to authorize Pgest t0 Rreq, We Will omit dreq, daest, and T from the expression of rar hereafter

when the context is clear.
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Upon receiving an rar, the resource providing domain needs to find a set of roles

containing the requested permissions Pgest. This is done in our Role Mapping component and we
refer to the resulting role set as Rgest. The new rar in terms of <Rrq, Reest™ is fed into the
proposed Simplify algorithm replaces as many of external roles in the proof of Rgest With the
local roles of the requesting domain as possible — thus, greatly simplifying the distributed proof
procedure. The existing simplified proofs are then added into the RT, policy so that the
individual users can use them to prove Rgest. Now, the individual users are allowed to issue
his/her interoperation access requests, which are defined formally as follows:
Definition 4.1(b) (User interoperation Access Request): A User interoperation Access Request,
uar, is defined as a tuple < u, Ry, Reest, T>, Where u is the requesting user, R, is the set of roles u
is assigned to, Ryest IS a role set in dgest CcOntaining the requested permissions (returned by Role
Mapping algorithm), and T is the valid time period of the request.

Again, the most important part of an uar is R, and Rgest, SO We will omit u and T hereafter
when the context is clear. The uar is verified in Proof Engine. If the user can prove Rgest, the
Policy Integration component is called to authorize the uar without violating the principle of
security; otherwise, the uar is denied.

Before we present the details of each component of our framework, we emphasize that
the focus of our framework is the access control challenges in loosely-coupled environments.
Several other issues in a multidomain environment, including the data management,

authentication, and communication protocol, are beyond the scope of our work. Moreover, our
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framework does not depend on any specific application area or implementation architecture.
Different application domains (e.g. military applications, healthcare applications) may have
different interoperation requirements and may specify different policies. Different architecture
(e.g. Peer-to-Peer, Service Oriented Architecture) may implement our framework using different
implementation techniques. However, our framework shall be able to solve the access control
challenges in these different environments as long as they are loosely-coupled environments (i.e.
satisfying the characteristics we described in section 3.2).

Heterogeneity has long been recognized as a fundamental problem in multidomain
environments [29]. Especially in loosely-coupled environments, different autonomous domains
are independent with each other and may represent their resources, organizational structures, and
access control policies in different ways. Here, we emphasize that our framework makes two
assumptions about the heterogeneity issue. First, we assume each individual domain employs
GTRBAC with hybrid hierarchy. We believe this is a reasonable assumption since RBAC and
hybrid hierarchy has been shown to be particularly useful in multidomain environments [4, 30],
and GTRBAC has been shown as a valuable extension of RBAC [9]. Second, we assume that
different domains share a uniform representation for the essentially same permission, so that
each domain can understand the permissions that other domains request. This is because we use
target permissions to model the access requests. Therefore, we need to make sure the permissions
provided by the involved domains are exactly the permissions requested by the users. Note that a

permission consists of an operation on an object, and is an abstract notion specific to RBAC.
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During implementation, different architectures may implement the notion of permission in
different ways. Therefore, how to ensure that different domains understand each other about the
actual meaning of a permission is architecture-dependent and is beyond the scope of our work.
For example, if the web service architecture [31, 32] is used, permissions would be implemented
as services and many service discovery approaches [33, 34] have been proposed to identify a

service according to its semantic representation.

4.2 THE ROLE MAPPING COMPONENT

In a traditional single domain RBAC system, a user’s access request is typically modeled as a set
of roles requested to be activated by the user. As discussed in section 3.2, it is desirable to model
the access control request in terms of requested permissions in loosely-coupled environments
because the users of a domain typically do not know the roles and hierarchical structures of the
external domains. Even in a single RBAC system, allowing users to specify access control
requests in terms of permissions would have some benefits. For example, a Windows user may
directly request to execute an application (e.g. by double-clicking the shortcut) that only the
administrators can execute. Even if she has an administrator account she may not be aware that
she has to log-in as administrators to execute the application until prompted by Windows. In such
a situation, we should allow the users to specify the requested permissions (i.e. executing a

program) directly and let the system find out which roles are needed (i.e. administrator role) and
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prompt the users to activate those roles (i.e. re-login as an administrator).

Requested Requested

Permissions . Roles N . Decision
Role Mapping Role Activation Checking f——mm>

y

Single Domain System

Requested Requested
Permissions ] Roles Decision
— > Role Mapplng Trust Management >

Loosely-Coupled Environment

Figure 4. 2. User Authorization Query Model

Motivated by this, we propose a User Authorization Query (UAQ) model that allows the
users to specify the requested permissions directly, as shown in Figure 4.2. The proposed UAQ
model takes two steps to facilitate the authorization decision. In the first step, the resource
providing domain runs a Role Mapping component to identify a set of roles that contains the
requested permissions for the requesting user to activate. In the second step, the resource
providing domain checks whether the requesting user is authorized to activate the roles returned
by the Role Mapping component. If UAQ is used in a single domain RBAC system (i.e. the
requesting user is from the resource providing domain), the domain needs to check the local
policy to decide whether the user is authorized to activate the corresponding roles. We have

proposed a UAQ model in the single domain in [35]. If UAQ is used in a loosely-coupled
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environment, the resource providing domain does not necessarily know the identity of the
requesting user. In this case, we use a trust management approach to check whether an external
user is authorized to activate the corresponding roles. This is consistent with Figure 4.1 where we

use Role Mapping first to get a set of requested roles then feed it into the Trust Management

component.

Legend

user-role-assignment

Figure 4. 3. An example RBAC policy to show the role mapping algorithms

Upon receiving the rar, the Role Mapping component is responsible for determining a set
of roles in its local policy that contains a subset of the requested permissions. We formally define
the Role Mapping problem as below:

Definition 4.2: We define the permission set of a role r&R, Pyy(r), and the permission set of a

role set Ry — R, Pau(Ry), as follows:
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Pau(r) = {pEP: pisassignedtory, r > ry }, Pau(R1)= u Pau(r)
reR;

where, Pqy(r) is the permission set that r can acquire, either through explicit assignments, or
through the I-hierarchy. P,,(Ry) is the union of the permission sets that can be acquired through
each role in R;.

Definition 4.3 (Role Mapping Problem): Given a request permission set Pro,

1. If exactly matched role sets exist: find a minimum Rgg such that Pau(Rro)=Pro;

2. If no exact-matching role sets exist:

a) If availability is the major concern - find a minimum Rgg such that  Pau(Rrg) 2 Pro;

b) If least privilege is the major concern - find a maximum Rgq such that Pay(Rrg) € Pro;
We note that if Prgis the least set of privileges, then at least Prg should be made available. In
that case, we consider it as an availability concern. Next, we use the RBAC policy shown in
Figure 4.3 to illustrate our role mapping algorithms for each of the 3 role mapping problems.
And Example 4.1 shows Pg(r) for each role in Figure 4.3 according to definition 4.2.

Example 4.1: Consider the RBAC policy in Figure 4.3, we have:

Pau(ro) = {P1, P2, P3, Pa, Ps, Pe: P7, Ps, P11, P12}, Pau(rs) = {P1, P2, P3, Pa, P11},

Pau(r2) = {Ps, Pe, P7, Ps, P12}, Pau(rs) = {Pe, P7, P8, P1a},  Pau(ra) = {p1, P2, Ps}, Pau(rs) = {ps, pa}
Pau(rs) = {P2, P3, Pa, Ps}, Pau(r7)= {Pa, Ps, P}, Pau(rs) = {Ps, Pe, P7, Ps}, Pau(re) = {Ps, P,
Pe}.Pau(r10) = {P7, P8, P10}, Pau(r1z) = {po}, Pau(riz) ={p:}, Paulris) = {p2, ps}, Pau(ris) = {pa},

Pau(ris)={ps},  Pau(rie)= {Pe}, Pau(riz)={p7, ps},  Pau(ris)= {po}
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In [36], Du et al. have shown that solving the role mapping problem 1 is NP-complete by
reducing it to the well known Minimal Set Cover (MSC) problem. They also propose a greedy
search algorithm to find the sub-optimal solution for the problem. However, their algorithm is
based on the assumption that there always exists a role set that exactly matches the requested
permission set. To accommodate inexact matches, we extend Du et al.*s algorithm to solve the
role mapping problem 1 as shown in Figure 4.4. The time complexity of Role-Mapping-1 is

within 1 + In [R| [36].

Role-Mapping-1(R, Pro)
Input: R — a set of all roles; Prg — a set of requested permissions
Output: Rrq— a set of roles, such that Pay(Rrg)=Prg and Rrqg & R
Rlez
foreachr =R
If Pay(r) # 2 and Pay(r) SPro
Ri<R; U {r}
RRQ<—®
while PRQi 2 do
if R1=Rgg return o
Find role v& (R1\Rrg) that maximize Pay(v) N Pro
Rre<—Rrq U {Vv}
10 PRQ<_PRQ \ Pau(V)
11 return Rrg

O© 00 NO Ol WN -

Figure 4. 4. The algorithm to solve role mapping problem 1
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Example 4.2: The result of applying Role-Mapping-1 to Figure 4.3 is shown in Table 4.1. In the
last step, Prog # 2, but Rrg= R1. The Role-Mapping-1 terminates with Rrq= 2, which means

we cannot find an exactly matched Rgq for Pgro.

Table 4. 1. Results of each step of Role-Mapping-1

Step0 Step 1 . Step2 . Step3 Step4-Stepll
Rro = @ Ev:rl Ev:rg iv:rlo EVZF4, Is, o, 12, 13,
Ri = {ry, rs | Reo={r1} ' Rro={rura} | Reo={rufafuo} | e e, a7
F4, Ts, Ts, To, ' Pro={ps, P7. Ps, | Pro={P10.P12} | Pro ={p12} | Rro =R
2, T3, T, | | ' Pro = {p12}

! P10, P12, P13}
I, 17} :

In order to solve the role mapping problem 2(a), we modify the Role-Mapping-1 to get
Role-Mapping-2a that finds a minimal role set Rrq Whose permission set is the superset of Prq,
as shown in Figure 4.5.

Here, W(V) = |Pau(V)| / |Pau(v)NPrg] is the weight function for any role v. Note that Vve
R, W(v) > 1, and W(v) = 1 if Pa(v) & Pro. Therefore, this weight function favors those roles
whose permission sets overlap the most with Pro. And if there are two roles v, and v, such that
W(v1) =W(v2), we select the one that covers more permissions of Pgrg, as shown in line 3. Note
that Rro can always be found since at least R itself can satisfy the condition Pau(R) 2Prq. Similar

to Role-Mapping-1, the time complexity of Role-Mapping-2a is also within 1 + In(|R|).
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Role-Mapping-2a(R, Pro)

Input: R — a set of all roles; Pro — a set of requested permissions.

Output: Rro— a set of roles, such that Pau(Rrg) 2 Pro, Rrog & R, and Rgrq is minimal

Find role v& (R\Rgrg) that minimize W(V) / |Pau(V) N Prg

1 RRQ<—®

2 while PRQig do

3

4 RRQHRRQU{V}

5 PRQHPRQ \ Pau(V)
6 return Rgo

Figure 4. 5. Algorithm for the role mapping problem 2(a)

Example 4.3: The result of applying Role-Mapping-2a to Figure 4.3 is shown in Table 4.2. In

the last step, Prg = 2, so Role-Mapping-2a terminates with Rrg = {ro, I's, ro}. Note that Pay(Rro)

= {p1, P2, P3, P4, Ps, Ps, P7, Ps, P10, P11, P12, P13} 2 Pro and Pau(RRg) \ Pro = {ps}-

Table 4. 2. Results of each step of Role-Mapping-2a

Step 0 Step 1 Step 2 Step 3
Rrg=2 (V=T V=T V=r3
W(v) = 10/9 W) =3 W(v) = 4
Rro = {ro} Rrq = {ro, Mo} Rro= {ro, I3, ro}
| Pro ={P10, P13} ' Pro= {p13} Pro=2

The greedy algorithm to solve the role mapping problem 2b is shown in Figure 4.6. In

Role-Mapping-2b, as we do not want to include any permission that is not in Prg, We first select

R1S R such that Pau(R1) & Pro. Then we try to select a maximal set Rrg & Rjsuch that Rrq
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includes as many permissions in Prq as possible. Note that Rrg can always be found because Ry
itself is a possible result. The algorithm terminates when no new permissions are added to
Pau(Rro). Note that the time complexity of Role-Mapping-2b is also within 1+ In(|R|[), which can
be trivally proved since the while loop in Role-Mapping-2b ends in less steps compared to that

of in Role-Mapping-1.

Role-Mapping-2b(R, Prg)

Input: R — a set of all roles; Prg —a set of requested permissions.
Output: Rrg— a set of roles, such that Pay(Rrg) © Pro, Rro& R and Rrq is maximal
1 R1<—®

2 foreachrinR

3  ifPa(r) # 2 and Pa(r) SPro

4 Ri<RU {r}

5 RRQ%Q

6 Pog <2

7 while PRQ #+ Pog do

8 ifRi=Rgg return o

9 Find role v& (R1\Rrg) that maximize Pay(v) N Pro
10 Poig <—PRQ

11 RRQHRRQ U{v}

12 PRQHPRQ \ Pau(V)

13 return Rgo \ {V}

Figure 4. 6. The algorithm to solve the role mapping problem 2(b)

Example 4.4: The result of applying Role-Mapping-2b to Figure 4.3 is shown in Table 4.3. In

the last step, Poig = Pro. This means no new permissions can be added to Pau(Rro).
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Role-Mapping-2b terminates with Rrg=Rrg \ {V} = {r1, rs}. Note that Pau(Rrq) = {p1, P2, P3, P4,
P, P7, Ps, P11, P13} & Pro and Prq \ Pau(Rro) = {P10}-

We can see that Role-Mapping-2a and Role-Mapping-2b may not return the exactly
matched role set Rgq even if it exists. Therefore, we should first run Role-Mapping-1 to try to
find an exactly matched role set Rgg. If Role-Mapping-1 fails, we can then apply
Role-Mapping-2a or Role-Mapping-2b based on whether availability or least privilege is more
important. Here we assume the system knows the choice. For example, if the system trusts the
user, the availability would be the main concern. Otherwise the least privilege may be the main
concern. The issue of balancing the availability and least privilege concerns is beyond the scope

of this thesis. Figure 4.7 shows the overall algorithm for the role mapping problem.

Table 4. 3. Results of each step of Role-Mapping-2b

Step 0 Step 1 Step 2 Step 3
Rro =2 v=n V=13 V=g
Ri1 = {ry, 13, ra, s, Rro ={ri} Rro = {r1, ra} Rro={r1, I3, ra}
:je :11‘;} f12, 13, T, Pro = {Ps, P7, Pe, Pro, P12, P1s} Pro={pio, P12} Pro = {P10, P12}
Py =2  Poia = {P1, P2, P3, P4, Pe, P7, Ps, | Pota = {Ps, P7, Pe, Poid ={P10, P12}

| P10, P11, P12, Pas} | P10, P12, P1s}
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Example 4.5: As Role-mapping-1 returns 2, we call Role-mapping-2a if availability is more
important, and get Rgro = {ro, rs, ri}. If least privilege is more important we call

Role-mapping-2b and get Rrg = {r1, rs}.

Role-Mapping(R, Pro)

Input: R — a set of all roles; Prg —a set of requested permissions.
Output: Rrg—a set of roles, and Rrg &R

1 Rgo<—Role-Mapping-1(R, Pro)

2 if RRQ #+ @ return RRQ

3 if availability is more important

4 Rro<—Role-Mapping-2(R, Pro)

5 elseif least privilege is more important

6 Rro<—Role-Mapping-3(R, Pro)

7 return Rrg

Figure 4. 7. Role-Mapping(R, Prq)

In our framework, the providing domain needs to run the Role-Mapping algorithm to
select a set of requested roles (Rqest) given the requested permissions (Pgest). Then, it replaces
rar=<Ryeq, Pgest> With rar=<Rrq, Rees™> and send the new request to the Trust Management
component, where the authorization decision on whether or not Rgest can be made available to
Rreq is made. For example, when Hospital B receives an rar= <{HospitalA.HealthCareWorker},
{add an entry to Bob’s record, read Bob’s record} >, it runs Role-Mapping and determines that

its Doctor role contains the requested permissions. Next, it replaces the requested permissions
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with the requested roles and sends the new request rar= <{HospitalA.HealthCareWorker},
{HostpitalB.Doctor}> to the Trust Management Component. Such the new form of request
indicates that Hospital B contains a proper local role Doctor for the requested permissions and
the Trust Management component should decide whether or not HospitalB.Doctor can be
authorized for HospitalA.HealthCareWorker. Note that in a loosely-coupled environment it is
possible that no single domain contains all the requested permissions and multiple domains need
to be involved to cover all the requested permissions.

Note that such role mapping results could be saved in the cache so that the same rar
issued later will not require re-running the whole process. The rationale here is that we believe

the local policy of each individual domain is relatively static.

4.3 THE TRUST MANAGEMENT COMPONENT

The Trust Management component is responsible for answering whether the requested
roles can be authorized to the requesting roles. Although the requesting users’ identities are also
available from the rar, traditional identity-based access control approaches are not practical
since the identities of the requesting users are usually not known to the providing domains in
loosely-coupled environments. For example, the providing domain knows that a user named
“Alice” is requesting some resources but doesn’t really know who Alice is. In the literature,

many distributed proof systems (e.g. [2, 3, 4]) have been proposed to make access control
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decisions based on the properties of the entities, often encoded in credentials in the literature.
Typically, a distributed proof system allows each domain to specify a logic-based policy to
protect its own resources. Users requesting interdomain accesses need to prove the required
credentials for an access right over a resource as defined by the policy of the resource-providing
domain. Whether or not a user should be given a certain credential is defined by the policy of the
credential issuing domain, which may require another set of credentials to be validated. As
mentioned earlier, we refer to such a process as “distributed proof procedure” in this paper.
Although widely studied in the literature, we note that existing role-based distributed
proof procedures are very expensive for the following two reasons: First, the distributed proof
procedure typically requires proving the credentials issued by the external domain (referred to as
external credentials, hereafter) which is much more expensive than proving the local credentials
(i.e. the issuer and receiver of the credentials are from the same domain). For proving the access
rights using local credentials, we assume that users either maintain a physical copy of the local
credentials (e.g. University ID), or have direct access to the local database to obtain the local
credentials very easily (e.g. log-in to the enterprise system). For proving the access rights using
external credentials, if the credentials are stored at the receiver side (i.e. at the user side) proving
them is as easy as proving local credentials. However, it has been shown that in many scenarios
credentials are stored in the issuer side and users need to search the internet to prove that they
have been issued the external credentials [26]. Moreover, such searching usually requires

proving a chain of other external credentials, as shown by the DCCD algorithm [26]. Therefore,
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we believe that the cost to prove a local credential is negligible or very small compared to the
cost to prove an external credential in this paper.

Second, existing role-based distributed proof procedures are especially expensive when
dealing with a specific interoperation request scenario that is very common in role-based
multidomain environments. In role based multidomain environments, it is very common that
several different users assigned to the same role (or a very small set of related roles) would
request to acquire the same external resource several times within a given period. In this paper,
as mentioned earlier, we refer to such interoperation requests as role-based interoperation
requests, and refer to the role(s) that requesting users are assigned to as requesting role(s). In
such a scenario, different users all request the same external resource because the functionality of
the requesting role requires obtaining the external resource, and it is common that several users
are assigned to the same role(s) (i.e. occupying the same position) in the same period. For
example, assume Bob is travelling outside his city and needs to go to the emergency room in a
local hospital. The assigned nurse there needs to obtain Bob’s health information from his home
hospital. Moreover, there might be several persons assigned to the nurse position (e.g. some
during daytime, and some during night time) when taking care of Bob. They all need to acquire
Bob’s health information when they are on duty. From access control perspective, obviously it is
not secure to allow the first nurse who has obtained Bob’s health information to disclose it to the
subsequent nurses. A more secure way is to require each nurse issuing a separate request so that

each request is evaluated and authorized separately for each nurse. Here, we note the role-based
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interoperation request scenario: different persons assigned to the same role (nurse) need to
request the same external resource (Bob’s health information) several times (when each person is
taking the position) within a period (the time period when Bob is taken care of).

Based on the discussion above, if we could find a way to authorize the requested resource
to the requesting role(s) directly, then all the requesting users need to do is to prove that they are
assigned to the requesting roles - which can be expected to be much less expensive since
requesting roles are local to the requesting users. Moreover, since all the requests are issued from
the same requesting role(s), such an authorization needs to be done only once during the
interoperation period. As a result, authorizing the requested resource directly to the requesting
role(s) would remove both of the two causes of the expense in the existing distributed proof
procedure. Motivated by this, we propose a formal framework for simplifying the distributed
proof procedures for role-based interoperation requests. We assume that each domain uses RTy
[22] to specify its trust management policy on how external users can prove the requested roles.
We use RT, language as its semantics has shown to be easily captured by translation to
negation-free Datalog rules which guarantees that the semantics is precise, monotonic and
algorithmic [22]. The purpose of this thesis is not to introduce a new language with different
expressivity but to build on the RT, framework, which has been well recognized as a framework
that combines the strength of role and attribute based access control and trust management —
which are important for secure interoperation. In this work, we do not deal with uncertainties and

probability based access semantics related to cross domain accesses; hence, approaches such as
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based on Bayesian techniques are not applicable here. Our approach is based on analyzing the
similarities between the RTy policies defining the requesting roles (i.e. Rreq) and the RTp policies
defining the requested roles (i.e. Reest). If any user that can prove Rreq is guaranteed to be able to
prove Rgest, then it is safe to authorize Rgest directly to Rreq, i.€. allowing users of Rreq to acquire
permissions of Reest. In this case, we say Rreq is the simplified proof for users in drq to acquire
Raest, compared to the expensive distributed proof procedures employed in existing approaches.

We first review the RT, language before we present our simplification framework. RTy
uses 4 types of rules to define the membership of a role:
® Type 1 (Simple Membership): A.r<—D
® Type 2 (Simple Containment): A.r<—B.r;
® Type 3 (Linked Roles): A.r<—A.ry.r;
® Type 4 (Role Intersections): A.r<—B;1.R1NB,.R2N...NBy.R,, where each B;.R; can be defined
by any of the above 4 types.

If the body of type 1 rule (i.e. D) is a user identifier, it is a special rule specifying that a
credential has been directly issued to a user. We note that it is beneficial to distinguish it from
other types of rules in the context of our framework. For example, “UPMC.MD<—Alice”
specifies that UPMC has issued Alice a credential certifying that Alice has a MD degree from
there. If we consider it as part of the RTy policy, the size of the policy would increase
significantly since such credentials could be issued to a huge number of users (e.g. all MD

students who have graduated from UPMC). For this reason, we only consider other RTy rules (i.e.
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rule type 1 where its body is a domain identifier, rule type 2, rule type 3, and rule type 4) as part
of the policy, as defined below:

Definition 4.4 (Trust Management Policy of a Domain): Given a domain A, we define its trust
management policy, Pol(A), to be the set of RT, rules whose head role is defined by A and does
not have a type 1 rule that has a user identifier in its body.

We then define the local role set and external role set of a certain domain as follows:

Definition 4.5 (Local and External Roles): Given a domain A, we define the set of its local
roles, denoted as LocalRoles(A), to be the roles appearing in the head of at least one rule in
Pol(A); we define the set of external roles of A, denoted as ExternalRoles(A), to be the roles with
the domain identifier other than A.

Note that we do not consider A’s roles that have no rule defining them to be A’s local roles. Such
roles are usually internal roles that no external users can assume. Since our focus is simplifying
the proof of the roles for external users, we do not consider such internal roles in our work. We
require each of A’s local roles to be defined by at least one rule in Pol(A). We further assume that
any user involved in the multidomain environment belongs to some domain. In this way, if u

belongs to domain A and A.r also belongs to LocalRoles(A), we say A.r is a local role of u.

4.3.1 A Motivational Example

The following example illustrates how we can simplify the distributed proof procedure by

analyzing the similarities of the RT policies of the requesting roles and the requested roles.
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Example 4.6:

Assume Bob has registered his health information in his home hospital (referred to as HH
hereafter), and assume Bob is travelling outside and has to go to the emergency room in a local
hospital (referred to as LH hereafter). To take care of Bob, the healthcare workers in LH (grouped
by HealthCare role) need to access Bob’s health information stored in HH. In HH, the primary
doctor of Bob (grouped by Doctor(patient=Bob) role, and denoted as Doctor for short) has the
permissions to access Bob’s health information. From role based perspective, such interoperation
need can be described as “the users assigned to HealthCare in LH requests to assume Doctor in
HH".

HH allows outside users to assume its Doctor role for emergency needs by specifying the

following policy using RTo:

HH: HH.Doctor < HH.MD rule 1
HH.MD < HH.MedicalSchool.MD rule 2
HH.MedicalSchool < ABU.Accredited rule 3

The policy specifies that users having Medical Doctor (MD) degree accepted by HH can assume
Doctor in HH (rule 1). Furthermore, HH accepts MD degree issued by medical schools accepted
by HH (rule 2). Finally, HH accepts all medical schools accredited by Accrediting Board for
Universities (ABU) (rule 3).

Assume that UPMC is a medical school accredited by ABU, and one user of

LH.HealthCare, Alice, has a MD degree from UPMC:
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ABU: ABU.Accredited < UPMC rule 4

UPMC: UPMC.MD < Alice rule 5
It is easy to verify that Alice can prove HH.Doctor from the policies above. However, even in
this very simple example constructing such proof for Alice involves the discovery of 5 rules from
the policies of 3 domains. Moreover, other users assigned to LH.HealthCare needs to prove
HH.Doctor separately when they are taking care of Bob.

Could such expensive distributed proof procedure be simplified for Alice, and all other
users assigned to LH.Healthcare? If we examine the policy in HH, we can conclude that any user
that has a MD degree issued by the medical school accredited by ABU can assume HH.Doctor:

HH:  “HH.Doctor < ABU.Accredited.MD” derived rule 1

Assume the policy in LH is defined as follows:

LH: LH.HealthCare < LH.MD N LH.Licensed rule 6
LH.MD < LH.MedicalSchool.MD rule 7
LH.MedicalSchool < ABU.Accredited rule 8
LH.Licensed < NMLS.Licensed rule 9

The policy specifies that users having MD degree and Medical license accepted by LH can
assume LH.HealthCare (rule 6). Similar to HH, LH also accepts the MD degree issued by
medical schools accepted by LH (rule 7), and accepts all medical schools accredited by ABU

(rule 8). In addition, LH accepts medical license issued by National Medical License Service,
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NMLS (rule 9). From these rules, we can conclude that any user that has a MD degree issued by
the medical school accredited by ABU and is licensed by NMLS can assume LH.HealthCare, i.e.
LH: “LH.HealthCare <ABU.Accredited.MD N NMLS.Licensed ” derived rule 2

Comparing derived rule 1 and derived rule 2, we find some similarities. In particular,
policy of LH.HealthCare is more restrictive than policy of HH.Doctor, implying that “any user
who can prove LH.HealthCare can also prove HH.Doctor”. Based on this, it is safe for HH to
add a new rule in its policy specifying that any user who can prove LH.HealthCare can assume
HH.Doctor:

HH: HH.Doctor < LH.HealthCare new (simplified) rule
For users in LH, proving the membership of LH.HealthCare is much easier than proving
ABU.Accredited.MD. This is because LH.HealthCare is a local role and is directly assigned to
users in LH, while ABU.Accredited.MD is an external role and users in LH need to examine
policy of ABU to find out whether or not their MD degree is issued by medical schools
accredited by ABU. Moreover, such authorization (from HH.Doctor to LH.HealthCare) needs to
be done only once. All subsequent requests from users assigned to LH.HealthCare need only to
prove LH.HealthCare in order to assume HH.Doctor.In other words, the distributed proof

procedure of HH.Doctor is simplified for users in LH by proving LH.HealthCare.
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4.3.2 The Simplify() Algorithm

The goal of our work is to automatically find such simplified proofs given the policies related to
the requested roles (e.g. HH.Doctor) and the requesting roles (e.g. LH.Healthcare). Example 4.6
illustrates that if we can represent the corresponding policies using credential sets (e.g. bodies of
derived rule 1 and derived rule 2), we are able to find the existing simplified proof by analyzing
the similarity of the two credential sets.

In order to find the derived rule as in Example 4.6, we can perform the following
derivations over the raw RTjy rules according to its semantic: two rules having the same head
means that either body can be used to prove the head, thus the two bodies can be combined
through OR relation. For example, A.r<—expr; and A.r<—expr, can be combined to A.r<—expr;
OR expr,. Similarly, the body of type 4 rule is actually the AND relation among simple roles or
linked roles. Furthermore, any simple role A.r in the body of a rule can be replaced by the body
of another rule (say rule;) if rule;’s head is equal to A.r; any linked role A.r1.r; in the body of a
rule can be replaced by the body of another rule (say, rule;) if rule;’s head is equal to A.r. In this
way, given a role A.r, we can start with the rules whose head is A.r and replace the roles in the
body using all the rules in A until no replacement can be made. The resulting expression is a
propositional logic expression containing AND and OR relations and all its literals are roles that
cannot be further replaced using Pol(A). Such logic expression describes how to construct the

proof of role A.R from A’s perspective.
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Example 4.7:

Consider the policy of LH (rule 6 through rule 9) in Example 4.6. Assume we want to
translate rules defining LH.HealthCare (which is rule 6 in this case). It is easy to see that rule 7
and rule 8 can be applied to replace the body of rule 6. The resulting expression is

LH.HealthCare<—LH.MedicalSchool. MD AND NMLS.Licensed.
LH.MedicalSchool.MD can be further replaced by rule 9. Finally, we get

LH.HealthCare < ABU.Accredited. MD AND NMLS.Licensed
No roles in its body can be further replaced by rules in Pol(LH). From LH’s perspective, the
above expression indicates that LH.HealthCare can be proved by proving both
ABU.Accredited.MD and NMLS.Licensed.

Note that in Example 4.7 “ABU.Accredited.MD” and “NMLS. Licensed” may be further
replaced using policies in ABU and NMLS (e.g. ABU.Accredited.MD can be replaced using rule 4
in ABU). However, we do such derivation of rules using only the local policy for the following
reasons: (i), it is not efficient to check the policies in other external domains since it could
involve searching the entire network; (ii), there are no privacy violations in examining the local
policy only; and (iii) Since only the local rules are involved, any changes in external domains
will not affect the proof of the target role and there is no need to worry about policy changes in
external domains which is expensive to detect. Next, we formally define a projection function []

to derive the proof of a role in the way described above.
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Definition 4.6 (Projection Function []):

A projection functiorf] takes A.r and Pol(A) as inputs, and outputs a proposition logic
expression [J(A.r, Pol(A)) such that:

® |t contains literals, AND, OR and parenthesis only

® Each literal in the expression is a role appearing in Pol(A).

And the logic expression is generated in the following way:

1. Combine all the bodies of rules whose head is A.r by OR relation with each body enclosed
within parenthesis.

2. In the resulting logic expression, replace any role if it appears in the heads of other rules
(for linked role A.ry.ro, if A.ry appears in the heads of other rules) with the bodies of those rules
connected by OR relation. Put a pair of parenthesis outside each replaced role.

3. Rewrite “N"using AND in the resulting expression. Put a pair of parenthesis outside each
element connected by “N ”.

Lemma 4.1:

[1(A.r, Pol(A)) represents all the possible combinations of minimal roles (appear in Pol(A) and
cannot be further replaced by rules in Pol(A)) that can prove A.r

It is easy to prove Lemma 4.1 from the semantics of RT, and the construction steps of [] in
Definition 4.6. Note that any propositional logic expression can be translated into Disjunctive
Normal Form (DNF). We use []one(A.1, Pol(A)) to denote the DNF representation of J(A.r,

Pol(A)), and we define the proof of a role as follows:
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Definition 4.7 (Proof of a Role):

Given a role A.r, Pol(A), and []one(A.1, Pol(A)), we define the proof of A.r, denoted as Proof(A.r),
as follows: Proof(A.r) = {R; | where c¢; is a conjunction part in []one(A.1, Pol(A)) and R; is the
set of roles in ci}

Proof(A.r) is a set of role sets. For any element e in Proof(A.r), we say a user proves e if she
proves all the roles in e, we have the following theorem:

Theorem 4.1: A user proves A.r if she proves at least one element in Proof(A.r).

Proof:

According to Lemma 4.1, [J(A.r, Pol(A)) represents all possible combinations of minimal roles
that can prove A.r. As[] one(A.r, Pol(A)) is the logic translation p  A.r, Pol(A)). it also
represents all possible combinations of minimal roles that can prove A.r. According to the logic
semantic of a DNF, the whole DNF expression is evaluated to be true if at least one conjunction
part is evaluated to be true. Recall that each e in Proof(A.r) is the collection of roles in one
conjunction part of [Tone(A.r, Pol(A)). Thus, proving at least one element in Proof(A.r) is enough

to prove A.r. |

Recall that each element in Proof(A.r) is a set of roles. Theorem 4.1 says that the user can prove
ANY element in Proof(A.r) to prove A.r since the elements are connected by OR relation
according to definition 4.6; and to prove an element a user needs to prove ALL the roles in it

since they are connected by AND relation according to definition 4.6.
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BuildAOT (Node node, Policy p)

Input: node: representing the role whose proof is to be built; p: the policy of that domain.
Output: an AND-OR tree starting from the root

1 if (node is a user identity U (i.e. type 1)) continue;
2 if (node is a simple role A.r (i.e. type 2))

3 node.type = OR;

4 foreach rule r in p defining A.r

5 add r.body to the children list of node;

6 BuildAOT(r.body, p);

7 if (node is a linked role A.r.r (i.e. type 3))

8 node.type = OR;

9 foreach type 1 or type 2 rule r defining A.ry

10 add r.body.r; to the children list of node;

11 BuildAOT(r.body, p);

12 if (node is an intersection role (i.e. type 4))

13 node.type = AND;

14 foreach role expression expr in the intersection role
15 add expr to the children list of node;

16 BuildAOT (expr, p);

Proof BuildProof(AOT root)

Figure 4. 8. BuildAOT algorithm

For a given role A.r and Policy(A), we build Proof(A.r) in two steps: (1) we build an
and-or-tree such that each node is a role expression expr in the RT, policy and expr has children
if and only if it can be derived according to definition 4.6. The algorithm to build such
and-or-tree for a given role expression, BuildAOT(), is shown in Figure 4.8. BuildAOT() is a
recursive function and should be called with the target role as the initial input; (2) we construct

Proof(A.r) using the proof tree we have built according to definition 4.7. The corresponding
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algorithm, BuildProof() is shown in Figure 4.9. BuildProof() is also a recursive function and

should be called with the root of the proof tree as the initial input.

Input: root: the root of the corresponding proof tree
Output: the proof of the root node of the corresponding proof tree
1 if (root.childrenNo==0) return {{root}};
2 Proof result = {{}};
3  foreach child c in root’s children list
4 Proof prf = BuildProof(c);
5 if (root.nodeType==0OR)
6 result = Union(result, prf);
7 else if (root.nodeType==AND)
8 result = Combine(result, prf);
9  return result;
Note: Union(Proof p,, Proof p,) = {p: U p.}
Combine(Proof py, Proof p,) = {e;Ue, | e1€p1, €2€p2}

Figure 4. 9. the algorithm to build the proof for a single role

Now, we are ready to generalize the proof of a single role to the proof of a set of roles. For a role
set A.R, we compute []onr(A.ri, Pol(A)) for every r; in A.R. We then connect their outputs by
AND relation and translate the resulting logical expression (no longer in DNF) into DNF,
denoted as []one(A.R, Pol(A)).

Definition 4.8 (Proof of a Set of Roles):Given a role set A.R, Pol(A), and []onr(A.R, Pol(A)), we
define the proof of A.R, denoted as Proof(A.R), as follows: Proof(A.R) = {R; | where ¢; is a

conjunction part in [[one(A.R, Pol(A)) and R; is the set of roles in ¢;}
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Proof(A.R) is also a set of role sets. For a target role set A.R, we say a user proves A.R if she
proves all the roles in it, we have:

Theorem 4.2:

A user proves A.R if he proves at least one element in Proof(A.R).

Proof:

Proof & dmilar b he poof of heorem 4.1. |

Proof BuildProof(Proof [] prfs)

Input: prfs: proofs of each single role

Output: proof of the role set

1 Proof result = {{}};

2  foreach proof prf in prfs

3 result=Combine(result, prf);

4 return result;

Note: Combine(Proof p;, Proof p,) = {e;Ue, | e1Ep1, e2€p2}

Figure 4. 10. the algorithm to build the proof for a set of roles

Figure 4.10 shows the algorithm to build the proof of a set of roles from the proofs of each single
role. This is simply a combination of the proofs of each single role according to definition 4.8.
Note that in practice, the proof of a single role can always be constructed together with the
domain’s RTy policy. That is, once the corresponding RTy policy is created, the proof of each role

protected by the policy can be calculated and saved for the future use. Therefore, we only need to
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analyze the time complexity of calculating the proof of a set of roles, which is given by the
following theorem:
Theorem 4.3:Consider domain A, Pol(A), and A.R. Let Proof(A.r) be proof of A.r in AR, then
the complexity of calculating Proof(A.R) (A.R={A.ry, ..., A.rn}) is given by O(TNue™™), where
TNryie is the total number of rules defining roles in A.R
Proof:
Proof(A.R) can be computed by the algorithm shown in Figure 4.10. The complexity of getting
all the proofs for each single role is O(1) if Proof(A.r) is given for any A.r € A.R. The complexity
of combining all the single proofs is |Proof(A.ri)|x|Proof(A.r;)|x...x |Proof(A.ry)| according to
the definition of Combine(). Since different elements in Proof(A.r) for any role A.r is connected
by OR relation, the number of elements in Proof(A.r) is the number of OR relations plus 1.
According to definition 4.6, the number of the OR relations connecting Proof(A.r) is the number
of rules whose head is A.r. Therefore, the complexity of those combinations are O(Nue®)
where Ny IS the average number of rules defining a single role A.rA.R. Hence, the overall
complexity is given by O(Nyue™). ]
Next, we need to find out whether the proof of the requesting roles is more restrictive
than the proof of the requested roles as indicated in Example 4.6. Towards this, we define two
important notions: proof-dominate and partial-proof-dominate relations as the foundation of our
simplification approach. As discussed before, if the proof of ryq is more restrictive than the proof

of Ryest, then proving rreq is enough to prove Rgest. But, we need to compare the “restrictiveness”
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of the proofs of two roles. Intuitively, the proof of a role ry is more restrictive than the proof of
another role r, if any combination of the roles that can prove r; is guaranteed to be able to prove
r,. In this case, we say “r; proof-dominates r,” and define it formally as below:
Definition 4.9 (Proof-Dominates relation between Two Roles): Given a pair of roles r; and r»,
we say r; proof-dominates rp, written as ry = ry, iff.

YV e1 € Proof(ry), 3e,<Proof(r,), such that e; 2e;
The following theorem shows the rationale of definition 4.9.
Theorem 4.4: r; 2 r, — any user who can prove r; can also prove r;
Proof:

According to theorem 4.1, any user who can prove r; must prove at least one element in
Proof(ry). Without loss of generality, we assume an arbitrary user u proves an arbitrary element
e1 € Proof(ry). Since r; = r,, we have e, EProof(r,), such that e; 2e,. And e; 2e, indicates
that u can also prove e,. According to Theorem 4.1, u can prove r. [
Definition 4.10 (Proof-Dominate between Two Role Sets): Given a pair of role sets R; and Ry,
we say R; proof-dominates Ry, written as R; 2 Ry, iff.

VYV e1 € Proof(R;), Je,EProof(Ry), such that e; 2e,
Theorem 4.5: Ry 2 Ry — any user who can prove Ry can also prove R;
Proof: The proof is similar to the proof of Theorem 4.4, n
For any target role set A.R, if we can find some role set B.R such that B.R 2 A.R, B.R can be an

alternative proof of A.R. Moreover, since B.R is the local role for users of B it is also a simplified
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proof of A.R. However, in many cases we may not be able to find such a B.R that
proof-dominates A.R. Nevertheless, it is still possible to simplify A.R if there exists B.R that
partial-proof-dominates A.R, as shown below:
Example 4.8
Following Example 4.6, now we assume HH modifies its policy and requires that “any user
having MD degree accepted by HH and is a member of American Medical Association (AMA)
can assume its Doctor role, as shown below:
HH: HH.Doctor < HH.MD N AMA.Member
In this case, Proof(HH.Doctor) becomes:
{{ABU.Accredited.MD, AMA.Member}}
According to definition 4.9, LH.HealthCare no longer proof-dominates HH.Doctor since there is
no element of Proof(HH. Doctor) that is the subset of Proof(LH.HealthCare). However, any user
of LH.HealthCare (who is able to prove ABU.Accredited. MD) is guaranteed to be able to prove
HH.Doctor if the user can also prove AMA.Member. Therefore, an alternative way to prove
HH.Doctor would be {{LH.HealthCare, AMA.Member}}. For users in LH, they only need to
prove one external role (i.e. AMA.Member) in the new proof, while they need to prove two
external roles (i.e. ABU.Accredited.MD, AMA.Member) in the original proof. In other words,
such an alternative proof is a simplified proof for users in LH.

Motivated by this example, we define partial-proof-dominate relation between two roles

as follows:
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Definition 4.11 (Partial-Proof-Dominate between Two Roles): Given a pair of roles r; and r,
and a non-empty role set AUX, we say r; partial-proof-dominates r, with an auxiliary role set
AUX, written as ry 2aux I, iff.
V e1€Proof(R;), 9e,E Proof(R,), such that e; UAUX 2e;
Based on this, we have the following theorem:
Theorem 4.6: r; 2ayx 2 — any user who can prove r; and AUX can also prove r,
Proof: According to theorem 4.1, any user who can prove r; must prove at least one element in
Proof(ry). Without loss of generality, we assume an arbitrary user u proves an arbitrary element
e1 € Proof(ry). Since r; =aux Iz, we have e, € Proof(r,), such that e; U AR 2e,. Since the user
can prove e; and AUX, she can prove e; also. In other words, u can prove an element of Proof(r,).
According to theorem 4.1, u can prove r. n
Definition 4.12 (Partial-Proof-Dominate between Two Role Sets): Given a pair of roles R;
and R, given a role set AUX, we say R; partial-proof-dominates R, with an auxiliary role set
AUX, written as Ry 2aux Ry, iff.
V e1 €Proof(R;), e,EProof(R,), such that e; UAUX 2e;

Theorem 4.7: Ry 2aux R, — any user who can prove R; and AUX can also prove R,
Proof: The proof is similar to the proof of Theorem 4.6. n

For any target role set A.R, if we can find some role set B.R such that B.R 2 AR, B.R can
be the simplified proof of A.R. If we are not able to find such role set but are able to find some

B.R such that B.R 2aux A.R, then B.R together with AUX can also be an alternative proof
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according to theorem 4.7. Whether B.R together with AUX is a simplified proof is determined by
the number of B’s external roles in it compared with the number of B’s external roles in the
original proof. We define Np(R) as the number of D’s local roles in a role set R. The simplified
proof of A.R for users in B is defined as below:

Definition 4.13 (Simplified Proof of A.R using B.R):

Given Proof(A.R) such that ¥ e = Proof(A.R) we have e ¢ B.R, the simplified proof of A.R using
B.R, denoted by SimplifiedProof(A.R, B.R), is given by (B.LR, AUX) where:

(1) 2#B.LRSB.R, and B.LR 2aux A.R

@ IfAUX#2,VeeProof(A.R), (JAUX|-Ng(AUX)) < (le|-Ng(e))

@) VTreB.LR, (B.LR\{r}, AUX) does not satisfy condition (1) and (2)

@) VreAUX, (B.LR, AUX\ {r}) does not satisfy condition (1) and (2).

Given Proof(A.R) to be simplified, we require that none of its element is the subset of B.R. In
other words, any possible proof (before simplification) of A.R must include at least one external
roles of B. Otherwise, there is no benefits of simplifying the proof of A.R for users of B, since
they can already prove A.R by proving local roles only before simplification. Given Proof(A.R),
its simplified proof consists of two role sets, B.LR and AUX, that satisfy condition (1) through (4)
respectively. Condition (1) ensures that we have a non-empty subset of B.LR that
proof-dominates A.R (if AUX = @) or partial-proof-dominates A.R (if AUX # ). According to
theorem 4.7, condition (1) actually ensures that users who can prove SimplifiedProof(A.R, B.R)

can also prove Proof(A.R). In other words, SimplifiedProof(A.R, B.R) is an alternative way to
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prove A.R if condition (1) holds. However, our goal is to simplify the distributed proof process
for A.R. Therefore, we also need to make sure SimplifiedProof(A.R, B.R) is “simpler” than any
element in Proof(A.R) (recall that any element in Proof(A.R) is one possible minimal role set that
can prove A.R), and this is ensured by condition (2). The underlying assumption and the
motivation of our approach is that proving a local role is much cheaper than proving an external
role. As a result, given two sets of roles that can prove A.R, the one having less external roles is
simpler than the one having more external roles. Therefore, condition (2) requires that the
number of B’s external roles in AUX is smaller than the number of B’s external roles in any
element of Proof(A.R). Condition (3) ensures that B.LR is the minimal role set that contributes to
a simplified proof. If (B.LR \ {r}, AUX) satisfies (1) and (2), any user who can prove B.LR and
AUX can also prove B.LR \ {r} and AUX, thus proving A.R in a “more simplified” way. In this
case, it makes no sense to include B.LR in the simplified proof and we should include B.LR \ {r}
as a simplified proof. Similarly, condition (4) ensures that AUX is the minimal role set that
contributes to a simplified proof.

Given two sets of role sets RS; and RS;, we define: (1) Overlap(RS;, RS,) = true iff.
“Je;ERS;, e, ERSy, e1Ne; # 27; and (2) RS;U* RS, = {e1Uey | VerEES;, Ve, €ES,}.
We present our proposed Simplify() algorithm in Figure 4.11. Simplify() constructs the

simplified proof in three steps:
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Algorithm: Simplify(A.R, Proof(A.R), B.R, Proof(B.r) for all B.r&B.R)
Input: A.R: target role set, Proof(A.R): proof of A.R to be simplified
B.R: role set in B that is used to simplify A.R
Proof(B.r) for all B.r&B.R: the corresponding proofs for all roles in B.R
Output: SP: A set of simplified proofs for A.R given B.R
[* filter out roles not contributing to simplified proof */
T =2, /T stores candidate roles in B.R
foreach role B.r in B.R
if (Overlap(Proof(B.r), Proof(A.R))==true) T=T U{B.r};
if (T ==2) return 2; //no simplified proof can be found

B Ww N

[* for each subset of roles in T, check whether it proof dominates or

partial-proof-dominates AR */
5 foreach subset of roles SET
6 AUX(S)=2; [laset of role sets
7 foreach e; in Proof(S)
8 AUX(ej)=2; [laset of role sets
9 foreach ej in Proof(A.R)

10 if (e Nej #2) AUX(ei) = AUX(ei) U {ej\ ei}

11 AUX(S)=AUX(e1) U*AUX(e2) U*... U*AUX(en), where Proof(S)={ey, €z, ..., én}
[* checks condition (2), (3), (4) in definition 4.13. */

12 foreach aux in AUX(S)

13 if (aux == 2) SP=SP U {(S, 2)};

14 else if (V e, =Proof(A.R), |aux|-Ng(aux)<|e,|-Ns(e2)) SP=SP U {(S, aux)};

15 foreach sp; in SP

16 foreach spj in SP

17 if (spi.B.LR O sp;.B.LR && sp;. AUX== Sp;.AUX) remove sp; from SP;

18 if (spi.,AUX D sp;.AUX && spi.B.LR == sp;.B.LR) remove sp; from SP;

19 return SP;

Figure 4. 11. Simplify() Algorithm

Step 1 (line 1-4): Selecting the candidate local roles of B.R to simplify Proof(A.R).

Here, we only consider those roles in B.R such that at least one role appearing in its proof also

appears in Proof(A.R) (line 3). The rationale is given by the following theorem:
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Theorem 4.8:
vSimplifiedProof(A.R, B.R)=(B.LR, AUX), VreB.LR we have:

Overlap(Proof(r), Proof(A.R)) = true
Proof:
We prove by contradiction and assume “Overlap(Proof(r), Proof(A.R)) = false”, we then prove
(B.LR \ {r}), AR) satisfies condition (1) and (2) in definition 4.13. This contradicts with (B.LR,
AUX) is a simplified proof. To prove (B.LR\{r}), AR) satisfies condition (1) and (2), we need to
prove the following:
(1) B.LR\{r}+#2
Sub-proof: Since B.LR is not empty it is equivalent to proving B.LR-={r}. In other words, prove
({r}, AUX) is not a simplified proof. We prove by contradiction and assume ({r}, AUX) is a
simplified proof. According to definition 4.13, we have, {r} >aux A.R. According to definition
4.12, we have “Ve; €EProof(r), Je,EProof(A.R) such that e; UAUX 2e,”. If AUX=2, we have
e1 =26, and then e; Ne, # 2. This contradicts the assumption that “Overlap(Proof(r), Proof(A.R))
= false”. Otherwise if AUX is not empty, since AUX is the auxiliary roles in a simplified proof
(B.LR, AR), the number of B’s external roles in AUX is less than the number of B’s external roles
in e, according to condition (2) in definition 4.13. Without loss of generality, we assume r* is B’s
external roles that belongs to e, but does not belong to AUX. As a result, r* must belong to e; to
ensure e; UAUX 2e,. In other words, we have e;Ne,={r*} # 2. This contradicts with the

assumption that Overlap (Proof(r), Proof(A.R)) = false
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(2) BLR\{r}<BR

Sub-proof: this is trivial since B.LRSB.R

(3) B.LR\ {r} >aux AR

Sub-proof: Since (B.LR, AUX) is a simplified proof, we have B.LR >aux A.R. And we have “Ve;

€ Proof(B.LR), de,=Proof(A.R) such that e; UAUX=2e,”. Ve;'€Proof(B.LR\{r}), it must be

the subset of some element e; =Proof(B.LR) (according to the construction of the proof of a set

of roles given by definition 4.8), i.e. e;=e;". Moreover, since e; \ e;" are roles appearing in

Proof(r) it does not contain any role in e, (by Overlap(Proof(r), Proof(A.R)) = false). We

conclude that e;" U AR is also the superset of e,. In other words, we have Y e;'EProof(B.LR\{r}),

= e, € Proof(A.R) such that e;' 2e,. According to definition 4.12, B.LR\ {r} =aux AR.

(4) if AR# 2,V e=Proof(A.R), (JAUX|-Ng(AU)) < (Je|-Ns(e))

Sub-Proof: this is trivial since AUX is the auxiliary set in a simplified proof |
Theorem 4.8 says that if B.LR contributes to a simplified proof, the proof of any role in

B.LR must overlap with Proof(A.R). As a result, we filter out those roles that do not satisfy this

necessary condition in step 1 of the algorithm. Note that if the resulting T is empty, then we are

not able to find any simplified proof using roles in B.R (line 4). Otherwise, we continue to check

whether any subset of T proof-dominates or partial-proof-dominates A.R.

Step 2 (line 5-11): examine each subset of T and check whether it proof-dominates or

partial-proof-dominates A.R.
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Given a subset SS T, we examine each element of Proof(S) and Proof(A.R) and build a matrix M
as follows. Each row corresponding to one element of Proof(S) and each column corresponding
to one element of Proof(A.R). Each cell of M, M(i, j), is a set of roles that are in the
corresponding element of Proof(A.R) (e;) but not in the corresponding element of Proof(S) (e;) if
ei MNej #2. Otherwise, M(i, j) is null. In this way, M(, j) (if not null) represents the set of
auxiliary roles needed to prove e; assuming e; has been proved. We then record the union of this
role sets into AUX(e;) for each ¢; (line 10). The semantic of AUX(e;) is: if a user proves S using e;,
she can prove A.R by proving any element in AUX(e;). Finally, we build a set of role sets AUX(S)
where each element of it is the union of one element in each AUX(e;) (defined by U*). The
semantic of AUX(S) is: no matter which element of Proof(S) a user uses to prove S, that user can
prove A.R by proving any element in AUX(S). For each element aux in AUX(S), we have S >
A.R according to definition 4.13. Note that if some element aux in AUX(S) is empty, it means S >
AR.

Step 3 (line 12-19): check whether (S,aux) satisfies condition (2), (3) and (4) of definition
4.13.

Condition (2) is checked at line 12-14; Condition (3) is checked at line 17; and Condition (4) is

checked at line 18.
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Table 4. 4. Example of using Simplify()

(a): AUX(e;) when examine S={B.r}

e; 4 ¥4, B.J"}g Ig 5. B.I'g, g Ty Fo. T10 ¥s. Fo. F1p A li"((’i)
7y B, s null 7o, P10 null H B rs}.{ro. rot}
s null By, g null 7o, 10 {{B.rs. rs}.{ 1o, 110} }
(): AUX(e;) when examine S={B.r;}
o5 | roBayrs | rsBars | rpbern | s r. o AUX(e)
T3 74, B rs, B null nuil {{r4, Brs},{7s,B.rs}}
e null null P4, P10 s, F1o {{ra. 110k {75, 10} )
(¢): AUX(e;) when examine S={B.r, B.r»}
& % | #y By | Fs.Buaaig | Pt i | ¥ Fo, Fio AUX(e;)
F4, I8 B s, B3 79, 710 null {{B.r}.{rs, Br3}.{ ro. "0} }
74, o B, 1 null 10 5, F10 {{B.rs. rg}.{ 1o }.{7s. rio}}
75,13 13, B3 B3 null 79, F10 {{ry, B.rs}.{B.a}.{ ro. 10} }
5.1 null Burs,rs T4 710 10 B, e} { ra: 110} { ro} )

Example 4.9:

Assume that domain

Proof(A.R)={{rs,B.r3,rg},{rs B.rs,rs}, {rs,ro,rio},{rs,ro,ri0}} (the focus of this example is the
simplify() algorithm so we will not show how to calculate Proof(A.R) from original RTy rules

here). Assume after step 1, only two roles in B (i.e. B.r; and B.r,) are included in T, and their

proofs are:

Proof(B.r1)={{rs},{rs}}, and Proof(B.ro)={{rs},{ro}}
Now we start to examine all subsets of T. They are {B.ri}, {B.r.}, and {B.ry, B.r,}.

We first examine S={B.r,1} and the resulting AUX(e;) is shown in Table 4.4(a). We have
AUX({B.r1})=AUX({rs}) U *AUX({rs})={{B.rs, rs}.,{B.r3, rg, ro, rio},{ro, rio}}. Only one element

in AUX({B.r1}) (i.e. {B.rs, rg}) has smaller number of B’s external roles (i.e. 1) than the number

B wants to simplify the proof of a set of role AR in A, and assume
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of B’s external roles in any element of Proof(A.R) (at least 2). As a result, we include
({B.r1},{B.rs, rg}) in SP.

We then examine S={B.r,}, and the resulting AUX(e;) is shown in Table 4.4(b). We have
AUX({B.r2})=AUX({rs}) U *AUX({ro})={{rs, B.r3, rio},{rs, B.rs, rs, rio},{rs, B.rs, rio}}. No
element in AUC({B.r,}) has smaller number of B’s external roles than the number of B’s external
roles in any element of Proof(A.R) (at least 2). As a result, no element is added to SP.

We then examine S={B.r1, B.r.}. We have Proof({B.r;, B.r,})={{rsrs}.{ra,ro}.{rsrs},
{rs,ro}} and the resulting AUX(e;) is shown in Table 4.4(c). We have AUX({B.ri,B.r:})=
AUX({r4,rg}) U*AUX({r4,ro}) U *AUX({rs,rs}) U *AUX({rs,ro})={...} (There are 81 elements so
we omit the detailed result here). Only one element in AUX({B.ri,B.r.}) (i.e. {B.r3, ri},
constructed by the bold elements in each AUX(e;)) has smaller number of B’s external roles (i.e. 1)
than the number of B’s external roles in any element of Proof(A.R) (at least 2). As a result, we
include ({B.ry, B.r.},{B.rs, rio}) in SP.

Now we have SP={({B.r1},{B.rs, rs}), ({B.r1, B.ro.},{B.rs, rio})}. It is easy to verify that
both of the two elements will pass the checking at line 17 and line 18. Therefore, SP is the output
of our algorithm.

Next, we formally prove the correctness of Simplify() using the following two theorems:
Theorem 4.9 (Completeness of Simplify()):

Given A.R, B.R, and Proof(B.r) for all B.r&B.R, any Simplified Proof(A.R, B.R) will be included

in the output of Simplify().
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Proof:

For any SimplifiedProof (A.R, B.R) = (B.LR, AUX), it is easy to see from Simplify() that if the
following sub-problems are proved, then it will be included in the output of the algorithm:

(1) B.LRZT atline 3.

Sub-proof: To prove B.LRS T, we need to prove VreB.LR, r&T. According to the
construction of T in line 3, we need to prove Vr&B.LR, Overlap(Proof(r), Proof(A.R)) = true.
This has been proved in theorem 4.8.

2 When examining S=B.LRCT, AUX & AUX(B.LR) in line 11.

Sub-proof: We have B.LR >aux A.R. According to definition 4.12, we have “V e; < Proof(B.LR),
e & Proof(A.R) such that e; U AUX=2¢gj” (We use slightly different symbols compared to
definition 4.12 but it is easy to verify that the semantic is the same). If &; N eji # 2, we have
eji) S AUX, which contradicts with “the number of B’s external roles in AUX is smaller than the
number of B’s external roles in e~ (AUX is the auxiliary role set in a simplified proof). As a
result, we have e; N eji # <. According to line 10, the algorithm will mark ejs \ e; in M(i, j(i))
and make eji \ &i SAUX(ei). We also have gy \ € is the subset of AUX. Recall that here e; is an
arbitrary element in Proof(B.LR), so for any e;, the above conclusions are true. Therefore, when
we “U*” all AUX(ej) in line 11 to form AUX(B.LR), one element of AUX(B.LR) (say, AUX') is
the union of  “ej;)\ & for all e;. Since each e\ e is the subset of AUX, AUX" is also a subset of
AUX. Next, we prove that AUX' must equal to AUX. Otherwise (i.e. AUX'C AUX), AIX', as the

element of AUX(B.LR), satisfies condition (1) and (2) of definition 4.13 (as will be proved in
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sub-proof (1) and (2) in theorem 4.10). This contradicts with condition (4) in definition 4.13.

Therefore, AUX'=AUX. In other words, AUXE AUX(B.LR).

@) If AUX is not empty, it will pass the check in line 14. That is, V e & Proof(A.R),
IAUX|-Ng(AUX)<|e|-Ng(e)

Sub-proof: This is trivial since (B.LR, AUX) is a simplified proof and condition (2) of definition

4.13 ensures this.

) B.LR will pass the check in line 17.

Sub-proof: This is trivial since (B.LR, AUX) is a simplified proof and condition (3) of definition

4.13 ensures this.

5) AUX will pass the check in line 18.

Sub-proof: This is trivial since (B.LR, AUX) is a simplified proof and condition (4) in definition

4.13 ensures this.

Combining sub-proof (1) through (5), it is easy to verify that (B.LR, AUX) will be included in the

output of Simplify(). |

Theorem 4.10 (Soundness of Simplify()):

Any element in the output of Simplify() is a simplified proof of A.R using B.R.

Proof:

Without lose of generality, we assume (SST, auxeAUX(S)) is one arbitrary output of the

algorithm. We need to prove (S, aux) is a simplified proof according to definition 4.13. We prove

(S, aux) satisfies condition (1) through (4) of definition 4.13 as below:
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(1) 2#SSB.Rand S >.AR.

Sub-proof: 2#SC B.R is trivial according to step 1. Next, we prove S >, A.R. According to the

construction of AUX(S) at line 11, we have “aux is the union of one element in each AUX(e;)”

since auxeAUX(S). Without lose of generality, we assume aux(e;) is the element of an arbitrary

AUX(e;) that forms aux with other elements through the union operation (i.e. aux(ej)< aux).

Besides, AUX(e;) is constructed by e; \ e; for some element ¢; in Proof(A.R), therefore, e; U

aux(e)) = e In other words, we have “Ve;Proof(S), Je;=Proof(A.R) such that e; U aux(e;)

= ¢”. Since aux(ej)Saux for all e;=Proof(S), we have “Ve<Proof(S), Je;<Proof(A.R)

such that e Uaux = e;”. According to definition 4.12, we have S >, A.R.

(2) if aux#+9,VeeProof(A.R), (Jaux|-Ng(aux)) < (le|-Ns(e))

Sub-proof: This is trivial according to the checking at line 13 and 14,

(3) Vres, (S\{r}, aux) does not satisfy condition (1) and (2) of definition 4.13

Sub-proof: This is trivial since (S, aux) passes the checking at line 17.

(4) Vreaux, (S, aux \ {r}) does not satisfy condition (1) and (2) of definition 4.13.

Sub-proof: This is trivial since (S, aux) passes the checking at line 18. |
Next, we analyze the complexity of our approach. Simplify() requires Proof(A.R) as one

of its inputs. The complexity of calculating the proof of a set of roles is given by Theorem 4.3.

The complexity of Simplify() is given by the following theorem:

Theorem 4.11:

The worst case complexity of Simplify() is exponential to |A.R| and |T|
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Proof:
We need to use Proof(A.R), and the complexity of calculating Proof(A.R) is exponential to |A.R|
according to theorem 4.3. Step 1 has complexity of O(|B.R|) since we need to examine every role
in |B.R| to calculate T. The complexity of step 2 is given by O(2Mx(TNue™+|Proof(S)|
x|Proof(A.R)|[+|AUX(S)). This is because we need to check any subset S of T in step 2. Checking
one such S needs to calculate Proof(S) (the complexity is TNue" according to theorem 4.3),
check any pair of elements in Proof(S) and Proof(A.R), and check any element in AUX(S).
|Proof(S)| is further given by ASPS®! where ARPS is the Average Size of Proof(r) for all r€S (by
definition 4.8). |Proof(A.R)| is further given by ASPAR™® where ASPAR is the Average Size of
Proof(r) for all r€A.R (by definition 4.8). And O(JAUX(S)|) is given by ASPS® to the power of
ASPARMR! (by the construction of AUX(S) in step 2). In summary, the complexity of step 2 is
exponential to |A.R| and [T| (Maximal S is T). The complexity of step 3 is O(JAUX(S)|+|SP[?).
O(|SP|) is given by O(JAUX(S)x|S]) since any element in AUX(S) together with S could form an
element of SP. Therefore, the complexity of step 3 is given by O(JAUX(S)[?) which is exponential
to |A.R| and |T|. Combining all the three steps, the complexity of Simplify() is exponential to
|A.R| and [T]|. |
In summary, the complexity of our simplification framework is exponential to the number
of JA.R| since we need to examine Proof(A.R) which cannot be avoided in our approach. The

complexity of our framework is also exponential to the number of |T| because we need to
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examine every subset of candidate roles to find the simplified proof, and this expensive step
cannot be avoided either, as shown in the following example:

Example 4.10:

Assume Proof(A.R)={{rs,rs}}. Consider two roles in B such that Proof(B.r;)={{rs}} and
Proof(B.r2)={{r4}}. It is easy to verify that neither of these two roles proof-dominates A.R.
However, if we consider the union of these two roles, i.e. {B.r;, B.r;}, we have
Proof({B.ry,B.r.})={{rs, rs}}. Now we can verify that {B.r;, B.r,} = AR, and the
corresponding simplified proof is ({B.r1,B.r2}, 9).

Example 4.10 shows that a set of roles could contribute to a simplified proof without auxiliary
set even if none of its subsets can. Therefore, in order to ensure that Simplify() can find all the
existing simplified proofs, we need to examine every subset S of the candidate role set T.
Although the complexity of our algorithm is exponential to |A.R| and |T|, we argue that the
performance of our algorithm is still acceptable for the following reasons:

|A.R| is likely to be very small in practice. Recall that A.R represents the roles that outside
users want to assume in a single access request. Therefore, it is not likely to be a very large
number in practice.

|T| is also likely to be small in practice. First, the size of B.R is likely to be small according to
the discussion before. Second, we argue that usually only small portion of B.R will be included in
T in practice. Intuitively, if a role is selected in T, its policy must share some common roles with

the target role whose proof is to be simplified (Overlap(Proof(r), Proof(A.R)) = true). In practice,
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we claim that usually only a small number of roles in two different domains will share some
common roles (credentials) in their policies.

Example 4.11:

Consider two hospital (say, H; and H,) domains both having Doctor role, Nurse role, Finance
role, and Admin role (a simplified example). Consider the policy of H,.Doctor. Usually the
policy of H;.Doctor would share some common credentials with it (e.g. both require MD degree
and license of doctor), and the policy of H;.Nurse may also share some common credentials with
it (e.g. both require health-care license). On the other hand, the policies of Hj.Finance and
Hj;.admin usually do not share any common credentials with the policy of H.doctor. According
to step 1 in Simplify(), H;.Finance and H; Admin will be eliminated from T if we want to
simplify the proof of H,.doctor.

In case |A.R| is relatively large (e.g. 3, where the worst case complexity of our approach
becomes cubic), we propose several heuristics that are able to reduce the complexity of
Simplify() from different aspects. During implementation, the developers can choose some of
the heuristics according to their specific needs.

Heuristicl: Using “trimming” mechanism in calculating AUX(S). The most complex part in
our algorithm is to examine each element in AUX(S) which is given by ASPS® to the power of
ASPARMR! However, if we find some elements in AUX(e;) whose number of B’s external roles is
not smaller than the number of B’s external roles in some element of Proof(A.R), we do not need

to include it in AUX(e;) since the auxiliary role set formed by it will not pass the checking at line
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14. For example, in Table 4.4(a) {ro, ri0} is one element in AUX({r4}) that already contains two
of B’s external roles (equal to the number of B’s external roles in some element of Proof(A.R)).
The elements of AUX(S) constructed from it (i.e. {B.rs, g, rq, r1o} and {ry, rio}) will not pass the
checking at line 18. As a result, we can remove {r, rio} from both AUX({rs}) and AUX({rs}). In
this way, we can significantly reduce the complexity of calculating AUX(S).

Heuristic 2: For each S, output one simplified proof whose auxiliary role set has smallest
number of B’s external roles.

In Simplify(), for each S we output all simplified proofs with different auxiliary sets (elements in
AUX(S)). Since proving external roles is expensive, we can choose to output one simplified proof
for each S whose auxiliary role set has the smallest number of B’s external roles. To ensure this,
we need to slightly modify line 10 and line 11 in our algorithm. Instead of making the union of
all {e;\ i} to form AUX(e;) (line 10), we choose {e;j\ ei} with the smallest number of B’s external
roles to be AUX(e;). And we use a standard union instead of “U*” in line 11 to form AUX(S)
(which becomes a single set) since each AUX(g;) is a single set now. In this way, the complexity
of calculating AUX(S) reduces to |Proof(S)|x|Proof(A.R)|, which is no longer exponential.
Heuristic 3: Output one simplified proof with the smallest B.LR.

In our algorithm, we examine every subset S of T. If S contributes to a simplified proof, S itself
becomes B.LR in the simplified proof (recall that B.LR is the first component in a simplified
proof). During implementation, we can examine subsets of T with increasing size. Once we find

a simplified proof, the algorithm terminates (instead of examining further subsets with larger size)
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and output that simplified proof. In this way, we ensure only one simplified proof is returned and
it has smallest B.LR among all possible simplified proofs. And the complexity of step 2 could be
reduced significantly.

Heuristic 4: Restrict the size of S.

We can restrict the size of S when we examining the subsets of T. For example, we can restrict
that only those subsets with size not greater than 3 will be examined. In this way, we do not want
to simplify the proof by using more than 3 of B’s local roles. It is easy to see that the complexity

of the algorithm is exponential to only |A.R| in this case.

4.3.3 Proof Engine

After the simplified proof has been found for a particular rar, the relevant users (i.e. users
assigned to some of the requesting roles and need to access the requested resource according to
the functions of the requesting roles) can issue uar to actually request to access the requested
resources. The Proof Engine is responsible for verifying whether a user can prove the requested
roles using DCCD and the simplified proof if exist. Given an uar <B.u, R,, A.R>, if there exists a
simplified proof <B.R, AUX> for A.R such that R,=2B.R, we say that B.u benefit from the
simplified proof since B.u can prove B.R. The proving of A.R for B.u can be simplified by
proving B.R and AUX. Note that B.u still needs to prove AUX using DCCD since AUX are not
local roles of B. For those users not benefit from any simplified proofs, they need to prove A.R

using DCCD.
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4.3.4 Evaluation

The motivation of this work is to simplify the distributed proof procedure in role-based
interoperation scenario. As discussed, Distributed Credential Chain Discover (DCCD) based on
RTy is an extensively studied distributed proof procedure based on the notion of roles. Therefore,
we evaluate the performance of our approach against DCCD approach. Here, we define the term
“performance” as the time complexity of running the required algorithms to make an
authorization decision on a set of role-based interoperation requests. Recall that a set of
role-based interoperation requests are issued from different users from the same set of requesting
roles for a set of requested roles. Assume m requesting users assigned to some roles in B.R issues
m requests for the requested role set A.R, and assume C is the total number of credentials in the
environment. The complexity of authorizing all these m requests using traditional DCCD
approach is given by:
To=m AR O(CY) (1)

This is because DCCD treats the m requests separately. That is, given a single requested role
requested from one single user, DCCD approaches check whether the requesting user is able to
prove that single role using the credential chains. Therefore, in our defined role-based
interoperation requests, DCCD algorithms need to run for each single user and for each single
requested role. Furthermore, the worst time complexity of DCCD algorithm is given by O(C?)

[26]. Therefore, the total worst time complexity of DCCD approaches is given by (1)
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The complexity of authorizing all these m requests using our simplification approach is:

Ts= O(Nryie” 2P R + O(1) + my JAUX| O(CP) + m, JA.R| O(C) 2)
This is because we need to run our simplification algorithm once, the complexity of which is
given by O(Nyue™R2BR) from theorem 4.3 and 4.11. After the simplified proof is found, we need
to ask those users assigned to B.LR (whose number is assumed to be m;) to prove that they are
assigned to B.LR. This can be done in O(1) time as discussed before. Then, in case of partial
proof domination, (i.e. AUX is not empty). We need to ask those m; users to prove AUX using
DCCD approach (m; JAUX| O(C?)). Finally, we need to ask the remaining m-m;=m; users (i.e. not
assigned to B.LR, therefore cannot benefit from the simplified proof) to prove A.R using DCCD
approach (m; |A.R| O(C)).

To simplify (2), we define @;=m;/ m €[0,1] as the ratio of users that can benefit from
the simplified proof, and define @, = (1 - |JAUX|/ |A.R|) €[1/]A.R|, 1] as the simplification ratio
indicating what percentage of B’s external roles are simplified (i.e. replaced by local roles) after
simplification. Given this, we have:

Te= O@2*"P™) + 0(1) + @1 (1- @) M JAR| O(C) + (1- @) M JAR| O(C?)  (3)
We are interested to see whether our simplification work indeed simplifies the distributed proof
procedure against DCCD approach. In other words, we want to see whether and in what
conditions we have Ts< Tp, this can be translated as shown below according to (1) and (3):

O@MRIBRY + O(1) < @1 a, m|A.R| O(C?) (4)
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According to (4), it is easy to see that there are 6 variables that will affect whether Ts< Tp,
that is: |A.R|, IB.R|, m, C, @1 and @ ,. One initial observation from (4) would be: in order to make
Ts< Tp, JA.R| and |B.R| should be as small as possible, m, C, a; and @, should be as large as

possible. We conduct several experiments to verify whether and when we have Ts< Tp.

SimulateEnvironment(Ng, Na, Ny, nr, Ny, Ny)
Input: Ng: total number of organization domains; N,: total number of authority domains;
N,: total number of users; n,: average number of roles per domain;
np: average number of rules defining each role; n,: average number of users per role.
Output: A multi-domain environment containing Nq domains; each domain has several roles defined by
several RTy rules. Each role is assigned several users.

1  generate Ny organization domains

2  generate N, authority domains

3 generate N, users

4 foreach domain d in Ny domains

5 randomly assign some friend domains of d from Ny domains
6 randomly generate roles in d according to n,

7  foreach domain a in N, domains

8 generate one role in a

9 foreach domain a in N, domains

10 foreach domain d in Ny domains

11 make d 50% chances to be accredited by a

12 if (a has not accredited any organization domain)

13 randomly select a domain d in Nq to be accredited by a
14  foreach domain d in Ny domains

15 foreach role r in domain d

16 randomly generate rules for this role according to n,
17 foreach rule ru in np rules

18 randomly assign the type of ru

19 randomly generate the body of ru

20 randomly generate users for r according to n,

Figure 4. 12. algorithm to simulate a multi-domain environment
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Among the 5 variables that will affect whether Ts< Tp according to (4), |A.R|, |B.R|, m, C
are the attributes of the requests and policies and are not affected by the result of the
simplification algorithm. On the other hands, «; and @, depend on the specific result of the
simplification algorithm. Therefore, we choose to control |A.R|, |B.R|, m, C to simulate role-based
interoperation requests, and @1 and @, will be determined through the result of simulation.
Specifically, we first simulate a multi-domain environment along with all the policies to generate
the credential pool with the size C. The algorithm to simulate a multi-domain environment is
shown by Figure 4.12.

In Figure 4.12, we try to simulate the multi-domain environment as close as the real
interoperation scenario as possible. First, we define two types of domains: (1) Organization
domains: normal domains that need to interoperate with each other; and (2) Authority domains:
domains that “certify” some attributes of other organization domains. For example, Hospital A is
a normal organization domain, and ABU is an authority domain certifying which domain is a
valid university accredited by it (e.g. ABU.accredited < StateU). Usually each authority
domain is responsible for accrediting one type of the organization domains (e.g. ABU is
responsible for accrediting the valid universities only). Therefore, we assign only one role to
each authority domain as shown in line 8 in figure 4.12. Second, we define some “friend
domains” that are trusted by each organization domain. We assume that each domain tends to
define its role according to the roles in its friend domains. For example, University of Pittsburgh

(UPitt) may collaborate with Carnegie Mellon University (CMU) and define that any student in
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CMU is authorized to access the library resource in Pitt (i.e. UPitt.library < CMU.student). In
this case, we say CMU is the friend domain of UPitt. The notion of friend domains helps us to
generate the body of rules (in line 19) in a more reasonable way. The remaining part of the
algorithm is straightforward. We just randomly generate the elements of the environment (e.g.
roles in each domain) according to some pre-defined parameters (e.g. average number of roles
per domain). In order to make sure the generated environment has approximately C total
credentials (rules), we make several experiments and learn the relations between C and the
parameters of the algorithm. For example, we find that SimulateEnvironment(50, 5, 20, 5, 3, 5)
will always generate approximately 2000 credentials. Next, we need to simulate role-based
interoperation requests based on |A.R|, |B.R|, and m. This is straightforward and we just need to
randomly pick two domains (A and B) first and pick several roles as A.R and B.R respectively.
Since m different requests for A.R are all issued from users assigned to B.R, we only need to
generate A.R and B.R once for all m requests.

After the multidomain environment and interoperation requests are generated, we are
ready to calculate Ts and Tp and compare them according to (3) and (4). We have one last tricky
issue here: it is very difficult to guarantee that a simplified proof will be found using such
randomly generated policies. In reality, since positions in organizations have real meanings and
many of them are related to each other, we believe simplified proof could be found in many
scenarios (As shown in Example 4.6). We left the analysis of how much percentage a simplified

proof can be found as future work. In our simulation, although we try to simulate the policies as
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close to the real life as possible, they are just randomly generated symbols with few real
meanings so it is very difficult to guarantee a simplified proof could be found. Fortunately, for
comparing Ts and Tp only @, and @, depends on whether a simplified proof exists or not
according to their definitions. Therefore, in the case no simplified proof is found, we can simply
make @ ;and a ,to be uniformly distributed random variables within the range of [0, 1] and [1/
|A.R|, 1], respectively. The rationale of using such trick here is that we do not under-estimate the
complexity of simplified approach by using randomly selected @ ; and @ ».

We simulate 9 pairs of |B.R| and |A.R| values, that is (1,1), (1,2), (1,3), (1,4), (2,1), (3,1),
(4,2), (2,2), and (3,3) respectively. This is because (1): the number of |A.R| and |B.R| are likely to
be very small as discussed above; (2) The memory size in our experimental machine does not
allow us to simulate very large |A.R| and |B.R|. For each given pair of (|B.R|,JA.R|), we calculate
Ts and Tp under different m and C. Specifically, we make m={1, 2, 5, 10, 20, 50, 100}, and make
C = {100, 200, ..., 1900, 2000}. For each combination of |A.R|, |B.R|, m and C, we simulate 100

times and use the average values as Ts and Tp.
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Figure 4.13-4.16 shows the comparison of Ts (red) and Tp (blue) with the increase of m
and C when (|B.R|, |A.R]) is (1,1), (1,2), (1,3), and (1,4) respectively. In all of these four figures,
Tp will become much larger than Ts when m and C are large enough. This is consistent with our
analysis. We also note that the difference between Tp and Ts decrease with the increase of |A.R|.
This is straightforward since Ts is exponential to |A.R| while Tp is only linear to |A.R|.

Nevertheless, even when |A.R| is as large as 4, Tp is still larger than Ts as shown in Figure 4.16.

mumbsr of requasts

Figure 4.17 Effect of |B.R| when (|B.R|, |A.R|)=(1,1)
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Figure 4.20 Effect of |B.R| when (|B.R|, |A.R|)=(4,1)

Figure 4.17-4.20 shows the comparison of Ts (red) and Tp (blue) with the increase of m
and C when (|B.R|, |A.R]) is (1,1), (2,1), (3,1) and (4,1) respectively. Again, Tp will become much
larger than Ts when m and C are large enough in all of these four figures. However, the
difference of Tp and Ts does not vary much when we increase |B.R|. Since Tp does not depend on
|B.R], it shows that Ts also does not vary much with the increase of |B.R|. At first glance, it is not
consistent with our analysis since Ts is expected to be exponential to |B.R|. The explanation of
this is as follows: recall that our algorithm is exponential to |B.R| only in the worst case. Actually,
not all of the roles in |B.R| will count for the complexity of our simplification algorithm. In the
first step of the algorithm we eliminate some of the roles in |B.R| (the remaining role set is T) that

cannot contribute to any simplified proofs. Therefore, Ts is only exponential to the size of T <
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B.R, on average it is not exponential to |B.R|. And our simulation results show that the worst case

rarely happens. In other words, Ts is not that sensitive with the increase of |B.R|.
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Figure 4.21 Effect of both when (|B.R|, |A.R|)=(1,1)
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Figure 4.22 Effect of both when (|B.R|, |A.R[)=(2,2)
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Figure 4.23 Effect of both when (|B.R|, |A.R|)=(3,3)

Figure 4.21-4.23 shows the comparison of Ts (red) and Tp (blue) with the increase of m
and C when (|B.R|, |A.R]) is (1,1),(2,2),(3,3) respectively. The trend of the these three figures are
similar to the trend of Figure 4.13-4.16, since only the increase of |A.R| will cause the
exponential increase of Ts.

Figure 4.13-4.23 shows that (1) Tp will eventually become much larger than Ts when m
and C is large enough (which is very common in practice); (2) |B.R| does not contribute to much
to the comparison of Tp and Ts; (3) When |A.R| increases, the difference between Tp and Ts will
decrease, but Tp is still larger than Ts. However, Figure 4.13-4.23 do not show clearly if mand C
are small, whether Ts could be larger than Tp. The following set of figures show clearly when Ts

is larger than Tp (i.e. in this case our simplification has no real benefits).
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Figure 4. 16. Comparison of |A.R| when (|B.R|, |JA.R|)=(1,4)

Figure 4.24-4.27 shows the actual number of Ts (upper part) and Tp (lower part) with the
increase of m and C when (|B.R|, |A.R]) is (1,1), (1,2), (1,3), and (1,4) respectively. The yellow
shaded area shows the scenarios when Ts is larger than Tp. We can see that such area increases
with the increase of |A.R|. This is straightforward since Ts increases much faster than Tp with the
increase of |A.R|. However, even in figure 4.27 (JA.R| is 4), only 26% of the entire rectangular
area is yellow. In other words, even in the worst case (from the perspective of favoring Ts) that
we can simulate, Tp is larger than Ts in more than 70% cases. Furthermore, almost all those
yellow shaded area reside in the area where m and C are very small. In practice, m and C are

easily become very large. In those cases, Tp will be much larger than Ts
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Figure 4. 20. Comparison of |B.R| when (|B.R|, |A.R|)=(4,1)

Figure 4.28-4.31 shows the actual number of Ts (upper part) and Tp (lower part) with the
increase of m and C when (|B.R|, |A.R]) is (1,1), (2,1), (3,1), and (4,1) respectively. The yellow
shaded area does not increase too much with the increase of |B.R|. And the yellow shaded area

covers only a very small part of the entire rectangular area.
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Figure 4. 21. Comparison of |A.R|, |B.R| when (|B.R|, |A.R[)=(1,1)
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Figure 4. 22. Comparison of |A.R|, |B.R| when (|B.R|, |A.R])=(2,2)
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Figure 4. 23. Comparison of |A.R|, |B.R| when (|B.R|, |A.R[)=(3,3)

Figure 4.32-4.34 shows the actual number of Ts (upper part) and Tp (lower part) with the
increase of m and C when (|B.R|, |A.R|) is (1,1), (2,2), and (3,3), respectively. The trend of the
yellow shaded area is similar to the trend of the yellow shaded area in Figures 12-15, since only
|A.R| will affect the size of the yellow shaded area.

Conclusion:

(1) Only |A.R| will affect the complexity of our simplification approach.
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(2) Even with the largest |A.R| (which is 4) we simulated, Tp becomes larger than Ts when m is
larger than 1 or C is larger than 1400, which is we believe is common in practice.
In summary, our simplification approach greatly simplifies the distributed proof procedure in

practical role-based environment.

4.4 THE POLICY INTEGRATION COMPONENT

In this section, we propose our novel Policy Integration approach to facilitate the authorized rar
while preserving the principle of security, as well as our novel administrative model to facilitate

role-based administration of those operations required in the policy integration.

4.4.1 Policy Integration

After an uar has been authorized by the Trust Management component, we need to facilitate this
interoperation such that the requesting user can actually acquire the requested resources. Recall
that in section 3.2 we have shown that two types of violations, i.e. cyclic inheritance conflicts
and violations of SoD could be introduced when there are multiple authorized interoperations.
And no existing approaches focusing on removing these violations in the global policy can be

applied here since there is no global policy in loosely-coupled environments.
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Motivated by this, we propose a novel policy integration approach that uses the special
semantics of hybrid hierarchy to preserve the principle of security. As discussed before, the
cyclic inheritance conflicts occur when there exists cycles among authorized interoperations and
local hierarchical relations. For violation of SoD, we have shown that if we represent an SoD
constraint using bi-directional arrows then the violation of SoD is also formed by the cycle
among authorized interoperations and local hierarchical relations. Hereafter, we refer to such a
cycle as inheritance cycle and discuss how to detect and remove such cycles. Note that all the
previous discussion about inheritance cycles assumes that the standard hierarchy is used to
facilitate an authorized interoperation. That is, for an authorized rar=<R;, R,>, we make each
role in Ry senior to every role in R,. In a standard hierarchy, the permissions are inherited
upwards through all the hierarchical relations. This is the underlying reason why an inheritance
cycle would cause those two types of violations. Therefore, we propose to use the specific
semantics of the hybrid hierarchy to facilitate authorized interoperations and prevent such
violations.

Definition 4.14 (Cycle and inheritance cycle in Hybrid Hierarchy): In a hybrid hierarchy, a
path P=(ry, Iy, ...y, M) is a cycle iff r;=ry41, and a cycle C=(ry, ry, ...y, rn+1) is an inheritance
cycle iff. #i,j =1,...,n such that (ri, ris1)=">", (rj, rj+1)=">a", and i>j

According to Lemma 2.1, if a cycle contains an I-relation preceding an A-relation, the users of

the roles before the I-relation cannot acquire the permissions of the roles after the A-relation.

Therefore, we define the inheritance cycle in hybrid hierarchy as the cycle that does not contain
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an I-relation preceding an A-relation. It is easy to see that the permissions of any role in the
inheritance cycle can be inherited by any other role in the cycle, and this property does not hold
for non-inheritance cycles in the hybrid hierarchy.

For each authorized uar, we create an access role in the resource providing domain for
the requesting domain to access its resources, as defined below:
Definition 4.15 (Access Role): Given an authorized uar=<R,, Rges>, the access role of this

request, aryar, is a newly created role such that ¥V ri €Ry, r€R;, we make r;>; aryar >j r».

Domain d, @ @ @

Domain d,

(@): uar=<{ry}, {rs, 1, rs}>

Figure 4. 24. the use of access role and hybrid hierarchy to facilitate interoperation

Figure 4.35 shows an example of an access role. We can easily verify that the users of R, can
acquire the permissions associated with R,={rs, r4, rs} by activating ary,r, so the uar has been

facilitated.
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Next we show how such policy integration using access role preserve the principle of
security. Figure 4.36(a) shows an example of how access role is used to prevent cyclic
inheritance conflicts. If we directly link (r2, r3) and (rs, r1) using standard hierarchical relation,
there is an inheritance cycle as shown in Figure 2.5(a). However, by using access role and hybrid
hierarchy, we can see that the inheritance cycle does not exist even if there is a cycle in Figure
4.36(a). Consider the cycle of (ry, rz, aryar, I3, 4, @ruarz, r1). In dy the users of r, cannot acquire
the permissions of r; since there is an I-relation preceding an A-relation in the path. Figure 4.36(b)
shows an example of how access role is used to prevent violations of SoD. If we directly link (ry,
rs3) and (rs, ry) using standard hierarchical relation, there is an inheritance cycle as shown in
Figure 2.5(b). However, by using access role and hybrid hierarchy, we can see that the
inheritance cycle does not exist even if there is a cycle in Figure 4.36(b). Consider the cycle of
(ra, @ryari, I3, @ruarz, 2, r1). In dy the users of ry cannot acquire the permissions of r, since there is
an I-relation preceding an A-relation in the path. Therefore, the SoD constraint defined over r;
and r is not violated. More formally, we have:

Theorem 4.12: Assume that each individual domain employs RBAC with hybrid hierarchy, and
assume we facilitate the interoperation in the following way:

An uar=< Ry, Rgest> is authorized — Jaryar S.t. V' r1 ERy, 12ERest, 1> @ryar @and aryar > 12
Then, there exists no inheritance cycle in the environment

Proof:
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For any cycle C=(ry, ry, ...In, 'n+1), if all roles in the cycle are from the same domain, C is not an
inheritance cycle since each individual domain contains no inheritance cycle. If not all roles in
the circle are from the same domain, there must be at least a pair of interoperation relations (one
going out from the domain of ry, and the other going back into the domain of r; to form a cycle),
and such interoperation relations are constructed according to the description in Theorem 4.12.
Without losing the generality, we assume r; >, i1 > fi+2, and rj >, Fj+1 >; Fj+2, and i+2>j. We can
easily see that there is an I-relation ri+1 > ri+> precedes an A-relation rj >, rj+1 in the cycle C.
Therefore, C is not an inheritance cycle according to Definition 4.14. |

Theorem 4.12 proves that if we use the proposed policy integration approach by linking the
access role through hybrid hierarchy, the principle of security will be implicitly preserved

regardless of the specific interoperation needs.

Domain d, @

Domain d,

! SoD !

Domain d, Domain d,
(a): uar;=<{d;.r,}, {d,.r;}>, (b): uar;=<{d,.r}, {d,, r;}>,
uar,=<{d,.r,}, {d,.r;}> uar,=<{d,.r;}, {d;, r.}>

Figure 4. 25. Using access role to prevent (a) cyclic inheritance conflicts; (b) violations of SoD
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According to our policy integration approach, after an uar is authorized, the requesting
users need to activate the access role first and then acquire the permissions of the requested roles.
For example, after uar = <Alice, {HospitalA.HealthCareWorker}, {HospitalB.Doctor}> has
been authorized by the Trust Management component, Hospital B adds a new role aryar, as well
as two hierarchical relations HospitalA.HealthCareWorker >, ary, and ary 2;
HospitalB.Doctor to its local policy. Alice can then acquire permissions of HospitalB.Doctor

through the hierarchical relations.

442  Administrative Model

Updating the interoperation policy given an authorized rar involves the following sequence of
operations to the local RBAC policy: AddRole(ar ), AddEdge(rar.rreq, arrar, A), V' in rar.Rges,
AddEdge(arar, 1, 1). To support evolution of RBAC policies, administration of RBAC becomes
more and more important. The use of role itself to manage the RBAC policies has become an
appealing idea recently. Sandhu et al. [15] have proposed an ARBAC97 (Administrate RBAC
'97) model consisting of URA97 (User-Role Assignment ’97), PRA97 (Permission-Role
Assignment *97), and RRA97 (Role-Role Assignment *97) model, which use RBAC to manage
RBAC policies. They further extended this model to ARBAC99 [16] and ARBACO02 [17].
Crampton et al. [18] have developed a SARBAC (Scoped Administration model for RBAC)

model using the concept of administrative scope. SARBAC has been known to be capable of
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addressing several shortcomings of ARBAC model and is better in terms of completeness,
simplicity, practicality and versatility. However, none of the existing role-based administration
models can deal with hybrid role hierarchy. Here, we propose an extension of the popular
SARBAC model, SARBAC-HH, which is able to support role-based administration in presence
of hybrid hierarchy.

Since administrative scope is the core idea in SARBAC, we need to first extend it in
presence of hybrid hierarchy in order to make SARBAC applicable to hybrid hierarchy. As
discussed earlier, a role r can be administrated under another role a if and only if all path
upwards from r go through a. On the contrary, suppose there is a path upwards from r that
doesn’t go through a, and instead, goes through role r’. Here a and r’ have no relation between
them, but both of them are related to r. If a makes some changes to r, then it would also affect r’.
So a should not be allowed to administer r. Note that in a standard hierarchy, if there’s a “path”
between two different roles r; and ry, then r; and r, must be hierarchically related, i.e. ry >, or
r, > ry. Therefore, the definition of administrative scope closely relies on finding the direct and
indirect relation in the path between r; and r,. Based on the definition of derived relatien 4
earlier, we re-define the administrative scope as follows:

DEFINITION 4.18 (Administrative Scope in Hybrid Hierarchy): The administrative scope for
role a in hybrid hierarchy, Syn(a) is defined as follows:

Sun(@) ={reR:r<ya, tr\ta & |a}, Where, 1r ={XE R: x>y}, |[r ={X€ER: X < r}.
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Similarly, the strict administrative scope would be Sy (r) = Sun (r) / {r}. If r € Suy'(a), we call
a as an administrator of r. Figure 4.37 illustrates the difference between original administrative
scope in SARBAC and our administrative scope in SARBAC-HH. Note that the structure of the
three hierarchies is exactly the same and the only difference is the type of the hierarchy. Figure
4.37(a) is a standard hierarchy; Figures 4.37(b) and 4.37(c) are hybrid hierarchies. In Figure
4.37(a), role a cannot administer role r because r’ is senior to r but is not junior to a. In figure
4.37(b), role a cannot administer role r either, since r’ is “conditionally” senior to r but is not
junior to a. In figure 4.37(c), however, role a can administer role r because there’s no relation
between r and r’ even if there seems to be a “path” between them. Note that in Figure 4.37(c), a
cannot administer ry because of r’. However, in the entire hierarchy, there may exist another role
(e.g. the senior role of both a and r’) which can administer r;. Next we will show that our

definition of administrative scope keeps all the properties of the original one.
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Figure 4. 26. Administrative Scope in SARBAC and SARBAC-HH
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Flexibility: Our administrative scope is also determined by the role hierarchy itself, and changes
dynamically as the hierarchy changes. This is similar to the original SARBAC model and is in
contrast to Sandhu’s ARBRAC97 model, where administration largely depends on the
can-modify relation [15].

Decentralization and Autonomy: we illustrate this by proving the following proposition:
PROPOSITION 4.1 (Line Manager in Hybrid Hierarchy): In a hybrid hierarchy, if r has an
administrator then the set of administrators of r has a unique minimal administrator, which we
refer to as the line manager of r.

The line manager can serve as a “local” administrator in the hybrid hierarchy. Therefore, our
administrative scope keeps the decentralization and autonomy properties which is essential in
large enterprise-wide RBAC systems. With this notion of extended administrative scope in

presence of hybrid hierarchy, we present our extensions of RHA and URA next.

Table 4. 5. Hierarchical Operations in SARBAC-HH

Operation Success Conditions

AddRole(a, 1, Aar, Var, Air, Vir) Aol © Spn (@), Var S Sun(a),
Air © SHH+(3-)' Vir € Syu(a)

DeleteRole(a, r) r € Sun'(a)

PartitionRole(a, r) r € Sun'(a)

AddEdge(a, ¢, p, type) C,p € Suu(a)

DeleteEdge(a, ¢, p) C,p € Sun(a)

ChangeEdge(a, ¢, p, type) C,p € Suu(a)
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Besides the four operations defined in SARBAC-RHA as shown in Table 2.1, we further
add two operations: PartitionRole() and ChangeEdge(), which we believe are necessary in
hybrid hierarchy. The success conditions of each operation are shown in Table 4.5, where A,r is
set of immediate A-juniors of the role r, V,r is the set of immediate A-seniors of role r, Aj r is
the set of immediate I-juniors of role r, and Vr is the set of immediate I-seniors of role r, as
shown in Figure 4.38. The semantics of ChangeEdge(a, ¢, p) is straight forward since there are
three types of edges in hybrid hierarchy. In fact, we can use AddEdge() and DeleteEdge()
operation to perform ChangeEdge(). That is, first delete the old edge, and then add the edge with
the new type. The semantic of PartitionRole() is complex. Specifically, we can partition a given

role vertically, horizontally, or both [14].

CLEAN CLEATr CGEAS
C,EA

Figure 4. 27. Parameters in AddRole
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Ideally, after each operation, we should keep the original semantics as much as possible. For
example, when we want to delete a role r, which has an immediate senior s and an immediate
junior j, we need to maintain the original relation between s and j after the operation. Moreover,
to make sure same users can acquire same permissions after deleting the role, we need to
reassign permissions of r to other roles and reassign users of r to other roles. This is a very
challenging problem and is beyond the scope of this thesis. Interested readers are referred to [14],
where Joshi et al. analyze these issues in greater detail. In the rest of this section, we will focus
on maintaining the administrative scope during those operations. Specifically, two conditions
need to be satisfied:

C,: After AddRole() and PartitionRole() operations, the new role(s) should be within the
administrative scope of a. C,: After each operation, the original roles” administrators should not
be changed.

It is obvious that C; is satisfied according to our definition. Since all the seniors of the new role
should be administered by a, the new role itself is also administered by a. The condition C; is
also satisfied for all operations. This conclusion is not obvious with ChangeEdge() operation,
since the operation itself may change the relation between roles and thus affect the administrative
scope, as shown in Figure 4.39. In Figure 4.39(a), r=S un(a). If we change the edge (r, r1) to the
I-type, as Figure 4.39(b) shows, r¢ S"yn(a) now. However, in Figure 4.39(a), r; is not
administered by a, so the ChangeEdge() operation fails. Therefore, if ChangeEdge() operation

succeeds, it is guaranteed that it will not affect the administrators of all the original roles.

122



\
Q= Q=
X 7 ChangeEdge(a, r, r;, I) => X
\\\ »/ >-< \\\ /
@ NSy (a) @

res;, (a) () reS;,(a)

Figure 4. 28. The ChangeEdge operation won’t succeed

The key operations in SARBAC-URA are shown in Table 4.6, and the permission-role
assignment operations in SARBAC-PRA are similar. We first show that there is an ambiguity in
the semantics of user-role assignment and permission-role assignment in the original SARBAC.
We then show that our model can solve this ambiguity smoothly by redefining those operations
in presence of hybrid hierarchy. To illustrate these, we first review an important concept in
SARBAC, the SARBAC constraint, as follows: Let R” = {ry, ..., r} be a subset of R and let AR’
denote rA...Ary.

DEFINITION 4.19 (SARBAC constraint) A SARBAC constraint has the form AC, where CER.
A SARBAC constraint AC is satisfied by a user u if C & |R(u). A SARBAC constraint AC is
satisfied by a permission p if C & 1R(p), where for any Y =X, 1Y = {x€ X: Jy€Y such that x >
y}, and | Y = {xeX: dyeY such that x <y}.

Let’s first analyze under what situation a user will satisfy a constraint. An example standard
hierarchy is shown in Figure 4.40 (the same example used in the original SARBAC paper).

According to definition 4.19, the constraint PE;AQE; is satisfied by any user assigned to both
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PE; and QE3, and by any user assigned to either PL; or DIR. The semantics here is that any user
assigned to either PL; or DIR is also a member of PE; and QE;, thus satisfies the PE; A QE;
constraint. Obviously, the author of SARBAC implicitly assumes the hierarchy relation in any
monotype hierarchy as “Is-a” relation [11]. That is, X >y means any user assigned to x is also a
member of y. For example, the leader of a team is also a member of the team. However, the
semantics of monotype hierarchy have long been argued as ambiguous [10, 11, 13]. The
hierarchical relation in a monotype hierarchy could be “Is-a”, “Supervision”, or “Activation”
[11]. The use of hybrid hierarchy can solve this ambiguity accordingly by including three types
of hierarchical relations. The above “Is-a” relation is essentially “IA” relation in the hybrid
hierarchy, since x “is” y means any user assigned to x should be able to acquire all permissions
assigned to y through x, and should also be able to activate y. Because whether a user satisfies a
constraint depends on the definition of | Y in Definition 2.3, we re-define it as:
VYCSX, Y ={xEX: dyEY such that x <y} (1)
Note that the definition looks same as before, but here the symbol < clearly means the

IA-relation in hybrid hierarchy.
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Figure 4. 29. An example standard hierarchy

Next let’s analyze under what condition a permission will satisfy a constraint. In Figure
4.40, according to definition 4.19, the constraint PE;AQE; is satisfied by any permission
assigned to both PE; and QE;, and by any permission assigned to either ENG; or ED or E. The
semantics here is that any permission assigned to ENG; or ED or E is also in the permission set
of PE; and QE;, thus satisfies the PE;AQE; constraint. In other words, x >y means P(y) = P(x),
where P(r) is the permission set available through r. Obviously, the author of SARBAC
implicitly assumes the hierarchy relation in any monotype hierarchy as “Permission Inheritance”
relation, which is in conflict with previous assumption of “Is-a” relation. We believe this
ambiguity comes from the ambiguity of the monotype hierarchy, as claimed by many researchers
[10, 11, 13]. Again, the use of hybrid hierarchy can solve this smoothly by using “I-relation”.
Specifically, since whether a permission will satisfy a constraint depends on the definition of Y

in Definition 2.3, we re-define it as:
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VYCX, 1Y ={xEX: dyEY such that x> y} (2)
Note that here we use the> ; relation. Given the new definition of| Y and 1Y, we can define the
SARBAC-HH constraint as follows:
DEFINITION 4.20 (SARBAC-HH constraint): A SARBAC-HH constraint has the form AC for
some CSR. A SARBACO7 constraint AC is satisfied by a user u if C & |R(u). A SARBACOQ7
constraint AC is satisfied by a permission p if C & 1R(p), where the symbol 1 and | are defined
by (1) and (2).
The definition implies that the User-Role Assignment is determined by the 1A-relation in the
hybrid hierarchy, while the Permission-Role Assignment is determined by the I-relation in the
hybrid hierarchy. The user-role assignment operations are the same with SARBAC, as shown in
Table 2.2 (permission-role assignment operations are similar).

Now we are able to define the success conditions for the administrative operations
required in the Policy Integration component, as shown in Table 4.6. As shown in Table 4.6, we
require that all these operations to be done by only the administrators whose administrative scope
includes all the requested roles (i.e. Rgest). This is straightforward since such operations would

make Rgyest available for external users to assume.
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Table 4. 6. Success conditions for operations involved in the Policy Integration component.

Required Operations Success Condition
AddRole(a, arsar, 2, lreq, Raest, 2) Riest & Shn(a)
AddEdge(a, rreq, arsar, A) Riest & Shn(a)
V' rERgest, AddEdge(a, arsar, I, 1) | Rgest & Sun(@)

input

administrators

GTRBAC Policy
Specification

GTRBAC Engine

specify/update

read

GTRBAC Policy

administrators

input

access
request

Interface Level

Constraints

Constraints on constraints
Triggers

Run-time requests

GTRBAC Add-on

In this section, we present our prototyping of our framework to validate our work. The
prototyping of the components included in our framework is straightforward. For each of the
component, we have proposed the corresponding algorithm in section 4, and we only need to

prototype the algorithm accordingly. However, prototyping the access control system in the

Figure 4. 30.
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individual domain (i.e. GTRBAC and Hybrid Hierarchy) is more challenging. GTRBAC is a
fine-grained model that supports more than 50 temporal constraints. How to enforce such many
constraints effectively in a conflict-free way is a big challenge. Unfortunately, the authors of
GTRBAC have focused on the theoretical model and have not discussed the enforcement of
GTRBAC. In the literature, the only GTRBAC implementation work we are aware of,
X-GTRBAC [40], implements the policy specification module only. They mainly focus on how
to specify GTRBAC policy using XML, and simply assume that there already exists a GTRBAC
module to enforce those constraints without explaining how. To the best of our knowledge, no
existing work has been proposed to address the policy enforcement of GTRBAC.

Motivated by this, we propose our novel GTRBAC enforcement engine in this section.
The central idea of our work is to enforce all the different types of temporal constraints in a
uniform way by generating a predefined set of system operations. The high-level architecture of
our GTRBAC engine is shown in Figure 4.41. It describes the relationship among RBAC policy,
RBAC engine and GTRBAC engine. Vertically, we divide the access control system in the
individual domain into three levels: Interface Level, Logical Level, and Database Level. On
interface level, we allow the administrators to specify/update the policies through policy
specification modules; we also allow the user to issue access request to the RBAC engine and get
the authorization decision from it. In the database level, the RBAC policy is stored as a set of
tables in a relational database. In our current implementation, we use 7 tables to store RBAC

policy. These tables actually represent the basic RBAC model and Hierarchical RBAC model in
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RBAC standard [5]. In the future, we plan to add tables to support Separation of Duty (SoD) and
thus implement the Constraint RBAC model as well. The GTRBAC policy is stored in 4 tables in
the relational database. These 4 tables store all the constraints supported in GTRBAC model. On
the logical level, we have policy specification modules that translate the user inputs to the data
structures in the database. The GTRBAC engine and RBAC engine also reside on logical level.
As shown before, our GTRBAC system does not need to affect the RBAC engine. The GTRBAC
engine, on the other hand, is the most novel part of our system and will be discussed extensively
next.

Figure 4.42 shows the working mechanism of our GTRBAC Engine. In general, the
GTRBAC engine is responsible for checking all the GTRBAC constraints and updates the
RBAC policy accordingly every time it runs. The novelty of our engine is that we enforce all
those different types of constraints in a uniform way by generating a predefined set of system
operations. By doing so, we are able to (1) enforce all those constraints by updating the RBAC
policy according to the predefined system operations; and (2) solve the conflicts among original
constraints by solving the conflicts among predefined system operations. According to the
semantics of GTRBAC constraints, we define 4 pairs of system operations, and the two
operations in each pair is the inverse operation of each other:

® user-role assignment and user-role de-assignment
® role-permission assignment and role-permission de-assignment

® role enabling and role disabling
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® role activation and role de-activation
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Figure 4. 31. The proposed GTRBAC engine

update

Step 2

RBAC Policy

Next, we describe how we generate the above system operations from different types of

constraints, and how we enforce those constraints by enforcing those system operations. We note
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that only the enabled constraints should be enforced at the time GTRBAC engine runs.
Determining which constraints are enabled is not straight forward because the enabling states of
constraints change dynamically. For example, the administrator can issue a run-time request to
explicitly enable or disable some constraints. Moreover, the constraint on constraint would also
change the enabling state of the corresponding constraint. As a result, the first step of GTRBAC
Engine is to check which constraints are enabled, as shown in Step 1 (left side) in Figure 4.42. In
particular, we define a data structure called Constraint Operation Pool (COP). COP is a
collection of constraint operations, and a constraint operation has the structure of <mode,
constraint name, priority> (priority field will be omitted hereafter for simplicity), where mode €
{enable, disable} and constraint name is a unique identifier of the constraint in the constraint.
COP is initialized to be empty every time GTRBAC Engine runs. In this step, our engine checks
the corresponding GTRBAC policy (i.e. constraint enabling/ disabling run-time requests, and
constraints on constraint) to gradually add constraint operations to COP. For example, if there is
a <enable, c;> run-time request in the run-time requests table, we add <enable, c;> into COP.
After such checking we need to remove the conflicts existing in COP, which will be described
later in conflict resolving part. Finally, we update the enabling states of constraints according to
each constraint operation in COP. For example, if <enable, c;> is in COP, we enable constraint ¢,
in GTRBAC policy.

The next step (step 2, right side of Figure 4.42) is to check all enabled constraints and

update RBAC policy accordingly. Similarly, we define a data structure called Operation Pool
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(OP). OP is a collection of our predefined system operations, and an operation has the structure
of <mode, username, role_name, permission_name>, where mode € {activateRole,
deactivateRole, assignUser, deassignUser, enableRole, disableRole, assignPermission,
deassignPermission} and username, role_name, permission_name are unique identifiers of Users,
Roles, and Permissions, respectively (again, priority field is omitted). Note that username,
role_name, permission_name are all optional according to the specific mode. For example, if the
mode of an operation is “enableRole” then only role_name is specified in the operation. OP is
also initialized to be empty every time GTRBAC engine runs. In this step, we dynamically add
operations into OP by checking run-time requests (except for constraint enabling run-time
request which is checked in step 1) and those enabled constraints, or remove operations from it
to remove the conflicts, as shown in Figure 4.42. Note that we must remove the conflicts before
we check the triggers. This is because triggers will generate new operations according to the
existing operations. It makes no sense to let conflicting operations (thus should be removed) to
be the inputs of triggers. And we need to run conflict removing again after checking triggers
because triggers may generate new operations which could conflict with the existing operations.
We also emphasize that we should check the cardinality constraint at the very end of step 2. This
is because cardinality constraints are used to remove operations rather than generating operations.
For example, assume we had a cardinality constraint <3, activate Doctor> and Doctor has already
been activated for 3 times. The operation <activateRole, Bob, Doctor> should be removed from

OP after checking the cardinality constraint. Therefore, if we put cardinality checking earlier,
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then the newly generated operations (e.g. by triggers) have no chance to be checked against them.
Finally, we update the RBAC policy according to each operation in OP. For example, if
<assignUser, Bob, Doctor> is in OP, we assign Bob to Doctor in RBAC policy.

Most of the checking shown in Figure 4.42 is straightforward. Next, we only describe
how to check a periodicity constraint as an example. The checking rule is simple: if current time
is within the periodical expression, we add the corresponding operation into OP. Otherwise we
add the inverse operation to OP. For example, consider a periodical constraint < [9am, 9pm],
enable Doctor>. If the engine runs at 10pm we add <disableRole, Doctor> into OP.

Now we discuss how we resolve the conflicts in each step shown in Figure 4.42.
Generally speaking, two operations are conflicting with each other if they are the inverse
operation and apply to the same user, role, or permission. For example, <enableRole, Doctor,
priority: high> and <disableRole Doctor, priority: medium> is a pair of conflicting operations.
We implement two rules to resolve the conflicts among operations, as defined in GTRBAC
model [9]:

(1) Higher priority overrides lower priority. In the above example, Doctor should be
enabled  since <enableRole, Dboctor, piority: high> has higher priority.

(2) Negative (e.g. disable) overrides positive. In the above example, if both operations have
the same priority then Doctor should be disabled since “disable” is a negative operation and
“enable” is positive.

The conflicts of constraint enabling operations in step 1 can be resolved in the same way using
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these two rules.

Finally, we discuss when and how the GTRBAC engine should run. In our architecture,
we need to run our GTRBAC engine repeatedly to update the RBAC policy dynamically.
Consider a constraint <[9am, 9pm], assign Bob to Doctor>. Every time the engine runs, it will
check the current time against this constraint, and assign Bob to Doctor or de-assign Bob from it
accordingly. Obviously if we run the engine one time a week, then the effect of such constraint
cannot be reflected in the system. Therefore, we choose to run the engine every 1 minute in the
current implementation. We believe this frequency is high enough to capture all constraints and
run-time requests in the system. On the other hand, running the engine in such a high frequency
may be a waste of resource since at most time instants no changes will likely be made to the
system. For example, assume <[9am, 9pm], assign Bob to Doctor> is the only constraint in the
system and assume no any run-time requests will be generated. In this very simple case,
theoretically we only need to run the engine at 9am and at 9pm to update the corresponding
user-role assignment. However, it is very difficult (if not impossible) to predict perfectly when
we should run the engine if there are hundreds of constraints and run-time requests (they could
even be conflicting). We plan to study how to enhance the performance of our system by partly

predicting when we should run the engine in the future work.

134



Table 4. 7. An example test case of GTRBAC Implementation

RBAC Policy

(assigny Ami to NurselnTraining)

(NightTime, enable NightDoctor)

Periodical Constraints

c1= (DayTime, enable DayDoctor)

co= (NightTime, enable NightDoctor)

cs= ((M, W, F), assigny Adams to DayDoctor)

¢4 = ((T, Th, S, Su), assigny Bill to DayDoctor)

cs=(Everyday between 10am-3pm,assigny Carol to

DayDoctor)

Duration Constraints

Cs = (2 hours, enable NurselnTraining)

C7 = (2 hours, activer tora NurselnTraining)

Constraints on

Constraints

(6 hours, cg)

(enable DayNurse — enable ¢;)

(activate DayNurse for Elizabeth — enable NurselnTraining)

Triggers
(enable NightDoctor — enable NightNurse)
(disable NightDoctor — disable NightNurse)
Cardinality (10, activer n DayNurse)

Constraints

(5, activer n NightNurse)
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5.0 CONCLUSION AND FUTURE WORK

Multidomain environments where multiple organizations interoperate with each other are
becoming a reality as seen in the emerging Internet-based enterprise applications. In such an
environment, it is a significant challenge to ensure that cross-domain accesses to facilitate
information sharing are employed in a secure way. Role Based Access Control (RBAC) models
have received much attention as a general approach to access control. A multidomain
environment can be characterized into tightly-coupled environment and loosely-coupled
environment. The access control challenges in loosely-coupled environments where each
individual domain employs RBAC have not been studied adequately in the literature.

In this dissertation, we first show that it is desirable to allow users to issue the
interoperation requests in terms of requested permissions rather than requested roles. And the
resource-providing domains need to identify a set of its local roles containing the requested
permissions for the external users to assume. We have propose three role mapping algorithms to
identify a set of roles containing all the requested permissions. Our algorithms can handle the

cases when (1) there is exactly matched role set; (2) there is no exactly matched role set but the
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principle of least privilege is more important; (3) there is no exactly matched role set but the
availability is more important.

Once the initial interoperation requests have been translated into a set of requested roles,
the providing domain needs to make decisions on whether to authorize the requests or not based
on their local policies and the interoperation requirements. We argue that in role based
loosely-coupled environments, it is typical that several different users assigned to the same role
(or a very small set of related roles) would request to acquire the same external resource several
times in a period. Traditional role-based distributed proof approaches (e.g. DCCD) are inefficient
in dealing with such type of requests since they all require individual users to prove the requested
resource separately. We formally study how to simplify such distributed proof procedure and
propose a Simplify algorithm based on the policies of the requesting role and the requested role.
We formally prove the completeness and soundness of our algorithm. We conduct simulation and
run several experiments to very our work. The experiment results show that our algorithm
significantly outperforms DCCD when the total number of credentials is sufficiently large, which
is very common in practical loosely-coupled environments.

Several researchers have shown that the introduction of global policy in tightly-coupled
environments could violate the principle of security. Although there is typically no global policy
in the loosely-coupled environment, the existence of multiple authorized interoperations could
also violate the principle of security. We have proposed a policy integration approach to preserve

the principle of security while facilitating the interoperations. Our approach makes use of the
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special semantic of hybrid hierarchy to prevent unexpected permission inheritances. We also
propose an administrative model for the RBAC model extended with hybrid hierarchy defining
which administrators are authorized to make the policy changes required during policy
integration.

Finally, we present the prototype of our framework to validate our research. The most
challenging part of the prototyping is implementing the GTRBAC model. We have implemented
a novel GTRBAC engine that generates a set of pre-defined system operations according to
different temporal constraints. The conflicts among those temporal constraints are resolved
within those system operations and the corresponding RBAC state is easily updated according to
those system operations as well. We also implement the role mapping algorithms, the Simplify
algorithm, and the Policy Integration module to make it a complete prototype of our proposed
framework.

There are several future work related to the research presented in this thesis. First, the
work presented in this research is theoretical in nature. Although we have implemented a
prototype to validate it, we have not implemented it over real organizations. This requires a
comprehensive work related to inter-domain collaborations. For example, how to discover which
domain contains the requested permissions through service discovery. There are also a number of
future work related to our simplification algorithm. First, if the requesting domain changes its
policy within the valid period of an rar, the simplified proof of this rar may not be valid now.

However, it is not straight forward to detect this unless the requesting domain “honestly” notifies
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the providing domain. Second, in discussing heuristic 4 we find a trade-off between the
completeness and complexity of our Simplify algorithm. That is, if we examine every subset of T,
we can find every existing simplified proof but the algorithm becomes slow. On the other hand,
if we only examine some subsets of T, we may miss some existing simplified proof but the
algorithm will run much faster. How to balance between these two factors is a possible future
work future work. Third, although we present our simplification framework in the context of RTy
language, we believe the general idea of our approach does not rely on any specific policy
language and should be applicable generally. Therefore, another future research direction is to

apply the idea of our approach to other policy languages.
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