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Multidomain environments where multiple organizations interoperate with each other are 

becoming a reality as can be seen in emerging Internet-based enterprise applications. Access 

control to ensure secure interoperation in such an environment is a crucial challenge. A 

multidomain environment can be categorized as tightly-coupled and loosely-coupled. The access 

control challenges in the loosely-coupled environment have not been studied adequately in the 

literature.  

In a loosely-coupled environment, different domains do not know each other before they 

interoperate. Therefore, traditional approaches based on users’ identities cannot be applied 

directly. Motivated by this, researchers have developed several attribute-based authorization 

approaches to dynamically build trust between previously unknown domains. However, these 

approaches all focus on building trust between individual requesting users and the resource 

providing domain. We demonstrate that such approaches are inefficient when the requests are 

issued by a set of users assigned to a functional role in the organization. Moreover, preserving 

principle of security has long been recognized as a challenging problem when facilitating 

interoperations. Existing research work has mainly focused on solving this problem only in a 

tightly-coupled environment where a global policy is used to preserve the principle of security.  
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In this thesis, we propose a role-based access control and trust management framework 

for loosely-coupled environments. In particular, we allow the users to specify the interoperation 

requests in terms of requested permissions and propose several role mapping algorithms to map 

the requested permissions into roles in the resource providing domain. Then, we propose a 

Simplify algorithm to simplify the distributed proof procedures when a set of requests are issued 

according to the functions of some roles in the requesting domain. Our experiments show that 

our Simplify algorithm significantly simplifies such procedures when the total number of 

credentials in the environment is sufficiently large, which is quite common in practical 

applications. Finally, we propose a novel policy integration approach using the special semantics 

of hybrid role hierarchy to preserve the principle of security. At the end of this dissertation a 

brief discussion of implemented prototype of our framework is present. 
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1.0 INTRODUCTION 

Multidomain environments in which multiple organizations interoperate with each other are 

becoming a reality, as seen in the emerging Internet-based enterprise applications. In these types 

of environments, it is a significant challenge to ensure that cross-domain accesses to facilitate 

information sharing are employed in a secure way. This is referred to as the multidomain secure 

interoperation problem [1]. Gong et al. introduce the following two principles for secure 

interoperation in multi-domain environments [1]: 

• Principle of Autonomy: If an access is permitted within an individual system, it must also be 

permitted under secure interoperation. 

• Principle of Security: If an access is not permitted within an individual system, it must not be 

permitted under secure interoperation. 

A multidomain environment can be characterized into tightly-coupled environment and 

loosely-coupled environment. In a tightly-coupled environment, the access control and 

interoperation needs are typically predefined, and a global policy is created by integrating all the 

individual policies to facilitate those interoperation needs. In a loosely-coupled environment, 

different domains join and leave a multidomain environment dynamically and the interoperation 
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needs are dynamic and cannot be predefined. In the literature, several approaches have been 

proposed to address the access control challenges in tightly-coupled environments. Gong et al. [1] 

have studied the computational complexity of the global policy using Access Control Matrix 

(ACM) model. Bonati et al. [2] and Dawson et al. [3] have studied the policy integration 

problem applied to domains employing Multi-Level Security (MLS) models. Basit et al. [4] have 

studied how to specify a global policy by integrating different individual access control policies 

using Role Based Access Control (RBAC) model [5]. Unfortunately, the access control 

challenges in loosely-coupled environments have not been studied adequately in the literature. 

Piromruen et al. have proposed a secure interoperation framework focusing on how to establish 

secure interoperation between the requesting domain and the providing domains based on RBAC 

[42]. Their approach does not assume the existence of a global policy. However, they assume the 

naïve RBAC policy is used to make interoperation authorization decisions and do not consider 

the fact that user identities are usually not known to the resource providing domain. Shehab et 

al.’s SEcure Role mApping Technique (SERAT) focuses on finding the cross-domain 

authorization paths in a decentralized way [43]. However, they assume that a permitted 

interoperation set is pre-defined in the environment. There are also several research efforts on 

trust management [19, 20, 21, 22] which aim to make authorization decisions between 

previously unknown domains. However, they are not discussed in the context of a 

loosely-coupled environment and can only solve part of the challenges in loosely-coupled 

environments.  
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Role Based Access Control (RBAC) models have received much attention as a general 

approach to access control [5, 6, 7]. The survey conducted by NIST [8] shows that in many 

organizations the access control decisions is based on a person’s roles and responsibilities within 

the organization, making role-based approach suitable for expressing security requirements. One 

important feature of RBAC is the role hierarchy. The use of role hierarchy can greatly simplify 

the policy specification task, since the administrators do not need to assign the permissions of the 

junior role to the senior role explicitly. Recently, many extensions of RBAC have been proposed 

to support the specification of more fine-grained policy requirements. Generalized Temporal 

Role Based Access Control (GTRBAC) model [9] is one of such RBAC extensions supporting 

temporal constraints on policies. In many situations, it is desirable to restrict the authorizations 

based on temporal constraints. For example, a user Alice may be assigned to DayNurse role 

only during daytime. Several researchers [10, 11] have also identified various limitations of the 

standard role hierarchy used in RBAC. Joshi et al. have proposed the notion of hybrid hierarchy 

[12] that overcomes some of those limitations of the standard role hierarchy. As a result, 

GTRBAC is a good choice for defining the local policies in each individual domain. However, 

the interoperation authorization decisions cannot be made directly on them since the user 

identities are not known in a loosely-coupled environment. In this thesis, we assume that 

GTRBAC is used in each individual domain to specify its local policy and the focus of this thesis 

is to study and propose solutions for access control challenges specific to the loosely-coupled 

environment. 
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In a loosely-coupled multidomain environment where each domain employs GTRBAC 

and hybrid hierarchy, there exist several specific access control challenges. In a traditional single 

domain system, users usually know the role structure of the organization and hence could request 

to assume the corresponding roles directly in order to perform the jobs. In a loosely-coupled 

environment, however, it is typically not practical to assume that users have already known the 

role structure of external domains. As a result, it is desirable to allow users to request the 

permissions directly. And the resource-providing domains need to identify a set of its local roles 

containing the requested permissions for the external users to assume.  

Once the initial interoperation requests have been translated into a set of requested roles, 

the providing domain needs to make decisions on whether to authorize the requests or not based 

on their local policies and the interoperation requirements. Since the identity of the requesting 

users may not be known to the external domain, traditional identity-based access control 

approaches are not suitable [22]. A trust management approach is needed to facilitate access 

requests from previously unknown users. In role based multidomain environments, it is very 

common that several different users assigned to the same role (or a very small set of related roles) 

would request to acquire the same external resource several times in a period. In this thesis, we 

refer to such interoperation request scenario as Role-based interoperation Access Requests (rar), 

and refer to the role(s) that requesting users assigned to as requesting role(s). In such a scenario, 

different users all request the same external resource because the functionality of the requesting 

role requires obtaining the external resource, and it is common that several users have been 
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assigned to the same role(s) (i.e. occupying the same position) in the same period. For example, 

assume Bob is travelling outside and needs to go to the emergency room in the local hospital. 

The assigned nurse there needs to obtain Bob’s health information from his home hospital. 

Moreover, there might be several persons assigned to the nurse position (e.g. some during 

daytime, and some during night time) when taking care of Bob. They all need to acquire Bob’s 

health information when they are on duty. From access control perspective, obviously it is not 

secure to allow the first nurse who has obtained Bob’s health information to disclose it to the 

subsequent nurses. A more secure way is to require each nurse issuing a separate request and 

each request to be evaluated and authorized separately for each nurse. Here, we reach the 

role-based interoperation request scenario: different persons assigned to the same role (nurse) 

need to request the same external resource (Bob’s health information) several times (when each 

person is taking the position) in a period (the time period when Bob is taken cared of).  Using 

traditional role-based distributed proof approaches (e.g. DCCD), each single user needs to prove 

separately that he/she has the credentials required for the accessing requested resources. 

However, they will typically request the same external resources since they are assigned to the 

same requesting role(s) whose functionalities require acquiring those external resources. 

Unfortunately, few existing approaches have made use of this property to simplify the distributed 

proof procedures. 

Lastly, several researchers have shown that the introduction of global policy in 

tightly-coupled environments could violate the principle of security. Although there is typically 
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no global policy in the loosely-coupled environment, the existence of multiple authorized 

interoperations could also violate the principle of security. Proper mechanisms need to be used to 

address such a problem. 

In this thesis, we address the access control and trust management challenges in 

loosely-coupled environments as discussed above, and develop an access control and trust 

management framework consisting of three major components: (1) Role Mapping; (2) Trust 

Management; and (3) Policy Integration. First, we develop several role mapping algorithms to 

identify a set of roles that contain all the requested permissions. We show that it is more 

convenient to specify the interoperation requests in terms of requested permissions. Recall that in 

RBAC, permissions are made available through roles. Therefore, the resource providing domain 

needs to find out which of its local roles contain the requested permissions. This problem 

becomes more challenging when hybrid role hierarchy is used. Motivated by this, we propose 3 

greedy role mapping algorithms to identify such roles according to the local policy. The proposed 

algorithms are able to handle three scenarios: (1) when exactly matched role set exists; (2) no 

exactly matched role set exists and the principle of least privilege is important; (3) no exactly 

matched role set exists and the availability is more important. Second, we develop a Simplify 

algorithm to simplify the role-based distributed proof procedure. In particular, we base our work 

on the role-based distributed proof procedure proposed by Li et al. (i.e. RT families of trust 

management language [22] and Distributed Credential Chain Discovery (DCCD) algorithm [26]). 

We first show that there is a common type of interoperation request in loosely-coupled 
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environment. That is, role-based interoperation access request where the access requests are 

issued according to the functional needs of the roles in the organization rather than from the 

individual behaviors. In this case, we show that DCCD approach is inefficient since it can only 

authorize the resource to the unknown users but not roles in unknown domains. Motivated by 

this, we propose a Simplify algorithm to simplify the distributed proof procedure as defined in 

DCCD approach by analyzing the policies of the requesting roles and requested roles. We 

conduct several experiments using simulation and the experimental results show that our 

approach significantly outperforms DCCD when the total number of credentials in the 

environment is sufficiently large, which is quiet common in loosely-coupled environments. Third, 

we develop a novel policy integration approach using the special semantic of hybrid role 

hierarchy to preserve the principle of security. Researchers have shown that violations of 

principle of security could be introduced in the global policy that is used to facilitate 

interoperations in tightly-coupled environments. They have proposed several solutions to detect 

and remove such violations in the global policy. We show that violations of principle of security 

could also be introduced in loosely-coupled environment although there is no global policy in it. 

And the existing approaches dealing with tightly-coupled environment cannot be applied. 

Motivated by this, we develop a novel policy integration approach that is able to preserve 

principle of security during interoperations. We use hybrid hierarchy to facilitate authorized 

interoperations and the special semantics of hybrid hierarchy guarantees that there is no violation 

of principle of security. To do this, we need to make several changes to the local GTRBAC 
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policy, which should be done properly by only the authorized administrators according to 

appropriate administrative models. However, as far as we know there are no existing 

administrative models in the literature that is able to deal with hybrid hierarchy. We also propose 

an administrative model for RBAC with hybrid hierarchy. 

From all the above disscussions, the goal of this thesis is to propose an access control and 

trust management framework for loosely-coupled multidomain environment that is able to: (1) 

allow the users to specify the requested permissions directly; (2) simplify the trust management 

process assuming the user’s requests are made according to the functionalities of their assigned 

roles ; (3) preserve the principle of security without using the global policy. In particular, the 

research presented in this thesis makes a number of contributions as follows: 

 We clearly characterize the tightly-coupled and loosely-coupled environments, and 

analyze the access control challenges specific to each. Such analysis helps us to 

develop access control mechanisms that are especially suitable for loosely-coupled 

environments. 

 We assume that users express the interoperation access requests in terms of requested 

permissions rather than requested roles in role-based multi-domain environments. 

Based on this, we develop three role mapping algorithms that are able to identify a set 

of roles containing the requested permissions according to the local policy of the 

resource providing domain. Such role mapping approaches are desirable in general 

RBAC systems and more so in multi-domain environments employing with RBAC. 
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 We show that a special type of interoperation requests – those issued according to the 

functionalities of the roles in an organization – is very common in role-based 

loosely-coupled environments and show that existing distributed proof systems are 

inefficient in dealing with such requests. Therefore, we propose a Simplify algorithm 

that significantly outperforms traditional role-based distributed proof procedures (in 

particular, DCCD approach [26]) when the total number of credentials is sufficiently 

large. 

  We show violations of principle of security could be introduced in loosely-coupled 

environment and develop a Policy Integration component to prevent such violations. 

We also develop an administrative model for the required administrative operations 

involved in the Policy Integration component. 

To our knowledge, no prior research has addressed the above issues in a unified manner, 

in the sense of analyzing the access control challenges for the loosely-coupled environment and 

developing an access control and trust management framework based on those identified 

challenges. Given the growing emphasis on interoperations over loosely-coupled multidomain 

environments, we believe the work presented in this thesis represents an important step towards 

addressing the access control issues in the loosely-coupled environments. 

The rest of this thesis is organized as follows. In section 2, we present relevant 

background and related work on access control issues in multidomain environments. In section 3, 

we discuss the differences between tightly-coupled and loosely-coupled environments and 
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identify the access control challenges specific to each. In section 4, we present our access control 

and trust management framework for loosely-coupled environments. Finally, in section 5, we 

conclude our work and point out possible future directions. 
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2.0 BACKGROUND AND RELATED WORK 

Access control is a fundamental security issue related to ensuring that only authorized accesses 

and activities are allowed in a computing environment. Authorizing an entity for accessing 

computing resources may involve satisfying complex policy rules. Recently, with the increased 

progress in large scale distributed applications, access control in multidomain environments has 

become a very significant challenge. In this section, we overview the general access control 

models in single domains, and the access control and trust management approaches in 

multidomain environments. 

2.1 ACCESS CONTROL MODELS IN SINGLE DOMAIN SYSTEMS 

Within a single domain, it is crucial to ensure that any access to its data and resources is properly 

authorized according to the access control policy. Several access control models have been 

proposed in the literature to specify and enforce various access control policy requirements in a 

single domain. Traditional access control approaches are broadly categorized as Discretionary 

Access Control (DAC) [44, 45, 46] and Mandatory Access Control (MAC) [46, 47, 48, 49]. In 
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DAC, the basic premise is that subjects have ownership over objects of the system and subjects 

can grant access rights to or revoke them from other subjects on the objects they own. It has been 

shown that the major problem of DAC is that it does not ensure information flow control [55].  

In MAC, all subjects and objects are classified based on some predefined clearance/sensitivity 

levels that are used in an access decision [46, 49, 50]. These levels generally form a lattice 

structure, and hence a MAC policy is sometimes known as a lattice-based policy [49]. Unlike 

DAC, MAC provides deals with more specific security requirements, such as information flow 

control policy. However, enforcement of MAC policies is often a difficult task. In particular, for 

many commercial organizations [51], they do not provide viable solutions because they lack 

adequate flexibility. Furthermore, organizational security needs are often a mixture of policies 

that may need to use both DAC and MAC, which necessitates seeking solutions beyond those 

provided by DAC and MAC only [46].  

Role Based Access Control (RBAC) approaches have been shown to offer many benefits 

over other models in terms of their applicability for a wider range of security requirements [5, 6, 

7]. One feature of RBAC is the notion of role hierarchy. However, researchers have found some 

limitations of the standard role hierarchy supported in RBAC. Hybrid hierarchy has been 

proposed to overcome the shortcomings of the standard role hierarchy. Recently, the General 

Temporal Role Based Access Control (GTRBAC) model has been proposed to add temporal 

constraints into RBAC. In our proposal, we assume each individual domain employs the 
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GTRBAC model with hybrid hierarchy. Next, we will briefly overview RBAC, hybrid hierarchy, 

GTRBAC, and the role-based administrative models. 

2.1.1 Role Based Access Control (RBAC) 

In RBAC, users are assigned memberships to roles and these roles are in turn assigned 

permissions as shown in Figure 2.1. A user can acquire all the permissions of a role of which he 

is a member. A role-based approach naturally fits into an organizational context as users are 

assigned organizational roles that have well-defined duties and responsibilities, and are 

associated with user qualifications [8]. 

 

 

Figure 2. 1. Constraints and hierarchy in RBAC 

 
 

According to a survey conducted by the US National Institute of Standards and 

Technology (NIST) [8], RBAC has been found to address many needs of the commercial and 

government sectors. This study shows that access control decisions in many organizations are 
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based on “the roles that individual users take on as part of the organization.” Many 

organizations surveyed indicate that they had unique security requirements and the available 

products did not have adequate flexibility to address them.  

 

 

Figure 2. 2. Number of permission assignments in (a) RBAC and (b) non-RBAC 

 
 

One of the key advantages of an RBAC model is the efficiency it provides in security 

administration. The role in the middle approach to access control removes the direct association 

of the users from the objects. This greatly simplifies management of authorization in RBAC 

systems. For example, when a user changes his role, all that needs to be done is to remove his 

membership from the current role and assign him to the new role. In case authorizations were 

specified in terms of direct associations between the users and the individual objects, this change 

would require revoking from the users all their permissions over the objects and explicitly 

granting the users the new permissions over the new set of objects. Figure 2.2 illustrates such 
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advantage of using RBAC approach. Using a role-based approach, the number of actual 

assignments is considerably reduced. Generally, a system has very large number of subjects and 

objects and hence using RBAC has benefits in terms of managing permissions. 

 

 

 

Figure 2. 3. A Simple Role Hierarchy 

 
 

Another key advantage of RBAC is the use of role hierarchy. Role hierarchies that exist 

in many organizations based on the principle of generalization and specialization [41]. For 

example, in a company there may be several roles arranged in a role hierarchy as shown in 

Figure 2.3: Employee, Engineer, Senior Engineer, Administrator, Senior Administrator, and 

Manager. Since everyone is an employee, the Employee role models the generic set of access 

rights available to all. A Senior Engineer role will have all the permissions that an Engineer role 

will have, who in turn will have the permissions available to the Employee role. Thus, permission 
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inheritance relations can be organized in role hierarchies. This further simplifies management of 

access permissions.  

Separation of Duty (SoD) has been considered a very desirable organizational security 

requirement [52, 53, 54]. SoD constraints are enforced mainly to avoid possible fraud in 

organizations. RBAC can be used to enforce such requirements easily – both statically and 

dynamically. For example, a user can be prevented from being assigned to two roles, one of 

which is related to authorizing a check and the other to cashing it, to prevent a possible fraud by 

using a static SoD which says that a user cannot be assigned to two roles,. 

2.1.2 Hybrid Hierarchy 

Standard role hierarchy supported in RBAC combines the semantics of permission inheritance 

and activation inheritance together. Several researchers have emphasized the need for separating 

the permission inheritance and activation inheritance semantics to provide flexibility in 

expressing fine-grained policies [10, 11]. Sandhu show that under the standard hierarchy 

semantics, certain Separation of Duty (SoD) constraints cannot be defined on hierarchically 

related roles, thus, restricting its effectiveness in supporting a broader set of fine-grained 

constraints and, in particular, in representing MAC policies [10]. To address such shortcomings, 

Sandhu has proposed the ER-RBAC96 model [10] that incorporates a distinction between a 

usage hierarchy that applies only the permission-inheritance semantics and activation hierarchy 

that uses the combined hierarchy semantics. Later, Joshi et al. [12] have established a clear 
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distinction among the following three types of hierarchical relations: 

permission-inheritance-only relation (I-relation, ≥ i), activation-only relation (A-relation, ≥a), and 

the combined permission-inheritance and activation relation (IA-relation, ≥). They further 

propose the notion of hybrid hierarchy [12] where the above three hierarchical relations co-exist, 

while only IA-relations exist in the standard role hierarchy. Semantically, x ≥i y (read as x is 

I-senior to y) means that permissions available to y are also available to x; x ≥a y (read as x is 

A-senior to y) means that users who can activate x can also activate y; x ≥ y (read as x is IA-senior 

to y) means that permissions available to y are also available to x and users who can activate x 

can also activate y. It has been shown that such a fine-grained hierarchy can allow specification 

of a wide range of security requirements, including the specification of Dynamic Separation of 

Duty (DSoD), and user-centric as well as permission-centric cardinality constraints on roles [7, 

12]. In their critique of the standard RBAC model, Li et al. have emphasized that such a 

distinction should be incorporated in the standard RBAC model to provide clearer semantics to 

support uniformity in implementations of the RBAC models [13]. 

Joshi et al. have shown that in hybrid hierarchy a hierarchical relation between any pair 

of roles which are not directly related could be derived [14]. It is obvious that the three hierarchy 

types are transitive. For instance, if (x ≥ y) and (y ≥ z) then it implies (x ≥ z). Similarly, since 

IA-relation can be considered as both I-relation and A-relation, we have the following relations as 

shown in Figure 2.4(a): (x <f1> y) ∧  (y <f2> z) => (x <f> z), where, (<f1>∈{≥}) ∨ (<f2>∈ 

{≥}) and <f> = <f1>, if <f2>∈ {≥}, otherwise <f> = <f2>. 
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A special derivation relation in hybrid hierarchy is where an A-relation is followed by an 

I-relation, as shown in Figure 2.4(b). Here, a user assigned to x cannot acquire permissions of z 

by only activating x. However, any user assigned to x can acquire permissions of z by activating 

y, which means x can still “inherit” permissions of z even if there is no I-relation between them. 

In this situation, we say that x has a “conditioned” relation with z, written as x[y] ≥i z [14]. 

If an I-relation is followed by an A-relation as shown in Figure 2.4(c), there is not any 

derived relation between x and z. In this case, a user assigned to x cannot acquire permissions of 

z, since he can only acquire permissions of y but cannot activate y. To summarize, we define the 

derived relation between any pair of roles x and y as follows: 

Definition 2.1 (Derived Relation): Let x and y be roles such that (x ≥d y), that is, x has a derived 

relation with y. Then the following holds: (x ≥i y)∨(x ≥a y)∨(x ≥ y)∨(∃a∈R, x[a] ≥i y)  

 

 

 

Figure 2. 4. Derived relations in a hybrid hierarchy 
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Lemma 2.1: Let r1 and r2 be a pair of roles in the hybrid hierarchy; then users assigned to r1 can 

acquire permissions of r2, iff. the following holds: 

There exists at least one hierarchical path from r1 to r2 such that no I-relation precedes an 

A-relation in the path. 

The proof of Lemma 2.1 follows directly from the semantics of hybrid hierarchy as discussed 

above. 

2.1.3 Generalized Temporal Role Based Access Control (GTRBAC) 

The GTRBAC model is an extension of RBAC that support temporal constraints [9]. Such a 

flexibility of supporting various temporal constrains is very helpful in our framework. Nearly all 

access decisions and related policy updates should be restricted by proper temporal constraints. 

For example, in our Trust Management components, we add a new RT0 rule in the providing 

domain to facilitate the simplified proof. Such new rules should not exist forever. If any of the 

related trust policy changes, the simplified proof may not be valid and needs to be reevaluated. In 

such a case, we can use trigger feature in GTBAC to disable the new rule once the relevant 

policies have changed. Another example, in the Policy Integration component we need to update 

the local RBAC policy to facilitate the authorized interoperation, that is, creating an access role 

and connecting them between requesting roles and requested roles (details in Section 4). Such 

new roles and hierarchical relations should be restricted by proper temporal constraints too. If the 

authorized interoperation is only authorized for a period of time, obviously the corresponding 
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access roles and hierarchical relations should also be valid for that period only. The duration 

constraints in GTRBAC can be used to specify such restrictions. We assume each individual 

domain employs GTRBAC in our framework. Specifically, there are 6 types of temporal 

constraints defined in GTRBAC [9]: 
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Periodicity Constraints 

A periodicity constraint contains a periodicity expression and an event expression. For example, 

given a periodicity constraint <Monday, enable Doctor> (Hereafter we will use a slightly 

different format without changing its semantic for each type of the constraint compared to the 

original paper for better readability), the system should enable Doctor on every Monday, and 

disable it on any other day. 

Duration Constraints 

A duration constraint contains a duration expression and an event expression. For example, <2 

hours, enable Doctor> means that the system should disable the Doctor role 2 hours after it is 

enabled. When applying a duration constraint to role activation, it takes four different formats: (1) 

total role activation duration per role: for example, <10 hours, activate Doctor> means that the 

total activation time of Doctor role is 10 hours; (2) total role activation duration per user-role: 

for example, <10 hours, activate Doctor by Alice> means that the total activation time of Doctor 

by Alice is 10 hours; (3) maximum role duration per activation per role: for example, <10 hours, 

activate Doctor per session> means that the Doctor could be activated for at most 10 hours in a 

single session; (4) maximum role duration per activation per user-role: for example, <10 hours, 

activate Doctor by Alice per session> means that Doctor could only be activated for at most 10 

hours in any of Alice’s sessions. 
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Cardinality Constraint 

The cardinality constraint is used to restrict the number of activations. It can be applied in four 

different scenarios: (1) total number of activations per role: for example, <10, activate 

Doctor>means that Doctor can be activated for at most 10 times; (2) total number of activations 

per user-role: for example, <10, activate Doctor by Alice> means that Doctor can be activated 

by Alice for at most 10 times; (3) max number of concurrent activations per role: for example, 

<10, concurrent activate Doctor> means that at any time Doctor should occur in no more than 

10 sessions; (4) max number of concurrent activations per user role: for example, <10, 

concurrent activate Doctor by Alice> means that at any time Doctor should be activated in no 

more than 10 of Alice’s sessions.  

Constraints on Constraints 

For each of the periodicity, duration, and cardinality constraints, we can add periodicity or 

duration constraint on the constraint itself. Periodicity Constraint on constraints specifies the 

enabling time of the corresponding constraints. For example, <Weekends, <2 hours, enable 

Doctor>> specifies that the inner duration constraint is enabled only during weekends. Duration 

Constraint on Constraints specifies how long a constraint is valid. For example, <10 hours, <10, 

activate Doctor>> means that once the inner constraint is enabled, it should be disabled after 10 

hours.  
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Run-time Requests 

GTRBAC supports administrators and users to issue run-time requests to change the system state. 

An administrator can issue all the 10 types of event expressions. For example, an administrative 

run-time request <enable constraint, <Monday, enable Doctor>, after 10 min> enables the inner 

constraint after 10 minutes. A user can only issue role activation and role de-activation events as 

run-time requests.  

Triggers 

A trigger consists of a precondition and a body, both of which are a set of event expressions. If 

all the operations in the precondition occur, all the operations in the body should be issued. For 

example, a trigger <enable Doctor → enable DoctorInTraining> specifies that once Doctor is 

enabled DoctorInTraining should also be enabled. 

As shown in Figure 1.1, the GTRBAC engine enforces the GTRBAC policy by updating 

the RBAC policy according to the semantics of the temporal constraints. For example, enforcing 

a periodical constraint <Monday, enable Doctor> involves automatically updating the enabling 

state of the role Doctor in the RBAC policy. In our work, we assume a GTRBAC engine is 

always running and updating the RBAC policy at fixed frequency. Whenever we mention an 

“RBAC policy”, we mean the current RBAC policy. 
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2.1.4 Role-based Administrative Models 

In our framework, the local RBAC policies need to be changed to facilitate the Policy Integration 

component. To support evolution of RBAC policies, administration of RBAC policies becomes 

more and more important. The use of role itself to manage RBAC has become an appealing idea 

recently. Sandhu et al. [15] have proposed an ARBAC97 (Administrative RBAC ‘97) model 

consisting of URA97 (User-Role Assignment ’97), PRA97 (Permission-Role Assignment ’97), 

and RRA97 (Role-Role Assignment ’97) model, which use RBAC to manage RBAC policies. 

They further extend this model to ARBAC99 [16] and ARBAC02 [17]. Crampton et al. [18] 

have proposed a SARBAC (Scoped Administration model for RBAC) model using the concept 

of administrative scope. SARBAC has been shown to be capable of addressing several 

shortcomings of ARBAC model and is better in terms of completeness, simplicity, practicality 

and versatility. Both ARBAC family of models and SARBAC assume that only standard role 

hierarchy is used. We briefly overview the SARBAC model next. 

The basic idea of SARBAC is to use some roles to “administer” some other roles [18]. In 

this way, the administration can be decentralized. The central idea of SARBAC is the notion of 

administrative scope, which defines the range of roles that can be administered by the given role, 

as shown next. 

Definition 2.2 [18] (Administrative Scope): Given a role a, its administrative scope, S(a), is 

defined as: 
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S(a) = {r∈R: r ≤ a , ↑r \ ↑a⊆↓a} 

Where, ↑r = {x∈R: x ≥ r}, ↓r = {x∈R: x ≤ r}. 

Informally, r∈S(a) if every path upwards from r goes through a. This ensures that any change to 

r made by a will not have unexpected side effects due to inheritance elsewhere in the hierarchy. 

The strict administrative scope of r is defined as S(r)\{r}, which we denote by S+(r). If r∈S+ (a), 

a is referred to as the administrator of r [18]. The SARBAC model consists of three parts: Role 

Hierarchy Administration (RHA) model, User Role Assignment (URA) model, and Permission 

Role Assignment (PRA) model. SARBAC-RHA defines four administration operations: 

AddRole(a, r, △r, ▽r), DeleteRole(a, r),  AddEdge(a, c, p), and DeleteEdge(a, c, p), where △r 

is the set of the immediate juniors of the role r, and ▽r is the set of the immediate seniors of the 

role r. Table 2.1 describes the conditions that are required for these operations to succeed. For 

example, the first rule in Table 2.1 specifies that an administrator role a is able to add a new role 

r (whose senior and junior roles are ▽r and △r respectively), if and only if △r is within the 

strict administrative scope of a and ▽r is within the administrative scope of a. The rationale 

here is that a can administrate both ▽r and △r so it should also be able to add a new role 

between them. Similarly, the operations and their success conditions in SARBAC-URA are 

summarized in Table 2.2, where ∧C is a set of constraints needed to be satisfied by users or 

permissions and ua-constraints assign some constraints to each of the role r. Let R’ = {r1, …, rk} 

be a subset of R and let ∧R’ denote r1∧…∧rk, we have the following definition: 
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Definition 2.3 (SARBAC Constraint): An SARBAC constraint has the form ∧C, where C ⊆ R. 

A SARBAC constraint ∧C is satisfied by a user u if C ⊆ ↓ R(u). A SARBAC constraint ∧C is 

satisfied by a permission p if C ⊆↑R(p), here for any Y ⊆X, ↑Y = {x∈X: ∃y∈Y such that x ≥ y}, 

and ↓Y = {x∈X:∃y ∈ Y such that x ≤ y}. 

According to definition 2.3, a user is said to satisfy a set of roles if she is assigned to any one of 

these roles, or the senior role of any of these roles. Intuitively, this constraint guarantees that if a 

user satisfies a set of roles, she is the member of all these roles. For example, the first row of 

Table 2.2 shows that if role a wants to assign user u to role r, r must be within the administrative 

scope of a; and u must satisfy the “pre-condition” associated with role r. SARBAC-PRA is very 

similar to SARBAC-URA by substituting "permissions" for “users”.  

 

Table 2. 1. Hierarchical Operations in SARBAC-RHA 

Operation Conditions 
AddRole (a, r, △r, ▽r) △r ⊆ S+ (a),▽r ⊆ S(a) 
DeleteRole (a, r) r ∈ S+(a) 
AddEdge (a, c, p) c, p ∈ S(a) 
DeleteEdge (a, c, p) c, p ∈ S(a) 

 

 

Table 2. 2. User-Role operations in SARBAC-URA 

Operation Conditions 
AssignUser(a, u, r) r∈S(a), u satisfies ∧C,  (r, ∧C) ∈ua-constraints 
RevokeUser(a, u, r) r ∈ S(a) 
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2.2 SECURE INTEROPERATION IN MULTIDOMAIN ENVIRONMENTS 

As indicated by the principle of autonomy and principle of security, the access control policies in 

the multidomain environment should be consistent with the access control policies in the 

individual domains. In the literature, there are two major research areas related to access control 

in multidomain environments: (1) global policy based approaches; and (2) trust management 

approaches. In this section, we describe these two areas in detail and also briefly review other 

related secure interoperation approaches. 

2.2.1 Global Policy Based Approaches 

A key approach to access control in multidomain environments involves mapping all the 

individual policies into one centralized global policy, based on which all the interoperation 

requests are authorized. We refer to such kind of approaches as “global policy based approach” 

in this thesis. Such work includes Gong et al.’s computational complexity analysis [1] based on 

the Access Control Matrix (ACM) model, Bonati et al.’s policy algebra [2], Dawson et al.’s 

approach [3] based on the Multi-Level Security (MLS) model, and Shafiq et al.’s secure 

interoperation framework [4] based on the RBAC model. A global policy should not violate the 

principle of autonomy and principle of security. Intuitively, principle of autonomy indicates that 

we may facilitate the interoperation by mapping different policies, but it should not result in the 

removal of any existing authorization relations in the local policies. Principle of autonomy is 
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typically implicitly guaranteed in the global policy by not changing any local policies when 

mapping. Principle of security indicates that during the interoperation no new authorization 

relation should be added within each individual domain. The use of global policy in multidomain 

environments where RBAC is employed could introduce two types of violations of principle of 

security. The first type of violation is referred to as cyclic inheritance conflicts [4]. In such a case, 

the cross-domain hierarchical relationship may introduce a cycle in the global policy enabling a 

subject lower (or junior) in the hierarchy to acquire the permissions of the subject higher (senior) 

in the hierarchy. Figure 2.5(a) shows such an example. In Figure 2.5(a), role r2 of d1 is made 

senior to r3 of d2 to facilitate some interoperation needs, and r4 is also made senior to r1 to 

facilitate another interoperation need. A cycle (r2, r3, r4, r1) is introduced in this case, and r2 can 

now inherit the permissions of r1, which violates the principle of security. The second type of 

violation is referred to as a violation of Separation of Duty (SoD) [4]. In such a case, the 

cross-domain hierarchical relationship may enable one subject to acquire permissions that violate 

the SoD constraint. Figure 2.5(b) shows such an example. In figure 2.5(b), r1 and r2 in domain d1 

are restricted by the SoD constraint. r1 is made senior to r3 in d2 to facilitate an interoperation 

need, and r3 is made senior to r2 to facilitate another interoperation need. Now the users of r1 can 

acquire the permissions of r2, thus violating the SoD constraint. Several techniques have been 

proposed in the literature to detect and remove such violations introduced in the global policy. 

For example, Shafiq et al. propose an Integer Programming based approach to detect and remove 

cyclic inheritance cycle and violation of SoD in the global policy [4]. 
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Figure 2. 5. Example of (a) Cyclic inheritance conflict; (b) Violation of SoD 
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resource-providing domain. Whether a user should be given a certain credential could in turn be 

defined by the policy of the domain issuing that credential, which may further require another set 

of credentials to be validated. For this reason, such trust management systems are sometimes 

referred to as distributed proof systems in the literature [23, 24, 25]. We refer to such a process of 

submitting and verifying the proof of credentials needed for requested resources according to the 

relevant policies distributed over the network as distributed proof checking procedure. In our 

framework, we propose to use a role based trust management language RT0 [22] as the basis for 

the proposed Trust Management component. 

RT0 [22] is a role based trust management language that models all the resources using 

roles. For example, if Alice is given a credential certifying that she is a member of IEEE, Alice is 

said to be the member of role “IEEE.member”. In RT0, entities are made members of roles 

through four types of credentials, as shown below [22]: 

 Type 1 (Simple Membership): A.r←D 

 Type 2 (Simple Containment): A.r←B.r1 

 Type 3 (Linked Roles): A.r←A.r1.r2 

 Type 4 (Role Intersections): A.r←f1∩f2∩…∩fn, where fi (i=1, 2, …, n) is a simple role, or a  

linked role 

The four types of credentials in RT0 are specified using logical rules. Therefore, we use 

the following phrases interchangeably in this proposal: RT0 policies, RT0 rules, and RT0 

credentials, and we will omit the prefix “RT0” if the context is clear. Type 1 rule specifies that 
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entity D is made the member of role A.r; Type 2 rule specifies that any member of B.r1 is also a 

member of A.r; Type 3 rule specifies that any member of r2 defined by members of A.r1 is also a 

member of A.r; and Type 4 rule specifies that members of all roles f1 through fn are also the 

members of A.r. Here, A, B, and D are entities. The body of the type 1 rule (i.e. D) can be the 

identifier of either a user or a domain. The entities in all other places (i.e. A, B) can only be the 

identifiers of domains. A role in RT0 is defined by the domain defining it and a role identifier (i.e. 

A.r). Hereafter, we will use both domain identifier and role identifier to represent a role if we 

want to emphasize its domain. Otherwise, we will only use the role identifier to represent a role 

for simplicity. 

Given a set of related RT0 policies, the requesting user needs to prove that she is 

authorized to the requested resources (i.e. she is the member of the role associated to the 

requested resources) by showing a chain of credentials that link the requesting entity to the 

requested role. In a multidomain environment, the credentials may be distributed in different 

domains, making the discovery of such credential chains a great challenge. Li et al. have 

proposed a distributed credential chain discovery approach to efficiently find such credential 

chains if they exist [26]. In their approach, they use a graph model to represent all the credentials 

in the environment. Given an individual interoperation request (i.e. a user’s request to assume a 

role), they check whether the requesting user is the member of the requested role in the graph. 

They propose a forward search, a backward search, and a bi-directional search to check the role 
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memberships in the graph. The time complexities of all the three search algorithms they have 

proposed are cubic to the number of credentials. 

2.2.3 Tightly and Loosely-Coupled Environments 

In the literature, a multidomain environment is sometimes characterized as “tightly-coupled” or 

“loosely-coupled”. In [27], Joshi et al. describe the “tightly-coupled environment” as “there 

exists one master system and the master mediates accesses to individual systems through a global 

policy”, and describe the “loosely-coupled environment” as one where “independent systems 

dynamically come together to share information for a period of time”. It is clear that their 

characterization of “tightly-coupled” environment refers to the multidomain environment that has 

been studied extensively in the literature by using global policy based approaches. The 

loosely-coupled environment, on the other hand, is an area that has not been studied adequately 

in the literature. Our focus in this proposal is the access control challenges in loosely-coupled 

environments. We will give a clearer characterization of tightly-coupled and loosely-coupled 

environments in section 3. We do not claim that our characterization is the “only acceptable” one 

for these two terms, nor that our classification using these two terms are the only way to classify 

multidomain environments. Rather, our aim is to provide a clearer distinction between these two 

types of environments so that it can help us to better understand the access control challenges in 

each. 
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3.0 ACCESS CONTROL CHALLENGES IN LOOSELY-COUPLED ENVIRONMENTS 

In this section, we first characterize the tightly-coupled and loosely-coupled multidomain 

environments. We then identify the specific access control challenges in loosely-coupled 

environments, which are the focus of this dissertation. 

3.1 TIGHTLY-COUPLED ENVIRONMENTS 

Characteristic: The domains in a tightly-coupled environment are typically closely related to 

each other and collaborate to pursue some specific common tasks. Such common tasks cannot be 

completed without proper interoperations, and such interoperation needs are static and can be 

predefined. 

Example (from [4]): Consider the interoperation among various offices of a county for the 

collection and sale of real-estate tax (the common tasks) on property parcels located within the 

jurisdiction of a concerned county. The concerned county offices would include: County Clerk 

Office (CCO), County Treasure Office (CTO), and County Attorney Office (CAO). These offices 

interoperate and share information among each other for budget planning, tax billing and 
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collection, sale of delinquent taxes, auditing, and other legal purposes. Integration of these local 

databases is necessary to complete their tax processing tasks. 

This is an example of a tightly-coupled environment, and the common tasks in this 

environment is the collection and sale of tax. The three domains have to interoperate with each 

other to complete their tasks. And the interoperation needs in such an environment are static. For 

example, the Delinquent Tax Clerk in the CTO always need to consult with the County Clerk in 

the CCO to collect the tax record, and the Redemption Cost Assessor in the CCO always need to 

consult with the Deputy County Attorney Tax Section in the CAO to estimate the tax redemption 

cost [4]. These interoperations are typically predefined before these organizations interoperate.  

Challenges: There are two major access control challenges to ensure secure interoperations in 

tightly-coupled environments. 

The first challenge is how to make an access control decision for a particular 

interoperation request. For example: should a user of DelinquentTaxClerk in the CTO be 

authorized to acquire the permissions of CountyClerk in the CCO? Since the interoperation 

needs are predefined in tightly-coupled environments, the administrators can create a global 

policy by mapping the local roles in order to facilitate those predefined interoperations. And all 

the interoperation requests can be checked against such a global policy. In this example, since it 

is predefined that Delinquent Tax Clerk in the CTO needs to access the records of County Clerk 

in the CCO to process the job, the administrators would make DelinquentTaxClerk senior to 

CountyClerk in the global policy to facilitate such an interoperation need. As a result, all the 



  35 
 

users assigned to DelinquentTaxClerk are authorized to acquire the permissions of 

CountyClerk, and all other users in the CTO are not authorized to acquire permissions of 

CountyClerk in the CCO. 

 

 

 

Figure 3. 1. An example of the cyclic inheritance conflict in a tightly-coupled environment 
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redemption cost, and Para Legal Tax Section in the CAO needs to access the records of 

Delinquent Tax Manager in the CTO to collect the relevant records for preparing tax sales pleas 

[4]. These interoperation needs are facilitated by the three hierarchical relations shown in Figure 

3.1. A cyclic inheritance conflict is introduced in this global policy (bold arrows in Figure 3.1) 

and the principle of security is violated. Figure 3.2 shows an example of the violation of SoD 

introduced in the global policy in a tightly-coupled environment. In domain CTO, Tax 

Assessment Clerk (TAC) and Tax Billing Clerk (TBC) of CTO are restricted by an SoD 

constraint, specifying that no single user should acquire the permissions of both the roles. 

According to the predefined interoperation needs related to tax processing, TBC in the CTO 

needs to consult the Property Tax Manager (PTM) in the CCO for the billing purpose, and PTM 

needs to consult TAC for estimating the tax [4]. These interoperation needs are facilitated by two 

hierarchical relations shown in Figure 3.2. In such a case, the user assigned to TBC can now 

acquire the permissions of TAC, violating the SoD constraint defined over TAC and TBC. Note 

that if we represent an SoD constraint using a bi-directional arrow (as shown in Figure 3.2), it 

can be detected in the way similar to detecting the cyclic inheritance conflicts, i.e., detecting the 

inheritance cycle in the global policy. To remove such violations, we need to break such 

inheritance cycles. If we remove some interoperation links in the cycle, the interoperation needs 

cannot be facilitated. If we remove some local link in the cycle, the principle of autonomy is 

violated. As a result, there is a trade-off between maximizing the interoperations and preserving 

the principle of autonomy.  
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Figure 3. 2. An example of the violation of SoD in a tightly-coupled environment 
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taken cared of at another hospital while travelling away from home. Interoperation in such an 

environment is transient, and need based. 

This is an example of a loosely-coupled environment since the interoperation needs are 

dynamic and cannot be predefined. For example, assume Bob travels outside his hometown and 

needs to go to an emergency unit. The local hospital (Hospital A) may need to access his health 

information from his home hospital (Hospital B) to provide him with a proper treatment. This 

particular interoperation need is driven by a specific event (Bob needs to go to the emergency 

ward), and we cannot predefine that Hospital A should always be authorized to access Bob’s 

health information from Hospital B. Normally, there are no specific common tasks that require 

the interoperation of all these healthcare domains, and they are able to operate on their own to 

carry out their daily functions without interoperating with each other.  

Challenges: A loosely-coupled environment has its specific access control challenges. Although 

the description of some of the challenges looks similar to those in tightly-coupled environments, 

different approaches are needed due to the unique features of loosely-coupled environments. 

The first challenge is how to model the access requests in loosely-coupled environments. 

The access request in a single system or tightly-coupled environment configured with RBAC is 

straightforward. In a single system, users know the functional structure of the organization and 

know which roles they need to assume to perform specific tasks. In a tightly-coupled 

environment, the requesting users typically also know the functional structures of other domains 

and know which roles they need to assume to facilitate the interoperation. For example, users of 
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Delinquent Tax Clerk in the CTO know that Property Delinquent Tax Manager in the CCO has 

access to the records necessary to process the job. As a result, users of DelinquentTaxClerk can 

issue a request to assume the role of PropertyDelinquentTaxManager. In a loosely-coupled 

environment, however, the access request cannot be modeled by the requested roles since the 

domains usually do not know the policy structure of other domains. For example, when Bob goes 

to the emergency room in Hospital A, the healthcare workers there look up and find that Bob is 

registered in Hospital B (his home hospital). However, they do not know the policy of Hospital B. 

Therefore, they are not able to request to assume specific roles in Hospital B. Instead, they are 

only able to request to access Bob’s health information. From an RBAC perspective, this 

example shows that it is more convenient to model the interoperation requests using the target 

permissions but not target roles in a loosely-coupled environment. And it should be the 

responsibility of the domains containing the requested permissions to identify some of their local 

roles for external users to assume. For example, Hospital B knows that role Nurse(patient=Bob) 

has the permissions to view Bob’s health information, and may allow healthcare workers in 

Hospital A to acquire the permissions through it. 

The second challenge is how to make an access control decision for a particular 

interoperation request. This challenge looks the same as the first challenge in tightly-coupled 

environments. However, unlike in tightly-coupled environments, we cannot let administrators 

define a global policy to facilitate interoperation because the interoperation needs in a 

loosely-coupled environment cannot be predefined. For example, at the time when both Hospital 
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A and Hospital B join the environment, one cannot predefine that Hospital A is authorized to 

access Bob’s health information from Hospital B. This is because such a cross-domain access is 

only necessary when Bob needs to go to the emergency ward in Hospital A and this may never 

happen. In the literature, researchers have shown that trust management approaches are 

particularly useful to facilitate such distributed authorizations when the interoperation needs are 

dynamic and the requesting users are unknown. For example, when the healthcare workers in 

Hospital A request to access Bob’s health information in Hospital B, Hospital B may require that 

only the users with valid healthcare licenses are allowed to access Bob’s health information. 

Hence, Hospital B will need to ask healthcare workers in Hospital A to present their licenses in 

order to gain the desired accesses. Once the license has been verified, the interoperation request 

is authorized and the healthcare workers in Hospital A can access Bob’s health information from 

Hospital B. This challenge shows that a Trust Management component is necessary in a 

loosely-coupled environment. 

The third challenge is how to preserve the principle of security during interoperations 

among various domains. Recall that two types of violations of principle of security could be 

introduced in the global policy: i.e. cyclic inheritance conflicts and violations of SoD. As global 

policy based approaches cannot be applied to loosely-coupled environments, it seems that 

loosely-coupled environments will not suffer from such violations. However, if there are multiple 

interoperations generated within the same time period, the authorized interoperations could also 

introduce these two types of violations. Figure 3.3 shows an example of cyclic inheritance 
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conflicts in a loosely-coupled environment. Assume that Bob is registered and taken cared of at 

his home hospital (Hospital B), where both the doctor and resident are authorized to access his 

health care information. Typically, doctors have more privileges than residents, such as adding a 

new entry to his record, so Doctor can be made senior to Resident in Hospital B’s local policy. 

In Hospital A located at another city, healthcare workers are responsible for maintaining patients' 

health information. There may be doctors who are specialists in cancer treatment and they need 

special privileges to maintain cancer-related information. Therefore, SpecialistDoctor can be 

made senior to HealthCareWorker in Hospital A. Now assume Bob needs to go to the 

emergency ward in Hospital A when he travels to that city. To take care of Bob, a healthcare 

worker in Hospital A needs to access Bob’s healthcare records and also needs to add a new entry 

to Bob’s records. If such an interoperation need is authorized, HealthCareWorker of Hospital A 

needs to be made senior to Doctor of Hospital B to facilitate it (interoperation 1 in Figure 3.3). 

Assume that at the same time, hospital B receives a cancer patient but is unable to make a proper 

treatment plan since they are not experts in cancer. The doctor in hospital B can ask the resident 

to get some help from the specialist doctors in Hospital A (e.g. by accessing some cancer-specific 

information in Hospital A to choose a proper treatment). If such an interoperation need is 

authorized, Resident of Hospital B needs to be made senior to SpecialistDoctor of Hospital A 

to facilitate it (interoperation 2 in Figure 3.3). At this time instant when both interoperations 1 

and 2 in Figure 3.3 are authorized, an inheritance cycle is introduced in (shown by the 4 arrows). 

Figure 3.4 shows an example of the violation of SoD in a loosely-coupled environment. In a 
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hospital domain, an SoD constraint is defined over Doctor role and BillingClerk role specifying 

that no single user can take the Doctor and BillingClerk roles at the same time. Assume the 

Billing Clerk needs to acquire a patient’s insurance information through the InsuranceAgent 

role in a insurance company. To facilitate this interoperation, BillingClerk is made senior to 

InsuranceAgent (interoperation 1 in Figure 3.4). At the same time, assume the Insurance Agent 

in the same insurance company needs to consult the Doctor for some patient’s health information 

in order to estimate the insurance coverage. To facilitate such an interoperation, 

InsuranceAgent is made senior of Doctor (interoperation 2 in Figure 3.4). At this time instant 

when both interoperations 1 and 2 in Figure 3.4 are authorized, a violation of SoD occurs since 

Billing Clerk can now acquire the permissions of Doctor. Unlike in a tightly-coupled 

environment, there is no static global policy in loosely-coupled environments. Therefore, the 

existing violation detection and removal approaches employed in global policy based approaches 

in the literature cannot be applied here. This challenge shows that a proper mechanism to ensure 

principle of security is necessary in a loosely-coupled environment.  
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Figure 3. 3. An example of the cyclic inheritance conflict in a loosely-coupled environment 

 
 
 

 

Figure 3. 4. An example of the violation of SoD in a loosely-coupled environment 

Specialist Doctor

Health Care Worker

Doctor

Resident

Hospital A Hospital B

Interoperation 1

Interoperation 2

adding entries …

access health 
care records…

maintain normal health 
care information…

maintain cancer-specific 
information …

DoctorBilling Clerk

Insurance Agent

Hospital Insurance Company

Interoperation 1

Interoperation 2

SoD



  44 
 

4.0 THE PROPOSED ACCESS CONTROL AND TRUST MANAGEMENT 

FRAMEWORK 

In this section, we propose our access control and trust management framework for 

loosely-coupled environments. We aim to address the key access control challenges in 

loosely-coupled environments listed in section 3.2.  

 

 

 

Figure 4. 1. Interaction and data flow among the components 
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4.1 OVERVIEW 

The overall protocol and structure of our framework are shown in Figure 4.1. As mentioned in 

Section 1, it is more convenient for the requesting users to specify the requested permissions 

rather than the requested roles in loosely-coupled environments. Moreover, we have shown that 

the Role-based interoperation Access Request (rar) is convenient in loosely-coupled 

environments. Therefore, we first define rar formally in this section, as follows: 

Definition 4.1(a) (Role-based interoperation Access Request): A Role-based interoperation 

Access Request, rar, is defined as a tuple < dreq, Rreq, ddest, Pdest, T>, where dreq is the requesting 

domain, Rreq is a set of roles in dreq such that the function of each role in Rreq requires accessing 

the common requested external resources, ddest is the resource providing domain, Pdest is a 

permission set in ddest representing access to the requested resources, and T is the valid time 

period of the request.  

Since rar is defined by the requesting roles according to the role structure in the 

requesting domain, it should be issued on behalf of the requesting domain rather than the 

individual users. Note that the requesting domain needs to specify a valid time period T for the 

rar since the interoperation needs in loosely-coupled environments are dynamic. Since our focus 

is how to authorize Pdest to Rreq, we will omit dreq, ddest, and T from the expression of rar hereafter 

when the context is clear.  
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Upon receiving an rar, the resource providing domain needs to find a set of roles 

containing the requested permissions Pdest. This is done in our Role Mapping component and we 

refer to the resulting role set as Rdest. The new rar in terms of <Rreq, Rdest> is fed into the 

proposed Simplify algorithm replaces as many of external roles in the proof of Rdest with the 

local roles of the requesting domain as possible – thus, greatly simplifying the distributed proof 

procedure. The existing simplified proofs are then added into the RT0 policy so that the 

individual users can use them to prove Rdest. Now, the individual users are allowed to issue 

his/her interoperation access requests, which are defined formally as follows: 

Definition 4.1(b) (User interoperation Access Request): A User interoperation Access Request, 

uar, is defined as a tuple < u, Ru, Rdest, T>, where u is the requesting user, Ru is the set of roles u 

is assigned to, Rdest is a role set in ddest containing the requested permissions (returned by Role 

Mapping algorithm), and T is the valid time period of the request.  

Again, the most important part of an uar is Ru and Rdest, so we will omit u and T hereafter 

when the context is clear. The uar is verified in Proof Engine. If the user can prove Rdest, the 

Policy Integration component is called to authorize the uar without violating the principle of 

security; otherwise, the uar is denied.  

Before we present the details of each component of our framework, we emphasize that 

the focus of our framework is the access control challenges in loosely-coupled environments. 

Several other issues in a multidomain environment, including the data management, 

authentication, and communication protocol, are beyond the scope of our work. Moreover, our 
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framework does not depend on any specific application area or implementation architecture. 

Different application domains (e.g. military applications, healthcare applications) may have 

different interoperation requirements and may specify different policies. Different architecture 

(e.g. Peer-to-Peer, Service Oriented Architecture) may implement our framework using different 

implementation techniques. However, our framework shall be able to solve the access control 

challenges in these different environments as long as they are loosely-coupled environments (i.e. 

satisfying the characteristics we described in section 3.2).  

Heterogeneity has long been recognized as a fundamental problem in multidomain 

environments [29]. Especially in loosely-coupled environments, different autonomous domains 

are independent with each other and may represent their resources, organizational structures, and 

access control policies in different ways. Here, we emphasize that our framework makes two 

assumptions about the heterogeneity issue. First, we assume each individual domain employs 

GTRBAC with hybrid hierarchy. We believe this is a reasonable assumption since RBAC and 

hybrid hierarchy has been shown to be particularly useful in multidomain environments [4, 30], 

and GTRBAC has been shown as a valuable extension of RBAC [9]. Second, we assume that 

different domains share a uniform representation for the essentially same permission, so that 

each domain can understand the permissions that other domains request. This is because we use 

target permissions to model the access requests. Therefore, we need to make sure the permissions 

provided by the involved domains are exactly the permissions requested by the users. Note that a 

permission consists of an operation on an object, and is an abstract notion specific to RBAC. 
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During implementation, different architectures may implement the notion of permission in 

different ways. Therefore, how to ensure that different domains understand each other about the 

actual meaning of a permission is architecture-dependent and is beyond the scope of our work. 

For example, if the web service architecture [31, 32] is used, permissions would be implemented 

as services and many service discovery approaches [33, 34] have been proposed to identify a 

service according to its semantic representation. 

4.2 THE ROLE MAPPING COMPONENT 

In a traditional single domain RBAC system, a user’s access request is typically modeled as a set 

of roles requested to be activated by the user. As discussed in section 3.2, it is desirable to model 

the access control request in terms of requested permissions in loosely-coupled environments 

because the users of a domain typically do not know the roles and hierarchical structures of the 

external domains. Even in a single RBAC system, allowing users to specify access control 

requests in terms of permissions would have some benefits. For example, a Windows user may 

directly request to execute an application (e.g. by double-clicking the shortcut) that only the 

administrators can execute. Even if she has an administrator account she may not be aware that 

she has to log-in as administrators to execute the application until prompted by Windows. In such 

a situation, we should allow the users to specify the requested permissions (i.e. executing a 

program) directly and let the system find out which roles are needed (i.e. administrator role) and 
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prompt the users to activate those roles (i.e. re-login as an administrator).  

 

 

 

Figure 4. 2. User Authorization Query Model 
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environment, the resource providing domain does not necessarily know the identity of the 

requesting user. In this case, we use a trust management approach to check whether an external 

user is authorized to activate the corresponding roles. This is consistent with Figure 4.1 where we 

use Role Mapping first to get a set of requested roles then feed it into the Trust Management 

component.  

 

 

 
Figure 4. 3. An example RBAC policy to show the role mapping algorithms 
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Pau(r) = {p∈P: p is assigned to r1 , r ≥i r1 }, Pau(R1)=
1Rr∈

∪ Pau(r) 

where, Pau(r) is the permission set that r can acquire, either through explicit assignments, or 

through the I-hierarchy. Pau(R1) is the union of the permission sets that can be acquired through 

each role in R1.  

Definition 4.3 (Role Mapping Problem): Given a request permission set PRQ, 

1. If exactly matched role sets exist: find a minimum RRQ such that Pau(RRQ)=PRQ; 

2. If no exact-matching role sets exist: 

a) If availability is the major concern - find a minimum RRQ such that  Pau(RRQ) ⊃ PRQ; 

b) If least privilege is the major concern - find a maximum RRQ such that Pau(RRQ) ⊂ PRQ; 

We note that if PRQ is the least set of privileges, then at least PRQ should be made available. In 

that case, we consider it as an availability concern. Next, we use the RBAC policy shown in 

Figure 4.3 to illustrate our role mapping algorithms for each of the 3 role mapping problems. 

And Example 4.1 shows Pau(r) for each role in Figure 4.3 according to definition 4.2. 

Example 4.1: Consider the RBAC policy in Figure 4.3, we have: 

Pau(r0) = {p1, p2, p3, p4, p5, p6, p7, p8, p11, p12},  Pau(r1) = {p1, p2, p3, p4, p11},  

Pau(r2) = {p5, p6, p7, p8, p12}, Pau(r3) = {p6, p7, p8, p13}, Pau(r4) = {p1, p2, p3}, Pau(r5) = {p1, p4} 

Pau(r6) = {p2, p3, p4, p5}, Pau(r7 )= {p4, p5, p6}, Pau(r8) = {p5, p6, p7, p8}, Pau(r9) = {p6, p7, 

p8},Pau(r10) = {p7, p8, p10}, Pau(r11) = {p0}, Pau(r12) = {p1}, Pau(r13) = {p2, p3}, Pau(r14) = {p4}, 

Pau(r15)= {p5}, Pau(r16)= {p6}, Pau(r17)= {p7, p8},   Pau(r18)= {p9} 
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In [36], Du et al. have shown that solving the role mapping problem 1 is NP-complete by 

reducing it to the well known Minimal Set Cover (MSC) problem. They also propose a greedy 

search algorithm to find the sub-optimal solution for the problem. However, their algorithm is 

based on the assumption that there always exists a role set that exactly matches the requested 

permission set. To accommodate inexact matches, we extend Du et al.‘s algorithm to solve the 

role mapping problem 1 as shown in Figure 4.4. The time complexity of Role-Mapping-1 is 

within 1 + ln |R| [36].  

 

 

Role-Mapping-1(R, PRQ) 
Input: R – a set of all roles; PRQ – a set of requested permissions 
Output: RRQ – a set of roles, such that Pau(RRQ)=PRQ and RRQ ⊆ R 
1 R1←∅ 
2 foreach r ∈R 
3  if Pau(r) ≠ ∅ and Pau(r) ⊆PRQ 
4   R1←R1∪{r} 
5 RRQ←∅ 
6 while PRQ≠ ∅ do 
7  if R1 = RRQ return ∅ 
8    Find role v∈(R1\RRQ) that maximize Pau(v) ∩ PRQ 
9    RRQ←RRQ ∪ {v} 
10    PRQ←PRQ \ Pau(v) 
11 return RRQ 

Figure 4. 4. The algorithm to solve role mapping problem 1 
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Example 4.2: The result of applying Role-Mapping-1 to Figure 4.3 is shown in Table 4.1. In the 

last step, PRQ ≠ ∅, but RRQ = R1. The Role-Mapping-1 terminates with RRQ = ∅, which means 

we cannot find an exactly matched RRQ for PRQ. 

 

 

Table 4. 1. Results of each step of Role-Mapping-1 

Step 0 Step 1 Step 2 Step 3 Step 4 – Step 11 

RRQ  = ∅ 

R1 = {r1, r3, 
r4, r5, r9, r10, 
r12, r13, r14, 
r16, r17} 

v = r1 

RRQ ={ r1} 

PRQ = {p6, p7, p8, 
p10, p12, p13} 

v = r3 

RRQ = {r1, r3} 

PRQ = {p10,p12} 

v = r10 

RRQ={r1,r3,r10} 

PRQ  = {p12} 

v = r4, r5, r9, r12, r13, 
r14, r16, r17 

RRQ  = R1 

PRQ  = {p12} 

 

 

In order to solve the role mapping problem 2(a), we modify the Role-Mapping-1 to get 

Role-Mapping-2a that finds a minimal role set RRQ whose permission set is the superset of PRQ, 

as shown in Figure 4.5. 

  Here, W(v) = |Pau(v)| / |Pau(v)∩PRQ| is the weight function for any role v. Note that ∀v∈

R, W(v) ≥ 1, and W(v) = 1 if Pau(v) ⊆ PRQ. Therefore, this weight function favors those roles 

whose permission sets overlap the most with PRQ. And if there are two roles v1 and v2 such that 

W(v1) =W(v2), we select the one that covers more permissions of PRQ, as shown in line 3. Note 

that RRQ can always be found since at least R itself can satisfy the condition Pau(R)⊇PRQ. Similar 

to Role-Mapping-1, the time complexity of Role-Mapping-2a is also within 1 + ln(|R|). 
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Role-Mapping-2a(R, PRQ) 
Input: R – a set of all roles; PRQ – a set of requested permissions. 
Output: RRQ– a set of roles, such that Pau(RRQ) ⊃PRQ, RRQ ⊆ R, and RRQ is minimal 
1 RRQ←∅ 
2 while PRQ≠∅ do 
3   Find role v∈(R\RRQ) that minimize W(v) / |Pau(v) ∩ PRQ| 
4  RRQ←RRQ∪{v} 
5  PRQ←PRQ \ Pau(v) 
6 return RRQ 

Figure 4. 5. Algorithm for the role mapping problem 2(a) 

 
 

Example 4.3: The result of applying Role-Mapping-2a to Figure 4.3 is shown in Table 4.2. In 

the last step, PRQ = ∅, so Role-Mapping-2a terminates with RRQ = {r0, r3, r10}. Note that Pau(RRQ) 

= {p1, p2, p3, p4, p5, p6, p7, p8, p10, p11, p12, p13}⊃PRQ and Pau(RRQ) \ PRQ = {p5}. 

 

 

Table 4. 2. Results of each step of Role-Mapping-2a 

Step 0 Step 1 Step 2 Step 3 

RRQ = ∅ v = r0 

W(v) = 10/9 

RRQ = {r0} 

PRQ ={p10, p13} 

v = r10 

W(v) = 3 

RRQ = {r0, r10} 

PRQ = {p13} 

v = r3 

W(v) = 4 

RRQ= {r0, r3, r10} 

PRQ=∅ 

 

 

The greedy algorithm to solve the role mapping problem 2b is shown in Figure 4.6. In 

Role-Mapping-2b, as we do not want to include any permission that is not in PRQ, we first select 

R1⊆ R such that Pau(R1) ⊆ PRQ. Then we try to select a maximal set RRQ ⊆ R1 such that RRQ 
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includes as many permissions in PRQ as possible. Note that RRQ can always be found because R1 

itself is a possible result. The algorithm terminates when no new permissions are added to 

Pau(RRQ). Note that the time complexity of Role-Mapping-2b is also within 1+ ln(|R|), which can 

be trivally proved since the while loop in Role-Mapping-2b ends in less steps compared to that 

of in Role-Mapping-1. 

 

 

Role-Mapping-2b(R, PRQ) 
Input: R – a set of all roles; PRQ –a set of requested permissions. 
Output: RRQ – a set of roles, such that Pau(RRQ)⊂PRQ, RRQ⊆R and RRQ is maximal 
1 R1←∅ 
2 foreach r in R 
3  if Pau(r) ≠ ∅ and Pau(r) ⊆PRQ 
4   R1←R1∪{r} 
5 RRQ←∅ 
6 Pold ←∅ 
7 while PRQ ≠ Pold  do 
8  if R1= RRQ return ∅ 
9   Find role v∈(R1\RRQ) that maximize Pau(v) ∩ PRQ 
10   Pold ←PRQ 
11    RRQ←RRQ∪{v} 
12   PRQ←PRQ \ Pau(v) 
13 return RRQ \ {v} 

Figure 4. 6. The algorithm to solve the role mapping problem 2(b) 

 
 
 

Example 4.4: The result of applying Role-Mapping-2b to Figure 4.3 is shown in Table 4.3. In 

the last step, Pold = PRQ. This means no new permissions can be added to Pau(RRQ). 
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Role-Mapping-2b terminates with RRQ=RRQ \ {v} = {r1, r3}. Note that Pau(RRQ) = {p1, p2, p3, p4, 

p6, p7, p8, p11, p13}⊂PRQ and PRQ \ Pau(RRQ) = {p10}. 

We can see that Role-Mapping-2a and Role-Mapping-2b may not return the exactly 

matched role set RRQ even if it exists. Therefore, we should first run Role-Mapping-1 to try to 

find an exactly matched role set RRQ. If Role-Mapping-1 fails, we can then apply 

Role-Mapping-2a or Role-Mapping-2b based on whether availability or least privilege is more 

important. Here we assume the system knows the choice. For example, if the system trusts the 

user, the availability would be the main concern. Otherwise the least privilege may be the main 

concern. The issue of balancing the availability and least privilege concerns is beyond the scope 

of this thesis. Figure 4.7 shows the overall algorithm for the role mapping problem. 

 

 

Table 4. 3. Results of each step of Role-Mapping-2b 

Step 0 Step 1 Step 2 Step 3 

RRQ =∅ 

R1 = {r1, r3, r4, r5, 
r9, r10, r12, r13, r14, 
r16, r17} 

Pold =∅ 

v = r1 

RRQ = {r1} 

PRQ = {p6, p7, p8, p10, p12, p13} 

Pold = {p1, p2, p3, p4, p6, p7, p8, 
p10, p11, p12, p13} 

v = r3 

RRQ = {r1, r3} 

PRQ={p10, p12} 

Pold = {p6, p7, p8, 
p10, p12, p13} 

v = r4 

RRQ={r1, r3, r4} 

PRQ = {p10, p12} 

Pold ={p10, p12} 
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Example 4.5: As Role-mapping-1 returns ∅, we call Role-mapping-2a if availability is more 

important, and get RRQ = {r0, r3, r10}. If least privilege is more important we call 

Role-mapping-2b and get RRQ = {r1, r3}. 

 

 

Role-Mapping(R, PRQ) 
Input: R – a set of all roles; PRQ –a set of requested permissions. 
Output: RRQ – a set of roles, and RRQ ⊆R 
1 RRQ←Role-Mapping-1(R, PRQ) 
2 if RRQ ≠ ∅ return RRQ 
3 if availability is more important 
4  RRQ←Role-Mapping-2(R, PRQ) 
5 else if least privilege is more important 
6  RRQ←Role-Mapping-3(R, PRQ) 
7 return RRQ 

Figure 4. 7. Role-Mapping(R, PRQ) 

 

 

In our framework, the providing domain needs to run the Role-Mapping algorithm to 

select a set of requested roles (Rdest) given the requested permissions (Pdest). Then, it replaces 

rar=<Rreq, Pdest> with rar=<Rreq, Rdest> and send the new request to the Trust Management 

component, where the authorization decision on whether  or not Rdest can be made available to 

Rreq is made. For example, when Hospital B receives an rar= <{HospitalA.HealthCareWorker}, 

{add an entry to Bob’s record, read Bob’s record} >, it runs Role-Mapping and determines that 

its Doctor role contains the requested permissions. Next, it replaces the requested permissions 
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with the requested roles and sends the new request rar= <{HospitalA.HealthCareWorker}, 

{HostpitalB.Doctor}> to the Trust Management Component. Such the new form of request 

indicates that Hospital B contains a proper local role Doctor for the requested permissions and 

the Trust Management component should decide whether or not HospitalB.Doctor can be 

authorized for HospitalA.HealthCareWorker. Note that in a loosely-coupled environment it is 

possible that no single domain contains all the requested permissions and multiple domains need 

to be involved to cover all the requested permissions. 

Note that such role mapping results could be saved in the cache so that the same rar 

issued later will not require re-running the whole process. The rationale here is that we believe 

the local policy of each individual domain is relatively static. 

4.3 THE TRUST MANAGEMENT COMPONENT 

The Trust Management component is responsible for answering whether the requested 

roles can be authorized to the requesting roles. Although the requesting users’ identities are also 

available from the rar, traditional identity-based access control approaches are not practical 

since the identities of the requesting users are usually not known to the providing domains in 

loosely-coupled environments. For example, the providing domain knows that a user named 

“Alice” is requesting some resources but doesn’t really know who Alice is. In the literature, 

many distributed proof systems (e.g. [2, 3, 4]) have been proposed to make access control 
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decisions based on the properties of the entities, often encoded in credentials in the literature. 

Typically, a distributed proof system allows each domain to specify a logic-based policy to 

protect its own resources. Users requesting interdomain accesses need to prove the required 

credentials for an access right over a resource as defined by the policy of the resource-providing 

domain. Whether or not a user should be given a certain credential is defined by the policy of the 

credential issuing domain, which may require another set of credentials to be validated. As 

mentioned earlier, we refer to such a process as “distributed proof procedure” in this paper. 

Although widely studied in the literature, we note that existing role-based distributed 

proof procedures are very expensive for the following two reasons: First, the distributed proof 

procedure typically requires proving the credentials issued by the external domain (referred to as 

external credentials, hereafter) which is much more expensive than proving the local credentials 

(i.e. the issuer and receiver of the credentials are from the same domain). For proving the access 

rights using local credentials, we assume that users either maintain a physical copy of the local 

credentials (e.g. University ID), or have direct access to the local database to obtain the local 

credentials very easily (e.g. log-in to the enterprise system). For proving the access rights using 

external credentials, if the credentials are stored at the receiver side (i.e. at the user side) proving 

them is as easy as proving local credentials. However, it has been shown that in many scenarios 

credentials are stored in the issuer side and users need to search the internet to prove that they 

have been issued the external credentials [26]. Moreover, such searching usually requires 

proving a chain of other external credentials, as shown by the DCCD algorithm [26]. Therefore, 
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we believe that the cost to prove a local credential is negligible or very small compared to the 

cost to prove an external credential in this paper. 

Second, existing role-based distributed proof procedures are especially expensive when 

dealing with a specific interoperation request scenario that is very common in role-based 

multidomain environments. In role based multidomain environments, it is very common that 

several different users assigned to the same role (or a very small set of related roles) would 

request to acquire the same external resource several times within a given period. In this paper, 

as mentioned earlier, we refer to such interoperation requests as role-based interoperation 

requests, and refer to the role(s) that requesting users are assigned to as requesting role(s). In 

such a scenario, different users all request the same external resource because the functionality of 

the requesting role requires obtaining the external resource, and it is common that several users 

are assigned to the same role(s) (i.e. occupying the same position) in the same period. For 

example, assume Bob is travelling outside his city and needs to go to the emergency room in a 

local hospital. The assigned nurse there needs to obtain Bob’s health information from his home 

hospital. Moreover, there might be several persons assigned to the nurse position (e.g. some 

during daytime, and some during night time) when taking care of Bob. They all need to acquire 

Bob’s health information when they are on duty. From access control perspective, obviously it is 

not secure to allow the first nurse who has obtained Bob’s health information to disclose it to the 

subsequent nurses. A more secure way is to require each nurse issuing a separate request so that 

each request is evaluated and authorized separately for each nurse. Here, we note the role-based 
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interoperation request scenario: different persons assigned to the same role (nurse) need to 

request the same external resource (Bob’s health information) several times (when each person is 

taking the position) within a period (the time period when Bob is taken care of).   

Based on the discussion above, if we could find a way to authorize the requested resource 

to the requesting role(s) directly, then all the requesting users need to do is to prove that they are 

assigned to the requesting roles - which can be expected to be much less expensive since 

requesting roles are local to the requesting users. Moreover, since all the requests are issued from 

the same requesting role(s), such an authorization needs to be done only once during the 

interoperation period. As a result, authorizing the requested resource directly to the requesting 

role(s) would remove both of the two causes of the expense in the existing distributed proof 

procedure. Motivated by this, we propose a formal framework for simplifying the distributed 

proof procedures for role-based interoperation requests. We assume that each domain uses RT0 

[22] to specify its trust management policy on how external users can prove the requested roles. 

We use RT0 language as its semantics has shown to be easily captured by translation to 

negation-free Datalog rules which guarantees that the semantics is precise, monotonic and 

algorithmic [22]. The purpose of this thesis is not to introduce a new language with different 

expressivity but to build on the RT0 framework, which has been well recognized as a framework 

that combines the strength of role and attribute based access control and trust management – 

which are important for secure interoperation. In this work, we do not deal with uncertainties and 

probability based access semantics related to cross domain accesses; hence, approaches such as 
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based on Bayesian techniques are not applicable here. Our approach is based on analyzing the 

similarities between the RT0 policies defining the requesting roles (i.e. Rreq) and the RT0 policies 

defining the requested roles (i.e. Rdest). If any user that can prove Rreq is guaranteed to be able to 

prove Rdest, then it is safe to authorize Rdest directly to Rreq, i.e. allowing users of Rreq to acquire 

permissions of Rdest. In this case, we say Rreq is the simplified proof for users in dreq to acquire 

Rdest, compared to the expensive distributed proof procedures employed in existing approaches.  

We first review the RT0 language before we present our simplification framework. RT0 

uses 4 types of rules to define the membership of a role: 

 Type 1 (Simple Membership): A.r←D 

 Type 2 (Simple Containment): A.r←B.r1 

 Type 3 (Linked Roles): A.r←A.r1.r2 

 Type 4 (Role Intersections): A.r←B1.R1∩B2.R2∩…∩Bn.Rn, where each Bi.Ri can be defined 

by any of the above 4 types. 

If the body of type 1 rule (i.e. D) is a user identifier, it is a special rule specifying that a 

credential has been directly issued to a user. We note that it is beneficial to distinguish it from 

other types of rules in the context of our framework. For example, “UPMC.MD←Alice” 

specifies that UPMC has issued Alice a credential certifying that Alice has a MD degree from 

there. If we consider it as part of the RT0 policy, the size of the policy would increase 

significantly since such credentials could be issued to a huge number of users (e.g. all MD 

students who have graduated from UPMC). For this reason, we only consider other RT0 rules (i.e. 
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rule type 1 where its body is a domain identifier, rule type 2, rule type 3, and rule type 4) as part 

of the policy, as defined below:  

Definition 4.4 (Trust Management Policy of a Domain): Given a domain A, we define its trust 

management policy, Pol(A), to be the set of RT0 rules whose head role is defined by A and does 

not have a type 1 rule that has a user identifier in its body. 

We then define the local role set and external role set of a certain domain as follows: 

Definition 4.5 (Local and External Roles): Given a domain A, we define the set of its local 

roles, denoted as LocalRoles(A), to be the roles appearing in the head of at least one rule in 

Pol(A); we define the set of external roles of A, denoted as ExternalRoles(A), to be the roles with 

the domain identifier other than A.  

Note that we do not consider A’s roles that have no rule defining them to be A’s local roles. Such 

roles are usually internal roles that no external users can assume. Since our focus is simplifying 

the proof of the roles for external users, we do not consider such internal roles in our work. We 

require each of A’s local roles to be defined by at least one rule in Pol(A). We further assume that 

any user involved in the multidomain environment belongs to some domain. In this way, if u 

belongs to domain A and A.r also belongs to LocalRoles(A), we say A.r is a local role of u. 

4.3.1 A Motivational Example 

The following example illustrates how we can simplify the distributed proof procedure by 

analyzing the similarities of the RT0 policies of the requesting roles and the requested roles. 
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Example 4.6:  

Assume Bob has registered his health information in his home hospital (referred to as HH 

hereafter), and assume Bob is travelling outside and has to go to the emergency room in a local 

hospital (referred to as LH hereafter). To take care of Bob, the healthcare workers in LH (grouped 

by HealthCare role) need to access Bob’s health information stored in HH. In HH, the primary 

doctor of Bob (grouped by Doctor(patient=Bob) role, and denoted as Doctor for short) has the 

permissions to access Bob’s health information. From role based perspective, such interoperation 

need can be described as “the users assigned to HealthCare in LH requests to assume Doctor in 

HH”. 

HH allows outside users to assume its Doctor role for emergency needs by specifying the 

following policy using RT0: 

  HH: HH.Doctor ← HH.MD                            rule 1 

   HH.MD ← HH.MedicalSchool.MD                      rule 2 

         HH.MedicalSchool ← ABU.Accredited                   rule 3 

The policy specifies that users having Medical Doctor (MD) degree accepted by HH can assume 

Doctor in HH (rule 1). Furthermore, HH accepts MD degree issued by medical schools accepted 

by HH (rule 2). Finally, HH accepts all medical schools accredited by Accrediting Board for 

Universities (ABU) (rule 3).  

Assume that UPMC is a medical school accredited by ABU, and one user of 

LH.HealthCare, Alice, has a MD degree from UPMC: 
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    ABU:      ABU.Accredited ← UPMC                    rule 4 

    UPMC:    UPMC.MD ← Alice                          rule 5 

It is easy to verify that Alice can prove HH.Doctor from the policies above. However, even in 

this very simple example constructing such proof for Alice involves the discovery of 5 rules from 

the policies of 3 domains. Moreover, other users assigned to LH.HealthCare needs to prove 

HH.Doctor separately when they are taking care of Bob.  

Could such expensive distributed proof procedure be simplified for Alice, and all other 

users assigned to LH.Healthcare? If we examine the policy in HH, we can conclude that any user 

that has a MD degree issued by the medical school accredited by ABU can assume HH.Doctor:  

HH:  “HH.Doctor ← ABU.Accredited.MD”           derived rule 1 

Assume the policy in LH is defined as follows: 

   LH: LH.HealthCare ← LH.MD ∩ LH.Licensed        rule 6 

       LH.MD ← LH.MedicalSchool.MD                    rule 7 

       LH.MedicalSchool ← ABU.Accredited                 rule 8 

       LH.Licensed ← NMLS.Licensed                      rule 9 

The policy specifies that users having MD degree and Medical license accepted by LH can 

assume LH.HealthCare (rule 6). Similar to HH, LH also accepts the MD degree issued by 

medical schools accepted by LH (rule 7), and accepts all medical schools accredited by ABU 

(rule 8). In addition, LH accepts medical license issued by National Medical License Service, 
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NMLS (rule 9). From these rules, we can conclude that any user that has a MD degree issued by 

the medical school accredited by ABU and is licensed by NMLS can assume LH.HealthCare, i.e. 

LH:  “LH.HealthCare ←ABU.Accredited.MD ∩ NMLS.Licensed  ”    derived rule 2 

Comparing derived rule 1 and derived rule 2, we find some similarities. In particular, 

policy of LH.HealthCare is more restrictive than policy of HH.Doctor, implying that “any user 

who can prove LH.HealthCare can also prove HH.Doctor”. Based on this, it is safe for HH to 

add a new rule in its policy specifying that any user who can prove LH.HealthCare can assume 

HH.Doctor: 

HH: HH.Doctor ← LH.HealthCare           new (simplified) rule 

For users in LH, proving the membership of LH.HealthCare is much easier than proving 

ABU.Accredited.MD. This is because LH.HealthCare is a local role and is directly assigned to 

users in LH, while ABU.Accredited.MD is an external role and users in LH need to examine 

policy of ABU to find out whether or not their MD degree is issued by medical schools 

accredited by ABU. Moreover, such authorization (from HH.Doctor to LH.HealthCare) needs to 

be done only once. All subsequent requests from users assigned to LH.HealthCare need only to 

prove LH.HealthCare in order to assume HH.Doctor.In other words, the distributed proof 

procedure of HH.Doctor is simplified for users in LH by proving LH.HealthCare. 
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4.3.2 The Simplify() Algorithm 

The goal of our work is to automatically find such simplified proofs given the policies related to 

the requested roles (e.g. HH.Doctor) and the requesting roles (e.g. LH.Healthcare). Example 4.6 

illustrates that if we can represent the corresponding policies using credential sets (e.g. bodies of 

derived rule 1 and derived rule 2), we are able to find the existing simplified proof by analyzing 

the similarity of the two credential sets. 

In order to find the derived rule as in Example 4.6, we can perform the following 

derivations over the raw RT0 rules according to its semantic: two rules having the same head 

means that either body can be used to prove the head, thus the two bodies can be combined 

through OR relation. For example, A.r←expr1 and A.r←expr2 can be combined to A.r←expr1 

OR expr2. Similarly, the body of type 4 rule is actually the AND relation among simple roles or 

linked roles. Furthermore, any simple role A.r in the body of a rule can be replaced by the body 

of another rule (say rule1) if rule1’s head is equal to A.r; any linked role A.r1.r2 in the body of a 

rule can be replaced by the body of another rule (say, rule1) if rule1’s head is equal to A.r1. In this 

way, given a role A.r, we can start with the rules whose head is A.r and replace the roles in the 

body using all the rules in A until no replacement can be made. The resulting expression is a 

propositional logic expression containing AND and OR relations and all its literals are roles that 

cannot be further replaced using Pol(A). Such logic expression describes how to construct the 

proof of role A.R from A’s perspective. 
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Example 4.7: 

Consider the policy of LH (rule 6 through rule 9) in Example 4.6. Assume we want to 

translate rules defining LH.HealthCare (which is rule 6 in this case). It is easy to see that rule 7 

and rule 8 can be applied to replace the body of rule 6. The resulting expression is     

    LH.HealthCare←LH.MedicalSchool.MD AND NMLS.Licensed.  

LH.MedicalSchool.MD can be further replaced by rule 9. Finally, we get  

          LH.HealthCare ← ABU.Accredited.MD AND NMLS.Licensed 

No roles in its body can be further replaced by rules in Pol(LH). From LH’s perspective, the 

above expression indicates that LH.HealthCare can be proved by proving both 

ABU.Accredited.MD and NMLS.Licensed. 

Note that in Example 4.7 “ABU.Accredited.MD” and “NMLS. Licensed” may be further 

replaced using policies in ABU and NMLS (e.g. ABU.Accredited.MD can be replaced using rule 4 

in ABU). However, we do such derivation of rules using only the local policy for the following 

reasons: (i), it is not efficient to check the policies in other external domains since it could 

involve searching the entire network; (ii), there are no privacy violations in examining the local 

policy only; and (iii) Since only the local rules are involved, any changes in external domains 

will not affect the proof of the target role and there is no need to worry about policy changes in 

external domains which is expensive to detect. Next, we formally define a projection function ∏ 

to derive the proof of a role in the way described above. 
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Definition 4.6 (Projection Function ∏): 

A projection function ∏ takes A.r and  Pol(A) as inputs, and outputs a proposition logic 

expression ∏(A.r, Pol(A)) such that: 

 It contains literals, AND, OR and parenthesis only 

 Each literal in the expression is a role appearing in Pol(A).  

And the logic expression is generated in the following way: 

1. Combine all the bodies of rules whose head is A.r by OR relation with each body enclosed 

within parenthesis. 

2. In the resulting logic expression, replace any role if it appears in the heads of other rules 

(for linked role A.r1.r2, if A.r1 appears in the heads of other rules) with the bodies of those rules 

connected by OR relation. Put a pair of parenthesis outside each replaced role. 

3. Rewrite “∩”using AND in the resulting expression . Put a pair of parenthesis outside each 

element connected by “∩”. 

Lemma 4.1: 

∏(A.r, Pol(A)) represents all the possible combinations of minimal roles (appear in Pol(A) and 

cannot be further replaced by rules in Pol(A)) that can prove A.r 

It is easy to prove Lemma 4.1 from the semantics of RT0 and the construction steps of ∏ in 

Definition 4.6. Note that any propositional logic expression can be translated into Disjunctive 

Normal Form (DNF). We use ∏DNF(A.r, Pol(A)) to denote the DNF representation of ∏(A.r, 

Pol(A)), and we define the proof of a role as follows: 
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Definition 4.7 (Proof of a Role): 

Given a role A.r, Pol(A), and ∏DNF(A.r, Pol(A)), we define the proof of A.r, denoted as Proof(A.r), 

as follows: Proof(A.r) = {Ri | where ci is a conjunction part in ∏DNF(A.r, Pol(A))  and Ri is the 

set of roles in ci} 

Proof(A.r) is a set of role sets. For any element e in Proof(A.r), we say a user proves e if she 

proves all the roles in e, we have the following theorem: 

Theorem 4.1: A user proves A.r if she proves at least one element in Proof(A.r). 

Proof: 

According to Lemma 4.1, ∏(A.r, Pol(A)) represents all possible combinations of minimal roles 

that can prove A.r. As ∏ DNF(A.r, Pol(A)) is the logic translation of ∏( A.r, Pol(A)). it also 

represents all possible combinations of minimal roles that can prove A.r. According to the logic 

semantic of a DNF, the whole DNF expression is evaluated to be true if at least one conjunction 

part is evaluated to be true. Recall that each e in Proof(A.r) is the collection of roles in one 

conjunction part of ∏DNF(A.r, Pol(A)). Thus, proving at least one element in Proof(A.r) is enough 

to prove A.r.                                                                 ■                                                                             

Recall that each element in Proof(A.r) is a set of roles. Theorem 4.1 says that the user can prove 

ANY element in Proof(A.r) to prove A.r since the elements are connected by OR relation 

according to definition 4.6; and to prove an element a user needs to prove ALL the roles in it 

since they are connected by AND relation according to definition 4.6.  
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BuildAOT(Node node, Policy p) 
Input: node: representing the role whose proof is to be built; p: the policy of that domain. 
Output: an AND-OR tree starting from the root 
1 if (node is a user identity U (i.e. type 1)) continue; 
2 if (node is a simple role A.r (i.e. type 2)) 
3  node.type = OR; 
4  foreach rule r in p defining A.r 
5   add r.body to the children list of node; 
6   BuildAOT(r.body, p); 
7 if (node is a linked role A.r1.r2 (i.e. type 3)) 
8  node.type = OR; 
9  foreach type 1 or type 2 rule r defining A.r1 
10   add r.body.r2 to the children list of node; 
11   BuildAOT(r.body, p); 
12 if (node is an intersection role (i.e. type 4)) 
13  node.type = AND; 
14  foreach role expression expr in the intersection role 
15   add expr to the children list of node; 
16   BuildAOT(expr, p); 
Proof BuildProof(AOT root) 

Figure 4. 8. BuildAOT algorithm 

 

 

For a given role A.r and Policy(A), we build Proof(A.r) in two steps: (1) we build an 

and-or-tree such that each node is a role expression expr in the RT0 policy and expr has children 

if and only if it can be derived according to definition 4.6. The algorithm to build such 

and-or-tree for a given role expression, BuildAOT(), is shown in Figure 4.8. BuildAOT() is a 

recursive function and should be called with the target role as the initial input; (2) we construct 

Proof(A.r) using the proof tree we have built according to definition 4.7. The corresponding 
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algorithm, BuildProof() is shown in Figure 4.9. BuildProof() is also a recursive function and 

should be called with the root of the proof tree as the initial input. 

 

 

Input: root: the root of the corresponding proof tree 
Output: the proof of the root node of the corresponding proof tree 
1 if (root.childrenNo==0) return {{root}}; 
2 Proof result = {{}}; 
3 foreach child c in root’s children list 
4     Proof prf = BuildProof(c); 
5     if (root.nodeType==OR) 
6        result = Union(result, prf); 
7     else if (root.nodeType==AND) 
8        result = Combine(result, prf); 
9 return result; 
Note: Union(Proof p1, Proof p2) = {p1∪p2} 
  Combine(Proof p1, Proof p2) = {e1∪e2 | e1∈p1, e2∈p2} 

Figure 4. 9. the algorithm to build the proof for a single role 

 
 
 

Now, we are ready to generalize the proof of a single role to the proof of a set of roles. For a role 

set A.R, we compute ∏DNF(A.ri, Pol(A)) for every ri in A.R. We then connect their outputs by 

AND relation and translate the resulting logical expression (no longer in DNF) into DNF, 

denoted as ∏DNF(A.R, Pol(A)).  

Definition 4.8 (Proof of a Set of Roles):Given a role set A.R, Pol(A), and ∏DNF(A.R, Pol(A)), we 

define the proof of A.R, denoted as Proof(A.R), as follows: Proof(A.R) = {Ri | where ci is a 

conjunction part in ∏DNF(A.R, Pol(A))  and Ri is the set of roles in ci} 
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Proof(A.R) is also a set of role sets. For a target role set A.R, we say a user proves A.R if she 

proves all the roles in it, we have: 

Theorem 4.2: 

A user proves A.R if he proves at least one element in Proof(A.R). 

Proof: 

Proof is similar to the proof of theorem 4.1.                                         ■ 

 

 

Proof BuildProof(Proof [] prfs) 
Input: prfs: proofs of each single role 
Output: proof of the role set 
1 Proof result = {{}}; 
2 foreach proof prf in prfs 
3   result=Combine(result, prf); 
4 return result; 
Note: Combine(Proof p1, Proof p2) = {e1∪e2 | e1∈p1, e2∈p2} 

Figure 4. 10. the algorithm to build the proof for a set of roles 

 
 
 

Figure 4.10 shows the algorithm to build the proof of a set of roles from the proofs of each single 

role. This is simply a combination of the proofs of each single role according to definition 4.8. 

Note that in practice, the proof of a single role can always be constructed together with the 

domain’s RT0 policy. That is, once the corresponding RT0 policy is created, the proof of each role 

protected by the policy can be calculated and saved for the future use. Therefore, we only need to 
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analyze the time complexity of calculating the proof of a set of roles, which is given by the 

following theorem: 

Theorem 4.3:Consider domain A, Pol(A), and A.R. Let Proof(A.r) be proof of A.r in A.R, then 

the complexity of calculating Proof(A.R) (A.R={A.r1, …, A.rm}) is given by O(TNrule
|A.R|), where 

TNrule is the total number of rules defining roles in A.R 

Proof:  

Proof(A.R) can be computed by the algorithm shown in Figure 4.10. The complexity of getting 

all the proofs for each single role is O(1) if Proof(A.r) is given for any A.r∈A.R. The complexity 

of combining all the single proofs is |Proof(A.r1)|×|Proof(A.r2)|×…× |Proof(A.rm)| according to 

the definition of Combine(). Since different elements in Proof(A.r) for any role A.r is connected 

by OR relation, the number of elements in Proof(A.r) is the number of OR relations plus 1. 

According to definition 4.6, the number of the OR relations connecting Proof(A.r) is the number 

of rules whose head is A.r. Therefore, the complexity of those combinations are O(Nrule
|A.R|) 

where Nrule is the average number of rules defining a single role A.r∈A.R. Hence, the overall 

complexity is given by O(Nrule
|A.R|).                                               ■                                                                       

Next, we need to find out whether the proof of the requesting roles is more restrictive 

than the proof of the requested roles as indicated in Example 4.6. Towards this, we define two 

important notions: proof-dominate and partial-proof-dominate relations as the foundation of our 

simplification approach. As discussed before, if the proof of rreq is more restrictive than the proof 

of Rdest, then proving rreq is enough to prove Rdest. But, we need to compare the “restrictiveness” 
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of the proofs of two roles. Intuitively, the proof of a role r1 is more restrictive than the proof of 

another role r2 if any combination of the roles that can prove r1 is guaranteed to be able to prove 

r2. In this case, we say “r1 proof-dominates r2” and define it formally as below: 

Definition 4.9 (Proof-Dominates relation between Two Roles): Given a pair of roles r1 and r2, 

we say r1 proof-dominates r2, written as r1 ≳ r2, iff. 

        ∀e1∈Proof(r1), ∃e2∈Proof(r2), such that e1⊇e2 

The following theorem shows the rationale of definition 4.9.  

Theorem 4.4: r1 ≳ r2 → any user who can prove r1 can also prove r2 

Proof: 

 According to theorem 4.1, any user who can prove r1 must prove at least one element in 

Proof(r1). Without loss of generality, we assume an arbitrary user u proves an arbitrary element 

e1∈Proof(r1). Since r1 ≥ r2, we have ∃e2∈Proof(r2), such that e1⊇e2. And e1⊇e2 indicates 

that u can also prove e2. According to Theorem 4.1, u can prove r2.                      ■                                                

Definition 4.10 (Proof-Dominate between Two Role Sets): Given a pair of role sets R1 and R2, 

we say R1 proof-dominates R2, written as R1 ≳ R2, iff. 

        ∀e1∈Proof(R1), ∃e2∈Proof(R2), such that e1⊇e2 

Theorem 4.5: R1 ≳ R2 → any user who can prove R1 can also prove R2 

Proof: The proof is similar to the proof of Theorem 4.4.                               ■                                     

For any target role set A.R, if we can find some role set B.R such that B.R ≳ A.R, B.R can be an 

alternative proof of A.R. Moreover, since B.R is the local role for users of B it is also a simplified 
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proof of A.R. However, in many cases we may not be able to find such a B.R that 

proof-dominates A.R. Nevertheless, it is still possible to simplify A.R if there exists B.R that 

partial-proof-dominates A.R, as shown below: 

Example 4.8 

Following Example 4.6, now we assume HH modifies its policy and requires that “any user 

having MD degree accepted by HH and is a member of American Medical Association (AMA) 

can assume its Doctor role, as shown below: 

HH:       HH.Doctor ← HH.MD ∩ AMA.Member                               

In this case, Proof(HH.Doctor) becomes: 

{{ABU.Accredited.MD, AMA.Member}} 

According to definition 4.9, LH.HealthCare no longer proof-dominates HH.Doctor since there is 

no element of Proof(HH. Doctor) that is the subset of Proof(LH.HealthCare). However, any user 

of LH.HealthCare (who is able to prove ABU.Accredited. MD) is guaranteed to be able to prove 

HH.Doctor if the user can also prove AMA.Member. Therefore, an alternative way to prove 

HH.Doctor would be {{LH.HealthCare, AMA.Member}}. For users in LH, they only need to 

prove one external role (i.e. AMA.Member) in the new proof, while they need to prove two 

external roles (i.e. ABU.Accredited.MD, AMA.Member) in the original proof. In other words, 

such an alternative proof is a simplified proof for users in LH. 

Motivated by this example, we define partial-proof-dominate relation between two roles 

as follows: 
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Definition 4.11 (Partial-Proof-Dominate between Two Roles): Given a pair of roles r1 and r2, 

and a non-empty role set AUX, we say r1 partial-proof-dominates r2 with an auxiliary role set 

AUX, written as r1 ≳AUX r2, iff. 

∀e1∈Proof(R1), ∃e2∈Proof(R2), such that e1∪AUX ⊇e2        

Based on this, we have the following theorem: 

Theorem 4.6: r1 ≳AUX r2 → any user who can prove r1 and AUX can also prove r2  

Proof: According to theorem 4.1, any user who can prove r1 must prove at least one element in 

Proof(r1). Without loss of generality, we assume an arbitrary user u proves an arbitrary element 

e1∈Proof(r1). Since r1 ≥AUX r2, we have ∃e2∈Proof(r2), such that e1∪AR⊇e2. Since the user 

can prove e1 and AUX, she can prove e2 also. In other words, u can prove an element of Proof(r2). 

According to theorem 4.1, u can prove r2.                                          ■                                                  

Definition 4.12 (Partial-Proof-Dominate between Two Role Sets): Given a pair of roles R1 

and R2, given a role set AUX, we say R1 partial-proof-dominates R2 with an auxiliary role set 

AUX, written as R1 ≳AUX R2, iff. 

   ∀e1∈Proof(R1), ∃e2∈Proof(R2), such that e1∪AUX⊇e2 

Theorem 4.7: R1 ≳AUX R2 → any user who can prove R1 and AUX can also prove R2 

Proof: The proof is similar to the proof of Theorem 4.6.                               ■ 

For any target role set A.R, if we can find some role set B.R such that B.R ≳ A.R, B.R can 

be the simplified proof of A.R. If we are not able to find such role set but are able to find some 

B.R such that B.R ≳AUX A.R, then B.R together with AUX can also be an alternative proof 
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according to theorem 4.7. Whether B.R together with AUX is a simplified proof is determined by 

the number of B’s external roles in it compared with the number of B’s external roles in the 

original proof. We define ND(R) as the number of D’s local roles in a role set R. The simplified 

proof of A.R for users in B is defined as below: 

Definition 4.13 (Simplified Proof of A.R using B.R): 

Given Proof(A.R) such that ∀e∈Proof(A.R) we have e ⊈ B.R, the simplified proof of A.R using 

B.R, denoted by SimplifiedProof(A.R, B.R), is given by (B.LR, AUX) where: 

(1) ∅≠B.LR⊆B.R, and B.LR ≳AUX A.R 

(2) if AUX≠∅,∀e∈Proof(A.R), (|AUX|-NB(AUX)) < (|e|-NB(e)) 

(3) ∀r∈B.LR, (B.LR \ {r}, AUX) does not satisfy condition (1) and (2) 

(4) ∀r∈AUX, (B.LR, AUX \ {r}) does not satisfy condition (1) and (2). 

Given Proof(A.R) to be simplified, we require that none of its element is the subset of B.R. In 

other words, any possible proof (before simplification) of A.R must include at least one external 

roles of B. Otherwise, there is no benefits of simplifying the proof of A.R for users of B, since 

they can already prove A.R by proving local roles only before simplification. Given Proof(A.R), 

its simplified proof consists of two role sets, B.LR and AUX, that satisfy condition (1) through (4) 

respectively. Condition (1) ensures that we have a non-empty subset of B.LR that 

proof-dominates A.R (if AUX = ∅) or partial-proof-dominates A.R (if AUX ≠ ∅). According to 

theorem 4.7, condition (1) actually ensures that users who can prove SimplifiedProof(A.R, B.R) 

can also prove Proof(A.R). In other words, SimplifiedProof(A.R, B.R) is an alternative way to 



  79 
 

prove A.R if condition (1) holds. However, our goal is to simplify the distributed proof process 

for A.R. Therefore, we also need to make sure SimplifiedProof(A.R, B.R) is “simpler” than any 

element in Proof(A.R) (recall that any element in Proof(A.R) is one possible minimal role set that 

can prove A.R), and this is ensured by condition (2). The underlying assumption and the 

motivation of our approach is that proving a local role is much cheaper than proving an external 

role. As a result, given two sets of roles that can prove A.R, the one having less external roles is 

simpler than the one having more external roles. Therefore, condition (2) requires that the 

number of B’s external roles in AUX is smaller than the number of B’s external roles in any 

element of Proof(A.R). Condition (3) ensures that B.LR is the minimal role set that contributes to 

a simplified proof. If (B.LR \ {r}, AUX) satisfies (1) and (2), any user who can prove B.LR and 

AUX can also prove B.LR \ {r} and AUX, thus proving A.R in a “more simplified” way. In this 

case, it makes no sense to include B.LR in the simplified proof and we should include B.LR \ {r} 

as a simplified proof. Similarly, condition (4) ensures that AUX is the minimal role set that 

contributes to a simplified proof.  

Given two sets of role sets RS1 and RS2, we define: (1) Overlap(RS1, RS2) = true iff. 

“∃e1∈RS1, ∃e2∈RS2, e1∩e2 ≠ ∅”; and (2) RS1∪* RS2 = {e1∪e2 | ∀e1∈ES1, ∀e2∈ES2}. 

We present our proposed Simplify() algorithm in Figure 4.11. Simplify() constructs the 

simplified proof in three steps:  
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Algorithm: Simplify(A.R, Proof(A.R), B.R, Proof(B.r) for all B.r∈B.R) 
Input: A.R: target role set, Proof(A.R): proof of A.R to be simplified 
           B.R: role set in B that is used to simplify A.R 
           Proof(B.r) for all B.r∈B.R: the corresponding proofs for all roles in B.R 
Output: SP: A set of simplified proofs for A.R given B.R 
        /* filter out roles not contributing to simplified proof */ 
1      T =∅;    //T stores candidate roles in B.R 
2      foreach role B.r in B.R 
3          if (Overlap(Proof(B.r), Proof(A.R))==true)  T= T ∪{B.r}; 
4      if (T ==∅) return ∅; //no simplified proof can be found 
        /* for each subset of roles in T, check whether it proof dominates or 

partial-proof-dominates A.R   */ 
5      foreach subset of roles S⊆T 
6          AUX(S)=∅;  //a set of role sets 
7          foreach ei in Proof(S) 
8                AUX(ei)=∅;  //a set of role sets 
9                foreach ej in Proof(A.R) 
10                  if (ei ∩ej ≠∅) AUX(ei) = AUX(ei)∪{ej \ ei} 
11        AUX(S)=AUX(e1)∪*AUX(e2)∪*…∪*AUX(en), where Proof(S)={e1, e2, …, en} 
         /* checks condition (2), (3), (4) in definition 4.13. */ 
12        foreach aux in AUX(S) 
13            if (aux == ∅) SP=SP∪{(S, ∅)};  
14            else if (∀e2∈Proof(A.R), |aux|-NB(aux)<|e2|-NB(e2)) SP=SP∪{(S, aux)}; 
15     foreach spi in SP 
16         foreach spj in SP 
17              if (spi.B.LR ⊃ spj.B.LR && spi.AUX== Spj.AUX) remove spi from SP; 
18              if (spi.AUX ⊃ spj.AUX && spi.B.LR == spj.B.LR) remove spi from SP; 
19     return SP; 

Figure 4. 11. Simplify() Algorithm 

 
 
 

Step 1 (line 1-4): Selecting the candidate local roles of B.R to simplify Proof(A.R). 

Here, we only consider those roles in B.R such that at least one role appearing in its proof also 

appears in Proof(A.R) (line 3). The rationale is given by the following theorem: 
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Theorem 4.8: 

∀SimplifiedProof(A.R, B.R)=(B.LR, AUX), ∀r∈B.LR we have: 

Overlap(Proof(r), Proof(A.R)) = true 

Proof: 

We prove by contradiction and assume “Overlap(Proof(r), Proof(A.R)) = false”, we then prove 

(B.LR \ {r}), AR) satisfies condition (1) and (2) in definition 4.13. This contradicts with (B.LR, 

AUX) is a simplified proof. To prove (B.LR\{r}), AR) satisfies condition (1) and (2), we need to 

prove the following: 

(1) B.LR \ {r}≠∅ 

Sub-proof: Since B.LR is not empty it is equivalent to proving B.LR≠{r}. In other words, prove 

({r}, AUX) is not a simplified proof. We prove by contradiction and assume ({r}, AUX) is a 

simplified proof. According to definition 4.13, we have, {r} ≥AUX A.R. According to definition 

4.12, we have “∀e1∈Proof(r), ∃e2∈Proof(A.R) such that e1∪AUX⊇e2”. If AUX=∅, we have 

e1⊇e2 and then e1∩e2≠∅. This contradicts the assumption that “Overlap(Proof(r), Proof(A.R)) 

= false”. Otherwise if AUX is not empty, since AUX is the auxiliary roles in a simplified proof 

(B.LR, AR), the number of B’s external roles in AUX is less than the number of B’s external roles 

in e2 according to condition (2) in definition 4.13. Without loss of generality, we assume r* is B’s 

external roles that belongs to e2 but does not belong to AUX. As a result, r* must belong to e1 to 

ensure e1∪AUX⊇e2. In other words, we have e1∩e2={r*} ≠ ∅. This contradicts with the 

assumption that Overlap (Proof(r), Proof(A.R)) = false 
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(2) B.LR \ {r}⊆B.R 

Sub-proof: this is trivial since B.LR⊆B.R 

(3) B.LR \ {r} ≥AUX A.R 

Sub-proof: Since (B.LR, AUX) is a simplified proof, we have B.LR ≥AUX A.R. And we have “∀e1

∈Proof(B.LR), ∃e2∈Proof(A.R) such that e1∪AUX⊇e2”. ∀e1'∈Proof(B.LR\{r}), it must be 

the subset of some element e1∈Proof(B.LR) (according to the construction of the proof of a set 

of roles given by definition 4.8), i.e. e1⊇e1'. Moreover, since e1 \ e1' are roles appearing in 

Proof(r) it does not contain any role in e2 (by Overlap(Proof(r), Proof(A.R)) = false). We 

conclude that e1'∪AR is also the superset of e2. In other words, we have ∀e1'∈Proof(B.LR\{r}), 

∃e2∈Proof(A.R) such that e1'⊇e2. According to definition 4.12, B.LR \ {r} ≥AUX A.R. 

(4) if AR≠∅,∀e∈Proof(A.R), (|AUX|-NB(AU)) < (|e|-NB(e)) 

Sub-Proof: this is trivial since AUX is the auxiliary set in a simplified proof               ■                                         

Theorem 4.8 says that if B.LR contributes to a simplified proof, the proof of any role in 

B.LR must overlap with Proof(A.R). As a result, we filter out those roles that do not satisfy this 

necessary condition in step 1 of the algorithm. Note that if the resulting T is empty, then we are 

not able to find any simplified proof using roles in B.R (line 4). Otherwise, we continue to check 

whether any subset of T proof-dominates or partial-proof-dominates A.R. 

Step 2 (line 5-11): examine each subset of T and check whether it proof-dominates or 

partial-proof-dominates A.R. 
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Given a subset S⊆T, we examine each element of Proof(S) and Proof(A.R) and build a matrix M 

as follows. Each row corresponding to one element of Proof(S) and each column corresponding 

to one element of Proof(A.R). Each cell of M, M(i, j), is a set of roles that are in the 

corresponding element of Proof(A.R) (ej) but not in the corresponding element of Proof(S) (ei) if 

ei ∩ej ≠∅. Otherwise, M(i, j) is null. In this way, M(i, j) (if not null) represents the set of 

auxiliary roles needed to prove ej assuming ei has been proved. We then record the union of this 

role sets into AUX(ei) for each ej (line 10). The semantic of AUX(ei) is: if a user proves S using ei, 

she can prove A.R by proving any element in AUX(ei). Finally, we build a set of role sets AUX(S) 

where each element of it is the union of one element in each AUX(ei) (defined by ∪*). The 

semantic of AUX(S) is: no matter which element of Proof(S) a user uses to prove S, that user can 

prove A.R by proving any element in AUX(S). For each element aux in AUX(S), we have S ≥aux 

A.R according to definition 4.13. Note that if some element aux in AUX(S) is empty, it means S ≥ 

A.R. 

Step 3 (line 12-19): check whether (S,aux) satisfies condition (2), (3) and (4) of definition 

4.13.  

Condition (2) is checked at line 12-14; Condition (3) is checked at line 17; and Condition (4) is 

checked at line 18. 
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Table 4. 4. Example of using Simplify() 

 

 

 

Example 4.9: 

Assume that domain B wants to simplify the proof of a set of role A.R in A, and assume 

Proof(A.R)={{r4,B.r3,r8},{r5,B.r3,r8}, {r4,r9,r10},{r5,r9,r10}} (the focus of this example is the 

simplify() algorithm so we will not show how to calculate Proof(A.R) from original RT0 rules 

here). Assume after step 1, only two roles in B (i.e. B.r1 and B.r2) are included in T, and their 

proofs are: 

Proof(B.r1)={{r4},{r5}}, and Proof(B.r2)={{r8},{r9}} 

Now we start to examine all subsets of T. They are {B.r1}, {B.r2}, and {B.r1, B.r2}.  

We first examine S={B.r1} and the resulting AUX(ei) is shown in Table 4.4(a). We have 

AUX({B.r1})=AUX({r4})∪*AUX({r5})={{B.r3, r8},{B.r3, r8, r9, r10},{r9, r10}}. Only one element 

in AUX({B.r1}) (i.e. {B.r3, r8}) has smaller number of B’s external roles (i.e. 1) than the number 
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of B’s external roles in any element of Proof(A.R) (at least 2). As a result, we include 

({B.r1},{B.r3, r8}) in SP. 

We then examine S={B.r2}, and the resulting AUX(ei) is shown in Table 4.4(b). We have 

AUX({B.r2})=AUX({r8})∪*AUX({r9})={{r4, B.r3, r10},{r4, B.r3, r5, r10},{r5, B.r3, r10}}. No 

element in AUC({B.r2}) has smaller number of B’s external roles than the number of B’s external 

roles in any element of Proof(A.R) (at least 2). As a result, no element is added to SP. 

We then examine S={B.r1, B.r2}. We have Proof({B.r1, B.r2})={{r4,r8},{r4,r9},{r5,r8}, 

{r5,r9}} and the resulting AUX(ei) is shown in Table 4.4(c). We have AUX({B.r1,B.r2})= 

AUX({r4,r8})∪*AUX({r4,r9})∪*AUX({r5,r8})∪*AUX({r5,r9})={…} (There are 81 elements so 

we omit the detailed result here). Only one element in AUX({B.r1,B.r2}) (i.e. {B.r3, r10}, 

constructed by the bold elements in each AUX(ei)) has smaller number of B’s external roles (i.e. 1) 

than the number of B’s external roles in any element of Proof(A.R) (at least 2). As a result, we 

include ({B.r1, B.r2},{B.r3, r10}) in SP. 

Now we have SP={({B.r1},{B.r3, r8}), ({B.r1, B.r2},{B.r3, r10})}. It is easy to verify that 

both of the two elements will pass the checking at line 17 and line 18. Therefore, SP is the output 

of our algorithm. 

Next, we formally prove the correctness of Simplify() using the following two theorems: 

Theorem 4.9 (Completeness of Simplify()): 

Given A.R, B.R, and Proof(B.r) for all B.r∈B.R, any Simplified Proof(A.R, B.R) will be included 

in the output of Simplify(). 
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Proof: 

For any SimplifiedProof (A.R, B.R) = (B.LR, AUX), it is easy to see from Simplify() that if the 

following sub-problems are proved, then it will be included in the output of the algorithm: 

(1)  B.LR⊆T at line 3. 

Sub-proof: To prove B.LR⊆T, we need to prove ∀r∈B.LR, r∈T. According to the 

construction of T in line 3, we need to prove ∀r∈B.LR, Overlap(Proof(r),  Proof(A.R)) = true. 

This has been proved in theorem 4.8. 

(2) When examining S=B.LR⊆T, AUX∈AUX(B.LR) in line 11. 

Sub-proof: We have B.LR ≥AUX A.R. According to definition 4.12, we have “∀ei∈Proof(B.LR), 

∃ej(i)∈Proof(A.R) such that ei∪AUX⊇ej(i)” (We use slightly different symbols compared to 

definition 4.12 but it is easy to verify that the semantic is the same). If ei ∩ ej(i) ≠ ∅, we have 

ej(i)⊆AUX, which contradicts with “the number of B’s external roles in AUX is smaller than the 

number of B’s external roles in ej(i)” (AUX is the auxiliary role set in a simplified proof). As a 

result, we have ei ∩ ej(i) ≠ ∅. According to line 10, the algorithm will mark ej(i) \ ei in M(i, j(i)) 

and make ej(i) \ ei ∈AUX(ei). We also have ej(i) \ ei is the subset of AUX. Recall that here ei is an 

arbitrary element in Proof(B.LR), so for any ei, the above conclusions are true. Therefore, when 

we “∪*” all AUX(ei) in line 11 to form AUX(B.LR), one element of AUX(B.LR) (say, AUX') is 

the union of  “ej(i) \ ei” for all ei. Since each ej(i) \ ei is the subset of AUX, AUX' is also a subset of 

AUX. Next, we prove that AUX' must equal to AUX. Otherwise (i.e. AUX'⊂AUX), AIX', as the 

element of AUX(B.LR), satisfies condition (1) and (2) of definition 4.13 (as will be proved in 
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sub-proof (1) and (2) in theorem 4.10). This contradicts with condition (4) in definition 4.13. 

Therefore, AUX'=AUX. In other words, AUX∈AUX(B.LR). 

(3) If AUX is not empty, it will pass the check in line 14. That is, ∀e∈Proof(A.R), 

|AUX|-NB(AUX)<|e|-NB(e) 

Sub-proof: This is trivial since (B.LR, AUX) is a simplified proof and condition (2) of definition 

4.13 ensures this. 

(4) B.LR will pass the check in line 17. 

Sub-proof: This is trivial since (B.LR, AUX) is a simplified proof and condition (3) of definition 

4.13 ensures this. 

(5) AUX will pass the check in line 18. 

Sub-proof: This is trivial since (B.LR, AUX) is a simplified proof and condition (4) in definition 

4.13 ensures this. 

Combining sub-proof (1) through (5), it is easy to verify that (B.LR, AUX) will be included in the 

output of Simplify().                                                           ■ 

Theorem 4.10 (Soundness of Simplify()): 

Any element in the output of Simplify() is a simplified proof of A.R using B.R. 

Proof: 

Without lose of generality, we assume (S⊆T, aux∈AUX(S)) is one arbitrary output of the 

algorithm. We need to prove (S, aux) is a simplified proof according to definition 4.13. We prove 

(S, aux) satisfies condition (1) through (4) of definition 4.13 as below: 
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(1) ∅≠S⊆B.R and S ≥aux A.R. 

Sub-proof: ∅≠S⊆B.R is trivial according to step 1. Next, we prove S ≥aux A.R. According to the 

construction of AUX(S) at line 11, we have “aux is the union of one element in each AUX(ei)” 

since aux∈AUX(S). Without lose of generality, we assume aux(ei) is the element of an arbitrary 

AUX(ei) that forms aux with other elements through the union operation (i.e. aux(ei)⊆aux). 

Besides, AUX(ei) is constructed by ej \ ei for some element ej in Proof(A.R), therefore, ei ∪ 

aux(ei) ⊇ ej. In other words, we have “∀ei∈Proof(S), ∃ej∈Proof(A.R) such that ei∪aux(ei) 

⊇ ej”. Since aux(ei)⊆aux for all ei∈Proof(S), we have “∀ei∈Proof(S), ∃ej∈Proof(A.R) 

such that ei∪aux ⊇ ej”. According to definition 4.12, we have S ≥aux A.R. 

(2) if  aux≠∅,∀e∈Proof(A.R), (|aux|-NB(aux)) < (|e|-NB(e)) 

Sub-proof: This is trivial according to the checking at line 13 and 14.  

(3) ∀r∈S, (S \ {r}, aux) does not satisfy condition (1) and (2) of definition 4.13 

Sub-proof: This is trivial since (S, aux) passes the checking at line 17.  

(4) ∀r∈aux , (S, aux \ {r}) does not satisfy condition (1) and (2) of definition 4.13. 

Sub-proof: This is trivial since (S, aux) passes the checking at line 18.                   ■                                                                          

Next, we analyze the complexity of our approach. Simplify() requires Proof(A.R) as one 

of its inputs. The complexity of calculating the proof of a set of roles is given by Theorem 4.3. 

The complexity of Simplify() is given by the following theorem:  

Theorem 4.11: 

The worst case complexity of Simplify() is exponential to |A.R| and |T|             
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Proof: 

We need to use Proof(A.R), and the complexity of calculating Proof(A.R) is exponential to |A.R| 

according to theorem 4.3. Step 1 has complexity of O(|B.R|) since we need to examine every role 

in |B.R| to calculate T. The complexity of step 2 is given by O(2|T|×(TNrule
|S|+|Proof(S)| 

×|Proof(A.R)|+|AUX(S)). This is because we need to check any subset S of T in step 2. Checking 

one such S needs to calculate Proof(S) (the complexity is TNrule
|S| according to theorem 4.3), 

check any pair of elements in Proof(S) and Proof(A.R), and check any element in AUX(S). 

|Proof(S)| is further given by ASPS|S| where ARPS is the Average Size of Proof(r) for all r∈S (by 

definition 4.8). |Proof(A.R)| is further given by  ASPAR|A.R| where ASPAR is the Average Size of 

Proof(r) for all r∈A.R (by definition 4.8). And O(|AUX(S)|) is given by ASPS|S| to the power of 

ASPAR|A.R| (by the construction of AUX(S) in step 2). In summary, the complexity of step 2 is 

exponential to |A.R| and |T| (Maximal S is T). The complexity of step 3 is O(|AUX(S)|+|SP|2). 

O(|SP|) is given by O(|AUX(S)×|S|) since any element in AUX(S) together with S could form an 

element of SP. Therefore, the complexity of step 3 is given by O(|AUX(S)|2) which is exponential 

to |A.R| and |T|. Combining all the three steps, the complexity of Simplify() is exponential to 

|A.R| and |T|.                                                                 ■ 

In summary, the complexity of our simplification framework is exponential to the number 

of |A.R| since we need to examine Proof(A.R) which cannot be avoided in our approach. The 

complexity of our framework is also exponential to the number of |T| because we need to 



  90 
 

examine every subset of candidate roles to find the simplified proof, and this expensive step 

cannot be avoided either, as shown in the following example: 

Example 4.10:  

Assume Proof(A.R)={{r3,r4}}. Consider two roles in B such that Proof(B.r1)={{r3}} and 

Proof(B.r2)={{r4}}. It is easy to verify that neither of these two roles proof-dominates A.R. 

However, if we consider the union of these two roles, i.e. {B.r1, B.r2}, we have 

Proof({B.r1,B.r2})={{r3, r4}}. Now we can verify that {B.r1, B.r2} ≥  A.R, and the 

corresponding simplified proof is ({B.r1,B.r2}, ∅). 

Example 4.10 shows that a set of roles could contribute to a simplified proof without auxiliary 

set even if none of its subsets can. Therefore, in order to ensure that Simplify() can find all the 

existing simplified proofs, we need to examine every subset S of the candidate role set T.  

Although the complexity of our algorithm is exponential to |A.R| and |T|, we argue that the 

performance of our algorithm is still acceptable for the following reasons:  

|A.R| is likely to be very small in practice. Recall that A.R represents the roles that outside 

users want to assume in a single access request. Therefore, it is not likely to be a very large 

number in practice. 

|T| is also likely to be small in practice. First, the size of B.R is likely to be small according to 

the discussion before. Second, we argue that usually only small portion of B.R will be included in 

T in practice. Intuitively, if a role is selected in T, its policy must share some common roles with 

the target role whose proof is to be simplified (Overlap(Proof(r), Proof(A.R)) = true). In practice, 
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we claim that usually only a small number of roles in two different domains will share some 

common roles (credentials) in their policies.  

Example 4.11: 

Consider two hospital (say, H1 and H2) domains both having Doctor role, Nurse role, Finance 

role, and Admin role (a simplified example). Consider the policy of H2.Doctor. Usually the 

policy of H1.Doctor would share some common credentials with it (e.g. both require MD degree 

and license of doctor), and the policy of H1.Nurse may also share some common credentials with 

it (e.g. both require health-care license). On the other hand, the policies of H1.Finance and 

H1.admin usually do not share any common credentials with the policy of H2.doctor. According 

to step 1 in Simplify(), H1.Finance and H1.Admin will be eliminated from T if we want to 

simplify the proof of H2.doctor. 

In case |A.R| is relatively large (e.g. 3, where the worst case complexity of our approach 

becomes cubic), we propose several heuristics that are able to reduce the complexity of 

Simplify() from different aspects. During implementation, the developers can choose some of 

the heuristics according to their specific needs. 

Heuristic1: Using “trimming” mechanism in calculating AUX(S). The most complex part in 

our algorithm is to examine each element in AUX(S) which is given by ASPS|S| to the power of 

ASPAR|A.R|. However, if we find some elements in AUX(ei) whose number of B’s external roles is 

not smaller than the number of B’s external roles in some element of Proof(A.R), we do not need 

to include it in AUX(ei) since the auxiliary role set formed by it will not pass the checking at line 
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14. For example, in Table 4.4(a) {r9, r10} is one element in AUX({r4}) that already contains two 

of B’s external roles (equal to the number of B’s external roles in some element of Proof(A.R)). 

The elements of AUX(S) constructed from it (i.e. {B.r3, r8, r9, r10} and {r9, r10}) will not pass the 

checking at line 18. As a result, we can remove {r9, r10} from both AUX({r4}) and AUX({r5}). In 

this way, we can significantly reduce the complexity of calculating AUX(S).  

Heuristic 2: For each S, output one simplified proof whose auxiliary role set has smallest 

number of B’s external roles. 

In Simplify(), for each S we output all simplified proofs with different auxiliary sets (elements in 

AUX(S)). Since proving external roles is expensive, we can choose to output one simplified proof 

for each S whose auxiliary role set has the smallest number of B’s external roles. To ensure this, 

we need to slightly modify line 10 and line 11 in our algorithm. Instead of making the union of 

all {ej \ ei} to form AUX(ei) (line 10), we choose {ej \ ei} with the smallest number of B’s external 

roles to be AUX(ei). And we use a standard union instead of “∪*” in line 11 to form AUX(S) 

(which becomes a single set) since each AUX(ei) is a single set now. In this way, the complexity 

of calculating AUX(S) reduces to |Proof(S)|×|Proof(A.R)|, which is no longer exponential. 

Heuristic 3: Output one simplified proof with the smallest B.LR. 

In our algorithm, we examine every subset S of T. If S contributes to a simplified proof, S itself 

becomes B.LR in the simplified proof (recall that B.LR is the first component in a simplified 

proof). During implementation, we can examine subsets of T with increasing size. Once we find 

a simplified proof, the algorithm terminates (instead of examining further subsets with larger size) 
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and output that simplified proof. In this way, we ensure only one simplified proof is returned and 

it has smallest B.LR among all possible simplified proofs. And the complexity of step 2 could be 

reduced significantly. 

Heuristic 4: Restrict the size of S.  

We can restrict the size of S when we examining the subsets of T. For example, we can restrict 

that only those subsets with size not greater than 3 will be examined. In this way, we do not want 

to simplify the proof by using more than 3 of B’s local roles. It is easy to see that the complexity 

of the algorithm is exponential to only |A.R| in this case. 

4.3.3 Proof Engine 

After the simplified proof has been found for a particular rar, the relevant users (i.e. users 

assigned to some of the requesting roles and need to access the requested resource according to 

the functions of the requesting roles) can issue uar to actually request to access the requested 

resources. The Proof Engine is responsible for verifying whether a user can prove the requested 

roles using DCCD and the simplified proof if exist. Given an uar <B.u, Ru, A.R>, if there exists a 

simplified proof <B.R, AUX> for A.R such that Ru⊇B.R, we say that B.u benefit from the 

simplified proof since B.u can prove B.R. The proving of A.R for B.u can be simplified by 

proving B.R and AUX. Note that B.u still needs to prove AUX using DCCD since AUX are not 

local roles of B. For those users not benefit from any simplified proofs, they need to prove A.R 

using DCCD.  



  94 
 

4.3.4 Evaluation 

The motivation of this work is to simplify the distributed proof procedure in role-based 

interoperation scenario. As discussed, Distributed Credential Chain Discover (DCCD) based on 

RT0 is an extensively studied distributed proof procedure based on the notion of roles. Therefore, 

we evaluate the performance of our approach against DCCD approach. Here, we define the term 

“performance” as the time complexity of running the required algorithms to make an 

authorization decision on a set of role-based interoperation requests. Recall that a set of 

role-based interoperation requests are issued from different users from the same set of requesting 

roles for a set of requested roles. Assume m requesting users assigned to some roles in B.R issues 

m requests for the requested role set A.R, and assume C is the total number of credentials in the 

environment. The complexity of authorizing all these m requests using traditional DCCD 

approach is given by: 

TD = m |A.R| O(C3)      (1)  

This is because DCCD treats the m requests separately. That is, given a single requested role 

requested from one single user, DCCD approaches check whether the requesting user is able to 

prove that single role using the credential chains. Therefore, in our defined role-based 

interoperation requests, DCCD algorithms need to run for each single user and for each single 

requested role. Furthermore, the worst time complexity of DCCD algorithm is given by O(C3) 

[26]. Therefore, the total worst time complexity of DCCD approaches is given by (1) 
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The complexity of authorizing all these m requests using our simplification approach is: 

TS= O(Nrule
|A.R|2|B.R|) + O(1) + m1 |AUX| O(C3) + m2 |A.R| O(C3)       (2) 

This is because we need to run our simplification algorithm once, the complexity of which is 

given by O(Nrule
|A.R|2|B.R|) from theorem 4.3 and 4.11. After the simplified proof is found, we need 

to ask those users assigned to B.LR (whose number is assumed to be m1) to prove that they are 

assigned to B.LR. This can be done in O(1) time as discussed before. Then, in case of partial 

proof domination, (i.e. AUX is not empty). We need to ask those m1 users to prove AUX using 

DCCD approach (m1 |AUX| O(C3)). Finally, we need to ask the remaining m-m1=m2 users (i.e. not 

assigned to B.LR, therefore cannot benefit from the simplified proof) to prove A.R using DCCD 

approach (m2 |A.R| O(C3)). 

To simplify (2), we define α1 = m1 / m ∈[0,1] as the ratio of users that can benefit from 

the simplified proof, and defineα2 = (1 - |AUX| / |A.R|) ∈[1 / |A.R|, 1] as the simplification ratio 

indicating what percentage of B’s external roles are simplified (i.e. replaced by local roles) after 

simplification. Given this, we have: 

     TS= O(2|A.R||B.R|) + O(1) +α1 (1-α2) m |A.R| O(C3) + (1-α1) m |A.R| O(C3)   (3) 

We are interested to see whether our simplification work indeed simplifies the distributed proof 

procedure against DCCD approach. In other words, we want to see whether and in what 

conditions we have TS< TD, this can be translated as shown below according to (1) and (3): 

O(2|A.R||B.R|) + O(1) <α1α2 m |A.R| O(C3)          (4) 
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According to (4), it is easy to see that there are 6 variables that will affect whether TS< TD, 

that is: |A.R|, |B.R|, m, C,α1 andα2. One initial observation from (4) would be: in order to make 

TS< TD, |A.R| and |B.R| should be as small as possible, m, C, α1 andα2 should be as large as 

possible. We conduct several experiments to verify whether and when we have TS< TD. 

 

 

SimulateEnvironment(Nd, Na, Nu, nr, np, nu) 
Input: Nd: total number of organization domains; Na: total number of authority domains; 
   Nu: total number of users; nr: average number of roles per domain;   

np: average number of rules defining each role; nu: average number of users per role. 
Output: A multi-domain environment containing Nd domains; each domain has several roles defined by  

several RT0 rules. Each role is assigned several users. 
1 generate Nd organization domains 
2 generate Na authority domains 
3 generate Nu users 
4 foreach domain d in Nd domains 
5   randomly assign some friend domains of d from Nd domains 
6   randomly generate roles in d according to nr 
7 foreach domain a in Na domains 
8   generate one role in a 
9 foreach domain a in Na domains 
10   foreach domain d in Nd domains 
11    make d 50% chances to be accredited by a  
12   if (a has not accredited any organization domain) 
13    randomly select a domain d in Nd to be accredited by a 
14  foreach domain d in Nd domains 
15   foreach role r in domain d 
16    randomly generate rules for this role according to np 
17     foreach rule ru in np rules 
18      randomly assign the type of ru 
19      randomly generate the body of ru 
20   randomly generate users for r according to nu  

Figure 4. 12. algorithm to simulate a multi-domain environment 
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Among the 5 variables that will affect whether TS< TD according to (4), |A.R|, |B.R|, m, C 

are the attributes of the requests and policies and are not affected by the result of the 

simplification algorithm. On the other hands, α1 andα2 depend on the specific result of the 

simplification algorithm. Therefore, we choose to control |A.R|, |B.R|, m, C to simulate role-based 

interoperation requests, andα1 andα2 will be determined through the result of simulation. 

Specifically, we first simulate a multi-domain environment along with all the policies to generate 

the credential pool with the size C. The algorithm to simulate a multi-domain environment is 

shown by Figure 4.12. 

In Figure 4.12, we try to simulate the multi-domain environment as close as the real 

interoperation scenario as possible. First, we define two types of domains: (1) Organization 

domains: normal domains that need to interoperate with each other; and (2) Authority domains: 

domains that “certify” some attributes of other organization domains. For example, Hospital A is 

a normal organization domain, and ABU is an authority domain certifying which domain is a 

valid university accredited by it (e.g. ABU.accredited ← StateU). Usually each authority 

domain is responsible for accrediting one type of the organization domains (e.g. ABU is 

responsible for accrediting the valid universities only). Therefore, we assign only one role to 

each authority domain as shown in line 8 in figure 4.12. Second, we define some “friend 

domains” that are trusted by each organization domain. We assume that each domain tends to 

define its role according to the roles in its friend domains. For example, University of Pittsburgh 

(UPitt) may collaborate with Carnegie Mellon University (CMU) and define that any student in 
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CMU is authorized to access the library resource in Pitt (i.e. UPitt.library ← CMU.student). In 

this case, we say CMU is the friend domain of UPitt. The notion of friend domains helps us to 

generate the body of rules (in line 19) in a more reasonable way.  The remaining part of the 

algorithm is straightforward. We just randomly generate the elements of the environment (e.g. 

roles in each domain) according to some pre-defined parameters (e.g. average number of roles 

per domain). In order to make sure the generated environment has approximately C total 

credentials (rules), we make several experiments and learn the relations between C and the 

parameters of the algorithm. For example, we find that SimulateEnvironment(50, 5, 20, 5, 3, 5) 

will always generate approximately 2000 credentials. Next, we need to simulate role-based 

interoperation requests based on |A.R|, |B.R|, and m. This is straightforward and we just need to 

randomly pick two domains (A and B) first and pick several roles as A.R and B.R respectively. 

Since m different requests for A.R are all issued from users assigned to B.R, we only need to 

generate A.R and B.R once for all m requests.  

After the multidomain environment and interoperation requests are generated, we are 

ready to calculate TS and TD and compare them according to (3) and (4). We have one last tricky 

issue here: it is very difficult to guarantee that a simplified proof will be found using such 

randomly generated policies. In reality, since positions in organizations have real meanings and 

many of them are related to each other, we believe simplified proof could be found in many 

scenarios (As shown in Example 4.6). We left the analysis of how much percentage a simplified 

proof can be found as future work. In our simulation, although we try to simulate the policies as 
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close to the real life as possible, they are just randomly generated symbols with few real 

meanings so it is very difficult to guarantee a simplified proof could be found. Fortunately, for 

comparing TS and TD onlyα1 andα2  depends on whether a simplified proof exists or not 

according to their definitions. Therefore, in the case no simplified proof is found, we can simply 

makeα1 andα2 to be uniformly distributed random variables within the range of [0, 1] and [1 / 

|A.R|, 1], respectively. The rationale of using such trick here is that we do not under-estimate the 

complexity of simplified approach by using randomly selectedα1 andα2.  

We simulate 9 pairs of |B.R| and |A.R| values, that is (1,1), (1,2), (1,3), (1,4), (2,1), (3,1), 

(4,1), (2,2), and (3,3) respectively. This is because (1): the number of |A.R| and |B.R| are likely to 

be very small as discussed above; (2) The memory size in our experimental machine does not 

allow us to simulate very large |A.R| and |B.R|. For each given pair of (|B.R|,|A.R|), we calculate 

TS and TD under different m and C. Specifically, we make m={1, 2, 5, 10, 20, 50, 100}, and make 

C = {100, 200, …, 1900, 2000}. For each combination of |A.R|, |B.R|, m and C, we simulate 100 

times and use the average values as TS and TD. 
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Figure 4.13 Effect of |A.R| when (|B.R|, |A.R|)=(1,1) 

 
 
 

 

Figure 4.14 Effect of |A.R| when (|B.R|, |A.R|)=(1,2) 
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Figure 4.15 Effect of |A.R| when (|B.R|, |A.R|)=(1,3) 

 
 
 

 
Figure 4.16 Effect of |A.R| when (|B.R|, |A.R|)=(1,4) 
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Figure 4.13-4.16 shows the comparison of TS (red) and TD (blue) with the increase of m 

and C when (|B.R|, |A.R|) is (1,1), (1,2), (1,3), and (1,4) respectively. In all of these four figures, 

TD will become much larger than TS when m and C are large enough. This is consistent with our 

analysis. We also note that the difference between TD and TS decrease with the increase of |A.R|. 

This is straightforward since TS is exponential to |A.R| while TD is only linear to |A.R|. 

Nevertheless, even when |A.R| is as large as 4, TD is still larger than TS as shown in Figure 4.16. 

 

 

 

Figure 4.17 Effect of |B.R| when (|B.R|, |A.R|)=(1,1) 
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Figure 4.18 Effect of |B.R| when (|B.R|, |A.R|)=(2,1) 

 
 
 

 
Figure 4.19 Effect of |B.R| when (|B.R|, |A.R|)=(3,1) 
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Figure 4.20 Effect of |B.R| when (|B.R|, |A.R|)=(4,1) 

 
 
 

Figure 4.17-4.20 shows the comparison of TS (red) and TD (blue) with the increase of m 

and C when (|B.R|, |A.R|) is (1,1), (2,1), (3,1) and (4,1) respectively. Again, TD will become much 

larger than TS when m and C are large enough in all of these four figures. However, the 

difference of TD and TS does not vary much when we increase |B.R|. Since TD does not depend on 

|B.R|, it shows that TS also does not vary much with the increase of |B.R|. At first glance, it is not 

consistent with our analysis since TS is expected to be exponential to |B.R|. The explanation of 

this is as follows: recall that our algorithm is exponential to |B.R| only in the worst case. Actually, 

not all of the roles in |B.R| will count for the complexity of our simplification algorithm. In the 

first step of the algorithm we eliminate some of the roles in |B.R| (the remaining role set is T) that 

cannot contribute to any simplified proofs. Therefore, TS is only exponential to the size of T ⊆ 
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B.R, on average it is not exponential to |B.R|. And our simulation results show that the worst case 

rarely happens. In other words, TS is not that sensitive with the increase of |B.R|. 

 

 
Figure 4.21 Effect of both when (|B.R|, |A.R|)=(1,1) 

 
 
 

 
Figure 4.22 Effect of both when (|B.R|, |A.R|)=(2,2) 
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Figure 4.23 Effect of both when (|B.R|, |A.R|)=(3,3) 

 
 
 

Figure 4.21-4.23 shows the comparison of TS (red) and TD (blue) with the increase of m 

and C when (|B.R|, |A.R|) is (1,1),(2,2),(3,3) respectively. The trend of the these three figures are 

similar to the trend of Figure 4.13-4.16, since only the increase of |A.R| will cause the 

exponential increase of TS. 

Figure 4.13-4.23 shows that (1) TD will eventually become much larger than TS when m 

and C is large enough (which is very common in practice); (2) |B.R| does not contribute to much 

to the comparison of TD and TS; (3) When |A.R| increases, the difference between TD and TS will 

decrease, but TD is still larger than TS. However, Figure 4.13-4.23 do not show clearly if m and C 

are small, whether TS could be larger than TD. The following set of figures show clearly when TS 

is larger than TD (i.e. in this case our simplification has no real benefits). 
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Figure 4. 13. Comparison of |A.R| when (|B.R|, |A.R|)=(1,1) 

 
 
 

 
Figure 4. 14. Comparison of |A.R| when (|B.R|, |A.R|)=(1,2) 

 
 
 

 

Figure 4. 15. Comparison of |A.R| when (|B.R|, |A.R|)=(1,3) 
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Figure 4. 16. Comparison of |A.R| when (|B.R|, |A.R|)=(1,4) 

 
 
 

Figure 4.24-4.27 shows the actual number of TS (upper part) and TD (lower part) with the 

increase of m and C when (|B.R|, |A.R|) is (1,1), (1,2), (1,3), and (1,4) respectively. The yellow 

shaded area shows the scenarios when TS is larger than TD. We can see that such area increases 

with the increase of |A.R|. This is straightforward since TS increases much faster than TD with the 

increase of |A.R|. However, even in figure 4.27 (|A.R| is 4), only 26% of the entire rectangular 

area is yellow. In other words, even in the worst case (from the perspective of favoring TS) that 

we can simulate, TD is larger than TS in more than 70% cases. Furthermore, almost all those 

yellow shaded area reside in the area where m and C are very small. In practice, m and C are 

easily become very large. In those cases, TD will be much larger than TS 
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Figure 4. 17. Comparison of |B.R| when (|B.R|, |A.R|)=(1,1) 

 
 
 

 
Figure 4. 18. Comparison of |B.R| when (|B.R|, |A.R|)=(2,1) 

 
 
 

 

Figure 4. 19. Comparison of |B.R| when (|B.R|, |A.R|)=(3,1) 
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Figure 4. 20. Comparison of |B.R| when (|B.R|, |A.R|)=(4,1) 

 
 
 

Figure 4.28-4.31 shows the actual number of TS (upper part) and TD (lower part) with the 

increase of m and C when (|B.R|, |A.R|) is (1,1), (2,1), (3,1), and (4,1) respectively. The yellow 

shaded area does not increase too much with the increase of |B.R|. And the yellow shaded area 

covers only a very small part of the entire rectangular area. 

 

 

 

Figure 4. 21. Comparison of |A.R|, |B.R| when (|B.R|, |A.R|)=(1,1) 
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Figure 4. 22. Comparison of |A.R|, |B.R| when (|B.R|, |A.R|)=(2,2) 

 
 
 

 
Figure 4. 23. Comparison of |A.R|, |B.R| when (|B.R|, |A.R|)=(3,3) 

 
 
 

Figure 4.32-4.34 shows the actual number of TS (upper part) and TD (lower part) with the 

increase of m and C when (|B.R|, |A.R|) is (1,1), (2,2), and (3,3), respectively. The trend of the 

yellow shaded area is similar to the trend of the yellow shaded area in Figures 12-15, since only 

|A.R| will affect the size of the yellow shaded area. 

Conclusion: 

(1) Only |A.R| will affect the complexity of our simplification approach. 
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(2) Even with the largest |A.R| (which is 4) we simulated, TD becomes larger than TS when m is 

larger than 1 or C is larger than 1400, which is we believe is common in practice. 

In summary, our simplification approach greatly simplifies the distributed proof procedure in 

practical role-based environment. 

4.4 THE POLICY INTEGRATION COMPONENT 

In this section, we propose our novel Policy Integration approach to facilitate the authorized rar 

while preserving the principle of security, as well as our novel administrative model to facilitate 

role-based administration of those operations required in the policy integration. 

4.4.1 Policy Integration 

After an uar has been authorized by the Trust Management component, we need to facilitate this 

interoperation such that the requesting user can actually acquire the requested resources. Recall 

that in section 3.2 we have shown that two types of violations, i.e. cyclic inheritance conflicts 

and violations of SoD could be introduced when there are multiple authorized interoperations. 

And no existing approaches focusing on removing these violations in the global policy can be 

applied here since there is no global policy in loosely-coupled environments. 
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Motivated by this, we propose a novel policy integration approach that uses the special 

semantics of hybrid hierarchy to preserve the principle of security. As discussed before, the 

cyclic inheritance conflicts occur when there exists cycles among authorized interoperations and 

local hierarchical relations. For violation of SoD, we have shown that if we represent an SoD 

constraint using bi-directional arrows then the violation of SoD is also formed by the cycle 

among authorized interoperations and local hierarchical relations. Hereafter, we refer to such a 

cycle as inheritance cycle and discuss how to detect and remove such cycles. Note that all the 

previous discussion about inheritance cycles assumes that the standard hierarchy is used to 

facilitate an authorized interoperation. That is, for an authorized rar=<R1, R2>, we make each 

role in R1 senior to every role in R2. In a standard hierarchy, the permissions are inherited 

upwards through all the hierarchical relations. This is the underlying reason why an inheritance 

cycle would cause those two types of violations. Therefore, we propose to use the specific 

semantics of the hybrid hierarchy to facilitate authorized interoperations and prevent such 

violations. 

Definition 4.14 (Cycle and inheritance cycle in Hybrid Hierarchy): In a hybrid hierarchy, a 

path P=(r1, r2, …rn, rn+1) is a cycle iff r1=rn+1, and a cycle C=(r1, r2, …rn, rn+1) is an inheritance 

cycle iff. ∄i,j =1,…,n such that (ri, ri+1)=’≥i’, (rj, rj+1)=’≥a’, and i>j 

According to Lemma 2.1, if a cycle contains an I-relation preceding an A-relation, the users of 

the roles before the I-relation cannot acquire the permissions of the roles after the A-relation. 

Therefore, we define the inheritance cycle in hybrid hierarchy as the cycle that does not contain 
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an I-relation preceding an A-relation. It is easy to see that the permissions of any role in the 

inheritance cycle can be inherited by any other role in the cycle, and this property does not hold 

for non-inheritance cycles in the hybrid hierarchy. 

For each authorized uar, we create an access role in the resource providing domain for 

the requesting domain to access its resources, as defined below: 

Definition 4.15 (Access Role): Given an authorized uar=<Ru, Rdest>, the access role of this 

request, aruar, is a newly created role such that ∀ r1∈Ru, r2∈R2, we make r1≥a aruar ≥i r2. 

 

 

 

Figure 4. 24. the use of access role and hybrid hierarchy to facilitate interoperation 

 
 
 

Figure 4.35 shows an example of an access role. We can easily verify that the users of Ru can 

acquire the permissions associated with R2={r3, r4, r5} by activating aruar, so the uar has been 

facilitated.  

r1

Domain d1
r3 r4 r5

aruar

Domain d2

(a): uar=<{r1}, {r3, r4, r5}>
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Next we show how such policy integration using access role preserve the principle of 

security. Figure 4.36(a) shows an example of how access role is used to prevent cyclic 

inheritance conflicts. If we directly link (r2, r3) and (r4, r1) using standard hierarchical relation, 

there is an inheritance cycle as shown in Figure 2.5(a). However, by using access role and hybrid 

hierarchy, we can see that the inheritance cycle does not exist even if there is a cycle in Figure 

4.36(a). Consider the cycle of (r1, r2, aruar1, r3, r4, aruar2, r1). In d1 the users of r2 cannot acquire 

the permissions of r1 since there is an I-relation preceding an A-relation in the path. Figure 4.36(b) 

shows an example of how access role is used to prevent violations of SoD. If we directly link (r1, 

r3) and (r3, r2) using standard hierarchical relation, there is an inheritance cycle as shown in 

Figure 2.5(b). However, by using access role and hybrid hierarchy, we can see that the 

inheritance cycle does not exist even if there is a cycle in Figure 4.36(b). Consider the cycle of 

(r1, aruar1, r3, aruar2, r2, r1). In d1 the users of r1 cannot acquire the permissions of r2 since there is 

an I-relation preceding an A-relation in the path. Therefore, the SoD constraint defined over r1 

and r2 is not violated. More formally, we have: 

Theorem 4.12: Assume that each individual domain employs RBAC with hybrid hierarchy, and 

assume we facilitate the interoperation in the following way: 

An uar=< Ru, Rdest> is authorized →∃aruar s.t. ∀r1∈Ru, r2∈Rdest, r1≥a aruar and aruar ≥i r2 

Then, there exists no inheritance cycle in the environment 

Proof:  
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For any cycle C=(r1, r2, …rn, rn+1), if all roles in the cycle are from the same domain, C is not an 

inheritance cycle since each individual domain contains no inheritance cycle. If not all roles in 

the circle are from the same domain, there must be at least a pair of interoperation relations (one 

going out from the domain of r1, and the other going back into the domain of r1 to form a cycle), 

and such interoperation relations are constructed according to the description in Theorem 4.12. 

Without losing the generality, we assume ri ≥a ri+1 ≥i ri+2, and rj ≥a rj+1 ≥i rj+2, and i+2>j. We can 

easily see that there is an I-relation ri+1 ≥i ri+2 precedes an A-relation rj ≥a rj+1 in the cycle C. 

Therefore, C is not an inheritance cycle according to Definition 4.14.                    ■ 

Theorem 4.12 proves that if we use the proposed policy integration approach by linking the 

access role through hybrid hierarchy, the principle of security will be implicitly preserved 

regardless of the specific interoperation needs.  

 

 

 

Figure 4. 25. Using access role to prevent (a) cyclic inheritance conflicts; (b) violations of SoD 

 

r1

r2

r3

r4

Domain d1 Domain d2

(a): uar1=<{d1.r2}, {d2.r3}>, 

uar2=<{d2.r4},  {d1.r1}>

aruar2 aruar1

r1 r2

Domain d1

aruar2

r3

Domain d2

aruar1

(b): uar1=<{d1.r1}, {d2, r3}>, 

uar2=<{d2.r3}, {d1, r2}>

SoD
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According to our policy integration approach, after an uar is authorized, the requesting 

users need to activate the access role first and then acquire the permissions of the requested roles. 

For example, after uar = <Alice, {HospitalA.HealthCareWorker}, {HospitalB.Doctor}> has 

been authorized by the Trust Management component, Hospital B adds a new role aruar, as well 

as two hierarchical relations HospitalA.HealthCareWorker ≥a aruar and aruar ≥i 

HospitalB.Doctor to its local policy. Alice can then acquire permissions of HospitalB.Doctor 

through the hierarchical relations.  

4.4.2 Administrative Model 

Updating the interoperation policy given an authorized rar involves the following sequence of ` 

operations to the local RBAC policy: AddRole(arrar), AddEdge(rar.rreq, arrar, A), ∀r in rar.Rdest, 

AddEdge(arrar, r, I). To support evolution of RBAC policies, administration of RBAC becomes 

more and more important. The use of role itself to manage the RBAC policies has become an 

appealing idea recently. Sandhu et al. [15] have proposed an ARBAC97 (Administrate RBAC 

‘97) model consisting of URA97 (User-Role Assignment ’97), PRA97 (Permission-Role 

Assignment ’97), and RRA97 (Role-Role Assignment ’97) model, which use RBAC to manage 

RBAC policies. They further extended this model to ARBAC99 [16] and ARBAC02 [17]. 

Crampton et al. [18] have developed a SARBAC (Scoped Administration model for RBAC) 

model using the concept of administrative scope. SARBAC has been known to be capable of 
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addressing several shortcomings of ARBAC model and is better in terms of completeness, 

simplicity, practicality and versatility. However, none of the existing role-based administration 

models can deal with hybrid role hierarchy. Here, we propose an extension of the popular 

SARBAC model, SARBAC-HH, which is able to support role-based administration in presence 

of hybrid hierarchy.  

Since administrative scope is the core idea in SARBAC, we need to first extend it in 

presence of hybrid hierarchy in order to make SARBAC applicable to hybrid hierarchy. As 

discussed earlier, a role r can be administrated under another role a if and only if all path 

upwards from r go through a. On the contrary, suppose there is a path upwards from r that 

doesn’t go through a, and instead, goes through role r’. Here a and r’ have no relation between 

them, but both of them are related to r. If a makes some changes to r, then it would also affect r’. 

So a should not be allowed to administer r. Note that in a standard hierarchy, if there’s a “path” 

between two different roles r1 and r2, then r1 and r2 must be hierarchically related, i.e. r1 ≥ r2 or 

r2 ≥ r1. Therefore, the definition of administrative scope closely relies on finding the direct and 

indirect relation in the path between r1 and r2. Based on the definition of derived relation ≥ d 

earlier, we re-define the administrative scope as follows: 

DEFINITION 4.18 (Administrative Scope in Hybrid Hierarchy): The administrative scope for 

role a in hybrid hierarchy, SHH(a) is defined as follows: 

SHH(a) = {r ∈ R: r ≤d a , ↑r \ ↑a ⊆↓a}, Where, ↑r = {x∈ R: x ≥d r}, ↓r = {x∈ R: x ≤d r}. 
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Similarly, the strict administrative scope would be SHH
+(r) = SHH (r) / {r}. If r ∈ SHH

+(a), we call 

a as an administrator of r. Figure 4.37 illustrates the difference between original administrative 

scope in SARBAC and our administrative scope in SARBAC-HH. Note that the structure of the 

three hierarchies is exactly the same and the only difference is the type of the hierarchy. Figure 

4.37(a) is a standard hierarchy; Figures 4.37(b) and 4.37(c) are hybrid hierarchies. In Figure 

4.37(a), role a cannot administer role r because r’ is senior to r but is not junior to a. In figure 

4.37(b), role a cannot administer role r either, since r’ is “conditionally” senior to r but is not 

junior to a. In figure 4.37(c), however, role a can administer role r because there’s no relation 

between r and r’ even if there seems to be a “path” between them. Note that in Figure 4.37(c), a 

cannot administer r1 because of r’. However, in the entire hierarchy, there may exist another role 

(e.g. the senior role of both a and r’) which can administer r1. Next we will show that our 

definition of administrative scope keeps all the properties of the original one. 

 

 

 

Figure 4. 26. Administrative Scope in SARBAC and SARBAC-HH 
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Flexibility: Our administrative scope is also determined by the role hierarchy itself, and changes 

dynamically as the hierarchy changes. This is similar to the original SARBAC model and is in 

contrast to Sandhu’s ARBRAC97 model, where administration largely depends on the 

can-modify relation [15]. 

Decentralization and Autonomy: we illustrate this by proving the following proposition: 

PROPOSITION 4.1 (Line Manager in Hybrid Hierarchy): In a hybrid hierarchy, if r has an 

administrator then the set of administrators of r has a unique minimal administrator, which we 

refer to as the line manager of r. 

The line manager can serve as a “local” administrator in the hybrid hierarchy. Therefore, our 

administrative scope keeps the decentralization and autonomy properties which is essential in 

large enterprise-wide RBAC systems. With this notion of extended administrative scope in 

presence of hybrid hierarchy, we present our extensions of RHA and URA next.  

 

 

Table 4. 5. Hierarchical Operations in SARBAC-HH 

Operation Success Conditions 
AddRole(a, r, △ar, ▽ar, △ir, ▽i r) △a r ⊆ SHH

+(a), ▽a r ⊆ SHH(a),  
△i r ⊆ SHH

+(a), ▽i r ⊆ SHH(a) 
DeleteRole(a, r) r ∈ SHH

+(a) 
PartitionRole(a, r) r ∈ SHH

+(a) 
AddEdge(a, c, p, type) c, p ∈ SHH (a) 
DeleteEdge(a, c, p) c, p ∈ SHH (a) 
ChangeEdge(a, c, p, type) c, p ∈ SHH (a) 
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Besides the four operations defined in SARBAC-RHA as shown in Table 2.1, we further 

add two operations: PartitionRole() and ChangeEdge(), which we believe are necessary in 

hybrid hierarchy. The success conditions of each operation are shown in Table 4.5, where △a r is 

set of immediate A-juniors of the role r, ▽a r is the set of immediate A-seniors of role r, △i r is 

the set of immediate I-juniors of role r, and ▽i r is the set of immediate I-seniors of role r, as 

shown in Figure 4.38. The semantics of ChangeEdge(a, c, p) is straight forward since there are 

three types of edges in hybrid hierarchy. In fact, we can use AddEdge() and DeleteEdge() 

operation to perform ChangeEdge(). That is, first delete the old edge, and then add the edge with 

the new type. The semantic of PartitionRole() is complex. Specifically, we can partition a given 

role vertically, horizontally, or both [14].  

 

 

Figure 4. 27. Parameters in AddRole 
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Ideally, after each operation, we should keep the original semantics as much as possible. For 

example, when we want to delete a role r, which has an immediate senior s and an immediate 

junior j, we need to maintain the original relation between s and j after the operation. Moreover, 

to make sure same users can acquire same permissions after deleting the role, we need to 

reassign permissions of r to other roles and reassign users of r to other roles. This is a very 

challenging problem and is beyond the scope of this thesis. Interested readers are referred to [14], 

where Joshi et al. analyze these issues in greater detail. In the rest of this section, we will focus 

on maintaining the administrative scope during those operations. Specifically, two conditions 

need to be satisfied: 

C1: After AddRole() and PartitionRole() operations, the new role(s) should be within the 

administrative scope of a. C2: After each operation, the original roles’ administrators should not 

be changed.  

It is obvious that C1 is satisfied according to our definition. Since all the seniors of the new role 

should be administered by a, the new role itself is also administered by a. The condition C2 is 

also satisfied for all operations. This conclusion is not obvious with ChangeEdge() operation, 

since the operation itself may change the relation between roles and thus affect the administrative 

scope, as shown in Figure 4.39. In Figure 4.39(a), r∈S+
HH(a). If we change the edge (r, r1) to the 

I-type, as Figure 4.39(b) shows, r∉ S+
HH(a) now. However, in Figure 4.39(a), r1 is not 

administered by a, so the ChangeEdge() operation fails. Therefore, if ChangeEdge() operation 

succeeds, it is guaranteed that it will not affect the administrators of all the original roles.  
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Figure 4. 28. The ChangeEdge operation won’t succeed 

 
 
 

The key operations in SARBAC-URA are shown in Table 4.6, and the permission-role 

assignment operations in SARBAC-PRA are similar. We first show that there is an ambiguity in 

the semantics of user-role assignment and permission-role assignment in the original SARBAC. 

We then show that our model can solve this ambiguity smoothly by redefining those operations 

in presence of hybrid hierarchy. To illustrate these, we first review an important concept in 

SARBAC, the SARBAC constraint, as follows: Let R’ = {r1, …, rk} be a subset of R and let ∧R’ 
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DEFINITION 4.19 (SARBAC constraint) A SARBAC constraint has the form ∧C, where C⊆R. 

A SARBAC constraint ∧C is satisfied by a user u if C ⊆ ↓R(u). A SARBAC constraint ∧C is 
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PE1 and QE1, and by any user assigned to either PL1 or DIR. The semantics here is that any user 

assigned to either PL1 or DIR is also a member of PE1 and QE1, thus satisfies the PE1∧QE1 

constraint. Obviously, the author of SARBAC implicitly assumes the hierarchy relation in any 

monotype hierarchy as “Is-a” relation [11]. That is, x ≥ y means any user assigned to x is also a 

member of y. For example, the leader of a team is also a member of the team. However, the 

semantics of monotype hierarchy have long been argued as ambiguous [10, 11, 13]. The 

hierarchical relation in a monotype hierarchy could be “Is-a”, “Supervision”, or “Activation” 

[11]. The use of hybrid hierarchy can solve this ambiguity accordingly by including three types 

of hierarchical relations. The above “Is-a” relation is essentially “IA” relation in the hybrid 

hierarchy, since x “is” y means any user assigned to x should be able to acquire all permissions 

assigned to y through x, and should also be able to activate y. Because whether a user satisfies a 

constraint depends on the definition of ↓Y in Definition 2.3, we re-define it as: 

∀Y⊆X, ↓Y = {x∈X: ∃y∈Y such that x ≤ y}     (1) 

Note that the definition looks same as before, but here the symbol ≤ clearly means the 

IA-relation in hybrid hierarchy.  
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Figure 4. 29. An example standard hierarchy 
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∀Y⊆X, ↑Y = {x∈X: ∃y∈Y such that x ≥i y}     (2) 

Note that here we use the ≥ i relation. Given the new definition of ↓ Y and ↑Y, we can define the 

SARBAC-HH constraint as follows: 

DEFINITION 4.20 (SARBAC-HH constraint): A SARBAC-HH constraint has the form ∧C for 

some C⊆R. A SARBAC07 constraint ∧C is satisfied by a user u if C ⊆ ↓R(u). A SARBAC07 

constraint ∧C is satisfied by a permission p if C ⊆ ↑R(p), where the symbol ↑ and ↓ are defined 

by (1) and (2). 

The definition implies that the User-Role Assignment is determined by the IA-relation in the 

hybrid hierarchy, while the Permission-Role Assignment is determined by the I-relation in the 

hybrid hierarchy. The user-role assignment operations are the same with SARBAC, as shown in 

Table 2.2 (permission-role assignment operations are similar). 

Now we are able to define the success conditions for the administrative operations 

required in the Policy Integration component, as shown in Table 4.6. As shown in Table 4.6, we 

require that all these operations to be done by only the administrators whose administrative scope 

includes all the requested roles (i.e. Rdest). This is straightforward since such operations would 

make Rdest available for external users to assume. 
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Table 4. 6. Success conditions for operations involved in the Policy Integration component. 

Required Operations Success Condition 
AddRole(a, arsar, ∅, rreq, Rdest, ∅) Rdest ⊆ SHH(a) 
AddEdge(a, rreq, arsar, A) Rdest ⊆ SHH(a) 
∀r∈Rdest, AddEdge(a, arsar, r, I) Rdest ⊆ SHH(a) 

 

 

 

Figure 4. 30. Access control system in the individual domain 
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individual domain (i.e. GTRBAC and Hybrid Hierarchy) is more challenging. GTRBAC is a 

fine-grained model that supports more than 50 temporal constraints. How to enforce such many 

constraints effectively in a conflict-free way is a big challenge. Unfortunately, the authors of 

GTRBAC have focused on the theoretical model and have not discussed the enforcement of 

GTRBAC. In the literature, the only GTRBAC implementation work we are aware of, 

X-GTRBAC [40], implements the policy specification module only. They mainly focus on how 

to specify GTRBAC policy using XML, and simply assume that there already exists a GTRBAC 

module to enforce those constraints without explaining how. To the best of our knowledge, no 

existing work has been proposed to address the policy enforcement of GTRBAC.  

Motivated by this, we propose our novel GTRBAC enforcement engine in this section. 

The central idea of our work is to enforce all the different types of temporal constraints in a 

uniform way by generating a predefined set of system operations. The high-level architecture of 

our GTRBAC engine is shown in Figure 4.41. It describes the relationship among RBAC policy, 

RBAC engine and GTRBAC engine. Vertically, we divide the access control system in the 

individual domain into three levels: Interface Level, Logical Level, and Database Level. On 

interface level, we allow the administrators to specify/update the policies through policy 

specification modules; we also allow the user to issue access request to the RBAC engine and get 

the authorization decision from it. In the database level, the RBAC policy is stored as a set of 

tables in a relational database. In our current implementation, we use 7 tables to store RBAC 

policy. These tables actually represent the basic RBAC model and Hierarchical RBAC model in 
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RBAC standard [5]. In the future, we plan to add tables to support Separation of Duty (SoD) and 

thus implement the Constraint RBAC model as well. The GTRBAC policy is stored in 4 tables in 

the relational database. These 4 tables store all the constraints supported in GTRBAC model. On 

the logical level, we have policy specification modules that translate the user inputs to the data 

structures in the database. The GTRBAC engine and RBAC engine also reside on logical level. 

As shown before, our GTRBAC system does not need to affect the RBAC engine. The GTRBAC 

engine, on the other hand, is the most novel part of our system and will be discussed extensively 

next. 

Figure 4.42 shows the working mechanism of our GTRBAC Engine. In general, the 

GTRBAC engine is responsible for checking all the GTRBAC constraints and updates the 

RBAC policy accordingly every time it runs. The novelty of our engine is that we enforce all 

those different types of constraints in a uniform way by generating a predefined set of system 

operations. By doing so, we are able to (1) enforce all those constraints by updating the RBAC 

policy according to the predefined system operations; and (2) solve the conflicts among original 

constraints by solving the conflicts among predefined system operations. According to the 

semantics of GTRBAC constraints, we define 4 pairs of system operations, and the two 

operations in each pair is the inverse operation of each other: 

 user-role assignment and user-role de-assignment 

 role-permission assignment and role-permission de-assignment 

 role enabling and role disabling 
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 role activation and role de-activation 

 

 

 
Figure 4. 31. The proposed GTRBAC engine 
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that only the enabled constraints should be enforced at the time GTRBAC engine runs. 

Determining which constraints are enabled is not straight forward because the enabling states of 

constraints change dynamically. For example, the administrator can issue a run-time request to 

explicitly enable or disable some constraints. Moreover, the constraint on constraint would also 

change the enabling state of the corresponding constraint. As a result, the first step of GTRBAC 

Engine is to check which constraints are enabled, as shown in Step 1 (left side) in Figure 4.42. In 

particular, we define a data structure called Constraint Operation Pool (COP). COP is a 

collection of constraint operations, and a constraint operation has the structure of <mode, 

constraint name, priority> (priority field will be omitted hereafter for simplicity), where mode∈

{enable, disable} and constraint name is a unique identifier of the constraint in the constraint. 

COP is initialized to be empty every time GTRBAC Engine runs. In this step, our engine checks 

the corresponding GTRBAC policy (i.e. constraint enabling/ disabling run-time requests, and 

constraints on constraint) to gradually add constraint operations to COP. For example, if there is 

a <enable, c1> run-time request in the run-time requests table, we add <enable, c1> into COP. 

After such checking we need to remove the conflicts existing in COP, which will be described 

later in conflict resolving part. Finally, we update the enabling states of constraints according to 

each constraint operation in COP. For example, if <enable, c1> is in COP, we enable constraint c1 

in GTRBAC policy.  

The next step (step 2, right side of Figure 4.42) is to check all enabled constraints and 

update RBAC policy accordingly. Similarly, we define a data structure called Operation Pool 
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(OP). OP is a collection of our predefined system operations, and an operation has the structure 

of <mode, username, role_name, permission_name>, where mode ∈ {activateRole, 

deactivateRole, assignUser, deassignUser, enableRole, disableRole, assignPermission, 

deassignPermission} and username, role_name, permission_name are unique identifiers of Users, 

Roles, and Permissions, respectively (again, priority field is omitted). Note that username, 

role_name, permission_name are all optional according to the specific mode. For example, if the 

mode of an operation is “enableRole” then only role_name is specified in the operation. OP is 

also initialized to be empty every time GTRBAC engine runs. In this step, we dynamically add 

operations into OP by checking run-time requests (except for constraint enabling run-time 

request which is checked in step 1) and those enabled constraints, or remove operations from it 

to remove the conflicts, as shown in Figure 4.42. Note that we must remove the conflicts before 

we check the triggers. This is because triggers will generate new operations according to the 

existing operations. It makes no sense to let conflicting operations (thus should be removed) to 

be the inputs of triggers. And we need to run conflict removing again after checking triggers 

because triggers may generate new operations which could conflict with the existing operations. 

We also emphasize that we should check the cardinality constraint at the very end of step 2. This 

is because cardinality constraints are used to remove operations rather than generating operations. 

For example, assume we had a cardinality constraint <3, activate Doctor> and Doctor has already 

been activated for 3 times. The operation <activateRole, Bob, Doctor> should be removed from 

OP after checking the cardinality constraint. Therefore, if we put cardinality checking earlier, 



  133 
 

then the newly generated operations (e.g. by triggers) have no chance to be checked against them. 

Finally, we update the RBAC policy according to each operation in OP. For example, if 

<assignUser, Bob, Doctor> is in OP, we assign Bob to Doctor in RBAC policy.  

Most of the checking shown in Figure 4.42 is straightforward. Next, we only describe 

how to check a periodicity constraint as an example. The checking rule is simple: if current time 

is within the periodical expression, we add the corresponding operation into OP. Otherwise we 

add the inverse operation to OP. For example, consider a periodical constraint < [9am, 9pm], 

enable Doctor>. If the engine runs at 10pm we add <disableRole, Doctor> into OP.  

Now we discuss how we resolve the conflicts in each step shown in Figure 4.42. 

Generally speaking, two operations are conflicting with each other if they are the inverse 

operation and apply to the same user, role, or permission. For example, <enableRole, Doctor, 

priority: high> and <disableRole Doctor, priority: medium> is a pair of conflicting operations. 

We implement two rules to resolve the conflicts among operations, as defined in GTRBAC 

model [9]: 

(1) Higher priority overrides lower priority. In the above example, Doctor should be 

enabled   since <enableRole, Doctor, priority: high> has higher priority. 

(2) Negative (e.g. disable) overrides positive. In the above example, if both operations have 

the same priority then Doctor should be disabled since “disable” is a negative operation and 

“enable” is positive. 

The conflicts of constraint enabling operations in step 1 can be resolved in the same way using 
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these two rules. 

Finally, we discuss when and how the GTRBAC engine should run. In our architecture, 

we need to run our GTRBAC engine repeatedly to update the RBAC policy dynamically. 

Consider a constraint <[9am, 9pm], assign Bob to Doctor>. Every time the engine runs, it will 

check the current time against this constraint, and assign Bob to Doctor or de-assign Bob from it 

accordingly. Obviously if we run the engine one time a week, then the effect of such constraint 

cannot be reflected in the system. Therefore, we choose to run the engine every 1 minute in the 

current implementation. We believe this frequency is high enough to capture all constraints and 

run-time requests in the system. On the other hand, running the engine in such a high frequency 

may be a waste of resource since at most time instants no changes will likely be made to the 

system. For example, assume <[9am, 9pm], assign Bob to Doctor> is the only constraint in the 

system and assume no any run-time requests will be generated. In this very simple case, 

theoretically we only need to run the engine at 9am and at 9pm to update the corresponding 

user-role assignment. However, it is very difficult (if not impossible) to predict perfectly when 

we should run the engine if there are hundreds of constraints and run-time requests (they could 

even be conflicting). We plan to study how to enhance the performance of our system by partly 

predicting when we should run the engine in the future work. 
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Table 4. 7. An example test case of GTRBAC Implementation 

RBAC Policy 
(assignU Ami to NurseInTraining) 

(NightTime, enable NightDoctor) 

Periodical Constraints 

c1= (DayTime, enable DayDoctor) 

c2= (NightTime, enable NightDoctor) 

c3= ((M, W, F), assignU Adams to DayDoctor) 

c4 = ((T, Th, S, Su), assignU Bill to DayDoctor) 

c5=(Everyday between 10am-3pm,assignU Carol to 

DayDoctor) 

Duration Constraints 
c6 = (2 hours, enable NurseInTraining) 

c7 = (2 hours, activeR_total NurseInTraining) 

Constraints on 

Constraints 
(6 hours, c6) 

Triggers 

(enable DayNurse → enable c1) 

(activate DayNurse for Elizabeth → enable NurseInTraining) 

(enable NightDoctor → enable NightNurse) 

(disable NightDoctor → disable NightNurse) 

Cardinality 

Constraints 

(10, activeR_n DayNurse) 

(5, activeR_n NightNurse) 
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5.0  CONCLUSION AND FUTURE WORK 

Multidomain environments where multiple organizations interoperate with each other are 

becoming a reality as seen in the emerging Internet-based enterprise applications. In such an 

environment, it is a significant challenge to ensure that cross-domain accesses to facilitate 

information sharing are employed in a secure way. Role Based Access Control (RBAC) models 

have received much attention as a general approach to access control. A multidomain 

environment can be characterized into tightly-coupled environment and loosely-coupled 

environment. The access control challenges in loosely-coupled environments where each 

individual domain employs RBAC have not been studied adequately in the literature.  

In this dissertation, we first show that it is desirable to allow users to issue the 

interoperation requests in terms of requested permissions rather than requested roles. And the 

resource-providing domains need to identify a set of its local roles containing the requested 

permissions for the external users to assume. We have propose three role mapping algorithms to 

identify a set of roles containing all the requested permissions. Our algorithms can handle the 

cases when (1) there is exactly matched role set; (2) there is no exactly matched role set but the 
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principle of least privilege is more important; (3) there is no exactly matched role set but the 

availability is more important. 

Once the initial interoperation requests have been translated into a set of requested roles, 

the providing domain needs to make decisions on whether to authorize the requests or not based 

on their local policies and the interoperation requirements. We argue that in role based 

loosely-coupled environments, it is typical that several different users assigned to the same role 

(or a very small set of related roles) would request to acquire the same external resource several 

times in a period. Traditional role-based distributed proof approaches (e.g. DCCD) are inefficient 

in dealing with such type of requests since they all require individual users to prove the requested 

resource separately. We formally study how to simplify such distributed proof procedure and 

propose a Simplify algorithm based on the policies of the requesting role and the requested role. 

We formally prove the completeness and soundness of our algorithm. We conduct simulation and 

run several experiments to very our work. The experiment results show that our algorithm 

significantly outperforms DCCD when the total number of credentials is sufficiently large, which 

is very common in practical loosely-coupled environments.  

Several researchers have shown that the introduction of global policy in tightly-coupled 

environments could violate the principle of security. Although there is typically no global policy 

in the loosely-coupled environment, the existence of multiple authorized interoperations could 

also violate the principle of security. We have proposed a policy integration approach to preserve 

the principle of security while facilitating the interoperations. Our approach makes use of the 
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special semantic of hybrid hierarchy to prevent unexpected permission inheritances. We also 

propose an administrative model for the RBAC model extended with hybrid hierarchy defining 

which administrators are authorized to make the policy changes required during policy 

integration. 

Finally, we present the prototype of our framework to validate our research. The most 

challenging part of the prototyping is implementing the GTRBAC model. We have implemented 

a novel GTRBAC engine that generates a set of pre-defined system operations according to 

different temporal constraints. The conflicts among those temporal constraints are resolved 

within those system operations and the corresponding RBAC state is easily updated according to 

those system operations as well. We also implement the role mapping algorithms, the Simplify 

algorithm, and the Policy Integration module to make it a complete prototype of our proposed 

framework. 

There are several future work related to the research presented in this thesis. First, the 

work presented in this research is theoretical in nature. Although we have implemented a 

prototype to validate it, we have not implemented it over real organizations. This requires a 

comprehensive work related to inter-domain collaborations. For example, how to discover which 

domain contains the requested permissions through service discovery. There are also a number of 

future work related to our simplification algorithm. First, if the requesting domain changes its 

policy within the valid period of an rar, the simplified proof of this rar may not be valid now. 

However, it is not straight forward to detect this unless the requesting domain “honestly” notifies 
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the providing domain. Second, in discussing heuristic 4 we find a trade-off between the 

completeness and complexity of our Simplify algorithm. That is, if we examine every subset of T, 

we can find every existing simplified proof but the algorithm becomes slow. On the other hand, 

if we only examine some subsets of T, we may miss some existing simplified proof but the 

algorithm will run much faster. How to balance between these two factors is a possible future 

work future work. Third, although we present our simplification framework in the context of RT0 

language, we believe the general idea of our approach does not rely on any specific policy 

language and should be applicable generally. Therefore, another future research direction is to 

apply the idea of our approach to other policy languages. 
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