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An understanding of fundamental reaction dynamics is an important problem in chemistry.  In 

this work, experimental and theoretical methods are combined to study the dynamics of 

fundamental chemical reactions.  Molecular collision and dissociation dynamics are explored 

with the Penning ionization of amides, while charge transfer reactions are examined with charge 

transport in organic thin film devices.   

Mass spectra from the Penning ionization of formamide by He*, Ne*, and Ar* were 

measured using molecular beam experiments.  When compared to 70eV electron ionization 

spectra, the He* and Ne* spectra show higher yields of fragments resulting from C!N and C!H 

bond cleavage, while the Ar* spectrum only shows the molecular ion, H-atom elimination, and 

decarbonylation.  The differences in yields and observed fragments are attributed to the 

differences in the dynamics of the two ionization methods.  Fragmentation in the Ar* spectrum 

was analyzed using quantum chemistry and RRKM calculations.  Calculated yields for the Ar* 

spectrum are in excellent agreement with experiment and show that 15% and 50% of the yields 

for decarbonylation and H-atom elimination respectively are attributed to tunneling 

The effects of defects, traps, and electrostatic interactions on charge transport in 

imperfect organic field effect transistors were studied using course-grained Monte Carlo 

simulations with explicit introduction of defect and traps.  The simulations show that 

electrostatic interactions dramatically affect the field and carrier concentration dependence of 
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charge transport in the presence of a significant number of defects.  The simulations also show 

that while charge transport decreases linearly as a function of neutral defect concentration, it is 

roughly unaffected by charged defect concentration.  In addition, the trap concentration 

dependence on charge transport is shown to be sensitive to the distribution of trap sites.   

Finally, density functional theory calculations were used to study how charge localization 

affects the orbital energies of positively charged bithiophene clusters.  These calculations show 

that the charge delocalizes over at least seven molecules, is more likely to localize on “tilted” 

molecules due to polarization effects, and affects molecules anisotropically.  These results 

suggest that models for charge transport in organic semiconductors should be modified to 

account for charge delocalization and intermolecular interactions.   
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1.0  INTRODUCTION: PENNING IONIZATION AND ION FRAGMENTATION OF 

AMIDES 

1.1 THE PENNING IONIZATION REACTION 

Penning ionization (PI) is a form of chemi-ionization that proceeds through the following:  

 

 A* + BC ! [ABC]* ! [ABC]+ + e- (1)  

  

where A* is an excited species and BC is a ground state target species.  When A* and BC collide, 

they form the activated complex [ABC]*.   If the frontier orbitals of A* and BC have similar 

energy and symmetry, they will overlap and a valence electron from BC will be extracted by A*.  

If the excitation energy of A* exceeds the ionization energy of BC, then the excited electron is 

ejected, leading to the formation of the activated complex [ABC]+.  [ABC]+ may undergo any of 

the following:   

 [ABC]+ ! A + BC+ (Penning ionization) (2a) 

 [ABC]+ ! ABC+ (Associative ionization) (2b) 

 [ABC]+ ! AB + C+ (Rearrangement ionization) (2c) 

 [ABC]+ ! A + B + C+ (Dissociative ionization) (2d) 
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The fate of [ABC]+ depend on the dynamics of initial collision.  There has been a small 

debate over what should be considered “Penning ionization”; traditionally the first of the reaction 

products is considered to be the Penning ionization reaction.  However, it has been argued that 

the Penning ionization reaction should be defined as the entire chemi-ionization process itself.1 

For the sake of this discussion, the formation of A and BC+ will be referred to as Penning 

ionization, since it is the focus of this work.  The molecular ion formed in this reaction, BC+ may 

decompose into smaller fragments depending on the amount of excess energy it has after 

ionization.   

The year 2007 marked the 80th anniversary of the discovery of this process by Frans M. 

Penning during his studies of the breakdown of neon and argon gas discharges in the presence of 

impurities.2 He implicated the metastable states of these noble gas atoms as the culprits for this 

process.  This discovery came at an important time in the history of chemistry and physics, in the 

midst of the quantum revolution.  Penning was one of the first to suggest that there are some 

electronically excited states that cannot radiate to the ground state.  This hypothesis, coupled 

with the observation of “missing” transitions in atomic line spectra led to the derivation of 

“selection rules” to explain allowed and forbidden electronic transitions.   For these reasons, 

Penning’s discovery has made a major contribution to quantum theory.   

1.2 THE PENNING IONIZATION MECHANISM 

The mechanism of Penning ionization can be described using a “two potential” model which is 

illustrated in Figure 1.1.  This model is a classical treatment of Penning ionization as presented 

by Miller in a 1970 paper.3 This model is based on the Born-Oppenheimer approximation, which 
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allows for the nuclear and electronic motion to be separated at a fixed separation of two or more 

nuclei.  In this model, V0(r) is a potential energy function that describes the A* + R system, 

where A* is an excited state atom and R is a target species.  V+(r) is the potential energy function 

that describes the A + R+ system where A is the ground state atom and R+ is the ionized target.  

Both functions depend on r, which is the distance between A* and the center of mass of R (if R is 

a molecule).   Figure 1.1 shows the situation in which the ionization energy of R is less than the 

excitation energy of A*.  In this case, V+(r) is the lower bound of a continuum of potential energy 

states for the A + R+ + e- that take the form of V+(r) + !, where ! is the energy of the ionized 

electron.  At any fixed distance r, V0(r) is embedded in this continuum of states.  The decay of 

the discrete electronic state of V0(r) into this continuum of states is facilitated by an imaginary 

component of V0(r) denoted "(r), the resonance width, which arises due to degeneracy of the 

incoming state with a state in the continuum.  This decay into the continuum via "(r) is what 

causes Penning ionization.  It should also be noted that as r approaches infinity, "(r) approaches 

zero.  This means that Penning ionization is less likely to occur at large distances. 
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Figure 1.1.  The two potential model for Penning ionization 

 

There are other features of this model, which should be noted.  The energy "0 is the 

difference between the asymptotes of V0(r) and V+(r) and is also equal to the excitation energy of 

A* less the ionization energy of R.  E0 is the kinetic energy of the center of mass for the collision.  

E(r) is the classical kinetic energy of the colliding heavy particles at distance r and includes the 

centrifugal energy of the system. The final term, !(r), is the kinetic energy of the ejected Penning 

electron at distance r.   If the kinetic energy of the Penning electron is sufficiently large (or if the 

well in the V+(r) potential function is sufficiently deep), the complex AR+ may not be able to 

break up into A + R+, resulting in associative ionization.  It is also important to note that if R is 

molecular (as it is in this study) all of the curves in Figure 1 become multi-dimensional surfaces, 

which further complicates the model.   
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1.3 LITERATURE REVIEW 

The majority of Penning ionization studies focus on understanding its dynamics in terms of 

molecular collisions.  However, as the size of the target molecule grows, the intermolecular 

potential surfaces (IPES) become more complex due to their dependence on the conformation of 

the molecule.  Because of this, Penning ionization studies must either take these into account, 

either by using multi-dimensional methods or by shifting towards more statistical and analytical 

endeavors.   

In the proceeding sections, synopses of three related areas are presented.  First, a short 

history of molecular beam studies of the Penning ionization reaction is presented; a more 

extensive review was published by Siska in 19934.  Next, the history of applications of Penning 

ionization to mass spectrometry is given.  Finally, a history of the study of unimolecular decay of 

molecular ions is presented.   

1.3.1 Molecular Beam Studies of Penning Ionization Dynamics 

Molecular beam studies of Penning ionization and related processes were begun in the 1960’s in 

order to gain insight into their dynamics.   A wide variety of experiments can be done using 

molecular beams; this section will focus on experiments that include mass analysis of the ions 

produced during the Penning reaction.   

 The most common measurements using mass analysis were to determine the total 

ionization cross section (QI) and branching ratios for different possible ionization pathways 

(QXI/QI, where XI is the type of ionization pathway), related to the signal collected at a certain 

mass and collision energy.    The total ionization cross section measures the probability of 
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ionization occurring when two species interact.  Branching ratios measure the fraction of the 

total ionization cross-section associated with a given ionization process. Angle energy 

distributions of ions were also measured using a mass analyzer that could be rotated to measure 

ionic products scattered at different angles.   

The measurement of QI using a beam apparatus goes back a 1962 paper by Sholette et 

al.5 In this study, QI was measured for 7 species (including Ar-Xe) using He* (21,3S), although 

they did not include mass analysis.  Since then, QI and QXI/QI have been measured on a variety 

of systems, mostly using He* (21,3S).  For example, QI and QAI/QI have been measured for atomic 

systems (only Penning ionization and associative ionization are possible for these systems); the 

most studied atom is H (D),6-7
 since it is the simplest atomic species to consider theoretically.  

For diatomic molecules, there are two more ionization channels possible, rearrangement 

ionization and dissociative ionization.  The most studied diatomic molecule is H2,8-9 although 

there are also a few studies on HD and other diatomic molecules.    There are also a handful of 

studies on triatomic and small organic molecules.  The total ionization cross section tends to 

increase with the surface area of the species and is larger for the 21S state than for the 23S state.  

These trends can be seen clearly in an article by Schmeltekopf et al.,10 who measured the 

quenching cross section for 18 species from noble gas atoms to small hydrocarbons for both spin 

states of He*.  There are fewer ionization cross-section studies that use Ne*11-14
 and other 

metastable atoms.  In all studies, Penning ionization has the highest ionization cross section of 

the possible ionization channels.   

Angle energy distribution measurements have also been done on very simple systems.  

Again, most of the measurements have been done with He* with very few done with Ne* and 

other metastable noble gases.  The targets that have been studied to date with He* are H (D),15-16  
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Ar,17-18 H2,19  N2,20  O2, CO,21 CO2, and CH4
22.  With Ne*, only H (D)23 and Ar have been 

studied.  These studies have found that the Penning ionization products are mostly scattered 

forward with respect to the target beam in the center of mass frame.   

There are alternative measurements to mass analysis, including Penning ionization 

electron spectroscopy (PIES)24-30, which measures the kinetic energy of the Penning electron, 

and non-reactive angular distribution (NAD) measurements31-34 that look at the decay of the 

[ABC]* complex back into reagents.  PIES spectra have improved over the years in terms of the 

resolution of vibrational states of the species in question.  PIES spectra also yield a great deal of 

information about the internal energy distribution of the Penning ion.  This aspect of PIES will 

play a major role in this study.  NAD measurements provide a great deal of information about the 

nature of V0(r) and dynamics of the Ng* + R system before ionization.   

1.3.2 Penning Ionization and Mass Spectrometry 

The application of Penning ionization to mass spectrometry has been limited and still remains in 

the realm of academia.  A few early studies of Penning ionization as an ion source in mass 

spectrometry looked mainly at the yields of the Penning ion and its fragments35-36.  The ion 

sources in these studies did not always separate ions formed from Penning ionization from those 

that may have been formed in the process of forming the metastable atoms.   In 1993, Bertrand 

and co-workers37 first illustrated the application of Penning ionization to mass spectrometry 

using a separate metastable atom source. This article was also the first to refer to the use of 

Penning ionization in analytical mass spectrometry as metastable atom bombardment (MAB).   

In this report, MAB mass spectra were taken of anisole and 2-butanone using He*-Kr* produced 

by passing a corona discharge through a noble gas beam.   It was shown that by knowing the 
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ionization potentials and appearance potentials of the analyte along with excitation energies of 

the metastable noble gases, one could control the degree of fragmentation.  It was also shown 

that one could selectively ionize an analyte in a mixture by using a metastable atom with the 

appropriate excitation energy comparing Ne* and Kr* MAB spectra of a 2:1:1 

phenol/water/acetonitrile mixture.  This study first showed that MAB mass spectrometry 

provides more versatility than electron impact without sacrificing sensitivity.  Since then, only a 

few articles that applied MAB to analytical problems have appeared38-45.  

However there are virtually no studies on the MAB mass spectra of a homologous series 

of organic molecules.  Only one report by Hiraoka et al. seems to study this46.  In this report an 

atmospheric pressure negative corona metastable atom source was used to study a series of 

hydrocarbons (C5 – C8).  It was observed that the molecular ion (M+#) intensity increased with 

the size of the carbon chain in He* spectra.  In pentane through heptane, the (M – H)+# was the 

most intense peak.  However in the octane spectrum, the M+# peak is more intense than the  

(M – H)+# peak.  Also, it was shown that the intensity of the M+# peak of octane decreased in the 

order of He* - Kr* (it was not visible in the Kr* spectrum).  There was however an increase in 

fragmentation.  These observations were attributed to the lifetimes of the molecular ion; if the 

lifetimes are long enough, they can undergo collisional deactivation in the atmospheric pressure 

ion source.   

 

1.3.3 Unimolecular Decay of Radical Cations 

In order to gain a theoretical understanding of what is observed in a mass spectrum, one has to 

examine the unimolecular kinetics of the radical cation in question.  The use of unimolecular 
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kinetics to study gas phase molecular ion fragmentation was reviewed in a set of papers in 

volume 118 of the International Journal of Mass Spectrometry and Ion Processes in 1992 in back 

to back articles.  The first article, written by Lifshitz47 discussed the use of RRKM/QET to 

describe a variety of processes, including molecular ion decomposition.  The second article by 

Radom48 outlined the use of computational chemistry methods used to describe the chemistry of 

gas phase ions.  He discussed the calculation of such properties as heats of formation, transition 

states, and vibrational frequencies using various levels of theory, which are valuable in the 

theoretical interpretation of mass spectra.  Since then, few articles have been published on 

computational studies of the unimolecular kinetics of gas phase ions; some not directly related to 

mass spectrometry experiments.  Most molecular ions studied were radical cations of organic 

molecules.  The next two studies found in the 1990’s were by Ruttink et al. in 199549 and 

McAdoo et al. in 199850.  The Ruttink paper discussed the decarbonylation of formamide and 

will be discussed in more detail later.  The McAdoo paper discussed the unimolecular 

decomposition of the propane radical cation.  The transition states and vibrational frequencies 

connected with the elimination of a hydrogen atom, methyl radical, and methane were calculated 

using QCISD(T) and UMP2 levels of theory.  This information was used to calculate the rate 

constants and reaction profiles for the formation of these fragments and their corresponding ionic 

byproducts as a function of internal energy using RRKM theory with a correction for tunneling.     

In the present century, two computational studies that include RRKM analysis of the 

thiomethane radical cation appeared six years apart51-52.  Also, an article on the decomposition of 

the ethanol radical cation was published in 200653 that also included RRKM analysis.  Recently, 

an article appeared in Science that discussed the dynamics of different conformations of the 

propanal cation,54 but did not include RRKM analysis.  There have also been a few studies 
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directly related to mass spectrometry experiments55-58, however none of these studies include 

RRKM analysis.  None of the studies mentioned go so far as to predict the ion yields in a mass 

spectrum using RRKM theory.   

1.4 PROJECT DESCRIPTION 

The metastable atom bombardment mass spectra of formamide (HCONH2) and acetamide 

(CH3CONH2) were examined.  Amides were chosen for study because of their importance in 

biological systems as well as their chemical properties.  Also, these molecules have not been 

studied using MAB mass spectrometry.  The amide functional group (RCONR2) contains an 

O$C!N linkage, a very unique connection of carbon and the two most important heteroatoms in 

organic chemistry.  This linkage also provides amides with a delocalized pi system, which makes 

them the least reactive of the carboxylic acid derivatives.  The amide linkage, because of its 

stability, plays a crucial role in biological systems since it is how amino acids polymerize to 

form polypeptides and proteins.  Therefore the amide C!N bond can be viewed as the simplest 

version of a peptide linkage.  

The MAB spectra will be compared with available electron impact mass spectra, to see if 

there is any difference in the fragmentation of formamide and acetamide between the two 

ionization methods.  In particular, selective bond cleavage was examined.   The key competition 

between bond cleavages is the C!N and C!H(C) bonds.  Fragmentation that does not require 

hydrogen atom loss in amides can make MAB mass spectrometry of amides a precursor to MAB 

mass spectrometry of polypeptides and proteins.  If MAB mass spectra show a higher propensity 
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for C!N and bond cleavage than for electron impact mass spectra, it may be very useful in 

sequencing polypeptide chains.  

MAB mass spectrometry is also a good place to apply the theory of mass spectrometry.  

The degree of fragmentation depends on the amount of excess energy available after ionizing the 

target species.  In MAB mass spectrometry, the amount of energy available for fragmentation is 

the excitation energy of the noble gas atom less the ionization energy of the target, since all of 

the excitation energy of the noble gas atom is transferred to the molecule.  For electron impact, 

this energy excess is not well defined, since the electrons have a lower energy transfer efficiency 

that can vary between measurements.  The energy deposition functions for these molecular ions 

were determined using their corresponding Penning ionization electron spectra (PIES).   

Also needed are the rate constants for the decay of the molecular ion into fragments, 

which can be calculated using unimolecular kinetics (RRKM theory).  The rate constants are 

determined using vibrational frequencies and barrier heights from first principles quantum 

chemistry calculations.      These calculations along with the energy deposition function are used 

to produce a theoretical mass spectrum that is used to help interpret the experimental MAB 

spectra. The last step of these calculations has not been performed with studies of radical cations, 

mainly because the energy deposition function is difficult to determine for other methods of 

ionization in mass spectrometry.  This makes this study unique since it is one of the few studies 

of the MAB spectra of a homologous series of molecules that includes a full theoretical treatment 

of the radical cation decomposition that predicts a mass spectrum.   
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2.0  EXPERIMENTAL: MOLECULAR BEAM EXPERIMENT 

2.1 THE VACUUM SYSTEM 

All mass spectra were collected using a crossed beam apparatus modeled from the “beam 

machine” of Y.T. Lee.59 Figure 2.1 shows a top down view of the chambers of the apparatus and 

Figure 2.2 is a detailed schematic of the experimental setup.  The apparatus was encased in a  

42 x 37 x 26 inch stainless steel chamber.  Two adjacent faces of the main chamber housed the 

buffer chambers in which the supersonic beam sources sat.  The main chamber also housed the 

effusive beam source and the detector assembly.  One side of the main chamber was a removable 

aluminum door for maintenance.  The roof of the chamber was also removable and contained a 

sprocket and chain mechanism, which allowed for the detector assembly to be rotated.  Both the 

door and lid had o-ring seals. 

The main chamber, buffer chambers and beam sources were kept under high vacuum 

using separate diffusion pumps (Varian VHS model series).  The foreline pressures of the 

diffusion pumps were kept at around 0.1 torr using mechanical pumps (Welch 1375).  The 

mechanical pumps were also used to put the chambers under “rough vacuum” before they are 

introduced to the diffusion pumps.   The pressure of each chamber and beam source was 

measured using Granville Phillips (Series 274) ion gauges.  Under experimental conditions the 
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pressures in the main chamber, buffer chambers and nozzle chambers read between 10-6 - 10-8, 

10-5 - 10-6, and 10-3 - 10-4 torr respectively.   

 

 

 

Figure 2.1. Top down schematic of the vacuum system for the crossed beams apparatus 
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Figure 2.2. Crossed beam experimental set-up. 
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2.2 BEAM SOURCES 

2.2.1 Metastable Noble Gas (Ng*) Beam Source 

The metastable atoms are produced by electron impact on a supersonic noble gas beam. The 

noble gases were purchased from Valley National Gasses (He 99.997% purity), Air Products (Ne 

99.99% purity), and Matheson (Ar, 99.999% purity).   The supersonic beam was formed by 

expanding gas from a high-pressure reservoir through a through a 0.08mm orifice and a 

skimmer, into the low-pressure buffer chamber.  As the gas expands, the random translational 

motion of the atoms is converted into forward motion.  The result is a beam with a high and 

narrow velocity distribution.  

 The supersonic noble then traveled through the electron gun.  The noble gas beam first 

meets a set of parallel plates.  One of these plates is grounded, the other is “floating” on ceramic 

spacers that keep it ungrounded.  This plate acts as a deflector and is biased at -500V with a 

Hewlett Packard (HP) model 6448D power supply.  Next, the beam travels through a grounded 

tungsten mesh electrode and then a tungsten filament; which provides the electron impact source.  

The filament was connected in series with a 2 k% resistor, biased at -500 V and  “floating” on 

ceramic spacers.  The filament current was supplied by a HP model 6282A power supply.  An 

emission current is generated between the tungsten mesh electrode and the filament and this 

electron beam is what is used for electron impact.  The electron beam is directed anti-parallel to 

the noble gas beam.  The deflector keeps the electron beam from traveling into the nozzle of the 
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beam source, where it may cause residual pump oil to polymerize and clog the nozzle.   A 

custom-built emission current regulator regulated the emission current.  

The beam then passes through another set of parallel plates similar to the previously 

described set.   This deflector removes ions and electrons created in the impact process before 

the beam finally exits the gun through a slit.  The distance from the exit slit of the electron gun 

and the exit point of the primary buffer chamber was about 1cm.  The resulting beam now 

contains metastable noble gas atoms and a few Rydberg atoms mixed in a ground state neutral 

noble gas beam.  The populations and excitation energies of the metastable states for each noble 

gas are given in Table 2.1.  Note that the beam populations were measured for this particular 

beam source only and the populations may vary in other beam sources in different laboratories.  

The metastable beam current is measured using a Faraday cup, which is made of copper and is 

coated with aquadag (graphite in a mixture of organic solvents).  The metastable beam strikes the 

graphite layer, producing ions via Penning ionization.  The ion current produced in this reaction 

is directly related to the strength of the metastable beam and is measured using a Keithley Model 

416 picoammeter.   

 

 

Table 2.1. Metastable Noble Gas Beam Source Conditions 

Noble Gas Electronic State Excitation Energy4 (eV) Beam Populations60, a 

He 23S 
21S 

19.8696 
20.6198 

0.11 
 

Ne 3P2 
3P0 

16.6193 
16.7156 

3.35 

Ar 3P2 
3P0 

11.5484 
11.7232 

2.97 

 
                                                 

a For He*: 23S / 21S, for Ne*and Ar*: 3P2 / 3P0 
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2.2.2 Effusive Beam Source for Amide Samples 

The effusive beam source was constructed of copper tubing, and stainless steel flexible tubing.   

The Ultratorr fittings used to connect the tubing were made of stainless steel and brass and o-ring 

seals.  Starting from beam crossing, the nozzle was constructed from 1/8 inch copper tubing that 

was flattened on one end.  The nozzle was then connected to a flexible tube and a & inch copper 

line that ran the length of the main chamber parallel to the metastable beam source.  The flexible 

tube allowed for the nozzle to be adjusted so that the target beam intersects the metastable beam 

at a right angle.  The copper line was then connected to an external manifold via a stainless steel 

feed thru.  A toggle valve on the external manifold was used to isolate the external and internal 

components of the beam source.  This valve was left open during a background scan.   

The external manifold was equipped with vent and pump lines that were connected to a & 

inch diameter copper line via “t junctions”.  This copper line ran perpendicular to the internal 

line.  A flexible tube connected the copper line to a second toggle valve that separated the sample 

vapor from the rest of the manifold.  Another flexible tube connected the manifold to a barostat 

via a ball joint and O-ring seal.  The barostat held the sample at a constant pressure and was 

equipped with a heating element sealed in an evacuated space between the sample tube and the 

outside wall.  The amide samples were purchased from Acros Organics (formamide and 

acetamide purity was 99.5% and 99% respectively) and were used without further purification 
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2.3 ION EXTRACTION, DETECTION, AND MASS ANALYSIS 

The ion extraction assembly was similar to that used in a previous study.9 The ionic products of 

the Penning ionization reaction were accelerated toward a grounded electrode by an ion extractor 

plate biased at +60 V.  The ions have an energy of +30 eV as they reach the grounded electrode.  

After passing through the grounded electrode, the ions passed through a series of 3 element 

lenses that focused the ions toward the quadrupole mass filter.  The quadrupole was biased at 

+20 V to slow the ions to a kinetic energy of 10 eV.  Lambda LPD model series power supplies 

powered the ion extractor and lenses voltage(s) as well as the quadrupole bias.  The quadrupole 

was also home built; it measured ' x 9 inches, and was controlled by an Extranuclear power 

supply and controller.   

After the ions traveled through the mass analyzer, they went through another series of 

lenses (powered by a Power Designs model 2K20 high voltage power supply) that focused the 

ions into a scintillation detector similar to that designed by Daly in 196061.  The ions hit a “door 

knob” electrode set at -25kV using a Bertan model 605B high voltage power supply.   The 

impact of the ions on this electrode produces a secondary burst of electrons that impacts a sheet 

that is made of an organic phosphorescent material.  This impact produces a burst of photons that 

enter an EMI model 9524S photomultiplier tube.  The photomultiplier tube was powered by a 

Power Designs Inc. Model 1-2012 high voltage power supply.  The pulses of current from the 

photomultiplier tube passed through an Ortec model 9302 discriminator and amplifier and were 

counted by a Jorway model 1836 dual channel scaler and monitored by a Mech-tronics model 

775 counting rate meter.   
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2.4 DATA ACQUISITION 

Spectra were collected using a computer interface.  A QuickBasic program controlled the mass 

analyzer by commanding it to ramp through a preset mass range using a preset step size.  The 

step size was typically 0.1 amu.  At each step the program recorded the number of counts read 

from one channel of the dual channel scaler.  The mass scan was repeated several times to 

improve the signal-to-noise ratio of the spectrum.  The number of counts for each step was 

summed over the number of scans.  The program also showed a graphical representation of the 

data and could also write a text file that included experimental settings as well as the data.    The 

text file could then be modified and analyzed using Microsoft Excel or other data analysis 

programs.   

Each experiment required the collection of four spectra, the background and  

background + signal, each at both low and high resolution.  High-resolution spectra were 

recorded with the condition that all observed product masses were baseline resolved, while low 

resolution spectra were recorded with the condition that the parent ion peak was at its highest 

intensity.  The low-resolution condition generally resulted in peak widths of around 4 amu.  The 

set of spectra was used to account for the mass dependent transmission of analyzer at high 

resolution.  
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3.0  PENNING IONIZATION AND ION FRAGMENTATION OF FORMAMIDE BY 

HE*-AR*b 

3.1 INTRODUCTION 

In this chapter, the first measurements of the mass spectra generated by thermal energy 

Penning ionization (PI) of formamide using He*, Ne*, and Ar* metastable atoms are presented.    

In the next section, the data reduction process is discussed and the resulting mass spectra are 

presented.   This is followed by a thermodynamic assessment of open fragmentation channels in 

the Ng* + HCONH2 system.  Finally, the analysis of the fragmentation in the Ar* + HCONH2 

system using tunneling corrected RRKM theory along reaction paths generated using quantum 

chemistry calculations is outlined and discussed.   

 

3.2 DATA REDUCTION AND MASS SPECTRA 

Quantitative ion abundances were extracted from the experimental mass spectra by least squares 

simulations of the background subtracted spectra at high and low resolution.  This analysis 

                                                 

b Based on published work62 
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employed Gaussian peak shape functions, which were found to represent the high-resolution 

peak shapes closely.  However, to simulate the low-resolution peak shapes, flat-topped peaks 

with Gaussian wings replaced the Gaussians.  Simulation of the high-resolution peaks allowed 

for the determination of all m/z produced along with the relative intensities of each m/z within a 

group of peaks (within a 5 amu range).  Optimized Gaussian peak-widths differed from one 

group of peaks to another but were held constant within the grouping itself.  The problem of peak 

overlap is resolved by the modeling and the abundances of the mass peaks are proportional to the 

least squares Gaussian amplitudes.   

The corresponding low-resolution spectrum was simulated by retaining the relative 

intensities obtained by the high resolution fit and varying only the relative intensities of the 

clusters of mass peaks themselves.  The abundances obtained from these fits are taken to be the 

final values.  Error bars for the fits are determined by the statistical noise in the original data with 

the allowance for imperfect modeling and transmission variation within a cluster of mass peaks.  

Figures 3.1-3.3 show representative raw, background subtracted, and fitted spectra for each  

Ng* + HCONH2 reaction studied.   
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Figure 3.1.  Simulation of He* + HCONH2 Spectra.  a.) Raw low resolution spectra, b.) Background subtraction and 
least squares fit for low resolution spectrum, c.) Raw high resolution spectra, d.) Background subtraction and least 
squares fit for high resolution spectrum.   
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Figure 3.2.  Simulation of Ne* + HCONH2 spectrum. a.) Raw low resolution spectra, b.) Background subtraction 
and least squares fit for low resolution spectrum, c.) Raw high resolution spectra, d.) Background subtraction and 
least squares fit for high resolution spectrum.   
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Figure 3.3. Simulation of Ar* + HCONH2 Spectrum.  .) Raw low resolution spectra, b.) Background subtraction and 
least squares fit for low resolution spectrum, c.) Raw high resolution spectra, d.) Background subtraction and least 
squares fit for high resolution spectrum.   
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For each analysis, the least squares program gave three output files.  The “data” output 

file contained the raw and background subtracted spectra as well as the simulated spectra.  The 

“parameter” output file contained the parameters used for least squares fitting as well as the 

resulting number of counts for each peak. The “stick” output file contained the final results of the 

fitting and included the relative abundances for each m/z with the highest peak normalized to 

unity.  This file was used to plot the spectra as histograms.  Figure 3.4 show representative 

spectra for each Ng* + HCONH2 reaction studied.  The 70 eV electron impact (EI) spectrum 

from the NIST Webbook63 is included for comparison.   

The determination of the final ion yields were done by comparing the relative abundances 

for each collected data set (see Appendix A).  Peaks that resulted from the noble gas Rydberg 

ions were omitted from this analysis since they were not the result of Penning ionization.  Also 

not included in this analysis was the isotopic m/z 46 peak, m/z values that had relative 

abundances that fell below 1% or whose relative abundances had a large standard deviation  

(> +10).  The m/z values that had large standard deviations were generally peaks that 

corresponded to peaks observed in both the background and background + signal spectra.  The 

ion yields were then calculated from the number of counts given in the parameter output files.   

Table 3.1 gives the percent yields for the product ions; included are the yields from the 

70 eV electron ionization (EI) mass spectrum from the NIST webbook for comparison.  Again, 

relative abundances and yields resulting from the ionization of Rydberg atoms (Ng**) are not 

reported since they do represent open channels resulting from Ng* reactions nor do they bear any 

necessary abundance relations to these reactions.  The assignment of the mass peaks is a result of 

the thermochemistry calculations described in Section 3.4   
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Figure 3.4.  Mass spectra for Ng* + HCONH2.  The 70 eV EI spectrum (top) is included for comparison. 
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Table 3.1. Percent Yields for Ng* + HCONH2. 

m/z Formula of Ionc He* Ne* Ar* 70 eV EI Spectrum 
12 †d - - - 0.1 
13 † - - - 0.1 
14 CH2

+ - - - 0.2 
15 CH3

+ - - - 0.5 
16 NH2

+ 7.5 + 1.5 2.9 + 1.6 - 5.0 
17 NH3

+• 11.5 + 1.9 21.4 + 0.7 5.4 + 1.5 13.4 
18 H2O+• 1.9 + 0.5 - - 2.8 
26 † - - - 0.5 
27 HCN+• - - - 3.1 
28 HCNH+ - 1.9 + 0.9 - 2.6 
29 HCO+ 15.7 + 1.3 24.5 + 1.9 0.7 + 0.3 14.1 
30 H2CO+• - - - 0.2 
42 OCN+ 0.8 + 0.7 - - 0.8 
43 OCNH+• 13.0 + 1.0 0.6 + 0.4 - 4.5 
44 CONH2

+• 18.0 + 1.2 25.0 + 1.1 6.0 + 0.6 10.2 
45 HCONH2

+• 31.6 + 1.4 23.7 + 1.3 87.9 + 0.6 41.1 
46 * e - - - 0.7 
47 *   - - 0.1 

 

3.3 PENNING IONIZATION TOTAL CROSS SECTIONS 

Unlike the case for many of the Penning ionization reactions involving small molecules studied 

in this laboratory, the reactions between He* - Ar* and HCONH2 is expected to have a relatively 

attractive intermolecular potential energy surface (IPES).  Experimental evidence of this comes 

from known PIES results for He* + HCONH2
64-65 which show a nearly uniform shift toward low 

electron energy (~ -0.3 eV) of all peaks that correspond to the valence levels.  In the two 

potential model of Penning ionization3, this is roughly equal to the attractive well depth of the 

                                                 

c Based on ionization/fragmentation endoergicities calculated in this work 
d Dagger indicates that the ionization/fragmentation endoergicity for an ion at that m/z was not evaluated in this 
work 
e Asterisk indicates m/z values corresponds to isotopic peaks 
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IPES.  Although the present IPES are also expected to be anisotropic, the results presented here 

are unlikely to be sensitive to such details.   

Our experiments do not yield absolute cross sections, but they can be estimated.  The 

spherically averaged long range attractive potential is of the form, 
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where R is the distance between Ng* and formamide.  C may be written as a sum of the 

dispersion and dipole-induced dipole terms, 
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C = CDisp + µ2" * (4) 

 

Here, µ and !* are the dipole moment of formamide and the polarizability of Ng* 

respectively.  The dispersion term (CDisp) is given by, 
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where I and ! are the ionization energies and polaraizabilites of the colliding species 

respectively.   

Assuming that ionization occurs for all collisions that surmount the centrifugal barrier for 

V(R) (i.e. “close” collisions), the maximum cross section is given by: 
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Here s is the number of atoms in the target molecule (s = 6 for formamide) and Erel is the relative 

kinetic energy of Ng* and formamide (Erel = 1 kcal/mol for this study).   

Table 3.2 lists the estimated cross sections for the Ng* + HCONH2 systems in this work.  

It should be noted that these cross sections are much larger than typical electron-ionization cross 

sections for organic molecules.66 This compensates for the weaker fluxes obtained in molecular 

beam studies.  Also note that V(R) approaches -0.3 eV for R=3.7 – 4.7 Å.  These distances are 

comparable to the largest impact parameters for which capture can occur.  

 

Table 3.2. Estimated total ionization cross sections for Ng* + HCONH2 

Ng* State CDisp (103 a.u.)f C (103 a.u.) Q(s=6) (Å2) 
He* 23S 1.56 2.24 221 
Ne* 3P2 0.948 1.35 187 
Ar* 3P2 1.46 2.46 218 

 

 

3.4 ION FRAGMENTATION ENERGETICS 

In order to identify the fragments whose masses are detected, one may examine the reaction 

endothermicities (#Hrxn, 298K) for all possible fragmentation pathways of the form, 

                                                 

f Input data for formamide are I = 10.226 eV, µ = 3.73 D, and # = 4.08 Å3.  The ionization energies and 
polarizabilites for Ng* can be found in Ref . 4.   
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 P ! D1 + D2
+ (7) 

 

Here, the molecular ion P is dissociating into two fragments, one neutral and one ionized.  

#Hrxn, 298K may be easily calculated from the standard enthalpies of formation (#Hf, 298K) for the 

fragments and for the molecular ion.  These values for the molecular ions and neutral fragments 

for the most part may be obtained from the NIST webbook.  For the ionized fragments, #Hf, 298K 

may be calculated by summing #Hf, 298K and the ionization energy (IE) of the neutral 

counterparts.  For fragments that do not have tabulated #Hf, 298K or IE data, #Hf, 298K may be 

calculated using quantum chemistry.  In this work, the CBS-QB367 method was used to calculate 

#Hf, 298K for such fragments.  This was done using the thermodynamic cycle outlined in Section 

A.2.   

From the reaction endothermicities, the reaction endoergicities (#E0K) may be evaluated.  

The usefulness of #E0 is twofold.  #E0 is needed in the RRKM calculations to define the reaction 

barrier shape.  Also, the beam sources that are used cool the reactants down to temperatures close 

to absolute zero, which “freezes out” vibrational degrees of freedom.  Therefore, to accurately 

compare the likelihood of observing certain fragments, #E0 is needed since it omits the thermal 

energy contribution.   

Internal energies (e.g. – #ET) are not tabulated, however they may be calculated using 

#HT. The definition of enthalpy ("H) is: 

 

 

! 

"H # "E + P"V  (8) 
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Using the ideal gas approximation, the reaction endothermicity ("HT) can be related to 

the reaction endoergicity ("ET) by: 

 

 

! 

"HT = "ET + "ngRT  (9) 

 

Here, #ng is the change in moles for the reaction; in most fragmentation channels studied 

here this value equals 1.  #ET is defined by: 

 

 

! 

"ET = NA v j# j
j
$ + "E0 (10) 

 

The first term is the thermal energy change.  vj is a stoichiometric coefficient for the 

reaction pathway and "j is given by: 

 

        

! 

" j = " t +" v +" r (11a) 

 

! 

" t =
3
2
RT  (11b) 

 

! 

" v =
hc ˜ # 

e$hc ˜ # $1
 (11c) 

 

! 

" r =
RT (Linear)
3
2
RT (Non # Linear)

$ 

% 
& 

' & 
 (11d) 

!j can be calculated using experimental vibrational frequencies.63   #E0 can be evaluated 

by substituting equation 8 into equation 9 and rearranging.  (E0 may also be calculated using 

quantum chemistry if #HT and/or vibrational frequencies for one or more fragments are 

unavailable.  Here, the CBS-QB3 method67 was used.  Table 3.3 gives the values for #Hrxn, 298K, 
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the thermal energy change (#Etherm) and #E0.  #E0 can be compared to the excitation energy of 

the metastable atoms to determine whether or not a certain fragmentation pathway will be 

observed in a particular spectrum as shown in Figure 3.5.   

 

 

Table 3.3. Ionization/fragmentation endoergicities for low lying fragments of HCONH2. 

D1 + D2
+ m/z (H298K (kcal/mol) (Etherm (kcal/mol) (E0 (kcal/mol) 

CO + NH3
+• 17 242.2 26.6 237.7 

H + CONH2
+ 44 261.0g - 251.2g 

OH + HCNH+ 28 280.1g - 269.5g 
H2 + HNCO+• 43 288.0 30.80 285.9 
NH2 + HCO+ 29 288.1 34.34 286.3 
HCN + H2O+• 18 310.0 29.47 308.37 
N + CH2OH+ 31 326.7 23.5 328.2 
NH3 + CO+•

 28 332.1 26.6 328.66 
H2O + HCN+•

 27 332.5 29.47 330.9 
O + HCNH2

+• 29 351.2g - 345.6g 
HCO + NH2

+ 16 364.5 34.34 347.1 
NH + H2CO+• 30 357.8 26.4 356. 
CH2 + HNO+•

 31 393.4 26.7 392.0 
H + H2 + OCN+ 42 417.7 1.671 394.5 
HNO + CH2

+• 14 399.2 26.7 398.8 
 

                                                 

g Calculated using the CBS-QB3 method 
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Figure 3.5. Fragmentation energetics: Ng* + HCONH2 
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3.5 COMPARISON OF PENNING IONIZATION WITH ELECTRON IONIZATION 

AND ION ENERGETICS 

In general, if (E0 for a fragmentation channel falls below the excitation energy of a certain Ng*, 

the ionized fragment should appear in the spectrum.   Figure 3.5 shows that all listed 

fragmentation channels should be observed in the He* spectrum.  However in the experimental 

spectrum m/z 14, 30 and 31 are not observed although these peaks should be observed according 

their values of #E0.  The absence of these ions may be attributed to high activation energies for 

the corresponding channels.  For the Ne* spectrum, three fragmentation pathways become 

energetically closed; the formation of OCN+ (m/z 42), ONH+ (m/z 31), and CH2
+ (m/z 14).  This 

coincides with the absence of these ions in the experimental Ne* spectrum.  For the Ar* 

spectrum, only three fragmentation channels are open; hydrogen atom loss (m/z 44), 

decarbonylation (m/z 17), and HCNH+ formation (m/z 28). In the experimental spectrum only 

m/z 17 and 44 are present in addition to the molecular ion peak.  Also, a small yield of formyl 

ion is observed, while the endoergicity for this channel lies above the excitation energy of Ar*.  

This may be due to collisional energy transfer between the molecular ion and Ar*, 

 

 Ar* + HCONH2
+! ! Ar + [HCONH2

+!]* (12) 

 

This would result in the molecular ion having more excess internal energy, which would allow 

for the fragmentation channel to become accessible.   
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In the EI spectrum, the ion with the highest yield is that of the molecular ion with the 

peaks arising from the fragmentation having much smaller yields (less than 50%).  This is not the 

case in the PI spectra.  In the He* spectrum, the yields for the ions resulting from hydrogen atom 

and molecule loss (m/z 44 and 43 respectively) are considerably higher than that those in the 

standard 70 eV EI spectrum accompanied by a smaller molecular ion yield.    In the Ne* 

spectrum the ions that result from decarbonylation, hydrogen atom loss and direct C!N bond 

cleavage (m/z 29) are far larger than those in the 70 eV.  In fact, these three channels have nearly 

the same yields within the experimental error bars.   PI, unlike EI is a chemical reaction that 

involves the frontier orbitals of the Ng* and the target species.  Orbital overlap must occur in 

order for ionization to take place and orbital overlap is maximized if the energy and symmetry of 

the involved orbitals are similar.  For example, the highest occupied molecular orbital (HOMO) 

for formamide is a non-bonding p orbital located on oxygen (10a) )68.  Ne*’s singly occupied 2p 

orbital would therefore interact more strongly with this orbital.  This would also be true for Ar* 

except the orbital overlap would decrease since the 3p orbital is larger in size and of a different 

energy.  Ionization at 10a) results in *-cleavage on either side of the carbonyl, producing m/z 29 

and 44 as well as m/Z 17 when C$N bond cleavage is accompanied by proton transfer (see 

Figure 3.6).  Therefore it is expected that the yields at these m/z values would be higher than in 

the He* spectrum since He* orbitals do not have the same symmetry as 10a%.  However, it is 

expected that some degree of overlap between He* and 10a) would occur, depending on the 

angle of approach, which would explain the increased yield of m/z 43 and 44 in the He* when 

compared to the 70 eV EI spectrum.   Since EI is not dependent on orbital overlap, it is difficult 

to predict where ionization occurs and trends in ion yields.  
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Figure 3.6.  Fragmentation channels resulting from #-cleavage in formamide. 
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3.6 THEORETICAL CALCULATION OF THE AR* + HCONH2 SPECTRUM 

3.6.1 Quantum Chemistry Calculations 

In order to calculate the RRKM rate constant for a fragmentation pathway, several pieces of 

information are needed.  The “bare” barrier heights for the forward (V0) and reverse reactions 

(V1) are needed.  The “bare” barrier heights can be calculated from the activation energies (Ea) 

by subtracting the zero point energy (Ez) of the molecular ion, transition state, and the fragments.  

Also needed are the vibrational frequencies of the molecular ion, transition states (TS) and 

fragments.  This requires the geometries of the molecular ion, TS structures and fragments.  

These data may be obtained from quantum chemistry.   

The first two channels in Table 3.3, (H atom loss and decarbonylation) were taken to be 

open for the Ar* + HCONH2 spectrum.  The first step in locating transition states that connect 

the molecular ion to the fragments in each channel involved performing a series of relaxed 

potential energy scans.  This was done by varying a coordinate of the molecular ion (either a 

bond length or angle) and optimizing all other coordinates at each scan step.  This creates an 

energy profile that is a function of the scanned coordinate.  If the scan indicated that there was a 

transition structure between the molecular ion and fragments, it’s geometry was optimized to a 

TS and a frequency calculation was performed (looking for one imaginary frequency to confirm 

a TS).  The transition structure was further characterized by performing an intrinsic reaction 

coordinate (IRC) calculation.69 This calculation is done by taking the steepest descent from the 

transition state in both the forward and reverse directions along the reaction coordinate, which in 
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this case is a composite of mass weighted internal coordinates dependent on bond lengths, angles 

and dihedrals.  At each step in the calculation, the geometry is optimized for each structure so 

that the segment between two points can be described as the arc of a circle and the gradient for 

all points are tangent to the reaction path.  The IRC calculation was used to confirm that the 

transition structure connects the molecular ion to the desired fragments.   

All quantum chemistry calculations were performed using the Gaussian 03 software 

package.  Initial calculations were performed using unrestricted Hartree-Fock (UHF) and Møller-

Plesset perturbation (UMP2) theories with a 6-31g(d) basis set.  In order to obtain more accurate 

energies, the composite CBS-QB3 method67 was adopted.  This method includes a geometry 

optimization and frequency calculation using the B3LYP functional and a 6-311G(d, p) basis set.  

The frequencies are scaled by a factor of 0.99.  This is followed by a series of calculations at the 

MP2, MP4 and QCISD(T) levels of theory in order to include effects of electron correlation in 

the final energy.  The MP2 energy calculation includes an extrapolation to the complete basis set 

limit.  The result of using this method is very accurate energy calculations without a high 

computational cost (due to the use of DFT theory).  For this reason, the CBS-QB3 method is 

widely used in the field of mass spectrometry theory.57-58, 70-71   

Table 3.4 lists the results of these calculations for the Ar* + HCONH2 system and Figure 

3.7 illustrates the geometric specifications for each structure.  Ea for decarbonylation and H atom 

loss are 21.3 and 20.2 kcal / mol respectively, which is above the zero point energy of the 

molecular ion.  V0 for each channel was calculated using the CBS-QB3 frequencies to obtain the 

zero point energies.  V1 was calculated using the theoretical reaction endoergicities given in 

Table 3.6.   
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Table 3.4. Results of CBS-QB3 calculations for m/z 17 and 44 fragmentation channels 

Species Electronic 
Energy (AU) 

EZ            V0         V1 
       (kcal/mol) 

# (cm-1) 

HCONH2 -169.69842 27.7   3719 3581 2921 1818 1620 1423 1268 
1056 1049 653 568 219  

HCONH2
+" -169.30629 28.4   3508 3388 3121 1608 1436 1066 1037 

1373 958 882 677 547 
H2N---HCO+" 

(TS 17) 
-169.26590 23.7 25.4 24.9 3481 3390 3220 2223 1532 928 566 424 

414 291 94 549i 
H---CONH2

+" 
(TS 44) 

-169.26547 22.4 25.6 3.45 3570 3444 2331 1585 1211 1113 593 545 
518 511 234 518i 

CO + NH3
+" -169.30544 23.6   2220; 3515 3515 3341 1531 1531 870 

H + CONH2
+" -169.27110 21.3   3533 3437 2436 15y2 1230 1119 579 504 

467 
 

 

 

Figure 3.7. Geometry specifications for the m/z 17 and 44 fragmentation channels.  CBS-QB3 
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3.6.2 Unimolecular Decay 

In order to describe the kinetics of molecular ion fragmentation in terms of a unimolecular 

(RRKM) rate constant, the quasi-equilibrium theory (QET) may be used.  QET assumes that the 

ionization of the target species is “vertical” and results in an odd electron ion that has low 

symmetry.  Also, the low lying electronic states of the molecular ion are assumed to form a 

continuum that allows for the excess electronic energy of the molecular ion to be randomly 

distributed to its vibrational degrees of freedom on the timescale of one bond vibration.   The rate 

of fragmentation then depends on the probability of the excess energy distribution becoming 

concentrated in certain degrees of freedom leading to TS structures that result in certain 

fragments.   

Neglecting rotational degrees of freedom, the RRKM rate constant for P+ with total 

energy E (including vibrational zero point energy) may be written as:  

 

 

! 

k(E) =
N(E)
h"0(E)

 (13) 

 

N(E) is the total number of energy states available to the transition state, $0(E) is the density of 

states for P+ and h is Planck’s constant.  The discrete quantum states for $0(E) may be 

approximated to be continuous; in this case the Whitten – Rabinowich approximation72 was used.  

N(E) is the integral of the density for the TS and increases by a series of steps with increasing E, 

and can be written as, 
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! 

N(E) = H(E "#n
* )

n
$

 (14) 

 

H(x) is the Heaviside step function (x = E – !*n), which is, 

 

 
  (15) 

 

n + [n1, n2, …, ns-1]  is a collective quantum number, the nj are vibrational quantum numbers and 

s is the number of vibrational degrees of freedom in P+.  !*n is the vibrational energy of the 

transition state relative to P+ in the harmonic oscillator approximation and is written as, 
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* n j +
1
2

$ 

% 
& 

' 

( 
) 

j=1
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 (16) 

 

V0 is the “bare” height of the barrier that separates P+ from its fragments and [,*
j] are the 

vibrational frequencies.   

In order to account for tunneling, the procedure outlined by Miller in 197973 was 

followed.  This involves replacing the Heaviside function with the one-dimensional tunneling 

probability Ptun(E – !*j).  In order to calculate Ptun, the shape of the reaction barrier needs to be 

defined.  Following Miller, the Eckart potential74 was chosen to represent the reaction barrier.  

The Eckart potential is defined as, 
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V0 and V1 are the “bare” barrier heights for the forward and reverse reactions. µ and %* 

are the frequency and reduced mass of the critical oscillator and c is the speed of light.  For these 

systems, V1 < V0, therefore the barrier is asymmetric. The Eckart barriers for decarbonylation and 

H atom loss are shown in Figure 3.8.   In this figure, the zero point energies of the molecular ion, 

transition states, and products are shown as well as the excitation energies of the two different 

Ar* states.   
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Figure 3.8. Eckart Potentials and zero point energies for the m/z 17 and 44 channels 
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 The tunneling probability may be found by substituting V(y) into the Schrödinger 

equation yielding, 

 

 

! 

Ptun =
sinh(a)sinh(b)

sinh2 a + b
2

" 

# 
$ 

% 

& 
' + cosh2 c

 (18a) 

 
  

! 

a =
4"
!# *

E +V0
1
V0

$
1
V1

% 

& 
' ' 

( 

) 
* * 

$1+ 

, 

- 
- 

. 

/ 

0 
0 
 (18b) 

 
  

! 

b =
4"
!# *

E +V1
1
V0

$
1
V1

% 

& 
' ' 

( 

) 
* * 

$1+ 

, 

- 
- 

. 

/ 

0 
0 
 (18c) 
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In order to calculate the RRKM rate constants for both the tunneling and the non-

tunneling cases, a FORTRAN program was used.  For the non-tunneling case the Bayer-

Swinehart algorithm75 was used to compute N(E), which adds chunks of states of different 

energies to come up with total number of states.  This algorithm could not be used for the 

tunneling case; instead the Robinson-Holbrook algorithm76 was used, which finds each 

individual state and replaces H by Ptun for each of them.  The code was first tested against a set 

of examples given by Robinson and Holbrook, Miller’s results for formaldehyde decomposition, 

and the calculations for the propane molecular ion done by MacAdoo et al.50 The resulting 

RRKM rate constants for hydrogen atom loss and decarbonylation are shown in Figure 3.9.   
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Figure 3.9. Plots of log (k(Eint)) vs. Eint for the m/z 17 (blue) and 44 channels.  a.) Without the tunneling correction.  
b.) With the tunneling correction.   
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The next step is to generate the breakdown graph, which is a plot of the population of an 

ion as a function of the internal energy.  In order to accomplish this, first order loss of P+ and 

first order accumulation of Di
+ is assumed with rate constants ki for channels i = 1, nc.  This 

results in the following integrated rate equations,  

 

 

! 

[P +]t = P +(0)e"kt , k = ki
i=1

nc

#  (19) 

 

! 

[D+]t =
ki
k
P +(0)(1" e"kt ), i =1,nc  (20) 

 

In order to plot the breakdown graph, P+(0) is set equal to 1 and a detection time (t) is 

specified.  For these experiments, t was chosen to be 1 µs.  The resulting breakdown graphs for 

both the tunneling and non-tunneling cases are shown in Figure 3.10.   
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Figure 3.10. Breakdown graphs for Ar* + HCONH2.  a.) With the tunneling correction.  b.) Without the tunneling 
correction.  Green represents [HCONH2

+]t, blue represents [NH3
+]t, and red represents [CONH2

+]t in both graphs. 
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3.6.3 The Energy Deposition Function and Calculated Ar* Spectrum 

The breakdown graphs may be converted into mass spectra if the distribution of internal energy 

(P(Eint)) of P+ is known.  Eint is equal to the total internal energy less the zero point vibrational 

energy.  In the field of mass spectrometry, P(Eint) is known as the deposition function77.  For 

electron ionization, the deposition function is typically estimated from photoionization spectra.  

However, this approximation is quite uncertain since electron ionization mass spectra and 

photoionization spectra are not collected from similar processes.  For Penning ionization, the 

deposition function can be estimated using the PIES spectrum for the target molecule.  Since 

Penning ionization mass and electron spectra are collected using the same chemical reaction the 

uncertainty in the estimation of the deposition function is greatly reduced.   

For the Penning ionization reaction, the energy conservation relationships may be 

represented by the following equation: 

 

 

! 

" + E int + # E rel = "0 + E int,0 + Erel  (21) 

 

The terms on the right side of the equation describe the energy of the system before 

ionization and the terms on the left describe the energy of the system after ionization. Erel and 

E$rel are the initial and final relative kinetic energy of the metastable noble gas atom and its target 

species, respectively.  Eint,0 and Eint are the initial and final internal energy of the target species, 

respectively.  The kinetic energy of the ejected electron is denoted as ! and !0 is equal to the 

excitation energy of the metastable atom less the ionization potential of the target molecule.  All 
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of the energy components are distributed except !0; however, the distributions for E$rel, Erel
`, and 

Eint, 0 are quite narrow and may be approximated by their average values.   

Since all of the energy terms are proportionate, the distributions of ! and Eint are 

complementary.  Therefore, P(Eint) can be approximated as the following:  

 

 

! 

P(E int ) = P" (" = "0 # [ E int,0 + $Erel ] # E int )  (22) 

 

The average translational energy change &(Erel' is assumed to be equal to the negative of 

the PIES peak energy shift.  Therefore the peaks in the input PIES spectrum are corrected for this 

shift.  Eint,0 shifts P(Eint) to higher energy by the same amount.   Since only vibrational states are 

being considered in these calculations and HCONH2 has one normal mode that has a frequency 

comparable to kbT, the computed &Eint,0' of 0.026 eV provides a small correction.   

The PIES spectrum from He* (23S) + HCONH2 measured by Keller et al.65 was used in 

the approximation of P(Eint) since it was conveniently partitioned into electronic contributions 

from high lying molecular orbitals.  The PIES spectrum was simulated using a sum of Gaussian 

functions with heights and widths that best fit the original data.  One Gaussian function was used 

for each electronic state and two additional diffuse functions were used to fill in the valleys 

between peaks.  The simulated PIES spectrum is shown in Figure 3.11.   
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Figure 3.11. Gaussian parameterization of the PIES for He* (23S) + HCONH2 from Ref. 65 
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To use this spectrum for Ar*, it is assumed that the PIES spectrum for Ar* + HCONH2 is 

identical to the He* spectrum except when it comes to !0 which results in the truncation of the 

spectrum when Eint exceeds the available energy.  This assumption may seem questionable but 

there are very few measured PIES for metastable atoms other than He* for any given molecule.  

However a study of the He* and Ne* PIES for H2
78-79 show that the spectra are similar except for 

the energy cutoff in Ne* which occurs in the midst of the H2
+ (X) vibrational progression.  

Therefore this assumption may hold for other target species.   

The relative abundance (A(Di
+)) of an ion produced from PI with a Ng* beam containing 

two metastable states of relative population pk can be calculated using the following equation 

 

 

! 

A(Di
+) = pk Di

+

0

" 0K

#
k=1

2

$ E int + EZ( )P(E int )dE int
 (23) 

 

Following this calculation for all ions in the Ar* + HCONH2 spectrum, the abundances 

were converted to percent ionization.  The percent ionizations for the simulated spectra (for both 

the tunneling and non-tunneling cases) compared to the experimental yields are given in  

Table 3.5.   
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Table 3.5. Comparison of theoretical and experimental ion yields. 

% Yield Channel m/z 

Theory Expt.h 

HCONH2
+• 45 88.7 (92.9) 88.6 

H + CONH2
+ 44 7.1 (3.5) 6.0 

CO + NH3
+• 17 4.2 (3.6) 5.4 

 

 

3.6.4 Comparing the Experimental and Theoretical Ar* + HCONH2 Spectra 

Ruttink et al. studied the decarbonylation of the formamide radical cation in 1995.49  It was 

suggested that as the C!N bond stretches, there is a crossing onto the excited surface of the 

radical cation.  This is possible because the valence molecular orbitals of the formamide radical 

cation are close in energy.  This causes the electron to move from the 10a) to the anti-bonding & 

orbital of formamide (3a-).  This allows for the NH2 group to rotate out of the plane of the 

molecule as the bond stretches.  The proton on the carbon atom then transfers to the nitrogen 

atom forming an ammonia radical cation and carbon monoxide.  The structure of the transition 

state for this pathway is close to that calculated in Ruttink article.  Also, as suggested in the 

Ruttink article, decarbonylation has a slightly lower energy barrier than the hydrogen atom loss.   

The closeness of the two barrier heights makes for a competitive fragmentation; whether 

or not tunneling is included.  The channel rates cross twice, once in the tunneling region and 

                                                 

h Renormalized to exclude the m/z 29 peak 
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once in the non-tunneling region.  The crossing of the rates can be explained by the differences 

in transition structures.   Reactions that do not require molecular rearrangement proceed through 

“loose” transitions structures.  Loose transition structures have internal rotational degrees of 

freedom not possessed by the reactant molecule and, as a result, have a very low or no barrier for 

the reverse reaction.  Fragmentation pathways that involve direct bond cleavage (such as H atom 

loss in this system) proceed through loose transition structures.  In contrast, reactions that 

proceed through “tight” transition structures require a certain molecular geometry in order to 

proceed.  The transition structure either has the same or less internal rotational degrees of 

freedom as the reactant and a well defined reverse reaction barrier.  Isomerizations and 

decompositions proceed through tight transition structures.  The decarbonylation of HCONH2
+" 

proceeds through a tight transition structure. 

The threshold energy for bond cleavage reactions is higher than that of rearrangements 

because a certain amount of energy needs to be deposited into the bond in order to cleave it.  

Rearrangements have lower threshold energies because the energy required to break the old bond 

is usually recovered when a new bond is formed.  Therefore, k(E) for rearrangements approaches 

the limit more quickly than that for bond cleavage, allowing for the k(E) for bond cleavage to 

“over run” that for rearrangement.  This explains the crossing of the rates for H atom loss and 

decarbonylation in the tunneling region of the plot.  However the second crossing does not 

follow this explanation.  This could be due to the barriers for the two pathways being extremely 

close (within 0.2 kcal/mol).  Also, according to the IRC calculation for the decarbonylation 

reaction, the proton transfer occurs while the C$N bond is cleaving instead of before it, which 

makes the transition state more “loose” than in a traditional rearrangement reaction. This may 

also account for the closeness of the k(E) expressions for the two pathways. The role of the 3a( 
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state of the molecular ion in decarbonylation may also prevent k(E) from reaching the rate limit 

quickly and helping it to once again overtake k(E) for bond cleavage.    

The competition between the pathways is reflected in the breakdown graph, which shows 

at lower internal energy, the molecular ion dominates.  At higher internal energy, both NH3
+! and 

CONH2
+ begin to appear, however as [CONH2

+]t begins to increase [NH3
+!]t decreases 

immediately after it appears resulting in a small “hill”.  However as [CONH2
+]t starts to 

decrease, [NH3
+!]t begins to increase once again..  The energy deposition function peaks at 5, 

kcal/mol, where the breakdown graph shows the domination of the molecular ion.  The 

appearance of CONH2
+ and NH3

+! occurs as P(Eint) is declining.  This would correspond to the 

majority of the ion yield being molecular ion and low yields for the CONH2
+ and NH3

+ with a 

slightly higher yield for CONH2
+ since [CONH2

+]t peaks in that internal energy range.   

Integration over P(Eint) gives the yields 45 / 44 / 17 = 88.7 / 7.1 / 4.2 (92.9 / 3.5 / 3.6 without 

tunneling).  The experimental spectrum reported in Table 3.1 is 88.6 / 6.0 / 5.4.  Given the 

experimental error bars, as well as the inherent error of the CBS-QB3 method67, the RRKM 

results agree with the experimental mass spectral results for Ar*  +  HCONH2.  It also shows that 

approximately 15% of the yield of NH3
+! and 50% of the yield of CONH2

+ can be attributed to 

tunneling.   

 

3.7 CONCLUSION  

In this work, we have presented the first mass spectra from the PI of formamide by He*, Ne*, 

and Ar*.  These spectra show different ion yields when compared to the standard 70 eV EI 
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spectrum for formamide, which can be accounted for by analyzing the dynamics of the PI 

reaction.  The number and identity of observed ions in these spectra depend on the excitation 

energy of Ng* as well as the (E0 values for the fragmentation channels that include them.  We 

have also calculated the ion yields for the Ar* + HCONH2 spectrum.  These yields are in 

excellent agreement with our experimental yields.  RRKM theory also allowed us to determine 

the fraction of our ion yields that can be attributed to tunneling.  Future measurements of these 

spectra with formamide – d3 would allow us to experimentally determine how much of the ion 

yield comes from tunneling.  Our plans for future work had included collecting mass spectra for 

five other amides, systematically growing alkyl chains from the carbonyl carbon and nitrogen 

atoms and doing similar RRKM calculations for these systems.  Preliminary data for  

Ng* + CH3CONH2 are presented in Appendix B.  We also had hoped to collect PIES spectra for 

these systems in order to have more accurate energy deposition functions for ion yield 

calculations.  The calculation of ion yields using unimolecular rate theory is often a difficult task 

because of the difficulty in obtaining the internal energy distribution for the molecular ion in 

question.  The ease in obtaining the energy deposition function for a molecular ion produced by 

PI makes this task less daunting.  PI mass spectrometry then provides a great venue for the 

application of RRKM-QET theory to the calculation of ion yields.   
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4.0  INTRODUCTION TO CHARGE TRANSPORT IN ORGANIC MATERALS 

4.1 ORGANIC MATERIALS IN ELECTRONIC DEVICES 

The use of organic semiconductor materials in electronic devices is a relatively new idea, gaining 

a large amount of interest in the early 21st century.  However, the discovery that organic 

materials can conduct electricity is rather old.  The earliest report of an organic conductive 

material was in 1862 by H. Letheby, who obtained a conductive material by oxidizing aniline in 

sulfuric acid using electrochemistry.80 Nearly 50 years later, the photoconductivity of anthracene 

crystals was reported.81-82 However, it was the discovery that doped polyacetylene was highly 

conductive83 that lead to the development of organic electronics as a promising field.  This 

discovery earned the 2000 Nobel Prize in Chemistry.   

Electronic devices made from organic materials have several advantages over silicon-

based devices.  Organic devices can be made at a lower cost; most devices are fabricated by 

depositing thin films of the organic material from solution or by using inkjet printing.   Organic 

electronics are also very flexible, making them ideal for thin, large area devices.   In addition, 

their optical properties are very useful for solar energy harvesting.  Because of these properties, 

organic semiconductors are being used to make a variety of commercial electronic devices such 

as thin film transistors,84-87 organic light emitting diodes (OLEDs),88-89 and photovoltaics.90-92   
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Organic semiconductors fall into two categories: molecular and polymeric materials.  

Both types of materials consist of ) conjugated systems.  Besides molecular weight, the major 

difference between the two lies in how they are processed to make electronic devices.  Thin films 

of molecular materials can be deposited using sublimation or evaporation techniques while 

polymeric thin films are often deposited from solution or by using inkjet printing.  Figure 4.1 

shows some examples of organic semiconductors from each category.   

The quantity that is used to characterize charge transport is the mobility (µ).  In the 

presence of an applied electric field, µ can be defined as the ratio between the velocity of the 

charge carrier (v) and the magnitude of the electric field (E),  

 

! 

µ =
v
E

 (24) 

 

Typical values of µ for disordered organic materials range between 10-6-10-1 cm2/Vs.   
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Figure 4.1. Examples of common organic semiconductors.  Molecular materials are on the left and polymeric 
materials on the right. 
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4.2 CHARGE TRANSPORT MODELS 

The mechanism of charge transport in organic semiconductors tends to fall in-between two 

extremes: band and hopping transport.  Band transport occurs at low temperatures in highly pure, 

crystalline organic materials.  The valence band is formed from the combination of the highest 

occupied molecular orbitals (HOMOs) of all molecules in the crystal while the conduction band 

is formed from the combination of the lowest unoccupied molecular orbitals (LUMOs).  The 

width of the valence and conduction bands is equal to 4Hab for an infinite 1D crystal where Hab is 

the electronic coupling matrix element.  This is similar to band transport in metals and inorganic 

semiconductors, however due to weak van der Waals interactions, bandwidths in organic 

materials are typically very narrow, resulting in lower carrier mobilities.93  

In amorphous organic materials, the high amount of disorder combined with weak 

electronic interactions cause band states to localize on individual molecular sites.  Consequently, 

charge transport occurs through a thermally activated hopping mechanism.  Hopping transport in 

disordered organic materials can be described using variable range hopping  (VRH), which was 

first described by Mott94.  In VRH models, the hopping rate depends on both the energy 

difference and distance between two molecular sites.  There are two commonly used expressions 

for the hopping rate.  The Miller-Abrahams rate95 is given by, 
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Here, %0 is the “attempt to hop” frequency, & is the overlap factor, Rij is the distance between sites 

and 'i and 'j are the energies of sites i and j respectively.  The Miller-Abrahams expression 

allows for “long distance” hops between molecular sites with similar energies due to the 

presence of the two exponential terms.   

A more realistic expression for the hopping rate for disordered organic materials comes 

from Marcus-Hush theory96,  
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In this expression, ( is the total reorganization energy that is associated with the geometric 

change that accompanies the charge transfer process (see Figure 4.2).  If entropic contributions 

are neglected, the energy difference ('j - 'i) can be approximated as the free energy change ("G).  

The Marcus-Hush expression predicts a maximum rate when "G = -(, which is the well-known 

Marcus “inverted region”.97   
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Figure 4.2. Potential energy profile for an electron transfer reaction. G represents the Gibbs free energy and q 
represents the reaction coordinate 

 

 

Both rate expressions are dependent on temperature however the Miller-Abrahams rate is 

useful for low temperatures while the Marcus-Hush rate is used for high temperatures.  Also, the 

effects of an applied electric field can be incorporated into the rate expressions by adding an 

additional term to the exponential terms containing the site energy difference.  This is useful for 

studying organic electronics such as transistors or OLEDs, where an electric field is applied to 

lower the hopping barrier for charge carriers. 
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4.3 COMPUTER SIMULATIONS OF CHARGE TRANSPORT IN ORGANIC 

SEMICONDUCTORS 

Computer simulations, in particular those that use Monte Carlo (MC) methods have proven very 

useful in studying charge transport in disordered organic semiconductors.  The most common 

MC simulation method uses the Gaussian Disorder Model (GDM), which was developed by 

Bässler98 to model hopping transport in disordered organic solids.  The GDM takes the site 

energy (') from a Gaussian distribution of energies,  
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Here ) is the standard deviation of the distribution and " is measured relative to the center of the 

distribution.  A Gaussian distribution is used, mainly because it approximates the shape of 

absorption bands for organic materials.  The hopping rate that is used in the GDM is the Miller-

Abrahams rate.  The overlap parameter (2&) is also chosen from a distribution to account for its 

dependence on site orientation as well as the changes in the distance between sites due to 

disorder.   

MC simulations that use the GDM have been used mainly to study the temperature and 

field dependence on the carrier mobility in disordered organic materials.  For disordered 

materials, hopping is thermally activated and higher temperatures improve the carrier mobility.  

In some cases, the temperature dependence on the mobility follows an Arrhenius-type 

expression,99-100  
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where Ea is the activation energy, which increases as the amount of disorder increases.  A 

number of simulations that use the GDM have found that the temperature dependence follows a 

slightly different expression101-103, 
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Here, T0 describes the amount of disorder in the system.  There is no theoretical explanation for 

either of these expressions, however both fit experimental data rather well.104-105   

The applied electric field allows for charge carriers to overcome hopping barriers due to 

charge traps.  MC simulations have found that the mobility depends on the square root of the 

electric field as follows,106-107 

 

! 

µ " exp #T E( )  (30) 

Here, &T is a temperature dependent parameter.  This is known as Poole-Frenkel behavior and is 

usually observed experimentally at field strengths between 104-106 V/cm.108-111  At lower field 

strengths, the mobility is roughly constant.    

The effects of charge traps have also been studied using the GDM and MC 

simulations.112 Traps are modeled by introducing a second Gaussian distribution for the energies 

of trap sites that is offset from the center of the “normal” hopping site energy distribution by the 

depth of the traps.  This model has been used to simulate the mobility as a function of trap 

concentration.  In addition, temperature and field dependences on mobility were studied in the 

presence of traps at various concentrations.  The simulation results agree with experimental 

behavior113-114 and have been described using an effective medium theory.115-116   
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4.4 RESEARCH DESCRIPTION 

The next three chapters of this dissertation describe computational work done in order to 

understand charge transport in electronic devices made from semiconductors.  The first two 

chapters describe course grained MC simulations of charge transport through a model monolayer 

organic field effect transistor (OFET).  These studies are focused on understanding the effects of 

defects, traps and electrostatic interactions on charge carrier mobility.  The simulation model that 

is being used differs from many of those in the current literature in that Gaussian disorder is not 

assumed.  Instead, disorder is introduced by explicitly adding defect or trap sites.  Chapter 5 is 

focused on the effects on unreactive defects and electrostatic interactions while Chapter 6 

focuses on the effects of charge traps.   

The third chapter takes a look at one of the major assumptions made in existing VRH 

models; that charge carriers in disordered organic materials are localized on individual molecular 

sites.  This is studied by performing two sets of quantum chemistry calculations on a series of 

positively charged bithiophene clusters.  Constrained density functional theory (CDFT) 

calculations were used to force a single positive charge on a molecule in the cluster.  The HOMO 

energies from these calculations were compared to those calculated with standard DFT, which 

allows the charge(s) to delocalize throughout the entire cluster.  The effects of electrostatic 

interactions on the ability for a molecular site to localize a charge were also examined.    
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5.0  CHARGE TRANSPORT IN IMPERFECT ORGANIC FIELD EFFECT 

TRANSISTORS: EFFECTS OF EXPLIT DEFECTS, AND ELECTROSTATICSi 

5.1 INTRODUCTION 

Although many experimental and theoretical studies have given into the effects of electric field 

and temperature on charge transport in organic semiconductors, the exact roles of defects are not 

always well understood.118-121 In contrast to inorganic semiconductors, it is more difficult to 

remove defects from organic semiconductors used in electronic devices; both chemical and 

physical impurities are inevitable. In addition, some applications, such as OLEDs and organic 

photovoltaics, require charge transport through mixed films (i.e., high “defect” concentrations). 

Therefore, a detailed understanding of how defects influence charge transport in these materials 

is required.  

Defects in organic semiconductor devices take a number of forms. Most of them arise 

from the fabrication of the device, which typically involve the deposition of single or multiple 

layers of the organic semiconductor of choice to form thin films. Solvent molecules and/or other 

chemical impurities may become trapped in the film, where they can act as electron or hole traps, 

hindering charge transport.122-123 It is also difficult to form ordered films of organic 

semiconductors, especially in the case of polymeric materials. The underlying silicon-dielectric 

                                                 

i Based on published work117 
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layer can also have a variety of pinhole charge defects, which would influence the organic 

semiconductor on top.124-125  As a result, the charge mobility in organic semiconductors is often 

much lower than in crystalline inorganic semiconductors, and in contrast to inorganic 

semiconductors; some categories of defects are intrinsic.   

To study how molecular defects affect charge transport, the identity of the defects needs 

to be known to determine the parameters that govern the hopping rate. In most cases, the 

identities, quantities, and electronic properties of impurities in semiconductor films are at least 

partially unknown. Therefore, experimental and theoretical studies to identify defects, or to 

intentionally manipulate them, are important steps in understanding the fundamental mechanisms 

of charge transport.  

Very few studies of FET devices include the effects of Coulomb interactions between the 

charge carriers, or between carriers and charged defects.99, 126-127 This is not possible to study 

experimentally, and is often excluded from theoretical studies since including these interactions 

is computationally taxing, although some previous work has addressed Coulomb effects in other 

types of transport.128-130 However, as illustrated in recent literature,126 there are several reasons 

why the inclusion of Coulomb interactions are important for understanding charge transport in 

organic materials. First, because charge carriers in these materials are assumed to be localized on 

individual molecular sites, they can be regarded as point charges. Secondly, the dielectric 

constants for most organic materials tend to be small, and Coulomb interactions are long range, 

so both the applied field in an FET device and the electric field due to the charge carriers 

significantly affect local charge transport. Finally, charge carrier densities near the 

semiconductor-insulator interface of organic FETs are large so the average distance between 

charge carriers will be small. As the potential energy due to electrostatic interactions increases 
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with decreasing distance, the electric field from Coulomb interactions will play an even larger 

role in charge transport. For these reasons, it is crucial to include Coulomb interactions in 

theoretical studies of charge transport in organic semiconductors, as we will show.  

In this chapter, we discuss the effects of explicit defects on charge transport in imperfect 

FET devices made with metal phthalocyanines, which our group is currently studying 

experimentally. To this end, we use Monte Carlo (MC) dynamics to examine the theoretical 

effects of defects on transport mechanisms. Experimentally, we add known defects to our 

semiconductor films; in this work we are using nickel (II) phthalocyanine (NiPc) with arbitrary 

unreactive defects where the concentration of the defects will be controlled. We have “frozen 

out” the commonly used approximation of Gaussian disorder of site energies (which implicitly 

treat the effects of defects) in favor of exact interactions with explicitly included defect sites. We 

will address the effect of defects on charge transport, as well as whether the Gaussian disorder 

model reflects the correct statistics of explicit defects. We will also look at how the inclusion of 

Coulomb interactions significantly affects the dependence of charge transport on the source drain 

voltage (VSD), as well as defect and carrier concentrations.  

5.2 COMPUTATIONAL METHODS 

As discussed in Section 4.2, charge transport in organic semiconductors is assumed to occur 

through some form of variable range hopping that is based fundamentally based on a bimolecular 

charge transfer step.  Many studies use the Miller-Abrahams charge transfer rate 99, 126-127, 131 for 

simulations of charge transfer in organic materials, here we use the Marcus-Hush rate,132-138  
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where "G0, Hab, and ( are the difference in energy between molecular sites, the electronic 

coupling matrix element between the orbitals involved, and the total reorganization energy of the 

reaction. Hab has been shown to be dependent on the intermolecular distance, making Equation 

31 an example of variable range hopping.137, 139-140 The reorganization term describes the classical 

density of states and the exponential term describes the population of molecules that posses the 

energy required to traverse the electron transfer barrier141.   In principle, "G0, Hab, and ( can be 

calculated from first principles quantum calculations, and used in our coarse-grained MC 

dynamics model to simulate electron transport through a thin film. As stated earlier, this presents 

the opportunity to directly compare the results from these computational studies (with no free 

parameters) with experimentally obtained results to directly validate the variable-range hopping 

model. The use of first principles quantum chemistry, in particular density functional theory, to 

calculate the parameters of ket and use them to explain experimental charge transport results has 

been demonstrated in the literature. 132-138 

We have calculated orbital energies, Hab, and ( using density functional theory117  with 

the B3LYP functional142-143 and the Lan2DZ basis set and effective core potentials144-147 as 

implemented in Gaussian 03148.  In this work, we considered hole transport through a film of 

copper (II) or nickel (II) phthalocyanine.  Our results imply an intrinsic charge transfer step of  

~1 ps.  However, the exact charge transfer rate only affects the electrical currents computed by 

our model (i.e., a systematic scaling factor) and not the trends discussed in the following sections 
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Since our goal is to provide a direct comparison between experimental and theoretical 

results, our simulation code has been written to be scalable to large grids via multithreading. In 

this work, we consider a finite conducting channel of 256x1024 sites. Our grid spacing is ~1 nm 

and is based on the size if the phthalocyanine molecules.  Consequently, our model considers a 

monolayer OFET with a width of 0.25 µm and a length of 1.02 µm.  This is slightly smaller than 

typical OFETs, however it provides essentially a 1:1 correspondence between grid sites and 

individual molecules.149 

Our code has been written in an object-oriented manner, to facilitate explorations of 

different types of molecular sites (e.g., neutral and charged defects, mixtures of semiconducting 

molecules, short and long-lived traps, etc). This design also takes full advantage of multi-core 

clusters, scaling well to dual cores without Coulomb interactions, and quad cores or more when 

Coulomb interactions were calculated.  A square lattice was assumed for the film, and each site 

was considered to have at most four nearest neighbors, as shown in Figure 5.1. 

 

 

Figure 5.1.  Schematic of a charge transport grid for our simulation, where green sites indicate defects. 
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As with many MC simulations, the initial conditions of the system have a large effect on 

its behavior.  At the beginning of each simulation, the charge density is set to a constant, 

however there are two ways to achieve the desired charge concentration: random seeding of the 

system to the desired concentration or injection of charges from the source into the system until 

the desired concentration is reached (i.e., “warm-up”).  The former is much faster and more 

likely to represent the system at equilibrium.  Both methods were explored and are discussed in 

Section 5.3.1.   

 For each time step in the simulation there is a serial phase in which calculations on the 

overall state of the system are performed, and a parallel phase where the agents consider their 

local neighbors.   The majority of the computational time is spent on the latter. This approach 

allows for the execution of multiple agents (one per core normally) across the entire grid. As 

illustrated in Figure 5.2, a charge carrier (or “agent”) will consider the surrounding neighborhood 

when considering potential moves. .  The potential energy difference between the current site and 

neighbors is computed, optionally including Coulomb interactions.  A charge cannot move to a 

site that is already occupied. 
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Figure 5.2. Local environment of a charge carrier (red spheres).  Each carrier considers 4 sites (dark gray) when 
deciding on a move.  (a) All possible sites are “open”.  (b) Two sites are occupied by carriers and the electric field of 
the carrier in the light gray square affect the potential move.  (c) All neighboring sites are occupied by agents, and 
all moves are blocked.   

 

 

Prospective moves to sites with lower potential energy were accepted one third of the 

time.  This enforces some probability of the carrier remaining on a site.   For prospective moves 

to sites with higher potential energy, the following Boltzmann probability was calculated: 
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P("Epot ) = ptme
#
"Epot

kT  (32) 

 

Here, "Epot is the potential energy difference between the two sites,  ptm is the transmission 

probability (1/3),  T is the absolute temperature (300K), and k is the Boltzmann constant.   The 

move is accepted if P("Epot) is greater than a generated random number.  If the charge landed on 

the drain electrode, it was always removed from the grid.  

It was necessary to employ a cutoff when calculating Coulomb interactions to scale to 

larger systems. The cutoff distance was set to 50 nm after examining Coulomb pair potentials as 

a function of distance. In test simulations this cutoff produced comparable numerical results to 
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those performed without any such cutoff. A relative permittivity of 3.5'0 was employed for the 

phthalocyanine films, comparable to literature values.150-151 

 

5.3 RESULTS AND DISCUSSION 

First, we will discuss the two methods of adding charges to the simulation grid (warm up and 

seeding) and compare them. Second, the simulation of the current as a function of the source 

drain voltage (VSD) will be compared to experimental measurements for real FET devices. Next 

will be a discussion of the simulation of the current as a function of VSD when electrostatic 

interactions are included and in the presence of neutral defects. The simulation of the current as a 

function of neutral defect and carrier concentration will then be discussed. The simulation of 

current as a function of charged defect concentration will then be discussed. Finally the effects of 

Coulomb interactions on charge transport in our simulations will be addressed.  

5.3.1 Grid Charging Methods: Charge Injection vs. Random Seeding 

As mentioned in the previous section, our simulation code has two methods for placing charges 

on the FET grid. The “warm-up” method injects charges from the source electrode until the 

desired charge concentration is reached. Figure 5.3 demonstrates that ISD increases as the 

simulation progresses and reaches its equilibrium state after 1000 ns (1,000,000 time steps) when 

electrostatic interactions are not included and 500 ns (500,000 time steps) with electrostatic 

interactions. At the beginning of the simulation, the carrier density is very high near the source 
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electrode. Without electrostatic interactions, carrier mobility is diminished since carriers cannot 

“hop” to sites that are already occupied (the site exclusion effect). However, when including 

Coulomb interactions, the potential energy due to electron-electron repulsion will be very high 

near the source electrode at the beginning of the simulation. This provides an added Poole-

Frenkel-like mobility.  In addition, there is a lateral electric field associated with the front of 

charge carriers, which will also drive carriers across the grid.152  At the start of the warm-up 

procedure, this amounts to a potential of approximately 5.8 mV across a 1 µm channel.  In short, 

simulations ignoring Coulomb interactions suggest an unrealistically long “turn-on” timescale.   
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Figure 5.3. ISD vs. simulation time from one representative simulation.  Adapted from Figure C.1 in Appendix C. 
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As shown in Figure 5.3, equilibration takes a long time when the warm up method is 

used. The alternative to this is to randomly seed the grid with charge carriers. In contrast to the 

warm-up method, random seeding takes a shorter time to reach equilibrium. This allows us to 

use a smaller number of iterations for each data point, decreasing the total simulation time. The 

plots in Figure 5.4 show that the results are similar for both methods at equilibrium. Therefore, 

unless otherwise indicated, random seeding has been used in our calculations.  

 

Figure 5.4.  Comparison of grid charging methods.  Shown are plots of ISD vs. defect concentration resulting from 
simulations using a.) The warm-up procedure (after 1, 750, 000 iterations) or b.) Random seeding (after 50,000 
iterations). 
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5.3.2 Field dependence of charge transport (ignoring electrostatics or defects) 

To compare our model with experiment, simulations of source-drain current (ISD) as a function of 

VSD were performed at various carrier concentrations. The results of these simulations are shown 

in Figure 5.5. These results are similar to experimentally measured I-V curves for FETs;153-155 ISD 

increases as a function of VSD and saturates at high VSD. ISD also increases as the carrier 

concentration is increased. The carrier concentration can be related to the voltage applied 

between the source electrode and gate (VSG) in real FET devices.99 Higher VSG allows more charge 

carriers to be introduced into the semiconductor film, which results in a higher ISD. 

 

Figure 5.5.  ISD vs. VSD at different carrier concentrations. 

 

There are two ways to model the I-V curves. The first method is to use a standard 

equation derived for inorganic FETs, which fits the region of the curve where VSD < VSG to a 

linear expression87. However, this does not take the variation in charge density along the 
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conduction channel into account. Including this effect transforms the linear expression into a 

quadratic expression for ISD when VSD < VSG
156.  
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Here, ' is the permittivity of the dielectric, D is the thickness of the dielectric, V0 is the 

threshold voltage, and W and L are the width and length of the conduction channel respectively. 

This expression describes the region near the saturation region of the curves more accurately. 

The mobility (µ) can be calculated from Figure 5.5 and Equation 25. When VSD > VSG, ISD is 

independent of VSD and the I-V curve saturates. To account for this using Equation 25, VSD is set 

equal to VSG – V0. Taking the square root of ISD yields the following linear equation, 

 

  (34) 

 

The mobility may be obtained from the slope of a plot of  vs. VSG, where VSG can be 

determined for each carrier concentration using the following equation,99 

 

   (35) 

 

N is the number of charge carriers, which may be calculated from the carrier concentration, A is 

the area of the device and e is the elementary charge. Our model FET device has a width and 

length of 256 nm and 1024 nm respectively. For our experimental FETs, the dielectric material is 

SiO2 , so ' . 4'0 and D = 300 nm. For carrier concentrations of 1%, 2.5%, and 5%, VSG is 15.7 V, 
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39.3 V, and 78.6 V respectively.   Using these parameters, µ was calculated to be  

6.14 * 10-3 cm2/Vs, in outstanding agreement with the experimental value for NiPc 

(µ = 8.9 * 10-3 cm2/Vs)84, demonstrating the success of our model and assumptions.  

The results presented in Figure 5 reflect devices with no defects present in the film. It 

should also be noted that the I-V curves that result from simulations that include electrostatic 

interactions do not appreciably differ from those shown in Figure 5.5 when no defects are 

present. However, this is not the case when defects are present in the film.  

5.3.3 Field dependence of charge transport in the presence of electrostatic interactions 

and neutral defects 

Figure 5.6a shows the results of the simulation of I-V curves when the neutral defect 

concentration is 20% at low VSD. These results show that the current is slightly lower when 

electrostatic interactions are included, because of surface trapping at the edges of the channel. As 

electrons are introduced to the film, electron-electron repulsion forces them to migrate to the 

sides of the film rather than to the drain electrode (i.e. an effect not explicitly included in our 

code). Eventually, a narrow conduction channel is formed and electrons are able to migrate to the 

drain electrode, resulting in lower current. Surface trapping is more pronounced at lower VSD 

since the electrical potential of the charge carriers are more competitive in this case, whereas at 

high VSD, surface trapping is more easily overcome.  
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Figure 5.6. ISD vs. VSD with 20% defects a.) at low VSD and b.) extended to high VSD.  Note that error bars are 
included for all points but may be smaller than the symbol. 

 

 

Figure 5.6b shows the same I-V curves extended to high VSD. When Coulomb interactions 

are not included in the simulation. ISD reaches a maximum and then decays at high VSD. This 

behavior is indicative of negative differential resistance (NDR), which is when the slope 

(resistance) of a region of an I-V curve for a device is negative. To our knowledge, NDR has not 

been observed in experimental measurements of I-V curves for microscale organic FETs.  

At high VSD, the charge carriers are more likely to follow a linear trajectory, directly from 

source to drain, and will be more likely to “pile up” in a line behind a defect or occupied site, 

decreasing current. If electrostatic interactions are included, ISD is predicted to saturate (within 

error bars) at high VSD. Since repulsive interactions between the charges give them a better ability 

to “avoid one another”, charge transport is correctly predicted to continue at high VSD, as 

illustrated in Figure 5.7.  



 80 

 

Figure 5.7. Charge transport in an FET with defects (green) for (a) Non-interacting charges and (b) 
interacting charges (bright red). 

 

 

5.3.4 Effects of defect and carrier concentration on charge transport 

Figure 5.8 shows the results of the simulation of ISD as a function of defect concentration. 

Regardless of the inclusion of Coulomb interactions, ISD decreases roughly linearly as a function 

of the neutral defect concentration, and approaches zero at ~50%. In our current simulation 

results, defect sites do not accept charge carriers, which could correspond to vacancies in the 

semiconductor lattice, dust, or other impurities in experimental FET devices. As the number of 

these defects increases, the number of sites that accept charge carriers decreases until all charge 

transport channels are completely shut down (i.e., based on simple percolation theory).   

Although the charge transport channels decreases as the defect concentration increases, the 

average mobility remains approximately constant, even when Coulomb interactions are included.  

Figure 5.6a illustrates this. At low VSD, the difference in ISD with and without Coulomb 

interactions is small and the mobility only differs by approximately 34%.  This shows that the 

effect of scattering by trapped carriers on the mobility is small.   
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Figure 5.8. ISD vs. defect concentrations at carrier concentrations of (a) 0.5%, (b) 0.75%, (c) 1%, (d) 1.5%, and (e) 
2%. 
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The effects of carrier concentration are shown in Figure 5.9. When Coulomb interactions 

are neglected, ISD increases as a function of the carrier concentration, approximately linearly at 

low carrier concentrations, and appears to saturate as the carrier concentration approaches 100%. 

The functional form of the curve matches Michaelis-Menton or Langmuir-Hinshelwood 

kinetics;157 the latter relates reaction rate of a surface catalyzed reaction to the concentration of a 

reactant species. The equation of the fit is, 

  

 

! 

ISD (in nA) =
82.18nA

1+
56.59
xc

 (36) 

 

Here xc is the carrier concentration. Similarly to Langmuir-Hinshelwood kinetics at low 

xc, ISD increases in proportion to xc and the number of unoccupied sites. However at high carrier 

concentrations ISD becomes independent of xc because the semiconductor grid becomes saturated.  

Although charge transport becomes limited by percolation, there is still an appreciable ISD since 

carriers in sites adjacent to the drain electrode can still move to a drain site.  As a result, ISD 

approaches a limiting value at higher carrier concentrations.   
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Figure 5.9. ISD vs. carrier concentration (excluding defects). 

 

 

However, when Coulomb interactions are included, ISD peaks when the carrier 

concentration is approximately 2% and then decays exponentially. According to Zhou et. al,126 

the electric field caused by the charge carriers causes the site energies (i.e. the HOMO energies) 

to shift randomly based on the local charge density. This results in an increase in the average 

effective hopping barrier and a random distribution of “trap states” in the film. Higher carrier 

concentrations increase the number of these trap states as well as the magnitude of the energy 

shift. Our model does not explicitly include this process; it is a direct consequence of including 

electrostatic interactions between carriers.  This trapping effect causes ISD to decay at higher 

carrier concentrations. Also, due to the long-range nature of electrostatic interactions, the carrier 

concentration does not need to be very high in order to force a site exclusion effect, further 

decreasing ISD, as observed in our results. This behavior is not observed experimentally, although 

experimental transistor devices are typically multilayers, so increases in the gate potential need 
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not only affect the nearest molecular monolayer. Instead, we believe our model suggests that 

experimental gate potentials increases result in increasing ISD because additional conduction 

channels open in layers above the monolayer closest to the gate and not because the carrier 

concentration increases in the 2D channel. 

 

5.3.5 Effects of charge defects 

Figure 5.10 compares the dependence of ISD on neutral and charged defect concentration. For 

these calculations, we considered singly charged defects (i.e. + 1e). Our results show that ISD is 

lower than in the neutral defect case at defect concentrations between 1-20%. In this range, ISD 

remains roughly constant. At concentrations greater than 20%, ISD decreases and approaches zero 

at 50% similar to the trend followed with neutral defects. Charge carriers can screen oppositely 

charged defects as shown in Figure 11a.  As a result, regardless of charge, a defect can act as a 

repulsive charged defect.  As shown in Figure 11b, a charge carrier will have a decreased 

mobility (µ) as it approaches a bare or screened defect.  As the charge carrier moves away from 

the defect, it will have an increased µ.  These two effects will, on average, cancel each other out, 

resulting in a static ISD at low carrier concentration.  This effect has also been observed 

experimentally.158  The enhanced site exclusion effect decreases ISD in both cases. At high defect 

concentrations, charge transport reaches a percolation limit regardless of whether or not the 

defect is charged.  
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Figure 5.10. ISD vs. neutral and charged defect concentration. 

 

 

 

Figure 5.11. Schematics of (a) a shielded negatively charged defect after capturing several hole carriers and (b) 
indication that mobility near a charged defect will be affected by the electrostatic field. 
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Much like the case of electrostatic interactions between carriers, interactions between 

carriers and charged defects cause shifts in site energies. With the concentrations considered here 

(i.e., up to ~30%), the distances between carrier sites and defects have a Poisson distribution 

causing the energy shifts to take a reciprocal Poisson distribution.117  Most importantly, the 

distribution of site energies has a long tail at low energies. While the presence of charged defects 

increases all site energies, there always remain low-energy pathways available for transport 

5.3.6 Coulomb interactions and charge transport 

Our simulations have shown several ways in which electrostatic interactions affects charge 

transport in organic semiconductors.  Electrostatic interactions between charged defects and 

charge carriers cause ISD to be roughly constant at low defects concentrations.  This effect is 

similar for both positively and negatively charged defects due to screening (see Figure 5.11).  

Also, electrostatic repulsion between carriers causes a dramatic decrease in ISD at high carrier 

concentrations when considering a monolayer OFET.  This effect is not observed experimentally 

since most OFETs are fabricated from multi-layered thin films of organic semiconductors and 

increases in the gate potential will affect layers above the first monolayer.    

Our simulations of I-V curves show that neglecting electrostatic interactions incorrectly 

predicts NDR at high VSD when neutral defects are present.  This occurs because carrier paths are 

nearly linear at high VSD and as a consequence, are more likely to encounter a defect.  In contrast, 

the inclusion of electrostatic interactions correctly predicts ISD saturation at high VSD.  Finally, 

when using the time dependent warm-up procedure, ISD is higher at the beginning of the 

simulation when electrostatic interactions are included.  At the start of a simulation (when the 
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carrier concentration is low), the electrostatic repulsion between carriers increases the effective 

mobility due to field-dependent hopping.   

5.4 CONCLUSION 

In this work, we have pursued the specific mechanisms of charge transport in organic 

semiconductors in the presence of explicit defects. In particular, considering photovoltaic 

materials and OLEDs as “defective” mixed films, we have shown the effect of neutral and 

charged explicit defects as a function of defect concentrations. We have shown that the inclusion 

of electrostatic interactions accurately predicts the saturation of ISD at high VSD in the presence of 

defects. We have also shown that ISD decreases linearly with increasing neutral defect 

concentration and the average mobility is nearly unaffected by the scattering of charges at low 

VSD, even when electrostatic interactions are considered.  Also, there is still considerable charge 

transport at 5-15% defects. In contrast, for charged defects, predicted currents are much lower 

than in defect-free materials, but largely unaffected by defect concentration until almost all 

pathways are blocked. In practice this means that the difficulty in removing impurities from 

semiconductor films should not adversely reduce the current in devices fabricated from them, 

unless the quantity of defects is very high.  

Through the use of explicit charged defects, we computed the exact energy distribution 

due to electrostatic repulsion. The disorder was shown to be a reciprocal Poisson distribution 

with a long tail at lower energies.  These low-energy pathways are responsible for charge 

transport in the presence of charged defects. This is different than the exponential tail in the 

energy distribution of crystalline materials159 and the Gaussian distribution used for polymeric 
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materials98.   This suggests that the Gaussian disorder model may not always be appropriate to 

describe non-polymeric organic materials. In the near future, we will simulate charge transport in 

mixed semiconductor films, which will coincide with the experimental work underway in our 

group.  
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6.0  CHARGE TRANSPORT IN IMPERFECT ORGANIC FIELD EFFECT 

TRANSISTORS: EFFECTS OF CHARGE TRAPS 

6.1 INTRODUCTION 

As discussed in Section 4.2, weak electronic interactions combined with a greater degree of 

disorder in amorphous organic semiconductors results in the localization of charge carriers on 

molecular sites.  The natural tendency for charge carrier localization makes charge transport 

through organic semiconductors more sensitive towards charge traps, which cause carriers to 

localize in a region of the material for an extended period of time.   For this reason, a 

fundamental understanding of how charge traps affect charge transport in organic 

semiconductors is essential.  

There are several origins of trap states, some of which are discussed in Section 5.1.   

Also, changes in site energies due to structural defects160 and electronic effects such as 

polarization can cause charge traps.  In addition, if both holes and electrons are present, as they 

are in OLEDs and photovoltaics, the low dielectric environment can cause “Coulomb traps” to 

form from bound hole-electron-pairs.161  Trap energies are located in the HOMO-LUMO gap of 

the material; hole traps have higher energies than the highest occupied molecular orbital 

(HOMO) while electron traps have lower energies than the lowest unoccupied molecular orbital 

(LUMO) (see Figure 6.1).      
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Figure 6.1.  Energy landscape of an organic semiconductor showing electron and hole traps. 

 

 

It is very difficult to determine the energetic and spatial distribution of charge traps in 

organic semiconductors.  Many simulation models that include charge traps assume that trap 

energies follow a Gaussian distribution (see Section 4.4) and that trap states are uniformly 

distributed throughout the material.  However, it is difficult to directly determine this 

information experimentally.   There is some evidence that traps can have a non-uniform spatial 

distribution; a number of experimental studies show evidence of “metallic islands”, which are 

highly ordered regions within amorphous polymeric materials.162-164 While it has been suggested 

that these metallic islands enhance charge transport by allowing charge carriers to travel over 

longer distances, others have suggested that these highly conductive regions act as charge 

traps.165 Theoretical studies of how the distribution of trap states alters charge transport in 

organic materials would provide a great deal of insight into such phenomena.   
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In this chapter, the effects of explicit traps on charge transport in an imperfect OFET 

device consisting of a monolayer of molecular sites (see Figure 5.1) are studied using Monte 

Carlo simulations.  As in the previous chapter, we have “frozen out” the Gaussian disorder 

approximation, which treats the effects of trap states implicitly.  This work will address the 

effects of trap concentration and energy on charge transport.  We will also look at how the 

distribution of trap sites in the OFET alters the  dependence of the device current on trap 

concentration.   

6.2 COMPUTATIONAL METHODS 

The simulation code described in Section 5.2 was used for these calculations with a few 

modifications to include trap sites.  In our simulation model, we differentiate between defect and 

trap sites.  Defect sites are unable to accept of charge carrier but instead act as a “wall” to charge 

transport.  In contrast, trap sites are able to accept a charge carrier, but have a different orbital 

energy.  Trap sites are created by taking a specified number of grid sites and adding !" to the 

potential energy due to the applied field.  To create trap sites that are higher in energy a positive 

!" is used; similarly a negative !" is used to create trap sites that are lower in energy (see Figure 

6.2).   



 92 

 

Figure 6.2. Energy diagram showing the creation of charge traps. 

 

By default, our code chooses grid sites at random to create traps, which results in a 

uniform or homogeneous distribution of trap sites.  A non-uniform, heterogeneous distribution of 

trap sites is achieved by first seeding the grid with a number of trap sites and then looping over 

the trap seeds to grow them into “islands” of trap sites (see Figure 6.3).  As illustrated in Figure 

6.4, the number of trap seeds controls the distribution of trap sites; less trap seeds create a more 

heterogeneous distribution of trap sites.   

 

Figure 6.3.  Creating a heterogeneous distribution of traps by seeding the grid with a small number of traps (left), 
then adding trap sites around the seeds. 
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Figure 6.4.  Spatial distribution of trap sites (blue areas) at different seed percentages, all with a total trap 
concentration of 20%. 

6.3 RESULTS AND DISCUSSION 

6.3.1 Homogeneous Traps 

Figure 6.4 show the results from the simulation of the source drain current (ISD) as a function of 

the homogeneous trap concentration for both positive and negative values of "'.  In both cases, 

ISD decreases as the trap concentration increases, reaches a minimum, and increases as the trap 
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concentration approaches 100%.  As the absolute value of !" increases, the ISD minimum 

decreases.  The energy difference between the trap sites and the “normal” transport sites causes a 

charge transfer barrier, which reduces the carrier mobility.  As the trap concentration is 

increased, ISD decreases until it reaches a minimum, which can be explained by simple 

percolation theory.  However, as more trap sites are added, charge transfer between “trap sites” is 

possible and ISD recovers.   

 

 

 

Figure 6.5. ISD vs. homogeneous trap concentration for positive (left) and negative traps.   

 

 

Percolation theory predicts that ISD should reach a minimum when the trap concentration 

is approximately 50%.  However, our simulations predict that the ISD minimum is shifted towards 

lower concentrations (~20-30%) when !" is positive and higher concentrations (~60-70%) when 

"' is negative.  The asymmetry in the plots agree with experimental results113-114 as well as 

simulations and theoretical studies that use the Gaussian Disorder Model.112, 115-116   Numeric 
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kinetics simulations were employed in an attempt to explain the asymmetry in the plots shown in 

Figure 6.5, however they gave little insight into this feature (See Appendix D).   

Our simulation model assumes that the grid sites have the same conductivity regardless 

of them being traps or not.  Therefore, it is expected that ISD is similar at trap concentrations of 

0% and 100%.  Although this is the case for negative traps, ISD decreases at 100% traps as !" 

increases when positive traps are used.  When the trap concentration is 100%, all of the sites 

neighboring the source electrode are trap sites.  Since the trap sites are higher in energy than the 

source electrode, there is a barrier for charge carriers to be injected from the source electrode 

onto the grid, which lowers the charge injection probability.  This “charge injection barrier” 

increases as "' increases.  In contrast, the drain electrode always accepts charge carriers, which 

prevents a similar problem from occurring when negative charges are used.   
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6.3.2 Heterogeneous Traps 

To examine the effects of the trap heterogeneity on charge transport, ISD was simulated as a 

function of the trap concentration while varying the seed percentage between 1% and 100%.  The 

results of these simulations are shown in Figures 6.6 and 6.7 for positive and negative traps 

respectively.  Both figures show that at seed percentages less than 75%, ISD decreases as a 

function of the trap concentration, approaching zero when the trap concentration is ~60% when 

the seed percentage is less than 50%.  However, at seed percentages greater than 75%, ISD at 

100% traps begins to recover, with a complete recovery when the seed percentage is above 90%.  

Again, we believe that the lack of ISD recovery at 100% traps is an artifact of our current 

simulation model due to the charge injection barrier.  Nevertheless, the minimum ISD tends to 

shift towards higher trap concentrations as the system becomes more heterogeneous for positive 

charges and (slightly) towards lower trap concentrations for negative traps.   
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Figure 6.6. ISD vs. trap concentration profiles for different seed percentages.  !" = 0.1 eV.   
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Figure 6.7.  ISD vs. trap concentration profiles for different seed percentages.  !" = -0.1 eV 
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In order to gain insight into the effect of trap distribution on the concentration 

dependence of ISD, we examined the distance and energy distributions between carriers and trap 

sites.  Figure 6.8 shows the distribution of distances for a 1024 x 256 grid (red curve).   Aside 

from some subtle differences, the distribution is the same for the seed percentages considered.  

However, there is a geometric dependence on the distance distribution; the distances between 

carriers and traps in the 1024 x 256 grid gives a Poisson distribution while the 512 x 512 grid 

gives a Gaussian distribution 

 

 

 

Figure 6.8.  Distribution of distances between charge carriers and trap sites for different grid geometries, 
homogeneous seeding, and a 20% trap concentration.   
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Although the distribution of distances between the carriers and trap sites does not depend 

on the seed percentage, Figure 6.9 shows that the potential energy distribution does.  The 

potential energy between carriers and trap sites for more heterogeneous systems has a Gaussian-

like distribution.  However, as the system becomes more homogeneous, the energies take on a 

reciprocal Poisson distribution, with only subtle differences in the energy distribution as the 

homogeneity of the system increases.  The energy distribution also changes with the geometry of 

the grid; the energy distribution for “square” grid is shifted towards higher potential energies (see 

Figure 6.10).   
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Figure 6.9.  Distribution of potential energy between charge carriers and trap sites at different seed percentages.   
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Figure 6.10.  Distribution of potential energy between charge carriers and trap sites for different grid geometries, 
homogeneous seeding, and a 20% trap concentration.   

 

 

These results suggest that although spatial distribution of traps has little effect on the 

distribution of distances between carriers and trap sites, it significantly affects the potential 

energy distribution.  These differences in the energy distribution impact the dependence of ISD  

on the trap concentration, as illustrated in our simulation results.   

 

6.4 CONCLUSION 

In this chapter, we explored charge transport in organic semiconductors in the presence of charge 

traps.  Through the use of explicit heterogeneous traps, we have shown that charge transport 

decreases at low concentrations, reaches a minimum, and increases as the trap concentration 

approaches 100%.  Our simulations produce results that match experimental and previous 
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simulation results that use the Gaussian Disorder Model when we assume a  homogeneous 

distribution of traps.  However, we have also shown that a homogeneous distribution of traps 

gives a non-Gaussian distribution of energies.   

We have also shown that the trap concentration dependence of charge transport can vary 

with the spatial distribution of traps in our model OFETs.  Our results indicate that there is no 

charge transport at high trap concentrations when the spatial trap distribution is highly 

heterogeneous.  We have also shown that differences in the spatial distribution of traps affect the 

distribution of potential energy between carriers and trap sites more than the distribution of 

distances.  In addition, these distributions depend on the geometry of the device.   These 

distributions are shown to be more Gaussian for very heterogeneous trap distributions while 

taking on a Poisson distribution as the spatial trap distribution becomes more homogeneous.  

This is in opposition to what is intuitively assumed about disorder in organic materials; that trap 

states are randomly, but uniformly distributed throughout the material and that the energies 

follow a Gaussian distribution.  These results suggest that when considering disorder in organic 

materials, we must consider the geometric distribution of trap states as well as the geometry of 

the device.   

In practice, the distribution of trap sites in an organic semiconductor device is often 

uncontrolled.  Our simulations indicate that this information can be determined by studying the 

dependence of charge transport on the concentration of intentionally added charge traps.  There 

are few studies that have accomplished this experimentally by making devices from mixtures of 

organic materials; more studies along these lines will allow us to gain more insight into the 

spatial distribution of traps in organic electronics.  Our group is currently doing such 

experimental work by making OFETs from mixtures of metal phthalocyanines.   
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7.0  THE EFFECTS OF CHARGE LOCALIZATION ON THE ORBITAL ENERGIES 

OF BITHIOPHENE CLUSTERS 

7.1 INTRODUCTION 

An underlying assumption in the theory and computational simulation of charge transport in 

organic semiconductors is that charge carriers are typically localized on a single molecular site.  

As a consequence, charge transfer occurs through variable range hopping (VRH: see Section 

4.2).  The VRH model assumes that charge carriers remain localized on an individual molecular 

site between charge transfer events that are discrete and independent of each other.  The VRH 

model has been through numerous experimental studies, including temperature-dependent single-

crystal measurements.166-168 Although not inherent of VRH itself, many studies, including those 

presented in Chapters 5 and 6, assume that all molecular sites are identical, although with some 

amount of energetic disorder.98  In addition, it is assumed that the interactions between molecular 

sites are identical.   

However, there is evidence to suggest that these fundamental assumptions made in 

charge transfer theory and computer simulations require revision.  Dimers of charged, ) stacked 

oligomers are known to exist in solution.169-171  In addition, dimers and larger-sized clusters of 

charged, )-stacked aromatic molecules have been observed in gas phase experiments.172-174  This 

suggests that charge carriers can delocalize throughout several molecular sites.   
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Recent studies have also addressed the effects of electrostatic polarization on site 

energies, indicating that these effects are dependent on the geometry of the molecules in the 

lattice.175  It has also been shown that electrostatic interactions between charge carriers and 

charged defects can also affect carrier mobility.117  Finally, several groups have addressed 

variations in electronic coupling due to molecular dynamics and lattice vibrations176-178 in 

addition to anisotropic interactions due to the structure of the solid state.   

The evidence presented above shows that VRH models must be expanded so that the 

charge transfer rates depend also on the state of the local neighborhood, which would include 

electrostatic interactions and polarization effects as well as charge delocalization.   In essence, 

simulations would consider the electronic structure of clusters of molecular sites instead of 

treating the organic material as a grid of independent sites.   

In this work, we examine how charge localization and delocalization affect orbital 

energies of clusters of bithiophene clusters using first principles quantum chemistry calculations. 

Since most oligothiophenes are p-type conductors, our calculations will focus on positively 

charged (+1 and +2) bithiophene clusters.  To make this comparison, constrained density 

functional theory (CDFT)179 is used to intentionally localize a unit of charge on one or more 

molecular sites in the clusters.  CDFT has recently been used to calculate charge transfer 

parameters180-185 but has not been used to study how orbital energies are affected by charge 

localization.  The CDFT calculations will be compared to standard DFT calculations, which 

allow the charge to delocalize over several molecular sites.  We will specifically look at how the 

geometry of the molecular sites affect how charge is distributed throughout the clusters.   
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7.2 COMPUTATIONAL METHODS 

The bithiophene clusters (see Figure 7.1) were generated from the experimental crystal 

structure obtained from the Cambridge Crystal Structure Database186. The clusters were 

generated using large super cells and removing unwanted molecular molecules using the 

Avogadro program.187  Single point energy calculations were carried out using Q-Chem v. 3.2,188 

which has an implementation of CDFT, using the B3LYP142-143 and the M06-2X189 functionals 

and a 6-31G(d) basis set.  Although the orbital eigenvalues obtained from DFT calculations are 

unphysical, it has been shown that the highest occupied Kohn-Sham orbital eigenvalue is 

approximately equal to the negative of the ionization potential.190  We found that including an 

empirical dispersion correction191 had no effect on the orbital eigenvalues.   

To set up the CDFT calculations, a constraint operator must be specified to enforce the 

charge constraints.  This was done by determining a series of coefficients (ci) that give a total 

constraint value for the system.  The constraint value (C) is given by, 

 

 

! 

C = cimi
i=1

n

"  (37) 

 

where mi is the charge on each bithiophene molecule in a cluster of size n, which is determined 

by taking the difference in the number of electrons and protons in the molecule.  The coefficients 

are chosen so that the total charge on the cluster (+1 or +2) is satisfied and the total charge was 

constrained on the desired bithiophene molecule(s) in each cluster.    An example Q-Chem input 

file is included in Appendix E.   
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7.3 RESULTS AND DISCUSSION 

7.3.1 Comparing the Orbital Energies of Neutral, Singly, and Doubly Charged 

Bithiophene Clusters 

We first examined how the addition of positive charges affects the highest occupied molecular 

orbital (HOMO) of two series of bithiophene clusters (see Figure 7.1) using standard DFT.    In 

Series 1, the end molecules are parallel to the x-axis and in Series 2 the end molecules are tilted 

with respect to the x-axis.  This comparison serves two purposes.  First, it allows us to determine 

the DFT localization lengths for the charged clusters.  In addition, we are able to determine the 

ionization potential for an infinite one-dimensional cluster, which is not possible with lattice 

calculations using periodic boundary conditions.  Both of these tasks can be accomplished by 

plotting the HOMO energies as a function of 1/N where N is the number of bithiophene 

molecules in the cluster.   The localization length can be estimated by finding the cluster size at 

which the HOMO energy appears to saturate.  The ionization potential of an infinite one-

dimensional cluster can be estimated by the “y-intercept” of the plot, where 1/N equals zero (i.e., 

where N approaches infinity).   
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Figure 7.1. Bithiophene series for calculations shown in Figure 7.2. 

 

 

Figure 7.2 shows plots of the HOMO energies of our clusters as a function of 1/N for 

using the B3LYP and M06-2X functionals.  For the neutral clusters, the HOMO energies remain 

roughly constant as the cluster size increases.  However for the charged clusters, the HOMO 

energies increase linearly as the cluster size increases, with the plots for the doubly charged 

clusters having a more negative slope.   These trends are seen for both series and when the 

calculations are performed with both the B3LYP and M06-2X functionals, although the M06-2X 

energies are lower (e.g., -4.98 eV using B3LYP and -6.26 eV using M06-2X for the Series 1 

three molecule cluster).     
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Figure 7.2. HOMO Energy vs. 1/N for neutral, singly, and doubly charged bithiophene clusters.  Shown are B3LYP 
(left) and M06-2X results for Series 1 (top) and Series 2.  Blue diamonds represent neutral clusters, red squares 
represent singly charged clusters, and green triangles represent doubly charged clusters.   
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The plots for the charged clusters do not saturate at large N values, which suggests that at 

least for these widely used functionals, the localization length for charged clusters is at least 11.  

To help estimate the localization length, we performed Hartree-Fock (HF) calculations on our 

clusters using the same basis set.  It is known that DFT tends to delocalize charges while HF 

tends to localize charges,192-193 so the degree of charge delocalization should lie somewhere 

between these extremes.  Figure E.1 shows the HF calculations for the neutral and charge cluster 

series depicted in Figure 7.2. These illustrate that the positive charge localizes over 

approximately 8 molecules.   

As mentioned, we can estimate the ionization potential of an infinite one-dimensional 

cluster from the equations of the best-fit lines for our plots.  The equations in Figure 7.2 show 

that the y-intercept becomes more negative as more charge is added to the clusters.  As a 

consequence, assuming Koopmans’ theorem, the ionization potential is increasing by  

~0.7-0.9 eV when B3LYP is used and ~0.3-1.1 eV when M06-2X is used for each positive 

charge added to the clusters.  These results indicate that the ionization of an infinite one-

dimensional lattice changes significantly with addition of charge carriers.   

7.3.2 Singly charged bithiophene clusters 

We examined the effects of localizing a single positive charge on a bithiophene molecule in two 

series of clusters (Figure 7.3).  For the CDFT calculations, the charge was localized on the 

central molecule in all of the clusters composed of 3 or more molecules.  In Series 1, the center 

molecule is tilted with respect to the x-axis and in Series 2 the center molecule is parallel to the 

x-axis.   
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Figure 7.3. Bithiophene Series for Figure 4.  A red dashed line represents the molecule at which the charge is 
localized in CDFT calculations.   

 

 

Figure 7.4 shows the HOMO energies plotted as a function of 1/N.  For Series 1, the 

HOMO eigenvalues increase as the size of the cluster increases when DFT is used.  This is 

predicted by standard band theory; as more molecules are added to the bithiophene cluster, the 

orbitals from each added molecule mix causing the HOMO of the cluster to increase in energy.  

As a result, the positive charge to delocalize throughout the entire cluster.  However, when 

CDFT is used, the HOMO energies remain roughly constant over the cluster size range used.   

This is expected; adding more molecules to the bithiophene stack should not change the HOMO 

energy if the charge is localized on one molecule.  This trend holds when both the B3LYP and 

M06-2X functionals are used, although the M06-2X energies are slightly lower.    
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Figure 7.4. HOMO Energy vs. 1/N for singly charged bithiophene clusters.  Shown are B3LYP (left) and M06-2X 
results Series 1 (top) and Series 2.  Blue diamonds represent DFT calculations and red squares represent CDFT 
calculations.   

 

 



 113 

For Series 2, the HOMO energies increase linearly as the size of the cluster increases 

regardless of whether DFT or CDFT is used when the B3LYP functional is used.  When the 

M06-2X functional is used, the plot appears to saturate for cluster sizes larger than 7 molecules.  

Also, there is less difference in the HOMO energies when DFT is used versus CDFT.  This 

suggests that it is difficult to localize the positive charge on the center molecule if it is parallel to 

the x-axis.   

We examined the average Mulliken charge on the carbon atoms in each bithiophene 

molecule in the clusters to help explain this result.   Figure 7.5 show plots of the average 

Mulliken charge as a function of the molecule in the 7-molecule clusters for each series.  For the 

DFT calculations, the average charge on the carbon atoms of the tilted molecules is slightly less 

negative than for those molecules that are parallel to the x-axis.  For the CDFT calculations, both 

series show that the central molecule bears the majority of the positive charge (as expected from 

the constraint), however the charge is noticeably more positive for Series 1. Furthermore, in 

Series 1, the molecules next to the positive localized charge gain a noticeably larger negative 

charge, which is not observed in Series 2.  These results indicate that it is easier to localize a 

positive charge on a molecule that is tilted than one that is parallel to the x-axis.   

 



 114 

 

Figure 7.5. Average carbon Mulliken charge vs. molecular fragment for the 7-molecule singly charged cluster in 
Series 1  (left) and Series 2.  Blue diamonds represent DFT calculations and red squares represent CDFT 
calculations (B3LYP).   

 

 

This is likely due to electronic polarization, which has been shown to affect orbital 

energies in dimers and clusters of ) systems.175    The molecules in the clusters adopt a 

“herringbone” packing arrangement in order to allow for favorable quadrupolar electrostatic 

interactions between the ) cloud of the “parallel” molecules and the edges of the “tilted” 

molecules, which bear a partial positive charge.140  Localizing a positive charge on a parallel 

molecule depletes the electron density of the ) cloud. As a consequence, the electrostatic 

interaction will be destabilized since the edges of the tilted molecule are now interacting with a ) 

cloud with less electron density.  This destabilization should diminish if the charge is localized 

on a tilted molecule since its ) cloud does not interact directly with the edge of another molecule.   

Consequently, in Series 2 less positive charge is localized on the central molecule in the 

bithiophene clusters when compared to Series 1.   
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Figure 7.6.  Packing arrangement for bithiophene.  

 

7.3.3 Doubly charged bithiophene clusters 

To look at the effects of charge localization when multiple positive charges are present, we 

performed calculations on two series of doubly charged clusters.  For this set of calculations, a 

+1 charge is placed on both end molecules of each cluster (see Figure 7.6).  In Series 1, the end 

molecules are parallel to the x-axis and in Series 2, the end molecules are tilted with respect to 

the x-axis.   



 116 

 

Figure 7.7. Bithiophene Series for Figure 5.  A red dashed line represents the molecule at which the charge is 
localized in CDFT calculations.  

 

 

Figure 7.7 shows the HOMO energies plotted as a function of 1/N.  For Series 1, the 

HOMO energies increases linearly as the cluster size increases regardless as to whether or not 

CDFT is used, suggesting no localization occurs within the cluster sizes considered.  Also, there 

is very little difference in the DFT and CDFT energies.  For Series 2, the DFT HOMO energies 

increase as the cluster size increase, which indicates charge delocalization.  However, when 

CDFT is used, the HOMO energies appear to saturate for clusters with more than 7 molecules 

with B3LLYP, but to a significantly lesser degree with M06-2X.     This saturation indicates that 

the positive charges are more likely to localize on the end molecules in larger clusters.  Based on 

our results with singly charged clusters, this is not surprising since localization did not appear 

until ~7 molecules.   
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Figure 7.8.  HOMO Energy vs. 1/N for doubly charged bithiophene clusters.  Shown are B3LYP (left) and M06-2X 
results for Series 1 (top) and Series 2.  Blue diamonds represent DFT calculations and red squares represent CDFT 
calculations.   
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As before, we examined the average charge of the carbon atoms for each molecular 

fragment in the clusters.  Figure 7.8 shows the charge plotted as a function of the molecular 

fragment in a 7-molecule cluster for both Series.  Again, we found that the average charge on the 

tilted molecules is more positive than for those that are parallel to the x-axis when standard DFT 

is used.  When CDFT is used, the charge is much more positive on the end molecules as 

expected.  For the Series 1 cluster, the charge difference between the DFT and CDFT 

calculations is smaller when compared to the singly charged cluster.  Again, this is likely due to 

polarization effects, which makes it difficult to localize the positive charges on the “parallel” 

ends, which is reflected in the top plots of Figure 7.2.  The small change in charge throughout the 

cluster between the DFT and CDFT calculations may also account for the small difference in 

HOMO energies for Series 1.   

For Series 2, the charge difference is significantly larger, especially between the end 

molecules and their closest neighbors.  This indicates that it is easier to localize the positive 

charge on the end molecule, again due to polarization effects between the tilted and parallel sites.    
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Figure 7.9. Average carbon Mulliken charge vs. molecular fragment for the 7-molecule doubly charged cluster in  
Series 1 (left) and Series 2.  Blue diamonds represent DFT calculations and red squares represent CDFT calculations 
(B3LYP).   
 

7.4 SINGLY CHARGED 2D BITHIOPHENE CLUSTER 

Finally, we examined the effects of localizing a single positive charge on a two dimensional 

bithiophene cluster.  For these calculations, a nine-molecule fragment was extracted from the 

crystal structure and the positive charge was localized on the center molecule for the CDFT 

calculations (see Figure 7.10b).  The HOMO energies calculated using standard and constrained 

DFT were -6.94 eV and -8.30 eV respectively.   As for the 1D clusters, we plotted the average 

Mulliken charge on the carbon atoms in each bithiophene molecule as a function of the 

molecular fragment (Figure 7.10a).  Unlike for the 1D clusters, the average charges on each 

bithiophene molecule are nearly equivalent when DFT is used, although there appears to be 

slightly more positive charge on molecules 1 and 9.  As expected, the positive charge on the 

center molecule (5) is significantly higher when CDFT is used.  However, the localized charge 
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does not affect the neighboring sites equally.  The charge on molecules 2 and 8 are affected more 

by the positive charge on molecule 5 than the remaining molecules.  This result suggests that the 

effects of a charge carrier localized on one or more sites in a crystal lattice can be anisotropic.   

 

 

  

 

 

Figure 7.10.  (a) Average carbon Mulliken charge vs. molecular fragment for the 2D 9-molecule cluster (b).  Blue 
diamonds represent DFT calculations and red squares represent CDFT calculations (B3LYP). 
  

7.5 CONCLUSION 

We have used standard and constrained DFT calculations to examine the assumption of charge 

carrier localization in existing VRH models.  Our results show that a positive charge can 

delocalize over at least 7 molecules.  This suggests that VRH models may need to change to 

account for the possibility that a charge carrier is delocalized over several molecular sites.  Not 

doing so may result in misinterpretations of charge transfer events.  For example, if a charge 

(a) (b) 
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carrier is truly delocalized over several sites, a short distance “hop” of the delocalized charge can 

be misinterpreted as a long distance hopping event.   

We have also shown that positive charge is less likely to localize on the tilted molecules 

than those that are parallel to the x-axis in our ID bithiophene clusters due to polarization effects.  

For the 2D cluster, the positive charge localized on the center molecule was shown to affect the 

molecules directly above and below it (molecules 2 and 8 respectively).  Even when the charge is 

allowed to delocalize throughout the cluster, molecules 1 and 9 have slightly more positive 

charge than the other molecules in the cluster.  This suggests that charge carriers in a film or 

crystal can affect the local neighborhood anisotropically.  These results not only illustrate the 

importance of including electrostatic interactions in existing models for charge transport in 

organic semiconductors but also suggest that these interactions cannot be assumed to be 

isotropic.   

In practice, both delocalized charge carriers and polarization effects should be 

incorporated into computer simulation models for charge transport in organic semiconductors.   

Due to the size of the clusters involved, this would likely require performing quantum chemistry 

calculations on clusters that represent a section of the grid considered for the simulation.   Such 

calculations would help us to determine how much a charge carrier will delocalize and examine 

polarization effects.  These calculations would then be used to set up additional parameters to 

model charge transport through disordered materials in a more realistic manner.   
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8.0  SUMMARY 

In this dissertation, experimental work combined with theoretical calculations were used to study 

the dynamics of charge transfer, molecular collisions, and ion fragmentation, which are among 

the most fundamental processes in chemistry.  The research present in this dissertation not only 

gives insight into these processes, but also demonstrates how such insight can be useful in a 

variety of applications including proteomics and the fabrication of electronic devices.   

Chapter 1 gave an introduction to the Penning ionization reaction and what is known 

about its dynamics.  This introductory chapter also discussed the application of Penning 

ionization to mass spectrometry and how it may be used in conjunction with quantum chemistry 

calculations and unimolecular kinetics to study molecular ion fragmentation.  The chapter 

concludes with an overview of the research presented in the following two chapters.   

Chapter 2 described the experimental methods used to study the Penning ionization of 

formamide and acetamide by excited stated noble gases.  A detailed description of the crossed 

beam apparatus is given as well as details concerning data acquisition.   

Mass spectra from the Penning ionization of formamide by He*, Ne*, and Ar* were 

discussed in Chapter 3.  When compared with the standard 70 eV electron ionization spectrum, 

the He* and Ne * spectra showed higher yields of ions resulting from # bond cleavage, which 

can be attributed to the differences in the dynamics of the two ionization methods.  Also, the Ar* 

spectrum only shows the molecular ion, and ions resulting from H-atom elimination and 
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decarbonylation.  The fragmentation pathways in the Ar* spectrum were then analyzed using 

quantum chemistry and RRKM calculations.  These calculations were used to predict ion yields, 

which were in good agreement with the experimental Ar* spectrum.   

Chapter 4 served as an introduction to the remaining chapters, which focus on charge 

transport in organic semiconductor materials.  This chapter introduced the history and types of 

organic semiconductors as well as their application to electronic devices.  A brief outline of 

charge transport models and a review of computer simulation studies is also given.  The chapter 

concludes with an overview of the remaining three chapters of this work.   

In Chapter 5, the effects of defects and electrostatic interactions on charge transport in a 

model organic field effect transistor are discussed.  These effects are studied using a course-

grained Monte-Carlo simulation that treats disorder by explicitly adding defect sites.  The 

simulations show that electrostatic interactions are essential in studying the field and carrier 

concentration dependence on charge transport in devices that contain defects.  Without the 

inclusion of electrostatic interactions, simulations of I-V behavior show negative differential 

resistance, an unphysical effect.  The results also show that while charge transport decreases as a 

function of neutral defect concentration, it is roughly constant at low charged defect 

concentrations.   

Chapter 6 discusses the effects of traps on charge transport in the model system discussed 

above.  Charge traps are also explicitly treated in the simulation model.  The simulations show 

that charge transport decreases as a function of trap concentration, reaches a minimum, and 

recovers at high trap concentrations when the distribution of trap sites is homogeneous.  Also, 

the dependence of charge transport on trap concentration was shown to depend on the 

distribution of trap sites.  For highly heterogeneous trap distributions, charge transport decreases 
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at low trap concentrations but does not recover at high trap concentrations.  However, as the 

distribution of trap sites becomes more uniform, charge transport begins to recover at high trap 

concentrations.   

Finally, the effects of charge localization on the orbital energies of positively charged 

bithiophene clusters are discussed in Chapter 7.  Standard and constrained DFT calculations are 

used to make this comparison.  The results show that the positive charge delocalizes over at least 

seven molecules.  It is also shown that for 1D clusters, it is easier to localize the positive charge 

on “tilted” rather than “parallel” molecules due to polarization effects.  In addition, it was shown 

that a positive charge affects sites anisotropically in 2D clusters.   

The results presented in Chapters 5-7 suggest that variable range hopping (VRH) models 

for charge transport need several changes to better describe charge transport in organic 

semiconductors.  First, the possibility that charge carriers may be delocalized over several 

molecular sites must be considered in order to accurately describe the distance over which a 

hopping event occurs.  Also, we must consider that energy and distance distributions depend on a 

variety of variables.  Finally, VRH models should consider the local neighborhood in which a 

charge transfer event occurs.  This work has shown that electrostatic interactions can 

significantly affect charge transport in organic materials, especially when considering charged 

and neutral defects.   
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APPENDIX A 

SUPPORTING INFORMATION FOR CHAPTER 3 

A.1 TABLES OF RELATIVE ABUNDANCES AND ION YIELDS FOR  

NG* + HCONH2 

 

The following tables show the results from the least squares fitting for individual  

Ng* + HCONH2 spectra. 
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Table A.1.  Relative abundances from the least squares fitting of He* + HCONH2 spectra . 

Date of 
Experiment 

8/25/2006 8/11/2008 9/30/2008 10/2/2008 

m/z Relative 
Abundance 

Error Relative 
Abundance 

Error Relative 
Abundance 

Error Relative 
Abundance 

Error 

15 0.00535 0.00135     0.00233 0.00119 
16 0.38511 0.02118 0.18557 0.02495 0.31747 0.03394 0.205 0.02254 
17 0.60483 0.03009 0.31064 0.03787 0.47581 0.0465 0.31894 0.03209 
18 0.41027 0.02223 0.0561 0.00938 0.07796 0.01232 0.04063 0.00687 
27 0.01114 0.00259 0.00643 0.00327   0.00503 0.00282 
28 0.13277 0.01163 0.08683 0.01859 0.02608 0.00691 0.03143 0.00822 
29 0.8268 0.04327 0.45668 0.06281 0.49782 0.05198 0.54938 0.06035 
42 0.02078 0.00467 0.04848 0.02092 0.02215 0.00962 0.02652 0.01166 
43 0.36611 0.02751 0.38788 0.0787 0.39241 0.05735 0.40152 0.06375 
44 0.54676 0.03645 0.56364 0.10236 0.5443 0.07217 0.55682 0.08025 
45 1 0 1 0 1 0 1 0 
46 0.02238 0.00486 0.04242 0.01934 0.00633 0.0043 0.02273 0.01068 
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Table A.1 Continued 

Date of 
Experiment 

12/15/2008 12/18/2008 Average Standard 
Deviation 

m/z Relative 
Abundance 

Error Relative 
Abundance 

Error   

15 0.00596 0.00355   0.00455 0.00194 
16 0.2486 0.05317 0.34047 0.04708 0.28037 0.07954 
17 0.36149 0.0729 0.50534 0.06506 0.42951 0.11799 
18 0.06666 0.01888 0.05268 0.01163 0.11738 0.14404 
27     0.00753 0.00320 
28 0.54063 0.13009 0.20741 0.04118 0.17086 0.19338 
29 0.48489 0.11943 0.77307 0.11105 0.59811 0.16010 
42   0.07857 0.03033 0.03930 0.02463 
43 0.46154 0.15824 0.37143 0.08291 0.39682 0.03435 
44 0.61538 0.19416 0.63571 0.12113 0.57710 0.03870 
45 1 0 1 0 1 0 
46 0.01923 0.0219 0.01429 0.01131 0.02123 0.01206 
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Table A.2.  Percent yields from the least squares fitting of He* + HCONH2 spectra. 

Date of 
Experiment 

8/11/2008 9/30/2008 10/2/2008 12/15/2008 Average Standard 
Deviation 

m/Z Number 
of 

Counts 

Percent 
Yield 

Number 
of Counts 

Percent 
Yield 

Number 
of 

Counts 

Percent 
Yield 

Number 
of 

Counts 

Percent 
Yield 

  
16 881 6.18 1406 9.54 843 6.61 772 7.67 7.50 1.50 
17 1474 10.34 2108 14.30 1312 10.29 1126 11.19 11.53 1.89 
18 240 1.68 345 2.34 167 1.31 207 2.06 1.85 0.45 
29 2168 15.21 2206 14.96 2260 17.73 1507 14.97 15.72 1.34 
42 230 1.61 98 0.66 109 0.86  0.00 0.78 0.66 
43 1841 12.91 1738 11.79 1652 12.96 1434 14.25 12.98 1.00 
44 2675 18.77 2411 16.35 2291 17.97 1912 19.00 18.02 1.20 
45 4746 33.29 4430 30.05 4114 32.27 3107 30.87 31.62 1.44 

Total 
Counts 14255  14742  12748  10065  
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Table A.3.  Relative abundances from the least squares fitting of Ne* + HCONH2 spectra. 

Date of 
Experiment 

8/18/2006 8/29/2006 9/07/2006 3/23/2009 

m/z Relative 
Abundance 

Error Relative 
Abundance 

Error Relative 
Abundance 

Error Relative 
Abundance 

Error Renormalized 
Relative 

Abundance 
15 0.00099 0.00046 0.00099 0.00046      
16 0.09733 0.00621 0.097 0.00618 0.25811 0.02054 0.0767 0.00703 0.094944 
17 0.83643 0.0286 0.83358 0.0285 0.84612 0.05099 0.69152 0.03046 0.85619 
18 0.50052 0.01934 0.49881 0.01928 0.59675 0.03867 0.18134 0.01209 0.224525 
20 0.86418 0.03043 0.86349 0.03042 0.80713 0.03867 1 0  
21 0.00277 0.0085 0.00276 0.00085      
22 0.07009 0.00533 0.07004 0.00533 0.07497 0.00903 0.09592 0.00803  
27 0.00171 0.00079 0.00171 0.00079      
28 0.04026 0.00446 0.04026 0.00446 0.04021 0.00868 0.07012 0.00852 0.086748 
29 1 0 1 0 1 0 0.69399 0.03637 0.859131 
30 0.01604 0.00264 0.01604 0.00264      
43 0.02838 0.0045 0.02833 0.00453   0.02292 0.00602 0.028452 
44 0.9149 0.03961 0.92176 0.04002 0.91836 0.07948 0.80771 0.04916 1 
45 0.8548 0.03773 0.8634 0.0382 0.85076 0.0753 0.78074 0.04806 0.9666 
46 0.02115 0.00382   0.00932 0.005 0.01214 0.00429 0.014999 
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Table A.3 Continued 

Date of 
Experiment 

3/24/2006 3/25/2006 3/27/2006 

m/z Relative 
Abundance 

Error Renormalized 
Relative 

Abundance 

Relative 
Abundance 

Error Renormalized 
Relative 

Abundance 

Relative 
Abundance 

Error Renormalized 
Relative 

Abundance 
15          
16 0.06777 0.008 0.077418 0.0633 0.00737 0.07394 0.05236 0.00741 0.08574 
17 0.68898 0.03717 0.787542 0.66637 0.03417 0.77818 0.50997 0.03282 0.83502 
18 0.08441 0.00914 0.096572 0.09721 0.00955 0.11348 0.10403 0.01129 0.17043 
20 1 0  1 0  1 0  
21          
22 0.09306 0.00961  0.08939 0.0084  0.08793 0.01052  
27          
28 0.11937 0.0176 0.136488 0.06881 0.01267 0.0804 0.05534 0.01199 0.09067 
29 0.72347 0.05386 0.826976 0.78583 0.05503 0.91751 0.61076 0.05172 1 
30          
43    0.02882 0.01152 0.03364 0.0228 0.01083 0.03741 
44 0.87746 0.09395 1 0.85646 0.07813 1 0.60203 0.06901 0.98571 
45 0.8265 0.09074 0.944793 0.80705 0.07531 0.94241 0.57923 0.06738 0.9483 
46 0.0181 0.01089 0.020763 0.00412 0.00421 0.00475 0.00456 0.00469 0.00753 
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Table A.3 Continued 

 Average Standard 
Deviation 

m/z   
15 0.00099 0.00000 
16 0.11207 0.06508 
17 0.82472 0.02977 
18 0.31444 0.21016 
20 0.84493 0.03274 
21 0.00277 0.00001 
22 0.07170 0.00283 
27 0.00171 0.00000 
28 0.07358 0.03606 
29 0.94337 0.07543 
30 0.01604 0.00000 
43 0.03124 0.00413 
44 0.96296 0.04209 
45 0.91015 0.05109 
46 0.01309 0.00696 
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Table A.4.  Percent yields from the least squares fitting of Ne* + HCONH2 spectra. 

Date of 
Experiment 

8/18/2006 8/29/2006 9/7/2006 3/23/2009 

m/z Counts Percent 
Yield 

Counts Percent 
Yield 

Counts Percent 
Yield 

Counts Percent 
Yield 

16 924 2.58 923 2.56 1396 6.60 614 2.44 
17 7942 22.17 7928 22.03 4576 21.62 5537 22.00 
28 382 1.07 383 1.06 217 1.03 561 2.23 
29 9496 26.51 9511 26.42 5408 25.55 5556 22.07 
43 270 0.75 269 0.75  0.00 184 0.73 
44 8688 24.26 8767 24.36 4966 23.46 6467 25.69 
45 8117 22.66 8212 22.82 4601 21.74 6251 24.84 

Total 
Counts 35819  35993  21164  25170  
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Table A.4 Continued 

Date of 
Experiment 

3/24/2009 3/25/2009 3/27/2009 Average Standard 
Deviation 

m/z Counts Percent 
Yield 

Counts Percent 
Yield 

Counts Percent 
Yield 

  

16 481 2.05 389 1.93 330 2.15 2.90 1.65 
17 4893 20.87 4094 20.34 3214 20.97 21.43 0.71 
28 848 3.62 423 2.10 349 2.28 1.91 0.95 
29 5138 21.92 4827 23.98 3849 25.11 24.51 1.92 
43  0.00 177 0.88 144 0.94 0.58 0.40 
44 6213 26.50 5261 26.14 3794 24.75 25.02 1.11 
45 5870 25.04 4958 24.63 3650 23.81 23.65 1.27 

Total 
Counts 23443  20129  15330    

 

 



  

134 

Table A.5.  Relative abundances from the least squares fitting of Ar* + HCONH2 spectra. 

Date of 
Experiment 

9/14/2006 9/25/2006 10/2/2006 

m/z Relative 
Abundance 

Error Relative 
Abundance 

Error Relative 
Abundance 

Error 

17 0.08253 0.00251 0.20164 0.0066 0.06814 0.00259 
29 0.00324 0.0006 0.00292 0.00029 0.01065 0.00168 
40 0.21711 0.00706 0.28185 0.00054 0.53976 0.01566 
44 0.05987 0.00351 0.06352 0.01103 0.06617 0.00457 
45 1 0 1 0 1 0 
46 0.02071 0.0019 0.02326 0.00223 0.02133 0.00236 

 

 

Table A.5 Continued 

Date of 
Experiment 

1/27/2009 1/29/2009 Average Standard 
Deviation 

m/z Relative 
Abundance 

Error Relative 
Abundance 

Error   

17 0.05343 0.00126 0.04349 0.00164 0.08985 0.06422 
29 0.00882 0.00074 0.00969 0.00114 0.00706 0.00370 
40 0.52448 0.01218 0.58961 0.02079 0.43056 0.16861 
44 0.0702 0.00449 0.07647 0.00703 0.06725 0.00639 
45 1 0 1 0 1.00000 0.00000 
46 0.01759 0.00201 0.01941 0.00316 0.02046 0.00212 
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Table A.6.  Percent yields from the least squares fitting of Ar* + HCONH2 spectra. 

Date of 
Experiment 

9/14/2006 10/2/2006 1/27/2009 1/29/2009 Average Standard 
Deviation 

m/z Counts Percent 
Yield 

Counts Percent 
Yield 

Counts Percent 
Yield 

Counts Percent 
Yield 

  

17 6679 7.20 3152 5.95 9923 4.72 5058 3.85 5.43 1.46 
29 262 0.28 493 0.93 1637 0.78 1127 0.86 0.71 0.29 
44 4845 5.23 3061 5.78 13038 6.20 8894 6.77 5.99 0.65 
45 80919 87.29 46262 87.34 185735 88.31 116318 88.52 87.86 0.64 

Total 
Counts 92705  52968  210333  131397    
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A.2 CALCULATION OF ENTHALPY OF FORMATION USING QUANTUM 

CHEMISTRY CALCULATIONS 

The standard enthalpy of formation (!Hf) for a given species may be estimated using atomization 

energies and quantum chemistry calculations when an experimental value is not available.194  

!Hf is defined as the enthalpy change when one mole of a species is produced from its 

constituent elements in their standard states (1 bar and 298K).  For example, the formation 

reaction for HCNH is,  

 

 H2 (g) +  

! 

1
2

N2 (g) + C(s) ! HCNH(g) (38) 

 

To calculate !Hf, the atomization enthalpy (!Hatom)  is needed, which is the enthalpy 

change when a species is dissociated into its constituent atoms in the gas phase.  This may be 

calculated using enthalpies obtained from quantum chemistry calculations.  For, example, !Hatom 

for HCNH is,  

 

 2H(atom) + N(atom) + C(atom) ! HCNH(g) (39a)  

 !Hatom = HHCNH – 2HH – HN - HC   (39b) 

 

To get the !Hf , the experimental atomization enthalpies for the constituent elements of 

the species are added to !Hatom,  
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! 

"Hf
! = "Hatom + "Hatom,elements

!#  (40) 

 

Thus, !Hf can be estimated using a thermodynamic cycle constructed from the 

atomization and formation reactions for any given species.   
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APPENDIX B 

PRELIMINARY RESULTS FOR NG* + ACETAMIDE (CH3CONH2) 

B.1 MASS SPECTRA 

The following are representative mass spectra from the Penning ionization (PI) of acetamide 

(CH3CONH2) by He*, Ne*, and Ar*.  Only the He* + CH3CONH2 spectrum has been fit using 

the least squares fitting procedure described in Section 3.2.   Figures B.1 and B.2 show the 

simulation of the raw He* + CH3CONH2 spectrum and its corresponding “histogram” spectrum 

respectively.  The 70 eV electron ionization (EI) spectrum from the NIST Webbook is included 

in Figure B.2 for comparison.  Figures B.3 and B.4 show representative raw mass spectra from 

the PI of CH3CONH2 by Ne* and Ar*.   
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Figure B.1.  Simulation of He* + CH3CONH2 Spectrum.  .) Raw low resolution spectra, b.) Background subtraction 
and least squares fit for low resolution spectrum, c.) Raw high resolution spectra, d.) Background subtraction and 
least squares fit for high resolution spectrum.   
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Figure B.2.  Mass spectrum for He* + CH3HCONH2.  The 70 eV EI stick spectrum (top) is included for 
comparison. 
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Figure B.3.  Raw Ne* + CH3CONH2 mass spectra. 
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Figure B.4.  Raw Ar* + CH3CONH2 mass spectra. 
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B.2 ION FRAGMENTATION ENERGETICS 

Tables B.1-B.3 show the calculated reaction endothermicities at 298K for possible fragmentation 

pathways for CH3CONH2.  Note that all fragmentation channels listed in the table preceding that 

of each noble gas are open to that noble gas.  For example, all of the fragmentation channels that 

are open for the Ar* spectrum are also open for the Ne* spectrum.   

 

Table B.1.  Reaction endothermicities for open fragmentation pathways in the Ar* + CH3CONH2 spectrum.   

  !Hf, 298K  !Hrxn, 298K m/z 
D1 D2

+ D1 D2
+   

- CH3CONH2
+   166.5  

CO CH2NH3
+ -26.417 203.567 234.1 31 

H2O CH2CNH+ -57.7978 256 255.2 41 
CH3 CONH2

+ 34.821 164.453 256.2 44 
NH3 CH2CO+ -10.98 210.4 256.4 42 
NH2 CH3CO+ 45.5 159 261.5 43 
CH2CO NH3

+ -11.4 220 265.6 17 
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Table B.2.  Reaction endothermicities for open fragmentation pathways in the Ne* + CH3CONH2 spectrum. 

  !Hf, 298K  !Hrxn, 298K m/z 
D1 D2

+ D1 D2
+   

OH CH2CNH2
+ 9.319 213.2637 279.5 42 

H2CO CH2NH+ -27.701 254 283.3 29 
CH4 CONH+ -17.89 244.2 283.3 43 
CH3CO NH2

+ -2.9 231.1 285.2 16 
HCN CH3COH= 32.299 200 289.3 32 
CH3CH2 NO+ 28.4 208.8 294.2 30 
H2O CH3CN+ -57.7978 299.07 298.2 41 
CH2CN H2O+ 17.7 233.200 301.9 30 
N CH3CHOH+ 112.97 140 306.7 16 
CONH2 CH3

+ -3.391585 261.7 307.9 18 
O CH2CNH3

+ 59.555 241.299 309.9 45 
NO CH3CH2

+ 21.58 242 315.3 15 
CH HCOHNH2

+ 142 124.536 318.6 43 
CH2CH2 HNO+ 12.54 256 320.5 29 
 

 

 

Table B.2 Continued 

  !Hf, 298K  !Hrxn, 298K m/z 
D1 D2

+ D1 D2
+   

H CH2CONH2
+ 52.103 217.835 326.9 58 

CH2CNH H2O+ 42.02 233.200 332.2 18 
HNO CH2CH2 23.8 254.6 335.4 28 
CH2 HCONH2

+ 92.349 190 339.3 45 
H2 CH2CONH+ 0 283.340 340.3 57 
H2 CHCONH2

+ 0 283.791 340.8 57 
NH CH3CHO+ 90 195 342.0 44 
HCONH2 CH2

+ -44.5 330.9 343.4 14 
H CH3CONH+ 52.103 238.881 347.9 58 
CH3OH HCN+ 11.59737 401.0 353.7 27 
O CH2CHNH2

+ 59.555 202.064 357.7 43 
CH3CHOH N+ -13.61 323.1 366.5 14 
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Table B.3.  Reaction endothermicities for open fragmentation pathways in the He* + CH3CONH2 spectrum.   

  !Hf, 298K  !Hrxn, 298K m/z 
D1 D2

+ D1 D2
+   

CH2NH3 CO+ 59.90295 300 416.9 28 
CH2CNH2 OH+ 69.17246 309.2 435.3 17 
HCOHNH2 CH+ -4.540345 387.4 439.8 13 
CH2CHNH2 O+ 14.3593 373.60 444.9 16 
H + H2 HCCONH2

+ 52.103 348.857 457.9 56 
2H2 CHCON+ 0 407.028 464.0 55 
H + H2 CCONH2

+ 52.103 357.762 466.8 56 
CH3COH NH+ 11.59737 401.0 469.6 15 
CH2CNH3 O 75.88723 373.60 506.4 16 
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APPENDIX C 

SUPPORTING INFORMATION FOR CHAPTER 5 
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Figure C.1.  ISD vs. trap concentration snapshots. Blue diamonds represent calculations that include Coulomb 
interactions and red squares represent calculations that do not include Coulomb interactions 
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APPENDIX D 

KINETICS CALCULATIONS: CHARGE TRAPS 

D.1 KINETIC MODEL 

To set up a kinetic model for our simulations, we considered two site types: normal transport 

sites (A) and trap sites (B).  Four types of processes were considered to occur,  

 

 

! 

A + A* kA" # " A*+A  (41a) 

 

! 

B + B* kB" # " B*+B  (41b) 

 

! 

A*+B k f" # " A + B* (41c) 

 

! 

A + B* kr" # " A*+B  (41d) 

 

Here, the charged sites are denoted with an asterisk.  Equations 41a and 41b show charge 

transfer between two normal or trap sites.  Equations 41c and 41d show charge transport between 

normal and trap sites.  The steady state rate equations are,  

 

 

! 

d[A]
dt

=
d[B*]
dt

= k f [A*][B] " kr[A][B*] (42a) 
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! 

d[B]
dt

=
d[A*]
dt

= kr[A][B*] " k f [A*][B] (42b) 

 

Note that contributions from charge transfer between identical sites cancel one another 

and the rates only depend on charge transfer between normal and trap sites. The rate equations 

were solved numerically using the fourth order Runge-Kutta (RK4) method157 implemented in a 

C++ program.  To find the populations (y(tn+1)) of charged ([A*] and [B*]) and uncharged sites 

([A] and [B])   a Taylor series that is truncated at the fourth term is used,  

 

 

! 

y(tn+1) = y(tn ) + hy '(tn ) +
h2

2!
y ' '(tn ) +

h3

3!
y' ' '(tn ) +

h4

4!
y' ' ' '(tn ), n = 0,1,2,...,N  (43) 

 

Here, N is the total number of steps taken in the kinetics simulation, y"(tn) is the rate equation that 

describes the population change, and h is the step size, which is given by: 

 

 

! 

h =
tN " t0
N

 (44) 

 

The higher order terms are found using the finite difference.  For example, y""(tn) is given by: 

 

 

! 

y' '(tn ) =
"y '
"t

=
y'(tn + h) # y '(tn )

h
 

 

Our MC simulations are typically run for 50,000 iterations, which simulates 50 ns.  To represent 

this in the kinetic model, a step size of 0.5 ns and a total of 100 steps were used.   
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 The rate constants kf and kr were found using the relationship between the free energy 

and equilibrium constant, 

 

 

! 

"G = #RT lnK  (45) 

 

R is the universal gas constant and T is the absolute temperature.  Neglecting the entropy, !G is 

approximately equal to !# and,  

 

 

! 

K =
k f
kr

 (46) 

 

Setting kr=1 yields kf for each value of !# used in our calculations.  These rate constants are 

tabulated in Table D.1.       

 

Table D.1.  Trap energies and corresponding kf values.   

!# (eV) kf 
-0.2 2288.7 
-0.15 330.8 
-0.1 47.840 
-0.05 6.9167 
-0.01 1.4722 
0.01 0.67924 
0.05 0.14458 
0.1 0.020903 
0.15 0.0030221 
0.2 0.00043693 
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D.2 RESULTS OF RK4 SIMULATIONS 

Initial populations were generated using a separate C++ program that takes the total number of 

sites as well as the trap and charge concentrations and randomly distributes charge carriers 

between A and B sites.  For our MC simulations, a grid of 256x1024 sites is used (262,144 sites 

total).  The initial concentrations are given in Table D.2.   

 

 

Table D.2.  Initial populations of A, A*, B, and B* 

Trap Concentration (%) [A]0 [A*]0 [B]0 [B*]0 
10 233892 2275 25739 238 
20 207548 2031 52079 486 
30 181698 1815 77847 784 
40 155815 1651 103562 1116 
50 129731 1305 129803 1305 
60 103662 1096 156019 1367 
70 78429 779 181167 1769 
80 52079 486 207548 2031 
90 25739 238 233892 2275 

 

 

 

Tables D.3-D.12 give [A], [A*], [B], [B*] after 100 steps (50 ns) for the !# values shown 

in Table D.1.  Also given are population ratios.   
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Table D.3.  Final populations and population ratios for !" = -0.2 eV.   

Trap 
Concentration (%) 

[A]t [A*]t [B]t [B*]t [A*]/[[A] [B*]/[B] [B]/[A] [B*]/[A*] 

10 236018 149 23614 2364 6.333E-04 1.001E-01 1.000E-01 1.581E+01 
20 209568 11 50059 2506 5.071E-05 5.007E-02 2.389E-01 2.358E+02 
30 183509 4 76036 2595 1.985E-05 3.413E-02 4.143E-01 7.125E+02 
40 157464 2 101913 2765 1.514E-05 2.713E-02 6.472E-01 1.159E+03 
50 131034 2 128500 2608 1.508E-05 2.030E-02 9.807E-01 1.320E+03 
60 104757 1 154924 2462 1.075E-05 1.589E-02 1.479E+00 2.186E+03 
70 79207 1 180389 2547 1.382E-05 1.412E-02 2.277E+00 2.327E+03 
80 53364 1 207063 2516 1.836E-05 1.215E-02 3.880E+00 2.568E+03 
90 25976 1 233655 2512 3.729E-05 1.075E-02 8.995E+00 2.593E+03 

 

 

Table D.4.  Final populations and population ratios for !" = -0.15 eV.   

Trap 
Concentration (%) 

[A]t [A*]t [B]t [B*]t [A*]/[[A] [B*]/[B] [B]/[A] [B*]/[A*] 

10 234659 1508 24972 1005 6.425E-03 4.026E-02 1.064E-01 6.668E-01 
20 208699 880 50928 1637 4.219E-03 3.213E-02 2.440E-01 1.859E+00 
30 182994 519 76551 2080 2.834E-03 2.718E-02 4.183E-01 4.012E+00 
40 157155 311 102222 2456 1.979E-03 2.403E-02 6.505E-01 7.897E+00 
50 130876 160 128658 2450 1.226E-03 1.904E-02 9.831E-01 1.526E+01 
60 104670 88 155011 2375 8.401E-04 1.532E-02 1.481E+00 2.701E+01 
70 79166 42 180430 2506 5.322E-04 1.389E-02 2.279E+00 5.947E+01 
80 53347 18 207080 2499 3.314E-04 1.207E-02 3.882E+00 1.414E+02 
90 25971 6 233660 2507 2.362E-04 1.073E-02 8.997E+00 4.087E+02 
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Table D.5.  Final populations and population ratios for !" = -0.1 eV.   

Trap 
Concentration (%) 

[A]t [A*]t [B]t [B*]t [A*]/[[A] [B*]/[B] [B]/[A] [B*]/[A*] 

10 234023 2144 25608 369 9.162E-03 1.440E-02 1.094E-01 1.720E-01 
20 207777 1802 51850 715 8.671E-03 1.380E-02 2.495E-01 3.971E-01 
30 181995 1518 77550 1081 8.338E-03 1.395E-02 4.261E-01 7.126E-01 
40 156165 1301 103212 1466 8.332E-03 1.420E-02 6.609E-01 1.127E+00 
50 130068 968 129466 1642 7.442E-03 1.268E-02 9.954E-01 1.696E+00 
60 103994 764 155687 1699 7.347E-03 1.091E-02 1.497E+00 2.224E+00 
70 78695 513 180901 2035 6.521E-03 1.125E-02 2.299E+00 3.965E+00 
80 53063 302 207364 2215 5.684E-03 1.068E-02 3.908E+00 7.345E+00 
90 25838 139 233793 2374 5.383E-03 1.015E-02 9.048E+00 1.707E+01 

 

 

Table D.6.  Final populations and population ratios for !" = -0.05 eV.   

Trap 
Concentration (%) 

[A]t [A*]t [B]t [B*]t [A*]/[[A] [B*]/[B] [B]/[A] [B*]/[A*] 

10 233909 2258 25722 255 9.653E-03 9.918E-03 1.100E-01 1.130E-01 
20 207579 2000 52048 517 9.636E-03 9.929E-03 2.507E-01 2.584E-01 
30 181739 1774 77806 825 9.764E-03 1.060E-02 4.281E-01 4.647E-01 
40 155864 1602 103513 1165 1.028E-02 1.125E-02 6.641E-01 7.271E-01 
50 129779 1257 129755 1353 9.683E-03 1.043E-02 9.998E-01 1.077E+00 
60 103712 1046 155969 1417 1.009E-02 9.085E-03 1.504E+00 1.355E+00 
70 78469 739 181127 1809 9.417E-03 9.988E-03 2.308E+00 2.448E+00 
80 52907 458 207520 2059 8.654E-03 9.923E-03 3.922E+00 4.497E+00 
90 25755 223 233877 2290 8.640E-03 9.794E-03 9.081E+00 1.029E+01 
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Table D.7.  Final populations and population ratios for !" = -0.01 eV.   

Trap 
Concentration (%) 

[A]t [A*]t [B]t [B*]t [A*]/[[A] [B*]/[B] [B]/[A] [B*]/[A*] 

10 233894 2273 25738 240 9.720E-03 9.306E-03 1.100E-01 1.053E-01 
20 207551 2028 52076 489 9.773E-03 9.384E-03 2.509E-01 2.409E-01 
30 181701 1812 77844 787 9.971E-03 1.011E-02 4.284E-01 4.345E-01 
40 155819 1647 103558 1120 1.057E-02 1.081E-02 6.646E-01 6.798E-01 
50 129735 1301 129799 1309 1.003E-02 1.008E-02 1.000E+00 1.006E+00 
60 103667 1091 156014 1372 1.052E-02 8.797E-03 1.505E+00 1.258E+00 
70 78432 776 181164 1772 9.889E-03 9.783E-03 2.310E+00 2.285E+00 
80 52881 484 207546 2033 9.152E-03 9.795E-03 3.925E+00 4.201E+00 
90 25740 237 233891 2276 9.202E-03 9.732E-03 9.087E+00 9.610E+00 

 

 

Table D.8.  Final populations and population ratios for !" = 0.01 eV.   

Trap 
Concentration (%) 

[A]t [A*]t [B]t [B*]t [A*]/[[A] [B*]/[B] [B]/[A] [B*]/[A*] 

10 233891 2276 25740 237 9.730E-03 9.216E-03 1.101E-01 1.042E-01 
20 207547 2032 52080 485 9.793E-03 9.304E-03 2.509E-01 2.384E-01 
30 181696 1817 77849 782 1.000E-02 1.004E-02 4.285E-01 4.302E-01 
40 155812 1654 103565 1113 1.061E-02 1.075E-02 6.647E-01 6.731E-01 
50 129728 1308 129806 1302 1.008E-02 1.003E-02 1.001E+00 9.959E-01 
60 103661 1097 156020 1366 1.059E-02 8.754E-03 1.505E+00 1.245E+00 
70 78427 781 181169 1767 9.960E-03 9.753E-03 2.310E+00 2.262E+00 
80 52877 488 207550 2029 9.227E-03 9.776E-03 3.925E+00 4.159E+00 
90 25738 239 233893 2274 9.287E-03 9.722E-03 9.087E+00 9.514E+00 
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Table D.9.  Final populations and population ratios for !" = 0.05 eV.   

Trap 
Concentration (%) 

[A]t [A*]t [B]t [B*]t [A*]/[[A] [B*]/[B] [B]/[A] [B*]/[A*] 

10 233890 2277 25741 236 9.737E-03 9.156E-03 1.101E-01 1.035E-01 
20 207544 2035 52083 482 9.806E-03 9.250E-03 2.510E-01 2.367E-01 
30 181692 1821 77853 778 1.002E-02 9.993E-03 4.285E-01 4.272E-01 
40 155808 1658 103569 1109 1.064E-02 1.070E-02 6.647E-01 6.685E-01 
50 129724 1312 129810 1298 1.011E-02 9.998E-03 1.001E+00 9.891E-01 
60 103656 1102 156025 1361 1.063E-02 8.724E-03 1.505E+00 1.235E+00 
70 78423 785 181173 1763 1.001E-02 9.732E-03 2.310E+00 2.247E+00 
80 52874 491 207553 2026 9.278E-03 9.763E-03 3.925E+00 4.131E+00 
90 25737 240 233894 2273 9.345E-03 9.716E-03 9.088E+00 9.449E+00 

 

 

Table D.10.  Final populations and population ratios for !" = 0.1 eV.   

Trap 
Concentration (%) 

[A]t [A*]t [B]t [B*]t [A*]/[[A] [B*]/[B] [B]/[A] [B*]/[A*] 

10 233889 2278 25742 235 9.738E-03 9.142E-03 1.101E-01 1.033E-01 
20 207543 2036 52084 481 9.809E-03 9.238E-03 2.510E-01 2.363E-01 
30 181691 1822 77854 777 1.003E-02 9.982E-03 4.285E-01 4.266E-01 
40 155807 1659 103570 1108 1.065E-02 1.069E-02 6.647E-01 6.675E-01 
50 129723 1313 129811 1297 1.012E-02 9.990E-03 1.001E+00 9.875E-01 
60 103655 1103 156026 1360 1.064E-02 8.718E-03 1.505E+00 1.233E+00 
70 78422 786 181174 1762 1.002E-02 9.727E-03 2.310E+00 2.243E+00 
80 52874 491 207553 2026 9.290E-03 9.760E-03 3.925E+00 4.124E+00 
90 25736 241 233895 2272 9.358E-03 9.714E-03 9.088E+00 9.434E+00 
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Table D.11.  Final populations and population ratios for !" = 0.15 eV.   

Trap 
Concentration (%) 

[A]t [A*]t [B]t [B*]t [A*]/[[A] [B*]/[B] [B]/[A] [B*]/[A*] 

10 233889 2278 25742 235 9.738E-03 9.140E-03 1.101E-01 1.033E-01 
20 207543 2036 52084 481 9.810E-03 9.236E-03 2.510E-01 2.363E-01 
30 181691 1822 77854 777 1.003E-02 9.980E-03 4.285E-01 4.265E-01 
40 155806 1660 103571 1107 1.065E-02 1.069E-02 6.647E-01 6.673E-01 
50 129723 1313 129811 1297 1.012E-02 9.989E-03 1.001E+00 9.873E-01 
60 103655 1103 156026 1360 1.064E-02 8.717E-03 1.505E+00 1.233E+00 
70 78422 786 181174 1762 1.002E-02 9.726E-03 2.310E+00 2.242E+00 
80 52874 491 207553 2026 9.292E-03 9.760E-03 3.925E+00 4.123E+00 
90 25736 241 233895 2272 9.360E-03 9.714E-03 9.088E+00 9.432E+00 

 

 

Table D.12.  Final populations and population ratios for !" = 0.2 eV.   

Trap 
Concentration (%) 

[A]t [A*]t [B]t [B*]t [A*]/[[A] [B*]/[B] [B]/[A] [B*]/[A*] 

10 233889 2278 25742 235 9.739E-03 9.140E-03 1.101E-01 1.033E-01 
20 207543 2036 52084 481 9.810E-03 9.236E-03 2.510E-01 2.363E-01 
30 181691 1822 77854 777 1.003E-02 9.980E-03 4.285E-01 4.264E-01 
40 155806 1660 103571 1107 1.065E-02 1.069E-02 6.647E-01 6.673E-01 
50 129723 1313 129811 1297 1.012E-02 9.989E-03 1.001E+00 9.873E-01 
60 103655 1103 156026 1360 1.064E-02 8.717E-03 1.505E+00 1.233E+00 
70 78422 786 181174 1762 1.002E-02 9.726E-03 2.310E+00 2.242E+00 
80 52874 491 207553 2026 9.292E-03 9.760E-03 3.925E+00 4.123E+00 
90 25736 241 233895 2272 9.360E-03 9.714E-03 9.088E+00 9.432E+00 
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APPENDIX E 

SUPPORTING INFORMATION FOR CHAPTER 7 

E.1 SAMPLE CDFT INPUT FILE 

The following is a Q-Chem input file for a CDFT calculation on the singly charged 5-molecule 

from Series 1.  Note that the positive charge is constrained to the central molecule (see figure 

7.1).   

$rem 
   JOBTYPE SP 
   EXCHANGE B3LYP 
   BASIS 6-31G(d) 
   BASIS2 r64g 
   MAX_SCF_CYCLES 100 
   GUI=2 
   CDFT true 
   CDFT_POSTDIIS true 
   CDFT_PREDIIS true 
   PRINT_ORBITALS true 
   MOLDEN_FORMAT true 
$end 
 
$comment 
Tilted T-Shaped Cationic Pentamer 
$end 
 
$molecule 
   1 2 
   H        5.11825       26.32296       22.26853 
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   C        5.83125       25.93106       22.86663 
   S        6.27585       26.87686       24.19923 
   H        6.47695       24.22226       22.12523 
   C        6.57685       24.80636       22.75883 
   C        7.50905       25.76896       24.65863 
   H        7.52885       27.86376       26.75043 
   C        7.57605       24.64356       23.78663 
   C        8.27125       27.15976       26.68143 
   H        8.31845       23.93956       23.71753 
   C        8.33825       26.03436       25.80943 
   C        9.27045       26.99696       27.70923 
   H        9.37035       27.58106       28.34273 
   S        9.57145       24.92646       26.26873 
   C       10.01605       25.87226       27.60133 
   H       10.72905       25.48036       28.19953 
   H        6.41165       22.59486       18.05613 
   C        7.12475       22.98676       18.65423 
   S        7.56925       22.04096       19.98693 
   H        7.77045       24.69556       17.91293 
   C        7.87035       24.11146       18.54643 
   C        8.80255       23.14886       20.44623 
   H        8.82235       21.05406       22.53813 
   C        8.86955       24.27426       19.57423 
   C        9.56475       21.75806       22.46903 
   H        9.61195       24.97826       19.50513 
   C        9.63175       22.88346       21.59703 
   C       10.56385       21.92086       23.49683 
   H       10.66385       21.33676       24.13033 
   S       10.86495       23.99136       22.05633 
   C       11.30955       23.04556       23.38903 
   H       12.02255       23.43746       23.98713 
   H        7.70515       20.55196       13.84373 
   C        8.41825       20.16006       14.44193 
   S        8.86275       21.10586       15.77453 
   H        9.06395       18.45126       13.70053 
   C        9.16385       19.03536       14.33403 
   C       10.09605       19.99796       16.23383 
   H       10.11585       22.09276       18.32573 
   C       10.16305       18.87256       15.36183 
   C       10.85825       21.38876       18.25663 
   H       10.90545       18.16856       15.29283 
   C       10.92515       20.26336       17.38463 
   C       11.85735       21.22596       19.28443 
   H       11.95725       21.81006       19.91803 
   S       12.15845       19.15546       17.84393 
   C       12.60305       20.10126       19.17663 



 159 

   H       13.31605       19.70936       19.77473 
   H        8.99865       16.82386        9.63133 
   C        9.71175       17.21576       10.22953 
   S       10.15625       16.26996       11.56213 
   H       10.35745       18.92456        9.48813 
   C       10.45735       18.34046       10.12163 
   C       11.38955       17.37786       12.02143 
   H       11.40935       15.28306       14.11333 
   C       11.45655       18.50326       11.14953 
   C       12.15165       15.98706       14.04423 
   H       12.19885       19.20726       11.08043 
   C       12.21865       17.11246       13.17223 
   C       13.15085       16.14986       15.07203 
   H       13.25075       15.56576       15.70563 
   S       13.45195       18.22036       13.63163 
   C       13.89645       17.27456       14.96423 
   H       14.60955       17.66646       15.56243 
   H       10.29215       14.78096        5.41893 
   C       11.00515       14.38906        6.01713 
   S       11.44975       15.33486        7.34973 
   H       11.65095       12.68026        5.27573 
   C       11.75085       13.26436        5.90933 
   C       12.68305       14.22696        7.80903 
   H       12.70275       16.32176        9.90093 
   C       12.75005       13.10156        6.93713 
   C       13.44515       15.61776        9.83183 
   H       13.49235       12.39756        6.86803 
   C       13.51215       14.49236        8.95993 
   C       14.44435       15.45496       10.85973 
   H       14.54425       16.03906       11.49323 
   S       14.74545       13.38446        9.41923 
   C       15.18995       14.33026       10.75183 
   H       15.90305       13.93836       11.35003 
$end 
 
$cdft 
  -1 
  -1 1 16 
  -1 17 32 
   1 33 48 
  -1 49 64 
  -1 65 80 
$end 
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E.2 HARTREE-FOCK (HF) CALCULATIONS AND SPIN ORBITAL 

COMPARISONS 

Figure E.1 show plots of the HOMO energies vs. 1/N for neutral, singly, and doubly charged 

clusters using HF calculations.  Series 1 and 2 are the same series used for the DFT calculations 

discussed in Section 7.3.   

 

 

Figure E.1.  HF HOMO Energy vs. 1/N for neutral, singly, and doubly charged bithiophene clusters.   Blue 
diamonds represent neutral clusters, red squares represent singly charged clusters, and green triangles represent 
doubly charged clusters.   
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Figure E.2 show plots of the alpha and beta HOMO energies vs. 1/N for the singly charged 

clusters using unrestricted (U) and restricted-open (RO) HF and B3LYP calculations.  Series 1 

and 2 are the same series that are used for the DFT calculations discussed in Section 7.3.  Note 

that these plots are an attempt to resolve the trend for the singly charged Series 2 clusters 

observed in Figure E.1, but to no avail.   

 

Figure E.2.  HOMO Energy vs. 1/N for singly charged bithiophene clusters.  Shown are HF (left) and B3LYP 
results for Series 1 (top) and Series 2.  Blue diamonds represent unrestricted alpha orbitals, red squares represent 
unrestricted beta orbitals, and green triangles represent restricted open alpha orbitals.   
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