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A Monte Carlo Study with Application 

Chien-Chi Yeh, PhD 

University of Pittsburgh, 2007

 

The purpose of this study was to investigate the effect of guessing in the assessment of 

dimensionality in multiple-choice tests using procedures implemented in Mplus and TESTFACT. 

Levels of item discrimination and the size of correlations between dimensions were also 

manipulated to explore any interaction between these effects. Four indices based on the 

proportion of variance, parallel analysis, RMSR reduction and a chi-square difference test were 

used to estimate dimensionality. The research included two parts, a simulation study using a 

Monte Carlo approach and an application with TIMSS 2003 data. 

The simulation study confirmed the guessing effect.  TESTFACT appeared to outperform 

Mplus for most conditions with data that assumed guessing. The proportion of variance and the 

RMSR reduction indices more accurately estimated dimensionality in Mplus, whereas the chi-

square test and parallel analysis performed best with TESTFACT. A discrimination effect was 

observed clearly in data that assumed no guessing using the parallel analysis index and in data 

that assumed guessing using the RMSR index for both methods. Less accurate estimation of 

dimensionality was observed when using Mplus for tests with either high or low discriminating 

items, and with TESTFACT for tests with lower discriminating items. Higher correlations 

between dimensions led to more serious estimation problems. When guessing was not modeled, 

greater influence from the levels in correlations between dimensions and item discriminations 

was found.  Further, a more pronounced discrimination effect was observed in the high 

correlation condition.  

With regard to the application of TIMSS data, 70% of the items exhibited guessing 

behaviors and high correlations were observed between scores on the different dimensions (math 

and science).  Based on the simulation study, guessing and correlation effects should thus be 

considered carefully when choosing a method for assessing dimensionality. Inconsistency in the 

dimensionality assessment using the four indices with Mplus was observed (1 to 5 dimensions), 
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whereas TESTFACT consistently estimated 2 dimensions.  However, further investigation of the 

internal structure of the TIMSS assessment did not show any connection to content or cognitive 

domains. 
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1.0  INTRODUCTION 

1.1 STATEMENT OF THE PROBLEM 

1.1.1 The importance of the assessment of dimensionality 

Providing evidence of validity is essential to the use of educational and psychological 

tests.  This evidence is not only for obtaining a meaningful basis of test scores but also for 

knowing social consequences of score use (Messick, 1995). Several researchers have indicated 

the importance of providing validity evidence using the assessment of test dimensionality, 

especially in the development, evaluation, and maintenance of large-scale tests (e.g., Hattie, 1985; 

Nunnally & Bernstein, 1994; Tate, 2002). For example, the assessment of test dimensionality 

provides empirical evidence to examine the internal structures of tests underlying the responses 

to a set of items.  This kind of evidence relates to the substantive aspect of validity indicated by 

Messick (1989).  A test is developed for a specific purpose with a theoretical structure.  This 

underlying test structure must be examined and confirmed. Assessing dimensionality helps to 

identify the construct defined by the test developer, and to examine how well the test measures 

the underlying structure. In other words, the test developer can use the assessment of 

dimensionality to identify what domains are measured and the relationships between those 

domains. 

Furthermore, confirmation of the internal structure provided information that can be used 

to make a decision concerning what scores should be reported or what setting cutscores can be 

made based on the test structures.  This information supplied evidence of the structural aspects of 

validity.  When the dimensions are distinguishable, reporting subscores is appropriate; when 

there is only one dominant dimension, one total score is reported (Haladyna, 2004). For instance, 

a mathematics test measures algebra and geometry. If the information of dimensionality is 
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clearly presented in two dimensions in terms of algebra and geometry, then it is appropriate to 

report two subscores for algebra and geometry respectively.  If the assessment of dimensionality 

shows only one dimension, reporting a total score for mathematics is preferable. Additionally, 

any information regarding the internal test structure could be the foundation of either 

“homogeneous” items in the classical test theory (CTT), or the “unidimensionality assumption” 

in item response theory (IRT; Tate, 2003). Moreover, for accountability and diagnosis purposes 

of large-scale assessment programs, the practice of reporting subscores has received more 

attention (e.g., Goodman & Hambleton, 2004; Martineau, Mapuranga, & Ward, 2006; Skorupski, 

2005). For example, the No Child Left Behind Act of 2001 (NCLB, 2001) requests requiring 

statewide testing programs to provide both total scores and subscores of examinee performance 

(Goodman & Hambleton, 2004). The assessment of dimensionality can help collect evidence for 

correctly interpreting subscores and using subscores for instructional purposes.   

In terms of the generalizability aspects of validity, the test developer should carefully 

consider the maintenance of score comparability across groups, settings, and tasks (Messick, 

1995). Score comparability means that scores have comparable interpretations for different 

subgroups or on different occasions (e.g., over time).  For example, when scores of large-scale 

tests are used to describe trends in schools, districts, and state achievement over time, the 

invariance of the tests’ factor structures needs to be examined.  When several test forms require 

an equating procedure for using at different points in time, the changes in test structures can be 

identified by tracking dimensionality of the tests over time (Tate, 2002, 2003).  As indicated by 

Messick (1995), construct-irrelevant variance is a major bias source for the use and interpretation 

of test scores.  The construct-irrelevant variance can lead to the differential item functioning 

(DIF) issues of fairness across groups. A test with DIF has items that function differently for 

different groups.  However, a test is supposed to have the same measured function for all 

intended subgroups in order to use the test scores.  One example of this concept can be found in 

the test scores of a reading comprehension exam between groups of native English speakers and 

people whose primary language is not English.  The ability to speak, read, and write English 

becomes a key factor for attaining high scores. Consequently, the test is unfair for some 

subgroups or individuals.  In other words, the invariance of test scores across groups provides the 

foundation for the fairness of test use. This kind of invariance relates to consequential construct 
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validity.  The assessment of test dimensionality can help identify the sources of invalidity related 

to bias and fairness, such as DIF items in tests.  

In summary, the assessment of the test dimensionality is able to identify the internal test 

structure for the following purposes: (1) to confirm the domains are being measured; (2) to 

understand the relationship between domains; (3) to examine and maintain the test structure 

across groups or over time.  Furthermore, the assessment of dimensionality provides supporting 

evidence for validity, including the substantive, structural, generalizability and consequential 

aspects. In addition, the dimensionality is also useful identifying the major threats of construct 

validity, construct underrepresentation and construct-irrelevant variance.   

1.1.2 The influence of modeling guessing 

The issue of guessing is also important to multiple-choice assessments.  First, guessing 

increases measured error since it raises the possibility of correct responses (Rogers, 1999).  Also, 

as indicated by Messick (1995), guessing propensities can be the source of construct-irrelevant 

variance, which provides a major threat of construct validity. Second, the use of guessing 

strategies introduces error and attenuated the relationships among items. Therefore, it is 

reasonable and important to consider guessing in the assessment of dimensionality, especially 

with regard to multiple-choice tests.  Although the guessing parameter is included in the three-

parameter models in IRT, most of the methods for factor analysis do not include guessing in their 

models.  In addition, most multidimensional item response theory (MIRT) approaches only allow 

fixed values of guessing in models (e.g., models implemented in TESTFACT and NOHARM).     

Recently, Tate (2003) focused on the comparison of empirical methods in assessing test 

structure as well as the evaluation of guessing effect. He evaluated the estimated number of 

dimensions and parameter recovery in unidimensional and multidimensional data using both 

parametric and nonparametric approaches. Some conditions might be expected to be problematic 

for some of the methods, such as data with extreme difficulty and discrimination parameters, and 

one item pair with local dependence.  For the evaluation of guessing effect, the results of 

exploratory factor analysis using Mplus obtained the correct decisions in only 3 out of 14 

simulation cases.  Without modeling guessing, Mplus did not perform well in the confirmation of 

correct dimensionality and overestimated dimensionality for all of the cases with guessing.  
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Additionally, the effect of guessing was reflected in the recovery of the true item parameters.  By 

contrast, TESTFACT and NOHARM, which included guessing parameters in the models, 

performed well in identifying the correct dimensionality for most unidimensional or 

multidimensional cases. The results in Tate’s study also illustrated the effect of guessing when 

different methods were used to identify dimensionality.  The results also found some problems in 

assessing dimensionality when there was an interaction between item parameters, such as 

guessing versus discrimination or guessing versus difficulty.  However, due to the large amount 

of selected methods used in Tate’s study, only some specific test conditions were examined to 

show the differences between the various empirical methods for assessing dimensionality.  

Another study about the assessment of dimensionality using real data, the Multistate Bar 

Examination (MBE), provided more understanding of the relationship between items and the 

internal structure of a test when guessing was modeled (Stone, & Yeh, 2006).  The MBE was a 

four-option multiple-choice exam with 200 questions.  For the 2001 February administration, the 

examination of the average proportion correct for low-ability examinees showed that more than 

50% of items showed that guessing was operating. The results of three methods, Mplus, 

NOHARM and TESTFACT, demonstrated a similar pattern of dimensionality in conditions that 

did not model guessing. However, a comparison between NOHARM and TESTFACT showed 

more solid evidence for higher dimensionality and more indicators in the factors when guessing 

was modeled.  The correction of tetrachoric correlations reflected more realistic relationships 

between items by considering errors caused by guessing behaviors.  In other words, when 

guessing was operating on multiple-choice items, modeling guessing in the assessment of 

dimensionality became important.  The results of the methods with modeling guessing provided 

more rich information not only for the assessment of dimensionality or the relationship between 

items, but also for assessing the internal test structures. Although the results found the influence 

of guessing in the assessment of dimensionality, the true underlying factor structure remained 

unknown. Therefore, it was impossible to investigate the effect of assessing dimensionality when 

guessing was modeled. 

The results of the two studies mentioned above demonstrated the effect of guessing in 

determining the dimensionality or examining the internal test structures. However, due to the 

limitations of these studies, the effect of guessing has not been investigated in broader or more 

general conditions. Also, no examination determined the extent of recovery of a true 
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dimensionality or parameter measures (either factor loading in a factor analysis sense or item 

parameters in a MIRT sense).  These two studies did not fully examine the interaction between 

guessing and other factors, such as difficulty and discrimination item parameters.   

1.1.3 Methods of assessing dimensionality 

The most common methods include traditional factor analysis, nonlinear factor analysis 

(NLFA), and the MIRT approaches. The equivalent of NLFA and MIRT has been discussed (e.g., 

Knol & Berger, 1991; Takane & Leeuw, 1987).  Therefore, three kinds for methods of assessing 

dimensionality will be discussed here, including traditional factor analysis, the MIRT approach. 

As for factor analysis of dichotomous data in multiple-choice tests, Mplus is the most 

commonly used software (Muthén, 1978).  Mplus provides a categorical variable model for 

either dichotomous or ordered categorical data (Newsom, 2005). In this kind of model, the 

relationship between the factors and the items is nonlinear.  In Mplus, the data for exploratory 

factor analysis (EFA) can be continuous, categorical, or a combination of both. As for 

dichotomous data (i.e., categorical data), Mplus provides several options for estimation, 

including the default option, unweighted least squares (ULS).  Mplus allows users to perform 

EFA and confirmatory factor analysis (CFA) to estimate unidimensional or multidimensional 

models.  Additionally, Mplus provides several statistics to evaluate model fit, such as chi-square 

fit statistics, root mean square residual (RMSR), and root mean square error of approximation 

(RMSEA).  However, Mplus does not allow users to input guessing parameters.  

Given the relationship between factor analysis and MIRT, several programs for assessing 

dimensionality are based on MIRT.  Using different estimation methods, TESTFACT and 

NOHARM are the most popular programs. TESTFACT is based on the full-information item 

factor analysis proposed by Bock, Gibbons, and Muraki (1988), whereas NOHARM is based on 

a polynomial approximation to the normal ogive model developed by McDonald (1967, 1982). 

The estimates of TESTFACT are based on all of the item response information (i.e., “full-

information”).  The estimation procedure combines the marginal maximum likelihood (MML) 

estimation and the expectation-maximum (EM) algorithm (Bock & Aitkin, 1981). TESTFACT 

provides both EFA and CFA. Unlike Mplus, the fixed values of guessing parameters can be set 
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in the program. TESTFACT also provides chi-square statistics and residual matrix, but not a 

residual based fit index. 

The ULS estimation method implemented into NOHARM provides a more efficient 

method than the generalized least square (GLS, used in Mplus) and maximum likelihood (ML, 

used in TESTFACT) procedures.  Therefore, it can be used with a large number of items and/or 

dimensions. NOHARM also allows users to fit both the exploratory and confirmatory models. 

The matrix of covariance residuals and RMSR index provides information on the model’s lack of 

fit. This approach does not provide the standard errors for parameter estimates nor tests of the 

model’s goodness of fit (McDonald, 1997).  However, Gessaroli and De Champlain (1996) 

developed an approximate chi-square statistic, which may be used to address this limitation.  

Several authors found that the performance of NOHARM was similar to that of TESTFACT 

(Knol & Berger, 1991; Stone & Yeh, 2006). 

1.2 RESEARCH QUESTIONS AND THE DESIGN OF THE STUDY 

According to the discussion above, the assessment of dimensionality provides not only 

information concerning the internal test structures, but also validity evidences. As discussed, 

most empirical methods of dimensionality assessment do not estimate a guessing parameter, and 

only a few methods allow incorporation of guessing parameters in the analysis of the factor 

structure. However, there has been no full investigation of the effect of guessing under more 

general conditions. Thus, the main purpose of this study was to investigate the effect of guessing 

in the assessment of dimensionality. Through the comparison of the traditional factor analysis 

and MIRT approaches, the influence of modeling guessing in the assessment of dimensionality 

can be detected under general conditions. At the same time, manipulation of other item 

characteristics and factors provided information about the influence of the interaction between 

these factors. The following research questions were addressed in this study. 

1) What is the effect of guessing on assessing dimensionality of multiple-choice 

tests? 

2) How well do different indices perform for estimating the number of 

dimensions when assessing dimensionality?  
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3) Does the discrimination level for items affect the assessment of dimensionality? 

4) Does the correlation among dimensions affect the assessment of 

dimensionality? 

5) What is the interaction between the guessing effect and the level of 

discrimination of items and correlations between dimensions? 

In order to investigate the effect of guessing, this study used a Monte Carlo approach. 

Through the known dimensionality, it was possible to examine the differences between estimated 

and true dimensionality. This study considered the assessment of dimensionality for one, two, 

and three dimensional data.  The main manipulated variables included guessing parameters, item 

discrimination parameters, and the correlations among dimensions/factors. There were two levels 

for guessing (0 and .3) whereas there were three levels of discrimination (Low, Medium, and 

High). The correlations between dimensions were .3 and .6.  Two estimation methods as 

implemented in Mplus and TESTFACT, were used to compare the effect of incorporating a 

guessing parameter. 

The second part of this study included an application with real data. The purpose was to 

examine if the findings from in the simulation study could be useful for practical applications. 

The Third International Mathematics and Science Study (TIMSS) in 2003 was selected, and the 

same procedures used to analyze the data.  TIMSS contained two major subjects, mathematics 

and science.  

1.3 SIGNIFICANCE OF THE STUDY 

Several studies have been conducted to evaluate different empirical methods used for 

assessing dimensionality (e.g., Knol & Berger, 1991; Stone & Yeh, 2006; Tate, 2003).  Tate 

(2003) conducted a study that compared the performances of selected methods. Tate’s study 

provided a wealth of information about new procedures for assessing test structures.  However, 

Tate did not consider other issues, such as the probability of empirical power or other factors that 

might affect the assessment of test dimensionality.  In Stone and Yeh’s study (2006), the results 

confirmed the effect of guessing as well.  However, this study was conducted using real data.  

This research extends these previous studies by focusing on the effect of guessing with 
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simulation data.  In order to increase the generalizability of the results of this study, more general 

test setting conditions were considered for manipulation: three discrimination levels, the use of 

approximate simple structures, and different correlations between dimensions.  In this study, 

three-dimensional data were included to explore the possible influence of higher dimensionality. 

A multiple replication design was used to deal with statistical inference issues.  This design 

allows for evaluating the empirical power of the procedures.  Moreover, this study focused on 

the influence of the variation of discrimination and guessing parameters in assessing 

dimensionality. It was possible to investigate the interaction between the discrimination and 

guessing parameters.  Finally, as a suggestion by the software developers (Wilson, Wood, 

Gibbons, Schilling, Muraki, & Bock, 2003), estimation of guessing was included instead of 

incorporating true guessing values in Tate’s study.  
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2.0  LITERATURE REVIEW 

2.1 INTRODUCTION 

Collecting evidence of validity is essential for test development and maintenance.  In the 

development stage, test developers need to identify constructs based on the purpose of the 

measurement and its assumed theoretical framework, as well as determine the number of scores 

to report based on the theoretical framework.  The test structure or dimensionality represents the 

content or process structure that a test is intended to measure. In other words, the information 

about dimensionality provides structural evidence for the consistency between the internal 

structure of a test and the structure expected by the known definition of construct domains (Fiske, 

2002).  Therefore, if any constructs are overrepresented or underrepresented, this situation can be 

detected by the assessment of dimensionality and the factor structure based on the estimated 

dimensionality. Moreover, the information of test structure provides the foundation for 

determining how to report scores, either total scores or subscores.  The decision should be 

determined based on the relationship between factors or ability domains. Reporting subscores is 

appropriate when the distinguishable factors can be identified or when the test structures were 

designed at the beginning of developing tests.  Otherwise, only a single total score should be 

reported (Haladyna, 2004).   

In the next stage, evaluating the tests, researchers provide evidence of reliability and 

validity to confirm the consistency of scores, the accuracy of the test used, and the test score 

interpretations. This kind of evidence includes internal consistency, reliability, information of 

adequacy and appropriateness of test scores reported and so on (e.g., Haladyna, 2004; Hattie, 

1985; Nunnally & Bernstein, 1994; Tate, 2002).  Score reliability in classical test theory (CTT) is 

based on the assumption of unidimensionality. If there is any violation, it is necessary to make 

adjustments to achieve an accurate estimated reliability (Tate, 2002).  On the other hand, if test 
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developers assume that the structure is multidimensional, the assessment of dimensionality can 

provide evidence for hypothesized multidimensionality. Furthermore, through assessing the 

dimensionality, two major threats to test score interpretation, construct underrepresentation and 

construct-irrelevant variance, can be detected (Messick, 1989). For instance, a mathematics test 

is designed to measure algebra and geometry knowledge.  The results of the test structure or 

dimensionality can show the test developer if there are only two dimensions (presented algebra 

and geometry factors) in this test or if any suspicious factors (i.e., construct-irrelevant sources) 

show up in the test structures. One example of a suspicious factor can be item difficulty or item 

format. It is possible that the dimensionality and test structures may show that other constructs, 

such as reading ability, also affect test scores.  

Regarding issues of score reporting, as indicated by Haertel (1999), large-scale 

assessments serve an important role in providing information for accountability, evaluation 

purpose.  In addition, more detail for diagnostic information of test results is required in the 

NCLB (2001). Not only the total scores but also the subscores are reported for obtaining the 

information about student achievement and growth over time (Goodman & Hambleton, 2004; 

Martineau, Mapuranga, & Ward, 2006). Most academic assessments require the use of multiple 

skills to succeed in proficiency.  In general, test constructs include several content domains, 

especially shown in K-12 state assessment. Therefore, evaluating content validity becomes more 

important for large-scale assessment programs since this sort of information helps test developers 

to identify interpretable dimensions (Martineau et al, 2006).  In other words, confirming the 

dimensionality of academic assessments helps define interpretable dimensions and decide what 

subscores are reported. 

The maintenance of score comparability across groups, settings, and tasks should be 

considered carefully since it is important for the generalizability aspect of validity (Messick, 

1995). Score comparability means that scores have comparable meanings for different subgroups 

or on different occasions (Tate, 2002).  For example, when the scores of large-scale tests are 

used to describe trends in schools, districts, and state achievement over time, it means that the 

scores reported from different time points have to represent the same meanings.  Therefore, it is 

necessary to examine the invariance of the factor structures of the tests over time.  Equating 

issues also arise when test developers use several test forms at different time points.  It is 

necessary to identify that the test structures in different forms are similar.  The changes to the test 
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structures can be identified by tracking the test dimensionality over time and across forms as 

well (Tate, 2002, 2003). Moreover, concerning consequential construct validity, it is important to 

confirm if a test has the same measured function for different subpopulations. As indicated by 

Helms (2003), if the students differed from the norm group of a test on important dimensions, 

such as ethnicity, issues of fairness and valid test use will arise.  Ethnicity can be a bias source 

(i.e. construct-irrelevant variance) for the use and interpretation of test scores.  Consequentially, 

the bias source can lead to the different item function (DIF; Tate, 2002). The assessment of the 

dimensionality helps to identify items with DIF among subgroups.   

In conclusion, the assessment of dimensionality provides information about the internal 

structure and supports evidence of construct validity. In the development stage, the 

dimensionality helps to identify and confirm the intended structure or the discrepancy between 

the empirical and expected structures.  During the evaluation period, this assessment provides 

supportive evidence of construct validity, including generalizability as well as structural and 

consequential aspects. The assessment of dimensionality identifies the sources of the major 

threats to construct validity, including underrepresentation and construct-irrelevant variance.  

2.2 THE ASSESSMENT OF DIMENSIONALITY 

Since 1985, methods for the study of dimensionality have evolved due to the 

development of new methods for dichotomous data and the argument concerning the assumption 

of the unidimensionality of tests. There are two major approaches for the assessment of test 

structures, the parametric and nonparametric methods. The parametric approach contains item 

factor analytic (FA) methods, and methods based on multidimensional item response theory 

(MIRT).  The item factor analytic methods are based on nonlinear factor analysis (NLFA) 

models, and were developed for dealing with the problems caused by dichotomous variables.  It 

has been proven that the NLFA and MIRT models are mathematically equivalent when the 

distribution of ability is normal (e.g., Knol & Berger, 19991; Takane & De Leeuw, 1987).  

Therefore, MIRT can be considered either a special case of FA or an extension of item response 

theory (IRT).  Nonparametric approach receives more attention due to the failure of parametric 

IRT models and applications with shorter test lengths and smaller sample sizes (Tate, 2003).  
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The following sections introduce the fundamental concepts of these three approaches, including 

their models and estimation methods.   

2.2.1 Factor analysis (FA) approach 

2.2.1.1 Introduction 

The common factor model for classical linear factor analysis is defined as the following 

(Gorsuch, 1983): 

Xiv = wv1F1i+wv2F2i + …+ wvfFfi + wvuUiv,     (2.1) 

where Xiv is score on variable v of examinee i, wvf  is the weight for variable v on factor f, and F1i  

to Ffi are factor scores of examinee i on the f factors, wvu  is the weight for variable v of the 

unique factor, and Uiv  is the unique factor scores of examinee i for variable  v.  In the common 

factor model, the factors are divided into two groups.  The first group consists of the common 

factors, F1i to Ffi.  Each of the common factors contributes to two or more variables, which 

means several variables have these factors in common. The noncommon factor variance for each 

variable, that includes the uniqueness from each variable, the random error of measurement, and 

all other sources of error and bias not defined by the model, is summarized in a unique factor. 

Therefore, sometimes, part of wvuUiv is written as residual, ei.  In classical linear factor analysis, 

either the observed variables (i.e., item scores) or latent variables (i.e., factors) are assumed to be 

continuous, even though in some conditions the variables may be dichotomized.  Therefore, 

Pearson or phi correlations are used in traditional linear factor analysis to represent the linear 

relationships between variables.  

FA of dichotomous variables (i.e., NLFA) is an extension of classical linear factor 

analysis, sometimes called item factor analytic methods (Tate, 2002).  However, several 

problems may arise in the factor analysis of dichotomous variables.  Traditional factor analysis 

methods use correlations based on linear relationships between variables (e.g., Pearson or phi 

correlations). Since there is a score of only 0 or 1 on dichotomous items, the relationship 

between item scores and the continuous latent variables is nonlinear (Mislevy, 1986).  When phi 

or Pearson correlations are used in FA of dichotomous data, this situation may lead to the 

identification of spurious “difficulty” factors.  Consequently, it is possible to underestimate the 
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factor loadings and overestimate the number of dimensions (Bock, Gibbons & Muraki, 1988). 

Therefore, tetrachoric correlations are used instead of phi correlations in dichotomous cases.  

Unfortunately, several authors have indicated a number of drawbacks using the tetrachoric 

correlation matrix (Bock, Gibbons & Muraki, 1988; Knol & Berger, 1991; Pang, 1999).  Firstly, 

the tetrachoric matrix may not be positive definite, therefore, causing a problem for the 

maximum likelihood (ML) method and the generalized least square (GLS) method, which are 

common FA estimation methods (Knol & Berger, 1991).  Secondly, the tetrachoric correlation 

matrix is not a ML estimator of the population matrix. Thirdly, the calculation of tetrachoric 

correlations is unstable when the values approach +1 or –1 (Bock, Gibbons & Muraki, 1988).  

Generally, the methods for calculating tetrachoric coefficients are accurate, although, a large 

sample size is necessary for the computational accuracy of the tetrachoric matrix estimates. 

Additionally, the matrix of sample tetrachoric correlation coefficients may produce Heywood 

cases with communalities greater than one, which imply one or more unique variances are 

negative values (Hattie, 1984; Knol & Berger, 1991; Nandakumar, 1991). It is difficult to 

interpret the results of communalities greater than one.  The presence and correction of guessing 

further undermines the use tetrachoric correlations (Carroll, 1945).   

The development of factor analysis methods for categorical variables has been promising 

in the past decade, including one traditional factor analysis using GLS method (Christoffersson, 

1975; Muthén, 1978), and two methods based on MIRT approach, using the ML (Bock & Aitkin, 

1981), and the unweighted least-squares (ULS) methods (McDonald, 1967, 1994). These three 

methods were developed to deal with the problems that may arise in the analysis of dichotomous 

data.  

2.2.1.2 The FA model for dichotomous variables 

The FA model for dichotomous data (Christoffersson, 1975; Muthén, 1978) can be 

defined as 

Y=Λθ+Ε,        (2.1) 

where Y is the latent continuous variables (Y1, …, Yn), Λ is a matrix of factor loadings of items 

(λi1, …, λim) and θ is ability values of examinees (θ1, …, θn). This is a common factor model, but 

Y is unobserved. Also, the response variables Xi are defined by the unobserved variables Yi and 

threshold variablesτi as following: 
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Xi = 1, if Yi > τi ; otherwise, Xi = 0. 

Under the assumptions that θ ~ MVN (0, I), Ε ~ MVN (0, Ψ2), both are multivariate normality, 

where Ψ2 is a diagonal matrix of residual covariance, and Cov (θ, Ε) = 0.  A GLS estimation 

procedure has been used to estimate the parameters of the Christoffersson’s model; this method 

minimizes the following fit function:   

F = (p-P)’Se
-1(p-P),                   (2.2) 

where Se is a consistent estimator of the residual covariance matrix; P is a vector of the expected 

proportion correct of items Pj and Pjk, and p is an observed proportion correct of items Pj and Pjk 

(De Champlain, 1999). In Muthén’s GLS procedure, the parameters are estimated by minimizing 

a fit function in the following manner: 

F = ½ (s-σ)’Wδ
-1(s-σ)       (2.3) 

where σ is the population threshold and tetrachoric correlations, s is the estimates of threshold 

and tetrachoric correlations from the sample, and Wδ is a weighted matrix.  This estimation is 

equivalent to the Christoffersson’s estimator but more efficient in computation.  This approach is 

termed a full-weight matrix approach because a p*× p* weight matrix is used, where p* is the 

total number of the elements in the s vector (De Champlain, 1999).  

Muthén’s GLS procedure was incorporated into the computer program Mplus.  Generally, 

Mplus can be used to fit unidimensional or multidimensional models using exploratory and 

confirmatory approaches.  However, the program does not attempt to correct for guessing or to 

“smooth” the tetrachoric correlations. Although this estimation utilizes the joint proportion 

correct for items taken one to four at the same time, which are the one-way, two-way, three-way, 

and four-way margins, it does not use all of the available information as TESTFACT does.  

Statistical tests of model fit and standard error of estimation are available in this procedure.  

Computing requirements increase quickly when the test length and number of factors increase.  

Hence, test length could be limited depending on the capacity of the computer. The newer 

versions of Mplus provide several options for exploratory factor analysis for categorical 

variables, including ULS, weighted least squares (WLS), weighted least squares with robust 

standard errors and mean-adjusted (WLSM), and robust weighted least squares with mean- and 

variance-adjusted (WLSMV). The default method of estimation is the ULS estimator.  ULS 

estimation needs to meet the multivariate normality assumption.  The other three options are all 
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similar to the asymptotic distribution free function (ADF), but different weight matrixes are 

chosen.  Therefore, WLS, WLSM and WLSMV make no assumptions about the population 

distribution.  However, the WLS estimation needs a relatively large sample size, which may be 

problematic in most educational settings.  Therefore, the last two options are preferable for use 

with dichotomous data. One option for categorical variables suggested by the user guide of 

Mplus is WLSMV because the weight matrix chosen (all off-diagonal elements are set to zero) is 

simpler than the one used in WLS (all off-diagonal elements are estimated). Hence, larger 

sample sizes are not required as for WLSMV.  However, due to the way degrees of freedom are 

calculated with the WLSMV method, it is impossible to evaluate nested models using the chi-

square difference test with WLSMV outcomes.   

2.2.1.3 Identification of number of factors/dimensions   

Deciding how many factors in a FA reflects the dimensionality of a set of variables.  It 

also is an important issue in assessing test structure because the test structure can be derived by 

examining the pattern of factor loadings. The decision needs to balance the requirement for a 

parsimonious test structure and a solution in which there are enough common factors to account 

adequately for the relationship among measured variables (Fabrigar, Wegener, MacCallum, & 

Strahan, 1999).  Generally speaking, more factors are preferable than fewer factors because a 

larger number of factors provides more information about the relationship between variables.  In 

addition, empirical research suggests that over-factoring introduces less estimated error than 

under-factoring does (Fava & Velicer, 1992; Wood, Tataryn & Gorsuch, 1996).  However, a 

meaningful or theoretical explanation is more important than just fitting a model (Cudeck, 2000). 

A number of methods for identifying the number of factors have been proposed.  First, 

the most commonly employed method, the K1 rule developed by Kaiser (1960), retains those 

factors with eigenvalues greater than 1.0.  However, the K1 rule is intended to overestimate the 

number of factors.  Secondly, since substantial changes in eigenvalues for consecutive factors 

indicate the presence of significant factors, the number of factors can be determined by a scree 

test (plots of eigenvalue number versus eigenvalue scale).  According to scree plots, the number 

of factors is equal to one fewer than the solution corresponding to the “elbow” (Kim & Mueller, 

1978) or identified by the last substantial drop in the magnitude of the eigenvalues (Fabrigar et 

al., 1999). This method has been criticized because there may be no clear way to identify the 
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“elbow” or “substantial drop”.  Therefore, it performs well only when strong common factors are 

present.   Third, the amount of variance explained is an index for the substantive importance of 

factors. A number of factors should be retained until a certain amount of total explained variance 

is achieved, for instance, 70%.  Alternatively, the number of factors can be found by setting a 

criterion of what should be considered the minimum contribution by a factor to be evaluated as 

substantively significant.  For example, factors that have more than 5% explained variance could 

be retained.  The major advantage is that it is easy to interpret.   On the other hand, the major 

disadvantage of this method is that it uses a subjective criterion (Kim & Mueller, 1978).   Finally, 

parallel analysis is based on the comparison of eigenvalues obtained from sample data and 

completely random, uncorrelated data, proposed by Horn (1965). The number of factors is 

obtained by comparing scree plots based on the real data versus random data.  As indicated by 

Horn (1965), the mean eigenvalues of the random data provides a baseline for the comparison 

between the real data and random data.  Recently, several researchers suggested using the desired 

percentile of the distribution of random data eigenvalues, such as 95% (O’Connor, 2000). 

In addition to using eigenvalues as an index for the determination of dimensionality, there 

are other ways to identify the number of factors.  There are several statistics provided by Mplus 

to evaluate model fit: 1) chi-square fit statistics; 2) root mean square residual (RMSR, since it is 

a standardized statistic, therefore, also referred as SRMR); 3) root mean square error of 

approximation (RMSEA) that corrects the chi-square statistics for model complexity.  The chi-

square fit statistics provide information about the difference between observed and expected 

correlations defined by models.  In other words, the chi-square test evaluates whether the 

observed data corresponds to the expected data. The RMSR index calculates the standard 

deviation of the difference between observed and expected correlation matrices.  Larger values 

of RMSR mean a greater difference between the observed data and data expected under the 

model. RMSEA provides information similar to the chi-square statistics but that corrects the chi-

square statistics based on model complexity.  Therefore, RMSEA is not affected by sample size. 

Since the chi-square test is affected by sample size, it is more appropriate to use RMSR and 

RMSEA to evaluate the model fit under larger samples.  The model fit decision can be based on 

the percentage of reduction of the RMSR (Tate, 2003) or cut-off values (e.g., RMSR < .08, Hu & 

Bentler, 1999).  
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2.2.2 Multidimensional item response theory (MIRT) approach 

In the late 1970s and early 1980s, researchers began developing practical MIRT models.  

The link between the normal ogive model and the FA of dichotomous variables greatly 

contributed to the development of MIRT.  Reckase (1972) proposed the multidimensional Rasch 

model. Later, McKinley and Reckase (1982) considered a greater variety of general Rasch 

models and settled on the linear logistic form, known as a compensatory model. The 

development of partially compensatory or noncompensatory models proposed by Sympson (1978) 

and Whitely (1980) was a separate line of MIRT. These noncompensatory models have become 

more popular and are commonly used in psychology for ability tests. These two models are 

presented first.  Next, the relationship between NLFA and MIRT is illustrated.  Four commonly 

used methods in FA are introduced at the end of the section, including models, estimation 

procedure, and the index for determining dimensionality. Note that the informal indices for 

determining dimensionality illustrated in Section 2.2.1.3 can be used for the methods of the 

MIRT approach.  Only the formal indices will be introduced when presenting each method. 

2.2.2.1 Models  

The compensatory models in MIRT assume that low ability on any dimension can be 

compensated for with greater ability on another dimension. For example, a spatial reasoning 

problem can be solved either as a feature of comparison strategy or as a mental rotation strategy 

(Bolt & Lall, 2002). Equation 2.4 presents the multidimensional compensatory three-parameter 

logistic model (MC3PL) (Spray, Davey, Reckase, Ackerman, & Carlson, 1990; Reckase, 1997). 

P(xij=1|θj,ai,di,ci)
])(7.1exp[1
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where xij = response of person j to item i (0 or 1); θj = a vector of latent abilities; ai = a vector of 

discrimination for item i in dimension k; di= easiness intercept for item i, related to the difficulty 

for item i; ci = the guessing parameter of item i. The potential of person j on item i is reflected by 

a sum of k weighted traits (i.e., discrimination).  Therefore, the model is referred to as an additive 

model (Reckase, 1997).  When ci sets to zero, this model becomes a multidimensional 
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compensatory two-parameter logistic model (MC2PL).  Moreover, the MC2PL model becomes a 

multidimensional Rasch model when all of the discrimination parameters are set to 1. The 

interpretations of item parameters are the same across all compensatory models, and are similar 

to models in unidimensional IRT.  Item discrimination is related to the slope of the item’s 

characteristic surface (ICS, discussed later) in the direction of the corresponding ability axis.  

The higher the value of discrimination of one dimension indicates a greater importance of that 

dimension (or trait) in item success (Embretson & Reise, 2000).  An overall discrimination index 

is defined as the maximum discrimination index (MDISC, see Equation 2.5, Reckase & 

McKinley, 1991).  Item difficulty, bi, is defined in second part of Equation 2.5 (Reckase, 1985) 

and related to di, which is called the easiness intercept by Embretson and Reise (2000).  The 

larger the easiness intercept, the smaller the value of difficulty will be, which means the item is 

easier.  The guessing parameter has the same meaning as in the unidimensional IRT model, 

representing the probability of a correct response for examinees that are very low in all 

dimensions.   

MDISCi= ∑
=
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k
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1

2      and bi= 
i

i

MDISC
d−      (2.5) 

There are four kinds of plots for interpreting the item parameters of MIRT models, shown 

in Figure 2.1 (cited from Ackerman, 1994). These plots are presented based on two-dimensional 

data. First, ICS represents the probability of a correct response to an item depending on two or 

more abilities in MIRT as analog to the item characteristic curve (ICC) in unidimensional IRT.  

Figure 2.1(a) shows the ICS of an item of a two-dimensional MC2PC model. An ICS leans 

toward the dimension with a higher MDISC value.  The signed distance from the origin to this 

p=.5 equiprobability line is defined as the difficulty parameter (Ackerman, 1996).  

Second, a contour plot of an ICS (see Figure 2.1(b)) is more informative than graphing an 

ICS.  All examinees with the same probability of a correct response lie in a line, called the 

equiprobability contour. These lines are parallel, but only the contours of compensatory models 

are straight lines.  The higher discrimination (or the steeper the slope of the surface), the closer 

together the contour lines will be.  

Third, Figure 2.1(c), the item vector plot, depicts each item as a vector in an orthogonal 

Cartesian coordinate system for a two-dimensional compensatory model.  The vectors are only 

presented in the first and third quadrant because MDISC is always positive (Ackerman, Gierl, & 
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Walker, 2003). The length of vectors represents the values of MDISC. The representation of item 

difficulty is as same as in an ICS contour plot. Easy items lie in the third quadrant, while difficult 

items lie in the first quadrant.  The shape of arrows represents the size of guessing parameters. 

Fourth, referred to Figure 2.1 (d), the contour plot of a test characteristic surface (TCS) is 

similar to the contour plot of ICS.  Examinees with the same true score all lie in a line.  The true 

score, ξ, is the sum of the probability of getting each item correct at θ points (i.e., ξ=Σ Pi) each. 

The equi-true-score contours are not linear but rather curvilinear.  The closer the contours are, 

the steeper the TCS surface will be or more precise the measurement precision will be.  

 

           
   (a)  An ICS plot                            (b) A contour plot of an ICS 

                   

(c) An item vector plot                       (d) A contour plot of the TCS 

Figure 2.1 Four kinds of plots for interpreting item parameters of MIRT models 
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The multidimensional noncompensatory three-parameter logistic model (MNC3PL) is 

defined as the multiplication of the probability of a correct response for each dimension 

(Sympson, 1978):  

P(xij=1|θj,ai,bi,ci) ∏
= −−+

−+=
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  (2.6) 

All of the parameters in Equation 2.6 are defined as the same as in the MC3PL model 

(Equation 2.4).  The noncompensatory nature derives from the fact that the probability of a 

correct response can never be greater than the minimum value of the terms in the product (Spray 

et al., 1990).  In this model, because the values of the exponents are fixed, the probability of a 

correct response decreases when the dimensionality number increases. Hence, the model is 

referred to as a multiplicative model.  In other words, a lower ability in one dimension cannot be 

compensated for higher abilities in any other dimensions.  A noncompensatory model is more 

appropriate when a multidimensional test requires the simultaneous application of two or more 

abilities to answer each item correctly (Ansley & Forsyth, 1985; Sympson, 1978). An example is 

a math word problem test requires reading and mathematic abilities at the same time.  

Noncompensatory models have been less commonly used partly due to the increased 

number of parameters that require estimation. However, it is not always clear when to apply 

either compensatory or noncompensatory models, because the relationship between abilities 

required for answering correctly is sometimes unclear. According to Embretson and Reise (2000), 

compensatory models can be applied to personality and attitude measurement because of the 

direct interpretability of these constructs. On the other hand, some research in decomposing 

cognitive processes, such as verbal analogies and abstract reasoning, demonstrates that 

processing components have noncompensatory impact on item success. In these situations, the 

noncompensatory models can be applied (e.g., Embretson, 1995; Whitely, 1980). 

2.2.2.2 The relationship between FA and MIRT 

Several researchers have shown that the compensatory MIRT and the NLFA models are 

mathematically equivalent (Knol & Berger, 1991; Takane & De Leeuw, 1987). A typical factor 

analytic model can be expressed as follows (Gorsuch, 1983): 

Yi = λi1f1 + λi2f2 +…+ λikfk + εi        (2.7) 
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where Yi are observed scores of item i;  fk are the latent traits or factors (k = 1 , 2,…, m) and λik 

are factor loadings.  Given that each dichotomous item has a threshold parameter (γi) determining 

whether a response is correct, the model in Equation 2.7 can be rewritten as a normal distribution 

function (Φ) for a correct response (McLeod, Swygert & Thissen, 2001): 

]...[)|1( 2111

i

ikikii
iuP

σ
γθλθλθλ

θ
−+++

Φ==     (2.8) 

where ui are responses of examinees in item i,  θk denotes the latent traits (e.g., fk), and σi 

are unique variances (variances of εi). Letting  
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γ−=  , where σi = ∑− 21 ikλ ,    (2.9) 

the model defined in Equation 2.8 becomes the multidimensional normal ogive model: 

]...[)|1( 2111 imimiii daaauP ++++Φ== θθθθ     (2.10) 

Based on the relationship between FA and MIRT (i.e., Equation 2.8 and Equation 2.10 

are equivalent), MIRT parameters can be derived from FA model parameters and vice versa. The 

discrimination aik and intercept di in MIRT can be calculated using Equation 2.9.  On the other 

hand, given the MIRT parameters, FA parameters can be obtained by: 

λik = 
∑+ 21 ik

ik

a

a
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d
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2.2.2.3 Methods based on MIRT  

Four methods used in factor analysis based on MIRT were presented in this section.  

Only the last method, ConQuest is based on Rasch model whereas the other methods were based 

on three-parameter models. 

(1) Full-information item factor analysis by TESTFACT 

Bock, Gibbons, and Muraki (1988) developed the exploratory full-information item 

factor analysis and implemented it in the TESTFACT program. The estimates are based on all of 

the item response information, so called “full-information,” not the partial or summary 

information used in Mplus and NOHARM. The full-information factor analysis is based on 

Thurstone’s multiple-factor model, and the estimation procedure combines marginal maximum 

likelihood (MML) estimation and the expectation-maximum (EM) algorithm (Bock & Aitkin, 
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1981; Dempster, Laird, & Rubin, 1977). This method estimates the nuisance (i.e., subject’s 

ability) and structure parameters (i.e. item parameter) simultaneously.  In addition, the posterior 

distribution (quadrature form) of θ for an examinee is used to estimate θ distribution. An 

iterative procedure, called the EM algorithm including E- and M- steps, is used to find the 

maximum likelihood estimation (MLE) for parameters in the presence of the unobserved random 

ability parameter (θ).  

The E-step (Expectation) is used to compute expected values for the distribution of the 

unobserved ability variable based on observable data. First, the conditional probability, Ll(Xk), 

of the binary response pattern, xl, given θ = Xk , and the marginal probability of xl , 

, where Xk is the k-th discrete value (quadrature point) for θ and A(Xk) is 

the weight of the Gauss-Hermite quadrature (Bock & Aitkin, 1981) are computed. Then the 

cumulating expected frequencies, 

∑=
q

k
kkil XAXLP )()(~

ir , and the expected number of people with ability X 

normalized to the sample size, kN (Bock, Gibbons, & Muraki, 1988). The M-step (Maximization) 

is used to compute the values from the E-step to maximize the MML equation (see Equation 2.12) 

and obtain the item parameters. 
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Any correlations with extreme proportions are replaced with values calculated by the 

one-factor version of Thurstone’s centroid method.  TESTFACT provides a “smooth” option to 

deal with a non-positive definite tetrachoric correlation matrix (Tate, 2003).  The fixed values of 

guessing parameters can be set in the program.  These parameters are used to adjust the 

computation of tetrachoric correlations and provide the lower asymptote for the solutions (Tate, 

2003).  If the model includes guessing parameters, Equation 2.13 is used to suppress the artifact 

effects introduced into the model by calculating a corrected proportion for the four-fold tables, 

where πj is measured by the proportion of persons passing item j.  
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π          (2.13) 

The factor solutions can be rotated orthogonally (VARIMAX) and obliquely (PROMAX).  

TESTFACT does not provide an RMSR index, but a residual matrix. The dimensionality 
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decision is based on a test of the difference between chi-square statistics for selections with 

different numbers of factors. For example, if a second factor is added to the model and the 

improvement is not significant, then one can conclude that the test is unidimensional.  Otherwise, 

it is necessary to continue adding one factor at a time until the improvement of model fit is not 

significant.  Moreover, the test of exact fit, the likelihood ratio (LR) statistic (Lawley, 1940), is 

commonly used for assessing model fit in an ML solution.  If there is a sufficiently large sample 

size assuming a normal distribution, the LR statistic approximates a chi-square distribution when 

the specified number of factors is correct in the population.  However, it is highly influenced by 

sample size. In addition, the hypothesis of perfect fit is not of empirical interest because the goal 

of FA is to look for a parsimonious solution, not a perfect fit solution (Fabrigar et al., 1999).   

The main advantage of the “full-information” method is that it uses all available 

information in the estimation procedure (i.e., analyzes item response patterns). Additionally, the 

output contains classical item statistics and factor analytic parameter estimates with standard 

errors and a likelihood-ratio chi-square test for model fit.  Nevertheless, there are some 

limitations.  First, TESTFACT requires no empty cells in the 2p item vectors (p = the number of 

items), which restricts the application to practical testing situations (De Champlain, 1999).  

Several researchers are concerned about the reliability of G2 likelihood chi-square test statistics, 

when the expected frequencies are small or near zero (Mislevy, 1986; Knol & Berger, 1991; 

Wilson, Wood, & Gibbons, 1987).  The run time for TESTFACT is an issue with large number 

of items (Knol & Berger, 1991). 

(2) Nonlinear factor analysis by NOHARM 

McDonald (1967, 1982) developed the Normal-Ogive Harmonic Analysis Robust 

Method and implemented it in the NOHARM software.  The probability of correct response in 

multidimensional cases is defined as: 

P(xi=1|θ ) = ci + (1 - ci) N(fi0 +  fkθ )      (2.14) 

where  fk is an m×1 vector of discrimination parameters on k dimensions.  This model uses the 

estimation of parameters based on an iterative process by minimizing the unweighted least 

squares (ULS) difference between observed and the expected proportions (Knol & Berger, 1991). 

The observed proportions present the correct proportions when an examinee successfully 

answers any two given items whereas the expected proportions are approximated by a 
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normalized Hermite-Tchebychef third-degree polynomial function (Gosz & Walker, 2002; Fraser 

& McDonald, 1988), defined as:   

P(xi=1|θ ) = bi0h0(zi) + bi1h1(zi)+ bi2h2(zi)+ bi3h3(zi),    (2.15) 

where zi = fi’θ / di and di = ii Pff ' (P is the covariance (correlation) matrix of θ ). hk() is the 

normalized Hermite-Tchebychef polynomial of degree k, given by h0(x) = 1, h1(x) = x, h2(x) = 

(x2-1)/ 2 ,  h3(x) = (x2-3 x)/ 6 . Note NOHARM does not estimate the c-parameters; rather they 

are specified as in TESTFACT.  

Underlying this approximation, the distributions of examinee latent traits are normal with 

a mean of zero and standard deviation of one. Given the pairwise probabilities πij = P(xi =1| xj=1), 

is approximated by using Equation 2.15. Through an iterative process to minimize the ULS 

function to estimate parameters:  

ijπ̂

F= , where pij are the sample proportion.   (2.16)  ∑∑ − 2]ˆ[ ijijp π

As indicated by Fraser & McDonald (1988), the ULS function is minimized using either a quasi-

Newton or a conjugate gradients minimization algorithm. The algorithm continues iterating until 

the function value meets the termination criteria set by users.   

NOHARM allows users to fit both exploratory and confirmatory models. The 

specification of the nonzero loadings for a hypothesized model is required in confirmatory 

analysis (Tate, 2003).  The matrix of covariance residuals and RMSR provide information on the 

lack of fit of the model.  Values of RMSR close to four times the reciprocal of the square root of 

the sample size indicate an acceptable solution (McDonald, 1981).  

ULS estimation is efficient compared to the generalized least-squares (GLS) and 

maximum likelihood (ML) procedures. Therefore, it can be used with a large number of items 

and/or dimensions.  However, there are some limitations with this method.  First, only partial 

information (one-way marginals and two-way marginals) are included.  Hence, it is often 

referred as a “limited” or “bivariate” factor analysis method.  However, Knol and Berger (1991) 

found that the performance in recovering factor analytic parameters of NOHARM was similar to 

that of TESTFACT.  Second, this approach does not provide the standard error for the parameter 

estimates and a fit statistic for the model (McDonald, 1997).  Gessaroli and De Champlain (1996) 

developed an approximate chi-square statistic that can be used to make up for this limitation. 

(3) Approximate Chi-square test of NOHARM solution by CHIDIM 
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Gessaroli and De Champlain (1996) proposed an approximate chi-square statistic for 

assessi

item

i j
ij

2
2.17) 

where  is the square of the Fisher r to z, N is the number of sample size, and  i, j = 1, 2, …, n. 

Thi

freedom

ng dimensionality based on McDonald’s NLFA model.  The approximate chi-square 

statistic is used to test the null hypothesis if the off-diagonal elements of a residual matrix are 

equal to zero.  This null hypothesis should be true if the correct number of factors is specified to 

fit an NLFA model (De Champlain & Tang, 1997).  This procedure is based on a statistic 

initially proposed by Bartlett (1950) and outlined by Steiger (1980).  There are five steps 

necessary to calculate this statistic (Gessaroli & De Champlain, 1996).  The first two steps is to 

calculate (1) the proportion correct in either item i or item j as well as both (i.e., )(o
ip , )(o

jp ,and 

)(op ), and to calculate (2) the residual joint-proportions (provided by NOHARM, referred as 

).  The third step is to calculate the estimated residual correlation ( )(r
ijr ) for each pair of 

s by using the information from previous two steps.  Then, it is necessary to transform each 

one of the estimated residual correlations to a Fisher r to z ( )(r
ijz ).  The final step is using the 

following formula to obtain the chi-square statistic: 
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s statistics is approximately distributed as a central chi-square with the degree of 

 equal to [p(p－1)/2]－t, where p is the number of items and t is the total number of 

independent parameters estimated in the model.  This test is implemented in the program 

CHIDIM (De Champlain & Tang, 1997) and requires the product moment matrix and the 

covariance residual matrix calculated from NOHARM.  This statistic can be used for both 

exploratory and confirmatory analyses.  For an exploratory analysis, the search for an 

appropriate solution is based on increasing the number of factors to an initial unidimensional 

model until the statistics indicate a good model fit.  In a confirmatory application, the 

hypothesized model is accepted when the null hypothesis is tenable.  This chi-square test 

performs well for unidimensional data, even when the distribution of ability is slightly skewed 

(De Champlain & Tang, 1993) or when test length is short (e.g. 15) and sample size is small (e.g. 

500) (Gessaroli & De Champlain, 1996).  In addition, according to the results from Gessaroli and 

De Champlain (1996), this statistic performed pretty well in identifying unidimensional and two-
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dimensional data as well as Type I error control.  Compared to Stout’s T statistic, the chi-square 

statistic performs better than Stout’s T statistic with a smaller sample size and shorter test lengths. 

Gessaroli & De Champlain (1996) pointed out several advantages and two disadvantages 

for this

MIRT model by ConQuest 

n the MIRT Rasch modeling approach, called the 

multidi

 approximate chi-square test.  Starting with the advantages, the first advantage is that the 

model used for the assessment of dimensionality is related to both NLFA and MIRT.  Second, 

the statistic involves actually testing the hypothesis, therefore, it can be applied to a variety of 

test settings with greater confidence. Third, the nature of the approximate chi-square statistic, 

based on the discrepancy function, is consistent with the ULS estimation procedure. Finally, 

there is no severe limitation on the number of items or dimensions because of the use of the ULS 

estimation procedure. The two major disadvantages of the approximate chi-square test include: 

(1) the weak theoretical foundation of this statistic due to the results obtained from ULS 

estimation; (2) the statistic is affected by a large sample size similar to the other chi-square 

statistics. 

(4) Rasch 

Another procedure based o

mensional random coefficient multinomial logit model (MRCMLM), was proposed by 

Adams, Wilson and Wang (1997) and implemented in ConQuest.  The MRCLML is an extension 

of the unidimensional random coefficient multinomial logit model (RCMLM).  Given that θ is a 

vector of the latent variables in d dimensions, the probability of a response in category k of item i 

can be found using the following equation (Adams et al., 1997): 

P
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where A is a design matrix, B is a scoring matrix, bik is the score of item i, ξ is the parameter 

vector of item i.  The RCMLM is seen as a generalized Rasch model integrating several existing 

Rasch models, including the linear logistic latent trait model, the rating scale model, and so on 

(Adams et al., 1997).  This model also provides flexibility in allowing the design of customized 

models for particular testing occasions (Adams et al., 1997).  As an extension of RCMLM, the 

MRCMLM inherits all of the features and flexibility of the RCMLM.  Moreover, this MRCMLM 

can specify a number of multidimensional models by putting linear constraints on the item 

parameters (Adams et al., 1997).  There are two estimation methods provided in the MRCMLM, 

  26



which are the marginal maximum likelihood (MML) method and the condition maximum 

likelihood (CML) method.  In addition, according to the findings of Pfanzagl (1994), only MML 

estimation is asymptotically efficient in dichotomous Rasch model. According to the description 

by Hoijtink and Vollema (2003), the model as implemented in ConQuest includes two parts, a 

measurement model defined in Equation 2.19, and a structural model θ～ N (0, Σ): 

))(exp(
P(Xij = 1 | θi, δj, bj) = 

))(exp(1 ∑
∑

−+
d jidjd

d

b δθ
    (2.19) 

where θid is the ability of person i, d = 1, …, D (the number of latent traits); bjd is the 

ant and there is 

no gue

2.2.3 Nonparametric methods 

In IRT, dimensionality is defined as the number of abilities required that meet the 

assump
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discrimination parameter, δj is the difficulty parameter of item j; and the covariance matrix Σ of 

the D latent traits.  The model is essentially a confirmatory item factor analysis model and the 

item parameters are estimated by MML estimation (Hoijtink & Vollema, 2003).  

This procedure is appropriate when the discrimination parameter is const

ssing parameter.  The fit of a hypothesized multidimensional factor model is accomplished 

by using chi-square statistics for testing the difference in the model deviance for a one-factor 

model and the hypothesized model (Tate, 2003).  The previous version of ConQuest assumes that 

θ has a multivariate normal distribution. However, the later version contains nonparametric 

distributions for one-dimensional models (Hoijhink, Rooks & Wilmink, 1999). Time 

consumption is a problem when tests are of the typical length and there is an increasing number 

of factors (Tate, 2002). 

tion of “local independent” (LI).   The original concept of the LI assumption is called 

strict LI (SLI).  Due the difficulty of meeting this strong assumption in the real applications, 

Stout (1987, 1990) proposed a weak form of LI, called essential local independent (ELI), as the 

foundation of essential dimensionality.  This assumption is defined as:  
−
⎞⎛N 1

∑∑
≤ ≤
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where N is the test length, θ is the latent variable. Under the ELI assumption, a test is assumed 

unidimensional if (Cov(Uj, Uk)|θ)=0, j≠k. The methods discussed in this section are basically 

used as a confirmatory approach and based on the essential unidimensionality assumption (i.e., 

assuming ELI assumption). Three methods were introduced here, including DIMTEST, 

HCA/CCPROX, and DETECT.  

(1) Test of essential dimensionality by DIMTEST 

DIMTEST is a statistical testing procedure developed to test for essential 

unidimensionality based on asymptotic theory assuming an infinite number of examinees and 

items (Stout, 1987, 1990).  First, a test with N items is split into three subtests: two assessment 

subtests (AT1 and AT2, each one with M items) and one partition subtest (PT, with N－2M 

items).  AT1 items are selected to reflect item measuring ability in the dominant domain; AT2 

items are selected to offset the possible statistical bias found in AT1 subset (due to shorter test 

length or extreme difficulty levels). Therefore, the difficulty distribution of AT2 items is similar 

to the one of AT1 subset.  PT is used to group examinees into subgroups for calculating T (Hattie, 

Krakowski, Rogers, & Swaminathan, 1996).  Stout, Habing, Douglas, Kim, Roussos, and Zhang 

(1996) recommended using at least 15 items for PT, and greater than 3, but no more than one 

third of the number of items in PT for the AT1 and AT2 subsets (Tate, 2003).  Stout’s T is 

calculated using following formula: 

2
)( 11 ba TTT −

=           (2.21) 

where T1a and T1b are the variance estimated by the AT1 and AT2 item sets.  Stout’s T tests if 

one dominant dimension under a set of test items exists (i.e., dE=1) (Nandakumar, 1994).  When 

the value of T is small, the test is essentially unidimensional since the difference between the 

usual variance estimate (from AT2) and the unidimensional estimate (from AT1) is small.  If the 

T value is greater than z at significance level of .05 (i.e., 1.96), the hypothesis of essential 

unidimensionality is rejected (Pang, 1999).   

For confirmatory applications, selecting an AT1 set depends on prior expectations while 

an AT2 set is selected using statistical methods, such as HCA/CCPROX and DETECT in 

exploratory cases (Froelich & Habing, 2001).  Nevertheless, even when using AT2 to correct the 

bias of examinee variability and item difficulty, DIMTEST still exhibits some positive bias  

(van Abswoude, van der Ark, & Sijtsma, 2004).  Nandakumar and Stout (1993) found that 
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Stoutn’s T was a poor indicator for testing essential unidimensionality when items of a test have 

high discrimination (greater than 1.1) and guessing parameters.  Due to the selection of AT1 

items based the tetrachoric correlations, DIMTEST shares the weakness of those methods using 

tetrachoric correlations.  

(2) Hierarchical cluster analysis of item proximities by HCA/CCPROX 

The HCA/CCPROX (Roussos, Stout, & Marden, 1993) is designed to search for 

homogenous item clusters by an agglomerative hierarchical cluster analysis (HAC) based on 

item proximity.  The proximity measure for two items proposed by Roussos (1995), called 

CCPROX, is defined as the negative of the conditional covariance for the items plus a constant 

such that all proximity measures are nonnegative (Tate, 2003).  At the initial level, the analysis 

starts with each individual item of a test treated as a separate cluster, then each item either 

clusters with other items or remains by itself by using the proximity measures. At the second 

level of hierarchy, the two clusters having the smallest expected conditional covariance are 

joined.  The process of joining clusters is repeated until all items are collected into one large 

cluster (Roussos, Stout, & Marden, 1998).  The key point of the success of the HCA is the 

formulation of a proximity measure in the initial level.  Three proximity measures are provided, 

pCCOR, pCCOV, pMH instead of the classical ones (more details see Roussos, Stout, & Marden, 

1998). Four HCA methods are provided for the second level proximity measures, including the 

single link, complete link, and unweighted pair-group methods of average (UPGMA), and the 

weighted pair-group method of average (WPGMA). Due to the lack of formal criteria to help 

researchers determine dimensionality, researchers may make the decision based on a priori 

theoretical expectations about the test structure (van Abswoude et al., 2004).  

(3) DETECT index of dimensionality using DETECT 

The DETECT program estimates the extent of the multidimensional simple structure 

(Kim, 1994; Kim, Zhang, & Stout, 1995; Zhang & Stout, 1999).  The procedure is to find a 

partition of test items that maximizes the DETECT index, which is defined as the average of all 

the signed conditional item covariances.  In the computation of summing the conditional item 

covariance for each pair, －1 multiplies a covariance of an item pair in two different partitions.  

When the partition of items gets closer to the true item cluster representing an approximate 

simple structure, the value of DETECT index gets larger.  A three-step conditional sequence of 
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decision is used to find the number of dominant dimensions of a test.  The first step is to create 

another DETECT index (Dref) using the second sample, similar to the cross-validated concept. 

Essential multidimensionality can be concluded when the value of this index is greater than 0.1 

(Stout, Habing, Douglas, Kim, Roussos, & Zhang, 1996).  The second step is to calculate an R 

ratio value by using either the original DETECT index or the Dref index calculated in Step 1 

divided by the maximum possible DETECT index, which sums the absolute values of the 

conditional covariance of all item pairs for the optimal partition.  If the R ratio value is equal to 

or greater than 0.8, it indicates that the partition of items is an approximate simple structure.  If 

the first two steps show that the test has essential multidimensionality and approximate simple 

structure, then the number of clusters in the optimal partition of items indicates the number of 

dominant abilities.  If either the first or the second step fails, then there is no conclusion of the 

number of dimensionality (Tate, 2003). However, the index shows the magnitude of departure 

from unidimensionality, but is not an index of the number of dimensions (van Abswoude et al., 

2004). 

2.2.4 Research comparing methods 

According to the summary of Harwell and colleagues (1996), researches on assessing 

dimensionality prior to 1991 focused on detecting dimensionality (if tests are unidimensional or 

multidimensional), or the outcome of using unidimensional models. Only two studies compared 

multidimensional models with multidimensional data. The studies of factor analysis of 

dichotomous data focused on validating newly developed methods (e.g., Bock, Gibbons, & 

Muraki, 1988; McDonald, 1982) and comparison of linear factor analysis and nonlinear factor 

analysis and/or other methods (e.g., residual analysis).  For example, Hambleton and Rovinelli 

(1986) compared four methods, linear and nonlinear factor analysis, residual analysis, and 

Bejar’s method (1980), used five artificial datasets.  The results demonstrated the superiority of 

using nonlinear factor analysis when linear factor analysis overestimated test dimensionality. 

Regarding the assessment of dimensionality in dichotomous data, the MIRT approach illustrated 

a different view from classical factor analysis. 

In recent decades, most studies of dimensionality using Monte Carlo techniques in IRT 

have focused on either comparing different methods (e.g., Nandakumar, 1994; Nandakumar & 
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Yu, 1996; Tate, 2003), or the effect of applying unidimensional item response theory to 

multidimensional items (e.g., Ackerman, 1989; Way, Ansley, & Forsyth, 1988). Also, due to the 

equivalence between NLFA and MIRT, there were several studies illustrating the comparison of 

the methods in either the NLFA or MIRT approach.  Concerning the application of those newly 

developed procedures, more simulation and empirical studies are necessary to verify the 

applicability and the efficiency of these new procedures to either general testing occasions or 

some conditions might be problematic for using these procedures.   

Among these studies, Mplus, NOHARM and TESTFACT were most commonly chosen 

by researchers. The study conducted by Knol and Berger (1991) compared the full-information 

models (i.e., TESTFACT) to the limited information models (such as NOHARM or GLS 

estimator).  The most remarkable finding was that the performance of NOHARM and 

TESTFACT was highly similar.  In other words, the results indicated that full-information 

models were not superior to the limited-information models.  Tate’s study (2003) focused on a 

comparison among a number of empirical methods for assessing test structure.  In this study, 

Mplus performed worse than NOHARM and TESTFACT when the data assumed guessing.  A 

similar conclusion was obtained in Stone and Yeh’s study (2006) using real data. In next section, 

the guessing effect is discussed in more detail. 

2.2.4.1 The guessing effect and the assessment of dimensionality 

It is essential to consider the influence of guessing on multiple-choice items.  Guessing 

behavior either increases the measured error or can be seen as the source of construct-irrelevant 

variance (Messick, 1995).  It is considered a source of construct-irrelevant since it increases the 

possibility of a correct response based on an ability other that the ability intended to be assessed 

(Rogers, 1999).  Therefore, it is necessary to model guessing for tests with multiple-choice items.  

As Stone and Yeh (2006) pointed out, the influence of guessing is dependent on an unknown 

mechanism or process.  

To model guessing behavior, either random guessing or partial-knowledge guessing can 

be assumed (Waller, 1989).  If random guessing is assumed (Lord & Novick, 1968), in multiple-

choice items, the probability for individuals answering correctly by chance will be 1/m, where m 

is the number of choices (Stone & Yeh, 2006).  On the other hand, if the individuals take the 

exam with partial knowledge, then some of the options can be eliminated.  In this case, the 
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probability of a chance correct response will be greater than 1/m.  In Waller’s study (1989), the 

three-parameter IRT model not only can remove the effect of random guessing, but also it can 

make an adjustment for partial-knowledge guessing.  However, most traditional factor analysis 

approaches do not include guessing in the models.  Even the factor analysis in the MIRT 

approach only allows fixed values of guessing to be set in models in some software, such as 

TESTFACT and NOHARM. It is absolutely necessary in factor analysis to determine 

dimensionality in educational and psychological test settings using multiple-choice items in 

order to investigate the influence of guessing.  However, it is rare to find a study focusing on the 

influence of guessing in the decision of dimensionality in either the NLFA or MIRT approaches. 

Recently, the guessing effect has been discussed in two studies focusing on the 

assessment of the dimensionality and test structure.  The first study was conducted by Tate 

(2003), which used a number of empirical methods to assess test structure.  Tate examined these 

assessment methods in either exploratory or confirmatory ways including unidimensional and 

multidimensional data.  The second study proposed by Stone and Yeh (2006) focused on a 

comparison of three methods (i.e., Mplus, NOHARM and TESTFACT) in the context of 

determining the dimensionality and test structures.  The main situation considered in these two 

studies was a test with a large number of items and with relative large sample size.  Either real 

data or simulation data was used to evaluate the guessing effects for different approaches for the 

assessment of dimensionality.  

Given using either parametric or nonparametric methods, Tate’s study also considered 

factors likely to affect the assessment of dimensionality: presence of modeled guessing, test item 

difficulty, test item discrimination, factor correlations, and simple versus complex factor 

structures. In exploratory approach for assessing dimensionality using simulation data, the 

methods in four programs were evaluated: Mplus (ULS estimator), NOHARM, CHIDIM, and 

TESTFACT.  Note that only Mplus does not allow for modeling guessing.  

Tate (2003) found a low rate of correct dimensionality decisions in cases with modeled 

guessing using Mplus (3 out 14 multidimensional cases) compared to the other three methods 

(e.g., 11 out of 14 in NOHARM).  Mplus performed fairly well in cases without modeling 

guessing. However, Mplus tended to underestimate factor loadings and to overestimate 

dimensionality. Additionally, he found identifying the correct dimensionality with data with 

extreme item parameters, such as difficulty and discrimination parameters was less effective 
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when using Mplus. Interestingly, in more than half of the conditions when data assumed 

guessing for either a simple or a complex structure, Mplus provided supporting evidence for the 

correct parameter pattern even though it exhibited bias in parameter recovery.   

When using NOHARM for exploratory factor analysis, the dimensionality was correctly 

identified and parameters recovered well for most unidimensional and multidimensional data.  

However, a tendency to identify a difficulty factor for data with extreme discrimination was 

observed.  For the CHIDIM results (based on a chi-square test), there were 11 out of 18 cases 

that reached the same conclusion as when using NOHARM (based on the RMSR reduction 

index). Note that CHIDIM performed better than NOHARM in cases with a greater variation in 

discrimination or high discrimination. However, with extremely difficult data, CHIDIM was 

found to obtain more incorrect decisions of dimensionality than NOHARM. Using the RMSR 

reduction index in TESTFACT, the assessment of dimensionality performed well in general, 

however, there was only fair recovery with data consisting of extreme difficulty or 

discrimination item parameters.   

The results of Tate’s study using Mplus, NOHARM, CHIDIM, and TESTFACT were 

consistent with the results of most previous studies investigating the performance of these 

methods (e.g., Knol & Berger, 1991, for Mplus, NOHARM and TESTFACT; Gessoroli & De 

Champlain, 1996 for CHIDIM).  In summary, the effect of guessing was found by comparing the 

performance of methods both without modeling guessing (i.e., Mplus) and with modeling 

guessing (i.e., CHIDIM, NOHARM and TESTFACT).  Mplus only performed well using data 

without guessing, whereas the other three methods performed well using the data with or without 

guessing.  In addition, any extreme item parameters in the data affected the identification of 

dimensionality and parameter recovery.  For instance, all four methods performed poor with data 

consisting of items with extreme difficulty and high discrimination. However, several 

methodological considerations were evident from Tate’s study.  It is unknown how successful 

the conclusions will be when applied to situations that vary in the degree or types of guessing.  

Tate used true values of guessing which may have biased results.  Also, Tate employed a single 

replication design and therefore could not evaluate Type I error and empirical power rates for the 

methods. 

Stone and Yeh (2006) conducted a comparison of Mplus, NOHARM, and TESTFACT by 

using real data from an administration of the Multistate Bar Examination (MBE).  The MBE is a 
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multiple-choice test with 200 four-option items. There were six aspects of the content: 

Constitutional Law, Contracts, Criminal Law and Procedure, Evidence, Real Property, and Torts.  

Multiple test forms have been developed and administer twice a year.  Each test contains two 

sections consisting of 100 items with equal or comparable content.  Examinees take both sections 

separately in morning and afternoon. For this study, the February 2001 administration was 

analyzed (N = 20,288).  The AM and PM item sets were analyzed separately because of the 

limitations of Mplus (no more than 100 items may be analyzed).  The distribution of item 

difficulty indices (i.e., proportion correct) for both forms were similar and in quite a broad range 

(M = .65, SD = .20).  The coefficient alpha for each form was around .80.  The correlations of 

item to total score ranged from 0 to .4.   In addition, guessing was evaluated for each item by 

plotting the proportion correct by total scores.  Guessing was found to be operating in more than 

half of the items in each form.  The average c-values was around .31 (SD ~ .16) for both forms.  

Mplus, NOHARM and TESTFACT were used to assess the dimensionality and internal 

structures of the MBE.  There were two conditions for the factor analyses.  Condition 1 provided 

a comparison of these three methods without modeled guessing, that is no guessing values were 

incorporated into the analyses.  Condition 2 incorporated guessing values into the analyses. As a 

result, only a comparison between NOHARM and TESTFACT was provided. Note that guessing 

values estimated by MULTILOG were used in both methods. Also, the WLSMV estimator (not 

ULS as Tate’s study) was used in Mplus. The number of estimated dimensionality was primarily 

based on eigenvalues, the RMSR statistics (less than .05 for Mplus and TESTFACT, and less 

than .028 for NOHARM indicated an acceptable factor solution), and the number of substantial 

loading for factors.   

The results for Condition 1 demonstrated similar patterns for Mplus, NOHARM and 

TESTFACT.  Either two or three factors were uncovered, however, more than half the items did 

not load on any factor.  For Condition 2, greater eigenvalues were observed indicating that 

including guessing resulting in an increase in the proportion of explained variance for the factors. 

This finding was caused by the correction of the tetrachoric correlation matrix.  As indicated by 

Carroll (1945), tetrachoric correlations correct for the effect of chance success or error and then 

stronger relationships between items are observed.  The average of the tetrachoric correlations 

under the two conditions confirmed the effect of the correction.  For example, the mean 

correlations for the AM form under the two conditions were .07 (SD = .05) and .11 (SD = .10), 
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respectively.  Moreover, more items with substantial loadings were observed in the solutions 

under Condition 2.  In addition, the correlations between factors under Condition 2 were larger 

than those under Condition 1.  Thus, a more complete understanding of the internal structure was 

obtained by incorporating guessing into the estimation procedures. Stone and Yeh’s study 

confirmed the findings found in Tate’s study. However, the primary limitation was that no 

systematic examination of the guessing effect could be conducted with a real dataset since the 

true dimensionality was unknown.   
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3.0  METHODOLOGY 

According to the findings and the limitations of Tate (2003) and Stone and Yeh’s (2006) 

studies, there were two purposes for this study. The major purpose was to investigate the effects 

of guessing in the context of examining the dimensionality for multiple-choice tests.  Only when 

the true dimensionality is known it is possible to detect the influence of guessing and other 

factors in assessing dimensionality.  However, in most psychological and educational tests, while 

a specific definition of the test constructs is reported, the true dimensionality is still unknown. 

Therefore, a Monte Carlo (MC) study was used in this study. Additionally, an MC study can 

investigate the effects of several factors simultaneously by manipulating the true values of 

parameters (Harwell, Stone, Hsu, & Kirisci, 1996).   The second purpose of this study was to 

verify if the findings from the simulation study can be applied to the analysis of real data.  In 

order to accomplish this goal, TIMSS 2003 was chosen in this study because of the two subject 

domains included in this assessment.  Therefore, through the analysis of the TIMSS data, it was 

possible to investigate the dimensionality and factor structures, and verify what was learned in 

the simulation study.  

3.1 PHRASE I – SIMULATION STUDY 

3.1.1 Design of the study 

Theses factors were manipulated in this study: 1) estimation methods; 2) discrimination 

parameters of items; 3) guessing parameters of items and 4) correlations among dimensions. The 

two most popular methods, Mplus and TESTFACT, were selected for this study.  Mplus works 

from the perspective of factor analysis, whereas TESTFACT output in either an FA or MIRT 
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perspective. Additionally, Mplus has no allowance for modeling guessing whereas TESTFACT 

can input the guessing parameter for factor analyses.  Therefore, the comparison of these two 

estimation methods can help explore the effect of modeling guessing parameters. NOHARM was 

not included in this study because the results and performances were similar to those of 

TESTFACT (e.g., Knol & Berger, 1991; Stone & Yeh, 2006).   

The exploratory factor analyses (EFA) were conducted using these two methods for each 

simulation dataset.  The number of factors that was extracted was set to the true dimensionality 

plus two.  For example, one-, two- and three-factor solutions will be conducted by Mplus and 

TESTFACT for unidimensional data.  The convergence criteria of both of the methods was set 

to .005.   The default setting of the number of iterations in Mplus (i.e., 200) was enough for most 

situations.  A smaller number of iterations, 50, was used with TESTFACT.  There were two 

reasons for this setting.  Time requirement was the primary concern, since this study used 100 

replications in each condition.  Additionally, based on the results of a small pilot study of 

parameter recovery, no more than 15 iterations were necessary when data fit (i.e., the number of 

extracted factors was equal to the true dimensionality). Therefore, the maximum number of 

iterations in TESTFACT was set to 50. 

Item parameters, discrimination and guessing were also manipulated. Item discrimination 

was manipulated since these parameters relate to factor loading and reflect the degree to which 

items relate to factors.  The level of discrimination was manipulated by the different proportions 

of items with three different values (i.e., 0.5, 1.0 and 1.5) of discrimination. For example, a low 

discrimination condition consisted of 50% of the items with 1.0 and 50% of the items with 0.5.  

Table 3.1 provides the descriptive statistics for each level of discrimination (i.e., Low (L), 

Medium (M), and High (H)). As can be seen in Table 3.1, the mean level of the discrimination 

for L, M, and H levels were 0.75, 1.0, and 1.25, respectively. The intercept coefficients that 

relate to difficulty were specified in the range of –2.0 to 2.0.  The average of the intercept 

parameters or difficulty level for all the conditions was equal to 0.  The standard deviations of 

item parameters (i.e., discrimination, intercept, and difficulty) in the three different 

discrimination levels (L, M, and H) were about the same.  Note that the range in the intercept, 

not difficulty, was controlled in the purpose of simulation data. Detail information regarding 

item parameters for all discrimination levels in one-, two-, and three-dimensional data can be 

found in Appendix A.  
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There were two conditions for the guessing parameter, 0 and .33.  Since Mplus does not 

allow the inclusion of the guessing parameter in the calibration procedure, the condition, c = 0, 

was set as a baseline for comparison and equivalent to a two-parameter model.  If a random 

guessing model (Lord & Novick, 1968) is assumed, then individuals who lack the necessary 

knowledge would randomly guess. Thus, for multiple-choice items the probability that 

individuals choose a correct answer by chance is 1 divided by the number of choices (m).  Values 

of .33, .25 and .2 correspond to three-, four- and five-option items.  The value, .33, was chosen to 

simplify the design. It is the best to stay with one reasonable and significant value to compare 

with the baseline value of 0.  Moreover, a guessing parameter of .33 was used to explore the 

effect of test items that reflected a moderate amount of guessing.  In Tate’s study, the value, .2 

was chosen for all conditions. These results of this study provide a useful comparison with Tate’s 

study.  

Table 3.1  

The descriptive statistics of different levels of discrimination design under one- to-three 

dimensional data 

 Low (L)  Medium (M) High (H) 
 a d b  a d b a d b 

One-dimension (n = 60) 
Mean 0.75 0.00 0.00  1.00 0.00 0.00 1.25 0.00 0.00 
SD 0.25 1.15 1.81  0.36 1.15 1.45 0.25 1.15 0.97 

Two-dimension (n = 30) 
Mean 0.75 0.00 0.00  1.00 0.00 0.00 1.25 0.00 0.00 
SD 0.25 1.16 1.72  0.35 1.18 1.43 0.25 1.16 0.97 

Three-dimension (n = 20) 
Mean 0.75 0.00 0.00  1.00 0.00 0.00 1.25 0.00 0.00 
SD 0.26 1.26 1.77  0.36 1.25 1.43 0.26 1.26 1.03 
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Another variable related to the test structure was the correlation among factors or 

dimensions.  There is a certain amount of correlation among factors (or dimensions) in most 

educational tests.  For this reason, this study incorporated two conditions of correlation among 

factors, .3 and .6, to represent the possible occasions that occur in most educational tests.   

The present study assumes the application of a large-scale testing program with multiple-

choice items and administration to a relatively large sample size.  Thus, there were several fixed 

factors in this study.  First, most MC studies focus on two-dimensional data because of the 

increase in complexity where the number of dimensions is greater than two.  However, it is 

possible that realistic tests will have more than two dimensions.  Therefore, the inclusion of 

three-dimensional data provides useful information for practical applications. In this study, one-

dimensional data represented unidimensionality as a baseline (unidimensional case) for 

comparison purposes, while two- and three-dimensional data were designed as multidimensional 

cases.  Second, according to the examination of 17 studies of dimensionality summarized by 

Harwell et al. (1996), the range of the test length varied from 20 to 60 while the range of the 

sample size was 1000 to 2000.  To adhere to the minimum requirements for the number of items 

for each dimension, the test should have at least 20 items for each dimension (i.e., in three-

dimensional conditions).  The total test length should be around 50 to 60 items.  Therefore, the 

total test length was set to 60 items, and the number of items per domain was 60, 30, and 20 for 

one-to-three dimensional data. Additionally, after considering the requirements for estimation 

accuracy, the calibration size was set at 2000.  According to the recommendations made by 

Harwell et al. (1996), the number of replications for MC studies should be more than 25.  

Increasing the number of replications can increase the power; however, if the test length and 

sample size is large enough, it is unnecessary to increase replications up to 500.  Hence, a 100-

replication design for each condition was used in the present study. 

Since it is hard to find “pure” simple test structures in educational tests, an approximate 

simple structure was assumed in this study.  An approximate simple structure is indicated when 

the factor loadings for each item loads significantly on only one factor (i.e., the values greater 

than .3) and the values of factor loading on the other factor(s) are less than .3.  The reason for not 

assuming complex test structures (significant loadings on more than one factor) that most 

educational tests are designed to measure separate factors or subscales (e.g., MBE). To represent 

  39



an approximate simple structure, the minor factor loadings were not set to 0, but a little higher 

than 0 (.2 was used in this study).   

3.1.2 Generating data and estimating procedure 

Since the NLFA and MIRT models are basically mathematically equivalent, either the 

factor analytic or MIRT models can be used to generate multidimensional data.  However, the 

main focus of the present study was to examine the influence of guessing in assessing 

dimensionality of multiple-choice tests. Thus, it was considered more appropriate to generate 

multidimensional data by MIRT models, which include guessing in the models.  Because the 

present study was set up to assess dimensionality of multiple-choice tests, the MC3PL model 

was used to generate data.  

  In this study, the assumed setting was a large-scale test with multiple-choice items and a 

large sample size.  Hence, as discussed a test length of 60 and a sample size of 2000 was used in 

all conditions.  Also, to obtain a better understanding of the influence of guessing in practical 

testing applications, an approximate simple structure was assumed.  This means that the factor 

loadings of items belonging to minor factors were set to a relatively of small value.  The 

manipulated variables focused on discrimination, guessing under one-to-three dimensional data.  

The easiness intercept, related to item difficulty, was specified in the range of –2 to 2.  Low and 

high relationships between factors were specified (i.e., r = .3 and .6).  

The first step in generating data was to specify the item parameters (discrimination (a), 

intercept coefficients (d), and guessing(c)) as per the conditions discussed.  For example, in 

Table 3.2, one condition represented a two-dimensional test with low discrimination. The test 

assumed no guessing and low correlations between factors (e.g., r = .3).  Therefore, there were 

30 items for each dimension.  Item 1 to Item 30 had higher loadings in dimension one, while 

Item 31 to Item 60 had higher loadings in dimension two (for more details see Appendix A2).  

Next item parameters for minor dimensions were specified. The discrimination values for the 

minor dimension were set to .2.  The value was based on the Stone and Yeh (2006) study in 

which the mean discrimination for items on the minor dimension was approximately .2.  To 

control for any possible effects of related to item difficulty, the range of the easiness intercept 

was constant across sets of items.  It should be noted that the value of discrimination was not set 
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to a single value, but rather to two values (1.0 and 0.5) to make the situation more realistic.  In 

this case, the average low discrimination was 0.75 and the means of both the easiness intercept (d) 

and difficulty (b) were 0 (see Table 3.1). Table 3.3 displays the item parameters for a two-

dimensional data set with low discrimination.   

Based on the item parameters defined for each condition, 100 replications per condition 

were generated by a SAS program.  There were 600 datasets of unidimensional data  

(3 discrimination conditions (L, H, M) × 2 guessing conditions × 100 replications).  There were 

2400 datasets of two-dimensional data (6 discrimination conditions (HH, MH, MM, LH, LM, LL) 

× 2 guessing conditions × 2 correlation conditions * 100 replications). Note that the 

discrimination conditions were the combination of three discrimination levels. For example, in 

two-dimensional data, the discrimination conditions were the combination of two discrimination 

levels.  Therefore, the possible combinations were HH, MH, MM, LH, LM and LL.  Note that 

the order of discrimination levels should not affect the results of factor analyses. Therefore, for 

instance, MH and HM were seen as the same condition.  In other words, the MH condition 

represented two-dimensional data in which the discrimination level for items in one dimension 

was at a medium level and the discrimination level for items in the other dimension was at a high 

level. The same characterization applies to generating three-dimensional data. There were 4000 

datasets for three-dimensional data (10 discrimination conditions (HHH, HHM, HHL, MMH, 

MMM, MML, LMH, LLH, LLM, LLL) × 2 guessing conditions × 2 correlation conditions × 100 

replications).   Therefore, the total number of datasets was 7000 (70 conditions, 100 replications 

per condition). 

 

Table 3.2  

Design of a two-dimensional data set with low discrimination 

 Dimension 1 Dimension 2 
Subset 1 

(Item 1 to 30) Low discrimination (Mean = .75) Discrimination = .2 

Subset 2 
(Item 31 to 60) Discrimination = .2 Low discrimination (Mean = .75) 
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Table 3.3  

Item parameters of a two-dimensional data set with a low discrimination 

Dimension 1  Dimension 2 
Item No. 

a d c  
Item No.

a d c 
1 1.0 -2.00 0  31 0.2 -2.00 0 
2 1.0 -1.50 0  32 0.2 -1.50 0 
3 1.0 -1.25 0  33 0.2 -1.25 0 
4 1.0 -1.00 0  34 0.2 -1.00 0 
5 1.0 -0.75 0  35 0.2 -0.75 0 
6 1.0 -0.50 0  36 0.2 -0.50 0 
7 1.0 -0.25 0  37 0.2 -0.25 0 
8 1.0 0.00 0  38 0.2 0.00 0 
9 1.0 0.25 0  39 0.2 0.25 0 
10 1.0 0.50 0  40 0.2 0.50 0 
11 1.0 0.75 0  41 0.2 0.75 0 
12 1.0 1.00 0  42 0.2 1.00 0 
13 1.0 1.25 0  43 0.2 1.25 0 
14 1.0 1.50 0  44 0.2 1.50 0 
15 1.0 2.00 0  45 0.2 2.00 0 
16 0.5 -2.00 0  46 0.2 -2.00 0 
17 0.5 -1.50 0  47 0.2 -1.50 0 
18 0.5 -1.25 0  48 0.2 -1.25 0 
19 0.5 -1.00 0  49 0.2 -1.00 0 
20 0.5 -0.75 0  50 0.2 -0.75 0 
21 0.5 -0.50 0  51 0.2 -0.50 0 
22 0.5 -0.25 0  52 0.2 -0.25 0 
23 0.5 0.00 0  53 0.2 0.00 0 
24 0.5 0.25 0  54 0.2 0.25 0 
25 0.5 0.50 0  55 0.2 0.50 0 
26 0.5 0.75 0  56 0.2 0.75 0 
27 0.5 1.00 0  57 0.2 1.00 0 
28 0.5 1.25 0  58 0.2 1.25 0 
29 0.5 1.50 0  59 0.2 1.50 0 
30 0.5 2.00 0  60 0.2 2.00 0 
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Mplus and TESTFACT were used to perform an EFA on each dataset.  The number of 

factors extracted was set to the true values of dimensionality plus two in order to determine if 

any over factoring occurred.  In this way, one-to-three factor solutions were obtained in 

unidimensional cases, whereas one-to-four factor solutions and one-to-five factor solutions were 

conducted for two- and three-dimensional data. The criteria for convergence for both methods 

were set to .005.  However, the maximum iterations for both methods were different (200 vs. 50) 

due to the consideration of practical issues, such as time consumption. 

Since TESTFACT may be used to model guessing, but is not jointly estimated with the 

factor solution, the guessing parameters was fixed at values obtained by other programs, as 

suggested by the software developers (Wilson et al., 2003).  Software developers discussed that 

the estimation of guessing only depended on the response of low-ability examinees and not on 

the response functions at all ability levels (Wilson et al., 2003).  Hence, a one-dimensional model 

to estimate guessing is viewed as adequate. In this study, MULTILOG was used to estimate 

guessing parameters.  Additionally, according to Lord’s criteria (1980) and the estimation of 

item parameters resulting from MULTILOG, the values of guessing of those items that did not 

meet Lord’s criterion were set to 0.  Lord’s criterion is used to fix guessing at 0 for very easy 

items as well as item with very low discriminations. In these cases, estimation of guessing 

parameters is difficult to isolate from the difficulty parameters.  Since higher values of guessing 

can lead to higher measured error, the upper boundary was set to control measured error.  An 

upperbound of .5 was imposed as well since guessing parameters greater than .5 may be 

unrealistic for multiple-choice tests. Therefore, for those datasets assuming guessing, the 

guessing parameters were fixed to the values estimated from MULTILOG, and also were fixed 

to zero for some items based on Lord’s criterion.  An upperbound of .5 was applied in this study 

if there was c-parameter more than .5 in any item.  Note that the c-parameters of data assuming 

no guessing were set to zero. 

3.1.3 Validating data generation 

In order to ensure that the SAS program used in this study properly generated data, data 

generated by this SAS program was compared with data generated by GENMIRT, another 

program created by Jeffery Kromrey, Cynthia Parshall, Walter Chason and Qing Yi in University 
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of South Florida (1999).  Datasets generated by GENMIRT were based on the normal ogive 

model.  The true values of IRT parameters used to generate data are presented in Table 3.4.  The 

example used a test with 20 items, 2,000 examinees, two-dimensional, no guessing assumed and 

no correlation between two ability dimensions. The comparison was conducted with no 

correlation between two dimensions since the GENMIRT program did not allow setting 

correlations. The validation was performed under two test structures, simple and approximate 

simple structures. Table 3.5 and Table 3.6 demonstrate the recovery of item parameters estimated 

by TESTFACT for datasets generated by the SAS and GENMIRT programs. 

 

Table  3.4  

The true values of IRT parameters for validation 

 Simple structure  Approximate simple structureItem 
No.  a1 a2 d a1 a2 d 
1  1.0 0.0 1.79  1.0 0.2 1.79 
2  1.0 0.0 1.43  1.0 0.2 1.43 
3  1.0 0.0 1.07  1.0 0.2 1.07 
4  1.0 0.0 .71  1.0 0.2 .71 
5  1.0 0.0 .36  1.0 0.2 .36 
6  1.0 0.0 -.36  1.0 0.2 -.36 
7  1.0 0.0 -.71  1.0 0.2 -.71 
8  1.0 0.0 -1.07  1.0 0.2 -1.07 
9  1.0 0.0 -1.43  1.0 0.2 -1.43 

10  1.0 0.0 -1.79  1.0 0.2 -1.79 
11  0.0 1.0 1.79  0.2 1.0 1.79 
12  0.0 1.0 1.43  0.2 1.0 1.43 
13  0.0 1.0 1.07  0.2 1.0 1.07 
14  0.0 1.0 .71  0.2 1.0 .71 
15  0.0 1.0 .36  0.2 1.0 .36 
16  0.0 1.0 -.36  0.2 1.0 -.36 
17  0.0 1.0 -.71  0.2 1.0 -.71 
18  0.0 1.0 -1.07  0.2 1.0 -1.07 
19  0.0 1.0 -1.43  0.2 1.0 -1.43 
20  0.0 1.0 -1.79  0.2 1.0 -1.79 
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As shown in Table 3.5, for simple structure, the estimated parameters for the two datasets 

generated using the two programs were very similar and recovered reasonable well. There was 

slightly underestimation of the discrimination and intercept parameters found when using the 

SAS program. The correlations between two ability dimensions for the SAS and GENMIRT 

programs were -.009 and -.044, respectively. As for approximate simple structure, see Table 3.6, 

the results for the two programs were also similar and also recovered well. 

 

Table  3.5  

Comparison of data generation using simple structure for uncorrelated ability dimensions  

 SAS    GENMIRT  Item 
No. a1 a2 d a1 a2 d 
1 0.8 0.0 1.59  0.9 0.1 1.79 
2 1.0 0.1 1.44  1.0 0.0 1.46 
3 0.9 0.1 0.98  1.0 -0.1 1.08 
4 0.9 0.0 0.63  1.0 0.1 0.72 
5 1.0 0.0 0.31  1.0 -0.1 0.36 
6 0.9 0.0 -0.39  0.9 0.0 -0.31 
7 0.9 0.0 -0.77  1.0 0.0 -0.65 
8 1.0 0.0 -1.10  1.0 0.0 -1.04 
9 0.9 -0.1 -1.41  0.9 -0.0 -1.40 

10 0.9 0.0 -1.69  0.8 0.1 -1.68 
11 0.0 0.8 1.59  -0.1 1.1 1.92 
12 0.0 1.0 1.40  0.0 1.1 1.54 
13 0.0 0.9 1.07  0.0 1.0 1.07 
14 0.0 1.0 0.72  0.0 0.9 0.69 
15 0.0 0.9 0.34  0.0 1.0 0.36 
16 0.0 1.1 -0.41  0.0 1.0 -0.38 
17 0.1 1.0 -0.67  0.0 1.1 -0.80 
18 0.0 1.0 -0.99  -0.1 0.9 -1.01 
19 -0.1 0.9 -1.39  0.0 0.9 -1.37 
20 0.1 0.9 -1.59  0.1 0.9 -1.71 
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Table  3.6  

Comparison of data generation using approximate simple structure for uncorrelated ability 

dimensions 

SAS  GENMIRT Item 
No. a1 a2 d a1 a2 d 
1 0.9 0.2 1.63  0.9 0.2 1.78 
2 0.8 0.2 1.24  1.0 0.2 1.45 
3 0.9 0.2 0.97  1.0 0.2 0.99 
4 0.9 0.2 0.59  0.9 0.2 0.68 
5 0.9 0.2 0.24  1.0 0.2 0.35 
6 1.0 0.2 -0.42  0.9 0.2 -0.33 
7 1.0 0.3 -0.77  0.9 0.2 -0.73 
8 1.0 0.2 -1.12  1.0 0.2 -1.12 
9 1.0 0.3 -1.45  1.0 0.2 -1.42 
10 0.9 0.2 -1.70  0.9 0.1 -1.65 
11 0.1 0.8 1.65  0.2 0.9 1.74 
12 0.2 0.9 1.33  0.2 1.0 1.44 
13 0.3 0.9 1.05  0.3 1.0 1.08 
14 0.2 1.0 0.68  0.3 1.1 0.78 
15 0.1 1.1 0.39  0.2 1.0 0.40 
16 0.2 1.0 -0.32  0.1 1.0 -0.42 
17 0.2 1.0 -0.65  0.1 0.9 -0.74 
18 0.2 1.0 -1.14  0.2 1.1 -1.15 
19 0.2 0.8 -1.38  0.3 1.0 -1.47 
20 0.2 0.8 -1.56  0.1 1.0 -1.92 

 

In order to validate the conditions with correlations among dimensions, recovery of 

simple structure with a .6 correlation between ability dimensions was evaluated by NOHARM 

using the data generating by the SAS program.  The true values of item parameters (see Table 

3.4) were again compared with estimates (see Table 3.7).  Close recovery of IRT parameters was 

observed.  The correlation between two dimensions was .623.  
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Table  3.7  

Recovery of item parameters under PROMAX rotation  

Item No. a1 a2 d 
1 0.8 0.1 1.66 
2 0.8 0.0 1.33 
3 0.9 0.0 0.94 
4 1.0 -0.1 0.64 
5 1.0 0.1 0.28 
6 1.1 0.0 -0.47 
7 1.1 0.0 -0.75 
8 0.9 0.0 -1.15 
9 1.0 0.0 -1.41 
10 0.8 0.1 -1.78 
11 0.0 0.9 1.71 
12 0.0 1.0 1.38 
13 0.0 1.0 1.07 
14 0.0 1.0 0.68 
15 0.0 1.0 0.35 
16 0.0 1.0 -0.36 
17 0.0 1.0 -0.72 
18 0.1 0.9 -1.04 
19 0.0 1.0 -1.39 
20 0.0 1.0 -1.75 

3.1.4 Outcome measures 

The effect of guessing was investigated in the context of the assessment of test 

dimensionality. Therefore, indices for identifying the number of dimensions were needed in this 

study.   The evaluation of assessing dimensionality included two parts: (1) identifying the 

number of factors/dimensions; (2) parameter recovery.  There were three subjective indices and 

one objective index used in the first part to identify test dimensionality.   Only one index was 

calculated for evaluation of parameter recovery.  Additionally, examination of the parameter 

recovery focused on factor loadings since factor loadings are only available for Mplus.   

The three subjective indices for determining the number of factors were: proportion of 

variance, parallel analysis, and percentage of RMSR reduction.  The proportion of variance was 

calculated by taking each eigenvalue and dividing it by the sum of all eigenvalues.  The amount 

of variance explained is an index for the substantive importance of factors.  The model can retain 

a number of factors until a certain amount of total variance explained is achieved (e.g., 70%).  
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Also, the number of factors can be determined by setting a criterion indicating the minimum 

contribution of each factor.  If the percentage of variance less than a certain proportion, this may 

indicate the presence of nuisance or minor dimensions.  In this study, factors were added to the 

model until the proportion of variance for an eigenvalue was less than 5%.  For instance, each 

proportion of variance for the first three eigenvalues was more than 5% and the fourth 

eigenvalue was less than 5%, a three-factor solution was obtained.    

The second index was based on parallel analysis.  Parallel analysis was initially proposed 

by Horn (1965).  The mean eigenvalues from random data was used as a baseline for 

determining dimensionality.  Factors, with greater than the baseline corresponding to eigenvalues 

based on random data, are retained.  However, several authors suggest the use of the 95th 

percentile for the eigenvalues instead of the mean eigenvalue (e.g., Cota, Longman, Holden, 

Fekken, & Xinaris, 1993; Glorfeld, 1995; Turner, 1998).  The SAS and SPSS programs for 

parallel analysis had been developed by O’Connor (2000).  The SAS program was used to 

calculate the 95th percentile of eigenvalues for determining dimensionality in this study.   

The last index for determining dimensionality was the percentage of RMSR reduction.   

This index was also used in Tate’s study (2003) for assessing dimensionality in exploratory 

factor analyses.  Factors were added to the model until the percentage of RMSR reduction was 

less than 10%.  All three indices were applied to the factor analysis results obtained from Mplus 

and TESTFACT.  Note that RMSR was not provided in TESTFACT but was calculated by 

taking the residual matrix provided by TESTFACT.  

A statistical test for determining dimensionality is based on the chi-square difference test.  

A chi-square test statistic was provided by both of Mplus and TESTFACT. The chi-square 

statistic of TESTFACT may be used to compare nested models (e.g., one factor vs. two factors). 

However, the chi-square statistic of Mplus using WLSMV estimation may not be used compare 

nested models since the differences in the degrees of freedom for two nested models will not 

always be positive values (Wilson et al., 2003). Therefore, the chi-square statistic based on WLS 

solutions may be used for the chi-square difference test in Mplus.  Thus, it was possible to 

compare the results of Mplus and TESTFACT using chi-square statistics.  Note that a large 

sample was used in the present study since large sample sizes are generally required for WLS 

methods.  
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Parameter recovery was another aspect used to evaluate the effects of the factors 

manipulated in this study.  Since the results of Mplus were based on factor models, the recovery 

of factor loadings between the results in Mplus and TESTFACT were examined.  Factor loadings 

from a PROMAX solution were used given correlations greater than 0. Since data were 

generated based on a MIRT model (i.e., MC3PL), the true values for factor loading were 

calculated using Equation 2.11, based on the equivalent relationships between NLFA and MIRT.  

The root mean square deviation (RMSD) was used for evaluating parameter recovery, and is 

defined as:    

RMSD = 
n

pp∑ − 2)ˆ(
,     (3.1) 

where is the estimated parameter (i.e., factor loading), p is the true parameter and n is the 

number of items. RMSD was calculated for each replication of experimental conditions.  

p̂

3.2 PHRASE II – APPLICATION OF THE THIRD INTERNATIONAL 

MATHEMATICS AND SCIENCE STUDY (TIMSS) 

3.2.1 Introduction 

The Third International Mathematics and Science Study (TIMSS) has been conducted by 

the International Association for the Evaluation of Educational Achievement (IEA) since 1995.  

Every four years, TIMSS implements a study of achievement of students in mathematics and 

science in three different groups, and collects extensive information about teaching and learning 

in mathematics and science for students, teachers, and their school principals.  More than 40 

countries participate in this international comparative study.  Most students in Group 1 are 9 

years old at the time of testing (i.e., 3rd- and 4th-grade students in most of the countries), whereas 

students in Group 2 are 13 years old (i.e., 7th- and 8th-grade students).  Group 3 consists of 

students in their final year of secondary education.  Students in Group 2 are required to take tests 

in all countries that participating in the study, but countries are permitted to choose whether or 

not to administer tests to the students of Group 1 and 3.  Each student receives a booklet of 
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cognitive subject items, including mathematics and science tests, and a questionnaire about their 

attitudes toward mathematics and science, classroom activities, home background, and out-of-

school activities. Mathematics and science teachers and principals also responds to a 

questionnaire to collect information about the social and cultural contexts of learning, such as 

teachers’ views on the curriculum, school resources, and support for teachers (Gonzalez & Smith, 

1997). 

The “curriculum” concept in TIMSS is based on three levels: (1) the intended curriculum 

defined by the educational system and society; (2) the implemented curriculum taught by 

teachers; and (3) the attained curriculum, what students have learned (Gonzalez & Miles, 2001).  

The data collected from the assessment administered to students is designed to capture the 

attained curriculum. In 2003, the cognitive assessment of TIMSS was developed based on two 

domains: content and cognitive.  One feature of the TIMSS assessment is that both multiple-

choice and construct-response items were included in TIMSS tests. However, approximately 

80% of the items are designed as multiple-choice items.  The categories of content domain in 

mathematics and science of three versions developed in 1995, 1999, and 2003 have been revised 

slightly over time.  For example, there were eight categories of content domain in mathematics in 

1995, while there were only six categories in 1999.  More details on the assessment framework 

of TIMSS 2003 are presented in the next section. 

3.2.2 The assessment frame of TIMSS 2003 

The mathematics and science tests of Grade 8 developed in 2003 were selected for 

analysis.  According to the description of assessment frameworks and specifications of TIMSS 

2003 from the International Study Center (Mullis, Martin, Smith, Garden, Gregory, Gonzalez, 

Chrostorwski, & O’Connor, 2003), there were five content categories included in the 

mathematics test: Numbers, Algebra, Measurement, Geometry, and Data. In the science test, 

there were also five content categories: Life Science, Physics, Chemistry, Earth Science, and 

Environmental Science.  Table 3.8 shows the percentage of each content category in the 

mathematics and science tests in Grade 8 (Mullis et al., 2003).  The whole item pool of both 

subjects included some trend items from TIMSS 1995 or 1999 and some new replacement items 

developed in TIMSS 2003.   
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The cognitive domains of mathematics included knowing facts and procedure, using 

concepts, solving routine problems, and reasoning, whereas the cognitive domains for science 

included factual knowledge, conceptual understanding and reasoning and analysis (Neidorf & 

Garden, 2004). These cognitive domains referred to the skills and abilities supposed to be 

demonstrated by students in their test answers. Table 3.9 presents the percentages of cognitive 

domains. 

 

Table  3.8  

Percentages of content categories of TIMSS 2003 in Grade 8 

Math content domain 
Numbers 30% 
Algebra 25% 
Measurement  15% 
Geometry 15% 
Data 15% 

Science content domain 
Life Science  30% 
Physical Science (Chemistry)  15% 
Physical Science (Physics) 25% 
Earth Science 15% 
Environmental Science  15% 

 

Table  3.9  

Percentages of cognitive domains of TIMSS 2003 in Grade 8 

Math cognitive domains 
Knowing facts and procedures 15% 
Using concepts 20% 
Solving routine problems  40% 
Reasoning 25% 

Science cognitive domains 
Factual knowledge 30% 
Conceptual understanding 35% 
Reasoning and analysis 35% 
 

All the mathematics and science items were combined and divided into 28 blocks (14 

blocks for each subject).  All 28 blocks were distributed in 12 student booklets.  Each booklet 

contained six blocks, in two forms, either two math blocks and four science blocks or four math 
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blocks and two science blocks.  In other words, there were six booklets consisting of two math 

and four science blocks and six booklets containing of four math and two science blocks.  The 

block design of TIMSS 2003 ensured that were enough items existed in order to provide reliable 

measurement in the two subjects for each student.  For linking purposes among all booklets, 

certain amounts of blocks were paired with other blocks.  Each block (either math or science) 

consisted of approximately eight to nine multiple-choice items, three to four short constructed-

response items, and zero to one extended constructed-response item.  The total number of items 

in a block ranged from 11 to 16.  Therefore, the total score of points in each booklet if all 

questions were answered correctly ranged from 90 to 97 (M = 94) (Neidorf & Garden, 2004).  

Each test booklet was randomly assigned to one student; therefore, each item was administered 

to approximately equal numbers of students.  In order to ensure enough students for each item, at 

least 4500 students were administered the tests. Administration of the TIMSS 2003 assessment 

contained three timed sections (shown in Table 3.10).  Students had two 45-minute sessions to 

take the test. Note that only the multiple-choice items were analyzed in this study.   

Two booklets of Grade 8 were randomly selected, and only multiple-choice responses 

and subjects administered in the English version were used for the factor analysis.  Test lengths 

were approximately 50 and the sample size was approximately 1500. Sireci and Gonzalez (2003) 

concluded one dominant factor existed in the TIMSS science item pool using TIMSS 1999 data.  

However, no study had confirmed the test structure at the booklet level currently.  Therefore, this 

study also provided the evidence of test structures at the booklet level.  

 

Table  3.10  

Administration and item types of TIMSS 2003 assessment 

Activity Test time 
(minutes)

Number of 
blocks Item type 

Student Booklet - Part 1 
(Calculators Not Permitted) 45 3 

multiple-choice 
short constructed-response, 
extended constructed-response 

    

Student Booklet - Part 2 
(Calculators Permitted) 45 3 

multiple-choice 
short constructed-response 
extended constructed-response 

    
Student Questionnaire 30   
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4.0  RESULTS 

The results of the simulated data for Mplus and TESTFACT will be presented in the first 

sections.  The results include the proportion of correct dimensionality decisions, the number of 

dimensions uncovered, and parameter recovery.  The second section discusses the examination 

of the test dimensionality and factor structure of the TIMSS data. 

4.1 THE RESULTS OF SIMULATION DATA 

Four major indices were used to examine test dimensionality: 1) proportion of variance 

accounted for, 2) parallel analysis, 3) reduction of RMSR and 4) the chi-square difference test.  

The first three indices were subjective in nature because essentially the cut points for the 

decisions were determined by the researcher.  The chi-square difference test was a formal test 

and more likely to provide objective decisions. The proportion of correct dimensionality 

decisions for these four indices is presented separately for different discrimination conditions. 

For the decisions of the estimated number of dimensions, the results are primarily presented in 

figures in order to compare the performances of four indices. For the parameter recovery study, 

the results are presented to illustrate the influence of guessing, correlations among dimensions, 

and discrimination in determining dimensionality when using Mplus and TESTFACT.  Because 

the proportion of cases with non-convergent solutions not only affected the results but also 

demonstrated the estimation problems for using Mplus and TESTFACT, the number of valid 

cases with convergent solutions is presented first.    
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4.1.1 Number of non-convergent solutions 

Tables 4.1 to 4.4 display the number of convergent solutions (valid cases) when using 

Mplus and TESTFACT.  In this study, the cases were marked as non-convergent cases if the 

results had not converged after a specified number of iterations or the procedure failed without a 

factor solution. The specific numbers of iterations for both methods were 200 in Mplus and 50 in 

TESTFACT.  The major reason for setting a smaller number of iterations in TESTFACT was the 

time consumption for a 100-replication design, and preliminary results indicated that 50 

iterations should be adequate under most conditions (see Section 3.1.1).  Also, in Mplus, the 

dimensionality decisions were based on the WLSMV solutions, except the results of the chi-

square test index were based on the WLS estimator (more detail see Section 3.1.4).  In fact, there 

were no non-convergent cases in the WLSMV solution, which was more robust to sample size. 

However, given a test length equal to 60 with 2000 subjects, the WLS estimator might have been 

problematic in obtaining a convergent solution because of the need for larger sample sizes. 

Therefore, the information shown in Tables 4.1 and 4.2 is the number of valid cases based on the 

solutions using the WLS estimator. There were 38 out of 7000 non-convergent cases that totally 

failed to converge in all factor solutions in Mplus.  In TESTFACT, there were a total of 66 out of 

7000 cases that had non-convergent problems in all factor solutions.   

The effect of a non-convergent case was to stop the process of determining the number of 

factors. For example, in three-dimensional data, the estimation procedure obtained one- and two-

factor convergent solutions but no three- to five-factor solutions.  The chi-square test stopped at 

the difference test for one- and two-factor solutions. Therefore, the test dimensionality would be 

two if the chi-square test was significant, otherwise, the test dimensionality would be one. 

Additionally, any convergent factor solution was not counted as a valid case after a non-

convergent solution.  For instance, if a dataset obtained one-, two-, and four-factor convergent 

solutions, the possible dimensionality was only one or two dimensions.  Note that the situations 

of having convergent solutions after one non-convergent solution were detected more frequently 

in TESTFACT than in Mplus, especially for three-dimensional data.  

In Tables 4.1 and 4.2, the number of convergent solutions cases for Mplus decreased 

when the number of extracted factors increased.  A decrease in valid cases was observed in data 
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that assumed guessing and a high correlation.  In Tables 4.3 and 4.4, the patterns in the number 

of valid cases for TESTFACT across different conditions, such as guessing or factor correlations, 

were similar to the patterns for Mplus (see Tables 4.1 and 4.2).  One exception was the number 

of valid cases decreased more dramatically in TESTFACT when the number of extracted factors 

increased.  There were no valid cases in most conditions for higher factor solutions, such as four- 

or five-factor solutions.  In addition, the number of valid cases was limited for three-dimensional 

data that assumed guessing particularly for the high correlation condition.  

It should be noted that the number of valid cases was treated differently for the indices 

used to evaluate dimensionality.  Since the proportion of variance and parallel analysis indices 

are based on eigenvalues, which are derived in all runs whether a converged solution or no 

converged solution, all cases were analyzed.  On the other hand, the RMSR reduction index and 

the chi-square test were based on the output of converged solutions.  Thus, only those cases with 

converged solutions were analyzed.  In summary, for the proportion of variance and parallel 

analysis indices, 100 cases per each condition were analyzed in Mplus and TESTFACT.  For the 

RMSR reduction and the chi-square test indices, only the valid cases shown in Tables 4.1 to 4.4 

were analyzed in Mplus and TESTFACT (e.g., 87 cases were used in Mplus for three-

dimensional data with c = .33, r = .3 and HHH discrimination condition).  Finally, those 

conditions with less than 25 valid cases were excluded due to the small proportion of valid cases.  

Due to the presence of a small proportion of valid cases in data with and without guessing in the 

high correlation condition, these two conditions were excluded for all analyses in following 

sections.  In the parameter recovery section, only those cases whose number of extracted factors 

matched the true value of the dimensionality were used in the investigation of parameter 

recovery.  For example, the cases of two-factor solutions were used to illustrate how well 

parameter recovery is for two-dimensional data.  Therefore, the number of valid cases used in 

parameter recovery was less than that used in the proportion of correct dimensionality decisions 

and the number of dimensions decisions.  
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Table  4.1  

Cases with convergent solutions in Mplus using WLS under the low correlation condition (r = .3) 

c = 0  c = .33 Disc. 
Conditiona 1Fb 2F 3F 4F 5F  1F 2F 3F 4F 5F 

Unidimensional data 
H 93 92 89    100 100 80   
M 99 99 99    100 99 90   
L 100 100 100    100 100 88   

Two-dimensional data 
HH 100 100 99 91   100 100 95 50  
MH 98 98 98 97   100 99 97 69  
MM 100 100 100 99   100 100 91 74  
LH 99 99 99 96   100 100 92 69  
LM 100 100 100 99   100 99 92 59  
LL 100 100 100 99   100 100 97 70  

Three-dimensional data 
HHH 100 100 100 95 90  100 100 87 62 41 
HHM 99 99 99 95 88  100 99 90 63 36 
HHL 99 99 99 97 90  100 100 89 67 37 
MMH 100 100 100 98 94  100 99 93 71 41 
MMM 100 100 100 100 97  100 100 92 70 56 
MML 100 100 100 100 94  100 100 91 70 50 
LMH 100 100 99 98 97  100 100 86 69 39 
LLH 100 100 100 93 89  100 100 83 52 46 
LLM 98 98 97 96 92  100 100 90 57 47 
LLL 99 99 99 97 93  100 99 86 54 28 

a More details about discrimination conditions see Sections 3.1.1 and 3.1.2 
b ”1F” represented one-factor solutions, “2F” represented two-factor solutions and so on. 

  56



Table  4.2  

Cases with convergent solutions in Mplus using WLS under the high correlation condition (r = .6) 

Disc. c = 0  c = .33 
Condition 1F 2F 3F 4F 5F  1F 2F 3F 4F 5F 

Two-dimensional data 
HH 100 99 100 92   100 100 86 27  
MH 99 99 99 93   100 98 88 59  
MM 97 97 96 91   100 100 93 53  
LH 99 99 98 88   100 100 80 48  
LM 100 100 98 98   100 99 83 60  
LL 100 100 100 98   100 99 87 54  

Three-dimensional data 
HHH 96 96 91 75 56  100 100 78 20 7 
HHM 100 100 95 91 77  99 98 83 20 6 
HHL 99 99 95 90 73  100 100 79 35 8 
MMH 100 100 96 94 80  100 100 93 41 11 
MMM 100 100 100 97 86  100 100 84 49 22 
MML 100 100 98 97 94  100 100 91 47 22 
LMH 98 98 96 86 82  100 99 88 33 20 
LLH 98 98 97 85 81  100 100 83 35 9 
LLM 98 98 95 93 87  100 100 84 45 21 
LLL 95 94 92 90 87  100 99 77 41 20 
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Table  4.3  

Cases with convergent solutions in TESTFACT under the low correlation condition (r = .3) 

Disc. c = 0  c = .33 
Condition 1F 2F 3F 4F 5F  1F 2F 3F 4F 5F 

Unidimensional data 
H 100 86 3    99 21 0   
M 100 62 10    96 11 0   
L 100 73 27    95 10 0   

Two-dimensional data 
HH 100 100 91 86   98 95 18 1  
MH 100 100 64 66   97 89 6 0  
MM 100 100 67 68   97 89 4 0  
LH 100 100 70 63   95 85 5 0  
LM 100 100 58 66   95 82 1 0  
LL 100 100 74 71   92 83 1 0  

Three-dimensional data 
HHH 100 100 100 87 63  99 85 67 0 0 
HHM 100 100 100 82 55  99 94 56 0 0 
HHL 100 100 100 80 49  99 92 51 0 0 
MMH 100 100 100 88 62  98 89 46 0 0 
MMM 100 100 100 78 56  97 68 34 0 0 
MML 100 100 100 86 53  99 83 28 0 0 
LMH 100 100 100 81 56  96 87 44 0 0 
LLH 100 100 100 82 54  99 83 33 0 0 
LLM 100 100 100 80 62  96 81 34 0 0 
LLL 100 100 100 82 56  95 59 25 0 0 
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Table  4.4  

Cases with convergent solutions in TESTFACT under the high correlation condition (r = .6) 

Disc. c = 0  c = .33 
Condition 1F 2F 3F 4F 5F  1F 2F 3F 4F 5F 

Two-dimensional data 
HH 100 100 66 78   99 99 7 0  
MH 100 100 56 60   99 91 4 0  
MM 100 100 74 61   99 87 0 0  
LH 100 100 71 63   99 80 1 0  
LM 100 100 72 55   96 82 0 0  
LL 100 100 60 51   98 72 0 0  

Three-dimensional data 
HHH 100 100 60 37 21  100 94 0 0 0 
HHM 100 100 25 16 7  100 94 0 0 0 
HHL 100 100 39 20 6  98 86 0 0 0 
MMH 100 100 0 0 0  99 84 0 0 0 
MMM 100 100 0 0 0  99 71 0 0 0 
MML 100 100 0 0 0  100 78 0 0 0 
LMH 100 100 5 0 0  99 83 0 0 0 
LLH 100 100 16 8 3  98 69 1 0 0 
LLM 100 100 0 0 0  99 60 2 0 0 
LLL 100 100 0 0 0  98 51 1 0 0 

4.1.2 The proportion of correct dimensionality decisions 

In this section, the presentation of the results focuses on the extent to which the four 

indices, the proportion of variance, parallel analysis, the RMSR reduction and the chi-square test, 

could be used to identify the correct or simulated dimensionality. To facilitate comparisons 

across conditions, results are organized by the correlation condition, the guessing condition and 

the number of simulated dimensions. Since any correlation for unidimensional data was not 

possible, the correlation condition should be ignored for the unidimensional cases.  

Tables 4.5 to 4.6 present, respectively, the mean proportion of correct dimensionality 

decisions based on the first two indices, the proportion of variance and parallel analysis, for 

determining the number of factors. With regard to the proportion of variance index in Table 4.5, 

the performances of Mplus and TESTFACT were similar when using data without modeled 
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guessing. Under data that assumed no guessing, the performance deteriorated when either the 

dimensionality of data or the correlations among dimensions increased. Additionally, in three-

dimensional data, the performance deteriorated when the discrimination parameters decreased.  

In the lowest discrimination condition (i.e., LLL condition), no correct decisions were found.  In 

data that assumed guessing, the performance of TESTFACT was similar to the performance of 

Mplus, given unidimensional data and two-dimensional data with higher discrimination, such as 

HH or MH conditions.  With two-dimensional data, TESTFACT appeared superior to Mplus 

given lower discrimination parameter and r = .3.  When r = .6, the correct decision proportions 

were in the range of 70% to 90% for TESTFACT, whereas no correct decisions were made for 

Mplus. Given three-dimensional data, both TESTFACT and Mplus performed poorly except for 

higher discrimination parameter conditions, where TESTFACT was superior. The impact of 

different factor correlations was greater in data that assumed guessing.  Higher correlations 

decreased the correct decision rates. With three-dimensional data, the performances of both 

methods were significantly worse than with one- and two-dimensional data. A remarkable 

finding was that no correct dimensionality decisions occurred in the three-dimensional data with 

a high correlation condition in both estimation methods (i.e., Mplus and TESTFACT). 

The results of parallel analysis in Table 4.6 demonstrated that Mplus performed poorly in 

all conditions with data that assumed guessing (i.e., no correct decisions), whereas TESTFACT 

had higher correct decision rates for items with higher discrimination. However, Mplus 

performed better than TESTFACT with three-dimensional data that assumed no guessing and a 

high correlation.  Similar to the results using the proportion of variance index, the performances 

of Mplus and TESTFACT in the three-dimensional data that assumed guessing with high 

correlations were the worst (i.e., all cases had no correct decisions). When discrimination 

decreased, the correct decision rates decreased, and the discrepancy of correct decision rates 

between Mplus and TESTFACT increased.  With regard to the correlation effect, in data that 

assumed no guessing, Mplus performed better in the high correlation condition, whereas 

TESTFACT performed better in the low correlation condition.  However, with data that assumed 

guessing, the correlation effect was not found in both methods, except for three-dimensional data 

in TESTFACT. 
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Table  4.5  

The mean proportion of correct dimensionality decisions using the proportion of variance index 

 r = .3 r = .6 
c = 0  c = .33 c = 0  c = .33 Disc. 

Condition Mplus TSFa  Mplus TSF Mplus TSF  Mplus TSF 
 Unidimensional data 
H 1.0 1.0 1.0 1.0     
M 1.0 1.0 1.0 1.0     
L 1.0 1.0 1.0 1.0     
 Two-dimensional data 
HH 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 
MH 1.0 1.0 1.0 0.9 1.0 1.0 0.0 0.9 
MM 1.0 1.0 1.0 0.9 1.0 1.0 0.0 0.8 
LH 1.0 1.0 0.9 0.9 1.0 1.0 0.0 0.5 
LM 1.0 1.0 0.3 0.9 0.4 0.4 0.0 0.2 
LL 1.0 1.0 0.0 0.9 0.0 0.0 0.0 0.1 
 Three-dimensional data 
HHH 1.0 1.0 0.2 0.7 0.0 0.0 0.0 0.0 
HHM 1.0 1.0 0.0 0.6 0.0 0.0 0.0 0.0 
HHL 1.0 1.0 0.0 0.2 0.0 0.0 0.0 0.0 
MMH 1.0 1.0 0.0 0.5 0.0 0.0 0.0 0.0 
MMM 1.0 1.0 0.0 0.3 0.0 0.0 0.0 0.0 
MML 0.8 0.7 0.0 0.0 0.0 0.0 0.0 0.0 
LMH 0.9 0.9 0.0 0.1 0.0 0.0 0.0 0.0 
LLH 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
LLM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
LLL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

a ”TSF” represented “TESTFACT”. 
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Table  4.6  

The mean proportion of correct dimensionality decisions using parallel analysis 

 r = .3 r = .6 
Disc. c = 0  c = .33 c = 0  c = .33 
Condition Mplus TSF  Mplus TSF Mplus TSF  Mplus TSF 
 Unidimensional data 
H 0.7 0.8  0.0  0.8      
M 0.0  0.4  0.0  0.9      
L 0.0  0.7  0.0  0.9      
 Two-dimensional data 
HH 1.0  1.0  0.0  0.8  1.0 1.0  0.0  0.9  
MH 0.8  0.9  0.0  0.9  0.9  0.9  0.0  0.9  
MM 0.3  0.5  0.0  0.9  0.4  0.7  0.0  0.9  
LH 0.5  0.7  0.0  0.8  0.6  0.8  0.0  0.8  
LM 0.0  0.4  0.0  0.8  0.1  0.4  0.0  0.9  
LL 0.0  0.2  0.0  0.9  0.0  0.3  0.0  0.7  
 Three-dimensional data 
HHH 1.0  1.0  0.0  0.7  1.0  0.6  0.0  0.0  
HHM 1.0 1.0 0.0  0.6  1.0  0.3  0.0  0.0  
HHL 0.9  0.9  0.0  0.5  0.9  0.4  0.0  0.0  
MMH 0.9  1.0 0.0  0.5  0.9  0.0 0.0  0.0  
MMM 0.7  0.8  0.0  0.4  0.9  0.0  0.0  0.0  
MML 0.4  0.6  0.0  0.3  0.7  0.2  0.0  0.0  
LMH 0.7  0.9  0.0  0.5  0.8  0.1  0.0  0.0  
LLH 0.3  0.5  0.0  0.3  0.7  0.3  0.0  0.0  
LLM 0.1  0.3  0.0  0.4  0.4  0.3  0.0  0.0  
LLL 0.0  0.1  0.0  0.3  0.3  0.3  0.0  0.0  
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Because parallel analysis was based on the comparison of estimated eigenvalues from the 

target data and random data, any decrease or increase of eigenvalues might have an impact on 

determining dimensionality.  A similar impact of the increase or decrease in eigenvalues should 

be observed in the performance of the proportion of variance index as well.  Tables 4.7 and 4.8 

provide the first and the second eigenvalues in Mplus and TESTFACT under low and high 

correlation conditions. The information demonstrated how modeling guessing affected the 

eigenvalues.  In Table 4.7, when the data assumed guessing, the first eigenvalues of Mplus 

dropped dramatically, compared to the no guessing condition. The eigenvalues were only half 

the value of the eigenvalues obtained in data that assumed no guessing.  Meanwhile, guessing 

only led to a small decrease, around 10%, in TESTFACT.  The pattern of second eigenvalues 

was similar to the first one.  The difference between both methods for the second eigenvalues 

was smaller than for the first eigenvalues when data assumed guessing.  The significant drop in 

the first and the second eigenvalues for Mplus resulted in an increase in the rest of the 

eigenvalues. Thus, dimensionality was overestimated because the eigenvalues obtained from 

random data were relatively close to the eigenvalues of simulation data.  Any increase of the 

eigenvalues, however slight the increase, affected the results in determining dimensionality. 

Table 4.8 presents the first two eigenvalues in both methods under the higher correlation 

condition (r = .6).  The pattern and values of the first eigenvalues were similar to the low 

correlation condition. However, the higher the correlations among dimensions, the larger the first 

eigenvalues. This again led to a decrease in the rest of eigenvalues which decreased the 

proportion of overestimation in the high correlation condition. Tests with lower discrimination 

decreased the first eigenvalues and caused smaller differences between Mplus and TESTFACT 

in data that assumed guessing.   

In summary, the first two eigenvalues of Mplus and TESTFACT were about the same in 

data that assumed no guessing.   However, in data that assumed guessing, the eigenvalues of 

TESTFACT were relatively higher than those of Mplus.  Low discrimination also caused a 

decrease of the eigenvalues.  High correlations increased the first eigenvalues, but decreased the 

rest of the eigenvalues. Therefore, high correlations among dimensions led to an increase in 

underestimating dimensionality.  In conclusion, TESTFACT did correct the measurement error 

problem caused by guessing.  TESTFACT showed superior results when using parallel analysis 

and the proportion of variance index with data that modeled guessing. 
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Table  4.7  

The means of the first two eigenvalues in Mplus and TESTFACT (r = .3) 

 Eigenvalue 1 Eigenvalue 2 
Disc. c = 0  c = .33 c = 0  c = .33 
Condition Mplus TSF  Mplus TSF Mplus TSF  Mplus TSF 
 Unidimensional data 
H 34.95  34.91  17.50  30.65 1.29  1.26  2.33  2.35  
M 27.71  27.67  13.88  23.70 1.46  1.44  1.98  2.63  
L 20.57  20.53  10.34  16.93 1.58  1.55  1.73  2.85  
 Two-dimensional data 
HH 28.71  28.66  14.55  25.29 8.29  8.28  4.51  6.58  
MH 26.65  26.60  13.52  22.95 7.11  7.09  3.90  5.67  
MM 24.30  24.24  12.29  20.46 6.20  6.18  3.49  5.22  
LH 24.85  24.80  12.58  21.22 5.66  5.65  3.21  4.41  
LM 22.18  22.13  11.25  18.40 5.07  5.05  2.94  4.24  
LL 19.74  19.70  9.99  16.01 4.21  4.20  2.55  3.71  
 Three-dimensional data 
HHH 28.44  28.35  14.27  24.45 5.37  5.34  3.13  4.53  
HHM 27.38  27.29  13.74  23.24 5.26  5.23  3.04  4.43  
HHL 26.38  26.30  13.25  22.21 5.26  5.23  3.02  4.38  
MMH 26.25  26.18  13.19  22.11 4.75  4.74  2.79  4.02  
MMM 25.00  24.94  12.54  20.88 4.08  4.07  2.51  3.61  
MML 23.95  23.89  11.99  19.91 3.99  3.98  2.44  3.52  
LMH 25.21  25.14  12.66  21.04 4.64  4.62  2.71  3.92  
LLH 24.20  24.13  12.12  19.95 4.15  4.12  2.51  3.61  
LLM 22.80  22.74  11.40  18.65 3.52  3.51  2.21  3.19  
LLL 21.60  21.54  10.85  17.38 2.86  2.85  1.97  2.99  
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Table  4.8  

The means of the first two eigenvalues in Mplus and TESTFACT (r = .6) 

 Eigenvalue 1 Eigenvalue 2 
Disc. c = 0  c = .33 c = 0  c = .33 
Condition Mplus TSF  Mplus TSF Mplus TSF  Mplus TSF 
 Two-dimensional data 
HH 33.51  33.46  16.88  29.55 4.65  4.64  2.77  4.02  
MH 30.97  30.91  15.60  26.79 4.04  4.03  2.48  3.52  
MM 28.30  28.24  14.29  24.03 3.58  3.57  2.28  3.24  
LH 28.51  28.47  14.37  24.34 3.32  3.31  2.17  3.00  
LM 25.70  25.66  12.90  21.44 2.98  2.97  2.02  2.89  
LL 22.98  22.94  11.56  18.75 2.54  2.54  1.85  2.81  
 Three-dimensional data 
HHH 35.22  35.12  17.61  30.60 2.95  2.93  2.21  2.68  
HHM 33.83  33.75  16.92  29.19 2.89  2.87  2.16  2.60  
HHL 32.48  32.39  16.25  27.82 2.88  2.87  2.11  2.66  
MMH 32.44  32.36  16.22  27.77 2.62  2.60  2.10  2.54  
MMM 30.97  30.90  15.40  26.29 2.32  2.31  2.02  2.50  
MML 29.60  29.53  14.72  24.89 2.27  2.26  2.00  2.57  
LMH 31.09  31.01  15.49  26.30 2.55  2.54  2.05  2.58  
LLH 29.67  29.59  14.75  24.84 2.37  2.35  2.02  2.63  
LLM 28.18  28.11  14.03  23.37 2.04  2.03  1.94  2.65  
LLL 26.76  26.70  13.26  21.86 1.76  1.76  1.91  2.72  

 

 

  65



The assessment of dimensionality based on the RMSR reduction index in Mplus and 

TESTFACT is shown in Table 4.9.  As can be seen the pattern of results was similar to previous 

results. The performance in data that assumed no guessing was better than in data that assumed 

guessing. Using both methods, the proportions of correct decisions under high or low correlation 

conditions were similar in data without guessing, except for three-dimensional data.  However, in 

one- and two-dimensional data that assumed guessing, the performance of TESTFACT was 

similar or better than Mplus. In all conditions of three-dimensional data, the performance of 

Mplus was much better than the performance of TESTFACT.  In addition, the performance of 

both methods with the three-dimensional data that assumed guessing with a high correlation was 

least successful and somewhat unpredictable. Another remarkable finding, the influence of 

discrimination in Mplus for one- and two- dimensional data, differed for three-dimensional data.  

In one- and two-dimensional data, better performance using Mplus was observed in lower 

discrimination conditions, which was opposite to the results of the other indices mentioned above 

(i.e., the proportion of variance and parallel analysis).  However, the patterns of performance in 

three-dimensional data were not so clear. The influence of factor correlations was observed in 

data that assumed guessing using Mplus and TESTFACT. Higher factor correlations decreased 

the rate of correct decisions.  Note that results not available due to non-convergence are indicated 

by N/A in the table.  As can be seen these occurred only for TESTFACT in the three-dimension, 

correlation equal to .6 condition. 

Table 4.10 displays the mean proportion of correct dimensionality using the chi-square 

difference test.  In most of the conditions, the performance of TESTFACT was superior to Mplus, 

except for three-dimensional data that assumed guessing with a high correlation.  When using 

Mplus, there were decision rates in most conditions of no more than 10% correct, except with 

three-dimensional data that assumed guessing where correct decision rates were in the range of 

50% to 80%.  A larger discrepancy was found in the results for Mplus between the low and high 

correlation conditions as well. Interestingly, Mplus performed better with data that assumed 

guessing than with data that did not assume guessing.  In contrast, TESTFACT performed well 

with one-to-three dimensional data, having decision rates of 100% correct, except for three-

dimensional data and the high correlation condition where the number of non-convergent 

solutions precluded any evaluation.  Also, TESTFACT performed well with data that assumed 

no guessing or guessing.  
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Table 4.9  

The mean proportion of correct dimensionality decisions using the reduction of RMSR index 

 r = .3 r = .6 
Disc. c = 0  c = .33 c = 0  c = .33 
Condition Mplus TSF  Mplus TSF Mplus TSF  Mplus TSF 
 Unidimensional data 
H 0.6 1.0  0.0  1.0      
M 1.0 1.0  0.0  1.0      
L 1.0 1.0  1.0  1.0      
 Two-dimensional data 
HH 0.9  1.0  0.0  1.0 0.9  1.0  0.0  0.9  
MH 1.0 1.0  0.4  1.0 0.9  1.0  0.0  0.4  
MM 1.0 1.0  1.0 1.0  1.0 1.0  0.3  0.2  
LH 1.0 1.0  0.7  0.9  1.0 1.0  0.0  0.0  
LM 1.0  1.0 1.0 0.9  1.0 1.0 0.7  0.0  
LL 1.0 1.0 1.0 0.5  1.0 1.0 0.0  0.0  
 Three-dimensional data 
HHH 1.0 0.9  0.1  0.7  0.8  N/A 0.0  N/A 
HHM 1.0 0.6  0.3  0.2  0.8  N/A 0.0  N/A 
HHL 1.0 1.0  0.6  0.0  0.9  N/A 1.0 N/A 
MMH 1.0 0.9  0.6  0.2  0.9  N/A 0.5  N/A 
MMM 1.0 0.8  0.8  0.0  0.9  N/A 0.0  N/A 
MML 1.0 1.0 0.9  0.0  0.9  N/A 0.0  N/A 
LMH 1.0 1.0 0.8  0.0  0.9  N/A 0.6  N/A 
LLH 1.0 1.0 0.3  0.0  0.9  N/A 0.2  N/A 
LLM 1.0 1.0 0.3  0.0  0.8  N/A 0.0  N/A 
LLL 1.0 1.0 0.0  0.0  0.4  N/A 0.0  N/A 
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Table 4.10  

The mean proportion of correct dimensionality decisions using the chi-square test 

 r = .3 r = .6 
Disc. c = 0  c = .33 c = 0  c = .33 
Condition Mplus TSF  Mplus TSF Mplus TSF  Mplus TSF 
 Unidimensional data 
H 0.0  1.0 0.0  1.0     
M 0.0  1.0 0.0  1.0     
L 0.0  1.0 0.0  0.9     
 Two-dimensional data 
HH 0.0  0.1  0.1  1.0 0.0  1.0 0.1  1.0 
MH 0.0  0.5  0.0  1.0 0.0  1.0 0.1  1.0 
MM 0.0  0.4  0.1  1.0 0.0  1.0 0.1  1.0 
LH 0.0  0.5  0.1  1.0 0.0  1.0 0.2  1.0 
LM 0.0  0.5  0.1  1.0 0.0  1.0 0.2  1.0 
LL 0.0  0.4  0.0  1.0 0.0  1.0 0.1  1.0 
 Three-dimensional data 
HHH 0.1  1.0 0.4  1.0 0.2  N/A 0.8  N/A 
HHM 0.0  1.0 0.4  1.0 0.1  N/A 0.8 N/A 
HHL 0.0  1.0 0.3  1.0 0.1  N/A 0.7  N/A 
MMH 0.0  1.0 0.3  1.0 0.1  N/A 0.6  N/A 
MMM 0.0  1.0 0.3  1.0 0.0  N/A 0.5  N/A 
MML 0.0  1.0 0.3  1.0 0.0  N/A 0.5  N/A 
LMH 0.0  1.0 0.3  1.0 0.1  N/A 0.7  N/A 
LLH 0.1  1.0 0.4  1.0 0.1  N/A 0.6  N/A 
LLM 0.0  1.0 0.4  1.0 0.0  N/A 0.5  N/A 
LLL 0.0  1.0 0.4  1.0 0.0  N/A 0.6  N/A 
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In summary, differences in the performance (i.e., proportion of correct dimensionality) of 

the four indices for determining the number of dimensions were observed.  For the conditions of 

no modeled guessing (c = 0), and factor correlations equal to .3, the RMSR statistic, in general, 

appeared to yield better performance.  For simulated data with one or two dimensions, the 

proportion of variance index was also effective, and TESTFACT and Mplus were observed to 

perform similarly.  However, for simulated data with three dimensions or factor correlations 

equals to .6, the performance of both TESTFACT and Mplus deteriorated although the 

performance of TESTFACT was markedly lower than Mplus. 

As for the condition of modeled guessing (c = .33), TESTFACT performed better 

generally than Mplus.  The parallel analysis and the chi-square test indices appeared to perform 

best in general when using TESTFACT, whereas the proportion of variance and the chi-square 

test indices performed better in Mplus.  As for the case of no modeled guessing, in simulated 

data with three dimensions and factor correlations equal to .6, decreased performance was 

observed, particularly with regard to TESTFACT.  It should be noted that in many cases there 

were no valid cases at this condition (see Tables 4.3 and 4.4).   In these cases TESTFACT 

always underestimated true dimensionality.  

4.1.3 Comparing the number of dimensions 

Based on the proportion of correct decisions, the performance of Mplus and TESTFACT 

varied, given different underlying dimensionality. This section compares the four indices in 

terms of the number of estimated dimensions uncovered.  The results that are presented are based 

on difference between the estimated number of dimensions and the true dimensionality (see 

Appendix B to Appendix E).  

Figures 4.1 to 4.4 present the mean differences for unidimensional data for c = 0 and  

c = .33.  Figures 4.1 and 4.2 present the results for the four indices for Mplus and TESTFACT 

respectively under the no guessing condition.  As can be seen, the proportion of variance and the 

RMSR reduction indices performed well for Mplus and TESTFACT. In addition, the chi-square 

test and parallel analysis for tests with high discrimination items also performed well.  For the 

condition of assumed guessing (see Figures 4.3 and 4.4), all indices yielded greater 

dimensionality with Mplus except the proportion of variance index. In contrast, the performance 
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of these four indices in TESTFACT was very similar (see Figure 4.4). In conclusion, for 

unidimensional data, TESTFACT performed better than Mplus with data that did and did not 

assume guessing.  The proportion of variance index illustrated the best performance among these 

four indices in both methods.  
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Figure 4.1 The mean difference of estimated and true dimensionality in Mplus (1D, c = 0) 
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Figure 4.2 The mean difference of estimated and true dimensionality in TESTFACT (1D, c = 0) 
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Figure 4.3 The mean difference of estimated and true dimensionality in Mplus (1D, c = .33) 

 

 

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

H M L

Discrimination

M
ea

n 
di

ff
er

en
ce

 o
f 

di
m

en
si

on
al

it
y

% of Variance

Parallel Analysis

Reduction of RMSR

Chi-square Test

 
Figure 4.4 The mean difference of estimated and true dimensionality in TESTFACT (1D, c = .33)  
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Figures 4.5 to 4.12 present the number of estimated dimensions with two-dimensional 

data using the four indices. In data that assumed no guessing (see Figures 4.5 to 4.8) and either 

low or high correlation conditions, the performances of Mplus and TESTFACT were similar for 

all indices, except Mplus had a serious overestimation problem using the chi-square test.  Note 

that the degree of overestimation in using parallel analysis increased as the discrimination 

decreased in both methods. While dimensionality was overestimated for the most part, the 

proportion of variance index resulted in some underestimation in tests with low discriminating 

items and factor correlations equal to .6 for both methods. 

In data that assumed guessing (see Figures 4.9 to 4.12), Mplus tended to overestimate 

dimensionality and TESTFACT underestimated dimensionality when there were differences 

between TESTFACT and Mplus.  For Mplus, the proportion of variance and the RMSR 

reduction indices performed well in the low correlation condition (see Figure 4.9), but either 

overestimated or underestimated the true dimensionality in the high correlation condition (see 

Figure 4.11). In contrast, TESTFACT showed its superiority using the four indices in the low 

correlation condition (see Figure 4.10). In the high correlation condition (see Figure 4.12), 

TESTFACT underestimated the true dimensionality slightly using the proportion of variance and 

the reduction of RMSR indices, whereas the other indices performed fairly well, especially using 

the chi-square test (the estimated dimensionality was close to the true dimensionality).  

In conclusion, in data that assumed no guessing, most indices performed well except the 

chi-square test in Mplus.  With data that assumed guessing, both parallel analysis and the chi-

square test consistently overestimated the dimensionality, whereas the other two indices either 

overestimated or underestimated dimensionality depending on the discrimination and correlation 

conditions. Using TESTFACT, the four indices performed generally well in all conditions.  

Finally, the consistency among the four indices in TESTFACT was greater than in Mplus. In 

Mplus and TESTFACT, the effect of discrimination was observed in the results of most indices 

except the chi-square test index.  
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Figure 4.5 The mean difference of estimated and true dimensionality in Mplus (2D, c = 0, r = .3) 
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Figure 4.6 The mean difference of estimated and true dimensionality in TESTFACT (2D, c = 0,  
r = .3) 
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Figure 4.7 The mean difference of estimated and true dimensionality in Mplus (2D, c = 0, r = .6) 
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Figure 4.8 The mean difference of estimated and true dimensionality in TESTFACT (2D, c = 0,  
r = .6) 
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Figure 4.9 The mean difference of estimated and true dimensionality in Mplus (2D, c = .33, r = .3) 
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Figure 4.10 The mean difference of estimated and true dimensionality in TESTFACT (2D, c=.33,  
r = .3) 
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Figure 4.11 The mean difference of estimated and true dimensionality in Mplus (2D, c=.33, r = .6) 
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Figure 4.12 The mean difference of estimated and true dimensionality in TESTFACT (2D, c=.33,  
r = .6) 
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Figures 4.13 to 4.20 present the mean differences on the number of uncovered 

dimensions for three-dimensional data. The pattern of three-dimensional data was quite different 

from that of the two-dimensional data, especially regarding the performance of TESTFACT.  For 

the no modeled guessing conditions (i.e., c = 0, see Figures 4.13 and 4.14), the pattern and the 

performance of Mplus and TESTFACT were very similar, except the chi-square test consistently 

overestimated dimensionality with Mplus.  When the correlations among dimensions increased 

(see Figure 4.15 and Figure 4.16), the performances of parallel analysis and the reduction of 

RMSR index in Mplus were close to the true dimensionality, whereas the same indices with 

TESTFACT underestimated the true dimensionality.  However, the proportion of variance index 

and the chi-square test either underestimated or overestimated in Mplus, whereas these two 

indices underestimated dimensionality in TESTFACT.  In other words, the superiority of 

TESTFACT was not evident in three-dimensional data as it was shown to be in one- and two-

dimensional data.  Note that results based on the RMSR index and chi-square test were not 

available for TESTFACT under the .6 correlation condition due to the number of non-convergent 

solutions (see Figures 4.16 and 4.20).   

In data that assumed guessing (see Figures 4.17 to 4.20), the performances of all indices 

in Mplus showed consistent differences from true dimensionality, but there was no consistency 

in the direction of estimation among indices (the dimensionality was either overestimated or 

underestimated). Interestingly, the performance of the RMSR reduction index in Mplus was 

affected by discrimination. Mplus tended to overestimate dimensionality given higher 

discrimination conditions and to underestimate dimensionality in lower discrimination conditions.  

However, consistent overestimation was found in Mplus using the chi-square test except in data 

that assumed guessing with the high correlation condition (only slightly overestimated). In 

contrast, in TESTFACT, the chi-square test performed very well except the results were 

unknown in data with a high correlation, again due to problems with non-convergent solutions. 

The other three indices tended to underestimate dimensionality consistently, but the degree of 

underestimation was different. The most serious underestimation was found in data that assumed 

guessing with the high correlation condition.  Overall, parallel analysis performed better than the 

other two indices, especially in data that assumed guessing with the high correlation condition. 
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Figure 4.13 The mean difference of estimated and true dimensionality in Mplus (3D, c = 0, r = .3) 
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Figure 4.14 The mean difference of estimated and true dimensionality in TESTFACT (3D, c = 0,  
r = .3) 
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Figure 4.15 The mean difference of estimated and true dimensionality in Mplus (3D, c = 0, r = .6) 
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Figure 4.16 The mean difference of estimated and true dimensionality in TESTFACT (3D, c = 0,  
r = .6) 
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Figure 4.17 The mean difference of estimated and true dimensionality in Mplus (3D, c = .33, r = .3) 
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Figure 4.18 The mean difference of estimated and true dimensionality in TESTFACT (3D, c = .33,  
r = .3) 
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Figure 4.19 The mean difference of estimated and true dimensionality in Mplus (3D, c = .33, r = .6) 
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Figure 4.20 The mean difference of estimated and true dimensionality in TESTFACT (3D, c = .33,  
r = .6) 
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The results comparing the differences between estimated and true dimensionality 

illustrated indices that sometimes overestimated dimensionality and indices that sometimes 

underestimated dimensionality.  Because the magnitude of the eigenvalues was the basis of the 

proportion of variance and parallel analysis indices, the impact of guessing was greater in these 

two indices since the correction for guessing directly affects the magnitude of the eigenvalues.  It 

is clear that the performance of parallel analysis was significantly worse in Mplus, but not the 

case in TESTFACT, when the data assumed guessing.  In addition, the impact of the guessing 

correction was greatest in the first eigenvalues.  Hence, the proportion of variance index had the 

best performance in unidimensional data but tended to underestimate dimensionality in higher 

dimensional data.  In contrast, the RMSR reduction index and the chi-square test were not 

directly affected by the correction of guessing.  Instead, the discrimination effect had a greater 

impact on the performance of the RMSR reduction index, whereas the chi-square test may have 

been affected by relatively large sample size.  

In summary, when comparing the four indices with unidimensional data, the proportion 

of variance and the RMSR reduction indices performed better in Mplus, whereas most indices 

performed fairly well in TESTFACT.   For two-dimensional data that either assumed guessing or 

no guessing, the RMSR reduction performed relatively well in Mplus and TESTFACT, 

compared to other indices, except in the condition that data assumed guessing with a high factor 

correlation.  For three-dimensional data using Mplus, the RMSR reduction index worked well in 

data that assumed no guessing and the chi-square test performed better in data that assumed 

guessing.  In TESTFACT, parallel analysis and the chi-square test performed either fairly well or 

better than other indices for most conditions.  

4.1.4 Parameter Recovery 

In order to evaluate parameter recovery, only factor solutions where the number of 

factors extracted matched the underlying dimensionality were analyzed.  For example, a two-

factor solution was used to evaluate parameter recovery given simulated two-dimensional data.  

The index for this evaluation was RMSD, which compared estimated parameters with true values 

(see Equation 3.1). RMSD was calculated for each replication for all conditions. An oblique 

solution (PROMAX) was used in the two- and three-dimensional data because a nonzero 
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correlation was assumed (.3 and .6).  Table 4.11 presents the valid cases for these analyses. 

Given data that assumed guessing, the number of valid cases was less than those in data that 

assumed no guessing.  However, the impact was greater in TESTFACT. As discussed before, 

TESTFACT showed serious non-convergent problems with three-dimensional data (see Tables 

4.3 and 4.4). Higher factor correlations also decreased the number of valid cases.  For example, 

given three-dimensional data that assumed guessing in TESTFACT, there were 30% to 80% 

valid cases for three-factor solutions under the low correlation condition, whereas there were 

almost no valid cases with convergent three-factor solutions in the high correlation condition. 

Due to the presence of a small proportion of valid cases in data with and without guessing in the 

high correlation condition, these two conditions were excluded in the analysis of parameter 

recovery for TESTFACT.   
 

Table  4.11  

Valid cases for factor solutions matched the underlying dimensionality in TESTFACT 

 r = .3 r = .6 
Disc. c = 0  c = .33 c = 0  c = .33 
Condition Mplus TSF  Mplus TSF Mplus TSF  Mplus TSF 
 Unidimensional data 
H 93 100 100 99     
M 99 100 100 96     
L 100 100 100 95     
 Two-dimensional data 
HH 100 100 100 95 99 100 100 99 
MH 98 100 99 89 99 100 98 91 
MM 100 100 100 89 97 100 100 87 
LH 99 100 100 85 99 100 100 80 
LM 100 100 99 82 100 100 99 82 
LL 100 100 100 83 100 100 99 72 
 Three-dimensional data 
HHH 100 100 87 67 91 N/A 78 N/A 
HHM 99 100 90 56 95 N/A 83 N/A 
HHL 99 100 89 51 95 N/A 79 N/A 
MMH 100 100 93 46 96 N/A 93 N/A 
MMM 100 100 92 34 100 N/A 84 N/A 
MML 100 100 91 28 98 N/A 91 N/A 
LMH 99 100 86 44 96 N/A 88 N/A 
LLH 100 100 83 33 97 N/A 83 N/A 
LLM 99 100 90 34 95 N/A 84 N/A 
LLL 99 100 86 25 92 N/A 77 N/A 
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Table 4.12 displays the mean RMSD of parameter recovery in Mplus and TESTFACT.  

With data that assumed no guessing and the low correlation condition, the RMSD values 

obtained for Mplus were slightly smaller than the RMSD for TESTFACT.   However, with data 

that assumed guessing and low factor correlations, the values of RMSD in TESTFACT were 

significantly smaller than the values of Mplus.  These results showed the superiority of 

TESTFACT when the data assumed guessing.  In the high correlation condition, a similar pattern 

was observed for two-dimensional data. However, larger values of RMSD for three-dimensional 

data in the high correlation condition were found in Mplus when compared to the low correlation 

condition.  

The table also illustrated an effect due to the size of the discrimination parameters, but 

this effect depended on the presence of modeled guessing.  For c = .33 and the low correlation 

condition, there did not appear to be an effect using Mplus.  As can be seen, all the RMSD values 

were approximately the same across all three dimensionality conditions.  However, for 

TESTFACT, RMSD values were consistently greater for low discrimination items versus 

medium high discrimination items.  

Table 4.13 presents the standard deviations of the RMSD values.  In most conditions, the 

standard deviations of Mplus were slightly smaller than those for TESTFACT, except in data 

with a high correlation and lower discrimination condition. In addition, a significantly larger 

standard deviation in the RMSD statistic across replications was found in lower discrimination 

conditions as compared to higher discrimination conditions.  For example, the standard 

deviations of the H and L conditions in data that assumed guessing in the low correlation 

condition were 0.006 versus 0.322 for TESTFACT and 0.006 versus .212 for Mplus.  Note that 

there were significantly larger standard deviations found in unidimensional data with M and L 

discrimination conditions using TESTFACT (caused by a few extreme RMSD values).   
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Table  4.12  

The mean RMSD of parameter recovery in Mplus and TESTFACT 

 r = .3 r = .6 
Disc. c = 0  c = .33 c = 0  c = .33 
Condition Mplus TSF  Mplus TSF Mplus TSF  Mplus TSF 
 Unidimensional data 
H 0.02  0.03  0.29  0.06      
M 0.03  0.06  0.27  0.18      
L 0.04  0.10  0.31  0.23      
 Two-dimensional data 
HH 0.03  0.03  0.28  0.08  0.05  0.04  0.29  0.07  
MH 0.03  0.04  0.27  0.09  0.05  0.04  0.28  0.09  
MM 0.04  0.04  0.25  0.10  0.05  0.05  0.27  0.11  
LH 0.04  0.04  0.26  0.11  0.07  0.06  0.29  0.11  
LM 0.05  0.05  0.24  0.12  0.06  0.06  0.27  0.12  
LL 0.05  0.06  0.23  0.13  0.06  0.07  0.27  0.14  
 Three-dimensional data 
HHH 0.04 0.04  0.28  0.08  0.07  N/A 0.42  N/A 
HHM 0.04  0.05  0.27  0.09  0.07  N/A 0.42  N/A 
HHL 0.05  0.06  0.27  0.10  0.08  N/A 0.40  N/A 
MMH 0.05  0.06  0.26  0.10  0.07  N/A 0.41  N/A 
MMM 0.06  0.07  0.25  0.11  0.06  N/A 0.39  N/A 
MML 0.06  0.08  0.25  0.12  0.08  N/A 0.37  N/A 
LMH 0.06  0.07  0.26  0.12  0.08  N/A 0.39  N/A 
LLH 0.07  0.08  0.27  0.12  0.09  N/A 0.38  N/A 
LLM 0.07  0.09  0.25  0.13  0.09  N/A 0.36  N/A 
LLL 0.07  0.09  0.25  0.14  0.09  N/A 0.35  N/A 
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Table  4.13  

The standard deviation of the mean RMSD of parameter recovery in Mplus and TESTFACT 

 r = .3 r = .6 
Disc. c = 0  c = .33 c = 0  c = .33 
Condition Mplus TSF  Mplus TSF Mplus TSF  Mplus TSF 
 Unidimensional data 
H 0.004  0.004  0.006  0.006     
M 0.005  0.187  0.006  0.330     
L 0.005  0.246  0.212  0.322     
 Two-dimensional data 
HH 0.003  0.003  0.006  0.009 0.004 0.004  0.006  0.008 
MH 0.004  0.004  0.005  0.014 0.005 0.005  0.006  0.012 
MM 0.005  0.005  0.005  0.009 0.007 0.006  0.008  0.014 
LH 0.004  0.004  0.005  0.012 0.006 0.005  0.022  0.015 
LM 0.007  0.005  0.006  0.012 0.009 0.007  0.019  0.015 
LL 0.006  0.005  0.006  0.013 0.012 0.007  0.055  0.013 
 Three-dimensional data 
HHH 0.004  0.004  0.007  0.009 0.006 N/A 0.038  N/A 
HHM 0.005  0.004  0.007  0.010 0.007 N/A 0.024  N/A 
HHL 0.005  0.005  0.007  0.011 0.009 N/A 0.025  N/A 
MMH 0.005  0.004  0.007  0.012 0.008 N/A 0.022  N/A 
MMM 0.005  0.004  0.006  0.016 0.007 N/A 0.022  N/A 
MML 0.006  0.005  0.007  0.014 0.013 N/A 0.023  N/A 
LMH 0.005  0.005  0.009  0.013 0.008 N/A 0.025  N/A 
LLH 0.007  0.006  0.026  0.016 0.012 N/A 0.028  N/A 
LLM 0.007  0.006  0.025  0.017 0.014 N/A 0.023  N/A 
LLL 0.008  0.006  0.023  0.020 0.015 N/A 0.024  N/A 
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Figures 4.21 to 4.26 present the mean RMSD of parameter recovery across discrimination 

conditions in Mplus and in TESTFACT.  These figures are arranged by the simulated 

dimensionality. As discussed above, the RMSD values for parameters in tests that assumed no 

guessing were relatively low compared to the data that assumed guessing in both Mplus and 

TESTFACT. Moreover, the RMSD of the data in the high correlation condition was slightly 

larger than the RMSD in data under the low correlation condition.  

These figures also illustrated the different influence of discrimination on Mplus and 

TESTFACT.  In Mplus, the trend of the data that assumed no guessing was opposite to the one 

for data that assumed guessing (see Figures 4.23 and 4.25).  When the data assumed guessing, 

the largest RMSD value was found in the high discrimination condition.  On the other hand, 

when data assumed no guessing, the largest value of the RMSD was found in the low 

discrimination condition. However, in TESTFACT, the patterns across all conditions were 

similar. The largest RMSD value was found in the lowest discrimination condition. Overall, 

TESTFACT performed better than Mplus with data that assumed guessing.  There were 

significantly large RMSD values observed in two- and three-dimensional data that assumed 

guessing in Mplus. The values of RMSD were almost the same across one-to-three dimensional 

data in the low correlation condition.  Furthermore, in two-dimensional data, there was no 

serious influence of factor correlations shown in the comparison of results in Mplus and 

TESTFACT.  Finally, when data that assumed guessing and a high correlation condition, the 

values of RMSD in Mplus for three-dimensional data were significantly larger than the values 

found in two-dimensional data. For example, in HH discrimination condition, it was .29 

versus .42 for two- and three-dimensional data.  The difference, around .10, was almost 30% 

more than the value of .29. 

In summary, TESTFACT did show superiority in parameter recovery in data that 

assumed guessing. The guessing effect was associated with increases in the RMSD values in 

Mplus when data that assumed guessing. A significant correlation effect was also found in three-

dimensional data in Mplus. Due to problems of non-convergent solutions with TESTFACT and 

three-dimensional data, the correlation effect in three-dimensional data using TESTFACT could 

not be determined.  
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Figure 4.21 The mean RMSD of parameter recovery in unidimensional cases (Mplus) 
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Figure 4.22 The mean RMSD of parameter recovery in Unidimensional cases (TESTFACT) 
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Figure 4.23 The mean RMSD of parameter recovery in 2-dimensional cases (Mplus) 
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Figure 4.24 The mean RMSD of parameter recovery in 2-dimensional cases (TESTFACT) 
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Figure 4.25 The mean RMSD of parameter recovery in 3-dimensional cases (Mplus) 

 

 

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

HHH HHM HHL MMH MMM MML LMH LLH LLM LLL

Discrimination

M
ea

n 
R

M
S

D

c = 0, r = .3

c = .33, r = .3

 
Figure 4.26 The mean RMSD of parameter recovery in 3-dimensional cases (TESTFACT) 
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4.2 THE RESULTS OF THE APPLICATION OF TIMSS 

In this section, the assessment of the test dimensionality and factor structures of two 

booklets of multiple-choice items selected from the TIMSS assessment are presented. TIMSS 

data was analyzed to empirically compare Mplus and TESTFACT and investigate the guessing 

effect with real data.  Basic descriptive statistics are first provided.  Next the investigation of 

examinee guessing behavior is presented.  Lastly, the results of the dimensionality assessment 

and the factor structure using Mplus and TESTFACT are compared. 

4.2.1 A description of the TIMSS sample 

The sample sizes for two booklets were in the range of 1500 to 1800 (N = 1554 for 

Booklet 5, N = 1847 for Booklet 11).  Table 4.14 presents the descriptive statistics for these two 

booklets.  The mean total scores showed that Booklet 5 was easier than Booklet 11 (33.56 vs. 

30.64), and the standard deviation for the two tests was about the same (~ 11). The distributions 

of total scores for the two tests were slightly different in their skewness but similar in kurtosis.  

The test lengths for the two tests were about the same (55 vs. 54), but the number of mathematics 

and science items was different due to the block design. The number of mathematics items in 

Booklet 5 was almost twice the number of science items.  In Booklet 11 the number of science 

items was six more than the number of mathematics items. Finally, the correlations between the 

mathematics and science subscores in two tests were similar (~ .75).   

In order to apply the findings from the simulation study to TIMSS data, the 

discrimination level of the tests was examined since a discrimination effect was observed in the 

simulation study. Table 4.15 presents the descriptive statistics for item discrimination parameters 

and frequencies of low, medium, and high discrimination items. As in the simulation study, .75 

and 1.25 were used as cut points to group items into three discrimination levels.  For example, 

those items with discrimination values less than .75 were classified as low discrimination items, 

whereas those items with discrimination values above 1.25 were classified as high discrimination 
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items.  As can be seen, the mean discrimination values for the two TIMSS booklets were about 

the same (~ 1.1).  The mean discrimination values of three discrimination levels were similar as 

well. However, there were some small differences in the frequencies of items with these three 

discrimination levels.  According to the statistics shown in Table 4.15, the discrimination level of 

these two booklets was considered as in the normal range and not extremely high or low.  In 

relation to the simulation study, the frequency of items in different discrimination levels 

indicated that the may be classified in the LMH discrimination level.   

In summary, these two tests were similar in sample size, test length, correlations between 

two subject domains, the distribution of the total scores and the mean discrimination values.  

However, the tests also exhibited some small differences in test difficulty, item constitution in 

the two subject domains and the frequency of low, medium, and high item discrimination values.  

Table  4.14  

Descriptive statistics of TIMSS 

 n Mean SD Skewness Kurtosis r 
Booklet 5       

Total 55 33.56 11.60 -0.09 -0.99  
Math 36 21.74 8.38 -0.04 -1.07 .72 
Science 19 11.83 4.02 -0.26 -0.82  

Booklet 11       
Total 54 30.64 11.16 0.03 -1.00  
Math 24 12.86 5.69 0.11 -1.00 .75 
Science 30 17.77 6.25 -0.09 -0.90  

 

Table  4.15  

Descriptive statistics of item discrimination parameters in TIMSS 

 Total  Math  Science 
 n Mean  n Mean  n Mean 

Booklet 5         
Total 55 1.11   36 1.30   19 0.73  

Low 15 0.57   5 0.56   10 0.58  
Medium 20 0.96   12 1.04   8 0.85  
High 20 1.65   19 1.67   1 1.27  

Booklet 11         
Total 54 1.06   24 1.19   30 0.96  

Low 12 0.58   2 0.59   10 0.58  
Medium 27 1.01   14 1.03   13 1.00  
High 15 1.53   8 1.61   7 1.43  
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4.2.2 Guessing and the TIMSS 

Because the main purpose of this study was to investigate the guessing effect, it was 

necessary to examine the extent to which the subjects were guessing in the TIMSS assessment 

(Stone & Yeh, 2006). As recommended by Hambleton & Swaminathan (1985), the degree of 

potential guessing behavior for each item was evaluated by plots of the proportion correct by the 

total scores.  If guessing behavior did not exist, the proportion correct should increase from 0 to 

1 as the total score increased.  If a moderately constant proportion correct (i.e., greater than 0) for 

low total scores was observed, guessing behavior might be assumed (Stone & Yeh, 2006).  

Figures 4.27 and 4.28 present plots of proportion correct by total scores for two items in each 

booklet.   Item 22 in Booklet 5 (a four-choice item) and Item 24 in Booklet 11 (a five-choice 

item), exhibited constant proportions correct around .15 to .25 and .15 to .20, respectively, for 

total scores between 9 and 26.  These relatively constant proportions of correct responses provide 

evidence that low ability examinees might be using guessing strategies.  However, the 

proportions of correct responses were slightly less than expected values (1/m, m is the number of 

options) under a random guessing model.   

On the other hand, Item 20 in Booklet 5 and Item 43 in Booklet 11 in Figures 4.27 and 

4.28 illustrated the problem for assuming guessing behaviors in some items. These two items had 

no constant proportion correct for low total scores.  Therefore, it was assumed that there was no 

guessing behavior operating.   This circumstance might happen for very easy items (e.g. Item 20 

with p = .79 and a = .51) or for low discriminating items (e.g., Item 43 with p = .71).  These 

items illustrate Lord’s criterion (1980), which indicates that an item response theory (IRT) model 

with a guessing parameter should not be estimated for items when b – 2/a < -3.5 (b is the item 

difficulty parameter and “a” the item discrimination parameter).  If an item was very easy (b is 

negative), or its discrimination parameter (a) was small, the values of b – 2/a would be very 

small.   
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Figure 4.27 Total score by the proportion correct for two items in Booklet 5 
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Figure 4.28 Total score by the proportion correct for two items in Booklet 11 
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Table 4.16 presents the frequency of the average proportion correct for low-ability 

examinees.  Because the average difficulties of the two tests were different, the cutscores for 

low-ability examinees in two booklets were set to one standard deviation below the mean total 

scores (22 for Booklet 5 and 20 for Booklet 11).  Since easier items could not be used to identify 

a constant proportion correct, only items with an item difficulty (p) less than .7 were included in 

Table 4.16.  Note that most of the items in the two booklets used four-options but some used 

five-options. As can be seen, overall pattern in the frequency distributions for the two booklets 

was similar, and the highest frequency for both booklets was in the range of .2 to .3.  The results 

matched expectations under the random guessing model.  In addition, the mean of guessing or 

IRT based c-parameters for the items meeting Lord’s criterion was .21 (SD = .12) for Booklet 5 

and .22 (SD = .13) for Booklet 11. These results were also consistent with the random guessing 

model. In summary, more than 70% of items indicated that guessing was operating.  It should be 

note that there were some items with a below or above average c-parameter (.25).  The possible 

explanations, discussed by Stone and Yeh (2006), might be: (1) increased proportion correct may 

be caused by the elimination of distractors; (2) use of well-designed distractors may change the 

guessing strategy of examinees, that is, the random guessing model may not be appropriate.   

 

Table  4.16  

Average proportion correct (p) for low-ability examinees on items where p  .7≦  

p Booklet 5 Booklet 11 
< .1 2 2 
.1 - .2 7 11 
.2 - .3 20 21 
.3 - .4 8 9 
> .4 1 2 
   
M .24 .25 
SD .09 .09 
n (items) 38 45 
N (examinees) 316 407 
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4.2.3 The dimensionality of the TIMSS 

Based on the assessment design of TIMSS 2003 the assessment consisted of two subject 

domains, mathematics and science. In addition, the correlations between mathematics and 

science subscores for these two booklets were high (~ .75, see Table 4.14 in the previous section).  

Hence, one dominant factor or a two-factor solution might be expected from a factor analysis.   

Table 4.17 presents the results of the four indices for estimating the number of factors 

from an exploratory factor analysis of both booklets using Mplus and TESTFACT. As can be 

seen in Table 4.17, more consistency among dimensionality decisions using the different indices 

was found in TESTFACT than in Mplus.  The decision based on parallel analysis and the chi-

square test indices tended to conclude higher dimensionality in both booklets using Mplus, 

whereas consistently smaller number of factors were concluded using TESTFACT. This is 

consistent with the findings shown in the simulation study.  Overall, a two- or three-factor 

structure might be concluded for both booklets.  Note that for TESTFACT, factor solutions 

beyond two factors did not converge and so the RMSR reduction index and the chi-square test 

could not be used to evaluate higher-order factor models.   

In order to consider the results from the simulation study in relation to the TIMSS 

application, it was necessary to match the conditions of the TIMSS assessment with the 

conditions evaluated in the simulation study.  Given the high correlations between the two 

subject domains, the level of observed examinee guessing behavior, and the level of item 

discriminations, the TIMSS assessment appeared to best conform to the following condition 

from the simulation study: a multi-dimensional test (2 or 3 dimensions) with correlations 

between dimensions equal to .6 and average item discriminations (LMH). Based on the findings 

from the simulation study, no index performed well with two-dimensional data using Mplus, 

whereas most indices except the RMSR index performed fairly well with two-dimensional data 

using TESTFACT. In other words, the dimensionality decisions based on the results of 

TESTFACT might be reliable given two-dimensional data.  The situation becomes more 

complex to assess for higher dimensionality (> 2 dimensions).  Under this condition, both MPlus 

and TESTFACT did not reliably estimate true dimensionality.  If TESTFACT is assumed to be 
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more reliable given the observed level of guessing behavior, the results presented in Table 4.17 

indicate a two-factor structure in both booklets. 

    

Table  4.17  

Estimated dimensionality using the four indices in Mplus and TESTFACT 

Form Method Proportion of 
Variance 

Parallel 
Analysis 

Reduction of 
RMSR Chi-sq.  Test 

Booklet 5 Mplus 2 5 2 2 
 TESTFACT 2 2 2 2 
      
Booklet 11 Mplus 1 4 3 5 
 TESTFACT 2 2 2 2 

 

In addition to assessing dimensionality based on the four indices, another common 

method for determining dimensionality is through the examination of scree plots (plots of 

eigenvalues). Figures 4.29 and 4.30 present scree plots for both booklets using Mplus and 

TESTFACT. It was clear that the plots indicated no more than two factors, which is consistent 

with the TESTFACT analysis.  
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Figure 4.29 The scree plot for Booklet 5 using Mplus and TESTFACT 
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Figure 4.30 The scree plot for Booklet 11 using Mplus and TESTFACT 

 

Because the number of dimensions obtained by Mplus and TESTFACT more commonly 

reflected no more than three-factor structures, two- and three-factor solutions were further 

explored.  Tables 4.18 and 4.19 present summary information for two- and three-factor solutions.  

The information included the number of substantial factor loadings (i.e., loadings > .3) and the 

correlations among factors for these factor solutions. Note that a maximum of 200 iterations was 

specified in TESTFACT in order to obtain convergent solutions. As can be seen in Table 4.18, 

the patterns of substantial factor loadings in Mplus and TESTFACT were similar, but more 

indicators of factors were found in the results of TESTFACT. Moreover, the correlations of 

Mplus were lower than those of TESTFACT. The correlations of TESTFACT were close to the 

values calculated by two subscores of mathematics and science items.  

Table 4.19 presents the results for the three-factor solutions. Similar to the two-factor 

solutions, the correlations estimated by TESTFACT were greater than the values estimated by 

Mplus. There were also more indicators shown in the solutions of TESTFACT.  The factor 

correlations for the three-factor solutions in both methods indicated higher-order factor structures. 

As suggested by Stone and Yeh (2006), given a moderately high strength in the correlations 

among factors, it might be useful to evaluate the existence of a second-order factor. However, a 
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minimum of four first-order factors was required for the evaluation, whereas there were only two 

or three first-order factors in this case.   

 

Table  4.18  

Number of substantial factor loadings for the two-factor solutions in Mplus and TESTFACT 

 Mplus  TESTFACT 
 Factor 1 Factor 2  Factor 1 Factor 2 
Booklet 5      

Math 26 9  30 11 
Science 1 17  2 18 
Factor correlations     
  Factor 2 .65   .76  

      
Booklet 11      

Math 20 5  23 1(1) 
Science 9(1)a 20  10(2) 25 
Factor correlations     

 Factor 2 .63   .76  
a the number shown in the parentheses was the number of negative substantial factor loadings.  

 

Table  4.19  

Number of substantial factor loadings for the three-factor solution in Mplus and TESTFACT 

 Mplus  TESTFACT 
 Factor 1 Factor 2 Factor 3  Factor 1 Factor 2 Factor 3
Booklet 5        

Math 25 8 10  23 4 17 
Science 1 16 0  1 18 2 
Factor correlations       

     Factor 2 .63    .68   
     Factor 3 .44 .45   .69 .73  
        
Booklet 11        

Math 18 0 9  21 1(3) 5(1)
Science 5(1)a 19 4  4(1) 20 15 
Factor correlations       

     Factor 2 .60    .69   
     Factor 3 .48 .51   .60 .53  

a the number shown in the parentheses was the number of negative substantial factor loadings.  
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In order to further explore the internal structures for the two booklets, more details of the 

substantial factor loadings for items are presented in Tables 4.20 to 4.23.  Mathematics items are 

indicated by item codes beginning with “M”, whereas science items are indicated by item codes 

beginning with “S”.  Note the significant factor loadings were estimated using the PROMAX 

method in two- and three-dimensional data, given the moderately high correlations among 

factors.  Also this analysis was limited since only some items in both booklets have been 

released to the public and partial information about the items was known (e.g., the content 

domain and the cognitive domain defined by the TIMSS research groups).   

For Booklet 5, there were more items in mathematics than in science (36 vs. 19).  In the 

two-factor solution that appears in Table 4.20, Factor 1 was clearly represented by only 

mathematics items.  However, a combination of mathematics and most of the science items was 

found for Factor 2.  The patterns in Mplus and TESTFACT were similar.  Note that most 

mathematic items with significant factor loadings shown in Factor 2 were easy items.  However, 

the structure of the three-factor solution (see Table 4.21) did not provide a further separation of 

mathematics and science items.  The factor pattern of the three-factor solution was not related to 

either the content domain or the cognitive domain but to higher p values or low c-parameters. 

There was a slight difference between the results of Mplus and TESTFACT in the three-factor 

solutions.  

As for Booklet 11, the patterns shown in the results of Mplus and TESTFACT were quite 

different.  For two-factor solutions (see Table 4.22), the mathematic and the science items were 

merged into one factor, Factor 1, in Mplus and TESTFACT.  Factor 2 was more likely to be the 

science factor in TESTFACT, whereas there were more mathematic items merged into Factor 2 

in Mplus. Interestingly, the p values for most items (either math or science) of Factor 2 using 

Mplus were relatively high (more than .7).  In the three-factor solution in Table 4.23, the result 

for Mplus illustrated a simple structure compared to the result for TESTFACT.  In Mplus,  

Factor 2 represented a science factor, whereas Factor 1 and Factor 3 contained primarily the 

mathematics items, but included some science items as well.  In TESTFACT, Factor 1 

represented mathematics whereas Factor 2 and Factor 3 represented primarily the science domain, 

but there were a few mathematics items merged into Factor 2 and Factor 3.  

Note that the factor loadings in TESTFACT were relatively higher than those in Mplus, 

especially in the two-factor solution. For example, the factor loadings of Factor 1 in TESTFACT 
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of the two-factor solution were higher than those in Mplus (the differences were around .2). Also, 

the values greater than one or negative values were found in the results of TESTFACT.  Since 

the possibility for the presence of a difficulty factor existed, the detailed information about 

estimated c-parameters and item difficulty (p values) for both booklets are provided in Appendix 

F and Appendix G. 

In summary, the TIMSS assessment appeared consistent with a multi-factor test with 

significant observed guessing behaviors and significant correlations between the factors.  Based 

on TESTFACT, the various indices for determining the number of dimensions in the two TIMSS 

booklets indicated the presence of at least two dimensions.  The inconsistency in the 

determinations for the four indices with Mplus is consistent with the results of the simulation 

study.  Further exploration of the internal structure did not clarify the internal structure of the 

item responses to the TIMSS booklets.  For one booklet (Booklet 5), the two-factor structures 

were very similar for Mplus and TESTFACT, whereas some differences were observed for the 

three-factor solution.  For the other booklet (Booklet 11), results were very different for Mplus 

and TESTFACT.  In addition, more substantial factor loadings were found using TESTFACT, 

and the presence of a difficulty factor was observed using both Mplus and TESTFACT.  The 

differences between the results may be due to the presence of guessing behavior.  However, 

given the performance of Mplus versus TESTFACT under the high correlation condition in the 

simulation study, more confidence may be placed in the TESTFACT results.  Further 

investigation of the factor solutions did not provide a clearer understanding of the internal test 

structure of TIMSS. 
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Table  4.20  

Factor loadings of the PROMAX two-factor solution for Mplus and TESTFACT (Booklet 5) 

Mplus  TESTFACT Item ID 
Factor 1 Factor 2  Factor 1 Factor 2

M022043    0.382  
M022049  0.388   0.361 
M022050 0.465   0.579  
M022057  0.473   0.445 
M022062 0.575   0.671  
M022066 0.888   1.055  
M022097  0.579  0.435 0.390 
M022101  0.679   0.611 
M022104  0.558   0.421 
M022105  0.461   0.483 
M022108 0.426   0.550  
M022181  0.477  0.365 0.460 
M022257 0.705   0.887  
M032044 0.565   0.760  
M032046 0.772   0.916  
M032079 0.453   0.618  
M032228 0.589   0.753  
M032261 0.511   0.631  
M032271 0.468   0.532 0.341 
M032489  0.515   0.436 
M032523 0.756   0.921  
M032525 0.583   0.705  
M032533 0.691   0.855  
M032579 0.549   0.714  
M032588 0.350   0.423 0.335 
M032678 0.656   0.706  
M032701 0.408   0.719  
M032704 0.638   0.932  
MF32036 0.679   0.901  
MF32447 0.614   0.775  
MF32609 0.457   0.637  
MF32670  0.620  0.352 0.428 
MF32690 0.465   0.664  
MF32727 0.639   0.734  
MF32728 0.405   0.678  
MF32732 0.406   0.552  
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Table 4.20 (continued) 

Mplus  TESTFACT Item ID 
Factor 1 Factor 2  Factor 1 Factor 2

S032024  0.305   0.533 
S032141  0.316   0.781 
S032315  0.581   0.591 
S032463  0.575   0.704 
S032465  0.464   0.524 
S032514  0.299   0.428 
S032579 0.405   0.538 0.296 
SF12001  0.649   0.624 
SF12002  0.588   0.559 
SF12003  0.790   0.891 
SF12004  0.510   0.578 
SF12005  0.618   0.743 
SF12006  0.402   0.895 
SF12013  0.419   0.505 
SF12014  0.584   0.558 
SF12015  0.501   0.492 
SF12016  0.392   0.778 
SF12017  0.645   0.709 
SF12018    0.341  
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Table  4.21 

Factor loadings of the PROMAX three-factor solution for Mplus and TESTFACT (Booklet 5) 

Mplus  TESTFACT Item ID 
Factor 1 Factor 2 Factor 3  Factor 1 Factor 2 Factor 3

M022043   0.302     
M022049       0.334 
M022050 0.497    0.587   
M022057  0.394     0.310 
M022062 0.392  0.517    0.724 
M022066 0.872    0.960   
M022097  0.437 0.390    0.435 
M022101  0.603    0.527  
M022104  0.508    0.421  
M022105  0.336 0.361    0.502 
M022108   0.502    0.723 
M022181  0.427    0.412  
M022257 0.617    0.588  0.431 
M032044 0.538    0.480  0.425 
M032046 0.748    0.743   
M032079 0.382    0.343  0.436 
M032228 0.534    0.555   
M032261 0.487    0.471   
M032271 0.409    0.386   
M032489  0.380 0.380    0.507 
M032523 0.717    0.820   
M032525 0.621    0.745   
M032533 0.622    0.591  0.387 
M032579 0.392  0.435  0.316  0.664 
M032588 0.348    0.366 0.333  
M032678 0.543  0.325  0.373  0.544 
M032701 0.441    0.751   
M032704 0.626    0.821   
MF32036 0.639    0.727   
MF32447 0.539    0.458  0.478 
MF32609 0.451    0.587   
MF32670  0.486 0.366    0.455 
MF32690 0.445    0.482   
MF32727 0.526  0.315  0.381  0.590 
MF32728 0.402    0.512   
MF32732 0.351      0.411 
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Table 4.21 (continued) 

Mplus  TESTFACT Item ID 
Factor 1 Factor 2 Factor 3  Factor 1 Factor 2 Factor 3

S032024      0.365  0.374  
S032141  0.307     0.636   
S032315  0.584     0.604   
S032463  0.547     0.640   
S032465  0.470     0.578   
S032514  0.310     0.409   
S032579 0.441     0.568  0.353   
SF12001  0.659     0.613   
SF12002  0.558     0.546   
SF12003  0.734     0.764   
SF12004  0.571     0.602   
SF12005  0.644     0.728   
SF12006  0.421     0.892   
SF12013  0.393     0.467   
SF12014  0.564     0.494   
SF12015  0.394     0.336  0.363  
SF12016  0.451     0.798   
SF12017  0.599     0.597   
SF12018        
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Table  4.22  

Factor loadings of the PROMAX two-factor solution for Mplus and TESTFACT (Booklet 11) 

Mplus  TESTFACT Item ID 
Factor 1 Factor 2  Factor 1 Factor 2

M032094 0.699    0.958   
M032100  0.616    0.557  
M032116 0.622    0.970   
M032132  0.370   0.296   
M032324 0.600    0.715   
M032397 0.427    0.568   
M032402 0.561    0.914   
M032419 0.410    0.609   
M032477 0.542    0.630   
M032662 0.594    0.650   
MF12013 0.537    0.766   
MF12014  0.425   0.476   
MF12015 0.468  0.347   0.591   
MF12016 0.452    0.786   
MF12017 0.465    0.595   
MF22185 0.650    1.073  -0.322  
MF22188 0.332    0.512   
MF22189  0.455   0.371   
MF22191 0.440    0.636   
MF22194 0.422    0.608   
MF22196 0.634    0.885   
MF22198 0.620    0.872   
MF22199 0.814    1.084   
MF22251 0.569    0.916   

  106



Table 4.22 (continued) 

Mplus  TESTFACT Item ID 
Factor 1 Factor 2  Factor 1 Factor 2

S022002 0.321  0.335   0.398  0.300  
S022019  0.392    0.590  
S022042 0.410  0.377   0.546   
S022054     0.534  
S022106  0.428   -0.334  0.565  
S022115 0.340    0.411   
S022126 0.387    0.520   
S022150     0.739  
S022181  0.370    0.549  
S022183 0.418    0.493  0.397  
S022208 0.460    0.617   
S022276 0.314  0.320   0.442  0.401  
S022290  0.658    0.664  
S022294  0.334     
S032008  0.538    0.530  
S032035  0.567    0.552  
S032055  0.575    0.609  
S032083  0.332    0.592  
S032150 -0.431  0.967   -0.691  1.242  
S032258  0.465    0.401  
S032281  0.475    0.665  
S032301     0.606  
S032385  0.354    0.532  
S032446  0.355   0.324  0.416  
S032564     0.612  
S032607  0.545    0.626  
S032683 0.355    0.491  0.338  
SF32422  0.413    0.560  
SF32574 0.387    0.528  0.393  
SF32714  0.547    0.881  
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Table  4.23  

Factor loadings of the PROMAX three-factor solution for Mplus and TESTFACT (Booklet 11) 

Mplus  TESTFACT Item ID 
Factor 1 Factor 2 Factor 3  Factor 1 Factor 2 Factor 3

M032094 0.630     0.780    
M032100   0.543    0.571  -0.343 
M032116 0.576     0.700   0.395 
M032132   0.434   0.428    
M032324 0.516     0.713    
M032397 0.338     0.568    
M032402 0.525     0.732   0.350 
M032419 0.380     0.561    
M032477 0.440   0.320   0.668    
M032662 0.545     0.796    
MF12013 0.453     0.664    
MF12014   0.562   0.590    
MF12015 0.332   0.486   0.646    
MF12016 0.458     0.652    
MF12017 0.351   0.416   0.685    
MF22185 0.625     0.772  -0.396  0.405  
MF22188     0.526    
MF22189   0.609   0.545    
MF22191   0.564   0.655    
MF22194 0.341     0.572    
MF22196 0.525   0.351   0.765    
MF22198 0.551     0.749    
MF22199 0.788     0.844  -0.327  0.372  
MF22251 0.525     0.644  -0.327  0.372  
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Table 4.23 (continued) 

Mplus  TESTFACT Item ID 
Factor 1 Factor 2 Factor 3  Factor 1 Factor 2 Factor 3

S022002  0.305      0.443  
S022019  0.403     0.413  0.469  
S022042   0.500   0.566    
S022054  0.310     0.385  0.323  
S022106  0.471     0.496   
S022115        
S022126 0.388       0.687  
S022150  0.433     0.533  0.453  
S022181  0.446     0.398  0.375  
S022183 0.428  0.370      0.580  
S022208 0.444       0.600  
S022276     0.388    
S022290  0.553     0.567   
S022294       0.313  
S032008  0.431     0.454   
S032035  0.411  0.310    0.458   
S032055  0.401  0.344    0.462  0.341  
S032083  0.416     0.466   
S032150 -0.488  0.870    -0.463 1.088   
S032258   0.362    0.331   
S032281  0.439     0.501  0.349  
S032301  0.318     0.465   
S032385  0.444     0.366  0.430  
S032446      0.325   
S032564     0.360  0.487   
S032607  0.498     0.508   
S032683 0.324       0.432  
SF32422  0.415     0.398  0.400  
SF32574 0.363     0.391   0.333  
SF32714  0.473     0.760   
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5.0  DISCUSSION 

5.1 MAJOR FINDINGS OF THE SIMULATION STUDY 

The primary purpose of this study was to explore the effect of guessing in determining 

test dimensionality for multiple-choice tests. The influence of guessing was investigated by 

comparing the dimensionality decisions and parameter recovery between two factor analysis 

methods (Mplus and TESTFACT), with data that assumed guessing and not guessing, using the 

Monte Carlo approach.  As will be discussed, some findings observed in this study were 

consistent with findings from previous studies (i.e., Stone & Yeh, 2006; Tate, 2003).  However, 

this study provided more understanding of issues when assessing dimensionality with multiple-

choice assessments. This study not only examined the influence of guessing but also considered 

factors likely to affect the assessment of dimensionality, such as the level of item discrimination, 

correlations among dimensions and the number of dimensions.   

The second purpose of this study was to see whether what was learned from the 

simulation study could be applied to real data.  Therefore, the dimensionality and factor structure 

of real data (TIMSS 2003) were also examined. The major findings corresponding to the 

research questions addressed in the simulation study are presented below.  The findings of the 

application of real data are then presented. 

Research Question 1: What is the effect of guessing on assessing dimensionality of multiple-

choice tests? 

The influence of guessing was demonstrated by comparing the results of Mplus and 

TESTFACT based on the proportion of correct dimensionality decisions, the estimated number 

of dimensions, and parameter recovery.  The results of the correct dimensionality decisions 

showed that Mplus only performed better in data that assumed no guessing using most indices, 

whereas TESTFACT performed very well in data that assumed both guessing and no guessing. 

  110



For example, in two-dimensional data that assumed no guessing, there was a correct rate of 1.0 

observed in both Mplus and TESTFACT.  However, when using data that assumed guessing, a 

significantly smaller correct rate (i.e., 0) was observed in Mplus but not in TESTFACT (e.g., 

above 50%).  With regard to the estimated number of dimensions, TESTFACT generally 

outperformed Mplus with data that assumed guessing, although underestimation of 

dimensionality occurred in three-dimensional data with a high correlation condition (r = .6).  In 

Mplus, greater degree of either overestimation or underestimation was observed with data that 

assumed guessing.  However, in TESTFACT, better performance in determining the estimated 

dimensionality was obtained with data that assumed guessing, even though slight 

underestimation sometimes occurred.  The results of parameter recovery also illustrated the 

superiority of TESTFACT. Mean RMSD values for TESTFACT in data that assumed guessing 

were significantly smaller than that those for Mplus, but the RMSD values for both methods 

were similar in data that assumed no guessing.  Finally it should be noted that although results 

for TESTFACT with three-dimensional data and a high correlation conditions (r = .6) were poor, 

the results are likely due to the number of iterations that was specified in the study.  This issue is 

discussed in more detail under the Limitations section. 

In summary, TESTFACT did show superiority in data that assumed guessing for 

dimensionality decisions and parameter recovery.  The overall trends shown in the results of 

Mplus and TESTFACT were consistent with previous studies (i.e., Knol & Berger, 1991; Tate, 

2003; Stone & Yeh, 2006).  The findings substantitated the importance of modeling guessing in 

the factor analysis method when guessing behavior is found in testing applications.   Note that 

when no guessing behavior was operating in the examinations, either Mplus or TESTFACT 

provided similar dimensionality assessment.  However, Mplus may be preferred because of its 

ease of use, understandability, and efficiency. Another reason for recommending the use of 

Mplus is that it provides more diagnostics in detecting the factor structure and more fit indices 

for assessing model fit (Stone & Yeh, 2006).   

Research Question 2: How well do different indices perform for estimating the number of 

dimensions when assessing dimensionality?  

With regard to the performance of the four indices for determining dimensionality, 

differences in performance between the four indices were observed in terms of the proportion of 

correct dimensionality decisions and the difference between the true and estimated number of 
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dimensions.  Based on the results of correct dimensionality decisions, when using Mplus in data 

that assumed no guessing, the proportion of variance and the RMSR reduction indices worked 

fairly well in one- and two-dimensional data (i.e., the correct rate was close to 1.0), whereas the 

parallel analysis and the chi-square test performed poorly in most conditions (e.g., % of correct 

decisions was close to 0 when using the chi-square test).  Note that only the RMSR reduction 

index performed very well in higher dimensional data.  For data that assumed guessing, only the 

proportion of variance and the RMSR reduction indices in lower dimensionality conditions were 

effective with Mplus.  In contrast, when using TESTFACT with one- and two-dimensional data, 

the four indices performed fairly well; that is, a correct decision proportion above 70% was 

observed for most indices with data that assumed either guessing or no guessing. 

Underestimation of dimensionality was found in three-dimensional data that assumed guessing 

using most indices except the chi-square test.   

In summary, the proportion of variance and the RMSR reduction indices worked better 

for Mplus, whereas the chi-square test performed the best when using TESTFACT with data 

either assumed guessing or no guessing.  Different indices interacted with the correlation and the 

discrimination effects in different ways.  More detail is discussed below.  This study confirmed 

the effectiveness of the RMSR reduction index in Mplus and the chi-square test in TESTFACT 

found by Tate (2003). 

Research Question 3: Does the discrimination level for items affect the assessment of 

dimensionality? 

A discrimination effect was observed in tests with either higher or lower discriminating 

items.  Based on the correct dimensionality decisions, the discrimination effect was not detected 

in data that assumed no guessing for most indices.  However, this effect was observed in data 

that assumed guessing.  Given data that assumed guessing, a similar effect was observed in 

Mplus with the low correlation condition and in TESTFACT with the high correlation condition, 

when using the proportion of variance and the RMSR reduction indices.  For both Mplus and 

TESTFACT, a lower correct decision rate was observed in tests with low discriminating items. 

Considering the comparison of the estimated number of dimensions determined by the four 

indices, the discrimination effect was observed in both Mplus and TESTFACT for all indices 

except the chi-square test. For data that assumed no guessing, the influence of item 

discrimination was observed with low discriminating items using parallel analysis in both Mplus 
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and TESTFACT. For data that assumed guessing, overestimation of dimensionality was 

observed with high discriminating items and underestimation with low discriminating items 

when using Mplus and the RMSR reduction index.  With TESTFACT, a modest discrimination 

effect was observed with data that assumed guessing. For example, the degree of 

underestimation increased when the discrimination level decreased.  This occurred in two 

conditions when using the proportion of variance and the RMSR reduction indices: 1) for two-

dimensional data and the high correlation condition; 2) for three-dimensional data and the low 

correlation condition.  Based on the parameter recovery results, a small discrimination effect was 

observed in data that assumed guessing and no guessing for both methods.  Mean RMSD values 

increased when the level of discrimination parameters decreased in TESTFACT, whereas the 

values of mean RMSD decreased when discrimination parameters of items decreased in Mplus. 

In summary, the discrimination effect can be described as follows: 1) tests with lower 

discriminating items were associated with decreased correct dimensionality decisions; 2) either 

overestimation of dimensionality was found with higher discriminating items or underestimation 

in dimensionality was observed with lower discriminating items; 3) higher factor correlations or 

dimensionality increased the influence of item discrimination.  Considering which method was 

used, the discrimination effect was more pronounced in Mplus with data that assumed both 

guessing and no guessing, and in TESTFACT with data that assumed no guessing.  Less impact 

was found when using TESTFACT in data that assumed guessing. With regard to which index 

may be affected by the discrimination level of items, the RMSR reduction index should be used 

with caution in data that assumed guessing (either high or low discrimination conditions), as well 

as parallel analysis in data that assumed no guessing in low discrimination conditions.  The 

present study also confirmed the influence of item discrimination found by Tate (2003). 

However, item discrimination conditions were varied in this study, whereas only a high 

discrimination condition was studied by Tate (2003).  Therefore, a greater understanding of the 

item discrimination effect was possible in this study.   

Research Question 4: Does the correlation among dimensions affect the assessment of 

dimensionality? 

The correlation effect was evaluated by comparing results for the more effective indices 

under the different correlation conditions.  In general, the performances for determining test 

dimensionality deteriorated under the high correlation condition with both unmodeled and 

  113



modeled guessing.  For example, a lower correct decision rate was observed in the high 

correlation condition, when using both methods in data that assumed guessing with the 

proportion of variance index.  According to the results of the estimated number of dimensions, 

the correlation effect led to overestimation in Mplus and underestimation in TESTFACT.  When 

using TESTFACT, the most serious underestimation was found in data that assumed guessing 

with the high correlation condition.  Only a modest correlation effect was observed in the 

parameter recovery results when compared to the other outcome measures (i.e., correct 

dimensionality decisions, and the estimated number of dimensions).  The correlation effect was 

found in data that assumed guessing when using Mplus, especially in three-dimensional data.  In 

addition, a greater impact of this effect occurred in data that assumed guessing for most 

conditions.  However, there were some exceptions.  For example, a correlation effect was 

observed in two-dimensional data that assumed no guessing when using both methods and the 

parallel analysis index.  Note that this effect was opposed to the effect mentioned above, that is, a 

greater proportion of correct dimensionality decisions was observed in the higher correlation 

condition.  Finally, the correlation effect appeared to be dependent on the level of test item 

discrimination.  For example, with data that assumed guessing, there was a tendency for 

underestimation of dimensionality in tests with low discriminating items.  In other words, the 

difference between the true and the estimated number of dimensionality was greater in low 

discrimination conditions.  

When comparing the correlation effect in both methods, the effect observed in Mplus and 

TESTFACT was different.  Differences in the proportion of correct dimensionality decisions, the 

degree of either overestimation or underestimation of dimensionality, and the RMSD values 

were observed.  For example, for two-dimensional data and a guessing rate of .33, TESTFACT 

estimated the true dimensionality better than Mplus based on the more effective indices.  

Additionally, the effectiveness of the index used to evaluate dimensionality was affected by the 

correlation condition.  For instance, when using Mplus in data that assumed guessing, better 

performance was observed in the low correlation condition using the proportion of variance and 

the RMSR reduction indices, whereas better performance was observed in the high correlation 

using the chi-square test. 

In summary, an overall effect of the correlation between dimensions was observed.  An 

increase in the correlation was associated with: 1) a decrease in the proportion of correct 
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dimensionality decisions; 2) an increase in the difference between the estimated number of 

dimensions and the true dimensionality (i.e., the discrimination effect); 3) an increase in RMSD 

values.  When comparing Mplus and TESTFACT, the correlation effect was more pronounced in 

data that assumed guessing when using Mplus, whereas the effect was similar when using Mplus 

and TESTFACT in data that assumed no guessing. With regard to the four indices, the 

correlation effect was observed more frequently when using the proportion of variance and 

parallel analysis in data that assumed guessing and no guessing, whereas the effect was observed 

when using the RMSR and the chi-square test only with data that assumed guessing.  The 

correlation effect was more evident with data that assumed guessing and when the number of 

dimensions increased.  The correlation effect was also primarily found in two-dimensional data.  

However, the correlation effect could not be adequately evaluated in data with higher dimensions 

since unexpected results were observed in Mplus (e.g., the performance of the chi-square test) 

and the results for TESTFACT were limited for the high correlation condition.  Finally, with 

regard to previous studies, Tate (2003) evaluated dimensionality decisions under only a 

correlation condition of .6 and a smaller guessing rate of .2.  For this limited case, similar results 

were observed in the present study.   

Research Question 5: What is the interaction between the guessing effect and the level of 

discrimination of items and correlations between dimensions? 

The interaction between the guessing and discrimination effects was examined by 

comparing the discrepancy of the results for the more effective indices between Mplus and 

TESTFACT with data that assumed guessing under different discrimination conditions.  No clear 

discrimination effect was observed under the no guessing condition (i.e., c = 0). Generally, the 

guessing effect increased the effect due to the level of test item discrimination.  In other words, 

modeling guessing with data that assumed guessing may decrease the discrimination effect.  For 

example, when using Mplus in data that assumed guessing, a low or zero proportion of correct 

decisions was observed in low discrimination conditions.  This same effect was not observed 

with TESTFACT.  However, when the correlation between factors increased or in higher 

dimensional data, a discrimination effect was observed when using TESTFACT.  For example, 

when using TESTFACT with two-dimensional data and a high correlation condition, the 

proportion of correct decisions decreased when the discrimination level decreased.  It should be 

noted that the interaction was observed in most indices except the chi-square test and the pattern 
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of these indices was different.  For example, when using the RMSR reduction index in three-

dimensional data with Mplus, the discrimination effect was found for both high and low item 

discrimination conditions, but the discrimination effect was observed only in low discrimination 

conditions when using the proportion of variance index.  The interaction was also observed in the 

results based on comparing the estimated number of dimensions with true dimensionality.  In 

addition, the discrimination effect varied depending on the index used to evaluate dimensionality 

when using both Mplus and TESTFACT in data that assumed guessing.  For example, with data 

that assumed guessing, the discrimination effect was not observed in Mplus and TESTFACT 

when using parallel analysis (i.e., underestimation in Mplus, and perfectly matched true 

dimensionality in TESTFACT), whereas the discrimination effect was observed in both methods 

when using the RMSR reduction index.  Finally, based on the parameter recovery results, mean 

RMSD values in Mplus and TESTFACT changed in opposite directions with data that assumed 

guessing.  Smaller RMSD values were observed in low discrimination conditions when using 

Mplus, whereas larger RMSD values were found in low discrimination conditions when using 

TESTFACT. Note that the results of Mplus and TESTFACT were similar with data that assumed 

no guessing.  

With regard to the interaction between the guessing and correlation effects, the pattern in 

results was similar to that found for the interaction between the guessing and discrimination 

effects.  When comparing results for Mplus and TESTFACT, the magnitude of the correlation 

effect was greater in Mplus than in TESTFACT.  For example, in two-dimensional data and 

unmodeled guessing (i.e., c = 0), there was essentially no difference in the correct dimensionality 

decisions for Mplus and TESTFACT as the correlation increased from .3 to .6 (e.g., using the 

proportion of variance index).  However, under modeled guessing (i.e., c = .33), there was a 

large change in the proportion of correct dimensionality decisions in Mplus as the correlation 

increased from .3 to .6, whereas there was little change in the proportion of correct 

dimensionality decisions in TESTFACT as the correlation increased from .3 to .6.  Again, a 

different pattern of the interaction for the different indices was observed.  A similar pattern of the 

results in correct dimensionality decisions or the estimated dimensionality was observed when 

using the proportion of variance and the RMSR reduction indices.  However, this pattern differed 

under parallel analysis. Based on the parameter recovery results, when guessing was not modeled, 

higher correlations led to increase mean RMSD values.  For example, greater differences 
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between mean RMSD values under the two correlation conditions were observed (.03 ~ .10) 

when using Mplus in data that assumed guessing.  In contrast, mean RMSD values between the 

two correlation conditions were about the same when using TESTFACT. 

Finally, an interaction between the discrimination and correlation effects was also 

observed.  Generally, higher correlations were associated with an increased discrimination effect.  

For example, in two-dimensional data that assumed guessing and using the RMSR index, the 

estimated number of dimensions were overestimated under two high discrimination conditions 

(i.e., HH and MH) and the low correlation condition, whereas overestimation was found in four 

high discrimination conditions (i.e., HH, MH, MM, LH) under the high correlation condition.  

However, for the parameter recovery results, no clear interaction between the discrimination and 

correlation effects was observed.  The only exception occurred when using Mplus in three-

dimensional data that assumed guessing.  Mean RMSD values decreased when the 

discrimination level decreased under the high correlation condition, whereas mean RMSD values 

across all discrimination conditions were about the same under the low correlation condition.   

In summary, the three factors, guessing, test item discrimination, and correlation between 

dimensions interacted with each other to influence the overall impact on the outcome measures. 

For example, the guessing effect increased the influence of the discrimination effect and the 

correlation effect increased the degree of the discrimination effect.  However, there were 

inconsistent results observed between two-dimensional versus three-dimensional data, and the 

effect in three-dimensional data could not be adequately evaluated in TESTFACT due to the 

non-convergent problems.   

5.2 MAJOR FINDINGS OF THE TIMSS APPLICATION 

Having discussed the major findings observed in the simulation study, some findings 

arose from the investigation of real data (i.e., TIMSS data). The descriptive statistics illustrated 

that more than 70% of the TIMSS items demonstrated guessing behavior. Given the high 

correlations between dimensions and examinee guessing behavior shown in data, the guessing 

and the correlation effects should be considered carefully. However, any effect due to the 

discrimination level of items could be largely ignored since the discrimination parameters were 
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in medium level, not in extreme high or low conditions. Since TESTFACT did correct problems 

caused by guessing, this method illustrated stability in the assessment of dimensionality using 

various indices and obtained a larger number of items with substantial factor loadings.  

Inconsistency in the dimensionality assessment using the four indices with Mplus was observed 

(1 to 5 dimensions), whereas TESTFACT consistently estimated two dimensions.  The patterns 

in results for both Mplus and TESTFACT were consistent with the findings in the simulation 

study and Stone and Yeh’s (2006) study.  Further investigation of the internal structures did not 

show any connection to the content or cognitive domains defined by the research groups of 

TIMSS, in either Mplus or in TESTFACT.  Due to the absence of item content (only some items 

were released to the public), it was impossible to further examine interpretable test structures.   

5.3 LIMITATIONS 

Due to the design of this study, there may be several limitations for applying the findings 

observed in the simulation study.  First, in order to simplify the comparison and to obtain a clear 

understanding of the guessing effect, only two guessing conditions (i.e. 0 and .33) were chosen.  

This leads to a restriction in the generalizability of the results obtained from this study to tests 

with only very low or very high guessing behavior.  It should be noted that even in tests with 

four- or five-option items, where a .20 or .25 guessing rate may be expected, it is typical that one 

or two distractors can often be eliminated by examinees. Thus, the guessing rate is often in fact 

higher than that random model expectation. Although the value of .33 seems a little higher than 

the values shown in most real applications that have four-options, it did provide a useful 

comparison. However, more research is needed with lower guessing conditions, such as a .2 

guessing rate under the random guessing model.  

Second, the item parameters used to generate the simulation data were not based on real 

tests but defined for the purpose of making comparisons between different levels of item 

discrimination.  For example, the item discrimination parameters were set to three levels: low, 

medium and high. However, some of the test configurations that were studied may not be 

realistic. Therefore, the degree and the distribution of discrimination parameters should be 

investigated in more detail to classify the influence of discrimination parameters.   
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Third, an approximate simple structure was assumed when generating the simulated data 

in this study.  Although an approximate simple structure may be more realistic than a simple 

structure, a complex structure may also be observed in real testing applications.  Therefore, there 

is a limitation in the generalizability of these findings to other test settings.  

Fourth, any assumptions underlying the methods used in this study were assumed and not 

manipulated which also may be unrealistic.  Therefore, what was learned from this study may 

not apply to those testing applications that do not meet the assumptions required for using these 

approaches. 

Finally, considering time consumption in a 100-replication design study, the maximum 

number of iterations in TESTFACT was set to 50.  If a non-convergent solution was obtained 

after 50 cycles, the replication was considered to be an invalid case.  However, according to the 

results shown in this study, TESTFACT tended to underestimate test dimensionality when the 

number of dimensions increased under this restriction. Based on further examination of these 

non-convergent cases for 10 randomly selected datasets with non-convergent problems, there 

were 7 out of 10 conditions that did converge within 200 iterations (the average number of 

iterations was ~ 120).  Note that this problem relates primarily to the three-dimensional data with 

a high correlation condition (r = .6) and only occurred in those factor solutions whose number of 

factors matched the true dimensions.  For example, for three-dimensional data, three-factor 

solutions could be found that did not converge in 50 iterations but did converge in less than 200 

iterations, but all four- and five-factor solutions did not converge at 200 iterations. This may lead 

to different conclusions for the number of estimated dimensions in the simulation study. 

Therefore, further investigation should be conducted with a larger specified number of iterations 

to more fully explore the differences between Mplus and TESTFACT with three- or higher 

dimensional data.  

5.4 FUTURE RESEARCH DIRECTION 

According to the discussion of the results from the simulation data, there are several areas 

for future research that could be considered.  First, it may be interesting to further explore the 

effect of item parameters, including guessing and discrimination parameters. In order to identify 
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the guessing effect, the conditions with more guessing levels can be investigated.  In this study 

only two guessing levels, 0 and .33, were used.  In real data, such as the MBE or TIMSS 

assessments, lower guessing rates, around .2, have been observed.  In addition, the 

discrimination effect was observed in this study.  Therefore, it may be interesting to further 

explore how different distributions of discrimination parameters affect the dimensionality 

assessment.   

Although most of the indices used in this study were essentially subjective, some of these 

indices performed well or even better than the objective chi-square test.  However, the 

effectiveness of the different indices for estimating dimensionality varied in this study.  As 

indicated by Tate (2003), it may be of interest to explore whether informal hypothesis testing 

provides supportive evidence for determining correct dimensionality.  In this study, the formal 

tests (i.e. the chi-square different test) for determining dimensionality only performed well in 

TESTFACT with one-, two- and three-dimensional data, but only performed well in Mplus with 

three-dimensional data. Therefore, more empirical research may provide more evidence for the 

use of these potential indices based on subjective criteria. Also, parallel analysis did not show 

better performances in determining dimensionality as expected.  Parallel analysis compares 

eigenvalues from simulated items responses that are uncorrelated to eigenvalues from the true 

item responses.  However, the item responses that were simulated for parallel analysis did not 

assume any guessing behavior.  It might be interesting to investigate the performance of parallel 

analysis if guessing was modeled in the simulation of random data.  

As mentioned in Tate’s study (2003), the exploratory methods are not sensitive to 

hierarchical structures (e.g., the second-order or bifactor models) or non-simple structures.  In 

addition, only an approximate simple structure was assumed in this study.  Therefore, it may be 

of interest to investigate how well different methods for the dimensionality assessment perform 

when using tests with hierarchical or non-simple structures, such as second-order factor models 

or models with complex factor structures. 

As mentioned in the limitation section, the results in TESTFACT obtained in a restricted 

condition (i.e. all cases, where no convergent solutions were obtained after 50 iteration cycles for 

estimation, were defined as failures).  This restriction led to some unexpected results with three-

dimensional data.  However, this finding should be interpreted cautiously due to the convergence 

criteria used in this study. More studies should be conducted for further investigation of the 
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impact on exploratory factor analysis when using higher dimensionality data. Also, this 

restriction of 50 iterations may not be realistic for real data, especially in those factor solutions 

where the number of extracted factors matches the expected or the true dimensionality.  

Therefore, a larger number of iterations (e.g., 200) can be used to examine whether the number 

of iterations for estimated procedures in TESTFACT affects the dimensionality assessment.   

Due to practical constraints, the simulation only explored a limited number of methods 

for determining test dimensionality.  Different approaches for determining dimensionality not 

explored in this study may be of interest, including nonparametric methods, or noncompensatory 

factor models.  The requirement of strict assumptions for the parametric approach is often 

difficult to attain. The potential for using nonparametric methods should be examined.  In 

addition, the assumption of a compensatory model, that a lower ability can be compensated for 

by using other ability, may not be true in some test settings. Some developments in either 

parametric or nonparametric methods mentioned in Tate’s study (2003) could be options for this 

research direction.  For example, the combination of parametric and nonparametric methods 

proposed by Douglas and Cohen (2001), or a non-simple structure with nonparametric methods 

as illustrated by Bolt (2001).  

Finally, performance assessments and those tests involving mixtures of multiple-choice 

and constructed-response items are popular. The performance of those methods in assessing 

dimensionality in tests with constructed-response items or a combination of multiple-choice and 

constructed-response items should be explored.  
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APPENDIX A 

A.1 ITEM PARAMETERS OF ONE-DIMENSIONAL DATA 

 Low Medium High 
No. a d b a d b a d b
1  1.00  -2.00  2.00  1.50 -2.00 1.33 1.50  -2.00  1.33 
2  1.00  -1.50  1.50  1.50 -1.50 1.00 1.50  -1.50  1.00 
3  1.00  -1.25  1.25  1.50 -1.25 0.83 1.50  -1.25  0.83 
4  1.00  -1.00  1.00  1.50 -1.00 0.67 1.50  -1.00  0.67 
5  1.00  -0.75  0.75  1.50 -0.75 0.50 1.50  -0.75  0.50 
6  1.00  -0.50  0.50  1.50 -0.50 0.33 1.50  -0.50  0.33 
7  1.00  -0.25  0.25  1.50 -0.25 0.17 1.50  -0.25  0.17 
8  1.00  0.00  0.00  1.50 0.00 0.00 1.50  0.00  0.00 
9  1.00  0.25  -0.25  1.50 0.25 -0.17 1.50  0.25  -0.17 
10  1.00  0.50  -0.50  1.50 0.50 -0.33 1.50  0.50  -0.33 
11  1.00  0.75  -0.75  1.50 0.75 -0.50 1.50  0.75  -0.50 
12  1.00  1.00  -1.00  1.50 1.00 -0.67 1.50  1.00  -0.67 
13  1.00  1.25  -1.25  1.50 1.25 -0.83 1.50  1.25  -0.83 
14  1.00  1.50  -1.50  1.50 1.50 -1.00 1.50  1.50  -1.00 
15  1.00  2.00  -2.00  1.50 2.00 -1.33 1.50  2.00  -1.33 
16  1.00  -2.00  2.00  1.00 -2.00 2.00 1.50  -2.00  1.33 
17  1.00  -1.50  1.50  1.00 -1.50 1.50 1.50  -1.50  1.00 
18  1.00  -1.25  1.25  1.00 -1.25 1.25 1.50  -1.25  0.83 
19  1.00  -1.00  1.00  1.00 -1.00 1.00 1.50  -1.00  0.67 
20  1.00  -0.75  0.75  1.00 -0.75 0.75 1.50  -0.75  0.50 
21  1.00  -0.50  0.50  1.00 -0.50 0.50 1.50  -0.50  0.33 
22  1.00  -0.25  0.25  1.00 -0.25 0.25 1.50  -0.25  0.17 
23  1.00  0.00  0.00  1.00 0.00 0.00 1.50  0.00  0.00 
24  1.00  0.25  -0.25  1.00 0.25 -0.25 1.50  0.25  -0.17 
25  1.00  0.50  -0.50  1.00 0.50 -0.50 1.50  0.50  -0.33 
26  1.00  0.75  -0.75  1.00 0.75 -0.75 1.50  0.75  -0.50 
27  1.00  1.00  -1.00  1.00 1.00 -1.00 1.50  1.00  -0.67 
28  1.00  1.25  -1.25  1.00 1.25 -1.25 1.50  1.25  -0.83 
29  1.00  1.50  -1.50  1.00 1.50 -1.50 1.50  1.50  -1.00 
30  1.00  2.00  -2.00  1.00 2.00 -2.00 1.50  2.00  -1.33 
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 Low Medium High 
No. a d b a d b a d b
31 0.50  -2.00  4.00  1.00 -2.00 2.00 1.00  -2.00  2.00 
32 0.50  -1.50  3.00  1.00 -1.50 1.50 1.00  -1.50  1.50 
33 0.50  -1.25  2.50  1.00 -1.25 1.25 1.00  -1.25  1.25 
34 0.50  -1.00  2.00  1.00 -1.00 1.00 1.00  -1.00  1.00 
35 0.50  -0.75  1.50  1.00 -0.75 0.75 1.00  -0.75  0.75 
36 0.50  -0.50  1.00  1.00 -0.50 0.50 1.00  -0.50  0.50 
37 0.50  -0.25  0.50  1.00 -0.25 0.25 1.00  -0.25  0.25 
38 0.50  0.00  0.00  1.00 0.00 0.00 1.00  0.00  0.00 
39 0.50  0.25  -0.50  1.00 0.25 -0.25 1.00  0.25  -0.25 
40 0.50  0.50  -1.00  1.00 0.50 -0.50 1.00  0.50  -0.50 
41 0.50  0.75  -1.50  1.00 0.75 -0.75 1.00  0.75  -0.75 
42 0.50  1.00  -2.00  1.00 1.00 -1.00 1.00  1.00  -1.00 
43 0.50  1.25  -2.50  1.00 1.25 -1.25 1.00  1.25  -1.25 
44 0.50  1.50  -3.00  1.00 1.50 -1.50 1.00  1.50  -1.50 
45 0.50  2.00  -4.00  1.00 2.00 -2.00 1.00  2.00  -2.00 
46 0.50  -2.00  4.00  0.50 -2.00 4.00 1.00  -2.00  2.00 
47 0.50  -1.50  3.00  0.50 -1.50 3.00 1.00  -1.50  1.50 
48 0.50  -1.25  2.50  0.50 -1.25 2.50 1.00  -1.25  1.25 
49 0.50  -1.00  2.00  0.50 -1.00 2.00 1.00  -1.00  1.00 
50 0.50  -0.75  1.50  0.50 -0.75 1.50 1.00  -0.75  0.75 
51 0.50  -0.50  1.00  0.50 -0.50 1.00 1.00  -0.50  0.50 
52 0.50  -0.25  0.50  0.50 -0.25 0.50 1.00  -0.25  0.25 
53 0.50  0.00  0.00  0.50 0.00 0.00 1.00  0.00  0.00 
54 0.50  0.25  -0.50  0.50 0.25 -0.50 1.00  0.25  -0.25 
55 0.50  0.50  -1.00  0.50 0.50 -1.00 1.00  0.50  -0.50 
56 0.50  0.75  -1.50  0.50 0.75 -1.50 1.00  0.75  -0.75 
57 0.50  1.00  -2.00  0.50 1.00 -2.00 1.00  1.00  -1.00 
58 0.50  1.25  -2.50  0.50 1.25 -2.50 1.00  1.25  -1.25 
59 0.50  1.50  -3.00  0.50 1.50 -3.00 1.00  1.50  -1.50 
60 0.50  2.00  -4.00  0.50 2.00 -4.00 1.00  2.00  -2.00 

Mean 0.75  0.00  0.00  1.00 0.00 0.00 1.25  0.00  0.00 
SD 0.25  1.15  1.81  0.36 1.15 1.45 0.25  1.15  0.97 
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A.2 ITEM PARAMETERS OF TWO-DIMENSIONAL DATA 

 Low Medium High 
No. a d b a d b a d b
1 1.00  -2.00  1.96  1.50 -2.00 1.32 1.50  -2.00  1.32 
2 1.00  -1.50  1.47  1.50 -1.00 0.66 1.50  -1.50  0.99 
3 1.00  -1.25  1.23  1.50 -0.50 0.33 1.50  -1.25  0.83 
4 1.00  -1.00  0.98  1.50 0.00 0.00 1.50  -1.00  0.66 
5 1.00  -0.75  0.74  1.50 0.50 -0.33 1.50  -0.75  0.50 
6 1.00  -0.50  0.49  1.50 1.00 -0.66 1.50  -0.50  0.33 
7 1.00  -0.25  0.25  1.50 2.00 -1.32 1.50  -0.25  0.17 
8 1.00  0.00  0.00  1.00 -2.00 1.96 1.50  0.00  0.00 
9 1.00  0.25  -0.25  1.00 -1.50 1.47 1.50  0.25  -0.17 
10 1.00  0.50  -0.49  1.00 -1.25 1.23 1.50  0.50  -0.33 
11 1.00  0.75  -0.74  1.00 -1.00 0.98 1.50  0.75  -0.50 
12 1.00  1.00  -0.98  1.00 -0.75 0.74 1.50  1.00  -0.66 
13 1.00  1.25  -1.23  1.00 -0.50 0.49 1.50  1.25  -0.83 
14 1.00  1.50  -1.47  1.00 -0.25 0.25 1.50  1.50  -0.99 
15 1.00  2.00  -1.96  1.00 0.00 0.00 1.50  2.00  -1.32 
16 0.50  -2.00  3.71  1.00 0.00 0.00 1.00  -2.00  1.96 
17 0.50  -1.50  2.79  1.00 0.25 -0.25 1.00  -1.50  1.47 
18 0.50  -1.25  2.32  1.00 0.50 -0.49 1.00  -1.25  1.23 
19 0.50  -1.00  1.86  1.00 0.75 -0.74 1.00  -1.00  0.98 
20 0.50  -0.75  1.39  1.00 1.00 -0.98 1.00  -0.75  0.74 
21 0.50  -0.50  0.93  1.00 1.25 -1.23 1.00  -0.50  0.49 
22 0.50  -0.25  0.46  1.00 1.50 -1.47 1.00  -0.25  0.25 
23 0.50  0.00  0.00  1.00 2.00 -1.96 1.00  0.00  0.00 
24 0.50  0.25  -0.46  0.50 -2.00 3.71 1.00  0.25  -0.25 
25 0.50  0.50  -0.93  0.50 -1.00 1.86 1.00  0.50  -0.49 
26 0.50  0.75  -1.39  0.50 -0.50 0.93 1.00  0.75  -0.74 
27 0.50  1.00  -1.86  0.50 0.00 0.00 1.00  1.00  -0.98 
28 0.50  1.25  -2.32  0.50 0.50 -0.93 1.00  1.25  -1.23 
29 0.50  1.50  -2.79  0.50 1.00 -1.86 1.00  1.50  -1.47 
30 0.50  2.00  -3.71  0.50 2.00 -3.71 1.00  2.00  -1.96 

Mean 0.75  0.00  0.00  1.00 0.00 0.00 1.25  0.00  0.00 
SD 0.25  1.16  1.72  0.35 1.18 1.43 0.25  1.16  0.97 
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A.3 ITEM PARAMETERS OF THREE-DIMENSIONAL DATA 

 Low Medium High 
No. a d b a d b a d b
1  1.00  -2.00  1.92  1.50 -1.75 1.15 1.50  -2.00  1.31 
2  1.00  -1.50  1.44  1.50 -0.75 0.49 1.50  -1.50  0.98 
3  1.00  -1.00  0.96  1.50 0.00 0.00 1.50  -1.00  0.66 
4  1.00  -0.50  0.48  1.50 0.75 -0.49 1.50  -0.50  0.33 
5  1.00  0.00  0.00  1.50 1.75 -1.15 1.50  0.00  0.00 
6  1.00  0.00  0.00  1.00 -2.00 1.92 1.50  0.00  0.00 
7  1.00  0.50  -0.48  1.00 -1.50 1.44 1.50  0.50  -0.33 
8  1.00  1.00  -0.96  1.00 -1.00 0.96 1.50  1.00  -0.66 
9  1.00  1.50  -1.44  1.00 -0.50 0.48 1.50  1.50  -0.98 
10  1.00  2.00  -1.92  1.00 0.00 0.00 1.50  2.00  -1.31 
11  0.50  -2.00  3.48  1.00 0.00 0.00 1.00  -2.00  1.92 
12  0.50  -1.50  2.61  1.00 0.50 -0.48 1.00  -1.50  1.44 
13  0.50  -1.00  1.74  1.00 1.00 -0.96 1.00  -1.00  0.96 
14  0.50  -0.50  0.87  1.00 1.50 -1.44 1.00  -0.50  0.48 
15  0.50  0.00  0.00  1.00 2.00 -1.92 1.00  0.00  0.00 
16  0.50  0.00  0.00  0.50 -1.75 3.05 1.00  0.00  0.00 
17  0.50  0.50  -0.87  0.50 -0.75 1.31 1.00  0.50  -0.48 
18  0.50  1.00  -1.74  0.50 0.00 0.00 1.00  1.00  -0.96 
19  0.50  1.50  -2.61  0.50 0.75 -1.31 1.00  1.50  -1.44 
20  0.50  2.00  -3.48  0.50 1.75 -3.05 1.00  2.00  -1.92 

Mean 0.75  0.00  0.00  1.00 0.00 0.00 1.25  0.00  0.00 
SD 0.26  1.26  1.77  0.36 1.25 1.43 0.26  1.26  1.03 
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APPENDIX B 

THE MEAN DIFFERENCE OF ESTIMATED AND TRUE DIMENSIONALITY IN 

MPLUS AND TESTFACT BY THE PROPORTION OF VARIANCE INDEX 

 r = .3 r = .6 
 c = 0  c = .33 c = 0  c = .33 
 Mplus TSF  Mplus TSF Mplus TSF  Mplus TSF 
 Unidimensional data 

H 0.00 0.00 0.00 0.01     
M 0.00 0.00 0.00 0.01     
L 0.00 0.00 0.00 0.00     
 Two-dimensional data 

HH 0.00 0.00 0.00 -0.03 0.00 0.00 -1.00 0.00 
MH 0.00 0.00 0.00 -0.09 0.00 0.00 -1.00 -0.08 
MM 0.00 0.00 0.00 -0.09 0.00 0.00 -1.00 -0.22 
LH 0.00 0.00 -0.06 -0.13 0.00 0.00 -1.00 -0.55 
LM 0.00 0.00 -0.71 -0.15 -0.57 -0.60 -1.00 -0.81 
LL 0.00 0.00 -1.00 -0.11 -1.00 -1.00 -1.00 -0.91 

 Three-dimensional data 
HHH 0.00 0.00 -0.89 -0.35 -1.74 -1.77 -2.00 -1.99 
HHM 0.00 0.00 -1.36 -0.49 -1.84 -1.86 -2.00 -1.99 
HHL -0.01 -0.03 -1.46 -0.93 -1.84 -1.91 -2.00 -1.99 
MMH 0.00 0.00 -1.98 -0.60 -2.00 -2.00 -2.00 -1.99 
MMM 0.00 0.00 -2.00 -0.87 -2.00 -2.00 -2.00 -1.99 
MML -0.23 -0.27 -2.00 -1.12 -2.00 -2.00 -2.00 -1.96 
LMH -0.12 -0.15 -2.00 -1.05 -2.00 -2.00 -2.00 -1.98 
LLH -0.98 -0.98 -2.00 -1.15 -2.00 -2.00 -2.00 -1.97 
LLM -0.97 -0.98 -2.00 -1.29 -2.00 -2.00 -2.00 -1.96 
LLL -1.89 -1.89 -2.00 -1.78 -2.00 -2.00 -2.00 -1.97 
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APPENDIX C 

THE MEAN DIFFERENCE OF ESTIMATED AND TRUE DIMENSIONALITY IN 

MPLUS AND TESTFACT BY PARALLEL ANALYSIS 

 r = .3 r = .6 
 c = 0  c = .33 c = 0  c = .33 
 Mplus TSFa  Mplus TSF Mplus TSF  Mplus TSF 
 Unidimensional data 
H 0.31 0.17 1.16 0.21     
M 1.42 0.62 2.00 0.11     
L 1.99 1.00 2.00 0.11     
 Two-dimensional data 
HH 0.00 0.00 1.99 0.16 0.01 0.00 1.60 0.07 
MH 0.20 0.07 2.00 -0.03 0.12 0.06 1.93 -0.04 
MM 0.84 0.48 2.00 -0.05 0.62 0.29 2.00 -0.12 
LH 0.53 0.32 2.00 -0.08 0.40 0.18 2.00 -0.18 
LM 1.55 0.90 2.00 -0.14 1.08 0.61 2.00 -0.15 
LL 1.92 1.35 2.00 -0.10 1.64 0.86 2.00 -0.27 
 Three-dimensional data 
HHH 0.00 0.00 1.94 -0.35 0.01 -0.39 1.18 -1.06 
HHM 0.01 0.01 1.99 -0.49 0.00 -0.75 1.41 -1.06 
HHL 0.09 0.06 2.00 -0.55 0.07 -0.60 1.87 -1.12 
MMH 0.06 0.03 2.00 -0.58 0.07 -0.99 1.74 -1.15 
MMM 0.31 0.17 2.00 -0.86 0.14 -0.96 1.94 -1.28 
MML 0.64 0.43 2.00 -0.87 0.31 -0.85 1.99 -1.22 
LMH 0.29 0.14 2.00 -0.63 0.17 -0.86 1.96 -1.16 
LLH 0.75 0.49 2.00 -0.83 0.32 -0.71 1.99 -1.29 
LLM 1.28 0.77 2.00 -0.79 0.67 -0.69 2.00 -1.37 
LLL 1.71 1.20 2.00 -1.07 0.76 -0.73 2.00 -1.47 
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APPENDIX D 

THE MEAN DIFFERENCE OF ESTIMATED AND TRUE DIMENSIONALITY IN 

MPLUS AND TESTFACT BY THE REDUCTION OF RMSR INDEX 

 r = .3 r = .6 
 c = 0  c = .33 c = 0  c = .33 
 Mplus TSF  Mplus TSF Mplus TSF  Mplus TSF 
 Unidimensional data 
H 0.36 0.00 1.00 0.00     
M 0.03 0.00 0.95 0.00     
L 0.00 0.00 0.00 0.00     
 Two-dimensional data 
HH 0.06 0.00 0.94 -0.03 0.12 0.00 1.00 -0.13 
MH 0.03 0.00 0.58 -0.11 0.07 0.00 1.00 -0.67 
MM 0.01 0.00 0.03 -0.11 0.03 0.00 0.71 -0.86 
LH 0.03 0.00 0.31 -0.19 0.03 0.00 0.93 -0.97 
LM 0.00 0.00 0.01 -0.24 0.04 0.00 -0.03 -0.99 
LL 0.00 0.00 0.00 -0.55 0.01 0.00 -0.95 -1.00 
 Three-dimensional data 
HHH 0.04 0.06 0.87 -0.75 0.16 -0.40 1.00 -2.00 
HHM 0.02 0.38 0.66 -1.03 0.17 -0.75 0.87 -2.00 
HHL 0.02 0.00 0.37 -1.16 0.08 -0.61 -0.02 -2.00 
MMH 0.02 0.11 0.40 -1.32 0.11 -1.00 0.05 -2.00 
MMM 0.04 0.22 0.19 -1.79 0.07 -1.00 -1.09 -2.00 
MML 0.01 0.00 -0.03 -1.65 0.07 -1.00 -1.25 -2.00 
LMH 0.00 0.00 0.15 -1.39 0.09 -0.95 -0.51 -2.00 
LLH 0.01 0.00 -0.65 -1.74 0.06 -0.96 -1.03 -2.00 
LLM 0.02 0.00 -0.78 -1.97 -0.02 -1.00 -1.41 -2.00 
LLL 0.03 0.00 -1.91 -2.00 -0.98 -1.93 -1.65 -2.00 
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APPENDIX E 

THE MEAN DIFFERENCE OF ESTIMATED AND TRUE DIMENSIONALITY IN 

MPLUS AND TESTFACT BY THE CHI-SQUARE TEST 

 r = .3 r = .6 
 c = 0  c = .33 c = 0  c = .33 
 Mplus TSF  Mplus TSF Mplus TSF  Mplus TSF 
 Unidimensional data 
H 1.95  0.00  1.80  0.00      
M 2.00  0.00  1.88  0.00      
L 2.00  0.05  1.88  0.05      
 Two-dimensional data 
HH 1.89  1.11  1.44  0.00  1.89  0.03  1.09  0.00  
MH 1.99  0.65  1.63  -0.08 1.94  0.01  1.39  -0.08  
MM 1.99  0.75  1.59  -0.08 1.93  0.03  1.41  -0.12  
LH 1.97  0.54  1.56  -0.10 1.87  0.04  1.16  -0.18  
LM 1.99  0.60  1.43  -0.15 1.94  0.01  1.31  -0.15  
LL 1.99  0.76  1.64  -0.10 1.98  0.04  1.29  -0.27  
 Three-dimensional data 
HHH 1.80  0.02  0.63  -0.46 1.16  -0.40  -0.03  -1.06  
HHM 1.81  0.01  0.68  -0.50 1.47  -0.75  0.01  -1.06  
HHL 1.87  0.01  0.72  -0.58 1.48  -0.61  0.08  -1.12  
MMH 1.90  0.02  0.87  -0.62 1.58  -1.00  0.33  -1.15  
MMM 1.97  0.00  1.01  -0.97 1.80  -1.00  0.38  -1.28  
MML 1.94  0.00  0.89  -0.88 1.85  -1.00  0.48  -1.22  
LMH 1.90  0.00  0.73  -0.66 1.58  -0.95  0.25  -1.16  
LLH 1.77  0.00  0.53  -0.83 1.59  -0.84  0.21  -1.29  
LLM 1.87  0.00  0.71  -0.82 1.72  -1.00  0.35  -1.37  
LLL 1.90  0.00  0.49  -1.13 1.77  -1.00  0.16  -1.48  
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APPENDIX F 

ESTIMATED ITEM PARAMETERS FOR BOOKLET 5  

Var. ID c Lord’s 
criterion P  Var. ID c Lord’s 

criterion P 

M022043 0.00 -5.10 0.77  MF32036 0.24 -0.96 0.52 
M022049 0.00 -5.33 0.66  MF32447 0.24 -0.93 0.54 
M022050 0.22 -0.85 0.41  MF32609 0.23 -2.19 0.75 
M022057 0.00 -5.42 0.76  MF32670 0.00 -2.90 0.82 
M022062 0.10 -1.15 0.38  MF32690 0.22 -1.97 0.52 
M022066 0.07 -1.14 0.50  MF32727 0.17 -0.73 0.54 
M022097 0.08 -2.48 0.79  MF32728 0.31 -0.71 0.50 
M022101 0.00 -4.64 0.75  MF32732 0.29 -1.54 0.58 
M022104 0.00 -3.78 0.80  S032024 0.22 -1.84 0.48 
M022105 0.00 -2.90 0.46  S032141 0.20 -1.64 0.41 
M022108 0.16 -1.97 0.60  S032315 0.02 -3.45 0.63 
M022181 0.52 -2.40 0.89  S032463 0.15 -2.45 0.66 
M022257 0.20 -1.07 0.57  S032465 0.23 -3.43 0.75 
M032044 0.32 -0.83 0.58  S032514 0.19 -1.86 0.47 
M032046 0.14 -0.21 0.33  S032579 0.31 -0.68 0.47 
M032079 0.22 -0.68 0.40  SF12001 0.00 -4.59 0.66 
M032228 0.16 -1.70 0.62  SF12002 0.00 -6.50 0.78 
M032261 0.26 -1.25 0.55  SF12003 0.07 -4.15 0.77 
M032271 0.25 -1.23 0.59  SF12004 0.24 -3.88 0.75 
M032489 0.00 -3.72 0.79  SF12005 0.10 -4.20 0.62 
M032523 0.18 -0.16 0.39  SF12006 0.29 -1.65 0.55 
M032525 0.17 -1.62 0.53  SF12013 0.00 -6.63 0.26 
M032533 0.23 -0.80 0.59  SF12014 0.00 -3.78 0.76 
M032579 0.15 -1.65 0.62  SF12015 0.15 -3.31 0.75 
M032588 0.28 -2.09 0.67  SF12016 0.51 -2.85 0.77 
M032678 0.06 -0.71 0.48  SF12017 0.05 -2.54 0.63 
M032701 0.38 -3.17 0.85  SF12018 0.43 -3.03 0.66 
M032704 0.32 -1.25 0.64      
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APPENDIX G 

ESTIMATED ITEM PARAMETERS FOR BOOKLET 11  

Var. ID c Lord’s 
criterion P  Var. ID c Lord’s 

criterion P 

M032094 0.27 -1.30 0.62  S022054 0.29 -1.55 0.57 
M032100 0.00 -4.09 0.56  S022106 0.02 -4.36 0.18 
M032116 0.28 -1.09 0.52  S022115 0.00 -4.14 0.68 
M032132 0.00 -3.34 0.56  S022126 0.37 -2.13 0.66 
M032324 0.09 -1.15 0.37  S022150 0.37 -0.85 0.53 
M032397 0.22 -1.74 0.59  S022181 0.13 -1.75 0.43 
M032402 0.33 -0.13 0.50  S022183 0.17 -0.53 0.39 
M032419 0.33 -0.72 0.52  S022208 0.28 -0.97 0.54 
M032477 0.17 -1.02 0.54  S022276 0.44 -1.67 0.76 
M032662 0.08 -0.23 0.23  S022290 0.00 -3.66 0.66 
MF12013 0.30 -1.43 0.64  S022294 0.09 -4.04 0.69 
MF12014 0.28 -2.39 0.78  S032008 0.00 -4.11 0.63 
MF12015 0.03 -2.15 0.62  S032035 0.00 -3.44 0.68 
MF12016 0.46 -0.18 0.57  S032055 0.35 -2.63 0.87 
MF12017 0.10 -2.43 0.55  S032083 0.07 -2.50 0.76 
MF22185 0.34 -0.95 0.54  S032150 0.00 -5.46 0.71 
MF22188 0.24 -1.01 0.43  S032258 0.03 -3.70 0.26 
MF22189 0.00 -3.31 0.70  S032281 0.33 -1.41 0.71 
MF22191 0.00 -2.73 0.59  S032301 0.26 -1.03 0.48 
MF22194 0.22 -2.30 0.58  S032385 0.26 -1.51 0.58 
MF22196 0.15 -1.67 0.60  S032446 0.32 -2.24 0.69 
MF22198 0.22 -1.05 0.49  S032564 0.16 -0.40 0.32 
MF22199 0.21 -0.33 0.40  S032607 0.08 -3.00 0.57 
MF22251 0.15 -1.19 0.35  S032683 0.30 -0.92 0.51 
S022002 0.16 -2.40 0.63  SF32422 0.22 -1.54 0.57 
S022019 0.50 -2.73 0.77  SF32574 0.36 -0.55 0.55 
S022042 0.00 -2.41 0.62  SF32714 0.41 -2.97 0.79 
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