
AN ACCESS CONTROL AND TRUST MANAGEMENT FRAMEWORK FOR
LOOSELY-COUPLED MULTIDOMAIN ENVIRONMENTS

by

Yue Zhang

B.S. in Computer Science Department,

Nanjing University of Science and Technology, 2004

Submitted to the Graduate Faculty of

School of Information Sciences in partial fulfillment

of the requirements for the degree of

 Doctor of Philosophy.

University of Pittsburgh

2011

 ii

UNIVERSITY OF PITTSBURGH

SCHOOL OF INFORMATION SCIENCE

This thesis was presented

by

Yue Zhang

It was defended on

November, 4th, 2010

and approved by

Prashant Krishnamurthy, Associate Professor, Information Science Department

Adam J. Lee, Assistant Professor, Computer Science Department

Michael Spring, Associate Professor, Information Science Department

Vladimir Zadorozhny, Associate Professor, Information Science Department

Thesis Advisor: James B.D. Joshi, Associate Professor, Information Science Department

 iii

Copyright © by Yue Zhang

2011

 iv

AN ACCESS CONTROL AND TRUST MANAGEMENT FRAMEWORK FOR

LOOSELY-COUPLED MULTIDOMAIN ENVIRONMENTS

Yue Zhang, PhD

University of Pittsburgh, 2011

Multidomain environments where multiple organizations interoperate with each other are

becoming a reality as can be seen in emerging Internet-based enterprise applications. Access

control to ensure secure interoperation in such an environment is a crucial challenge. A

multidomain environment can be categorized as tightly-coupled and loosely-coupled. The access

control challenges in the loosely-coupled environment have not been studied adequately in the

literature.

In a loosely-coupled environment, different domains do not know each other before they

interoperate. Therefore, traditional approaches based on users’ identities cannot be applied

directly. Motivated by this, researchers have developed several attribute-based authorization

approaches to dynamically build trust between previously unknown domains. However, these

approaches all focus on building trust between individual requesting users and the resource

providing domain. We demonstrate that such approaches are inefficient when the requests are

issued by a set of users assigned to a functional role in the organization. Moreover, preserving

principle of security has long been recognized as a challenging problem when facilitating

interoperations. Existing research work has mainly focused on solving this problem only in a

tightly-coupled environment where a global policy is used to preserve the principle of security.

 v

In this thesis, we propose a role-based access control and trust management framework

for loosely-coupled environments. In particular, we allow the users to specify the interoperation

requests in terms of requested permissions and propose several role mapping algorithms to map

the requested permissions into roles in the resource providing domain. Then, we propose a

Simplify algorithm to simplify the distributed proof procedures when a set of requests are issued

according to the functions of some roles in the requesting domain. Our experiments show that

our Simplify algorithm significantly simplifies such procedures when the total number of

credentials in the environment is sufficiently large, which is quite common in practical

applications. Finally, we propose a novel policy integration approach using the special semantics

of hybrid role hierarchy to preserve the principle of security. At the end of this dissertation a

brief discussion of implemented prototype of our framework is present.

 vi

TABLE OF CONTENTS

TABLE OF CONTENTS ... vi
LIST OF TABLES ... vii
LIST OF FIGURES ... viii
PREFACE .. x
1.0 INTRODUCTION... 1
2.0 BACKGROUND AND RELATED WORK .. 11

2.1 ACCESS CONTROL MODELS IN SINGLE DOMAIN SYSTEMS 11
2.1.1 Role Based Access Control (RBAC) ... 13
2.1.2 Hybrid Hierarchy .. 16
2.1.3 Generalized Temporal Role Based Access Control (GTRBAC) 19
2.1.4 Role-based Administrative Models... 24

2.2 SECURE INTEROPERATION IN MULTIDOMAIN ENVIRONMENTS 27
2.2.1 Global Policy Based Approaches .. 27
2.2.2 Trust Management Approaches in Multidomain Environments 29
2.2.3 Tightly and Loosely-Coupled Environments ... 32

3.0 ACCESS CONTROL CHALLENGES IN LOOSELY-COUPLED ENVIRONMENTS............ 33
3.1 TIGHTLY-COUPLED ENVIRONMENTS ... 33
3.2 LOOSELY-COUPLED ENVIRONMENTS .. 37

4.0 THE PROPOSED ACCESS CONTROL AND TRUST MANAGEMENT FRAMEWORK 44
4.1 OVERVIEW ... 45
4.2 THE ROLE MAPPING COMPONENT ... 48
4.3 THE TRUST MANAGEMENT COMPONENT ... 58

4.3.1 A Motivational Example .. 63
4.3.2 The Simplify() Algorithm .. 67
4.3.3 Proof Engine ... 93
4.3.4 Evaluation ... 94

4.4 THE POLICY INTEGRATION COMPONENT .. 112
4.4.1 Policy Integration .. 112
4.4.2 Administrative Model .. 117

4.5 PROTOTYPE ... 127
5.0 CONCLUSION AND FUTURE WORK ... 137
BIBLIOGRAPHY ... 141

 vii

LIST OF TABLES

Table 2. 1. Hierarchical Operations in SARBAC-RHA .. 26
Table 2. 2. User-Role operations in SARBAC-URA ... 26

Table 4. 1. Results of each step of Role-Mapping-1 .. 53
Table 4. 2. Results of each step of Role-Mapping-2a .. 54
Table 4. 3. Results of each step of Role-Mapping-2b .. 56
Table 4. 4. Example of using Simplify() .. 84
Table 4. 5. Hierarchical Operations in SARBAC-HH ... 120
Table 4. 6. Success conditions for operations involved in the Policy Integration component.

... 127
Table 4. 7. An example test case of GTRBAC Implementation .. 135

 viii

LIST OF FIGURES

Figure 2. 1. Constraints and hierarchy in RBAC ... 13
Figure 2. 2. Permission assignments in (a) RBAC and (b) non-RBAC 14
Figure 2. 3. A Simple Role Hierarchy .. 15
Figure 2. 4. Derived relations in a hybrid hierarchy .. 18
Figure 2. 5. Example of (a) Cyclic inheritance conflict; (b) Violation of SoD 29

Figure 3. 1. An example of the cyclic inheritance conflict in a tightly-coupled environment 35
Figure 3. 2. An example of the violation of SoD in a tightly-coupled environment 37
Figure 3. 3. An example of the cyclic inheritance conflict in a loosely-coupled environment

... 43
Figure 3. 4. An example of the violation of SoD in a loosely-coupled environment 43

Figure 4. 1. Interaction and data flow among the components .. 44
Figure 4. 2. User Authorization Query Model ... 49
Figure 4. 3. An example RBAC policy to show the role mapping algorithms 50
Figure 4. 4. The algorithm to solve role mapping problem 1 .. 52
Figure 4. 5. Algorithm for the role mapping problem 2(a) .. 54
Figure 4. 6. The algorithm to solve the role mapping problem 2(b) 55
Figure 4. 7. Role-Mapping(R, PRQ) .. 57
Figure 4. 8. BuildAOT algorithm .. 71
Figure 4. 9. the algorithm to build the proof for a single role .. 72
Figure 4. 10. the algorithm to build the proof for a set of roles ... 73
Figure 4. 11. Simplify() Algorithm .. 80
Figure 4. 12. algorithm to simulate a multi-domain environment ... 96
Figure 4. 13. Comparison of |A.R| when (|B.R|, |A.R|)=(1,1) ... 107
Figure 4. 14. Comparison of |A.R| when (|B.R|, |A.R|)=(1,2) ... 107
Figure 4. 15. Comparison of |A.R| when (|B.R|, |A.R|)=(1,3) ... 107
Figure 4. 16. Comparison of |A.R| when (|B.R|, |A.R|)=(1,4) ... 108
Figure 4. 17. Comparison of |B.R| when (|B.R|, |A.R|)=(1,1) ... 109
Figure 4. 18. Comparison of |B.R| when (|B.R|, |A.R|)=(2,1) ... 109
Figure 4. 19. Comparison of |B.R| when (|B.R|, |A.R|)=(3,1) ... 109
Figure 4. 20. Comparison of |B.R| when (|B.R|, |A.R|)=(4,1) .. 110
Figure 4. 21. Comparison of |A.R|, |B.R| when (|B.R|, |A.R|)=(1,1) 110
Figure 4. 22. Comparison of |A.R|, |B.R| when (|B.R|, |A.R|)=(2,2) 111
Figure 4. 23. Comparison of |A.R|, |B.R| when (|B.R|, |A.R|)=(3,3) 111

 ix

Figure 4. 24. the use of access role and hybrid hierarchy to facilitate interoperation 114
Figure 4. 25. Using access role to prevent (a) cyclic inheritance conflicts; (b) violations of

SoD .. 116
Figure 4. 26. Administrative Scope in SARBAC and SARBAC-HH................................... 119
Figure 4. 27. Parameters in AddRole ... 121
Figure 4. 28. The ChangeEdge operation won’t succeed .. 123
Figure 4. 29. An example standard hierarchy .. 125
Figure 4. 30. Access control system in the individual domain .. 127
Figure 4. 31. The proposed GTRBAC engine ... 130

 x

PREFACE

The research presented in this thesis has been supported by the US National Science Foundation

– Intelligent Information Systems (IIS) CAREER award IIS-0545912.

 1

1.0 INTRODUCTION

Multidomain environments in which multiple organizations interoperate with each other are

becoming a reality, as seen in the emerging Internet-based enterprise applications. In these types

of environments, it is a significant challenge to ensure that cross-domain accesses to facilitate

information sharing are employed in a secure way. This is referred to as the multidomain secure

interoperation problem [1]. Gong et al. introduce the following two principles for secure

interoperation in multi-domain environments [1]:

• Principle of Autonomy: If an access is permitted within an individual system, it must also be

permitted under secure interoperation.

• Principle of Security: If an access is not permitted within an individual system, it must not be

permitted under secure interoperation.

A multidomain environment can be characterized into tightly-coupled environment and

loosely-coupled environment. In a tightly-coupled environment, the access control and

interoperation needs are typically predefined, and a global policy is created by integrating all the

individual policies to facilitate those interoperation needs. In a loosely-coupled environment,

different domains join and leave a multidomain environment dynamically and the interoperation

 2

needs are dynamic and cannot be predefined. In the literature, several approaches have been

proposed to address the access control challenges in tightly-coupled environments. Gong et al. [1]

have studied the computational complexity of the global policy using Access Control Matrix

(ACM) model. Bonati et al. [2] and Dawson et al. [3] have studied the policy integration

problem applied to domains employing Multi-Level Security (MLS) models. Basit et al. [4] have

studied how to specify a global policy by integrating different individual access control policies

using Role Based Access Control (RBAC) model [5]. Unfortunately, the access control

challenges in loosely-coupled environments have not been studied adequately in the literature.

Piromruen et al. have proposed a secure interoperation framework focusing on how to establish

secure interoperation between the requesting domain and the providing domains based on RBAC

[42]. Their approach does not assume the existence of a global policy. However, they assume the

naïve RBAC policy is used to make interoperation authorization decisions and do not consider

the fact that user identities are usually not known to the resource providing domain. Shehab et

al.’s SEcure Role mApping Technique (SERAT) focuses on finding the cross-domain

authorization paths in a decentralized way [43]. However, they assume that a permitted

interoperation set is pre-defined in the environment. There are also several research efforts on

trust management [19, 20, 21, 22] which aim to make authorization decisions between

previously unknown domains. However, they are not discussed in the context of a

loosely-coupled environment and can only solve part of the challenges in loosely-coupled

environments.

 3

Role Based Access Control (RBAC) models have received much attention as a general

approach to access control [5, 6, 7]. The survey conducted by NIST [8] shows that in many

organizations the access control decisions is based on a person’s roles and responsibilities within

the organization, making role-based approach suitable for expressing security requirements. One

important feature of RBAC is the role hierarchy. The use of role hierarchy can greatly simplify

the policy specification task, since the administrators do not need to assign the permissions of the

junior role to the senior role explicitly. Recently, many extensions of RBAC have been proposed

to support the specification of more fine-grained policy requirements. Generalized Temporal

Role Based Access Control (GTRBAC) model [9] is one of such RBAC extensions supporting

temporal constraints on policies. In many situations, it is desirable to restrict the authorizations

based on temporal constraints. For example, a user Alice may be assigned to DayNurse role

only during daytime. Several researchers [10, 11] have also identified various limitations of the

standard role hierarchy used in RBAC. Joshi et al. have proposed the notion of hybrid hierarchy

[12] that overcomes some of those limitations of the standard role hierarchy. As a result,

GTRBAC is a good choice for defining the local policies in each individual domain. However,

the interoperation authorization decisions cannot be made directly on them since the user

identities are not known in a loosely-coupled environment. In this thesis, we assume that

GTRBAC is used in each individual domain to specify its local policy and the focus of this thesis

is to study and propose solutions for access control challenges specific to the loosely-coupled

environment.

 4

In a loosely-coupled multidomain environment where each domain employs GTRBAC

and hybrid hierarchy, there exist several specific access control challenges. In a traditional single

domain system, users usually know the role structure of the organization and hence could request

to assume the corresponding roles directly in order to perform the jobs. In a loosely-coupled

environment, however, it is typically not practical to assume that users have already known the

role structure of external domains. As a result, it is desirable to allow users to request the

permissions directly. And the resource-providing domains need to identify a set of its local roles

containing the requested permissions for the external users to assume.

Once the initial interoperation requests have been translated into a set of requested roles,

the providing domain needs to make decisions on whether to authorize the requests or not based

on their local policies and the interoperation requirements. Since the identity of the requesting

users may not be known to the external domain, traditional identity-based access control

approaches are not suitable [22]. A trust management approach is needed to facilitate access

requests from previously unknown users. In role based multidomain environments, it is very

common that several different users assigned to the same role (or a very small set of related roles)

would request to acquire the same external resource several times in a period. In this thesis, we

refer to such interoperation request scenario as Role-based interoperation Access Requests (rar),

and refer to the role(s) that requesting users assigned to as requesting role(s). In such a scenario,

different users all request the same external resource because the functionality of the requesting

role requires obtaining the external resource, and it is common that several users have been

 5

assigned to the same role(s) (i.e. occupying the same position) in the same period. For example,

assume Bob is travelling outside and needs to go to the emergency room in the local hospital.

The assigned nurse there needs to obtain Bob’s health information from his home hospital.

Moreover, there might be several persons assigned to the nurse position (e.g. some during

daytime, and some during night time) when taking care of Bob. They all need to acquire Bob’s

health information when they are on duty. From access control perspective, obviously it is not

secure to allow the first nurse who has obtained Bob’s health information to disclose it to the

subsequent nurses. A more secure way is to require each nurse issuing a separate request and

each request to be evaluated and authorized separately for each nurse. Here, we reach the

role-based interoperation request scenario: different persons assigned to the same role (nurse)

need to request the same external resource (Bob’s health information) several times (when each

person is taking the position) in a period (the time period when Bob is taken cared of). Using

traditional role-based distributed proof approaches (e.g. DCCD), each single user needs to prove

separately that he/she has the credentials required for the accessing requested resources.

However, they will typically request the same external resources since they are assigned to the

same requesting role(s) whose functionalities require acquiring those external resources.

Unfortunately, few existing approaches have made use of this property to simplify the distributed

proof procedures.

Lastly, several researchers have shown that the introduction of global policy in

tightly-coupled environments could violate the principle of security. Although there is typically

 6

no global policy in the loosely-coupled environment, the existence of multiple authorized

interoperations could also violate the principle of security. Proper mechanisms need to be used to

address such a problem.

In this thesis, we address the access control and trust management challenges in

loosely-coupled environments as discussed above, and develop an access control and trust

management framework consisting of three major components: (1) Role Mapping; (2) Trust

Management; and (3) Policy Integration. First, we develop several role mapping algorithms to

identify a set of roles that contain all the requested permissions. We show that it is more

convenient to specify the interoperation requests in terms of requested permissions. Recall that in

RBAC, permissions are made available through roles. Therefore, the resource providing domain

needs to find out which of its local roles contain the requested permissions. This problem

becomes more challenging when hybrid role hierarchy is used. Motivated by this, we propose 3

greedy role mapping algorithms to identify such roles according to the local policy. The proposed

algorithms are able to handle three scenarios: (1) when exactly matched role set exists; (2) no

exactly matched role set exists and the principle of least privilege is important; (3) no exactly

matched role set exists and the availability is more important. Second, we develop a Simplify

algorithm to simplify the role-based distributed proof procedure. In particular, we base our work

on the role-based distributed proof procedure proposed by Li et al. (i.e. RT families of trust

management language [22] and Distributed Credential Chain Discovery (DCCD) algorithm [26]).

We first show that there is a common type of interoperation request in loosely-coupled

 7

environment. That is, role-based interoperation access request where the access requests are

issued according to the functional needs of the roles in the organization rather than from the

individual behaviors. In this case, we show that DCCD approach is inefficient since it can only

authorize the resource to the unknown users but not roles in unknown domains. Motivated by

this, we propose a Simplify algorithm to simplify the distributed proof procedure as defined in

DCCD approach by analyzing the policies of the requesting roles and requested roles. We

conduct several experiments using simulation and the experimental results show that our

approach significantly outperforms DCCD when the total number of credentials in the

environment is sufficiently large, which is quiet common in loosely-coupled environments. Third,

we develop a novel policy integration approach using the special semantic of hybrid role

hierarchy to preserve the principle of security. Researchers have shown that violations of

principle of security could be introduced in the global policy that is used to facilitate

interoperations in tightly-coupled environments. They have proposed several solutions to detect

and remove such violations in the global policy. We show that violations of principle of security

could also be introduced in loosely-coupled environment although there is no global policy in it.

And the existing approaches dealing with tightly-coupled environment cannot be applied.

Motivated by this, we develop a novel policy integration approach that is able to preserve

principle of security during interoperations. We use hybrid hierarchy to facilitate authorized

interoperations and the special semantics of hybrid hierarchy guarantees that there is no violation

of principle of security. To do this, we need to make several changes to the local GTRBAC

 8

policy, which should be done properly by only the authorized administrators according to

appropriate administrative models. However, as far as we know there are no existing

administrative models in the literature that is able to deal with hybrid hierarchy. We also propose

an administrative model for RBAC with hybrid hierarchy.

From all the above disscussions, the goal of this thesis is to propose an access control and

trust management framework for loosely-coupled multidomain environment that is able to: (1)

allow the users to specify the requested permissions directly; (2) simplify the trust management

process assuming the user’s requests are made according to the functionalities of their assigned

roles ; (3) preserve the principle of security without using the global policy. In particular, the

research presented in this thesis makes a number of contributions as follows:

 We clearly characterize the tightly-coupled and loosely-coupled environments, and

analyze the access control challenges specific to each. Such analysis helps us to

develop access control mechanisms that are especially suitable for loosely-coupled

environments.

 We assume that users express the interoperation access requests in terms of requested

permissions rather than requested roles in role-based multi-domain environments.

Based on this, we develop three role mapping algorithms that are able to identify a set

of roles containing the requested permissions according to the local policy of the

resource providing domain. Such role mapping approaches are desirable in general

RBAC systems and more so in multi-domain environments employing with RBAC.

 9

 We show that a special type of interoperation requests – those issued according to the

functionalities of the roles in an organization – is very common in role-based

loosely-coupled environments and show that existing distributed proof systems are

inefficient in dealing with such requests. Therefore, we propose a Simplify algorithm

that significantly outperforms traditional role-based distributed proof procedures (in

particular, DCCD approach [26]) when the total number of credentials is sufficiently

large.

 We show violations of principle of security could be introduced in loosely-coupled

environment and develop a Policy Integration component to prevent such violations.

We also develop an administrative model for the required administrative operations

involved in the Policy Integration component.

To our knowledge, no prior research has addressed the above issues in a unified manner,

in the sense of analyzing the access control challenges for the loosely-coupled environment and

developing an access control and trust management framework based on those identified

challenges. Given the growing emphasis on interoperations over loosely-coupled multidomain

environments, we believe the work presented in this thesis represents an important step towards

addressing the access control issues in the loosely-coupled environments.

The rest of this thesis is organized as follows. In section 2, we present relevant

background and related work on access control issues in multidomain environments. In section 3,

we discuss the differences between tightly-coupled and loosely-coupled environments and

 10

identify the access control challenges specific to each. In section 4, we present our access control

and trust management framework for loosely-coupled environments. Finally, in section 5, we

conclude our work and point out possible future directions.

 11

2.0 BACKGROUND AND RELATED WORK

Access control is a fundamental security issue related to ensuring that only authorized accesses

and activities are allowed in a computing environment. Authorizing an entity for accessing

computing resources may involve satisfying complex policy rules. Recently, with the increased

progress in large scale distributed applications, access control in multidomain environments has

become a very significant challenge. In this section, we overview the general access control

models in single domains, and the access control and trust management approaches in

multidomain environments.

2.1 ACCESS CONTROL MODELS IN SINGLE DOMAIN SYSTEMS

Within a single domain, it is crucial to ensure that any access to its data and resources is properly

authorized according to the access control policy. Several access control models have been

proposed in the literature to specify and enforce various access control policy requirements in a

single domain. Traditional access control approaches are broadly categorized as Discretionary

Access Control (DAC) [44, 45, 46] and Mandatory Access Control (MAC) [46, 47, 48, 49]. In

 12

DAC, the basic premise is that subjects have ownership over objects of the system and subjects

can grant access rights to or revoke them from other subjects on the objects they own. It has been

shown that the major problem of DAC is that it does not ensure information flow control [55].

In MAC, all subjects and objects are classified based on some predefined clearance/sensitivity

levels that are used in an access decision [46, 49, 50]. These levels generally form a lattice

structure, and hence a MAC policy is sometimes known as a lattice-based policy [49]. Unlike

DAC, MAC provides deals with more specific security requirements, such as information flow

control policy. However, enforcement of MAC policies is often a difficult task. In particular, for

many commercial organizations [51], they do not provide viable solutions because they lack

adequate flexibility. Furthermore, organizational security needs are often a mixture of policies

that may need to use both DAC and MAC, which necessitates seeking solutions beyond those

provided by DAC and MAC only [46].

Role Based Access Control (RBAC) approaches have been shown to offer many benefits

over other models in terms of their applicability for a wider range of security requirements [5, 6,

7]. One feature of RBAC is the notion of role hierarchy. However, researchers have found some

limitations of the standard role hierarchy supported in RBAC. Hybrid hierarchy has been

proposed to overcome the shortcomings of the standard role hierarchy. Recently, the General

Temporal Role Based Access Control (GTRBAC) model has been proposed to add temporal

constraints into RBAC. In our proposal, we assume each individual domain employs the

 13

GTRBAC model with hybrid hierarchy. Next, we will briefly overview RBAC, hybrid hierarchy,

GTRBAC, and the role-based administrative models.

2.1.1 Role Based Access Control (RBAC)

In RBAC, users are assigned memberships to roles and these roles are in turn assigned

permissions as shown in Figure 2.1. A user can acquire all the permissions of a role of which he

is a member. A role-based approach naturally fits into an organizational context as users are

assigned organizational roles that have well-defined duties and responsibilities, and are

associated with user qualifications [8].

Figure 2. 1. Constraints and hierarchy in RBAC

According to a survey conducted by the US National Institute of Standards and

Technology (NIST) [8], RBAC has been found to address many needs of the commercial and

government sectors. This study shows that access control decisions in many organizations are

Role Hierarchies

Users Roles Permissions

Constraints

User Role
Assignments

Role Permission
Assignments

 14

based on “the roles that individual users take on as part of the organization.” Many

organizations surveyed indicate that they had unique security requirements and the available

products did not have adequate flexibility to address them.

Figure 2. 2. Number of permission assignments in (a) RBAC and (b) non-RBAC

One of the key advantages of an RBAC model is the efficiency it provides in security

administration. The role in the middle approach to access control removes the direct association

of the users from the objects. This greatly simplifies management of authorization in RBAC

systems. For example, when a user changes his role, all that needs to be done is to remove his

membership from the current role and assign him to the new role. In case authorizations were

specified in terms of direct associations between the users and the individual objects, this change

would require revoking from the users all their permissions over the objects and explicitly

granting the users the new permissions over the new set of objects. Figure 2.2 illustrates such

u1

u2

un

o1

o2

om

u1

u2

un

o1

o2

om

Role r

PermissionsPermissions UsersUsers

n + m
assignments

(a)

n × m
assignments

(b)

 15

advantage of using RBAC approach. Using a role-based approach, the number of actual

assignments is considerably reduced. Generally, a system has very large number of subjects and

objects and hence using RBAC has benefits in terms of managing permissions.

Figure 2. 3. A Simple Role Hierarchy

Another key advantage of RBAC is the use of role hierarchy. Role hierarchies that exist

in many organizations based on the principle of generalization and specialization [41]. For

example, in a company there may be several roles arranged in a role hierarchy as shown in

Figure 2.3: Employee, Engineer, Senior Engineer, Administrator, Senior Administrator, and

Manager. Since everyone is an employee, the Employee role models the generic set of access

rights available to all. A Senior Engineer role will have all the permissions that an Engineer role

will have, who in turn will have the permissions available to the Employee role. Thus, permission

Senior
Administrator

Administrator

Senior
Engineer

Engineer

Manager

Employee

 16

inheritance relations can be organized in role hierarchies. This further simplifies management of

access permissions.

Separation of Duty (SoD) has been considered a very desirable organizational security

requirement [52, 53, 54]. SoD constraints are enforced mainly to avoid possible fraud in

organizations. RBAC can be used to enforce such requirements easily – both statically and

dynamically. For example, a user can be prevented from being assigned to two roles, one of

which is related to authorizing a check and the other to cashing it, to prevent a possible fraud by

using a static SoD which says that a user cannot be assigned to two roles,.

2.1.2 Hybrid Hierarchy

Standard role hierarchy supported in RBAC combines the semantics of permission inheritance

and activation inheritance together. Several researchers have emphasized the need for separating

the permission inheritance and activation inheritance semantics to provide flexibility in

expressing fine-grained policies [10, 11]. Sandhu show that under the standard hierarchy

semantics, certain Separation of Duty (SoD) constraints cannot be defined on hierarchically

related roles, thus, restricting its effectiveness in supporting a broader set of fine-grained

constraints and, in particular, in representing MAC policies [10]. To address such shortcomings,

Sandhu has proposed the ER-RBAC96 model [10] that incorporates a distinction between a

usage hierarchy that applies only the permission-inheritance semantics and activation hierarchy

that uses the combined hierarchy semantics. Later, Joshi et al. [12] have established a clear

 17

distinction among the following three types of hierarchical relations:

permission-inheritance-only relation (I-relation, ≥ i), activation-only relation (A-relation, ≥a), and

the combined permission-inheritance and activation relation (IA-relation, ≥). They further

propose the notion of hybrid hierarchy [12] where the above three hierarchical relations co-exist,

while only IA-relations exist in the standard role hierarchy. Semantically, x ≥i y (read as x is

I-senior to y) means that permissions available to y are also available to x; x ≥a y (read as x is

A-senior to y) means that users who can activate x can also activate y; x ≥ y (read as x is IA-senior

to y) means that permissions available to y are also available to x and users who can activate x

can also activate y. It has been shown that such a fine-grained hierarchy can allow specification

of a wide range of security requirements, including the specification of Dynamic Separation of

Duty (DSoD), and user-centric as well as permission-centric cardinality constraints on roles [7,

12]. In their critique of the standard RBAC model, Li et al. have emphasized that such a

distinction should be incorporated in the standard RBAC model to provide clearer semantics to

support uniformity in implementations of the RBAC models [13].

Joshi et al. have shown that in hybrid hierarchy a hierarchical relation between any pair

of roles which are not directly related could be derived [14]. It is obvious that the three hierarchy

types are transitive. For instance, if (x ≥ y) and (y ≥ z) then it implies (x ≥ z). Similarly, since

IA-relation can be considered as both I-relation and A-relation, we have the following relations as

shown in Figure 2.4(a): (x <f1> y) ∧ (y <f2> z) => (x <f> z), where, (<f1>∈{≥}) ∨ (<f2>∈

{≥}) and <f> = <f1>, if <f2>∈ {≥}, otherwise <f> = <f2>.

 18

A special derivation relation in hybrid hierarchy is where an A-relation is followed by an

I-relation, as shown in Figure 2.4(b). Here, a user assigned to x cannot acquire permissions of z

by only activating x. However, any user assigned to x can acquire permissions of z by activating

y, which means x can still “inherit” permissions of z even if there is no I-relation between them.

In this situation, we say that x has a “conditioned” relation with z, written as x[y] ≥i z [14].

If an I-relation is followed by an A-relation as shown in Figure 2.4(c), there is not any

derived relation between x and z. In this case, a user assigned to x cannot acquire permissions of

z, since he can only acquire permissions of y but cannot activate y. To summarize, we define the

derived relation between any pair of roles x and y as follows:

Definition 2.1 (Derived Relation): Let x and y be roles such that (x ≥d y), that is, x has a derived

relation with y. Then the following holds: (x ≥i y)∨(x ≥a y)∨(x ≥ y)∨(∃a∈R, x[a] ≥i y)

Figure 2. 4. Derived relations in a hybrid hierarchy

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

zx i≥ zx i≥ zx i≥zx a≥ zx ≥ zx a≥ zx a≥

x

y

z

x

y

z

zyx i≥][(c) No relation(b)(a) Unconditioned relations

 19

Lemma 2.1: Let r1 and r2 be a pair of roles in the hybrid hierarchy; then users assigned to r1 can

acquire permissions of r2, iff. the following holds:

There exists at least one hierarchical path from r1 to r2 such that no I-relation precedes an

A-relation in the path.

The proof of Lemma 2.1 follows directly from the semantics of hybrid hierarchy as discussed

above.

2.1.3 Generalized Temporal Role Based Access Control (GTRBAC)

The GTRBAC model is an extension of RBAC that support temporal constraints [9]. Such a

flexibility of supporting various temporal constrains is very helpful in our framework. Nearly all

access decisions and related policy updates should be restricted by proper temporal constraints.

For example, in our Trust Management components, we add a new RT0 rule in the providing

domain to facilitate the simplified proof. Such new rules should not exist forever. If any of the

related trust policy changes, the simplified proof may not be valid and needs to be reevaluated. In

such a case, we can use trigger feature in GTBAC to disable the new rule once the relevant

policies have changed. Another example, in the Policy Integration component we need to update

the local RBAC policy to facilitate the authorized interoperation, that is, creating an access role

and connecting them between requesting roles and requested roles (details in Section 4). Such

new roles and hierarchical relations should be restricted by proper temporal constraints too. If the

authorized interoperation is only authorized for a period of time, obviously the corresponding

 20

access roles and hierarchical relations should also be valid for that period only. The duration

constraints in GTRBAC can be used to specify such restrictions. We assume each individual

domain employs GTRBAC in our framework. Specifically, there are 6 types of temporal

constraints defined in GTRBAC [9]:

 21

Periodicity Constraints

A periodicity constraint contains a periodicity expression and an event expression. For example,

given a periodicity constraint <Monday, enable Doctor> (Hereafter we will use a slightly

different format without changing its semantic for each type of the constraint compared to the

original paper for better readability), the system should enable Doctor on every Monday, and

disable it on any other day.

Duration Constraints

A duration constraint contains a duration expression and an event expression. For example, <2

hours, enable Doctor> means that the system should disable the Doctor role 2 hours after it is

enabled. When applying a duration constraint to role activation, it takes four different formats: (1)

total role activation duration per role: for example, <10 hours, activate Doctor> means that the

total activation time of Doctor role is 10 hours; (2) total role activation duration per user-role:

for example, <10 hours, activate Doctor by Alice> means that the total activation time of Doctor

by Alice is 10 hours; (3) maximum role duration per activation per role: for example, <10 hours,

activate Doctor per session> means that the Doctor could be activated for at most 10 hours in a

single session; (4) maximum role duration per activation per user-role: for example, <10 hours,

activate Doctor by Alice per session> means that Doctor could only be activated for at most 10

hours in any of Alice’s sessions.

 22

Cardinality Constraint

The cardinality constraint is used to restrict the number of activations. It can be applied in four

different scenarios: (1) total number of activations per role: for example, <10, activate

Doctor>means that Doctor can be activated for at most 10 times; (2) total number of activations

per user-role: for example, <10, activate Doctor by Alice> means that Doctor can be activated

by Alice for at most 10 times; (3) max number of concurrent activations per role: for example,

<10, concurrent activate Doctor> means that at any time Doctor should occur in no more than

10 sessions; (4) max number of concurrent activations per user role: for example, <10,

concurrent activate Doctor by Alice> means that at any time Doctor should be activated in no

more than 10 of Alice’s sessions.

Constraints on Constraints

For each of the periodicity, duration, and cardinality constraints, we can add periodicity or

duration constraint on the constraint itself. Periodicity Constraint on constraints specifies the

enabling time of the corresponding constraints. For example, <Weekends, <2 hours, enable

Doctor>> specifies that the inner duration constraint is enabled only during weekends. Duration

Constraint on Constraints specifies how long a constraint is valid. For example, <10 hours, <10,

activate Doctor>> means that once the inner constraint is enabled, it should be disabled after 10

hours.

 23

Run-time Requests

GTRBAC supports administrators and users to issue run-time requests to change the system state.

An administrator can issue all the 10 types of event expressions. For example, an administrative

run-time request <enable constraint, <Monday, enable Doctor>, after 10 min> enables the inner

constraint after 10 minutes. A user can only issue role activation and role de-activation events as

run-time requests.

Triggers

A trigger consists of a precondition and a body, both of which are a set of event expressions. If

all the operations in the precondition occur, all the operations in the body should be issued. For

example, a trigger <enable Doctor → enable DoctorInTraining> specifies that once Doctor is

enabled DoctorInTraining should also be enabled.

As shown in Figure 1.1, the GTRBAC engine enforces the GTRBAC policy by updating

the RBAC policy according to the semantics of the temporal constraints. For example, enforcing

a periodical constraint <Monday, enable Doctor> involves automatically updating the enabling

state of the role Doctor in the RBAC policy. In our work, we assume a GTRBAC engine is

always running and updating the RBAC policy at fixed frequency. Whenever we mention an

“RBAC policy”, we mean the current RBAC policy.

 24

2.1.4 Role-based Administrative Models

In our framework, the local RBAC policies need to be changed to facilitate the Policy Integration

component. To support evolution of RBAC policies, administration of RBAC policies becomes

more and more important. The use of role itself to manage RBAC has become an appealing idea

recently. Sandhu et al. [15] have proposed an ARBAC97 (Administrative RBAC ‘97) model

consisting of URA97 (User-Role Assignment ’97), PRA97 (Permission-Role Assignment ’97),

and RRA97 (Role-Role Assignment ’97) model, which use RBAC to manage RBAC policies.

They further extend this model to ARBAC99 [16] and ARBAC02 [17]. Crampton et al. [18]

have proposed a SARBAC (Scoped Administration model for RBAC) model using the concept

of administrative scope. SARBAC has been shown to be capable of addressing several

shortcomings of ARBAC model and is better in terms of completeness, simplicity, practicality

and versatility. Both ARBAC family of models and SARBAC assume that only standard role

hierarchy is used. We briefly overview the SARBAC model next.

The basic idea of SARBAC is to use some roles to “administer” some other roles [18]. In

this way, the administration can be decentralized. The central idea of SARBAC is the notion of

administrative scope, which defines the range of roles that can be administered by the given role,

as shown next.

Definition 2.2 [18] (Administrative Scope): Given a role a, its administrative scope, S(a), is

defined as:

 25

S(a) = {r∈R: r ≤ a , ↑r \ ↑a⊆↓a}

Where, ↑r = {x∈R: x ≥ r}, ↓r = {x∈R: x ≤ r}.

Informally, r∈S(a) if every path upwards from r goes through a. This ensures that any change to

r made by a will not have unexpected side effects due to inheritance elsewhere in the hierarchy.

The strict administrative scope of r is defined as S(r)\{r}, which we denote by S+(r). If r∈S+ (a),

a is referred to as the administrator of r [18]. The SARBAC model consists of three parts: Role

Hierarchy Administration (RHA) model, User Role Assignment (URA) model, and Permission

Role Assignment (PRA) model. SARBAC-RHA defines four administration operations:

AddRole(a, r, △r, ▽r), DeleteRole(a, r), AddEdge(a, c, p), and DeleteEdge(a, c, p), where △r

is the set of the immediate juniors of the role r, and ▽r is the set of the immediate seniors of the

role r. Table 2.1 describes the conditions that are required for these operations to succeed. For

example, the first rule in Table 2.1 specifies that an administrator role a is able to add a new role

r (whose senior and junior roles are ▽r and △r respectively), if and only if △r is within the

strict administrative scope of a and ▽r is within the administrative scope of a. The rationale

here is that a can administrate both ▽r and △r so it should also be able to add a new role

between them. Similarly, the operations and their success conditions in SARBAC-URA are

summarized in Table 2.2, where ∧C is a set of constraints needed to be satisfied by users or

permissions and ua-constraints assign some constraints to each of the role r. Let R’ = {r1, …, rk}

be a subset of R and let ∧R’ denote r1∧…∧rk, we have the following definition:

 26

Definition 2.3 (SARBAC Constraint): An SARBAC constraint has the form ∧C, where C ⊆ R.

A SARBAC constraint ∧C is satisfied by a user u if C ⊆ ↓ R(u). A SARBAC constraint ∧C is

satisfied by a permission p if C ⊆↑R(p), here for any Y ⊆X, ↑Y = {x∈X: ∃y∈Y such that x ≥ y},

and ↓Y = {x∈X:∃y ∈ Y such that x ≤ y}.

According to definition 2.3, a user is said to satisfy a set of roles if she is assigned to any one of

these roles, or the senior role of any of these roles. Intuitively, this constraint guarantees that if a

user satisfies a set of roles, she is the member of all these roles. For example, the first row of

Table 2.2 shows that if role a wants to assign user u to role r, r must be within the administrative

scope of a; and u must satisfy the “pre-condition” associated with role r. SARBAC-PRA is very

similar to SARBAC-URA by substituting "permissions" for “users”.

Table 2. 1. Hierarchical Operations in SARBAC-RHA

Operation Conditions
AddRole (a, r, △r, ▽r) △r ⊆ S+ (a),▽r ⊆ S(a)
DeleteRole (a, r) r ∈ S+(a)
AddEdge (a, c, p) c, p ∈ S(a)
DeleteEdge (a, c, p) c, p ∈ S(a)

Table 2. 2. User-Role operations in SARBAC-URA

Operation Conditions
AssignUser(a, u, r) r∈S(a), u satisfies ∧C, (r, ∧C) ∈ua-constraints
RevokeUser(a, u, r) r ∈ S(a)

 27

2.2 SECURE INTEROPERATION IN MULTIDOMAIN ENVIRONMENTS

As indicated by the principle of autonomy and principle of security, the access control policies in

the multidomain environment should be consistent with the access control policies in the

individual domains. In the literature, there are two major research areas related to access control

in multidomain environments: (1) global policy based approaches; and (2) trust management

approaches. In this section, we describe these two areas in detail and also briefly review other

related secure interoperation approaches.

2.2.1 Global Policy Based Approaches

A key approach to access control in multidomain environments involves mapping all the

individual policies into one centralized global policy, based on which all the interoperation

requests are authorized. We refer to such kind of approaches as “global policy based approach”

in this thesis. Such work includes Gong et al.’s computational complexity analysis [1] based on

the Access Control Matrix (ACM) model, Bonati et al.’s policy algebra [2], Dawson et al.’s

approach [3] based on the Multi-Level Security (MLS) model, and Shafiq et al.’s secure

interoperation framework [4] based on the RBAC model. A global policy should not violate the

principle of autonomy and principle of security. Intuitively, principle of autonomy indicates that

we may facilitate the interoperation by mapping different policies, but it should not result in the

removal of any existing authorization relations in the local policies. Principle of autonomy is

 28

typically implicitly guaranteed in the global policy by not changing any local policies when

mapping. Principle of security indicates that during the interoperation no new authorization

relation should be added within each individual domain. The use of global policy in multidomain

environments where RBAC is employed could introduce two types of violations of principle of

security. The first type of violation is referred to as cyclic inheritance conflicts [4]. In such a case,

the cross-domain hierarchical relationship may introduce a cycle in the global policy enabling a

subject lower (or junior) in the hierarchy to acquire the permissions of the subject higher (senior)

in the hierarchy. Figure 2.5(a) shows such an example. In Figure 2.5(a), role r2 of d1 is made

senior to r3 of d2 to facilitate some interoperation needs, and r4 is also made senior to r1 to

facilitate another interoperation need. A cycle (r2, r3, r4, r1) is introduced in this case, and r2 can

now inherit the permissions of r1, which violates the principle of security. The second type of

violation is referred to as a violation of Separation of Duty (SoD) [4]. In such a case, the

cross-domain hierarchical relationship may enable one subject to acquire permissions that violate

the SoD constraint. Figure 2.5(b) shows such an example. In figure 2.5(b), r1 and r2 in domain d1

are restricted by the SoD constraint. r1 is made senior to r3 in d2 to facilitate an interoperation

need, and r3 is made senior to r2 to facilitate another interoperation need. Now the users of r1 can

acquire the permissions of r2, thus violating the SoD constraint. Several techniques have been

proposed in the literature to detect and remove such violations introduced in the global policy.

For example, Shafiq et al. propose an Integer Programming based approach to detect and remove

cyclic inheritance cycle and violation of SoD in the global policy [4].

 29

Figure 2. 5. Example of (a) Cyclic inheritance conflict; (b) Violation of SoD

2.2.2 Trust Management Approaches in Multidomain Environments

Global policy based approaches assume that the interoperation needs can be predefined in order

to create the global policy. Another popular approach related to the cross-domain authorization is

the trust management based approach [19, 20, 21, 22], which aims to make authorization

decisions on dynamic interoperation requests involving domains previously unknown to each

other. In such a case, each individual domain typically does not know the identity of the external

users who issue the interoperation requests, and hence the authorization decisions are typically

made based on the properties of the entities, and such properties are typically encoded in

credentials in the literature [19, 20, 21, 22]. In a trust management system, each individual

domain typically specifies several rules defining which credentials are needed to access its

resources. External users requesting the resources need to prove that they have the required

credentials for an access right over the resources as defined by the policy of the

r1

r2

r3

r4

Domain d1 Domain d2

Interoperation links

r1 r2

r3

Domain d1

Domain d2

Interoperation linksSoD

(a) (b)

 30

resource-providing domain. Whether a user should be given a certain credential could in turn be

defined by the policy of the domain issuing that credential, which may further require another set

of credentials to be validated. For this reason, such trust management systems are sometimes

referred to as distributed proof systems in the literature [23, 24, 25]. We refer to such a process of

submitting and verifying the proof of credentials needed for requested resources according to the

relevant policies distributed over the network as distributed proof checking procedure. In our

framework, we propose to use a role based trust management language RT0 [22] as the basis for

the proposed Trust Management component.

RT0 [22] is a role based trust management language that models all the resources using

roles. For example, if Alice is given a credential certifying that she is a member of IEEE, Alice is

said to be the member of role “IEEE.member”. In RT0, entities are made members of roles

through four types of credentials, as shown below [22]:

 Type 1 (Simple Membership): A.r←D

 Type 2 (Simple Containment): A.r←B.r1

 Type 3 (Linked Roles): A.r←A.r1.r2

 Type 4 (Role Intersections): A.r←f1∩f2∩…∩fn, where fi (i=1, 2, …, n) is a simple role, or a

linked role

The four types of credentials in RT0 are specified using logical rules. Therefore, we use

the following phrases interchangeably in this proposal: RT0 policies, RT0 rules, and RT0

credentials, and we will omit the prefix “RT0” if the context is clear. Type 1 rule specifies that

 31

entity D is made the member of role A.r; Type 2 rule specifies that any member of B.r1 is also a

member of A.r; Type 3 rule specifies that any member of r2 defined by members of A.r1 is also a

member of A.r; and Type 4 rule specifies that members of all roles f1 through fn are also the

members of A.r. Here, A, B, and D are entities. The body of the type 1 rule (i.e. D) can be the

identifier of either a user or a domain. The entities in all other places (i.e. A, B) can only be the

identifiers of domains. A role in RT0 is defined by the domain defining it and a role identifier (i.e.

A.r). Hereafter, we will use both domain identifier and role identifier to represent a role if we

want to emphasize its domain. Otherwise, we will only use the role identifier to represent a role

for simplicity.

Given a set of related RT0 policies, the requesting user needs to prove that she is

authorized to the requested resources (i.e. she is the member of the role associated to the

requested resources) by showing a chain of credentials that link the requesting entity to the

requested role. In a multidomain environment, the credentials may be distributed in different

domains, making the discovery of such credential chains a great challenge. Li et al. have

proposed a distributed credential chain discovery approach to efficiently find such credential

chains if they exist [26]. In their approach, they use a graph model to represent all the credentials

in the environment. Given an individual interoperation request (i.e. a user’s request to assume a

role), they check whether the requesting user is the member of the requested role in the graph.

They propose a forward search, a backward search, and a bi-directional search to check the role

 32

memberships in the graph. The time complexities of all the three search algorithms they have

proposed are cubic to the number of credentials.

2.2.3 Tightly and Loosely-Coupled Environments

In the literature, a multidomain environment is sometimes characterized as “tightly-coupled” or

“loosely-coupled”. In [27], Joshi et al. describe the “tightly-coupled environment” as “there

exists one master system and the master mediates accesses to individual systems through a global

policy”, and describe the “loosely-coupled environment” as one where “independent systems

dynamically come together to share information for a period of time”. It is clear that their

characterization of “tightly-coupled” environment refers to the multidomain environment that has

been studied extensively in the literature by using global policy based approaches. The

loosely-coupled environment, on the other hand, is an area that has not been studied adequately

in the literature. Our focus in this proposal is the access control challenges in loosely-coupled

environments. We will give a clearer characterization of tightly-coupled and loosely-coupled

environments in section 3. We do not claim that our characterization is the “only acceptable” one

for these two terms, nor that our classification using these two terms are the only way to classify

multidomain environments. Rather, our aim is to provide a clearer distinction between these two

types of environments so that it can help us to better understand the access control challenges in

each.

 33

3.0 ACCESS CONTROL CHALLENGES IN LOOSELY-COUPLED ENVIRONMENTS

In this section, we first characterize the tightly-coupled and loosely-coupled multidomain

environments. We then identify the specific access control challenges in loosely-coupled

environments, which are the focus of this dissertation.

3.1 TIGHTLY-COUPLED ENVIRONMENTS

Characteristic: The domains in a tightly-coupled environment are typically closely related to

each other and collaborate to pursue some specific common tasks. Such common tasks cannot be

completed without proper interoperations, and such interoperation needs are static and can be

predefined.

Example (from [4]): Consider the interoperation among various offices of a county for the

collection and sale of real-estate tax (the common tasks) on property parcels located within the

jurisdiction of a concerned county. The concerned county offices would include: County Clerk

Office (CCO), County Treasure Office (CTO), and County Attorney Office (CAO). These offices

interoperate and share information among each other for budget planning, tax billing and

 34

collection, sale of delinquent taxes, auditing, and other legal purposes. Integration of these local

databases is necessary to complete their tax processing tasks.

This is an example of a tightly-coupled environment, and the common tasks in this

environment is the collection and sale of tax. The three domains have to interoperate with each

other to complete their tasks. And the interoperation needs in such an environment are static. For

example, the Delinquent Tax Clerk in the CTO always need to consult with the County Clerk in

the CCO to collect the tax record, and the Redemption Cost Assessor in the CCO always need to

consult with the Deputy County Attorney Tax Section in the CAO to estimate the tax redemption

cost [4]. These interoperations are typically predefined before these organizations interoperate.

Challenges: There are two major access control challenges to ensure secure interoperations in

tightly-coupled environments.

The first challenge is how to make an access control decision for a particular

interoperation request. For example: should a user of DelinquentTaxClerk in the CTO be

authorized to acquire the permissions of CountyClerk in the CCO? Since the interoperation

needs are predefined in tightly-coupled environments, the administrators can create a global

policy by mapping the local roles in order to facilitate those predefined interoperations. And all

the interoperation requests can be checked against such a global policy. In this example, since it

is predefined that Delinquent Tax Clerk in the CTO needs to access the records of County Clerk

in the CCO to process the job, the administrators would make DelinquentTaxClerk senior to

CountyClerk in the global policy to facilitate such an interoperation need. As a result, all the

 35

users assigned to DelinquentTaxClerk are authorized to acquire the permissions of

CountyClerk, and all other users in the CTO are not authorized to acquire permissions of

CountyClerk in the CCO.

Figure 3. 1. An example of the cyclic inheritance conflict in a tightly-coupled environment

The second challenge is how to preserve the principle of security in the global policy. As

discussed before, two types of violations of principle of security can be introduced in the global

policy. Figure 3.1 shows an example of the cyclic inheritance conflict introduced in the global

policy in a tightly-coupled environment. According to the predefined interoperation needs related

to tax processing, Delinquent Tax Clerk in the CTO needs to access the records of Property

Delinquent Tax Manager in the CCO to collect the tax record, Redemption Cost Assessor in the

CCO needs to access the records of Deputy County Attorney Tax in the CAO to estimate the tax

Delinquent Tax
Manager

Delinquent Tax
Clerk

Property Delinquent
Tax Manager

Redemption Cost
Assessor Lien Sale Officer

Deputy County
Attorney Tax

Para Legal
Tax Section

County Treasure Office (CTO) County Clerk Office (CCO)

County Attorney Office (CAO)

Interoperation
Links

 36

redemption cost, and Para Legal Tax Section in the CAO needs to access the records of

Delinquent Tax Manager in the CTO to collect the relevant records for preparing tax sales pleas

[4]. These interoperation needs are facilitated by the three hierarchical relations shown in Figure

3.1. A cyclic inheritance conflict is introduced in this global policy (bold arrows in Figure 3.1)

and the principle of security is violated. Figure 3.2 shows an example of the violation of SoD

introduced in the global policy in a tightly-coupled environment. In domain CTO, Tax

Assessment Clerk (TAC) and Tax Billing Clerk (TBC) of CTO are restricted by an SoD

constraint, specifying that no single user should acquire the permissions of both the roles.

According to the predefined interoperation needs related to tax processing, TBC in the CTO

needs to consult the Property Tax Manager (PTM) in the CCO for the billing purpose, and PTM

needs to consult TAC for estimating the tax [4]. These interoperation needs are facilitated by two

hierarchical relations shown in Figure 3.2. In such a case, the user assigned to TBC can now

acquire the permissions of TAC, violating the SoD constraint defined over TAC and TBC. Note

that if we represent an SoD constraint using a bi-directional arrow (as shown in Figure 3.2), it

can be detected in the way similar to detecting the cyclic inheritance conflicts, i.e., detecting the

inheritance cycle in the global policy. To remove such violations, we need to break such

inheritance cycles. If we remove some interoperation links in the cycle, the interoperation needs

cannot be facilitated. If we remove some local link in the cycle, the principle of autonomy is

violated. As a result, there is a trade-off between maximizing the interoperations and preserving

the principle of autonomy.

 37

Figure 3. 2. An example of the violation of SoD in a tightly-coupled environment

3.2 LOOSELY-COUPLED ENVIRONMENTS

Characteristic: The domains in a loosely-coupled environment are typically independent of each

other and are able to carry out their major functions without interoperating with each other. There

are typically no specific common tasks that need to be done through interoperations of all

participating domains. Rather, the interoperation needs are usually driven “on demand” to

facilitate dynamic data sharing needs. Therefore, the interoperation needs in loosely-coupled

environments are dynamic and may not be predefined.

Example: Consider a distributed health care system (e.g. HL7 [28]) consisting of different

hospitals, clinic, healthcare stations, and other related organizations. Each domain operates on its

own to carry out its daily healthcare services related functions. Moreover, they may interoperate

and share their information such as Electronic Health Records (EHR) whenever needed, to

facilitate dynamic information sharing needs that arise, for instance, when a registered patient is

Property Tax
Manager

Property Tax
Clerk

Tax Collection
Manager

Tax Assessment Clerk Tax Billing Clerk

County Clerk Office (CCO)
County Treasure Office (CTO)

Interoperation
Links

SoD

 38

taken cared of at another hospital while travelling away from home. Interoperation in such an

environment is transient, and need based.

This is an example of a loosely-coupled environment since the interoperation needs are

dynamic and cannot be predefined. For example, assume Bob travels outside his hometown and

needs to go to an emergency unit. The local hospital (Hospital A) may need to access his health

information from his home hospital (Hospital B) to provide him with a proper treatment. This

particular interoperation need is driven by a specific event (Bob needs to go to the emergency

ward), and we cannot predefine that Hospital A should always be authorized to access Bob’s

health information from Hospital B. Normally, there are no specific common tasks that require

the interoperation of all these healthcare domains, and they are able to operate on their own to

carry out their daily functions without interoperating with each other.

Challenges: A loosely-coupled environment has its specific access control challenges. Although

the description of some of the challenges looks similar to those in tightly-coupled environments,

different approaches are needed due to the unique features of loosely-coupled environments.

The first challenge is how to model the access requests in loosely-coupled environments.

The access request in a single system or tightly-coupled environment configured with RBAC is

straightforward. In a single system, users know the functional structure of the organization and

know which roles they need to assume to perform specific tasks. In a tightly-coupled

environment, the requesting users typically also know the functional structures of other domains

and know which roles they need to assume to facilitate the interoperation. For example, users of

 39

Delinquent Tax Clerk in the CTO know that Property Delinquent Tax Manager in the CCO has

access to the records necessary to process the job. As a result, users of DelinquentTaxClerk can

issue a request to assume the role of PropertyDelinquentTaxManager. In a loosely-coupled

environment, however, the access request cannot be modeled by the requested roles since the

domains usually do not know the policy structure of other domains. For example, when Bob goes

to the emergency room in Hospital A, the healthcare workers there look up and find that Bob is

registered in Hospital B (his home hospital). However, they do not know the policy of Hospital B.

Therefore, they are not able to request to assume specific roles in Hospital B. Instead, they are

only able to request to access Bob’s health information. From an RBAC perspective, this

example shows that it is more convenient to model the interoperation requests using the target

permissions but not target roles in a loosely-coupled environment. And it should be the

responsibility of the domains containing the requested permissions to identify some of their local

roles for external users to assume. For example, Hospital B knows that role Nurse(patient=Bob)

has the permissions to view Bob’s health information, and may allow healthcare workers in

Hospital A to acquire the permissions through it.

The second challenge is how to make an access control decision for a particular

interoperation request. This challenge looks the same as the first challenge in tightly-coupled

environments. However, unlike in tightly-coupled environments, we cannot let administrators

define a global policy to facilitate interoperation because the interoperation needs in a

loosely-coupled environment cannot be predefined. For example, at the time when both Hospital

 40

A and Hospital B join the environment, one cannot predefine that Hospital A is authorized to

access Bob’s health information from Hospital B. This is because such a cross-domain access is

only necessary when Bob needs to go to the emergency ward in Hospital A and this may never

happen. In the literature, researchers have shown that trust management approaches are

particularly useful to facilitate such distributed authorizations when the interoperation needs are

dynamic and the requesting users are unknown. For example, when the healthcare workers in

Hospital A request to access Bob’s health information in Hospital B, Hospital B may require that

only the users with valid healthcare licenses are allowed to access Bob’s health information.

Hence, Hospital B will need to ask healthcare workers in Hospital A to present their licenses in

order to gain the desired accesses. Once the license has been verified, the interoperation request

is authorized and the healthcare workers in Hospital A can access Bob’s health information from

Hospital B. This challenge shows that a Trust Management component is necessary in a

loosely-coupled environment.

The third challenge is how to preserve the principle of security during interoperations

among various domains. Recall that two types of violations of principle of security could be

introduced in the global policy: i.e. cyclic inheritance conflicts and violations of SoD. As global

policy based approaches cannot be applied to loosely-coupled environments, it seems that

loosely-coupled environments will not suffer from such violations. However, if there are multiple

interoperations generated within the same time period, the authorized interoperations could also

introduce these two types of violations. Figure 3.3 shows an example of cyclic inheritance

 41

conflicts in a loosely-coupled environment. Assume that Bob is registered and taken cared of at

his home hospital (Hospital B), where both the doctor and resident are authorized to access his

health care information. Typically, doctors have more privileges than residents, such as adding a

new entry to his record, so Doctor can be made senior to Resident in Hospital B’s local policy.

In Hospital A located at another city, healthcare workers are responsible for maintaining patients'

health information. There may be doctors who are specialists in cancer treatment and they need

special privileges to maintain cancer-related information. Therefore, SpecialistDoctor can be

made senior to HealthCareWorker in Hospital A. Now assume Bob needs to go to the

emergency ward in Hospital A when he travels to that city. To take care of Bob, a healthcare

worker in Hospital A needs to access Bob’s healthcare records and also needs to add a new entry

to Bob’s records. If such an interoperation need is authorized, HealthCareWorker of Hospital A

needs to be made senior to Doctor of Hospital B to facilitate it (interoperation 1 in Figure 3.3).

Assume that at the same time, hospital B receives a cancer patient but is unable to make a proper

treatment plan since they are not experts in cancer. The doctor in hospital B can ask the resident

to get some help from the specialist doctors in Hospital A (e.g. by accessing some cancer-specific

information in Hospital A to choose a proper treatment). If such an interoperation need is

authorized, Resident of Hospital B needs to be made senior to SpecialistDoctor of Hospital A

to facilitate it (interoperation 2 in Figure 3.3). At this time instant when both interoperations 1

and 2 in Figure 3.3 are authorized, an inheritance cycle is introduced in (shown by the 4 arrows).

Figure 3.4 shows an example of the violation of SoD in a loosely-coupled environment. In a

 42

hospital domain, an SoD constraint is defined over Doctor role and BillingClerk role specifying

that no single user can take the Doctor and BillingClerk roles at the same time. Assume the

Billing Clerk needs to acquire a patient’s insurance information through the InsuranceAgent

role in a insurance company. To facilitate this interoperation, BillingClerk is made senior to

InsuranceAgent (interoperation 1 in Figure 3.4). At the same time, assume the Insurance Agent

in the same insurance company needs to consult the Doctor for some patient’s health information

in order to estimate the insurance coverage. To facilitate such an interoperation,

InsuranceAgent is made senior of Doctor (interoperation 2 in Figure 3.4). At this time instant

when both interoperations 1 and 2 in Figure 3.4 are authorized, a violation of SoD occurs since

Billing Clerk can now acquire the permissions of Doctor. Unlike in a tightly-coupled

environment, there is no static global policy in loosely-coupled environments. Therefore, the

existing violation detection and removal approaches employed in global policy based approaches

in the literature cannot be applied here. This challenge shows that a proper mechanism to ensure

principle of security is necessary in a loosely-coupled environment.

 43

Figure 3. 3. An example of the cyclic inheritance conflict in a loosely-coupled environment

Figure 3. 4. An example of the violation of SoD in a loosely-coupled environment

Specialist Doctor

Health Care Worker

Doctor

Resident

Hospital A Hospital B

Interoperation 1

Interoperation 2

adding entries …

access health
care records…

maintain normal health
care information…

maintain cancer-specific
information …

DoctorBilling Clerk

Insurance Agent

Hospital Insurance Company

Interoperation 1

Interoperation 2

SoD

 44

4.0 THE PROPOSED ACCESS CONTROL AND TRUST MANAGEMENT

FRAMEWORK

In this section, we propose our access control and trust management framework for

loosely-coupled environments. We aim to address the key access control challenges in

loosely-coupled environments listed in section 3.2.

Figure 4. 1. Interaction and data flow among the components

Role Mapping

(1) rar=<Rreq, Pdest>

RBAC Policy
check

RT0 Policy

Simplify

Policy Integration

add simplified proof

checkdeny

can prove

Resource Providing Domain

authorize

Requesting Domain

rar=<Rreq, Rdest>

Proof Engine

(2) uar=<u, Ru, Rdest>

fail to prove

Trust Management

 45

4.1 OVERVIEW

The overall protocol and structure of our framework are shown in Figure 4.1. As mentioned in

Section 1, it is more convenient for the requesting users to specify the requested permissions

rather than the requested roles in loosely-coupled environments. Moreover, we have shown that

the Role-based interoperation Access Request (rar) is convenient in loosely-coupled

environments. Therefore, we first define rar formally in this section, as follows:

Definition 4.1(a) (Role-based interoperation Access Request): A Role-based interoperation

Access Request, rar, is defined as a tuple < dreq, Rreq, ddest, Pdest, T>, where dreq is the requesting

domain, Rreq is a set of roles in dreq such that the function of each role in Rreq requires accessing

the common requested external resources, ddest is the resource providing domain, Pdest is a

permission set in ddest representing access to the requested resources, and T is the valid time

period of the request.

Since rar is defined by the requesting roles according to the role structure in the

requesting domain, it should be issued on behalf of the requesting domain rather than the

individual users. Note that the requesting domain needs to specify a valid time period T for the

rar since the interoperation needs in loosely-coupled environments are dynamic. Since our focus

is how to authorize Pdest to Rreq, we will omit dreq, ddest, and T from the expression of rar hereafter

when the context is clear.

 46

Upon receiving an rar, the resource providing domain needs to find a set of roles

containing the requested permissions Pdest. This is done in our Role Mapping component and we

refer to the resulting role set as Rdest. The new rar in terms of <Rreq, Rdest> is fed into the

proposed Simplify algorithm replaces as many of external roles in the proof of Rdest with the

local roles of the requesting domain as possible – thus, greatly simplifying the distributed proof

procedure. The existing simplified proofs are then added into the RT0 policy so that the

individual users can use them to prove Rdest. Now, the individual users are allowed to issue

his/her interoperation access requests, which are defined formally as follows:

Definition 4.1(b) (User interoperation Access Request): A User interoperation Access Request,

uar, is defined as a tuple < u, Ru, Rdest, T>, where u is the requesting user, Ru is the set of roles u

is assigned to, Rdest is a role set in ddest containing the requested permissions (returned by Role

Mapping algorithm), and T is the valid time period of the request.

Again, the most important part of an uar is Ru and Rdest, so we will omit u and T hereafter

when the context is clear. The uar is verified in Proof Engine. If the user can prove Rdest, the

Policy Integration component is called to authorize the uar without violating the principle of

security; otherwise, the uar is denied.

Before we present the details of each component of our framework, we emphasize that

the focus of our framework is the access control challenges in loosely-coupled environments.

Several other issues in a multidomain environment, including the data management,

authentication, and communication protocol, are beyond the scope of our work. Moreover, our

 47

framework does not depend on any specific application area or implementation architecture.

Different application domains (e.g. military applications, healthcare applications) may have

different interoperation requirements and may specify different policies. Different architecture

(e.g. Peer-to-Peer, Service Oriented Architecture) may implement our framework using different

implementation techniques. However, our framework shall be able to solve the access control

challenges in these different environments as long as they are loosely-coupled environments (i.e.

satisfying the characteristics we described in section 3.2).

Heterogeneity has long been recognized as a fundamental problem in multidomain

environments [29]. Especially in loosely-coupled environments, different autonomous domains

are independent with each other and may represent their resources, organizational structures, and

access control policies in different ways. Here, we emphasize that our framework makes two

assumptions about the heterogeneity issue. First, we assume each individual domain employs

GTRBAC with hybrid hierarchy. We believe this is a reasonable assumption since RBAC and

hybrid hierarchy has been shown to be particularly useful in multidomain environments [4, 30],

and GTRBAC has been shown as a valuable extension of RBAC [9]. Second, we assume that

different domains share a uniform representation for the essentially same permission, so that

each domain can understand the permissions that other domains request. This is because we use

target permissions to model the access requests. Therefore, we need to make sure the permissions

provided by the involved domains are exactly the permissions requested by the users. Note that a

permission consists of an operation on an object, and is an abstract notion specific to RBAC.

 48

During implementation, different architectures may implement the notion of permission in

different ways. Therefore, how to ensure that different domains understand each other about the

actual meaning of a permission is architecture-dependent and is beyond the scope of our work.

For example, if the web service architecture [31, 32] is used, permissions would be implemented

as services and many service discovery approaches [33, 34] have been proposed to identify a

service according to its semantic representation.

4.2 THE ROLE MAPPING COMPONENT

In a traditional single domain RBAC system, a user’s access request is typically modeled as a set

of roles requested to be activated by the user. As discussed in section 3.2, it is desirable to model

the access control request in terms of requested permissions in loosely-coupled environments

because the users of a domain typically do not know the roles and hierarchical structures of the

external domains. Even in a single RBAC system, allowing users to specify access control

requests in terms of permissions would have some benefits. For example, a Windows user may

directly request to execute an application (e.g. by double-clicking the shortcut) that only the

administrators can execute. Even if she has an administrator account she may not be aware that

she has to log-in as administrators to execute the application until prompted by Windows. In such

a situation, we should allow the users to specify the requested permissions (i.e. executing a

program) directly and let the system find out which roles are needed (i.e. administrator role) and

 49

prompt the users to activate those roles (i.e. re-login as an administrator).

Figure 4. 2. User Authorization Query Model

Motivated by this, we propose a User Authorization Query (UAQ) model that allows the

users to specify the requested permissions directly, as shown in Figure 4.2. The proposed UAQ

model takes two steps to facilitate the authorization decision. In the first step, the resource

providing domain runs a Role Mapping component to identify a set of roles that contains the

requested permissions for the requesting user to activate. In the second step, the resource

providing domain checks whether the requesting user is authorized to activate the roles returned

by the Role Mapping component. If UAQ is used in a single domain RBAC system (i.e. the

requesting user is from the resource providing domain), the domain needs to check the local

policy to decide whether the user is authorized to activate the corresponding roles. We have

proposed a UAQ model in the single domain in [35]. If UAQ is used in a loosely-coupled

Role Mapping Role Activation Checking

Trust ManagementRole Mapping

Requested
Permissions

Requested
Roles Decision

Requested
Permissions

Requested
Roles Decision

Single Domain System

Loosely-Coupled Environment

 50

environment, the resource providing domain does not necessarily know the identity of the

requesting user. In this case, we use a trust management approach to check whether an external

user is authorized to activate the corresponding roles. This is consistent with Figure 4.1 where we

use Role Mapping first to get a set of requested roles then feed it into the Trust Management

component.

Figure 4. 3. An example RBAC policy to show the role mapping algorithms

Upon receiving the rar, the Role Mapping component is responsible for determining a set

of roles in its local policy that contains a subset of the requested permissions. We formally define

the Role Mapping problem as below:

Definition 4.2: We define the permission set of a role r∈R, Pau(r), and the permission set of a

role set R1 ⊆ R, Pau(R1), as follows:

r0

r1 r2 r3

r4 r5 r6 r7 r8 r9 r10

r11 r12 r13 r14 r15 r16 r17 r18

p11 p12 p13

p10

p0 p1 p2,p3 p4 p5 p6 p7,p8 p9

u

user-role-assignment

role-permission-assignment

DSoD

Legend

 51

Pau(r) = {p∈P: p is assigned to r1 , r ≥i r1 }, Pau(R1)=
1Rr∈

∪ Pau(r)

where, Pau(r) is the permission set that r can acquire, either through explicit assignments, or

through the I-hierarchy. Pau(R1) is the union of the permission sets that can be acquired through

each role in R1.

Definition 4.3 (Role Mapping Problem): Given a request permission set PRQ,

1. If exactly matched role sets exist: find a minimum RRQ such that Pau(RRQ)=PRQ;

2. If no exact-matching role sets exist:

a) If availability is the major concern - find a minimum RRQ such that Pau(RRQ) ⊃ PRQ;

b) If least privilege is the major concern - find a maximum RRQ such that Pau(RRQ) ⊂ PRQ;

We note that if PRQ is the least set of privileges, then at least PRQ should be made available. In

that case, we consider it as an availability concern. Next, we use the RBAC policy shown in

Figure 4.3 to illustrate our role mapping algorithms for each of the 3 role mapping problems.

And Example 4.1 shows Pau(r) for each role in Figure 4.3 according to definition 4.2.

Example 4.1: Consider the RBAC policy in Figure 4.3, we have:

Pau(r0) = {p1, p2, p3, p4, p5, p6, p7, p8, p11, p12}, Pau(r1) = {p1, p2, p3, p4, p11},

Pau(r2) = {p5, p6, p7, p8, p12}, Pau(r3) = {p6, p7, p8, p13}, Pau(r4) = {p1, p2, p3}, Pau(r5) = {p1, p4}

Pau(r6) = {p2, p3, p4, p5}, Pau(r7)= {p4, p5, p6}, Pau(r8) = {p5, p6, p7, p8}, Pau(r9) = {p6, p7,

p8},Pau(r10) = {p7, p8, p10}, Pau(r11) = {p0}, Pau(r12) = {p1}, Pau(r13) = {p2, p3}, Pau(r14) = {p4},

Pau(r15)= {p5}, Pau(r16)= {p6}, Pau(r17)= {p7, p8}, Pau(r18)= {p9}

 52

In [36], Du et al. have shown that solving the role mapping problem 1 is NP-complete by

reducing it to the well known Minimal Set Cover (MSC) problem. They also propose a greedy

search algorithm to find the sub-optimal solution for the problem. However, their algorithm is

based on the assumption that there always exists a role set that exactly matches the requested

permission set. To accommodate inexact matches, we extend Du et al.‘s algorithm to solve the

role mapping problem 1 as shown in Figure 4.4. The time complexity of Role-Mapping-1 is

within 1 + ln |R| [36].

Role-Mapping-1(R, PRQ)
Input: R – a set of all roles; PRQ – a set of requested permissions
Output: RRQ – a set of roles, such that Pau(RRQ)=PRQ and RRQ ⊆ R
1 R1←∅
2 foreach r ∈R
3 if Pau(r) ≠ ∅ and Pau(r) ⊆PRQ
4 R1←R1∪{r}
5 RRQ←∅
6 while PRQ≠ ∅ do
7 if R1 = RRQ return ∅
8 Find role v∈(R1\RRQ) that maximize Pau(v) ∩ PRQ
9 RRQ←RRQ ∪ {v}
10 PRQ←PRQ \ Pau(v)
11 return RRQ

Figure 4. 4. The algorithm to solve role mapping problem 1

 53

Example 4.2: The result of applying Role-Mapping-1 to Figure 4.3 is shown in Table 4.1. In the

last step, PRQ ≠ ∅, but RRQ = R1. The Role-Mapping-1 terminates with RRQ = ∅, which means

we cannot find an exactly matched RRQ for PRQ.

Table 4. 1. Results of each step of Role-Mapping-1

Step 0 Step 1 Step 2 Step 3 Step 4 – Step 11

RRQ = ∅

R1 = {r1, r3,
r4, r5, r9, r10,
r12, r13, r14,
r16, r17}

v = r1

RRQ ={ r1}

PRQ = {p6, p7, p8,
p10, p12, p13}

v = r3

RRQ = {r1, r3}

PRQ = {p10,p12}

v = r10

RRQ={r1,r3,r10}

PRQ = {p12}

v = r4, r5, r9, r12, r13,
r14, r16, r17

RRQ = R1

PRQ = {p12}

In order to solve the role mapping problem 2(a), we modify the Role-Mapping-1 to get

Role-Mapping-2a that finds a minimal role set RRQ whose permission set is the superset of PRQ,

as shown in Figure 4.5.

 Here, W(v) = |Pau(v)| / |Pau(v)∩PRQ| is the weight function for any role v. Note that ∀v∈

R, W(v) ≥ 1, and W(v) = 1 if Pau(v) ⊆ PRQ. Therefore, this weight function favors those roles

whose permission sets overlap the most with PRQ. And if there are two roles v1 and v2 such that

W(v1) =W(v2), we select the one that covers more permissions of PRQ, as shown in line 3. Note

that RRQ can always be found since at least R itself can satisfy the condition Pau(R)⊇PRQ. Similar

to Role-Mapping-1, the time complexity of Role-Mapping-2a is also within 1 + ln(|R|).

 54

Role-Mapping-2a(R, PRQ)
Input: R – a set of all roles; PRQ – a set of requested permissions.
Output: RRQ– a set of roles, such that Pau(RRQ) ⊃PRQ, RRQ ⊆ R, and RRQ is minimal
1 RRQ←∅
2 while PRQ≠∅ do
3 Find role v∈(R\RRQ) that minimize W(v) / |Pau(v) ∩ PRQ|
4 RRQ←RRQ∪{v}
5 PRQ←PRQ \ Pau(v)
6 return RRQ

Figure 4. 5. Algorithm for the role mapping problem 2(a)

Example 4.3: The result of applying Role-Mapping-2a to Figure 4.3 is shown in Table 4.2. In

the last step, PRQ = ∅, so Role-Mapping-2a terminates with RRQ = {r0, r3, r10}. Note that Pau(RRQ)

= {p1, p2, p3, p4, p5, p6, p7, p8, p10, p11, p12, p13}⊃PRQ and Pau(RRQ) \ PRQ = {p5}.

Table 4. 2. Results of each step of Role-Mapping-2a

Step 0 Step 1 Step 2 Step 3

RRQ = ∅ v = r0

W(v) = 10/9

RRQ = {r0}

PRQ ={p10, p13}

v = r10

W(v) = 3

RRQ = {r0, r10}

PRQ = {p13}

v = r3

W(v) = 4

RRQ= {r0, r3, r10}

PRQ=∅

The greedy algorithm to solve the role mapping problem 2b is shown in Figure 4.6. In

Role-Mapping-2b, as we do not want to include any permission that is not in PRQ, we first select

R1⊆ R such that Pau(R1) ⊆ PRQ. Then we try to select a maximal set RRQ ⊆ R1 such that RRQ

 55

includes as many permissions in PRQ as possible. Note that RRQ can always be found because R1

itself is a possible result. The algorithm terminates when no new permissions are added to

Pau(RRQ). Note that the time complexity of Role-Mapping-2b is also within 1+ ln(|R|), which can

be trivally proved since the while loop in Role-Mapping-2b ends in less steps compared to that

of in Role-Mapping-1.

Role-Mapping-2b(R, PRQ)
Input: R – a set of all roles; PRQ –a set of requested permissions.
Output: RRQ – a set of roles, such that Pau(RRQ)⊂PRQ, RRQ⊆R and RRQ is maximal
1 R1←∅
2 foreach r in R
3 if Pau(r) ≠ ∅ and Pau(r) ⊆PRQ
4 R1←R1∪{r}
5 RRQ←∅
6 Pold ←∅
7 while PRQ ≠ Pold do
8 if R1= RRQ return ∅
9 Find role v∈(R1\RRQ) that maximize Pau(v) ∩ PRQ
10 Pold ←PRQ
11 RRQ←RRQ∪{v}
12 PRQ←PRQ \ Pau(v)
13 return RRQ \ {v}

Figure 4. 6. The algorithm to solve the role mapping problem 2(b)

Example 4.4: The result of applying Role-Mapping-2b to Figure 4.3 is shown in Table 4.3. In

the last step, Pold = PRQ. This means no new permissions can be added to Pau(RRQ).

 56

Role-Mapping-2b terminates with RRQ=RRQ \ {v} = {r1, r3}. Note that Pau(RRQ) = {p1, p2, p3, p4,

p6, p7, p8, p11, p13}⊂PRQ and PRQ \ Pau(RRQ) = {p10}.

We can see that Role-Mapping-2a and Role-Mapping-2b may not return the exactly

matched role set RRQ even if it exists. Therefore, we should first run Role-Mapping-1 to try to

find an exactly matched role set RRQ. If Role-Mapping-1 fails, we can then apply

Role-Mapping-2a or Role-Mapping-2b based on whether availability or least privilege is more

important. Here we assume the system knows the choice. For example, if the system trusts the

user, the availability would be the main concern. Otherwise the least privilege may be the main

concern. The issue of balancing the availability and least privilege concerns is beyond the scope

of this thesis. Figure 4.7 shows the overall algorithm for the role mapping problem.

Table 4. 3. Results of each step of Role-Mapping-2b

Step 0 Step 1 Step 2 Step 3

RRQ =∅

R1 = {r1, r3, r4, r5,
r9, r10, r12, r13, r14,
r16, r17}

Pold =∅

v = r1

RRQ = {r1}

PRQ = {p6, p7, p8, p10, p12, p13}

Pold = {p1, p2, p3, p4, p6, p7, p8,
p10, p11, p12, p13}

v = r3

RRQ = {r1, r3}

PRQ={p10, p12}

Pold = {p6, p7, p8,
p10, p12, p13}

v = r4

RRQ={r1, r3, r4}

PRQ = {p10, p12}

Pold ={p10, p12}

 57

Example 4.5: As Role-mapping-1 returns ∅, we call Role-mapping-2a if availability is more

important, and get RRQ = {r0, r3, r10}. If least privilege is more important we call

Role-mapping-2b and get RRQ = {r1, r3}.

Role-Mapping(R, PRQ)
Input: R – a set of all roles; PRQ –a set of requested permissions.
Output: RRQ – a set of roles, and RRQ ⊆R
1 RRQ←Role-Mapping-1(R, PRQ)
2 if RRQ ≠ ∅ return RRQ
3 if availability is more important
4 RRQ←Role-Mapping-2(R, PRQ)
5 else if least privilege is more important
6 RRQ←Role-Mapping-3(R, PRQ)
7 return RRQ

Figure 4. 7. Role-Mapping(R, PRQ)

In our framework, the providing domain needs to run the Role-Mapping algorithm to

select a set of requested roles (Rdest) given the requested permissions (Pdest). Then, it replaces

rar=<Rreq, Pdest> with rar=<Rreq, Rdest> and send the new request to the Trust Management

component, where the authorization decision on whether or not Rdest can be made available to

Rreq is made. For example, when Hospital B receives an rar= <{HospitalA.HealthCareWorker},

{add an entry to Bob’s record, read Bob’s record} >, it runs Role-Mapping and determines that

its Doctor role contains the requested permissions. Next, it replaces the requested permissions

 58

with the requested roles and sends the new request rar= <{HospitalA.HealthCareWorker},

{HostpitalB.Doctor}> to the Trust Management Component. Such the new form of request

indicates that Hospital B contains a proper local role Doctor for the requested permissions and

the Trust Management component should decide whether or not HospitalB.Doctor can be

authorized for HospitalA.HealthCareWorker. Note that in a loosely-coupled environment it is

possible that no single domain contains all the requested permissions and multiple domains need

to be involved to cover all the requested permissions.

Note that such role mapping results could be saved in the cache so that the same rar

issued later will not require re-running the whole process. The rationale here is that we believe

the local policy of each individual domain is relatively static.

4.3 THE TRUST MANAGEMENT COMPONENT

The Trust Management component is responsible for answering whether the requested

roles can be authorized to the requesting roles. Although the requesting users’ identities are also

available from the rar, traditional identity-based access control approaches are not practical

since the identities of the requesting users are usually not known to the providing domains in

loosely-coupled environments. For example, the providing domain knows that a user named

“Alice” is requesting some resources but doesn’t really know who Alice is. In the literature,

many distributed proof systems (e.g. [2, 3, 4]) have been proposed to make access control

 59

decisions based on the properties of the entities, often encoded in credentials in the literature.

Typically, a distributed proof system allows each domain to specify a logic-based policy to

protect its own resources. Users requesting interdomain accesses need to prove the required

credentials for an access right over a resource as defined by the policy of the resource-providing

domain. Whether or not a user should be given a certain credential is defined by the policy of the

credential issuing domain, which may require another set of credentials to be validated. As

mentioned earlier, we refer to such a process as “distributed proof procedure” in this paper.

Although widely studied in the literature, we note that existing role-based distributed

proof procedures are very expensive for the following two reasons: First, the distributed proof

procedure typically requires proving the credentials issued by the external domain (referred to as

external credentials, hereafter) which is much more expensive than proving the local credentials

(i.e. the issuer and receiver of the credentials are from the same domain). For proving the access

rights using local credentials, we assume that users either maintain a physical copy of the local

credentials (e.g. University ID), or have direct access to the local database to obtain the local

credentials very easily (e.g. log-in to the enterprise system). For proving the access rights using

external credentials, if the credentials are stored at the receiver side (i.e. at the user side) proving

them is as easy as proving local credentials. However, it has been shown that in many scenarios

credentials are stored in the issuer side and users need to search the internet to prove that they

have been issued the external credentials [26]. Moreover, such searching usually requires

proving a chain of other external credentials, as shown by the DCCD algorithm [26]. Therefore,

 60

we believe that the cost to prove a local credential is negligible or very small compared to the

cost to prove an external credential in this paper.

Second, existing role-based distributed proof procedures are especially expensive when

dealing with a specific interoperation request scenario that is very common in role-based

multidomain environments. In role based multidomain environments, it is very common that

several different users assigned to the same role (or a very small set of related roles) would

request to acquire the same external resource several times within a given period. In this paper,

as mentioned earlier, we refer to such interoperation requests as role-based interoperation

requests, and refer to the role(s) that requesting users are assigned to as requesting role(s). In

such a scenario, different users all request the same external resource because the functionality of

the requesting role requires obtaining the external resource, and it is common that several users

are assigned to the same role(s) (i.e. occupying the same position) in the same period. For

example, assume Bob is travelling outside his city and needs to go to the emergency room in a

local hospital. The assigned nurse there needs to obtain Bob’s health information from his home

hospital. Moreover, there might be several persons assigned to the nurse position (e.g. some

during daytime, and some during night time) when taking care of Bob. They all need to acquire

Bob’s health information when they are on duty. From access control perspective, obviously it is

not secure to allow the first nurse who has obtained Bob’s health information to disclose it to the

subsequent nurses. A more secure way is to require each nurse issuing a separate request so that

each request is evaluated and authorized separately for each nurse. Here, we note the role-based

 61

interoperation request scenario: different persons assigned to the same role (nurse) need to

request the same external resource (Bob’s health information) several times (when each person is

taking the position) within a period (the time period when Bob is taken care of).

Based on the discussion above, if we could find a way to authorize the requested resource

to the requesting role(s) directly, then all the requesting users need to do is to prove that they are

assigned to the requesting roles - which can be expected to be much less expensive since

requesting roles are local to the requesting users. Moreover, since all the requests are issued from

the same requesting role(s), such an authorization needs to be done only once during the

interoperation period. As a result, authorizing the requested resource directly to the requesting

role(s) would remove both of the two causes of the expense in the existing distributed proof

procedure. Motivated by this, we propose a formal framework for simplifying the distributed

proof procedures for role-based interoperation requests. We assume that each domain uses RT0

[22] to specify its trust management policy on how external users can prove the requested roles.

We use RT0 language as its semantics has shown to be easily captured by translation to

negation-free Datalog rules which guarantees that the semantics is precise, monotonic and

algorithmic [22]. The purpose of this thesis is not to introduce a new language with different

expressivity but to build on the RT0 framework, which has been well recognized as a framework

that combines the strength of role and attribute based access control and trust management –

which are important for secure interoperation. In this work, we do not deal with uncertainties and

probability based access semantics related to cross domain accesses; hence, approaches such as

 62

based on Bayesian techniques are not applicable here. Our approach is based on analyzing the

similarities between the RT0 policies defining the requesting roles (i.e. Rreq) and the RT0 policies

defining the requested roles (i.e. Rdest). If any user that can prove Rreq is guaranteed to be able to

prove Rdest, then it is safe to authorize Rdest directly to Rreq, i.e. allowing users of Rreq to acquire

permissions of Rdest. In this case, we say Rreq is the simplified proof for users in dreq to acquire

Rdest, compared to the expensive distributed proof procedures employed in existing approaches.

We first review the RT0 language before we present our simplification framework. RT0

uses 4 types of rules to define the membership of a role:

 Type 1 (Simple Membership): A.r←D

 Type 2 (Simple Containment): A.r←B.r1

 Type 3 (Linked Roles): A.r←A.r1.r2

 Type 4 (Role Intersections): A.r←B1.R1∩B2.R2∩…∩Bn.Rn, where each Bi.Ri can be defined

by any of the above 4 types.

If the body of type 1 rule (i.e. D) is a user identifier, it is a special rule specifying that a

credential has been directly issued to a user. We note that it is beneficial to distinguish it from

other types of rules in the context of our framework. For example, “UPMC.MD←Alice”

specifies that UPMC has issued Alice a credential certifying that Alice has a MD degree from

there. If we consider it as part of the RT0 policy, the size of the policy would increase

significantly since such credentials could be issued to a huge number of users (e.g. all MD

students who have graduated from UPMC). For this reason, we only consider other RT0 rules (i.e.

 63

rule type 1 where its body is a domain identifier, rule type 2, rule type 3, and rule type 4) as part

of the policy, as defined below:

Definition 4.4 (Trust Management Policy of a Domain): Given a domain A, we define its trust

management policy, Pol(A), to be the set of RT0 rules whose head role is defined by A and does

not have a type 1 rule that has a user identifier in its body.

We then define the local role set and external role set of a certain domain as follows:

Definition 4.5 (Local and External Roles): Given a domain A, we define the set of its local

roles, denoted as LocalRoles(A), to be the roles appearing in the head of at least one rule in

Pol(A); we define the set of external roles of A, denoted as ExternalRoles(A), to be the roles with

the domain identifier other than A.

Note that we do not consider A’s roles that have no rule defining them to be A’s local roles. Such

roles are usually internal roles that no external users can assume. Since our focus is simplifying

the proof of the roles for external users, we do not consider such internal roles in our work. We

require each of A’s local roles to be defined by at least one rule in Pol(A). We further assume that

any user involved in the multidomain environment belongs to some domain. In this way, if u

belongs to domain A and A.r also belongs to LocalRoles(A), we say A.r is a local role of u.

4.3.1 A Motivational Example

The following example illustrates how we can simplify the distributed proof procedure by

analyzing the similarities of the RT0 policies of the requesting roles and the requested roles.

 64

Example 4.6:

Assume Bob has registered his health information in his home hospital (referred to as HH

hereafter), and assume Bob is travelling outside and has to go to the emergency room in a local

hospital (referred to as LH hereafter). To take care of Bob, the healthcare workers in LH (grouped

by HealthCare role) need to access Bob’s health information stored in HH. In HH, the primary

doctor of Bob (grouped by Doctor(patient=Bob) role, and denoted as Doctor for short) has the

permissions to access Bob’s health information. From role based perspective, such interoperation

need can be described as “the users assigned to HealthCare in LH requests to assume Doctor in

HH”.

HH allows outside users to assume its Doctor role for emergency needs by specifying the

following policy using RT0:

 HH: HH.Doctor ← HH.MD rule 1

 HH.MD ← HH.MedicalSchool.MD rule 2

 HH.MedicalSchool ← ABU.Accredited rule 3

The policy specifies that users having Medical Doctor (MD) degree accepted by HH can assume

Doctor in HH (rule 1). Furthermore, HH accepts MD degree issued by medical schools accepted

by HH (rule 2). Finally, HH accepts all medical schools accredited by Accrediting Board for

Universities (ABU) (rule 3).

Assume that UPMC is a medical school accredited by ABU, and one user of

LH.HealthCare, Alice, has a MD degree from UPMC:

 65

 ABU: ABU.Accredited ← UPMC rule 4

 UPMC: UPMC.MD ← Alice rule 5

It is easy to verify that Alice can prove HH.Doctor from the policies above. However, even in

this very simple example constructing such proof for Alice involves the discovery of 5 rules from

the policies of 3 domains. Moreover, other users assigned to LH.HealthCare needs to prove

HH.Doctor separately when they are taking care of Bob.

Could such expensive distributed proof procedure be simplified for Alice, and all other

users assigned to LH.Healthcare? If we examine the policy in HH, we can conclude that any user

that has a MD degree issued by the medical school accredited by ABU can assume HH.Doctor:

HH: “HH.Doctor ← ABU.Accredited.MD” derived rule 1

Assume the policy in LH is defined as follows:

 LH: LH.HealthCare ← LH.MD ∩ LH.Licensed rule 6

 LH.MD ← LH.MedicalSchool.MD rule 7

 LH.MedicalSchool ← ABU.Accredited rule 8

 LH.Licensed ← NMLS.Licensed rule 9

The policy specifies that users having MD degree and Medical license accepted by LH can

assume LH.HealthCare (rule 6). Similar to HH, LH also accepts the MD degree issued by

medical schools accepted by LH (rule 7), and accepts all medical schools accredited by ABU

(rule 8). In addition, LH accepts medical license issued by National Medical License Service,

 66

NMLS (rule 9). From these rules, we can conclude that any user that has a MD degree issued by

the medical school accredited by ABU and is licensed by NMLS can assume LH.HealthCare, i.e.

LH: “LH.HealthCare ←ABU.Accredited.MD ∩ NMLS.Licensed ” derived rule 2

Comparing derived rule 1 and derived rule 2, we find some similarities. In particular,

policy of LH.HealthCare is more restrictive than policy of HH.Doctor, implying that “any user

who can prove LH.HealthCare can also prove HH.Doctor”. Based on this, it is safe for HH to

add a new rule in its policy specifying that any user who can prove LH.HealthCare can assume

HH.Doctor:

HH: HH.Doctor ← LH.HealthCare new (simplified) rule

For users in LH, proving the membership of LH.HealthCare is much easier than proving

ABU.Accredited.MD. This is because LH.HealthCare is a local role and is directly assigned to

users in LH, while ABU.Accredited.MD is an external role and users in LH need to examine

policy of ABU to find out whether or not their MD degree is issued by medical schools

accredited by ABU. Moreover, such authorization (from HH.Doctor to LH.HealthCare) needs to

be done only once. All subsequent requests from users assigned to LH.HealthCare need only to

prove LH.HealthCare in order to assume HH.Doctor.In other words, the distributed proof

procedure of HH.Doctor is simplified for users in LH by proving LH.HealthCare.

 67

4.3.2 The Simplify() Algorithm

The goal of our work is to automatically find such simplified proofs given the policies related to

the requested roles (e.g. HH.Doctor) and the requesting roles (e.g. LH.Healthcare). Example 4.6

illustrates that if we can represent the corresponding policies using credential sets (e.g. bodies of

derived rule 1 and derived rule 2), we are able to find the existing simplified proof by analyzing

the similarity of the two credential sets.

In order to find the derived rule as in Example 4.6, we can perform the following

derivations over the raw RT0 rules according to its semantic: two rules having the same head

means that either body can be used to prove the head, thus the two bodies can be combined

through OR relation. For example, A.r←expr1 and A.r←expr2 can be combined to A.r←expr1

OR expr2. Similarly, the body of type 4 rule is actually the AND relation among simple roles or

linked roles. Furthermore, any simple role A.r in the body of a rule can be replaced by the body

of another rule (say rule1) if rule1’s head is equal to A.r; any linked role A.r1.r2 in the body of a

rule can be replaced by the body of another rule (say, rule1) if rule1’s head is equal to A.r1. In this

way, given a role A.r, we can start with the rules whose head is A.r and replace the roles in the

body using all the rules in A until no replacement can be made. The resulting expression is a

propositional logic expression containing AND and OR relations and all its literals are roles that

cannot be further replaced using Pol(A). Such logic expression describes how to construct the

proof of role A.R from A’s perspective.

 68

Example 4.7:

Consider the policy of LH (rule 6 through rule 9) in Example 4.6. Assume we want to

translate rules defining LH.HealthCare (which is rule 6 in this case). It is easy to see that rule 7

and rule 8 can be applied to replace the body of rule 6. The resulting expression is

 LH.HealthCare←LH.MedicalSchool.MD AND NMLS.Licensed.

LH.MedicalSchool.MD can be further replaced by rule 9. Finally, we get

 LH.HealthCare ← ABU.Accredited.MD AND NMLS.Licensed

No roles in its body can be further replaced by rules in Pol(LH). From LH’s perspective, the

above expression indicates that LH.HealthCare can be proved by proving both

ABU.Accredited.MD and NMLS.Licensed.

Note that in Example 4.7 “ABU.Accredited.MD” and “NMLS. Licensed” may be further

replaced using policies in ABU and NMLS (e.g. ABU.Accredited.MD can be replaced using rule 4

in ABU). However, we do such derivation of rules using only the local policy for the following

reasons: (i), it is not efficient to check the policies in other external domains since it could

involve searching the entire network; (ii), there are no privacy violations in examining the local

policy only; and (iii) Since only the local rules are involved, any changes in external domains

will not affect the proof of the target role and there is no need to worry about policy changes in

external domains which is expensive to detect. Next, we formally define a projection function ∏

to derive the proof of a role in the way described above.

 69

Definition 4.6 (Projection Function ∏):

A projection function ∏ takes A.r and Pol(A) as inputs, and outputs a proposition logic

expression ∏(A.r, Pol(A)) such that:

 It contains literals, AND, OR and parenthesis only

 Each literal in the expression is a role appearing in Pol(A).

And the logic expression is generated in the following way:

1. Combine all the bodies of rules whose head is A.r by OR relation with each body enclosed

within parenthesis.

2. In the resulting logic expression, replace any role if it appears in the heads of other rules

(for linked role A.r1.r2, if A.r1 appears in the heads of other rules) with the bodies of those rules

connected by OR relation. Put a pair of parenthesis outside each replaced role.

3. Rewrite “∩”using AND in the resulting expression . Put a pair of parenthesis outside each

element connected by “∩”.

Lemma 4.1:

∏(A.r, Pol(A)) represents all the possible combinations of minimal roles (appear in Pol(A) and

cannot be further replaced by rules in Pol(A)) that can prove A.r

It is easy to prove Lemma 4.1 from the semantics of RT0 and the construction steps of ∏ in

Definition 4.6. Note that any propositional logic expression can be translated into Disjunctive

Normal Form (DNF). We use ∏DNF(A.r, Pol(A)) to denote the DNF representation of ∏(A.r,

Pol(A)), and we define the proof of a role as follows:

 70

Definition 4.7 (Proof of a Role):

Given a role A.r, Pol(A), and ∏DNF(A.r, Pol(A)), we define the proof of A.r, denoted as Proof(A.r),

as follows: Proof(A.r) = {Ri | where ci is a conjunction part in ∏DNF(A.r, Pol(A)) and Ri is the

set of roles in ci}

Proof(A.r) is a set of role sets. For any element e in Proof(A.r), we say a user proves e if she

proves all the roles in e, we have the following theorem:

Theorem 4.1: A user proves A.r if she proves at least one element in Proof(A.r).

Proof:

According to Lemma 4.1, ∏(A.r, Pol(A)) represents all possible combinations of minimal roles

that can prove A.r. As ∏ DNF(A.r, Pol(A)) is the logic translation of ∏(A.r, Pol(A)). it also

represents all possible combinations of minimal roles that can prove A.r. According to the logic

semantic of a DNF, the whole DNF expression is evaluated to be true if at least one conjunction

part is evaluated to be true. Recall that each e in Proof(A.r) is the collection of roles in one

conjunction part of ∏DNF(A.r, Pol(A)). Thus, proving at least one element in Proof(A.r) is enough

to prove A.r. ■

Recall that each element in Proof(A.r) is a set of roles. Theorem 4.1 says that the user can prove

ANY element in Proof(A.r) to prove A.r since the elements are connected by OR relation

according to definition 4.6; and to prove an element a user needs to prove ALL the roles in it

since they are connected by AND relation according to definition 4.6.

 71

BuildAOT(Node node, Policy p)
Input: node: representing the role whose proof is to be built; p: the policy of that domain.
Output: an AND-OR tree starting from the root
1 if (node is a user identity U (i.e. type 1)) continue;
2 if (node is a simple role A.r (i.e. type 2))
3 node.type = OR;
4 foreach rule r in p defining A.r
5 add r.body to the children list of node;
6 BuildAOT(r.body, p);
7 if (node is a linked role A.r1.r2 (i.e. type 3))
8 node.type = OR;
9 foreach type 1 or type 2 rule r defining A.r1
10 add r.body.r2 to the children list of node;
11 BuildAOT(r.body, p);
12 if (node is an intersection role (i.e. type 4))
13 node.type = AND;
14 foreach role expression expr in the intersection role
15 add expr to the children list of node;
16 BuildAOT(expr, p);
Proof BuildProof(AOT root)

Figure 4. 8. BuildAOT algorithm

For a given role A.r and Policy(A), we build Proof(A.r) in two steps: (1) we build an

and-or-tree such that each node is a role expression expr in the RT0 policy and expr has children

if and only if it can be derived according to definition 4.6. The algorithm to build such

and-or-tree for a given role expression, BuildAOT(), is shown in Figure 4.8. BuildAOT() is a

recursive function and should be called with the target role as the initial input; (2) we construct

Proof(A.r) using the proof tree we have built according to definition 4.7. The corresponding

 72

algorithm, BuildProof() is shown in Figure 4.9. BuildProof() is also a recursive function and

should be called with the root of the proof tree as the initial input.

Input: root: the root of the corresponding proof tree
Output: the proof of the root node of the corresponding proof tree
1 if (root.childrenNo==0) return {{root}};
2 Proof result = {{}};
3 foreach child c in root’s children list
4 Proof prf = BuildProof(c);
5 if (root.nodeType==OR)
6 result = Union(result, prf);
7 else if (root.nodeType==AND)
8 result = Combine(result, prf);
9 return result;
Note: Union(Proof p1, Proof p2) = {p1∪p2}
 Combine(Proof p1, Proof p2) = {e1∪e2 | e1∈p1, e2∈p2}

Figure 4. 9. the algorithm to build the proof for a single role

Now, we are ready to generalize the proof of a single role to the proof of a set of roles. For a role

set A.R, we compute ∏DNF(A.ri, Pol(A)) for every ri in A.R. We then connect their outputs by

AND relation and translate the resulting logical expression (no longer in DNF) into DNF,

denoted as ∏DNF(A.R, Pol(A)).

Definition 4.8 (Proof of a Set of Roles):Given a role set A.R, Pol(A), and ∏DNF(A.R, Pol(A)), we

define the proof of A.R, denoted as Proof(A.R), as follows: Proof(A.R) = {Ri | where ci is a

conjunction part in ∏DNF(A.R, Pol(A)) and Ri is the set of roles in ci}

 73

Proof(A.R) is also a set of role sets. For a target role set A.R, we say a user proves A.R if she

proves all the roles in it, we have:

Theorem 4.2:

A user proves A.R if he proves at least one element in Proof(A.R).

Proof:

Proof is similar to the proof of theorem 4.1. ■

Proof BuildProof(Proof [] prfs)
Input: prfs: proofs of each single role
Output: proof of the role set
1 Proof result = {{}};
2 foreach proof prf in prfs
3 result=Combine(result, prf);
4 return result;
Note: Combine(Proof p1, Proof p2) = {e1∪e2 | e1∈p1, e2∈p2}

Figure 4. 10. the algorithm to build the proof for a set of roles

Figure 4.10 shows the algorithm to build the proof of a set of roles from the proofs of each single

role. This is simply a combination of the proofs of each single role according to definition 4.8.

Note that in practice, the proof of a single role can always be constructed together with the

domain’s RT0 policy. That is, once the corresponding RT0 policy is created, the proof of each role

protected by the policy can be calculated and saved for the future use. Therefore, we only need to

 74

analyze the time complexity of calculating the proof of a set of roles, which is given by the

following theorem:

Theorem 4.3:Consider domain A, Pol(A), and A.R. Let Proof(A.r) be proof of A.r in A.R, then

the complexity of calculating Proof(A.R) (A.R={A.r1, …, A.rm}) is given by O(TNrule
|A.R|), where

TNrule is the total number of rules defining roles in A.R

Proof:

Proof(A.R) can be computed by the algorithm shown in Figure 4.10. The complexity of getting

all the proofs for each single role is O(1) if Proof(A.r) is given for any A.r∈A.R. The complexity

of combining all the single proofs is |Proof(A.r1)|×|Proof(A.r2)|×…× |Proof(A.rm)| according to

the definition of Combine(). Since different elements in Proof(A.r) for any role A.r is connected

by OR relation, the number of elements in Proof(A.r) is the number of OR relations plus 1.

According to definition 4.6, the number of the OR relations connecting Proof(A.r) is the number

of rules whose head is A.r. Therefore, the complexity of those combinations are O(Nrule
|A.R|)

where Nrule is the average number of rules defining a single role A.r∈A.R. Hence, the overall

complexity is given by O(Nrule
|A.R|). ■

Next, we need to find out whether the proof of the requesting roles is more restrictive

than the proof of the requested roles as indicated in Example 4.6. Towards this, we define two

important notions: proof-dominate and partial-proof-dominate relations as the foundation of our

simplification approach. As discussed before, if the proof of rreq is more restrictive than the proof

of Rdest, then proving rreq is enough to prove Rdest. But, we need to compare the “restrictiveness”

 75

of the proofs of two roles. Intuitively, the proof of a role r1 is more restrictive than the proof of

another role r2 if any combination of the roles that can prove r1 is guaranteed to be able to prove

r2. In this case, we say “r1 proof-dominates r2” and define it formally as below:

Definition 4.9 (Proof-Dominates relation between Two Roles): Given a pair of roles r1 and r2,

we say r1 proof-dominates r2, written as r1 ≳ r2, iff.

 ∀e1∈Proof(r1), ∃e2∈Proof(r2), such that e1⊇e2

The following theorem shows the rationale of definition 4.9.

Theorem 4.4: r1 ≳ r2 → any user who can prove r1 can also prove r2

Proof:

 According to theorem 4.1, any user who can prove r1 must prove at least one element in

Proof(r1). Without loss of generality, we assume an arbitrary user u proves an arbitrary element

e1∈Proof(r1). Since r1 ≥ r2, we have ∃e2∈Proof(r2), such that e1⊇e2. And e1⊇e2 indicates

that u can also prove e2. According to Theorem 4.1, u can prove r2. ■

Definition 4.10 (Proof-Dominate between Two Role Sets): Given a pair of role sets R1 and R2,

we say R1 proof-dominates R2, written as R1 ≳ R2, iff.

 ∀e1∈Proof(R1), ∃e2∈Proof(R2), such that e1⊇e2

Theorem 4.5: R1 ≳ R2 → any user who can prove R1 can also prove R2

Proof: The proof is similar to the proof of Theorem 4.4. ■

For any target role set A.R, if we can find some role set B.R such that B.R ≳ A.R, B.R can be an

alternative proof of A.R. Moreover, since B.R is the local role for users of B it is also a simplified

 76

proof of A.R. However, in many cases we may not be able to find such a B.R that

proof-dominates A.R. Nevertheless, it is still possible to simplify A.R if there exists B.R that

partial-proof-dominates A.R, as shown below:

Example 4.8

Following Example 4.6, now we assume HH modifies its policy and requires that “any user

having MD degree accepted by HH and is a member of American Medical Association (AMA)

can assume its Doctor role, as shown below:

HH: HH.Doctor ← HH.MD ∩ AMA.Member

In this case, Proof(HH.Doctor) becomes:

{{ABU.Accredited.MD, AMA.Member}}

According to definition 4.9, LH.HealthCare no longer proof-dominates HH.Doctor since there is

no element of Proof(HH. Doctor) that is the subset of Proof(LH.HealthCare). However, any user

of LH.HealthCare (who is able to prove ABU.Accredited. MD) is guaranteed to be able to prove

HH.Doctor if the user can also prove AMA.Member. Therefore, an alternative way to prove

HH.Doctor would be {{LH.HealthCare, AMA.Member}}. For users in LH, they only need to

prove one external role (i.e. AMA.Member) in the new proof, while they need to prove two

external roles (i.e. ABU.Accredited.MD, AMA.Member) in the original proof. In other words,

such an alternative proof is a simplified proof for users in LH.

Motivated by this example, we define partial-proof-dominate relation between two roles

as follows:

 77

Definition 4.11 (Partial-Proof-Dominate between Two Roles): Given a pair of roles r1 and r2,

and a non-empty role set AUX, we say r1 partial-proof-dominates r2 with an auxiliary role set

AUX, written as r1 ≳AUX r2, iff.

∀e1∈Proof(R1), ∃e2∈Proof(R2), such that e1∪AUX ⊇e2

Based on this, we have the following theorem:

Theorem 4.6: r1 ≳AUX r2 → any user who can prove r1 and AUX can also prove r2

Proof: According to theorem 4.1, any user who can prove r1 must prove at least one element in

Proof(r1). Without loss of generality, we assume an arbitrary user u proves an arbitrary element

e1∈Proof(r1). Since r1 ≥AUX r2, we have ∃e2∈Proof(r2), such that e1∪AR⊇e2. Since the user

can prove e1 and AUX, she can prove e2 also. In other words, u can prove an element of Proof(r2).

According to theorem 4.1, u can prove r2. ■

Definition 4.12 (Partial-Proof-Dominate between Two Role Sets): Given a pair of roles R1

and R2, given a role set AUX, we say R1 partial-proof-dominates R2 with an auxiliary role set

AUX, written as R1 ≳AUX R2, iff.

 ∀e1∈Proof(R1), ∃e2∈Proof(R2), such that e1∪AUX⊇e2

Theorem 4.7: R1 ≳AUX R2 → any user who can prove R1 and AUX can also prove R2

Proof: The proof is similar to the proof of Theorem 4.6. ■

For any target role set A.R, if we can find some role set B.R such that B.R ≳ A.R, B.R can

be the simplified proof of A.R. If we are not able to find such role set but are able to find some

B.R such that B.R ≳AUX A.R, then B.R together with AUX can also be an alternative proof

 78

according to theorem 4.7. Whether B.R together with AUX is a simplified proof is determined by

the number of B’s external roles in it compared with the number of B’s external roles in the

original proof. We define ND(R) as the number of D’s local roles in a role set R. The simplified

proof of A.R for users in B is defined as below:

Definition 4.13 (Simplified Proof of A.R using B.R):

Given Proof(A.R) such that ∀e∈Proof(A.R) we have e ⊈ B.R, the simplified proof of A.R using

B.R, denoted by SimplifiedProof(A.R, B.R), is given by (B.LR, AUX) where:

(1) ∅≠B.LR⊆B.R, and B.LR ≳AUX A.R

(2) if AUX≠∅,∀e∈Proof(A.R), (|AUX|-NB(AUX)) < (|e|-NB(e))

(3) ∀r∈B.LR, (B.LR \ {r}, AUX) does not satisfy condition (1) and (2)

(4) ∀r∈AUX, (B.LR, AUX \ {r}) does not satisfy condition (1) and (2).

Given Proof(A.R) to be simplified, we require that none of its element is the subset of B.R. In

other words, any possible proof (before simplification) of A.R must include at least one external

roles of B. Otherwise, there is no benefits of simplifying the proof of A.R for users of B, since

they can already prove A.R by proving local roles only before simplification. Given Proof(A.R),

its simplified proof consists of two role sets, B.LR and AUX, that satisfy condition (1) through (4)

respectively. Condition (1) ensures that we have a non-empty subset of B.LR that

proof-dominates A.R (if AUX = ∅) or partial-proof-dominates A.R (if AUX ≠ ∅). According to

theorem 4.7, condition (1) actually ensures that users who can prove SimplifiedProof(A.R, B.R)

can also prove Proof(A.R). In other words, SimplifiedProof(A.R, B.R) is an alternative way to

 79

prove A.R if condition (1) holds. However, our goal is to simplify the distributed proof process

for A.R. Therefore, we also need to make sure SimplifiedProof(A.R, B.R) is “simpler” than any

element in Proof(A.R) (recall that any element in Proof(A.R) is one possible minimal role set that

can prove A.R), and this is ensured by condition (2). The underlying assumption and the

motivation of our approach is that proving a local role is much cheaper than proving an external

role. As a result, given two sets of roles that can prove A.R, the one having less external roles is

simpler than the one having more external roles. Therefore, condition (2) requires that the

number of B’s external roles in AUX is smaller than the number of B’s external roles in any

element of Proof(A.R). Condition (3) ensures that B.LR is the minimal role set that contributes to

a simplified proof. If (B.LR \ {r}, AUX) satisfies (1) and (2), any user who can prove B.LR and

AUX can also prove B.LR \ {r} and AUX, thus proving A.R in a “more simplified” way. In this

case, it makes no sense to include B.LR in the simplified proof and we should include B.LR \ {r}

as a simplified proof. Similarly, condition (4) ensures that AUX is the minimal role set that

contributes to a simplified proof.

Given two sets of role sets RS1 and RS2, we define: (1) Overlap(RS1, RS2) = true iff.

“∃e1∈RS1, ∃e2∈RS2, e1∩e2 ≠ ∅”; and (2) RS1∪* RS2 = {e1∪e2 | ∀e1∈ES1, ∀e2∈ES2}.

We present our proposed Simplify() algorithm in Figure 4.11. Simplify() constructs the

simplified proof in three steps:

 80

Algorithm: Simplify(A.R, Proof(A.R), B.R, Proof(B.r) for all B.r∈B.R)
Input: A.R: target role set, Proof(A.R): proof of A.R to be simplified
 B.R: role set in B that is used to simplify A.R
 Proof(B.r) for all B.r∈B.R: the corresponding proofs for all roles in B.R
Output: SP: A set of simplified proofs for A.R given B.R
 /* filter out roles not contributing to simplified proof */
1 T =∅; //T stores candidate roles in B.R
2 foreach role B.r in B.R
3 if (Overlap(Proof(B.r), Proof(A.R))==true) T= T ∪{B.r};
4 if (T ==∅) return ∅; //no simplified proof can be found
 /* for each subset of roles in T, check whether it proof dominates or

partial-proof-dominates A.R */
5 foreach subset of roles S⊆T
6 AUX(S)=∅; //a set of role sets
7 foreach ei in Proof(S)
8 AUX(ei)=∅; //a set of role sets
9 foreach ej in Proof(A.R)
10 if (ei ∩ej ≠∅) AUX(ei) = AUX(ei)∪{ej \ ei}
11 AUX(S)=AUX(e1)∪*AUX(e2)∪*…∪*AUX(en), where Proof(S)={e1, e2, …, en}
 /* checks condition (2), (3), (4) in definition 4.13. */
12 foreach aux in AUX(S)
13 if (aux == ∅) SP=SP∪{(S, ∅)};
14 else if (∀e2∈Proof(A.R), |aux|-NB(aux)<|e2|-NB(e2)) SP=SP∪{(S, aux)};
15 foreach spi in SP
16 foreach spj in SP
17 if (spi.B.LR ⊃ spj.B.LR && spi.AUX== Spj.AUX) remove spi from SP;
18 if (spi.AUX ⊃ spj.AUX && spi.B.LR == spj.B.LR) remove spi from SP;
19 return SP;

Figure 4. 11. Simplify() Algorithm

Step 1 (line 1-4): Selecting the candidate local roles of B.R to simplify Proof(A.R).

Here, we only consider those roles in B.R such that at least one role appearing in its proof also

appears in Proof(A.R) (line 3). The rationale is given by the following theorem:

 81

Theorem 4.8:

∀SimplifiedProof(A.R, B.R)=(B.LR, AUX), ∀r∈B.LR we have:

Overlap(Proof(r), Proof(A.R)) = true

Proof:

We prove by contradiction and assume “Overlap(Proof(r), Proof(A.R)) = false”, we then prove

(B.LR \ {r}), AR) satisfies condition (1) and (2) in definition 4.13. This contradicts with (B.LR,

AUX) is a simplified proof. To prove (B.LR\{r}), AR) satisfies condition (1) and (2), we need to

prove the following:

(1) B.LR \ {r}≠∅

Sub-proof: Since B.LR is not empty it is equivalent to proving B.LR≠{r}. In other words, prove

({r}, AUX) is not a simplified proof. We prove by contradiction and assume ({r}, AUX) is a

simplified proof. According to definition 4.13, we have, {r} ≥AUX A.R. According to definition

4.12, we have “∀e1∈Proof(r), ∃e2∈Proof(A.R) such that e1∪AUX⊇e2”. If AUX=∅, we have

e1⊇e2 and then e1∩e2≠∅. This contradicts the assumption that “Overlap(Proof(r), Proof(A.R))

= false”. Otherwise if AUX is not empty, since AUX is the auxiliary roles in a simplified proof

(B.LR, AR), the number of B’s external roles in AUX is less than the number of B’s external roles

in e2 according to condition (2) in definition 4.13. Without loss of generality, we assume r* is B’s

external roles that belongs to e2 but does not belong to AUX. As a result, r* must belong to e1 to

ensure e1∪AUX⊇e2. In other words, we have e1∩e2={r*} ≠ ∅. This contradicts with the

assumption that Overlap (Proof(r), Proof(A.R)) = false

 82

(2) B.LR \ {r}⊆B.R

Sub-proof: this is trivial since B.LR⊆B.R

(3) B.LR \ {r} ≥AUX A.R

Sub-proof: Since (B.LR, AUX) is a simplified proof, we have B.LR ≥AUX A.R. And we have “∀e1

∈Proof(B.LR), ∃e2∈Proof(A.R) such that e1∪AUX⊇e2”. ∀e1'∈Proof(B.LR\{r}), it must be

the subset of some element e1∈Proof(B.LR) (according to the construction of the proof of a set

of roles given by definition 4.8), i.e. e1⊇e1'. Moreover, since e1 \ e1' are roles appearing in

Proof(r) it does not contain any role in e2 (by Overlap(Proof(r), Proof(A.R)) = false). We

conclude that e1'∪AR is also the superset of e2. In other words, we have ∀e1'∈Proof(B.LR\{r}),

∃e2∈Proof(A.R) such that e1'⊇e2. According to definition 4.12, B.LR \ {r} ≥AUX A.R.

(4) if AR≠∅,∀e∈Proof(A.R), (|AUX|-NB(AU)) < (|e|-NB(e))

Sub-Proof: this is trivial since AUX is the auxiliary set in a simplified proof ■

Theorem 4.8 says that if B.LR contributes to a simplified proof, the proof of any role in

B.LR must overlap with Proof(A.R). As a result, we filter out those roles that do not satisfy this

necessary condition in step 1 of the algorithm. Note that if the resulting T is empty, then we are

not able to find any simplified proof using roles in B.R (line 4). Otherwise, we continue to check

whether any subset of T proof-dominates or partial-proof-dominates A.R.

Step 2 (line 5-11): examine each subset of T and check whether it proof-dominates or

partial-proof-dominates A.R.

 83

Given a subset S⊆T, we examine each element of Proof(S) and Proof(A.R) and build a matrix M

as follows. Each row corresponding to one element of Proof(S) and each column corresponding

to one element of Proof(A.R). Each cell of M, M(i, j), is a set of roles that are in the

corresponding element of Proof(A.R) (ej) but not in the corresponding element of Proof(S) (ei) if

ei ∩ej ≠∅. Otherwise, M(i, j) is null. In this way, M(i, j) (if not null) represents the set of

auxiliary roles needed to prove ej assuming ei has been proved. We then record the union of this

role sets into AUX(ei) for each ej (line 10). The semantic of AUX(ei) is: if a user proves S using ei,

she can prove A.R by proving any element in AUX(ei). Finally, we build a set of role sets AUX(S)

where each element of it is the union of one element in each AUX(ei) (defined by ∪*). The

semantic of AUX(S) is: no matter which element of Proof(S) a user uses to prove S, that user can

prove A.R by proving any element in AUX(S). For each element aux in AUX(S), we have S ≥aux

A.R according to definition 4.13. Note that if some element aux in AUX(S) is empty, it means S ≥

A.R.

Step 3 (line 12-19): check whether (S,aux) satisfies condition (2), (3) and (4) of definition

4.13.

Condition (2) is checked at line 12-14; Condition (3) is checked at line 17; and Condition (4) is

checked at line 18.

 84

Table 4. 4. Example of using Simplify()

Example 4.9:

Assume that domain B wants to simplify the proof of a set of role A.R in A, and assume

Proof(A.R)={{r4,B.r3,r8},{r5,B.r3,r8}, {r4,r9,r10},{r5,r9,r10}} (the focus of this example is the

simplify() algorithm so we will not show how to calculate Proof(A.R) from original RT0 rules

here). Assume after step 1, only two roles in B (i.e. B.r1 and B.r2) are included in T, and their

proofs are:

Proof(B.r1)={{r4},{r5}}, and Proof(B.r2)={{r8},{r9}}

Now we start to examine all subsets of T. They are {B.r1}, {B.r2}, and {B.r1, B.r2}.

We first examine S={B.r1} and the resulting AUX(ei) is shown in Table 4.4(a). We have

AUX({B.r1})=AUX({r4})∪*AUX({r5})={{B.r3, r8},{B.r3, r8, r9, r10},{r9, r10}}. Only one element

in AUX({B.r1}) (i.e. {B.r3, r8}) has smaller number of B’s external roles (i.e. 1) than the number

 85

of B’s external roles in any element of Proof(A.R) (at least 2). As a result, we include

({B.r1},{B.r3, r8}) in SP.

We then examine S={B.r2}, and the resulting AUX(ei) is shown in Table 4.4(b). We have

AUX({B.r2})=AUX({r8})∪*AUX({r9})={{r4, B.r3, r10},{r4, B.r3, r5, r10},{r5, B.r3, r10}}. No

element in AUC({B.r2}) has smaller number of B’s external roles than the number of B’s external

roles in any element of Proof(A.R) (at least 2). As a result, no element is added to SP.

We then examine S={B.r1, B.r2}. We have Proof({B.r1, B.r2})={{r4,r8},{r4,r9},{r5,r8},

{r5,r9}} and the resulting AUX(ei) is shown in Table 4.4(c). We have AUX({B.r1,B.r2})=

AUX({r4,r8})∪*AUX({r4,r9})∪*AUX({r5,r8})∪*AUX({r5,r9})={…} (There are 81 elements so

we omit the detailed result here). Only one element in AUX({B.r1,B.r2}) (i.e. {B.r3, r10},

constructed by the bold elements in each AUX(ei)) has smaller number of B’s external roles (i.e. 1)

than the number of B’s external roles in any element of Proof(A.R) (at least 2). As a result, we

include ({B.r1, B.r2},{B.r3, r10}) in SP.

Now we have SP={({B.r1},{B.r3, r8}), ({B.r1, B.r2},{B.r3, r10})}. It is easy to verify that

both of the two elements will pass the checking at line 17 and line 18. Therefore, SP is the output

of our algorithm.

Next, we formally prove the correctness of Simplify() using the following two theorems:

Theorem 4.9 (Completeness of Simplify()):

Given A.R, B.R, and Proof(B.r) for all B.r∈B.R, any Simplified Proof(A.R, B.R) will be included

in the output of Simplify().

 86

Proof:

For any SimplifiedProof (A.R, B.R) = (B.LR, AUX), it is easy to see from Simplify() that if the

following sub-problems are proved, then it will be included in the output of the algorithm:

(1) B.LR⊆T at line 3.

Sub-proof: To prove B.LR⊆T, we need to prove ∀r∈B.LR, r∈T. According to the

construction of T in line 3, we need to prove ∀r∈B.LR, Overlap(Proof(r), Proof(A.R)) = true.

This has been proved in theorem 4.8.

(2) When examining S=B.LR⊆T, AUX∈AUX(B.LR) in line 11.

Sub-proof: We have B.LR ≥AUX A.R. According to definition 4.12, we have “∀ei∈Proof(B.LR),

∃ej(i)∈Proof(A.R) such that ei∪AUX⊇ej(i)” (We use slightly different symbols compared to

definition 4.12 but it is easy to verify that the semantic is the same). If ei ∩ ej(i) ≠ ∅, we have

ej(i)⊆AUX, which contradicts with “the number of B’s external roles in AUX is smaller than the

number of B’s external roles in ej(i)” (AUX is the auxiliary role set in a simplified proof). As a

result, we have ei ∩ ej(i) ≠ ∅. According to line 10, the algorithm will mark ej(i) \ ei in M(i, j(i))

and make ej(i) \ ei ∈AUX(ei). We also have ej(i) \ ei is the subset of AUX. Recall that here ei is an

arbitrary element in Proof(B.LR), so for any ei, the above conclusions are true. Therefore, when

we “∪*” all AUX(ei) in line 11 to form AUX(B.LR), one element of AUX(B.LR) (say, AUX') is

the union of “ej(i) \ ei” for all ei. Since each ej(i) \ ei is the subset of AUX, AUX' is also a subset of

AUX. Next, we prove that AUX' must equal to AUX. Otherwise (i.e. AUX'⊂AUX), AIX', as the

element of AUX(B.LR), satisfies condition (1) and (2) of definition 4.13 (as will be proved in

 87

sub-proof (1) and (2) in theorem 4.10). This contradicts with condition (4) in definition 4.13.

Therefore, AUX'=AUX. In other words, AUX∈AUX(B.LR).

(3) If AUX is not empty, it will pass the check in line 14. That is, ∀e∈Proof(A.R),

|AUX|-NB(AUX)<|e|-NB(e)

Sub-proof: This is trivial since (B.LR, AUX) is a simplified proof and condition (2) of definition

4.13 ensures this.

(4) B.LR will pass the check in line 17.

Sub-proof: This is trivial since (B.LR, AUX) is a simplified proof and condition (3) of definition

4.13 ensures this.

(5) AUX will pass the check in line 18.

Sub-proof: This is trivial since (B.LR, AUX) is a simplified proof and condition (4) in definition

4.13 ensures this.

Combining sub-proof (1) through (5), it is easy to verify that (B.LR, AUX) will be included in the

output of Simplify(). ■

Theorem 4.10 (Soundness of Simplify()):

Any element in the output of Simplify() is a simplified proof of A.R using B.R.

Proof:

Without lose of generality, we assume (S⊆T, aux∈AUX(S)) is one arbitrary output of the

algorithm. We need to prove (S, aux) is a simplified proof according to definition 4.13. We prove

(S, aux) satisfies condition (1) through (4) of definition 4.13 as below:

 88

(1) ∅≠S⊆B.R and S ≥aux A.R.

Sub-proof: ∅≠S⊆B.R is trivial according to step 1. Next, we prove S ≥aux A.R. According to the

construction of AUX(S) at line 11, we have “aux is the union of one element in each AUX(ei)”

since aux∈AUX(S). Without lose of generality, we assume aux(ei) is the element of an arbitrary

AUX(ei) that forms aux with other elements through the union operation (i.e. aux(ei)⊆aux).

Besides, AUX(ei) is constructed by ej \ ei for some element ej in Proof(A.R), therefore, ei ∪

aux(ei) ⊇ ej. In other words, we have “∀ei∈Proof(S), ∃ej∈Proof(A.R) such that ei∪aux(ei)

⊇ ej”. Since aux(ei)⊆aux for all ei∈Proof(S), we have “∀ei∈Proof(S), ∃ej∈Proof(A.R)

such that ei∪aux ⊇ ej”. According to definition 4.12, we have S ≥aux A.R.

(2) if aux≠∅,∀e∈Proof(A.R), (|aux|-NB(aux)) < (|e|-NB(e))

Sub-proof: This is trivial according to the checking at line 13 and 14.

(3) ∀r∈S, (S \ {r}, aux) does not satisfy condition (1) and (2) of definition 4.13

Sub-proof: This is trivial since (S, aux) passes the checking at line 17.

(4) ∀r∈aux , (S, aux \ {r}) does not satisfy condition (1) and (2) of definition 4.13.

Sub-proof: This is trivial since (S, aux) passes the checking at line 18. ■

Next, we analyze the complexity of our approach. Simplify() requires Proof(A.R) as one

of its inputs. The complexity of calculating the proof of a set of roles is given by Theorem 4.3.

The complexity of Simplify() is given by the following theorem:

Theorem 4.11:

The worst case complexity of Simplify() is exponential to |A.R| and |T|

 89

Proof:

We need to use Proof(A.R), and the complexity of calculating Proof(A.R) is exponential to |A.R|

according to theorem 4.3. Step 1 has complexity of O(|B.R|) since we need to examine every role

in |B.R| to calculate T. The complexity of step 2 is given by O(2|T|×(TNrule
|S|+|Proof(S)|

×|Proof(A.R)|+|AUX(S)). This is because we need to check any subset S of T in step 2. Checking

one such S needs to calculate Proof(S) (the complexity is TNrule
|S| according to theorem 4.3),

check any pair of elements in Proof(S) and Proof(A.R), and check any element in AUX(S).

|Proof(S)| is further given by ASPS|S| where ARPS is the Average Size of Proof(r) for all r∈S (by

definition 4.8). |Proof(A.R)| is further given by ASPAR|A.R| where ASPAR is the Average Size of

Proof(r) for all r∈A.R (by definition 4.8). And O(|AUX(S)|) is given by ASPS|S| to the power of

ASPAR|A.R| (by the construction of AUX(S) in step 2). In summary, the complexity of step 2 is

exponential to |A.R| and |T| (Maximal S is T). The complexity of step 3 is O(|AUX(S)|+|SP|2).

O(|SP|) is given by O(|AUX(S)×|S|) since any element in AUX(S) together with S could form an

element of SP. Therefore, the complexity of step 3 is given by O(|AUX(S)|2) which is exponential

to |A.R| and |T|. Combining all the three steps, the complexity of Simplify() is exponential to

|A.R| and |T|. ■

In summary, the complexity of our simplification framework is exponential to the number

of |A.R| since we need to examine Proof(A.R) which cannot be avoided in our approach. The

complexity of our framework is also exponential to the number of |T| because we need to

 90

examine every subset of candidate roles to find the simplified proof, and this expensive step

cannot be avoided either, as shown in the following example:

Example 4.10:

Assume Proof(A.R)={{r3,r4}}. Consider two roles in B such that Proof(B.r1)={{r3}} and

Proof(B.r2)={{r4}}. It is easy to verify that neither of these two roles proof-dominates A.R.

However, if we consider the union of these two roles, i.e. {B.r1, B.r2}, we have

Proof({B.r1,B.r2})={{r3, r4}}. Now we can verify that {B.r1, B.r2} ≥ A.R, and the

corresponding simplified proof is ({B.r1,B.r2}, ∅).

Example 4.10 shows that a set of roles could contribute to a simplified proof without auxiliary

set even if none of its subsets can. Therefore, in order to ensure that Simplify() can find all the

existing simplified proofs, we need to examine every subset S of the candidate role set T.

Although the complexity of our algorithm is exponential to |A.R| and |T|, we argue that the

performance of our algorithm is still acceptable for the following reasons:

|A.R| is likely to be very small in practice. Recall that A.R represents the roles that outside

users want to assume in a single access request. Therefore, it is not likely to be a very large

number in practice.

|T| is also likely to be small in practice. First, the size of B.R is likely to be small according to

the discussion before. Second, we argue that usually only small portion of B.R will be included in

T in practice. Intuitively, if a role is selected in T, its policy must share some common roles with

the target role whose proof is to be simplified (Overlap(Proof(r), Proof(A.R)) = true). In practice,

 91

we claim that usually only a small number of roles in two different domains will share some

common roles (credentials) in their policies.

Example 4.11:

Consider two hospital (say, H1 and H2) domains both having Doctor role, Nurse role, Finance

role, and Admin role (a simplified example). Consider the policy of H2.Doctor. Usually the

policy of H1.Doctor would share some common credentials with it (e.g. both require MD degree

and license of doctor), and the policy of H1.Nurse may also share some common credentials with

it (e.g. both require health-care license). On the other hand, the policies of H1.Finance and

H1.admin usually do not share any common credentials with the policy of H2.doctor. According

to step 1 in Simplify(), H1.Finance and H1.Admin will be eliminated from T if we want to

simplify the proof of H2.doctor.

In case |A.R| is relatively large (e.g. 3, where the worst case complexity of our approach

becomes cubic), we propose several heuristics that are able to reduce the complexity of

Simplify() from different aspects. During implementation, the developers can choose some of

the heuristics according to their specific needs.

Heuristic1: Using “trimming” mechanism in calculating AUX(S). The most complex part in

our algorithm is to examine each element in AUX(S) which is given by ASPS|S| to the power of

ASPAR|A.R|. However, if we find some elements in AUX(ei) whose number of B’s external roles is

not smaller than the number of B’s external roles in some element of Proof(A.R), we do not need

to include it in AUX(ei) since the auxiliary role set formed by it will not pass the checking at line

 92

14. For example, in Table 4.4(a) {r9, r10} is one element in AUX({r4}) that already contains two

of B’s external roles (equal to the number of B’s external roles in some element of Proof(A.R)).

The elements of AUX(S) constructed from it (i.e. {B.r3, r8, r9, r10} and {r9, r10}) will not pass the

checking at line 18. As a result, we can remove {r9, r10} from both AUX({r4}) and AUX({r5}). In

this way, we can significantly reduce the complexity of calculating AUX(S).

Heuristic 2: For each S, output one simplified proof whose auxiliary role set has smallest

number of B’s external roles.

In Simplify(), for each S we output all simplified proofs with different auxiliary sets (elements in

AUX(S)). Since proving external roles is expensive, we can choose to output one simplified proof

for each S whose auxiliary role set has the smallest number of B’s external roles. To ensure this,

we need to slightly modify line 10 and line 11 in our algorithm. Instead of making the union of

all {ej \ ei} to form AUX(ei) (line 10), we choose {ej \ ei} with the smallest number of B’s external

roles to be AUX(ei). And we use a standard union instead of “∪*” in line 11 to form AUX(S)

(which becomes a single set) since each AUX(ei) is a single set now. In this way, the complexity

of calculating AUX(S) reduces to |Proof(S)|×|Proof(A.R)|, which is no longer exponential.

Heuristic 3: Output one simplified proof with the smallest B.LR.

In our algorithm, we examine every subset S of T. If S contributes to a simplified proof, S itself

becomes B.LR in the simplified proof (recall that B.LR is the first component in a simplified

proof). During implementation, we can examine subsets of T with increasing size. Once we find

a simplified proof, the algorithm terminates (instead of examining further subsets with larger size)

 93

and output that simplified proof. In this way, we ensure only one simplified proof is returned and

it has smallest B.LR among all possible simplified proofs. And the complexity of step 2 could be

reduced significantly.

Heuristic 4: Restrict the size of S.

We can restrict the size of S when we examining the subsets of T. For example, we can restrict

that only those subsets with size not greater than 3 will be examined. In this way, we do not want

to simplify the proof by using more than 3 of B’s local roles. It is easy to see that the complexity

of the algorithm is exponential to only |A.R| in this case.

4.3.3 Proof Engine

After the simplified proof has been found for a particular rar, the relevant users (i.e. users

assigned to some of the requesting roles and need to access the requested resource according to

the functions of the requesting roles) can issue uar to actually request to access the requested

resources. The Proof Engine is responsible for verifying whether a user can prove the requested

roles using DCCD and the simplified proof if exist. Given an uar <B.u, Ru, A.R>, if there exists a

simplified proof <B.R, AUX> for A.R such that Ru⊇B.R, we say that B.u benefit from the

simplified proof since B.u can prove B.R. The proving of A.R for B.u can be simplified by

proving B.R and AUX. Note that B.u still needs to prove AUX using DCCD since AUX are not

local roles of B. For those users not benefit from any simplified proofs, they need to prove A.R

using DCCD.

 94

4.3.4 Evaluation

The motivation of this work is to simplify the distributed proof procedure in role-based

interoperation scenario. As discussed, Distributed Credential Chain Discover (DCCD) based on

RT0 is an extensively studied distributed proof procedure based on the notion of roles. Therefore,

we evaluate the performance of our approach against DCCD approach. Here, we define the term

“performance” as the time complexity of running the required algorithms to make an

authorization decision on a set of role-based interoperation requests. Recall that a set of

role-based interoperation requests are issued from different users from the same set of requesting

roles for a set of requested roles. Assume m requesting users assigned to some roles in B.R issues

m requests for the requested role set A.R, and assume C is the total number of credentials in the

environment. The complexity of authorizing all these m requests using traditional DCCD

approach is given by:

TD = m |A.R| O(C3) (1)

This is because DCCD treats the m requests separately. That is, given a single requested role

requested from one single user, DCCD approaches check whether the requesting user is able to

prove that single role using the credential chains. Therefore, in our defined role-based

interoperation requests, DCCD algorithms need to run for each single user and for each single

requested role. Furthermore, the worst time complexity of DCCD algorithm is given by O(C3)

[26]. Therefore, the total worst time complexity of DCCD approaches is given by (1)

 95

The complexity of authorizing all these m requests using our simplification approach is:

TS= O(Nrule
|A.R|2|B.R|) + O(1) + m1 |AUX| O(C3) + m2 |A.R| O(C3) (2)

This is because we need to run our simplification algorithm once, the complexity of which is

given by O(Nrule
|A.R|2|B.R|) from theorem 4.3 and 4.11. After the simplified proof is found, we need

to ask those users assigned to B.LR (whose number is assumed to be m1) to prove that they are

assigned to B.LR. This can be done in O(1) time as discussed before. Then, in case of partial

proof domination, (i.e. AUX is not empty). We need to ask those m1 users to prove AUX using

DCCD approach (m1 |AUX| O(C3)). Finally, we need to ask the remaining m-m1=m2 users (i.e. not

assigned to B.LR, therefore cannot benefit from the simplified proof) to prove A.R using DCCD

approach (m2 |A.R| O(C3)).

To simplify (2), we define α1 = m1 / m ∈[0,1] as the ratio of users that can benefit from

the simplified proof, and defineα2 = (1 - |AUX| / |A.R|) ∈[1 / |A.R|, 1] as the simplification ratio

indicating what percentage of B’s external roles are simplified (i.e. replaced by local roles) after

simplification. Given this, we have:

 TS= O(2|A.R||B.R|) + O(1) +α1 (1-α2) m |A.R| O(C3) + (1-α1) m |A.R| O(C3) (3)

We are interested to see whether our simplification work indeed simplifies the distributed proof

procedure against DCCD approach. In other words, we want to see whether and in what

conditions we have TS< TD, this can be translated as shown below according to (1) and (3):

O(2|A.R||B.R|) + O(1) <α1α2 m |A.R| O(C3) (4)

 96

According to (4), it is easy to see that there are 6 variables that will affect whether TS< TD,

that is: |A.R|, |B.R|, m, C,α1 andα2. One initial observation from (4) would be: in order to make

TS< TD, |A.R| and |B.R| should be as small as possible, m, C, α1 andα2 should be as large as

possible. We conduct several experiments to verify whether and when we have TS< TD.

SimulateEnvironment(Nd, Na, Nu, nr, np, nu)
Input: Nd: total number of organization domains; Na: total number of authority domains;
 Nu: total number of users; nr: average number of roles per domain;

np: average number of rules defining each role; nu: average number of users per role.
Output: A multi-domain environment containing Nd domains; each domain has several roles defined by

several RT0 rules. Each role is assigned several users.
1 generate Nd organization domains
2 generate Na authority domains
3 generate Nu users
4 foreach domain d in Nd domains
5 randomly assign some friend domains of d from Nd domains
6 randomly generate roles in d according to nr
7 foreach domain a in Na domains
8 generate one role in a
9 foreach domain a in Na domains
10 foreach domain d in Nd domains
11 make d 50% chances to be accredited by a
12 if (a has not accredited any organization domain)
13 randomly select a domain d in Nd to be accredited by a
14 foreach domain d in Nd domains
15 foreach role r in domain d
16 randomly generate rules for this role according to np
17 foreach rule ru in np rules
18 randomly assign the type of ru
19 randomly generate the body of ru
20 randomly generate users for r according to nu

Figure 4. 12. algorithm to simulate a multi-domain environment

 97

Among the 5 variables that will affect whether TS< TD according to (4), |A.R|, |B.R|, m, C

are the attributes of the requests and policies and are not affected by the result of the

simplification algorithm. On the other hands, α1 andα2 depend on the specific result of the

simplification algorithm. Therefore, we choose to control |A.R|, |B.R|, m, C to simulate role-based

interoperation requests, andα1 andα2 will be determined through the result of simulation.

Specifically, we first simulate a multi-domain environment along with all the policies to generate

the credential pool with the size C. The algorithm to simulate a multi-domain environment is

shown by Figure 4.12.

In Figure 4.12, we try to simulate the multi-domain environment as close as the real

interoperation scenario as possible. First, we define two types of domains: (1) Organization

domains: normal domains that need to interoperate with each other; and (2) Authority domains:

domains that “certify” some attributes of other organization domains. For example, Hospital A is

a normal organization domain, and ABU is an authority domain certifying which domain is a

valid university accredited by it (e.g. ABU.accredited ← StateU). Usually each authority

domain is responsible for accrediting one type of the organization domains (e.g. ABU is

responsible for accrediting the valid universities only). Therefore, we assign only one role to

each authority domain as shown in line 8 in figure 4.12. Second, we define some “friend

domains” that are trusted by each organization domain. We assume that each domain tends to

define its role according to the roles in its friend domains. For example, University of Pittsburgh

(UPitt) may collaborate with Carnegie Mellon University (CMU) and define that any student in

 98

CMU is authorized to access the library resource in Pitt (i.e. UPitt.library ← CMU.student). In

this case, we say CMU is the friend domain of UPitt. The notion of friend domains helps us to

generate the body of rules (in line 19) in a more reasonable way. The remaining part of the

algorithm is straightforward. We just randomly generate the elements of the environment (e.g.

roles in each domain) according to some pre-defined parameters (e.g. average number of roles

per domain). In order to make sure the generated environment has approximately C total

credentials (rules), we make several experiments and learn the relations between C and the

parameters of the algorithm. For example, we find that SimulateEnvironment(50, 5, 20, 5, 3, 5)

will always generate approximately 2000 credentials. Next, we need to simulate role-based

interoperation requests based on |A.R|, |B.R|, and m. This is straightforward and we just need to

randomly pick two domains (A and B) first and pick several roles as A.R and B.R respectively.

Since m different requests for A.R are all issued from users assigned to B.R, we only need to

generate A.R and B.R once for all m requests.

After the multidomain environment and interoperation requests are generated, we are

ready to calculate TS and TD and compare them according to (3) and (4). We have one last tricky

issue here: it is very difficult to guarantee that a simplified proof will be found using such

randomly generated policies. In reality, since positions in organizations have real meanings and

many of them are related to each other, we believe simplified proof could be found in many

scenarios (As shown in Example 4.6). We left the analysis of how much percentage a simplified

proof can be found as future work. In our simulation, although we try to simulate the policies as

 99

close to the real life as possible, they are just randomly generated symbols with few real

meanings so it is very difficult to guarantee a simplified proof could be found. Fortunately, for

comparing TS and TD onlyα1 andα2 depends on whether a simplified proof exists or not

according to their definitions. Therefore, in the case no simplified proof is found, we can simply

makeα1 andα2 to be uniformly distributed random variables within the range of [0, 1] and [1 /

|A.R|, 1], respectively. The rationale of using such trick here is that we do not under-estimate the

complexity of simplified approach by using randomly selectedα1 andα2.

We simulate 9 pairs of |B.R| and |A.R| values, that is (1,1), (1,2), (1,3), (1,4), (2,1), (3,1),

(4,1), (2,2), and (3,3) respectively. This is because (1): the number of |A.R| and |B.R| are likely to

be very small as discussed above; (2) The memory size in our experimental machine does not

allow us to simulate very large |A.R| and |B.R|. For each given pair of (|B.R|,|A.R|), we calculate

TS and TD under different m and C. Specifically, we make m={1, 2, 5, 10, 20, 50, 100}, and make

C = {100, 200, …, 1900, 2000}. For each combination of |A.R|, |B.R|, m and C, we simulate 100

times and use the average values as TS and TD.

 100

Figure 4.13 Effect of |A.R| when (|B.R|, |A.R|)=(1,1)

Figure 4.14 Effect of |A.R| when (|B.R|, |A.R|)=(1,2)

 101

Figure 4.15 Effect of |A.R| when (|B.R|, |A.R|)=(1,3)

Figure 4.16 Effect of |A.R| when (|B.R|, |A.R|)=(1,4)

 102

Figure 4.13-4.16 shows the comparison of TS (red) and TD (blue) with the increase of m

and C when (|B.R|, |A.R|) is (1,1), (1,2), (1,3), and (1,4) respectively. In all of these four figures,

TD will become much larger than TS when m and C are large enough. This is consistent with our

analysis. We also note that the difference between TD and TS decrease with the increase of |A.R|.

This is straightforward since TS is exponential to |A.R| while TD is only linear to |A.R|.

Nevertheless, even when |A.R| is as large as 4, TD is still larger than TS as shown in Figure 4.16.

Figure 4.17 Effect of |B.R| when (|B.R|, |A.R|)=(1,1)

 103

Figure 4.18 Effect of |B.R| when (|B.R|, |A.R|)=(2,1)

Figure 4.19 Effect of |B.R| when (|B.R|, |A.R|)=(3,1)

 104

Figure 4.20 Effect of |B.R| when (|B.R|, |A.R|)=(4,1)

Figure 4.17-4.20 shows the comparison of TS (red) and TD (blue) with the increase of m

and C when (|B.R|, |A.R|) is (1,1), (2,1), (3,1) and (4,1) respectively. Again, TD will become much

larger than TS when m and C are large enough in all of these four figures. However, the

difference of TD and TS does not vary much when we increase |B.R|. Since TD does not depend on

|B.R|, it shows that TS also does not vary much with the increase of |B.R|. At first glance, it is not

consistent with our analysis since TS is expected to be exponential to |B.R|. The explanation of

this is as follows: recall that our algorithm is exponential to |B.R| only in the worst case. Actually,

not all of the roles in |B.R| will count for the complexity of our simplification algorithm. In the

first step of the algorithm we eliminate some of the roles in |B.R| (the remaining role set is T) that

cannot contribute to any simplified proofs. Therefore, TS is only exponential to the size of T ⊆

 105

B.R, on average it is not exponential to |B.R|. And our simulation results show that the worst case

rarely happens. In other words, TS is not that sensitive with the increase of |B.R|.

Figure 4.21 Effect of both when (|B.R|, |A.R|)=(1,1)

Figure 4.22 Effect of both when (|B.R|, |A.R|)=(2,2)

 106

Figure 4.23 Effect of both when (|B.R|, |A.R|)=(3,3)

Figure 4.21-4.23 shows the comparison of TS (red) and TD (blue) with the increase of m

and C when (|B.R|, |A.R|) is (1,1),(2,2),(3,3) respectively. The trend of the these three figures are

similar to the trend of Figure 4.13-4.16, since only the increase of |A.R| will cause the

exponential increase of TS.

Figure 4.13-4.23 shows that (1) TD will eventually become much larger than TS when m

and C is large enough (which is very common in practice); (2) |B.R| does not contribute to much

to the comparison of TD and TS; (3) When |A.R| increases, the difference between TD and TS will

decrease, but TD is still larger than TS. However, Figure 4.13-4.23 do not show clearly if m and C

are small, whether TS could be larger than TD. The following set of figures show clearly when TS

is larger than TD (i.e. in this case our simplification has no real benefits).

 107

Figure 4. 13. Comparison of |A.R| when (|B.R|, |A.R|)=(1,1)

Figure 4. 14. Comparison of |A.R| when (|B.R|, |A.R|)=(1,2)

Figure 4. 15. Comparison of |A.R| when (|B.R|, |A.R|)=(1,3)

 108

Figure 4. 16. Comparison of |A.R| when (|B.R|, |A.R|)=(1,4)

Figure 4.24-4.27 shows the actual number of TS (upper part) and TD (lower part) with the

increase of m and C when (|B.R|, |A.R|) is (1,1), (1,2), (1,3), and (1,4) respectively. The yellow

shaded area shows the scenarios when TS is larger than TD. We can see that such area increases

with the increase of |A.R|. This is straightforward since TS increases much faster than TD with the

increase of |A.R|. However, even in figure 4.27 (|A.R| is 4), only 26% of the entire rectangular

area is yellow. In other words, even in the worst case (from the perspective of favoring TS) that

we can simulate, TD is larger than TS in more than 70% cases. Furthermore, almost all those

yellow shaded area reside in the area where m and C are very small. In practice, m and C are

easily become very large. In those cases, TD will be much larger than TS

 109

Figure 4. 17. Comparison of |B.R| when (|B.R|, |A.R|)=(1,1)

Figure 4. 18. Comparison of |B.R| when (|B.R|, |A.R|)=(2,1)

Figure 4. 19. Comparison of |B.R| when (|B.R|, |A.R|)=(3,1)

 110

Figure 4. 20. Comparison of |B.R| when (|B.R|, |A.R|)=(4,1)

Figure 4.28-4.31 shows the actual number of TS (upper part) and TD (lower part) with the

increase of m and C when (|B.R|, |A.R|) is (1,1), (2,1), (3,1), and (4,1) respectively. The yellow

shaded area does not increase too much with the increase of |B.R|. And the yellow shaded area

covers only a very small part of the entire rectangular area.

Figure 4. 21. Comparison of |A.R|, |B.R| when (|B.R|, |A.R|)=(1,1)

 111

Figure 4. 22. Comparison of |A.R|, |B.R| when (|B.R|, |A.R|)=(2,2)

Figure 4. 23. Comparison of |A.R|, |B.R| when (|B.R|, |A.R|)=(3,3)

Figure 4.32-4.34 shows the actual number of TS (upper part) and TD (lower part) with the

increase of m and C when (|B.R|, |A.R|) is (1,1), (2,2), and (3,3), respectively. The trend of the

yellow shaded area is similar to the trend of the yellow shaded area in Figures 12-15, since only

|A.R| will affect the size of the yellow shaded area.

Conclusion:

(1) Only |A.R| will affect the complexity of our simplification approach.

 112

(2) Even with the largest |A.R| (which is 4) we simulated, TD becomes larger than TS when m is

larger than 1 or C is larger than 1400, which is we believe is common in practice.

In summary, our simplification approach greatly simplifies the distributed proof procedure in

practical role-based environment.

4.4 THE POLICY INTEGRATION COMPONENT

In this section, we propose our novel Policy Integration approach to facilitate the authorized rar

while preserving the principle of security, as well as our novel administrative model to facilitate

role-based administration of those operations required in the policy integration.

4.4.1 Policy Integration

After an uar has been authorized by the Trust Management component, we need to facilitate this

interoperation such that the requesting user can actually acquire the requested resources. Recall

that in section 3.2 we have shown that two types of violations, i.e. cyclic inheritance conflicts

and violations of SoD could be introduced when there are multiple authorized interoperations.

And no existing approaches focusing on removing these violations in the global policy can be

applied here since there is no global policy in loosely-coupled environments.

 113

Motivated by this, we propose a novel policy integration approach that uses the special

semantics of hybrid hierarchy to preserve the principle of security. As discussed before, the

cyclic inheritance conflicts occur when there exists cycles among authorized interoperations and

local hierarchical relations. For violation of SoD, we have shown that if we represent an SoD

constraint using bi-directional arrows then the violation of SoD is also formed by the cycle

among authorized interoperations and local hierarchical relations. Hereafter, we refer to such a

cycle as inheritance cycle and discuss how to detect and remove such cycles. Note that all the

previous discussion about inheritance cycles assumes that the standard hierarchy is used to

facilitate an authorized interoperation. That is, for an authorized rar=<R1, R2>, we make each

role in R1 senior to every role in R2. In a standard hierarchy, the permissions are inherited

upwards through all the hierarchical relations. This is the underlying reason why an inheritance

cycle would cause those two types of violations. Therefore, we propose to use the specific

semantics of the hybrid hierarchy to facilitate authorized interoperations and prevent such

violations.

Definition 4.14 (Cycle and inheritance cycle in Hybrid Hierarchy): In a hybrid hierarchy, a

path P=(r1, r2, …rn, rn+1) is a cycle iff r1=rn+1, and a cycle C=(r1, r2, …rn, rn+1) is an inheritance

cycle iff. ∄i,j =1,…,n such that (ri, ri+1)=’≥i’, (rj, rj+1)=’≥a’, and i>j

According to Lemma 2.1, if a cycle contains an I-relation preceding an A-relation, the users of

the roles before the I-relation cannot acquire the permissions of the roles after the A-relation.

Therefore, we define the inheritance cycle in hybrid hierarchy as the cycle that does not contain

 114

an I-relation preceding an A-relation. It is easy to see that the permissions of any role in the

inheritance cycle can be inherited by any other role in the cycle, and this property does not hold

for non-inheritance cycles in the hybrid hierarchy.

For each authorized uar, we create an access role in the resource providing domain for

the requesting domain to access its resources, as defined below:

Definition 4.15 (Access Role): Given an authorized uar=<Ru, Rdest>, the access role of this

request, aruar, is a newly created role such that ∀ r1∈Ru, r2∈R2, we make r1≥a aruar ≥i r2.

Figure 4. 24. the use of access role and hybrid hierarchy to facilitate interoperation

Figure 4.35 shows an example of an access role. We can easily verify that the users of Ru can

acquire the permissions associated with R2={r3, r4, r5} by activating aruar, so the uar has been

facilitated.

r1

Domain d1
r3 r4 r5

aruar

Domain d2

(a): uar=<{r1}, {r3, r4, r5}>

 115

Next we show how such policy integration using access role preserve the principle of

security. Figure 4.36(a) shows an example of how access role is used to prevent cyclic

inheritance conflicts. If we directly link (r2, r3) and (r4, r1) using standard hierarchical relation,

there is an inheritance cycle as shown in Figure 2.5(a). However, by using access role and hybrid

hierarchy, we can see that the inheritance cycle does not exist even if there is a cycle in Figure

4.36(a). Consider the cycle of (r1, r2, aruar1, r3, r4, aruar2, r1). In d1 the users of r2 cannot acquire

the permissions of r1 since there is an I-relation preceding an A-relation in the path. Figure 4.36(b)

shows an example of how access role is used to prevent violations of SoD. If we directly link (r1,

r3) and (r3, r2) using standard hierarchical relation, there is an inheritance cycle as shown in

Figure 2.5(b). However, by using access role and hybrid hierarchy, we can see that the

inheritance cycle does not exist even if there is a cycle in Figure 4.36(b). Consider the cycle of

(r1, aruar1, r3, aruar2, r2, r1). In d1 the users of r1 cannot acquire the permissions of r2 since there is

an I-relation preceding an A-relation in the path. Therefore, the SoD constraint defined over r1

and r2 is not violated. More formally, we have:

Theorem 4.12: Assume that each individual domain employs RBAC with hybrid hierarchy, and

assume we facilitate the interoperation in the following way:

An uar=< Ru, Rdest> is authorized →∃aruar s.t. ∀r1∈Ru, r2∈Rdest, r1≥a aruar and aruar ≥i r2

Then, there exists no inheritance cycle in the environment

Proof:

 116

For any cycle C=(r1, r2, …rn, rn+1), if all roles in the cycle are from the same domain, C is not an

inheritance cycle since each individual domain contains no inheritance cycle. If not all roles in

the circle are from the same domain, there must be at least a pair of interoperation relations (one

going out from the domain of r1, and the other going back into the domain of r1 to form a cycle),

and such interoperation relations are constructed according to the description in Theorem 4.12.

Without losing the generality, we assume ri ≥a ri+1 ≥i ri+2, and rj ≥a rj+1 ≥i rj+2, and i+2>j. We can

easily see that there is an I-relation ri+1 ≥i ri+2 precedes an A-relation rj ≥a rj+1 in the cycle C.

Therefore, C is not an inheritance cycle according to Definition 4.14. ■

Theorem 4.12 proves that if we use the proposed policy integration approach by linking the

access role through hybrid hierarchy, the principle of security will be implicitly preserved

regardless of the specific interoperation needs.

Figure 4. 25. Using access role to prevent (a) cyclic inheritance conflicts; (b) violations of SoD

r1

r2

r3

r4

Domain d1 Domain d2

(a): uar1=<{d1.r2}, {d2.r3}>,

uar2=<{d2.r4}, {d1.r1}>

aruar2 aruar1

r1 r2

Domain d1

aruar2

r3

Domain d2

aruar1

(b): uar1=<{d1.r1}, {d2, r3}>,

uar2=<{d2.r3}, {d1, r2}>

SoD

 117

According to our policy integration approach, after an uar is authorized, the requesting

users need to activate the access role first and then acquire the permissions of the requested roles.

For example, after uar = <Alice, {HospitalA.HealthCareWorker}, {HospitalB.Doctor}> has

been authorized by the Trust Management component, Hospital B adds a new role aruar, as well

as two hierarchical relations HospitalA.HealthCareWorker ≥a aruar and aruar ≥i

HospitalB.Doctor to its local policy. Alice can then acquire permissions of HospitalB.Doctor

through the hierarchical relations.

4.4.2 Administrative Model

Updating the interoperation policy given an authorized rar involves the following sequence of `

operations to the local RBAC policy: AddRole(arrar), AddEdge(rar.rreq, arrar, A), ∀r in rar.Rdest,

AddEdge(arrar, r, I). To support evolution of RBAC policies, administration of RBAC becomes

more and more important. The use of role itself to manage the RBAC policies has become an

appealing idea recently. Sandhu et al. [15] have proposed an ARBAC97 (Administrate RBAC

‘97) model consisting of URA97 (User-Role Assignment ’97), PRA97 (Permission-Role

Assignment ’97), and RRA97 (Role-Role Assignment ’97) model, which use RBAC to manage

RBAC policies. They further extended this model to ARBAC99 [16] and ARBAC02 [17].

Crampton et al. [18] have developed a SARBAC (Scoped Administration model for RBAC)

model using the concept of administrative scope. SARBAC has been known to be capable of

 118

addressing several shortcomings of ARBAC model and is better in terms of completeness,

simplicity, practicality and versatility. However, none of the existing role-based administration

models can deal with hybrid role hierarchy. Here, we propose an extension of the popular

SARBAC model, SARBAC-HH, which is able to support role-based administration in presence

of hybrid hierarchy.

Since administrative scope is the core idea in SARBAC, we need to first extend it in

presence of hybrid hierarchy in order to make SARBAC applicable to hybrid hierarchy. As

discussed earlier, a role r can be administrated under another role a if and only if all path

upwards from r go through a. On the contrary, suppose there is a path upwards from r that

doesn’t go through a, and instead, goes through role r’. Here a and r’ have no relation between

them, but both of them are related to r. If a makes some changes to r, then it would also affect r’.

So a should not be allowed to administer r. Note that in a standard hierarchy, if there’s a “path”

between two different roles r1 and r2, then r1 and r2 must be hierarchically related, i.e. r1 ≥ r2 or

r2 ≥ r1. Therefore, the definition of administrative scope closely relies on finding the direct and

indirect relation in the path between r1 and r2. Based on the definition of derived relation ≥ d

earlier, we re-define the administrative scope as follows:

DEFINITION 4.18 (Administrative Scope in Hybrid Hierarchy): The administrative scope for

role a in hybrid hierarchy, SHH(a) is defined as follows:

SHH(a) = {r ∈ R: r ≤d a , ↑r \ ↑a ⊆↓a}, Where, ↑r = {x∈ R: x ≥d r}, ↓r = {x∈ R: x ≤d r}.

 119

Similarly, the strict administrative scope would be SHH
+(r) = SHH (r) / {r}. If r ∈ SHH

+(a), we call

a as an administrator of r. Figure 4.37 illustrates the difference between original administrative

scope in SARBAC and our administrative scope in SARBAC-HH. Note that the structure of the

three hierarchies is exactly the same and the only difference is the type of the hierarchy. Figure

4.37(a) is a standard hierarchy; Figures 4.37(b) and 4.37(c) are hybrid hierarchies. In Figure

4.37(a), role a cannot administer role r because r’ is senior to r but is not junior to a. In figure

4.37(b), role a cannot administer role r either, since r’ is “conditionally” senior to r but is not

junior to a. In figure 4.37(c), however, role a can administer role r because there’s no relation

between r and r’ even if there seems to be a “path” between them. Note that in Figure 4.37(c), a

cannot administer r1 because of r’. However, in the entire hierarchy, there may exist another role

(e.g. the senior role of both a and r’) which can administer r1. Next we will show that our

definition of administrative scope keeps all the properties of the original one.

Figure 4. 26. Administrative Scope in SARBAC and SARBAC-HH

a

r1

r

r’

(b)

a

r1

r

r’ a

r1

r

r’

(c))(aSr +∉)(aSr HH
+∉)(aSr HH

+∈

 120

Flexibility: Our administrative scope is also determined by the role hierarchy itself, and changes

dynamically as the hierarchy changes. This is similar to the original SARBAC model and is in

contrast to Sandhu’s ARBRAC97 model, where administration largely depends on the

can-modify relation [15].

Decentralization and Autonomy: we illustrate this by proving the following proposition:

PROPOSITION 4.1 (Line Manager in Hybrid Hierarchy): In a hybrid hierarchy, if r has an

administrator then the set of administrators of r has a unique minimal administrator, which we

refer to as the line manager of r.

The line manager can serve as a “local” administrator in the hybrid hierarchy. Therefore, our

administrative scope keeps the decentralization and autonomy properties which is essential in

large enterprise-wide RBAC systems. With this notion of extended administrative scope in

presence of hybrid hierarchy, we present our extensions of RHA and URA next.

Table 4. 5. Hierarchical Operations in SARBAC-HH

Operation Success Conditions
AddRole(a, r, △ar, ▽ar, △ir, ▽i r) △a r ⊆ SHH

+(a), ▽a r ⊆ SHH(a),
△i r ⊆ SHH

+(a), ▽i r ⊆ SHH(a)
DeleteRole(a, r) r ∈ SHH

+(a)
PartitionRole(a, r) r ∈ SHH

+(a)
AddEdge(a, c, p, type) c, p ∈ SHH (a)
DeleteEdge(a, c, p) c, p ∈ SHH (a)
ChangeEdge(a, c, p, type) c, p ∈ SHH (a)

 121

Besides the four operations defined in SARBAC-RHA as shown in Table 2.1, we further

add two operations: PartitionRole() and ChangeEdge(), which we believe are necessary in

hybrid hierarchy. The success conditions of each operation are shown in Table 4.5, where △a r is

set of immediate A-juniors of the role r, ▽a r is the set of immediate A-seniors of role r, △i r is

the set of immediate I-juniors of role r, and ▽i r is the set of immediate I-seniors of role r, as

shown in Figure 4.38. The semantics of ChangeEdge(a, c, p) is straight forward since there are

three types of edges in hybrid hierarchy. In fact, we can use AddEdge() and DeleteEdge()

operation to perform ChangeEdge(). That is, first delete the old edge, and then add the edge with

the new type. The semantic of PartitionRole() is complex. Specifically, we can partition a given

role vertically, horizontally, or both [14].

Figure 4. 27. Parameters in AddRole

r

p2p1 p3

c1 c2 c3

p1∈▽ir
p2∈▽ir
p2∈▽ar

c1∈△ir c2∈△ir

c2∈△ar

c3∈△ar

 122

Ideally, after each operation, we should keep the original semantics as much as possible. For

example, when we want to delete a role r, which has an immediate senior s and an immediate

junior j, we need to maintain the original relation between s and j after the operation. Moreover,

to make sure same users can acquire same permissions after deleting the role, we need to

reassign permissions of r to other roles and reassign users of r to other roles. This is a very

challenging problem and is beyond the scope of this thesis. Interested readers are referred to [14],

where Joshi et al. analyze these issues in greater detail. In the rest of this section, we will focus

on maintaining the administrative scope during those operations. Specifically, two conditions

need to be satisfied:

C1: After AddRole() and PartitionRole() operations, the new role(s) should be within the

administrative scope of a. C2: After each operation, the original roles’ administrators should not

be changed.

It is obvious that C1 is satisfied according to our definition. Since all the seniors of the new role

should be administered by a, the new role itself is also administered by a. The condition C2 is

also satisfied for all operations. This conclusion is not obvious with ChangeEdge() operation,

since the operation itself may change the relation between roles and thus affect the administrative

scope, as shown in Figure 4.39. In Figure 4.39(a), r∈S+
HH(a). If we change the edge (r, r1) to the

I-type, as Figure 4.39(b) shows, r∉ S+
HH(a) now. However, in Figure 4.39(a), r1 is not

administered by a, so the ChangeEdge() operation fails. Therefore, if ChangeEdge() operation

succeeds, it is guaranteed that it will not affect the administrators of all the original roles.

 123

Figure 4. 28. The ChangeEdge operation won’t succeed

The key operations in SARBAC-URA are shown in Table 4.6, and the permission-role

assignment operations in SARBAC-PRA are similar. We first show that there is an ambiguity in

the semantics of user-role assignment and permission-role assignment in the original SARBAC.

We then show that our model can solve this ambiguity smoothly by redefining those operations

in presence of hybrid hierarchy. To illustrate these, we first review an important concept in

SARBAC, the SARBAC constraint, as follows: Let R’ = {r1, …, rk} be a subset of R and let ∧R’

denote r1∧…∧rk.

DEFINITION 4.19 (SARBAC constraint) A SARBAC constraint has the form ∧C, where C⊆R.

A SARBAC constraint ∧C is satisfied by a user u if C ⊆ ↓R(u). A SARBAC constraint ∧C is

satisfied by a permission p if C ⊆↑R(p), where for any Y ⊆X, ↑Y = {x∈ X: ∃y∈Y such that x ≥

y}, and ↓Y = {x∈X:∃y∈Y such that x ≤ y}.

Let’s first analyze under what situation a user will satisfy a constraint. An example standard

hierarchy is shown in Figure 4.40 (the same example used in the original SARBAC paper).

According to definition 4.19, the constraint PE1∧QE1 is satisfied by any user assigned to both

a

r1

r

r’

(b)

a

r1

r

r’

ChangeEdge(a, r, r1, I) =>

)(aSr HH
+∈

)(1 aSr HH
+∉

)(aSr HH
+∉

 124

PE1 and QE1, and by any user assigned to either PL1 or DIR. The semantics here is that any user

assigned to either PL1 or DIR is also a member of PE1 and QE1, thus satisfies the PE1∧QE1

constraint. Obviously, the author of SARBAC implicitly assumes the hierarchy relation in any

monotype hierarchy as “Is-a” relation [11]. That is, x ≥ y means any user assigned to x is also a

member of y. For example, the leader of a team is also a member of the team. However, the

semantics of monotype hierarchy have long been argued as ambiguous [10, 11, 13]. The

hierarchical relation in a monotype hierarchy could be “Is-a”, “Supervision”, or “Activation”

[11]. The use of hybrid hierarchy can solve this ambiguity accordingly by including three types

of hierarchical relations. The above “Is-a” relation is essentially “IA” relation in the hybrid

hierarchy, since x “is” y means any user assigned to x should be able to acquire all permissions

assigned to y through x, and should also be able to activate y. Because whether a user satisfies a

constraint depends on the definition of ↓Y in Definition 2.3, we re-define it as:

∀Y⊆X, ↓Y = {x∈X: ∃y∈Y such that x ≤ y} (1)

Note that the definition looks same as before, but here the symbol ≤ clearly means the

IA-relation in hybrid hierarchy.

 125

Figure 4. 29. An example standard hierarchy

Next let’s analyze under what condition a permission will satisfy a constraint. In Figure

4.40, according to definition 4.19, the constraint PE1∧QE1 is satisfied by any permission

assigned to both PE1 and QE1, and by any permission assigned to either ENG1 or ED or E. The

semantics here is that any permission assigned to ENG1 or ED or E is also in the permission set

of PE1 and QE1, thus satisfies the PE1∧QE1 constraint. In other words, x ≥ y means P(y)⊆P(x),

where P(r) is the permission set available through r. Obviously, the author of SARBAC

implicitly assumes the hierarchy relation in any monotype hierarchy as “Permission Inheritance”

relation, which is in conflict with previous assumption of “Is-a” relation. We believe this

ambiguity comes from the ambiguity of the monotype hierarchy, as claimed by many researchers

[10, 11, 13]. Again, the use of hybrid hierarchy can solve this smoothly by using “I-relation”.

Specifically, since whether a permission will satisfy a constraint depends on the definition of ↑ Y

in Definition 2.3, we re-define it as:

DIR

PL1

PE1 QE2

ENG1

PL2

PE2 QE2

ENG2

ED

E

 126

∀Y⊆X, ↑Y = {x∈X: ∃y∈Y such that x ≥i y} (2)

Note that here we use the ≥ i relation. Given the new definition of ↓ Y and ↑Y, we can define the

SARBAC-HH constraint as follows:

DEFINITION 4.20 (SARBAC-HH constraint): A SARBAC-HH constraint has the form ∧C for

some C⊆R. A SARBAC07 constraint ∧C is satisfied by a user u if C ⊆ ↓R(u). A SARBAC07

constraint ∧C is satisfied by a permission p if C ⊆ ↑R(p), where the symbol ↑ and ↓ are defined

by (1) and (2).

The definition implies that the User-Role Assignment is determined by the IA-relation in the

hybrid hierarchy, while the Permission-Role Assignment is determined by the I-relation in the

hybrid hierarchy. The user-role assignment operations are the same with SARBAC, as shown in

Table 2.2 (permission-role assignment operations are similar).

Now we are able to define the success conditions for the administrative operations

required in the Policy Integration component, as shown in Table 4.6. As shown in Table 4.6, we

require that all these operations to be done by only the administrators whose administrative scope

includes all the requested roles (i.e. Rdest). This is straightforward since such operations would

make Rdest available for external users to assume.

 127

Table 4. 6. Success conditions for operations involved in the Policy Integration component.

Required Operations Success Condition
AddRole(a, arsar, ∅, rreq, Rdest, ∅) Rdest ⊆ SHH(a)
AddEdge(a, rreq, arsar, A) Rdest ⊆ SHH(a)
∀r∈Rdest, AddEdge(a, arsar, r, I) Rdest ⊆ SHH(a)

Figure 4. 30. Access control system in the individual domain

4.5 PROTOTYPE

In this section, we present our prototyping of our framework to validate our work. The

prototyping of the components included in our framework is straightforward. For each of the

component, we have proposed the corresponding algorithm in section 4, and we only need to

prototype the algorithm accordingly. However, prototyping the access control system in the

Users
Roles
Permissions
Sessions
User-role-assignment
Role-permission-assignment
hierarchy

RBAC Policy
Users
Roles
Permissions
Sessions
User-role-assignment
Role-permission-assignment
hierarchy

RBAC Policy
Constraints
Constraints on constraints
Triggers
Run-time requests

GTRBAC Policy
Constraints
Constraints on constraints
Triggers
Run-time requests

GTRBAC Policy

GTRBAC Engine RBAC Engine

administrators users

specify/update

update

GTRBAC Policy
Specification

RBAC Policy
Specification

administrators

specify/updateread read

input input access
request

answer

Interface Level

Logical Level

Database Level

RBAC SystemGTRBAC Add-on

 128

individual domain (i.e. GTRBAC and Hybrid Hierarchy) is more challenging. GTRBAC is a

fine-grained model that supports more than 50 temporal constraints. How to enforce such many

constraints effectively in a conflict-free way is a big challenge. Unfortunately, the authors of

GTRBAC have focused on the theoretical model and have not discussed the enforcement of

GTRBAC. In the literature, the only GTRBAC implementation work we are aware of,

X-GTRBAC [40], implements the policy specification module only. They mainly focus on how

to specify GTRBAC policy using XML, and simply assume that there already exists a GTRBAC

module to enforce those constraints without explaining how. To the best of our knowledge, no

existing work has been proposed to address the policy enforcement of GTRBAC.

Motivated by this, we propose our novel GTRBAC enforcement engine in this section.

The central idea of our work is to enforce all the different types of temporal constraints in a

uniform way by generating a predefined set of system operations. The high-level architecture of

our GTRBAC engine is shown in Figure 4.41. It describes the relationship among RBAC policy,

RBAC engine and GTRBAC engine. Vertically, we divide the access control system in the

individual domain into three levels: Interface Level, Logical Level, and Database Level. On

interface level, we allow the administrators to specify/update the policies through policy

specification modules; we also allow the user to issue access request to the RBAC engine and get

the authorization decision from it. In the database level, the RBAC policy is stored as a set of

tables in a relational database. In our current implementation, we use 7 tables to store RBAC

policy. These tables actually represent the basic RBAC model and Hierarchical RBAC model in

 129

RBAC standard [5]. In the future, we plan to add tables to support Separation of Duty (SoD) and

thus implement the Constraint RBAC model as well. The GTRBAC policy is stored in 4 tables in

the relational database. These 4 tables store all the constraints supported in GTRBAC model. On

the logical level, we have policy specification modules that translate the user inputs to the data

structures in the database. The GTRBAC engine and RBAC engine also reside on logical level.

As shown before, our GTRBAC system does not need to affect the RBAC engine. The GTRBAC

engine, on the other hand, is the most novel part of our system and will be discussed extensively

next.

Figure 4.42 shows the working mechanism of our GTRBAC Engine. In general, the

GTRBAC engine is responsible for checking all the GTRBAC constraints and updates the

RBAC policy accordingly every time it runs. The novelty of our engine is that we enforce all

those different types of constraints in a uniform way by generating a predefined set of system

operations. By doing so, we are able to (1) enforce all those constraints by updating the RBAC

policy according to the predefined system operations; and (2) solve the conflicts among original

constraints by solving the conflicts among predefined system operations. According to the

semantics of GTRBAC constraints, we define 4 pairs of system operations, and the two

operations in each pair is the inverse operation of each other:

 user-role assignment and user-role de-assignment

 role-permission assignment and role-permission de-assignment

 role enabling and role disabling

 130

 role activation and role de-activation

Figure 4. 31. The proposed GTRBAC engine

Next, we describe how we generate the above system operations from different types of

constraints, and how we enforce those constraints by enforcing those system operations. We note

Constraint Enabling
Run Time Request

Other Run Time Request

Constraint on Constraint

Periodical Constraint

Duration Constraint

Trigger

Cardinality Constraint

Constraint
Operation Pool

Operation Pool

Conflict Resolving

Conflict Resolving

Conflict Resolving

RBAC Policy

add

add

remove

update

update

update

add

add

add

remove

add

remove

remove

update

Step 1 Step 2

 131

that only the enabled constraints should be enforced at the time GTRBAC engine runs.

Determining which constraints are enabled is not straight forward because the enabling states of

constraints change dynamically. For example, the administrator can issue a run-time request to

explicitly enable or disable some constraints. Moreover, the constraint on constraint would also

change the enabling state of the corresponding constraint. As a result, the first step of GTRBAC

Engine is to check which constraints are enabled, as shown in Step 1 (left side) in Figure 4.42. In

particular, we define a data structure called Constraint Operation Pool (COP). COP is a

collection of constraint operations, and a constraint operation has the structure of <mode,

constraint name, priority> (priority field will be omitted hereafter for simplicity), where mode∈

{enable, disable} and constraint name is a unique identifier of the constraint in the constraint.

COP is initialized to be empty every time GTRBAC Engine runs. In this step, our engine checks

the corresponding GTRBAC policy (i.e. constraint enabling/ disabling run-time requests, and

constraints on constraint) to gradually add constraint operations to COP. For example, if there is

a <enable, c1> run-time request in the run-time requests table, we add <enable, c1> into COP.

After such checking we need to remove the conflicts existing in COP, which will be described

later in conflict resolving part. Finally, we update the enabling states of constraints according to

each constraint operation in COP. For example, if <enable, c1> is in COP, we enable constraint c1

in GTRBAC policy.

The next step (step 2, right side of Figure 4.42) is to check all enabled constraints and

update RBAC policy accordingly. Similarly, we define a data structure called Operation Pool

 132

(OP). OP is a collection of our predefined system operations, and an operation has the structure

of <mode, username, role_name, permission_name>, where mode ∈ {activateRole,

deactivateRole, assignUser, deassignUser, enableRole, disableRole, assignPermission,

deassignPermission} and username, role_name, permission_name are unique identifiers of Users,

Roles, and Permissions, respectively (again, priority field is omitted). Note that username,

role_name, permission_name are all optional according to the specific mode. For example, if the

mode of an operation is “enableRole” then only role_name is specified in the operation. OP is

also initialized to be empty every time GTRBAC engine runs. In this step, we dynamically add

operations into OP by checking run-time requests (except for constraint enabling run-time

request which is checked in step 1) and those enabled constraints, or remove operations from it

to remove the conflicts, as shown in Figure 4.42. Note that we must remove the conflicts before

we check the triggers. This is because triggers will generate new operations according to the

existing operations. It makes no sense to let conflicting operations (thus should be removed) to

be the inputs of triggers. And we need to run conflict removing again after checking triggers

because triggers may generate new operations which could conflict with the existing operations.

We also emphasize that we should check the cardinality constraint at the very end of step 2. This

is because cardinality constraints are used to remove operations rather than generating operations.

For example, assume we had a cardinality constraint <3, activate Doctor> and Doctor has already

been activated for 3 times. The operation <activateRole, Bob, Doctor> should be removed from

OP after checking the cardinality constraint. Therefore, if we put cardinality checking earlier,

 133

then the newly generated operations (e.g. by triggers) have no chance to be checked against them.

Finally, we update the RBAC policy according to each operation in OP. For example, if

<assignUser, Bob, Doctor> is in OP, we assign Bob to Doctor in RBAC policy.

Most of the checking shown in Figure 4.42 is straightforward. Next, we only describe

how to check a periodicity constraint as an example. The checking rule is simple: if current time

is within the periodical expression, we add the corresponding operation into OP. Otherwise we

add the inverse operation to OP. For example, consider a periodical constraint < [9am, 9pm],

enable Doctor>. If the engine runs at 10pm we add <disableRole, Doctor> into OP.

Now we discuss how we resolve the conflicts in each step shown in Figure 4.42.

Generally speaking, two operations are conflicting with each other if they are the inverse

operation and apply to the same user, role, or permission. For example, <enableRole, Doctor,

priority: high> and <disableRole Doctor, priority: medium> is a pair of conflicting operations.

We implement two rules to resolve the conflicts among operations, as defined in GTRBAC

model [9]:

(1) Higher priority overrides lower priority. In the above example, Doctor should be

enabled since <enableRole, Doctor, priority: high> has higher priority.

(2) Negative (e.g. disable) overrides positive. In the above example, if both operations have

the same priority then Doctor should be disabled since “disable” is a negative operation and

“enable” is positive.

The conflicts of constraint enabling operations in step 1 can be resolved in the same way using

 134

these two rules.

Finally, we discuss when and how the GTRBAC engine should run. In our architecture,

we need to run our GTRBAC engine repeatedly to update the RBAC policy dynamically.

Consider a constraint <[9am, 9pm], assign Bob to Doctor>. Every time the engine runs, it will

check the current time against this constraint, and assign Bob to Doctor or de-assign Bob from it

accordingly. Obviously if we run the engine one time a week, then the effect of such constraint

cannot be reflected in the system. Therefore, we choose to run the engine every 1 minute in the

current implementation. We believe this frequency is high enough to capture all constraints and

run-time requests in the system. On the other hand, running the engine in such a high frequency

may be a waste of resource since at most time instants no changes will likely be made to the

system. For example, assume <[9am, 9pm], assign Bob to Doctor> is the only constraint in the

system and assume no any run-time requests will be generated. In this very simple case,

theoretically we only need to run the engine at 9am and at 9pm to update the corresponding

user-role assignment. However, it is very difficult (if not impossible) to predict perfectly when

we should run the engine if there are hundreds of constraints and run-time requests (they could

even be conflicting). We plan to study how to enhance the performance of our system by partly

predicting when we should run the engine in the future work.

 135

Table 4. 7. An example test case of GTRBAC Implementation

RBAC Policy
(assignU Ami to NurseInTraining)

(NightTime, enable NightDoctor)

Periodical Constraints

c1= (DayTime, enable DayDoctor)

c2= (NightTime, enable NightDoctor)

c3= ((M, W, F), assignU Adams to DayDoctor)

c4 = ((T, Th, S, Su), assignU Bill to DayDoctor)

c5=(Everyday between 10am-3pm,assignU Carol to

DayDoctor)

Duration Constraints
c6 = (2 hours, enable NurseInTraining)

c7 = (2 hours, activeR_total NurseInTraining)

Constraints on

Constraints
(6 hours, c6)

Triggers

(enable DayNurse → enable c1)

(activate DayNurse for Elizabeth → enable NurseInTraining)

(enable NightDoctor → enable NightNurse)

(disable NightDoctor → disable NightNurse)

Cardinality

Constraints

(10, activeR_n DayNurse)

(5, activeR_n NightNurse)

 136

 137

5.0 CONCLUSION AND FUTURE WORK

Multidomain environments where multiple organizations interoperate with each other are

becoming a reality as seen in the emerging Internet-based enterprise applications. In such an

environment, it is a significant challenge to ensure that cross-domain accesses to facilitate

information sharing are employed in a secure way. Role Based Access Control (RBAC) models

have received much attention as a general approach to access control. A multidomain

environment can be characterized into tightly-coupled environment and loosely-coupled

environment. The access control challenges in loosely-coupled environments where each

individual domain employs RBAC have not been studied adequately in the literature.

In this dissertation, we first show that it is desirable to allow users to issue the

interoperation requests in terms of requested permissions rather than requested roles. And the

resource-providing domains need to identify a set of its local roles containing the requested

permissions for the external users to assume. We have propose three role mapping algorithms to

identify a set of roles containing all the requested permissions. Our algorithms can handle the

cases when (1) there is exactly matched role set; (2) there is no exactly matched role set but the

 138

principle of least privilege is more important; (3) there is no exactly matched role set but the

availability is more important.

Once the initial interoperation requests have been translated into a set of requested roles,

the providing domain needs to make decisions on whether to authorize the requests or not based

on their local policies and the interoperation requirements. We argue that in role based

loosely-coupled environments, it is typical that several different users assigned to the same role

(or a very small set of related roles) would request to acquire the same external resource several

times in a period. Traditional role-based distributed proof approaches (e.g. DCCD) are inefficient

in dealing with such type of requests since they all require individual users to prove the requested

resource separately. We formally study how to simplify such distributed proof procedure and

propose a Simplify algorithm based on the policies of the requesting role and the requested role.

We formally prove the completeness and soundness of our algorithm. We conduct simulation and

run several experiments to very our work. The experiment results show that our algorithm

significantly outperforms DCCD when the total number of credentials is sufficiently large, which

is very common in practical loosely-coupled environments.

Several researchers have shown that the introduction of global policy in tightly-coupled

environments could violate the principle of security. Although there is typically no global policy

in the loosely-coupled environment, the existence of multiple authorized interoperations could

also violate the principle of security. We have proposed a policy integration approach to preserve

the principle of security while facilitating the interoperations. Our approach makes use of the

 139

special semantic of hybrid hierarchy to prevent unexpected permission inheritances. We also

propose an administrative model for the RBAC model extended with hybrid hierarchy defining

which administrators are authorized to make the policy changes required during policy

integration.

Finally, we present the prototype of our framework to validate our research. The most

challenging part of the prototyping is implementing the GTRBAC model. We have implemented

a novel GTRBAC engine that generates a set of pre-defined system operations according to

different temporal constraints. The conflicts among those temporal constraints are resolved

within those system operations and the corresponding RBAC state is easily updated according to

those system operations as well. We also implement the role mapping algorithms, the Simplify

algorithm, and the Policy Integration module to make it a complete prototype of our proposed

framework.

There are several future work related to the research presented in this thesis. First, the

work presented in this research is theoretical in nature. Although we have implemented a

prototype to validate it, we have not implemented it over real organizations. This requires a

comprehensive work related to inter-domain collaborations. For example, how to discover which

domain contains the requested permissions through service discovery. There are also a number of

future work related to our simplification algorithm. First, if the requesting domain changes its

policy within the valid period of an rar, the simplified proof of this rar may not be valid now.

However, it is not straight forward to detect this unless the requesting domain “honestly” notifies

 140

the providing domain. Second, in discussing heuristic 4 we find a trade-off between the

completeness and complexity of our Simplify algorithm. That is, if we examine every subset of T,

we can find every existing simplified proof but the algorithm becomes slow. On the other hand,

if we only examine some subsets of T, we may miss some existing simplified proof but the

algorithm will run much faster. How to balance between these two factors is a possible future

work future work. Third, although we present our simplification framework in the context of RT0

language, we believe the general idea of our approach does not rely on any specific policy

language and should be applicable generally. Therefore, another future research direction is to

apply the idea of our approach to other policy languages.

 141

BIBLIOGRAPHY

[1] L. Gong and X. Qian, “Computational Issues in Secure Interoperation”, IEEE Trans.
Software Eng., vol. 22, no. 1.

[2] P. Bonatti, S.D.C. Vimercati, and P. Samarati, “An Algebra for Composing Access Control
Policies,” ACM Trans. Information and System Security, vol. 5, no. 1, Feb. 2002.

[3] S. Dawson, S. Qian, and P. Samarati, “Providing Security and Interoperation of
Heterogeneous Systems,” Distributed and Parallel Databases, vol. 8, pp. 119-145, Aug.
2000.

[4] B. Shafiq, J. B. D. Joshi, E. Bertino, A. Ghafoor, “Secure Interoperation in a Multi-Domain
Environment Employing RBAC Policies”, IEEE Transactions on Knowledge & Data
Eng, vol. 17, no. 11, pp. 1557-1577, Nov. 2005.

[5] American National Standards Institute Inc. Role Based Access Control, ANSI-INCITS
359--2004, 2004.

[6] R. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-Based Access Control
Models”, IEEE Computer 29(2): 38-47, IEEE Press, 1996

[7] D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and R. Chandramouli, “Proposed NIST
standard for role-based access control,” ACM Transactions on Information and Systems
Security, vol. 4, no. 3, pp. 224–274, August 2001.

[8] D. F. Ferraiolo, D. M. Gilbert, and N. Lynch, “An Examination of Federal and Commercial
Access Control Policy Needs”, In Proceedings of NISTNCSC National Computer
Security Conference, Baltimore, MD, Sep. 1993, pp. 107-116.

[9] J. B. D. Joshi, E. Bertino, U. Latif, and A. Ghafoor, "Generalized Temporal Role Based
Access Control Model," IEEE Transactions on Knowledge and Data Engineering,
Volume 7, Issue 1, Jan. 2005.

 142

[10] R. Sandhu, “Role activation hierarchies”, Proceedings of the third ACM workshop on
Role-based access control, Fairfax, Virginia, United States, 1998, pp. 33-40.

[11] J. D. Moffett and E. C. Lupu, “The uses of role hierarchies in access control”, Proceedings
of the fourth ACM workshop on Role-based access control, Fairfax, Virginia, United
States, 1999, pp. 153-160.

[12] J. B. D. Joshi, E. Bertino, and A. Ghafoor, “Temporal hierarchies and inheritance semantics
for GTRBAC”, In Proceedings of the 7th ACM symposium on Access control models
and technologies, ACM Press, New York, NY, USA, 74–83.

[13] N. Li, J. W. Byun, E. Bertino, "A Critique of the ANSI Standard on Role-Based Access
Control," IEEE Security and Privacy, vol. 5, no. 6, pp. 41-49, Nov/Dec, 2007

[14] J. B. D. Joshi, E. Bertino, A. Ghafoor and Y. Zhang, “Formal Foundations for hybrid
hierarchies in GTRBAC”, accepted by ACM Transactions on Information and System
Security.

[15] R. Sandhu, V. Bhamidipati, and Q. Munawer, “The ARBAC97 Model for Role-Based
Administration of Roles”, ACM Transactions on Information and System Security
(TISSEC), Volume 2, Issue 1, Feb. 1999, pp. 105-135.

[16] R. Sandhu and Q. Munawer, “The ARBAC99 Model for Administration of Roles (1999)”,
In Proceedings of 15th Computer Security Applications Conference, Arizona, US, Feb
1999, pp. 229-238.

[17] S. Oh, and R. Sandhu, “A model for role administration using organization structure”,
Proceedings of the 7th ACM symposium on Access control models and technologies,
Monterey, CA 2002.

[18] J. Crampton, and G. Loizou, “Administrative scope: A foundation for role-based
administrative models”, ACM Transactions on Information and System Security
(TISSEC), Volume 6, Issue 2, May. 2003, pp. 201-231.

[19] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized Trust Management”, IEEE
Symposium on Security and Privacy, May 1996.

[20] M. Y. Becker and P. Sewell, “Cassandra: distributed access control policies with tunable
expressiveness”, 5th IEEE International Workshop on Policies for Distributed Systems
and Networks (POLICY), 2004.

 143

[21] A. J. Lee, M. Winslett, J. Basney, and V. Welch, “Traust: A Trust Negotiation-Based
Authorization Service for Open Systems,” The Eleventh ACM Symposium on Access
Control Models and Technologies (SACMAT 2006), June 2006.

[22] N. Li, J. C. Mitchell, and W. H. Winsborough, “Design of a Role-based Trust-Management
Framework”, IEEE Symposium on Security and Privacy, May 2002.

[23] L. Bauer, S. Garriss, and M. K. Reiter, “Distributed proving in access-control systems”, in
Proceedings of the 2005 IEEE Symposium on Security and Privacy, pages 81–95, May
2005.

[24] L. Bauer, S. Garriss, M. K. Reiter, “Efficient Proving for Practical Distributed
Access-Control Systems”, ESORICS 2007, pp. 19-37.

[25] A. J. Lee, M. Winslett, “Towards an efficient and language-agnostic compliance checker for
trust negotiation systems”, ASIACCS 2008: 228-239.

[26] N. Li, W. H. Winsborough, and J. C. Mitchell, “Distributed Credential Chain Discovery in
Trust Management”, Journal of Computer Security 11(1):35-86, February 2003.

[27] J. B. D. Joshi, R. Bhatti, E. Bertino, and A. Ghafoor, “An Access Control Language for
Multidomain Environments”, IEEE Internet Computing, Nov-Dec, 2004.

[28] http: //www.hl7.org/.

[29] A. Sheth and J. Larson, “Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases”, ACM computing Surveys, vol. 22, no. 3, pp.
183-236, Sep. 1990.

[30] S. Piromruen, J. B. D. Joshi, “An RBAC Framework for Time Constrained Secure
Interoperation in Multi-domain Environment,” IEEE Workshop on Object-oriented
Real-time Databases (WORDS-2005), 2005.

[31] M. Paolucci, K. P. Sycara, and T. Kawamura, “Delivering Semantic Web Services”, In
Proceedings of the International World Wide Web Conference, 2003.

[32] E. Sirin and B. Parsia, “Planning for Semantic Web Services”, In Proceedings of
International Semantic Web Conference, Workshop on Semantic Web Services,
November 2004.

[33] N. Gooneratne, and Z. Tari, “Matching independent global constraints for composite web
services”, In Proceeding of the 17th international Conference on World Wide Web
(WWW '08), Beijing, China, Apr. 2008, pp. 765-774.

 144

[34] A. Zisman, G. Spanoudakis, and J. Dooley, “A Framework for Dynamic Service Discovery”,
In Proceedings of the 2008 23rd IEEE/ACM international Conference on Automated
Software Engineering, Washington, DC, Sep. 2008, pp. 158-167.

[35] Y. Zhang and J. B. D. Joshi, “A Framework for User Authorization Query Processing in
RBAC extended with Hybrid Hierarchy and Constraints”, ACM symposium on access
control models and technologies (SACMAT-08), Jun. 2008, Estes Park, CO.

[36] S. Du, and J. B. D. Joshi, “Supporting Authorization Query and Inter-domain Role Mapping
in Presence of Hybrid Role Hierarchy,” The 11th ACM Symposium on Access Control
Models and Technologies, USA, June 2006.

[37] Y. Zhang and J. B.D. Joshi, “Role Based Domain Discovery in Decentralized Secure
Interoperations”, 2010 Collaborative Technologies and Systems (CTS-10), May. 2010,
Chicago, IL.

[38] H. Hu, and G. Ahn, “Enabling verification and conformance testing for access control
model: In Proceedings of the 13th ACM Symposium on Access Control Models and
Technologies (SACMAT '08), Estes Park, CO, USA, Jun. 2008, pp. 195-204.

[39] V. C. Hu, D. R. Kuhn, and T. Xie, “Property Verification for Generic Access Control
Models”, 2008 IEEE/IFIP International Conference on Embedded and Ubiquitous
Computing, 2008, pp. 243-250.

[40] R. Bhatti, A. Ghafoor, E. Bertino, and J. B. D. Joshi, “X-GTRBAC: an XML-based policy
specification framework and architecture for enterprise-wide access control”, ACM Trans.
Inf. Syst. Secur. 8, 2 (May. 2005), 187-227.

[41] R. Sandhu, “Role Hierarchies and Constraints for Lattice-Based Access Controls”,
Proceedings of Fourth European Symposium on Research in Computer Security
(ESORIC’96), Rome, Italy.

[42] S. Piromruen, J. B. D. Joshi, “An RBAC Framework for Time Constrained Secure
Interoperation in Multi-domain Environment,” IEEE Workshop on Object-oriented
Real-time Databases (WORDS-2005), 2005.

[43] M. Shehab, E. Bertino, and A. Ghafoor, “SERAT: SEcure role mApping technique for
decentralized secure interoperability”, In Proceedings of the Tenth ACM Symposium on
Access Control Models and Technologies (SACMAT '05) Stockholm, Sweden, Jun. 2005,
pp. 159-167.

[44] B. Lampson, “A note on the confinement problem”, Communications of the ACM, Vol. 16,
No. 10, Oct. 1973, pp. 613-615.

 145

[45] G. Graham, P. Denning, “Protection – Principles and Practice”, In Proceeding of Spring
Joint Computer Conference, AFIPS Press, 1972.

[46] R. Sandhu, and P. Samarati, “Access Control: Principles and Practice”, IEEE Computer,
Sep. 1994, pp. 40-48.

[47] D. Denning, “A Lattice Model of Security Information Flow”, Communications of the ACM,
Vol. 19, 1976, pp. 236-243.

[48] J. Gray, “Toward a Mathematical Foundation for Information Flow Security”, In
Proceedings of the 1991 IEEE Symposium on Research in Security and Privacy, IEEE
Computer Society Press, 1991.

[49] R. Sandhu, “Lattice-based Enforcement of Chinese Walls”, Computer and Security, Vol. 11,
No. 8, Dec. 1992, pp. 753-763.

[50] J. D. Mclean, “Security Models and Information Flow”, in Proceedings of 1990 IEEE
Symposium on Security and Privacy, Oakland, CA, 1990, pp. 180-187.

[51] D. D. Clark, D.R. Wilson, “A Comparison of Commercial and Military Computer Security
Policies”, IEEE Symposium on Security and Privacy, 1987, pp. 184-194.

[52] R. Sandhu, “Separation of Duties in Computerized Information Systems”, In Database
Security IV: Status and Prospects. Elsevier North-Holland, Inc., New York, 1991, pp.
179-189.

[53] M. Nyanchama, S. L. Osborn, “Role-Based Security, Object-Oriented Databases and
Separation of Duty”, SIGMOD Rec. 22, 4, Dec. 1993, pp. 45-51.

[54] M. Nyanchama, S. L. Osborn, “The Role Graph Model and Conflict of Interest”, ACM
Transactions on Information and System Security, Vol. 2, No. 1, 1999, pp. 3-33.

[55] J. B. D. Joshi, W. G. Aref, A. Ghafoor, E. H. Spafford, "Security models for web-based
applications" , Communications of the ACM, 44, 2 (Feb. 2001), Page 38-44.

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	Table 2. 1. Hierarchical Operations in SARBAC-RHA
	Table 2. 2. User-Role operations in SARBAC-URA
	Table 4. 1. Results of each step of Role-Mapping-1
	Table 4. 2. Results of each step of Role-Mapping-2a
	Table 4. 3. Results of each step of Role-Mapping-2b
	Table 4. 4. Example of using Simplify()
	Table 4. 5. Hierarchical Operations in SARBAC-HH
	Table 4. 6. Success conditions for operations involved in the Policy Integration component.
	Table 4. 7. An example test case of GTRBAC Implementation

	LIST OF FIGURES
	Figure 2. 1. Constraints and hierarchy in RBAC
	Figure 2. 2. Number of permission assignments in (a) RBAC and (b) non-RBAC
	Figure 2. 3. A Simple Role Hierarchy
	Figure 2. 4. Derived relations in a hybrid hierarchy
	Figure 2. 5. Example of (a) Cyclic inheritance conflict; (b) Violation of SoD
	Figure 3. 1. An example of the cyclic inheritance conflict in a tightly-coupled environment
	Figure 3. 2. An example of the violation of SoD in a tightly-coupled environment
	Figure 3. 3. An example of the cyclic inheritance conflict in a loosely-coupled environment
	Figure 3. 4. An example of the violation of SoD in a loosely-coupled environment
	Figure 4. 1. Interaction and data flow among the components
	Figure 4. 2. User Authorization Query Model
	Figure 4. 3. An example RBAC policy to show the role mapping algorithms
	Figure 4. 4. The algorithm to solve role mapping problem 1
	Figure 4. 5. Algorithm for the role mapping problem 2(a)
	Figure 4. 6. The algorithm to solve the role mapping problem 2(b)
	Figure 4. 7. Role-Mapping(R, PRQ)
	Figure 4. 9. the algorithm to build the proof for a single role
	Figure 4. 10. the algorithm to build the proof for a set of roles
	Figure 4. 11. Simplify() Algorithm
	Figure 4. 12. algorithm to simulate a multi-domain environment
	Figure 4.13 Effect of |A.R| when (|B.R|, |A.R|)=(1,1)
	Figure 4.14 Effect of |A.R| when (|B.R|, |A.R|)=(1,2)
	Figure 4.15 Effect of |A.R| when (|B.R|, |A.R|)=(1,3)
	Figure 4.16 Effect of |A.R| when (|B.R|, |A.R|)=(1,4)
	Figure 4.17 Effect of |B.R| when (|B.R|, |A.R|)=(1,1)
	Figure 4.18 Effect of |B.R| when (|B.R|, |A.R|)=(2,1)
	Figure 4.19 Effect of |B.R| when (|B.R|, |A.R|)=(3,1)
	Figure 4.20 Effect of |B.R| when (|B.R|, |A.R|)=(4,1)
	Figure 4.21 Effect of both when (|B.R|, |A.R|)=(1,1)
	Figure 4.22 Effect of both when (|B.R|, |A.R|)=(2,2)
	Figure 4.23 Effect of both when (|B.R|, |A.R|)=(3,3)
	Figure 4. 13. Comparison of |A.R| when (|B.R|, |A.R|)=(1,1)
	Figure 4. 14. Comparison of |A.R| when (|B.R|, |A.R|)=(1,2)
	Figure 4. 15. Comparison of |A.R| when (|B.R|, |A.R|)=(1,3)
	Figure 4. 16. Comparison of |A.R| when (|B.R|, |A.R|)=(1,4)
	Figure 4. 17. Comparison of |B.R| when (|B.R|, |A.R|)=(1,1)
	Figure 4. 18. Comparison of |B.R| when (|B.R|, |A.R|)=(2,1)
	Figure 4. 19. Comparison of |B.R| when (|B.R|, |A.R|)=(3,1)
	Figure 4. 20. Comparison of |B.R| when (|B.R|, |A.R|)=(4,1)
	Figure 4. 21. Comparison of |A.R|, |B.R| when (|B.R|, |A.R|)=(1,1)
	Figure 4. 22. Comparison of |A.R|, |B.R| when (|B.R|, |A.R|)=(2,2)
	Figure 4. 23. Comparison of |A.R|, |B.R| when (|B.R|, |A.R|)=(3,3)
	Figure 4. 24. the use of access role and hybrid hierarchy to facilitate interoperation
	Figure 4. 25. Using access role to prevent (a) cyclic inheritance conflicts; (b) violations of SoD
	Figure 4. 26. Administrative Scope in SARBAC and SARBAC-HH
	Figure 4. 27. Parameters in AddRole
	Figure 4. 28. The ChangeEdge operation won’t succeed
	Figure 4. 29. An example standard hierarchy
	Figure 4. 30. Access control system in the individual domain
	Figure 4. 31. The proposed GTRBAC engine

	PREFACE
	1.0 INTRODUCTION
	2.0 BACKGROUND AND RELATED WORK
	2.1 ACCESS CONTROL MODELS IN SINGLE DOMAIN SYSTEMS
	2.1.1 Role Based Access Control (RBAC)
	2.1.2 Hybrid Hierarchy
	2.1.3 Generalized Temporal Role Based Access Control (GTRBAC)
	2.1.4 Role-based Administrative Models

	2.2 SECURE INTEROPERATION IN MULTIDOMAIN ENVIRONMENTS
	2.2.1 Global Policy Based Approaches
	2.2.2 Trust Management Approaches in Multidomain Environments
	2.2.3 Tightly and Loosely-Coupled Environments

	3.0 ACCESS CONTROL CHALLENGES IN LOOSELY-COUPLED ENVIRONMENTS
	3.1 TIGHTLY-COUPLED ENVIRONMENTS
	3.2 LOOSELY-COUPLED ENVIRONMENTS

	4.0 THE PROPOSED ACCESS CONTROL AND TRUST MANAGEMENT FRAMEWORK
	4.1 OVERVIEW
	4.2 THE ROLE MAPPING COMPONENT
	4.3 THE TRUST MANAGEMENT COMPONENT
	4.3.1 A Motivational Example
	4.3.2 The Simplify() Algorithm
	4.3.3 Proof Engine
	4.3.4 Evaluation

	4.4 THE POLICY INTEGRATION COMPONENT
	4.4.1 Policy Integration
	4.4.2 Administrative Model

	4.5 PROTOTYPE

	5.0 CONCLUSION AND FUTURE WORK
	BIBLIOGRAPHY

