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This thesis focuses on applying meta-analysis methods for combining genomic studies on 

biomarker detection and pathway enrichment analysis. DNA microarray technology has been 

maturely developed in the past decade and led to an explosion on publicly available microarray 

data sets. However, the noisy nature of DNA microarray technology results in low 

reproducibility across microarray studies. Therefore, it is of interest to apply meta-analysis to 

microarray data to increase the reliability and robustness of results from individual studies. 

Currently most meta-analysis methods for combining genomic studies focus on biomarker 

detection, and meta-analysis for pathway analysis has not been systematically pursued. We 

investigated two natural approaches of meta-analysis for pathway enrichment (MAPE) by 

combining statistical significance across studies at the gene level (MAPE_G) or at the pathway 

level (MAPE_P). Simulation results showed increased statistical power of both approaches and 

their complementary advantages under different scenarios. We also developed an integrated 

method (MAPE_I) that incorporates advantages of both approaches. Applications to real data on 

drug response of a breast cancer cell line, lung and prostate cancer tissues were evaluated to 

compare the performance of the different methods. MAPE_P has the general advantage of not 

requiring gene matching across studies. When MAPE_G and MAPE_P show complementary 

advantages, the integrated version MAPE_I is recommended. A software package named 

MetaPath, was implemented to perform the MAPE analysis. In addition to developing MAPE 

Meta-analysis for pathway enrichment analysis and biomarker detection when 

combining multiple genomic studies 

Kui Shen, PhD 

 University of Pittsburgh, 2010
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methods, we also applied meta-analysis approach to chemotherapy research to discover robust 

biomarkers and multi-drug response genes, which have prognostic value and the potential of 

identifying new therapeutic targets. 
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1.0  INTRODUCTION 

DNA microarray technology (Kulesh, et al., 1987; Lashkari, et al., 1997; Schena, et al., 1995) 

provides the ability to detect genome-wide gene expression activities with thousands of probes 

printed on each high-density chip. It has evolved rapidly in the past decade and has gradually 

become a standard tool for many biomedical studies. The wide applications of microarray 

technology have led to an explosion of gene expression profiling studies publicly available. 

However, the noisy nature of microarray data (Tu, et al., 2002), together with the relatively small 

sample size in each study, often results in inconsistent biological conclusions (Ein-Dor, et al., 

2005). Therefore, methods for synthesizing multiple microarray studies are greatly needed. 

Meta-analysis, a set of statistical techniques to combine results from several studies, has been 

recently applied to microarray analysis to increase the reliability and robustness of results from 

individual studies. Currently, meta-analysis methods for microarray studies are mostly aimed at 

combining different studies to identify differentially expressed (DE) genes, an analysis at the 

gene level. However, DE gene analysis has two main shortcomings. First, the identified DE 

genes may not biologically relate to the phenotype of interest. Second, a gene set from an 

important pathway may act in concert with moderate activities, which cannot be detected by DE 

gene analysis, while the pathway may have important biological effects on the phenotype of 

concern (Subramanian, et al., 2005). To overcome these shortcomings, pathway analysis has 

been developed, which also has an inherent advantage for work with meta-analysis. It is well-
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known that the lists of DE genes from independent studies associated with same the phenotype 

often have little overlap (Ein-Dor, et al., 2005), while pathway analysis often generates improved 

consistency (Manoli, et al., 2006). This situation motivates us to develop systematic approaches 

of meta-analysis for pathway enrichment (MAPE), which provides a more robust and powerful 

tool than standard pathway enrichment analysis. To our knowledge, this is the first study to 

systematically develop and evaluate meta-analysis methods for pathway analysis in microarray 

studies. 

In addition to the investigation of the meta-analysis method for pathway enrichment 

analysis, meta-analysis was also applied to the field of chemotherapy research in this thesis for 

the following two topics: identification of robust chemotherapy response biomarkers and 

identification of multi-drug response genes in human breast cancer cell lines.  

This dissertation is organized as follows: in Chapter 1, meta-analysis and pathway 

enrichment analysis methods are reviewed. In Chapter 2, two approaches to meta-analysis for 

pathway enrichment, MAPE_G and MAPE_P, are described; MAPE_G combines statistical 

significance across studies at the gene level and MAPE_P at the pathway level. Then an 

integrated method (MAPE_I) is introduced to incorporate the advantages of both MAPE_G and 

MAPE_P. Simulation results and applications to real data sets are also shown Chapter 2. The 

implementation and usage of the MetaPathsoftware package are described in Chapter 3. In 

Chapter 4, meta-analysis was applied to identify robust biomarkers and multi-drug-response 

genes. Conclusions and discussions are provided in Chapter 5.   
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1.1 MICROARRAY DATA STANDARDIZATION 

DNA microarray technology (Kulesh, et al., 1987; Lashkari, et al., 1997; Schena, et al., 1995) 

evolved from Southern blotting, a nucleotide hybridization technique developed by Southern in 

1975 (Southern, 1975) for detection of a specific DNA sequence in DNA samples. Southern 

blotting can process only a single or few genes, while microarray technology circumvented this 

restriction by using thousands of different probes attached to a solid surface. Each microarray 

probe contains a specific DNA sequence, a short gene segment or other DNA section of interest, 

to hybridize target cDNA samples under high-stringency conditions. Probe-target hybridization 

can be quantified by measuring fluorophore-labeled targets to determine relative amounts of 

DNA sequences in target samples.  

Multiple microarray platforms are available, such as cDNA microarray (DeRisi, et al., 

1996), Affymetrix (Auer, et al., 2009) and Illumina (Fan, et al., 2006).   Due to inconsistent 

standardization in platform fabrication, microarray data are not directly comparable. To ease the 

exchange and analysis of microarray data from different platforms, it is necessary to address two 

issues about microarray data standardization:  standard data structure for individual microarray 

studies and microarray probe ID mapping across microarray platforms.  

1.1.1 Microarray data structure 

To standardize microarray data structure, a Minimum of Information About a Microarray 

Experiment (MIAME)  project (Brazma, et al., 2001) was proposed, which has six critical 

elements as follows: 

http://en.wikipedia.org/wiki/DNA_sequence
http://en.wikipedia.org/wiki/Fluorophore
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1. The raw microarray data such as CEL files for Affymetrix platform or GPR files for 

cDNA platform 

2. The final data after raw microarray data pre-processing and normalization (Geller, et al., 

2003; Quackenbush, 2002; Schadt, et al., 2001; Steinfath, et al., 2001), usually denoted 

by a numeric data matrix 

3.  The essential annotation for samples such as experimental factors and their values. 

4. The experimental design 

5. Array annotation such as gene identifiers and probe oligonucleotide sequences 

6. The protocols for laboratory and data processing 

MIAME is supported by two major public microarray databases, Gene Expression Omnibus  

(GEO) (Barrett, et al., 2009; Edgar and Barrett, 2006) and ArrayExpress (Rustici, et al., 2008). In 

this dissertation, all microarray data sets subjected to our analysis were downloaded from public 

websites and have been packaged into a MIAME data object using the R language (R 

Development Core Team, 2005) and the Bioconductor package (Dudoit, et al., 2003; Gentleman, 

et al., 2004; Kauffmann, et al., 2009; Nie, et al., 2009).  

1.1.2 Mapping probe IDs to gene IDs 

Because different microarray platforms use their own probe IDs, gene expression values from 

different platforms cannot be compared directly. Normally, probe IDs from different platforms 

are mapped to common gene IDs such as Entrez gene IDs or gene symbols for cross-platform 

comparison (Wheeler, et al., 2003). However, problems arise because one Entrez gene may 

correspond to multiple probe IDs. For example, 22283 probe IDs in the Affymetrix Hgu133a 
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chip have been mapped to 12998 Entrez genes by the Entrez Gene database (Maglott, et al., 

2005) on March 11, 2009. Among all 12998 Entrez genes, 37.7% of them have more than one 

corresponding probe IDs. Thus a method to map the expression values of probe IDs to gene IDs 

is needed (Stalteri and Harrison, 2007). In this dissertation, a simple but acceptable  method has 

been adopted (Falcon and Gentleman, 2007).  If N probe IDs map to one Entrez ID, we selected 

the probe ID with the largest interquartile range (IQR) of expression values among all N probe 

IDs to represent the corresponded Entrez ID. 

In conclusion, microarray data standardization and microarray probe ID mapping for 

cross-platform comparison have been discussed in this subsection. These steps are data pre-

processing procedures before performing meta-analysis. In the next subsection, meta-analysis 

and pathway enrichment analysis methods will be reviewed. For simplicity, we assume genes in 

multiple microarray studies are matched by gene symbols and no missing value exists.  
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1.2 META-ANALYSIS METHODS 

As early as 1904, Karl Pearson (Pearson, 1904) introduced meta-analysis, a method which 

combines the results of several studies to generate more powerful statistics than would be 

provided by analyzing individual studies. Since that time, meta-analysis has been widely applied 

in epidemiologic research (Annie J. Sasco, et al., 1993; Hettema, et al., 2001; Stroup, et al., 

2000).  

In the literature, there are two major categories of meta-analysis: one combines statistical 

significance and the other combines effect sized from individual studies. In the next two 

subsections, we will introduce popular methods of each category and their applications to 

microarray studies. 

1.2.1 Methods for combining statistical significance 

Suppose there are K independent experiments performed to measure a certain effect. θk  are the  

unknown parameters that characterize the effect of study k, k = 1,…,K. The null hypothesis for 

the kth experiment is H0k : θk = 0. If Tk  has a continuous distribution, the significance of a test 

can be defined as the p-value, which is pk = Pr(Tk > tk|H0k). When H0k is true, pk is uniformly 

distributed. Since the p-value does not depend on the statistical distribution of the data, a test of 

the combined statistical significance reflected by p-values is a nonparametric test for meta-

analysis. It is only dependent on the fact that the p-values are uniformly distributed between 0 

and 1 under the null hypothesis.  
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1.2.1.1 Minimum and maximum p-value statistics 

In 1931, Tippett proposed minimum p-value statistics (Tippett, 1931), which can be given by: 

 

where pk is the p-value of in study k. Under the null hypothesis that no genes are differentially 

expressed, pk is uniformly distributed on the interval [0, 1]. Therefore, the distribution of V
minP 

under the null hypothesis can be easily derived which is a beta distribution with parameters α=1 

and β=K. The test became: H0 is rejected if min 1/1 (1 ) ,P kV     where α is the overall 

significance level.   

The maximum p-value statistic is  

max max , 1,..., .P

kV p k K 
 

Similarly, the distribution of V
maxP

 can be derived as a beta distribution with parameters α=K and 

β=1. Both minimum and maximum p-value statistics can be considered to be a special case of a 

more robust rth smallest p-value statistics, Vth=p(r) (Wilkinson, 1951). 

1.2.1.2 Fisher’s statistic 

The well-known Fisher’s statistic (Mosteller and Fisher, 1948) can be obtained from the 

following formula,  

1

2 log( )
K

Fisher

k

k

V p


   . 

Under the null hypothesis that no genes are differentially expressed, the distribution of pk  is a 

uniform distribution on the interval [0, 1]. The distribution of –log(pk) is then an exponential 

distribution with parameter β=1, or equivalently, a gamma distribution with parameters α=1 and 

β=1.  Therefore, the distribution of V
Fisher

  is a gamma distribution with parameters α=k and 

β=1/2,  in other words,  chi square distribution with 2k degrees of freedom. Fisher’s statistic 

min min , 1,..., ,P

kV p k K 
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takes advantage of the relationship between the uniform distribution and the chi-square 

distribution. The test procedure is simple. H0 is rejected if V
Fisher  

> C, where C is the critical 

value that can be obtained from the upper tail of the chi-square distribution with 2k degrees of 

freedom. Fisher’s statistic has been applied in many fields.. Although it has been shown  there is 

no  uniformly most powerful test under Gaussian assumptions, Fisher's method has been shown 

to be powerful under a wide range of alternative hypothesis conditions (Loughin, 2004; Schmid, 

et al., 1991).  

1.2.1.3 Weighted Fisher’s statistic 

Good (Goods, 1955) extended Fisher’s statistics by assigning different positive weights to the K 

experimental results and proposed the weighted Fisher’s statistic 

 

1
log( ),

KWF

k kk
V w p


 

 
where wk is the constant weight for the kth study. The weight can be determined based on 

available prior information such as study quality or expert opinion. Based on Good’s work, the 

exact distribution function of V
WF

 is 

 /2

1

( ) 1 ,k

K
x wWF

k

k

P V x e




     

where  

 
1

1

( )

K

k
k K

k j

j
j k

w

w w






 


. 

Koziol (Koziol and Perlman, 1978) proved if the prior information is available and correct,  the 

weighted Fisher’s procedure has an increased power at the alternatives of interest than standard 

Fisher’s procedure. However, there are two issues about Good’s work. One is that the exact 
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distribution of weighted Fisher’s statistic will result in ill-conditioned calculations if any of the 

weights is zero or if two weights are equal. The other is that the choice of weight is somewhat 

subjective. To solve these problems, Li and Tseng (Li 2008) recently proposed an adaptively 

weighted statistic, discussed in the next section. 

1.2.1.4 Adaptively weighted Fisher’s statistic 

The adaptively weighted (AW) Fisher’s statistics was proposed by Li and Tseng (Li 2008) using 

the following formula 

1

min ( ( )),

( ) log( ),

OW

g
w W

K

g k kk

V p u w

u w w p







 
 

where  wk  is the weight assigned to the kth study and w = (w1,…,wk). For simplicity and better 

biological interpretation, but without loss of generality, the search space is   | 0,1iW w w  . 

Compared with weighted Fisher’s statistics, the AW statistic provides a data-driven method to 

estimate the weight for each study. In addition, the weights used in AW statistic do not have the 

same limitation as weighted Fisher’s statistics has (the weight cannot be zero and any of two 

weights cannot be equal). The AW statistic was designed but not limited to combine microarray 

studies. The adaptively weights provide a natural categorization of the detected DE genes and 

biological interpretation of whether or not a study contributes to the statistical significance of a 

gene.  

1.2.1.5 Inverse normal statistic 

An additional procedure for combining p-values that has widespread use in meta-analysis is the 

inverse normal method that was proposed by Stouffer (Stouffer, et al., 1949): 
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1

1
( )

.

K

kZ k
p

V
K









 

Under the null hypothesis, it is an asymptotically standard normal distribution. H0 is rejected 

when VZ is larger than the critical value of the standard normal distribution. 

The inverse normal statistic also has a weighted version 

1

1
( )

.

K

k kWZ k
w p

V
K









 

 

 

Koziol (Koziol and Perlman, 1978)  investigated the power of  the inverse normal statistic. He 

did not recommend the inverse normal procedure since its power is relatively high only in a 

narrow central wedge of the alternative space.  

1.2.2 Methods for combining effect sizes 

The methods for combining significance do not provide information concerning the size of the 

treatment effect. Therefore, when studies have comparable designs and measure the outcome in a 

similar manner, methods for combining estimates are preferred to the non-parametric methods. 

Fixed, random and mixed effects models are three major types of statistical analysis for 

combining estimates. A review of the methods for combining estimates was provided by Hedges 

(Hedges, 1992). These methods are beyond the scope of this dissertation and the details are not 

discussed here.  
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1.2.3 Meta-analysis methods for microarray studies 

Many studies reported in the biological literature for combining microarray studies used the 

naïve method involving widespread use of intersection/union operations or simple counting of 

appearances in the differentially expressed gene lists obtained from individual studies under 

certain criteria (e.g. False Discovery Rate= 0.05) (Borovecki, et al., 2005; Cardoso, et al., 2007; 

Pirooznia, et al., 2007; Segal, et al., 2004). One can quickly note that intersections are often too 

conservative and unions are anti-conservative, especially when the number of studies increases. 

Rhode et al. (Rhodes, et al., 2002) was the first to apply Fisher’s method to microarray data for a 

real sense of meta-analysis. They later introduced a weighted form of Fisher’s statistic, with the 

weights determined by the sample size of each study (Ghosh, et al., 2003).  

When the studies have a similar design with similar outcomes, combining effect sizes is 

often preferred to combining significance levels. Choi et al. (Choi, et al., 2003) pointed out that 

the approach in Rhode et al. “ignored the interstudy variation” and proposed a random effects 

model under Gaussian assumption. Hu et al. (Hu, et al., 2005) developed a quality measure as 

weights in the random effects model. For Bayesian approaches, Choi et al. (Choi, et al., 2003) 

further extended the random effects model to a Bayesian formulation. Similar Bayesian 

hierarchical models also have been suggested by Tseng et al. (Tseng, et al., 2001) and Conlon et 

al. (Conlon, et al., 2007) for incorporating different levels of replicate information in cDNA 

microarray. Conlon et al. (Conlon, et al., 2007) further introduced a Bayesian standardized 

expression integration model. Shen et al. (Shen, et al., 2004) and Choi et al. (Choi, et al., 2007) 

proposed a Bayesian mixture model to re-scale and combine data sets. 
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1.2.4 Two complementary hypothesis settings  

for a number of meta-analysis procedures have been discussed in the previous sections. As will 

be outlined in the following discussion, these statistics are designed to test two complementary 

hypotheses in general.  

Considering the meta-analysis of K gene expression profiling studies, two 

complementary hypotheses can be defined as:  

HS1:  

Ho:  Gene g is not differentially expressed in all k studies (i.e. θgk=0), , 1,..., .k k K   

Ha: Gene g is differentially expressed in one or some studies (i.e. θgk≠0 for some k) 

where θgk denotes the effect size of gene g in study k. This hypothesis is used to determine which 

genes are differentially expressed in one or more studies. In many applications, it is also of 

interest to determine which genes are differentially expressed in all studies. In the latter case, the 

corresponding hypothesis can be defined as: 

HS2: 

Ho:  Gene g is not differentially expressed in one or more studies (i.e. θgk=0 for some k),  

Ha: Gene g is differentially expressed in all studies (i.e. θgk≠0 , 1,..., .k k K  ). 

Whereas Fisher’s , minP and AW statistics are proposed for HS1 problems, maxP and most 

effect-size models are performed for HS2 problems.  
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1.2.5 Meta-analysis examples 

In this section, an example was given to demonstrate how to apply meta-analysis to microarray 

studies to identify robust drug-related DE genes and biomarkers by combining two drug response 

studies on breast cancer cell lines.  

1.2.5.1 Cell line’s drug response data sets 

Liedtke (Liedtke, et al., 2009) and Neve (Neve, et al., 2006) independently measured genome-

wide gene expression profiling of breast cancer cell lines using Affymetrix hgu133A platform. 

Details of both of their data sets are listed in Table 1.1. The raw microarray data files were 

processed by RMA (Irizarry, et al., 2003), and the data were log2-transformed. Non-specific 

gene filtering was applied to these data sets using the software package R and Bioconductor 

(Gentleman, et al., 2004). If x denotes the expression values of probe i, then probes that do not 

satisfy the following two conditions were filtered out: 1) IQR(x)<0.5; 2) median(x) <log2(100). 

All probe IDs have been transferred to gene symbols. 

The chemosensitivity of the breast cell line to paclitaxel was determined using 50% 

growth inhibitory concentrations (GI50) data (Liedtke, et al., 2009). According to their 

chemosensitivity to paclitaxel, the breast cell lines were categorized into two groups: a sensitive 

group and a resistant group. To calculate the p-values of each gene, the Student’s t-test was 

performed. The maxP statistic was used to combine these two studies. A permutation test was 

used to evaluate the q-values of genes that, due to the distribution of the maxP statistic, were 

hard to obtain analytically.  
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Table 1.1 Summary of drug response data sets. 

Study Platform 

Resistant 

samples 

Sensitive 

samples Probe IDs 

Liedtke (Liedtke, et al., 2009) HGU133A 8 8 22,283 

Neve (Neve, et al., 2006) HGU133A 7 8 22,283 

1.2.5.2 Details of meta-analysis algorithms 

The details of the algorithms that were used to perform the meta-analysis are as follows: 

Suppose there are G genes and K studies (K=2 for this case). 

I. Individual-study analysis: 

a. Compute the Student’s t-statistic for the two-group comparison, tgk  for gene g and 

study k 

b. Permute the group labels in each study B times, and similarly calculate the permuted 

statistics, tgk
(b)

, where 1 ≤ g ≤ G, 1 ≤ k ≤ K, 1 ≤ b ≤ B. 

c. Estimate the p-value of tgk as 
 ( )

'1 ' 1
| | | |

B G b

g k gkb g

gk

I t t
p

B G

 





 
 and similarly calculate 

 ( ') ( )

'' 1 ' 1( )
| | | |

B G b b

g k gkb gb

gk

I t t
p

B G

 





 
.  

d. Estimate )(0 k , the proportion of non-DE genes, as 
)(

)(
)(ˆ

1
0

AlG

ApI
k

G

g
gk





 

  (Storey, 

2002). We chose A=[0.5, 1] and thus l(A)=0.5. 

e. Estimate the q-value of tgk as 
 ( )

0 '1 ' 1

'' 1

ˆ ( ) | | | |

(| | | |)

B G b

g k gkb g

gk G

g k gkg

k I t t
q

B I t t


 



 


 

 


. DE genes 

detected from each individual study are denoted by  05.0:  gkk qgG .  

II. Meta-analysis: 
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a. The maximum p-value statistic (maxP) is used for meta-analysis: gk
Kk

g pV



1
max . 

Define )(

1

)( max b
gk

Kk

b
g pV


 . 

b. Estimate the p-value of the genes in meta-analysis as 
 
GB

VVI
Vp

B

b

G

g
g

b
g

g





  1 1'

)(
'

)(  . 

c. Estimate 0 , the proportion of non-DE genes in the meta-analysis, as 

)(

))((
ˆ

1
0

AlG

AVpI
G

g
g





 

 . We chose A=[0.5, 1] and thus l(A)=0.5. 

d. Estimate the q-value in the meta-analysis as 
 



 



 






G

g
gg

B

b

G

g
g

b
g

g

VVIB

VVI
Vq

1'
'

1 1'

)(
'0

)(

ˆ
)(


. DE 

genes detected by the meta-analysis are denoted as  05.0)(:  gmeta VqgG . 

1.2.5.3 Meta-analysis results 

The meta-analysis results are shown in Figure 1.1. For each individual study, 252 and 594 DE 

genes were identified in the Liedtke and Neve studies, respectively. Using meta-analysis with the 

maxP statistic, 956 genes were considered to be DE genes. The meta-analysis failed to identify 

47 DE genes from the Liedtke study and 143 DE genes from the Neve study (Region VI and 

region VII in Figure 1.1). This can be explained by the fact that the expression patterns of these 

genes were not consistent between the Liedtke and Neve studies (the difference in the p-values 

of these genes was large). Meta-analysis identified 420 DE genes which were not discovered in 

individual studies.  

By checking the literature, we found some DE genes, such as CD44, MSN, and TGFBR2 

are related to the cell line subtype and the drug response (Neve, et al., 2006).  However, the large 

number of DE genes makes it hard to consider them individually. Novel methods, referred to as 
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gene set enrichment analysis or pathway enrichment analysis, have been proposed for the 

analysis of a gene set, rather than individual genes. These methods are reviewed in the next 

chapter. 

 

Figure 1.1  Meta-analysis of drug response studies.  
In the upper panel, the solid red, green, and dark blue circles represent the –log transformation of q-values of meta-

analysis for the Neve and Liedtke studies. The Figure has been divided into seven regions. Region I contains the DE 

genes that were identified by both individual studies and by meta-analysis. Region II contains DE genes that were 

identified by the Liedtke study and meta-analysis, but not by the Neve study. Region III contains DE genes that were 

identified by the Neve study and by meta-analysis, but not by the Liedtke study. Region IV contains DE genes that 

were identified by meta-analysis, but not by either one of the individual studies. Region V contains DE genes that 

were identified by the individual studies, but not by meta-analysis.  Region VI contains DE genes that were 

identified by meta-analysis and the Liedtke study, but not by the Neve study. Region VII contains DE genes that 

were identified by meta-analysis and the Neve study, but not by the Liedtke study. The lower panel shows the Venn 

diagram of the number of DE genes that were identified by meta-analysis and by the individual studies. 
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1.3 PATHWAY ENRICHMENT ANALYSIS 

In section 1.2, meta-analysis methods that combine gene expression information across studies 

were reviewed. Gene expression information can be also integrated within a study. Specifically, 

instead of studying each gene individually, we can also study a gene set. A gene set is a pre-

defined set of genes that may have similar locations or functions or form a particular pathway. If 

genes in a gene set act in concert, this gene set may have important biological effects on the 

phenotype of concern (Subramanian, et al., 2005). Thus, it is important to test whether a set of 

genes is coherently associated with the phenotype of interest. This type of analysis is called gene 

set enrichment analysis or pathway enrichment analysis (Newton, et al., 2007; Subramanian, et 

al., 2005; Tian, et al., 2005). When gene sets are defined by biological pathways, the term gene 

set enrichment analysis and pathway enrichment analysis are interchangeable. The common gene 

set/pathway databases include KEGG, Biocarta, and the gene ontology (GO) databases (Gene 

Ontology Consortium, 2006; Kanehisa and Goto, 2000). The molecular signatures database 

(MsigDB) (Subramanian, et al., 2005) is a collection of gene sets (including KEGG, Biocarta and 

GO) that has five major categories; these are C1: positional gene sets; C2: curated gene sets; C3: 

motif gene sets; C4: computational gene sets and C5: GO gene sets. The C2 collection contains 

two sub-categories: canonical pathways (CP) and gene sets that represent gene expression 

signatures of genetic and chemical perturbations (CGP). Based on the MsigDB version 2.5, CP 

contains 639 gene sets and CGP contains 1186. In this dissertation, CP and CGP gene set 

databases were used as our pre-defined gene sets. As CP and CGP are both pathway-related gene 
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sets, we use the term pathway enrichment analysis hereafter. Unless specified otherwise, the C2 

collection was used as our pathway database.  

Figure 1.2 shows a general diagram for pathway enrichment analysis in an individual 

microarray study. Suppose a data matrix {xgs} (1≤g≤G, 1≤s≤S) represents the gene expression 

intensity of gene g and sample s. Let {ys} (1≤s≤S) represent the phenotype label for sample s, 

where ys stands for microarray designs including 1) ys{0,1} (two groups comparison); 2) 

ys{0,1,2,…,J} (multiple groups comparison); 3) ysR (time series studies); 4) ys{ ts, 

cs}(survival analysis; ts : survival time; cs: censoring status). For simplicity, we assume that ys is 

binary (e.g. 0 represents normal patients and 1 represents tumor patients unless otherwise stated). 

A pathway database matrix {zgp} (1≤g≤G, 1≤p≤P) represents the pathway information of P 

pathways, where zgp=1 when gene g belongs to pathway p and zgp=0 otherwise. The pathway 

enrichment analysis has two main steps as follows: 

Step I. The association scores with phenotype in each gene g are first calculated as tg, 

where tg can either be Student’s t-statistics or one of its variations, such as the moderated t-

statistic (Smyth, 2004). Correlations between gene expression values and phenotype can also be 

used as the association scores. 

Step II. The pathway enrichment evidence score vp is calculated for each pathway p. This 

is the key step in pathway enrichment analysis. The pathway enrichment evidence score is used 

to summarize the association scores of all genes in the pathway. Either non-parametric statistics 

(e.g. Kolmogorov-Smirnov (KS) statistic) or parametric statistics (e.g. mean of t-statistics) can 

be used to summarize the association scores.   

In the following section, we give a brief review of three most commonly used pathway 

enrichment methods.  
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Figure 1.2 Diagram of pathway enrichment analysis. 

1.3.1 Fisher’s exact test method 

The Fisher’s exact test method has been widely used in pathway enrichment analysis as a result 

of its simplicity (Berriz, et al., 2003; Dahlquist, et al., 2002; Draghici, et al., 2003; Zeeberg, et 

al., 2003; Zhong, et al., 2003). The purpose for Fisher’s exact test in this study was to determine 

whether the ratio of DE genes in a gene set was higher than the ratio outside of the pathway. If 

the ratio was higher than would be expected by chance, the pathway was referred to as an 

enriched pathway. The first step in Fisher’s exact test method was to identify DE genes, as 
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shown in Step I in Figure 1.2. The number of DE genes both inside and outside of the pathway 

was then counted as a 2x2 contingency Table (Table 1.2). The p-value for enrichment of a 

pathway was calculated by testing the independence of the 2x2 contingency Table using Fisher’s 

exact test. The null and alternative hypothesis for the Fisher’s exact test is: H0: θ1= θ2 and H1: 

θ1> θ2, where θ1  and  θ2 are the probability of DE genes inside and outside of the pathway.  The 

observed numbers of DE genes inside and outside of pathways are npd and np
c
d  respectively 

(shown in 1.2). Under the null hypothesis, the conditional distribution of npd  given the marginal 

totals is the hypergeometric distribution,  

 

c

p p

c
pd p d

d

n n

n n

N

n

  
    

  

 
 
 

 

where N, nd and np are fixed numbers. Let Npd  and Nd denote the random variables for the 

observed value npd and nd. The null hypothesis is rejected when Npd  is larger than the critical 

values.  The exact p-value is P(Npd> npd | Nd = nd) , which can be calculated from all possible 2 

by 2 Tables which have the same marginal totals as the observed one, but having a value of Npd 

more extreme than npd (Mehta, et al., 1984). 
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Table 1.2 2x2 Table for enrichment analysis. 

 DE genes non-DE genes Total 

In the pathway  npd npd
c
 np 

Not in the pathway  np
c
d np

c
d

c
 np

c
 

Total  nd nd
c
 N 

 

Though Fisher’s exact test method is widely used, its shortcomings are obvious. First, by 

dividing genes into two categories (DE genes and non-DE genes), it loses information by only 

counting the number of DE and non-DE genes instead of considering the order of the genes or 

their p-values. In addition, the selection of the p-value cutoff that is used to define DE and non-

DE genes, is always ad-hoc. The shortcomings of Fisher’s exact test method can be overcome by 

the use of a couple of methods. For example, the average t-statistics of genes in a pathway p can 

be used to summarize the gene expression information; this method is outlined in the following 

section. 

1.3.2 Averaging association score method 

Let Tp denote the average of t-statistics of all genes in the pathway p, then: 

 

1 1

,
G G

p gp g gp

g g

T z t z
 

 
. 

where 1≤p≤P. As there is some difficulty in obtaining the distribution of Tp analytically, a 

permutation test was applied to obtain the p-value of Tp. This method was proposed and 
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discussed in detail by Tian et al. (Tian, et al., 2005). Efron and Tibshirani (Efron and Tibshirani, 

2007) provided an improved method, that involved introducing max-mean statistics and a re-

standardization procedure.  

1.3.3 KS test method 

Let A and B denote the p-values of genes from inside and outside the pathway p, respectively, in 

which there are m genes in the pathway p and n genes outside of the pathway p. The order 

statistics for A and B are: A(1),   A(2),  … ,  A(m) and B(1),   B(2), … ,   B(n). The corresponding 

empirical distribution functions, ˆ ( )AF x  and ˆ ( )BF x  for A and B, can be defined as follows:  
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and  
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Let FA and FB denote the population distribution for A and B, respectively. The one-sided two 

sample KS test can be defined based on the formula: 

 max[ ( ) ( )],A B
x

KS F x F x   

in which the null hypothesis and the alternative hypothesis are:  
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0
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The rejection region can be KS  ≥ Cα  

where  

 
,( | )i j oP D c H   . 

Rejection of H0 means that A is stochastically less than B (the CDF of A lies above and hence to 

the left of that for B). In another words, the p-values of genes in the pathway p are stochastically 

less than the p-values of genes outside of pathway p. This indicates that genes in the pathway p 

have a stronger association with phenotype than genes from outside of the pathway p; thus, the 

pathway p is of interest. The computational method for calculating ( | )oP KS c H   is provided 

by Marsaglia et al (Marsaglia, et al., 2003). The KS test method was first applied to gene set 

enrichment analysis by Subramanian et al (Subramanian, et al., 2005). They also introduced a 

weighted KS test method and provided the software package GSEA.  

1.3.4 Control of false discovery rate and evaluation of q-values 

We have reviewed three widely used methods for calculating the pathway enrichment evidence 

score and its p-value. Considering that the null distribution of the pathway enrichment evidence 

score is difficult to obtain analytically, a permutation test is typically applied to control the false 

discovery rate and evaluate the q-value of the pathway. Two basic permutation procedures, 

sample-wise permutation and gene-wise permutation, have been proposed. These are based on 

two related, but not equivalent, null hypotheses (Q1 and Q2, respectively) as follows: 
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Q1: the genes in a gene set have the same pattern associated with the phenotype of interest as 

the genes outside of the gene set. 

Q2: no genes in the gene set have expression patterns associated with the phenotype.  

Details about these two null hypotheses are discussed by Tian (Tian, et al., 2005), 

Geoman (Goeman and Buhlmann, 2007) and Efron (Efron and Tibshirani, 2007). Briefly, Q1 

takes the background information (the expression of genes outside of the pathway) into 

consideration, whereas Q2 does not.  

Both of these permutation strategies can work with all three of the aforementioned 

pathway enrichment methods to evaluate the q-values of pathways. Normally, the false discovery 

rate is controlled at 5% (this means that among detected pathways, on average 5% are false 

discoveries). For further investigation, all pathways with a q-value less than 5% are reported as 

enriched pathways (i.e. {p: q(vp) ≤ 5%}). 

Reviews and method comparisons of pathway enrichment analyses are available at 

(Ackermann and Strimmer, 2009; Dorum, et al., 2009; Khatri and Draghici, 2005; Nam and Kim, 

2008; Tomfohr, et al., 2005). Our MAPE procedures provided a general statistical framework for 

performing meta-analysis on pathways. Most of the meta-analysis and enrichment analysis 

methods could be adopted into our framework. For simplicity, we used the KS test method to 

demonstrate our MAPE procedures.  

1.3.5 Examples of pathway enrichment analysis 

Here, we give an example of pathway enrichment analysis for the breast cancer patient’s 

chemotherapy data sets.  
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1.3.5.1 Breast cancer patient’s chemotherapy data sets 

Breast cancer patient’s chemotherapy data sets were provided by Hess et al (Hess, et al., 2006). 

Tordai et al (Tordai, et al., 2008) have performed pathway enrichment analysis on Hess data 

using GSEA. To illustrate the advantage of pathway enrichment analysis, we re-analyzed Hess 

using a slightly different method.  

Hess data included 51 estrogen receptor (ER) positive and 82 ER negative breast cancer 

patients. Before chemotherapy treatment, a fine-needle aspiration biopsy of the cancer was taken 

from each patient. These needle aspiration samples were prepared for microarray analysis using 

Affymetrix platform HGU133A. All patients were treated with paclitaxel, followed by 5-

fluorouracil, doxorubicin, and cyclophosphamide (TFAC) for a period of six months. After 

completion of chemotherapy, the pathologic complete response (pCR) of each patient was tested. 

There are 7 pCR patients in the ER+ group and 27 patients in the ER- group. Because ER+ and 

ER- patients suffer from two different sub-types of breast cancer, pathway enrichment analysis 

should be applied to ER+ and ER- patients separately. Our example includes only ER+ patients. 

Microarray data were pre-processed according to the same procedure as in section 1.3.5. C2 

collection of MsigDB (Subramanian, et al., 2005) was used as our pathway database.  

1.3.5.2 DE gene analysis 

To identify DE genes in the pCR patients and the non-pCR patients, we first performed an 

unequal variance Student’s t-test. P-values of the genes were adjusted for simultaneous inference 

using the Benjamini & Hochberg method (Benjamini and Hochberg, 1995). When the adjusted 

p-value cutoff was set as 0.05, no DE genes were identified. This result is consistent with the 

findings of Tordai, who applied the beta-uniform mixture (BUM) method to control the FDR 

(Tordai, et al., 2008).  
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Although the t-test failed to identify DE genes, it does not follow that there were no real 

transcriptional difference between pCR patients and non-pCR patients. A set of related genes 

acting in concert could have a significant effect, even if there was no statistical difference in 

single genes between both sets of patients. This situation has been discussed in (Subramanian, et 

al., 2005). For the present chemotherapy study, our pathway enrichment analysis did identify 

multiple important pathways.   

1.3.5.3 Algorithm details 

Details of the pathway enrichment algorithm are as follows: 

1. Calculate ( )gp t , the p-value of gene g by Student’s t-test, 1≤g≤G. 

2. Compute KS
pP , the p-value of pathway p, by one-sided KS test (details in section 

1.3.3.) 

3. Permute gene labels C times, and calculate the permuted statistics, ( )KS c
pP  , 1 ≤ c ≤ 

C. 

4. Estimate the p-value of pathway p as 
( )

'1 ' 1
( ) ( )

C P KS c KS
p p pc p

p v I P P C P
 

     

and similarly calculate
( ') ( )

'' 1 ' 1
( )
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 

    .  

5. Estimate 0 , the proportion of non-enriched pathways in the meta-analysis, as 

1

0
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
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. We chose A=[0.5, 1] and thus l(A)=0.5. 

 

6. Estimate q-value of pathway p as  

( )
0 ' '1 ' 1 ' 1

ˆ( ) ( ) ( )
C P PKS c KS KS KS

p p p p pc p p
q v I P P C I P P

  
      .  
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1.3.5.4 Pathway enrichment analysis results 

 

Table 1.3  Pathway enrichment analysis for Hess data. 

Pathways Q-values 

ZHAN_MM_CD138_PR_VS_REST 0.000 

HOFFMANN_BIVSBII_BI_TABLE2 0.000 

LEE_TCELLS3_UP 0.000 

DOX_RESIST_GASTRIC_UP 0.000 

CANCER_UNDIFFERENTIATED_META_UP 0.000 

IDX_TSA_UP_CLUSTER3 0.000 

BRCA_ER_POS 0.000 

ADIP_DIFF_CLUSTER5 0.000 

SERUM_FIBROBLAST_CELLCYCLE 0.000 

CMV_IE86_UP 0.000 

YU_CMYC_UP 0.000 

GREENBAUM_E2A_UP 0.000 

VERNELL_PRB_CLSTR1 0.000 

LE_MYELIN_UP 0.001 

OLDAGE_DN 0.002 

IRITANI_ADPROX_LYMPH 0.002 

CROONQUIST_IL6_STARVE_UP 0.007 

CELL_CYCLE 0.007 

LI_FETAL_VS_WT_KIDNEY_DN 0.009 

P21_ANY_DN 0.014 

CELL_CYCLE_KEGG 0.016 

BRCA_PROGNOSIS_NEG 0.017 

BRENTANI_CELL_CYCLE 0.017 

SMITH_HCV_INDUCED_HCC_UP 0.019 

HG_PROGERIA_DN 0.026 

FLECHNER_KIDNEY_TRANSPLANT_REJECTION_DN 0.026 

RUIZ_TENASCIN_TARGETS 0.027 

PARP_KO_UP 0.028 

SASAKI_TCELL_LYMPHOMA_VS_CD4_UP 0.035 

SASAKI_ATL_UP 0.035 

VANTVEER_BREAST_OUTCOME_GOOD_VS_POOR_DN 0.036 

VANTVEER_BREAST_OUTCOME_GOOD_VS_POOR_UP 0.036 

BRCA_PROGNOSIS_POS 0.037 

FRASOR_ER_UP 0.038 
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GOLDRATH_CELLCYCLE 0.038 

GAY_YY1_DN 0.039 

UVC_TTD_4HR_DN 0.040 

SHEPARD_CRASH_AND_BURN_MUT_VS_WT_DN 0.041 

HSA00640_PROPANOATE_METABOLISM 0.042 

BREAST_DUCTAL_CARCINOMA_GENES 0.042 

TAVOR_CEBP_UP 0.046 

P21_P53_ANY_DN 0.047 

 

Results of the pathway enrichment analysis are listed in Table 1.3. In our analysis, a total 

of 42 enriched pathways were identified using the KS test. These pathways are predominately 

related to cell cycle, cell proliferation, oncogenic pathways and the estrogen receptor-associated 

gene set. Noticeably, our results indicate that some important oncogenic pathways related to P53 

(P21_P53_ANY_DN), MYC (YU_CMYC_UP) may be highly correlated to the chemotherapy 

response. The most interesting enriched pathway that we detected was the gene module related to 

doxrubicin resistance in gastric cancer cell lines (DOX_RESIST_GASTRIC_UP). This indicates 

that there are some common mechanisms for drug response across different tumor types.  
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2.0  META-ANALYSIS FOR PATHWAY ENRICHMENT ANALYSIS (MAPE) 

2.1 MAPE METHODS 

In this chapter, we first present the rationale, general framework, and analysis flow charts of two 

meta-analysis approaches for pathway enrichment: MAPE_G and MAPE_P. We show two 

example pathways from lung cancer data to demonstrate the complementary advantages of the 

two methods. Finally, we introduce a simple integrated approach, MAPE_I, to incorporate the 

advantages of both methods. We then discuss and outline the implementation details. 

2.1.1 Framework of MAPE_G and MAPE_P 

When combining multiple studies, we assume genes in multiple studies are matched and no 

missing value exists. Denote by {xkgs} (1≤k≤K, 1≤g≤G, 1≤s≤Sk) the expression intensity of gene 

g and sample s in study k. {yks} (1≤k≤K, 1≤s≤Sk) and yks{0,1} represents the phenotype label 

for sample s in study k. Figure 2.1A shows the procedure for the MAPE_G method. In Step I, the 

association scores with phenotype are calculated in each study (i.e. {tkg} (1≤g≤G)). In Step II 

meta-analysis is performed for biomarker detection and produces a new association score after 

meta-analysis at the gene level (i.e. { gu } (1≤g≤G)). In Step III, the pathway enrichment analysis 
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is performed as in Step II in Figure 1.2.The evidence scores {vp}, corresponding q-values {q(vp)} 

 

Figure 2.1 The diagram for MAPE_G, MAPE_P, and MAPE_I procedures.   

 

and a list of enriched pathways are then generated. This method can be viewed as a natural 

combination of meta-analysis for biomarker detection (Step I and II) and pathway enrichment 

analysis (Step III) in a sequential manner. Rhodes (Rhodes, et al., 2002) has implicitly performed 

A similar analysis by queried DE genes obtained by meta-analysis in the KEGG database 
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(Kanehisa and Goto, 2000). For MAPE_G proposed in this study, we replaced the two-stage 

separated procedures with a unified evaluation of permutation test. 

In Figure 2.1B, an alternative procedure for MAPE_P is shown. The Step I of association 

scores for each study is identical to that in MAPE_G. In Step II, instead of meta-analysis at the 

gene level, we performed pathway enrichment analysis in each individual study to obtain the 

study-wise pathway enrichment evidence scores: {vkp} (1≤k≤K, 1≤p≤P). The meta-analysis on 

the pathway level was then performed in Step III to assess the combined evidence score and q-

values (i.e. (Kuo, et al.) and {q(wp)} (1≤p≤P)).  

2.1.2 Complementary advantages of MAPE_G vs. MAPE_P 

MAPE_P has an important advantage in that the genes across multiple studies need not be 

matched to perform meta-analysis as in MAPE_G (Step II of Figure 2.1A). Specifically, we can 

relax data in Figure 2.1B to {xkgs} (1≤k≤K, 1≤g≤Gk, 1≤s≤Sk) and {tkg} (1≤g≤Gk) so that different 

studies may have a different number of genes and the genes are not matched across studies. The 

gene matching issue is particularly significant when studies from different microarray platforms 

are combined. Supplemental Table 1 shows summary statistics of two lung cancer studies that 

were combined. The Bhat study used the Affymetrix U95A platform and the Beer study used 

Affymetrix HG6800. Only 5,515 Entrez genes overlapped across the two studies and the 

MAPE_G method had to drop information from 3,490 out of 9,005 genes that appear in Bhat but 

not in Beer. When more studies of different array platforms are included, the number of 

overlapping genes will decrease dramatically. Published studies have also demonstrated weak 

consistency across studies at the gene level but increased consistency at the pathway level. In 

general, then, MAPE_P seems to be preferable to MAPE_G.  
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When we analyzed a combination of two lung cancer studies, however, we identified 

some examples with  better power by MAPE_P and others with MAPE_G. Figure 2.2 shows two 

example pathways of ALCALAY_AML_NPMC_UP (AANU; genes with increased expression 

in acute myeloid leukemia bearing cytoplasmic nucleophosmin)  and 

HDACI_COLON_TSABUT_UP (HCTU; genes up-regulated by both butyrate and trichostatin A 

at any time point up to 48 hrs in SW260 colon carcinoma cells), based on the C2 collection of 

MsigDB. AANU was identified as an enriched pathway by MAPE_P but not by MAPE_G 

(Figure 2.2 A and B). In contrast, HCTU was identified by MAPE_G but not by MAPE_P 

(Figure 2.2 C and D). We performed differential expression analysis by SAM in each study 

separately (FDR=5%) and found that only 13 genes were identified as DE genes in both studies 

in the AANU pathway. Thirteen genes were DE in Beer but not in Bhat, and 27 genes were DE 

in Bhat but not in Beer. We defined a simple concordance index (CI) as the ratio of common DE 

genes in both studies versus DE genes in at least one of the two studies. The AANU pathway 

was detected by MAPE_P but not by MAPE_G because the CI is as low as 

13/(13+13+27)=0.245. When we pursued meta-analysis at the gene level, very few genes were 

significant in Step II of Figure 2.2A although the meta-analysis at the pathway level in Step III of 

Figure 2.2B is quite significant. On the other hand, the high CI in the HCTU pathway 

(CI=13/(13+1+9)=0.565) increased the statistical power of MAPE_G while MAPE_P did not 

have enough power to detect this pathway. Such high CI pathways detected only by MAPE_G 

are usually important because the biomarkers are repeatedly identified in multiple studies. From 

the two examples above, we conclude that although intuitively MAPE_P has the convenience of 

not having to match genes across studies, MAPE_G has an advantage in particular situations. 
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Based on this finding, we developed a simulation scheme (shown in the Results Section) to 

illustrate conditions when MAPE_G outperforms MAPE_P and vice versa.  

 

 

Figure 2.2. Examples of two pathways identified by MAPE_P and MAPE_G in lung cancer 

studies.  
 AANU is detected by MAPE_P but not by MAPE_G whereas HCTU is detected by MAPE_G but not MAPE_P. A 

and C: The heatmaps display log-transformed (base 10) q-values by gradient color. B and D: Venn diagram of 

biomarkers detected by each individual study (Beer and Bhat). 

2.1.3 Framework of MAPE_I 

Since pathways detected by both MAPE_G and MAPE_P are of biological interest, we propose a 

simple integrative method, namely MAPE_I, to incorporate the complementary advantages of 
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both methods (Figure 2.1C). Specifically, we used a minP statistic that takes the minimum p-

value from MAPE_G and MAPE_P for each pathway. The statistical inference and control of 

FDR were similarly performed by permutation analysis. 

2.1.4 Implementation strategy  

Numerous pathway analysis and meta-analysis methods for microarray data have been described. 

Most of these methods have pros and cons under different conditions and for different biological 

goals. Under the general framework shown in Figure 2.1 for MAPE_G, MAPE_P and MAPE_I, 

we can virtually apply and combine any pathway analysis and meta-analysis method for 

implementation. There are four major considerations or choices in practice: A. statistics used for 

association evidence with phenotype (i.e. tgk); B. statistics used for meta-analysis at the gene 

level (Step II in Figure 2.1A) or the pathway level (Step III in Figure 2.2B); C: statistics used in 

pathway enrichment analysis (step III in Figure 2.2A and step II in Figure 2.2B); D. permutation 

test used for statistical inference and FDR control.  

A. Statistic selection for association evidence with phenotype: For simplicity, but 

without loss of generality, we considered t-statistics for a binary phenotype label. For multi-

class, continuous, or censored survival phenotype, different test statistics, such as F-statistics, 

Pearson correlation measure, or statistics from the Cox proportional hazard model, may be used 

respectively.  

B. Statistic selection for meta-analysis: Various meta-analysis statistics, including 

Fisher’s statistic, minimum p-value statistic (minP), and maximum p-value statistic (maxP), have 

been discussed in the Introduction Section. The best choice of meta-analysis statistic depends on 
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the particular biological goal of interest. Following the convention of Birnbaum (Birnbaum, 

1954), two different hypothesis settings may be considered: 

 KkHKkHHS kgAkg  1 ,0:  versus1 , 0 oneleast at ::1 0   

 KkHHHS kgAKgg  1 ,0 oneleast at  :  versus0::2 10   , 

where kg represents the effect size of gene g in study k. HS1 corresponds to the 

biological question: “which genes are consistently differentially expressed in all studies?”. In 

contrast, HS2 detects genes if they are differentially expressed in one or more studies. It can be 

seen that maxP corresponds to HS1, and Fisher’s statistic and minP correspond to HS2. In this 

paper, we focus on the conservative maxP statistic to identify consistent biomarkers across all 

microarray studies. Specifically, we will calculate the p-values of evidence scores at the gene 

level in Step II of Figure 2.1A or at the pathway level in Step III of Figure 2.1B. The maxP 

statistic for meta-analysis at the gene level is 1max ( )g k K kgu p t   and the pathway level is

1max ( )p k K kpw p v  . 

C. Statistic selection for the pathway enrichment analysis method: The goal of 

pathway analysis is to test whether genes in a pathway are coherently associated with the 

phenotype of interest. Here we demonstrate our MAPE procedures by using the KS test. Any 

gene set analysis method described above can be adopted into our general framework depicted in 

Figure 2.1.  

D. Control of false discovery and evaluation of q-values: The p-values and q-values of 

pathway enrichment evidence scores are usually computed by permutation test, considering that 

the null distribution of gene set statistics is difficult to obtain analytically.  
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2.1.5 Algorithms details 

Algorithms for all three MAPE methods are listed in the following sections. 

2.1.5.1 Algorithms for MAPE_P 

The basic procedure of MAPE_P is to first calculate the p-value of each pathway in each 

study. Then, combine the p-values of the pathways across studies by maxP statistics. 

I. Pathway enrichment analysis:  

1. For each study k, calculate ( )gkp t , the p-value of gene g, by Student t-test, 1≤g≤G. 

2. Given a pathway p, compute the KS statistic vpk that compares the p-values (p(tgk)) 

inside and outside the pathway.  

3. Permute gene labels B times, and calculate the permuted statistics, )(b

pkv  , 1 ≤ b ≤ B. 

4. Estimate the p-value of KS statistic in pathway p and study k as 
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II. Meta-analysis:  

1. The maximum p-value statistic (maxP) is applied for meta-analysis: )(max1 pkKkp vpw   

and )(max )(

1
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3. Estimate 0 , the proportion of non-enriched pathways in the meta-analysis, as 

1

0

( ( ) )
ˆ

( )

P

pp
I p w A

P l A









. We choose A=[0.5, 1] and thus l(A)=0.5. 

4. Estimate q-value of pathway p as 
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 05.0)(:_  pPMAPE wqp  is the enriched pathways obtained by MAPE_P. 

2.1.5.2 Algorithms for MAPE_G 

Suppose there are K studies and G genes in each study.  

I. For a given study k, compute the p-value of differential expression of each gene: 

1. Compute the t-statistic, tgk, of gene g in study k, where 1 ≤ g ≤ G, 1 ≤ k ≤ K. 

2. Permute group labels in each study B times, and calculate the permuted statistics, )(b

gkt , 

where 1 ≤ b ≤ B. 

3. Estimate the p-value of tgk as 
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II. Meta-analysis: 

1. The maximum p-value statistic (maxP) , )(max1 gkKkg tpu  , is applied for the meta 

analysis. Similarly, )(max )(

1

)( b

gkKk

b

g tpu  .  

2. Estimate the p-value of maxP statistics as  
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III. Enrichment analysis:  

1. Given a pathway p, compute vp, the KS statistic for gene set enrichment based on p(ug). 
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2. Permute gene labels B times, and calculate the permuted statistics, )(b

pv  , 1 ≤b≤B. 

3. Estimate the p-value of pathway p as 
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 05.0)(:_  pGMAPE vqp  is the enriched pathways obtained by MAPE_G. 

2.1.5.3 Algorithms for MAPE_I 

1. Let  )(),(min ppp wpvps   and  )(),(min )()()( b
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2. Estimate the p-value of sp as 
PB

ssI
sp

B

b

P

p p

b

p

p 



  1 1'

)(

' )(
)( .  
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 05.0)(:_  pIMAPE sqp  is the enriched pathway identified by the method MAPE_I. 
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2.2 SIMULATION COMPARISON OF MAPE METHODS 

We applied a one-pathway simple simulation model to compare the power of MAPE_G and 

MAPE_P to identify conditions (parameter subspace) in which one method outperforms the 

other. The result gives us insight into the unique advantages of MAPE_G and MAPE_P. It also 

argues the necessity of MAPE_I when a mixture of the two types of pathways exists in the data 

and we are interested in detecting both types of pathways. 

Suppose G=500 genes are contained in the genome. The first 100 genes belong to a 

pathway. Our pathway database has only one pathway (p=1): {zgp}, zgp=1 when 1≤g≤100 and 

zgp=0 when 101≤g≤500. We generate a random binary vector D={d1,,dG} to indicate whether 

gene g is a DE gene or not. The probability of being a DE gene in the first 100 genes is  and the 

probability of being a DE gene in all 500 genes is 0. (i.e. Pr(dg=1)=  if 1≤g≤100 and Pr(dg=1)= 

0 if 1≤g≤500). We fix 0=0.1 in our simulation. Intuitively, there is no pathway enrichment if 

=0.1 and pathway enrichment exists if >0.1. 

Given the DE gene indicators, two independent array studies are subsequently simulated 

for meta-analysis. We assume each study contains S=40 samples. The first 20 samples are 

controls and the next 20 samples are cases (i.e. ys=0 if 1≤s≤20 and ys=1 if 21≤s≤40). When gene 

g is a DE gene (dg=1) and for all k, the expression intensities are simulated from xkgs~N(,1) if 

1≤s≤20 and xkgs~N(0,1) if 21≤s≤40. For a non-DE gene g (dg=0), the expression intensities are 

simulated from xkgs~N(0,1) s and k. We further assume that the two array studies adopt 

different array platforms and each of them only covers a portion of genes in the genome. We 

assume the chance of each gene to be covered by study k is randomly generated with a sampling 

rate k. The sampled indicator vectors for gene g in study k is denoted by hgk, where hgk =1 if 
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gene g appears in study k and hgk =0 otherwise. In the following, we set =Pr(hgk=1)=k 

(1≤g≤G=1000 and 1≤k≤K=2). As a result, study k contains  


G

g gkk hG
1

 genes in the data matrix, 

which is a random variable and may be different in each simulation. The overlapped gene set of 

the two studies contains  


G

g gg hhG
1 21' . In the implementation of MAPE_P, the original data in 

both studies with G1 and G2 genes can be used. For MAPE_G, the method requires only matched 

genes and the subset of G′ overlapped gene set in each study will be applied.  

The powers of MAPE_P, MAPE_G, and MAPE_I are calculated as follows: 

1. Simulate study one and study two with a given parameter vector {, , }. Compute 

the p-value of the gene set enrichment by MAPE_G and MAPE_P methods. We will declare that 

the gene set is found enriched if the p-value is less than 5%. 

2. Repeat step 1 and 2 for B=200 times.  

3. Suppose the p-values for MAPE_G and MAPE_P are )(b
Gp  and )(b

Pp  respectively, the 

powers are calculated as   BpIPower
B

b

b
GG  
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1

)( 05.0),,(   and   BpIPower
B

b

b
PP  
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1

)( 05.0),,(   for each 

method. 

We perform α={0.15, 0.2, 0.25, 0.3}, ={0.4, 0.6, 0.8, 1} and assign the values to θk 

based on the following 5 scenarios:  

1) θ1 and θ2  are fixed values and θ1 = θ2; K=2. 

We first investigated this simple scenario and θ varies from 0.5 to 4. Specifically, θ1 = θ2  

={0.5, 0.75, 1, 1.5, 2, 4}.  

2)  θ1 and θ2  are fixed values but θ1 ≠ θ2,  K=2. 

Let θ=[θ1, θ2]. Then the power of MAPE_P and MAPE_G were calculated when θ was 

assigned to [2,3] and [2,4] respectively. 

3) θk is fixed and θ1 = θ2=…=  θK , K=4 and 10.  
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In this scenario, the number of studies was increased to 4 and 10 and θk=0.5, 1, 2, 4, 

k=1,2,…,K. 

4) θk is a random variable and normally distributed, K=2. 

In scenario 1-3, θk  is a fixed value. In this scenario, θk was assigned to random number 

generated by normal distribution with mean equal to m and standard deviation equal to s, where 

m={1.5, 2, 4} and s=0.5. 

5) K=4 and one of 4 studies is considered as an outlier. 

In scenario 1-4, all studies are consistent with each other. In this scenario, 4 studies were 

generated and one of them was considered as an outliers. We simulated this scenario by two 

ways:  

5.1) θk=2, k=1,2,3. θ4 =.1.  

In this case, in the first three studies, θ was set to 2. In the fourth study, θ was set to a 

smaller value, 0.1, instead.  

5.2) θk~N(2,0.05),  k=1,2,3. θ4~N(2,0.2).  

In this case, 4 studies were simulated and θk was set to 2, k=1, 2, …, 4. Then noise was 

added to the expression values. In the first three studies, the noise was distributed as N(0, 0.05) 

and in the fourth study, the noise was stronger and distributed as N(0, 0.2).  

A total of B=200 independent simulations are performed for each parameter setting. 

Intuitively,  represents the effect size of the DE genes in the data,  represents the strength of 

pathway enrichment, and  represents the coverage of an array platform on the genome. The 

power calculation of MAPE procedures is calculated as the proportion of times the pathway is 

claimed as an enriched pathway.  
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The power of MAPE_P, MAPE_G and the power difference of MAPE_P and MAPE_G 

(i.e. ),,(),,( __  GMAPEPMAPE PowerPower  ) for scenario 1-5 were shown in Figure 2.3 to 2.8 respectively 

by gradient colors under different ,  and  conditions. The smooth contour plots are performed 

with a surface smoothing technique using the R package field (Fields Development Team, 2006).  

For the results for scenario 1 shown in Figure 2.3, we can clearly see that, when  is low 

(0.5≤θ1 = θ2≤1), MAPE_G is more powerful than MAPE_P when the pathway enrichment 

strength  is low. Specifically, MAPE_G is more powerful than MAPE_P when 1) θ1 = θ2=0.5 

and  is lower than around 0.25; 2) θ1 = θ2=0.75 and  is lower than around 0.19; 3) θ1 = θ2=1,  

is lower than around 0.18 and 0.4≤≤0.6. The cutoff of  for MAPE_G dominating MAPE_P is 

roughly decreasing when θ increases.  

When  is large (1.5≤θ1 = θ2≤4), MAPE_G is more powerful than MAPE_P when the 

array coverage rate  (0.7≤≤1) is high and the pathway enrichment strength  is low 

(0.15≤≤0.2).  

The above observations are consistent with the complementary advantages of MAPE_G 

vs. MAPE_P discussed in section 2.1.2. When both of the effect size  and the pathway 

enrichment strength  are low, the MAPE_P procedure has low power to detect enriched 

pathway in each individual study thus also has lower power to detect enriched pathway after 

meta-analysis step. However, MAPE_G procedure combines p-values of genes directly and is 

able to detect more DE genes than MAPE_P procedure, which makes MAPE_G more powerful. 

On the other hand, when the effect size  is large, for a low array coverage rate  (0.4≤≤0.7), 

the advantage of MAPE_P of not requiring gene matching across studies becomes evident and 

MAPE_P is more powerful than MAPE_G.  

For scenario 2 (Figure 2.4), when θ1 ≠ θ2, we got similar results as that for scenario 1.  
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For scenario 3, when the number of study K = 4 (Figure 2.5), MAPE_G is more powerful 

than MAPE_P when array coverage rate  is large. When K= 10 (Figure 2.6), MAPE_G is more 

powerful than MAPE_P almost everywhere in the parameter space.  In our simulation model, the 

number of common genes among all studies exponentially decreases with respect to K, while the 

low number of common genes leads to low power of MAPE_G procedure.  

For scenario 4 (Figure 2.7) and scenario 5 (Figure 2.8), similar results were found as that 

for scenario 1.  

Our simulation examines the power of a single pathway. In a real application, hundreds to 

thousands of pathways are analyzed in the pathway database. Both types of pathways for which 

MAPE_G or MAPE_P have better power will co-exist in an analysis. This motivates our 

development of an integrated method MAPE_I to incorporate the advantages of the two methods.  

In the next step, the power of MAPE_I was compared to the power of MAPE_P and MAPE_G 

for scenario 1-5 (Figure 2.9 to 2.14). The simulation results show that MAPE_I clearly has more 

robust performance than MAPE_G or MAPE_P.  
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Figure 2.3. Power comparison between MAPE_P and MAPE_G for scenario 1.  

The first two columns represent the power of MAPE_P and MAPE_G respectively. The third column 

represents the difference between the power of MAPE_P and the power of MAPE_G. θ1 and θ2  are fixed values and 

θ1 = θ2. 
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Figure 2.4 Power comparison between MAPE_P and MAPE_G for scenario 2.  
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Figure 2.5 Power comparison between MAPE_P and MAPE_G for scenario 3 when 

K=4.  
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Figure 2.6 Power comparison between MAPE_P and MAPE_G for scenario 3 when 

K=10.  

 

 

 

 



 48 

 

 

 

 

 

Figure 2.7 Power comparison between MAPE_P and MAPE_G for scenario 4.  
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Figure 2.8 Power comparison between MAPE_P and MAPE_G for scenario 5.  
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Figure 2.9 Power comparison among MAPE_I,  MAPE_P and MAPE_G for 

scenario 1. 
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The statistical power of MAPE_P (blue dashed lines), MAPE_G (green dashed lines) and MAPE_I (red solid lines) are 

displayed (on y-axis) for different  (on x-axis) and different  (four columns). The result shows that MAPE_I always have the 

best or near the best statistical power among the three. 

 

Figure 2.10 Power comparison among MAPE_I,  MAPE_P and MAPE_G for 

scenario 2. 
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Figure 2.11 Power comparison among MAPE_I,  MAPE_P and MAPE_G for 

scenario 3 when K=4. 
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Figure 2.12 Power comparison among MAPE_I,  MAPE_P and MAPE_G for 

scenario 3 when K=10. 
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Figure 2.13 Power comparison among MAPE_I,  MAPE_P and MAPE_G for scenario 4. 

 

Figure 2.14 Power comparison among MAPE_I,  MAPE_P and MAPE_G for 

scenario 5. 
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2.3 APPLICATIONS ON REAL MICROARRAY DATA SETS 

2.3.1 Application to the drug response studies 

In section 1.2.6, gene level meta-analysis has applied on two chemosensitivity studies. In this 

section, we applied MAPE approaches to the same data sets to identify enriched pathways that 

are related to drug response to paclitaxel in breast cancer cells lines. In our analysis, when the q-

value cutoff was set to 0.15, 60 pathways were identified by MAPE_P, 36 by MAPE_G, and 54 

by MAPE_I. If we relax the q-value cutoff of MAPE_I to 0.2, then all the 71 pathways identified 

by MAPE_P or MAPE_G at cutoff 0.15 were also identified by MAPE_I, showing that MAPE_I 

is a good way to incorporate and summarize results from MAPE_P and MAPE_G. To 

demonstrate the advantage of meta-analysis, the result from MAPE_I was compared to 

individual study pathway analysis (lower plots of Figure 2.15). The Liedtke study identified 28 

pathways and the Neve study identified 21 pathways, while MAPE_I detected a total of 54 

pathways. Among the 27 pathways detected by MAPE_I but not by either individual study 

analysis (group IV in Figure 2.15 lower-right Venn diagram), many are known drug-response 

related pathways, including LEE_MYC_TGFA_UP, EGF_HDMEC_UP. Details of all enriched 

pathway results are listed in supplemental Table 2.  These pathways are predominantly related to 

cell proliferation, oncogenic pathways, and estrogen receptor-associated gene sets. Noticeably, 

our results indicate that some important oncogenic pathways related to EGF, MYC and 

TGFBETA may be highly correlated to chemotherapy response.  
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Figure 2.15. MEAP results for drug response studies.   
log-transformed (base 10) q-values of pathways detected by MAPE_P (blue), MAPE_G (green) and MAPE_I (red). 

The Figure has been divided into 7 regions. Region I contains the pathways enriched by all three MAPE methods. 

Region II contains pathways enriched by MAPE_P and MAPE_I but not MAPE_G. Region III contains pathways 

enriched by MAPE_G and MAPE_I but not MAPE_P. Region IV contains pathways enriched by MAPE_I but not 

MAPE_P and MAP_G. Region V contains pathways enriched by MAPE_P and MAPE_G but not MAPE_I. Region 

VI contains pathways enriched by MAPE_P but not MAPE_I and MAPE_G. Region VII contains pathways 

enriched by MAPE_G but not MAPE_I and MAPE_P. Upper right: Venn diagram of the pathways detected by 

MAPE_P, MAPE_G and MAPE_I. Lower left: log-transformed (base 10) q-values of pathways detected by 

individual study Liedtke (blue), Neve (green) and meta-analysis MAPE_I (red). Lower right: Venn diagram of the 

pathways detected by Liedtke alone, Neve alone and MAPE_I. 
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2.3.2 Application to the lung cancer studies 

In this section, we applied MAPE methods to two lung cancer studies, details shown in Table 

2.1. The raw microarray data sets were processed by procedures similar to those described in 

section 1.2.6.  

Table 2.1.  Summary of lung cancer data sets 

Study Platform 

Normal 

samples 

Tumor 

samples Probe IDs 

Bhat (Bhattacharjee, et al., 2001) HGU95A 16 139 12625 

Beer (Beer, et al., 2002) HG6800 10 86 7129 

 

When the q-value cutoff was set to 0.05, MAPE_P identified 137  enriched pathways and 

MAPE_G identified 81 (Figure 2.16). There were 63 common enriched pathways detected by 

both methods. MAPE_I integrates information from both MAPE_P and MAPE_G and identified 

114 enriched pathways. The enriched pathways identified by MAPE_I are important. These 

pathways play important roles in cell migration, cell communication, adhesion, and amino acid 

metabolism, pathways known to be closely related to tumor progress. The details of the enriched 

pathways are listed in the Appendix B. Seven pathways detected by MAPE_G and 31 by 

MAPE_P were not included in the enriched pathway list by MAPE_I. However, this does not 

indicate that these pathways are not important. If we relax the q-value cutoff of MAPE_I from 

0.05 to 0.10, all enriched pathways identified by MAPE_P and MAPE_G were included by 

MAPE_I. This indicates that MAPE_I, a combination of MAPE_P and MAPE_G, is a good 

indicator for ranking the pathways. 



 58 

Figure 2.16. MEAP results for lung cancer studies.  
Upper left: log-transformed (base 10) q-values of pathways detected by MAPE_P (blue), MAPE_G (green) and 

MAPE_I (red). The Figure has been divided into 7 regions. Region I contains the pathways enriched by all three 

MAPE methods. Region II contains pathways enriched by MAPE_P and MAPE_I but not MAPE_G. Region III 

contains pathways enriched by MAPE_G and MAPE_I but not MAPE_P. Region IV contains pathways enriched by 

MAPE_I but not MAPE_P and MAP_G. Region V contains pathways enriched by MAPE_P and MAPE_G but not 

MAPE_I. Region VI contains pathways enriched by MAPE_P but not MAPE_I and MAPE_G. Region VII contains 

pathways enriched by MAPE_G but not MAPE_I and MAPE_P. Upper right: Venn diagram of the pathways 

detected by MAPE_P, MAPE_G and MAPE_I. Lower left: log-transformed (base 10) q-values of pathways detected 

by individual study Beer (blue), Bhat (green) and meta-analysis MAPE_I (red). Lower right: Venn diagram of the 

pathways detected by Beer alone, Bhat alone and MAPE_I. 

2.3.3 Application to the prostate cancer studies 

In this section, we applied MAPE methods to two prostate cancer studies, details shown in Table 

2.2. The raw microarray data sets were processed by procedures similar to those described in 

section 1.2.6.  
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Table 2.2. Summary of prostate cancer data sets 

Study Platform Normal samples Tumor 

samples 

Probe IDs 

Welsh (Welsh, et al., 2001) HGU95A 9 25 12625 
Singh (Singh, et al., 2002) HGU95Av2 50 52 12625 

 

When the q-value cutoff was set to 0.05, 57 pathways were identified by MAPE_P, 11 by 

MAPE_G, and 47 by MAPE_I. If we relax the q-value cutoff of MAPE_I to 0.2, then all the 55 

pathways identified by MAPE_P or MAPE_G at cutoff 0.05 were also identified by MAPE_I. 

The Welsh study identified 28 pathways and the Singh study identified 53 pathways, while 

MAPE_I detected a total of 47 pathways.  

 

 

Figure 2.17.  MEAP results for prostate cancer studies.  

log-transformed (base 10) q-values of pathways detected by MAPE_P (blue), MAPE_G (green) and MAPE_I (red). 

The Figure has been divided into 7 regions. Region I contains the pathways enriched by all three MAPE methods. 
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Region II contains pathways enriched by MAPE_P and MAPE_I but not MAPE_G. Region III contains pathways 

enriched by MAPE_G and MAPE_I but not MAPE_P. Region IV contains pathways enriched by MAPE_I but not 

MAPE_P and MAP_G. Region V contains pathways enriched by MAPE_P and MAPE_G but not MAPE_I. Region 

VI contains pathways enriched by MAPE_P but not MAPE_I and MAPE_G. Region VII contains pathways 

enriched by MAPE_G but not MAPE_I and MAPE_P. Upper right: Venn diagram of the pathways detected by 

MAPE_P, MAPE_G and MAPE_I. Lower left: log-transformed (base 10) q-values of pathways detected by 

individual study Welsh (blue), Singh (green) and meta-analysis MAPE_I (red). Lower right: Venn diagram of the 

pathways detected by Welsh alone, Singh alone and MAPE_I. 
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3.0  SOFTWARE PACKAGE AND IMPLEMENTATION ISSUES FOR MAPE 

In Chapter 2, the statistical framework and algorithms of MAPE analysis have been presented. In 

this chapter, we discuss the computational and practical issues of MAPE implementation.   We 

first introduce the MetaPath software package for performing the MAPE analysis. Then an 

example is given to demonstrate how to apply MAPE analysis when the number of studies is 

large. We also collected a chemotherapy microarray database which is discussed in the end of 

this Chapter.  

3.1 IMPLEMENTATION OF THE METAPATH PACKAGE 

3.1.1 Functions of MetaPath package 

We developed a software package named MetaPath using the R language (R Development Core 

Team, 2005) to perform the MAPE_G, MAPE_P and MAPE_I analyses. In addition, the 

MetaPath package also provided the following useful functions:  

A) Data package 

We provided a function to package the microarray data according to the 

Biobase/Bioconductor’s (Gentleman, et al., 2004) standardized data structures to 

represent microarray data sets. 
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B) Probe ID mapping.  

A function for mapping among probe ID, Gene symbol, Entrez ID  (Bruford, et al., 

2008) is also available in MetaPath package.  

C) Pathway database importing 

The pathway database which has the same data structure as molecular signatures 

database (Subramanian, et al., 2005) can be imported to R environment for further 

analysis.  

D) Pathway enrichment analysis.  

Pathway enrichment analysis based on Fisher exact test, t-test, linear regression, 

KS-test and Wilcoxon rank sum test can be performed. 

E) Meta-analysis for genomic biomarkers 

 MetaPath package also provides functions for meta-analysis to identify DE 

genes/biomarkers.  

F) MAPE 

 The core function of MetaPath package is MAPE, which performs the MAPE_G, 

MAPE_P and MAPE_I analysis and generates the reports. Multiple different procedures 

are available for MAPE analysis. Here we use the MAPE_G analysis procedure to 

demonstrate the selection for multiple procedures. As shown in Figure 3.1, the first step 

of MAPE_G is to calculate the association score with each phenotype. Four methods are 

available to conduct this step for different experimental designs; these include Student’s 

t-test or F-test for two or multiple group comparison experiments, and the 

correlation/Cox hazard model for time series/survival time studies ( R package superpc is 

used for Cox hazard model estimation (Bair and Tibshirani, 2004) ). The second step was 
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for meta-analysis. The MetaPath package includes functions for performing Fisher’s 

statistics, MinP, MaxP and the AW method (the function for the AW method was 

implemented by Li (Li 2008) ). The third step comprised the enrichment analysis. 

 

  Figure 3.1. Statistical methods for the MAPE_G procedure. 

The following methods are provided: 1) Fisher’s exact test method; 2) Average of t-statistics 

method; 3) KS test method. In the fourth step, either a gene-wise permutation or a sample-wise 

permutation procedure can be used to control the FDR. The method combination of MAPE_P 
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was similar to that of MAPE_G. The users of the MetaPath package can select the appropriate 

procedure for their own purposes.  

In section 1.2 and 1.3, algorithms for performing meta-analysis and pathway enrichment 

analysis were given for binary phenotype. Here the algorithm for pathway enrichment analysis 

for continuous phenotype was given. The algorithm for meta-analysis for continuous phenotype 

at the gene level will be given in Chapter 4.  

Details of the pathway enrichment algorithm for continuous phenotype are as follows: 

Let xgs denote the gene expression value for gene g, sample s, s, 1≤g≤G, 1≤s≤S. Let ys 

denote the continuous values for phenotype for sample s. The regression coefficients β1g for gene 

g was estimated using a standard linear regression model   𝑦𝑠 = 𝛽0𝑔 + 𝛽1𝑔𝑥𝑔𝑠 + 𝜖𝑠𝑔  , where ε is 

the normal error. Let 
1 0/ ( ),g g gt s s  where 𝑠𝑔  is the standard deviation of 𝛽1𝑔 .  The  𝛽1𝑔  

was calculated by the following formulas:  
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0

ˆ
g s g sx r y   .  

The details for computation of s0 are shown in (Tusher, et al., 2001). 

1. Calculate gt , 1≤g≤G. 

2. Compute pV , the enrichment evidence score of pathway p, where  

1

1 G

p g gp

g

V t z
G 

   

3. Permute sample labels C times, and calculate the permuted statistics, c
pV  , 1 ≤ c ≤ C. 

4. Data standardization. Suppose F1,…,FG are the empirical cumulative distribution 

functions of  Vg, The data transformation function is  

1( ) { ( )}, 1,..., .g gF g G      

where  ( )   is the cumulative distribution function for standard normal. Data were 

standardized by 
( ) ( ) ( )( ), ( )s c s c s

g p p gp p
V V V V   , 1 ≤ c ≤ C, 1 ≤ g≤ G.  For simplicity, we still 

denote  
( ) ( ) and  by  and  s c s c
p p p pV V V V .  

5. Estimate the p-value of pathway p as '1 ' 1
( ) ( )

C P c
p p pc p

p v I V V C P
 

     and similarly 

calculate
'
'' 1 ' 1
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C Pc c c

p p pc p
v I V P C P

 
      

6. Estimate 0 , the proportion of non-enriched pathways in the meta-analysis, as 

1

0

( ( ) )
ˆ

( )

P

pp
I p v A

P l A









. We chose A=[0.5, 1] and thus l(A)=0.5.   

7. Estimate q-value of pathway p as  



 66 

( )
0 ' '1 ' 1 ' 1

ˆ( ) ( ) ( )
C P PKS c KS KS KS

p p p p pc p p
q v I P P C I P P

  
      . Pathways whose q-values 

are less than a pre-defined cutoff are considered as enriched pathways.  

3.1.2 Examples for usage of MetaPath package 

We present a typical example of usage of the MetaPath package. First, suppose there are k 

studies and all studies have been appropriately pre-processed and all probe IDs have been 

mapped to gene symbols. For each study, the data sets have been packaged as ExpressionSet 

objects. All k studies have been stored in a list. For example, two lung cancer studies (Table 4) 

have been packaged into a list entitled lung.cancer.study. 

 The summary of lung cancer data set can be checked  by: 

> lung.cancer.study 

$Beer 

ExpressionSet (storageMode: lockedEnvironment) 

assayData: 4883 features, 96 samples  

  element names: exprs  

phenoData 

  rowNames: AD10, AD2, ..., LN75  (96 total) 

  varLabels and varMetadata description: 

    Cluster.ID: the corresponding sample ID  

    cluster: the cluster membership 

    ...: ... 

    testgroup: NA 
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    (15 total) 

featureData 

  featureNames: STAT1, GAPDH, ..., STAT5B  (4883 total) 

  fvarLabels and fvarMetadata description: none 

experimentData: use 'experimentData(object)' 

Annotation:   

 

$Bhat 

ExpressionSet (storageMode: lockedEnvironment) 

assayData: 5844 features, 155 samples  

  element names: exprs  

phenoData 

  sampleNames: AD262, AD3, ..., AD1  (155 total) 

  varLabels and varMetadata description: 

    simple_annotation: NA 

    CLASS: NA 

    Sample: NA 

    testgroup: NA 

featureData 

  featureNames: STAT1, GAPDH, ..., IGF2R  (5844 total) 

  fvarLabels and fvarMetadata description: none 

experimentData: use 'experimentData(object)' 

Annotation:   
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The sample information has been store in the slot CLASS in each study.  

>lung.cancer.study$Beer$CLASS 

 [T] T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 

[39] T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 

[77] T T T T T T T T T T N N N N N N N N N N 

where T stands for tumor tissue and N stands for normal tissue.  

Suppose the pathway database has been transformed to a binary matrix named DB.matrix 

( METAPATHpackage offers a function to load Msig database and transfer to a binary matrix.) 

> dim(DB.matrix) 

[1]  639 5385 

> DB.matrix[1:5,1:2] 

  

 ALDH1A1 ALDH1A2 

1_2_DICHLOROETHANE_DEGRADATION 1 1 

1_AND_2_METHYLNAPHTHALENE_DEGRADATION 0 0 

41BBPATHWAY 0 0 

ACE2PATHWAY 0 0 

ACE_INHIBITOR_PATHWAY_PHARMGKB 0 0 

We run MAPE by: 

>MAPE.obj=MAPE_KS(study=lung.cancerstudy, group=’CLASS’, DB.matrix=DB.matrix, 

size.min=15, size.max=500, nperm=500, method=’gene.permutation’) 

Then the Figure 2.17 can be obtained by  

>MAPE.plot(MAPE.obj) 
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3.1.3 Computational issues of MetaPath package 

The MetaPath package is implemented with the R language. R is a scripting language that is not 

as fast as certain procedural programming languages, such as C. To accelerate the computational 

time, we carefully implemented the MetaPath package using the following two techniques: 

1) Using matrix manipulation 

R has many built-in statistical test procedures, such as the KS test and Fisher’s exact test, that 

can work on only one numeric vector of data values (for example, the expression values of one 

gene). If we applied the built-in KS test to thousands of genes (thousands of numeric vectors), it 

would be unfeasibly slow. To solve this problem, we implemented our own KS test/Fisher’s 

exact test based on the matrix manipulation; this greatly reduced the computational time. In 

addition, we used a binary matrix to denote the pathway database; consequently, most of our 

MAPE procedures could be implemented by matrix manipulation.  

2) Using a sparse matrix  

Although matrix manipulation can accelerate the computational time in the R environment, it 

requires a substantial amount of memory and the use of a large pathway database. Therefore, we 

transferred a pathway database to a numeric matrix {zgp} (1≤g≤G, 1≤p≤P), to represent the 

pathway information of P pathways, where zgp=1 when gene g belongs to pathway p and zgp=0. 

Due to the existence of many zeros in the pathway database matrix, sparse matrix techniques 

were adopted in our MetaPath package; these had the dual effects of conserving the memory and 

reducing the computational time.  
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3.2 INCLUSION/EXCLUSION CRITERIA 

In Chapter 2, for simplicity, we illustrated the MAPE analysis by combining only two 

studies. A more realistic example which is aimed to integrate large prostate cancer studies was 

used to discuss the inclusion/exclusion criteria of the MAPE analysis. 

We collected 6 prostate cancer studies. A summary of the prostate cancer studies is listed 

in Table 3.1.  Each study has two groups of samples: the normal group and tumor group. There 

are 3 different platforms for these studies (HGU95A/HUG95AV2, HGU133plus2 and cDNA 

platform). To make these studies comparable, probe IDs have been mapped to Gene Symbols. The 

microarray data have been pre-processed by the methods described in section 2.3.1.  

Table 3.1 Summary of 6 prostate cancer studies 

Study Platform Normal 

samples 

Tumor 

samples 

Probe IDs 

Welsh (Welsh, et al., 2001) HGU95A 9 25 12625 
Singh (Singh, et al., 2002) HGU95Av2 50 52 12625 
Stuart (Stuart, et al., 2004) HGU95Av2 50 38 12625 
Yu (Yu, et al., 2004) HGU95Av2 59 66 12625 
Varambally (Varambally, et 

al., 2005) 

HGU133plus2 6 7 54675 

Lapointe (Lapointe, et al., 

2004) 

cDNA 41 62 44528 

 

 

The consistency among all these 6 studies has been checked by our inclusion/exclusion 

criteria:  

1) Sample size requirement. Studies that have fewer than 5 samples in each group are 

excluded. The array platform needs to measure more than 6,000 gene expression values.  
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2) Expert screening.  Dr. Luo and Dr. Kaminski in University of Pittsburgh reviewed all 

studies to confirm that they meet high standard and all studies are related for information 

integration and meta-analysis. 

3) Correlation of t-statistics among all studies.  

Suppose genes in study k1 and k2 have been matched, 1≤ k1≤6, 1≤ k2≤6, and there are G 

common genes in total. We calculated the unequal variance t-statistics for each gene in study k1 

and k2, denoted by tgk1, tgk2, 1≤ g≤G. Then the Pearson correlation between tgk1,tgk2 was computed 

to indicate the consistency between the study k1 and k2.  The pair-wise comparison of 

consistency among all prostate studies is shown in Table 3.2, which indicates that the Lapointe 

data set has negative correlation with all other studies. Therefore, we excluded the Lapointe data 

set from our meta-analysis.  

Table 3.2. The pair-wise comparison of consistency among all prostate studies 

 

Welsh Singh Stuart Yu Varambally Lapointe 

Welsh 1.00 0.54 0.77 0.62 0.47 -0.15 

Singh 0.54 1.00 0.59 0.34 0.33 -0.10 

Stuart 0.77 0.59 1.00 0.72 0.42 -0.17 

Yu 0.62 0.34 0.72 1.00 0.43 -0.14 

Varambally 0.47 0.33 0.42 0.43 1.00 -0.12 

Lapointe -0.15 -0.10 -0.17 -0.14 -0.12 1.00 
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3.3 MICORARRAY DATABASE FOR CHEMOTHERAPY 

RESEARCH 

We collected drug-response related microarray studies and built a microarray database for 

chemotherapy research. The specific studies were listed in Table 3.3. In each study, the cancer 

type, the number of patients, the array platform, the drugs and patient’s outcome were listed. For 

example, the Hess data set has 133 patients. The array platform is Affymetrix U133a. The 

patients were treated by cyclophosphamide, doxorubicin, fluorouracil and paclitaxel. The 

pathologic complete response was used the end point to indicate the patient’s drug response. The 

gene expression of patients was measured before chemotherapy treatment. This data set has been 

widely used as a test set to validate the prediction of patient’s clinical outcomes (Garman, et al., 

2007; Huang, et al., 2007; Lee, et al., 2010).  

This chemotherapy microarray database has great value for bioinformatics researchers in 

field of chemotherapy research. In Chapter 4, two chemotherapy studies related to identify of 

robust biomarkers and multi-drug response genes were performed based on this chemotherapy 

microarray database. 

 

Table 3.3 Chemotherapy microarray database 

Indication 1st Author # Patients 

Expression 

Platform Drug(s) Outcome 

breast Modlich 83 U133a 

epirubicin 

cyclophosphamide  clinical response 

breast Hess 133 U133a 

cyclophosphamide 

doxorubicin 

fluorouracil 

paclitaxel 

pathologic 

complete response 

breast Chang 24 U95 focetaxel clinical response 

breast Berthea 60 U133a 

epirubicin 

cyclophosphamide 

pathologic 

complete response 

breast Folgueira 51 cDNA doxorubicin clinical response 
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cyclophosphamide 

breast Sorlie 

 

cDNA paclitaxel 

progression-free 

interval 

breast Lin 24 U133+2 

epirubicin 

 docetaxel 

pathologic 

complete response 

breast Korde 21 U133+2 

docetaxel 

capecitabine clinical response 

breast Pawitan 126 U133a 

cyclophosphamide 

methotrexate  

 5-fluorouracil  survial 

breast Bonnefoi 66 

Aff ymetrix 

X3P 

fl uorouracil 

epirubicin 

cyclophosphamide  

pathologic 

complete response 

breast Cleator 43 cDNA 

cyclophosphamide 

doxorubicin 

pathologic 

complete response 

breast ayers 42 cDNA 

cyclophosphamide 

doxorubicin 

fluorouracil 

paclitaxel 

pathologic 

complete response 

breast Hannemann  24 cDNA 

doxorubicin 

cyclophosphamide or 

doxorubicin 

docetaxel  

pathologic 

complete response 

breast Mina 45 RT-PCR 

doxorubicin 

docetaxel 

pathologic 

complete response 

breast Dressman 37 U133+2 

cyclophosphamide 

methotrexate fluorouracil  

pathologic 

complete response 

breast Paik 651 RT-PCR 

tamoxifen  

cyclophosphamide, 

methotrexate  

 5-fluorouracil 

distant Free 

recurrence 

ovarian Spentzos 68 U95a 

platinum/taxane 

based chemotherapy 

complete clinical 

response/remission 

ovarian Berchuck 65 U133a 

platin-based combination 

chemotherapy survival 

rectal 

carcinomas Ghadimi 30 cDNA 5-fluorouracil survival 

esophageal Kihara 20 cDNA 

cisplatin 

5-fluorouracil survival 

NSCLC
1
 Hsu 59 U133a 

cisplatin 

pemetrexed clinical response 

NSCLC Kakiuchi 28 cDNA iressa 

pathologic 

complete response 
1
NSCLC: Non-small cell lung carcinoma 
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4.0  APPLICATIONS OF MEATA-ANALYSIS METHODS IN CHEMOTHERAPY 

RESEARCH 

In Chapter 3, meta-analysis has been applied to pathway enrichment analysis. In this Chapter, we 

applied meta-analysis on genes to identify robust genomic biomarkers by combining multiple 

microarray studies. In Chapter 4.1, robust genomic biomarkers were identified by combining two 

independent microarray studies on breast cancer cell lines. In Chapter 4.2, genes associated with 

multiple drug responses were identified by meta-analysis method. These genes have the potential 

to be the biomarkers to distinguish patients who are unlikely to benefit from current 

chemotherapeutic drugs.   

4.1 IDENTIFICATION OF ROBUST PHARMACOGENOMIC 

PREDICTORS ASSOCIATED WITH CHEMOTHERAPY 

TREATMENT IN BREAST CANCER BY META-ANALYSIS 

4.1.1 Introduction 

 Breast cancer remains a significant cause of mortality in women (Jemal, et al., 

2008). Even with multiple chemotherapy treatments available, individual patient responses to 

chemotherapy vary considerably and response rates, in general, remain poor with 30% of early-
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stage breast cancers recurring (Gonzalez-Angulo, et al., 2007). In an effort to maximize patient 

response to chemotherapy, pharmacogenomics-based testing is being used a means to identify 

patients that could benefit from specific chemotherapy treatments (Potti and Nevins, 2008). 

Recent work has expanded this concept by combining tumor gene expression profiling and 

clinical outcome data (Bertheau, et al., 2007; Hess, et al., 2006). While this method to date may 

not be accurate enough to identify specific gene differences between responder and non-

responder patient groups (Pusztai, et al., 2007), identified gene signatures can prognosticate on 

cancer recurrence for specific breast cancer patient subgroups (Hess, et al., 2006; Potti, et al., 

2006; Potti and Nevins, 2008; Salter, et al., 2008; Staunton, et al., 2001).  

Several recent reviews discuss the strengths and limitations of the methods used to 

develop pharmacogenomic predictors of response from patient samples and cell lines (Kim, et 

al., 2009; Marchionni, et al., 2008; Potti and Nevins, 2008; Sotiriou and Pusztai, 2009). One 

method involves splitting the sample population such that data from a subset of patients are used 

for the pharmacogenomic predictor discovery and the data from remaining patients are used for 

its validation. This approach has limited utility when multiple standard-of-care treatments are 

available for testing (Potti and Nevins, 2008) since large numbers of clinically homogenous 

patients would be required for validation (Marchionni, et al., 2008). Recently, several groups of 

researchers have attempted to overcome some of these limitations by using immortalized cell 

lines as a proxy for patient outcomes in supervised machine-based learning models (Lee, et al., 

2007; Potti, et al., 2006; Salter, et al., 2008; Staunton, et al., 2001). While several studies have 

used NCI-60 drug sensitivity data and Affymetrix gene expression data to develop predictors of 

response to chemotherapies and to demonstrate the capacity to predict response in patients (Hsu, 

et al., 2007; Potti, et al., 2006; Potti and Nevins, 2008; Salter, et al., 2008), others have not been 
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able to confirm these results using similar approaches but different methods for measuring in 

vitro responses (Liedtke, et al., 2009).  

The purpose of this study was to identify robust genomic biomarkers associated with 

chemotherapy treatment by meta-analysis method. We used 15 breast cancer cell lines and 

chemotherapy response data were generated by exposing these cell lines to various 

chemotherapy assays to determine in vitro the sensitivity of each cell line to specific 

chemotherapies (Kornblith, et al., 2004; Kornblith, et al., 2003).  For the second part, 

pharmacogenomic predictors developed from breast cancer cell lines were then validated by 

using genomic data from independent clinical trials.  

4.1.2 Methods 

4.1.2.1 Microarray data sets and pre-processing 

Three publicly available data sets, Liedtke (Liedtke, et al., 2009), Neve (Neve, et al., 2006), 

Hoeflich (Hoeflich, et al., 2009), were used to identify robust pharmacogenomic predictors 

associated with breast cancer cell lines. The raw microarray data were processed by the software 

package RMA (Bolstad, et al., 2003; Irizarry, et al., 2003; Irizarry, et al., 2003) for the 

background adjustment and quantitative normalization. The processed data were log2-

transformed. Non-specific gene filtering was performed to filter out probes which satisfy one of 

the following two criterions: 1) Interquartile range (IQR) was less than the median of IQR values 

of all genes. 2) Median expression values less than 100. The cell line’s GI50 was measured by 

Liedtke et al. (Liedtke, et al., 2009) and used to indicate the cell line’s drug sensitivity to the 

drug  paclitaxel.  
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4.1.2.2 Biomarker identification 

Let xgsk denote the gene expression value for gene g, cell line s in study k, s, 1≤g≤G, 

1≤s≤S, 1≤k≤K. Let ysk denote the GI50 value for the cell line s in study k. The regression 

coefficients β1gk for gene g in study k was estimated using a standard linear regression model   

𝑦𝑠𝑘 = 𝛽0𝑔𝑘 + 𝛽1𝑔𝑘𝑥𝑔𝑠𝑘 + 𝜖𝑠𝑔𝑘  , where ε is the normal error. Let 
1 0/ ( ),gk gk gk kt s s  where 

𝑠𝑔𝑘  is the standard deviation of 𝛽1𝑔𝑘 .  The  𝛽1𝑔𝑘  was calculated by the following formulas:  
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The details for computation of s0 are shown in (Tusher, et al., 2001). 

The procedure for identification of robust pharmacogenomic predictors was listed as 

follows:  

Suppose there are a total of G genes and K studies (K=3 for this case). 

I. Individual-study analysis: 
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a. Compute the  tgk for each gene in each study.  

b. Permute the group labels in each study for B times, and similarly calculate the 

permuted statistics, tgk
(b)

, where 1 ≤ g ≤ G, 1 ≤ k ≤ K, 1 ≤ b ≤ B. 

c. Estimate the p-value of tgk as 
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detected from each individual study are denoted by  05.0:  gkk qgG .  

II. Meta-analysis: 

a. The maximum p-value statistic (maxP) is used for meta-analysis: gk
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d. Estimate the q-value in the meta-analysis as 
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4.1.2.3 Validation of the pharmacogenomic predictors 

Publical available microarray datasets and published literature were reviewed to identify 

gene expression data useful for validating the pharmacogenomic predictors. An independent 

breast cancer patient dataset (Hess data) were used to test the accuracy of pharmacogenomic 

predictors (Hess, et al., 2006). Hess dataset contained expression data generated using the 

Hgu133A RNA expression array with tumor samples from patients with breast cancer as well as 

information on the treatments received by each patient and their outcomes. The gene expression 

profiles of patients were measured before chemotherapy treatment. The patient’s complete 

responses (pCR) were tested after treatment by the drug combination of cyclophosphamidem 

doxorubicin, fluorouracil and paclitaxel to demonstrate the chemotherapy efficacy.  

Supervised principal components regression (Bair and Tibshirani, 2004) was adopted to 

develop the pharmacogenomic predictor. Suppose a data matrix {xgs} (1≤g≤G, 1≤s≤S) represents 

the gene expression intensity of gene g and sample s. Let {ys} (1≤s≤S) represent the AUC for cell 

line s,. We first calculate gt , the association score between gene g and ys,  1≤g≤G, where 

g
g

g

r
t

s
 ; rg is the linear regression coefficient between xgs and ys. 1≤s≤S;  sg is the standard error 

of rg. Genes were selected if their association score gt were larger than the threshold, where the 

threshold was estimated by cross-validation in the training set.  A reduced data matrix on these 

selected genes was formed, and the first principal component based on the reduced data matrix 
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was calculated.  The first principal component was used in a regression model to predict the 

patient’s outcome.  More details about the supervised principal components regression is 

available at (Bair, et al., 2006).  

4.1.3 Results 

255 genes was identified as DE genes whose q-values by meta-analysis less than 0.01. 

These 255 genes were used as pharmacogenomic predictor and were validated on the expression 

data from the Hess dataset. The patient’s pCR in Hess data was predicted using the supervised 

principle component regression (Bair, et al., 2006).   

. The prediction results were shown in Figure 4.1. When using top 50 genes which have 

the smallest q-values by meta-analysis, the accuracy was 63.6%, sensitivity was 76.5% and 

specificity was 59.1%. The area under receiver operator characteristic curves (AU-ROC) was 

0.758 (Figure 4.1). We also examined whether this pharmacogenomic predictor was affected by 

the number of included genes. As the number of genes included in the pharmacogenomic 

predictor increased, few effects were observed on the accuracy, sensitivity and specificity of the 

predictor for treatment with paclitaxel (Figure 4.1), indicating a robust predictor.  
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Figure 4.1 Prediction accuracy and the ROC curve. 

4.1.4 Conclusions 

This study demonstrates use of GI50 as a supervisor to grade the contribution of gene 

expression in predicting in vitro responses of patient-derived primary cultures to various 

chemotherapy treatment regimens (Kornblith, et al., 2004; Kornblith, et al., 2003). Using the 

GI50 data on breast cancer cell lines, we were able to identify pharmacogenomic predictors of 
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patient response to several standard-of-care chemotherapies for breast cancer. These 

pharmacogenomic predictors were validated by the use of an independent genomic datasets, 

which also contained data on patient treatments and outcomes. Our pharmacogenomic predictors 

had sufficiently high accuracy, sensitivity and specificity to warrant further testing. Importantly, 

our multigene predictors remained stable even as the number of genes included in the predictor 

increases, suggesting that GI50 trained predictors may provide indications of chemosensitivity 

and chemoresistance that are specific to the chemotherapy treatment tested and are not a result of 

general chemotherapy sensitivity (Pusztai, et al., 2007). Thus, our study indicates that use of the 

ChemoFx results as the supervisor is feasible to identify multigene predictors of responses to 

chemotherapy for breast cancer. 

Two methods have been adopted to develop pharmacogenomic predictors, one based on  

pharmacogenomic data from patients while the other one is based on cell lines. The first method 

involves splitting data from an existing cohort into separate test and validation sets; however, 

this method restricts the strength of the pharmacogenomic predictors because of the large 

number of cases required for each set. The second method involves the use of established cell 

lines to train data to identify potential pharmacogenomic predictors of chemosensitivity and 

resistance and then validating the pharmacogenomic predictors using data from a patient cohort 

(Liedtke, et al., 2009; Potti, et al., 2006; Salter, et al., 2008; Staunton, et al., 2001). The 

advantage to this approach is that the use of cell lines is much faster and less costly to perform 

than the use of data from a prospectively collected patient cohort. 

Potti et al (Potti, et al., 2006) first reported the use of NCI-60 cell lines to develop 

pharmacogenomic predictors; however, their results could not be replicated by an independent 

group (Liedtke, et al., 2009). NCI-60 cell lines have various histological origins, which may 
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introduce a confounding variable in the development of the pharmacogenomic predictor. In the 

current report, we demonstrate the ability to use cell lines trained using the GI50 assay to predict 

patient responses. The use of the GI50 assay allowed for the selection of malignant cells within 

each cell line and therefore supports the concept of using cell lines of identical histological origin 

to develop predictors of patient chemotherapy response.  

Thus, our data are quite promising for the feasibility of using the in vitro drug responses 

for the identification of pharmacogenomic predictors of response to chemotherapy treatment for 

breast cancer patients. Future studies will examine the use of drug responses from primary 

cultures of patient tumors to develop pharmacogenomic predictors of breast cancer patient 

responses to chemotherapy treatment. 

 

4.2 IDENTIFICATION OF MULTI-DRUG RESPONSE GENES 

BY META-ANALYSIS IN HUMAN BREAST CANCER CELL LINES 

A major obstacle in the effective treatment of cancer with chemotherapeutic agents is the 

phenomenon of multidrug resistance.  In breast cancer patients, multiple chemotherapy drugs 

have been widely used. Standards of care have involved various neoadjuvant approaches to 

chemotherapy and surgical resection with the greatest success occurring when tumor tissue is 

surgically removed and patients are subsequently treated with chemotherapy.  Success rates with 

primary breast cancer, caught early, are now approaching 80% (Haigh, et al., 2000).  However, 

chemotherapeutic agents alone have an efficacy of about 50% (Buzdar, et al., 2005).  

Additionally, chemotherapeutic agents are less effective in treating recurrent disease.  A 
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contributing factor is the resistance to current chemotherapeutic drugs.  Moreover, many tumor 

cells resistant to one drug often have different degrees of resistance to other chemotherapeutic 

drugs.  This phenomenon is commonly referred as multidrug resistance (MDR) (Chang, et al., 

2003; Gianni, et al., 2005; Hess, et al., 2006; Iwao-Koizumi, et al., 2005; Liedtke, et al., 2009; 

Paik, et al., 2006; van de Vijver, et al., 2002; Wang, et al., 2005). Understanding the molecular 

mechanisms of MDR has important biological significance and potential clinical utility. It is 

important to identify patients who will not respond to current chemotherapeutic drugs and avoid 

giving them unnecessary treatment. Furthermore, understanding the mechanisms of MDR will 

further facilitate drug selection studies, and perhaps identify new therapeutic targets.  

Cancer cell lines have been extensively used for investigating mechanisms of drug 

response. MDR genes are identified by integrating gene expression profiles and drug response 

patterns.  To date, many research groups have studied MDR in NCI-60 cells because their gene 

expressions have been well characterized and they have been examined for resistance to 

numerous drugs (Dan, et al., 2002; Kang, et al., 2004; Mariadason, et al., 2003; Staunton, et al., 

2001).  Since NCI-60 is composed of cells with different origins, such as breast, prostate, lung, 

colorectal, renal, ovarian, prostate, lung, leukaemias, melanomas and neural system, the 

mechanisms identified by these studies are presumably independent of tumor cell histology. 

Other investigations have focused on specific cancer cell lines including gastric (Kang, et al., 

2004) , and colon cancer (Mariadason, et al., 2003). However, no studies have yet been done in 

breast cancer cell lines.  Given the multidrug resistance seen in breast cancer patients, identifying 

MDR genes in breast cancer patients may have considerable clinical implications. In this paper 

we used the GI50 to determine the sensitivity of 16 well-studied breast cancer cell lines to 4 

chemotherapy agents commonly used to treat breast cancer patients: paclitaxel, 
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cyclophosphamide, fluorouracil and doxorubicin.  Meta-analysis method was applied to identify 

genes that are related to multidrug resistance in breast cancer associated with chemotherapy 

treatment. 

4.2.1 Materials and method 

4.2.1.1 Microarray data sets and pre-processing 

A publicly available data set (Neve, et al., 2006) was used to identify MDR genes associated 

with four drugs: paclitaxel, cyclophosphamide, fluorouracil and doxorubicin in breast cancer cell 

lines. The raw microarray data were processed by the software package RMA (Bolstad, et al., 

2003; Irizarry, et al., 2003; Irizarry, et al., 2003) for the background adjustment and quantitative 

normalization. The processed data were log2-transformed. Non-specific gene filtering was 

performed to filter out probes which satisfy one of the following two criterions: 1) Interquartile 

range (IQR) was less than the median of IQR values of all genes. 2) Median expression values 

less than 100. The 19 breast cancer cell line’s GI50 was measured by Liedtke et al. (Liedtke, et 

al., 2009) and used to indicate the cell line’s drug sensitivity to the drug paclitaxel, 

cyclophosphamide, fluorouracil and doxorubicin. 

4.2.1.2 Identification of genes related to multidrug response 

To analyze how gene expression is related to multi drug response in breast cell lines, 

meta-analysis was performed to identify genes which response to at least 3 drugs in breast cell 

lines. The details of the algorithms that were used to perform the meta-analysis are as follows: 

Let xgsk denote the gene expression value for gene g, cell line s for drug k, s, 1≤g≤G, 

1≤s≤S, 1≤k≤K. Let ysk denote the GI50 value for the cell line s for drug k. The regression 
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coefficients β1gk for gene g in study k was estimated using a standard linear regression model   

𝑦𝑠𝑘 = 𝛽0𝑔𝑘 + 𝛽1𝑔𝑘𝑥𝑔𝑠𝑘 + 𝜖𝑠𝑔𝑘  , where ε is the normal error. Let 
1 0/ ( ),gk gk gk kt s s  where 

𝑠𝑔𝑘  is the standard deviation of 𝛽1𝑔𝑘 .  The  𝛽1𝑔𝑘  was calculated by the same formulas in section 

4.1.2.2. 

The procedure for identification of MDR genes is similar as the procedures to identify 

robust biomarkers in section 4.1.2.2. The difference is that the rth rank statistic is used instead 

of the maxP statistic to identify genes response to at least 3 drugs. Details of the algorithm 

were listed as follows:  

Suppose there are a total of G genes and K drugs (K=4 for this case). 

III. Individual-study analysis: 

a. Compute the  tgk for each gene for each drug.  

b. Permute the group labels in each study for B times, and similarly calculate the 

permuted statistics, tgk
(b)

, where 1 ≤ g ≤ G, 1 ≤ k ≤ K, 1 ≤ b ≤ B. 
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detected from each individual study are denoted by  05.0:  gkk qgG .  
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IV. Meta-analysis: 

a. The r-th rank statistic is used for meta-analysis: 
(3)g gkV p . Define 
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MDR genes detected by the meta-analysis are denoted as  05.0)(:  gmeta VqgG . 

4.2.2 Results and discussions 

Through pharmacogenomic analysis, 200 genes were identified to be related to multidrug 

resistance in breast cancer cell lines.  The function categories and locations of these MDR genes 

were shown in Figure 4.2 and Table 4.1. Functional analysis by Ingenuity Pathway Analysis 

(Ingenuity Systems) software indicates these genes execute the function as kinase, transcription 

regulator, translation regulator, transmembrane receptor and transporter.  
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Figure 4.2 MDR genes associated with drug paclitaxel, cyclophosphamide, fluorouracil and 

doxorubicin in breast cancer cell lines.  
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Table 4.1 Categories and locations of MDR genes. 

Location Type(s) Total 

 Cytoplasm  enzyme 20 

   kinase 5 

   other 30 

   peptidase 4 

   phosphatase 5 

   transcription regulator 2 

   translation regulator 1 

   transmembrane receptor 1 

   transporter 10 

 Cytoplasm Total   78 

 Extracellular Space  cytokine 3 

   enzyme 2 

   growth factor 1 

   other 13 

 Extracellular Space Total 19 

 Nucleus  enzyme 3 

   kinase 1 

   other 20 

   phosphatase 1 

   transcription regulator 17 

   transporter 2 

 Nucleus Total   44 

 Plasma Membrane  enzyme 2 

   ion channel 3 

   kinase 3 

   other 9 

   phosphatase 2 

   transcription regulator 1 

   transmembrane receptor 1 

   transporter 1 

 Plasma Membrane Total 22 

 unknown  enzyme 7 

   other 27 

   phosphatase 1 

   transporter 1 

 unknown Total   36 

(blank) (blank)   

(blank) Total     

Grand Total   199 
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Current treatment guidelines recommend a consideration of chemotherapy for a majority 

of cancer patients; however, it is helpful to distinguish those patients who are not good 

candidates for chemotherapy.  MDR genes have the potential to be such a biomarker. Although 

various clinical factors, including ER, PR, and grade have been related to multidrug response, 

MDR genes as a biomarker can provide additional information. Therefore, integrating clinical 

information and MDR information may assist us to better identify patients who are candidates 

for chemotherapy.  

To date, both tumor tissue and cancer cell lines have been used for drug response studies. 

Several studies have been performed using tumor tissue from breast cancer patients, and gene 

expression profiles associated with clinical outcome have been identified. However, there are 

major drawbacks to using patient tumor tissue for these studies.  These drawbacks include a 

limited source of tissue and the long time necessary to assess clinical outcome. Using cell lines 

has the advantage of overcoming these obstacles. 
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5.0  CONCLUSIONS AND FUTURE DIRECTIONS 

In this thesis, we applied meta-analysis methods for combining genomic studies on pathway 

enrichment analysis and biomarker detection. In Chapter 2, we formulated a framework of two 

meta-analysis approaches for pathway enrichment analysis, namely MAPE_G, which combines 

statistical significance at the gene level, and MAPE_P, which combines at the pathway level. In 

general, MAPE_P has the advantage of not requiring gene matching across studies and is often 

more powerful. MAPE_G is, however, usually more powerful if the majority of genes across 

studies can be properly matched. We proposed an automated integrated approach, namely 

MAPE_I, to accommodate the advantages of MAPE_G and MAPE_P and to capture all 

pathways of potential biological interest. Our simulation study characterized conditions when 

and how MAPE_G and MAPE_P outperform one another and verified the robust performance of 

MAPE_I. Applications to breast cancer cell line drug response and lung cancer demonstrated 

similar conclusions and identified previously verified pathways related to drug response and 

carcinogenesis. Meta-analysis identified more pathways than individual studies. The MAPE_I 

procedure integrated results from MAPE_P and MAPE_G. To our knowledge, this is the first 

study to systematically investigate and develop meta-analysis approaches for pathway 

enrichment analysis.  

In Chapter 3, a software package, MetaPath, was implemented to perform MAPE 

analysis. MetaPath provided functions to perform MAPE analysis on microarray data with 
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binary, continuous responses and survival data.  The sparse matrix technique has been adopted in 

MetaPath package to speed up the computation of MAPE analysis. The MetaPath package was 

written using R language and can be installed in R environment. In addition to MetaPath 

package, the practical issues of MAPE analysis were also discussed. The inclusion/exclusion 

criteria of the MAPE analysis has been proposed to avoid low-quality studies in meta-analysis. 

In Chapter 4, we first applied meta-analysis to identify robust genomic biomarkers 

related to chemotherapy response in breast cancer cell lines. We demonstrated the feasibility of 

using the in vitro breast cancer cell line’s drug responses to predict the response to chemotherapy 

treatment for breast cancer patients. Then we applied meta-analysis to detect multi-drug response 

genes in human breast cancer cell lines. These genes have the potential to be the biomarkers to 

distinguish patients who are unlikely to benefit from current chemotherapeutic drugs.   

Our future work will focus on the following two directions: 

1. Hierarchical MAPE analysis for pathways (MAPE_H) 

The hierarchical MAPE scheme will combine genomic studies with similar 

characteristics at the first hierarchy and with potentially different but related characteristics at the 

second hierarchy. We hypothesize that the hierarchical MAPE will more flexibly integrate 

information from a wide range of genomic studies to meaningfully answer biological questions. 

An example of MAPE_H analysis was shown in Figure 5.1. In Figure 5.1A, the first step (Step I 

in Figure 5.1A) is aimed to identify pathways related to one particular drug’s response and the 

second step (Step II in Figure 5.1A) is aimed to identify pathways related to some different drugs. 

Specifically, in Step IA, MAPE_I is applied to identify pacilitaxel related pathway by combining 

two similar genomic studies while Step 1B is to discover doxorubicin related pathways. The goal 

of Step IA and IB is to find consistent enriched pathways across two homogeneous studies, thus  
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Figure 5.1 Examples for MAPE_H analysis. 

the maxP statistics is adopted. In Step II, another level of meta-analysis is applied to discover the 

either pacilitaxel or doxorubicin related pathways. For this purpose, either minP or Fisher’s 

statistic can apply. Similar analysis can be performed on prostate and lung cancer studies. In 
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Figure 5.1B, the first level of meta-analysis is to identify enriched pathways for prostate or lung 

cancer studies. The second level analysis is to combine lung and prostate cancer studies to 

investigate the pathways respective to both of the cancer types.  

2. Evaluation and comparison of parameters/methods in MAPE procedures.  

As was discussed in the Chapter 2 and 3, many meta-analysis techniques and pathway 

enrichment analysis methods have been developed in the past few years. This paper provides an 

initial investigation of a unified framework. Conceptually, any meta-analysis technique and 

pathway enrichment method can be combined under the proposed framework. Among the many 

available methods in both areas, evaluation of different method selection and the choice of a best 

method is the future direction. 
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APPENDIX A 

QVALUES OF ENRICHED PATHWAYS FOR DRUG RESPONSE STUDY 

Q-values of enriched pathways detected by individual studies and MAPE methods in drug 

response data (column 3-7: q-value threshold 0.05 and significant q-values marked in red) and 

categories (column 8-9) that correspond to Figure 6 in the manuscript. “Categories comparing 

MAPE_P, MAPE_G & MAPE_I” correspond to the categories in Figure 2.15A and 2.15B. 

“Categories comparing Liedtke, Neve & MAPE_I” correspond to the categories in Figure 2.15C 

and 2.15D. CA: Categories comparing MAPE_P, MAPE_G & MAPE_I.  CB: Categories 

comparing Liedtke, Neve & MAPE_I” 

Pathway Descriptions Liedtke Neve MAPE_P MAPE_G MAPE_I CA CB 

CELL_MOTILITY 
Any process involved in the controlled movement of a 
cell. 0.167 0.291 0.038 0.126 0.071 I IV 

CORDERO_KRAS_KD
_VS_CONTROL_UP 

Genes upregulated in kras knockdown vs control in a 
human cell line 0.004 0.411 0.072 0.076 0.105 I II 

LEE_CIP_UP Genes up-regulated in hepatoma induced by ciprofibrate 0.113 0.514 0.108 0.067 0.107 I II 

IRITANI_ADPROX_VA
SC BLOOD VASCULAR EC 0.263 0.273 0.036 0.073 0.072 I IV 

LI_FETAL_VS_WT_KI
DNEY_UP 

These are genes identified by simple statistical criteria as 
differing in their mRNA expresssion between WTs and 
fetal kidneys LOW 0.024 0.088 0.000 0.042 0.000 I I 

GAMMA_UNIQUE_FI
BRO_DN 

Down-regulated at any timepoint by treatment of human 
fibroblasts with gamma radiation, but not by UV lght or 4-
NQO 0.395 0.201 0.073 0.066 0.103 I IV 

HSC_LTHSC_SHARED 

Up-regulated in mouse long-term functional 
hematopoietic stem cells from both adult bone marrow 
and fetal liver (Cluster i, LT-HSC Shared) 0.117 0.428 0.071 0.070 0.109 I II 

TGFBETA_ALL_UP 
Upregulated by TGF-beta treatment of skin fibroblasts, at 
any timepoint 0.003 0.044 0.000 0.000 0.000 I I 

ADIP_VS_PREADIP_D
N 

Downregulated in mature murine adipocytes (7 day 
differentiation) vs. preadipocytes (6 hr differentiation) 0.328 0.412 0.082 0.136 0.114 I IV 

LVAD_HEARTFAILUR
E_UP 

Upregulated in the left ventricle myocardium of patients 
with heart failure following implantation of a left 
ventricular assist device 0.126 0.400 0.064 0.136 0.113 I II 

EGF_HDMEC_UP 

Up-regulated in human dermal (foreskin) microvascular 
endothelial cells that were stimulated to proliferate with 
prolonged EGF treatment, versus non-stimulated 
quiescent controls. 0.413 0.395 0.070 0.080 0.111 I IV 

TGFBETA_EARLY_UP 
Upregulated by TGF-beta treatment of skin fibroblasts at 
30 min (clusters 1-3) 0.005 0.133 0.002 0.048 0.002 I I 
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BRCA_ER_POS 

Genes whose expression is consistently positively 
correlated with estrogen receptor status in breast cancer 
- higher expression is associated with ER-positive tumors 0.376 0.060 0.062 0.052 0.073 I III 

CMV_8HRS_DN 
Downregulated at 8hrs following infection of primary 
human foreskin fibroblasts with CMV 0.149 0.414 0.075 0.056 0.076 I II 

CMV_24HRS_DN 
Downregulated at 24hrs following infection of primary 
human foreskin fibroblasts with CMV 0.149 0.292 0.041 0.053 0.075 I II 

HSC_LTHSC_FETAL 
Up-regulated in mouse long-term functional 
hematopoietic stem cells from fetal liver (LT-HSC Shared) 0.117 0.428 0.071 0.070 0.109 I II 

TGFBETA_LATE_UP 
Upregulated by TGF-beta treatment of skin fibroblasts 
only at 1-4 hrs (clusters 4-6) 0.429 0.117 0.082 0.044 0.075 I III 

AGEING_KIDNEY_SPE
CIFIC_UP 

Up-regulation is associated with increasing age in normal 
human kidney tissue from 74 patients, and expression is 
higher in kidney than in whole blood 0.096 0.159 0.001 0.045 0.003 I II 

AGEING_KIDNEY_UP 
Up-regulation is associated with increasing age in normal 
human kidney tissue from 74 patients 0.144 0.022 0.001 0.022 0.002 I I 

CMV_ALL_DN 
Downregulated at any timepoint following infection of 
primary human foreskin fibroblasts with CMV 0.069 0.364 0.055 0.004 0.003 I II 

ESR_FIBROBLAST_UP 

Up-regulated in the environmental stress response in 
human fibroblasts (regulated similarly by gamma and UV 
rediation and 4-NQO) 0.514 0.303 0.137 0.098 0.126 I IV 

HSA01430_CELL_CO
MMUNICATION Genes involved in cell communication 0.055 0.536 0.128 0.070 0.118 I II 

PASSERINI_ADHESIO
N 

Genes associated with cellular adhesion that are 
differentially expressed in endothelial cells of pig aortas 
from regions of disturbed flow (inner aortic arch) versus 
regions of undisturbed laminar flow (descending thoracic 
aorta). 0.387 0.189 0.074 0.284 0.114 II IV 

HADDAD_HSC_CD10
_UP 

Genes upregulated in human hematopoietic stem cells of 
the line CD45RA(hi) Lin- CD10+, which are biased toward 
developing into B cells, versus CD45RA(int) CD7- and 
CD45RA(hi) CD7+. 0.188 0.392 0.070 0.394 0.107 II IV 

BREAST_CANCER_ES
TROGEN_SIGNALING 

Genes preferentially expressed in breast cancers, 
especially those involved in estrogen-receptor-dependent 
signal transduction. 0.055 0.466 0.081 0.231 0.136 II II 

CELL_ADHESION 
The attachment of a cell, either to another cell or to the 
extracellular matrix, via cell adhesion molecules. 0.434 0.046 0.083 0.299 0.137 II III 

PASSERINI_PROLIFER
ATION 

Genes associated with cellular adhesion that are 
differentially expressed in endothelial cells of pig aortas 
from regions of disturbed flow (inner aortic arch) versus 
regions of undisturbed laminar flow (descending thoracic 
aorta). 0.015 0.468 0.080 0.301 0.135 II II 

LEI_MYB_REGULATE
D_GENES Myb-regulated genes 0.389 0.057 0.077 0.160 0.117 II III 

HADDAD_HPCLYMPH
O_ENRICHED 

Genes enriched in CD45RAhiLin-CD10+ vs CD45RAintCD7- 
and CD45RAhiCD7hi HPCs 0.174 0.465 0.084 0.356 0.137 II IV 

KUMAR_HOXA_DIFF 
Genes that were significantly different between wild-
type, preleukemic, and leukemic mice 0.389 0.086 0.077 0.252 0.111 II III 

LINDSTEDT_DEND_D
N Genes down-regulated in maturing DC 0.396 0.206 0.080 0.171 0.114 II IV 

GH_GHRHR_KO_24H
RS_UP 

Up-regulated at least 2-fold 24 hours following injection 
of human growth hormone (GH) into mice lacking 
functional GHRHR (lit/lit), and with no detecTable 
endogenous GH 0.358 0.414 0.084 0.436 0.116 II IV 

BRG1_ALAB_UP 

Up-regulated at 18 and 24 hours following adenovirus-
mediated expression of BRG1 in ALAB breast cancer cells 
with mutant, inactive BRG1 0.152 0.260 0.022 0.258 0.045 II IV 

GH_GHRHR_KO_6HR
S_UP 

Up-regulated at least 2-fold 6 hours following injection of 
human growth hormone (GH) into mice lacking functional 
GHRHR (lit/lit), and with no detecTable endogenous GH 0.408 0.394 0.070 0.550 0.110 II IV 

POD1_KO_DN 
Down-regulated in glomeruli isolated from Pod1 knockout 
mice, versus wild-type controls 0.142 0.319 0.045 0.256 0.072 II II 
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ELONGINA_KO_UP Upregulated in MES cells from elongin-A knockout mice 0.135 0.356 0.055 0.272 0.090 II II 

STRESS_ARSENIC_SP
ECIFIC_UP 

Genes up-regulated 4 hours following arsenic treatment 
that discriminate arsenic from other stress agents 0.394 0.415 0.076 0.421 0.108 II IV 

EMT_UP 

Up-regulated during the TGFbeta-induced epithelial-to-
mesenchymal transition (EMT) of Ras-transformed mouse 
mammary epithelial (EpH4) cells (EMT is representative of 
late-stage tumor progression and metastasis) 0.419 0.202 0.072 0.388 0.125 II IV 

DSRNA_UP Upregulated by dsRNA (polyI:C) in IFN-null GRE cells 0.392 0.194 0.079 0.250 0.122 II IV 

IDX_TSA_DN_CLUSTE
R5 

Strongly down-regulated at 2-96 hours during 
differentiation of 3T3-L1 fibroblasts into adipocytes with 
IDX (insulin, dexamethasone and isobutylxanthine), vs. 
fibroblasts treated with IDX + TSA to prevent 
differentiation (cluster 5) 0.416 0.279 0.073 0.398 0.119 II IV 

BAF57_BT549_UP 
Up-regulated following sTable re-expression of BAF57 in 
Bt549 breast cancer cells that lack functional BAF57 0.387 0.236 0.078 0.240 0.123 II IV 

FSH_OVARY_MCV15
2_UP 

Up-regulated in ovarian epithelial cells (MCV152) 72 
hours following FSH treatment, compared to untreated 0.396 0.412 0.072 0.238 0.109 II IV 

HSA00564_GLYCERO
PHOSPHOLIPID_MET
ABOLISM Genes involved in glycerophospholipid metabolism 0.316 0.268 0.041 0.450 0.070 II IV 

HSA04060_CYTOKIN
E_CYTOKINE_RECEPT
OR_INTERACTION Genes involved in cytokine-cytokine receptor interaction 0.420 0.193 0.072 0.173 0.124 II IV 

HSA05222_SMALL_C
ELL_LUNG_CANCER Genes involved in small cell lung cancer 0.385 0.412 0.074 0.419 0.106 II IV 

LEE_MYC_TGFA_UP 
Genes up-regulated in hepatoma tissue of Myc+Tgfa 
transgenic mice 0.608 0.383 0.315 0.076 0.118 III IV 

LU_IL4BCELL 
Genes induced in peripheral B cells by 4 hours of 
incubation with the cytokine IL-4. 0.627 0.131 0.342 0.077 0.118 III III 

TAKEDA_NUP8_HOX
A9_10D_DN 

Effect of NUP98-HOXA9 on gene transcription at 10 d 
after transduction Down 0.666 0.489 0.400 0.080 0.111 III IV 

UVC_TTD_4HR_DN 
Down-regulated at 4 hours following treatment of 
XPB/TTD fibroblasts with 3 J/m^2 UVC 0.175 0.902 0.784 0.069 0.114 III IV 

UVC_TTD_ALL_DN 
Down-regulated at any timepoint following treatment of 
XPB/TTD fibroblasts with 3 J/m^2 UVC 0.363 0.896 0.839 0.078 0.118 III IV 

CMV_HCMV_TIMEC
OURSE_14HRS_DN 

Down-regulated in fibroblasts following infection with 
human cytomegalovirus (at least 3-fold, with Affymetrix 
change call, in at least two consectutive timepoints), with 
maximum change at 14 hours 0.555 0.401 0.206 0.078 0.110 III IV 

BRCA_ER_NEG 

Genes whose expression is consistently negatively 
correlated with estrogen receptor status in breast cancer 
- higher expression is associated with ER-negative tumors 0.673 0.017 0.498 0.099 0.132 III III 

HSC_LTHSC_ADULT 

Up-regulated in mouse long-term functional 
hematopoietic stem cells from adult bone marrow (LT-
HSC Shared + Adult) 0.139 0.634 0.236 0.081 0.120 III II 

HSA04510_FOCAL_A
DHESION Genes involved in focal adhesion 0.007 0.674 0.339 0.100 0.131 III II 

KENNY_WNT_DN 
Genes down-regulated by Wnt in HC11 (mammary 
epithelial cells) 0.443 0.093 0.090 0.138 0.153 V VII 

UVC_HIGH_ALL_DN 

Down-regulated at any timepoint following treatment of 
WS1 human skin fibroblasts with UVC at a high dose (50 
J/m^2) (clusters d1-d9) 0.156 0.547 0.141 0.138 0.180 V NA 

IRS1_KO_ADIP_DN 

Down-regulated in brown preadipocytes from Irs1-
knockout mice, which display severe defects in adipocyte 
differentiation, versus wild-type controls 0.459 0.094 0.102 0.135 0.174 V VII 

ASTON_DEPRESSION
_DN 

Genes downregulated in major depressive disorder (p < 
0.05, fold change > 1.4, mean average difference > 150 in 
at least one of the groups, called present in greater than 
20% of all samples) 0.380 0.515 0.108 0.640 0.192 VI NA 

HINATA_NFKB_UP Genes upregulated by NF-kappa B 0.522 0.433 0.148 0.414 0.272 VI NA 
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ST_INTEGRIN_SIGNA
LING_PATHWAY 

Integrins are transmembrane receptors that mediate cell 
growth, survival, and migration by binding to ligands in 
the extracellular matrix. 0.243 0.514 0.109 0.168 0.187 VI NA 

BRENTANI_CELL_AD
HESION 

Cancer related genes involved in cell adhesion and 
metalloproteinases 0.527 0.176 0.146 0.275 0.272 VI NA 

CELL_ADHESION_MO
LECULE_ACTIVITY 

Obsolete by GO - mediates the adhesion of the cell to 
other cells or to the extracellular matrix. 0.455 0.071 0.101 0.214 0.172 VI VII 

GUO_HEX_DN Down-regulated genes in day-6 Hex/ embryoid bodies 0.452 0.413 0.096 0.446 0.160 VI NA 

MOREAUX_TACI_HI_
VS_LOW_UP Genes overexpressed in TACI high patients 0.478 0.262 0.112 0.369 0.199 VI NA 

TAKEDA_NUP8_HOX
A9_8D_DN 

Effect of NUP98-HOXA9 on gene transcription at 8 d after 
transduction Down 0.527 0.394 0.147 0.501 0.273 VI NA 

BASSO_GERMINAL_C
ENTER_CD40_UP CD40 up-regulated genes 0.528 0.520 0.146 0.362 0.269 VI NA 

CMV_24HRS_UP 
Upregulated at 24hrs following infection of primary 
human foreskin fibroblasts with CMV 0.516 0.385 0.132 0.670 0.237 VI NA 

TCELL_ANERGIC_UP 
Genes up-regulated in anergic mouse T helper cells 
(A.E7), versus non-anergic stimulated controls 0.523 0.534 0.145 0.237 0.266 VI NA 

HSA04670_LEUKOCY
TE_TRANSENDOTHEL
IAL_MIGRATION Genes involved in Leukocyte transendothelial migration 0.515 0.559 0.149 0.415 0.273 VI NA 

AGUIRRE_PANCREAS
_CHR12 

Genes on chromosome 1 with copy-number-driven 
expression in pancreatic adenocarcinoma. 0.002 0.613 0.202 0.128 0.158 VII VI 

SHEPARD_NEG_REG
_OF_CELL_PROLIFER
ATION Negative regulators of cell proliferation in zebra fish 0.432 0.646 0.266 0.149 0.199 VII NA 

CELL_PROLIFERATIO
N 

The multiplication or reproduction of cells, resulting in 
the rapid expansion of a cell population. 0.144 0.834 0.616 0.565 0.923 NA VI 

PROLIFERATION_GE
NES Proliferation related genes 0.106 0.673 0.317 0.425 0.581 NA VI 

SHEPARD_CELL_PRO
LIFERATION Cell proliferation genes determined in zebra fish 0.144 0.834 0.616 0.565 0.923 NA VI 

AGUIRRE_PANCREAS
_CHR17 

Genes on chromosome 17 with copy-number-driven 
expression in pancreatic adenocarcinoma. 0.140 0.671 0.302 0.273 0.456 NA VI 

UVC_HIGH_D5_DN 

Progressively down-regulated through 18 hours following 
treatment of WS1 human skin fibroblasts with UVC at a 
high dose (50 J/m^2) (cluster d5) 0.144 0.665 0.328 0.561 0.587 NA VI 

CALRES_RHESUS_UP 

Upregulated in the vastus lateralis muscle of middle-aged 
rhesus monkeys subjected to caloric restriction since 
young adulthood vs. age-matched controls 0.138 0.833 0.621 0.360 0.580 NA VI 

CMV_HCMV_TIMEC
OURSE_ALL_DN 

Down-regulated in fibroblasts following infection with 
human cytomegalovirus (at least 3-fold, with Affymetrix 
change call, in at least two consectutive timepoints) 0.101 0.667 0.313 0.358 0.572 NA VI 

RADAEVA_IFNA_UP 
Genes up-regulated by interferon-alpha in primary 
hepatocyte 0.814 0.088 0.820 0.465 0.775 NA VII 

FRASOR_ER_DN 
Selective estrogen receptor modulators downregulated 
signature 0.666 0.087 0.489 0.371 0.589 NA VII 

DER_IFNG_UP 
Genes up-regulated by interferon-gamma in HT1080 
(fibrosarcoma) 0.661 0.136 0.474 0.360 0.589 NA VII 

LINDSTEDT_DEND_U
P Genes up-regulated in DC stimulated for 8 and 48 h 0.712 0.086 0.568 0.542 0.886 NA VII 

ET743_HELA_UP Upregulated by Et-743 in HeLa cells 0.661 0.023 0.462 0.370 0.606 NA VII 

ADIP_DIFF_CLUSTER
1 

Progressively downregulated over 24 hours during 
differentiation of 3T3-L1 fibroblasts into adipocytes 
(cluster 1) 0.607 0.105 0.274 0.239 0.354 NA VII 

CARIES_PULP_UP 

Up-regulated in pulpal tissue from extracted carious teeth 
(cavities), compared to tissue from extracted healthy 
teeth 0.660 0.089 0.426 0.281 0.486 NA VII 
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APPENDIX B 

Q-VALUES OF ENRICHED PATHWAYS FOR A LUNG CANCER STUDY 

Q-values of enriched pathways detected by individual studies and MAPE methods in drug 

response data (column 3-7: q-value threshold 0.05 and significant q-values marked in red) and 

categories (column 8-9) that correspond to Figure 6 in the manuscript. “Categories comparing 

MAPE_P, MAPE_G & MAPE_I” correspond to the categories in Figure 2.16A and 2.16B. 

“Categories comparing Beer, Bhat & MAPE_I” correspond to the categories in Figure 2.16C and 

2.16D.  

 

Pathways 
Description Genes that are downregulated in AML NPM1 
mutant versus AML NPM1 wild type Beer Bhat MAPE_P MAPE_G MAPE_I CA CB 

LE_MYELIN_DN 

Genes downregulated in Egr2Lo/Lo mice (who bear mutations 
in the transcription factor Egr2 and in which peripheral nerve 
myelination is disrupted) whose expression is significantly 
altered after sciatic nerve injury. 0.000 0.039 0.001 0.002 0.001 I I 

ICHIBA_GVHD 

Genes whose expression is altered greater than twofold in 
mouse livers experiencing graft-versus-host disease (GVHD) as 
a result of allogenic bone marrow transplantation. 0.154 0.035 0.003 0.029 0.007 I III 

GNATENKO_PL
ATELET Top expressed genes in human platelet cells. 0.085 0.000 0.000 0.015 0.001 I III 

PASSERINI_TRA
NSCRIPTION 

Genes associated with cellular adhesion that are differentially 
expressed in endothelial cells of pig aortas from regions of 
disturbed flow (inner aortic arch) versus regions of 
undisturbed laminar flow (descending thoracic aorta). 0.158 0.010 0.003 0.007 0.007 I III 

SANA_TNFA_EN
DOTHELIAL_DN 

Genes down-regulated by TNFA in colon,derm,iliac,aortic,lung 
endothelial cells 0.021 0.013 0.000 0.010 0.000 I I 

PEART_HISTON
E_UP 

Cell-proliferation-related genes upregulated by SAHA and 
depsipeptide (histone deacetylase inhibitors) 0.170 0.086 0.007 0.017 0.014 I IV 

FLECHNER_KID
NEY_TRANSPLA
NT_REJECTION_
UP 

Genes upreglated in acute rejection transplanted kidney 
biopsies relative to well functioning transplanted kidney 
biopsies from sTable, immunosuppressed, recipients (median 
FDR < 0.14% per comparison) 0.000 0.002 0.000 0.001 0.000 I I 

CROONQUIST_R
AS_STROMA_D
N 

Genes downregulated in multiple myeloma cells with N-ras-
activating mutations versus those co-cultured with bone 
marrow stromal cells. 0.138 0.002 0.002 0.006 0.004 I III 

JECHLINGER_E
MT_DN 

Genes downregulated for epithelial plasticity in tumor 
progression 0.085 0.005 0.000 0.019 0.001 I III 

CORDERO_KRAS
_KD_VS_CONTR

Genes upregulated in kras knockdown vs control in a human 
cell line 0.193 0.044 0.010 0.047 0.020 I III 
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OL_UP 

SHIPP_FL_VS_D
LBCL_DN 

Genes upregulated in diffuse B-cell lymphomas (DLBCL) and 
downregulated in follicular lymphoma (FL) (fold change of at 
least 3) 0.147 0.001 0.002 0.038 0.005 I III 

CHIARETTI_T_A
LL Genes overexpressed in leukemia cells. 0.125 0.000 0.001 0.014 0.003 I III 

PROSTAGLANDIN_SYNTHESIS_REGULATION 0.105 0.034 0.001 0.017 0.001 I III 

STRIATED_MUSCLE_CONTRACTION 0.287 0.127 0.034 0.019 0.023 I IV 

CROONQUIST_I
L6_STROMA_U
P 

Genes upregulated in multiple myeloma cells exposed to the 
pro-proliferative cytokine IL-6 versus those co-cultured with 
bone marrow stromal cells. 0.048 0.044 0.001 0.002 0.001 I I 

RUIZ_TENASCIN
_TARGETS Tenascin-C target genes 0.043 0.020 0.000 0.003 0.000 I I 

YAO_P4_KO_VS
_WT_UP 

Genes that have at least a 15 fold increase in expression in the 
KO compared to WT at 6 hours after P4 injection in 
ovariectomized mice 0.003 0.000 0.000 0.007 0.000 I I 

BOQUEST_CD31
PLUS_VS_CD31
MINUS_DN 

Genes overexpressed 3-fold or more in freshly isolated CD31- 
versus freshly isolated CD31+ cells 0.000 0.004 0.000 0.013 0.000 I I 

LEI_MYB_REGU
LATED_GENES Myb-regulated genes 0.195 0.000 0.009 0.001 0.001 I III 

CHIARETTI_T_A
LL_DIFF Genes expressed in T-cell acute lymphocytic leukemia 0.085 0.000 0.000 0.007 0.001 I III 

BOQUEST_CD31
PLUS_VS_CD31
MINUS_UP 

Genes overexpressed 3-fold or more in freshly isolated CD31+ 
versus freshly isolated CD31- cells 0.000 0.000 0.000 0.000 0.000 I I 

RORIE_ES_PNET
_UP 

The 30 genes showing the greatest increase in expression in 
NBa Ews/Fli-1 infectants 0.203 0.034 0.011 0.017 0.020 I III 

HOHENKIRK_M
ONOCYTE_DEN
D_UP Up-regulated mRNAs in monocyte-derived DCs 0.022 0.000 0.000 0.000 0.000 I I 

HOHENKIRK_M
ONOCYTE_DEN
D_DN Down-regulated mRNAs in monocyte-derived DCs 0.007 0.037 0.001 0.017 0.001 I I 

GERY_CEBP_TA
RGETS 

Complete list of differentially regulated C/EBP-target genes, 
sorted by P-value 0.040 0.015 0.000 0.007 0.000 I I 

VERHAAK_AML
_NPM1_MUT_V
S_WT_UP 

Genes that are upregulated in AML NPM1 mutant versus AML 
NPM1 wild type 0.026 0.003 0.000 0.032 0.000 I I 

IRITANI_ADPRO
X_LYMPH LYMPHATIC EC 0.084 0.000 0.000 0.034 0.001 I III 

LI_FETAL_VS_W
T_KIDNEY_UP 

These are genes identified by simple statistical criteria as 
differing in their mRNA expresssion between WTs and fetal 
kidneys LOW 0.087 0.000 0.000 0.013 0.001 I III 

TAKEDA_NUP8_
HOXA9_10D_D
N 

Effect of NUP98-HOXA9 on gene transcription at 10 d after 
transduction Down 0.014 0.014 0.000 0.003 0.000 I I 

NAKAJIMA_MC
SMBP_MAST Top 50 most-increased mast cell specific transcripts 0.253 0.001 0.025 0.023 0.028 I III 

TAVOR_CEBP_U
P C/EBP up-regulated genes in KCL22 cells 0.045 0.011 0.000 0.014 0.000 I I 

IGLESIAS_E2FMI
NUS_UP Genes that increase in the absence of E2F1 and E2F2 0.064 0.000 0.000 0.001 0.000 I III 

GNATENKO_PL
ATELET_UP Top 50 human platelet-expressed genes 0.085 0.000 0.000 0.015 0.001 I III 

RUTELLA_HEMA
TOGFSNDCS_DI
FF The 672 significantly changing genes 0.111 0.000 0.001 0.002 0.001 I III 

KUMAR_HOXA_
DIFF 

Genes that were significantly different between wild-type, 
preleukemic, and leukemic mice 0.203 0.046 0.011 0.017 0.020 I III 
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P21_ANY_DN 
Down-regulated at any timepoint (4-24 hrs) follwing ectopic 
expression of p21 (CDKN1A) in OvCa cells 0.048 0.015 0.000 0.001 0.000 I I 

HYPOXIA_REVIE
W Genes known to be induced by hypoxia 0.165 0.033 0.005 0.047 0.010 I III 

BLEO_HUMAN_
LYMPH_HIGH_2
4HRS_UP 

Up-regulated at 24 hours following treatment of human 
lymphocytes (TK6) with a high dose of bleomycin 0.109 0.045 0.001 0.034 0.003 I III 

ATRIA_UP 
Upregulated in the atria of healthy hearts, compared to 
venticles 0.004 0.004 0.000 0.002 0.000 I I 

PLATELET_EXPR
ESSED 

Fifty genes most strongly expressed in human platlets from 
three healthy donors 0.048 0.006 0.000 0.027 0.000 I I 

CMV_HCMV_TI
MECOURSE_20
HRS_DN 

Down-regulated in fibroblasts following infection with human 
cytomegalovirus (at least 3-fold, with Affymetrix change call, 
in at least two consectutive timepoints), with maximum 
change at 20 hours 0.105 0.082 0.006 0.047 0.014 I IV 

LVAD_HEARTFA
ILURE_UP 

Upregulated in the left ventricle myocardium of patients with 
heart failure following implantation of a left ventricular assist 
device 0.044 0.000 0.000 0.007 0.000 I I 

AGEING_BRAIN
_UP Age-upregulated in the human frontal cortex 0.042 0.003 0.000 0.004 0.000 I I 

IDX_TSA_UP_CL
USTER3 

Strongly up-regulated at 16-24 hours during differentiation of 
3T3-L1 fibroblasts into adipocytes with IDX (insulin, 
dexamethasone and isobutylxanthine), vs. fibroblasts treated 
with IDX + TSA to prevent differentiation (cluster 3) 0.270 0.006 0.028 0.023 0.028 I III 

IDX_TSA_UP_CL
USTER2 

Strongly up-regulated at 8 hours during differentiation of 3T3-
L1 fibroblasts into adipocytes with IDX (insulin, 
dexamethasone and isobutylxanthine), vs. fibroblasts treated 
with IDX + TSA to prevent differentiation (cluster 2) 0.167 0.116 0.012 0.003 0.002 I IV 

AGED_MOUSE_
NEOCORTEX_U
P 

Upregulated in the neocortex of aged adult mice (30-month) 
vs. young adult (5-month) 0.020 0.028 0.000 0.017 0.001 I I 

ADIP_DIFF_CLU
STER5 

Strongly upregulated at 24 hours during differentiation of 3T3-
L1 fibroblasts into adipocytes (cluster 5) 0.193 0.002 0.010 0.038 0.020 I III 

ADIP_DIFF_CLU
STER2 

Strongly upregulated at 2 hours during differentiation of 3T3-
L1 fibroblasts into adipocytes (cluster 2) 0.172 0.041 0.007 0.034 0.014 I III 

AGED_MOUSE_
CEREBELLUM_U
P 

Upregulated in the cerebellum of aged adult mice (30-month) 
vs. young adult (5-month) 0.105 0.034 0.001 0.047 0.001 I III 

AGEING_KIDNE
Y_UP 

Up-regulation is associated with increasing age in normal 
human kidney tissue from 74 patients 0.071 0.046 0.001 0.017 0.003 I III 

SERUM_FIBROB
LAST_CELLCYCL
E 

Cell-cycle dependent genes regulated following exposure to 
serum in a variety of human fibroblast cell lines 0.163 0.000 0.004 0.004 0.004 I III 

POD1_KO_UP 
Up-regulated in glomeruli isolated from Pod1 knockout mice, 
versus wild-type controls 0.117 0.020 0.001 0.003 0.002 I III 

CALRES_RHESU
S_UP 

Upregulated in the vastus lateralis muscle of middle-aged 
rhesus monkeys subjected to caloric restriction since young 
adulthood vs. age-matched controls 0.045 0.004 0.000 0.047 0.000 I I 

EMT_DN 

Down-regulated during the TGFbeta-induced epithelial-to-
mesenchymal transition (EMT) of Ras-transformed mouse 
mammary epithelial (EpH4) cells (EMT is representative of 
late-stage tumor progression and metastasis) 0.036 0.001 0.000 0.003 0.000 I I 

HEARTFAILURE_
VENTRICLE_DN 

Downregulated in the ventricles of failing hearts (DCM and 
ICM) compared to healthy controls 0.162 0.005 0.005 0.014 0.010 I III 

CARIES_PULP_U
P 

Up-regulated in pulpal tissue from extracted carious teeth 
(cavities), compared to tissue from extracted healthy teeth 0.004 0.000 0.000 0.000 0.000 I I 

CMV_HCMV_TI
MECOURSE_ALL
_DN 

Down-regulated in fibroblasts following infection with human 
cytomegalovirus (at least 3-fold, with Affymetrix change call, 
in at least two consectutive timepoints) 0.021 0.004 0.000 0.004 0.000 I I 

HSA04510_FOC
AL_ADHESION Genes involved in focal adhesion 0.200 0.122 0.013 0.046 0.029 I IV 

HSA04514_CELL
_ADHESION_M Genes involved in cell adhesion molecules (CAMs) 0.212 0.003 0.012 0.003 0.002 I III 
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OLECULES 

HSA04670_LEU
KOCYTE_TRANS
ENDOTHELIAL_
MIGRATION Genes involved in Leukocyte transendothelial migration 0.073 0.014 0.000 0.024 0.001 I III 

SHEPARD_BMY
B_MORPHOLIN
O_DN 

Genes upregulated in control vs bmyb morpholino knockdown 
in zebra fish 0.194 0.153 0.022 0.251 0.045 II IV 

JECHLINGER_E
MT_UP 

Genes upregulated for epithelial plasticity in tumor 
progression 0.173 0.028 0.007 0.054 0.015 II III 

PASSERINI_ADH
ESION 

Genes associated with cellular adhesion that are differentially 
expressed in endothelial cells of pig aortas from regions of 
disturbed flow (inner aortic arch) versus regions of 
undisturbed laminar flow (descending thoracic aorta). 0.237 0.007 0.019 0.055 0.039 II III 

TARTE_MATUR
E_PC 

Genes overexpressed in polyclonal plasmablastic cells (PPCs) 
as compared to mature plasma cells isolated from tonsils 
(TPCs) and mature plasma cells isolated from bone marrow 
(BMPCs). 0.161 0.035 0.004 0.169 0.009 II III 

ZELLER_MYC_U
P Genes up-regulated by MYC in >3 papers. 0.235 0.026 0.019 0.181 0.038 II III 

NELSON_ANDR
OGEN_UP 

Genes upregulated by androgen in neoplastic prostate 
epithelium 0.168 0.092 0.008 0.170 0.016 II IV 

GO_ROS Reactive oxidative species related genes curated from GO 0.129 0.086 0.007 0.203 0.014 II IV 

SHIPP_FL_VS_D
LBCL_UP 

Genes upregulated in follicular lymphoma (FL) and 
downregulated in diffuse B-cell lymphomas (DLBCL) (fold 
change of at least 3) 0.193 0.059 0.010 0.161 0.021 II IV 

HADDAD_HSC_
CD7_UP 

Genes upregulated in human hematopoietic stem cells of the 
line CD45RA(hi) CD7+, which are biased toward developing 
into T lymphocytes or natural killer cells, versus CD45RA(int) 
CD7-. 0.149 0.002 0.003 0.054 0.006 II III 

SANSOM_APC_
LOSS4_UP The top 174 genes upregulated following Apc loss at day 4 0.193 0.014 0.010 0.081 0.021 II III 

NAKAJIMA_MC
SMBP_EOS Top 30 increased eosinophil specific transcripts 0.169 0.145 0.019 0.310 0.040 II IV 

STEFFEN_AML_
PML_PLZF_TRG
T Target genes shared by AML1-ETO, PML-RAR, and PLZF-RAR 0.161 0.046 0.004 0.133 0.009 II III 

ZHANG_EFT_E
WSFLI1_UP 

Genes (n = 109) significantly upregulated in RD-EF and also 
highly expressed in EFT 0.194 0.012 0.010 0.072 0.020 II III 

HADDAD_CD45
CD7_PLUS_VS_
MINUS_UP Genes enriched in CD45RAhiCD7hi vs CD45RAintCD7- HPCs 0.149 0.002 0.003 0.054 0.006 II III 

NAKAJIMA_MC
S_UP 

Most increased transcripts in activated human and mouse 
MCs 0.168 0.003 0.007 0.122 0.014 II III 

ALCALAY_AML_
NPMC_UP Increased expression in NPMc+ leukemias 0.167 0.046 0.007 0.073 0.014 II III 

KNUDSEN_PMN
S_UP Genes up-regulated in PMNs upon migration to skin lesions 0.168 0.081 0.007 0.189 0.014 II IV 

GAY_YY1_DN 
List of YY1 target genes identified in MEFs expressing ~25% of 
YY1 Down 0.250 0.021 0.024 0.169 0.048 II III 

ALCALAY_AML_
NPMC_DN Decreased expression in NPMc+ leukemias 0.185 0.004 0.009 0.215 0.018 II III 

TAKEDA_NUP8_
HOXA9_8D_DN 

Effect of NUP98-HOXA9 on gene transcription at 8 d after 
transduction Down 0.225 0.041 0.016 0.125 0.033 II III 

RADMACHER_A
MLNORMALKAR
YTYPE_SIG Bullinger Validation Signature (157 Affymetrix probe sets) 0.149 0.085 0.007 0.168 0.014 II IV 

VERHAAK_AML
_NPM1_MUT_V
S_WT_DN 

Description Genes that are downregulated in AML NPM1 
mutant versus AML NPM1 wild type 0.194 0.020 0.010 0.066 0.020 II III 

YAGI_AML_PRO
G_FAB FAB type-specific probe sets 0.233 0.037 0.018 0.165 0.037 II III 
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RAY_P210_DIFF 
Functional classification of p210BCR-ABL differentially 
regulated genes identified by cDNA macroarray 0.228 0.046 0.017 0.161 0.034 II III 

ZHAN_MULTIPL
E_MYELOMA_V
S_NORMAL_DN 

The 50 most significantly down-regulated genes in MM in 
comparison with normal bone marrow PCs 0.055 0.013 0.000 0.071 0.000 II III 

FALT_BCLL_UP Genes up-regulated in VH3-21+ B-CLL 0.105 0.036 0.001 0.073 0.001 II III 

LINDSTEDT_DE
ND_DN Genes down-regulated in maturing DC 0.144 0.003 0.002 0.185 0.004 II III 

HSC_LTHSC_SH
ARED 

Up-regulated in mouse long-term functional hematopoietic 
stem cells from both adult bone marrow and fetal liver 
(Cluster i, LT-HSC Shared) 0.116 0.110 0.010 0.109 0.021 II IV 

POD1_KO_DN 
Down-regulated in glomeruli isolated from Pod1 knockout 
mice, versus wild-type controls 0.149 0.000 0.002 0.157 0.005 II III 

DIAB_NEPH_UP 
Upregulated in the glomeruli of cadaver kidneys from patients 
with diabetic nephropathy, compared to normal controls 0.050 0.007 0.000 0.087 0.000 II III 

HTERT_UP 
Upregulated in hTERT-immortalized fibroblasts vs. non-
immortalized controls 0.234 0.073 0.019 0.135 0.039 II IV 

PARP_KO_UP Upregulated in MEF cells from PARP knockout mice 0.147 0.040 0.002 0.072 0.005 II III 

CMV_HCMV_TI
MECOURSE_48
HRS_DN 

Down-regulated in fibroblasts following infection with human 
cytomegalovirus (at least 3-fold, with Affymetrix change call, 
in at least two consectutive timepoints), with maximum 
change at 48 hours 0.192 0.062 0.009 0.161 0.019 II IV 

UVB_NHEK1_U
P 

Upregulated by UV-B light in normal human epidermal 
keratinocytes 0.172 0.027 0.006 0.081 0.014 II III 

CARIES_PULP_H
IGH_UP 

Highly up-regulated (>4-fold) in pulpal tissue from extracted 
carious teeth (cavities), compared to tissue from extracted 
healthy teeth 0.171 0.041 0.006 0.068 0.014 II III 

EMT_UP 

Up-regulated during the TGFbeta-induced epithelial-to-
mesenchymal transition (EMT) of Ras-transformed mouse 
mammary epithelial (EpH4) cells (EMT is representative of 
late-stage tumor progression and metastasis) 0.192 0.046 0.009 0.098 0.019 II III 

HSC_LTHSC_FET
AL 

Up-regulated in mouse long-term functional hematopoietic 
stem cells from fetal liver (LT-HSC Shared) 0.116 0.110 0.010 0.109 0.021 II IV 

AGEING_KIDNE
Y_SPECIFIC_UP 

Up-regulation is associated with increasing age in normal 
human kidney tissue from 74 patients, and expression is 
higher in kidney than in whole blood 0.234 0.149 0.020 0.072 0.042 II IV 

ROS_MOUSE_A
ORTA_DN 

Down-regulated in mouse aorta by chronic treatment with 
PPARgamma agonist rosiglitazone 0.022 0.035 0.001 0.053 0.001 II I 

ADIP_DIFF_CLU
STER1 

Progressively downregulated over 24 hours during 
differentiation of 3T3-L1 fibroblasts into adipocytes (cluster 1) 0.233 0.036 0.020 0.206 0.040 II III 

E2F3_ONCOGE
NIC_SIGNATURE 

Genes selected in supervised analyses to discriminate cells 
expressing E2F3 oncogene from control cells expressing GFP. 0.182 0.116 0.012 0.262 0.024 II IV 

HSA00350_TYR
OSINE_METABO
LISM Genes involved in tyrosine metabolism 0.106 0.087 0.007 0.089 0.014 II IV 

HSA04530_TIG
HT_JUNCTION Genes involved in tight junction 0.233 0.089 0.019 0.076 0.040 II IV 

BASSO_REGULA
TORY_HUBS 

Genes which comprise the top 1% of highly interconnected 
genes (major hubs) that account for most of the interactions 
in the reconstructed regulatory networks from expression 
profiles in human B cells. 0.329 0.000 0.063 0.008 0.009 III III 

LI_FETAL_VS_W
T_KIDNEY_DN 

These are genes identified by simple statistical criteria as 
differing in their mRNA expresssion between WTs and fetal 
kidneys HIGH 0.317 0.007 0.057 0.026 0.033 III III 

HALMOS_CEBP
_DN 

The list of most highly downregulated genes after conditional 
expression of C/EBPalpha 0.298 0.216 0.058 0.034 0.044 III IV 

HDACI_COLON_
BUT_UP 

Upregulated by butyrate at any timepoint up to 48 hrs in 
SW260 colon carcinoma cells 0.409 0.020 0.139 0.027 0.036 III III 

CMV_24HRS_D
N 

Downregulated at 24hrs following infection of primary human 
foreskin fibroblasts with CMV 0.349 0.004 0.079 0.017 0.019 III III 

CMV_ALL_DN Downregulated at any timepoint following infection of 0.365 0.015 0.094 0.017 0.021 III III 
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primary human foreskin fibroblasts with CMV 

HDACI_COLON_
BUT48HRS_UP 

Upregulated by butyrate at 48 hrs in SW260 colon carcinoma 
cells 0.514 0.040 0.259 0.030 0.039 III III 

HDACI_COLON_
TSABUT_UP 

Upregulated by both butyrate and TSA at any timepoint up to 
48 hrs in SW260 colon carcinoma cells 0.339 0.039 0.071 0.016 0.019 III III 

IDX_TSA_DN_CL
USTER3 

Strongly down-regulated at 8-96 hours during differentiation 
of 3T3-L1 fibroblasts into adipocytes with IDX (insulin, 
dexamethasone and isobutylxanthine), vs. fibroblasts treated 
with IDX + TSA to prevent differentiation (cluster 3) 0.223 0.240 0.070 0.034 0.044 III IV 

HSA01430_CELL
_COMMUNICAT
ION Genes involved in cell communication 0.371 0.015 0.099 0.016 0.019 III III 

HSA04610_CO
MPLEMENT_AN
D_COAGULATIO
N_CASCADES Genes involved in complement and coagulation cascades 0.039 0.284 0.098 0.013 0.015 III II 

OXSTRESS_RPET
HREE_DN 

Downregulated by all three of H2O2, HNE and t-BH in retinal 
pigment epithelium cells (Table 2) 0.101 0.202 0.047 0.047 0.064 V NA 

HTERT_DN 
Downregulated in hTERT-immortalized fibroblasts vs. non-
immortalized controls 0.157 0.160 0.026 0.048 0.053 V NA 

HDACI_COLON_
BUT24HRS_UP 

Upregulated by butyrate at 24 hrs in SW260 colon carcinoma 
cells 0.308 0.159 0.045 0.041 0.055 V NA 

ROSS_CBF 
Genes that distinguish pediatric acute myeloid leukemia (AML) 
core-binding factor (CBF) subtypes. 0.267 0.111 0.028 0.164 0.055 VI NA 

PASSERINI_SIG
NAL 

Genes associated with cellular adhesion that are differentially 
expressed in endothelial cells of pig aortas from regions of 
disturbed flow (inner aortic arch) versus regions of 
undisturbed laminar flow (descending thoracic aorta). 0.310 0.203 0.047 0.347 0.093 VI NA 

HOGERKORP_A
NTI_CD44_UP 

Genes differentially expressed in human B cells cultured in 
vitro in the presence or absence of CD44 ligation, together 
with anti-immunoglobulin and anti-CD40 antibodies 0.161 0.207 0.050 0.490 0.095 VI NA 

WIELAND_HEPA
TITIS_B_INDUCE
D 

Genes induced in the liver during hepatitis B viral clearance in 
chimpanzees. 0.310 0.032 0.046 0.243 0.091 VI VII 

MANALO_HYPO
XIA_DN 

Genes downregulated in human pulmonary endothelial cells 
under hypoxic conditions or after exposure to AdCA5, an 
adenovirus carrying constitutively active hypoxia-inducible 
factor 1 (HIF-1alpha). 0.253 0.175 0.032 0.239 0.062 VI NA 

BROCKE_IL6 
Genes whose expression was modulated at least 1.5-fold in 
multiple myeloma INA-6 cells on addition of interleukin-6. 0.308 0.004 0.045 0.144 0.087 VI VII 

ROSS_CBF_LEU
KEMIA Genes upregulated in AML samples with the CBF subtype 0.302 0.090 0.042 0.206 0.083 VI NA 

LEE_MYC_E2F1
_UP 

Genes up-regulated in hepatoma tissue of Myc+E2f1 
transgenic mice 0.271 0.054 0.031 0.127 0.061 VI NA 

CELL_ADHESIO
N 

The attachment of a cell, either to another cell or to the 
extracellular matrix, via cell adhesion molecules. 0.257 0.088 0.026 0.251 0.053 VI NA 

CALCIUM_REGULATION_IN_CARDIAC_CELLS 0.306 0.187 0.045 0.489 0.087 VI NA 

SMOOTH_MUSCLE_CONTRACTION 0.235 0.177 0.032 0.215 0.063 VI NA 

TYROSINE_METABOLISM 0.309 0.207 0.049 0.091 0.094 VI NA 

FALT_BCLL_IG_
MUTATED_VS_
WT_UP Genes upregulated in Ig-mutated non-VH3-21 B-CLL 0.282 0.036 0.032 0.065 0.064 VI VII 

ZHAN_MMPC_E
ARLYVS 

Early differentiation genes top 50 differentially expressed 
genes in comparison of CD19-enriched tonsil BCs and CD138-
enriched tonsil PCs 0.312 0.197 0.047 0.185 0.093 VI NA 

TAKEDA_NUP8_
HOXA9_6H_DN 

Effect of NUP98-HOXA9 on gene transcription at 6 h after 
transfection Down 0.257 0.025 0.026 0.150 0.052 VI VII 

ZHAN_MM_CD
138_MF_VS_RE
ST 

50 top ranked SAM-defined over-expressed genes in each 
subgroup_MF 0.196 0.189 0.042 0.079 0.082 VI NA 
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YANG_OSTECLA
STS_SIG 

Relative gene expression for osteoclast-associated genes, 
chemokines, and chemokine receptors 0.225 0.194 0.044 0.171 0.085 VI NA 

ZHAN_MMPC_S
IMAL 

LDGs showing similar expression patterns in tonsil PCs and all 
or subsets of MM 0.160 0.204 0.047 0.160 0.093 VI NA 

KANG_TERT_DN 

Expressed gene profile of ATSCs and ATSC-TERT cells and 
partial list of genes that were downregulated in ATSC-TERT 
cells 0.105 0.164 0.028 0.135 0.055 VI NA 

IRITANI_ADPRO
X_DN BEC-specific suppressed by AdProx-1 0.275 0.060 0.032 0.135 0.063 VI NA 

MENSE_HYPOXI
A_TRANSPORTE
R_GENES 

List of Hypoxia-induced/suppressed genes encoding 
transporters in Astrocytes 0.173 0.163 0.027 0.116 0.055 VI NA 

BASSO_GERMIN
AL_CENTER_CD
40_UP CD40 up-regulated genes 0.104 0.201 0.046 0.186 0.091 VI NA 

KRETZSCHMAR_
IL6_DIFF 

Shown are those probe sets that report at least a 15-fold 
expression change in response to IL-6 addition to INA-6 cells 0.308 0.004 0.045 0.144 0.087 VI VII 

CMV_UV-
CMV_COMMO
N_HCMV_6HRS
_DN 

Down-regulated in fibroblasts at 6 hours following infection 
with either human cytomegalovirus (CMV) or UV-inactivated 
CMV 0.272 0.046 0.031 0.184 0.061 VI VII 

DOX_RESIST_G
ASTRIC_UP 

Upregulated in gastric cancer cell lines reistant to doxorubicin, 
compared to parent chemosensitive lines 0.279 0.002 0.032 0.163 0.064 VI VII 

HSC_LTHSC_AD
ULT 

Up-regulated in mouse long-term functional hematopoietic 
stem cells from adult bone marrow (LT-HSC Shared + Adult) 0.172 0.185 0.035 0.172 0.070 VI NA 

ADIPOGENESIS_
HMSC_CLASS8_
DN 

Down-regulated 1-14 days following the differentiation of 
human bone marrow mesenchymal stem cells (hMSC) into 
adipocytes, versus untreated hMSC cells (Class VIII) 0.272 0.207 0.050 0.053 0.079 VI NA 

CARIES_PULP_D
N 

Down-regulated in pulpal tissue from extracted carious teeth 
(cavities), compared to tissue from extracted healthy teeth 0.148 0.178 0.032 0.377 0.064 VI NA 

ADIP_VS_FIBRO
_UP 

Upregulated following 7-day differentiation of murine 3T3-L1 
fibroblasts into adipocytes 0.233 0.189 0.042 0.282 0.082 VI NA 

HSA00251_GLU
TAMATE_META
BOLISM Genes involved in glutamate metabolism 0.232 0.184 0.034 0.054 0.069 VI NA 

HSA04340_HED
GEHOG_SIGNAL
ING_PATHWAY Genes involved in Hedgehog signaling pathway 0.178 0.192 0.043 0.171 0.084 VI NA 

HOFFMANN_BI
VSBII_LGBII 

Genes with at least five fold change in expression between 
large and small Pre-BII cells 0.338 0.000 0.071 0.042 0.056 VII VII 

ZHAN_MMPC_S
IM 

LDGs showing similar expression patterns in bone marrow PC 
and subsets of MM 0.443 0.012 0.185 0.041 0.055 VII VII 

GREENBAUM_E
2A_UP 

Table includes transcripts up-regulated 3-fold or greater in the 
E2A-deficient cell lines 0.317 0.001 0.057 0.046 0.061 VII VII 

HDACI_COLON_
BUT16HRS_UP 

Upregulated by butyrate at 16 hrs in SW260 colon carcinoma 
cells 0.435 0.034 0.179 0.045 0.061 VII VII 

HDACI_COLON_
BUT2HRS_UP 

Upregulated by butyrate at 2 hrs in SW260 colon carcinoma 
cells 0.329 0.046 0.064 0.039 0.053 VII VII 

NI2_MOUSE_D
N Downregulated by nickel(II) in sensitive A/J mouse lung tissue 0.194 0.375 0.191 0.045 0.060 VII NA 

H2O2_CSBRESC
UED_C1_UP 

Upregulated by H2O2 in CSB-rescued fibroblasts (Table 1, 
cluster 1) 0.364 0.035 0.092 0.047 0.065 VII VII 

KLEIN_PEL_UP 

Genes downregulated in AIDS-related primary effusion 
lymphoma (PEL) cells compared to normal B cells and other 
tumor subtypes. 0.047 0.304 0.114 0.245 0.231 NA VI 

TAKEDA_NUP8_
HOXA9_16D_D
N 

Effect of NUP98-HOXA9 on gene transcription at 16 d after 
transduction Down 0.037 0.550 0.452 0.195 0.318 NA VI 

HSA04210_APO
PTOSIS Genes involved in apoptosis 0.020 0.515 0.391 0.071 0.102 NA VI 

TARTE_PC 
Genes overexpressed in polyclonal plasmablastic cells (PPCs), 
mature plasma cells isolated from tonsils (TPCs), and mature 0.519 0.014 0.267 0.267 0.429 NA VII 
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plasma cells isolated from bone marrow (BMPCs), as 
compared to B cells purified from peripheral blood (PBBs) and 
tonsils (TBCs). 

GLUCONEOGENESIS 0.536 0.039 0.291 0.156 0.232 NA VII 

DAVIES_MGUS_
MM 

Genes differentially expressed in monoclonal gammopathy of 
uncertain significance (MGUS, a precursor state for multiple 
myeloma) versus multiple myeloma (MM) plasma cells. Fold 
Change uses MGUS as the baseline. 0.453 0.046 0.194 0.398 0.373 NA VII 

PENG_LEUCINE
_DN Genes downregulated in response to leucine starvation 0.714 0.003 0.614 0.542 0.768 NA VII 

CROONQUIST_I
L6_STARVE_UP 

Genes upregulated in multiple myeloma cells exposed to the 
pro-proliferative cytokine IL-6 versus those that were IL-6-
starved. 0.329 0.001 0.064 0.066 0.095 NA VII 

ZUCCHI_EPITHE
LIAL_UP 

The 50 most upregulated genes in primary invasive breast 
dutcal carcinoma or metastatic breast carcinoma isolated 
from lymph nodes, as compared to normal mammary 
epithelium. 0.615 0.014 0.406 0.507 0.698 NA VII 

GLYCOLYSIS 0.536 0.039 0.291 0.156 0.232 NA VII 

HCC_SURVIVAL
_GOOD_VS_PO
OR_DN 

Genes highly expressed in hepatocellular carcinoma with poor 
survival. 0.695 0.018 0.570 0.292 0.470 NA VII 

TARTE_PLASMA
_BLASTIC 

Genes overexpressed in mature plasma cells isolated from 
tonsils (TPCs) and mature plasma cells isolated from bone 
marrow (BMPCs) as compared to polyclonal plasmablastic 
cells (PPCs). 0.675 0.007 0.528 0.346 0.563 NA VII 

LE_MYELIN_UP 

Genes upregulated in Egr2Lo/Lo mice (who bear mutations in 
the transcription factor Egr2 and in which peripheral nerve 
myelination is disrupted) whose expression is significantly 
altered after sciatic nerve injury. 0.497 0.046 0.241 0.108 0.164 NA VII 

SCHUMACHER_
MYC_UP Genes up-regulated by MYC in P493-6 (B-cell) 0.434 0.014 0.177 0.053 0.073 NA VII 

CHANG_SERUM
_RESPONSE_DN CSR Stanford signature for quiscent genes 0.372 0.016 0.104 0.127 0.191 NA VII 

PENG_RAPAMY
CIN_DN Genes downregulated in response to rapamycin starvation 0.694 0.037 0.564 0.610 0.786 NA VII 

PENG_RAPAMY
CIN_UP Genes upregulated in response to rapamycin starvation 0.448 0.026 0.191 0.136 0.203 NA VII 

BHATTACHARYA
_ESC_UP 

Genes upregulated in undifferentiated human embryonic 
stem cells. 0.691 0.005 0.557 0.522 0.761 NA VII 

LEE_TCELLS10_
UP 

Transcripts showing more than 2 fold higher expression in CB4 
than in AB4 0.370 0.026 0.100 0.121 0.184 NA VII 

NADLER_OBESI
TY_UP Genes with increased expression with obesity 0.377 0.020 0.110 0.126 0.188 NA VII 

LEE_TCELLS8_U
P 

Transcripts enriched in na???ve CD4 T cells (CB4, and AB4) 
more than 3-fold, with average signal value differences of at 
least 100 between thymocytes (ITTP, DP, SP4) and naive-
phenotype CD4 T (CB4, and AB4) cells 0.370 0.026 0.100 0.121 0.184 NA VII 

FERRANDO_ML
L_T_ALL_UP 

Top 100 nearest neighbor genes positively associated with 
MLL T-ALL cases 0.351 0.019 0.082 0.122 0.167 NA VII 

MATSUDA_VAL
PHAINKT_DIFF 

Differential gene expression between developmental stages of 
Va14i NKT cells 0.542 0.026 0.296 0.256 0.411 NA VII 

FERRANDO_ML
L_T_ALL_DN 

Top 100 nearest neighbor genes negatively associated with 
MLL T-ALL cases 0.715 0.022 0.613 0.530 0.763 NA VII 

IRITANI_ADPRO
X_VASC BLOOD VASCULAR EC 0.378 0.046 0.110 0.198 0.220 NA VII 

BASSO_HCL_DIF
F 

Identification of HCL-specific genes, The analysis identified 89 
genes that are differentially expressed in HCL versus all the 
other samples 0.464 0.001 0.204 0.171 0.271 NA VII 

HOFFMANN_BI
VSBII_BI_TABLE
2 

Genes with at least five fold change in expression between 
Pre-BI and Large Pre-BII cells 0.553 0.020 0.307 0.358 0.560 NA VII 
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LINDSTEDT_DE
ND_8H_VS_48H
_DN 

Genes up-regulated in DC stimulated for 48 h as compared to 
DC stimulated for 8 h 0.581 0.019 0.345 0.346 0.557 NA VII 

LEE_TCELLS3_U
P 

Transcripts enriched in both ITTP and DP more than 3-fold, 
with average signal value differences of at least 100  between 
less mature (ITTP, DP) and more mature (SP4, CB4, and AB4) 
cells 0.436 0.034 0.177 0.485 0.335 NA VII 

YAGI_AML_PRO
G_ASSOC Prognosis-associated probe sets 0.631 0.038 0.434 0.434 0.683 NA VII 

LEE_TCELLS1_U
P 

Transcripts enriched in more mature cells (SP4, CB4, and AB4) 
more than 3-fold, with average signal value differences of at 
least 100 between less mature (ITTP, DP) and more mature 
(SP4, CB4, and AB4) cells 0.370 0.026 0.100 0.121 0.184 NA VII 

AD12_ANY_DN 
Down-regulated 2-fold in HeLa cells by Adenovirus type 12 
(Ad12) at any timepoint to 48 hrs hours post-infection 0.494 0.019 0.236 0.328 0.452 NA VII 

BRCA1_OVEREX
P_PROSTATE_U
P 

Up-regulated with sTable, ectopic overexpression of BRCA1 in 
DU-145 human prostate cancer cell lines, compared to neo-
only controls 0.603 0.027 0.381 0.109 0.164 NA VII 

BREASTCA_THR
EE_CLASSES 

Gene set that can be used to differentiate BRCA1-linked, 
BRCA2-linked, and sporadic primary breast cancers 0.438 0.041 0.176 0.210 0.330 NA VII 

CANCER_NEOPL
ASTIC_META_U
P 

Sixty-seven genes commonly upregulated in cancer relative to 
normal tissue, from a meta-analysis of the OncoMine gene 
expression database 0.474 0.000 0.214 0.172 0.269 NA VII 

MAMMARY_DE
V_UP 

Up-regulated in the intact developing mouse mammary gland; 
higher expression in 5/6 week pubertal glands than in 3 week, 
mid-pregnant, lactating, involuting or resuckled glands 0.333 0.047 0.067 0.066 0.093 NA VII 

NI2_MOUSE_U
P Upregulated by nickel(II) in sensitive A/J mouse lung tissue 0.568 0.008 0.324 0.300 0.488 NA VII 

ADIP_VS_PREA
DIP_DN 

Downregulated in mature murine adipocytes (7 day 
differentiation) vs. preadipocytes (6 hr differentiation) 0.323 0.037 0.060 0.065 0.092 NA VII 

TSA_HEPATOM
A_UP 

Up-regulated in more than one of several human hepatoma 
cell lines by 24-hour treatment with trichostatin A 0.363 0.045 0.094 0.185 0.188 NA VII 

CANCER_UNDIF
FERENTIATED_
META_UP 

Sixty-nine genes commonly upregulated in undifferentiated 
cancer relative to well-differentiated cancer, from a meta-
analysis of the OncoMine gene expression database 0.501 0.006 0.246 0.203 0.330 NA VII 

CMV_IE86_UP 
Upregulated by expression of cytomegalovirus IE86 protein in 
primary human fibroblasts 0.637 0.012 0.444 0.204 0.334 NA VII 

RCC_NL_UP 
Upregulated in VHL-rescued renal carcinoma vs. normal renal 
cells (Fig. 2d+e) 0.705 0.027 0.588 0.418 0.662 NA VII 

CAMPTOTHECI
N_PROBCELL_D
N 

Down-regulated in pro-B cells (FL5.12) following treatment 
with camptothecin 0.367 0.026 0.094 0.181 0.187 NA VII 

STRESS_ARSENI
C_SPECIFIC_DN 

Genes down-regulated 4 hours following arsenic treatment 
that discriminate arsenic from other stress agents 0.452 0.022 0.193 0.244 0.371 NA VII 

UVB_SCC_UP Upregulated by UV-B light in squamous cell carcinoma cells 0.696 0.032 0.569 0.486 0.733 NA VII 

HDACI_COLON_
BUT12HRS_DN 

Downregulated by butyrate at 12 hrs in SW260 colon 
carcinoma cells 0.673 0.014 0.517 0.486 0.733 NA VII 

BCRABL_HL60_
CDNA_DN 

Down-regulated by expression of p210(BCR-ABL) in human 
leukemia (HL-60) cells; detected by spotted cDNA arrays 0.469 0.040 0.209 0.262 0.402 NA VII 

CMV_HCMV_6
HRS_DN 

Down-regulated in fibroblasts at 6 hours following infection 
with human cytomegalovirus (CMV) 0.434 0.004 0.179 0.184 0.291 NA VII 

H2O2_CSBRESC
UED_UP Upregulated by H2O2 in CSB-rescued fibroblasts (Table 1) 0.365 0.041 0.093 0.083 0.129 NA VII 

UVB_NHEK1_C2 
Upregulated by UV-B light in normal human epidermal 
keratinocytes, cluster 2 0.341 0.022 0.075 0.104 0.153 NA VII 

ET743_RESIST_
DN 

Down-regulated in two Et-743-resistant cell lines 
(chondrosarcoma and ovarian carcinoma) compared to 
sensitive parental lines 0.518 0.019 0.266 0.187 0.307 NA VII 

HSA00010_GLY
COLYSIS_AND_
GLUCONEOGEN
ESIS Genes involved in glycolysis and gluconeogenesis 0.625 0.043 0.424 0.167 0.257 NA VII 
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APPENDIX C 

Q-VALUES OF ENRICHED PATHWAYS FOR A PROSTATE CANCER STUDY 

Q-values of enriched pathways detected by individual studies and MAPE methods in drug 

response data (column 3-7: q-value threshold 0.05 and significant q-values marked in red) and 

categories (column 8-9) that correspond to Figure 6 in the manuscript. “Categories comparing 

MAPE_P, MAPE_G & MAPE_I” correspond to the categories in Figure 2.17A and 2.17B. 

“Categories comparing Welsh, Singh & MAPE_I” correspond to the categories in Figure 2.17C 

and 2.17D.  

 

Pathways Description Welsh Singh MAPE_P MAPE_G MAPE_I CA CB 

TARTE_PC 

Genes overexpressed in polyclonal plasmablastic cells 
(PPCs), mature plasma cells isolated from tonsils (TPCs), 
and mature plasma cells isolated from bone marrow 
(BMPCs), as compared to B cells purified from peripheral 
blood (PBBs) and tonsils (TBCs). 0.000 0.001 0.000 0.000 0.000 I I 

RIBOSOMAL_PROTEINS 0.004 0.000 0.000 0.000 0.000 I I 

SCHUMACHER_M
YC_UP Genes up-regulated by MYC in P493-6 (B-cell) 0.002 0.001 0.000 0.019 0.000 I I 

BHATTACHARYA_
ESC_UP 

Genes upregulated in undifferentiated human embryonic 
stem cells. 0.082 0.002 0.002 0.021 0.004 I III 

LI_FETAL_VS_WT_
KIDNEY_UP 

These are genes identified by simple statistical criteria as 
differing in their mRNA expresssion between WTs and 
fetal kidneys LOW 0.000 0.126 0.003 0.005 0.004 I II 

UVB_NHEK2_UP 
Upregulated by UV-B light in normal human epidermal 
keratinocytes 0.007 0.000 0.000 0.000 0.000 I I 

CANCER_NEOPLAS
TIC_META_UP 

Sixty-seven genes commonly upregulated in cancer 
relative to normal tissue, from a meta-analysis of the 
OncoMine gene expression database 0.000 0.000 0.000 0.000 0.000 I I 

ET743_SARCOMA
_72HRS_UP 

Up-regulated at48 hours following treatment with Et-743 
in at least 6 of 8 sarcoma cell lines 0.003 0.110 0.002 0.007 0.004 I II 

HDACI_COLON_C
UR24HRS_UP 

Upregulated by curcumin at 24 hrs in SW260 colon 
carcinoma cells 0.099 0.005 0.003 0.038 0.006 I III 

HSA03010_RIBOS
OME Genes involved in ribosome 0.075 0.000 0.001 0.000 0.000 I III 

HUMAN_MITODB
_6_2002 Mitochondrial genes 0.195 0.038 0.028 0.065 0.049 II III 

BASSO_REGULAT
ORY_HUBS 

Genes which comprise the top 1% of highly 
interconnected genes (major hubs) that account for most 0.141 0.074 0.012 0.353 0.022 II IV 
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of the interactions in the reconstructed regulatory 
networks from expression profiles in human B cells. 

MENSSEN_MYC_U
P 

Genes up-regulated by MYC in HUVEC (umbilical vein 
endothelial cell) 0.123 0.004 0.007 0.089 0.014 II III 

PENG_LEUCINE_D
N Genes downregulated in response to leucine starvation 0.063 0.002 0.001 0.280 0.001 II III 

CHANG_SERUM_R
ESPONSE_UP 

CSR (Serum Response) signature for activated genes 
(Stanford) 0.082 0.074 0.002 0.732 0.004 II IV 

ZUCCHI_EPITHELI
AL_UP 

The 50 most upregulated genes in primary invasive breast 
dutcal carcinoma or metastatic breast carcinoma isolated 
from lymph nodes, as compared to normal mammary 
epithelium. 0.164 0.016 0.018 0.294 0.034 II III 

NELSON_ANDROG
EN_UP 

Genes upregulated by androgen in neoplastic prostate 
epithelium 0.093 0.233 0.013 0.294 0.025 II IV 

ROME_INSULIN_2
F_UP Genes 2fold upregulated by insulin 0.056 0.002 0.000 0.295 0.001 II III 

HCC_SURVIVAL_G
OOD_VS_POOR_D
N 

Genes highly expressed in hepatocellular carcinoma with 
poor survival. 0.003 0.003 0.000 0.086 0.000 II I 

TARTE_PLASMA_B
LASTIC 

Genes overexpressed in mature plasma cells isolated 
from tonsils (TPCs) and mature plasma cells isolated from 
bone marrow (BMPCs) as compared to polyclonal 
plasmablastic cells (PPCs). 0.094 0.027 0.003 0.144 0.005 II III 

MITOCHONDRIA Mitochondrial genes 0.103 0.020 0.004 0.186 0.007 II III 

SHIPP_FL_VS_DLB
CL_DN 

Genes upregulated in diffuse B-cell lymphomas (DLBCL) 
and downregulated in follicular lymphoma (FL) (fold 
change of at least 3) 0.054 0.236 0.014 0.101 0.026 II IV 

NING_COPD_UP 

Upregulated genes in lung tissue of smokers with chronic 
obstructive pulmonary disease (COPD) vs smokers 
without disease (GOLD-2 vs GOLD-0) 0.151 0.237 0.014 0.814 0.026 II IV 

PENG_RAPAMYCI
N_DN 

Genes downregulated in response to rapamycin 
starvation 0.084 0.014 0.002 0.125 0.003 II III 

PENG_GLUTAMIN
E_DN Genes downregulated in response to glutamine starvation 0.046 0.001 0.000 0.293 0.001 II I 

BOQUEST_CD31PL
US_VS_CD31MIN
US_DN 

Genes overexpressed 3-fold or more in freshly isolated 
CD31- versus freshly isolated CD31+ cells 0.000 0.015 0.000 0.203 0.000 II I 

NADLER_OBESITY
_DN Genes with decreased expression with obesity 0.064 0.277 0.021 0.177 0.038 II IV 

BOQUEST_CD31PL
US_VS_CD31MIN
US_UP 

Genes overexpressed 3-fold or more in freshly isolated 
CD31+ versus freshly isolated CD31- cells 0.159 0.102 0.016 0.895 0.029 II IV 

JISON_SICKLECELL
_DIFF 

Significantly differentially expressed genes in sickle cell 
patients 0.086 0.002 0.002 0.266 0.004 II III 

HEARTFAILURE_A
TRIA_DN 

Downregulated in the atria of failing hearts (DCM and 
ICM) compared to healthy controls 0.053 0.038 0.000 0.434 0.001 II III 

BRCA1_OVEREXP_
PROSTATE_UP 

Up-regulated with sTable, ectopic overexpression of 
BRCA1 in DU-145 human prostate cancer cell lines, 
compared to neo-only controls 0.054 0.044 0.000 0.199 0.001 II III 

PRMT5_KD_UP 
Up-regulated by sTable RNAi knock-down of PRMT5 in 
NIH 3T3 cells 0.073 0.174 0.007 0.138 0.013 II IV 

HYPOPHYSECTOM
Y_RAT_UP 

Up-regulated in liver, heart or kidney tissue from 
hypophysectomized rats (lacking growth hormone), 
compared to normal controls 0.135 0.004 0.009 0.056 0.017 II III 

IDX_TSA_UP_CLU
STER5 

Up-regulated at 48-96 hours during differentiation of 3T3-
L1 fibroblasts into adipocytes with IDX (insulin, 
dexamethasone and isobutylxanthine), vs. fibroblasts 
treated with IDX + TSA to prevent differentiation (cluster 
5) 0.051 0.001 0.000 0.083 0.001 II III 

ELONGINA_KO_D
N 

Downregulated in MES cells from elongin-A knockout 
mice 0.053 0.045 0.000 0.096 0.001 II III 

AGEING_BRAIN_U Age-upregulated in the human frontal cortex 0.000 0.171 0.007 0.295 0.013 II II 
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P 

BRCA_ER_POS 

Genes whose expression is consistently positively 
correlated with estrogen receptor status in breast cancer 
- higher expression is associated with ER-positive tumors 0.001 0.003 0.000 0.068 0.000 II I 

ALZHEIMERS_INCI
PIENT_DN 

Downregulated in correlation with incipient Alzheimer's 
Disease, in the CA1 region of the hippocampus 0.054 0.224 0.012 0.358 0.023 II IV 

SERUM_FIBROBLA
ST_CORE_UP 

Core group of genes consistently up-regulated following 
exposure to serum in a variety of human fibroblast cell 
lines (higher expression in activated cells, not cell-cycle 
dependent) 0.010 0.073 0.002 0.189 0.003 II II 

DIAB_NEPH_DN 

Downregulated in the glomeruli of cadaver kidneys from 
patients with diabetic nephropathy, compared to normal 
controls 0.002 0.164 0.005 0.456 0.010 II II 

OLD_FIBRO_DN 
Downregulated in fibroblasts from old individuals, 
compared to young 0.192 0.085 0.028 0.054 0.038 II IV 

HDACI_COLON_C
UR_UP 

Upregulated by curcumin at any timepoint up to 48 hrs in 
SW260 colon carcinoma cells 0.194 0.017 0.028 0.482 0.049 II III 

AGED_MOUSE_HY
POTH_UP 

Up-regulated in the hypothalamus of aged (22 months) 
BALB/c mice, compared to young (2 months) controls 0.147 0.041 0.012 0.590 0.023 II III 

HSA00051_FRUCT
OSE_AND_MANN
OSE_METABOLIS
M Genes involved in fructose and mannose metabolism 0.096 0.067 0.003 0.531 0.006 II IV 

HSA00190_OXIDA
TIVE_PHOSPHORY
LATION Genes involved in oxidative phosphorylation 0.282 0.000 0.075 0.024 0.017 III III 

ELECTRON_TRANS
PORT_CHAIN Genes involved in electron transport 0.382 0.000 0.159 0.064 0.046 IV III 

IDX_TSA_UP_CLU
STER6 

Strongly up-regulated at 96 hours during differentiation 
of 3T3-L1 fibroblasts into adipocytes with IDX (insulin, 
dexamethasone and isobutylxanthine), vs. fibroblasts 
treated with IDX + TSA to prevent differentiation (cluster 
6) 0.576 0.016 0.475 0.064 0.050 IV III 

NING_COPD_DN 

Downregulated genes in lung tissue of smokers with 
chronic obstructive pulmonary disease (COPD) vs smokers 
without disease (GOLD-2 vs GOLD-0) 0.087 0.315 0.029 0.658 0.053 VI NA 

PENG_GLUCOSE_
DN Genes downregulated in response to glucose starvation 0.195 0.292 0.028 0.505 0.050 VI NA 

MUNSHI_MM_UP 

Genes upregulated in multiple myeloma (MM) cells 
versus the normal plasma cells of patients' identical 
twins. 0.228 0.001 0.043 0.138 0.078 VI VII 

FLECHNER_KIDNE
Y_TRANSPLANT_
WELL_UP 

Genes upreglated in well functioning transplanted kidney 
biopsies from sTable, immunosuppressed recipients 
relative to normal healthy donor kidney biopsies (median 
FDR < 0.16% per comparison) 0.000 0.368 0.042 0.286 0.077 VI VI 

MOREAUX_TACI_
HI_IN_PPC_UP PPC genes overexpressed in TACI low patients 0.227 0.084 0.042 0.292 0.076 VI NA 

HSIAO_LIVER_SPE
CIFIC_GENES Liver selective genes 0.193 0.316 0.031 0.590 0.056 VI NA 

ET743_SARCOMA
_UP 

Up-regulated following treatment with Et-743 at any 
timepoint in at least 8 of 11 sarcoma cell lines 0.211 0.038 0.034 0.142 0.061 VI VII 

HTERT_DN 
Downregulated in hTERT-immortalized fibroblasts vs. 
non-immortalized controls 0.192 0.369 0.043 0.435 0.078 VI NA 

LVAD_HEARTFAIL
URE_UP 

Upregulated in the left ventricle myocardium of patients 
with heart failure following implantation of a left 
ventricular assist device 0.239 0.079 0.049 0.835 0.089 VI NA 

BLEO_MOUSE_LY
MPH_LOW_24HR
S_DN 

Down-regulated at 24 hours following treatment of 
mouse lymphocytes (TK 3.7.2C) with a low dose of 
bleomycin 0.094 0.369 0.043 0.765 0.077 VI NA 

NAB_LUNG_UP 

Up-regulated in human non-small cell lung carcinoma cell 
line H460 following 24-hour treatment with sodium 
butyrate 0.224 0.230 0.037 0.418 0.067 VI NA 
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CTNNB1_oncogeni
c_signature 

Genes selected in supervised analyses to discriminate 
cells expressing activated beta-catenin (CTNNB1) 
oncogene from control cells expressing GFP. 0.087 0.331 0.035 0.288 0.063 VI NA 

HSA00230_PURIN
E_METABOLISM Genes involved in purine metabolism 0.223 0.382 0.048 0.368 0.088 VI NA 

CORDERO_KRAS_
KD_VS_CONTROL
_UP 

Genes upregulated in kras knockdown vs control in a 
human cell line 0.039 0.961 0.769 1.000 1.000 NA VI 

FLECHNER_KIDNE
Y_TRANSPLANT_R
EJECTION_DN 

Genes downreglated in acute rejection transplanted 
kidney biopsies relative to well functioning transplanted 
kidney biopsies from sTable, immunosuppressed 
recipients. (median FDR < 0.14% per comparison). 0.001 0.501 0.113 0.210 0.203 NA VI 

BASSO_GERMINA
L_CENTER_CD40_
DN CD40 down-regulated genes 0.003 0.951 0.732 0.482 0.609 NA VI 

IRITANI_ADPROX_
VASC BLOOD VASCULAR EC 0.022 0.964 0.972 1.000 1.000 NA VI 

IGLESIAS_E2FMIN
US_UP Genes that increase in the absence of E2F1 and E2F2 0.031 0.983 0.971 0.994 1.000 NA VI 

ATRIA_UP 
Upregulated in the atria of healthy hearts, compared to 
venticles 0.006 0.532 0.149 0.195 0.169 NA VI 

TGFBETA_ALL_UP 
Upregulated by TGF-beta treatment of skin fibroblasts, at 
any timepoint 0.046 0.962 0.966 1.000 1.000 NA VI 

ELONGINA_KO_U
P Upregulated in MES cells from elongin-A knockout mice 0.006 0.530 0.137 0.447 0.250 NA VI 

CMV_24HRS_DN 
Downregulated at 24hrs following infection of primary 
human foreskin fibroblasts with CMV 0.006 0.953 0.736 1.000 1.000 NA VI 

AGEING_KIDNEY_
SPECIFIC_UP 

Up-regulation is associated with increasing age in normal 
human kidney tissue from 74 patients, and expression is 
higher in kidney than in whole blood 0.003 0.605 0.219 0.487 0.382 NA VI 

CMV_ALL_DN 
Downregulated at any timepoint following infection of 
primary human foreskin fibroblasts with CMV 0.018 1.000 0.912 1.000 1.000 NA VI 

BAF57_BT549_UP 
Up-regulated following sTable re-expression of BAF57 in 
Bt549 breast cancer cells that lack functional BAF57 0.000 0.695 0.300 0.769 0.507 NA VI 

HSA04512_ECM_
RECEPTOR_INTER
ACTION Genes involved in ECM-receptor interaction 0.025 0.993 0.949 1.000 1.000 NA VI 

ZELLER_MYC_UP Genes up-regulated by MYC in >3 papers. 0.488 0.010 0.295 0.591 0.499 NA VII 

POMEROY_DESM
OPLASIC_VS_CLAS
SIC_MD_UP 

Genes expressed in desmoplastic medulloblastomas. (p < 
0.01) 0.364 0.005 0.144 0.645 0.257 NA VII 

PROTEASOME_DE
GRADATION Genes involved in proteasome degradation 0.680 0.004 0.696 0.822 1.000 NA VII 

MOOTHA_VOXPH
OS Oxidative Phosphorylation 0.521 0.000 0.374 0.291 0.289 NA VII 

OXIDATIVE_PHOSPHORYLATION 0.493 0.007 0.310 0.360 0.427 NA VII 

POMEROY_MD_T
REATMENT_GOO
D_VS_POOR_DN 

Genes highly associated with medulloblastoma treatment 
failure 0.494 0.005 0.316 0.276 0.317 NA VII 

FLOTHO_CASP8AP
2_MRD_DIFF Genes significantly associated with MRD on day 46 0.670 0.021 0.677 0.356 0.425 NA VII 

MOREAUX_TACI_
HI_VS_LOW_DN Genes overexpressed in TACI low patients 0.434 0.033 0.223 0.332 0.381 NA VII 

MUNSHI_MM_VS
_PCS_UP 

Selected up-regulated genes in patient MM cells versus 
normal twin PCs 0.398 0.001 0.181 0.139 0.116 NA VII 

BLEO_MOUSE_LY
MPH_HIGH_24HR
S_DN 

Down-regulated at 24 hours following treatment of 
mouse lymphocytes (TK 3.7.2C) with a high dose of 
bleomycin 0.494 0.017 0.320 0.450 0.545 NA VII 

HDACI_COLON_C
UR48HRS_UP 

Upregulated by curcumin at 48 hrs in SW260 colon 
carcinoma cells 0.419 0.040 0.197 0.661 0.338 NA VII 

GENOTOXINS_24H Group of genes whose regulation pattern significantly 0.697 0.011 0.729 0.843 1.000 NA VII 
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RS_DISCR discriminates between direct (cisplatin, methyl 
methanesulfonate, mitomycin C) and indirect (taxol, 
hydroxyurea, etoposide) genotoxins, 24 hours following 
treatment of mouse lymphocytes (TK 3.7.2C) 

IFN_BETA_GLIOM
A_DN 

Down-regulated in human glioma cells (T98) at 48 hours 
following treatment with interferon-beta 0.382 0.039 0.160 0.354 0.288 NA VII 

UVB_NHEK3_ALL 
Regulated by UV-B light in normal human epidermal 
keratinocytes 0.292 0.021 0.082 0.206 0.152 NA VII 

UVB_NHEK1_UP 
Upregulated by UV-B light in normal human epidermal 
keratinocytes 0.514 0.011 0.360 0.945 0.607 NA VII 

CANTHARIDIN_DN 
Downregulated in HL-60 promyeloid leukemic cells after 
treatment with the cytotoxic drug cantharidin 0.311 0.011 0.094 0.195 0.168 NA VII 

HIPPOCAMPUS_D
EVELOPMENT_PR
ENATAL 

Highly expressed in prenatal mouse hippocampus (cluster 
1) 0.609 0.000 0.553 0.290 0.336 NA VII 

UVB_NHEK1_C1 
Upregulated by UV-B light in normal human epidermal 
keratinocytes, cluster 1 0.762 0.001 0.899 0.643 0.860 NA VII 

BRCA1_OVEREXP_
DN 

Downregulated by induction of exogenous BRCA1 in EcR-
293 cells 0.705 0.017 0.758 0.344 0.392 NA VII 

HSA03050_PROTE
ASOME Genes involved in proteasome 0.607 0.000 0.557 0.591 0.760 NA VII 
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