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ABSTRACT 
 
 
 

BUCKLING OF SYMMETRIC LAMINATED  
FIBERGLASS REINFORCED PLASTIC (FRP) PLATES 

 
 

Calvin D. Austin, M.S. 
 
 

University of Pittsburgh, 2003 
 
 

Fiberglass reinforced plastic (FRP) is a composite material made of fiber 

reinforcement surrounded by a solid matrix.  FRP is slowly making its way into civil 

engineering structures.  The many advantages of FRP, such as light weight, corrosion 

resistance, and the ability to vary its properties over a wide range of values, have made it a 

competitor to steel, concrete and wood as a building material.  Although FRP has existed for 

many years, there is still much about it that needs to be understood before it is to be accepted 

as a building material in civil engineering structures. 

The objective of the current work is to investigate the buckling of FRP laminated 

plates.  The buckling load of an FRP laminated plate depends on a variety of variables, 

including aspect ratio, thickness of the laminate, fiber orientation of the laminae that make 

up the laminate, and the boundary conditions.  These variables were related to the buckling 

load of laminated plates by analyzing a number of laminated plates using the commercially 

available ANSYS finite element software.  Among other things, it was found that for the 
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analyzed FRP laminated plates simply supported on all edges the optimal fiber 

orientation of the mat layers was + 45 degrees, but that was not the case for the other 

boundary conditions considered. 
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1.0  INTRODUCTION AND BACKGROUND 
 
 
 
 

1.1 Research Motivation 
 
 
 

This research was motivated by previous studies done on the compressive strength of 

pultruded fiberglass reinforced plastic (FRP) thin-walled wide-flange columns.  There has 

been considerable research in this area, however it is still in its infancy.  For long composite 

columns, Euler buckling is more likely to occur before any other instability failure, but for 

short columns, local buckling of the flanges occurs first (Tomblin and Barbero, 1994).  It is 

the local buckling phenomenon of FRP wide flange columns that has motivated this 

research.  The prediction of local flange buckling of pultruded wide-flange shapes have 

frequently been investigated using the finite element method.  The flanges, which are in 

essence laminated FRP plates, have been modeled individually with the flange-web junction 

being modeled as either simply supported or fixed.  Although the whole section should be 

modeled to obtain accurate results, analysis of the flanges individually does provide insight 

into the local flange buckling issues associated with pultruded wide-flange shapes.  The 

main purpose of this work is to investigate how changes in an FRP laminate can affect the 

buckling load of FRP laminated plates.  It is hoped that this research will provide even more 

insight into the compressive strength of pultruded FRP wide-flange columns, by offering 

insight into the effectiveness of the flanges. 
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1.2 Introduction to Fiberglass Reinforced Plastic (FRP) 
 
 
 

Composite materials are materials with two or more constituents combined to form a 

material with different properties than those of the individual constituents.  Fiber reinforced 

plastic (FRP) is a composite material that consists of two constituents: a series of fibers 

surrounded by a solid matrix.  A layer of composite material is defined as a lamina and 

stacking laminae forms an FRP laminate.   

FRP has been used for many years in the aerospace and automotive industries and 

has recently been used in civil engineering structures as an alternative to steel, wood, and 

concrete.  Civil engineers are exploiting the advantages of using FRP; advantages such as 

light weight, corrosion resistance, low thermal and electrical conductivity, high strength to 

weight and stiffness to weight ratios, and the ability to vary the properties over a wide range 

of values.  Even with these advantages, FRP is used on a very limited scale in civil 

engineering structures.  This is mainly due to the relatively high cost and a lack of 

familiarity with the properties and methods of analysis of FRP (Razaqpur, 1991).  As civil 

engineers learn more about FRP, the future of FRP will be promising as a competitor to steel 

and concrete.   
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1.2.1  Constituents of FRP 
   

1.2.1.1  Fiber Reinforcement.  The fiber reinforcement provides most of the strength and 

act as the main load-carrying member in FRP.  The fiber reinforcement can be continuous, 

discontinuous, or particles.  Continuous fibers are placed such that the fibers are oriented 

parallel to the direction of the load so the fibers can carry most of the load.  These 

continuous fibers are made up of bundles of circular fibers that have very small diameters.  

Discontinuous fibers are continuous fibers that have been chopped into short fibers and 

randomly oriented in the solid matrix.  The fiber reinforcement analyzed in this thesis is 

continuous.   

 The fiber reinforcement can also be in other forms such as stitched, woven or 

continuous strand mats.  A stitched mat is a collection of continuous fiber reinforcements 

with different directions of fiber reinforcement stitched together.  For example, a collection 

of fiber reinforcements oriented at +45 degrees from the axis of loading will be stitched 

together with a collection of fiber reinforcements oriented at -45 degrees.  As opposed to 

being stitched together these fiber reinforcements can be woven (interloping or knitted) 

together.  A continuous strand mat is produced by randomly oriented fiber reinforcement 

being placed together (See Figure 1.1).    

 Although various materials can be used as fiber reinforcement in FRP, the most 

common used are glass, carbon, and organic (aramid or Kevlar) fibers (Barbero, 1999).   The 

type of fiber used depends on the application, the properties desired, and the cost.  Glass is 

the most common type of fiber used because of its low cost.  Glass fiber reinforcement is the 
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fiber reinforcement used in the FRP that was analyzed in this thesis, thus the term fiberglass 

reinforced plastic. 

 

 

 

Figure 1.1  Continuous Strand Mat (CSM) 

 

1.2.1.2  Matrix. The solid matrix that surrounds the fibers holds the fibers in the desired 

location, protects the fibers from the environment, and transfers loads between fibers.  

Matrix materials can be metal, polymers, carbon, or ceramics.  Thermosetting polymers 

(resins) are the most common material used as a matrix and are the least expensive.  The 

most common resins are polyester, vinyl ester, epoxy and phenolic (Barbero, 1999).  The 

type of resin chosen depends on the application of the FRP.  Polyester resins offer excellent 

resistance to water and acidic environments and are used in shoreline applications, general 

outdoor applications, and wastewater treatment plants.  Vinyl ester resins are used in more 
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aggressive environments such as chlorine chambers and chemical storage areas.  Phenolic 

resins have low flammability, low smoke production, and are often used in mass transit 

tunnels.  Epoxy resins provide excellent electrical insulation, are less affected by water and 

heat than other resins, and are used in aircrafts and in power transmission (Berg, 2002).  For 

conventional structural composite applications, polyester resins are mostly used.  Figure 1.2 

shows a microscopic photograph of the fiber-reinforcement surrounded by a matrix. 

 

 

Figure 1.2  Microscopic Photograph of FRP 
 
 
 
1.2.2  Pultrusion 
 
 
 
  FRP shapes tested in this work are manufactured through a process called 

Pultrusion.  Pultrusion is a low cost continuous manufacturing process that is used to 

produce any constant cross section of FRP.  The process brings the fiber and resin together 

in a simple and low cost manner.  Pultrusion consist of rovings (a collection of parallel 
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continuous fiber bundles, See Figure 1.3), mats, resins, and a thin mat used as a surfacing 

layer called Nexus.  Pultrusion combines the layers together to form a composite FRP 

laminate.   The fiberglass rovings, mats, and Nexus, which are guided through a series of 

forming guides, are pulled through a liquid resin bath.  After exiting the resin bath, the 

wetted rovings and mats are then pulled through a heated steel die.  The steel die is in the 

shape of the desired part, which can be structural components such as beams, channels, 

angles, or any shape of constant cross section (Berg, 2002).  After exiting the die the part is 

about 90% cured and is cut to whatever length is desired.  The schematics of the pultrusion 

process are shown in Figure 1.5.  To get the reader familiar with terminology, the 

longitudinal direction, is the direction of pultrusion, and is denoted by the x-direction in 

Figure 1.4.   The transverse direction is the direction perpendicular and in plane with the 

longitudinal direction; for the flanges this would be the y-direction and for the web it would 

be the z-direction.  The through thickness direction is the direction perpendicular and out of 

plane with the longitudinal direction; for the flanges this would be the z-direction and for the 

web this would be the y-direction.    

 

Figure 1.3  Roving Creel 
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Figure 1.4  Coordinate System for a Pultruded Wide Flange Shape  

 
 
 
 
 
 
 

 

 

Figure 1.5  Schematics of Pultrusion Process 
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Figure 1.6  Guides for Rovings and Mats (Creative Pultrusions, Inc) 

 
 
 

 
 

Figure 1.7  Resin Bath, Nexus Layer and Heated Die (Bedford Plastics) 
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Figure 1.8  Rovings Being Wetted by Resin and Entering Heated Die  
(Creative Pultrusions, Inc) 

 
 
 
 
 

1.3 Literature Review 
 
 
 

The buckling of rectangular plates has been the subject of study for more than a century.  

Exact and approximate solutions for rectangular plates have been derived.   There are many 

exact solutions for linear elastic isotropic thin plates; many treated by Timoshenko (1961).  

The mechanical properties of composite materials are often approximated as orthotropic.  

Buckling of orthotropic plates has been the subject of many investigations during the past.  

According to Vakiener, Zureick, and Will (1991), the first treatment of the stability of an 

orthotropic plate with one free edge was done by Trayer and March in 1931.  An energy 
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solution was presented for the stability of an elastically restrained flange with orthotropic 

properties.   

Ashton and Waddoups (1969) determined critical buckling loads for the general case 

of anisotropic plates.  Using an approximate Rayleigh-Ritz solution, they presented solution 

techniques for the buckling load of laminated rectangular anisotropic plates.  Ashton and 

Whitney (1970) formulated approximate buckling load equations for laminated plates.  They 

treated the specially orthotropic laminate case as equivalent to homogeneous orthotropic 

plates.   

Exact solutions of orthotropic plates simply supported on all edges were derived and 

compiled by Whitney.  Jiang and Roberts (1997) used finite element solutions to critically 

review this exact solution for buckling of rectangular orthotropic plates.  They found that for 

plates with all edges simply supported the solution is accurate.  Veres and Kollar (2001) 

presented closed form approximate formulas for the calculation of rectangular orthotropic 

plates with clamped and/or simply supported edges.  They used these formulas and finite 

element to compare to the exact solutions obtained by Whitney and the formulas were found 

to over estimate the buckling load by less than 8%.   

Khdeir (1989) investigated the stability of antisymmetric angle-ply laminated plates.  

Khdeir used a generalized Levy type solution to determine the compressive buckling loads 

of rectangular shaped plates.  He showed the influence of the number of layers, lamina 

orientation, and the type of boundary conditions on buckling response characteristics of 

composite plates.  Each layer was assumed to be of the same orthotropic material.  The 

plates he analyzed had two loaded edges simply supported and various boundary conditions 

for the other edges.  Khdeir found that for the free-free, free-simply supported, and free-
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fixed boundary condition of the unloaded edges, the dimensionless uniaxial buckling load 

decreases as the angle orientation increases regardless of the number of layers.   

Pandey and Sherbourne (1991) used energy methods to present a general formulation 

for the buckling of rectangular anisotropic symmetric angle-ply composite laminates under 

linearly varying, uniaxial compressive force.  The plates were subjected to four different 

combinations of simple and fixed boundary conditions.  The laminates contained 3, 9 or an 

infinite number of laminae (layers).   The infinite number of layers represents the specially 

orthotropic laminate case.  The laminate stacking sequence was (-θ/+θ/−θ…) where the 

angle, θ, varied from 0 to 90 degrees in steps of 15 degrees.  The results showed that θ = 45 

degrees is the optimal fiber angle for laminates with simply supported loaded edges under a 

wide range of stress gradients.   

Chen (1994) used energy methods to determine the buckling mode change of 

antisymmetric angle-ply laminates.  Chen evaluated numerically the effects of lamination 

angle, length-to-thickness ratio, aspect ratio, modulii ratio and boundary conditions on the 

change of buckling modes.  Chen presented the cusps phenomenon due to the change in 

buckling mode (from m = 1 to m = 2, where m is the number of half-waves in the x-

direction), neglected by Khdeir.  Chen noted that this change in buckling mode always 

occurred for laminated plates subject to combinations of simply supported or fixed boundary 

condition on all edges.  The buckling mode, however, does not change for boundary 

conditions of one edge free.  Figure 1.9 shows this cusps phenomenon for changes in 

lamination angle under different boundary conditions.  Note that the characters S, C, and F 

mean the edges being simply supported, clamped (fixed), and free, respectively.  Each 
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designation refers to boundary conditions at the edge x = 0, y = 0, x = a, and y = b.  Ncr is a 

dimensionless parameter of the critical buckling load.   

 

 

Figure 1.9  Effect of Lamination Angle on Critical Buckling Loads, a/b = 1, a/h = 10: 
(a) SSSS, SSSC, and SCSC; and (b) SSSF, SCSF, and SFSF  

(Chen, 1994) 
 

Chen noted from the graphs that change of buckling modes occurred at 49.7, 41.7, 

and 35.5 degrees for two-layered SSSS, SSSC, and SCSC laminates, respectively; and at 

35.9, 32.1, and 28.6 degrees for 10- layered SSSS, SSSC, and SCSC laminates, respectively.  

Chen showed that the most significant example of buckling mode changes is the variation of 
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buckling load against the aspect ratio for the SSSS, SSSC, and SCSC laminates as well as 

the SCSF case (see Figure 1.10).   

 

 

Figure 1.10  Effect of Aspect Ratio on Critical Buckling Loads:  a/h = 10, +45/-45/+45/-
45: (a) SSSS, SSSC, and SCSC; and (b) SSSF, SCSF, and SFSF 

(Chen, 1994) 
 

The work done in this thesis is along the lines of the work done by Chen, Khdeir, 

Pandey, and Sherbourne, with the main difference being that a finite element program is 

used to solve for buckling loads as opposed to energy methods.  Also, the laminates 
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analyzed in this work are a bit more complicated in their laminae stacking sequence and 

existence of lamina with different properties.  

 

 

1.4 Thesis Overview 
 
 
 

 This thesis is divided into 6 chapters that describe the analytical and experimental 

research performed.  The first chapter is an introduction to FRP laminates and discusses 

previous work done with buckling of FRP laminated plates.  Chapter 2 is a description of 

analytical methods used to determine the properties of a layer of FRP based on the 

constituents that make up the layer.  Chapter 3 examines the techniques to determine the 

behavior of a laminate under load.  Chapter 4 gives the procedure and results of testing 

performed to determine properties of FRP laminates manufactured by Creative Pultrusions.  

The analytical methods and results of determining the critical buckling load of FRP 

laminates are given in Chapter 5.  Chapter 6 presents the conclusions of the research and 

recommendations for future work.   
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2.0 MICROMECHANICS 
 
 
 
 

2.1 Introduction 
 
 
 

A layer of composite material is called a lamina.  Micromechanics is the study of 

determining the properties of a lamina based on the properties of the constituents that make 

up the lamina.  A fiber-reinforced lamina consists of two constituent materials: fiber 

reinforcement (glass) surrounded by a solid matrix (resin).  A fiber-reinforced lamina is a 

heterogeneous material, but micromechanics allows one to represent the lamina as a 

homogeneous material.  The equivalent homogeneous material is generally assumed to be 

orthotropic.  To describe the mechanical properties of an orthotropic material in its plane 

(plane 1-2 in Figure 2.1), four elastic stiffness properties are needed.  Therefore, assuming a 

fiber-reinforced lamina to be orthotropic, the in-plane mechanical properties of the lamina 

can be described by four elastic stiffness properties, or engineering constants.  The in-plane 

mechanical properties of the lamina are the Young’s (extensional) modulus in the fiber 

reinforcement direction (E1), the Young’s (extensional) modulus transverse to the fiber 

reinforcement direction (E2), the in-plane shear modulus (G12), and the in-plane Poisson’s 

ratio (ν12).  Figure 2.1 shows the coordinate system for a lamina in which the fiber 

reinforcement direction is denoted as the one (1) direction and the direction transverse to the 

fiber reinforcement direction (or matrix direction) is denoted the two (2) and three (3) 

direction.  Knowing the in-plane properties of each lamina that make up a laminate (a stack 

of lamina bonded together), the stiffness of the laminate can be determined (See Chapter 3).   
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Figure 2.1  Lamina Coordinate System (Hyer, 1998) 

 

 

The out-of-plane properties, mechanical properties in the 1-3 and 2-3 plane (E3, G13, 

G23, ν13, and ν23), are not used to develop the stiffness of a laminate and are not usually dealt 

with in the analysis of FRP composites.  However, in using the finite element program 

ANSYS to analyze layered composites, the out of plane shear modulus must be entered for 

each layer (see Chapter 5 for more information about using ANSYS for analysis of FRP).  

Therefore, the out of plane shear modulii (G13 and G23), also referred to as the interlaminar 

shear modulii (Barbero 1999), will be determined in this chapter, although they are not 

needed in the analytical development of laminate stiffness.   

This chapter deals with determining the in-plane mechanical properties of a lamina.  

If one knows the properties of the constituents of a lamina, then by using micromechanics, 

one can predict the properties of the lamina.  Micromechanics can be used to predict both 
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strength and stiffness of a lamina, but this thesis concentrates on using micromechanics to 

determine the stiffness of a lamina (see Figure 2.2, noting that the symbol v represents 

Poisson’s ratio and subscripts f and m represent fiber and matrix, respectively).  It should be 

mentioned that inevitably micromechanic predictions would always be imprecise due to the 

many processing variables that are difficult to assess (misaligned fibers, fiber damage, 

nonuniform curing, cracks, voids and residual stresses) (Jones, 1999). 

 

 

 

 

Figure 2.2  Micromechanics Process 

 

 

 
 



 18 

2.2 Mechanical Properties of the Constituents 
 
 
 
 In the micromechanics approach to determining the stiffness of a lamina, certain 

assumptions are made about the constituents (fiber reinforcement and matrix).  The 

constituents are assumed to be homogeneous, void-free, linear elastic, and isotropic.  For an 

isotropic material, the mechanical properties are represented by two properties: Young’s 

modulus, E, and Poisson’s ratio, ν.  The shear modulus, G, of an isotropic material is found 

using the relationship: 

 

)1(2 υ+
=

E
G     (2-1) 

 

 

The elastic properties of each constituent are needed to determine the stiffness of a lamina. 
 
 
 
2.2.1  Fiber Reinforcement 
 
 
 
 The fiber reinforcement used in the FRP that is analyzed in this thesis is made of E-

glass.  E-glass fiber reinforcement (E for electrical), because of its low cost, is the primary 

fiber type used in pultruded FRP (Pultex Design Manual).  Based on a variety of sources, 

(Barbero, Pultex, Jones, Fiber Glass Industries, Inc., etc.) the following mechanical  

properties of E-glass fiber reinforcement were used in this thesis to analyze pultruded FRP,   

 

Ef = 10.5 X 106 psi 



 19 

νf = 0.22 

Gf = 4.30 X 106 psi 

ρf = 2.6 g/cc 

 

 

2.2.2  Matrix 
 
 
 
 The matrix used in pultruded FRP is usually thermosetting polymers, or resins.  

Polyester resin is the primary resin used in pultrusion (Pultex Design Manual).  The 

following mechanical properties of polyester resin were used in this thesis to analyze 

pultruded FRP shapes.   

 

Em = 0.50 X 106 psi 

νm = 0.38 

Gm = 0.18 X 106 psi 
 
 
 
 

2.3 Analytical Determination of the Stiffness of a Lamina 
 
 
 
 There are various methods that can be used to determine the stiffness of a lamina 

using micromechanics.  These include the mechanics of materials approach, using semi-

empirical formulas developed by Halpin and Tsai, elasticity approaches, and numerous other 

methods.  Besides the previously mentioned assumptions made about the constituents, 

micromechanic theories also assume that there is a perfect bond between the fibers and the 
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matrix.  In real life this bond is not perfect, and because of this fact and other random factors 

associated with FRP, the micromechanic theories will always vary from experimental data.  

Many of the more accurate theories are based on comparisons between theoretical 

predictions and experimental data.   

Although some methods are more accurate, the mechanics of materials approach is 

used in this thesis to determine the stiffness of a lamina.  Also known as the rule of mixtures 

approach, it uses constituent properties and volume fractions to determine the stiffness of a 

lamina.  The approach, as well as the other theories, assumes a constituent’s contribution to 

a lamina’s properties is relative to the amount of the constituent that is present in the lamina.  

The mechanics of materials approach is simple, yet it is a popular and powerful tool for 

determining the stiffness of a lamina.   

It is important to note that the in-plane stiffness properties of a lamina developed in 

the following sections do not take into account the fact that the lamina may have different 

stiffness in tension than in compression, which is usually the case.  The reason for 

neglecting this approach is that research on this difference in properties (stiffness and 

strength) in tension and compression is still in its infancy (Jones, 1999).  As a result, one of 

the major assumptions in the development of lamina properties (this Chapter) and laminate 

properties (Chapter 3) is that the stiffness will be the same in both tension and compression.  

Although experimental results in Chapter 4 suggest that this assumption is questionable, 

because of the lack of information for the analytical development of properties for materials 

with different properties in tension and compression, the assumption must be made. 
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2.3.1 Determination of Fiber Volume Fraction, Vf 

 
 
 
 Since micromechanic theories use the amount of a constituent present in a lamina to 

determine that constituent’s contribution to the lamina’s properties, it is important to know 

what fraction of the lamina is made up of the constituent.  The fiber volume fraction of a 

lamina is defined as: 

 

L

Lf
f

V
V

V
)(

=      (2-2) 

 

where (Vf)L is the volume of fibers present in the lamina and VL is the total volume of 

the lamina.  Since there are only two constituents in a lamina, fiber and matrix, the matrix 

volume fraction, Vm, plus the fiber volume fraction must equal 1 (if the presence of voids is 

neglected).  Therefore, 

 

fm VV −= 1      (2-3) 

 

 The fiber volume fraction can be determined experimentally by weighing a lamina, 

then removing the matrix and weighing the fibers.  Since the experimental procedure is 

destructive and expensive, an analytical procedure is preferred.  In determining the fiber 

volume fraction analytically, the fiber arrangement in the lamina and the form of the fiber 

reinforcement in the lamina must be known.  In the pultrusion process the fiber 

reinforcement comes in the form of either rovings or mats.   
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2.3.1.1  Fiber Volume Fraction of Laminae with Rovings.  In the pultrusion process the 

laminae containing rovings, parallel continuous fiber bundles, are in the direction of 

pultrusion.  Since the rovings are continuous throughout the lamina, or layer, the fiber 

volume fraction can be found using cross-sectional areas.  The fiber volume fraction of a 

layer with rovings would then be defined as: 

 

L

f
f

A
A

V =      (2-4) 

 

 where Af is the area of fibers in the lamina and AL is the total area of the lamina. 

Manufacturers of pultruded FRP will provide the number of rovings in a layer, yield of the 

fibers in yards per pound, and the density of the fibers.  This information is enough to 

determine the area of fibers in the lamina.  Each roving has n number of fibers bundled 

together.  Knowing the diameter/radius of a fiber will allow the determination of the area of 

fibers present in the lamina.   

 

)( 2
ff rnNA π=      (2-5) 

 

 where N is the number of rovings present in a layer, n is the number of fibers in a 

roving, and rf is the radius of one fiber.  The number of fibers in a roving is based on the 

yield number and is usually provided by the fiber manufacturer.  The area of fibers present 

in a lamina can also be calculated using the yield and the density of the fibers. 
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ρy
N

Af
3.1

=      (2-6) 

 

 where y is the yield number of the fibers in yards per pound, ρ is the density of the 

fibers in grams per cubic centimeter and 1.3 is used to convert  the area of fibers to square 

inches.   

 

2.3.1.2  Fiber Volume Fraction of Laminas with Mats. As mentioned on Chapter 1, fiber 

reinforcement in mat forms can be continuous strand mats, woven mats, or stitched mats.  

The manufacturers of these mats provide the weight of the mats per unit area.  To determine 

the fiber volume fraction of a lamina containing mats the following formula from Barbero, 

1999 is used. 

 

t
w

Vf
ρ1000

=      (2-7) 

 

 where w is the weight of the mat in grams per square meter, ρ is the density of the 

fibers in grams per cubic centimeter, t is the thickness of the lamina in millimeters and 1000 

is used for conversion. 
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2.3.2  Young’s Modulus in the Fiber Direction, E1 

 
 
 
 The mechanics of materials, or rule of mixtures, approach predicts Young’s modulus 

in the fiber direction very well.  The main assumption used in the mechanics of materials 

approach to determining Young’s modulus in the fiber direction is that the strains in the 

fiber direction are the same in the fiber reinforcement and the matrix.  This assumption leads 

to the following formula: 

 

mmff VEVEE +=1     (2-8) 

 

 

 

2.3.3  Young’s Modulus Perpendicular to Fiber Direction, E2 

 
 
 
 In the mechanics of materials approach to determine the Young’s modulus 

perpendicular to the fiber reinforcement direction, it is assumed that the transverse stress is 

the same in the fiber reinforcement and the matrix.  This assumption leads to the following 

formula: 

mffm

mf

EVEV
EE

E
+

=2     (2-9) 

 

 The modulus obtained by using Equation (2-9) is not very accurate when compared 

to experimental data and is generally considered to be a lower bound.  Therefore, Equation 

(2-9) underestimates the Young’s modulus perpendicular to the fiber direction.  Referring to 
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Figure 2.1, it is obvious that both the ‘2 ‘and ‘3’ direction are both perpendicular to the fiber 

reinforcement direction.  Therefore, the properties in the ‘2’ and ‘3’ direction are identical, 

which means E2 = E3. 

 
 
 
2.3.4 In-plane Poisson’s Ratio, ν12 

 
 
 
 Using the mechanics of materials approach, the in-plane Poisson’s ratio is found by 

using the following expression: 

 

mmff ?V?V? +=12     (2-10) 

 

 

 

               a) In-plane Shear Stress      b) Interlaminar Shear Stress 

Figure 2.3  In-plane and Interlaminar Shear Stresses  
(Barbero, 1999) 
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2.3.5  In-plane Shear Modulus, G12 

 
 
 
 The in-plane shear stress τ12=τ21 acts on a fiber-reinforced lamina as shown in Figure 

2.3a.  To determine the in-plane shear modulus of a lamina, the mechanics of materials 

approach assumes that the shearing stresses on the fiber reinforcement and the matrix are the 

same.  This assumption leads to the following formula: 

 

mffm

mf

GVGV
GG

G
+

=12     (2-11) 

 

 Similar to the Young’s modulus perpendicular to the fiber reinforcement direction, 

the in-plane shear modulus calculated using Equation (2-11) is considered to be a lower 

bound because Equation (2-11) has been shown to underestimate the actual in-plane shear 

modulus found in experiments (Sonti, 1992, Barbero, 1998). 

 
 
 
2.3.6  Interlaminar Shear Modulii, G23 and G13 

 
 
 
 The interlaminar shear stress τ23=τ32 acts on a fiber-reinforced lamina as shown in 

Figure 2.3b.  Barbero, using a semiempirical stress partitioning parameter (SPP) technique, 

computed the interlaminar shear modulus.  The SPP technique uses experimental data to 

correct an inaccurate formula (Barbero, 1999).  The results of this technique yield the 

following formula for calculating shear modulus G23 
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 The interlaminar shear stress τ13=τ31 acts on a fiber-reinforced lamina similar to that 

in Figure 2.3a.  Therefore, it is assumed that G13= G12.  

 
 
 

2.4  Properties of the Laminae 
 
 
 
 The laminates that were analyzed in this thesis were cut from wide flange shapes 

provided by Creative Pultrusions.  The laminates were experimentally tested under tensile 

and compressive load to determine material properties in the longitudinal and transverse 

direction (see Chapter 4).  The properties of the laminates were also predicted by analytical 

means using methods from Chapter 3.  Predictions were also made to determine the buckling 

load of a laminate plate simply supported on all edges (see Chapter 5).  In order to make 

these predictions, the properties of the laminae must first be determined.  The laminae 

properties were determined using information provide by Creative Pultrusions and using the 

methods and properties (fiber and matrix) giving in this chapter.  The laminates contained 

stitched mats that had three different fiber orientations stitched together: 90, +θ, and 
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−θ degrees.  This stitched mat was analyzed as if it were three separate layers, with each 

layer having the same volume fraction as the stitched mat.  For each lamina (layer) 

contained in the laminates, the micromechanical predictions for stiffness is given in Table 

2.1.  All of the laminates analyzed throughout this thesis are made up of these layers 

arranged in a theoretical or actual stacking sequence. 

 

 

 

Table 2.1  Micromechanical Predictions of Stiffness for Layers in a Laminate 

Layer   E1 E2     G12 = G13 G23 

Type Vf 106 (psi) 106 (psi) ν12 ν21 106 (psi) 106 (psi) 

Roving A 49.91% 5.49 0.953 0.3001 0.0521 0.347 0.445 

Roving B 47.98% 5.30 0.921 0.3032 0.0527 0.335 0.426 

Roving C 13.65% 1.87 0.574 0.3582 0.1104 0.208 0.225 

90 Degrees 46.00% 5.10 0.890 0.3064 0.0535 0.324 0.409 

+θ Degrees 46.00% 5.10 0.890 0.3064 0.0535 0.324 0.409 

-θ Degrees 46.00% 5.10 0.890 0.3064 0.0535 0.324 0.409 
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3.0 MACROMECHANICS 
 
 
 
 

3.1  Introduction 
 
 
 
 A laminate is a stack of laminae bonded together to form an element having a desired 

stiffness and thickness.  The laminae are stacked according to a pre-described sequence, 

which is used to achieve a desired result.  In the pultrusion process, the laminae are bonded 

together with the same matrix material, resin, used in each lamina.  In relation to the global 

(pultrusion) coordinate system of the laminate, some of the laminae may be at various 

orientations (see Figure 3.1 with the x direction representing the direction of pultrusion).  

Due to some of the laminae being at various orientations, the laminate is able to resist loads 

in several directions.  Macromechanics is the study of a laminate’s response to loading based 

on the properties of each lamina and the stacking sequence of the laminae.  Classical 

Lamination Theory (CLT) is used to analyze a laminate based on the laminae that make-up 

the laminate.  Using CLT, the stiffness matrices (A, B, D matrices) for a laminate can be 

determined.  The stiffness matrices are needed in order to analyze a laminate under a given 

loading condition.   

 This chapter deals with determining the response of a laminate, as well as a lamina, 

using macromechanics.  In this chapter, the stress-strain relations are developed for a lamina 

and a laminate.  Both lamina and laminate are assumed to behave as a linear elastic material.  

Using CLT, the stiffness of a laminate can be found if the properties and orientation of each 

lamina in the laminate is known. 
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Figure 3.1  Laminate Made-up of Laminae  
 (Reddy, 1997) 

 
 
 
 

3.2 Macromechanics of a Lamina 
 
 
 
 The goal of macromechanics of a lamina is to determine the stress-strain behavior of 

an individual lamina.  Since a laminate is made up of laminae with various fiber 

orientations, the stress-strain relationships for a lamina is first expressed in terms of the 

lamina coordinate system and then transformed to the global (pultrusion) coordinate system 
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of the laminate.  This is necessary in order to determine the stiffness of a laminate in terms 

of the global coordinate system. 

 
 
 
3.2.1  Stress-Strain Relationship in a Lamina 
 
 
 
 Using contracted notation, the generalized Hooke’s law relating stresses to strains is 

 

621}]{[}{ , ... ,,i,jeCs            jiji ==   (3-1) 

 

 where, σi are the stress components, Cij is the 6 X 6 constitutive matrix, and ε j are the 

strain components.   

 

Table 3.1  Tensor Versus Contracted Notation for Stresses and Strains  (Jones, 1999) 

 

 



 32 

 

The stiffness matrix has 36 constants, but by using energy methods it can be shown 

that the stiffness matrix is symmetric (Cij=Cji) and therefore only 21 of the constants are 

independent.  The relationship in Equation (3-1) characterizes an anisotropic material, which 

has no planes of symmetry for the material properties.  For a lamina, which is considered to 

be orthotropic, the stiffness matrix has only nine independent constants.  It was mentioned in 

Chapter 2 that the 2 and 3 directions in the lamina coordinate system (see Figure 2.1) are 

interchangeable in terms of material properties.  For this reason the laminae analyzed in this 

thesis are assumed to be transversely isotropic in the 2-3 plane and orthotropic in the 1-2 

plane; therefore there are only five independent constants in the stiffness matrix.  In this 

section the stress-strain relationship for a lamina in a state of plane stress will first be 

defined in the lamina’s coordinate system and then in the global (pultrusion) coordinate 

system. 

 

3.2.1.1  Lamina Coordinate System. A fiber-reinforced lamina, as shown in Figure 2.1, is 

in a state of plane stress if 

 

0312333 === σσσ     (3-2) 

 

(Note that the stresses in Equation (3-2) are given in tensor notation) The stress-strain 

relationship, in lamina coordinate system, for an orthotropic lamina in a state of plane stress 

is given as 
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where [Q] is the reduced stiffness matrix.  The components of the reduced stiffness 

matrix are defined in terms of the in-plane mechanical properties of the lamina and are 
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Theoretical determination of the in-plane mechanical properties (E1, E2, ν12, and G12) of a 

fiber-reinforced lamina using micromechanics was discussed in Chapter 2. 

The strain-stress relationship, in lamina coordinate system, for an orthotropic lamina 

in a state of plane stress is given as 
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 where [S] is the compliance matrix.  The components of the compliance matrix are 

given as 
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3.2.1.2  Global (Pultrusion) Coordinate System. Many of the laminae that make up a 

laminate have a coordinate system (1-2-3) that does not coincide with the global coordinate 

system (x-y-z) of the laminate (an off-axis configuration, see Figure 3.2).  In fact, in the 

pultrusion process, only the roving layers have the two coordinate systems coincide due to 

the rovings always being in the direction of pultrusion.  An orthotropic lamina with the two 

coordinate systems aligned (an on-axis configuration, see Figure 3.2) is called a specially 

orthotropic lamina.  An orthotropic lamina whose coordinate system does not coincide with 

the global coordinate system of the laminate is called a generally orthotropic lamina.  Due to 

the presence of generally orthotropic laminae in a laminate, a method of transforming stress-

strain relationships from one coordinate system to another is needed.  The response of a 

laminate to loading in the global coordinate system is found using the stress-strain 

relationships, determined in terms of the global coordinate system, of each lamina.   
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Figure 3.2  Lamina On- and Off-axis Configurations  
(Staab, 1999) 

 

The stress-strain relationship for an orthotropic lamina in terms of the global coordinates is  
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where [ Q ] is the transformed reduced stiffness matrix, which is found using the 

relation 

TTQTQ −−= ]][[][][ 1     (3-8) 

 

where [T] is the transformation matrix, which is 
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where m = cos θ, n = sin θ and θ is the angle between the lamina’s coordinate system 

and the global coordinate system, as shown in Figure 3.2.  Using Equation (3-8) and 

Equation (3-9), the components of the transformed reduced stiffness matrix are 
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Note that the transformed reduced stiffness matrix, [ Q ], has terms in all positions in 

the matrix as opposed to the presence of zeros in the reduced stiffness matrix, [Q].  

Therefore, in terms of the global coordinate system, a generally orthotropic lamina appears 

to be anisotropic, since shear-extension coupling exists (Jones, 1999). 
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3.3  Classical Lamination Theory (CLT) 

 
 
 
 Classical Lamination Theory, or CLT, is used for the analysis of laminates and is 

used to determine the stiffness of a laminate.  CLT assumes a few things about the behavior 

of the single layer that represents the laminate.   

The assumptions are: 

1) The laminate is assumed to consist of laminae that are perfectly bonded together.  

The bonds are assumed to be infinitesimally thin as well as non-shear-deformable.  

Therefore, the displacements are continuous across lamina boundaries so that no 

lamina can slip relative to another. 

2) Deflections and strains are small compared to the thickness of the laminate. 

3) Plane sections that are initially normal to the mid-plane of the laminate remain 

normal to the mid-plane after deformation (see line ABCD in Figure 3.3).  Requiring 

plane sections to remain plane is equivalent to ignoring the shear strains γxz and γyz , 

that is, γxz = γyz = 0. 

4) The stress normal to the mid-plane, σz, is small compared to the other stress 

components and can be neglected. 

5) The strain perpendicular to the middle surface is ignored, therefore εz = 0.  Line 

ABCD in Figure 3.3 is assumed to have constant length. 

These assumptions, except for assumption number 1, are known as Kirchhoff’s hypothesis 

and are analogous to the assumptions associated with Euler-Bernoulli beam theory. 
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Figure 3.3  Geometry of Deformation  
(Jones, 1999) 

 

 

3.3.1  Variation of Strain and Stress in a Laminate 
 
 
 
 The strain of any point in a laminate that has undergone deformation can be 

determined by considering the geometry of the undeformed and deformed cross section 

shown in Figure 3.3.  Point B in Figure 3.3 is located at the mid-plane and in going from the 

undeformed to the deformed shape Point B undergoes a displacement in the x-direction of 

uo.  (Note that the symbol ‘nought’ (o) designates mid-plane values of a variable) Since, due 

to Kirchhoff’s hypothesis, line ABCD remains straight under deformation of the laminate, 

the displacement of arbitrary point C is 

 

βcoc zuu −=      (3-11) 
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Based on Kirchhoff’s hypothesis, under deformation, line ABCD remains perpendicular to 

the mid-plane; therefore, β  is the slope of the laminate mid-plane in the x-direction, that is, 
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The displacement, u, at any point z through the thickness of the laminate is  
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Similarly, the displacement, v, in the y-direction is 
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According to Kirchhoff’s hypothesis εz = γxz = γyz = 0, therefore the remaining non-zero 

laminate strains are εx, εy, and γxy.  The non-zero strains can be defined in terms of 

displacement as 
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Using Equations (3-13) and (3-14) in Equation (3-15), leads to the following expressions for 

strains 
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Alternatively, Equation (3-16) can be expressed as 

 
















+

















=
















xy

y

x

o
xy

o
y

o
x

xy

y

x

z
κ
κ

κ

γ

ε

ε

γ
ε

ε

   (3-17) 

 

where the mid-plane strains are, 
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and the mid-plane curvatures are, 
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 By substituting Equation (3-17), which is the strain variation through the thickness of 

the laminate, into Equation (3-7), the stresses in the kth lamina can be expressed in terms of 

the laminate mid-plane strains, the laminate curvatures and the z coordinate (Note that z is 

measured positive downward from the mid-plane) as 
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  (3-20) 

 

Even though the strain variation is linear through the thickness of a laminate, the stress 

variation is not necessarily linear through the thickness of a laminate because the 

transformed reduced stiffness matrix, [ Q ], can be different for each lamina in a laminate.   
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3.3.2  Resultant Forces and Moments Acting on a Laminate 
 
 
 
 By integrating the stresses through the laminate thickness, the resultant forces and 

moments acting on a laminate are obtained.   

The resultant forces are 
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 where Nx, Ny, and Nxy are forces per unit width and t is the laminate thickness. 

The resultant moments are 
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where Mx, My, and Mxy are moments per unit width. 

For a N-layered laminate, the entire set of force and moment resultants is given as 
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and 
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where zk and zk-1 are defined in the geometry of an N-layered laminate, which is 

depicted in Figure 3.4. 

 

Figure 3.4  Geometry of an N-Layered Laminate  
(Jones, 1999) 
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3.3.3  Laminate Stiffness 
 
 
 
 By substituting Equation (3-20) into Equation (3-23), the laminate forces are 

expressed in terms of the mid-plane strains and curvatures as 
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Similarly, by substituting Equation (3-20) into Equation (3-24), the laminate moments are 

expressed in terms of the mid-plane strains and curvatures as 
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 Since the mid-plane strains and curvatures are not functions of z, they can be 

removed from the integral and Equations (3-25) and (3-26) can be written as 
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 The extensional stiffness matrix is [A], the bending-extension coupling stiffness 

matrix is [B], and the bending stiffness matrix is [D].  The presence of matrix [B] implies 

that there is a coupling between bending and extension, therefore if a laminate has Bij terms, 

pulling on the laminate will cause bending and/or twisting of the laminate.  The terms A16 

and A26 represent shear-extension coupling, which means coupling exist between shear 

stress and normal strains and between normal stresses and shear strain, in a laminate.  The 

terms D16 and D26 represent bending-twisting coupling in a laminate.  The [A], [B], and [D] 

matrices are very useful in understanding the behavior of a laminate under given loading 

conditions and are used frequently in the analysis of composites. 
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3.4  Special Types of Laminates 
 
 
 
 Equations (3-27) and (3-28) represent the constitutive equations that relate the force 

and moment to the strains and curvatures for a general laminate.  For certain types of 

laminates these equations simplify because some of the terms in the [A], [B], and/or [D] 

matrix disappear.  By using a certain type of laminate, some of the coupling terms can be 

eliminated and therefore make the analysis of the laminate easier.  From an analysis 

perspective, eliminating some of the coupling terms is beneficial, but depending on the 

application, the laminate may be designed where it has these coupling effects.  Only some of 

the most common laminate types are listed below.  These laminates are introduced because, 

when dealing with the issue of laminate plate buckling in Chapter 5, the buckling load is 

related to the type of laminate under consideration. 

 
 
  
3.4.1  Symmetric Laminates 
 
 
 

 A symmetric laminate is a laminate in which layers of the same thickness, 

orientation and material properties are symmetrically located with respect to the middle 

surface of the laminate (Barbero, 1999).  For example a [45/0/0/45] or [60/30/0/0/30/60] 

laminate is symmetrical.  (The previous laminate notation is used often in the composite 

industry to describe the stacking sequence, or make-up, of a laminate.  The layers are 

numbered from bottom to top and each number represents the orientation, the angle between 

global (laminate) and layer coordinates).  For symmetric laminates, each component of the 

[B] matrix is zero and therefore there is no bending-extension coupling.  The elimination of 
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the bending-extension coupling makes symmetric laminates much easier to analyze.  

Symmetric laminates also do not tend to bend or twist following the curing process, which 

causes thermally induced contractions due to cooling. 

 
 
 
3.4.2  Antisymmetric Laminates 
 
 
 
 Antisymmetric laminates are laminates that have pairs of layers of opposite 

orientation but the same material properties and thickness symmetrically located with 

respect to the middle surface (Barbero, 1999).  An example of an antisymmetric laminate 

would be [-25t/352t/03t/03t/-352t/25t], where the subscript “t” represents layer thickness.  

Antisymmetric laminates have D16 = D26 = A16 = A26 = 0, therefore there is no bend-twist or 

shear-extension coupling, but there is bending-extension coupling.   

 
 
 
3.4.3  Angle-Ply Laminates 
 
 
 

An angle-ply laminate has, for each lamina oriented at +α degrees to the laminate 

coordinate axes, another laminae oriented at  -α degrees with the same material properties 

and thickness.  A symmetric angle-ply laminate, such as [45/-45/-45/45], has no shear-

extension coupling (A16 = A26 = 0) and no bending-extension coupling ([B] = 0) but does 

have bend-twist coupling (D16 ≠  0 and D26 ≠ 0).  An antisymmetric angle-ply laminate has 

laminae oriented at +α degrees to the laminate axes on one side of the mid-plane and a 

corresponding equal thickness laminae oriented at -α degrees on the other side of the mid-



 48 

plane (Reddy, 1997).  When +α = 0 degrees, -α = 90 degrees and vice versa.  For an 

antisymmetric angle-ply laminate, D16 = D26 = A16 = A26 = 0, but B16 ≠  0 and B26 ≠ 0. 

 
 
 

3.4.4  Balanced Laminates 
 
 
 
 A laminate is balanced if for every layer in the laminate, there exists, somewhere in 

the laminate, another layer with identical material properties but opposite orientation 

(Reddy, 1997).  Any balanced laminate always has A16 = A26 = 0.  For a symmetric balanced 

laminate, [B] = 0 as well but D16 ≠  0 and D26 ≠ 0.  For an antisymmetric balanced laminate, 

D16 = D26 = A16 = A26 = 0, but B16 ≠  0 and B26 ≠ 0. 

 
 
 
 

3.5 Equivalent (Effective) Laminate Properties 
 
 
 
 Using the stiffness matrices of laminates, effective laminate stiffnesses (Ex, Ey, Gxy, 

and νxy) can be determined.  These effective properties represent the stiffness of an 

equivalent orthotropic plate that behaves like the laminate.  Although it may be helpful to 

define the effective laminate stiffnesses, defining these terms is flawed because the approach 

ignores shear-extension coupling, bend-twist coupling and bending-extension coupling 

(Jones, 1999).  The effective laminate stiffnesses are most accurate for laminates that are 

balanced and symmetric because balanced symmetric laminates have no shear-extension 

coupling (A16 = A26 = 0) and no bending-extension coupling ( [B] = 0 ); therefore the flaw in 

the approach to define the stiffnesses is removed.   
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The equivalent properties for a balanced symmetric laminate, defined by Barbero, are:  
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where t is the thickness of the laminate.  The laminate properties in Equation (3-30) 

are valid for in-plane loads only. 

An equivalent orthotropic material cannot exactly represent a laminate that is not 

balanced and symmetric, but Equation (3-30) is used for other laminates as well unless the 

laminates are drastically unsymmetrical and/or unbalanced (Barbero, 2002).  Barbero 

proposed the following dimensionless ratios: 
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 where rN is used to determine the accuracy of Equation (3-30) for laminates that are 

not balanced and symmetric and rB is used to determine how symmetric the laminate is.  The 

closer these ratios are to zero, the more accurate Equation (3-30) is in representing the true 

response of the laminate.  Equation (3-30) is used to predict the laminate properties, which 

will be compared to experimental values determined in Chapter 4. 

 
 
 
 

3.6  Interlaminar Stresses 
 
 
 
 In Classical Lamination Theory (CLT) a state of plane stress is assumed to exist, 

which means only the stresses in the plane of the laminate (σx, σy, and τxy) are considered.  

No account is taken, in CLT, of stresses such as σz, τxz, and τyz, which are called 

interlaminar stresses and are shown in Figure 3.5 acting on an element of a symmetric angle-

ply laminate.  Interlaminar stresses exist on surfaces between adjacent layers although they 

exist within the layers but are usually largest at the layer interface (Jones, 1999).  High 

interlaminar stresses are the cause of one of the failure mechanisms of composite laminates, 

free edge delamination (see Figure 3.6), followed by delamination growth.  Therefore, CLT 



 51 

does not take into account the stresses that may actually cause this unique failure in 

composite laminates.   

 

 

Figure 3.5  Symmetric Angle-Ply Laminate and Stresses  
(Pipes and Pagano, 1970) 

 

 

 

Figure 3.6  Free Edge Delaminations  
(Jones, 1999) 

 



 52 

The problem in the plane stress assumption used by CLT is that CLT implies values 

of σy and τxy where they cannot possibly exist, at the edge of a laminate.  If we consider the 

free body diagram in Figure 3.7, τxy can exist on the left-hand side in the x-z plane since it as 

away from the free edge but it cannot exist on face ABCD at the free edge.  To achieve force 

equilibrium in the x-direction a stress must exist to balance the action of τxy.  Therefore, 

stress τxz must exist on the bottom of the top- layer in the free body diagram.   

 

 

Figure 3.7  Free Body Diagram of a Symmetric Angle Ply Laminate 
(Jones, 1999) 

 

 

Pagano and Pipes (1970) noted that while the assumption of plane stress used by 

CLT is distorted by the presence of σz, τxz, and τyz in regions near the laminate free-edge, 

these interlaminar stress decay rapidly with the distance from the free-edge.  Therefore, the 

presence of the interlaminar stress near the free edge may be considered an edge effect, 

which is restricted to a narrow region near the free edge, while the stress distribution in 
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interior regions of the laminate is adequately described by CLT (Pagano and Pipes, 1970).  

In other words, CLT stress assumptions are accurate over most of the laminate except in a 

narrow region near the free edges.   

High interlaminar stresses were encountered in the experimental testing that was 

done as part of the current research (as was evidenced by the delamination that occurred at 

the edges).  High interlaminar stress were encountered in the analytical determination of the 

critical buckling load of laminate plates using ANSYS, at the loaded edge and will be 

discussed in Chapter 5.   
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4.0  EXPERIMENTAL DETERMINATION OF LAMINATE 
PROPERTIES 

 
 
 
 

4.1  Introduction 
 
 
 
 In this chapter the properties of a laminate under tensile and compressive loading 

will be determined experimentally.  For tensile loading the laminate properties that will be 

determined are the longitudinal and transverse modulus; where the longitudinal direction, x 

direction, is in the direction of pultrusion and the transverse direction, y or z-direction, is 

perpendicular to, and in the same plane as, the direction of pultrusion as shown in Figure 1-

3.  The tensile strength of the laminates in the longitudinal and transverse direction is 

recorded as well.  Two of the longitudinal tensile specimens were also tested for the 

Poisson’s ratio, νxy.  The experimentally determined tensile modulii will be compared to 

analytically determined modulii found by using methods in Chapter 3.   

The longitudinal modulus, transverse modulus, and strength will be found for 

laminates placed under compressive loading.  Compressive strength and compressive 

modulus are very difficult properties to measure accurately and has been a topic of research 

for a long time (Makkapati, 1994).  Usually fixtures are used to experimentally evaluate the 

compressive strength, but none are used in this work.  Fixtures are used to avoid an 

instability failure or to avoid delamination, but even with using the fixtures erroneous results 

can be obtained because additional forces (mainly friction) maybe introduced when using a 

fixture.  Since delamination is an important failure in composite materials it was decided not 

to avoid it by using a fixture and short specimens were used to avoid an instability failure.   
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All of the specimens used were cut from the flange and web of pultruded wide flange 

shapes manufactured by Creative Pultrusions, Inc.   It is important to note that although the 

flange and web have the same thickness, they do not have the same stacking sequence.  In 

fact, the webs have a symmetric stacking sequence while the flanges do not.   

 
 
 
 

4.2 Experimental Procedure  
 
 
 
4.2.1  Tensile Tests 
 
 
 
 For the tensile test, coupon specimens were cut from the flanges and webs of wide 

flange and I-shapes manufactured by Creative Pultrusions, Inc.  The coupons were cut from 

a 6” x 6” x 3/8” wide flange shape and an 8” x 4” x 3/8” I-shape, where the first number is 

the depth of the shape, the second number is the width of the shape (or flange width), and 

the last number gives the thickness of both the flange and the web, which are each 

considered laminates when considered separately.  The flanges for each shape have the same 

thickness and stacking sequence and the webs for each shape have the same thickness and 

stacking sequence (although, as was mentioned earlier, the flanges do not have the same 

stacking sequence as the web).  Therefore, for example, a coupon specimen cut from the 

flange of one shape should have the same modulus as a specimen cut from the flange of the 

other shape since their laminae stacking sequence, laminae properties, and thickness are the 

same. 
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Figure 4.1  Baldwin Universal Testing Machine  

 

The coupon specimens tested under tensile loading were tested using a Baldwin 

Universal Testing Machine (UTM), (see Figure 4.1).  The specimens were held in place in 

the UTM by metal grips.  Uniaxial strain gages were bonded to the coupon specimens 

parallel to the direction of loading.  For determination of Poisson’s ratio, another strain gage 

was placed on the other side of the specimen in the perpendicular direction.  The uniaxial 

strain gage are connected to a portable Measurement Group’s P-3500 Strain Indicator (See 

Figure 4.2), which gives a digital readout of the strain in one direction.  For further 

information on strain data acquisition see Keelor, 2002.   
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Figure 4.2  Measurement Group’s P-3500 Strain Indicator 

 

The specimen is gradually loaded and the strains are recorded at specified load 

increments so the stress-strain curve can be plotted for each specimen.   

 

4.2.1.1  Longitudinal Properties. The specimens used to determine the longitudinal 

properties (modulus, strength, and Poisson’s ratio) of the flange and web were cut so that the 

tensile load would be applied in the direction of pultrusion (the x-direction in Figure 1.3).   
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Figure 4.3  Rectangular Specimens  

 

There were three types of specimens that were used to experimentally determine the 

longitudinal properties of a laminate (flange or web).  At first rectangular specimens, 

approximately 6” x 3”, were used (see Figure 4.3).  These specimens failed at the grips so it 

was decided to use dog-bone shaped specimens.  Dog-boned shapes were used in order to 

get the specimen to fail in the narrow region and therefore get a more accurate 

representation of the tensile strength of the laminate.  A typical dimension of the dog-boned 

shape used for the determination of the longitudinal properties is shown in Figure 4.4.  The 

third type of specimen used was based on specimen dimensions given in ASTM D638: 

Tensile Testing of Plastics (See Figure 4.5).  The thickness of all three specimens was 3/8”.   
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Figure 4.4  Typical Flange and Web Dog-boned Specimen: Longitudinal Direction  

 

 

LO = Overall Length = 8” 

D = Distance Between Grips = 6” 

L = Length of Narrow Section = 4” 

W: Width of Narrow Section = 1” 

WO = Overall Width = 2” 

Figure 4.5  Specimen Dimensions Based on ASTM D638 

 



 60 

4.2.1.2  Transverse Properties. The specimens used to determine the transverse properties 

of the flange and web were cut so that the tensile load would be applied in the direction 

perpendicular to, and in plane with, the direction of pultrusion.  For the flange this direction 

would be the y-direction in Figure 1.3 and for the web specimens this direction would be the 

z-direction in Figure 1.3.  The through thickness modulus is assumed to be equal to the 

transverse modulus.  The web specimens were cut from the web in 5” x 2.5” rectangles.  

These rectangles were then cut into dog-boned shapes (See figure 4.6).  The web specimens 

overall length was too small to conform to ASTM D638 specimen standards.   

 

Figure 4.6  Typical Web Dog-boned Specimen: Transverse Direction 

 

  

Finding the transverse properties of the flange proved to be a bit more challenging.  

The problem encountered involves the flange-web junction where the layers containing mats 
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are discontinuous in the flange due to the mats “turning” into the web.  When testing flange 

specimens for their transverse properties, this junction proved to be the weak link in the 

chain because the specimens failed at this junction due to discontinuous layers.  The 

transverse properties that are found using flange specimens with a discontinuous junction, 

are not indicative of the transverse properties of a laminate (flange) having continuous 

layers.  In order to get a better representation of the transverse properties of the flange, the 

flange specimens would have to be cut to a length that is half the length of the flange width 

in order to avoid the discontinuous layers at the flange-web junction.  These specimens, 

however, have small lengths, 3” for a 6” flange width, and are considered too small to be cut 

into dog-boned shapes or shapes based on ASTM D638.  Therefore, the transverse 

properties of the flange were not done and the results for the transverse tensile properties are 

from the web portion of the wide flange shapes.   

 
 
 

4.2.2  Compression Tests 
 
 
 
 For compression test, coupon specimens were cut from an 8” x 4” x 3/8” I-shape 

manufactured by Creative Pultrusion, Inc.  The specimens were cut from the flanges and 

webs into rectangular prisms 2” long, 1” wide, and 3/8” thick.  The specimens were tested in 

the Baldwin Universal Testing Machine (UTM), with the 2” length being in the direction of 

loading, and a dial gage that measures in 0.001” increments was attached to the machine 

head to measure deflection (see Figure 4.7).  The longitudinal compressive properties 

(modulus and strength) were tested for the web and flange.  The transverse properties were 

tested for the web, but not for the flange.   
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4.3  Results 
 
 
 
 The specimen were identified using a system were the first number tells what the 

specimen was cut from (either 1 for 6”x6”x 3/8” shape or 2 for 8”x4”x3/8” shape), the 

second letter represents either a flange (F) or web (W) section, the second letter represents 

the direction (longitudinal (L) or transverse (T)), the third number is the specimen number, 

and the fourth letter indicates the type of loading, tensile (T) or compressive (C).  Therefore 

a specimen ID of 1FL1C, would mean flange specimen #1 tested in compression in the 

longitudinal direction and cut from a 6”x6”x 3/8”.  All compression specimens were 

2”x1”x3/8”. 

 
 
 
4.3.1  Tensile Properties 
 
 
 

The type of shape that the tensile specimens were tested as (rectangular, dog-boned 

or based on ASTM D638) is giving in Table 4.1.  There were 18 total specimens tested and 

the results for the tensile strength of all 18 specimens are giving in Table 4.2, Table 4.3, and 

Table 4.4.  The mean strength and standard deviation of strength are calculated for the 

tensile specimens.  The specimens typically failed in the narrow region of the specimen and 

delamination of the specimen occurred prior to failure.  Visually you could see the 

delamination occurring at the free edges and cracking was also heard as delamination 

occurred.  The delamination occurring at the free edges is evidence of the existence of high 

interlaminar stresses near the edges as was mentioned in Chapter 3.  Some of the specimens 

failed in the grips of the UTM machine and these specimens were not included in the 
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statistical data since it was felt that a failure in the grips does not truly represent the tensile 

strength of the laminate.  Pictures of the failed specimens are given in Appendix A. 

 

 

 

 

Table 4.1  Shape of Tensile Specimens  

Specimen ID Shape 

1FL1T Rectangle 
1FL2T Rectangle 
1FL3T Dog-boned 
1FL4T Dog-boned 
1FL5T Dog-boned 
1FL6T Dog-boned 
2FL7T ASTM D638 
2FL8T ASTM D638 

    
1WT1T Dog-boned 
1WT2T Dog-boned 
1WT3T Dog-boned 
1WT4T Dog-boned 

    
1WL1T Dog-boned 
1WL2T Dog-boned 
2WL3T ASTM D638 
2WL4T ASTM D638 
2WL5T ASTM D638 
2WL6T ASTM D638 
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Table 4.2  Longitudinal Tensile Strength of Flange Specimens  

  Ultimate Ultimate 
Specimen  Tensile Tensile 

ID Load (lbs) Strength (psi) 

1FL1T 32400 29453 

1FL2T 40500 36710 

1FL3T 21380 37386 

1FL4T 20200 37149 

1FL5T 18950 34376 

1FL6T 17700 30550 

2FL7T 18560 46582 
2FL8T 16840 42265 

   

Mean Strength: 39552 Psi 
   
Standard Deviation   

 of Strength: 4849 Psi 
   

( Note: Bold Specimens Failed in Grips) 
(      and are Not Used in Statistical Data) 
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Table 4.3  Longitudinal Tensile Strength of Web Specimens  

  Ultimate Ultimate 

Specimen  Tensile Tensile 

ID Load (lbs) Strength (psi) 

1WL1T 10500 29947 
1WL2T 10790 29817 
2WL3T 13800 34635 

2WL4T 14290 33873 

2WL5T 13980 33138 

2WL6T 13870 36085 

   

Mean Strength: 32916 Psi 
   
Standard Deviation   

 of Strength: 2545 Psi 
 

 

 

 

 

Table 4.4  Transverse Tensile Strength of Web Specimens  

  Ultimate Ultimate 
Specimen  Tensile Tensile 

ID Load (lbs) Strength (psi) 

1WT1T 3520 9352 
1WT2T 3180 8683 
1WT3T 3200 9752 
1WT4T 3280 9330 

   

Mean Strength: 9279 Psi 
   
Standard Deviation   

 of Strength: 442 Psi 
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Due to a faulty Measurement Group’s P-3500 Strain Indicator, the tensile modulus 

results for 5 of the 18 test specimens were erroneous due to errors in the strain data and 

therefore not reported.  The tensile modulus results of the remaining specimens, with strains 

measured with another Measurement Group’s P-3500 Strain Indicator, are given in Table 

4.5, Table 4.6 and Table 4.7.  Two of the web longitudinal specimens were also tested for 

Poisson’s ratio, νxy, and those results are reported in Table 4.6.  The mean and standard 

deviation of the tensile modulus results are also recorded.  The stress strain curves for the 

specimens listed in Table 4.5, Table 4.6 and Table 4.7 are given in Appendix A. 

 

Table 4.5  Longitudinal Tensile Modulus of Flange Specimens  

 

  Tensile 

Specimen  Modulus 

ID (x 106 psi) 

1FL1T 4.382 

1FL2T 4.183 

1FL5T 4.328 

2FL7T 4.556 

2FL8T 4.461 

  

Mean Tensile 
 Modulus (x 106 psi): 4.382 

  
Standard Deviation of 

 Modulus (x 106 psi): 0.141 
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Table 4.6  Longitudinal Tensile Modus and In-plane Poisson’s Ratio of Web Specimens  

 
  Tensile In-plane 

Specimen  Modulus Poisson's 

ID (x 106 psi) Ratio 

1WL2T 2.709 - 
2WL3T 2.664 0.2566 

2WL4T 2.620 0.3021 
2WL5T 2.510 - 
2WL6T 2.586 - 

   

Mean Tensile  

 Modulus (x 106 psi): 2.618  

   
Standard Deviation of   

 Modulus (x 106 psi): 0.076  

   

Mean In-plane   

Poisson's Ratio: 0.2793  
 

 
 
 

 
Table 4.7  Transverse Tensile Modulus of Web Specimens  

 
  Tensile 

Specimen  Modulus 

ID (x 106 psi) 

1WT2T 1.074 
1WT3T 1.316 

1WT4T 1.336 

  

Mean Tensile 
 Modulus (x 106 psi): 1.242 

  
Standard Deviation of  

 Modulus (x 106 psi): 0.146 
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 A comparison between the predicted and experimental tensile modulus values is 

given in Table 4.8.  The predicted values were done using methods from Chapter 3 and 

Chapter 4.  As seen by the percent difference, the predicted values agree well with the 

longitudinal tensile modulus found through experiment, especially for the web specimens.  

The predicted in-plane Poisson’s ratio also agreed well with the experimental results.  The 

predicted web transverse modulus determined by the analytical means of Chapter 3 and 

Chapter 4 is far off from the experimental results.   

 

 

 

 

Table 4.8  Comparison Between Predicted and Experimental Tensile Properties 

 
  Flange  Web Web   
  Longitudinal Longitudinal Transverse    
  Tensile Modulus Tensile Modulus Tensile Modulus In-Plane 

  (x 106 psi) (x 106 psi) (x 106 psi) Poisson's Ratio 

         

Tested Value: 4.382 2.618 1.242 0.279 
         

        

Predicted Value: 4.046 2.616 1.790 0.289 
         

% Difference: -7.68% -0.08% 44.12% 3.60% 
 
 
 
 
 
 
 
 
 



 69 

 
4.3.2  Compression Properties 
 
 
 
 There were 13 total specimens tested in compression and the results for the 

compressive strength of all the specimens are giving in Table 4.9, Table 4.10, and Table 

4.11.  The mean strength and standard deviation of strength are calculated for the 

compression specimens.  All of the specimens experienced delamination prior to ultimate 

failure.  The delamination typically occurred at the top of the specimens, which was in 

contact with the machine head, therefore considered to be a loaded edge.  The area where 

delamination occurred is evidence of the existence of high interlaminar stresses, which cause 

the delamination of laminates, occurring at the edge of laminates (see Chapter 3).  It was 

expected that delamination would occur at the free edges, but delamination continuously 

occurred at the loaded edges.  Pictures of the failed compression specimens are given in 

Appendix A. 

 

 
Table 4.9  Longitudinal Compressive Strength of Flange Specimens  

 
  Ultimate Ultimate 

Specimen  Tensile Tensile 
ID Load (lbs) Strength (psi) 

2FL1C 14810 37541 
2FL2C 12250 31562 
2FL3C 12670 32930 

   

Mean Strength: 34011psi 
   
Standard Deviation  

 of Strength: 3133psi 
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Table 4.10  Longitudinal Compressive Strength of Web Specimens  

  Ultimate Ultimate 
Specimen  Tensile Tensile 

ID Load (lbs) Strength (psi) 

2WL1C 11880 29887 
2WL2C 13180 34289 
2WL3C 13070 32543 
2WL4C 11750 30332 
2WL5C 10420 27430 

   

Mean Strength: 30896psi 
   
Standard Deviation  

 of Strength: 2626psi 
 

 

 

 

Table 4.11  Transverse Compressive Strength of Web Specimens  

  Ultimate Ultimate 
Specimen  Tensile Tensile 

ID Load (lbs) Strength (psi) 

2WT1C 4260 10997 
2WT2C 4010 10382 
2WT3C 3480 8984 
2WT4C 4350 11429 
2WT5C 5080 13493 

   

Mean Strength: 11057psi 
   
Standard Deviation  

 of Strength: 1645psi 
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In determining the compressive modulus of specimens a dial gage was used.  The 

dial gage does not provide as accurate results as a strain gage, but it does provide us with an 

ability to determine the compressive modulus of specimens.  In the beginning of most of the 

test the stress-strain curves show slightly erratic behavior, but along the course of the curves 

there is a definable linear portion, which was used to calculate the compressive modulus.  

The compressive modulus results of the specimens are given in Table 4.12, Table 4.13 and 

Table 4.14.  The mean and standard deviation of the compressive modulus results are also 

recorded.  The stress strain curves for the specimens listed in Table 4.12, Table 4.13 and 

Table 4.14 are given in Appendix A.   

 

 

Table 4.12  Longitudinal Compressive Modulus of Flange Specimens  

 
  Compressive 

Specimen  Modulus 

ID (x 106 psi) 

2FL1C 2.751 
2FL2C 2.571 
2FL3C 2.596 

  

Mean Compressive 
 Modulus (x 106 psi): 2.639 

  
Standard Deviation of 

 Modulus (x 106 psi): 0.098 
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Table 4.13  Longitudinal Compressive Modulus of Web Specimens  

 
  Compre ssive 

Specimen  Modulus 

ID (x 106 psi) 

2WL1C 1.994 
2WL2C 2.183 
2WL3C 2.229 
2WL4C 2.053 

2WL5C 1.852 

  

Mean Compressive 
 Modulus (x 106 psi): 2.062 

  

Standard Deviation of 

 Modulus (x 106 psi): 0.151 
 

 

 

 

Table 4.14  Transverse Compressive Modulus of Web Specimens  

  Compressive 
Specimen  Modulus 

ID (x 106 psi) 

2WT1C 1.388 
2WT2C 1.212 
2WT3C 1.256 
2WT5C 1.338 

  

Mean Compressive 
 Modulus (x 106 psi): 1.299 

  
Standard Deviation of 

 Modulus (x 106 psi): 0.079 
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4.4  Discussion of Results 
 
 
 
 A comparison of mean values for tensile and compressive properties is given in 

Table 4.15.  The results from the tensile and compressive tests show that there is some 

difference between the tensile and compressive properties of fiber-reinforced plastics.  This 

difference in tensile and compressive properties is not taken into consideration in the 

analytical determination of laminae and laminate properties (see Chapter 3 and Chapter 4).  

The consequence of this is that the results of the extensional stiffness matrix [A], and the 

bending-extension coupling stiffness matrix [B] developed using CLT may vary depending 

on the type of loading, tensile or compressive.  It is evident just on name alone that these 

matrixes are based on tensile (extension) loading, but it will have to be assumed that theses 

matrixes are valid for compressive loads as well. 
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Table 4.15  Comparison of Tensile and Compressive Properties 

 

  Tension Compression 
Flange Longitudinal     

Strength (psi): 39552 34011 
Web Longitudinal     

Strength (psi): 32916 30896 
Web Transverse     

Strength (psi): 9279 11057 
Flange Longitudinal     
Modulus ( x 106 psi): 4.382 2.639 

Web Longitudinal     
Modulus ( x 106 psi): 2.618 2.062 

Web Transverse     
Modulus ( x 106 psi): 1.242 1.299 
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5.0  LAMINATE PLATE BUCKLING 
 
 
 
 

5.1  Introduction 
 
 
 
 This section deals with the analytical determination of the critical buckling load of 

various types of plates.  Buckling of a plate occurs when the in-plane compressive load gets 

large enough to cause a sudden lateral deflection of the plate.  Initially a plate under 

compressive load undergoes only in-plane deformations, but as this compressive load gets 

large, the plate reaches its critical buckling load, the load at which a sudden lateral 

deflection of the plate takes place.   

The critical buckling load of a plate will be analytically determined in two ways: 1) 

using previously derived equations, and 2) using the finite element program ANSYS, 

version 6.1.  The critical buckling load will be found for homogenous plates and laminated 

plates.  The latter provides insight into the local buckling issues of an FRP wide-flange 

shape used as a column.  Since determination of buckling loads for homogeneous plates is 

well documented, finding the critical load for homogeneous plates is mainly done to validate 

the methods used in ANSYS to determine the critical buckling load of a plate.  A validation 

of the accuracy of critical buckling loads determine by ANSYS is desired since laminated 

plate buckling has not been well examined.  Due to the lack of available laminated plate 

buckling solutions, the validity of most of the buckling loads found by ANSYS is based on 

the accuracy of the homogeneous plate results.  In using ANSYS to determine buckling 
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loads for laminated plates, the effect of layer orientation, boundary conditions, plate aspect 

ratio, and laminate thickness on the critical buckling load of laminated plates is taken into 

consideration.   

 

 

Figure 5.1  Plate Subjected to Uniform Uniaxial In-Plane Compression  
(Jones, 1999) 

  

A general plate subjected to an in-plane load is shown in Figure 5.1, where Nx is load 

per unit length.  The aspect ratio, which is an important quantity in plate buckling, is defined 

as length ‘a’ divided by width ‘b’.  The boundary condition notation used (e.g., simple-

simple-simple-free) refers to the boundary conditions along edge (x = 0)-(y = 0)-(x = a)-(y = 

b).   

 

 

5.2 Analytical Critical Buckling Load of Plates Using Previous Derived Equations  
 
 
 
5.2.1  Homogeneous Plates 
 
 
 
 The buckling of homogeneous plates has been well researched and documented for 

decades.  Various methods, such as energy and equilibrium methods, have been used to 
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determine the lowest eigenvalue, or the actual buckling load.  The results of these methods 

are given in this work and the reader is referred to Timoshenkos’ Theory of Elastic Stability 

for a more comprehensive treatment of homogeneous plate buckling.  For a homogeneous 

plate the following formula is used to determine the critical buckling load per unit length: 
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 where E is Young’s Modulus, ν is Poisson’s ratio, t is the plate thickness, b is the 

width of the plate, and k is a constant determined by the boundary condition and aspect ratio 

of the plate.  It is important to note that Equation 5.1 is only applicable to the buckling mode 

where m = n = 1, where m is the number of half-waves of the buckled shape in the direction 

of loading and n is the number of half-waves of the buckled shape in the direction 

perpendicular to loading.  Timoshenko gives values of k for various aspect ratios under 

various edge boundary conditions.  ANSYS results for the buckling load of various 

homogeneous plates are compared to Equation 5.1 and recorded in Table 5.1, Table 5.2, and 

Table 5.3.   

 
 
 
5.2.2  Laminated Plates 
 
 
 
 Buckling of FRP laminated plates is a complicated topic, and buckling solutions for 

only a few laminate cases have been published (see Chapter 1: Literature Review).  The 

solution that will be presented is for a symmetric, specially orthotropic laminated plate 
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simply supported on all edges.  A specially orthotropic laminate has no shear-extension 

coupling (A16 = A26 = 0), no bend-twist coupling (D16 = D26= 0), and no bending-extension 

coupling ([B] = 0).  The critical buckling load per unit length for a symmetric, specially 

orthotropic laminated plate simply supported on all edges is,  
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As can be seen by Equation 5.2, the buckling load is dependent on the components of 

the bending stiffness matrix.  Equation 5.2 will produce erroneous results for laminates with 

nonzero values of D16 and D26.  For laminates that have values for D16 and D26 (bend-twist 

coupling exists) the principal influence is to lower the buckling load obtained with Equation 

5.2.  Therefore, the specially orthotropic solution is considered an unconservative 

approximation to the general class of laminates that usually have bend-twist coupling.  The 

approximation of a general laminate by a specially orthotropic laminate can result in errors 

as big as a factor of 3 (Jones, 1999).  A more accurate solution for the buckling load of 

general laminated plates (laminates having nonzero terms for all components of the bending 

stiffness matrix) has been done (see Literature Review), but the solution procedure is 

complicated.  Equation 5.2 is considered suitable for this work and is compared to ANSYS 

buckling load results for laminates simply supported on all edges. 
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5.3  Analytical Critical Buckling Load of Plates Using ANSYS 
 
 
 
 Critical buckling loads of various plates were found using the commercially 

available finite element software, ANSYS, version 6.1.  Using ANSYS, an eigenvalue 

buckling analysis was done to determine the critical buckling load.  Eigenvalue buckling 

analysis predicts the bifurcation point (the critical buckling load) of an ideal linear elastic 

structure.  It should be noted that using this approach will often yield unconservative results 

when compared to “real-world” structures which rarely ever reach their theoretical buckling 

load due to imperfections, nonlinearties, etc.  For the purpose of this thesis, eigenvalue 

analysis is an appropriate tool to use since the concern is to see the general effects, on the 

critical buckling load, of changing the make up, physical dimensions, and/or properties of 

laminate plates.   

 
 
 
5.3.1  Homogeneous Plates 
 
 
 
 Homogeneous plates are analyzed, in order to validate the set-up and procedure for 

finding the critical buckling load of laminate plates under various boundary conditions using 

ANSYS, homogeneous plates were analyzed with ANSYS and the results were compared to 

established formulas.  Having the ANSYS results agree with published formulas validates 

the procedures used in ANSYS to find the critical buckling load of a plate (such as 

application of loads, set-up of boundary conditions, and use of the eigenvalue buckling 

analysis techniques).   
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The homogeneous plates analyzed in ANSYS were given the following isotropic 

properties: 

E = 4.0 X 106 psi 

ν = 0.30 

 

The plates were analyzed under three different boundary conditions: simple-simple-simple-

free, simple-fixed-simple-free, and simple-simple-simple-simple.  Figure 5.2, Figure 5.3, 

and Figure 5.4 visually show the boundary conditions and the applied load as they were 

entered into ANSYS.  Three different plate thicknesses were used: 0.25”, 0.375”, and 0.5”.  

For each plate thickness, four different aspect ratios (a/b) were used: 1.0, 1.2, 1.5, and 2.0.  

The length, a, was held constant at 6”and the width, b, was varied between 6”, 5”, 4”, and 

3”. 
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Figure 5.2  Simple-Simple-Simple-Free Boundary Condition 

 

 

Figure 5.3  Simple-Fixed-Simple-Free Boundary Condition 
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Figure 5.4  Simple-Simple-Simple-Simple Boundary Condition 

 
 
 The homogenous plates were divided into shell elements with an aspect ratio of 1.0 

(0.25” x 0.25”).  The element used for the homogeneous plates was Shell63, which is a 4-

noded elastic shell element (See Figure 5.5).  The element has six degrees of freedom at 

each node: translations in the x, y, and z directions and rotations about the nodal x, y, and z-

axes.  The element is capable of linearly varying thickness between nodes by entering a 

thickness at each node, but for constant thickness just the thickness at node-I is entered.  For 

more information about the Shell63 element, see the ANSYS, Inc.  Theory Reference and the 

ANSYS, Inc.  Element Reference.   

 



 83 

 

 

Figure 5.5  Shell63 Element (ANSYS Element Reference) 

 

 The critical buckling load of homogeneous plates determined using ANSYS agreed 

well with published results, with a percent difference less than 2.9%.   This agreement 

allows confidence in using ANSYS to determine the buckling load of FRP laminated plates.  

The homogeneous plate buckling load results are giving in Table 5.1, Table 5.2, and Table 

5.3.   
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Table 5.1  Critical Buckling Load Results for Homogeneous Plates:  
Simple-Simple-Simple-Free 

 
    Aspect  Plate  Calculated ANSYS   
   Ratio Thickness Critical Buckling Critical Buckling Percent  
a, (in.) b, (in.) a/b (in.) Load, (Nx)cr (kips/in.) Load, (Nx)cr (kips/in.) Difference 

6 6 1.00 0.250 2.251 2.284 1.4412% 

6 5 1.20 0.250 2.566 2.569 0.1117% 

6 4 1.50 0.250 3.157 3.099 -1.8353% 

6 3 2.00 0.250 4.380 4.262 -2.7017% 
           

6 6 1.00 0.375 7.598 7.707 1.4385% 

6 5 1.20 0.375 8.660 8.670 0.1105% 

6 4 1.50 0.375 10.656 10.460 -1.8327% 

6 3 2.00 0.375 14.784 14.384 -2.7011% 
           

6 6 1.00 0.500 18.010 18.269 1.4394% 

6 5 1.20 0.500 20.527 20.550 0.1117% 

6 4 1.50 0.500 25.258 24.795 -1.8323% 

6 3 2.00 0.500 35.043 34.096 -2.7007% 
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Table 5. 2  Critical Buckling Load Results for Homogeneous Plates:  
Simple-Fixed-Simple-Free 

 
    Aspect  Plate  Calculated ANSYS   
   Ratio Thickness Critical Buckling Critical Buckling Percent  
a, (in.) b, (in.) a/b (in.) Load, (Nx)cr (kips/in.) Load, (Nx)cr (kips/in.) Difference 

6 6 1.00 0.250 2.671 2.721 1.8618% 

6 5 1.20 0.250 3.324 3.341 0.5001% 

6 4 1.50 0.250 4.722 4.698 -0.5049% 

6 3 2.00 0.250 8.700 8.552 -1.6932% 
           

6 6 1.00 0.375 9.014 9.182 1.8608% 

6 5 1.20 0.375 11.219 11.276 0.5037% 

6 4 1.50 0.375 15.936 15.856 -0.5065% 

6 3 2.00 0.375 29.361 28.864 -1.6947% 
           

6 6 1.00 0.500 21.368 21.765 1.8618% 

6 5 1.20 0.500 26.593 26.727 0.5031% 

6 4 1.50 0.500 37.775 37.583 -0.5069% 

6 3 2.00 0.500 69.597 68.418 -1.6941% 
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Table 5.3  Critical Buckling Load Results for Homogeneous Plates:  

Simple-Simple-Simple-Simple 
 
    Aspect  Plate  Calculated ANSYS   
   Ratio Thickness Critical Buckling Critical Buckling Percent  
a, (in.) b, (in.) a/b (in.) Load, (Nx)cr (kips/in.) Load, (Nx)cr (kips/in.) Difference 

6 6 1.00 0.250 6.277 6.336 0.9366% 

6 5 1.20 0.250 9.341 9.397 0.6010% 

6 4 1.50 0.250 15.303 15.439 0.8851% 

6 3 2.00 0.250 25.107 25.225 0.4706% 
           

6 6 1.00 0.375 21.184 21.383 0.9375% 

6 5 1.20 0.375 31.525 31.714 0.6010% 

6 4 1.50 0.375 51.648 52.105 0.8852% 

6 3 2.00 0.375 84.736 85.134 0.4702% 
           

6 6 1.00 0.500 50.214 50.685 0.9376% 

6 5 1.20 0.500 74.725 75.175 0.6013% 

6 4 1.50 0.500 122.424 123.508 0.8853% 

6 3 2.00 0.500 200.855 201.799 0.4700% 
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5.3.2  Symmetric Laminated Plates 
 
 
 
 ANSYS was used to analyze the critical buckling load of various laminated plates in 

order to see how changes in the laminated plate would affect the buckling load.  The 

changes to the laminated plate were based on four variables: boundary condition, thickness, 

aspect ratio and orientation of the stitched mat layers used in FRP laminates.  The laminated 

plates were analyzed under three different boundary conditions: simple-simple-simple-free, 

simple-fixed-simple-free, and simple-simple-simple-simple.  The boundary conditions were 

applied to the edge nodes of the plate in the same manner as was done for the homogeneous 

plates.  Three different plate thicknesses were used: 0.23”, 0.355”, and 0.48”.  These 

represent the thickness of a 0.25”, 0.375”, and 0.5” laminated FRP plate minus the thickness 

of the protective Nexus layers (0.02” total thickness), which serves no structural purpose.  

Four different aspect ratios (a/b) were considered: 1.0, 1.2, 1.5, and 2.0.  The length, a, was 

held constant at 6”and the width, b, was varied between 6”, 5”, 4”, and 3”.  The values for 

the width, b, were chosen to represent half the width of the flange in a common pultruded 

wide-flange shape, which usually have flange widths of 12”, 10”, 8”, and 6”.  The mat 

orientation of the 90/+θ/−θ sticthed mat was varied for θ =15,30,45, and 60 degrees.  

 Combinations of each of these variables were analyzed; therefore a total of 144 laminated 

FRP plates were analyzed using ANSYS.   

 The laminated plates were divided into shell elements with an aspect ratio of 1.0 

(0.25” x 0.25”).  The element used for the laminated plates was Shell99, which is an 8-

noded linear layered structural shell element (See Figure 5.6).  The element has six degrees 

of freedom at each node: translations in the x, y, and z directions and rotations about the 
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nodal x, y, and z-axes.  The Shell99 element is perfectly suited for composites materials 

because it allows entry of up to 250 layers.  Each layer has its own thickness, material 

property, and orientation.  For laminated FRP composites, the direction of the fibers 

determines the layer orientation.  For each layer, the layer material properties (E1, E2, ν12, 

G12, G13, and G12 of Chapter 2), the orientation (angle between the layer and global 

coordinate system, θ, as shown in the off-axis configuration of Figure 3.2), and the thickness 

are inputted.  As an alternate to entering each individual layer, the stiffness matrices ([A], 

[B], and [D]) can be entered but must be computed outside of the ANSYS program.  

Although the matrices were computed for each laminated FRP plate investigated, it was 

preferred to use the layer input because of ease of changing the variables (orientation and 

thickness) for each laminated plate studied.  For more information about the Shell99 

element, see the ANSYS, Inc.  Theory Reference and the ANSYS, Inc.  Element Reference.  

Figure 5.7, Figure 5.8, and Figure 5.9 show typical laminated plates in ANSYS under the 

three different boundary conditions.   
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Figure 5.6  Shell99 Element (ANSYS Element Reference) 

 

 

Figure 5.7  Laminated Plate: Simple-Simple-Simple-Simple Boundary Condition 
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Figure 5.8  Laminated Plate: Simple-Simple-Simple-Free Boundary Condition 

 

 

Figure 5.9  Laminated Plate: Simple-Fixed-Simple-Free Boundary Condition 
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5.3.2.1  Properties of Laminated Plates Analyzed. The laminated plates that were 

analyzed in this work using ANSYS, were based on the web section of the wide flange 

shapes, manufactured by Creative Pultrusions, that were used in the experimental section of 

this thesis (Chapter 4).  These laminates have a symmetric stacking sequence that consists of 

stitched mats and two types of roving layers.  The individual layer properties were 

calculated using the micromechanical methods of Chapter 2 and are reported in Table 2.1.  

Due to the symmetric stacking sequence the laminates analyzed have no bending-extension 

coupling, therefore stiffness matrix [B] = 0.  After calculating the laminate stiffness 

matrices, the symmetric laminates also were determined to have no shear-extension 

coupling (A16 = A26 = 0).   

Three thicknesses were used for the laminated plates analyzed by ANSYS: 0.23”, 

0.355”, and 0.48”.  The laminae (layer) stacking sequence of each laminated plate thickness 

must be defined for each thickness in order to utilize the layer input of the Shell99 element.  

Since the stacking sequence was known for a 0.355” laminated plate (the 0.375” web 

sections used in Chapter 4 minus the Nexus layers) it was necessary to determine a stacking 

sequence to be used for the 0.23” and 0.48” thick laminated plates.  This was done by 

changing the thickness of each layer in the 0.355” laminated plate by a proportion equal to 

the required laminated thickness divided by 0.355”.   Therefore, for a 0.23” thick plate, each 

layer thickness in the known 0.355” laminated plate was multiplied by a factor of 

(0.23”/0.355”).   For a 0.48” thick laminated plate the factor was (0.48”/0.355”).  This 

produced a desired analytical effect.  The effect was that for all laminate thicknesses (0.23”, 

0.355”, and 0.48”) in a given mat orientation (90/+θ/−θ, with either θ =15,30,45, or 60 

degrees) the calculated equivalent (effective) laminate stiffnesses (see Chapter 3) were 
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identical.  This is a desired effect because for all b/t ratios in a given orientation, the 

equivalent (effective) laminate stiffnesses are equal.   

The equivalent (effective) laminate stiffnesses were found using the extensional 

stiffness matrix, [A], which was computed for each thickness in each orientation.  Table 5.4 

shows the calculated equivalent laminate longitudinal and in-plane transverse modulus for 

the different orientations, applicable to each thickness in the orientation.  As shown by Table 

5.4, when the orientation angle increases, the longitudinal modulus decreases but the 

transverse modulus increases. 

 

 

Table 5.4  Calculated Equivalent Laminate Longitudinal and Transverse Modulus  

  Mat Orientation, (90/…)  
         

  +15/-15 +30/-30 +45/-45 +60/-60 

Longitudinal         

Modulus, Ex 3.422 3.000 2.616 2.456 

( x 106 psi)        

Transverse          

Modulus, Ey 1.581 1.608 1.790 2.171 

( x 106 psi)         

Ex / Ey 2.165 1.865 1.461 1.132 

 

 

In order to utilize the formula that determines the critical buckling load of a simply 

supported laminated plate, Equation 5.2, the bending stiffness matrix, [D], must be 

determined.  The bending stiffness matrix is given for the various orientations and 

thicknesses in Table 5.5, Table 5.6, Table 5.7 and Table 5.8.   
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Table 5.5  Bending Stiffness Values for (90/+15/-15) Orientation 

 

      Bending Stiffness Matrix, [D] (lb*in)   
          

Plate Thickness, (in) D11 D12 D22 D16 D26 D66 

  0.230 3792 371 2226 32 2 420 

  0.355 13944 1366 8185 119 9 1543 

  0.480 34468 3376 20233 293 22 3814 

 

 

 

Table 5.6  Bending Stiffness Values for (90/+30/-30) Orientation 

      Bending Stiffness Matrix, [D] (lb*in)   
          

Plate Thickness, (in) D11 D12 D22 D16 D26 D66 

  0.230 3351 550 2311 45 15 598 

  0.355 12320 2021 8498 165 56 2198 

  0.480 30455 4995 21007 408 138 5433 

 
 
 
 
 

Table 5.7  Bending Stiffness Values for (90/+45/-45) Orientation 

      Bending Stiffness Matrix, [D] (lb*in)   
          

Plate Thickness, (in) D11 D12 D22 D16 D26 D66 

  0.230 2902 639 2582 35 35 687 

  0.355 10670 2348 9493 128 128 2525 

  0.480 26375 5805 23467 315 315 6243 
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Table 5.8  Bending Stiffness Values for (90/+60/-60) Orientation 

      Bending Stiffness Matrix, [D] (lb*in)   
          

Plate Thickness, (in) D11 D12 D22 D16 D26 D66 

  0.230 2631 550 3031 15 45 598 

  0.355 9675 2021 11144 56 165 2198 

  0.480 23915 4995 27546 138 408 5433 

 

 

 
 
 As shown in the Table 5.5, Table 5.6, Table 5.7, and Table 5.8, bend-twist coupling 

exists (terms D16 and D26 are nonzero).  As was explained in section 5.2.2, the presence of 

bend-twist coupling means that Equation 5.2, which gives the buckling load for a specially 

orthotropic laminated plate, will give unconservative results for the critical buckling load of 

the symmetric laminated plates considered in this work.  The only difference between a 

specially orthotropic laminated plate and the symmetric laminated plates analyzed in this 

work is the presence of bend-twist coupling.  The existence of bend-twist coupling in the 

laminates analyzed is due to the 90-degree and 0 degree (roving) layers not being in balance 

(they do not have the same thickness or material properties).  With nonzero values of D16 

and D26, the magnitude of the error of Equation 5.2 depends on the magnitude of D16 and D26 

(Barbero, 1999).  From this statement it seems the 0.48” thick laminated plates would have 

the highest magnitude of error.   
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5.3.2.2  Results. Table 5.9, Table 5.10, Table 5.11, and Table 5.12 show the critical 

buckling loads obtained for a laminated plate simply supported on all edges.  All of the 

ANSYS results for simply supported laminated plates, as expected, are less than the critical 

buckling load determined by using the specially orthotropic approximation (Equation 5.2), 

with a maximum percent difference of –31.6% and a minimum percent difference of –2.9%.  

Also as expected, the 0.48” thick plates, which had the highest values for D16 and D26, gave 

the highest percent difference.  As aspect ratio and thickness increases, the effect of bend-

twist coupling on the buckling load increases. 

What wasn’t expected was that most of the laminated plates with aspect ratios of 1.5 

and 2.0 had, at its critical buckling load, a mode two buckled shape (m = 2, see Figure 5.10).  

The laminated plates that had a mode two buckled shape are indicated with the larger bold 

numbers in Table 5.9, Table 5.10, Table 5.11, and Table 5.12.  At first when using Equation 

5.2 to predict the buckling load of the laminates, m = 1 was used in the Equation, but after 

the ANSYS results were acquired, Equation 5.2 was re-evaluated for aspect ratios of 1.5 and 

2.0 using m = 2.  After using m = 2 in Equation 5.2, the equation did produce lower 

buckling loads for aspect ratio of 2.0, but for an aspect ratio of 1.5 and orientations of +15/-

15 and +30/-30, the results for m = 1 produced the smallest buckling load value.  For an 

aspect ratio of 1.5 with orientations of +45/-45 and +60/-60, both Equation 5.2 and ANSYS 

predicted mode two buckled shapes.  Examining Equation 5.2, the smallest value of (Nx) cr 

for various m is not obvious, but varies for different values of the stiffness and aspect ratio, 

a/b (Jones, 1999).    

 Another aspect of using ANSYS should be mentioned.  ANSYS constantly gave 

warnings of “possible inaccurate interlaminar stresses” for the first row of elements on the 
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loaded edge (x = a).  This was a consistent warning given by ANSYS for all the laminates 

analyzed.  A finer mesh and even solid elements was used in this region.  But the warning 

persisted.  The warning is thought to be a result of the high interlaminar stresses that occur 

at the edges of the plate as mentioned in Chapter 3.  None of the elements beyond the first 

row of elements yielded any warning messages.  The error message was ignored and taken 

to represent the presence of high interlaminar stresses at the edge, in accordance with the 

research of Pagano and Pipes, who defined this region to be restricted to a distance from the 

edge equal to the laminate thickness, as was observed by ANSYS.   

 

 

Figure 5.10  Mode 2 Buckled Shape, (m = 2) 
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Table 5.9  Laminate Plate Buckling Loads for (90/+15/-15):  
Simple-Simple-Simple-Simple 

 
    Aspect  Plate  Calculated ANSYS   
   Ratio Thickness Critical Buckling Critical Buckling Percent  
a, (in.) b, (in.) a/b (in.) Load, (Nx)cr (kips/in.) Load, (Nx)cr (kips/in.) Difference 

6 6 1.00 0.230 2.314 2.247 -2.9% 

6 5 1.20 0.230 3.261 3.150 -3.4% 

6 4 1.50 0.230 5.622 5.387 -4.2% 

6 3 2.00 0.230 9.254 8.439 -8.8% 
           

6 6 1.00 0.355 8.507 7.977 -6.2% 

6 5 1.20 0.355 11.990 11.140 -7.1% 

6 4 1.50 0.355 20.674 18.914 -8.5% 

6 3 2.00 0.355 34.029 27.980 -17.8% 
           

6 6 1.00 0.480 21.029 18.874 -10.2% 

6 5 1.20 0.480 29.639 26.247 -11.4% 

6 4 1.50 0.480 51.105 43.543 -14.8% 

6 3 2.00 0.480 84.118 61.051 -27.4% 

       

  (Note: Large, Bold Numbers Had a Mode Two Buckled Shape, m=2)  
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Table 5.10  Laminate Plate Buckling Loads for (90/+30/-30):  
Simple-Simple-Simple-Simple 

 
    Aspect  Plate  Calculated ANSYS   
   Ratio Thickness Critical Buckling Critical Buckling Percent  
a, (in.) b, (in.) a/b (in.) Load, (Nx)cr (kips/in.) Load, (Nx)cr (kips/in.) Difference 

6 6 1.00 0.230 2.509 2.402 -4.3% 

6 5 1.20 0.230 3.610 3.431 -5.0% 

6 4 1.50 0.230 6.279 5.902 -6.0% 

6 3 2.00 0.230 10.036 8.951 -10.8% 
           

6 6 1.00 0.355 9.226 8.469 -8.2% 

6 5 1.20 0.355 13.275 12.035 -9.3% 

6 4 1.50 0.355 23.088 20.124 -12.8% 

6 3 2.00 0.355 36.903 29.390 -20.4% 
           

6 6 1.00 0.480 22.805 19.915 -12.7% 

6 5 1.20 0.480 32.815 28.136 -14.3% 

6 4 1.50 0.480 57.073 44.242 -22.5% 

6 3 2.00 0.480 91.221 63.610 -30.3% 

       

  (Note: Large, Bold Numbers Had a Mode Two Buckled Shape, m=2)  
 

 
 

 

 

 

 



 99 

 
 
 
 

Table 5.11  Laminate Plate Buckling Loads for (90/+45/-45):  
Simple-Simple-Simple-Simple 

 
    Aspect  Plate  Calculated ANSYS   
   Ratio Thickness Critical Buckling Critical Buckling Percent  
a, (in.) b, (in.) a/b (in.) Load, (Nx)cr (kips/in.) Load, (Nx)cr (kips/in.) Difference 

6 6 1.00 0.230 2.607 2.476 -5.0% 

6 5 1.20 0.230 3.852 3.631 -5.7% 

6 4 1.50 0.230 6.560 5.950 -9.3% 

6 3 2.00 0.230 10.427 9.197 -11.8% 
           

6 6 1.00 0.355 9.585 8.703 -9.2% 

6 5 1.20 0.355 14.164 12.683 -10.5% 

6 4 1.50 0.355 24.123 19.838 -17.8% 

6 3 2.00 0.355 38.339 30.064 -21.6% 
           

6 6 1.00 0.480 23.693 20.407 -13.9% 

6 5 1.20 0.480 35.013 29.526 -15.7% 

6 4 1.50 0.480 59.631 43.637 -26.8% 

6 3 2.00 0.480 94.773 64.828 -31.6% 

       

  (Note: Large, Bold Numbers Had a Mode Two Buckled Shape, m=2)  
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Table 5.12  Laminate Plate Buckling Loads for (90/+60/-60):  
Simple-Simple-Simple-Simple 

 
    Aspect  Plate  Calculated ANSYS   
   Ratio Thickness Critical Buckling Critical Buckling Percent  
a, (in.) b, (in.) a/b (in.) Load, (Nx)cr (kips/in.) Load, (Nx)cr (kips/in.) Difference 

6 6 1.00 0.230 2.509 2.399 -4.4% 

6 5 1.20 0.230 3.822 3.628 -5.1% 

6 4 1.50 0.230 6.090 5.583 -8.3% 

6 3 2.00 0.230 10.036 8.952 -10.8% 
           

6 6 1.00 0.355 9.226 8.465 -8.3% 

6 5 1.20 0.355 14.054 12.715 -9.5% 

6 4 1.50 0.355 22.392 18.760 -16.2% 

6 3 2.00 0.355 36.903 29.438 -20.2% 
           

6 6 1.00 0.480 22.805 19.920 -12.7% 

6 5 1.20 0.480 34.740 29.677 -14.6% 

6 4 1.50 0.480 55.352 41.606 -24.8% 

6 3 2.00 0.480 91.221 63.763 -30.1% 

       

  (Note: Large, Bold Numbers Had a Mode Two Buckled Shape, m=2)  
 

 
 
 
 
 

 

Table 5.13, Table 5.14, Table 5.15, and Table 5.16 show the critical buckling loads 

obtained by ANSYS for a laminated plate with boundary condition simple-simple-simple-

free.  Table 5.17, Table 5.18, Table 5.19, and Table 5.20 show the critical buckling loads 
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obtained by ANSYS for a laminated plate with boundary condition simple-fixed-simple-

free.  For these boundary conditions, all of the laminated plates analyzed using ANSYS had 

a mode one (m = 1) buckled shape.  Only the ANSYS results for buckling loads of the 

various laminated plates are shown for these boundary conditions. 

 

Table 5.13  ANSYS Determined Laminate Plate Buckling Loads for (90/+15/-15): 
Simple-Simple-Simple-Free 

 
    Aspect  Plate  ANSYS 
   Ratio Thickness Critical Buckling 
a, (in.) b, (in.) a/b (in.) Load, (Nx)cr (kips/in.)

6 6 1.00 0.230 1.156 

6 5 1.20 0.230 1.209 

6 4 1.50 0.230 1.306 

6 3 2.00 0.230 1.514 
        

6 6 1.00 0.355 4.130 

6 5 1.20 0.355 4.271 

6 4 1.50 0.355 4.638 

6 3 2.00 0.355 5.330 
        

6 6 1.00 0.480 9.837 

6 5 1.20 0.480 10.243 

6 4 1.50 0.480 10.976 

6 3 2.00 0.480 12.512 
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Table 5.14  ANSYS Determined Laminate Plate Buckling Loads for (90/+30/-30): 
Simple-Simple-Simple-Free 

 
    Aspect  Plate  ANSYS 
   Ratio Thickness Critical Buckling 
a, (in.) b, (in.) a/b (in.) Load, (Nx)cr (kips/in.)

6 6 1.00 0.230 1.097 

6 5 1.20 0.230 1.171 

6 4 1.50 0.230 1.306 

6 3 2.00 0.230 1.595 
        

6 6 1.00 0.355 3.914 

6 5 1.20 0.355 4.162 

6 4 1.50 0.355 4.610 

6 3 2.00 0.355 5.557 
        

6 6 1.00 0.480 9.317 

6 5 1.20 0.480 9.869 

6 4 1.50 0.480 10.861 

6 3 2.00 0.480 12.933 
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Table 5.15  ANSYS Determined Laminate Plate Buckling Loads for (90/+45/-45): 
Simple-Simple-Simple-Free 

 
    Aspect  Plate  ANSYS 
   Ratio Thickness Critical Buckling 
a, (in.) b, (in.) a/b (in.) Load, (Nx)cr (kips/in.)

6 6 1.00 0.230 1.004 

6 5 1.20 0.230 1.088 

6 4 1.50 0.230 1.242 

6 3 2.00 0.230 1.571 
        

6 6 1.00 0.355 3.579 

6 5 1.20 0.355 3.860 

6 4 1.50 0.355 4.369 

6 3 2.00 0.355 5.443 
        

6 6 1.00 0.480 8.524 

6 5 1.20 0.480 9.147 

6 4 1.50 0.480 10.269 

6 3 2.00 0.480 12.608 
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Table 5.16  ANSYS Determined Laminate Plate Buckling Loads for (90/+60/-60): 
Simple-Simple-Simple-Free 

 
    Aspect  Plate  ANSYS 
   Ratio Thickness Critical Buckling 
a, (in.) b, (in.) a/b (in.) Load, (Nx)cr (kips/in.)

6 6 1.00 0.230 0.901 

6 5 1.20 0.230 0.975 

6 4 1.50 0.230 1.122 

6 3 2.00 0.230 1.403 
        

6 6 1.00 0.355 3.222 

6 5 1.20 0.355 3.473 

6 4 1.50 0.355 3.928 

6 3 2.00 0.355 4.888 
        

6 6 1.00 0.480 7.703 

6 5 1.20 0.480 8.265 

6 4 1.50 0.480 9.278 

6 3 2.00 0.480 11.391 
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Table 5.17  ANSYS Determined Laminate Plate Buckling Loads for (90/+15/-15): 
Simple-Fixed-Simple-Free 

 
    Aspect  Plate  ANSYS 
   Ratio Thickness Critical Buckling 
a, (in.) b, (in.) a/b (in.) Load, (Nx)cr (kips/in.)

6 6 1.00 0.230 1.279 

6 5 1.20 0.230 1.436 

6 4 1.50 0.230 1.800 

6 3 2.00 0.230 2.913 
        

6 6 1.00 0.355 4.564 

6 5 1.20 0.355 5.109 

6 4 1.50 0.355 6.374 

6 3 2.00 0.355 10.226 
        

6 6 1.00 0.480 10.854 

6 5 1.20 0.480 12.116 

6 4 1.50 0.480 15.041 

6 3 2.00 0.480 23.889 
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Table 5.18  ANSYS Determined Laminate Plate Buckling Loads for (90/+30/-30): 
Simple-Fixed-Simple-Free 

 
    Aspect  Plate  ANSYS 
   Ratio Thickness Critical Buckling 
a, (in.) b, (in.) a/b (in.) Load, (Nx)cr (kips/in.)

6 6 1.00 0.230 1.242 

6 5 1.20 0.230 1.432 

6 4 1.50 0.230 1.859 

6 3 2.00 0.230 3.116 
        

6 6 1.00 0.355 4.421 

6 5 1.20 0.355 5.071 

6 4 1.50 0.355 6.530 

6 3 2.00 0.355 10.816 
        

6 6 1.00 0.480 10.491 

6 5 1.20 0.480 11.970 

6 4 1.50 0.480 15.290 

6 3 2.00 0.480 24.987 
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Table 5.19  ANSYS Determined Laminate Plate Buckling Loads for (90/+45/-45): 
Simple-Fixed-Simple-Free 

 
    Aspect  Plate  ANSYS 
   Ratio Thickness Critical Buckling 
a, (in.) b, (in.) a/b (in.) Load, (Nx)cr (kips/in.)

6 6 1.00 0.230 1.169 

6 5 1.20 0.230 1.383 

6 4 1.50 0.230 1.863 

6 3 2.00 0.230 3.272 
        

6 6 1.00 0.355 4.150 

6 5 1.20 0.355 4.879 

6 4 1.50 0.355 6.510 

6 3 2.00 0.355 11.277 
        

6 6 1.00 0.480 9.836 

6 5 1.20 0.480 11.485 

6 4 1.50 0.480 15.171 

6 3 2.00 0.480 25.862 
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Table 5.20  ANSYS Determined Laminate Plate Buckling Loads  for (90/+60/-60): 
Simple-Fixed-Simple-Free 

 
    Aspect  Plate  ANSYS 
   Ratio Thickness Critical Buckling 
a, (in.) b, (in.) a/b (in.) Load, (Nx)cr (kips/in.)

6 6 1.00 0.230 1.072 

6 5 1.20 0.230 1.288 

6 4 1.50 0.230 1.787 

6 3 2.00 0.230 3.301 
        

6 6 1.00 0.355 3.817 

6 5 1.20 0.355 4.560 

6 4 1.50 0.355 6.269 

6 3 2.00 0.355 11.413 
        

6 6 1.00 0.480 9.079 

6 5 1.20 0.480 10.774 

6 4 1.50 0.480 14.664 

6 3 2.00 0.480 26.229 
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5.4  Discussion of Results 
 
 
 
 In Appendix B the buckling load results for the symmetric laminated FRP plates that 

were tabulated in Tables 5.9 through Table 5.20 are graphically represented.  A discussion 

of the formulation and significance of the graphs is given in this section as well as 

observations made about the buckling load of symmetric FRP laminated plates.   

From Tables 5.9 – 5.12 and Figures B 2 – B 5, it can be observed that for the 

laminated plate simply supported on all edges, the laminated plates with mats orientated at 

90/+45/-45 yielded the greatest buckling load for all thicknesses with aspect ratios of 1.0 and 

2.0.  For an aspect ratio of 1.2 the laminated plates with mats orientated at 90/+60/-60 

yielded the greatest buckling load for all thicknesses considered.  For an aspect ratio of 1.5 

the laminated plates with mats orientated at 90/+30/-30 yielded the greatest buckling load 

for thickness of 0.355” and 0.48”, but 90/+45/-45 yielded the greatest buckling load for 

0.23”.  The results for the laminated plates simply supported on all edges agree, except for 

an aspect ratio of 1.2 and 1.5, with the results of Pandey and Sherbourne (see literature 

review in Chapter 1) who analytically observed that a +45/-45 orientation yielded the 

greatest buckling load for simply supported laminated plates under uniform compressive 

loading.   

The laminated plates Pandey and Sherbourne examined contained only +θ/-θ layers, 

while about 27% of the laminated plates analyzed in this work contained +θ/-θ layers.  The 

small presence of these layers is why the buckling load seems insensitive to changes in mat 

orientation as can be seen in the graphs of Figure B 2 through Figure B 13, which show 

almost flat curves for buckling load versus mat orientation.  Although change in mat 
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orientation only causes small changes in buckling load, it does produce an effect on the 

buckling load of the laminated plates.  In the case of simple-simple-simple-free and simple-

fixed-simple-free, the +45/-45 orientation did not produce the highest buckling load in any 

of the cases considered; the +15/-15 did in the majority of the cases.  For an aspect ratio of 

2.0, simple-simple-simple-free, and for an aspect ratio of 1.5, simple-fixed-simple-free the 

+30/-30 orientation produced the highest achieved buckling load.  For an aspect ratio of 2.0, 

simple-fixed-simple-free, +60/-60 orientation produced the highest achieved buckling load. 

 In the graphs of Figure B14 through Figure B16, the buckling load obtained with 

ANSYS is normalized and plotted versus aspect ratio for laminated plates simply supported 

on all edges.  The ANSYS critical buckling load is normalized using the following formula: 

11
3

2)(
Dt

bN
N crx

x =     (5.3) 

where (Nx)cr is the buckling load determined with ANSYS, b is the laminated plate 

width, and t is the thickness of the laminated plate.  The graphs show a cusp phenomenon 

similar to the ones obtained by Chen (see Literature Review).  This cusp occurred between 

an aspect ratio of 1.2 and 1.5 for most mat orientations and thicknesses, and this shows that 

a mode change occurs in this range of aspect ratios.  The graph of the cusps phenomenon 

just reiterates what was mentioned before when it was stated that the buckled shape for 

mostly all the simply supported laminated plates considered was mode 1 (m = 1) for aspect 

ratios of 1.0 and 1.2 and changed to mode 2 (m = 2) for aspect ratios of 1.5 and 2.0.   

In Figures B 17 – B20, the effects of bend-twist coupling on the buckling load of a 

simply supported laminated plate is graphically represented.  The buckling load determined 

by ANSYS is normalized by the buckling load of a specially orthotropic laminated plate.  

Therefore in the graphs: 
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ox

crx
cr N

N
N

)(
)(

=      (5.4) 

 where (Nx)cr is the buckling load determined with ANSYS and (Nx)o is the buckling 

load for a specially orthotropic laminated plate found using Equation 5.2. Recall that the 

only difference between the specially orthotropic laminated plate and the laminated plates 

analyzed in this work is the presence of bend-twist coupling.  The effect of bend-twist 

coupling on the buckling load increases with the thickness of the laminated plate. For all 

aspect ratios and thicknesses, the effect of bend-twist coupling is greatest for +45/-45 degree 

mat orientations. 

The compressive strength of the laminates having +45/-45 mat orientations was 

found in Chapter 4.  The average longitudinal compressive strength of the web was used to 

normalize the buckling load results for the laminated plates analyzed in ANSYS having 

+45/-45 mat orientations, since these laminated plates and the web had the same laminae 

stacking sequence.  Although the compressive strength was found for a 0.355” thick 

laminate, it is assumed to be valid for the other laminate thicknesses as well.  This 

assumption seems valid due to how the other laminates (0.23” and 0.48”) were stacked using 

the same layers as contained in the 0.355”, which were proportionately increased/decreased 

to obtain the new thickness.  The normalized ANSYS buckling load found for the simple-

simple-simple-free and simple-fixed-simple-free boundary condition, was plotted versus 

width to thickness ratios (b/t) for each aspect ratio considered (see Figure B 21 and Figure B 

26).  The point where the compressive strength ( σyield )and the buckling load ( σcr ) where 

equal ( σcr / σyield = 1) was found for each aspect ratio.  This was done by using a power 

function trendline to approximate the curve and then solving for b/t when σcr / σyield = 1 (see 

Figures B 22 – B 25 and Figures B 27 – B 30).  These values are tabulate in Table 5.21 and 
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Table 5.22 and are seen as maximum values for b/t; where, for the laminates analyzed 

having +45/-45 mat orientations, lower ratios would result in material failure before 

buckling and higher values would result in buckling before material failure.  Therefore, to 

avoid buckling of the FRP laminated plates with +45/-45 mat orientations under 

compressive loads with aspect ratios less than 2.0, b/t should be less than the values given in 

Table 5.21 and 5.22. 

 

Table 5.21  Maximum Width to Thickness Ratio: Simple-Fixed-Simple-Free:  
(90/+45/-45) 

 
Aspect    

Ratio 
Width : Thickness

@ Yield 
a/b b/t 

1.00 10.09 

1.20 9.11 

1.50 8.46 

2.00 8.53 

 

 

Table 5.22  Maximum Width to Thickness Ratio: Simple-Simple-Simple-Free: 
(90/+45/-45) 

 
Aspect    

Ratio 
Width : Thickness

@ Yield 
a/b b/t 

1.00 9.37 

1.20 8.09 

1.50 6.86 

2.00 5.74 
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6.0  CONCLUSIONS 

 
 
 
 

6.1 Conclusions  
 
 
 
 It has been shown, through the use of finite element analysis, that for the laminates 

analyzed in this work, a mat orientation having (90/+45/-45) gives the best results for critical 

buckling loads for FRP laminates simply supported on all edges.  However, this is not the 

case for the other boundary conditions, simple-simple-simple-free and simple-fixed-simple-

free, where it seems the best choice would be (90/+15/-15) for aspect ratios less than 2.0.  It 

has also been shown that the presence of bend-twist coupling decreases the buckling load of 

a laminated plate up to 30%.  

For the laminates tested in this work under tensile and compressive loads, it was 

found that the properties are dissimilar.  Therefore, the response of the laminate depends on 

what type of loading the laminate is under, tension or compression.  This is not taking into 

account in the Classical Lamination Theory (CLT), which seems to assume tensile loading.   

The laminates that were tested physically were also analyzed using the finite element 

program ANSYS and used to develop the make-up of other laminates that, although did not 

exist physically, were analyzed in ANSYS as laminated plates under compressive loading.  

Using the results of the physical testing and the analytical work, b/t values were found that 

marked a transition from a laminated plate under compressive load failing due to material 

degradation and failing due to buckling.   
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6.2  Recommendations for Future Work 
 
 
 
 Experimental testing of fiberglass reinforced plastic (FRP) laminated plates under 

compressive loading should be done to verify or contradict the findings of this study.  

Testing also should be extended to FRP wide flange shapes to see how changes in the 

laminates (flanges and webs) effect local buckling of FRP columns.  More research should 

also be done to take into account the different properties that FRP laminates have under 

compressive and tensile loads.   
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APPENDIX A 

 
 
 
 
 
 

 

Figure A 1  Failed Flange Tensile Specimen: Longitudinal Direction 
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Figure A 2  Tensile Longitudinal Web Specimen: Poisson’s Ratio 

 

 

 

Figure A 3  Failed Web Tensile Specimen: Longitudinal Direction 
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Figure A 4  Delamination of Web Tensile Specimen: Longitudinal Direction 

 
 

 

Figure A 5  Failed Web Tensile Specimen: Transverse Direction 
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Figure A 6  Stress versus Strain Plot for Flange Longitudinal Tensile Specimen: 1FL1T 
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Figure A 7  Stress versus Strain Plot for Flange Longitudinal Tensile Specimen: 1FL2T 
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Figure A 8  Stress versus Strain Plot for Flange Longitudinal Tensile Specimen: 1FL5T 
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Figure A 9  Stress versus Strain Plot for Flange Longitudinal Tensile Specimen: 2FL7T 
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Figure A 10  Stress versus Strain Plot for Flange Longitudinal Tensile Specimen: 
2FL8T 
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Figure A 11  Stress versus Strain Plot for Web Longitudinal Tensile Specimen: 1WL2T 
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Figure A 12  Stress versus Strain Plot for Web Longitudinal Tensile Specimen: 2WL3T 
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Figure A 13  Stress versus Strain Plot for Web Longitudinal Tensile Specimen: 2WL4T 
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Figure A 14  Stress versus Strain Plot for Web Longitudinal Tensile Specimen: 2WL5T 
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Figure A 15  Stress versus Strain Plot for Web Longitudinal Tensile Specimen: 2WL6T 
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Figure A 16  Stress versus Strain Plot for Web Transverse Tensile Specimen: 1WT2T 
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Figure A 17  Stress versus Strain Plot for Web Transverse Tensile Specimen: 1WT3T 
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Figure A 18  Stress versus Strain Plot for Web Transverse Tensile Specimen: 1WT4T 

 
 
 
 

 

Figure A 19  Failed Compressive Specimens: Longitudinal Direction 
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Figure A 20  Failed Compressive Specimens: Transverse Direction 
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Figure A 21  Stress versus Strain Plot for Flange Longitudinal Compressive Specimen: 
2FL1C 
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Figure A 22  Stress versus Strain Plot for Flange Longitudinal Compressive Specimen: 
2FL2C 

 
 
 

0

5000

10000

15000

20000

25000

0.000 0.002 0.004 0.006 0.008 0.010

Strain ( in./in. )

S
tr

es
s 

( 
ps

i )

 

Figure A 23  Stress versus Strain Plot for Flange Longitudinal Compressive Specimen: 
2FL3C 
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Figure A 24  Stress versus Strain Plot for Web Longitudinal Compressive Specimen: 
2WL1C 
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Figure A 25  Stress versus Strain Plot for Web Longitudinal Compressive Specimen: 
2WL2C 
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Figure A 26  Stress versus Strain Plot for Web Longitudinal Compressive Specimen: 
2WL3C 
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Figure A 27  Stress versus Strain Plot for Web Longitudinal Compressive Specimen: 
2WL4C 
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Figure A 28  Stress versus Strain Plot for Web Longitudinal Compressive Specimen: 
2WL5C 
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Figure A 29  Stress versus Strain Plot for Web Transverse Compressive Specimen: 
2WT1C 
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Figure A 30  Stress versus Strain Plot for Web Transverse Compressive Specimen: 
2WT2C 
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Figure A 31  Stress versus Strain Plot for Web Transverse Compressive Specimen: 
2WT3C 
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Figure A 32  Stress versus Strain Plot for Web Transverse Compressive Specimen: 
2WT5C 
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APPENDIX B 
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Figure B 1  Effective Laminate Properties versus Mat Orientation 
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Figure B 2  ANSYS Buckling Load versus Mat Orientation: a/b = 1,  
Simple-Simple-Simple-Simple 
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Figure B 3  ANSYS Buckling Load versus Mat Orientation: a/b = 1.2,  
Simple-Simple-Simple-Simple 
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Figure B 4  ANSYS Buckling Load versus Mat Orientation: a/b = 1.5,  
Simple-Simple-Simple-Simple 
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Figure B 5  ANSYS Buckling Load versus Mat Orientation: a/b = 2.0,  
Simple-Simple-Simple-Simple 
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Figure B 6  ANSYS Buckling Load versus Mat Orientation: a/b = 1,  
Simple-Simple-Simple-Free 
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Figure B 7  ANSYS Buckling Load versus Mat Orientation: a/b = 1.2,  
Simple-Simple-Simple-Free 
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Figure B 8  ANSYS Buckling Load versus Mat Orientation: a/b = 1.5,  
Simple-Simple-Simple-Free 
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Figure B 9  ANSYS Buckling Load versus Mat Orientation: a/b = 2,  
Simple-Simple-Simple-Free 
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Figure B 10  ANSYS Buckling Load versus Mat Orientation: a/b = 1,  
Simple-Fixed-Simple-Free 
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Figure B 11  ANSYS Buckling Load versus Mat Orientation: a/b = 1.2,  
Simple-Fixed-Simple-Free 
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Figure B 12  ANSYS Buckling Load versus Mat Orientation: a/b = 1.5,  
Simple-Fixed-Simple-Free 
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Figure B 13  ANSYS Buckling Load versus Mat Orientation: a/b = 2,  
Simple-Fixed-Simple-Free 
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Figure B 14  Normalized Buckling Load versus Aspect Ratio: t = 0.23”,  
Simple-Simple-Simple-Simple 
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Figure B 15  Normalized Buckling Load versus Aspect Ratio: t = 0.355”,  
Simple-Simple-Simple-Simple 
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Figure B 16  Normalized Buckling Load versus Aspect Ratio: t = 0.48”,  
Simple-Simple-Simple-Simple 
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Figure B 17  Effect of Bend-Twist Coupling versus Mat Orientation: a/b = 1,  
Simple-Simple-Simple-Simple 
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Figure B 18  Effect of Bend-Twist Coupling versus Mat Orientation: a/b = 1.2,  
Simple-Simple-Simple-Simple 
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Figure B 19  Effect of Bend-Twist Coupling versus Mat Orientation: a/b = 1.5, Simple-
Simple-Simple-Simple 

 
 
 
 
 

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 15 30 45 60 75

Mat Orientation, θ (90/+θ/-θ) Degrees

N
cr

t= 0.23"

t = 0.355"

t = 0.48"

 

Figure B 20  Effect of Bend-Twist Coupling versus Mat Orientation: a/b = 2,  
Simple-Simple-Simple-Simple 
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Figure B 21  Normalized Buckling Load versus Width to Thickness Ratio: (90/+45/-45), 
Simple-Simple-Simple-Free 
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Figure B 22  Normalized Buckling Load versus Width to Thickness Ratio: (90/+45/-45), 
a/b = 1, Simple-Simple-Simple-Free 
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Figure B 23  Normalized Buckling Load versus Width to Thickness Ratio: (90/+45/-45), 
a/b = 1.2, Simple-Simple-Simple-Free 
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Figure B 24  Normalized Buckling Load versus Width to Thickness Ratio: (90/+45/-45), 
a/b = 1.5, Simple-Simple-Simple-Free 
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Figure B 25  Normalized Buckling Load versus Width to Thickness Ratio: (90/+45/-45), 
a/b = 2, Simple-Simple-Simple-Free 

 
 
 
 



 148 

 
 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 5 10 15 20 25 30

Width to Thickness to Ratio, b/t

σ
x 

/ σ
cr

a/b = 1
a/b = 1.2
a/b = 1.5
a/b = 2

 

Figure B 26  Normalized Buckling Load versus Width to Thickness Ratio: (90/+45/-45), 
Simple-Fixed-Simple-Free 
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Figure B 27  Normalized Buckling Load versus Width to Thickness Ratio: (90/+45/-45), 
a/b=1, Simple-Fixed-Simple-Free 
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Figure B 28  Normalized Buckling Load versus Width to Thickness Ratio: (90/+45/-45), 
a/b=1.2, Simple-Fixed-Simple-Free 
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Figure B 29  Normalized Buckling Load versus Width to Thickness Ratio: (90/+45/-45), 
a/b=1.5, Simple-Fixed-Simple-Free 
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Figure B 30  Normalized Buckling Load versus Width to Thickness Ratio: (90/+45/-45), 
a/b=2, Simple-Fixed-Simple-Free 
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