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INVESTIGATING THE SRC KINASE HCK FUNCTIONS IN CHRONIC 
MYELOGENOUS LEUKEMIA USING CHEMICAL GENETICS METHODS 

 
 Teodora Pene Dumitrescu, PhD 

University of Pittsburgh, 2009

 The hallmark of chronic myelogenous leukemia (CML) is a chromosomal translocation between 

the c-abl gene (chromosome 9) and the bcr gene (chromosome 22). This event gives rise to Bcr-

Abl, a chimeric protein with constitutive tyrosine kinase activity that drives the pathogenesis of 

the disease.  Imatinib, a Bcr-Abl kinase inhibitor is the frontline therapy in CML. Although 

imatinib is very effective in the chronic phase of CML, patients in advanced stages develop 

resistance. An increased understanding of the signaling pathways implicated in CML 

pathogenesis and imatinib resistance is critical to the development of improved therapies. 

Previous work in our laboratory found that A-419259, a broad-spectrum Src family 

kinase (SFK) inhibitor induces growth arrest and apoptosis in CML cells, suggesting that SFKs 

are required for Bcr-Abl transformation of myeloid progenitors. Additionally, Hck couples Bcr-

Abl to Stat5 activation in myeloid cells, which may contribute to survival. Furthermore, studies 

on samples from some imatinib-resistant patients found increased expression and activity of Hck 

and Lyn. In this dissertation, using two chemical genetic methods, I addressed the contribution of 

Hck to Bcr-Abl signaling and imatinib resistance. 

To explore the individual contribution of Hck to Bcr-Abl signaling, I developed an A-

419259-resistant mutant of Hck (Hck-T338M). Expression of Hck-T338M fully protected K562 

CML cells from A-419259-induced apoptosis, an effect that correlated with sustained Stat5 

activation. In addition, the Hck-T338M partially protected CML cells against the growth 
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inhibition induced by A-419259. These studies suggest that Hck plays a non-redundant role as a 

key downstream survival partner for Bcr-Abl.  

I also tested whether Hck overexpression was sufficient to induce imatinib resistance in 

CML cells. For this study, I developed a mutant of Hck (Hck-T338A) that is uniquely sensitive 

to NaPP1, an analog of the generic SFK inhibitor pyrrazolo-pyrimidine 1.  Overexpression of 

Hck or Hck-T338A in K562 cells induced resistance to imatinib-dependent apoptosis and growth 

arrest. Furthermore, NaPP1 reversed imatinib resistance in K562-Hck-T338A cells, suggesting 

that Hck-induced imatinib resistance requires Hck kinase activity. Taken together, my work 

validates Hck as a target for the development of apoptosis-inducing drugs and that are likely to 

be effective in imatinib-resistant patients. 
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1.0  INTRODUCTION 

1.1 SRC FAMILY OF KINASES (SFKs) 

1.1.1 Overview 

Almost one century ago, Peyton Rous discovered that injection of cell extracts from chicken 

tumors could cause tumors in healthy chickens (1). This led to the revolutionary idea that cancer 

could be caused by transmissible agents such as viruses, for which Rous received the Nobel Prize 

in Physiology and Medicine in 1966. This pioneering work led to the identification of viral Src 

(v-src), the transforming element of the Rous sarcoma virus in chickens and the first retroviral 

oncogene to be described (2, 3). The realization that v-src was derived from a cellular gene, the 

proto-oncogene c-src, earned J. Michael Bishop and Harold E. Varmus the Nobel Prize in 

Physiology and Medicine in 1989 (4, 5). Since its discovery, c-src and the related family 

members have been the subject of intensive investigation for nearly three decades (6, 7). 

Like its viral counterpart, c-src encodes a non-receptor tyrosine kinase, c-Src - the 

archetype of the Src family kinases (SFKs) (8, 9). In humans, SFK consists of eight 52-62 kDa 

members (Blk, Fgr, Fyn, Hck, Lck, Lyn, c-Src, and c-Yes) (10). In addition, the human genome 

encodes three closely related kinases, frk, srm, and brk, with similar domain organization that 
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were recently classified as SFKs. However, these kinases, together with Src42A have recently 

been re-classified into the Brk family of tyrosine kinases (11). 

Several SFK members (c-Src, Fyn, c-Yes) are ubiquitously expressed (See Table 1 for 

expression pattern of SFKs) (12). The remaining SFKs have a more restricted expression pattern 

and are found mainly in hematopoietic cells (13). In the case of Src, Fyn, Lyn and Hck more than 

one isoform has been identified arising from alternative splicing, separate genetic loci (Lyn), or 

alternative use of translational initiation sites (Hck) (14-17). Taken together, these observations 

indicate that SFKs have a complex and overlapping pattern of expression and that all cells, with 

the exception of erythrocytes, express multiple SFKs and potentially multiple isoforms of an 

individual member. The significance of the SFK isomers or their redundancy in various tissues 

remains elusive. 

Table 1: SFK expression patterns 

SFK Cell type Reference 

Hck Myeloid (18, 19) 

Lyn B cells, myeloid cells, natural killer cells (20) 

Fgr Monocytes, macrophages (21) 

Src Platelets, neural, fibroblasts, mammary (22) 

Fyn T cells (FynT), brain (FynB) (23) 

Lck T cells (24) 

Blk B cells (25) 

Yes Neural, Gastrointestinal (26) 
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1.1.2 Structure and Intramolecular Regulation 

1.1.2.1 Overview of the structure 

All SFK members share a similar domain organization, which includes six distinct regions: a 

Src-homology (SH) 4 domain, a unique region, an SH3 domain, an SH2 domain, an SH1 (kinase 

catalytic domain) and a C-terminal tail containing a regulatory phospho-tyrosine residue (Figure 

1) (27).  

1.1.2.2 The SH4 domain 

The SH4 domain encodes a 9-15 amino acid sequence that contains signals for lipid 

modifications (28). All SFKs contain a consensus myristoylation signal sequence (Met-Gly-X-X-

X-Ser/Thr). Myristoylation directs their localization to the cytoplasmic face of the plasma 

membrane or to other intracellular membranes such as endosomes, perinuclear membranes or 

secretory vesicles (28, 29). In addition, all members of the family except for Src and Blk contain 

cysteine residues within their SH4 domain that are sites of palmitoylation (29, 30). 

Palmitoylation of SFKs is believed to be important for targeting to lipid rafts, which are 

specialized plasma membrane microdomains critical for the clustering of receptor signaling 

complexes (31, 32).  
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  A 

  B 

 

Figure 1: The domain organization of the SFKs 

(A) Crystal structure of Hck is shown as a representative model of SFK in downregulated state (PDB 1QCF). The 

SH4 and unique domains were deleted for crystallization purposes. Domains in the structure are color-coded and 

correspond to the schematic in B. The activating Tyr-416 and inhibitory Tyr-527 residues are indicated in red. 

Phosphorylation at Tyr-416 in the kinase domain is required for activation. The engagement between the SH3 and 

SH2:kinase linker as well as phospho-Tyr-527 in the C-terminal tail interaction with the SH2 domain, contribute to 

the maintenance of the downregulated conformation. By convention, amino-acid residues are numbered as in 

chicken c-Src. (B) Schematic of domain organization of SFKs. 

 

 4 



While lipid modification is unimportant for the maintenance of kinase activity in vitro, it 

is often essential for the SFK biological activity (28). The importance of SFK targeting to its 

appropriate intracellular location for their proper function and signal transduction, is highlighted 

by the use of myristoylation or palmitoylation inhibitors as effective inhibitors of SFKs (33). For 

example, the most common N-myristoylation inhibitor is 2-hydroxymyristic acid (HMA) (34, 

35). HMA treatment induces relocation of Lck or Fyn to the cytosolic fraction, or the 

displacement of Lyn from lipid rafts. This in turn leads to their inactivation due to their inability 

to associate with their signaling partners (33).  

In addition to lipid attachment, a modification unique to Fyn was recently described. The 

SH4 domain of Fyn was shown to be tri-methylated at Lys residues 7 and/or 9 (36). Mutants of 

Fyn at these residues failed to induce cell adhesion and spreading, suggesting that methylation is 

required for its proper localization and/or function (36). 

1.1.2.3 The Unique Domain 

Following the SH4 domain, the unique domain encompasses 50-70 amino acids. Unlike the rest 

of the molecule, which displays high sequence homology between all the members of the family, 

the unique domain is highly divergent among the family members. Various functions have been 

attributed to the unique domain of various SFKs. For instance, in Lck, the unique domain 

mediates its interaction with the cytoplasmic tails of CD4 and CD8 surface molecules (37), 

indicating that this region has a role in the recruitment of member-specific signaling partners. In 

the case of Hck, it has been shown that autophosphorylation at a residue in the unique domain 

modulates the catalytic activity of this SFK through an unknown mechanism (38). Furthermore, 

Fyn and Lyn are efficiently cleaved in a caspase-dependent manner after an Asp residue at 

position 19 or 18, respectively (39). This process occurs in hematopoietic cells undergoing 
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apoptosis. Cleavage of the N-terminal domain of Fyn and Lyn was linked to increased enzymatic 

activity, suggesting a novel mechanism for the regulation of SFKs with possible functional 

consequences (39). Last but not least, member-specific serine and threonine phosphorylation 

sites were identified in the unique domains of Src or Lck. However, their role in the modulation 

of protein-protein interaction or regulation of catalytic activity remains unclear (40-43).  

1.1.2.4 The SH3 Domain 

In general, SH3 domains contain an average of 40 to 70 amino acids, and bind conserved 

proline-rich sequences initially defined as PXXP motifs, where P is proline and X is a variable, 

usually hydrophobic amino acid (44, 45). 

SH3 domain structure has been extensively studied using both X-ray crystallography and 

NMR spectroscopy (46, 47). A typical SH3 domain has a β-barrel arrangement of five anti-

parallel β-strands that form two β-sheets packed at almost right angles (47-49). In addition, SH3 

domains contain two loops termed RT and n-Src loops (47). The ligand-binding surface of the 

SH3 domains is highly hydrophobic and displays three shallow pockets flanked at either end by 

the RT or n-Src loops (46-48). These loops often contain charged residues that regulate 

specificity and orientation of ligand binding. 

A more in depth characterization of SH3 binding partners led to the description of two 

classes of ligands that bind to SH3 domains in opposite orientations. Class I ligands have a 

RxxPxxP motif while class II ligands have a PxxPxR canonical sequence (50-52). When bound 

to the SH3 domain, both motifs acquire a polyproline type II helical structure (PPII helix). This 

helix has a triangular cross-section with the two prolines at the base of the triangle. The two 

prolines occupy two of the three shallow pockets in the SH3 domain ligand-binding surface. In 
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addition, the third shallow pocket is occupied by a basic Arg residue situated distal from the 

PxxP core (46). 

In SFKs, SH3 domains fulfill two important roles. First, SH3 domains were shown to 

contribute to substrate recruitment (53, 54). In addition, SH3 domains are critical for the 

regulation of the kinase activity. Crystallography studies of several SFKs in a downregulated 

state showed that the SH3 domain binds intramolecularly to a proline-rich sequence in the 

SH2:kinase linker (55, 56). This interaction results in the tethering of the SH3 domain to the 

back of the kinase domain and helps in generating an inactive conformation of the kinase. Figure 

1 shows the molecular model of the SFK Hck in its downregulated conformation, with the SH3: 

linker interaction intact.  

1.1.2.5 The SH2 domain 

SH2 domains contain on average 100 amino acid residues and bind specific phosphotyrosine-

containing peptides (57, 58). Structurally, SH2 domains contain a central β-sheet, with one alpha 

helix packed against each side. These features give rise to two binding pockets, one that 

coordinates the phosphotyrosine by means of a conserved arginine residue, and the second that 

accommodates one or more hydrophobic residues C-terminal to the phosphotyrosine (59). While 

the first pocket is highly conserved, the second recognition pocket is much more divergent, 

serving as a specificity determinant amongst different SH2 domains (57). The SFK SH2 domains 

bind preferentially to a phosphorylated YEEI motif, with phosphotyrosine occupying the first 

pocket and the isoleucine occupying the second (60). 

Similar to the SH3 domain, the SH2 domain in SFKs serves a dual role. First, binding 

interactions mediated by the SH2 domain, contribute to substrate recruitment and facilitate the 

transmission of signals to downstream effectors. Second, within the inactive SFKs, the SH2 
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domain binds a phosphotyrosine residue located in the C-terminal tail of the protein (Tyr-527 in 

chicken c-Src). This interaction was recently shown to be stabilized by an additional interaction 

between the SH2 domain and the SH2:kinase linker (61). This intra-molecular interaction helps 

to lock the kinase in an inactive conformation and represents an additional autoregulatory 

mechanism (56, 62-64). 

1.1.2.6 The SH3/SH2 clamp 

Multiple studies suggest that through their intramolecular interactions, the SH3 and SH2 

domains cooperate to induce a downregulated conformation of the kinase domain. Thus, the SH3 

and SH2 domains are turned inward and bind to the distal face of the kinase domain locking it 

into a rigid conformation (55, 56, 62-64). The effectiveness of the SH3/SH2 clamp was shown to 

depend on a rigid conformational coupling between these domains as well as on the SH2 - C-

terminal tail interaction. Mutation of the SH3-SH2 connector residues to glycines, is sufficient to 

induce a release of the phospho-tyrosine tail of the kinase and to induce activation (65). 

Conversely, the release of the tail from the SH2 domain upon dephosphorylation, induces a 

collapse of the connector that allows individual movement of the SH3 and SH2 domains (65). 

The binding of the SH3/SH2 clamp to the back of the kinase domain may decrease the overall 

flexibility of the kinase domain, a feature important for the enzyme function (66, 67). 

1.1.2.7 Tyrosine kinase domain 

The catalytic domains of Ser/Thr and Tyr kinases contain about 300 residues and, as revealed by 

X-ray crystallography, share a common, bilobed architecture (Figure 2, A)(68, 69). The smaller, 

amino-terminal lobe (N-lobe) is composed of a five-stranded antiparallel beta-sheet and an α 

helix (αC). The larger, carboxy-terminal lobe (C-lobe) consists mainly of α-helices with only a 
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few beta strands. Catalytic activity occurs in a cleft between the two lobes, which are connected 

by a flexible hinge region. This hinge allows the two lobes to move relative to each other during 

activation or inactivation events.  
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Figure 2: The structure of the inactive kinase domain of an SFK 

(A) Cartoon representation of the inactive conformation of Hck kinase domain and C-terminal tail (PDB: 1QCF). 

This cartoon was prepared using Pymol. The elements important for the regulation of activity are color-coded as 

follows: alpha C helix - red; P-loop – blue; catalytic loop – orange; DFG motif – blue; activation loop (which starts 

with the DFG motif) - magenta; Tyr-416 and Tyr-527- red; Lys-295, Glu-310, and Asp-404 - green. (B) Sequence of 

the Hck kinase domain and C-terminal tail, indicating the position of the structural and regulatory elements 

represented in A. All these elements are color-coded consistent with the structure in A.  
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Each of the two lobes contain highly conserved elements that are important for catalysis 

or for the correct conformation of the catalytic site (figure 2, B) (70). In the N-lobe of SFKs, 

these key elements are: Trp-260 at the N-terminus, the phosphate-binding loop (P-loop, amino-

acids 273-281), the αC helix, Lys295 and Glu310 (chicken c-Src numbering). In addition, the C-

lobe elements important for the kinase structure and function are: the catalytic loop (amino-acids 

386-392) with strictly conserved Asp and Asn residues, the activation loop (amino-acids 404-

432) containing the DFG motif (amino-acids 404-406) and Tyr-416, the site of 

autophosphorylation. All of these elements undergo significant modifications in their orientation, 

phosphorylation status or interaction with various partners, and this in turn modulate the 

transition between the inactive to active conformation of the kinase domain, or the catalysis of 

phosphate group transfer. The role of each of these key structural elements is described in more 

detail in the next two sections. 

The inactive conformation 

The structures of downregulated human and chicken Src kinases and human Hck have been 

solved by X-ray crystallography (56, 62, 64). Several elements contribute to the maintenance of 

the inactive conformation of SFKs. For example, Asp-404, which lies at the N-terminus of the 

activation loop within the DFG motif, forms an ionic interaction with Lys-295. This interaction 

induces the side chain of Phe-405 to come into steric clash with the αC helix in N-lobe, and 

pushes it away from the catalytic center (63). In addition, residues 413-418 of the activation loop 

form a short α helix that is located under the αC helix of the N-lobe, and which positions the 

unphosphorylated Tyr-416 into the catalytic site of the kinase domain where it forms hydrogen 

bonds with Arg-385 and Asp-386 (62, 63). Consequently, Tyr-416 is well protected from 
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autophosphorylation and the activation loop occludes the entry to the catalytic domain and 

effectively prevents the binding of peptide substrates. 

Another stabilizing factor for the outward, inactive position of the αC helix is Trp-260, a 

highly conserved residue within SFKs and other non-receptor tyrosine kinases. This residue lies 

at the interface between the SH2:kinase linker and the N-lobe of the kinase and points into a 

hydrophobic region at the C-terminus of the αC helix (64). The role of Trp-260 in the 

stabilization of the αC helix in a non-catalytic conformation is also supported by the fact that this 

residue does not contact the αC helix in the structure of the active Lck kinase domain (71). In 

addition, Leu-255 within the SH2:kinase linker also points into a hydrophobic pocket in the back 

of the N-lobe and may have a role in the stabilization of the inactive αC helix (72). 

The active conformation 

Activation of SFKs occurs upon phosphorylation at Tyr-416 in the activation loop (73, 74). 

Phosphorylation at this residue induces the activation loop to adopt an extended conformation 

away from the catalytic cleft, allowing contacts between Tyr-416 and Arg-385/363 or Arg-

409/387 residues that lie outside of the cleft (71, 75). The change in the orientation of the 

activation loop, in particular of the Arg-404 within the DFG motif induces an inward rotation of 

the αC helix in the N-lobe. This conformational change is stabilized by an ionic interaction 

between Lys-295 and Glu-310, an interaction that is critical for kinase activity (62, 63). 

Another putative mechanism of activation involves the release of the SH3/SH2 clamp. 

The release of the SH3/SH2 clamp may induce a displacement of Trp-260 from the hydrophobic 

pocket in the N-lobe, inducing a destabilization of the non-catalytic αC helix conformation. 

Mutagenesis studies support the notion that Trp-260 acts as a switch to communicate the position 

of the SH3/SH2 clamp to the kinase domain (76). In addition, SH3/SH2 clamp release is likely to 

 12 



disrupt the conformation of the activation loop and to remove the steric clash with the αC helix, 

allowing it to adopt an active conformation (27). 

The transfer of γ-phosphate from the ATP molecule to the tyrosine substrate proceeds by 

direct attack of the hydroxyl oxygen of the tyrosine residue on the γ-phosphate and requires the 

presence of a divalent metal ion (77). This reaction is facilitated by several motifs or individual 

residues located within both the N and C-lobes. The P-loop, which lies between β1 and β2 

strands, coordinates the phosphates in the ATP molecule and contains a highly conserved 

glycine-rich motif (GXGXΦG) where Φ is a Tyr or Phe (78, 79). The Gly residues coordinate 

the phosphates in the ATP molecule via backbone interactions while the Φ residue caps the 

phosphate transfer site. In addition, Asp-386 within the catalytic loop induces a catalytically-

competent orientation of the tyrosyl group. Lastly, Asp-404 within the activation loop binds 

Mg2+, which in turn coordinates the β- and γ-phosphate groups of ATP (80). 

1.1.2.8 C-terminal tail 

The C-terminal tails of SFKs (residues 521 to 535 in c-Src) contain a Tyr residue (Tyr-527) that 

is phosphorylated by either C-terminal Src kinase (Csk) or by the Csk-homologous kinase (Chk) 

(65, 81). Phosphorylation at this residue creates a low-affinity SH2-binding site and induces 

intramolecular binding of the C-terminal tail to the SH2 domain (64, 81, 82). Although this SH2 

binding site is suboptimal, purified SFKs show highly stable association of the SH2 domain and 

the C-terminal tail, with only 2% displaying the SH2 domain released from the tail (83). This 

stable association may also be promoted by an additional interaction between the SH2 domain 

and the SH2:kinase linker (61). Disruption of the SH2:tail interaction is sufficient to activate the 
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kinase. Mutation of Tyr-527 to phenylalanine or deletion of the C-terminal tail (as in v-Src), 

results in a constitutively active tyrosine kinase (84-86). 

1.1.3 Extrinsic regulators of SFK activity 

1.1.3.1 Regulation by phosphorylation 

Phosphorylation at Tyr-416 in the activation loop is required for maximal activation of SFKs 

(87). Phosphorylation at this residue is believed to occur mostly by trans-auto-phosphorylation 

upon clustering of at least two identical molecules in the same area. In addition, it has been 

suggested that different SFKs can transphosphorylate each other on this residue and even that 

other tyrosine kinases can phosphorylate this site (88). While phosphorylation at Tyr-416 

induces tyrosine kinase activation, phosphorylation of the C-terminal Tyr-527 residue induces 

intramolecular interaction with the SH2 domain and promotes an inactive conformation (see 

section 1.1.2.8). 

1.1.3.2 Regulation by dephosphorylation  

Dephosphorylation can either activate or inactivate SFKs, depending on the phospho-Tyr residue 

involved. Dephosphorylation of the C-terminal phospho-Tyr was shown to be mediated by 

several protein tyrosine phosphatases (PTPases) including proline-enriched tyrosine phosphatase 

(PEP), tandem SH2 domain-containing protein tyrosine phosphatase or SHP1, or by the 

transmembrane receptor-like protein phosphatase CD45 (89-91). However, these PTPases were 

also shown to have the ability to dephosphorylate the phospho-Tyr-416 within the activation 

loop (90-93). Interestingly, the same phosphatases have been associated with either activation or 

inhibition of SFKs. Which Tyr residue is dephosphorylated at any given time may depend on the 
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cell type, subcellular compartment, or on the SFK conformation or interaction partners (83). In 

addition, a downregulated conformation of SFKs could be induced by dual action of a kinase and 

a phosphatase. For example, PEP was found to dephosphorylate the Tyr in the activation loop 

while bound to the SH3 domain of Csk that phosphorylates the tail tyrosine (91, 94). 

1.1.3.3 Regulation by interaction with binding partners 

Another mode of SFK activation takes place upon ligand binding to their SH3 domain, which 

induces a disruption of the intramolecular downregulatory interaction with the SH2:kinase linker 

(81). Work in our laboratory and others showed that displacement of the SH3 domain due to 

mutations in the linker PXXP motif or due to binding of HIV-1 Nef to the SH3 domain of Hck is 

sufficient to activate Hck and to induce a transformed phenotype in Rat-2 cells (95-97). Other 

SFK physiological substrates such as p130Cas, Stat3 or Ras act in a similar manner (98).  

Another mode of activation due to interaction with binding partners is through the 

disruption of the SH2:tail interaction. For example, SFKs have been implicated in signal 

transduction by both cytokines and growth factors. The mechanism of SFK activation by growth 

factor receptor tyrosine kinases may involve SH2-dependent recruitment to the activated, 

autophosphorylated form of the receptor. Binding of the SH2 domain to the receptor may induce 

Src activation by displacing the negative regulatory tail leading to phosphorylation of the 

receptor in some cases (81, 99). 

Work in our laboratory suggests that the two modes of activation discussed above may 

occur independently of each other. On one hand, a High Affinity Linker mutant of Hck (HAL) in 

which the SH3 domain is tightly bound to the SH2:kinase linker can be activated through the 

release of the SH2 domain via mutation of the tail Tyr-527 (86). On the other hand, replacement 

of the wild-type tail of Hck with a high-affinity SH2-binding sequence did not affect Hck 
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activation by Nef, suggesting that activation through SH3 recruitment occurs without SH2 

release from the tail (100). 

In addition, several lines of evidence suggest that tandem engagement of both SH3 and 

SH2 domains acts cooperatively to induce the activation of SFKs.  For example, addition of Nef 

to the tail-mutant of Hck further activated the kinase above the level obtained with only the tail 

release (97, 100). Cas, a Src substrate that possesses both SH3 and SH2 –binding motifs was 

shown to require both to induce Src autophosphorylation (101). Furthermore, Focal adhesion 

kinase (Fak) contains closely placed proline and phosphotyrosine motifs shown to bind 

simultaneously to the SH3 and SH2 domains of Fyn (102). 

Collectively, these lines of evidence suggest four possible conformations of SFKs: i) a 

completely downregulated conformation in which both the SH3 and SH2 domains are engaged 

with their intramolecular ligands (linker and tail, respectively); ii) an active conformation in 

which only the SH3 domain is released; iii) an active conformation in which only the SH2 

domain is released and iv) a “fully open” conformation in which both the SH3 and SH2 domains 

are disengaged. Elucidation of these distinct conformations may provide important clues for the 

development of more selective Src inhibitors (103). 

1.1.4 SFK Biological Functions 

1.1.4.1 Overview 

SFKs play critical roles in regulating cellular responses to a variety of stimuli including: growth 

factors, cytokines, G-protein coupled receptors, oxidative stress, signals that trigger mitosis and 

adhesion signals from extracellular matrix (10, 99, 104, 105). As explained in detail in the 

previous section, all members of the family are highly regulated, exhibiting little or no activity in 
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the absence of an activating signal. Constitutively active SFKs are known to be capable of 

inducing malignant transformation of a variety of cell types [reviewed in (106)]. This section 

will focus on the involvement of SFKs in normal hematopoiesis and hematological malignancies 

(a multi-article, comprehensive review of SFK signaling in normal and malignant cells was 

published in 2004, in issue 23 of Oncogene).  

1.1.4.2 Normal hematopoiesis and the role of SFKs in hematopoietic cells 

Hematopoiesis 

Hematopoiesis is a tightly controlled, hierarchical process in which pluripotent stem cells 

develop into various types of mature blood cells [reviewed in (106)]. Mature blood cells develop 

upon stem cell commitment to hematopoietic common lymphoid or myeloid progenitors. These 

progenitor cells maintain some stem cell-like properties but they can only differentiate into a 

particular lineage.  

Hematopoietic cell growth and differentiation are controlled by growth factors and 

cytokines, which include interleukins, colony-stimulating factors, and hematopoietins (107). 

With a few exceptions, the receptors for the majority of these hematopoietic growth factors are 

transmembrane proteins that do not encode a tyrosine kinase catalytic domain (108, 109). Upon 

cytokine stimulation, the cytoplasmic or signal-transducing subunit of the receptor recruits 

cytoplasmic kinases, which results in propagation of the signal to downstream target proteins. 

Some of the kinases recruited and activated by the cytoplasmic subunit of the cytokine receptors 

include the Janus family of kinases (Jak), the SFKs, and the Tec family of kinases (110-115). 

The role of SFKs in hematopoietic cells 

Consistent with the high number of interacting partners, SFKs play multiple roles in the process 

of hematopoiesis. Several lines of evidence suggest a critical role for SFKs in blood cell 
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function. First, many of the eight family members are found predominantly or exclusively in 

various hematopoietic compartments (Table 1). Second, some SFK knock-out mice display 

prominent hematological abnormalities. For example, deletion of the Hck gene induces a defect 

in phagocytosis, although hematopoiesis proceeds normally (116). Fyn-defective mice present 

reduced TcR signaling (117), while Lck knock-out mice have defective T-cell maturation (118). 

Double Hck/Fgr knock-out mice have defective host defense against intracellular macrophage 

pathogens such as Listeria (116). Mice deficient in Lyn have a reduced number of mature B-

cells. Third, a patient with T-cell acute lymphoblastic leukemia has been identified with a fusion 

gene of lck locus and the  β-subunit of T-cell receptor gene, suggesting that SFK defects could 

induce hematological diseases (119). Fourth, several SFKs, including Fyn, Hck and Lyn, have 

been described to co-precipitate with hematopoietin/cytokine receptors (112, 120-122). 

SFKs act downstream of cytokine receptors by activating various pathways involved in 

cell growth and differentiation, migration and adhesion. Within these signaling pathways, SFKs 

either phosphorylate the signal transduction molecule itself (such as FAK) or phosphorylate an 

adaptor protein such as Cbl and Shc that link the SFK to the specific signaling molecule (Ras or 

PI3K) (123-127). 

1.1.4.3 Role of SFKs in hematological malignancies 

Constitutively active SFK variants were shown to induce malignant transformation in a variety 

of cell types [reviewed in (106)]. Activation of one or more members of the family has been 

linked to breast, colorectal, ovarian, gastric, head and neck, pancreatic, lung, brain, or blood 

cancers. In this context, they appear to be involved in multiple aspects of tumor progression, 

including proliferation, migration, invasiveness, angiogenesis, survival and resistance to 
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apoptosis (106). This section will focus on the role of SFKs in hematological malignancies other 

than CML. The roles of SFK in CML will be discussed in detail in section 1.2.4.1.   

Increasing evidence points to a role for SFKs in hematological diseases. Lyn kinase is 

predominantly expressed in B-lymphocytes and monocytes/macrophages and several reports 

suggest a role of Lyn in cancers that arise from these cells. For instance, Lyn kinase activity was 

specifically upregulated in response to IL-3 or IL-6 in myeloid leukemia cell lines or multiple 

myeloma cells, respectively (115, 128). This suggests that Lyn may be involved in IL-3 and IL-

6-dependent signal transduction and proliferation in these malignancies. In addition, Choi et al. 

showed the involvement of Lyn kinase in human malignant lymphomas of B cell origin (129). 

The Lck tyrosine kinase is expressed mainly in T cells. However, Lck may be involved in 

the growth and survival of cancers that arise from multiple blood lineages. For example, Lck 

mRNA was detected in B cell chronic lymphocytic leukemia (130). In addition, it was suggested 

that Lck has a role in B lineage acute lymphoblastic leukemia (ALL) and in B cell chronic 

lymphocyte leukemia (CLL) (131, 132).  

The Fyn tyrosine kinase is expressed as two main isoforms: FynT found in hematopoietic 

T cells and FynB found in brain (16). However, a recent report shows abnormal FynB mRNA 

expression in fresh cells isolated from ALL and CLL (133). Although the FynB protein was 

undetectable by isoform-specific immunoprecipitation, a possible role of minute levels of FynB 

in these blood malignancies could not be ruled out (133). 
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1.2 CHRONIC MYELOGENOUS LEUKEMIA (CML) 

1.2.1 Overview 

Chronic myelogenous leukemia (CML) is a myeloproliferative disease that arises from 

neoplastic transformation of a hematopoietic stem cell (See section 1.2.1.2 for details on the stem 

cell hypothesis of CML). CML accounts for 15-20% of human leukemias and has an incidence 

of approximately 1 to 5 in 100,000 individuals per year, affecting 4,500 Americans per year, or 

about 0.3% of the 1.200.000 new US cancer patients (134, 135). The median age of diagnosis is 

65 to 75 years, with males having a higher incidence (136). 

In 1845, three independent pathologists described patients with massive splenomegaly 

and leukocytosis, which we now know as two clinical hallmarks of CML [reviewed in (137)].  

Today, the clinical features of the disease are well characterized. CML has three distinct clinical 

phases: a chronic phase that may last approximately 2 to 5 years, accelerated phase that lasts 6 to 

18 months, and blast crisis phase that lasts only about 3 to 6 months (136, 138). In the chronic 

phase patients are mostly asymptomatic but develop a tremendously increased number of mature 

granulocytes in peripheral blood, weight loss, and splenomegaly. Both accelerated and blast 

crisis phases are characterized by a severe reduction in hematopoietic differentiation and 

accumulation of immature blasts in the bone marrow and in peripheral blood ( ≥ 30% blasts in 

peripheral blood or bone marrow) (138, 139). The blast crisis phenotype varies, with 

approximative 50% of the patients entering a myeloid blast stage similar to acute myeloblastic 

leukemia (AML); 30% of the patients entering a pre-B blast stage similar to acute lymphoid 

leukemia (B-ALL); and 10% of the patients developing erythroid blasts (137). 
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1.2.1.1 Philadelphia Chromosome 

The first landmark discovery in the pathogenesis of CML came in 1960 when Nowell and 

Hungerford associated CML with the consistent appearance of a chromosomal abnormality, later 

termed the Philadelphia (Ph) chromosome (140). This discovery was the first demonstration that 

a cancer may be associated with a chromosomal rearrangement. In 1973, the Ph chromosome 

was further characterized as a reciprocal translocation between chromosome 9 and chromosome 

22, now described as t(9;22)(q34;q11) (141).  In the 1980s, the Ph chromosome was shown to 

give rise to a unique chimeric gene, Bcr-Abl, due to the fusion between the “break point cluster 

region gene” (Bcr) on chromosome 22 with sequences of the c-abl protooncogene on 

chromosome 9 (142, 143). 

A closer look at Bcr-Abl revealed that there are three breakpoint regions [minor (m); 

major (M); micro (µ)] in the Bcr gene that gives rise to three variants of Bcr-Abl differing in the 

amount of Bcr included in the fusion protein (Figure 3, B) (143). These three Bcr-Abl proteins 

are named p190, in which the junction occurs between the e1 region of Bcr and a2 region of abl; 

p210 in which the junction occurs between b2/a2 or b3/a2 regions of Bcr and Abl, respectively; 

and p230 in which the junction occurs between e3/a2 regions of Bcr and Abl, respectively 

(Figure 3, B) (144). P190 encompasses the oligomerization and SH2 domain of Bcr; p210 has 

the PH and Dbl domains in addition to the oligomerization and SH2 domains; and p230 includes 

an addition of the calcium/phospholipid binding domain of Bcr (145-147). Consistent with the 

differences in the content of Bcr, the three forms of Bcr-Abl display distinct biological properties 

and are associated with different diseases (144). Specifically, p190 Bcr-Abl is associated with 

ALL; p210 with CML, and p230 with chronic neutrophilic leukemia (CNL) and CML with 

thrombocytosis (148, 149).  
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Figure 3: Schematic diagram showing the Bcr and c-Abl genes and the formation of Bcr-Abl variants 

(A) Breakpoints location in Bcr and c-Abl genes; (B) Composition of the chimeric Bcr-Abl mRNA transcripts; (C) 

Domain organization of p210 Bcr-Abl. Regulatory Tyr-412 is illustrated in red. NSL: Nuclear Localization Signal; 

DNA: DNA-binding domain; Actin: Actin-binding domain [Modified from (150)]. 
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The mechanism of Ph chromosome formation is not known. However, people exposed to high 

dose irradiation have a higher risk of developing CML (151). In addition, in vitro high-dose 

irradiation of myeloid cell lines induces the expression of Bcr-Abl transcripts similar to CML 

(152). These observations suggest that high dose irradiation may be one of the risk factors for 

CML.   

Numerous studies in mice confirmed the prediction that Bcr-Abl can induce leukemia in 

vivo. For example, enriched hematopoietic stem cells (HSC) were collected from mice pretreated 

with 5-fluorouracil. These cells were then induced to cycle in vitro using cytokine mixtures, and 

were infected with retroviral vectors carrying p210 Bcr-Abl (153). Subsequently, these HSC 

carrying p210 Bcr-Abl were transplanted in lethally irradiated mice, which later developed 

CML-like disease. More recently, p210 Bcr-Abl was found to induce a CML-like disease upon 

expression under the control of the tec gene promoter, a gene that is preferentially expressed in 

hematopoietic cells (154). In a similar approach, Bcr-Abl expression under the control of PCMV 

promoter of the murine stem cell virus induced a myeloproliferative disease similar to CML 

(150).  

1.2.1.2  Stem Cell Hypothesis 

Stem cells are defined by three distinctive properties: self-renewal, the potential to develop into 

multiple lineages and the ability to proliferate indefinitely. More than 30 years ago, Fialkow et 

al. made the observation that although only myeloid cells are expanded in the chronic phase of 

CML, both granulocytes and erythroid lineage cells contain the Ph chromosome. This suggested 

that the Ph chromosome originally occurs in a HSC and is passed down to both myeloid and 

erythroid lineages (155). In 1977, Fialkow et al. provided evidence supporting the HSC origin of 

the Ph chromosome in an elegant study using X-linked polymorphic glucose-6-phosphate 
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dehydrogenase (G-6-PD) loci in selected female chronic phase patients as markers for the 

monoclonal origin of Ph+ cells (155). Since then, the development of sensitive cytogenetic and 

molecular biology techniques has allowed the detection of Ph chromosome and Bcr-Abl 

transcripts in all hematopoietic lineages except natural killer cells, further supporting the HSC 

origin of Ph chromosome (156). 

Upon the acquisition of the Ph chromosome, the HSC undergoes proliferation and self-

renewal giving rise to a population of cells called leukemic stem cells or leukemia-initiating cells 

that initiate the chronic phase of CML (157). These leukemic stem cells share many properties 

with normal HSCs. For example, leukemic stem cells at steady-state are quiescent, have a long 

life-span and show great proliferative and self-renewal potential that enables them to maintain 

the cancer cell population (158). In addition, they display resistance to drugs and express typical 

HSC markers (159). Similar to the normal HSC, the immunophenotype of CML stem cells is 

CD34+ CD38- (160). However, there is evidence that contrary to HSC, which are negative for 

HLA-DR antigens, in CML stem cells the HLA-DR antigen may be expressed aberrantly (161).  

Using long-term cultures, Coulombel et al. showed that normal HSCs persisted in 

patients during early stages of CML (162). The relative frequency of circulating Ph+ CD34+ cells 

remains under debate and ranges between 60% to 97% (163, 164). Much effort is being made to 

optimize protocols for purging the Ph+ cells and enriching the Ph- stem cells from chronic phase 

CML patients for the purpose of autologous stem cell transplantation (163, 165). 

 More recently, increasing evidence suggests that although the Ph+ CML stem cells 

(leukemia initiating cells) are important for the initial expansion of myeloid progenitors during 

the chronic phase, other cells with stem cell-like properties support the progression to blast crisis. 

Specifically, it was shown that expression of Bcr-Abl in myeloid progenitor cells can induce 
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myeloproliferative disease in transgenic mouse models (166). In addition, Jamieson et al. 

brought evidence that the granulocyte-macrophage progenitor (GMP) pool from patients in blast 

crisis CML have increased levels of ß-catenin, as compared to the levels in normal progenitor 

cells (167). Because the GMP cells display enhanced self-renewal activity, and since in normal 

hematopoietic stem cells the process of self-renewal requires ß-catenin, the authors propose that 

granulocyte-macrophage progenitor cells are the stem-like cells that drive the progression to 

blast crisis. Lastly, a recent mathematical model of CML blast crisis also suggests that CML 

blasts are likely to result from more differentiated leukemic progenitors (168). 

1.2.2 c-Abl 

The Abl family of non-receptor tyrosine kinases consists of c-Abl (Abelson tyrosine kinase) and 

a single homolog, Arg (Abl-related gene) (169). Similar to other proto-oncogenes, c-Abl was 

discovered as the normal cellular form of the v-abl oncogene from the Abelson murine leukemia 

virus (170). c-Abl has two alternative splicing sites that generate two proteins with different 

amino-termini: a myristoylated (1b) splice variant, and a 1a splice variant that is 19 amino acids 

shorter and lacks the myristoylation site (171). c-Abl is localized at multiple intracellular sites, 

including the nucleus, cytoplasm, mitochondria, or endoplasmic reticulum, where it interacts 

with a multitude of cellular proteins, including adaptors, protein kinases and phosphatases, cell-

cycle regulators, transcription factors, and cytoskeletal proteins. c-Abl functions in a range of 

cellular processes such as cell proliferation and survival, oxidative stress, DNA damage 

responses, and actin dynamics [reviewed in (172)].  

c-Abl consists of approximately 1150 residues and is comprised of an N-terminal “cap”, 

followed by an SH3 domain, an SH2 domain, a tyrosine kinase domain, and a long C-terminal 
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region (Figure 4) (173, 174). The structural arrangement of SH3, SH2 and kinase domains of c-

Abl closely resemble the corresponding domains of SFKs (175). The C-terminal region 

encompasses an actin binding domain, DNA and SH3 binding elements, one nuclear export and 

three nuclear localization signals (172, 174, 176). 

1.2.2.1 Structure and Regulation 

Crystallographic analysis of the c-Abl 1b core (N-terminus, SH3, SH2 and kinase domain) 

revealed the structural basis of its regulation (Figure 4) (177). Similar to SFK structure, the c-Abl 

core assumes an autoinhibited conformation stabilized by a complex set of intramolecular 

interactions among its SH3 and SH2 domains and the kinase domain (178, 179). These modular 

domains were shown to dock onto the back of the kinase domain, acting as a clamp and 

restricting its conformational flexibility (177, 178). The SH3 domain interacts with the N-

terminal lobe of the kinase domain through an atypical PXXP motif within the SH2:kinase linker 

that encompasses the residues P242TVY245 (177). Contrary to SFKs, this interaction is maintained 

in the absence of the SH2 domain (180). The tethering of the SH2 domain is mediated through 

the Tyr-245 side chain that points away from the SH3 domain and interacts with the N-lobe of 

the kinase (177). Mutation of Pro-242 or phosphorylation of Tyr-245 can induce an increase in 

Abl kinase activity, suggesting that this “sandwich” interaction is essential for the maintenance 

of the downregulated conformation (181-183). 

In SFKs, the SH2 domain and the C-lobe of the kinase are kept spatially close to each 

other through an interaction between the SH2 and the phospho-Tyr C-terminal tail (184). 

Although c-Abl lacks a phosphorylated ligand, the SH2 domain is docked tightly against the C-

lobe (177). This interaction requires the binding of myristic acid to a hydrophobic pocket in the 

C-lobe, which in turn induces a specific conformational change in helix αI in the C-terminus of 
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the C-lobe. SH2 binding is promoted by the myristate-induced conformational change and is 

stabilized through a series of hydrogen bonds described in detail by Nagar et al. (177). 

Interestingly, although c-Abl 1a is not myristoylated, deletion of the N terminus in both c-Abl 

isoforms induces kinase activation, indicating that 1) the myristoyl moiety is required for the 

stabilization of the downregulated conformation of c-Abl 1b, and 2) in c-Abl 1a, there must be 

other compensatory interactions that stabilize this conformation (173, 185). Engagement of the 

SH2 domain by other proteins induces kinase activation due to the disruption of the 

downregulated conformation (186). 

The short eight-residue connector between the SH3 and SH2 domains forms a rigid 

structure highly similar to that seen in SFKs, a structure stabilized by a network of hydrogen 

bonds (177). This connector dynamically couples the SH3-SH2 into a regulatory “clamp” (177). 

In addition to the SH3-SH2 clamp, the N-terminal “cap” (N-cap) is believed to 

compensate for the lack of the phospho-Tyr tail and to further stabilize the kinase in an inactive 

conformation. For example, when expressed in HEK293, an N-cap deletion mutant of c-Abl 

displayed increased kinase activity as measured by the total cellular phosphotyrosine levels 

(173). The mechanism by which the N-cap provides an extra layer of stabilization is illustrated 

by recent crystallographic and hydrogen exchange mass spectrometry (HXMS) studies (187, 

188). The crystal structure of the c-Abl kinase core shows that residues within the cap region 

interact with both the SH3 and SH2 domains through a network of hydrogen bonds and appear to 

stabilize their docking onto the kinase domain (188). In addition, Ser-69 within the cap region is 

phosphorylated and interacts with the SH3-SH2 rigid linker. Mutations at this residue induce 

kinase activation, presumably due to N-cap destabilization (188). Lastly, studies using HXMS, 
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Chen et al. showed that the N-cap stabilizes the dynamics of the SH3 domain and has 

implications for the SH3 binding and downregulation of Abl kinase activity (187). 

Similar to SFKs, c-Abl kinase activity is also regulated by tyrosine phosphorylation and 

this process has been extensively studied (Figure 4). In the absence of activating stimuli, 

endogenous c-Abl was found to be unphosphorylated at Tyr residues (181, 189). 

Crystallographic studies showed that when unphosphorylated at Tyr-412, the activation loop 

folds into the active site, preventing substrate and ATP binding (190). Tyr-412 

autophosphorylation in trans or by SFKs was shown to induce kinase activation (191, 192). In 

addition to Tyr-412, Tyr-245 in the SH2:kinase domain linker was shown to be required for full 

activation of the kinase (183). However, the exact mechanism by which Tyr-245 participates in 

kinase activation is not well understood, HXMS studies showed that phosphorylation at this 

residue does not induce disruption of SH3-SH2:linker interaction  (183). 

Phosphorylation at several other Tyr residues has been implicated in controlling c-Abl 

activity. These residues include Tyr-134 in the SH3 domain, which is directly involved in 

binding the PXXP motif in the SH2:kinase linker, and Tyr-283 in the amino-terminal lobe of the 

kinase domain, which comes into close contact with Ser-94 of the SH3 domain (193). 

Phosphorylation at any of these residues was predicted to disrupt the SH3-linker-N-lobe of the 

kinase domain interaction and to activate c-Abl (178). In addition, c-Abl is phosphorylated by 

SFKs at various residues such as Tyr-89 in the SH3 domain (194). Phosphorylation at this 

residue results in the disruption of the negative regulatory interaction with the linker and SH2 

domain (195). 
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Figure 4: Crystal structure of the c-Abl kinase core 

The crystal structure begins at Ala-65. c-Abl regions are color-coded: cyan for the Ncap; blue for the SH3 domain;  

yellow for the SH3 domain; purple for the SH3:SH2 linker; green for the SH2 domain; light bleu for the kinase 

domain; orange for myristoyl moiety. Some of the tyrosine residues shown to be important for the regulation of 

kinase function are displayed: red for Tyr-412 and Ser-69; yellow for Tyr-245; purple for Tyr-89; cyan for Tyr-134; 

green for Ser-94; bleu for Tyr-283 (PDB: 2FO0).  
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1.2.3 Bcr-Abl 

As described in section 1.2.1.1., Bcr-Abl is a chimeric protein with constitutive tyrosine kinase 

activity, which arises upon a chromosomal translocation between chromosome 9 and 

chromosome 22 (Figure 3, A). There are three forms of Bcr-Abl: the 190 kDa Bcr-Abl that 

induces ALL, the 210 kDa that induces CML, and the 230 kDa Bcr-Abl that induces CNL 

(Figure 3, B) (196, 197). 

Structurally, Bcr-abl contains multiple domains, as shown in Figure 3, C in section 

1.2.1.1. The Bcr region is comprised of a coiled-coil oligomerization domain, a serine/threonine 

kinase domain, a pleckstrin homology domain, a Dbl/cdc24 guanine exchange factor homology 

domain, serine/threonine and tyrosine phosphorylation sites, and binding sites for the Abl SH2 

domain and Grb2 (198, 199). Because of N-terminal Bcr fusion, Bcr-Abl lacks the regulatory N-

terminal “cap” of c-Abl, but includes the SH3 and SH2 domains, the tyrosine kinase domain, and 

the large C-terminal region.  

The fusion of Bcr sequences upstream of c-Abl constitutively activates the Abl tyrosine 

kinase and is essential for Bcr-Abl oncogenicity (200, 201). The N-terminal oligomerization 

domain of Bcr is required for Bcr-Abl kinase activation (202). Zhao et al. showed that 

structurally, the first 72 amino acids of Bcr form N-shaped monomers that dimerize through the 

formation of an antiparallel coil-coil, and that two dimers associate to form tetramers (203). 

Although Bcr-Abl exhibits constitutive tyrosine kinase activity, the kinase domain may 

retain some of the intra-molecular constrain and inhibitory interactions of c-Abl (178). An 

important clue in Bcr-Abl regulation that supports this idea comes from a non-biased 

mutagenesis screen performed by Azam et al. to identify mutants of Bcr-Abl that induce imatinib 

resistance (204). In this screen, in addition to identifying residues that directly contact imatinib, 
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the authors also identified residues that map at the interface between the kinase domain and the 

SH3-SH2 clamp that had been previously shown to regulate c-Abl kinase activity (173, 181, 186, 

193, 205). The fact that mutations at residues that disrupt c-Abl inhibition also induce imatinib 

resistance in Bcr-Abl strongly suggests that mechanisms that govern c-Abl autoinhibition are 

preserved in Bcr-Abl (178). 

1.2.4 Bcr-Abl Oncogenic Signaling 

Bcr-Abl promotes leukemic transformation through several mechanisms that include: induction 

of constitutive mitogenic signaling; induction of growth-factor independence; impairment of cell 

adhesion properties; promotion of resistance to apoptosis; and disruption of the DNA-repair 

response mechanisms. Bcr-Abl oncogenic potential relies on its constitutive tyrosine-kinase 

activity and its ability to activate many different signal transduction pathways, which are 

discussed in the following sections. 

1.2.4.1 SFK-dependent signaling 

The pathological involvement of SFKs in Bcr-Abl signaling has been studied extensively and 

various groups report seemingly controversial findings (206). This controversy arises most likely 

from the different specific phases of the disease in which their role has been probed or due to 

assay differences (disease onset vs. chronic phase vs. blast crisis). In this section, I will give an 

overview of the arguments that either support or contest a role of SFKs in CML pathogenesis.  

Based on the fact that Bcr-Abl induces cytokine independence of myeloid cells and that 

SFKs are activated by these cytokines, Danhauser-Riedl et al. investigated for the first time 

whether Bcr-abl induces activation of SFKs (207). The authors showed that Bcr-Abl associates 
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with and activates Hck and Lyn kinases in murine 32D cells transformed with Bcr-Abl and in 

CML cell lines such as K562 (207). The interaction between Bcr-Abl and Hck is mediated by the 

SH3, SH2, kinase domain, and the C-terminus of Bcr-Abl, and the SH3 and SH2 domains of Hck 

(208, 209). Interestingly, although the interaction between the isolated SH2 domain of Hck and 

Bcr-Abl requires autophosphorylation of Bcr-Abl (209), the interaction of full-length Hck and 

Bcr-Abl did not require Abl kinase activity (210). These studies suggest that Bcr-Abl may 

activate SFKs through the displacement of one or more intra-molecular inhibitory interactions in 

Hck, and that multiple interaction modes may exist, depending on the activation status of Bcr-

Abl.   

Some SFKs activated by Bcr-Abl act as intermediates between Bcr-Abl and downstream 

pathways involved in leukemic transformation. For example, co-immunoprecipitation 

experiments in Bcr-Abl-transformed murine 32D myeloid cells, show that Bcr-Abl, Hck and 

Stat5 form a stable complex, in which Stat5 is phosphorylated at Tyr-699 and thereby activated. 

Expression of a kinase-dead Hck mutant suppressed Stat5 activation, suggesting that Stat5 is a 

substrate of Hck and not of Bcr-Abl (211). Importantly, work in our laboratory had shown that 

expression of this kinase-dead mutant of Hck blocks Bcr-Abl-induced transformation of myeloid 

cells (209). Together, these data suggest that Hck couples Bcr-Abl to Stat5 signaling and this 

Bcr-Abl Hck Stat5 pathway is required for Bcr-Abl-induced transformation.  

Lyn activation by Bcr-Abl is another example of an SFK acting as an intermediate to 

activate downstream signaling pathways (212). Bcr-Abl-induced activation of Lyn triggers G-

protein coupled receptor CXCR4-dependent signaling and results in loss of responsiveness to 

stromal-derived factor 1 (SDF-1) and activation of PI3K. This pathological pathway blocks the 

response to the SDF-1 chemokine and disrupts chemotaxis, thus increasing the ability of 
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hematopoietic progenitor cells to escape the bone marrow and potentially contributing to 

oncogenicity of Bcr-Abl (212). Interestingly, the CXCR4 expression level was shown to be 

highly downregulated in CD34+ cells from patients in blast crisis phase compared to either 

control individuals or chronic phase patients (213). Also, in a recent study, Diaz-Blanco et al. 

compared the molecular signature of CD34+ cells from chronic phase CML patients with normal 

CD34+ using microarrays that covered more than 8700 genes (214). In this study, the authors 

found Lyn and Yes to have a significantly higher mRNA expression than in normal CD34+ cells, 

providing a rationale for using dual Abl/Src inhibitors for the eradication of primitive progenitor 

cells in CML. 

Work in our laboratory performed in the CML cell lines K562 and Meg01 showed that 

A-419259, a SFK selective inhibitor, blocks CML cell proliferation and induces apoptosis 

without affecting the growth and survival of Ph-negative myeloid cells (215). The effects of this 

compound correlate with downregulation of both Stat5 and ERK activation, suggesting once 

again that SFKs couple Bcr-Abl to downstream signaling pathways. Importantly, as a 

continuation of these studies, work presented in this thesis shows that A-419259 induces growth 

arrest and apoptosis in CD34+ cells isolated from CML patients in chronic phase at a level 

comparable to imatinib (Chapter 2) (216). This strongly argues for a role of SFKs in proliferation 

and survival of CML progenitor cells, suggesting that SFKs may be an important therapeutic 

target for the eradication of CML stem cells. Indeed, dasatinib, a dual Bcr-Abl/SFK inhibitor was 

shown to be more effective against an earlier progenitor population than imatinib in primary 

CML samples (217). 

Multiple studies have implicated SFKs in phosphorylation of various sites in c-Abl or 

Bcr-Abl, which may affect their regulation, signaling or oncogenicity. For example, Hck and 
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Lyn can phosphorylate Bcr-Abl on Tyr-177 in the Bcr part of the molecule (194, 210, 218). 

Since Tyr-177 is a known binding site for Grb2, these SFKs link Bcr-Abl to the Ras and 

MEK/ERK oncogenic signaling cascades (194, 210, 218). Furthermore, Tyr-245 and Tyr-412 

were shown to represent sites of SFK-mediated phosphorylation in c-Abl (191, 192). 

Phosphorylation at Tyr-412 is necessary for the catalytic activity of c-Abl (191), while 

phosphorylation at Tyr-245 strongly up-regulates c-Abl activity, possibly due to the disruption of 

the SH3-linker interaction (183). In addition, recent work in our laboratory demonstrated that 

Hck, Lyn, and Fyn phosphorylate multiple Tyr residues in the SH3-SH2 region of Bcr-Abl, 

possibly by inducing dissociation of the autoregulatory interactions that may be retained in Bcr-

Abl (194, 195). Importantly, phosphorylation at these sites is required for full Bcr-Abl 

oncogenicity (194). Finally, Hck was shown to induce desensitization of c-Abl to inhibition by 

imatinib due to induction of an active conformation upon phosphorylation at Tyr-412 (182, 190). 

Several lines of evidence suggest a role of SFKs in CML progression to blast crisis. For 

example, Donato et al. showed that overexpression and/or activation of Hck and Lyn occur 

during CML progression (219). Furthermore, using a mouse model of CML, Hu et al. 

demonstrate that the transition of CML to lymphoid blast crisis requires the presence of Lyn, 

Hck, and Fgr (220). In addition, downregulation of Lyn using RNAi induced apoptosis in cells 

from both myeloid and lymphoid blast crisis patients (221). Lastly, Bcr-Abl was shown to induce 

elevated IGF-1 expression in blast crisis cells through the activation of Hck and Stat5b, 

suggesting a role of these proteins in the transition to blast crisis (222). 

SFKs may play an additional role in CML through a direct effect on ß-catenin, which in 

turn was implicated in CML stem and progenitor cell self-renewal, and in progression to blast 

crisis (167). Briefly, Src was shown to phosphorylate the 72 amino-acid cytoplasmic domain of 
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Muc1 (Muc1-CD), a transmembrane glycoprotein, shown to be overexpressed in various cancers, 

including CML (223, 224). Src-induced phosphorylation promotes binding of Muc1-CD to ß-

catenin and targeting of ß-catenin to the nucleus (224).  

Some of the evidence that disputes a role of SFKs in CML pathogenesis comes from 

genetic studies. For example, Hu et al. addressed the requirement of SFKs in Brc-Abl-dependent 

induction of CML using SFK-knockout mice (225). The authors used a Bcr-Abl retrovirus to 

transduce bone marrow from mice lacking the myeloid-expressed SFKs (Hck, Lyn, and Fgr), and 

determined that these marrow cells were still able to induce a CML-like syndrome in recipient 

animals. Conversely, these cells did not induce a B-cell acute lymphoblastic leukemia (B-ALL)-

like syndrome, which is also dependent on Bcr-Abl. In addition, a SFK selective inhibitor was 

effective in blocking the growth of ALL cells in vitro and in B-ALL mice, but had no effect in 

blocking CML progression (225). Together, these data suggest that Hck, Lyn, and Fgr are 

required for the onset of B-ALL but not of CML. However, it should be pointed out that 

knockout of one or more SFKs may induce functional compensation due to overexpression of 

other SFKs.  Therefore, these studies do not persuasively rule out a requirement of Hck, Lyn, or 

Fgr or of other SFKs in CML induction.  

In summary, the data discussed above represent an overwhelming body of evidence for 

the various roles of SFKs in Bcr-Abl signaling and CML pathogenesis. These include a role in 

linking Bcr-Abl to mitogenic and survival pathways; modulation of Bcr-Abl oncogenicity; 

disruption of chemotaxis that in turn may favor the escape of CML progenitor cells from the 

bone marrow; or a role in disease progression. In addition, an increasing number of studies point 

to a role for SFKs in induction of Bcr-Abl – independent resistance to imatinib. This topic will 

be discussed in detail in section 1.2.5.3. 
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1.2.4.2 SFK-independent signaling 

Ras/Raf/MEK/ERK signaling 

The MAPK pathway (Ras/Raf/MEK/ERK) is activated by many growth factors and cytokines 

and has important mitogenic and antiapoptotic roles in hematopoietic cells via downstream 

transcription factors including NF-kB, CREB, Ets-1, AP-1 and c-Myc (226-228). 

Some of the first reports linking Bcr-Abl to Ras showed that phosphorylation of Tyr-177 

in the Bcr-derived part of Bcr-Abl generates a binding site for Grb2 adapter protein. This in turn 

recruits the Sos guanine nucleotide exchange factor and facilitates Ras activation (229-232). The 

importance of Tyr-177 for Bcr-Abl oncogenicity has been widely debated. For example, 

mutation of Tyr-177 to Phe reduces Ras activation and fibroblast transformation (229) and 

prevents the induction of myeloproliferative disorder in a CML mouse model (233, 234). 

However, this mutant retains the ability to render hematopoietic cell lines growth-factor 

independent (230), suggesting the existence of alternate Bcr-Abl-dependent pathways that allow 

continuous activation of Ras (198, 235). Indeed, it was shown that Bcr-Abl activates Ras through 

another adapter molecule Shc (236, 237). Goga et al. demonstrated that recruitment of Shc by 

Bcr-Abl requires the SH2 domain of Bcr-Abl, while Cortez et al. showed that this interaction 

also required Bcr-Abl kinase activity (230, 238). Lastly, Bcr-Abl can activate Ras by binding and 

phosphorylating CrkL-C3G adapter complex (239, 240). Interestingly, to illustrate the 

importance of this complex in Bcr-Abl-induced activation of the Ras pathway, Oda et al. used a 

cell-permeable CrkL-SH3-domain blocking peptide and showed that this peptide inhibits 

proliferation of blast cells from CML patients (240). 
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STAT signaling 

The signal transducer and activator of transcription proteins (Stats) regulate many aspects of cell 

growth, survival and differentiation [reviewed in (241)]. Stats are monomeric cytoplasmic 

transcription factors that require phosphorylation at a specific, conserved Tyr residue for 

activation (241). Phosphorylation at this Tyr residue induces oligomerization, nuclear transport, 

and DNA binding. Stats were shown to be activated downstream of receptor tyrosine kinases 

(such as EGFR or PDGFR), or receptors without tyrosine kinase activity that recruit various 

cytoplasmic tyrosine kinases (such as Jaks or SFKs) (242, 243). 

The major Stats activated by Bcr-Abl are Stat1, Stat3 and Stat5 (244-246). The role of 

Stat1 in Bcr-abl-induced transformation is less clear since disruption of the stat1 gene in mice 

leads to compromised immune function and unresponsiveness to interferon (247). In addition, 

Bcr-Abl-induced transformation of growth-factor-dependent 32Dcl3 murine myeloid cells 

induced a very robust activation of Stat5, while Stat1 was only weakly activated and Stat3 

activation was not detected (248). 

Stat3 was shown to be constitutively active in Bcr-Abl–expressing embryonic stem (ES) 

cells and to promote self-renewal even in the absence of LIF (244). This constitutive activation 

of Stat3 in ES cells is also dependent on MEK kinase 1 (249). More importantly, Stat3 was 

found to be active in primary CD34+ cells from CML patients, suggesting that it might be 

involved in the maintenance of an undifferentiated phenotype in CML stem cells (244). 

The importance of Stat5 activation in Bcr-Abl leukemogenesis is supported by multiple 

observations. For example, ectopic expression of a dominant-negative Stat5 mutant decreases 

Bcr-Abl-dependent cell proliferation of Ba/F3 cells, and blocks Bcr-Abl-dependent 

transformation of primary mouse bone marrow cells (248, 250). In addition, Stat5 activation is 
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consistently observed in CML (246) and it was proposed to play a role in disease progression to 

blast crisis (251). Activation of Stat5 by Bcr-Abl was shown to require both SH3 and SH2 

domains of Bcr-Abl and to be Jak2-independent (248, 252). The mechanism of Bcr-Abl induced 

activation of Stat5 is mediated by SFKs and was discussed in section 1.2.4.1. 

Jak2 signaling 

Jak2 is a member of the Janus kinase (Jak) family of non-receptor tyrosine kinases, which are 

important regulators of cytokine growth factor receptors (253). Although Jak2 was not linked to 

the activation of Stats in response to Bcr-Abl, increasing evidence points to a role of Jak2 in Bcr-

Abl leukemogenesis. In collaboration with our laboratory, Xie et al. showed that Bcr-Abl binds 

and phosphorylates Jak2 at Tyr-1007, a residue required for its activation (254). The same group 

showed that Bcr-Abl-induced activation of Jak2 induces phosphorylation of Gab2 (found in the 

same multimolecular complex), hence linking Jak2 to other signaling pathways such as 

phosphatidylinositol-3 kinases (PI-3K) and Ras (255). In addition, Jak2 activation in Bcr-Abl 

positive cells was linked to c-Myc protein induction, a transcription factor required for Bcr-Abl 

transformation (256). Lastly, treatment of CML cell lines and 32D/Bcr-Abl cells with Jak2 

inhibitors induced apoptosis, suggesting that Jak2 may be a critical target in CML (255). 

PI-3K signaling 

The PI-3Ks are a family of proteins that catalyze the transfer of γ phosphate from ATP to 

phosphoinositides that act as anchors for pleckstrin homology (PH) domain-containing proteins 

such as Akt or phosphoinositide-dependent protein kinase-1 (PDK1). The class Ia of PI-3Ks are 

homodimers composed of a p85 regulatory and a p110 catalytic subunit.  

Bcr-Abl activates PI-3K through the recruitment of the scaffolding Grb2/Gab2 protein 

complex to phospho-Tyr-177 in the Bcr part of the molecule. This in turn interacts with the p85 
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regulatory subunit and induces PI-3K activation (257, 258). Replacement of Tyr-177 with Phe 

results in a Bcr-Abl mutant that exhibits decreased tyrosine phosphorylation of Gab2 and 

decreased PI-3K activation (259). In addition, bone-marrow myeloid progenitors from Gab2 (-/-) 

mice are resistant to transformation by Bcr-Abl, suggesting that Gab2 is a critical mediator of 

Bcr-Abl-induced activation of PI-3K (260).  

Additional scaffolding proteins implicated in the activation of PI-3K are c-Cbl, CrkL and 

c-Crk. Sattler et al. showed that Bcr-Abl induces the formation of a multimeric complex of 

signaling molecules that leads to the recruitment of p85. CrkL or c-Crk bind to Bcr-Abl through 

their SH3 domains and to c-Cbl through their SH2 domains, while p85 binds directly to c-Cbl 

through its SH3 and SH2 domains (261, 262). 

  PI-3K kinase triggers Akt activation, an upstream regulator of various transcription 

factors and pro-apoptotic molecules that have a critical role in Bcr-Abl transformation (263, 

264). For example, Akt phosphorylates BAD and inhibits its pro-apoptotic activity by inducing 

its cytoplasmic sequestration due to interaction with 14-3-3ß (265, 266). In addition, Akt inhibits 

p53 tumor suppressor function by phosphorylating MDM2, inducing its cytoplasmic export from 

the nucleus and promoting p53 ubiquitination and degradation (267, 268). Furthermore, Akt 

phosphorylates inhibitor of NF-kB kinase (IkB-kinase-α), which in turn induces phosphorylation 

and proteasomal degradation of IkB (269, 270). Degradation of IkB releases NF-kB, allowing its 

translocation into the nucleus where it functions as a transcription factor for an entire spectrum 

of target genes that facilitate tumor progression, inflammation, cell survival, angiogenesis, 

proliferation, and metastasis [reviewed in (271)]. Lastly, the PI-3K/Akt pathway was shown to 

regulate production of high levels of reactive oxygen species, which is associated with Bcr-Abl 

transformation (272, 273).  
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WNT/ß-catenin signaling 

The WNT/ß-catenin pathway promotes hematopoietic stem cell renewal since expression of a 

degradation-resistant ß-catenin mutant induces sustained proliferation in culture and in vivo 

bone-marrow reconstitution (274). In the absence of WNT signals, ß-catenin is found in a 

cytosolic complex with APC, Axin, and the Ser/Thr-kinase GSK3. GSK3 constitutively 

phosphorylates ß-catenin and initiates its degradation by the proteasome (275, 276). WNT 

factors are lipid-modified proteins that bind to Frizzled (FZD) receptors and induce inhibition of 

GSK3. This in turn induces accumulation and nuclear translocation of ß-catenin, where it 

functions as a transctiptional coactivator for genes like c-myc, c-jun and cyclin D1 (277). Several 

hematological malignancies display increased ß-catenin expression and stabilization in 

committed myeloid and lymphoid progenitors (278). 

Several reports link abnormal ß-catenin function with CML stem cells. For example, 

Jamieson et al. showed for the first time that granulocyte-macrophage progenitors from blast-

crisis and imatinib-resistant CML patients have elevated levels of nuclear ß-catenin (167). More 

recently, Bcr-Abl was shown to physically interact with ß-catenin and phosphorylate it on Tyr-86 

and Tyr-654. Phosphorylation at these Tyr residues induces disruption of ß-catenin association 

with Axin/GSK3, increasing stability, and ß-catenin transcriptional activity (279). In addition, ß-

catenin was shown to be essential for the survival and self-renewal of leukemic stem cells in 

CML cells and mouse models (167, 280-282). 

1.2.5 CML therapy 

The effectiveness of CML therapies is measured by the degree of hematological, cytogenetic or 

molecular responses. CHR, or complete hematological response, denotes the return to a normal 
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white blood count. CCyR, or complete cytogenetic remission denotes the absence of Ph 

chromosome within 20 metaphases on karyotype analysis. Lastly, CMR, or complete molecular 

response denotes the elimination of Bcr-Abl mRNA as measured by real-time quantitative RT-

PCR (283). 

1.2.5.1 Treatment before the emergence of Bcr-Abl targeted therapy 

The only curative treatment for CML remains allogeneic transplantation of normal bone marrow 

cells following a conditioning phase for the destruction of normal and leukemic cells by 

chemotherapy or irradiation (284). However, only 20% of patients are candidates for allogeneic 

bone marrow transplantation due to the lack of available compatible donors or age limitations. 

Lastly, the 5-year disease-free survival rate varies largely between 30 % to 80 % (284, 285). 

Introduced about 25 years ago, interferon-α (INF-α) was for a long time the standard 

CML therapy in patients with no matched bone marrow donor. INF-α leads to both 

hematological and cytogenetic responses in chronic phase patients (286). It has been suggested 

that INF-α induces its antileukemic effects by blocking the Jak1-Stat1 pathway and activation of 

INF-α responsive genes (287). Despite the prolonged survival, the majority of patients develop 

resistance and ultimately die of the disease. 

The second-line treatment in patients either resistant or intolerant to INF-α was Busulfan 

or hydroxyurea, which nonspecifically blocks the proliferation of both normal and Ph+ leukemic 

cells. These treatments obtained hematological responses only in the chronic phase of CML 

[reviewed in (135)]. 
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1.2.5.2 Targeted Bcr-Abl kinase inhibitor: Imatinib 

Validation of Bcr-Abl as an ideal therapeutic target in CML comes from the massive number of 

studies showing that Bcr-Abl is required for the onset and maintenance of the disease. Imatinib 

(Signal Transduction Inhibitor – STI571) is a derivative of 2-phenylaminopyrimidine, and was 

originally discovered in a screen for inhibitors of the platelet-derived growth factor receptor 

tyrosine kinase (PDGF-R). Further testing showed that imatinib specifically inhibits the 

proliferation of Bcr-Abl positive cells in vitro and the growth of Bcr-Abl positive tumors in vivo 

(288). In contrast, imatinib does not inhibit immortalized or transformed cell lines that do not 

express Bcr-Abl. Similar selective depletion of Bcr-Abl-positive cells has been observed in long-

term bone marrow cultures (289). More detailed testing revealed that imatinib inhibits c-Abl, v-

Abl, Bcr-Abl, PDGF-R α and ß, c-Kit, Arg, and c-Fms (290-294). This promiscuity was shown 

to be key to the therapeutic effects of Bcr-Abl. Wong et al. engineered an inhibitor analog-

sensitive mutant of Bcr-Abl that allowed selective inhibition of this kinase without the 

concomitant inhibition of the other target kinases, and showed that simultaneous inhibition of 

Bcr-Abl and c-Kit was required for the potent cytotoxic effects of imatinib on CML cells (295). 

In an initial, phase I clinical study, imatinib proved remarkably successful with 53 out of 

54 patients displaying CHR after only 4 weeks of treatment (296). 96% percent of these patients 

maintained CHR for over a year (297). In addition, 55% of the patients in accelerated phase or 

blast crisis achieved hematological responses (21/38) (297). In a phase II clinical study, 55% of 

the patients showed CCyR and 91% of the patients in chronic phase obtained CHR. From these, 

89% showed no disease progression (297). However, the rate of CHR in patients in accelerated 

phase of blast crisis was 69% and 29%, respectively (282, 297). In a phase III clinical study 
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conducted in CML chronic phase patients, only 3.3% showed disease progression after 18 

months (298). 

To elucidate the mechanism of imatinib binding and specificity towards Abl, numerous 

studies described the crystal structure of c-Abl core or c-Abl kinase domain in complex with 

imatinib (179, 190). Schindler et al. showed that imatinib binds to an inactive conformation of 

the kinase domain in which the activation loop is not phosphorylated and points inward (190). A 

close evaluation of these crystal structures shows that the drug is sandwiched between the N- and 

C-terminal lobes of the kinase domain. More specifically, the compound tightly fits between the 

activation loop and helix αC, locking the kinase in an inactive conformation. The binding of 

compound is stabilized through 6 hydrogen bonds with Met-318, Thr-315, Glu-286, His-361, Ile-

360, and Asp-381, and through numerous van der Waals interactions (179). 

 A comparison of active and inactive conformations of different classes of kinases 

suggested that whereas the conformations of protein kinases in active state are very similar 

amongst different kinase families, there are important differences in their downregulated 

conformations (179). Therefore, it has been proposed that the high selectivity towards Abl 

displayed by imatinib stems from its ability to exploit a fairly unique conformation of the 

inactive kinase.  

1.2.5.3 Mechanisms of resistance to Imatinib 

Despite the high rates of hematological and cytogenetic responses to imatinib, emergence of 

resistance upon exposure to the drug is a major problem for the treatment of CML (299). There 

are two main types of resistance to imatinib: Bcr-Abl-dependent and – independent mechanisms.  
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Bcr-Abl-dependent mechanisms of resistance  

One Bcr-Abl-dependent mechanism of resistance is due to gene amplification. For example, 

using dual-color fluorescence in situ hybridization (FISH), Gorre et al. reported the presence of 

multiple copies of Bcr-Abl gene in metaphase spreads from 11 patients. This amplification 

occurred within a unique inverted duplicate Ph chromosome. Interestingly, one patient displayed 

this unique Ph chromosome before imatinib exposure (300). 

A second and very well characterized Bcr-Abl-dependent mechanism of resistance is due 

to the presence of Bcr-Abl point mutations that renders it refractory to imatinib. Gorre et al. 

reported for the first time a substitution of Thr-315 with Ile in 6 patients that relapsed on imatinib 

treatment (300). This substitution not only precludes formation of a critical hydrogen bond with 

imatinib, but also, since Ile has an extra hydrocarbon group in the side chain, induces a steric 

clash with imatinib (300). Consequently, the binding of imatinib is prevented.  

Since this first report, more than 50 additional mutations inducing imatinib resistance 

have been described (301-303). These mutations tend to cluster in certain areas of the kinase 

domain such as the imatinib-binding interface (Thr-315), within the phosphate-binding loop (for 

example Glu-255, Tyr-253), activation loop (for example His-396), or at the SH2-kinase 

interface (Met-351) [reviewed in (304)]. However, many of these mutants are relatively rare in 

clinical specimens. The most common mutations, accounting for 60-70 % of all mutations, occur 

at residues Gly-250, Tyr-253, Glu-255, Thr-315, Met-351, and Phe 359 (305). Interestingly, 

some of these mutations were shown to exist prior to the onset of treatment with imatinib (303, 

306). Furthermore, two of the most clinically frequent imatinib-resistant mutants (Y253F, 

E255K) have a greater transforming potential than the wild type Bcr-Abl in cell-based assays and 

are associated with a poor prognosis (307-309). Lastly, mutation at the c-Abl residue 
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corresponding to T315 in Bcr-Abl was recently reported to induce kinase activation and 

transformation activity (310). This mutation was also associated with a much poorer prognosis 

(311).  

In an elegant study, Azam et al. used random mutagenesis on Bcr-Abl and in vitro 

selection for imatinib resistance to identify additional imatinib-resistant Bcr-Abl mutants (204). 

It is interesting that many of these mutations occur at sites that do not directly contact the drug. 

For example, some of these mutations mapped to the SH2:kinase linker, or others at the SH3-

SH2 domain linker, many of them in positions required to maintain inactive states of the enzyme 

(204, 302). Although many of these mutants were not clinically relevant and conferred only low 

resistance to imatinib, they are important for understanding Abl kinase regulation and 

mechanisms of resistance.  

Bcr-Abl-independent mechanisms 

Bcr-Abl-independent resistance has been attributed to many different mechanisms including 

enhanced drug efflux from target cells through P-glycoprotein-mediated active transport, or 

reduced intracellular drug delivery due to the presence of α1 acid glycoprotein in the membrane 

(312, 313). Other mechanisms such as activation of secondary tyrosine kinases or leukemic stem 

cells refractoriness and residual disease will be discussed below. 

In a series of articles published in the last 5 years, Donato et al. suggested a mechanism 

of resistance to imatinib involving SFKs. First, the authors showed that K562 CML cells cultured 

in increasing concentrations of imatinib displayed upregulated Lyn activity (219). Inhibition of 

Lyn kinase reduced proliferation and survival of these cells, while it did not have any effect in 

imatinib-sensitive K562 cells. In addition, analysis of clinical samples from patients in the 

advanced stages of CML that relapsed upon imatinib treatment showed an association between 

 45 



imatinib-resistance and upregulation of either Hck or Lyn in the absence of Bcr-Abl mutations 

(219, 314).  Reducing Lyn by siRNA in mononuclear cells isolated from a patient with increased 

Lyn levels induced a reduction in cell survival (314).  

Although the vast majority of patients in chronic phase achieve CCyR when treated with 

imatinib, relapses are commonly observed after imatinib cessation (315, 316) due to the 

persistence of a limited, “residual” population of CML stem and progenitor cells that are 

intrinsically resistant to imatinib. Determination of the mutation status of Bcr-Abl in these cases 

showed that usually the relapse is not accompanied by a mutated Bcr-Abl phenotype. This 

refractoriness to imatinib was causatively associated with the stemness character of the leukemia 

initiating cells and their relative quiescence. Refractory CML cells were shown to upregulate 

genes for proteins responsible for drug efflux, elimination and detoxification (317). Numerous 

studies have addressed the cause of imatinib resistance in this population. In a recent report, 

Diaz-Blanco assessed differential gene expression in total CD34+ from CML patients in chronic 

phase compared to normal CD34+ cells, using microarrays covering over 8700 genes (214). 

Apart from some known transcriptional changes previously shown to take place upon Bcr-Abl 

expression in this cellular compartment (activation of MAPK and PI-3K pathways), this analysis 

revealed some novel transcriptional changes. For example, the data showed higher expression 

levels of proliferation-associated genes such as CDKs and various cyclins, as well as 

downregulation of proapoptotic factors such as interferon regulatory factor 8 (214). Interestingly, 

the SFKs Lyn and Yes were found in significantly higher levels (1.56 and 1.38 times, 

respectively), suggesting a potential role for SFKs in CD34+ CML cells (214).  
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1.2.5.4 Strategies to circumvent resistance to current therapies 

The discovery of imatinib resistance has prompted a quest for the development of alternative 

therapies to override this resistance. Within these new therapies, Bcr-Abl kinase activity remains 

a valid target since many cases of resistance occur due to the accumulation of a leukemic clone 

with Bcr-Abl point mutations. However, in the case of residual disease or other types of 

resistance, it is important to direct these new therapies towards novel targets in alternative 

pathways.  

Improved Bcr-Abl inhibitors recently developed include: 1) selective Abl inhibitors such 

as nilotinib (Novartis) that is about 30 times more potent than imatinib and inhibits 32 of 33 Bcr-

Abl imatinib-resistant mutants, with the exception of T315I mutants (318, 319); 2) non-ATP 

competitive inhibitors such as GNF-2 which binds to the myristoyl binding site and inhibits the 

kinase activity allosterically (320); and 3) Aurora kinase inhibitors such as MK-0457 (Merck) 

which inhibits Aurora kinase, Flt3, Abl, and Jak2. Importantly, MK-0457 also inhibits T315I 

mutant of Bcr-Abl (321). Although some of these inhibitors have improved activity towards 

some Bcr-Abl imatinib-resistant mutants, in many cases this improved activity is accompanied 

with a wider spectrum of activity that historically has been associated with increased side effects 

or intolerance.  

 Given the importance of SFKs in Bcr-Abl signaling and resistance to imatinib, dual Abl 

and SFK inhibitors such as dasatinib (Bristol-Myers Squibb) are very promising compounds. The 

dual character of dasatinib lies in its flexibility in binding to different conformations of Bcr-Abl, 

some of which are similar to the SFK active conformations (322). It has been shown that 

dasatinib inhibits 21 out of 22 imatinib-resistant Bcr-Abl mutants, with the sole exception once 

again being the T315I mutant (323, 324). 
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Another unique mechanism of inducing Bcr-Abl inhibition was recently described by 

Bartholomeusz et al. and consists of induction of a Bcr-Abl-destruction pathway by WP1130. 

WP1130 is a second-generation tyrphostin derivative (degrasyn) discovered during screens for 

AG490-like molecules that suppress IL-6 and IL-3 activation of Stats (325). Although WP1130 

was shown to induce rapid downregulation of Jak kinases, the mechanism of Bcr-Abl destruction 

is currently unknown.  

Finally, due to the general resistance and refractoriness of CML stem cells, targeting the 

“residual disease” has proved very challenging. However, recently two approaches show 

significant promise. First, BMS-214662, a farnesyl transferase inhibitor developed by Bristol-

Myers Squibb shows apoptotic activity not only against imatinib-resistant or blast crisis CML 

cells, but also against CML stem and progenitor cells (326). Second, based on proven cell-

surface presentation of Bcr-Abl epitopes encompassing the fusion region, immunotherapy of 

residual disease is also promising (327). Multiple immunotherapy clinical trials are currently 

ongoing.  

1.3 HYPOTHESES AND SPECIFIC AIMS 

1.3.1 Hypotheses 

The Src family of non-receptor tyrosine kinases (SFK) is comprised of eight members in 

humans: c-Src, Hck, Fgr, Blk, Lck, Lyn, c-Yes, and Fyn. Although some Src members are 

ubiquitously expressed, Hck, Lyn, Fgr, Lck, and Blk, are restricted to a few hematopoietic cell 

types. SFKs critically regulate a variety of cellular processes such as proliferation, motility, 
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adhesion, angiogenesis, and survival (7). However, overexpression and/or aberrant activation of 

SFKs have been linked to various cancers (7, 328).  In the context of chronic myelogenous 

leukemia (CML), Bcr-Abl, the oncogenic protein-tyrosine kinase responsible for the onset of 

CML, binds to both Hck and Lyn, and this interaction leads to an increase in Lyn and Hck 

tyrosine kinase activity (207). Work in our laboratory has shown that general Src-kinase 

inhibitors of the pyrrolo- and pyrazolo-pyrimidine (PP) classes block the transforming activity of 

Bcr-Abl in CML-derived cell lines (215). In addition, Hck has been shown to couple Bcr-Abl to 

Stat5 activation in leukemia cells, which may increase survival (211). Given the involvement of 

Hck in the pathogenesis of CML, I propose the hypothesis that Hck cooperates with Bcr-Abl 

in CML pathogenesis. Furthermore, although imatinib, the frontline therapy in CML, proved 

remarkably effective in patients in the initial phase of CML, patients in advanced phases develop 

resistance. In 50 % to 70 % of the cases, resistance to imatinib occurs due to point mutations in 

the abl kinase domain of Bcr-Abl that interfere with imatinib binding (329). Interestingly, in 

other patients with wild type Bcr-abl, resistance has been associated with either overexpression 

or overactivation of the SFKs Hck and Lyn (330, 331).  Based on this association, I also propose 

the hypothesis that Hck overexpression in CML cells induces imatinib resistance. To 

address this hypotheses, I used the power of chemical genetics and pursue the following aims (1) 

to investigate the independent contribution of Hck to Bcr-Abl signaling and cellular 

transformation in K562 cells using a mutant that is genetically engineered to be resistant to the 

general SFK inhibitor, A-419259; and (2) to investigate the effect of Hck overexpression on 

imatinib resistance in the context of a wild-type Bcr-Abl.  
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1.3.2 Specific Aims 

Aim 1. To investigate the independent contribution of Hck to Bcr-Abl signaling and 

cellular transformation in K562 cells using a mutant that is genetically engineered to be 

resistant to the general SFK inhibitor, A-419259. 

In this aim, I adapted a chemical genetics approach to develop an A-419259-resistant mutant of 

Hck by replacing the gatekeeper residue (Thr-338) in the inhibitor-binding site with a bulkier 

methionine residue (Hck-T338M).  This substitution reduced Hck sensitivity to A-419259 by 

more than 30-fold without affecting kinase activity in vitro. Expressing this mutant in CML 

cellular models and pairing it with the global SFK inhibitor, A-419259, I was able to show that 

Hck plays a non-redundant role as a key downstream antiapoptotic signaling partner for Bcr-Abl.  

 

Aim 2. To investigate the effect of Hck overexpression on imatinib resistance in the context 

of a wild-type Bcr-Abl. 

In this aim, I showed that Hck overexpression in CML cells is sufficient to induce resistance to 

imatinib. In addition, to establish the mechanism of Hck-induced resistance to imatinib, I used a 

second chemical genetic strategy, originally developed by Shokat and co-workers (332). This 

strategy introduces a silent mutation into the ATP-binding pocket of Hck (T338A) to produce 

unique sensitivity to NaPP1, a bulky analog of global SFK inhibitors of the pyrazolo-pyrimidine 

class. Using this inhibitor-sensitive mutant of Hck, I determined that Hck-kinase activity is 

required to induce imatinib-resistance in K562 cells.  
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2.0  AN INHIBITOR-RESISTANT MUTANT OF HCK PROTECTS CML CELLS 

AGAINST THE ANTI-PROLIFERATIVE AND APOPTOTIC EFFECTS OF THE 

BROAD-SPECTRUM SRC-FAMILY KINASE INHIBITOR A-419259 

2.1 ABSTRACT 

Chronic myelogenous leukemia (CML) is driven by Bcr-Abl, a constitutively active protein-

tyrosine kinase that stimulates proliferation and survival of myeloid progenitors. Global 

inhibition of myeloid Src-family kinase (SFK) activity with the broad-spectrum pyrrolo-

pyrimidine inhibitor A-419259 blocks proliferation and induces apoptosis in CML cells, 

suggesting that transformation by Bcr-Abl requires SFK activity. However, the contribution of 

Hck and other individual SFKs to Bcr-Abl signaling is less clear. Here we developed an A-

419259-resistant mutant of Hck by replacing the gatekeeper residue (Thr-338) in the inhibitor 

binding site with a bulkier methionine residue (Hck-T338M).  This substitution reduced Hck 

sensitivity to A-419259 by more than 30-fold without affecting kinase activity in vitro.  

Expression of Hck-T338M protected K-562 CML cells and Bcr-Abl-transformed TF-1 myeloid 

cells from the apoptotic and anti-proliferative effects of A-419259.  These effects correlated with 

persistence of Hck-T338M kinase activity in the presence of the compound, and were 

accompanied by sustained Erk and Stat5 activation.  In contrast, control cells expressing 

equivalent levels of wild-type Hck retained sensitivity to the inhibitor.  We also show for the first 
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time that A-419259 induces cell-cycle arrest and apoptosis in primary CD34+ CML cells with 

equal potency to imatinib.  These data suggest that Hck plays a non-redundant role as a key 

downstream signaling partner for Bcr-Abl and may represent a potential drug target in CML.    

2.2 INTRODUCTION 

Chronic myelogenous leukemia is an acquired genetic hematological malignancy that affects 1 in 

100,000 people each year and is characterized by clonal expansion of transformed multipotent 

hematopoietic stem cells (135). The hallmark genetic anomaly of CML is the Philadelphia 

chromosome (Ph+) that results from a reciprocal chromosomal translocation between the c-abl 

locus on chromosome 9 and the bcr locus on chromosome 22 (141, 333). Bcr-Abl, the protein 

product of this translocation, is a 210 kDa chimeric tyrosine kinase with abnormal cytoplasmic 

localization (334). Bcr-Abl transforms fibroblasts, growth factor-dependent hematopoietic cell 

lines and primary bone marrow cells in culture (335-337) and induces a myeloproliferative 

disorder that closely resembles CML in mice (153, 338). 

Constitutive tyrosine kinase activity and cytoplasmic relocalization underlie the ability of 

Bcr-Abl to activate numerous signal transduction pathways and promote cell proliferation and 

survival (261). For example, Bcr-Abl was shown to activate the Stat5 transcription factor, 

inducing its nuclear translocation and transcription of cell growth and survival genes such as 

Cyclin-D1 and Bcl-XL (245, 246, 339, 340). Bcr-Abl also activates the PI3K/Akt pathway upon 

phosphorylation of Tyr-177 in the Bcr region and recruitment of Grb2/Gab2 adapter proteins 

(261). Additionally, PI3K is also activated by Bcr-Abl via other adapter proteins such as Shc 

(341, 342), Crkl and c-Cbl (261) or by direct binding of the p85 subunit of PI3K to Bcr-Abl 
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(263, 343). Activation of PI3K leads to suppression of programmed cell death via Akt and other 

pathways.  Similarly, the Ras/Erk pathway is activated by Bcr-Abl either upon phosphorylation 

of Bcr-derived Tyr-177 and direct Grb2/Sos recruitment or via the Shc adaptor protein (230, 

259). By stimulating the Ras/Erk pathway, Bcr-Abl increases growth-factor independent cell 

proliferation. 

Members of the Src-kinase family have been strongly linked to Bcr-Abl signaling and 

leukemogenesis (209, 211, 225). Several reports have demonstrated that Bcr-Abl binds to 

multiple Src-family members including Hck, Lyn and Fyn leading to their activation (194, 207, 

209, 210).  Activation of SFKs may have a positive feedback effect on Bcr-Abl signaling, as 

SFKs directly phosphorylate Bcr-Abl at key Tyr residues critical for regulation and function. 

These sites include Tyr-177 in the Bcr part of the protein, Tyr-89 and Tyr-134 in Abl-derived 

SH3 domain, Tyr-245 in SH2-kinase linker, and Tyr-412 in the activation loop of the Abl kinase 

domain (194, 210, 229, 233, 234, 344). On the other hand, SFKs may serve as key intermediates 

linking Bcr-Abl with downstream effectors.  For example, Hck has been shown to couple Bcr-

Abl to Stat5 activation in myeloid leukemia cells, which may contribute to survival (211).  

Furthermore, global inhibition of SFK activity with the ATP-competitive pyrrolo-pyrimidine 

compound A-419259 blocks Stat5 and Erk signaling, leading to growth arrest and apoptosis in 

CML cell lines (215).  Here we show for the first time that A-419259 also blocks proliferation 

and induces apoptosis in primary CD34+ CML cells.  Other studies have shown that Hck and 

Lyn are overexpressed and activated in CML blast-crisis patients, and up-regulation correlates 

with disease progression and drug resistance (330, 331). Taken together, these studies emphasize 

the significant role of SFKs in Bcr-Abl signaling. 

 53 



Consistent with the critical role for Bcr-Abl in CML, the Abl kinase inhibitor imatinib 

mesylate produces dramatic hematological and cytogenetic remission in most chronic phase 

CML cases (135, 345).  However, patients with advanced disease often acquire drug resistance 

and continue to progress despite imatinib therapy. In addition, residual Bcr-Abl+ primitive 

progenitor cells (CML stem cells) can persist in patients achieving complete cytogenetic 

remission (346), highlighting the need for additional therapeutic targets.  Given their important 

role in Bcr-Abl signaling and in imatinib resistance, SFKs have recently emerged as novel 

targets for CML treatment. However, the relative contribution of individual SFKs to Bcr-Abl 

signaling is not fully understood. 

In this study we investigated the independent contribution of Hck to Bcr-Abl signaling 

using a mutant (Hck-T338M) with engineered resistance to the broad-spectrum SFK inhibitor, 

A-419259. Expression of this mutant in the CML cell line K562 and in TF-1 myeloid cells 

acutely transformed with Bcr-Abl allowed persistence of Hck kinase activity in the presence of 

A-419259 at concentrations that inhibited all endogenous SFK activity. Remarkably, Hck-

T338M rescued both K562 and TF-1/Bcr-Abl cells from the apoptotic effects of A-419259 

treatment. This result correlated with sustained activation of Stat5 in the presence of the inhibitor 

and provides direct evidence that Hck alone is able to transmit anti-apoptotic signals from Bcr-

Abl.  In addition, Hck-T338M had a partial protective effect on A-412959-induced growth arrest 

that correlated with rescue of Erk signaling in K562 cells.  Taken together, our data demonstrate 

the utility of engineered inhibitor-resistant mutants to dissect the roles of individual members of 

a closely related family of protein kinases in oncogenic signaling, and point to Hck as a clinically 

relevant target for CML therapy. 
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2.3 RESULTS 

2.3.1 Design of an inhibitor-resistant mutant of Hck 

Many ATP-competitive inhibitors of protein kinases access a small hydrophobic pocket adjacent 

to the ATP-binding site in kinase domain.  Accessibility of inhibitors to this hydrophobic pocket 

is controlled by a non-conserved amino acid often referred to as the “gatekeeper” residue (347). 

Numerous studies have shown that natural variation in the gatekeeper residue is one of the main 

structural determinants of kinase sensitivity to small molecule inhibitors (300, 332, 348-350). 

Tyrosine kinases that possess a threonine at this position are sensitive to various classes of 

inhibitors that access the hydrophobic pocket (Table 1). However, replacement of the gatekeeper 

residue with more bulky amino acids such as methionine or isoleucine has been reported to 

induce resistance to these inhibitors (Table 1 and Discussion).  

 

Kinase Gatekeeper Residue Gatekeeper 
Mutation Inhibitor Class Refs 

c-Abl FYIIT315EFMTYGN T I Imatinib 2-phenylaminopyrimidine (300) 
Kit TLVIT670EYCCYGD T I Imatinib 2-phenylaminopyrimidine (351) 

PDGFR 
alpha IYIIT674EYCFYGD T I Imatinib 2-phenylaminopyrimidine (352) 

EGFR VQLIT766QMPFGD T M Gefitinib anilino-quinazoline (353) 

Src IYIVT338EYMSKGS T  I PP58/PP1 pyrido/pyrazolo-
pyrimidine (349, 354) 

Hck IYIIT338EFMAKGS T M A-419259 pyrrolo-pyrimidine (this study) 

 

Table 2: Peptide sequences surrounding the gatekeeper threonine at the ATP-binding site of several tyrosine 

kinases 

Mutations of this residue to methionine or isoleucine account for a common mechanism of resistance to inhibitors of 

various classes as described in the text. 
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To determine whether we could artificially engineer resistance to A-419259 in Hck by 

increasing the size of the gatekeeper residue, we examined the crystal structure of Hck in 

complex with a related pyrazolo-pyrimidine inhibitor, A-420983 (Figure 5).  The crystal 

structure revealed close contact between the Hck gatekeeper residue [Thr-338; human c-Src 

crystal structure numbering (62)] and the inhibitor, suggesting that replacement of Thr-338 with 

a bulkier methionine residue would result in A-419259 resistance due to steric clash without 

affecting kinase activity.  
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Figure 5: Structure-based design of Hck inhibitor-resistant mutant 

(A) Orientation of A-420983, an analog of A-419259, in the Hck nucleotide-binding pocket. The overall structure of 

Hck is shown on the left, with the SH3 domain in red, the SH2 domain in blue, and the kinase domain in grey.  The 

side chain of the gatekeeper residue (T338; c-Src numbering) is highlighted in magenta. The relationship of the 

gatekeeper residue to the pyrazolo-pyrimidine moiety of A-420983 is enlarged on the right.  This model was 

produced using PyMol and the PDB file 2COI.  (B) Chemical structures of A-419259 and A-420983. 
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To address whether the T338M substitution induced Hck resistance to A-419259, wild-

type and Hck-T338M were expressed in Sf9 insect cells and purified to homogeneity in their 

downregulated conformations. Normally, Hck as well as other SFKs adopt an inactive, 

downregulated conformation in vivo due to phosphorylation of a conserved tyrosine residue in 

the C-terminal (Tyr-527) by the regulatory kinases Csk and Chk (27). To attain this 

conformation while avoiding the co-expression of the regulatory kinases, both forms of Hck 

were altered at the C-terminal tail from Tyr-527-Gln-Gln-Gln-Pro to Tyr-527-Glu-Glu-Ile-Pro 

(referred to hereafter as Hck-YEEI).  This modification promotes autophosphorylation of the tail 

independently of Csk, and was previously shown to have a higher affinity for the SH2 domain, 

stabilizing the downregulated conformation (27, 63, 82). Importantly, Hck-YEEI undergoes 

autophosphorylation and exhibits substrate phosphorylation kinetics similar to wild-type Hck 

(27, 355).  The sensitivity of recombinant Hck-YEEI and Hck-T338M-YEEI to A-419259 were 

compared in an in-vitro kinase assay using a peptide substrate. As shown in Figure 6, the T338M 

mutation induced dramatic resistance to A-419259, increasing the IC50 value by almost 30-fold 

from 11.26 ± 1.23 nM for wild-type Hck to 315.6 ± 80.3 nM for the T338M mutant. Kinetic 

analysis showed a modest difference in the Km for ATP in the T338M mutant compared to wild-

type Hck (10.7 ± 2.5 μM for wild-type vs. 3.9 ± 0.8 μM for T338M). 
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Figure 6: In vitro kinase assay of recombinant wild-type and T338M forms of Hck 

Recombinant wild-type Hck and Hck-T338M were purified from Sf9 insect cells in their downregulated 

conformations and assayed for kinase activity with a peptide substrate in vitro in the presence or absence of the 

indicated concentrations of A-419259. A representative experiment is shown and the extent of inhibition is 

expressed as mean ± S.D. of four assays.  The entire experiment was repeated twice with comparable results. Data 

from two independent experiments were best-fit by non-linear regression analysis and yielded IC50 values of 11.26 ± 

1.23 nM for wild-type Hck and 315.6 ± 80.3 nM for Hck-T338M. 

2.3.2 Hck-T338M retains its activity and A-419259-resistance in fibroblasts 

We next investigated whether the T338M resistance mutation influenced Hck biological 

signaling and if resistance to A-419259 was maintained in intact cells.  To address these 

questions, both wild-type Hck and Hck-T338M were activated by replacing the C-terminal Tyr-

527 with phenylalanine (YF mutation). This mutation was previously shown to up-regulate Hck 

kinase activity and to induce oncogenic transformation of fibroblasts, which do not express 

endogenous Hck (86, 95, 96, 356). Rat-2 fibroblasts expressing Hck-YF, Hck-T338M-YF, as 

well as wild-type Hck or the neo resistance marker as negative controls were plated in soft-agar 
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in the presence or absence of increasing concentrations of A-419259. As shown in Figure 7A, the 

T338M mutation did not impair biological activity, as cells expressing Hck-YF or Hck-T338M-

YF produced similar numbers of transformed colonies in the absence of the inhibitor. To 

determine whether transformation correlated with constitutive activation of the kinase, cell 

lysates were tested for reactivity with the phosphospecific antibody pY418. This antibody 

recognizes the conserved phosphotyrosine residue in the activation loop of active Hck and other 

SFKs (215, 356, 357). Consistent with the transformation results, both Hck-YF and Hck-T338M-

YF reacted strongly with this phosphospecific antibody (Figure 7B).  Furthermore, activation 

loop phosphorylation correlated with phosphorylation of the endogenous Hck substrate protein, 

pp40 (95, 356) as shown by anti-phosphotyrosine immunoblots of the cell lysates (Figure 7B).  

In contrast, wild-type Hck did not exhibit kinase or transforming activity. Taken together, these 

results show that the T338M mutation is functionally silent and does not influence Hck 

biological activity.  

Next, we investigated the sensitivity of Rat-2 cells transformed by each form of Hck to 

A-419259.  As shown in Figure 7A, 0.3 μM A-419259 almost completely blocked colony 

formation by cells expressing the Hck-YF mutant. This was accompanied by complete inhibition 

of Hck-YF autophosphorylation and pp40 substrate phosphorylation (Figure 7B). In contrast, the 

same concentration of A-419259 induced only a 25% decrease in colony formation in cells 

expressing Hck-T338M-YF mutant with no detectable change in kinase activity (Figure 7A). 

Interestingly, the activity of Hck-T338M-YF was also unaffected by 1 μM A-419259, despite a 

further decrease in colony-forming activity.  This finding suggests that endogenous A-419259-

sensitive SFKs may cooperate with Hck to induce the transformed phenotype. 
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Figure 7: Hck-T338M maintains its biological activity and A-419259 resistance in fibroblasts 

Rat-2 fibroblasts were infected with recombinant Hck-YF and Hck-T338M-YF retroviruses. Cells infected with a 

virus carrying only the selection marker (Neo) or wild-type Hck served as negative controls. Upon G418 selection, 

cells were plated in soft agar in the presence or absence of the indicated concentrations of A-419259 for 10 to 14 

days.  Transformed colonies were visualized using MTT staining. (A) Colony numbers for each cell line were 

determined using scanned images of the plates and BioRad QuantityOne colony-counting software. Results from a 

representative experiment are shown as the mean number of colonies ± S.D. The entire experiment was performed 

twice and yielded comparable results. (B) Lysates from each of the cell lines shown in (A) were probed with 

phosphospecific antibodies against the Hck activation loop phosphotyrosine residue (pHck).  Replicate membranes 

were probed with a general anti-phosphotyrosine antibody to determine phosphorylation of the endogenous Hck 

substrate pp40, with an anti-Hck antibody to determine Hck expression levels, and with anti-actin as a loading 

control.  
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2.3.3 Hck-T338M expression in K562 cells confers resistance to A-419259-induced growth 

arrest and apoptosis 

The in vitro and cell-based assays described above support the idea that the T338M mutation 

induces Hck resistance to A-419259 without affecting kinase activity, providing a unique probe 

to test the singular contribution of Hck to Bcr-Abl signaling in CML cells.  To test whether Hck-

T338M is resistant to A-419259-induced inhibition in the context of a CML-derived cell line, we 

used K562 cells, a Ph+ human CML cell line in which endogenous Hck expression is not 

detectable by immunoblot (Figure 8). K562 cells were infected with recombinant retroviruses 

carrying wild-type Hck, the Hck-T338M mutant, or a control virus carrying only the neo 

resistance marker. Following G418 selection, these three cell populations (K562-Hck, K562-

Hck-T338M, and K562-Neo) were treated in parallel with various concentrations of A-419259, 

and the effect of inhibitor treatment on Hck activity was assessed with the phosphospecific 

antibody, pY418, as described above. As shown in Figure 8, A-419259 caused partial inhibition 

of wild-type Hck at 0.1 μM and complete inhibition at 0.3 μM in K562-Hck cells. This 

observation is consistent with previous findings that A-419259 inhibits overall SFK activity in 

K562 and other CML cell lines with an IC50 value of 0.1-0.3 μM (215).  In contrast, little change 

in Hck-T338M pY418 phosphorylation was observed at these A-419259 concentrations, 

although partial inhibition was observed at 1 μM A-419259.  
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Figure 8: Hck-T338M is resistant to inhibition by A-419259 in K562 cells 

Wild-type and Hck-T338M proteins were expressed in K562 cells using recombinant retroviruses. K562-Hck wild-

type and K562-Hck-T338M cells were treated with A-419259 at the indicated concentrations for 5 h. Hck activity 

was assessed by immunoprecipitation of Hck from clarified cell lysates and immunoblotting with phosphospecific 

antibodies against the Hck activation loop phosphotyrosine residue (pHck). Duplicate blots of the 

immunoprecipitates were blotted with the anti-Hck antibody to insure equal loading.  Representative blots are shown 

at the top.  Phosphotyrosine signal intensities from the blots of two independent experiments were normalized to the 

levels of Hck.  Results are presented as percent of control levels ± S.D. in the bar chart. 
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Previous work has shown that A-419259-dependent inhibition of SFK activity in K562 

cells induces growth arrest and apoptosis (215). In addition, this prior study found that A-419259 

is 300 to 1000 times more potent against SFKs compared to c-Abl in vitro. To determine whether 

A-419259 has a direct inhibitory effect on Bcr-Abl in our experimental system, we probed the 

lysates from the inhibitor-treated K562 cell populations with a phosphospecific antibody against 

the phosphotyrosine residue in the activation loop of active Bcr-Abl (pY412). As shown in 

Figure 8B, A-419259 did not significantly inhibit Bcr-Abl phosphorylation at the autoactivation 

site.  In contrast, imatinib caused a dose-dependent inhibition of the pY412 signal (Figure 8C).   

These data support the selectivity of A-419259 for SFKs in K562 cells, in agreement with our 

previous data in this cell line (215). 

To investigate the contribution of Hck alone to Bcr-Abl-induced transformation and 

signaling in CML, K562-Hck, K562-Hck-T338M, and K562-Neo cells were treated with 0.1 to 

1.0 μM A-419259 and cell proliferation was measured over 72 hours.  Figure 9 shows that 0.1 

μM A-419259 induced 75-80% growth arrest of K562-Hck and K562-Neo cells. Conversely, 

K562-Hck-T338M cells exhibited only a 50% reduction in cell proliferation at this inhibitor 

concentration. This result correlates with sustained Hck-T338M kinase activity compared to the 

wild-type Hck in the presence of the inhibitor (Figure 8).  Given that 0.1-0.3 μM A-419259 

completely inhibits endogenous SFK activity in CML cells (215), this result suggests that Hck 

alone is able to partially sustain Bcr-Abl-induced cell proliferation (see Discussion). 
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Figure 9: Hck-T338M expression in K562 cells confers resistance to A-419259-induced growth arrest 

K562 cells expressing wild-type Hck, the T338M mutant, as well as the vector control cells (Neo) were treated with 

A-419259 at the indicated concentrations. Cell proliferation was monitored 24, 48 and 72 h later using the CellTiter-

Blue cell viability assay as described under “Materials and Methods”. Three replicate wells were monitored for each 

dose in three independent experiments and gave comparable results; a representative example is shown. 

 

We next investigated whether expression of Hck-T338M also confers resistance to A-

419259-induced apoptosis in CML cells. To address this issue, K562-Neo, K562-Hck and K562-

Hck-T338M cells were treated with A-419259 for 72 h and apoptosis was measured using an 

Alexa-Fluor-conjugated anti-phosphatidylserine (PS) antibody and flow cytometry.  As shown in 

Figure 10, A-419259 potently induced dose-dependent apoptosis in K562-neo and K562-Hck 

cells starting at 0.3 μM.  In contrast, Hck-T338M expression completely rescued K562 cells 

from apoptosis induced by 0.3 μM A-419259.  Furthermore, K562-Hck-T338M cells also 

displayed significant resistance to apoptosis induced by 1 μM A-419259. These data correlate 

with Hck-T338M kinase activity, which is not affected by 0.3 μM A-419259 and only partially 

inhibited by this compound at 1 μM (Figure 8). 
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Figure 10: Hck-T338M protects K562 cells against the apoptotic effect of the SFK inhibitor A-419259 

K562 cells expressing wild-type Hck, the T338M mutant, as well as the vector control (Neo) cells were plated in the 

absence or presence of the indicated concentrations of A-419259 for 72 h. Apoptotic cells were detected by anti-

phosphatidylserine-Alexa Fluor 488 conjugated antibody staining and flow cytometry. (A) Representative 

experiment with the percentage of apoptotic cells in each population shown above the bar.  (B) Bar graph showing 

the average of three independent experiments and plotted ± S.D. Statistical analyses were performed at each drug 

concentration between Neo and Wild-type, Neo and T338M, and Wild-type and T338M, using two tailed Student’s 

T test. Only statistically significant differences are displayed. 
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2.3.4 Expression of Hck-T338M in K562 cells rescues the inhibitory effects of A-419259 

on Stat5 and Erk activation 

Previous reports suggest that Hck may couple Bcr-Abl to Stat5 and Erk activation in myeloid 

leukemia cells (210, 211).  In addition, work in our laboratory has shown that inhibition of SFK 

activity in K562 cells using A-419259 induces apoptosis and growth arrest that correlates with 

decreased Ras/Erk and Stat5 activation (215). To assess the individual contribution of Hck to the 

activation of growth and survival pathways downstream of Bcr-Abl, we focused on the ability of 

Hck-T338M to rescue Ras/Erk and Stat5 activation from the inhibitory effects of A-419259.  

K562-Neo, K562-Hck, and K562-Hck-T338M cells were treated with A-419259 and cell lysates 

were probed with phosphospecific antibodies for activated Erk by immunoblotting. As shown in 

Figure 11, A-419259 induced a dose-dependent inhibition of Erk phosphorylation in K562-Hck 

and K562-Neo cells.  In both cases, the phospho-Erk signal was partially reduced at 0.3 μM and 

completely absent at 1.0 μM.  However, expression of Hck-T338M completely rescued Erk 

activation at 0.3 μM A-419259, and showed a partial effect at 1.0 μM.  While these data are 

consistent with the partial reversal of A-419259 growth-arrest observed in K562-Hck-T338M 

cells (Figure 8), they suggest that Hck-independent and Erk-independent pathways also 

contribute to Bcr-Abl-driven proliferation. 
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Figure 11: Expression of Hck-T338M in K562 cells reverses the inhibitory effects of A-419259 on Erk 

activation 

K562 cells expressing wild-type Hck, the T338M mutant, as well as the vector control cells (Neo) were treated with 

the indicated concentrations of A-419259 for 5 h.  (A) Cell lysates were prepared and analyzed for the presence of 

active Erk by immunoblotting with phosphospecific antibodies (pErk). Duplicate blots were probed with antibodies 

to Erk2 as a loading control. Representative blots are shown.  (B) Phospho-Erk signal intensities from the blots of 

two independent experiments were normalized to the levels of Erk, and are presented as percent of control levels ± 

S.D.  

 

Next, we examined the effect of Hck-T338M on Stat5 activation. To address this 

question, Stat5 was immunoprecipitated from lysates of A-419259-treated cells and probed with 

phosphospecific antibodies for active Stat5 by immunoblotting. As shown in Figure 12, A-

419259 induced a dose-dependent inhibition of Stat5 activation in K562-Neo and K562-Hck 
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cells.  In contrast, only a modest change in Stat5 phosphorylation was observed in K562-Hck-

T338M cells, indicating that Hck plays a major role coupling Bcr-Abl to Stat5 activation.  This 

result correlates with the change in Hck-T338M activity (Figure 8A) and with the ability of Hck-

T338M to rescue K562 cells from A-419259-induced apoptosis. 

 

 

Figure 12: Expression of Hck-T338M in K562 cells opposes the inhibitory effects of A-419259 on Stat5 

activation  

K562 cells expressing wild-type Hck, the T338M mutant, as well as the vector control cells (Neo) were treated with 

the indicated concentrations of A-419259 for 5 h.  Stat5 tyrosine phosphorylation was assessed by 

immunoprecipitation of Stat5 from clarified cell lysates and immunoblotting with anti-phosphotyrosine antibodies 

(pStat5). Duplicate membranes were blotted with anti-Stat5 antibody to insure equal loading (Stat5). Representative 

blots are shown. (B) Stat5 phosphotyrosine signal intensities from the blots of two independent experiments were 

normalized to the levels of Stat5 protein, and the results are presented as percent of control levels ± S.D.  
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2.3.5 Effect of Hck-T338M on Bcr-Abl Tyrosine Phosphorylation 

Recent data from our laboratory and others show that Src kinases directly phosphorylate Bcr-Abl 

at sites including Tyr-89 located in the SH3 domain, Tyr-245 in the SH2-kinase linker, and Tyr-

412 in the kinase domain activation loop (215) [(Abl residue numbering as per the human c-Abl 

crystal structure (188).]  Tyr-89 and Tyr-245 lie along the interface between the SH3-SH2 clamp 

and the back of the kinase domain, and phosphorylation of these sites may destabilize these intra-

molecular interactions and promote an active conformation of the kinase (194). Mutation of Tyr-

89 to phenylalanine diminished transformation of TF-1 cells to cytokine independence by Bcr-

Abl, while mutation of Tyr-245 to phenylalanine abolished fibroblast transformation by Bcr-Abl 

(194, 344). Similarly, phosphorylation at Tyr-412 is required for full activation of Bcr-Abl and 

mutation of this site was sufficient to abolish Bcr-Abl-induced fibroblast transformation (344). 

Moreover, previous work showed that Hck phosphorylates the Bcr component of Bcr-Abl at Tyr-

177 (Bcr numbering) in transfected COS cells (210) creating an SH2-binding site for the Grb2-

Sos guanine nucleotide exchange factor for Ras (229, 231). Phosphorylation at this site was 

shown to be required for transformation of fibroblasts and for efficient induction of CML-like 

myeloproliferative disease by Bcr-Abl in mice (229, 233, 234). Given the importance of these 

phosphorylation sites for Bcr-Abl regulation and leukemogenic potential, we decided to 

investigate the contribution of Hck to their phosphorylation in K562 cells using our unique A-

419259-resistant form of Hck. 

To address this question, lysates from A-419259-treated K562-neo, K562-Hck, and 

K562-Hck-T338M cells were first probed with phosphospecific antibodies for Tyr-89 in the SH3 

domain. As shown in Figure 13, A-419259 completely blocked phosphorylation of Tyr-89 in 

K562-neo and K562-Hck cells at concentrations of 0.3 μM or higher. In contrast, K562-Hck-

 70 



T338M showed only a partial inhibition of the pY89 signal at these concentrations.  This result 

suggests that while Hck is partially responsible for phosphorylation of Tyr-89, additional Src-

family members may also trans-phosphorylate Bcr-Abl at this site consistent with previous 

findings (194).  

Similar to phosphorylation at Tyr-89, 0.3-1.0 μM A-419259 treatment induced complete 

inhibition of Tyr-245 phosphorylation in K562-neo and K562-Hck cells but only a partial 

inhibition of the pY245 signal in K562-Hck-T338M cells.  This result suggests that while Hck 

contributes to transphosphorylation at this regulatory site, other SFKs present in K562 cells are 

also involved, consistent with earlier data  (194).  Importantly, incubation with A-419259 did not 

have any effect on total Bcr-Abl protein levels or on Tyr-412 autophosphorylation in the kinase 

domain activation loop. As a positive control for the anti- pY412 antibody, we performed 

immunoblots on cells incubated with increasing concentrations of the Abl-selective inhibitor, 

imatinib. As expected, imatinib induced a dose-dependent inhibition of Bcr-Abl phosphorylation 

at Tyr-412 in all three cell lines (Figure 8C). Taken together, these data are consistent with the 

report that A-419259 is a Src-selective inhibitor and at these concentrations, it does not inhibit 

Bcr-Abl activity in vivo (215).  

We also surveyed the phosphorylation of Bcr-Abl at Bcr-derived Tyr-177. As shown in 

Figure 13, A-419259 induced a partial reduction in pY177 signal intensity in K562-neo and 

K526-Hck cells at the highest concentration tested (1 μM). In contrast, the pY177 signal remains 

unchanged in K562-Hck-T338M cells, suggesting that while Hck may contribute to Tyr-177 

phosphorylation in vivo, this site may be primarily a Bcr-Abl autophosphorylation site or may be 

targeted by other tyrosine kinase families in K562 CML cells. 
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Figure 13: Hck-T338M transphosphorylates Bcr-Abl on multiple tyrosine residues in K562 cells  

(A) K562-neo, K562-Hck and K562-Hck-T338M cells were treated with the indicated concentrations of A-419259 

for 5 h.  Cell lysates were prepared and probed with phosphospecific antibodies against Abl pY89, Bcr pY177, Abl 

pY245, and Abl pY412 as well as Bcr-Abl protein levels by immunoblotting.  (B) K562-neo, K562-Hck and K562-

Hck-T338M cells were treated with the indicated concentrations of imatinib for 5 h. Cell lysates were 

immunoblotted with antibodies for Abl pY412 and Abl protein as indicated. 

 

2.3.6 Expression of Hck-T338M in Bcr-Abl-transformed TF-1 cells confers resistance to 

the apoptotic effects of A-419259 and correlates with sustained Stat5 activity 

All of the data presented thus far are derived from the K562 CML cell line.  To rule out the 

possibility that our observations are unique to this particular system, we turned to the human 

GM-CSF-dependent myeloid cell line, TF-1 (358, 359).  Expression of Bcr-Abl in TF-1 cells 

results in cytokine-independent survival and proliferation (359), providing a CML model system 

that lacks the secondary genetic aberrations present in K562 cells.  TF-1 cells were first infected 

with a Bcr-Abl retrovirus, which resulted in transformation to a cytokine-independent phenotype 
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as expected (Figure 14A).  These TF-1/Bcr-Abl cells were then infected with the wild-type and 

T338M Hck retroviruses as well as the control virus carrying only the drug selection marker.  

Expression of these Hck proteins did not significantly affect the cytokine-independent growth of 

these cells (Figure 14A).  We also expressed the Hck proteins in TF-1 cells alone, and observed 

that they were unable to stimulate GM-CSF-independent proliferation on their own (Figure 

14A).  All of the cell lines grew in the presence of GM-CSF (data not shown). 

Next, we examined the effect of A-419259 treatment on survival of TF-1/Bcr-Abl cells.  

As shown in Figure 14B, incubation of the TF-1/Bcr-Abl vector control cells with A-419259 

induced apoptosis in a dose-dependent manner.  Note that parental TF-1 cells are completely 

unresponsive to A-419259 in this assay (215).  Expression of wild-type Hck partially reversed 

apoptosis in response to 0.3 and 1 μM A-419259 in the TF-1/Bcr-Abl population.  However, TF-

1/Bcr-Abl/Hck-T338M cells displayed much more resistance to A-419259-induced apoptosis, 

with an almost complete reversal of apoptosis at 0.3 μM. This effect closely parallels that 

observed in K-562 cells expressing Hck-T338M (Figure 10). 

We next assessed Hck and Stat5 activity in each TF-1/Bcr-Abl cell population following 

A-419259 treatment.  As shown in Figure 14B, wild-type Hck activity was partially inhibited 

with 0.1 and 0.3 μM A-419259 and completely blocked at 1 μM. Conversely, Hck-T338M 

showed significant resistance to A-419259, with partial inhibition observed only with 1 μM A-

419259.  Similarly, expression of wild-type Hck partially rescued Stat5 activation at 0.1 μM A-

419259 compared to control TF-1/Bcr-Abl cells. More importantly, expression of Hck-T338M 

rescued Stat5 activation at 0.3 and 1 μM A-419259. Taken together, these data are consistent 

with the partial reversal of A-419259-induced apoptosis by wild-type Hck and the more 

pronounced effect observed with Hck-T338M (Figure 14B). 
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Figure 14: Expression of Hck-T338M protects TF-1/Bcr-Abl cells against the apoptotic effects of A-419259 

(A) Transformation of TF-1 cells to cytokine independence with Bcr-Abl.  TF-1 cells were first transduced with 

Bcr-Abl retroviruses or the corresponding vector control and selected with G-418.  The resulting populations were 

then transduced with wild-type Hck, Hck-T338M, or vector control retroviruses and selected with puromycin.  The 

six resulting cell populations were then tested for growth in the absence of GM-CSF using the CellTiter Blue assay 

(see Materials and Methods).  The average fold increase in the relative number of cells from three replicate wells is 

shown ± S.D. Two separate experiments from independently derived cell populations gave comparable results; a 

representative example is shown.  (B) TF-1/Bcr-Abl cells expressing the wild-type and T338M Hck proteins along 

with vector control cells were plated in the absence or presence of the indicated concentrations of A-419259 for 72 

h. Apoptotic cells were detected by anti-phosphatidylserine-Alexa Fluor 488 conjugated antibody staining and flow 

cytometry as described in “Materials and Methods”. The bargraph shows the average of two independent 

experiments plotted ± S.D.  (C) TF-1/Bcr-Abl cells expressing wild-type and T338M Hck along with the vector 

control were treated with the indicated concentrations of A-419259 for 5 h.  Hck and Stat5 were immunoprecipitated 

from clarified cell lysates and immunoblotted with an anti-Hck phosphospecific pY418 antibody (pHck) or an anti-

phosphotyrosine antibody (pStat5). Duplicate membranes were blotted with anti-Hck or anti-Stat5 antibody to insure 

equal loading. Representative blots are shown.  

 

2.3.7 A-419259 inhibits proliferation and induces apoptosis in CML CD34+ progenitor 

cells 

In a final series of experiments, we determined whether selective inhibition of SFK activity 

affects the growth and survival of primary CD34+ CML cells. Because purified CD34+ 

progenitor cells undergo rapid differentiation when cultured in the presence of cytokines, we first 

determined the time course of differentiation as indicated by the loss of CD34+ from the cell 

surface. As shown in Figure 16, 48 h post isolation, 95 % of the cells still retained CD34 at the 
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cell surface, while at 72 h and 96 h, CD34 dramatically dropped to 81 % or 41 %, respectively. 

In order to determine the effects of SFK inhibition on CD34+ cells and to avoid interference from 

differentiated cells, we conducted the apoptosis experiments at 16 and 48 h time points. Thus, 

purified CD34+ progenitors from three chronic-phase CML patients were incubated with A-

419259 in the presence of cytokines (see Materials and Methods). A-419259 treatment induced a 

dose-dependent inhibition of cell proliferation in all three patient samples, with caspase 

activation evident as early as 16 h (Figure 16). The extent of growth inhibition and caspase 

activation is comparable to that observed with 1 μM imatinib treatment. These results provide 

the first evidence that inhibition of SFK activity is sufficient to induce cell-cycle arrest and 

apoptosis in primary CD34+ CML cells.  

 

 

Figure 15: Time course of the loss of CD34+ signal in CML primary cells in culture 

Purified CD34+ cells from chronic phase CML patients cultured in the presence of cytokines as described in 

“Materials and Methods”. At each of the indicated time points an aliquot has been removed and processed for 

CD34+ signal detection by flow cytometry. The experiment was repeated twice with similar results, using samples 

from two different patients. One representative experiment is shown.  
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Figure 16: A-419259 induces growth arrest and apoptosis in CD34+ progenitor cells from CML patients 

Purified CD34+ cells from three chronic phase CML patients were plated in triplicate in 96-well plates at 105 

cells/ml and incubated for 16 or 48 h in the presence of A-419259 or imatinib at the concentrations indicated. (A) 

Cell proliferation was monitored using the CellTiter-Blue viability assay as described in “Materials and Methods”. 

The average fold increase in the relative number of cells from three replicate wells is shown ± S.D.  (B) Apoptosis 

was measured in each well using the Apo-One Caspase-3/-7 assay as described in “Materials and Methods”. The 

average fold increase in caspase-3/-7 signal intensity from three replicate wells is shown ± S.D. 
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2.4 DISCUSSION 

Given the important role of SFKs in Bcr-Abl signaling and imatinib resistance, these kinases 

have recently emerged as novel therapeutic targets for the treatment of CML (360). This idea has 

been validated by the success of dual Abl/Src inhibitors such as dasatinib in CML therapy (361, 

362). However, these inhibitors have a broad range of molecular targets. For example, dasatinib 

inhibits not only the SFKs Fgr, Fyn, Hck, Lck, Lyn, Yes (363) and Bcr-Abl, but also c-Kit, 

PDGFR, and the Ephrin receptor tyrosine kinase (364). Although there is emerging evidence that 

compound promiscuity is critical to the efficacy of a significant number of approved drugs, this 

property has traditionally been regarded as undesirable due to possible adverse effects.  This 

concept points to a need for drugs that have “controlled promiscuity” – drugs that specifically 

target only disease-relevant targets. In the case of CML, one key to effective progress in 

designing such drugs is a more in-depth understanding of the relative contribution of individual 

SFK members to Bcr-Abl signaling. Work presented here provides a novel approach to dissect 

the individual roles of myeloid SFKs to Bcr-Abl signaling and provides new evidence supporting 

a unique role for Hck in Bcr-Abl-induced proliferation and survival.  

In this study, we exploited engineered inhibitor resistance to help elucidate the role of the 

SFK member Hck in Bcr-Abl signaling. Inhibition of protein kinases by target-selective, ATP-

competitive compounds often depends on the presence of a relatively small threonine residue at 

the gatekeeper position adjacent to the hydrophobic pocket in the catalytic site. Substitution of 

the gatekeeper residue with amino acids bearing bulkier side-chains can dramatically reduce 

inhibitor potency without affecting kinase activity (Table 1).  Some of the first drugs developed 

against protein-tyrosine kinases include imatinib, which inhibits Abl, c-Kit, and the PDGFR, as 

well as and gefitinib and erlotinib, which target the EGFR.  In each case, these compounds target 
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the hydrophobic pocket and in some cases make direct hydrogen bonds to the gatekeeper residue 

(e.g. imatinib and Thr-315 in the Abl kinase domain).  Interestingly, one of the most common 

mechanisms of clinical resistance to these inhibitors arises from mutations that replace the 

gatekeeper residue with bulkier amino acids (349).  For example, replacement of Thr-315 in Bcr-

Abl with isoleucine, Thr-671 in Kit with isoleucine, or Thr-766 in EGFR with methionine leads 

to clinically relevant insensitivity to imatinib or gefitinib, respectively (353, 365). Furthermore, a 

change in v-Src versus c-Src at the gatekeeper position induces resistance to the pyrazolo-

pyrimidine inhibitor, PP1 (347).  Resistance mutants similar to those described above, were first 

used as research tools for the purpose of identifying off-target effects of various inhibitors (350). 

Based on these observations, we engineered an A-419259-resistant Hck allele by replacing the 

gatekeeper residue, Thr-338, with methionine. This mutant allowed us to test the hypothesis that 

expression of inhibitor-resistant Hck alone is sufficient to rescue CML cells from the anti-

proliferative and apoptotic effects of this broad-spectrum SFK inhibitor (215). 

Using both in vitro and cellular model systems, we first provide proof-of-principle 

evidence that the T338M mutation renders Hck resistant to A-419259.  Thus, Hck-T338M was 

30-fold less sensitive to A-419259 than wild-type Hck in an in-vitro kinase assay (Figure 6). In 

addition, expression of active forms of wild-type Hck or the Hck-T338M mutant in Rat-2 

fibroblasts induced similar levels of transformation, suggesting that T338M mutation does not 

significantly affect the biological function of Hck in a cell-based system (Figure 7A). The Hck-

T338M-YF mutant was at least 10-fold less sensitive to A-419259 than Hck-YF in the fibroblast 

transformation assay (Figure 7). Interestingly, while Hck-T338M-YF activity was not affected 

by 1 μM A-419259 in fibroblasts, transformed colony numbers were partially reduced (Figure 

7B). This observation suggests that Hck-YF may require endogenous A-419259-sensitive SFKs 
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to generate a full transforming effect.  More importantly, we show that Hck-T338M also 

maintains resistance to A-419259 upon expression in K562 cells, allowing us to test the 

individual contribution of Hck to Bcr-Abl transformation in this CML cell line (Figure 8).  As 

described in the results section, the Hck T338M mutation induces a subtle decrease in the Km for 

ATP relative to the wild-type kinase.  Whether the T338M mutation induces changes in substrate 

recognition or impacts other biological functions of Hck is not known. This possibility represents 

a caveat of the inhibitor-resistant mutant approach. 

Experiments with A-419259 and other inhibitors as well as a Hck dominant-negative 

mutant suggest that SFKs contribute to Bcr-Abl-induced cell proliferation (10, 209, 210, 215).  

A-419259 treatment also led to suppression of Erk activity, a critical component of proliferation 

signaling downstream of Bcr-Abl (215, 366).  In the present study, we show that Hck-T338M 

expression has a moderate protective effect on the A-419259-induced inhibition of cell 

proliferation (Figure 9), and this effect correlated with a rescue of Erk activity (Figure 11). The 

observation that Hck-T338M does not fully reverse A-419259-induced growth arrest and Erk 

inhibition suggests that other SFKs contribute to Bcr-Abl-mediated cell proliferation.  

Previous work in our laboratory has shown that collective SFK inhibition in K562 cells 

using A-419259 induces apoptosis and that this effect correlates with a decrease in Stat5 

activation (215).  Here we show that Hck-T338M but not wild-type Hck expression fully protects 

K562 cells against the apoptotic effects of 0.3 μM A-419259 (Figure 10). This new finding 

suggests a compelling non-redundant role for Hck in Bcr-Abl survival signaling in CML cells.  

In addition, the Hck-T338M protective effect correlates with rescue of Stat5 activation, which is 

completely blocked by A-419259 in control cells as well as cells over-expressing wild-type Hck 

(Figure 12). These results identify Hck as an important target for the development of apoptosis-
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inducing drugs for the treatment of CML. However, our data do not exclude the possibility that 

additional SFKs may participate in Bcr-Abl anti-apoptotic signaling in other experimental 

systems. For example, siRNA against Lyn induces apoptosis of CML blast crisis cells, especially 

of lymphoid origin (221). Furthermore, Lyn overexpression has been identified as an alternative 

mechanism of imatinib resistance in the absence of Bcr-Abl mutations (314, 330). Taken 

together, these findings suggest that differences may exist in the role of various SFKs within 

different hematopoietic lineages transformed by Bcr-Abl and emphasize the need to further 

investigate the role of other individual SFKs in CML.  

Several studies have shown that SFK-dependent trans-phosphorylation modulates the 

function of both c-Abl and Bcr-Abl, drug sensitivity and signaling.  Fursatoss et al. showed that 

c-Src phosphorylates c-Abl at both Tyr-412 and Tyr-245 (367), while Brasher and Van Etten 

proposed that phosphorylation at Tyr-245 enhances c-Abl activity by disrupting the negative 

regulatory interaction between the SH3 domain and the SH2-kinase linker (183). Recently, our 

laboratory has shown that Hck and other SFKs phosphorylate Bcr-Abl at SH3 domain sites Tyr-

89 and Tyr-134 as well as other sites that lie at the interface between the SH3-SH2 domains and 

the SH2-kinase linker (194).  Based on the crystal structure of the downregulated c-Abl core 

(188) phosphorylation of these sites is predicted to promote displacement of negative regulatory 

interactions of the SH3-SH2 clamp and sustain an active conformation of the Abl core within 

Bcr-Abl. Other experiments performed in COS cells have shown that Hck phosphorylates Bcr-

Abl in the Bcr-derived portion of the protein at Tyr-177, an event required in leukemogenesis 

(229, 233, 234).  Experiments presented here with Hck-T338M suggest that in CML cells, Hck 

contributes to Bcr-Abl phosphorylation at Tyr-89, Tyr-177 and Tyr-245. However, Hck-T338M 

does not completely reverse phosphorylation at these sites in A-419259-treated cells, suggesting 
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a role for other SFKs in Bcr-Abl trans-phosphorylation. Alternatively, Bcr-Abl may undergo 

autophosphorylation at these sites, as suggested by previous studies of c-Abl (183). 

In contrast to the regulatory sites in the SH3-SH2-linker region, A-419259 treatment did 

not affect phosphorylation of the Bcr-Abl activation loop (Tyr-412; Figure 13).  This observation 

suggests that SFKs do not contribute to activation loop phosphorylation in K562 cells, and also 

provides evidence of the selectivity of this compound for SFKs vs. Bcr-Abl directly (368, 369).  

In other work, high concentrations of A-419259 did suppress Bcr-Abl Tyr-412 phosphorylation, 

a result that is likely reflective of the different CML cell line used (194).   Note that Tyr-412 

phosphorylation was completely blocked by imatinib in all three K562 cell lines used here, 

suggesting that autophosphorylation may be the primary mechanism of activation loop 

phosphorylation in K562 cells (Figure 13). 

There is increasing evidence that some patients that achieve complete cytogenetic 

remission on imatinib have persistent residual CML stem cells (non-proliferating CD34+ cells) 

which might be responsible for relapse upon imatinib cessation (370-372). These quiescent 

CD34+ cells represent less than 1% of total CD34+ cells (217).  Here we show for the first time 

that selective inhibition of SFK activity by A-419259 blocks proliferation and induces apoptosis 

in primary CML CD34+ progenitor cell populations as effectively as imatinib (Figure 15).  This 

observation suggests that SFKs play a critical role in Bcr-Abl signaling in primary CML 

progenitors as well as the cell lines examined here.  Future work will address the effect of 

selective SFK inhibition on the non-proliferating CD34+ cell population.  

By pairing an inhibitor-resistant SFK mutant with a broad-spectrum SFK inhibitor, we 

have established new pharmacological evidence for Hck in Bcr-Abl survival signaling in K562 

CML cells and in TF-1 cells acutely transformed by Bcr-Abl. This work validates Hck as a 
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specific target for the development of apoptosis-inducing drugs for the treatment of CML.  In 

addition, these studies demonstrate the utility of mutants with engineered resistance to general 

inhibitors as an approach to address the contributions of individual members of a highly 

homologous kinase family to specific signaling pathways. 

2.5 MATERIALS AND METHODS 

2.5.1 Cell culture 

K562 cells, derived from a CML patient in blast crisis (373), were obtained from the American 

Type Culture Collection (ATCC) and maintained in RPMI 1640 supplemented with 10% fetal 

bovine serum (FBS) (Atlanta Biologicals), 100 U/ml penicillin G, 100 μg/ml streptomycin 

sulfate, and 0.25 μg/ml amphotericin (Antibiotic-Antimycotic, Invitrogen). The human GM-

CSF-dependent myeloid leukemia cell line TF-1 (358) was obtained from ATCC and grown in 

RPMI 1640 supplemented with 10% FBS, Antibiotic-Antimycotic (Invitrogen) and 1 ng/ml 

human recombinant GM-CSF.  Rat-2 fibroblasts were obtained from the ATCC and cultured in 

Dulbecco’s modified Eagle’s medium (DMEM) containing 5% FBS and Antibiotic-Antimycotic 

(Invitrogen).  Sf9 insect cells were maintained in Grace’s medium (Gibco) supplemented with 

10% FBS and 50 μg/ml gentamicin (Gibco). 
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2.5.2 Selection of CD34+ progenitors 

Leukapheresis samples from three CML patients were thawed and cultured overnight in RPMI 

1640 supplemented with 10% FBS, and Antibiotic-Antimycotic (Invitrogen). CD34+ cells were 

isolated using an immunomagnetic column separation method (Miltenyi Biotech, Auburn, Ca, 

USA) following the manufacturer’s instructions.  Upon isolation, CD34+ cells were cultured in 

SFEM medium (StemCell Technologies) supplemented with 40 μg/ml LDL (Sigma), and a five 

cytokine cocktail comprised of SCF, Flt3-L (100 ng/ml each), IL-3 and IL-6 (20 ng/ml each; 

StemCell Technologies) and 20 ng/ml G-CSF (Peprotech). The enrichment of CD34+ cells was 

determined by flow cytometry using anti-CD34-FITC (Miltenyi Biotech) and ranged between 

95% and 99% (data not shown). 

2.5.3 Hck protein purification and kinase assay 

The Thr-338 to methionine (T338M) mutation was introduced into human p59 Hck-YEEI (86) 

via site-directed mutagenesis (QuikChange XL Site-directed Mutagenesis Kit, Stratagene).  

Human Hck-YEEI and Hck-T338M-YEEI were expressed in Sf9 insect cells as N-terminal 

hexahistidine fusion proteins and purified as described (63, 374). Kinase assays were performed 

using the FRET-based Z’-Lyte Src kinase assay kit and Tyr-2 peptide substrate according to the 

manufacturer’s instructions (Invitrogen). The assay was first optimized to determine the amount 

of each kinase and the incubation time necessary to phosphorylate 50-60% of the Tyr-2 peptide 

in the absence of inhibitor.  Final ATP and Tyr-2 substrate concentrations were held constant at 

50 μM and 2 μM, respectively.  For inhibition experiments, each kinase was pre-incubated with 

A-419259 in kinase assay buffer for 30 min, followed by incubation with ATP and Tyr-2 peptide 
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for 1 h. Fluorescence was assessed on a Gemini XS microplate spectrofluorometer (Molecular 

Devices).  

2.5.4 Retrovirus-mediated expression of Hck constructs in Rat-2 fibroblasts 

Active forms of Hck and Hck-T338M were obtained by replacing the negative regulatory 

tyrosine residue in the C-terminal tail with phenylalanine using a PCR-based strategy (95, 96, 

357). The constructs were then subcloned into the retroviral vector pSRαMSVtkneo (375), and 

used to generate high-titer retroviral stocks as described elsewhere (96, 376). For transformation 

experiments, Rat-2 fibroblasts (2.5 x 104) were plated in 6-well tissue culture plates and 

incubated overnight.  The following day, the medium was replaced with 5 ml undiluted viral 

stock containing 4 μg/ml polybrene, and cultures were centrifuged at 1000 x g for 4 h at 18° C. 

Following infection, the virus was replaced with fresh medium. Forty-eight h later, cells were 

trypsinized and equally divided into four 60 mm culture dishes and 5 ml of medium containing 

G418 (800 μg/ml) was added. After 14 days of selection, cells were used in either soft-agar 

assays or for SDS-PAGE analysis of protein expression and tyrosine kinase activity.    

2.5.5 Rat-2 fibroblast transformation assay (soft-agar assay) 

Soft-agar assays were performed in 35 mm Petri dishes (Falcon) using Seaplaque Agarose (FMC 

Bioproducts). Briefly, a 0.5% bottom agarose layer in complete culture medium was poured in 

the presence of either vehicle alone (0.5% DMSO) or A-419259 at twice the final desired 

concentration. After the bottom layered had hardened, the top layer was poured containing 1 x 

104 Rat-2 cells in culture medium containing 0.3% agarose. Ten to 14 days later the colonies 
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were stained with MTT and quantitated using densitometry and colony counting software 

(BioRad QuantityOne).  

2.5.6 Immunoprecipitation and Immunoblotting  

The antibodies used in this study include anti-Hck polyclonal (N-30; Santa Cruz Biotechnology), 

anti-Hck monoclonal (Transduction Laboratories), anti-Src phosphospecific (Src pY-418; 

BioSource International), anti-phosphotyrosine (PY-99; Santa Cruz), anti-Actin (MAB1501; 

Chemicon), and anti-Stat5 (BD Transduction Laboratories). 

To analyze Hck expression and phosphorylation in Rat-2 cells, 5 x 105 cells were plated 

in 100 mm dishes and treated with either A-419259 or vehicle control (0.5% DMSO). After 

incubation at 37 °C overnight, cells were lysed in ice-cold radioimmunoprecipitation assay 

(RIPA) buffer (96).  Cell lysates were clarified by centrifugation at 16000g for 10 min at 4 °C, 

and protein concentrations were determined using either the Bradford or BCA assay (Pierce). 

Aliquots of total protein were heated directly in SDS sample buffer and separated by SDS-

PAGE. To analyze expression and phosphorylation of Hck in K562 cells, 107 cells were collected 

by centrifugation, washed twice with PBS and lysed in ice-cold RIPA buffer and processed as 

above.  For Hck or Stat5 immunoprecipitation, protein concentrations were first normalized in 

lysis buffer, followed by addition of 1 μg of anti-Hck or anti-Stat5 antibody and 25 μl of protein 

G-Sepharose (50% slurry; Amersham Pharmacia Biotech). Following incubation for 2 h at 4°C, 

immunoprecipitates were washed three times with 1.0 ml of RIPA buffer and heated in SDS 

sample buffer. Following SDS-PAGE, proteins were transferred to PVDF membranes for 

immunoblot analysis. Immunoreactive proteins were visualized with appropriate secondary 

antibody-alkaline phosphatase conjugates and NBT/BCIP colorimetric substrate (Sigma).  
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2.5.7 Retroviral transduction of leukemia cell lines  

Wild-type and T338M mutant forms of Hck were subcloned into the retroviral expression vector 

pMSCV-IRES-neo (Clontech) between the MSCV promoter and IRES sequence. Retroviral 

stocks were produced from the resulting constructs by co-transfection of 293T cells with an 

amphotropic packaging vector as described above.  K562 cells (2 x 105) were incubated with 5 

ml of viral stock in the presence of 4 μg/ml polybrene, and centrifuged at 3000 rpm for 3 h at 

room temperature. After infection, cells were washed, returned to regular medium for 48 h and 

then put under G418 selection (800 μg/ml) for 14 days. At the end of the selection period, cells 

were maintained in medium with 400 μg/ml G418. Transformation of TF-1 cells with a Bcr-Abl 

retrovirus carrying a G418 resistance marker is described elsewhere (194).  These cells were then 

infected with pMSCV-IRES-puro-based retroviruses carrying wild-type and T338M forms of 

Hck or the empty vector control as described above and selected with 2 μg/ml puromycin. 

2.5.8 Proliferation assays 

Proliferation was assessed using the CellTiter-Blue Cell Viability assay (Promega) according to 

the manufacturer‘s protocol. Fluorescence intensity was then measured using a Gemini XS 

microplate spectrofluorimeter (Molecular Devices), with the excitation wavelength set at 544 nm 

and emission at 590 nm. Data were analyzed with SoftMax Pro software (Molecular Devices).  

Each condition was assayed in triplicate and the results are presented as the mean fluorescence  ± 

S.D. 
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2.5.9 Apoptosis assays 

Apoptosis was measured using an anti-phosphatidylserine (PS) antibody conjugated to Alexa 

Fluor 488 (Upstate Biotechnology) and flow cytometry.  Cells (105/ml) were treated with A-

419259 or vehicle alone (0.5% DMSO) for 72 h at 37°C, centrifuged at 1000 rpm for 10 min, 

washed three times with ice-cold PBS and resuspended to 4 x 106 cells/ml in staining buffer (1% 

FBS in PBS).  Aliquots (50 μl) were transferred to 96-well round bottom tissue culture plates and 

the anti-PS antibody was added to a final concentration of 0.21 μg/well.  After 1 h incubation on 

ice, cells were washed three times in ice-cold PBS and analyzed using a FACSCalibur flow 

cytometer (Becton-Dickinson) and data were analyzed using CellQuest software. 

Caspase activation was measured in CD34+ cells, using the Apo-One Caspase-3/-7 assay 

(Promega) and the manufacturer’s instructions. Fluorescence intensity was measured using a 

Gemini XS microplate spectrofluorometer (Molecular Devices), with the excitation wavelength 

set at 485 nm and emission at 520 nm. Data were analyzed with SoftMax Pro software 

(Molecular Devices).  Each condition was assayed in triplicate and the results are presented as 

the mean fluorescence  ± S.D. 

2.5.10 Statistical analysis 

Data obtained from multiple independent experiments are given as mean ± S.D. values. 

Statistical comparisons between two cell lines at individual drug concentrations were performed 

using two-tailed unpaired Student’s t test (normal distribution, and unequal variance). For all 

analyses a P< 0.02 was considered statistically significant. Statistical analyses were performed in 

Excel.  
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3.0  EXPRESSION OF HCK IN CML CELLS INDUCES RESISTANCE TO 

IMATINIB IN A KINASE-DEPENDENT MANNER 

3.1 ABSTRACT 

Imatinib is the frontline therapy used to treat chronic myelogenous leukemia (CML). Although 

imatinib is remarkably efficient in CML patients in chronic phase, patients with accelerated or 

blast crisis CML, often develop resistance. Several recent studies performed on clinical 

specimens from imatinib-resistant patients with wild-type Bcr-Abl, found that the Src family 

kinase members Hck and Lyn are overexpressed or highly active, suggesting that Src kinases 

may play a role in imatinib resistance. To test whether Hck overexpression in CML cells induces 

resistance to imatinib in an Hck-kinase-dependent manner, we employed a chemical genetic 

method to generate an Hck mutant (Hck-T338A) that is sensitive to inhibition by a mutant –

specific inhibitor, NaPP1. In vitro, Hck-T338A was 48 times more sensitive to NaPP1 than the 

wild-type kinase. In addition, the mutation was functionally silent and did not induce a loss or 

gain of function in a fibroblast transformation assay. Expression of wild-type Hck or the T338A 

mutant in K562 CML cells resulted in resistance to imatinib-induced apoptosis and inhibition of 

soft-agar colony formation. Treatment with the Hck-T338A-selective inhibitor NaPP1 restored 

sensitivity to imatinib in a NaPP1 concentration-dependent manner only in cells expressing the 

Hck-T338A mutant. In contrast, cells expressing wild-type Hck were not affected by NaPP1 
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addition, showing the selectivity of NaPP1 for the Hck-T338A mutant. This result demonstrates 

that Hck-induced imatinib resistance requires Hck kinase activity. Together, these data establish 

a direct cause and effect relationship between Hck overexpression and imatinib resistance in 

CML cells, and show that imatinib resistance requires Hck kinase function.  Selective drug 

targeting of Hck may be of therapeutic benefit in imatinib-resistant CML patients with increased 

Hck expression or activity.  

3.2 INTRODUCTION 

Chronic myelogenous leukemia (CML) is a hematopoietic stem cell disease with an incidence of 

approximately 5 cases per 100,000 people per year, and which progresses through three clinical 

phases. The initial chronic phase is characterized by a massive expansion of myeloid cells that 

retain their ability to undergo terminal differentiation. As the disease progresses, patients enter 

an accelerated phase followed by blast crisis characterized by differentiation arrest and 

accumulation of immature blast cells in bone marrow and blood. Accelerated and blast crisis 

phases frequently exhibit additional genetic abnormalities (377).  

The cytogenic hallmark of chronic myelogenous leukemia (CML) is the Philadelphia 

chromosome, which arises upon a “head-to-tail” fusion of the BCR (breakpoint cluster region) 

locus on chromosome 22 with c-ABL proto-oncogene on chromosome 9. This translocation is 

present in 90% of CML patients and leads to the expression of Bcr-Abl, a chimerical protein of 

210 kDa (142, 143) with abnormal cytoplasm localization and constitutive tyrosine kinase 

activity (378). This deregulated protein tyrosine kinase drives the pathogenesis of CML through 

the phosphorylation and activation of a broad range of downstream signaling pathways that 
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increase cell survival and promote unregulated cell cycle progression (379). These pathways 

include but are not limited to the mitogen-activated protein kinase/extracellular signal-regulating 

kinase cascade (MAPK/ERK), the nuclear factor kB (NF-kB) signaling pathway, the 

phosphtidylinositol 3’-kinase/Akt survival pathway, and activation of the signal transducers and 

activators of transcription (Stat) family (380-382).  

In addition, Bcr-Abl has been shown to activate other non-receptor protein-tyrosine 

kinases, particularly members of the Src kinase family including Hck or Lyn (207). The 

importance of this interaction in CML pathogenesis is illustrated by numerous studies. Briefly, 

expression of a kinase-defective mutant of Hck blocked Bcr-Abl-induced transformation of 

DAGM myeloid leukemia cells to cytokine independence (209). In addition, Hck was shown to 

couple Bcr-Abl to Stat5 signaling and to be required for Bcr-Abl-induced transformation of 

32Dcl3 murine myeloid cells (211).  Furthermore, SFK-selective inhibitors block leukemia cell 

proliferation and induce apoptosis without affecting Philadelphia chromosome-negative myeloid 

cells (215). Moreover, work presented in Chapter 2 of this dissertation shows that Hck plays a 

non-redundant role in Bcr-Abl survival signaling in CML cells (216). Taken together, these 

reports indicate that SFKs act as essential mediators of Bcr-Abl-induced leukemogenesis. 

Because Bcr-Abl plays a critical role in the initiation and maintenance of the CML 

phenotype, targeting its tyrosine kinase activity is the therapeutic strategy of choice. Imatinib 

mesylate (formerly known as STI-571) is a potent small molecule tyrosine kinase inhibitor 

relatively specific to Bcr-Abl that has become the frontline therapy for patients with CML (379, 

383).  Most CML patients in chronic phase achieve and maintain major cytogenetic responses 

and significant molecular responses (384, 385). However, despite its remarkable therapeutic 

effects, approximately 4% of chronic phase patients treated with imatinib develop drug 
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resistance per year.  In addition, accelerated or blast crisis patients display higher rates of 

imatinib resistance (300, 302). Clinical resistance to imatinib can be grouped into several 

categories including Bcr-Abl mutation-dependent or Bcr-Abl mutation independent. The former 

category includes mutations in the Abl kinase domain of Bcr-Abl at residues that directly contact 

imatinib or at positions that can allosterically influence imatinib binding (204). The focus of this 

chapter is the mechanism of resistance in the latter category. 

Overexpression of the myeloid SFKs Hck and Lyn has been associated with resistance to 

imatinib in the context of a wild-type Bcr-Abl. Selection of K562 CML cells for resistance to 

high-levels of imatinib resulted in cells with increased Lyn protein and activity levels (219). 

Exposure of these cells to imatinib resulted in an incomplete suppression of Bcr-Abl activity and 

was accompanied by persistent tyrosine phosphorylation of Bcr-Abl at Tyr-177, a known binding 

site for Grb2 that links Bcr-Abl to the Ras signaling cascade (210, 218). Examination of samples 

from patients upon imatinib failure found increased Hck and/or Lyn activity levels that were not 

affected by Bcr-Abl inhibition (219). In addition, no Bcr-Abl kinase domain mutations 

associated with imatinib resistance were present in these patients (219). Decreased Lyn 

expression using siRNA technology, or inhibition with dasatinib, a dual Abl/SFK inhibitor, 

induced apoptosis in cells from these imatinib-resistant patients (314). Collectively, these reports 

point to a role for both Hck and Lyn in imatinib resistance in the absence of Bcr-Abl mutations. 

While the role of Lyn has been addressed in some detail the contribution of Hck to this type of 

imatinib resistance is less well understood.  

To address this question, we developed a system in which Hck activity could be 

suppressed in a highly specific manner. Typically, small molecule inhibitors are limited with 

regard to their specificity and selectivity for a particular kinase family. To circumvent this 
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specificity problem, we employed a chemical genetic method originally described by Shokat et 

al. [reviewed in (386)]. In this method, pyrazolo-pyrimidine 1 (PP1), a global SFK small 

molecule inhibitor was modified to obtain the more bulky, naphthyl-pyrazolo-pyrimidine 1 

(NaPP1) that is far less potent towards SFKs. In addition, using site-directed mutagenesis, the 

ATP-binding site of a tyrosine kinase was engineered to become exclusively susceptible to 

inhibition by the bulkier NaPP1 molecule (300, 332, 348-350, 386). This “lock and key” 

approach allows rapid, reversible and unique inhibition of the activity of the desired kinase. For 

this approach to be useful, the mutation within the ATP-binding site has to be functionally silent 

and the modified kinase has to be used in a system that doesn’t endogenously express the wild-

type allele.  

In this study, we used the chemical genetic principles described above to successfully 

engineer an Hck mutant (Hck-T338A) that is uniquely sensitive to NaPP1 inhibition. The 

validity of the mutant was confirmed in an in vitro assay using purified recombinant Hck and 

Hck-T338A and in a Rat-2 fibroblast transformation assay. To address the role of Hck over-

expression in Bcr-Abl-mutation independent resistance to imatinib, we expressed wild-type Hck 

and the Hck-T338A mutant in the CML cell line K562, which does not express endogenous Hck. 

Expression of both Hck and Hck-T338A rendered K562 CML cells resistant to imatinib-induced 

inhibition of colony formation and apoptosis. This effect correlated with sustained 

phoshporylation of Bcr-Abl at several Tyr residues including Tyr-177, a residue that links Bcr-

Abl to the Ras signaling pathway (210, 218).  Furthermore, NaPP1 treatment restored imatinib 

sensitivity to cells expressing the Hck-T338A mutant but not the wild type kinase. This effect 

correlated with inhibition of Hck-T338A activity and loss of Bcr-Abl phosphorylation at Tyr-

177.  In contrast, NaPP1 did not have any effect on cells expressing the wild-type kinase or on 
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control cells. Taken together, these results establish a cause and effect relationship between Hck 

over-expression and imatinib resistance and identify Hck as a drug target in the treatment of 

imatinib-resistant CML where Hck is over-expressed. 

3.3 RESULTS 

3.3.1 Design of an inhibitor analog-sensitive Hck allele  

Crystal structures of various non-receptor tyrosine kinases have shown that within the ATP-

binding site lies a small, naturally occurring hydrophobic pocket. The access to this pocket is 

controlled by a large “gatekeeper residue”, typically a Thr, Met, Leu or Phe, which sterically 

blocks the access of many small molecules to this pocket (349, 354). Based on this observation, 

numerous groups have successfully applied a kinase inhibitor-sensitization approach to a great 

number of protein kinase families (such as MAP kinase fus3p; CDK Cdc28; PAK Cla4; Abl; 

PI3K) by replacing the gatekeeper residue with a smaller residue such as Gly or Ala (295, 386, 

387). In particular, replacement of the “gatekeeper residue” in v-Src (I338) to either Gly or Ala 

rendered it susceptible to inhibition by NaPP1 (388), suggesting this approach would work with 

Hck.  

In this work, we applied this chemical genetic strategy to the development of an Hck 

kinase variant that is sensitive to inhibition by NaPP1. To do this, we replaced the gatekeeper 

residue [Thr338; numbering based on crystal structure of human c-Src (62)] by Ala. Figure 17A 

depicts the Hck crystal structure in complex with PP1 (PDB:1QCF) in which NaPP1 was 

overlaid onto the crystal coordinates of PP1. Analysis of this structure reveals potential steric 
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clash between the Thr338 and the naphthyl moiety of NaPP1.  Replacement of T338 with Ala 

generates more space in the catalytic domain, allowing NaPP1 access to the hydrophobic pocket 

(Figure 17B). Based on the successful generation of analog-sensitive alleles in other Src kinases, 

we hypothesized that this mutation will render the kinase sensitive to NaPP1 without disrupting 

normal kinase activity or signaling.  
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Figure 17: Generation of the NaPP1-sensitive Hck 

(A) Orientation of NaPP1 in the ATP-binding site of Hck [based on the PDB: 1QCF of the crystal structure of Hck 

in complex with PP1; model created using PyMOL (Delano Scientific, LLC)]. The overall structure of Hck is shown 

in the left panel, with the SH3 domain in red, SH2 domain in blue, and the kinase domain in grey. The gatekeeper 

residue (Thr338) is highlighted in magenta. The spatial coordinates of the pyrazolo-pyrimidine ring of PP1 (not 

shown) were used to manually model the position of NaPP1 (shown as green sticks) within the ATP-binding site. 

The right panel shows a closer view of the NaPP1 position relative to the gatekeeper residue. This view shows that 

the naphthyl ring of NaPP1 clashes with the side chain of the gatekeeper residue, which may account for the lack of 

NaPP1 sensitivity of the wild type kinase. (B) The left panel represents Hck-T338A mutant expected to be sensitive 

to NaPP1. The T338A mutation was modeled in the Hck structure, and the Ala residue is highlighted in red. The 

right panel shows a close-up of NaPP1 orientation relative to the gatekeeper mutation. Note that the T338A mutation 

creates a space adjacent to the naphthyl moiety of NaPP1, which accounts for the NaPP1 sensitivity. (C) Chemical 

structures of the general SFK inhibitor PP1 and the modified analog, NaPP1.  

3.3.2  Replacement of Thr338 with Ala renders Hck sensitive to NaPP1 

To test whether the T338A mutation induces sensitivity to the bulky PP1 analog, NaPP1, the 

wild-type and T338A forms of Hck were expressed as recombinant proteins in Sf9 insect cells 

and purified to homogeneity. To facilitate the purification of these proteins in the downregulated 

conformation, we modified the natural C-terminal tail sequence, Y(527)QQQP, to Y(527)EEIP 

(here referred to as Hck-YEEI mutant). The YEEI modification promotes autphosphorylation of 

the tail Tyr527 in the absence of Csk, and increases affinity for the SH2 domain (63, 389). Thus, 

the YEEI tail variant of Hck does not require Csk to adopt the downregulated conformation, 

enabling high-yield purification from Sf9 cells without the need for Csk co-expression (63, 82).  

The recombinant purified Hck-YEEI and Hck-T338A-YEEI protein kinases were then assayed in 

vitro with a peptide substrate in the presence or absence of NaPP1. As shown in Figure 18A, 
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NaPP1 potently inhibited the Hck-T338A-YEEI mutant with an IC50 of 26.6 nM +/- 1.26 nM. In 

contrast, the NaPP1 IC50 for Hck-YEEI was almost 50-fold higher (1.3 µM +/- 0.39 µM). 

Importantly, NaPP1 did not inhibit a recombinant purified form of the c-Abl tyrosine kinase core 

consisting of the N-terminal cap (Ncap) region, the SH3 domain, the SH2 domain, and the kinase 

domain (referred to hereafter as “Ncap-c-abl”). 

 One potential problem concerning the introduction of the gatekeeper mutation in the 

ATP-binding site of Hck is cross-sensitization to imatinib. To rule out this possibility, we also 

tested Hck-T338A sensitivity to imatinib in the in vitro kinase assay using the same set of 

purified recombinant kinases.  As shown in Figure 18A, imatinib did not inhibit the activity of 

wild-type Hck or the Hck-T338A mutant, further supporting the validity of this approach. In 

contrast, imatinib inhibited the Ncap-c-Abl with an IC50 of 350 nM +/- 53 nM, consistent with 

previous work (390). 
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Figure 18: Hck-T338A mutant is sensitive to NaPP1 but not to imatinib in an in-vitro kinase assay 

Recombinant wild type Hck-YEEI, Hck-T338A-YEEI, and Ncap-c-abl were purified to homogeneity from Sf9 

insect cells. Kinase activity in the presence of NaPP1 (A) or imatinib (B) was assessed in vitro using a FRET-based 

assay with a peptide substrate. Representative experiments are shown and the percent of inhibition is expressed as 

mean ± S.D. from the results of four assay wells per condition. To obtain IC50 values, data were best fit using non-

linear regression analysis.  The entire experiment was repeated twice and produced comparable results. 
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3.3.3  NaPP1 potently and selectively inhibits Hck-T338A in a fibroblast transformation 

assay 

To determine whether the Hck-T338A mutant is sensitive to NaPP1 in a cell-based assay, we 

tested the ability of NaPP1 to reverse transformation of fibroblasts by an active form of Hck-

T338A. For these experiments, we replaced the C-terminal Tyr-527 with a Phe residue (hereafter 

referred to as an YF mutation) in both the wild-type and the T338A mutant. This mutation was 

previously shown to prevent tail Tyr527 phosphorylation by Csk and SH2 domain engagement, 

resulting in a marked increase in the kinase activity and oncogenic transformation of fibroblasts 

(84-86). The resulting Hck-YF and Hck-T338A-YF mutants were expressed in Rat-2 fibroblasts 

and their transforming potential and sensitivity to NaPP1 was compared in a soft-agar colony 

formation assay. Fibroblasts expressing wild-type Hck, Hck-T338A, or the G418 selection 

marker were used as negative controls. As shown in Figure 19A, neither wild-type Hck nor the 

T338A mutant induced fibroblast transformation, demonstrating that Ala substitution at the 

gatekeeper position does not result in kinase activation. In contrast, both Hck-YF and Hck-

T338A-YF had robust and comparable transforming activity, demonstrating that the T338A 

mutation does not interfere with the biological functions of the kinase in this system. Hck 

activity in each of the Rat-2 cell lines was assessed by anti-pTyr immunoblotting of lysates, and 

the results are presented in Figure 19B. Both Hck-YF and Hck-T338A-YF showed strong 

constitutive activity in this assay, demonstrating both autophosphorylation and phosphorylation 

of endogenous substrates such as pp40 (390). In contrast, Hck or Hck-T338A showed very little 

kinase activity, consistent with their lack of transforming function (Figure 19B). 

We next assessed the specificity of NaPP1 for Hck-T338A-YF in this system.  As shown 

in Figure 19A, NaPP1 blocked the transforming activity of Hck-T338A-YF with an IC50 of ~ 0.1 
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μM. This effect correlated with inhibition of Hck-T338A-YF activity as assessed by anti-pTyr 

immunoblotting (Figure 19B). Conversely, neither colony formation nor kinase activity were 

affected by NaPP1 in cells transformed by Hck-YF, even at concentrations as high as 1 μM 

(Figures 19A and B). These results establish that the T338A mutation is functionally silent and 

confers NaPP1 sensitivity on Hck in a cell-based assay. 
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Figure 19: Hck-T338A is biological active in fibroblasts and selectively sensitive to NaPP1 

Rat-2 fibroblasts were infected with recombinant retroviruses carrying a neomycin selection marker (vector control), 

wild-type Hck, Hck-T338A, Hck-YF or Hck-T338A-YF and selected with G418. (A) The stable cell lines were 

plated in triplicate in soft-agar in the presence of the indicated concentrations of NaPP1.  The general SFK inhibitor 

and parent compound PP1 (3 µM) was used as a positive control. Transformed colonies were stained with MTT 

after 10 to 14 days. The soft-agar plates were scanned and the number of colonies was determined using the BioRad 

imaging densitometry system and QuantityOne colony-counting software. Results from a representative experiment 

are shown as the mean number of colonies of three plates ± S.D. The experiment was repeated two times with 

similar results. (B) Control or Rat-2 fibroblasts transformed by Hck-YF or Hck-T338A-YF were plated overnight 

with the indicated concentrations of NaPP1. Lysates were probed with a general anti-phosphotyrosine antibody to 

determine the phosphorylation status of pp40, an endogenous substrate of Hck. As a loading control, Hck expression 

levels were determined in replicate blots using an anti-Hck antibody. One representative experiment is shown. 

 

3.3.4  Over-expression of Hck and Hck-T338A protects K562 CML cells from imatinib-

induced apoptosis and inhibition of colony formation  

Previous studies have shown that blast crisis CML patients that develop resistance to imatinib 

display increased Hck and/or Lyn kinase expression levels or activities in the absence of 

mutation in Bcr-Abl (218, 219, 314). To determine whether Hck overexpression in CML cells is 

sufficient to induce imatinib resistance, Hck and Hck-T338A were expressed in K562 cells using 

recombinant retroviruses. Cells infected with a retrovirus carrying only the neomycin resistance 

marker served as a negative control. Following selection with G418, the K562-neo, K562-Hck 

and K562-Hck-T338A cell populations were treated with increasing concentrations of imatinib 

for 72 h. The percent of apoptotic cells were then determined by anti-phosphatidyl serine 

antibody staining and flow cytometry. As shown in Figure 20, imatinib induced apoptosis in a 
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dose-dependent manner in the K562-neo cell population, with apoptotic cells evident with as 

little as 0.3 µM imatinib.  Strikingly, over-expression of wild-type Hck or Hck-T338A in K562 

cells was sufficient to reverse the apoptotic effects of imatinib at both 0.3 and 1 µM (p ≤ 0.02).  
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Figure 20: Expression of wild-type Hck or Hck-T338A protects K562 cells from imatinib-induced apoptosis 

K562-neo, K562-Hck and K562-Hck-T338A cell populations were incubated for 72 h in the absence or presence of 

the indicated concentrations of imatinib. Apoptotic cells were stained with an anti-phosphatidylserine-Alexa Fluor 

488 conjugated antibody and the percentage of apoptotic cells was determined by flow cytometry. (A) Histograms 

from a representative flow cytometry experiment with the percentage of apoptotic cells shown above each plot. (B) 

Bar graph showing the average of three independent experiments ± S.D. The difference between K562-neo and 

K562-Hck or between K562-neo and K562-Hck-T338A was statistically significant as demonstrated by a two-tailed 

Student’s t-test at 0.3 µM and at 1 µM imatinib (p ≤ 0.02). No statistically significant difference was obtained 

between K562-Hck and K562-Hck-T338A at any of the imatinib concentrations tested. 

 

As a second measure of biological activity, we next investigated whether expression of 

Hck in K562 cells reverses imatinib-induced inhibition of colony formation. To address this 

issue, K562-Hck, K562-Hck-T338A, and K562-neo cells were plated in soft-agar in the presence 

of the DMSO vehicle control (0 µM) or increasing concentrations of imatinib. As shown in 

Figure 21, K562 cells expressing wild-type Hck or Hck-T338A yielded a comparable number of 

colonies as the vector control cells when plated in soft-agar in the absence of imatinib. This 

suggests that expression of Hck or Hck-T338A alone does not enhance the basal level of K562 

cell colony-forming activity. Imatinib induced a dose-dependent inhibition of colony formation 

in all three cell lines. However, cells expressing wild-type Hck or Hck-T338A displayed 

statistically significant resistance to imatinib-induced inhibition of colony formation when 

compared to control cells. More specifically, 0.03 µM imatinib reduced the number of K562-neo 

colonies by nearly 50%, while it did not have a statistically significant impact on cells expressing 

either form of Hck (p ≤ 0.01). Furthermore, K562-Hck and K562-Hck-T338A were three times 

more resistant to 0.1 µM imatinib than K562-neo cells in this assay (p ≤ 0.01). Taken together, 
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results from both the apoptosis and colony growth assays demonstrate that overexpression of 

Hck is sufficient to induce resistance to imatinib.  
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Figure 21: Expression of wild-type Hck or Hck-T338A protects K562 cells from imatinib-induced inhibition 

of soft-agar colony formation 

K562-neo, K562-Hck, and K562-Hck-T338A cells were plated in triplicate in soft-agar in the presence of the 

indicated concentrations of imatinib and incubated for 7-10 days to allow colony growth. At the end of the 

incubation period, the soft-agar plates were scanned. (A) Representative plates showing the soft-agar colony growth 

in the presence of imatinib. (B) Plates were imaged and colony counts were determined using the BioRad 

QuantityOne colony-counting software. The bargraph shows the mean of three independent experiments ± S.D. The 

difference between K562-neo and K562-Hck or between K562-neo and K562-Hck-T338A was statistically 

significant by two-tailed Student’s t-test at 0.03 µM, 0.1 µM and 0.3 µM imatinib (p ≤ 0.01). No statistically 

significant difference was obtained between K562-Hck and K562-Hck-T338A at any of the imatinib concentrations.  

3.3.5  Resistance to imatinib-induced apoptosis and inhibition of colony growth is 

dependent on Hck kinase activity 

To address the hypothesis that the resistance to imatinib requires Hck kinase activity, we tested 

whether specific inhibition of Hck-T338A with NaPP1 restored sensitivity to imatinib. For this 

experiment, K562-neo, K562-Hck and K562-Hck-T338A cells were incubated with imatinib 

over the same concentration range as in Figure 20 (0 to 1 µM) in the presence of escalating doses 

of NaPP1 (0 to 3 µM). After 72 h, cells were stained with an anti-phosphatidyl serine antibody 

and the percentage of apoptotic cells was determined by flow cytometry. The results presented in 

Figure 22 show the apoptotic response to imatinib plotted for each concentration of NaPP1. 

Similar to the results presented in Figure 20C, K562-Hck and K562-Hck-T338A cells displayed 

resistance to imatinib-induced apoptosis when compared to K562-neo control cells.  Addition of 

NaPP1 to K562-neo cells as well as cells expressing wild-type Hck did not affect the level of 

apoptosis induced by imatinib, demonstrating that NaPP1 alone is not cytotoxic and does not 
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affect wild-type Hck at these concentrations.  In contrast, addition of NaPP1 to K562-Hck-

T338A cells induced a dose-dependent reversal of resistance to imatinib to a level similar to 

K562-neo control cells, suggesting that resistance to imatinib-induced apoptosis requires the 

kinase activity of Hck.  
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Figure 22: Specific inhibition of Hck-T338A kinase activity using NaPP1 restores the apoptotic response to 

imatinib of K562-Hck-T338A cells 

K562-neo, K562-Hck, and K562-Hck-T338A were incubated with the indicated combinations of imatinib and 

NaPP1 for 72 h. The concentration range for NaPP1 was from 0 to 3 µM, and for imatinib from 0 to 1 µM. 

Apoptotic cells were stained with an anti-phosphatidylserine-Alexa Fluor 488 conjugated antibody and the 

percentage of apoptotic cells was determined by flow cytometry. The response to imatinib was plotted for each 

individual NaPP1 concentration. Each point represents the means generated from three independent experiments ± 

S.D.  

 

Next, we determined whether NaPP1 resensitizes K562-Hck-T338A cells to imatinib in 

the soft-agar colony assay. To address this issue, each K562 cell population was plated in soft 

agar with combinations of imatinib (0 to 0.3 µM) and NaPP1 (0 to 3 µM) and incubated for 7 

days to allow colony formation. Imatinib-induced inhibition of colony formation was determined 

for each NaPP1 concentration, and the results are plotted in Figure 23. In addition, colony 

formation IC50 values for imatinib were determined by sigmoidal-dose response curve fitting.  

Imatinib inhibited K562-neo colony formation with an IC50 of 35.9 nM ± 6.8 nM in the absence 

of NaPP1, and this value was unaffected by NaPP1 treatment. Overexpression of wild-type Hck 

or Hck-T338A in K562 cells increased the IC50 value for the inhibition of colony formation  by 

imatinib by a factor of four, to 135 nM ± 11 nM and 146 nM ± 17.7 nM, respectively. Similar to 

the K562-neo control cells, NaPP1 did not affect the inhibition of colony formation by imatinib 

in K562 cells expressing wild-type Hck, consistent with the lack of NaPP1 activity against the 

wild-type kinase. In contrast, addition of NaPP1 to K562-Hck-T338A cells induced a dose-

dependent reversal of the inhibition of colony formation IC50 for imatinib, from 146 nM ± 17.7 

nM to 32 nM ± 6.6 nM, a value close to that observed with the K562-neo control cell population. 
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These results demonstrate that selective inhibition of Hck-T338A kinase activity restores 

sensitivity to imatinib in terms of colony-forming activity as well.  
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Figure 23: Specific inhibition of Hck-T338A kinase activity using NaPP1 restores the sensitivity to imatinib of 

K562-Hck-T338A cells in soft-agar assay 

K562-neo, K562-Hck, and K562-Hck-T338A cells were plated in triplicate in soft-agar in the presence of the 

indicated combinations of imatinib and NaPP1. Colonies were stained 10-14 days later, and were counted using 

scanned images of the plates and the BioRad QuantityOne colony-counting software. The entire experiment was 

repeated twice from independently derived cell populations and yielded similar results. A representative experiment 

is shown. Each point represents the average of three plates ± S.D. The response to imatinib at each NaPP1 

concentration was determined by curve-fitting using non-linear regression analysis and IC50 determination. The IC50 

values are displayed to the right of each plot. 

 

To determine whether the reversal of imatinib sensitivity was associated with inhibition 

of Hck-T338A tyrosine kinase activity, Hck was immunoprecipitated from cells following 

exposure to the same imatinib concentrations used in the apoptosis and colony assays in 

combination with 3 µM NaPP1 (Figure 24). Immunoblot analysis using an antibody specific to 

phospho-Tyr416 in the activation loop of the active form of Hck was used to determine the 

activation status of Hck. The results show that 3 µM of NaPP1 completely inhibited the T338A 

mutant of Hck consistent with the complete reversal of imatinib sensitivity observed at this 

concentration. In contrast, NaPP1 did not inhibit the activity of wild-type Hck kinase. In 

addition, to confirm the specificity of NaPP1, we also immunoprecipitated Lyn and performed 

immunoblot analysis with anti-phospho-Tyr-416 antibody as a measure of Lyn activation. Figure 

24B shows that 3 µM NaPP1 did not affect Lyn activation loop phosphorylation at any of the 

imatinib concentrations.    
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Figure 24: NaPP1 specifically inhibits Hck-T338A mutant in K562 cells 

K562-neo, K562-Hck, and K562-Hck-T338A cells were plated in 0.5% FBS overnight and treated with the 

indicated concentrations of imatinib and NaPP1 for 5 hours. Hck (A) or Lyn (B) were immunoprecipitated from 

clarified lysates and immunoblotted with an anti-Src phosphospecific pY416 antibody that recognizes the tyrosine-

phosphorylated activation loop of Hck and Lyn. Duplicate membranes were blotted for Hck and Lyn as a loading 

control.  This experiment was repeated twice from independent cell lines, and representative blots are shown.  
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3.3.6  Hck or Hck-T338A overexpression in K562 cells is associated with increased 

phosphorylation of Bcr-Abl at multiple Tyr residues 

Previous work from our laboratory and others has shown that SFKs trans-phosphorylate c-Abl or 

Bcr-Abl at various residues. This may in turn induce an active conformation and thus directly 

decrease sensitivity to imatinib, and may also increase the activity of some Bcr-Abl-dependent 

signaling pathways. For example, c-Src and Hck were shown to phosphorylate c-Abl at Tyr-412, 

and to induce imatinib resistance (367). Moreover, Hck and other SFKs were shown to 

phosphorylate Bcr-Abl at Tyr-89 in the SH3 domain and at Tyr-245 in the SH2:kinase linker 

region in vitro (194). Phosphorylation at both these residues was predicted to induce activation 

due to disruption of intra-molecular negative regulatory interaction between the SH3 domain and 

the SH2: kinase linker. However, subsequent dynamics analysis using hydrogen-deuterium 

exchange mass spectrometry suggests that phosphorylation of Tyr-89 but not Tyr-245 disrupts 

this interaction (195). Furthermore, Hck also phosphorylates Bcr-Abl in the Bcr-portion of the 

protein at Tyr-177, a residue that links Bcr-Abl to Ras activation and is required for 

leukemogenesis (229-232). In addition, work presented in Chapter 2 using Hck-T338M, a mutant 

resistant to the global SFK-inhibitor A-419259, suggests that Hck along with other Src kinases 

contributes to trans-phosphorylation of Bcr-Abl at Tyr-89, 245, and 177, but it does not affect 

Tyr-412 in K562 cells.  

To test whether the resistance to imatinib observed in response to Hck overexpression 

correlates with phosphorylation of these Bcr-Abl Tyr residues, we performed immunoblotting 

with phosphospecific antibodies on K562-neo, K562-Hck, and K562-Hck-T338A cell lysates 

following treatment with a combination of imatinib and NaPP1. Figure 25 shows that in the 

absence of imatinib, the relative levels of phosphorylation at Tyr-89 and Tyr-245 increased in 
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response to the expression of either wild-type Hck or Hck-T338A. In addition, the blots from 

K562-neo control cells show phosphorylation at these residues is significantly inhibited at 0.1 

µM imatinib, while K562-Hck and K562-T338A cells display an increased phosphorylation at 

0.1 µM imatinib (in the case of pY245), and even at 0.3 µM imatinib in the case of pY89. 

Furthermore, addition of 3 µM NaPP1 inhibited the phosphorylation of these residues in cells 

expressing Hck-T338A when added with 0.1 µM imatinib (for pY245) or with 0.3 µM imatinib 

(for pY89). This suggests that the increase in phosphorylation at Tyr-89 and Tyr-245 is mediated 

by Hck and requires the Hck kinase activity. Although increased phosphorylation at Tyr-89 is 

expected to induce an increased activity of Bcr-Abl, this was not correlated with an increase in 

the phosphorylation of CrkL, a Bcr-Abl substrate. Therefore, the significance of Tyr-89 and Tyr-

245 phosphorylation by Hck in the context of imatinib resistance remains unclear.  

In addition to Tyr-89 and Tyr-245, we also determined how expression of Hck affects 

Tyr-177 phosphorylation in the Bcr-derived portion of the oncoprotein. As shown in Figure 25, 

Bcr-Abl from K562-Hck and K562-Hck-T338A cells demonstrate persistent phosphorylation at 

this residue even in the presence of 0.3 and 1 µM imatinib, while phosphorylation of Tyr-177 in 

control cells is completely inhibited at these imatinib concentrations. In addition, co-incubation 

with NaPP1 inhibits Bcr-Abl Tyr-177 phosphorylation in K562-Hck-T338A but not K562-Hck 

cells.  Since phosphorylation of Tyr-177 creates a binding site for Grb2 and induces increased 

Ras signaling (210, 218), it is possible that Hck expression may restore Ras-dependent anti-

apoptotic signaling that contributes to imatinib resistance.  
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Figure 25: Wild-type Hck or Hck-T338A overexpression increases phosphorylation of Bcr-Abl at various Tyr 

residues in an Hck-kinase dependent manner. 

K562-neo, K562-Hck, and K562-Hck-T338A cells were plated in 0.5% FBS overnight and treated with the 

indicated concentrations of imatinib and NaPP1 for 5 hours. Cell lysates were resolved on SDS-PAGE gels and 

immunoblotted with phosphospecific antibodies for Abl pY245 and pY89, Bcr pY177, and for CrkL pY207. As 

loading controls, duplicate blots were also probed with anti-actin and anti-Abl (for Bcr-Abl expression levels). The 

experiment was repeated twice from independent cell lines. Representative blots are shown. 

 

3.4 DISCUSSION 

Resistance to imatinib, the primary line of treatment for CML patients, has typically been 

associated with persistence or reactivation of Bcr-Abl signaling or due to selection for drug-

resistant Bcr-Abl mutants. However, emerging evidence show that other mechanisms of imatinib 
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resistance in absence of Bcr-Abl mutations also have significant clinical importance. Consistent 

with a growing body of evidence implicating the Src family kinases in various phases of CML, 

recent evidence has linked Hck and Lyn overexpression or enhanced activation to imatinib 

resistance in the absence of Bcr-Abl mutations(218, 219, 314, 331). In this report, we 

investigated whether Hck overexpression is sufficient to induce resistance to imatinib and 

established a direct cause and effect relationship between Hck overexpression and resistance to 

imatinib in a CML cell line with wild-type Bcr-Abl.  

 To address this problem, we hypothesized that overexpression of Hck in CML cells 

would create resistance to imatinib. To be able to demonstrate that this imatinib resistance is due 

to the kinase activity of Hck, we employed a chemical genetic method to generate an Hck allele 

(Hck-T338A) that is uniquely targeted by NaPP1, a bulky analog of the global SFK inhibitor 

PP1. The advantage of this chemical genetic approach is that it allows for specific inhibition of 

Hck activity while leaving the Hck protein and its complexes intact. Thus data derived using this 

approach is more directly applicable to drug discovery than gene expression knockdown by 

siRNA or other approaches. Since the original description of this method by Shokat’s group 

(388), this approach has been successfully applied to both serine/threonine and tyrosine kinases 

from diverse families (386).  

As part of the Hck-T338A validation strategy, we first needed to establish that this 

inhibitor analog-sensitizing mutant did not result in a loss- or gain-of-function and that it was 

selectively sensitive to inhibition by NaPP1 but not affected by imatinib. To address these issues 

we used both in vitro and cell-based assays. We observed that the Hck-T338A mutant maintains 

its catalytic activity against an artificial substrate in an in-vitro kinase assay (Figure 18A).  When 

expressed in fibroblasts as the active form Hck-T338A-YF, it induces Rat-2 fibroblast oncogenic 
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transformation. Moreover, as shown in Figure 19B, expression of Hck-T338A-YF induced 

phosphorylation of pp40, a transformation-related endogenous Hck substrate (95-97). Taken 

together, these results show that the T338A mutation is well tolerated and does not induce a loss 

of the catalytic activity of Hck.  

Replacement of the corresponding gatekeeper residue with Ala in other receptor or non-

receptor tyrosine kinases such as c-Abl, c-Src or PDGFRB were recently shown to have mild 

activating effects when expressed in the human embryonic kidney cell line 293T as shown by the 

increased tyrosine phosphorylation of total cellular protein (310). However, these mild activating 

effects were not sufficient to transform murine BaF3 myeloid cells to IL-3 independence (310). 

In the case of Hck, evidence presented in this report suggests that the replacement of the 

gatekeeper residue to Ala does not induce a gain-of-function in Hck. For example, expression of 

Hck-T338A in Rat-2 fibroblasts did not induce oncogenic transformation, while the active Hck-

T338A-YF induced Rat-2 transformation at levels similar to those observed with Hck-YF with a 

wild-type kinase domain (Figure 19A).  In addition, neither wild-type Hck nor Hck-T338A 

expression in Rat-2 fibroblasts induced tyrosine phosphorylation of total cellular lysates, as 

shown in Figure 19B.  Lastly, K562-Hck-T338A cells did not form a higher number of colonies 

in soft-agar when compared to K562-Hck cells (Figure 19A). Although these data indicate that 

Hck-T338A does not exhibit gain-of-function activity, our experiments do not rule out the 

possibility that the gatekeeper mutation induces a gain-of-function undetectable by our end-point 

assays such as a change of substrate specificity. 

We next evaluated the sensitivity of Hck-T338A to NaPP1, and found that this 

gatekeeper substitution made Hck almost 50 times more sensitive to NaPP1 than the wild-type 

kinase in vitro (Figure 18A). In addition, mutation of the gatekeeper residue to a less bulky 

 122 



amino acid did not induce cross-sensitivity to imatinib (Figure 18B). Importantly, NaPP1 did not 

inhibit the recombinant Abl kinase core, consistent with the specificity of this compound for the 

Hck-T338A mutant (Figure 18A). Furthermore, NaPP1 inhibited Hck-T338A-YF-, but not Hck-

YF-induced transformation of Rat2 fibroblasts (Figure 19A). Consistent with the inhibition of 

colony formation, NaPP1 inhibited Hck-T338A-YF activity, but not Hck-YF (Figure 19B).  

Having validated the NaPP1-sensitive mutant, we next showed that Hck or Hck-T338A 

overexpression in CML cells is sufficient to cause increased survival and colony- forming 

activity in the presence of imatinib (Figures 20 and 21).  Colony growth in soft agar was strongly 

affected, with the IC50 value for inhibition of colony growth increased by 4-fold upon 

overexpression of either form of Hck in K562 CML cells (Figure 23). The resistance to imatinib 

induced by Hck-T338A overexpression was completely reversed by NaPP1 in a concentration-

dependent manner in cells expressing Hck-T338A, but not in cells expressing the wild-type Hck 

(Figure 22 and 23). The reversal of imatinib sensitivity in terms of survival and colony growth 

correlated with a complete inhibition of Hck-T338A activity by NaPP1 treatment, whereas wild-

type Hck activity was unaffected (Figure 24).  These results show that the imatinib resistance 

induced by Hck overexpression is specifically dependent upon Hck kinase activity. 

Hck-induced resistance to imatinib may occur through a feedback mechanism that 

induces an active conformation of Bcr-Abl tyrosine kinase domain and therefore imatinib 

resistance, or through Bcr-Abl-kinase independent mechanisms. Using phospho-specific 

antibodies, we present evidence that Hck expression induces a slight increase in phosphorylation 

of Tyr-89 and Tyr-245 in the Abl core, and that phosphorylation at these residues is reversible 

with NaPP1.  Recent work has shown that phosphorylation at Tyr-89, which localizes to the RT-

loop of the SH3 domain, disrupts its intra-molecular interaction with the SH2: kinase linker and 
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was predicted to promote an active conformation of the Abl core (195). Whether or not Hck-

mediated phosphorylation of SH3 Tyr-89 in the context of Bcr-Abl contributes to the imatinib 

resistance observed here is not clear.  The lack of increased phosphorylation of the Bcr-Abl 

substrate, CrkL, in the presence of Hck suggests that Tyr-89 phosphorylation does not markedly 

upregulate Bcr-Abl tyrosine kinase activity. In contrast to Tyr-89, our results also show an 

increase in Tyr-177 phosphorylation that is strongly reversed by NaPP1 in K562-Hck-T338A 

cells but not in cells expressing wild-type Hck.  Since phosphorylation of Tyr-177 facilitates Ras 

signaling (210, 218), enhanced phosphorylation of this site may stimulate mitogenic and anti-

apoptotic pathways downstream of Ras that contribute to increased growth and survival of Hck-

expressing K562 cells in the presence of imatinib.  

Although this study addressed the possible feedback effects of Hck on Bcr-Abl activity or 

signaling that may account for imatinib resistance, Bcr-Abl-independent mechanisms may play a 

role as well. For example, recent evidence shows that Bcr-Abl activates autocrine IGF-1 

signaling through Hck and Stat5b (222). Thus, overexpression of Hck may induce an increase in 

autocrine IGF-1 signaling. In other experimental systems, IGF-1 was shown to have 

antiapoptotic effects due to ß-catenin stabilization (391). Therefore, it is possible that the Hck-

induced imatinib resistance observed here may be due in part to an increase in IGF-1-induced 

anti-apoptotic effects.  In addition, several SFKs have been shown to phosphorylate the 

cytoplasmic domain of Muc-1, a transmembrane glycoprotein overexpressed in CML. 

Phosphorylation of this Muc-1 region promotes the binding, stabilization, and increased nuclear 

targeting of ß-catenin (223, 224). Determination of whether Hck-mediated stabilization of β-

catenin activation through either of these pathways leads to imatinib resistance will require 

further investigation.  
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Although significant, the degree of Hck-induced imatinib resistance reported in this study 

can be overcome by increasing the concentration of imatinib. In CML patients, therefore, 

therapeutically attainable concentrations imatinib (up to 5 µM) may override this resistance 

mechanism. However, if the Hck-induced imatinib resistance mechanism is independent of Bcr-

Abl, then simply increasing the concentration of imatinib would not eliminate the resistant cell 

population. On the contrary, imatinib exposure may exert a selective pressure that could lead to 

the expansion of cells in which this resistance mechanism is predominant. Furthermore, in a 

clinical setting, patients may progress via clonal evolution and thus more than one molecule may 

be involved in imatinib resistance. The recent observation that both Lyn and Hck are activated in 

patients resistant to imatinib in the absence of Bcr-Abl mutations supports this hypothesis.  

In addition, experiments in this study were performed in K562, a cell line derived from a 

CML patient in blast crisis. Since progression to blast crisis is accompanied by additional genetic 

abnormalities, it is possible that these cells are already equipped with the necessary changes in 

the signaling pathways that can support Hck-induced imatinib resistance.  Whether or not Hck 

overexpression would have a similar effect in cells derived from patients in chronic phase is not 

clear.  Future experiments will address this important possibility as well. 

Given the occurrence of imatinib resistance, various second-generation tyrosine kinase 

inhibitors, such as nilotinib, have been developed to override this phenomenon. In an attempt to 

study the potential mechanisms of nilotinib-resistance, a recent report describes the generation of 

a nilotinib-resistant K562 cell line by exposure to gradually increasing concentrations of the drug 

(392). In this cell line, nilotinib resistance was linked to Lyn upregulation. In addition, an 

increase in Lyn mRNA expression was found in 2 out of 7 patients that developed resistance to 

nilotinib (392). This report suggests that SFK upregulation may represent a common mechanism 
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of resistance to Bcr-Abl inhibitors in addition to selection of drug-resistant Bcr-Abl kinase-

domain mutants. This observation also suggests that patients developing imatinib resistance 

without Bcr-Abl mutations may also be cross-resistant to other Bcr-abl inhibitors.  In this 

context, it would be interesting to determine whether Hck overexpression also induces resistance 

to nilotinib.  

In sum, the results presented in this report demonstrate for the first time that 

overexpression of Hck is sufficient to confer imatinib resistance to CML cells derived from a 

blast crisis patient, and that this mode of resistance requires Hck kinase activity. In addition, 

using chemical genetic principles, we have created a cell-based model system that allows for 

specific and temporal inhibition of Hck kinase activity. Previously, such experiments were 

hindered by the lack of specific inhibitors for individual SFK members. Additional studies of the 

mechanisms by which Hck induces imatinib resistance will improve the understanding and 

therapy for advanced stage CML.  Along these lines, inhibitors selective for Hck may be of 

benefit in imatinib–resistant CML.  

3.5 MATERIALS AND METHODS 

3.5.1 Cell Culture 

Rat-2 fibroblasts were purchased from the ATCC and maintained in Dulbecco’s modified 

Eagle’s medium (DMEM) containing 5% FBS, 100 U/ml penicillin G, 100 μg/ml streptomycin 

sulfate, and 0.25 μg/ml amphotericin (Antibiotic-Antimycotic, Invitrogen). Sf9 insect cells were 

cultured in Grace’s medium (Gibco) supplemented with 10% FBS and 50 μg/ml gentamicin 
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(Gibco). The K562 myeloid leukemia cell line, derived from a CML patient in blast crisis (373), 

was obtained from the ATCC and maintained in RPMI 1640 supplemented with 10% fetal 

bovine serum (FBS) (Atlanta Biologicals), and Antibiotic-Antimycotic (Invitrogen).  

3.5.2 Protein purification 

Using site-directed mutagenesis, the Thr-338 to Ala (T338A) mutation was introduced into 

coding sequence of human p59 Hck-YEEI (QuikChange XL Site-directed Mutagenesis Kit, 

Stratagene) (86). The Hck-YEEI and Hck-T338A-YEEI constructs also contained N-terminal 

hexahistidine tags. The Ncap-c-Abl construct encompasses residues 1-531 of human c-Abl-1b 

with residues 15-56 deleted, and contains a C-terminal cleavage site for the tobacco etch virus 

(TEV) protease and a hexahistidine tag, both introduced by PCR. Hck-YEEI, Hck-T338A-YEEI 

and the Ncap-c-abl constructs were cloned into pVL1392 (BD Biosciences) and each plasmid 

was used to create high-titer recombinant baculovirus in Sf9 insect cells using Baculogold DNA 

and the manufacturer’s protocol (BD Biosciences). For protein production, Sf9 cells (1 L) were 

grown in suspension in Grace’s medium (Invitrogen) supplemented with 10% FBS and 50 μg/ml 

gentamycin. Sf9 cells were cultured to a density of 2 × 106 cells/ml and then infected with either 

Hck-YEEI or Hck-T338A-YEEI baculoviruses. For the Ncap-c-Abl construct, Sf9 cells were co-

infected with Abl and YopH phosphatase baculoviruses at a multiplicity of infection of 10. 

YopH is a protein-tyrosine phosphatase that promotes a downregulated conformation of Ncap-c-

Abl that permits high-yield purification from Sf9 cells (188). Sf9 cells were grown for 48 h, 

centrifuged, washed in PBS, and then the pellets were resuspended in buffer A [20 mM Tris-HCl 

(pH 8.3), 10% glycerol, and 5 mM ß - mercaptoethanol], lysed by sonication, and centrifuged at 

16,000 rpm for 30 min. The recombinant Hck or Ncap-c-Abl proteins were purified from the 
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supernatant using a combination of ion exchange and affinity chromatography as originally 

described by Schindler et al. for Hck (63). Upon purification, the proteins were dialyzed against 

20 mM Tris-HCl (pH 8.3) containing 100 mM NaCl and 3 mM DTT.  

3.5.3 In vitro kinase assay 

Kinase assays were performed using the FRET-based Z’-Lyte Src kinase assay kit and Tyr-2 

peptide substrate according to the manufacturer’s instructions (Invitrogen). All assays were 

performed in quadruplicate in low volume, non-binding 384-well plates (Corning). The assay 

was first optimized to determine the amount of each kinase and the incubation time necessary to 

phosphorylate 50-60% of the Tyr-2 peptide in the absence of inhibitor.  Final ATP and Tyr-2 

substrate concentrations were held constant at 50 μM and 2 μM, respectively.  For inhibition 

experiments the kinases were pre-incubated with NaPP1 or imatinib in kinase assay buffer for 30 

min, followed by incubation with ATP and Tyr-2 peptide for 1 h. Fluorescence was assessed on a 

Gemini XS microplate spectrofluorometer (Molecular Devices). IC50 values were calculated 

from the means of 4 wells and using a sigmoidal curve fit and Prism software (GraphPad 

Software, Inc).  

3.5.4  Rat-2 fibroblasts transformation assays 

Using site-directed mutagenesis, the T338A mutation was introduced in the active form of Hck 

(Hck-YF). The wild-type Hck, Hck-T338A, Hck-YF and Hck-T338A-YF constructs were 

subcloned into the retroviral vector pSRαMSVtkneo (375). The resulting constructs were used to 

generate high-titer retroviral stocks by co-transfection of 293T cells with an ecotropic packaging 
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vector. Control retroviruses were prepared using the parent pSRαMSVtkneo vector. Rat-2 

fibroblasts were infected as follows: 2.5 x 104 Rat-2 cells were plated per well in 6-well plates 

and incubated with viral stocks in a final volume of 5 ml in the presence of polybrene (4 µg/ml 

final concentration). To enhance infection efficiency, the plates were centrifuged at 3,000 rpm 

for 4 h at 18 °C. Following infection, the virus was replaced with fresh medium. To obtain stable 

cell lines, G418 (800 µg/ml) selection was started 48 h after infection and continued for 14 days. 

At the end of the selection period, the G418 concentration was decreased at 400 µg/ml.  

3.5.5  Retroviral transduction of K562 leukemia cells 

Wild-type Hck and the Hck-T338A mutant were subcloned into the retroviral expression vector 

pMSCV-IRES-neo (Clontech) between the MSCV promoter and IRES sequence. Retroviral 

stocks were produced from the resulting constructs in 293T cells using an amphotropic 

packaging vector as described abovefor Rat-2 cells. K562 cells were plated in 6 well plates at 1 x 

106 cells/ well in 5 ml of undiluted viral supernatant in the presence of 4 μg/ml polybrene, and 

centrifuged at 3000 rpm for 3 h at room temperature. After infection, cells were washed, returned 

to regular medium for 48 h and then placed under G418 selection (800 μg/ml) for 14 days. At the 

end of the selection period, cells were maintained in medium with 400 μg/ml G418.  

3.5.6 Soft-agar colony assays 

Soft-agar fibroblast transformation assays were performed in triplicate in 35 mm Petri dishes 

(Falcon) using Seaplaque Agarose (FMC Bioproducts). One ml of 0.5% bottom agarose in 

complete culture medium was poured in the presence of either vehicle (0.5% DMSO) or NaPP1 
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at twice the final desired concentration. After the hardening of the bottom layer, 1 x 104 Rat-2 

cells were mixed in culture medium containing 0.3% agarose and 1 ml was poured onto the 

bottom layer. Seven to ten days later, the colonies were stained with MTT and the soft-agar 

plates were scanned and quantitated using colony counting software (BioRad QuantityOne). 

K562 leukemia cells were plated in soft-agar as described above at a cell density of 2 x 

103 cells/plate and in the absence or presence of imatinib or of combinations of NaPP1 and 

imatinib. Staining of the colonies with MTT was performed after 7 days of incubation. Colony 

counting was performed as described above. 

3.5.7 Apoptosis assay 

Apoptosis was determined by measuring cell-surface phosphatidyl serine (PS) using an Alexa 

Fluor 488-conjugated anti-PS antibody (Upstate Biotechnology) and flow cytometry.  Cells (1 x 

105/ml) were treated with vehicle alone (0.5% DMSO), imatinib or combinations of NaPP1 and 

imatinib for 72 h at 37°C.  Following incubation, cells were centrifuged at 1000 rpm for 5 min, 

washed three times with ice-cold PBS and resuspended to 4 x 106 cells/ml in staining buffer (1% 

FBS in PBS).  Aliquots (50 μl) were transferred to 96-well round bottom tissue culture plates, 

mixed with the anti-PS antibody (0.21 μg/well), and incubated on ice for 1 h. Cells were washed 

three times in ice-cold PBS and analyzed using a FACSCalibur flow cytometer (Becton-

Dickinson) and CellQuest software. 
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3.5.8 Antibodies 

The following antibodies were used in this study: anti-actin (MAB1501; Chemicon), anti-Hck 

polyclonal (N-30; Santa Cruz Biotechnology), anti-Hck monoclonal (Transduction Laboratories), 

anti-Lyn (Santa Cruz Biotechnology), anti-c-Abl (Calbiochem), anti-Src phosphospecific (Src 

pY-416; Upstate Biotechnology), anti-Bcr phospho-Tyr-177 (Cell Signaling), anti-c-Abl 

phospho-Tyr-89 (Cell Signaling), anti-c-Abl phospho-Tyr-245 (Cell Signaling), anti-CrkL 

phospho-Tyr-207 (Cell Signaling), and anti-phosphotyrosine (PY-99; Santa Cruz). 

3.5.9 Immunoprecipitation and immunobloting 

Hck expression and activation in Rat-2 fibroblasts was analyzed by plating 5 x 105 cells in 100 

mm dishes in the presence of NaPP1 or vehicle control (0.5% DMSO). After incubation at 37 °C 

overnight, cells were lysed in ice-cold radioimmunoprecipitation assay (RIPA) lysis buffer (50 

mM Tris-HCl, pH 7.4, 50 mM NaCl, 1 mM EDTA, 10 mM MgCl2, 1% Triton X-100, 1% 

sodium deoxycholate, and 0.1% SDS) supplemented with the protease inhibitors aprotinin (25 

μg/ml), leupeptin (25 μg/ml) and PMSF (1 mM) and the phosphatase inhibitors NaF (10 mM), 

and Na3VO4 (1 mM). Total protein concentration in clarified cell lysates was measured using the 

Bradford assay (Pierce). Aliquots of total protein were heated directly in SDS sample buffer and 

resolved by SDS-PAGE, transferred by PVDF membranes and blotted with either anti-Hck to 

detect Hck protein expression or anti-phosphotyrosine antibodies for the detection of 

phosphorylated pp40, an endogenous Hck substrate. To check the levels of Hck, Bcr-Abl or actin 

or to check the phospho-tyrosine content of Bcr-Abl using phospho-specific antibodies in K562 

cells, 5 x 106 cells were incubated overnight in 0.5% FBS, and then treated for 5 h with vehicle 
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control (DMSO, 0.5%) or with imatinib and/or NaPP1. At the end of the incubation period, the 

cells were collected by centrifugation, washed twice with PBS and lysed in ice-cold RIPA buffer 

and processed as above. For Hck or Lyn immunoprecipitation, protein concentrations were first 

normalized in lysis buffer, followed by addition of 1 μg of anti-Hck or anti-Lyn antibody and 25 

μl of protein G-Sepharose (50% slurry; GE Healthcare Life Sciences). Following incubation for 

2 h at 4 °C, immunoprecipitates were washed three times with 1.0 ml of RIPA buffer and heated 

in SDS sample buffer. Following SDS-PAGE, proteins were transferred to PVDF membranes for 

immunoblot analysis. Immunoreactive proteins were visualized with appropriate secondary 

antibody-alkaline phosphatase conjugates and NBT/BCIP colorimetric substrate (Sigma).  

3.5.10 Statistical analysis 

Data obtained from multiple independent experiments are given as mean ± S.D. values. 

Statistical comparisons between two cell lines at individual drug concentrations were performed 

using a two-tailed unpaired Student’s t-test (normal distribution and unequal variance). To 

protect against potential multiplicity problems, for all analyses a p value less than 0.02 was 

considered statistically significant.  Statistical analyses were done using Microsoft Excel.  
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4.0  OVERALL DISCUSSION 

4.1 SUMMARY OF FINDINGS AND SIGNIFICANCE 

Prior to this study, extensive work from our laboratory and others showed that SFKs play an 

unquestionable role in CML pathogenesis as downstream targets and mediators of Bcr-Abl 

signaling. Typically, due to a lack of small molecule inhibitors specific to individual SFK 

members, these studies were performed using general SFK inhibitors such as PP1, or A-419259; 

using SFK dominant negative mutants; or using siRNA technology to selectively decrease the 

expression of SFK members (211, 215, 221). Although remarkably informative, as a group, these 

methods were not able to clearly delineate the relative contribution of individual SFKs to Bcr-

Abl signaling, or to determine whether they have unique or overlapping functions. Therefore, in 

the first aim of my thesis, I set out to determine the individual contribution of Hck to Bcr-Abl 

signaling using chemical genetics.  

In addition, in cell-based models of imatinib resistance obtained by prolonged exposure 

of CML cells to increasing concentrations of imatinib, resistance was shown to be associated 

with Lyn overexpression while no Bcr-Abl mutations or amplification was detected (219). 

Furthermore, analysis of clinical samples from CML patients with imatinib resistance but wild-

type Bcr-Abl has shown that Lyn and/or Hck are highly activated, suggesting that both kinases 

may be involved in imatinib resistance (218, 219). Although Lyn’s role in imatinib resistance has 
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been addressed in previous reports, the role of Hck is less understood. Given this lack of 

information, in the second aim of my thesis I addressed the role of Hck in Bcr-Abl-mutation-

independent imatinib resistance. 

4.1.1 Hck individual contribution to Bcr-Abl signaling 

To directly define the individual contribution of Hck to Bcr-Abl signaling and pathogenesis, I 

used a chemical genetics method in which I introduced a point mutation at the gatekeeper 

position in the ATP-binding site of Hck to render it resistant to a general SFK inhibitor, A-

419259. This mutant was designed based on the observation that variation at this position is an 

important structural determinant of kinase sensitivity to small molecule inhibitors (300, 332, 

348-350). In addition, a close inspection of the crystal structure of Hck in complex with A-

420983, an A-419259 analog suggested that replacement of the gatekeeper residue with Met, a 

bulky amino acid would induce a steric clash with the inhibitor molecule (Chapter 2). Thus, 

replacement of the gatekeeper residue Thr338 of Hck with Met resulted in a mutant resistant by 

more than 30-fold to the broad-spectrum SFK inhibitor, A-419259. In addition, I showed that, 

with the exception of a subtle decrease in the Km for ATP, this mutation was silent in terms of 

kinase function and activity, a feature essential for the utility of this approach. Next, I showed 

that expression of the Hck-T338M mutant in CML cell lines has a moderate protective effect 

against the A-419259-induced inhibition of cell proliferation. This suggests that although Hck 

contributes to Bcr-Abl-induced cell growth, other Src kinases may play a role. Furthermore, I 

was able to show that Hck-T338M expression fully protects CML cells against the A-419259-

induced apoptosis, and this effect correlated with a sustained Stat5 and Erk activation in the 

presence of the compound. This suggests that Hck plays a non-redundant role in mediating the 
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anti-apoptotic effects of Bcr-Abl. In addition, using phospho-specific antibodies against pTyr-

177, pTyr-89, and pTyr-245 of Bcr-Abl, I showed that although Hck plays a role in 

phosphorylation of these residues, other Src kinases are likely to be involved as well. Finally, in 

an effort to show a role for SFKs in survival and proliferation of CML progenitor cells, I showed 

for the first time that A-419259 induces growth arrest and apoptosis in CD34+ cells isolated from 

three CML patients, with potency equal to imatinib.  

The significance of this study includes the following. (1) This is the first study to 

delineate the redundant and non-redundant functions of Hck in Bcr-Abl signaling. Based on this 

study, we can conclude that Hck has a non-redundant function in mediating the anti-apoptotic 

effects of Bcr-Abl, while it is likely to cooperate with other Src kinases in mediating the 

proliferative effects of Bcr-Abl, as well as phosphorylation of Bcr-Abl at residues important for 

oncogenic activity. (2) This study shows for the first time that inhibition of SFKs in primitive 

CD34+ progenitor cells from CML patients induces apoptosis to an extent similar to imatinib, as 

measured by caspase activation. On a cautionary note, I was not able to correlate the level of 

caspase activation with an actual percentage of apoptotic cells in my study due to the small size 

of each sample. On this note, other laboratories reported that the apoptotic effects of imatinib in 

CML CD34+ cells are limited to ~ 30 % (393). However, even a moderate apoptotic effect of 

SFK inhibitors on CML CD34+ cells argues that SFK inhibitors used in combination with other 

anti-CML therapies may be beneficial for the elimination of CML progenitors. The fact that 

dasatinib, a dual Src/Abl inhibitor targets more primitive progenitors than imatinib supports this 

idea (217). In summary, this work validates Hck as a specific target for the development of 

apoptotic drugs for the treatment of CML and brings more supporting evidence for the role of 

SFKs in CML pathogenesis.  
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4.1.2 The role of Hck in Bcr-Abl-mutation-independent imatinib resistance 

To establish whether Hck kinase activity is important in Bcr-Abl-mutation-independent 

resistance to imatinib, I adapted a second chemical genetic approach initially described by 

Shokat et al. for use with Hck [reviewed in (386)].  To do this, I introduced a space-creating 

mutation at the gatekeeper position (T338A) to render the kinase uniquely sensitive to NaPP1, a 

bulky analog of the global SFK inhibitor PP1. As expected, the T338A mutation induced 

sensitivity to NaPP1 while being silent in terms of Hck function and activity. Then, I expressed 

wild-type Hck and Hck-T338A mutant in CML cells and showed that it caused resistance to 

imatinib-induced apoptosis and inhibition of colony growth. Furthermore, sensitivity to imatinib 

was restored in cells expressing the Hck-T338A mutant upon the addition of NaPP1, 

demonstrating that imatinib resistance requires Hck kinase activity. In addition, data presented in 

this study suggests that Hck overexpression induced increased and sustained phosphorylation of 

Bcr-Abl at Tyr-89, Tyr-245 and Tyr-177, residues previously shown to be important for Bcr-Abl 

oncogenicity (194, 195). Phosphorylation at Tyr-89 in the SH3 domain of c-Abl was previously 

proposed to promote kinase activation due to the disengagement of the SH3 domain from the 

SH2:kinase linker (194, 195). However, I was not able to correlate sustained Tyr-89 and Tyr-245 

phosphorylation in the presence of imatinib with enhanced Bcr-Abl activity as determined by the 

phosphorylation of Bcr-Abl substrate, CrkL.  Sustained phosphorylation of Bcr-Abl Tyr-177 was 

also observed in the presence of imatinib following Hck overexpression, and this 

phosphorylation event was reversed by NaPP1 addition.  

 This study showed for the first time a direct cause and effect relationship between Hck 

overexpression and imatinib resistance in CML cells transformed by wild-type Bcr-Abl.  In 

addition, this Hck-induced imatinib resistance required the kinase activity of Hck as 

 136 



demonstrated using Hck-T338A and NaPP1. However, I was not able to clearly outline the 

mechanism of Hck-induced resistance to imatinib. Previous studies in our laboratory and others 

showed that Hck and other Src kinases such as Lyn cross-phosphorylate Bcr-Abl on residues 

important in oncogenesis such as Tyr-89, Tyr-245, and Tyr-177 (194, 195). The finding that Hck 

induces increased and sustained phosphorylation of Bcr-Abl at Tyr-89, Tyr-245 and Tyr-177 is 

consistent with these studies. However the relevance of Bcr-Abl phosphorylation to the 

mechanism by which Hck induces resistance to imatinib remains elusive, especially since no 

sustained of Bcr-Abl activity in the presence of imatinib was observed as a consequence of Hck 

overexpression. A recent study published by Wu and co-workers shows that in imatinib-resistant 

cells, Lyn activation mediates a sustained phosphorylation of Bcr-Abl at Tyr-177 (218), and 

raised the possibility that Lyn prevents full inactivation of Bcr-Abl signaling by retaining critical 

adaptor protein (Grb2) binding sites on Bcr-Abl (218).  Our data shows a similar effect induced 

by Hck overexpression. Therefore, the observed imatinib resistance may be mediated by 

increased Bcr-Abl-dependent signaling in the absence of increased Bcr-Abl kinase activity.  

Examination of phospho-CrkL blots from various imatinib-resistant patient samples 

which display increased levels of Lyn and/or Hck activities show a mixed response to imatinib 

(218, 314). More specifically, some patient samples show sustained phospho-CrkL levels in the 

presence of imatinib, while in other samples imatinib induces complete CrkL 

dephosphorylation(218, 314). This suggests that although the resistance to imatinib in all these 

patients is associated with increased SFK activity, the mechanisms may differ on a case-by-case 

basis.  

The data presented in Chapter 2 show that Hck plays a non-redundant role in mediating 

the anti-apoptotic effects of Bcr-Abl. In addition, consistent with previous reports in our 
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laboratory (194, 195), these data suggest that although Hck phosphorylates Bcr-Abl at sites that 

might help to sustain an active conformation (Tyr-89, Tyr-245), other SFK also contribute to 

phosphorylation at these sites. Therefore, the moderate level of resistance observed upon Hck 

overexpression (Chapter 3) suggest that both Hck and Lyn activities are required to induce a 

level of resistance to imatinib observed in clinical samples. Furthermore, we can speculate that 

the mixed response to imatinib in terms of CrkL de-phosphorylation observed in clinical samples 

might be a consequence of the interplay between the relative protein or activity levels of Hck and 

Lyn.  

4.2 UTILITY OF CHEMICAL GENETICS FOR TARGET VALIDATION STUDIES 

Protein kinases are one of the largest groups of drug targets, considered to be the second most 

important after G-protein-coupled receptors (394). Traditionally, pharmacological target 

validation studies have been carried out using genetic approaches. However, these genetic 

approaches can be misleading and may fail to identify important targets due to some 

compensatory changes in related pathways.  In addition, kinase-independent functions of 

genetically deleted proteins might complicate the interpretation of the results (395). In theory, an 

ideal alternative approach to target validation is the use of small molecule inhibitors to dissect 

signaling pathways. However, this approach is also problematic since most inhibitors act on 

multiple kinase targets due to the high degree of homology of the ATP-binding sites of tyrosine 

kinases. The work presented in this dissertation constitutes an example of how one can avoid 

these pitfalls by combining two conceptually opposite chemical genetic methods to tease out the 

involvement of putative druggable targets in a pathological process.  
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Chemical genetics approaches involve the use of small molecules (hence “chemical”) in 

conjunction with mutations (hence “genetics”) at a conserved hydrophobic residue (termed the 

“gatekeeper”) located in the ATP-binding site of a kinase. Replacement of the gatekeeper residue 

of a kinase of interest with either a bulky or with a smaller amino acid serves as a selectivity 

filter with respect to the binding of ATP-analog inhibitors. For example, in the case of Hck, 

replacement of the gatekeeper residue (Thr-338) with Met precludes binding of the general SFK 

inhibitor A-419259. Conversely, replacement of Thr-338 with Ala induced unique sensitivity of 

Hck to NaPP1, a bulky analog of the SFK inhibitor PP1. Thus, on one hand, pairing the 

expression of Hck-T338M mutant with A-419259 in an appropriate cellular context allows the 

inhibition of all endogenously expressed wild-type SFKs without affecting the activity of Hck-

T338M. On the other hand, pairing the expression of Hck-T338A with NaPP1 in an appropriate 

cellular context (that lacks the wild-type Hck) allows the highly specific inhibition of Hck-

T338A activity while all the endogenously expressed wild-type SFKs are not affected.  Both of 

these methods have been previously validated individually for use with other tyrosine kinases. 

However, when applied in combination to the study of one particular kinase of interest as shown 

in this thesis, they have the power to provide an increased understanding of the role of a 

particular kinase in a pathological process.  This is why chemical genetics represents a highly 

valuable method for rational drug target validation studies, with applicability to many different 

tyrosine kinases and therefore, many different disease states. 
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4.3 FUTURE DIRECTIONS  

4.3.1 Investigate the role of Hck in Bcr-Abl signaling in Hematopoietic Stem Cells (HSC).  

The cellular origin of CML begins with formation of the Ph+ chromosome in the hematopoietic 

stem cell from where it is subsequently transmitted to all hematopoietic lineages. Multipotent 

hematopoietic progenitor cells are receptive to Bcr-Abl expression and generate an abnormal 

expansion of mature myeloid cells (396). Recent studies indicate that despite the impressive 

success of imatinib, CML patients have a rare but consistently detectable population of Bcr-Abl+, 

CD34+ HSC that are not efficiently killed by this drug (346). Dasatinib, a dual Abl/Src inhibitor 

was shown to inhibit Bcr-Abl in CD34+ CML stem cells more effectively than imatinib, although 

not completely (217). However, the dasatinib activity spectrum comprises not only Bcr-Abl and 

Hck but also other SFKs including Fgr, Fyn, Lck, Lyn, and Yes (363) as well as the Kit, PDGFR, 

and Ephrin receptor tyrosine kinases (364). Many of these kinases have no demonstrated role in 

CML pathogenesis and therefore, their inhibition might be deleterious to the outcome of the 

disease or might contribute to side effects associated with long-term drug treatment. In addition, 

Owen Witte and co-workers showed that Bcr-Abl expression during in-vitro hematopoietic 

development of embryonic stem cells causes expansion of multipotent and myeloid progenitors 

(397). To study the involvement of Hck in early Bcr-Abl-induced HSC signaling, one could 

construct a Hck-T338A homozygous ES cell line and then perform an in vitro differentiation 

assay that allows Bcr-Abl expression (397). To test whether Hck plays a role in this Bcr-Abl-

dependent abnormal expansion of hematopoietic progenitor cells, a two-step in vitro 

differentiation of ES-Hck-T338A cells in methylcellulose could be performed in the presence or 

absence of NaPP1. This procedure involves primary differentiation of ES cells into embryoid 
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bodies (EBs) followed by secondary plating in methylcellulose containing a cocktail of 

hematopoietic cytokines to form hematopoietic colonies. Bcr-Abl will be transfected in the EB –

derived hematopoietic progenitors, and selection started at the time of methylcellulose plating. 

Hematopoietic progenitors present in the EBs will grow out into discrete hematopoietic colonies 

that are easily identified in the methylcellulose cultures. Quantitation of these colonies will allow 

a direct estimation of the number and type of hematopoietic progenitors that result upon Bcr-Abl 

expression and Hck-T338A inhibition by NaPP1. If Hck is required for the Bcr-Abl-induced 

abnormal expansion of multipotent and myeloid progenitors (395), then NaPP1 is expected to 

abolish these Bcr-Abl-dependent effects and induce normal hematopoietic differentiation in ES-

Hck-T338A cells.  

4.3.2  Further explore the relevance of SFK overexpression/activation in imatinib 

resistance 

Data presented in this dissertation shows that Hck overexpression is sufficient to induce imatinib 

resistance. However, to further clarify the significance of SFKs in imatinib resistance, additional 

studies need to be undertaken.  

First, although I showed that Hck overexpression is sufficient to induce imatinib 

resistance in cellular CML models, it is not clear whether Hck can sustain imatinib resistance in 

vivo. In a previous report, Wu and co-workers used an imatinib resistant K562 cell line 

overexpressing Lyn to generate a mouse xenograft CML model (314).  Mice harboring tumors 

induced by these cells underwent an initial response to imatinib, however after continual therapy 

(8 days) tumors in imatinib-treated mice could not be distinguished from tumors in control mice 

(314). To develop evidence that Hck overexpression is sufficient to create imatinib resistance in 
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vivo, K562 cells expressing vector alone, wild-type Hck or the Hck-T338A mutant could be 

subcutaneously administrated in nude mice to generate solid tumors. Based on the results in 

Chapter 3 of this thesis, mice bearing tumors from K562-Hck or K562-Hck-T338A would be 

expected to show an initial response to imatinib, followed by a relapse. Furthermore, since in our 

cell-based experiments resistance to imatinib requires the kinase activity of Hck, administration 

of NaPP1 along with imatinib is anticipated to decrease the burden of the tumors originated from 

K562-Hck-T338A cells, due to a reversal of imatinib sensitivity. 

 Second, the mechanism of Hck-induced imatinib resistance should also be determined.  

Experiments performed in Chapter 3 suggest that Hck may induce resistance to imatinib by 

prompting a sustained activation of signaling pathways downstream of Tyr-177 of Bcr-Abl. To 

test this hypothesis, one could determine whether Hck expression induces a sustained Bcr-

Abl/Gab2 association. In addition, the activation of signaling pathways downstream of phospho-

Y177, such as the Ras/Erk and PI3K/Akt pathways should also be assessed.  

Third, a recent study showed that resistance to nilotinib, a second-generation Bcr-Abl 

inhibitor is associated with an increased Lyn mRNA levels in CML patients(392). This suggests 

that in a clinical setting, various Bcr-Abl inhibitors may induce resistance through similar 

mechanisms and that patients may also display cross-resistance to various Bcr-Abl inhibitors. To 

determine whether Hck overexpression may induce cross-resistance to nilotinib, the same cell-

based system described in Chapter 3 could be used. Thus, to test this hypothesis, one could 

compare the apoptosis or inhibition of colony growth in response to nilotinib in K562-neo 

control cells vs. K562-Hck and K562-Hck-T338 cells, and look for kinase-dependence of these 

effects using NaPP1 as I have successfully demonstrated with imatinib. 
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4.4 CLOSING REMARKS 

Imatinib, the current first-line CML therapy, has demonstrated significant activity in all phases 

of the disease, due not only to its ability to inhibit Bcr-Abl, but also due to its promiscuous 

character (314). More specifically, the therapeutic effects of Bcr-Abl are in part associated with 

its ability to inhibit c-Kit along with Bcr-Abl (295). However, despite the high level of 

hematologic and cytogenetic responses in clinical trials, patients with advanced-stage CML often 

develop resistance. These growing levels of resistance to imatinib point to a need for new 

therapeutic targets. In addition, a recent survey conducted by The Chronic Myelogenous 

Leukemia Society of Canada (http://www.news-medical.net/?id=43908), showed that imatinib 

although generally deemed as well tolerated, induced persistent side effects such as nausea, 

fatigue, headaches, vomiting, edema, and myelosuppression. Moreover, imatinib has been 

recently shown to be cardiotoxic (http://www.fda.gov/medwatch/safety/2006/safety06. 

htm#Gleevec). Therefore, new therapies with an increased control on specificity are required 

since the incidence of side-effects may be associated with the promiscuous character of a drug.  

To design such dugs, it is important to have a better understanding of which signaling molecules 

are highly important in a disease process or in imatinib resistance. In this context, the work 

presented in this dissertation was aimed to refine the importance and role of Hck in Bcr-Abl 

signaling and imatinib resistance. It is my hope that similar work will be undertaken to evaluate 

the role of other individual signaling molecules in CML pathogenesis and resistance. This in turn 

will provide the necessary information for the development of new therapies not only effective in 

treating imatinib-resistant patients but also with minimal side effects. Recent advances in 

structure-based drug design methods are promising with regard to their ability to exploit 
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particularities of protein structures to target away the kinases not important in a pathological 

process (398). 
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