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The process of developing a greater understanding of the fundamental molecular mechanisms 

involved in prostate carcinogenesis will provide insights into the questions that still plague the 

field of prostate cancer research.  The goal of this study was to identify altered genes that may 

have utility either as biomarkers, for improved diagnostic or prognostic application, or as novel 

targets important in the pathobiology of prostate cancer.  We hypothesize that an improved 

understanding of the genomic and proteomic alterations associated with prostate cancer will 

facilitate the identification of novel biomarkers and molecular pathways critical to prostate 

carcinogenesis.  In order to enhance our knowledge of the molecular alterations associated with 

prostate cancer, our laboratory performed microarray analysis comparing gene expression in 

healthy normal prostate to that in prostate cancer tissue.  Of the greater than 400 genes with 

significantly altered expression identified in our study, MT2A, Tacc2, Nell2, FosB, PCP4, and 

Cyr61 were selected for further evaluation to confirm expression changes and evaluate their 

potential impact in prostate cancer.  Analysis of MT2A, Tacc2, and Nell2 expression patterns 

failed to demonstrate significant changes between prostate cancer and donor prostate tissue and, 

therefore, these results do not support their further development as prostate cancer biomarkers.  

We demonstrated that PCP4 was expressed predominently in the stromal compartment of the 

prostate and was expressed at similar levels in the stroma of normal and prostate cancer tissue.  

Interestingly, protein expression of PCP4 in a panel of colon cancer tissues was dramatically 
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higher in adenoma and adenocarcinoma tissues compared to donor and benign colon tissue and, 

consequently, we feel that PCP4 has more potential as a biomarker in colon cancer than in 

prostate cancer.  We also demonstrated that FosB and Cyr61 were upregulated in prostate cancer 

tissues over donor prostate tissues.  Based on expression analysis of FosB and expression and 

functional analysis of Cyr61, we believe that these two targets have the greatest potental to be 

functionally significant in the etiology of prostate cancer. 
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1.0  INTRODUCTION 

1.1 PROSTATE GLAND 

The prostate  (Figure 1) is a walnut shaped and sized organ in men that is located at the base of 

the bladder through which the urethra passes.  It is a tubuloalveolar gland composed of stroma 

and secretory acini, and produces fluids that contribute to semen (1).  Hormonal signaling 

carefully regulates normal prostate development and function (2).  

 

 

 

Figure 1.  The prostate  

http://www.enlargedprostateremedy.com (3) 
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The prostate is comprised of five zones (1).  The anterior zone consists of predominantly 

smooth muscle.   The preprostatic zone plays a role in ejaculation, preventing the flow of semen 

back up the urethra.  The central zone, adjacent to the seminal vesicle, is the least likely to 

develop prostate cancer.  The transitional zone consists of the area surrounding the proximal 

urethra.  BPH and about one quarter of prostate cancer originates in the transitional zone (4).  

The peripheral zone, the area that most commonly develops prostate cancer, is the portion of the 

prostate posterior to the urethra and contains the highest concentration of prostate glands (4).   

 

 

 

Figure 2.  The prostate and associated anatomy  

http://www.keyholeurology.co.uk/prostatecancer.html (5) 

 

The prostate is predominantly composed of glands, which produce the simple sugars, 

enzymes and other components that contribute to semen, and the supporting stroma, which is 

made up of smooth muscle, nerves, blood vessels and fibroblasts (Figure 3).  The architecture of 

the prostatic gland is characterized by the presence of a basement membrane separating the 

 2 

http://www.keyholeurology.co.uk/prostatecancer.html


epithelial from the stromal compartment.  Prostate gland epithelium is comprised of a basal and 

luminal secretory layer of cells.  The basal cells, which have a cuboidal morphology, lie adjacent 

to the basement membrane.  These cells express p63, cytokeratins 5 and 14, and very little, if 

any, androgen receptor (AR) (6).  The basal cell layer also contains a small number of prostate 

stem cells that maintain the basal layer as well as differentiate into the rare, terminally 

differentiated neuroendocrine cells.  When stimulated by stromal-secreted paracine growth 

factors, basal cells undergo proliferation and further differentiation into transient-amplifying 

(TA) cells (6).  Eventually TA cells lose expression of p63 and cytokeratins 5 and 14, and 

increase expression of cytokeratins 8 and 18 as well as AR (6,7), resulting in fully differentiated, 

luminal, secretory epithelial cells.  Luminal epithelial cells, unlike basal cells, exhibit a stratified 

morphology, lack the capacity to self-renew or proliferate, and express AR-regulated genes such 

as prostate specific antigen (PSA) and human kalikrein 2 (hK2) (8).  As a result of their 

dependence on androgen-stimulated stromal-secretion of survival factors, these luminal epithelial 

cells, unlike basal cells, undergo apoptosis as a result of androgen withdrawal.  The stromal 

compartment, composed of fibroblasts, smooth muscle, nerves and supporting vasculature, plays 

a critical role in maintaining normal homeostasis within the prostate (9-11).  Smooth muscle 

contraction of the glands is necessary for the expulsion of prostatic fluids during ejaculation but, 

later in life, the smooth muscle plays a role in the very common prostate disease benign prostatic 

hyperplasia (BPH) (4,12).  Fibroblasts provide support by producing the basement membrane 

and matrix that supports the epithelial gland structures.   
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Figure 3.  Cellular heterogeneity within the normal prostate 

Histology of the normal prostate; the epithelial glands supported by stroma. (6)   

 

The regulation of the prostate begins with the release of luteinizing hormone-releasing 

hormone (LHRH) from the hypothalamus, which signals the pituitary to secrete luteinizing 

hormone (LH) (13).  LH circulates through the blood resulting in the production of testosterone 

by the testes.  Testosterone, though mainly produced in the testes, is also made by the adrenal 

glands and is necessary for the growth and maintenance of the prostate gland (4).  Taken up from 

the blood, cells of the prostate convert testosterone into the more active androgen 

dihydrotestosterone (DHT) through a reaction catalyzed by 5-α reductase.  DHT and, with lower 

affinity, testosterone bind to the AR in the cytoplasm, the resulting ligand/AR complexes 

dimerize, shuttle into the nucleus, and interact with DNA at androgen response elements (ARE) 

in gene promotor/enhancer regions to effect transciption of downstream genes (4,6).    
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AR signaling in smooth muscle cells and fibroblasts induces the secretion of peptide 

growth factors including IGF, KGF, and FGF-10.  These growth factors diffuse through the 

basement membrane and bind basal and luminal epithelial cell surface receptors to support 

proliferation and survival, respectively (14-17).   

1.2 MALE REPRODUCTIVE SYSTEM 

The organs of the male reproductive system include the prostate, testes, epididymis, penis, 

bulbourethral gland, ductus deferens, and seminal vesicles.  Sperm production, which occurs in 

the seminiferous tubules of the testes, occurs as a continuous process in the post-pubescent male 

(1).  Sperm mature as they pass through the epididymis and are either expelled through 

ejaculation or phagocytized by the epithelial cells of the epididymis.  During ejaculation the 

ductus deferens and ejaculatory duct transport sperm from the epididymis to the prostate gland 

where the sperm enter the urethra and mix with the accessory gland secretions to produce semen 

(1).  The accessory glands, including the seminal vesicles, bulbourethral gland and prostate 

gland, supplement sperm with fluid containing the nutrients and enzymes necessary to survive in 

the female reproductive tract (1).  The seminal vesicles contribute about 60% of the total volume 

of semen; seminal fluid primarily contains fructose, ascorbic acid, and prostaglandins and is 

alkaline in nature.  The prostate gland secretions, which constitute about 33% of semen volume, 

contain a high concentration of citrate, zinc, and various enzymes including fibrinolysin, 

hyaluronidase, acid phosphatase, and PSA (18).  The secretions of the bulbourethral gland 

precede ejaculation in order to coat the urethra to neutralize residual acidic urine.  Finally, this 
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mix of sperm and fluid travel through the urethra, which extends the length of the penis, and is 

expelled via the spinal reflex-controlled contraction of the bulbospongiosus muscle fibers (1).  

1.3 PROSTATE DEVELOPMENT 

Much of our knowledge of normal prostate development stems from the groundbreaking tissue 

recombination work of Gerald Cunha in the 1980s and 1990s.  The studies illustrate the role of 

various hormonal, cellular and molecular mechanisms that regulate prostatic development.  The 

prostate develops from the ambisexual endodermal urogenital sinus (UGS) and urogenital sinus 

mesenchyme (UGM), which also differentiates into the bladder and seminal vesicles (14).  In the 

presence of fetal testicular androgens, the androgen receptor-positive (AR+) UGM induces the 

AR-negative (AR-) UGS to develop into prostatic epithelial buds that proliferate and grow out 

into the UGM (11).  Through this process of branching morphogenesis, the UGS and UGM grow 

together differentiating to form the progenitor prostate through bud extension and branching that 

requires each tissue to respond to gradient signals dictating the type and direction of growth.  

Tissue recombination studies of chimeric prostates developed from UGM and UGE of wild-type 

and Testicular Feminized Mice (AR-null) established that mesenchymal-epithelial interactions 

tightly regulate early prostatic development (19).  Androgens induce the UGM to initiate prostate 

epithelia determination of UGS and epithelial bud formation and branching, and promote cell 

differentiation into secretory epithelium (2,20).  Later recombination studies demonstrated the 

necessity of UGE AR expression, triggered by UGM paracrine signaling, for the production of 

AR-dependent secretory proteins (21,22), which in turn induce the maturation of the UGM into 

the supporting stromal compartment (23).  In the prostate there exists a fine balance between 
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epithelial cell proliferation and apoptosis, which is controlled by mesenchymal-epithelial 

paracrine signaling (10); a loss in the coordination of these hormonal, cellular and molecular 

interactions tips the scale in favor of proliferation, resulting in the development of prostate 

adenocarcinoma. 

1.4 PROSTATIC DISEASE 

Most men are thought to give little consideration to their prostate until symptoms arise later in 

life that generally manifest as difficulty with urination: urgency, frequency, flow rate, pain etc.  

There are three diseases most often discussed when considering prostate health:  prostatitis, 

benign prostatic hyperplasia (BPH), and prostate cancer.  Infections and inflammation of the 

prostate are classified as prostatitis.  BPH refers to benign enlargement of the prostate gland.  

Lastly, prostate cancer is the abnormal growth of prostate cells leading to tumors.        

1.4.1 Prostatitis 

Prostatitis, characterized by inflammation of the prostate, is a common problem and the only one 

of the three prostate diseases that can affect men at any age (24).  Symptoms of prostatitis 

include the frequent and urgent need to urinate, pain when urinating, and sometimes blood in the 

urine (25).  These can be accompanied by fever, painful ejaculation and pelvic, groin or lower 

back pain.  The National Institutes of Health (NIH) have subdivided prostatitis into four 

categories (4) : 

 Category 1 – acute bacterial prostatitis 
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 This is generally treated with antibiotics.  Unchecked, an infection that 

originates in the prostate can spread to the bladder.  Bacteria that are part of the 

colon’s natural flora are often the cause. 

 Category 2 – chronic bacterial prostatitis 

 Also treated with antibiotics.  Chronic infections can arise following an episode 

of acute prostatitis or as a result of repetitive stress to the urinary system: 

catheter tubes, biking or horseback riding. 

 Category 3 – chronic or nonbacterial prostatitis/chronic pelvic pain syndrome  

 Treatment aimed to relieve symptoms, not intended to target the cause.  

Although symptoms are similar to those for bacterial prostatitis, antibiotics are 

not effective.  Though the cause is not always known, various factors contribute 

including viral infection, heavy lifting, interstitial cystitis, physical activity, and 

structural abnormalities of the urinary tract.   

 Category 4 – asymptomatic inflammatory prostatitis 

 This generally goes undiagnosed unless the doctor is looking at the prostate for 

another reason and is left untreated. 

Prostatitis most often develops in men younger than age 40 but can develop later in life as well. 

It is not always clear why prostatitis develops and can be difficult to diagnose due to the fact that 

symptoms of the disease resemble those of a bladder infection, bladder or prostate cancer, even 

BPH.   HIV infected men also are at increased risk of bacterial prostatitis (4,25). 
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1.4.2 Benign Prostatic Hyperplasia 

BPH is a complex of symptoms more appropriately termed Lower Urinary Tract Symptoms 

(LUTS).  One of the most notable aspects is a benign enlargement of the transitional zone of the 

prostate that develops as men age (Figure 4).  Symptoms of BPH rarely develop before age 40 

but become more common with each passing decade and include frequent urination, urgency, 

difficulty and pain while urinating, weak urine flow, and even acute urinary retention (4,26).   

BPH develops due to growth in either cell size or cell number of the transitional zone of the 

prostate.  

 

 

Figure 4.  Benign prostatic hyperplasia  

http://www.prostatecancerfoundation.org/site/c.itIWK2OSG/b.4091215/k.A28D/Prostatitis.htm (24) 

 

BPH is a disease that can involve dysregulation of both the stroma and epithelium (27).  

Two mechanisms proposed to play a role in BPH are the hyper-sensitization of prostate cells to 

testosterone and the destabilization of epithelial-stromal interactions (28).  Symptoms present 
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differently in each man depending on the individual’s anatomy, the extent to which the urethra is 

pinched as the prostate expands, and the level of smooth muscle involvement (4).  Treatment 

strategies take into account the level of smooth muscle involvement and size of the prostate.  

Alpha-blockers (doxazosin, alfuzocin, etc.) target the smooth muscle causing muscle relaxation 

aimed to decrease the pressure on the urethra and are particularly effective in those who have 

symptoms of BPH without evidence of an overly enlarged prostate gland (4).  Another method 

used to treat BPH, particularly in those with substantial enlargement of the prostate, targets 

testosterone to block androgen signaling.  5-alpha reductase inhibitors (dutasteride and 

finasteride) prevent the conversion of testosterone into DHT leading to prostate involution (4).  

When symptoms become severe, BPH can require surgery.  The most common type of surgery 

performed is transurethral resection of the prostate (TURP) where the prostate is removed in 

small pieces through the urethra (4).  Another option, transurethral incision of the prostate 

(TUIP), differs from TURP in that incisions in the prostate are made to relieve pressure but no 

tissue is removed.  Minimally invasive therapy options include transurethral microwave therapy 

(TUMP), in which targeted microwaves shrink the prostate, and interstitial laser therapy, during 

which overgrown tissue is targeted by laser (4,24).  

 The relationship between BPH and prostate cancer has long been a question and, 

although BPH and prostate cancer are two distinct diseases, evidence suggests that they may 

share some molecular similarities (29).  Given that BPH, like prostate cancer, is a disease 

involving abnormal prostate growth, study of the molecular pathobiology of BPH may lead to 

insights that also enhance our understanding of prostate cancer. 
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1.5 PATHOBIOLOGY OF CANCER 

In 1971 President Richard Nixon declared “War on Cancer” and, after almost four decades, 

clinicians and researchers still struggle to gain the upper hand against this disease (30).  The 

diversity in the genetic background and environmental exposures of the human population and 

the ability of cancer cells to adapt when confronted with novel treatment methods complicate the 

study of this disease.  Cancer develops when cells no longer grow, differentiate, or die in 

response to the conventional molecular cues resulting in an abnormal accumulation of cells.  

While great diversity exists from cancer to cancer, certain pathways and molecules are 

particularly vulnerable in the transition to and the maintenance of neoplastic growth.  DNA 

repair, cell cycle and apoptotic regulation, growth factors with their receptors and a wide variety 

of other pathways become dysregulated in cancer (31,32).   

1.5.1 Expression Changes, A Hallmark of Cancer 

Dysregulation of the body’s natural mechanisms essential in maintaining growth, differentiation, 

development and survival is a paramount step in the successful establishment of neoplastic 

growth.  Changes in the genetic, epigenetic, and proteomic makeup of a cell all contribute to the 

process of cellular transformation (32-34).  Although not all three of these mechanistic changes 

are required for cancer initiation, progression to more advanced disease is characterized by the 

accumulation of additional molecular alterations.  The balance between tumor suppressor gene 

and oncogene expression and the function of the resulting proteins is critical in maintaining 

cellular and molecular homeostasis (32).  During cancer initiation and progression, this balance 

is altered, thus favoring enhanced oncogene function in the face of lost tumor suppression.  The 
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molecular pathways most often affected involve genes that encode regulators of the cell cycle 

and apoptosis, DNA damage repair proteins, transcription factors, growth factors and their 

receptors, and proteins that enhance metastatic potential (32).  Tumor suppressor genes encode 

proteins, including p53, Rb (retinoblastoma protein), PTEN (phosphatase and tensin homolog), 

APC (adenomatosis polyposis coli), p14, p15, p16, VHL (Von Hippel-Lindau), GSTπ 

(glutathione S-transferase pi), Bad, Bax, BRCA1 (breast cancer 1), ERα (estrogen receptor 

alpha), etc., that prevent or slow the development and/or progression of tumor growth (31,32,35-

37).  Expression of these proteins is either decreased or blocked completely in cancer cells by a 

variety of means including deletion, inactivating mutation, and epigenetic silencing (promotor 

hypermethylation or histone modification).  Oncogenes encode proteins whose up-regulated 

expression in cancer enhances tumor development or progression, such as Myc 

(myelocytomatosis viral oncogene), Akt (protein kinase B), Ras, NF-κB (Nuclear Factor 

kappaB), Bcl-xl (basal cell lymphoma-extra large), Bcl-2 (B-cell CLL/lymphoma 2), PI3-kinase 

(phosphatidylinositol 3-kinase) mTOR (mammalian target of rapamycin), ERK (extracellular 

signal-regulated kinase), BCR-ABL (“breakpoint cluster region” fused to the Abelson gene), etc 

(31,32,35-37).  Elevated expression occurs by many different mechanisms including gene 

duplication, genomic amplification, chromosomal translocations, activating mutations or 

insertions, which may impact the promoter region or the coding sequence, and epigenetic 

modifications leading to expression.   

Genetic alterations are believed to develop over the course of a lifetime as a result of 

lifestyle, diet, and environmental exposures as well as the normal effects of aging (33,38).  The 

inheritance of an affected allele may also result in a predisposition to develop cancer (32).   For 
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example inherited mutations in BRCA1 and BRCA2 are associated with an elevated risk of breast 

and ovarian cancer in women and prostate cancer in men (39-41).   

More recent discoveries regarding epigenetic mechanisms of gene expression have been 

thrust to the forefront of cancer research.  Defined as heritable changes in gene expression, 

which are not linked or accompanied by changes in the actual DNA sequence, epigenetic 

regulation of gene expression is essential for proper development as well as cancer initation and 

progression.  The four primary components of epigenetics in cancer are DNA methylation, 

histone modifications, nucleosomal rearrangements and non-histone chromosomal proteins 

(33,42).  Cells that deviate from their normal programming exhibit signs of tumor suppressor 

loss due to promoter hypermethylation, activation of oncogenic retrotransposon elements, and 

alterations in histone organization that alter RNA polymerase access to the DNA.  Examples of 

epigenetically silenced tumor suppressor genes include Rb, VHL, APC, p16, BRCA1, and ERα 

(33). 

Many proteomic changes can be attributed to the downstream impact of genetic and 

epigenetic changes, for example gene mutation leads to altered protein sequence and, potentially, 

function.  In addition, post-translational modification (phosphorylation, glycosylation, 

acetylation, etc.) and protein localization (cytoplasmic vs. nuclear, intracellular vs. extracellular) 

greatly impacts proper protein function (43,44).  

1.5.2 Metastasis 

The evolution of metastatic potential in cancer is pivotal and often a most deadly transition (34).  

In order to develop metastases, cancers cells must develop a variety of abilities that healthy cells, 

even most cancer cells, generally do not possess (Figure 5).  Cancer cells must break through the 
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basement membrane, migrate through the extracellular matrix (ECM), enter, survive, and exit the 

blood stream, as well as, survive and proliferate in a foreign tissue microenvironment.   

 

 

Figure 5.  Steps involved in cancer metastasis 

http://64.202.120.86/upload/image/articles/2008/smart-bombing-cancer/cell-grow.jpg (45) 

 

Most healthy cells require survival signals, the maintainance of an intact basement 

membrane, and a tight association with neighboring cells but, in metastasis, the ability to survive 

without these external survival signals and to respond to the unique growth and survival factor 

milieu present at secondary sites is essential (31,38,46).  In order to metastasize, tumor cells 

must digest the basement membrane by producing the necessary proteolytic enzymes, such as the 

matrix metalloproteinase, MMPs, and then alter expression of adhesion and surface recognition 

molecules to facilitate migration away from neighboring cells, into the connective tissue, 
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between the capillary endothelial cells (intravasation and extravasation), and into secondary sites 

(31,38,46).   

Once the cancer cells become metastatic, cells disseminate throughout the body via the 

blood vasculature and lymphatics.  While less than 0.01% of circulating tumor cells establish a 

lesion of cancer, millions of tumor cells are shed daily into the circulation and almost 30% of 

patients have clinically detectable metastases at the time of initial diagnosis (46).  The signaling 

pathways involved in metastasis are prime therapeutic targets and targeted therapies under 

development include growth factor signaling blockade (EGFR or VEGF), MMP inhibitors, and 

taxanes, which interrupt microtubule cycling, to name a few (34).   

1.6 PROSTATE CANCER 

About 1 in 6 men will be diagnosed with the prostate cancer during their lifetime (4).  Although 

not to diminish the number of lives lost due to prostate cancer, the truth is that many more men 

will die with prostate cancer than from the disease.  Prostate cancer is typically a slow 

progressing cancer and, on average, ten years will pass between the time of diagnosis and when 

the cancer becomes life threatening.   

Prostate cancer is a type of adenocarcinoma (cancer of glandular tissue) that develops 

most often in men over the age of fifty and generally produces slow growing tumors (4).  With 

an estimated 186,000 new cases of prostate cancer diagnosed in 2008, prostate cancer is the most 

widely diagnosed cancer and the second leading cause of cancer deaths in men in the United 

States (47).  In the early-mid 1990s, the acceptance of PSA as a diagnostic tool revolutionized 

the prostate cancer field.  Since the advent of PSA testing, most prostate cancer does not present 
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with symptoms.  If symptoms are present they generally resemble those of BPH and include 

frequent urination, blood in the urine, and pain while urinating (4,24,26).  However, most men 

are diagnosed following an abnormal digital rectal exam (DRE) or an elevated PSA test that 

leads to biopsy of the prostate.  Final diagnosis of prostate cancer requires histologic analysis of 

prostate biopsy tissue.  In the post-PSA era the proportion of cancers identified after metastases 

develop dropped by 56% (from 14.9 in 1985 to 6.6 per 100,000 in 1995) (48).  The most 

common treatment options include watchful waiting, radical prostatectomy, radiation therapy, 

androgen ablation therapy, and chemotherapy.  Surgical removal of the prostate via nerve 

sparing radical prostatectomy, which is the most common treatment for organ-confined disease, 

not only offers a curative outcome but also limits adverse side effects, including impotence and 

incontinence which previously accompanied prostatectomy. In localized disease, external beam 

radiation therapy can yield similar outcomes as surgery (4).  Additional therapeutic approaches 

for the treatment of prostate cancer include brachytherapy, chemotherapy for non-localized 

disease, and watchful waiting. Despite recent improvements in the diagnosis and treatment of 

prostate cancer, we are still unable to differentiate between indolent and lethal forms of the 

disease.  As a result, many thousands of men worldwide, and particularly in the United States, 

are unnecessarily diagnosed and treated for a disease that they will never die from.  This issue of 

overdiagnosis continues to frustrate both clinicians as well as research scientists.  Therefore, 

identification and validation of more specific and sensitive biomarkers is critically needed in 

order to provide more accurate, minimally invasive diagnosis of the lethal forms of prostate 

cancer.   

During prostate tumorigenesis the balance of stromal-regulated epithelial cell turnover 

changes, resulting in neoplastic growth (6).  Originating from the seminal clinical studies by 
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Huggins and Hodges in the 1940s (49), the role of hormone action, more specifically the 

interplay of androgens and the AR, in prostate carcinogenesis has been the center of intense 

investigation.  In the normal prostate, diffusion of androgens from the blood triggers AR 

signaling in the stromal compartment, leading to the secretion of growth and survival factors 

(andromedins), which act on both the stromal cells (autocrine) as well as epithelial cells 

(paracrine) (Figure 6) (50) (51-53).  AR-stimulated paracrine secretion of andromedins functions 

in promoting basal epithelial cell proliferation and maturation into secretory luminal epithelial 

cells (6).  Once differentiated, AR activation of luminal epithelial cells suppresses proliferation 

as demonstrated by p27 expression (54), induces terminal differentiation (6), and at the same 

time, represses transforming growth factor-β receptor (TGF-βR) expression (55).  In contrast, 

AR signaling in prostate cancer cells exhibits “gain of function” molecular changes from a 

suppressor to that of a stimulator of growth (56).  As part of this malignant conversion, AR 

activation within the nucleus of prostate cancer cells autonomously stimulates cell proliferation, 

independently of stromally-derived andromedins (Figure 6).  One such novel “gain of function” 

change involves DNA rearrangements such that the promoter of the TMPRSS2 gene, which 

contains androgen response elements, is translocated to confer androgen responsiveness upon 

select members of the ETS transcription factor gene family (57,58). 
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Figure 6.  Dysregulation in prostate cancer 

The disruption of normal architecture and hormone regulation in prostate cancer (50) 

 

Based on the groundbreaking work of Huggins and Hodges in 1941, hormone ablation 

therapy has been the mainstay treatment for advanced, metastatic prostate cancer (49).  Surgical 

castration, now typically achieved via chemical disruption of testosterone production, induces 

regression of the prostate luminal epithelial compartment, and therefore can provide significant 

therapeutic benefit.  However, the majority of these patients will, in time, develop hormone-

refractory disease (13).  Many hypotheses have been proposed to explain this phenomenon and 

ongoing research continues to identify potential mechanisms that contribute to the adaptations 

that facilitate prostate cancer growth in a low androgen environment (59,60). 
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Figure 7.   Normal androgen signaling and transcriptional activation 

http://www.nature.com/nrc/journal/v1/n1/images/nrc1001-034a-f2.gif (61) 

 

In cancer, strict regulation of growth of the prostate epithelial compartment is lost.  With 

the loss of circulating testosterone, as in the case of surgical or medical castration, stromal 

andromedin secretion is replaced by transforming growth factor-β (TGF-β) secretion leading to 

TGF-βR-induced apoptosis of luminal epithelial cells (15,62,63) and subsequent regression of 

prostate epithelia and prostate cancer; molecular mechanisms that offer explanation for previous 

observations put forth by Huggins and Hodges in 1941 and Coffey et al. in 1968 (49,62).   
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Figure 8.  Possible pathways leading to androgen independence 

http://www.nature.com/nrc/journal/v1/n1/images/nrc1001-034a-f2.gif (61) 

 

Changes in AR levels, mutations that enhance AR function, amplification of AR copy 

number, and alterations in expression and function of AR co-regulators play a role in prostate 

cancer progression; however, additional mechanisms likely exist that contribute to cancer cell 

survival and the development of castration resistant prostate cancer (Figure 8) (31,59).  

1.6.1 Risk Factors 

Risk factors associated with prostate cancer include age, race, ethnicity, family history, 

environment, and diet (4).  Of these age, race, and family history, i.e., genetic susceptibility, 

represent the primary risk factors influencing the development and progression of the disease.  
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Numerous epidemiological studies focusing on the potential benefits of dietary factors such as 

lycopene, selenium, vitamin E, vitamin D, and the potential harmful effects of diets high in red 

meat and exposure to charred meat by-products, such as 2-amino-1-methyl-6-phenylimidazo[4,5-

b]pyridine (PHIP) (64), yielded mixed results.  Recently, studies looking at serum calcium levels 

as a predictive factor established a positive association between high serum calcium (Ca2+) levels 

and prostate cancer incidence (65).  However, studies such as these described above are 

confounded by variations in geography, accurate reporting of diet, smoking and medication use, 

as well as the inherent difficulties in extrapolating conclusions from small study populations, 

e.g., the Icelandic and Swedish studies.  

A current trend in medicine is to focus on disease prevention but, in prostate cancer, the 

interplay of environmental and genetic factors have made this difficult.  Studies show that a 

family history of prostate cancer is a significant risk factor and this, of course, cannot be altered, 

but factors like diet, lifestyle, and geographic location also play a potentially important role (66).  

Although data linking specific foods and dietary supplements with prostate cancer incidence 

remains unclear, the impact of diet on prostate cancer development should not be ignored (66).  

Additionally, prostate cancer incidence rates in those who immigrate from Japan, where rates are 

low, to the United States, where incidence rates are very high, rise within the first generation and 

increase further in second generation immigrants to levels equivalent seen in men in the United 

States (4).  Although researchers attribute the increasing rate of prostate cancer to dietary 

changes, few specific differences have been discovered that contribute to prostate cancer 

susceptibility.  When evaluated independently, physical activity, vitamin levels, outdoor 

exposure and the few dietary factors currently known, only elevate prostate cancer risk modestly 

and a better understanding of how life choices and environmental exposures impact the risk of 
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developing prostate cancer has the potential to decrease prostate cancer incidence without 

requiring pills, invasive tests, or surgery (65-75). 

1.6.2 Diagnostics 

Initial methods of screening for prostate cancer include digital rectal exams (DRE) and the PSA 

test but, since these tests are not definitive, prostate cancer must be confirmed by histological 

analysis of prostate biopsies.  Prior to the advent of PSA testing DRE was the primary method of 

prostate cancer screening and is still employed by clinicians to evaluate prostate health and 

assess the presence and extent of cancer within the prostate.  For men of African descent, and 

anyone with a family history of prostate cancer, PSA testing is recommended beginning at age 

40.  For all other men, annual PSA testing is recoomended after the age of 50, with a few 

exceptions (4).  One of the nuances of prostate cancer is its slow progression.  As such, life 

expectancy should be taken into account when screening patients.  Specifically, men of advanced 

age, who are likely to die from other causes and therefore will not benefit from treatment for 

prostate cancer, may no longer need active screening. 

1.6.3 Stage and Grade 

Clinically, prostate cancer is described in two ways:  stage and grade (Gleason score).  Disease 

stage describes the location of the tumor, whether it is localized to a small area of the prostate, or 

has spread throughout the organ, to regional lymph nodes, or to other organs.  Cancer staging is 

based on the recently updated TNM staging system:  T represents local disease contained within 
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the prostate, and is further subdivided as described in Table 1; N indicates metastasis to regional 

lymph nodes; and M indicates the presence of distant metastases (4).   

 

 

 

Figure 9.  Stages of prostate cancer 

http://www.prostate-cancer.org/education/staging/Dowd_GleasonScore.html (5) 

 

Table 1. TNM Staging System 

Stage                                                       Description 

T1a Not palpable; found incidentally, 5 percent or less of the removed tissue is cancerous. 

T1b Not palpable; found incidentally, greater than 5 percent of the tissue removed by the 
TUR is cancerous. 

T1c Not palpable; identified by needle biopsy because of elevated PSA. 
T2a Palpable; involves less than half of only one of the lobes of the prostate. 
T2b Palpable; involves more than half of one lobe but not both lobes of the prostate. 
T2c Palpable; involves both lobes of the prostate. 

T3, T4 Palpable; invades through the wall of the prostate and/or involves the seminal vesicles.
N+ Has spread to the lymph nodes. 
M+ Has spread to bone. 
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Prostate cancer grade describes the histologic appearance of the cancer, which is based on 

analysis of biopsy tissue and referred to as clinical stage.  However, this designation may be re-

evaluated or corrected following radical prostatectomy, thereafter referred to as pathological 

stage.  In general histologic appearance reflects the level of cellular dedifferentiation (76).  In 

normal prostate, secretory glands are comprised of a single layer of well-differentiated, luminal 

epithelial cells.  In regions of cancer, structures of the prostate strikingly change in appearance 

reflecting progressive cellular de-differentiation.  Alterations in prostate architecture include loss 

of the basement membrane and basal cell compartment, changes in luminal cell nuclear 

morphology, as well as development of luminal epithelial cell hyperplasia.  The Gleason grading 

system, developed by Donald F. Gleason in 1966, employs a scale of 1-5 to represent the most 

common histologic patterns seen in prostate cancer: 5 being the most aggressive and 1 the least 

(Figure 10) (77,78).  For each individual, the Gleason score represents the sum of the Gleason 

grades for the two most common histologic patterns.  Most men identified by needle biopsy 

today present with Gleason 5, 6, or 7 cancer while about 8% harbor high grade cancer (8, 9, or 

10) (4).  Lower Gleason scores are typically associated with organ-confined, localized disease, 

whereas higher grade cancers often present once cancer cells have metastasized to regional 

lymph nodes, seminal vesicles or other tissues.  In recent years, Gleason 7 disease is often further 

stratified into Gleason 3+4 or 4+3 disease.  4+3 disease is considered more aggressive because 

treatment outcomes are typically less favorable compared to those for 3+4 disease.    
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Figure 10.  Gleason grading system diagram 

http://www.prostate-cancer.org/education/staging/Dowd_GleasonScore.html (78) 

 

The Partin Tables, developed in 1993 and updated in 2007, represent a combination of 

PSA testing, clinical staging and Gleason scoring, and facilitate more accurate pre-surgery 

prediction of pathologic stage, i.e., the likelihood of organ-confined disease (79-81).  Similarly, 

the Kattan nomograms, the first of which was generated in 1999, are algorithms to predict 1) pre-

treatment, a patient’s probability of survival prior to primary treatment 2) post-radical 

prostatectomy, the probability of survival following prostatectomy 3) following recurrence, the 

probability of treatment success with salvage radiation therapy and 4) following recurrence, the 

probability of treatment success with hormone-refractory disease (82-91). 
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1.6.4 Genetics  

Although the most recent genome wide analysis studies (GWAS) have not yielded a unique 

genetic signature for prostate cancer, the list of genes altered in prostate cancer, via both genetic 

and epigenetic mechanisms, continues to grow (92-94).  Nonetheless, GWAS have revealed an 

association between particular single nucleotide polymorphisms (SNPs) and prostate cancer risk 

(2p15, 3p12, 6q25, 7p15, 7p21, 8q24, 9q33, 10q11, 10q26, 11q13, 17q12, 17q24.3, 19q13, and 

Xp11) (92,93,95-101).  In the early stages of cellular transformation, gene expression changes in 

MYC (v-myc myelocytomatosis viral oncogenes), MET (met proto-oncogene), TERT (telomerase 

reverse transcriptase), AMACR (alpha-methylacyl-CoA racemase) and cell cycle regulators such 

as CDKN1B (cyclin-dependent kinase inhibitor 1B, p27Kip1) are among the most common (102).  

The most prominent epigenetic modification observed in disease initiation is hypermethylation 

of the GSTP1 promoter, rendering this gene silent (37,103).  In patients with clinically diagnosed 

prostate cancer, TP53 (tumor protein p53) is the most commonly mutated gene, along with a host 

of other less prevalent genetic alterations including BCL2 (B-cell CLL/lymphoma 2), PTEN, 

RB1, CDKN2A (cyclin-dependent kinase inhibitor 2A, p16), and TGFB1 (102).  In stages of 

more advanced and hormone-refractory disease, mutated and amplified AR is the most consistent 

change observed both at the genetic as well as at the protein level (104).  Fusion of the 

TMPRSS2 gene with members of the ETS family (ETS, ERG, ETV1, and ETV4) is also 

commonly seen in prostate cancer (105-108). 
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Figure 11.  Alterations associated with prostate cancer progression 

http://www.molecular-cancer.com/content/figures/1476-4598-3-9-8-l.jpg (102) 

1.6.5 Treatment 

When diagnosed early while disease is still locally confined, prostate cancer is most often treated 

by surgery (radical prostatectomy), radiation therapy, or expectant management (4).  Factors that 

influence treatment include age at diagnosis, life expectancy, and quality of life considerations 

(issues of incontinence and impotence).  Two methods of radiation therapy are used to treat 

prostate cancer: brachytherapy and external beam radiation therapy.  Expectant management, 

also referred to as active surveillance or watchful waiting, involves a program designed to 

closely monitor the disease, without invasive treatment, until there are signs of cancer 

progression (4).  Another option, far less common, is cryo- or thermal ablation therapy (24). 

If prostate cancer is not diagnosed while it is still confined within the prostate or if there 

is evidence that prostate cancer has returned (rising PSA) following surgery, treatment options 

include radiation therapy, hormone therapy, and chemotherapy (4).  Radiation therapy targets a 

particular area and therefore is most useful when metastases are local, to the seminal vesicles or 
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pelvic lymph nodes.  Hormone therapy, also known as androgen-deprivation therapy (ADT), 

results in significant androgen-dependent apoptosis, which substantially reduces prostate size 

and tumor burden, for most men (6).  ADT targets three main points in the signaling cascade 

leading to androgen action in the prostate: by disrupting the pulsitile manner of the 

hypothalamic-pituitary connection (LHRH agonists), by inhibiting testosterone synthesis (5α 

reductase inhibitors like finasteride), or by blocking androgen/AR signaling using AR 

antagonists (Figure 12) (13).  However, progression to castrate-resistant disease generally occurs 

within 12-33 months (13). 

 

 

Figure 12.  Strategies for androgen deprivation  
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1.7 PROSTATE CANCER BIOMARKERS  

The utility of prostate cancer biomarkers is underscored by the transition that has occurred over 

the past few decades during which time the likelihood that prostate cancer will be diagnosed 

after metastasis has declined (4,48).  In 1988, before PSA testing was a common clinical 

practice, of the men diagnosed with prostate cancer 20% already had metastatic disease (4).  

Currently only about 5% of prostate cancer is metastatic at the time of diagnosis (4).  The 

increasing proportion of men presenting with low-grade, low-stage cancer is refered to as “stage 

migration” (109).   Despite the clear benefits of PSA testing, this biomarker is far from perfect.  

PSA level in the serum can be elevated by a variety of other prostate conditions including 

prostatitis and BPH and, in fact, has been shown to increase slowly in the normal course of 

aging.  Great effort has been made in the pursuit of novel prostate cancer biomarkers.  Although 

some (PCA3, AMACR, and EPCA2) have been characterized, none are currently utilized 

clinically to the same extent as PSA. 

1.7.1 The Issue of Over-Treatment 

Of significant concern is the issue of over-treatment of prostate cancer that will never progress or 

disease that will not progress during a man’s lifetime.  As previously mentioned, a great number 

of men currently diagnosed with prostate cancer undergo radical prostatectomy or other 

treatment for prostate cancer when it is unclear that their disease has the capacity to progress and 

eventually kill.  Many feel that a large subset of prostate cancer that develops is indolent and 

lacks the potential to metastasize.  No good markers currently exist in clinical use with the ability 
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to differentiate ‘good’ cancer from ‘bad’ cancer, although some have been recently discovered 

(110).  

In response to the concern regarding over-treatment, many institutions are implementing 

expectant management programs that allow patients with low grade cancers to enroll in a 

program designed to closely monitor disease progress.  Definitive treatment is only undertaken 

after it becomes clear the tumor is growing.  The hope, in those men with no evidence of disease 

progression, is to avoid unpleasant treatment and associated side effects from a disease that may 

not become a danger.  

1.7.2 Prostate Specific Antigen 

PSA, also known as kallikrein 3, is the most widely known cancer biomarker.  It is an androgen-

regulated serine protease that is secreted by the normal prostate predominantly into the prostatic 

lumen (1,111).  Produced by the ductal and acinar epithelial cells, PSA functions in semen to 

cleave semenogelin I and II (111).  When the prostate is diseased or experiences trauma PSA can 

leak into the bloodstream (4).  Prostatitis and BPH, in addition to prostate cancer, allow PSA to 

escape the prostate gland.  Although most PSA is produced by the prostate, low levels of PSA 

have been reported in the paraurethral and perianal glands, apocrine sweat glands, breast, 

thyroid, and placenta but extra-prostatic sources contribute little to circulating PSA (111).  Taken 

together with the fact that not all prostate cancers exhibit elevated serum PSA, reliance on 

clinical testing of serum PSA levels is confounded by limited sensitivity and specificity to 

prostate cancer.  
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Figure 13.  Function of PSA in a) the normal prostate and b) prostate cancer carcinogenesis   

http://www.nature.com/nrc/journal/v2/n12/images/nrc951-f2.jpg (112) 

 

Most studies regarding PSA focus on its utility as a biomarker, whereas only a few 

investigate mechanisms by which PSA might contribute to carcinogenesis (Figure 13) (112).  In 

prostate cancer, PSA cleaves insulin-like growth-factor-binding protein 3 (IGFBP3) releasing 

insulin-like growth factor 1 (IGF-1), which acts as a mitogenic signal for prostate cancer cells 

(113,114).  Also, PSA may activate TGF-β-induced cell detachment (115) or may cleave 

proteins in the ECM and basement membrane, thus facilitating metastasis (116). 

Early PSA testing assayed only the amount of circulating total PSA but more recent 

screening techniques differentiate between free vs. total and free vs. bound PSA, as well as 

address PSA velocity and age-adjusted PSA cut-off points.  Elevated free PSA is characteristic 
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of BPH while a comparatively high level of bound PSA is suggestive of prostate cancer (4).  By 

studying the ratio of free to bound PSA, clinicians are better able to differentiate between cases 

likely to be BPH from prostate cancer (109).  Studies previously demonstrated that PSA velocity, 

the rate of change in PSA from year to year, correlates with disease aggressiveness (117).  

Another limitation in the utility of PSA as a diagnostic tool is that, based on the results of the 

large Prostate Cancer Prevention Trial (PCPT) trial, only a quarter of men with abnormally high 

PSA levels (≥ 4.0 ng/mL) have prostate cancer on biopsy (118).  However, about 15% of men 

whose PSA level is considered normal (<1.0 ng/mL) do have prostate cancer found by biopsy 

(100,118,119).  Currently, some leading urologists favor a sliding scale for circulating PSA and 

PSA velocity that lowers cut-offs for younger men, which, evidence shows, allows increased 

sensitivity without a substancial decrease in specificity, and raises cut-offs for older men, a 

population whose baseline PSA tends to be higher on average (120,121).  The use of PSA as a 

regular screening tool is quite controversial and few large-scale studies have been undertaken 

with enough long-term follow-up to accurately weigh the survival benefits against the morbitity 

associated with treatment (122).  Sceptics question whether the side-effects following prostate 

cancer treatment outweigh the benefits based on two main points: 1) in order to prevent a single 

death due to prostate cancer, many more men need to be treated for the disease and 2) definitive 

proof is lacking that the PSA sceening has lead to improved rates of mortality from prostate 

cancer.  This impacts both the patients’ quality of life and increases healthcare burden.  The 

controversy rages on as two large, randomized trials published their conflicting results.  The US-

based Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial does not showed 

clear benefit in reducing mortality as a result of PSA testing and found that a similar portion of 

men in each group developed advanced disease (123).  Additionally, the trial allowed men 
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previously screened by PSA test to enroll, did not ensure that men identified with elevated PSA 

during the course of the study received subsequent treatment by a urologist, and only had a 

median follow-up of 7 years.  As a consequence this study may undervalue PSA screening.  The 

European Randomized Study of Screening for Prostate Cancer (ERSPC) trial found a 20% 

relative reduction in mortality from prostate cancer with a mean follow-up of 9 years (124).  

Interpretation of this study is complicated by the fact that participating countries followed similar 

but not exactly identical protocols and factors like, randomization strategy, PSA cut-off, and 

follow-up varied between countries.  Both studies reported findings prior to the 15-20 years of 

follow-up that many feel is necessary to truly evaluate the impact of PSA screening on mortality.  

Despite the controversy surrounding PSA screening in the general population, few doubt that 

PSA screening is beneficial particularly in the screening of men at high risk of developing 

prostate cancer.  Other areas where the PSA test is particularly useful and effective are as a 

marker of disease recurrence and in monitoring the effectiveness of ADT (111). 

1.7.3 Prostate Cancer Antigen 3 

A urine test for prostate cancer gene 3 (PCA3), which is a non-coding mRNA sequence that 

more reliably identifies prostate cancer than serum PSA testing, is currently under development 

(125).  PCA3 (DD3), originally identified in 1999, is encoded at 9q21 and includes 4 exons that 

yield, by alternative splicing, more than one mRNA transcript (126).  The urine PCA3 test 

performed better than serum PSA at predicting prostate cancer in men undergoing repeat biopsy 

(125).  When evaluated in conjunction with current diagnostic parameters in the PCPT trial, 

PCA3 was found to improve the accuracy of the PCPT risk calculator, an algorithm that predicts 

prostate cancer risk based on PSA, DRE, family and biopsy history, race and age (127).  In two 
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studies of the standardized PCA3 urine test looking at large cohorts of men, the receiver operator 

curve (ROC) was about 0.69 (128-130).  Although promising, the PCA3 urine test might be best 

utilized to supplement currents screening methods in order to improve the accuracy of prostate 

cancer diagnostics (125,131-134).   

1.7.4 Alpha-methylacyl-CoA Racemase 

In an effort to more confidently diagnose difficult-to-discriminate cases of prostate cancer, 

expression of AMACR, in addition to expression of basal cell markers, e.g., p63, is evaluated by 

immunohistochemical analysis in biopsy samples (135-139).  In prostate cancer, AMACR 

expression is elevated while basal cell marker expression is lost. 

 

 

 

Figure 14.  Prostate cancer stained for AMACR 

Expression of AMACR is specific to regions of cancer (140) 

 

The AMACR enzyme is involved in fatty acid metabolism, specifically peroxisomal β-

oxidation of branched-chain fatty acids and bile acid intermediates (141).  In 2002, it was 
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demonstrated that expression of AMACR is upregulated in 88% of prostate cancer tissues (141) 

and subsequent studies observed the same pattern at the protein level (142).  Since then, staining 

for AMACR and p63, to help diagnose cases with abnormal histology, is becoming increasingly 

more commonplace (109,135-138,143-146). 

1.7.5 Early Prostate Cancer Antigen 2 

Changes in the expression and organizatin of nuclear matrix proteins is characteristic of cancer 

(147).  Early Prostate Cancer Antigen (EPCA) 2 is a nuclear matrix protein identified previously 

by our group that differentiates between prostate cancer and non-cancerous serum samples by 

ELISA with higher sensitivity and specificity, 94% and 92% respectively, than PSA (110).  

Additionally, EPCA-2 expression was also better able to differentiate between men with organ-

confined and non-organ-confined prostate cancer (109,110).  Further validation studies are 

underway as well as the development of a test that could be utilized clinically. 
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2.0  PROJECT BACKGROUND AND METHODS 

2.1 HYPOTHESIS  

The process of developing a greater understanding of the fundamental molecular mechanisms 

involved in prostate cancer will provide insights into the questions that still plague the field of 

prostate cancer research.  In order to improve our understanding of the molecular alterations 

associated with prostate cancer, our laboratory performed microarray analysis comparing gene 

expression in healthy normal prostate to that in prostate cancer tissue.  The goal of this study was 

to identify altered genes that may have utility either as biomarkers, for improved diagnosis or 

with prognostic importance, or as novel targets important to the pathobiology of prostate cancer.  

Of the greater than 400 genes with significantly altered expression, a small number were selected 

as interesting targets and further evaluated to confirm expression changes and evaluate potential 

impact in prostate cancer.  We hypothesize that an improved understanding of the genomic 

and proteomic alterations associated with prostate cancer will facilitate the identification of 

novel biomarkers and molecular pathways critical to prostate carcinogenesis.  
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2.2 TARGET GENES MODIFIED IN PROSTATE CANCER  

Of the genes that appear most intriguing from our genomic analysis, a number are described in 

this chapter and thoughout the remainder of this thesis.  These represent the genes considered to 

be most relevant to our understanding of prostate cancer.  

2.2.1 Metallothionein 2A 

The metallothioneins (MT) are a family of proteins that safeguard cells from environmental 

insults through the intracellular transport of metals, primarily zinc but also cadmium, copper, 

cobalt, mercury, silver, gold, platinum, lead, arsenic, technetium and bismuth (148,149).  The 

intracellular metal concentration requires tight regulation because the availability of metals, zinc 

in particular, impacts enzymatic activity; some enzymes are inactive or have low activity in the 

absence of zinc while others are inhibited by the presence of zinc (148).  These low molecular 

weight (~7kD) proteins are uniquely structured to accommodate metal binding.  The α and β 

domains each form cysteine rich clusters, unique to the metallothionein family of proteins, that 

bind molecules of zinc (or other metals) (148).  MTs also effectively quench free radicals and are 

up-regulated in the presence of oxidative stress (150).  Zinc deficiency impacts growth and has 

been linked to certain malignant tumors (151).  Normal prostate contains very high levels of zinc 

but, during carcinogenesis, a significant decrease has been reported (152) and prostate cancer 

cells undergo apoptosis in response to zinc exposure, unlike normal prostate (153).  In humans, 

10 functional and 7 nonfunctional isoforms of MT are encoded by a family of genes located at 

16q13 (149).  MT-1A, -1B, 1E, 1F, 1G, 1H, 1X and MT-2A are expressed in most adult tissues.  

Expression of MT-3, once thought to be uniquely expressed by the central nervous system, is 
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also found in kidney, breast, pancreas, intestine, bladder, and prostate cancer, whereas expression 

of MT-4 is limited to stratified squamous tissues and during cell differentiation (148,153).  BPH, 

prostate cancer cells, and prostate cancer tissues express low levels of MT1/2 but exposure of 

prostate cancer cells to high concentrations of zinc induces expression of MT1/2 (153).   The 

restoration of proper intracellular zinc levels through up-regulation of MT is possibly one 

mechanism by which the proper balance between growth and apoptosis may be re-established in 

prostate diseases (153,154).  In a recent study, Yamasaki et al. demonstrate that MT-1X and -2A 

are up-regulated in prostate cancer cells exposed to hypoxia and that MT expression elevates the 

resistance of cells to radiation and chemotherapeutic agents like cisplatin (154).   

2.2.2 Transformin, acidic coiled-coiled containing protein 2 

Between 1999 and 2003 the three human members of the transforming, acidic coiled-coil 

containing (Tacc) family were cloned (155-157).  Through genomic sequence analysis and 

investigation of proposed protein interactions, a few early studies have shed light on the 

proposed function of Tacc proteins in the regulation of microtubule dynamics. The Tacc family 

is evolutionarily conserved; homologs exist in organisms ranging from yeast to mammals but 

only in mammals and insects does alternative splicing play a role (158,159).  All Tacc proteins 

are highly acidic, contain an N-terminal proline-rich and a serine-rich region, along with a C-

terminal coiled-coil domain (160,161), and a potential tyrosine phosphorylation site (157).  

Gergely et al. found that the D. melanogaster homolog, D-tacc, interacts with microtubules and 

is critical in normal spindle function (162-164).  Human Tacc proteins also interact with the 

spindle apparatus and other microtubule structures.  Tacc2 associates with the centrosome-

spindle apparatus during cell cycling and can directly bind to the nuclear hormone receptor 

 38 



RXRβ (161).  In vitro, Tacc2 has been shown to bind histone acetyltransferases (HAT), and this 

interaction has been confirmed in situ with HAT protein hGCN5L2 (165).  According to Still et 

al. “the function of the TACC proteins may have evolved from performing assembly or 

coordination functions in the centrosome to include a more intimate role in the functional 

evolution of chromatin remodeling, transcriptional and posttranscriptional complexes in the cell 

(161).”   

Recently, the importance of Tacc2, particularly its role as an oncogene, has been called 

into question by the development of phenotypically normal Tacc2 knockout mice (166).  The 

role of Tacc proteins in cancer remains unclear.  Tacc1 and 3 are commonly modified in cancer 

but expression may be up- or down-regulated depending on the type of cancer (159,161); 

however, Tacc2 expression is commonly lost in breast cancer and forced expression decreases 

tumorigenicity of breast cancer cell lines (160).  Tacc2 is encoded on chromosome 10q26.13 

(167), an area commonly lost in prostate cancer.  MXI1 and PTEN are tumor suppressors 

encoded at nearby loci within the region of 10q23-26 allele loss (168).  The Tacc2 knockout 

mouse was not found to have an increased incidence of tumors in the first fifteen months of life 

(166), calling into question the role of Tacc2 in cancer. 

2.2.3 Nell2 

In large part, past research of neural epidermal growth factor like-2, Nell2, has focused on 

expression and function in the nervous system (169-173).  Originally identified as a homolog of 

the chicken protein nel1, this protein is expressed throughout the chick embryo prior to hatching, 

after which, expression becomes limited to neurons (173).  Initial studies report that, outside of 

development, Nell2 expression is also confined in humans to the nervous system (173) but, in 
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fact, subsequent studies demonstrate high expression in the prostate and pancreas.  This raises 

the possibility that Nell2 plays a similar role in these tissues in proliferation, growth inhibition, 

and differentiation (167).  This 816 amino acid protein is encoded by a gene located at 12q13.1 

(167).  Nell2 contains 6 epidermal growth factor (EGF)-like domains, 5 von Willebrand factor C 

domains, and an N-terminal TSP-1 domain (169,171,174).  Both a heavily glycosylated and an 

unglycosylated form exist in neural cells but the impact of glycosylation on the function of Nell2 

remains unclear (172).  Expression of Nell2 is predominantly cytoplasmic but in some neural 

cells the secretion of a homotrimeric form has been reported (169,172,174).  Nell2 

phosphorylation is induced by estrogen and PKC signaling (169,172,174,175).  Aihara et al. 

found that Nell2 activates JNK leading to survival in neural cells (169).  The Nell2 knockout 

mouse grows normally except for decreased plasticity of the hippocampus; no abnormal growth 

or disease was noted in the knockout mouse prostate (171).   

Two studies evaluating the expression of Nell2 in BPH have found that Nell2 expression 

is up-regulated in BPH and also expressed by basal epithelial cells (176,177).  Nell2 may be 

involved in regulating epithelial-stomal homeostasis and, through its impact on growth rate, 

Nell2 may contribute to the pathobiology of prostate cancer.   
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Figure 15.  Nell2 expression decreases in BPH 

 

In a recent study, the copy number of Nell2 was determined by Affymetrix 11.5K single-

nucleotide polymorphism (SNP) arrays (94).  The DNA of seven BPH tissue samples was 

extracted and copy number analysis was performed as previously reported (178).  Briefly, DNA 

was digested with XbaI and ligated to a single primer.  Linkers were ligated to the XbaI 

fragments using T4 DNA ligase.  The linkers provide a primer site for the subsequent PCR 

reaction.  PCR amplification under conditions favoring the generation of 200 base pair amplicons 

was then performed.  These amplicons were fragmented, fluorophore-labeled, and hybridized to 

an Affymetrix SNP array containing over 400,000 probes interrogating over 11,560 SNP loci 

(179).  Using the informatics platform dChip (180), signal intensities at each probe locus were 

analyzed, compared to a normal prostate tissue, representing (178) DNA from 12 individuals 

without any prostatic disease.  The copy number at each SNP locus was determined.   
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Figure 16.  Loss of Heterozygosity of the Nell2 gene in prostate cancer (94) 

 

Two SNPs specifically target the Nell2 locus.  The copy number of Nell2 was evaluated 

by measuring the intensity of expression of both SNP loci within the region spanned by Nell2, 

(Figure 16).  On average, a copy number increase was observed at Nell2 loci in BPH samples 

compared to normal prostate (T-test, p=0.01) (94).  This suggests that Nell2 is involved in 

prostatic disease.  Considering these gene copy increases in conjunction with the microarray data 

showing expression level changes, we surmise that Nell2 is involved in prostate cancer and BPH, 

each involving changes in cellular proliferation.   

2.2.4 FosB 

The FBJ murine osteosarcoma viral oncogene homolog B, FosB, is a member of the Fos family 

of transcription factors that form AP-1 dimers (181,182).  These are leucine zipper proteins 

capable of interacting with DNA at the TRE, TPA response element (182).  The members of this 
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family fall into one of two groups.  Fos proteins, c-Fos, FosB, Fra-1, and Fra-2, heterodimerize 

with Jun proteins to bind the AP-1 binding elements of DNA.  The Jun proteins, c-Jun, JunB, and 

JunD, can either heterodimerize with Fos proteins or homodimerize and interact with DNA 

(182).  Fos/Jun complexes are more stable and have a higher affinity for AP-1 binding elements 

than Jun/Jun complexes.  The most stable complex is FosB/JunD (181).  AP-1 family members 

are induced and activated by growth factors, cytokines, and numerous other physiological and 

pathological stimuli (182).  The ratio of proteins as well as the expression levels of the different 

Fos and Jun proteins impacts gene expression.  There are two forms of FosB.  The full length 

protein is 65 kDa and is able to interact with Jun proteins, bind DNA, and activate transcription 

(183).  There is also a splice variant of 55 kDa able to complex with Jun proteins and bind DNA 

but is incapable of activating transcription (184-188).  Jochum et al. demonstrated that the splice 

variant, ΔFosB, acts as a negative regulator of gene transcription and that abnormal expression of 

ΔFosB in osteoblasts promotes differentiation (189).   

There has been a significant amount of research into the AP-1 proteins since the 

discovery that a number have oncogenic potential.  c- and v-Fos and c- and v-Jun have 

transforming capability in some cell lines (182).  Knockout mice and overexpressing mice have 

been developed but no overt phenotype exists beyond a nurturing defect and somewhat 

diminutive size (189).  In breast cancer, it has been noted that FosB is more highly expressed in 

well differentiated tumors than in poorly differentiated breast cancers (183).  Bamberger et al. 

report a correlation between expression of FosB and well-differentiated estrogen receptor 

positive breast cancer (181).  If the same correlation exists in prostate cancer, increased 

expression of FosB may have potential as a biomarker of more advanced or aggressive prostate 

cancer.  Identification of patients with higher FosB expression may indicate a more aggressive 
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disease enabling clinicians to formulate a different treatment plan than that required of early 

localized disease.  

2.2.5 Purkinje Cell Protein 4 

At present, only a limited body of research exists regarding Purkinje cell protein 4 (PCP4).  In 

1986, this 61 amino acid peptide, also known as neuropeptide-19 or peptide-19, was identified 

and thought to be a neural specific protein (190).  Similar to Nell2, PCP4 expression has 

subsequently been recognized in a number of tissues; most abundantly in brain, kidney, and 

prostate, less prominently in uterus, heart, and pancreas (190,191).  PCP4 is a calmodulin 

binding protein involved in regulating intracellular Ca2+ levels by binding and sequestering Ca2+-

free calmodulin (191).  Kanamori et al. postulate that PCP4 may interfere with apoptosis (191).  

Although it is not yet clear which molecules are activated downstream, Slemmon et al. 

demonstrate that PCP4 signals independently of protein kinase C (192).  Like other proteins 

selected, PCP4 is involved in dysregulation of growth but there is no previously published link 

with cancer.  The over-expression of PCP4 has been identified in human uterine leiomyoma by 

mRNA and immunohistochemistry (191).  The potential role in apoptosis makes PCP4 an 

interesting protein to address in terms of prostate cancer. 

2.2.6 Cysteine-rich, angiogenic inducer, 61 

2.2.6.1 CCN protein family  

CCN1, the first member discovered in the CCN (Cyr61/connective tissue growth 

factor/nephroblastoma over-expressed) family is more commonly known as cysteine-rich, 
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angiogenic inducer 61, Cyr61 (193).  Other members of the CCN family include CTGF (CCN2), 

Nov (CCN3), WISP1 (CCN4), WISP2 (CCN5), and WISP3 (CCN6).  CCN proteins are induced 

in response to various serum growth factors, cytokines, and environmental stresses (194,195).  

CCN proteins secreted into the extracellular matrix exert their influence on cells through 

interactions with integrins in processes like development, wound healing, tissue regeneration, 

angiogenesis, and fibrosis (194).  Each protein in this family is composed of four structural 

domains: insulin-like growth factor binding protein domain, von Willeband type C domain, 

thrombospondin-1 domain (TSP1), and a C-terminal domain with a cysteine knot motif required 

for activity (196).  Many members of the family, including Cyr61, possess an N-terminal 

signaling peptide.  Cyr61 is named for its high concentration of cysteine residues, 10% by mass 

or 38 residues, higher than other members of this family (196).  

2.2.6.2 The normal role of Cyr61 

Expression of Cyr61, as its name indicates, has been affiliated with angiogenesis.  Specifically, it 

promotes endothelial cell growth, migration, adhesion, and survival in vitro; it is a growth factor-

inducible immediate early gene that is a positive regulator of growth (197).  It is important in the 

development of the kidneys, nervous system, muscle, cartilage, bone marrow, and bone (197).  

Brigstock et al. suggest that Cyr61 modulates hormonal pathways or hormone-regulated 

processes making it an interesting target for prostate research (196).  Interestingly, Cyr61 

appears to respond to Vitamin D in human fetal osteoblasts to induce differentiation (198) but 

this has not yet been evaluated in prostate.  Cyr61 binds cell surface integrins, specifically αVβ3 

and αпbβ3, and heparin sulfate proteoglycans (HSPCs) located in the ECM to induce intracellular 

signaling events that include kinase activation and gene transcription (196).  The Cyr61 knockout 

mouse is embryonic lethal (196,199).   
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2.2.6.3 Cyr61 in disease 

Alterations in Cyr61 expression have been noted in a number of diseases.  Cyr61 expression 

decreases in endometriosis (200) and up during acute renal failure (193) and in atherosclerotic 

and arteriosclerotic vessels (196).  Cyr61 may be involved in disrupting the stromal-epithelial 

balance.  This was demonstrated in experiments in which Cyr61 specific antibodies blocked 

Cyr61’s ability to stimulate cell proliferation (201).   

2.2.6.4 Cyr61 in cancer 

In genomic studies of various cancers, Cyr61 commonly exhibits altered expression (202-214).  

These expression changes have been linked with, depending on the type of cancer, either 

enhanced or inhibited tumor growth.  Modulation of Cyr61 expression has been observed in 

melanoma, breast, ovarian, hepatocellular, lung, colorectal cancer, and esophageal squamous cell 

carcinoma.  In early studies Pilarskey et al. found that Cyr61 mRNA is down-regulated in 

prostate cancer compared to normal adjacent-to-cancer tissue (215).  More recently, in our study 

comparing BPH to healthy donor prostates, symptomatic BPH samples exhibited moderately 

elevated levels of Cyr61 mRNA while a subset of prostate cancer samples also evaluated 

exhibited expression greater than either BPH or donor prostates (29).  In additional analysis of 

expression in the prostate, Sakamoto et al. showed that mRNA expression of Cyr61, by in situ 

hybridization, localizes to the basal cells in normal prostate tissues (216).  Additional evidence 

substantiating the importance of Cyr61 in prostate cancer was recently published by Sun et al.; 

the expression of Cyr61 in prostate cancer cells was found to enhance migration, invasion, and 

proliferation and showed that Cyr61 regulates Rac1 signaling (217), a mechanism by which 

Cyr61 potentially may exert its influence on cell growth and motility. 
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2.3 MATERIALS AND METHODS 

2.3.1 Cell Culture 

LNCaP, PC3, and LAPC4 prostate cancer cells were obtained from ATCC and maintained in 

RPMI with 10% FBS and 5% penicillin/streptomycin, P/S.  LAPC4 prostate cancer cells were 

maintained in IMDM media with 10% FBS and 5% penicillin/streptomyin supplemented with 

testosterone. CWR22R.v1 were generously provided by the lab of Dr. John Isaacs and 

maintained in RPMI with 10% FBS and 5% P/S. All cells were maintained at 37°C and 5% CO2. 

Cells were fed every 3-4 days and passaged when cells reached about 90-95% confluence. 

2.3.2 Tissues and Tissue Microarrays 

Healthy normal donor, prostate cancer, and normal adjacent to prostate cancer tissue samples, for 

RNA and protein isolation, were obtained from the University of Pittsburgh Medical Center 

Tissue Bank.  Paraffin embedded donor prostate tissue was obtained from organ donors.  The 

tissue bank provided >500 mg of tissue which was snap frozen in liquid nitrogen within 30 min 

of excision and stored at -80°C.  All samples were submitted for pathological evaluation.  

 

Tissue microarray analysis (TMA) sections were obtained from the TMA facility in the 

Department of Pathology at the Johns Hopkins School of Medicine.  Tissue specimens used for 

making the 5 high-density TMAs were obtained from 200 consecutive radical retropubic 

prostatectomies performed at the Johns Hopkins Hospital between 2000-2001.  All specimens 

consisted of tissue dissected immediately after surgical removal and immersed in 10% neutral 
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buffered formalin prior to paraffin embedding and processing for IHC.  High-density TMAs 

were utilized to determine 1) cellular distribution of staining for Cyr61 in NAT (histologically 

normal tissue from a tumor bearing prostate), high-grade prostate intraepithelial neoplasia (PIN), 

and prostate cancer tissue and 2) in evaluation of Cyr61 expression in a unique nested case-

control TMA set established to evaulate prostate cancer progression.  Additionally, 13 BPH 

tissues obtained by transurethral resection of the prostate (TURP) due to BPH were analyzed.  

Histopathological evaluation was first performed on each H&E stained TMA spot and BPH slide 

by a urologic pathologist to confirm final target diagnosis.  Tissue used for real time PCR 

analysis was acquired from the University of Pittsburgh Medical Center.  Samples (>500 mg) 

were excised and snap frozen in liquid nitrogen within 30 min of excision and stored at −80°C 

until extraction of RNA.  All samples were submitted for pathological evaluation.    

2.3.3 Immunohistochemistry 

Cyr61 (H-78) rabbit polyclonal IgG antibody epitope 163-240 (sc-13100) (Santa Cruz 

Biotechnologies, Santa Cruz, CA) or α-PCP4 rabbit polyconal antibody developed against the 

peptide sequences IQSQFRKFQKKK, amino acids 46-57 (α-PCP4 pep2), or 

GQKKVQEEFDIDMD, amino acids 22-35 (α-PCP4 pep3) (Sigma-Genosys, now Sigma-

Aldrich, St. Louis, MO) were used for staining tissue sections and tissue microarray slides.  

Immunostaining, including deparaffinization and antigen retrieval, was performed on a Ventana 

Benchmark XT autostainer (Ventana Medical Systems, Inc. Tucson, AZ) using the I-view DAB 

detection Kit (Ventana Medical Systems, Inc., Tuscon, AZ).  The slides were incubated for 90 

minutes with EDTA buffer for antigen retrieval and then incubated with primary antibodies 

(1:200) for 32 minutes at room temperature.  The reaction was visualized by peroxide/ 
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diaminobenzidine tetrahydrochloride (DAB).  The slides were then counterstained with 

hematoxylin. 

2.3.4 Scoring and TMA Analysis 

Due to the diffuse and uniform intensity of expression of CYR61 by all glandular epithelial cells 

in a given (tumor, PIN or NAT) TMA spot, assessment of area of staining (percentage of cells 

stained) in each TMA spot was not required.  A visual intensity score was assigned for each spot 

by a urologic pathologist using a three tier intensity system. Strong intensity staining was scored 

as 3, moderate as 2, weak as 1, and no staining as 0.  BPH slides were analyzed by the same 

method and pathologist. 

 

In order to validate the accuracy of the above visual scoring method, the semiquantitative visual 

intensity score results, for one of the five TMA sections, were compared to a quantitative 

analysis of the Cyr61 staining intensity obtained by image analysis.  The latter was performed by 

capturing TMA core images using the SCANScope XT scanner (Aperio Technologies, Vista, 

CA). Images were then imported into the TMAJ Image application 

(http://tmaj.pathology.jhmi.edu) as described previously.  Subsequently, the average intensity 

and area of staining in each TMA core image was calculated using FrIDA (Framework for Image 

Dataset Analysis), a custom open source image analysis software package (available at 

http://sourceforge.net/projects/friddajhu/) as described in Gurel et al. (218).  To eliminate any 

potential bias due to variation in epithelial to stromal components from core to core, the total 

area of epithelial cells in each spot was first calculated and the ratio of the (sum of intensity of 
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Cyr61 expression/total area of epithelial cells) was used as the final FrIDA analysis intensity 

score in each TMA spot. 

2.3.5 Nested Case-Control Study: Rational, Parameters and Tissues  

Rationale: The identification of a common set of cases and matched controls would facilitate 

collaborative basic, clinical, and applied research on prognostic and risk factors for progression 

after prostatectomy.  

Study Design: Case-control study nested in a cohort of radical prostatectomy patients with 

incidence density sampling of matched controls 

Parent Cohort: 1) Database maintained by Dr. Alan Partin.  2) 4,860 men who underwent radical 

prostatectomy for a diagnosis of clinical organ-confined prostate cancer in 1993 or later 

Exclusions (total of 365 men excluded; Table 8): 1) Excluded men (n=7) who had follow-up data 

(variable name=exposure) that was longer than possible based on the time that had elapsed 

between RRP date and 2004 (i.e., exposure > 11 years or exposure > 2004 – RRP date).   

2) Excluded men (n=171) who had treatment (hormonal, radiation, saw palmetto) prior to 

surgery (variable name = pre_RRP_treatment = 1), leaving men with missing values for 

pre_RRP_treatment as well as those who are a definitive ‘no’ for radiation treatment.   

3) Excluded men (n=62) with missing follow-up time (variable name =exposure = .).   

4) Excluded men (n=11) with missing or unknown pathologic Gleason sum (variable name = 

postgl in . , 0, 98, 99).   

5) Excluded men (n=10) with missing or unknown pathologic stage, which occurred when all of 

the stage and margins variables (ln, sv, ecp, fcp, oc, sm) was equal to 0 when ln, sv, ecp, fcp, and 

oc all had a value of 0, but sm had a value of  . or 1.   
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6) Excluded men (n=6) who had radiation therapy after prostatectomy (variable name = status), 

which may have obscured observation of progression or time to progression 

41=rad tx with later local recurrence 
42=rad tx with later distant mets 
43=rad tx with later both local & distant mets 

7) Excluded men (n=98) with oc = 1 and sm = 1 or . because it is unclear whether the tumor was 

truly organ confined. 

Case and Control Definitions:  
1) Cases are men who progressed as indicated by the following: 
 30=increase in PSA 
 31=local recurrence 
 32=distant mets 
 33=both local and distant mets 

40=decrease in PSA through rad tx 
60=died from prostate cancer 
70=died from another cause but with prostate cancer recurrence 

2) Possible controls are men with the following status variable values: 
 20=no recurrence 
 50=died from any non-cancer related cause 
 or who progressed (status=30, 31, 32, 33, 40, 60, 70) in a subsequent time interval 
New Variables:  1) Grouped stage variable (variable name = sstage):  
     sstage = 3 if ln = 1 or sv = 1 (N1+T3b) 
     sstage = 2 if ecp = 1 or fcp = 1 (T3a) 
    sstage = 1 if oc = 1 and sm = 0 (T2) 
2) Grouped grade variable (variable name = pgl):  
 pgl = 5 if postgl in (2, 3, 4, 5) 
 pgl = 6 if postgl = 6 
 pgl = 7 if postgl = 7 
 pgl = 8 if postgl in (8, 9, 10) 

3) Grouped race variable (variable name = race): recoded unknown, other, and missing 

race (0, 5, .) to race = 5 

Control Sampling:  1) Cases (as defined above) occurred over the course of nine years 

(1993 onward). Exact progression times were not recorded in part because they could not be 

determined for biochemical progression. All men’s exposure times were left aligned at the date 

of prostatectomy with case failure times given in 1 year intervals of time since prostatectomy. 
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Nine 1-year wide risk sets were created defined by the exposure variable. Sampling of controls 

was done within those nine year intervals. A man selected as a control in an earlier risk set was 

eligible to be sampled again in a later risk set as long as he was still alive and under follow-up, 

and had not yet progressed. A man who progressed was eligible to be selected as a control in an 

earlier risk set. See the figure below for graphical representation of the sampling approach. These 

sampling rules are parallel to the statistical analysis performed when using Cox proportional 

hazards regression. 

2) For each year two temporary datasets were created for use in (3) 

a) a set of all cases who were diagnosed in that year since prostatectomy; those 

cases who were selected as controls in previous years were included as cases during the 

year since prostatectomy in which they progressed 

b) a set of all possible controls who had not progressed by that year since 

prostatectomy, who were still alive, and still under follow up; men selected as a control in 

a prior year since prostatectomy were eligible to be selected again in subsequent years as 

a controls or to become a case   

3) The matching variables were: pathologic stage (stage), pathologic Gleason sum (pgl), 

race, and age. To optimize the closeness of the matching of the controls to the cases, a variable 

for the difference in the value between the case and the possible control for each matching 

variables was generated. A SAS macro (Tassoni et al. “One-to-one matching of case/controls 

using SAS software”) was used to optimize the closeness of the matching. The control with the 

smallest difference from a given case on all four matching variables was selected. Once that 

control was selected from the risk set, he could not be selected as a control for another case 

during the same one year-interval since prostatectomy, although he could be selected as a control 
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in an earlier or later year interval. Because stage and grade are such strong predictors of 

progression and because the goal is to study factors that influence progression independent of 

stage and grade, we matched the cases and controls very closely on stage and grade. When an 

exact match could not be obtained, matching was loosened in the order as follows: age only (up 

to ± 10 years); race only; age and race; Gleason sum only (± 1); Gleason sum (± 1) and age (up 

to ± 10 years); Gleason sum (± 1) and race; Gleason sum (± 1), age (up to ± 10 years), and race; 

stage only (± 1), stage (± 1) and age (up to ± 10 years); stage (± 1) and race; stage (± 1), age (up 

to ± 10 years), and race; any other loosening that will produce a match. 

2.3.6 Protein Isolation 

Total cell protein lysates were obtained by three methods.  First, total cell protein lysates were 

obtained by washing cells once in PBS, and scraping cells in ice cold PBS + sodium vanadate.  

Cells and cellular debris were centrifuged at 3,000 RPM for 5 minutes, the supernatant removed 

and the pellet re-suspended in RIPA Buffer (1%Nonidet P-40, 0.5% sodium deoxycholate, 0.1% 

SDS, 55 mM Tris-HCl, ph7.5) with 1x protease inhibitor cocktail (Promega, Madison, WI).  

Following 6 freeze-thaw cycles (15 minutes at -80°C and thawing on ice), lysates were 

centrifuged at 13,000 RPM for 10 minutes at 4°C.  Supernatants were collected, and protein 

concentrations measured.  Second, from cell pellets of various prostate cell lines, 6S, BPH1, 

BRF-55T, LAPC4, VCaP, DuCaP, PC3, Du145, E006AA, E006AA-T and E006AA-T AR 

transfected cells (provided by the lab of Dr. John Isaacs), total protein lysates were obtained by 

repeated shearing the of cells using a 26-guage needle lysis in Triton-X100 buffer (1% triton-

X100, 10mM Tris pH7.4, 150mM NaCl, 1mM EDTA) containing Protease Inhibitor Cocktail 
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tablets (Roche, Indianapolis, IN) and Aprotonin and PMSF.  Lysates were centrifuged at 13,000 

RPM for 10 minutes at 4°C.  Supernatants were collected, and protein concentrations measured. 

Last, in experiments validating Cyr61 expression in all transfections, cells were trypsonized and 

counted.  Cell pellets were resuspended in lysis buffer (20mM Tris, 140mM NaCl, 1mM EDTA, 

and, added fresh before each use, 1% NP-40, 1mM DTT, 1% sodium deoxycholate, 1x Phospho-

Stop (Roche, Indianapolis, IN) with protease inhibitors, complete mini. EDTA-free protease 

inhibitor (Roche, Indianapolis, IN), for 1x106 cells, 50μl lysis buffer.   Pellets were resuspended 

and incubated on ice for 15 min before they were spun at 14,000 rpm at 4°C.  The supernatants 

were transferred and stored at -20°C. 

2.3.7 Immunoblot Analysis 

Lysates (30μg) were subjected to SDS-polyacrylamide gel electrophoresis (4-15% gel) and 

electrotransferred onto PVDF (Millipore, Bedford, MA).  Membranes were blocked in 5% milk 

in PBST and probed with anti-Cyr61 primary polyclonal antibody (1:200 dilution) (Santa Cruz 

Biotechnologies, Santa Cruz, CA), anti-HGF monocolonal antibody (1:200 dilution) (Santa Cruz 

Biotechnologies, Santa Cruz, CA), or (1:20,000 dilution) β-actin monoclonal antibody (Sigma, 

St. Louis, MO) for 1 hour.  After washing with PBST, blots were incubated for 1 hr with 

peroxidase-conjugated anti-rabbit IgG (1:5000 dilution) or anti-mouse IgG (1:40,000 dilution) 

(Santa Cruz Biotechnologies, Santa Cruz, CA) for Cyr61 or β-actin, respectively, washed again 

and detected by enhanced chemiluminescence, ECL (Thermo Fisher, Rockford, IL).   
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2.3.8 RNA Isolation 

Frozen BPH, donor, normal adjacent and tumor tissues, obtained from the University of 

Pittsburgh Department of Pathology as described previously, were minced and homogenized on 

ice using a rheostat homogenizer in RLT buffer and centrifuged at 10,000 rpm at 4°C.  Total 

RNA was extracted using the RNeasy Kit (Qiagen, Valencia, CA) as per manufacturer’s 

instructions.  Briefly, an equal volume of 70% ethanol was added to the RLT/supernatant and the 

mixture was loaded on the RNeasy column.  Following centrifugation, the column was washed 

with Buffer RW1 and twice with RPE, each wash separated by centrifugation.  RNA was 

released from the column by RNase free water.  After centrifugation, the flow-through was 

stored at -20°C.  RNA was quantified by spectrophotometer at OD 260/280 nm.  For RNA 

samples to be analyzed by qPCR at the University of Pittsburgh Clinical Genomics Facility, 

RNA samples were treated with the DNase I kit (Ambion, Austin, TX) to remove genomic DNA 

contamination.  For RNA isolated from CWR22 transient and stable transfected cells for 

quantitative PCR analysis, Qiagen’s on-column DNase digestion was performed.  Briefly, The 

Buffer RW1 wash of the column was divided, half the volume before DNase treatment and half 

after.  80 μl of DNase I incubation mix (10 μl of DNase I stock solution with 70 μl Buffer RDD 

mixed in advance) was added to each column and incubated for 15 min at room temperature.  

The second ½ volume of Buffer RW1 was added to the column before resuming the protocol 

described above. 
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2.3.9 Semi-quantitative PCR 

RT first strand synthesis. cDNA was synthesized using the Active Motif reverse transcription kit 

(Carlsbad, CA).   

Semi-quantitative PCR. PCR reactions were performed on a Eppendorf Mastercycler Gradient 

machine in a total reaction volume of 50 μl containing 25 μl RedMix Plus 1.5 mM MgCl2 master 

mix (GeneChoice, Frederick, MD), 1μl each forward and reverse primer, and 1μl cDNA.   

 

Gene Forward Primer , 5'–3' Reverse Primer , 5'–3' Amplicon 

FosB Full GAGGAAGAGGAGAAGCGAAGG CAGGTGAGGACAAACGAAG 262 

FosB Both CCACTGCCATCGGACAGGAGGA AGGACTCCAGCCCACCCCACAG 468 

Nell2 CCTGTATTGCCGCTAATGTGTG GCGGGCAGCACTCATTCTCT 660 

Cyr61 GGCTGCGGCTGCTGTAAGGTC GTTCGGGGGATTTCTTGGTCT 739 

PCP4 CGGGACTGAGCTGTTGAGTTAGA TTGCAGGAGGAATGAAAATGG 454 

Tacc2 ACTGGAGAGGCAGGTGTCAG CTGGGATGGTCTCTGCTCTC 451 

Amplification was performed under the following conditions: Nell2, Cyr61, and PCP4 - 94°C for 

3 minutes, and 35 cycles of 94°C for 30 seconds, 60°C for 45 seconds, and 72°C for 3 minutes; 

Tacc2 -  94°C for 3 minutes, and 35 cycles of 94°C for 30 seconds, 57°C for 45 seconds, and 

72°C for 3 minutes; FosB Full, FosB Both - 94°C for 3 minutes, and 30 cycles of 94°C for 30 

seconds, 60°C for 45 seconds, and 72°C for 3 minutes.  Amplification products were separated 

by electrophoresis through a 1% agarose gel with ethidium bromide and visualized by UV 

illumination.  GapDH was used as a positive control: forward – 

CGTGGAGTCTACTGGTGTCTTCACC and reverse – 

GATGGCATGGACTGTGGTCATGAGC.  
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2.3.10 Quantitative PCR 

RT first strand synthesis. Hex-RT was performed on 1μg of total RNA, 10 U/μl of MMLV RT 

enzyme (Epicentre, Madison, WI), 40 U/μl of RNase Inhibitor (Promega, Madison, WI), 1.25 

mM hexamer primers, 25 mM of dNTPs, 10μl of 10x PCR buffer and 75mM MgCl2.   

Quantitative PCR.  Quantitative gene expression analysis experiments analyzing tissue samples 

were performed at the Clinical Genomics Facility of the University of Pittsburgh Cancer 

Institute.  Primer Express (Applied Biosystems, Foster City, CA) was used to design all primers.  

RT-PCR was used to confirm q-PCR primer specificity prior to use in real time qPCR.   

 

Gene Forward Primer (5'–3') Reverse Primer (5'–3') Probe (5'–3') 

FosB 
Full 

AACCTGACGGCTTCTCTCTT

TACA 

GGGCAGGTGAGGACAAA

CG 

CTTCCCCGTTGTTAACCCTTC

GTACACTTC 

FosB 
Both 

CAGGCGGAGACAGATCAGT

TG 

GCACAAACTCCAGACGTT

CCTT 

CGGAGATCGCCGAGCTCCAA

AA 

Cyr61 GCAGCCTGAAAAAGGGCAA AACATCCAGCGTAAGTA

AACCTGAC 

GCAAGACCAAGAAATCCCCC

GAACC 

Nell2 CCATGGAGTCTCGGGTCTTA

CT 

AGGGAAGGGTCCACACC

AA 

TCTTCGGTCTCGGAGCAGTTT

GGG 

PCP4 GAGCGACAAGGTGCTGGG CTTGAACTTTCTTCTGTCC

ATCATTTT 

AATGATGGACAGAAGAAAGT

TCAAGA 

Tacc2 CCTTGTACCTTATGTTTGAC

ACTTCTCA 

TCAAAACTTGACCCTGAA

CACG 

TGTCAAGTCATCTCCCGTCCG

CATG 

ß-
GUS 

CTCATTTGGAATTTTGCCGA

TT 

CCGAGTGAAGATCCCCTT

TTTA 

TGAACAGTCACCGACGAGAG

TGCTGC 
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Amplicons: FosB Full = 104bp; FosB Both = 94bp; Cyr61 = 78bp; Nell2 = 85bp; PCP4 = 80bp; 

Tacc2 = 100bp. Expression of genes of interest were normalized against the housekeeping gene 

Glucuronidase β (GUS).  5’ FAM fluorescent dye and 3’ TAMRA quencher dye.  Each 50μl 

amplification reaction contained 1x Taqman universal PCR mastermix (containing AmpliTaq 

Gold DNA polymerase, 25 mM dNTPs, passive reference (ROX), and optimized buffer 

components including 3.5 mM MgCl2) with 5μl cDNA, 200nM primers and 100nM probe.  

Amplification was performed by 95°C for 12 minutes, and 40 cycles of 15sec at 95°C, and 1min 

at 60°C run on the ABI Prism 7700 sequence detector (Applied Biosystems, Foster City, CA). 

Reactions were carried out at two concentrations (1x and 1/4x) for each sample, along with a no-

template control containing water and a positive control containing cDNA.  Expression of genes 

of interest was normalized for unknown samples by comparison of RNA loading as determined 

expression of the housekeeping gene GUS.  For quantification, analysis was done with the Δ 

cycle threshold (Ct) value (Ct gene of interest – Ct housekeeping gene) to generate relative 

expression.  For quantification, results were analyzed by the ΔΔCt method (Δ cycle threshold 

(Ct) sample - ΔCt value calibrator).  Conversion between ΔΔ Ct and relative gene expression is 

fold induction = 2-ΔΔ Ct.  A master cDNA mix (derived from a mix of normal, BPH, and 

prostate cancer tissue) was used in all primer/probe optimization experiments.  Gene expression 

analysis of CWR22 transient and stable transfections were performed on the Bio-Rad iCycler 

(Bio-Rad, Hercules, CA) at the Brady Urological Institute of the Johns Hopkins School of 

Medicine using the same Cyr61 and Gus primers described above. Experiments were performed 

using a similar protocol to the one described above, including the Hex-RT and the same primers, 

but with the modification that with the exception that iTaq Supermix with ROX (Bio-Rad, 
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Hercules, CA) used instead of the Taqman universal PCR mastermix and reaction volume was 

cut from 50μl to 25μl. 

2.3.11 Cloning 

Cyr61, gene accession BC16952, was obtained in the pCMV-Sport6 expression plasmid 

(OpenBiosystems, Huntsville, AL).  Cyr61 sequence was confirmed by sequencing (Seqwright, 

Houston, TX) and restriction digest with BstX1 and Eag1.  To obtain a plasmid able to express 

Cyr61 in mammalian cells with G418 antibiotic resistance, Cyr61 was PCR cloned into a pdsRed 

vector (Invitrogen, Carlsbad, CA).  Primers were designed with the guidance of Dr. Sushant 

Kachhap such that an XhoI and EcoRI site were added up and downstream of the Cyr61 open 

reading frame: forward primer: 5’-ATTATCTCGAGATGAGCTCCCGCATCGCCAGGGC-3’ 

and reverse primer: 5’-CATCGGAATTCCTAGTCCCTAAATTTGTGAATGTCAT-3’.  The 25 

µl PCR reaction with platinum taq, a high fidelity DNA polymerase, and was performed at 95°C 

for 10 minutes followed by 35 cycles of 30 sec at 95°C, 30 sec. at 60°C and 1 min at 70°C.  The 

product of this reaction was run on 1.5% Agarose DNA gel (100V for 1hour).  A single band was 

visualized by Sybersafe (Invitrogen, Carlsbad, CA) and cut from the gel.  The DNA was isolated 

using the Gel Extraction Kit (Qiagen, Valencia, CA).  Restriction digest for 2 hours at 37°C with 

Xho1 and EcoR1 of the purified PCR product and pcDNA3.1 plasmid resulted in the desired 

fragments (Cyr61 flanked by EcoRV and Nco1 sticky ends and pcDNA3.1zeo with the MCS cut 

at the EcoRV and Nco1).  These were visualized on a 1% agarose gel and purified using the 

QIAquick gel extraction kit (Qiagen, Valencia, CA) by the manufacturer’s instructions. Briefly, 

buffer QG was added in 3:1 ratio to the volume of the gel (the excised band) and the mixture 

incubated at 50 for 10min.  1 gel volume of isopropanol was added, the total volume applied to 
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the QIAquick column, and then spun for 1 minute at 13,000 RPM.  The column was washed 

once with 0.5mls of buffer QG, washed with 0.75ml of buffer PE, and, following an extra spin to 

ensure removal of all ethanol, the column was transferred to a clean microcentrifuge tube and 

eluted with TE.  The Cyr61 fragment was ligated into pdsRed using NEB’s Quick ligation T4 

DNA ligase kit (NEB, Ipswich, MA) to form pdsRed-Cyr61.  Sequence and orientation were 

confirmed by restriction digest with Sca1.  pdsRed was generously provided by Dr. Sushant 

Kachhap of the Levitsky lab.  All plasmids were transformed into One Shot Top10’compotent 

bacteria (Invitrogen, Carlsbad, CA) by incubation of 1μg of plasmid DNA in 50μl of bacteria at 

30°C for 30 minutes, 42°C for 45 seconds, and placed back on ice before adding 450μl of warm 

SOCS media.  The whole reaction was incubated with shaking at 225 rpm in a 37°C incubator 

for 1hr.  The transformed bacteria were plated on pre-warmed LB plates with the appropriate 

antibiotic and grown overnight in a 37°C incubator.  Individual colonies were selected and 

cultured overnight in either 5 or 125 mls of LB+Ampicillin depending on the desired yield and 

plasmid preps performed using the QIAprep Spin Miniprep Kit (Qiagen, Valencia, CA) or the 

PureLink HiPure Plasmid Maxiprep Kit (Invitrogen, Carlsbad, CA) according to the 

manufacturer’s instructions. 

2.3.12 Transient and Stable Transfection 

CWR22 cells were plated in 6 well plates and allowed to grow up a minimum of 48 hours to 

about 75% confluence.  Lipofectamine 2000 reagent was used according to the protocol 

suggested by Invitrogen:  per well - 10μl Lipofectamine 2000 in 50μl of Optimem Media mixed 

with 2.5μg of pdsRed-Cyr61, or p-dsRed (visual control of transfection efficiency) in 500μl of 

Optimem Media.  The 100μl mixture was incubated for 25 minutes and brought up to 500μl with 
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Optimem Media and added to cells, allowed to incubate for 4 hours after which 1.5mL of RPMI 

with 10% FBS.  For validation of the effect of transient transfection, protein and RNA were 

harvested at 48, 72, or 96 hours post-transfection.  For stable transfections, CWR22 cells were 

grown in RPMI with 10% FBS and 1% P/S plus 400μg/ml G418 (Invitrogen, Velencia, CA).  

Media + G418 was refreshed every 2-3 days during selection process and every 2 days thereafter. 

2.3.13 Microarray Analysis 

Genes of interest were selected based on results of microarray analysis performed at the 

University of Pittsburgh School of Medicine.  Samples were hybridized to the 42K Affymetrix 

HuGeneFL array and the raw data was analyzed with Affymetrix software, GENE CHIP V.3.0 

with ANOVA, principal component analysis (PCA), and hierarchical clustering analysis 

performed using EXPERIMENTAL DATA MINING TOOL V.1.0 S-Plus.  For the PCA, the 

correlation matrix on nontransformed expression values was used. 

 

For the evaluation of gene expression by CWR22 Cyr61 clones, aliquotes of DNase treated RNA 

from the CWR22RV1 parental line (in duplicate) and 5 transfected clones (2 that express low 

and 3 that express high levels of the Cyr61 protein) were provided to the Johns Hopkins 

Microarray Core facility for hybridization to the Human Exon 1.0 ST Array (Affymatrix, Santa 

Clara, CA).   
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2.3.14 Growth and Survival Assays 

CWR22 cells (parental line, Cyr61, and dsRed control clones), were cultured in growth media 

(RPMI plus 10% FBS, 1% P/S) and plated at 10,000 cells/well in triplicate in 96-well tissue 

culture plates (Becton Dickinson, San Jose, CA) and measured each day for 6 days by WST1 

assay following the manufacturer’s protocol (Roche, Indianapolis, IN).  Briefly, cells were plated 

in 100μl on day 0.  10μl of WST1 reagent was added to each well and plates were returned to the 

37°C incubator.  After 3 hours, plates were shaken for 5 minutes and the reduction of the WST-1 

reagent results in a color shift read on a microplate reader at 450nm.  Survival advantage was 

assessed by exposing cells to 25μM Cisplatin (48 and 72 hours, DMF control) or 10nM 

Docetaxel (24 and 48 hours, DMSO control) or to media made with low (2%), no, or charcoal 

stripped FBS (72 hours). 

2.3.15 Cell Doubling Time 

CWR22RV1 cells (parental, Cyr61, and control clones) were cultured in growth media (RPMI 

plus 10% FBS, 1% Pen/Strep) and plated at 50,000 per well in 6-well plates.  Cells were 

counted, duplicate wells counted in duplicate, via a Nexelcom Cellometer (Lawrence, MA) every 

day for 6 days.  Cell growth was analyzed graphically and doubling time was determined by 

calculating cell doubling time (hr) = inv (((log (final count) – log (initial count)) x 3.32) / time).   

 

CWR22RV1 (50,000 cells/well), LNCaP (50,000 cells/well), PC3 (20,000 cells/well), and E006-

T cells (10,000 cells/well) were plated in duplicate wells in growth media (phenol red free RPMI 

plus 10% charcoal stripped FBS, 1% Pen/Strep) supplemented with 2μg/ml, 200ng/ml, 20ng/ml 
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or 0ng/ml recombinant Cyr61 (PeproTech Inc., Rocky Hill, NJ).  After four days of growth, cells 

were counted via cellometer.  Doubling time was determined by calculating cell doubling time 

(hr) = inv (((log (final count) – log (initial count)) x 3.32) / time). 

2.3.16 Migration and Invasion 

The BD BioCoat Matrigel Invasion Chambers (BD Biosciences, Bedford, MA) were utilized to 

perform invasion assays.  The matrigel invasion chambers were allowed to warm to room 

temperature and then re-hydrated in serum free media for 2 hours and after which 0.75 ml of 

media with 10% FBS was added to the bottom well.  Control wells were also prepared with 0.75 

ml of media in the bottom well.   During re-hydration, cells were trypsinized, counted on the 

Nexelcom Cellometer and re-suspended at 500,000 cells/mL.  100µl of the cell suspension 

(50,000 cells) was diluted up to 500µl of media containing 2% FBS and added to the control and 

matrigel inserts in duplicate.  The chambers were incubated for 22 hours before the membranes 

were stained.  The non-invaded cells were removed by scrubbing the inside of the inserts with 

sterile cotton-tipped applicators.  The inserts were stained in 0.5ml of 0.5% crystal violet/25% 

methanol for 5+ minutes, washed with water and visualized on a Nikon Eclipse TE200-E 

microscope. The invaded cells in 4 separate frames were counted for each membrane at 20x 

magnification (2 wells per cell type with 4 counts per well). 

 

CWR22RV1, LNCaP, PC3, and E006-T cells were plated at 25,000 cells/well in duplicate wells 

in growth media (phenol red free RPMI plus 10% charcoal stripped FBS, 1% Pen/Strep) in the 

insert.  0.75 ml of growth media (phenol red free RPMI plus 10% charcoal stripped FBS, 1% 

Pen/Strep) supplemented with 2μg/ml, 200ng/ml, 20ng/ml or 0ng/ml Cyr61 or 100ng/ml EGF 
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(as a positive control of migration) was plated in the bottom well.  Cells were allowed to migrate 

for 22 hours before staining and invaded cells were counted, as described above. 

2.3.17 Statistical Analysis 

Statistical analysis for the TMA studies was performed by Dr. Elizabeth Platz and Alison 

Mondul, of the Johns Hopkins School of Public Health.  To test the correlation between FrIDA 

analysis intensity score and pathologist assigned visual intensity score, a correlation coefficient 

was calculated by pairwise correlation analysis using Stata 9.0 statistical package (Stata Corp., 

College Station, TX).  

 

The median staining intensity by spot type was determined by first calculating the median 

staining intensity of all spots of a given type for a single individual and then calculating the 

median across all individuals.  Paired analyses of median staining intensity between spot types 

were conducted using the Wilcoxon signed rank test. Paired analyses of whether at least one spot 

for an individual met a threshold value comparing between spot types were conducted using 

McNemar’s test.  Paired analyses were also conducted using a repeated measures modeling 

approach that used a robust variance, which yielded very similar results (data not shown).  

Analyses comparing median staining intensity in cancer spots between men with Gleason sum > 

8 and those with Gleason sum <8 were conducted using the Wilcoxon rank sum test. 
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3.0  GENE EXPRESSION CHANGES IN PROSTATE CANCER  

3.1 INTRODUCTION 

In the pursuit of novel biomarkers of prostatic disease (BPH and prostate cancer), an evaluation 

of genomic expression in healthy donor, symptomatic BPH, asymptomatic BPH, and 

histologically diagnosed BPH adjacent to prostate cancer tissues (NAT) was undertaken by 

Affymetrix gene expression analysis (29).  To narrow in on novel targets important in the 

etiology of prostate cancer, gene expression in 10 healthy donor prostate tissues was compared to 

expression in tissue from 6 men with prostate cancer by microarray analysis and, of the over 400 

differentially expressed genes, a panel of genes whose expression was significantly and 

consistently altered in prostate cancer were selected for further analysis.  Also after consulting 

the literature at the time, the list of targets was narrowed further to those with potential impact in 

prostate cancer.  

Table 2.  Genes of interest 

Protein Gene 
Expression 

Chromosomal 
Location 

Protein 
Size Protein Function 

MT2A Down-regulated 16q13 6.5 kD Heavy metal chaperone 
Tacc2 Down-regulated 10q26.13 30.1 kD Heterochromatin Organization 
PCP4 Down-regulated 21q22.2 7 kD Calcium Homeostasis 
Nell2 Up-regulated 12q13.11 9 kD Intracellular Signaling 
FosB Up-regulated 19q13.32 36 kD Transcription Factor 
Cyr61 Up-regulated 1p22.3 37-41 kD Extracellular Matrix Signaling  
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3.2 RESULTS 

3.2.1 Expression of MT2A in prostate cancer 

To confirm results from the gene expression microarray analysis (Figure 17) (29) for MT2A in 

the prostate, semi-quantitative PCR (Figure 18) was employed to compare gene expression in 

healthy donor prostate tissue with paired tumor/normal adjacent prostate tissue.    

 

 

Figure 17.  Genomic analysis of MT2A expression in prostate tissues and cell lines 

 

From the semi-quantitative analysis, expression of MT2a mRNA was virtually identical 

in prostate donor, adjacent-to-tumor, and tumor tissues; no differences were evident.  This 

expression was considered semi-quantitative given that expression of the housekeeping gene 

glyceraldehydes-3-phosphate dehydrogenase (GapDH) was comparable between the six tissues 

(data not shown).  
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Figure 18.  Expression analysis of MT2A in prostate tissues 

Semi-quantitative PCR analysis of 2 paired tumor/normal and 2 healthy donor prostate tissues 

 

Additionally, the many sets of gene expression data submitted to Oncomine do not show 

significantly altered expression of MT2A in prostate cancer (219).  One study demonstrated 

decreased expression in metastatic compared to primary prostate cancer (219) and this suggests 

that MT2A may have a metastasis suppressor properties that warrant further investigation.  

However, given that the differental expression of MT2A seen in the microarray analysis was not 

reproducible in primary prostate cancer tissues, further analysis of MT2A as a potential 

diagnostic biomarker in prostate cancer was not pursued.  

 

 

Figure 19.  Expression of MT2A is decreased in metastasis compared to primary prostate cancer 
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3.2.2 Expression of Tacc2 in prostate cancer 

To confirm gene microarray analysis (Figure 20) (29) and more fully characterize Tacc2 

expression in the prostate, semi-quantitative PCR (Figure 21) and quantitative PCR analyses 

(Figure 22) were employed to compare gene expression in healthy donor prostate tissue with 

tissues obtained from prostates that contained cancer.   

 

 

Figure 20.  Genomic analysis of Tacc2 expression in prostate tissues and cell lines 

 

 

 

Figure 21.  Expression of Tacc2 in prostate tissue 

Semi-quantitative PCR analysis of 2 paired tumor/normal and 2 healthy donor prostate tissues 
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Semi-quantitative expression analysis of Tacc2 illustrated a moderate increase in 

adjacent-to-tumor and tumor tissues.  This pattern is the opposite of that reported in the 

preliminary microarray analysis (Figure 19).  Expression analysis was considered semi-

quantitative given that expression of the housekeeping gene GapDH was comparable between 

the six tissues.  To determine Tacc2 expression quantitatively, taqman qPCR was performed and, 

contrary to the pattern observed in semi-quantitative expression analysis but in agreement with 

the array data, Tacc2 mRNA expression decreases mildly but not significantly in prostate cancer 

compared to donor prostate tissue (N=10; Figure 22). 

 

 

Figure 22.  Quantitative gene expression analysis of Tacc2 in prostate tissues 

 BPH1, and 267B1. 

 

To look for data supporting the notion of altered Tacc2 expression in prostate cancer, a 

query of the Oncomine database was performed but none of the studies report altered expression 

Each circle represents the relative mRNA abundance (Tacc2 message normalized to Gus expression) for prostate 

tumor, adjacent-to-tumor or healthy donor prostate tissues or cell line (LNCaP, PC3,
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of Tacc2 in prostate cancer although comparison of Tacc2 expression in nomal tissues revealed 

that prostate is among the tissues with highest expression of Tacc2 (219).   

nalysis (Figure 23) 

9) and, to more fully characterize the expression of Nell2 in prostate, semi-quantitative (Figure 

24 top) and quantitative gene expression analyses (Figure 24 bottom) were employed to compare 

gene expression in healthy donor prostate tissue and prostate cancer tissues.  

 

3.2.3 Expression of Nell2 in prostate cancer 

Nell2 was selected as a target for further analysis based on gene expression a

(2

 

Figure 23.  Genomic analysis of Nell2 expression in prostate tissues and cells 

 

Semi-quantitative PCR analysis of Nell2 expression in paired tumor/normal adjacent-to-

tumor prostate tissue compared to donor prostate found higher expression in histologically 

normal tissue from tumor bearing prostates than in the matched tumor tissue or from donor 

prostate tissue. To quantitatively evaluate this, taqman qPCR was performed and expression of 

Nell2 was found to be elevated in 4/5 (80%) normal adjacent to prostate cancer tissues in 

comparison to the expression in donor tissues (N=9; Figure 24 bottom) (0.25 ± 0.32 for donor 

tissues vs. 2.08 ± 2.57 for normal adjacent-to-tumor; p<0.05). 
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Donor     Norm Adj      Tumor     Cell lines 

Figure 24.  Gene expression analysis of Nell2 in prostate 

(Top) Semi-quantitative PCR analysis of 2 paired tumor/normal and 2 healthy donor prostate tissues (Bottom) 

Quantitative PCR analysis - each circle represents the relative mRNA abundance (Nell2 message normalized to Gus 

expression) for prostate tumor, adjacent-to-tumor or healthy donor prostate tissues or cell line (LNCaP, PC3, BPH1, 

and 267B1. 

 

To further explore the expression of Nell2 in prostate cancer, a query of the Oncomine 

database was performed and no studies report altered expression of Nell2 in prostate cancer but 

three independent studies report that expression of Nell2 in metastatic prostate cancer is lower 

than in primary prostate cancer (219).   
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Figure 25.  Nell2 expression is lower in prostate cancer metastases (red) than in primary prostate cancer (blue) in 

three independent studies submitted to Oncomine 

3.2.4 Expression of FosB in prostate cancer 

From the genes differentially expressed in the microarray analysis of various normal, BPH, and 

prostate cancer tissues, expression of FosB appears significantly and consistently elevated in 

prostate tissues from men with prostate cancer (Figure 26) (29).  

 

 

Figure 26.  Genomic analysis of FosB expression in prostate tissue and cell lines 
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In order to confirm these array results, FosB expression in healthy donor prostate and 

prostate cancer tissue was evaluated using semi-quantitative (Figure 27) and quantitative PCR 

techniques (Figure 28) were employed to compare gene expression.  Both show a significant 

increase in FosB expession in prostate cancer tissue compared to healthy donor tissue. 

 

 

Figure 27.  Expression analysis of FosB in prostate tissues 

Semi-quantitative PCR analysis of 2 paired tumor/normal and 2 healthy donor prostate tissues 

 

From semi-quatitative analysis it was noted that, depending on the primers used, PCR 

amplification resulted in either one or two bands, the smaller being about 100 base pairs shorter 

than the other (the larger being the band anticipated based on primer design) (data not shown).  

This smaller product represents ΔFosB, a splice variant of FosB lacking the C-terminal 101 

amino acids.  Given that the prostate expresses both FosB and ΔFosB, taqman primers and probe 

were designed to differentiate between the two variants (FosB-both transcripts or ΔFosB alone).  

Taqman qPCR demonstrated elevated expression of FosB-both transcripts in 10/11 (91%) 

prostate cancer tissues in comparison to donor tissues (N=10; Figure 28 top) (0.07 ± 0.09 for 

donor tissues vs. 1.43 ± 1.03 for tumor; p<0.05).  Expression of ΔFosB alone was also elevated 

in 10/11 (91%) prostate cancer tissues in comparison to the expression in donor tissues (N=10; 
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Figure 28 bottom) (0.12 ± 0.09 for donor tissues vs. 1.80 ± 1.98 for tumor; p<0.05).  Primer 

efficiency was optimized prior to evaluating expression in tissues with the goal that expression of 

ΔFosB could be subtracted from FosB-both transcripts yielding the relative expression of FosB 

full-length transcript.  The efficiency must not have been similar enough because higher 

expression was detected for ΔFosB alone than for ΔFosB and FosB together and therefore the 

expression of full length FosB could not be evaluated independently of ΔFosB. 

 

 

Figure 28.  Quantitative analysis of FosB and ΔFosB expression  

(top) primers dectect full length FosB & ΔFosB transcripts (bottom) – primers detect only full length FosB 

transcript.  Each circle represents the relative mRNA abundance (PCP4 message normalized to Gus expression) for 

prostate tumor, adjacent-to-tumor or healthy donor prostate tissues or cell line (LNCaP, PC3, BPH1, and 267B1). 
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To further substantiate this pattern of elevated FosB expression in prostate cancer, a 

query of the Oncomine database was performed and two studies report elevated expression of 

FosB in prostate cancer (219).  In addition, seven independent studies report that FosB 

expression in metastatic prostate cancer is lower than in primary prostate cancer (219).  These 

microarray studies do not differentiate between full length FosB and ΔFosB transcripts.   

 

 

 

Figure 29.  FosB expression in microarray analyses submitted to Oncomine 

(top) FosB expression is up-regulated in prostate cancer compared to normal prostate and (bottom) lower in 

metastatic prostate cancer than in primary lesions.  Seven independent studies show decreased expression of FosB in 

metastatic (red) compared to primary prostate cancer (blue). 
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3.3 CONCLUSIONS 

In this series of experiments the expression changes in MT2a, Tacc2, Nell2, and FosB were 

evaluated in normal and prostate cancer tissues as well as prostate derived cell lines.  Results 

show disparity between the expression patterns of MT2a and Tacc2 by microarray analysis and 

expression patterns obtained for PCR analysis.  These differences in expression reported by 

microarray analysis may be attributable to ‘noise’ in this type of study (220,221).  Microarray 

analysis was undertaken with a goal of hypothesis generation and it was anticipated that some 

genes that appear promising by microarray would not translate to be viable targets upon 

subsequent analysis.  Decreased expression of MT2a seen in microarray analysis was not 

replicated by semi-quantitative PCR or validated by data reported in the Oncomine database. We 

conclude that MT2A expression is not altered in primary prostate cancer.  

Decreased expression of Tacc2 observed in the microarray analysis was not statistically 

significant by quantitative PCR, although there was a trend toward lower expression in cancer 

and this decreased expression was also true in prostate cancer cell lines.  Conversely, semi-

quantitative PCR shows slightly elevated Tacc2 expression in prostate cancer tumor and 

adjacent-to-tumor tissues.  While evaluation of the Oncomine database shows that expression of 

Tacc2 is relatively high in prostate compared to other normal tissue types, no altered expression 

was reported in prostate cancer and thus we conclude that, while Tacc2 probably is an important 

protein in prostate biology, altered expression does not appear to be characteristic in prostate 

cancer. 

The increased expression of Nell2 reported by microarray analysis was reproduced in 

semi-quantitative and quantitative PCR analyses.  An interesting aspect of the expression pattern 

seen for Nell2 is that expression appears higher in histologically normal tissue adjacent-to-tumor 
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tissue than in donor or tumor tissue by both semi-quantitative and quantitative analyses.  This 

reflects a characteristic of the population from which targets were selected.  In the original 

microarray analysis, the BPH-cancer group, tissues from which targets for this project were 

selected, included tissue enriched, not for regions of tumor but instead, for the adjacent 

hyperplastic tissue (essentially adjacent-to-tumor tissue).  Consequently, genes identified in this 

group are likely to include those that reflect field effect changes in a prostate with dysregulated 

neoplastic growth or possibly those that are involved in BPH.  In the case of Nell2, a protein 

previously demonstrated to be upregulated in BPH, the latter explanation seems the most 

plausible.  The low expression of Nell2 in prostate cancer derived cell lines also supports this 

hypothesis.  The pattern of higher expression in adjacent-to-tumor tissue compared to tumor 

tissue was also seen for FosB and Cyr61 (data not shown) but prostate donor tissue expression of 

these two genes was lower still than tumor tissue.   

Increased expression of FosB was consistently found by microarray, semi-quantitative 

and quantitative expression analysis and supported by data reported in the Oncomine database.  

A number of studies in Oncomine report that FosB expression is lower metastatic lesions than in 

primary prostate cancer and the low expression of FosB in prostate cancer cell lines may be a 

product of this fact given that most these cell lines are derived from lesions of metastasis.  The 

study of FosB is complicated by two factors: 1) existence of redundancy among the AP-1 

transcription factors and 2) the dominant negative splice variant ΔFosB which, when expressed, 

is able to dimerize with Jun proteins but not able to interact with the DNA to initiate 

transcription.  Comparison of FosB and ΔFosB transcript levels in tumor and donor tissue was 

not possible here because the qPCR primer efficiencies varied enough to confound the results.  

Based on these findings, elevated expression of FosB is characteristic in prostate cancer and I 
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feel that, despite the complications, the role of FosB in prostate cancer warrants further analysis 

and is likely to be important in the pathobiology of prostate cancer. 

We decided to pursue further expression and functional analysis of Cyr61 and PCP4 

rather than MT2A, Tacc2, Nell2, and FosB.  Cyr61 and PCP4 were evaluated similarly by 

microarray, semiquantitative PCR, and qPCR (results presented in chapters 4 and 5).  Based on 

the consistent pattern observed in the expression analyses and reported Oncomine data, Cyr61 

and PCP4 expression warrant further analysis.  
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4.0  PCP4 EXPRESSION IN COLON AND PROSTATE CANCER  

4.1 INTRODUCTION 

Currently there is a lack of knowledge regarding the biological function of PCP4 in the prostate.   

Our preliminary microarray analysis demonstrated significantly diminished PCP4 mRNA 

expression in prostate cancer compared to healthy donor prostate tissue (29).  In this portion of 

the project we set out to evaluate the expression and utility of PCP4 as a potential biomarker for 

prostate cancer diagnosis.  As described below, our data demonstrate that PCP4 in prostate 

cancer is largely expressed by the stroma and therefore might not be a useful marker in prostate 

cancer, a disease of the epithelial compartment.  However, our data suggests that PCP4 might 

serve as a more apt biomarker in colon cancer.   

4.2 RESULTS 

4.2.1 PCP4 gene expression in prostate 

From the genes differentially expressed in microarray analysis of various normal, BPH, and 

prostate cancer tissues, expression of PCP4 appears significantly and consistently downregulated 
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in prostate tissues from men with prostate cancer (Figure 30) (29).  For this reason PCP4 was 

selected for further analysis. 
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Figure 30.  Genomic analysis is PCP4 expression in prostate tissues and cell lines 

 

In order to confirm this, semi-quantitative (Figure 31) and quantitative gene expression 

analyses (Figure 32) were employed to compare gene expression in healthy donor prostate and 

prostate cancer tissue.  By semi-quantitative analyses, both tumor tissues show a decrease in 

PCP4 expession, one modest and one striking, in prostate cancer tissue compared to adjacent to 

cancer and healthy donor tissue.  In quantitative analysis, the trend toward decreased PCP4 

expression in tumor compared to adjacent-to-tumor and healthy donor tissue was again 

demonstrated but the results are not statistically significant because the expression of PCP4 in 

healthy donor tissue varied over a relatively broad spectrum.  
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Figure 31.  Expression of PCP4 in prostate tissues 

Semi-quantitative PCR analysis of 2 paired tumor/normal and 2 healthy donor prostate tissues 

 

 

Figure 32.  PCP4 gene expression in prostate tissues 

Each circle represents the relative mRNA abundance (PCP4 message normalized to Gus expression) for prostate 

tumor, adjacent-to-tumor or healthy donor prostate tissues or cell line (LNCaP, PC3, BPH1, and 267B1). PCP4 

expression is absent in LNCaP. 

 

To further substantiate this pattern of decreased PCP4 expression in prostate cancer, a 

query of the Oncomine database was performed and six studies report decreased expression of 

PCP4 in prostate cancer (222).  
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Figure 33.  Compared to normal prostate tissue, expression of PCP4 is decreased in prostate cancer (blue) and lower 

still in metastatic prostate cancer (red) 

 

PCP4 mRNA expression is lower in prostate cancer tissues than in normal prostate and 

lower still in metastatic prostate cancer tissues (Figure 33).  The same trend was demonstrated in 

seven independent genomic analyses submitted to Oncomine contributed (219).  
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4.2.2 Validation of PCP4 Antibody 

In order to have an ample supply of PCP4 antibody, we raised rabbit polyclonal antibodies 

against the peptide sequences IQSQFRKFQKKK - AA 46-57 (α-PCP4 pep2) and 

GQKKVQEEFDIDMD – AA 22-35 (α-PCP4 pep3).  The specificity of these antibodies for 

peptide was established by ELISA.  Peptide curves suggest that α-PCP4 pep2 has more potential 

as a specific antibody against PCP4 (Figure 34). 

 

 

Figure 34.  α-PCP4 pep2 and α-PCP4 pep3 reactivity 

Peptide curve dilution: 1mg/ml - 1pg/ml A) α-PCP4 pep2 (upper graph) B) α-PCP4 pep3 (lower graph) 
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These antibodies were compared by IHC with α-Pep19, a polyclonal antibody developed 

in the lab of James Morgan (St. Jude’s Children’s Hospital, Memphis, TN).  Brain tissue was 

stained as a positive control given that the most well studied site of PCP4 expression is the brain.  

Lung, an organ reported to express little to no PCP4 in the healthy adult, was evaluated as a 

negative control. 

 

 

 

Figure 35.  Generation of PCP4 antibodies 

The specificity of α-PCP4 pep2 (C & D) and α-PCP4 pep3 (E & F) were compared against α-Pep19 (A & B) in 

brain (positive control) and lung (negative control). 
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Although α-Pep19 nicely stained the axons in brain tissue, non-specific background 

staining was also evident in the brain and lung.  α-PCP4 pep2 resulted in similar strong staining 

of axons with low background.  α-PCP4 pep3 was unable to detect PCP4 expression.  Based on 

these results α-PCP4 pep2 was used for all further IHC analysis.   

4.2.3 PCP4 is expressed by prostate stroma 

In the evaluation of the role of PCP4 in prostate cancer, it is important to also be familiar with 

the expression of PCP4 in normal prostate tissue.  Four independent genomic analyses submitted 

to Oncomine that compare expression in normal prostate epithelia and stroma demonstrate that 

PCP4 expression is predominantly stromal (Figure 36 top) (219).  
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Figure 36.  PCP4 is predominently expressed by the prostate stroma (top) mRNA; representative 1 of 4 microarray 

analysis studies from Oncomine (bottom) protein 

 

This finding was confirmed by IHC staining of prostate tissue (Figure 36 bottom).  Little 

to no expression of PCP4 was evident in the glands of healthy prostate (0%; N=10) or prostate 

cancer (4.4%; N=90), while the stroma of all normal prostate tissue (100%; N=10) and the 

majority of tumor associated stroma (93.3%; N=90) expressed PCP4. 
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Table 3.  Expression of PCP4 in Normal Prostate and Prostate Cancer Tissue 

 Benign Prostate Prostate Cancer 

Stroma 10/10 84/90 

Epithelia 0/10 4/90 

 

From these tissue-staining results no clear pattern existed to support the initial hypothesis 

that decreased expression of PCP4 is a functionally relevant alteration in prostate cancer.   

4.2.4 Expression of PCP4 in various cancers  

Given that PCP4 expression in the prostate is predominantly stromal in nature, we hypothesized 

that this protein may play an interesting role in sarcomas.  To assess this, we evaluated PCP4 

expression in various types of cancer by staining a ‘various cancers’ tissue array.  Expression of 

PCP4, appears common in cancers of the gastrointestinal (GI) tract (Figure 37) as well as in 

small cell lung carcinoma (data not shown).  Colon, gastric, and pancreatic cancer lesons all 

exhibit positive staining for PCP4 in regions of cancer.  To further substantiate this pattern of 

elevated PCP4 expression in GI cancers, a query of the Oncomine database was performed but 

no studies report altered expression of PCP4 in gastric or pancreatic cancer (223).  Contradictory 

to our findings, a single study reports decreased expression of PCP4 in colon cancer (219). 
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Figure 37.  Expression of PCP4 in colon, gastric, and pancreatic cancer 

4.2.5 PCP4 expression is elevated in colon cancer 

To more fully evaluate the expression of PCP4 in cancers of the GI tract, we made use of a colon 

cancer TMA to evaluate expression of PCP4 in a panel of normal colon, colon polyp (benign 

growths), adenoma, and colon cancer tissues.  Tissues were assigned an intensity (0=no staining, 

1=light, 2=moderate, 3=intense staining) and a pattern score (0= no staining, 1= focal, 

2=diffuse).  Intensity and pattern were each evaluated independently and in combination 

(intensity+pattern) and the same pattern existed by all three methods.  Tissue from benign 

polyps, adenomas, and adenocarcinomas all express significantly more PCP4 than donor colon 

tissue; in addition adenomas and adenocarcinomas also express significantly more PCP4 than 

benign polyps (Table 4 and Figure 38).  There is no discernable difference between PCP4 

expression in adenomas compared to adenocarcinomas. 

 

Table 4.  PCP4 expression in colon cancer - average combined staining score 
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Figure 38.  Comparison of PCP4 protein expression in colon tissue by IHC 

(top) Intensity on a scale of 0-3; Pattern on a scale of 0-2 (0= none; 1=focal; 2=diffuse); Maximum 

combined staining score of 5.  Graphed independently Intensity and Pattern each yield a similar pattern: increased 

staining intensity and a more diffuse pattern in adenoma and adenocarcinoma tissues. (bottom) IHC of colon – A) 

benign colon; B) adenocarcinoma; C and D) adenomas and examples of the two staining patterns seen for adenoma 

and adenocarcinoma (diffuse cytoplasmic and diffuse punctate staining).  

 89 



4.3 CONCLUSIONS 

In this series of experiments the expression of PCP4 was evaluated in prostate cancer as well as 

in a variety of other types of cancer, of particular interest colon cancer.  Decreased expression of 

PCP4 observed in microarray analysis and supported by PCR analysis, although not statistically 

significant, indicated a trend toward lower expression in cancer by quantitative and semi-

quantitative PCR and prostate cancer cell lines express similarly low levels of PCP4.  

Additionally, in evaluation of the Oncomine database, multiple studies confirm that expression 

of PCP4 is lower in prostate cancer compared to normal prostate tissue and lower still in 

metastatic prostate cancer than normal prostate.   

The α-PCP4 pep2 antibody was successfully developed and showed strong specificity for 

PCP4 with low background staining.  IHC analysis of normal prostate and prostate cancer tissues 

revealed that PCP4 expression is predominantly stromal and this is confirmed by microarray 

results reported in the Oncomine database.  PCP4 may have future utility as a marker of prostate 

stromal cells.  Additionally, the decreased expression reported in expression analysis in these 

studies and those reported by Oncomine may in part or whole reflect the amount of stroma in the 

analyzed tissue rather than altered expression by epithelial cells transitioning to cancer.  In the 

microarray analysis, unless highly pure samples (isolated by laser capture) are collected for 

epithelia or cancer than the percentage of the stromal contribution will have a major impact on 

the amount of PCP4 detected in each sample.   

In staining the ‘various cancers’ tissue array, high expression of PCP4 was noted in small 

cell lung carcinoma (SCLC) and in GI cancers (colon, gastric, and pancreatic cancer).  The high 

expression of PCP4 in SCLC is quite interesting given the fact that normal lung tissue expresses 

little to no PCP4 and was used as a negative control in the selection of α-PCP4 antibodies.  
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Evaluation of PCP4 expression in a larger cohort of SCLC tissue is needed to substantiate the 

preliminary finding of elevated PCP4 expression in SCLC.  High expression of PCP4 in colon 

cancer was confirmed by evaluation of the colon cancer TMA.  PCP4 is expressed the highest 

intensity and the most diffusely in colon adenomas and adenocarcinomas compared to benign 

polyps or donor colon tissue. 

In conclusion, PCP4 is expressed highly in both normal and prostate cancer stroma and 

thus is not likely to play an important role in prostate cancer.  The fact that various GI cancers 

express PCP4 in regions of cancer suggests the possibility of a shared mechanism; potentially the 

reactivation of a quiescent developmental signaling pathway but this has yet to be investigated.  
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5.0  CYR61 EXPRESSION AND ROLE IN PROSTATE CANCER  

(Portions adapted from manuscript: Katherine B. D'Antonio, Antoun Toubaji, Roula Albadine, 
Alison M. Mondul, Elizabeth A. Platz, George J. Netto, and Robert H. Getzenberg, Brady 
Urological Institute, the Sidney Kimmel Cancer Center, and the Departments of Pathology, 
Johns Hopkins University School of Medicine, and the Department of Epidemiology, Johns 
Hopkins Scholl of Public Health submitted for publication) 
 

5.1 INTRODUCTION 

Cysteine-rich angiogenic inducer 61 (Cyr61), also known as CCN1, is an extracellular matrix 

protein involved in the transduction of growth factor and hormone signaling and mediation of 

mechanical stress responses, in some systems.  Generally Cyr61 is implicated as a molecule that 

keeps cells connected to changes in their cellular environment.  The CCN family of proteins 

(named after the earliest identified family members: Cyr61, CTGF, and Nov), is characterized by 

four common conserved domains:  a von Willeband factor type C repeat, a thrombospondin type 

1 repeat, an insulin-like growth factor binding protein (IGFBP) motif, and a cysteine-knot motif.  

The members of this family have highly regulated expression, are important in the regulation of 

growth and development, and have been linked to a variety of pathologic disorders, including 

cancer.  In particular, Cyr61 has been found to participate in regulating many pathways including 

cell adhesion, migration, proliferation, differentiation, and survival (196,212,224-233).  Despite 

over a decade of research, the specific function of Cyr61 remains largely unknown; its biological 
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activity is believed to be contextual and cell type-dependent (234).  Cyr61 signals through 

interactions with integrins and, depending on the combination of integrins bound and the tissue 

type, the downstream effects vary greatly (211,214,227,235-241).    

In genomic studies of various cancers, Cyr61 commonly exhibits altered expression (202-

214).  These expression changes have been linked with, depending on the type of cancer, either 

enhanced or inhibited tumor growth.  Modulation of Cyr61 expression has been observed in 

breast, ovarian, hepatocellular, lung, and colorectal cancer.  In early studies Pilarskey et al. found 

that Cyr61 mRNA is down-regulated in prostate cancer compared to normal adjacent to cancer 

tissue (215).  More recently, in our study comparing benign prostatic hyperplasia (BPH) to 

healthy donor prostates, symptomatic BPH samples exhibited moderately elevated levels of 

Cyr61 mRNA while a subset of prostate cancer samples also evaluated exhibited elevated 

expression higher than either BPH or donor prostates (29).  In additional analysis of expression 

in the prostate, Sakamoto et al. showed that mRNA expression of Cyr61, by in situ 

hybridization, localizes to the basal cells in normal prostate tissues (216).  Additional evidence 

substantiating the importance of Cyr61 in prostate cancer was recently published by Sun et al.; 

the expression of Cyr61 in prostate cancer cells was found to enhance migration, invasion, and 

proliferation and showed that Cyr61 regulates Rac1 signaling, a mechanism by which Cyr61 

potentially may exert its influence on cell growth and motility (217). 

 93 



5.2 RESULTS 

5.2.1 Elevated Cyr61 gene expression in prostate cancer 

To confirm gene expression microarray analysis (Figure 39) (29) and more fully characterize the 

expression of Cyr61 in the prostate, semi-quantitative (Figure 40) and then quantitative gene 

expression analyses (Figure 41) were employed to compare gene expression in healthy donor 

prostate tissue and tissues obtained from prostates that contained foci of cancer.   
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Figure 39.  Genomic analysis of Cyr61 expression in prostate tissues and cell lines 

 

 

Figure 40.  Expression of Cyr61 in prostate tissues 

Semi-quantitative PCR analysis of 2 paired tumor/normal adjacent and 2 healthy donor prostate tissues 
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In semi-quantitative analysis of paired tumor/normal adjacent prostate tissue, expression 

of Cyr61 was higher in normal adjacent compared to matched tumor tissue and donor prostate 

tissue expressed Cyr61 at or below levels in tumor tissue.  This expression was considered semi-

quantitative given that expression of the housekeeping gene GapDH is comperable between the 

six tissues.  To quantitatively evaluate this, taqman qPCR was performed and expression of 

Cyr61 is elevated in 10/11 (91%) prostate cancer tissues in comparison to the expression in 

donor tissues (N=10; Figure 41) (1.84 ± 1.34 for donor tissues vs. 9.05 + 5.44 for tumors; 

p<0.05).  

 

 

Figure 41.  Quantitative gene expression of Cyr61 

Each circle represents the relative mRNA abundance (Cyr61 message normalized to Gus expression) for prostate 

tumor or healthy donor prostate tissues or cell line (LNCaP, PC3, BPH1, and 267B1). LNCaP expression of Cyr61 

is notably lower than other cell lines. 

 

To support the notion of altered Cyr61 expression in prostate cancer, a query of the 

Oncomine database was performed.  Cyr61 is up-regulated in prostate cancer tissue in two 
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studies in comparison with either healthy prostate tissue or prostatic intraepithelial neoplasia 

(PIN); additionally, in nine studies where expression in primary prostate cancer was compared to 

metastases, the expression of Cyr61 is lower in metastases than in primary cancer lesions (Figure 

42 bottom – one representative study) (223). 

 

 

 

Figure 42.  Oncomine studies support the finding that Cyr61 is (top) up-regulated in prostate cancer over normal 

prostate and (bottom) lower in metastases than in primary prostate cancer  
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5.2.2 Cyr61 protein expression in prostate 

5.2.2.1 Up-regulation of Cyr61 in prostate cancer tissues 

Initial Cyr61 immunohistochemical analysis of routine prostate tissue sections obtained from 18 

radical prostatectomy specimens was performed to characterize the Cyr61 localization in the 

prostate.  Cyr61 protein appeared significantly up-regulated in prostate cancer lesions compared 

with adjacent histologically normal glands (data not shown).  Expression was of consistent 

intensity within each lesion and was of diffuse finely granular nature and cytoplasmic in 

location.  No evidence of Cyr61 expression in the stroma was observed. 

Based on these preliminary findings, tissue microarray analysis of 1,366 spots 

representing tissue from the prostates of 197 consecutive RRPs patients were analyzed for Cyr61 

protein expression and localization (Figure 43 and Table 5).  
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Table 5.  Demographics of Individuals whose Tissue was Included in the TMA 

 

 

# of Patients 200 
Race  

Caucasian 86% 
African American 9.5% 

Other 4.5% 
Patient Age at RRP  

Mean±SD 57.89±6.88 
Median 58 

Range 37-74 
Stage  

pT2 131 (65.5%)
pT3a 52 (26%) 
pT3b 12 (6%) 

N1 4(2%) 
Gleason  

5-6 110 (55%) 
7 67 (33.5%) 

8-10 23 (11.5%) 

 

Figure 43.  Immunohistochemistry analysis of Cyr61 protein expression in prostate tissue 

Images representative of staining observed in prostate cancer, adjacent to prostate cancer, or BPH tissues. 

A & B. Low and high power images of NAT. C & D. Low and high power images of BPH. E & F. Low and high 

power images of high grade PIN. G & H. Low and high power images of tumor. I & J. Low and high power images 

of tumor with adjacent NAT. 
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Of these, there were 174 matched tumor/normal adjacent-to-tumor tissues, 25 matched 

PIN/normal adjacent-to-tumor tissues, and 23 matched PIN/Tumor tissues. Similar cytoplasmic 

staining pattern was observed in the TMAs as that of the above described in routine tissue 

sections; only weak Cyr61 staining was detected in histologically normal prostate tissue while 

areas of cancer generally exhibited a relatively more intense Cyr61 staining.   

 

Table 6.  Paired comparisons of Normal staining with atrophy, PIN and Cancer 

 Normal Atrophy PIN Cancer 
# Spots per Man     

Median 4 1 1 3 
# Pairs     

N - 40 25 174 
Median Staining Intensity     

median § 0 1 2 2 
p value ∗ ref 0.0009 <0.0001 <0.0001 

% Spots with Staining Intensity:     
≥ 1 60.3%‡ 70.0% 96.0% 98.3% 

p value† ref 0.21 0.003 <0.0001 
≥ 2 21.3%‡ 15.0%  64.0% 85.1% 

p value† ref 0.32 0.0009 <0.0001 
≥ 3 1.7%‡ 5.0%  20.0% 60.9% 

p value† ref 0.56 0.18 <0.0001 
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Table 7.  Paired comparisons of PIN and Cancer 

 PIN Cancer 
# Spots per Man   

median 1 3 
# Pairs   

N - 23 
Median Staining Intensity   

median ‡ 2 2.5 
p value* ref - 

% Spots with Staining Intensity:   
> 1 100% 95.7% 

p value† ref - 
> 2 65.2% 78.3% 

p value† ref 0.32 
>  3 17.4% 60.9% 

p value† ref 0.01 
 

 

The median staining intensity, on a scale of 0-3, across individuals was 0 for normal 

tissue, 1 for atrophy, 2 for PIN, and 2 for cancer (p trend<0.0001) (Figure 44).   The area under 

the ROC curve was 0.928 comparing the median staining intensity for cancer and normal spots 

(Figure 45). For cancer spots, 98.3% had a staining intensity of > 1, 85.1% had > 2, and 60.9% 

had > 3, and for normal spots 60.3% had a staining intensity of > 1, 21.3% had > 2, and 1.7% 

had > 3 (p<0.0001).  In those men diagnosed with prostate cancer with a Gleason sum of 8 and 

higher, the median Cyr61 staining intensity was higher in their cancer spots compared to those 

with Gleason sum below 8 (p=0.01) (Figure 44), although no threshold value could statistically 

differentiate between higher and lower Gleason sum cancers (data not shown).   
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Figure 44.  Protein expression of Cyr61 by IHC scoring of TMA spots 

Comparison of the median staining intensity for matched pairs by spot type. 

 

Comparison of the FriDA intensity and visual intensity measurements in one of the five 

TMAs revealed a strong correlation by pair wise correlation analysis (correlation coefficient = 

0.7166; p<0.0001).  
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Figure 45.  ROC Curve for Cyr61 separation of prostate cancer from adjacent-to-tumor tissue 
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Cyr61 expression in BPH tissue sections obtained from 13 TURP specimens was 

analyzed by IHC to characterize Cyr61 localization within benign prostatic lesions.  No evidence 

of elevated Cyr61 expression was observed in any of the BPH tissues in either the glands or the 

stroma.   

5.2.2.2 Cyr61 expression in Progression - TMA analysis 

Given that Cyr61 expression is elevated in Gleason 8 and higher cancers compared to Gleason 7 

and lower cancers, we decided to evaluate whether there is a correlation between Cyr61 staining 

and incedence of prostate cancer progression.  To answer this question, a set of 10 prostate 

cancer TMAs were stained for Cyr61 expression. These TMAs were designed as a case-control 

study nested in a cohort of radical prostatectomy patients with incedence density sampling of 

matched controls in order to facilitate research on prognostic and risk factors for progression 

following prostatectomy.  The database from which cases and controls were selected includes 

4,860 men who underwent radical prostatectomy for a diagnosis of clinical organ-confined 

prostate cancer between the years 1993 and 2004.   Data from this study is currently undergoing 

statistical analysis with the goal that it will be complete for inclusion in thesis revisions before 

final submission. 
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Figure 46.  Schematic illustration of case/control selection 
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Table 8.  Characteristics of eligible and ineligible men who underwent radical prostatectomy (N=4860) at Johns 

Hopkins Hospital, 1993 – 2004 

Ineligible N=365  

Eligible 
N=4495 

Implausibly 
long FU 

time N=7 

Had tx 
prior to 

RP 
N=171 

Missing 
on 

follow-
up time 
N=62 

Missing 
on 

pathologic 
Gleason 

sum N=11 

Missing 
on 

pathologic 
stage 
N=10 

Subsequent 
tx didn’t 
allow obs 

of 
progression 

N=6 

Unclear 
if organ 
confined 

N=98 

Mean age 
 (years) 

57.8 62.9 58.7 57.9 60.3 56.8 58.7 57.1 

         
Race (%)         
   White 89.0 100 83.6 93.6 100 80.0 33.3 80.6 
   Black 5.9 0 5.3 3.2 0 0 16.7 9.2 
   Hispanic 0.7 0 0.6 0 0 0 0 0 
   Asian 0.4 0 1.2 0 0 10.0 0 0 
   Other 4.0 0 9.4 3.2 0 10.0 50.0 10.2 
         
Mean PSA 
 before RP 
(ng/mL) 

7.6 11.7 6.8 6.9 5.7 6.3 6.2 6.8 

         
Mean 
pathologic 
Gleason sum 

6.4 6.4 6.5 6.3 Missing 6.2 7.8 6.3 

         
Pathologic stage 
(%) 

        

   T2 64.4 100 63.7 74.2 72.7 0 16.7 0 
   T3a 28.8 0 26.9 24.2 27.3 0 66.7 0 
   T3b/N1 6.8 0 9.4 1.6 0 0 16.7 0 
   Missing 0 0 0 0 0 100 0 100 
         
Mean time to 
progre-ssion or 
last follow-up 
(yrs) 

3.1 12.7 2.2 Missing 3.8 2.9 1.2 3.4 

5.2.2.3 Protein expression varies in prostate cell lines 

The protein expression of Cyr61 in prostate cell lines, including primary, immortalized 

epithelial, and prostate cancer derived lines, was assessed and found to be present in most 

prostate lines (15/18) (Figure 47).  All lines tested express Cyr61 with the exception of VCaP, 

CWR22-R1, and 267B1 cells.   
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Figure 47.  Immunoblot analysis of Cyr61 protein in prostate cell lines 

Total protein from various prostate cell lines was analyzed. 

5.2.3 Modulation of Cyr61 expression in prostate cancer cells 

In order to develop an understanding of the role of Cyr61 in prostate and how it might contribute 

to the pathobiology of prostate cancer, we transfected VCaP and CWR22R.v1 prostate cells with 

pdsRed-Cyr61 vector to introduce higher levels of Cyr61 and transfected PC3 and CWR22R.v1 

cells with shRNA or siRNA to Cyr61 to knockdown protein expression.  VCaP and CWR22R.v1 

were selected for their low basal expression of Cyr61 (Figure 43); PC3 cells express higher 

levels of Cyr61 protein making that cell line ideal for knock-down experiments.  Transient 

tranfection of VCaP cells did not result in elevated Cyr61 protein expression (Figure 48) and 

therefore, subsequent experiments focused on CWR22R.v1 cells only.   
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Figure 48.  Transient transfection of VCaP cells does not alter Cyr61 expression 

 

In transiently transfected CWR22R.v1 cells mRNA expression of Cyr61 was similar in 

mock transfected, dsRed transfected, and shNonSilencing cells and significantly upregulated in 

Cyr61 and shCyr61 transfected cells (Figure 49).  The same was found when transfecting 

Hek293T cells (data not shown).  

 

 

Figure 49.  mRNA expression of Cyr61 in transiently transfected CWR22R.v1 cells 
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In transiently transfected PC3 cells, mRNA expression of Cyr61 was similar in mock 

transfected and siNonSilencing-transfected cells and significantly down-regulated in siCyr61-

transfected cells in a dose dependent manner (Figure 50 top).  The decreased expression of 

Cyr61 was confirmed at the protein level by immunoblot but the dose dependent decrease in 

mRNA expression did not translate to a dose dependent decrease in protein given that 

Cyr61protein expression level appears similar in cells exposed to a low or high concentration of 

siRNA (Figure 50 bottom). 

 

 

 

Figure 50.  Transient knockdown of Cyr61in PC3 

(top) Dose dependent knockdown of Cyr61 mRNA by qPCR; siNonTargeting fold change=1 (bottom) Decreased 

Cyr61 protein expression by siRNA knockdown 
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Given that transient transfection of Cyr61 into CWR22R.v1 cells resulted in a significant 

increase in Cyr61 expression, CWR22R.v1 cells were again transfected with Cyr61 and stable 

clones were selected by G418 resistance.  mRNA expression Cyr61 was elevated in pooled 

Cyr61 clones compared to pooled dsRed clones (Figure 51) and parental CWR22R.v1 cells. 

 

 

Figure 51.   mRNA expression of Cyr61 in pooled stable clones of CWR22R.v1 cells 

 

Individual clones were propagated and expression of Cyr61 mRNA (data not shown) and 

protein (Figure 52) was evaluated.  A few clones with elevated Cyr61 mRNA and protein 

expression were selected for subsequent functional studies, in particular CWR22 Cyr61 3, 5, 14,  

16, and 23.  Protein loading of CWR22 Cyr61 23 is low compared to other clones based on b-

actin and, thus, the expression of Cyr61 is likely even higher than the moderate increase shown 

here.  
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Figure 52.  Expression of Cyr61 by CWR22R.v1 Cyr61 stable clones 
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Figure 53.  Growth curve of CWR22 - Cyr61 clones 

 

In other organ systems Cyr61 induces cells to undergo proliferation at an increased rate 

(194,216,217,229,242-244).  To evaluate whether Cyr61 induces a similar response in prostate, 

for 6 days cell counts were recorded for CWR22R.v1 parental cells and Cyr61 expressing clones.  

This experiment was repeaded more than five times and extreme variability confounded the 

recorded results.  CWR22 Cyr61 3 and CWR22 Cyr61 16 differ in that proliferation rate of 

CWR22 Cyr61 3 cells does not significantly differ from parental and control transfected cells 

while the proliferation CWR22 Cyr61 16 is lower than parental or control transfected clones.  

Reporting the results for other CWR22 Cyr61 clones was a problem due to variability in counts 

between experiments but the trend for those clones was that Cyr61 expression decreased 

proliferation rate (similar to Cyr61 C16).  CWR22R.v1 - Cyr61 do not appear to have a growth 

advantage over control transfected cells or CWR22R.v1 parental cells. 
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5.2.3.1 Microarray analysis of CWR22 – Cyr61 clones 

In an effort to understand the impact of Cyr61 expression and signaling on prostate cancer cells, 

microarray analysis of CWR22 Cyr61 clones was performed.  CWR22 Cyr61 3, 14, and 23 were 

evaluated on the Affymetrix Human Exon 1 array and compared against control transfected 

CWR22R.v1 cells.  48 genes were significantly up-regulated in CWR22 Cyr61 cells (Table 9) 

including HGF, FosB, Jun, INSR, and MMP16.  288 genes were significantly down-regulated in 

CWR22 Cyr61 cells (Table 10) including IGF1R, Arrestin, Map3K5, Furin, Nkx3.1, Tp53, 

GEMIN6, Sox9, and AnnexinA4.  
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Table 9.  Genes up-regulated in CWR22-Cyr61 
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Table 10.  Genes down-regulated in CWR22-Cyr61 
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5.2.3.2 Cyr61 expression in Progression - TMA analysis 

Given that microarray analysis of CWR22 Cyr61 clones shows a significant increase in 

hepatacyte growth factor (HGF) mRNA expression, we sought to confirm this at the protein 

level.  By immunoblot analysis, no increased expression of HGF was evident in CWR22 Cyr61 

clones (Figure 54).   

 

Figure 54.  HGF expression in CWR22 - Cyr61 clones 

5.2.3.3 Androgen receptor expression induced expression of Cyr61  

E006AA is a hypertriploid cell line established from primary PCa cells from an African-

American patient, which demonstrates androgen-sensitive growth in culture (245-247).  The 

expression of Cyr61was evaluated in E006AA and E006AA-T cells along with the impact of 

elevated or decreased AR expression on Cyr61 protein expression.  E006AA-T line is a 

tumorigenic varient of E006AA cells passaged through a NOG/SCID mouse.  Cyr61 expression 

is elevated in E006AA-T cells compared to E006AA and expression was elevated slightly more 

in AR transfected E006AA-T cells but not significantly (Figure 55).   

 

 115 



 

Figure 55.  Cyr61 expression in E006AA-T prostate cancer cells 

Cyr61 is up-regulated in the more tumorigenic version of this cell type and mildly elevated further in cells 

transfected to express active AR. 

5.2.4 The Effect of Cyr61 on Proliferation 

As discussed previously Cyr61 induces proliferation in other organ systems 

(194,216,217,229,242-244).  To evaluate whether Cyr61 induces a similar response in prostate 

CWR22R.v1, LNCaP-C42B, PC3, and E006AA-T cells were grown in media containing 

20ng/ml, 200ng/ml, or 2µg/ml recombinant Cyr61.  For each cell line an increase in proliferation 

was seen for cells grown in Cyr61 containing media (Figure 56).  More specifically, 

CWR22R.v1, LNCaP-C42B, and E006AA-T cell proliferation increased the most in 20 and 200 

ng/ml Cyr61 but this effect on proliferation does not appear to be maintained at higher 

concentrations of Cyr61 as cell counts were somewhat lower for all four cell lines when grown in 

media containing 2µg/ml Cyr61.  The effect of Cyr61 on proliferation of PC3 cells is variable 

and, while there is a modest increase in proliferation of cells grown in media containing 20 ng/ml 

Cyr61, this is sustained for cells grown in 200 ng/ml or 2µg/ml.  
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Figure 56.  Prostate cancer cell proliferation in Cyr61 containing media  

Cell counts after (left) 4 days for CWR22 and LNCaP C42B and (right) 3 days for PC3 and E006AA-T 

5.2.5 The Effect of Cyr61 on Invasion 

Migration, in many systems, is also impacted by Cyr61 expression (194,217,227-229,248-250).  

In matrigel invasion assays, the concentration of Cyr61 in the media does not appear to 

significantly or consistently impact cell migration (Figure 57).  In order to address the fact that 

Cyr61 is generally a matrix associated protein, this assay was performed two ways, the first was 

to rehydrate matrigel in regular media and the second to rehydrate matrigel in Cyr61 containing 

media.  This did not significantly impact migration (data not shown).  

 

 

Figure 57.  Cyr61 does not significantly impact migration of (left) CWR22R.v1 or (right) LNCaP-C42B cells 

 117 



5.3 CONCLUSIONS 

In this series of experiments it was shown that Cyr61 expression is up-regulated in prostate 

cancer compared to expression in normal prostate.   Increased expression of Cyr61 transcript is 

consistently up-regulated in tumor by microarray and PCR analysis and these studies suggest that 

expression in normal adjacent tissues is higher than in areas of tumor.  By IHC this is not the 

case for protein expression; Cyr61 protein is predominantly in regions of cancer while low 

expression is seen in some normal prostate or adjacent to cancer prostate epithelium.  

Additionally, in evaluation of the Oncomine database, multiple studies confirm that expression 

of Cyr61 is elevated in prostate cancer compared to normal prostate tissue but lower in 

metastatic prostate cancer compared to primary prostate cancer.  This suggests that, in prostate 

cancer, Cyr61 is likely important to the development and/or maintenance of the disease, rather 

than metastasis or invasion. 

The TMA results presented here suggest that Cyr61 may have clinical utility as a prostate 

cancer biomarker.  Cyr61 expression is elevated in prostate cancer compared to adjacent-to-

tumor and BPH tissue.  Although this study was not specifically designed to address this point, 

using Gleason sum as a prognostic indicator, Cyr61 appears to differentiate the most aggressive 

prostate cancer cases from the less aggressive.   To evaluate Cyr61 expression in prostate cancer 

progression, another set of TMAs were evaluated for Cyr61 expression.  The TMAs were 

designed as a case-control study nested in a cohort of radical prostatectomy patients with 

incedence density sampling of matched controls in order to facilitate research of prognostic 

markers nad risk factors for progression following prostatectomy.  The results of this study are 

currently under evaluation. 
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All prostate cell lines screened express Cyr61 protein.  Expression was highest in 

LNCaP, PC3, and Du145 and lowest in VCaP, CWR22R.v1, and 267B1.  Transient transfection 

of CWR22R.v1 cells resulted in a robust up-regulation of Cyr61 transcript and but knockdown 

with an shRNA vector against Cyr61 also resulted in robust up-regulation of Cyr61 transcript, 

thus, in subsequent experiments, siRNA was utilized and resulted in significant decreases in 

Cyr61 transcript and protein.  Stable expression of an elevated amount of Cyr61 was achieved in 

CWR22Rv.1 cells and microarray analysis demonstrated the upregulation of 48 genes and down-

regulation of 288 genes.  

CWR22R.v1, LNCaP-C42B, PC3, E006AA-T cells proliferation increases moderately 

when cells are incubated in media containing 20 or 200ng/ml recombinant Cyr61.  In a matrigel 

invason assay, no clear pattern was observed for these cells at 20ng/ml, 200ng/ml, or 2μg/ml.  

The increased rate of proliferation is supported by the findings of Lv et al. and Sun et al., which 

demonstrate that Cyr61 causes increased proliferation of prostate cells (217,243).  However, 

these published studies also demonstrate increase in migration in responses to Cyr61 signaling 

which contradicts the data presented here.  One possible reason for this difference could be the 

stability of the recombinant protein.  Sun et al. produced recombinant Cyr61 in their own lab 

(217)and therefore had a ready stock of fresh recombinant protein.  Cyr61 used for these studies 

was obtained from Peprotech Inc. as a lyophilized powder and this difference might have 

impacted the bioactivity of Cyr61 used in these studies.    

In summary, up-regulation of Cyr61 is evident both the mRNA and protein level.  Our 

study demonstrating elevated Cyr61 expression in prostate tissue and increased Cyr61-induced 

proliferation in prostate cells, in addition to recent publications regarding the role of Cyr61 in 

prostate cancer demonstrate that Cyr61 is an exciting new target which, with further analysis, 
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may result in clinically useful advances in prostate cancer.  The TMA expression study in 

particular suggests a potential role for Cyr61 in the characterization of hard to diagnose prostate 

cancer cases, though extensive analysis of this marker is needed, and currently underway, to 

evaluate whether a correlation exists between Cyr61 expression and prognosis or disease 

progression.  
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6.0  DISCUSSION AND FUTURE DIRECTIONS 

Two recent clinical trials published in the New England Journal of Medicine call into question 

the impact of PSA testing on prostate cancer related mortality and bring to light the absolute 

necessity in the field of prostate cancer research for improved biomarkers (123,124). In 

particular, prostate cancer treatment would be revolutionized by the discovery of a biomarker 

able to distinguish between lethal and indolent prostate cancer or a panel of biomarkers that 

signify a lethal genotype.  There are two ways of thinking about the origin of lethal prostate 

cancer; 1) from the outset, prostate cancer falls into one of two categories: indolent disease or 

aggressive cancer that, given enough time, will ultimately be lethal and 2) all prostate cancer has 

the potential to be lethal given enough time.  Some cancers transition to aggressive disease 

sooner than others and, if we could identify that point, treatment (i.e., surgery or radiation) could 

be postponed until that time delaying the need for procedures, which can have significant quality 

of life implications.  These two hypotheses call for rather different biomarkers and screening.  

For the first hypothesis, early disease diagnosis remains essential and necessitates the 

identification of a novel biomarker that, upon diagnosis of prostate cancer, delineates between 

indolent and lethal disease.  Men with lethal disease would receive immediate intervention while 

those with indolent cancer would enroll in a minimal program of watchful waiting.  The second 

is the approach currently taken in active surveillance programs; the initial diagnosis of prostate 

cancer does not warrant intervention until the presence of disease progression is detected.  
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Currently clinicians depend primarily on PSA and DRE to determine when intervention is 

necessary; however, significant variability exists in how these are applied to determine when 

intervention should be initiated.  A novel biomarker of progression would greatly enhance both 

sensitivity and specificity while at the same time providing a greater degree of uniform 

intervention.  The search for biomarkers specific to the lethal phenotype remains complicated 

because, in proportion to the number of men diagnosed, few men have disease that progresses 

and the identification of disease progression occurs years after diagnosis necessitating extensive 

follow-up. 

This work was undertaken to identify novel targets with clinical utility in disease 

diagnosis or in the evaluation of prognosis and to determine their role in prostate carcinogenesis.  

In the search for novel prostate cancer biomarkers, genomic analysis of donor prostate and 

prostate cancers was performed and the genes that appear most intriguing from our genomic 

analysis have been characterized more fully.   

6.1 METALLOTIONEINS IN PROSTATE CANCER 

Although the studies presented here do not demonstrate MT2A expression differences between 

prostate cancer and normal prostate tissue, a further exploration of other members of the MT 

protein family in prostate cancer would be a worthwhile undertaking and some evidence exists 

that MTs are differentially expressed in prostate cancer (29,151). The role of MTs in mediating 

enzymatic activity through zinc availability and the management of oxidative stress make MTs a 

point of susceptibility in cancer.   
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One hypothesis by which MTs might impact the development of prostate cancer involves 

selenium, an element thought to be protective against prostate cancer.  Though still controversial, 

epidemiologic evidence suggests that men exposed to higher amounts of selenium develop 

prostate cancer less frequently and that their cancer may be less aggressive (70,75,251,252). 

Selenium containing peptides modulate the oxidoreduction reactions involved in the MT redox 

cycle enabling the reactions to take place in the reducing environment of the cytosol (148).  The 

catalytic role of selenium derivatives in controlling the release and binding of zinc may be 

essential. 

6.2 TACC2 IN THE PROSTATE 

While Tacc2 does not appear to play a role in prostate cancer carcinogenesis, it is likely 

important to prostate biology given that Tacc2 expression is highly expressed the prostate.  Thus, 

the prostate may be a good model system for further studying the role of Tacc2 in cells.  Given 

that very little is know regarding the function of Tacc2, a logical step toward unraveling Tacc2 

cell biology would be to over-express Tacc2 and use knockdown or siRNA to evaluate which 

pathways are impacted by altered Tacc2 expression.  There is evidence in the literature that 

Tacc2 interacts with HAT (165).  Additional interactions could be elucidated by doing co-

immuno-precipitation (co-IP) with antibodies against Tacc2 followed by mass-spectrometry 

analysis to identify associated proteins or by chromatin immunoprecipitation (ChIP) to evaluate 

Tacc2/DNA binding sites.   
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6.3 NELL2 IN PROSTATE CANCER 

Expression analysis of Nell2 in the small number of samples studied here was variable and 

analysis of a larger subset of prostate cancers is necessary to confidently characterize whether 

Nell2 expression changes are common in prostate cancer or are more indicative of BPH.  In 

support of our hypothesis that Nell2 expression changes are common and important in prostate 

cancer, Luo et al. found that Nell2 is over-expressed in prostate cancer in a study that evaluated 

the therapeutic influence of finasteride on prostate cancer by microarray analysis of normal, 

BPH, and prostate cancer tissues (177).  This supports the microarray and semi-quantitative 

results presented here which also show that Nell2 expression is higher in tumor than in healthy 

donor tissue.  Interestingly, in analysis of urinary bladder cancer, Nell2 was identified in a panel 

of biomarkers able to identify bladder cancer patients from healthy controls by blood gene 

expression (253).  This suggests that upregulation of Nell2 is not a prostate cancer specific 

phenomenon. 

Another study published since the completion of the Nell2 expression analysis reports the 

existence of a cytosolic splice variant of Nell2 (cNell2) (254).  Nell2 is localized to the golgi and 

endoplasmic reticulum intracellular before being secreted as a heavily glycosylated protein while 

cNell2 lacks the secretory signal sequence and is evenly distributed throughout the cytoplasm 

and does not get secreted.  Hwang et al. focused on rat Nell2, not human (254), but, if humans 

express a similar variant, this may have complicated gene expression studies as the primers 

against Nell2 were not designed to specifically detect one variant versus the other.   
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6.4 FOSB IN PROSTATE CANCER 

Results presented in this thesis demonstrate robust, consistent upregulation of FosB in prostate 

cancer and I believe this expression change to be one of the most findings of this line of 

experiments.  Although complicated by the existence of ΔFosB and their sequence similarity, the 

differential expression of FosB in prostate cancer should be more thoroughly expolored in order 

to evaluate its biological significance.  One mechanism by which increased FosB expression 

might contribute to prostate cancer carcinogenesis is through the altered composition of AP-1 

transcription factor complexes thus altering AP-1 transcriptional activation in prostate cells.   In 

1998 Feng et al. demonstrate that c-Fos deficient mice are resistant to castration dependant 

regression of prostate luminal epithelial cells (255).  After castration, cells remain intact and 

secretory activity is continues.  When the composition of AP-1 transcription factor complexes 

were analysed, the AP-1 complexes of control mice consisted of c-Fos, FosB, Fra-2, and Jun-D 

while c-Fos deficient mice consisted of FosB and Fra-2 and JunD.  If this study is valid than 

over-expression of FosB may competitively decrease the contribution of c-Fos to AP-1 

complexes in prostate cancer cells and thus could be a novel mechanism of prostate cancer cell 

resistance to apoptosis.  This could be assessed through apoptosis assays in untranfected and 

FosB transfected prostate cancer cell lines.  Additionally, evaluation of FosB expression in 

normal prostate and prostate cancer tissue should be performed by IHC staining of a panel of 

prostate cancers. 

Contradictory to Oncomine data illustrating that FosB expression in metastatic prostate 

cancer is lower than in primary prostate cancer, a biomedical literature search tool, Lecture Lab, 

looks for associative information in published data sets and found a strong association between 
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increased FosB expression and metastatic prostate cancer, a finding subsequently confirmed by 

immunoblot analysis (256).   

PCP4 IN CANCER 

6.4.1 ERG fusion products and PCP4 

Recent studies demonstrate that gene fusions involving the ETS family of transcription factors 

affects the vast majority of prostate cancer (108).  Prostate cancers with TMPRSS2-ERG fusion 

have a more aggressive phenotype and a distinct expression pattern (257-263).  Interestingly, the 

PCP4 gene is encoded on chromosome 21 in the region lost in the formation of the ERG-

TMPRSS2 fusion product.  Given the frequency of this fusion occurs, about in 50 to 70% of 

prostate cancers (106,264), the decreased expression of PCP4 is understandable.  This deletion 

may be inadvertent, a simple consequence of the formation of the ERG-TMPRSS2 product, or 

may impact the pathobiology of prostate cancer, e.g., a deletion that confers an advantage to the 

developing tumor. A better understanding of the role of the PCP4 protein in normal prostate and 

cancer is needed and could help illuminate whether PCP4 loss contributes to the distinct 

phenotype of TMPRSS2-ERG rearranged prostate cancers.     

6.4.2 PCP4 in colon cancer 

To my knowledge, the data presented here is the first assessment of PCP4 in colon cancer.  We 

demonstrate that expression of PCP4, a protein involved in sequestering Ca2+-free calmodulin 
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and regulating the rate with which calmodulin binds and releases Ca2+, is elevated in colon 

adenoma and adenocarcinoma.  This finding plays nicely into the emerging story regarding 

Ca2+/calmodulin signaling in colon cancer.  A number of studies in recent years highlight that 

some calmodulin-regulated proteins are overexpressed in colon cancer (265,266).  Also, Shim et 

al. were able to inhibit colon cancer cell proliferation with a novel calcium (Ca2+)/calmodulin 

antagonist, (4-{3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-vinyl]-4,5-dihydro-pyrazol-1-yl}-

phenyl)-(4-methyl-piperazin-1-yl)-methanone (HBC), a derivative of curcumin (267,268).  

Taken together these studies suggest that alterations to the Ca2+/calmodulin signaling pathway 

may be more common in colon cancer than previously appreciated.  The altered expression of 

PCP4, noted in these studies, represents another aspect of Ca2+/calmodulin signaling 

dysregulation in colon cancer.  

To further evaluate the role of PCP4 in colon cancer, transient or stable knockdown of 

PCP4 expression in colon cancer cells (e.g., Caco2) followed by functional analysis particularly 

evaluating proliferation rate would be a logical next step.  In order to more fully assess whether 

dysregulation of the Ca2+/calmodulin signaling pathway is a common phenomenon in colon 

cancer, the gene expression of proteins involved in calmodulin signaling could be evaluated by 

microarray analysis of colon cancer tissues or by query of the Oncomine database.  Also, 

functional studies of colon cancer cells grown in media with varying Ca2+ concentration might 

also be revealing.  Although the expression results in this thesis are not extensive enough to 

determine whether up-regulated PCP4 expression in colon adenomas and adenocarcinomas 

might have diagnostic utility, a study by Johansson et al. that assessed neuropeptide expression, 

but not PCP4 specifically, in ulcerative colitis (UC), colon cancer, and healthy controls found 
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higher plasma levels of other neuropeptides in the plasma of individuals with colon cancer (269).  

It would be interesting to look into plasma levels of PCP4.   

6.5 CYR61 IN PROSTATE CANCER 

One mechanism proposed to explain the initiation of prostate cancer is that the balance 

established during organogenesis between the stroma and epithelia, reciprocally regulating 

growth and development of the prostate, becomes altered by or during cancer pathogenesis.  

Disruption of epithelial-stromal interactions most likely involves aberrant signaling between cell 

types and is an important component of prostate cancer.  Current understanding of epithelial-

stromal crosstalk remains limited and further study is needed to identify key proteins in this 

dynamic relationship.  With this hypothesis in mind, the extracellular matrix associated protein, 

Cyr61, holds unique potential in that this protein gauges the extracellular environment, 

transmitting signals which alter many pathways involved in tumorigenesis including proliferation 

and migration.   

6.5.1 Expression of Cyr61 as a biomarker in prostate cancer 

While the majority of prostate cancers can be diagnosed based on histologic analysis of H&E 

stained needle biopsy tissue, a subset of diagnostically challenging cases require further 

characterization for accurate diagnosis.  For these, IHC analysis of AMACR and basal cell 

markers, such as high molecular weight cytokeratins or p63, are used to help differentiate 

prostate cancer from benign disease.  AMACR, also known as racemase, is characteristically up-

 128 



regulated in 80-100% of prostate cancer (137).  This marker also stains as much as 21% of 

benign prostatic glands and stains up to 79% of partial atrophy lesions, which can potentially 

lead to misinterpretation of partial atrophy as adenocarcinoma (137).  Though supplementing 

H&E staining with these IHC markers has clearly improved accuracy of prostate cancer 

diagnosis, additional prostate cancer specific marker able to compliment current markers 

differentially staining benign prostate glands that currently might be misdiagnosed or identifying 

prostate cancer that is not detected by currently methods.  Unlike current prostate cancer IHC 

markers, an ideal marker would have prognostic value as well.  

The study presented here demonstrates similarities between Cyr61 and AMACR 

including the elevated expression of the respective proteins in lesions of prostate cancer 

compared to histologically normal adjacent tissue or normal donor prostate tissue.  Both Cyr61 

and AMACR are primarily expressed in lesions of cancer and in some PIN cases.  Although this 

question was not specifically addressed in this manuscript, based upon the resemblance in 

expression and staining patterns between Cyr61 and AMACR, we propose that 

immunohistochemical evaluation of Cyr61 expression has similar potential to aid in the 

diagnosis of problematic atypical cases.  The uniform pattern of cytoplasmic Cyr61 staining in a 

given cancer focus, has a potential advantage over the variable intensity of AMACR staining in 

individual cancer glands within a given focus.  

In a variety of tissues, Cyr61 has been shown to influence many signaling pathways 

involved in the development and regulating normal physiological functions.  The biological 

mechanisms through which Cyr61 exerts its influence on the cellular environment remain 

elusive.  This may in part be a consequence of context dependent signaling by Cyr61 resulting in 

the activation of different downstream pathways in response to varying stimuli or in differing 
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cells or tissues.  Clearly further study is necessary to define the pathways both up- and 

downstream of Cyr61.  Developing a better understanding of the role of this protein is even more 

vital given the number of studies documenting the altered expression of Cyr61 in diseases 

ranging from cardiovascular disease, to arthritis, to cancer (196,203,205,208,212,241,270-275).  

For example the up-regulation of Cyr61 in prostate cancer highlighted in this study brings into 

focus the need for further analysis of the role of Cyr61 in both prostate cancer and normal 

prostate tissue.   The analysis of Cyr61 in prostate cell lines by Sun et al. found that Cyr61 can 

enhance the proliferation of prostate cells and suggests that Rac1 signaling may be a mechanism 

by which Cyr61 exerts its influence (217).  Further analysis of the impact of Cyr61 over-

expression and an evaluation of the pathways effected is necessary to define how Cyr61 

contributes to prostate cancer development and progression.    

Interestingly, the Cyr61 expression pattern in BPH tissues presented here does not agree 

with the previous literature that found elevated expression in BPH, particularly the stroma where 

we are unable to detect staining in any of our tissue samples, donor, BPH, or cancer.  The 

majority of previous studies concerning BPH and Cyr61 in tissue involved analysis of mRNA 

(201,216,276) or in cell lines through stimulation by FBS (216,276).  Thus the differences in the 

previously published data may be indicative of altered mRNA expression that does not translated 

to elevated protein expression.  In dogs Oliveira et al. observed elevated Cyr61 protein 

expression in BPH but not prostatitis (277).  Though species differences may account for this 

difference, the lack of consistency regarding Cyr61 expression in BPH warrants further analysis. 

The findings presented here raise a number of questions that warrant further study.  In 

spite of the benefits of studying Cyr61 expression in a series of consecutive RRP cases 

(providing a clean snapshot of the expression of Cyr61 in the average man who presents with 
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prostate cancer), this study provided limited prognostic information.  Additional analysis of 

Cyr61 expression in a population with longer follow up and greater proportion of individuals 

whose disease progressed is necessary to assess the prognostic potential of Cyr61 and these 

studies are ongoing.  

Cyr61 may also have utility as a blood-based biomarker in the evaluation of prostate 

cancer.  Altered expression of Cyr61 is reported in a variety of types of cancer and, therefore, has 

limited utility as a diagnostic marker for prostate cancer or for any other type of cancer.  

However, in an individual previously diagnosed with prostate cancer, the amount of serum 

Cyr61 may be used to evaluate disease progression or to differentiate between aggressive and 

non-aggressive cancers.  Additional studies are needed to demonstrate that Cyr61 can be detected 

in the serum as well as whether and how serum Cyr61 is altered as prostate cancer develops. 

6.5.2 Effects of Cyr61 on CWR22 cells 

In an effort to understand the impact of Cyr61 expression and signaling on prostate cancer cells, 

microarray analysis of CWR22 Cyr61 clones was performed.  48 genes were significantly up-

regulated in CWR22 Cyr61 cells (Table 9) including HGF, FosB, MMP16, Sema3D, and 

SLC7A5.  Many of these expression changes support or enhance the prostate cancer neoplastic 

phenotype.  HGF is a protein normally expressed by prostate cells and secreted as a component 

of prostatic secretions (communication with W.B. Isaacs) that is over-expressed in prostate 

cancer and contribute to invasive potential (278,279).   In addition, HGF has been proposed as a 

biomarker prostate cancer (280-282).  It was quite interesting to see that FosB was up-regulated 

in the CWR22 – Cyr61 clones.  As discussed previously, our expression analysis, and Oncomine 

data, demonstrate that FosB is up-regulated in prostate cancer but this, to my knowledge, is the 
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first evidence that the expression of FosB may be driven by Cyr61 signaling.  Though there is no 

published literature regarding MMP16 in the normal prostate or prostate cancer, many studies 

illustrate the contribution of matrix metalloproteinases in prostate cancer (283-287).  

Semaphorin3D (Sema3D) belongs to a family of proteins bind neuropilin receptors that mediate 

adhesion and migration in malignant cells (288,289).  Solute Carrier Family 7 (SLC7A5), also 

called LAT1, was recently identified as a potential biomarker of high-grade malignancy in 

prostate cancer (290).   

288 genes were significantly down-regulated in CWR22 Cyr61 cells (Table 10) and some 

of the interesting genes affected include ARHGAP29, RAB25, TNFSF15, IGF1R, SKIL, and 

Tp53.  Rho GTPase activating protein 29 (ARHGAP29), also known as PARG1, is involved in 

Rac1 activation with a proposed tumor suppressor role (291,292).  RAB25, a member of the 

RAS oncogene family, is involved in integrin-induced migration (293).  Tumor necrosis factor 

superfamily, member 15 (TNFSF15), commonly refered to as VEGI in the literature, is a 

regulator of angiogenesis and endothelial growth and promotes activation of caspases and 

apoptosis (294).  In addition, reduced expression is associated with more aggressive cancers 

(295-297).  Currently, targeting the insulin-like growth factor-1 receptor (IGF1R) signaling 

pathway is gaining momentum cancer theraputics due to the involvement of IGF1R in 

carcinogenesis (298).  SKI-like oncogene (SKIL) is involved in cell division and differentiation 

in response to extracellular signals through negative regulation of TGF-β (299-302).  TGF-β 

regulates prostate growth and acts as a tumor promoter in prostate cancer (303).  The decreased 

expression of SKIL in CWR22 Cyr61 clones could have a tumor promoting effect given that 

SKIL tightly regulates TGF-β and this may a be a mechanims supporting the tumor promoting 

effects of TGF-β in prostate cancer.  p53 is a tumor suppressor whose gene, Tp53, is the most 
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commonly mutated gene in prostate cancer which results in diminished tumor suppressor 

function (35). Also, expression of some prostate related genes were decreased including Nkx3.1, 

prostatic acid phosphatase, prostate transmembrane protein, and androgen induced 1.  This 

suggests a possible de-differentiation from a prostate phenotype. PSA and KLK2 expression 

appeared downregulated as well but narrowly missed achieving statistical significance.  The 

majority of the expression changes described above would suggest that the phenotype of these 

cells might be more tumorigenic.  Suprisingly these alterations did not translate in functional 

analyses to yield result in more proliferative cells with higher invasive potential. 

An interesting future study would be to evaluate the tumorigenic behavior of these Cyr61 

over-expressing cells in vivo, compared to parental CWR22R.v1 parental and mock-transfected 

control cells.  Cells would be re-suspended in various delivery vehicles, including Matrigel and 

collagen, to address the potental impact of Cyr61 on prostate cancer cell tumorigenicity.  The 

study wuld likely involve sub-cutaneous injections of cells into male nude mice.  Various 

endpoints would include time to tumor development, longitudinal analysis of tumor 

progrogression, and presence of metastases in distant organs.  Additional in vivo studies would 

include the incorporation of chemotherapeutic agents such as docetaxel, cisplatin, and ADT via 

castration. 

6.5.3 The role of Cyr61 in cellular response to mechanical stress 

In a recent Science article, del Rio et al. published on the molecular mechanisms involved in 

relaying mechanical stimulus to the cell, the conversion of a mechanical stimulus into a chemical 

response (304).  Specifically these studies show that the application of force on a single talin rod 

resulted in a shift in the protein structure of vinculin, a focal adhesion protein.  This relates to the 
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Cyr61 story quite nicely given the recent publication by Lv et al., which showed that prostate 

cells with down-regulated expression of Cyr61 developed an abnormal accumulation of mature 

focal adhesions, and by Tamura et al. who found that Cyr61 is involved in transmitting 

mechanical stress signals from the extracellular environment to the cell (243,305).  Vinculin has 

been studied for its role in cancer for almost three decades and recent publications link 

alterations in expression of vinculin with prostate cancer, particularly metastatic disease (306-

315).  Both Cyr61, an ECM protein, and vinculin, an intracellular membrane/cytoskeletal 

associated protein, interact with integrins, play an important role in focal adhesions, and 

influence migration and adhesion.  To date, there is no literature that directly links these two 

proteins but it would be very interesting to evaluate whether the role of Cyr61 in cellular 

response to extracellular mechanical forces is mediated, via stimulation, by integrins, of vinculin 

and talin signaling.  

6.6 CONCLUSIONS 

The process of developing a greater understanding of the fundamental molecular mechanisms 

involved in prostate cancer will provide insights into the questions that still plague the field of 

prostate cancer research.  In order to improve our understanding of the molecular alterations 

associated with prostate cancer, our laboratory characterized expression changes identified 

through microarray analysis comparing healthy normal prostate to prostate cancer tissue.  The 

goal of this study was to identify altered genes that may have utility either as biomarkers, for 

improved diagnosis or with prognostic importance, or as novel targets important to the 

pathobiology of prostate cancer.  Of the greater than 400 genes with significantly altered 
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expression, we selected MT2A, Tacc2, Nell2, FosB, PCP4, and Cyr61.  Expression of PCP4 

proved to have more potential as a biomarker in colon cancer than in prostate cancer given that 

expression in prostate is prodominently stromal and is expressed similarly in the stomal of 

normal prostate and prostate cancer tissue.  We found Cyr61 and FosB expression changes to be 

the most likely to be functionally significant in the etiology of prostate cancer. 
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