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Abstract

ESTIMATION OF THE SURVIVAL FUNCTION FOR GRAY’S

PIECEWISE-CONSTANT TIME-VARYING COEFFICIENTS MODEL

Zdeněk Valenta, Ph.D.

University of Pittsburgh, 2002

Gray’s extension of Cox’s proportional hazards (PH) model for right-censored survival

data allows for a departure from the PH assumption via introduction of time-varying

regression coefficients (TVC) using penalized splines. Gray’s work focused on estima-

tion, inference and residual analyses, but no estimator for the survival function has been

proposed. We derive a survival function estimator for one important member of the

class of TVC models - a piecewise-constant time-varying coefficients (PC-TVC) model.

We also derive an estimate for the confidence limits of the survival function. Accuracy

in estimating underlying survival times and survival quantiles is assessed for both Cox’s

and Gray’s PC-TVC model using a simulation study featuring scenarios violating the PH

assumption. Finally, an example of the estimated survival functions and the correspond-

ing confidence limits derived from Cox’s PH and Gray’s PC-TVC model, respectively,

is presented for a liver transplant data set.

In the second part of the thesis we examine the effect of model misspecification for two
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classes of regression models for right-censored survival data - additive and multiplicative

models for the conditional hazard rate. A particular attention is given to data exhibiting

time-varying regression coefficients. The class of multiplicative models is represented by

Cox PH model and Gray’s TVC model, respectively, and for additive models we use

Aalen’s linear model. Both Gray’s TVC model and Aalen’s linear model incorporate

time-varying coefficients. A simulation study is performed to cross-analyze survival data

which follows either a multiplicative or an additive model for the conditional hazard rate.

The effect of misspecifying the true model for the conditional hazard rate is assessed

by looking at the power of the individual models to detect an existing effect, bias and

mean square error observed for each conditional model-based estimator of survival. We

also show that Aalen’s model formulae is a first order Taylor series approximation of

that of Gray’s model which explains the comparably higher flexibility on part of the

Aalen’s model as compared to the Cox PH when the Gray’s TVC model for the data is

misspecified.

2



Contents

1 Introduction 10

2 Estimation of the survival function for Gray’s

piecewise-constant time-varying coefficients model 16

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Estimated survival for Gray’s PC-TVC model . . . . . . . . . . . . . . . 21

2.4 Confidence limits based on the log-transformation . . . . . . . . . . . . . 24

2.5 Confidence limits based on the log-(log)-transformation . . . . . . . . . . 26

2.6 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 UNOS data example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.9 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Model misspecification effect in regression models

3



for right-censored survival data (with emphasis

on the presence of time-varying coefficients) 38

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Bias and mean square error of the estimated survival . . . . . . . . . . . 44

3.4 Simulation study design . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Aalen Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Gray Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.7 Cox Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8 Summary of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.8.1 Aalen Data Model with TVC (power trend β(t) = (t+ 1)3) . . . . 54

3.8.2 Aalen Data Model with TVC absent (constant β(t) = 1) . . . . . 62

3.8.3 Gray Data Model with a linear trend in TVC (β(t) = 5t) . . . . . 69

3.8.4 Cox Data Model (constant β(t) = 0.5) . . . . . . . . . . . . . . . 80

3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4



3.10 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5



List of Tables

Table 1: Results Summary for UNOS Cancer Patients (502 observations with 278 fail-

ures)

Table 2: True survival probabilities for Aalen Data Model with TVC present (power

trend β(t) = (t+ 1)3)

Table 3: Power Analysis for Aalen Data Model with TVC present (power trend β(t) =

(t+ 1)3)

Table 4: True survival probabilities for Aalen Data Model with TVC absent (constant

β(t) = 1)

Table 5: Power Analysis for Aalen Data Model with TVC absent (β(t) = 1)

Table 6: True survival probabilities for Gray Data Model with a linear trend in TVC

(β(t) = 5t)

Table 7: Power Analysis for Gray Data Model with β(t) = 5t

Table 8: Power Analysis for Gray Data Model with β(t) = log(t)

Table 9: Power Analysis for Gray Data Model with β(t) = t− 1

6



Table 10: True survival probabilities for Cox Data Model with β(t) = 0.5

Table 11: Power Analysis for Cox Data Model with β(t) = 0.5

7



List of Figures

Figure 1: Simulation studies results summary

Figure 2: UNOS cancer patients post-liver transplant graft survival with 95% C.L.’s,

Cox and Gray model results for a subject with median-valued covariates

Figure 3: Bias and RMSE for Aalen Data Model with a Power Trend in β(y), Light

Censoring

Figure 4: Bias and RMSE for Aalen Data Model with a Power Trend in β(y), Moderate

Censoring

Figure 5: Bias and RMSE for Aalen Data Model with a Power Trend in β(y), Heavy

Censoring

Figure 6: Bias and RMSE for Aalen Data Model with a Constant Trend in β(y), Light

Censoring

Figure 7: Bias and RMSE for Aalen Data Model with a Constant Trend in β(y),

Moderate Censoring

Figure 8: Bias and RMSE for Aalen Data Model with a Constant Trend in β(y), Heavy

Censoring

8



Figure 9: Bias and RMSE for Gray Data Model with a Linear Trend in β(y), Light

Censoring

Figure 10: Bias and RMSE for Gray Data Model with a Linear Trend in β(y), Moderate

Censoring

Figure 11: Bias and RMSE for Gray Data Model with a Linear Trend in β(y), Heavy

Censoring

Figure 12: Bias and RMSE for Cox Data Model with a Constant Trend in β(y), Light

Censoring

Figure 13: Bias and RMSE for Cox Data Model with a Constant Trend in β(y), Mod-

erate Censoring

Figure 14: Bias and RMSE for Cox Data Model with a Constant Trend in β(y), Heavy

Censoring

9



1 Introduction

In survival analysis the primary function of interest is the hazard rate λ(t|z), which is

closely related to the failure time T , the dependent variable in survival models. The

hazard rate λ(t|z) is defined as a conditional instantaneous failure rate at time t given

a subject’s set of covariates z and his or her survival up to time t. In this thesis we

explore several different types of models that are available for fitting right-censored sur-

vival data. The models that we will be dealing with are all concerned with predicting

the behavior of the hazard rate over time given the subject’s covariate pattern. These

models fall into two distinct categories: either additive or multiplicative models for

the conditional hazard rate. For the purpose of this thesis, the Cox Proportional Haz-

ards (PH) model [1] and Gray’s piecewise-constant time-varying coefficients (PC-TVC)

model [2] will represent the class of multiplicative models, while Aalen’s linear model [3]

will serve as a representative of the class of additive models. The natural distinction

between these two classes of models is that in the additive class we model the absolute

hazard rate (absolute risk), while in the multiplicative class we model the hazard ratio

(relative risk). Another distinction reaching across the two classes of models is based

on the inclusion of time varying regression coefficients. Both Aalen’s linear model and

Gray’s PC-TVC model incorporate time-varying coefficients, while the Cox PH model

regression coefficients are assumed to remain constant.

An important output from each of these models is the ability to describe the conditional
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failure time distribution, or equivalently, the conditional survival distribution of a subject

with a covariate pattern z. The estimated survival function is often of interest when

fitting a survival model to data, since this serves as a useful summary of the estimated

survival experience of a given population. Gray’s work on TVC models has focused on

estimation of the model coefficients, inference and residual analysis but no estimator for

the survival function has been proposed.

One major contribution of this work is that we have developed a survival function

estimator for Gray’s PC-TVC model with corresponding estimates of confidence limits

based on log- and log(-log)-transformations. The estimation of the survival function is

based on the observation that between the successive knots where the hazard regression

coefficients are assumed to remain constant, integration with respect to a differential of

the cumulative hazard rate may proceed in a manner similar to that for the original Cox

PH model. Andersen et al. [4] (1996) have shown that confidence limits for the survival

function estimated from the Cox PH model are optimal when the estimates are based

on a log-transformed or log(-log)-transformed scale for the survival curve. Since Gray’s

PC-TVC model can be viewed as a piecewise PH model, we take a similar approach in

developing the variance estimates and corresponding confidence limits on both of these

scales.

The Cox PH model has played a prominent role in both the statistical literature and for

the analysis of right-censored survival data since its first introduction by Cox in 1972.
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The proportional hazards model has been widely used for the analysis of biomedical

data from both longitudinal studies and clinical trials. This is mainly due to its appeal-

ing mathematical simplicity as well as its general availability through most statistical

packages. While the Cox regression model is relatively simple to present, it relies on

the assumption of proportionality of hazards which may not be met in all data sets. To

address this issue, models that allow for non-proportionality of the conditional hazards

through the introduction of time-varying covariate effects have been proposed.

The introduction of the Cox proportional hazards model has resulted in the creation

of an extensive body of literature related to the use and further development of this

model. Kalbfleisch and Prentice [5] (1973) have obtained different marginal likelihoods

than those reported by Cox for grouped data, Efron [6] (1977) proved the full asymp-

totic efficiency of Cox’s likelihood function for censored data. Peace and Flora [7] (1978)

considered the size and power of tests related to the regression parameters in the Cox

model whten the hazard function follows an exponential, Weibull or Gompertz distrib-

ution. Lubin [8] (1980) studied the analysis of survival data following Cox’s failure time

model using weighted least squares. Also in 1980, Schoenfeld [9] proposed a chi-squared

goodness-of-fit test for the proportional hazards regression model by comparing the ob-

served and expected numbers of events in cells arising from a partition of the Cartesian

product of the range of covariates and the time axis. A key criticism of this approach is

based on the arbitrariness of the partitioning. Two years later Schoenfeld [10] introduced
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partial residuals for the proportional hazards regression model. The first successful ap-

proach to obtaining the asymptotic properties of Cox’s estimates is given in Tsiatis [11]

(1981). Asymptotic theory for Cox’s regression model in the framework of counting

processes has been introduced by Andersen and Gill [12] in 1982. Their study enabled

the construction of confidence intervals for the survival function estimated from the Cox

model. Also in 1982, Johnson et al. [13] published a small-sample covariate analysis study

of survival data following Cox’s model, and Stewart and Pierce [14] assessed the efficiency

of Cox’s model in estimating regression parameters relative to parametric alternatives

for grouped data settings. Bailey [15] (1983) studied the asymptotic joint distribution of

the regression and survival parameter estimates in the Cox regression model. In 1984,

Bailey [16] showed that the Cox estimator and the general ML estimator of the regression

and survival parameters in the Cox model are asymptotically equivalent. Gore et al. [17]

(1984) examined the performance of a wide variety of parametric survival models and

Cox’s regression model in the context of non-proportional hazards, and suggested a step-

function proportional hazards approach as an attractive alternative to the Cox model for

this setting. Link [18] (1984) studied confidence intervals for the survival function using

Cox’s proportional hazards regression model with censored data. A martingale approach

to understanding Cox’s regression model has been further investigated by Gill [19] also

in 1984.

One of the more useful spline-based extensions of the Cox proportional hazards model
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is that proposed by Gray [2]. Gray’s TVC extension of the Cox PH model employs prod-

ucts of the covariates of interest with the spline functions of time. This allows for a

flexible approach to the modeling of covariate effects without necessarily adhering to the

assumption of proportional hazards, which may not be satisfied. The most appealing

model within the framework of models proposed by Gray is the piecewise-constant TVC

(Gray’s PC-TVC) model since this model is similar to the original Cox PH model and

retains much of the mathematical simplicity of the Cox model. The advantage of the

PC-TVC models is their flexibility, since the proportional hazards assumption is only

required for each of the time intervals between the successive knots (i.e. time points al-

lowing for a change in the regression coefficients). Gray’s PC-TVC model may therefore

be viewed as a piecewise proportional hazards model for the conditional hazard rate. A

family of models which can be used to model nonproportional data, the time-varying

coefficient (TVC) models, have been considered already in 1987 by Gamerman and

West [20], and further developed by Zucker and Karr [21] in 1990. Building on the work

of Tsiatis [11], Andersen and Gill [12] and Gill [19], O’Sullivan [22] (1993) treated nonpara-

metric estimation in the Cox model using an approach complementary to that of Zucker

and Karr [21]. The methodology of Zucker and Karr was further developed by Gray [2, 23].

Time-varying coefficient models were also studied by Hastie and Tibshirani [24] (1993)

and the use of regression splines in modeling the conditional hazard rate is discussed in

Sleeper and Harrington [25] (1990) and Gray [2]. The use of time dependence in Cox’s

PH model was also investigated by Pettit and Daud [26].

14



In the second part of this thesis we examine the effect of model misspecification on

regression models for right-censored survival data involving a single continuous covariate.

We perform a simulation study to cross-analyze survival data that follows either Aalen’s,

Cox’s PH or Gray’s TVC model for the conditional hazard rate. Particular attention

is given to data from a model with time-varying regression coefficients. It is often the

case that the right-censored survival data are analyzed without prior verification of the

assumptions of an assumed model. The effect of misspecifying the true model is assessed

by looking at the power of Aalen’s, Cox’s and Gray’s model, respectively, to detect an

existing effect and by comparing the mean square error and bias of the conditional

estimator of survival obtained for each of the three models used in analyzing the data.

Formulas for bias and mean square error of the conditional survival distribution rely

on the ability of the fitted model to estimate survival. In this part we see a direct

application of the concepts developed in the first part of the thesis. Specifically, the

survival function estimator for Gray’s PC-TVC model [27] (Valenta and Weissfeld, 2002)

we developed earlier is now being used for the evaluation of the bias, mean square

error and the true survival function when Gray’s model is assumed. We also show that

Aalen’s model formulae appears to be a first order Taylor series approximation of that

of Gray’s TVC model. This is also supported by our empirical finding that when the

true underlying model for the data is multiplicative with TVC present, Aalen’s linear

model shows a comparably higher flexibility under misspecification than Cox PH model.
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2 Estimation of the survival function for Gray’s

piecewise-constant time-varying coefficients model

2.1 Abstract

Gray’s extension of Cox’s proportional hazards (PH) model for right-censored survival

data allows for a departure from the PH assumption via introduction of time-varying

regression coefficients (TVC). For this model estimation of the conditional hazard rate

relies on the inclusion of penalized splines. Cubic penalized splines tend to be unstable

in the right tail of the distribution and thus quadratic, linear and piecewise-constant

penalized splines may be a favorable choice. Gray’s work focused on estimation, inference

and residual analyses, but no estimator for the survival function has been proposed.

We derive a survival function estimator for one important member of the class of TVC

models - a piecewise-constant time-varying coefficients (PC-TVC) model. Using the

first-order Taylor series approximation we also derive an estimate for the variance of

the log- and log(-log)-transformed survival function, which in turn leads to estimated

confidence limits on the corresponding scales of the survival function. Accuracy in

estimating underlying survival times and survival quantiles is assessed for both Cox’s

and Gray’s PC-TVC model using a simulation study featuring scenarios violating the

PH assumption.
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Finally, an example of the estimated survival functions and the corresponding confidence

limits derived from Cox’s PH and Gray’s PC-TVC model, respectively, is presented for

a liver transplant data set.
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2.2 Introduction

The Cox proportional hazards (PH) model has played a prominent role in both the

statistical literature and for the analysis of right-censored survival data since its first

introduction by Cox [1] in 1972. It has been widely used for the analyses of biomedical

data from both longitudinal studies and clinical trials, mainly due to its appealing math-

ematical simplicity, as well as its general availability through most statistical packages.

While the Cox PH model is relatively simple to present, it relies on the assumption of

proportionality which may not be met in all data sets. To address this issue, models

that allow for non-proportionality of the conditional hazards through the introduction

of penalized splines have been proposed. A family of models which can be used to model

non-proportional data, the time-varying coefficient (TVC) models, have been considered

by Gamerman and West [20], and Zucker and Karr [21]. A general treatment of the first

order asymptotic analysis of the penalized likelihood is due to Cox and O’Sullivan [28].

Building on the work of Tsiatis [11], Andersen and Gill [12] and Gill [19], O’Sullivan [22]

treated nonparametric estimation in the Cox model using an approach complementary

to that of Zucker and Karr [21].

The methodology of Zucker and Karr was further developed by Gray [2, 23]. Time-

varying coefficient models were also studied by Hastie and Tibshirani [24] and the use

of regression splines in modeling the conditional hazard rate is discussed in Sleeper and

Harrington [25] and Gray [2]. The use of time dependence in Cox’s PH model was also

18



investigated by Pettitt and Daud [26], Hess [29] and Verweij and van Houwelingen [30].

One of the more useful spline-based extensions of the Cox proportional hazards model

is that proposed by Gray [2]. Gray’s TVC extension of the Cox PH model employs

products of the covariates of interest with the spline functions of time. This allows for

a flexible approach to the modeling of covariate effects without necessarily adhering to

the assumption of proportional hazards, which may not be satisfied.

The most appealing model within the framework of models proposed by Gray is the

piecewise-constant TVC (Gray’s PC-TVC) model since this model is similar to the

original Cox PH model and retains much of the mathematical simplicity of the Cox

model. The advantage of the PC-TVC models is their flexibility, since the proportional

hazards assumption is only required for each of the time intervals between the successive

knots (i.e. time points allowing for a change in the regression coefficients). Gray’s PC-

TVC model may therefore be viewed as a piecewise proportional hazards model for the

conditional hazard rate. The estimated survival function is often of interest when fitting

a survival model to data, since this serves as a useful summary of the estimated survival

experience of a given population. Gray’s work on TVC models has focused on estimation

of the model coefficients, inference and residual analysis and to date, no estimator for

the survival function has been presented.

Andersen et al. [4] show that confidence limits for the survival function estimated from

the Cox PH model are optimal when the estimates are based on a log-transformed or
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log(-log)-transformed scale for the survival curve. In this paper we present an estimator

of the survival function under Gray’s PC-TVC model. Estimation is based on the

observation that between the successive knots, where the hazard regression coefficients

are assumed to remain constant, the integration with respect to a differential of the

cumulative hazard rate may proceed in a manner similar to that for the original Cox PH

model. The estimated variance of the predicted survival function under Gray’s PC-TVC

model is derived for both the log- and log(-log)-transformed scale of the survival function

and corresponding estimates of the confidence limits are presented.
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2.3 Estimated survival for Gray’s PC-TVC model

Within the TVC family of models we assume that the hazard function can be modeled

as follows:

dΛ (t|x) = dΛ0 (t) exp {xIβ (t)} , (1)

where Λ(.) denotes the cumulative hazard function and Λ0(.) denotes the cumulative

baseline hazard. Here βI(t) = (β1(t),β2(t), . . . ,βp(t)), where βj (t) =
�
k
θjkBjk (t), j =

1, . . . , p [2] are modeled with a full set of B-spline basis functions, Bjk(t) [31]. Unlike

Cox’s proportional hazards model where the hazard regression coefficients, β (t), in (1)

are fixed, they are a function of time under Gray’s PC-TVC model. Specifically, the co-

efficients are assumed to be constant only for values of t ∈ [τj, τj+1) , j = 0, . . . , q. Here

τj, j = 1, . . . , q, denote the internal knots, τ0 = 0, and τq+1 = T represent the maximum

observed (survival or censoring) time. Under Gray’s PC-TVC model, the coefficients,

β (t), are therefore right-continuous step functions of time with jumps possibly occurring

at the knots τj, j = 1, . . . , q.

Estimation of the regression parameters in Gray’s PC-TVC model proceeds by maxi-

mizing the penalized partial likelihood, which involves a partial likelihood term as in

the Cox model, plus the following penalty term: 1
2
λj

q+1�
k=2
(θjk − θj,k−1)

2, where q is the

number of internal knots for modeling the splines [2]. An essential component of the

survival function estimate under Gray’s PC-TVC model is based on the corresponding

estimate of the cumulative baseline hazard. We extend Breslow’s estimator [32] of the
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cumulative baseline hazard function to derive an estimator of the baseline hazard func-

tion for the TVC model. We assume that the coefficients, β, in Breslow’s formula can

simply be replaced with their corresponding time-varying counterparts, β (t).

Consequently, under the TVC model (1) for the conditional hazard rate the estimated

cumulative baseline hazard function is of the form:

Λ̂0(t) =

t8
0

1�
i
Yi (s) exp

+
zIiβ̂ (s)

� n3
i=1

dNi (s) , (2)

where Yi(t) is an indicator function for the i-th patient’s risk status at time t (i.e., Yi(t)

= 1 if the i-th patient is in the risk set at time t, and 0 otherwise).

For Gray’s PC-TVC model the formula for the estimated survival function of a patient

with p-variate covariate vector, z0, will be:

Ŝ (t|z0) = exp
l
−

t$
0
dΛ̂ (s|z0)

M
= exp

l
−

t$
0
exp
+
zI0β̂ (s)

�
dΛ̂0 (s)

M

= exp

l
−

T$
0
I (s ≤ t) exp

+
zI0β̂ (s)

�
dΛ̂0 (s)

M
.

(3)

On the log-transformed scale of the survival function we obtain:

log Ŝ (t|z0) = −
T$
0
I (s ≤ t) exp

+
zI0β̂ (s)

�
dΛ̂0 (s) = −

q�
j=0
exp
+
zI0β̂ (τj)

�
Λ̂0j (t) , (4)

where

Λ̂0j (t) =
8

[τj ,τj+1)

I (s ≤ t) dΛ̂0 (s) =
8

[τj ,τj+1)

I (s ≤ t)
n�
i=1
dNi (s)�

i
Yi (s) exp

+
zIiβ̂ (s)

� (5)

represents a contribution to the estimated (total) cumulative baseline hazard Λ̂0 (t) cor-

responding to an interval [τj, τj+1). Since β (τj) remains constant on [τj, τj+1), we will
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make use of the following notation: βj = β (τj), where βj is a vector of length p. Given

a covariate vector z0, we thus obtain an estimate of the survival function, S(t|z0), as

follows:

Ŝ (t|z0) = exp
−

q3
j=0

exp
+
zI
0
β̂j
�
Λ̂0j (t)

 . (6)

23



2.4 Confidence limits based on the log-transformation

Based on (4), the formula for the variance of the log-transformed estimator of the survival

function is as follows:

Var
p
log Ŝ (t|z0)

Q
= Cov

X
−

q�
j=0

Λ̂0j(t) exp
p
zI0β̂j
Q
,−

q�
j=0

Λ̂0j(t) exp
p
zI0β̂j
Q~
=

=
q�
k=0

q�
l=0
Cov
p
Λ̂0k(t) exp

p
zI0β̂k
Q
, Λ̂0l(t) exp

p
zI0β̂l
QQ

.

(7)

Note that (7) requires an estimator of the covariance which can be derived from a Taylor

series approximation.

We also define the following functions:

g(β̂j, t) = Λ̂0j(t) exp
p
zI0β̂j
Q
, j ∈ {0, . . . , q}. (8)

The vector of the corresponding partial derivatives may be evaluated as follows:

∂

∂β̂j
g(β̂j, t) = exp

p
zI0β̂j
QX
z0Λ̂0j(t) +

∂

∂β̂j

p
Λ̂0j(t)

Q~
.

Now, the first order Taylor series approximation of g(β̂j) about the expected value of β̂j

(which we will denote by βj) can be written as:

g(β̂j, t) ≈ g (βj, t) +
^
∂

∂β̂j

p
g(β̂j, t)

Q
|β̂j=βj

�I p
β̂j − βj

Q
. (9)

The covariance terms in (7) can be approximated at time t using the Delta method as

follows:

Cov
+
g(β̂k, t), g(β̂l, t)

�
≈Wk(t)

ICov
p
β̂k, β̂l

Q
Wl(t), (10)
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where

Wj(t) =

^
exp(zI0β̂j)

X
z0Λ̂0j(t) +

∂

∂β̂j
Λ̂0j(t)

~�
|β̂j=βj

, j ∈ {k, l} (11)

and

∂

∂β̂j
Λ̂0j (t) =

8
[τj ,τj+1)

I (s ≤ t)
−�

i
Yi (s) zi exp

+
zi
Iβ̂j
�

F�
i
Yi (s) exp

+
zIiβ̂j
�k2 n3

i=1

dNi (s) , j ∈ {k, l} (12)

is a p-variate vector of partial derivatives of Λ̂0j(t).

At time t we also have:

z0Λ̂0j (t) =
$

[τj ,τj+1)

I (s ≤ t)
�
i

Yi(s)z0 exp{ziβ̂j}F�
i

Yi(s) exp{ziβ̂j}
k2 n�

i=1
dNi (s), (13)

so that

Wj(t) =


8

[τj ,τj+1)

I (s ≤ t)
�
i
Yi (s) (z0 − zi) exp

+
(z0 + zi)

Iβ̂j
�

F�
i
Yi (s) exp

+
zIiβ̂j
�k2 n3

i=1

dNi (s)


|β̂j=βj

. (14)

Consequently, the formula for the estimated variance of the predicted survival function

will take the following form:

V̂ar
p
log Ŝ (t|z0)

Q
=

q�
k=0

q�
l=0
Wk(t)

ICov
p
β̂k, β̂l

Q
Wl(t). (15)

Finally, the 100(1-α)% Confidence Limits for the survival function estimated under

Gray’s PC-TVC model are calculated as follows:

exp

X
log Ŝ (t|z0)± z1−α/2

5
V̂ar
p
log Ŝ (t|z0)

Q~
, (16)

where z1−α/2 denotes an upper α/2-quantile of the standard normal distribution, V̂ar
p
log Ŝ (t|z0)

Q
is given by (15) and log Ŝ (t|z0) is estimated based on equation (4).
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2.5 Confidence limits based on the log-(log)-transformation

On the log(-log)-scale of the estimated survival function we obtain the following:

log
p
− log

p
Ŝ (t|z0)

QQ
= log

 q3
j=0

Λ̂0j(t) exp
p
zI0β̂j
Q . (17)

Let us denote the complete vector of time-varying coefficient estimates from Gray’s PC-

TVC model by β̂ =
p
β̂0, β̂1, ..., β̂q

Q
. Note that each component of the vector is itself

a vector of length p (where p stands for the number of covariates being modeled by

splines).

Also, let ∂
∂β̂
g̃(β̂) =

w
∂
∂β̂0
g̃(β̂), ∂

∂β̂1
g̃(β̂), ..., ∂

∂β̂q
g̃(β̂)

W
, where each of the q components of

the vector of partial derivatives of g̃(β̂) is itself a vector of length p.

Using this notation we write at time t:

g̃(β̂, t) = log

 q3
j=0

Λ̂0j(t) exp
p
zI0β̂j
Q . (18)

Thus the k-th component of the vector of partial derivatives (being itself a vector of

length p) will be:

p
∂
∂β̂
g̃(β̂, t)

Q
k
=

exp(z0β̂k)
p
z0Λ̂0k(t)+

∂

∂β̂k
(Λ̂0k(t))

Q
q�

j=0

exp(z0β̂j)Λ̂0j(t)
. (19)

It follows from (14) that:

p
∂
∂β̂
g̃(β̂, t)

Q
k
=

$
[τk,τk+1)

I (s ≤ t)
�
i

Yi(s)(z0−zi) exp{(z0+zi) β̂k}F
q�

j=0

exp{z0β̂j}Λ̂0j(t)
kF�

i

Yi(s) exp{ziβ̂k}
k2 n�

i=1
dNi (s) . (20)
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Let us write:

W̃ (t) =

^
∂

∂β
g̃(β̂, t)

�
|β̂=β

. (21)

Using the first-order Taylor series approximation of the log(-log)-transformed survival

function we can estimate the variance as follows:

V̂ar
p
log
p
− log

p
Ŝ (t|z0)

QQQ
≈ W̃ (t)IVar(β̂)W̃ (t), (22)

where Var(β̂) is the covariance matrix of the complete vector of time-varying coefficients

with the partial derivatives in expression (22) evaluated as in (20).

Consequently, the 100(1-α)% confidence limits for the survival function estimated under

Gray’s PC-TVC model based on the log(-log) transformation of the survival function

will be given by:

exp

l
− exp

l
log
p
− log Ŝ (t|z0)

Q
∓ z1−α/2

5
V̂ar
p
log
p
− log Ŝ (t|z0)

QQMM
, (23)

where z1−α/2 denotes an upper α/2-quantile of the standard normal distribution, log Ŝ (t|z0)

is obtained from (4) and V̂ar
p
log
p
− log Ŝ (t|z0)

QQ
is estimated using (22).
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2.6 Simulation studies

In order to assess the accuracy of both Cox’s and Gray’s survival estimators we designed

two simulation studies allowing for comparison of the estimated survival quantiles and

probabilities of survival obtained from Cox’s and Gray’s model with the true underlying

values. We considered scenarios that violate the assumption of proportionality. In

all instances throughout this article, Gray’s PC-TVC model was fitted with 10 knots

selected automatically so that approximately the same number of events was observed

between the successive knots, and 4 degrees of freedom that fully specify the choice of

the corresponding value of the smoothing parameter.

We have generated survival data from the piecewise-exponential distribution with two

time-points allowing for a change in the hazard at .3 and .8 years. For a set of survival

probabilities {.99., .95, .90, .75, .50, .25, .10, .05, .01}, the corresponding time-points were

estimated using both Cox’s and Gray’s models based on 1000 samples of size 150. Also,

for a set of time points of 3, 7, 14 and 30 days and .5, 1, 1.5 and 3 years, estimates of the

corresponding probabilities of survival were calculated from each of the models. For this

simulation study, all of the data are complete. The results we obtained for censored data

were very similar to those for complete data. The introduction of censoring, however,

leaves some quantities related to the right tail of the distribution inestimable (e.g. time

points corresponding to small survival probabilities).

In the first study, one third of each sample (associated with the first covariate being
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an indicator function for that group) was generated with hazards of (1.5, 1, 2), the sec-

ond third of the sample (associated with the second covariate) was generated with the

hazards reversed (i.e. (2, 1, 1.5)), and the baseline hazards were all taken from an ex-

ponential distribution with parameter 1. In the second study, hazards of (2, 1, .5) were

associated with the first covariate, those reversed ((.5, 1, 2)) were associated with the

second covariate and a constant hazard of 1 was again assumed for the baseline.

We wrote two simple Splus functions to compute the true survival quantiles and proba-

bilities for the piecewise-exponential distribution. Figure 1 (consisting of 4 panels num-

bered clockwise beginning from the top left quadrant) presents plots of the differences

between the estimated and the true quantities (i.e. probabilities and survival quantiles

respectively), as determined in both of the above studies. In both studies the survival

curves were estimated at the covariate values (1,0) and (0,1) respectively, indicating

a patient exhibiting the hazards specified by the first or second (i.e. reversed) set of

hazards used in each example.

Panels 1 and 4 of Figure 1, based on 1000 samples, reveal that the differences between

the true and estimated survival quantiles (times) were consistently smaller for Gray’s

model (denoted by circles in the plot). For this model the four corresponding trends in

the hazard implied average departures from the true underlying quantiles of less than

20 days with the exception of the 1% quantile, for which the average departures ranged

from 21 to 60 days. For the Cox model (denoted by triangles in the plot), however,
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departures from the true values greater than 50 days were observed for the 75, 50, 10, 5

and 1% survival quantiles. Panel 4 reveals that the estimates of the two smallest survival

quantiles based on the Cox model were actually off by more than 1 year for both trends

in the hazard. The magnitude of error observed was generally higher for the hazard

rates of (2,1,.5) or reversed, than for those of (1.5,1,2) or reversed.

Similarly, panels 2 and 3 of Figure 1 illustrate the superior performance of Gray’s PC-

TVC model over that of the Cox model in terms of the accuracy of the estimated survival

probabilities associated with several pre-determined time points. For 1000 samples sim-

ulated with hazards (1.5,1,2) and (2,1,1.5) respectively, the probability estimates based

on Gray’s model were all within a distance of .01 from the true underlying values. For

hazard rates of (2,1,.5) and (.5,1,2), estimates obtained from Gray’s model exceeded the

.01 distance in 3 of 18 cases with the maximum departure from the true value being

.017 (associated with the time point of 6 months). Based on the Cox model, however,

departures below .01 were observed in only 10 of 36 cases. In 16 of the 36 cases the

magnitude of error associated with the Cox model exceeded the level of .025. The mag-

nitude of error was again generally higher for the hazard rates (2,1,.5) or reversed, than

for those of (1.5,1,2) or reversed.

The averaging effect of the Cox model is well documented in panels 2 and 3. Since the

simulated hazard rates stabilized after .8 years, we observe that the departures from the

true underlying values decreased dramatically after 1 year. As a result of the lack of
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Figure 1: Simulation studies results summary
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flexibility on the part of Cox’s model, however, this lead to subsequent departures in

the opposite directions at the right tail of the distribution.

Results obtained from the simulation studies indicate that a high level of accuracy is

maintained by the survival function estimates based on Gray’s model, even in the tails of

the distribution. Estimates obtained using Gray’s model were generally close to the true

values, while those derived from the Cox model occasionally showed large departures

from the true underlying values. This resulted from a violation of the proportionality

assumption in the data. The lack of precision in Cox’s model was caused by the averaging

of the time-varying effects, which is a built-in feature of Cox’s model. In contrast, a high

level of accuracy has been maintained by Gray’s survival estimator, even in the tails of

the distribution.
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2.7 UNOS data example

In this section we present a real data example comparing survival function estimators

derived from Cox’s and Gray’s model, respectively. It features a dataset from the UNOS

(United Network for Organ Sharing) database of cancer patients who underwent a liver

transplant. Here we estimate the graft survival for a subject whose covariate values are

set to the median sample values. In graft survival analysis a failure is defined as an organ

failure or a death of the recipient. We compare the best Cox and Gray models found

for the data. The best models featured the following covariates (with corresponding

sample median values listed in the parentheses): donor’s anti CMV IGG result (dcmvgr,

1), indicator of whether the recipient had any prior transplant (priortx, 0), log-serum

creatinine (lcreat, 0), log-total serum bilirubin (ltbili, 1.224), blood match indicator

(abo.mtch, 1) and log-prothrombin time (lptp, 2.695). A summary of the modeling

results may be found in Table 1.
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TABLE 1: Results Summary for UNOS Cancer Patients

(502 observations with 278 failures)

Covariates Cox’s Model Gray’s Model

Coeff p-value n.prop. Coeff (Range) p-value n.prop.

lcreat 0.266 0.014 0.789 (0.154:0.555) 0.001 0.277

ltbili 0.182 0.001 0.050 - - -

dcmvgr 0.307 0.011 0.936 - - -

abo.mtch -1.147 0.049 0.642 (-2.936:0.205) 0.007 0.142

lptp - - - (-0.244:1.688) 0.000 0.007

priortx - - - (-5.999:3.228) 0.040 0.769
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Figure 2: UNOS cancer patients post-liver transplant graft survival with 95% C.L.’s,

Cox and Gray model results for a subject with median-valued covariates
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Covariates found to be significant under the best Cox model for the liver transplant graft

survival of UNOS cancer patients were “lcreat”, “ltbili”, “dcmvgr” and “abo.mtch”,

with log-total serum bilirubin (ltbili) being identified as marginally non-proportional

with regard to the effect on the hazard rate (p-value 0.0499). The best Gray’s model

included “lcreat”, “lptp”, “abo.mtch” and “priortx”. Here the log-prothrombin time

(lptp) was identified as having a highly non-proportional effect on the hazard rate (p-

value 0.007). Survival functions and 95% confidence limits estimated by the two models

at the sample median covariate values are presented in Figure 2. Although the confidence

bands for the two survival curves overlap (Gray’s estimated survival function actually

follows closely the upper confidence band estimated by the Cox’s model), we can still

observe a notable difference between the two survival estimates.

The real data example of this section further illustrates the differences in survival esti-

mates that might be obtained for data which does not follow the proportional hazards

assumption.
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2.8 Conclusions

Gray’s piecewise-constant time-varying coefficients model for right-censored survival

data is a flexible alternative to the Cox proportional hazards model in scenarios where

the PH assumption may not be satisfied. The survival function estimator that we de-

rived for this model provides a useful summary of the modeling results based on the

patient’s covariate values.

Simulation studies presented earlier have shown a lack of accuracy on the part of the Cox

model with regard to estimating survival probabilities and predicting survival quantiles

when the survival distribution does not satisfy the PH assumption.

Finally, based on Cox and Gray’s model, respectively, a differing graft survival experience

was demonstrated for a UNOS cancer patient after a liver transplant.

2.9 Acknowledgments

This work was supported in part by the Agency for Health Care Research and Quality

(grant R01 HS09694-03) and by the Department of the Army (grant DAMD17-99-1-

9536). We thank Dr. Robert J. Gray for making his own implementation of the modeling

routine available to us. The survival function estimator has been written as an Splus

function based on Gray’s routine and is available from the authors upon request.

37



3 Model misspecification effect in regression models

for right-censored survival data (with emphasis

on the presence of time-varying coefficients)

3.1 Abstract

We examine the effect of model misspecification in univariate regression models for right-

censored survival data. A simulation study is performed to cross-analyze survival data

which follows either a multiplicative or an additive model for the conditional hazard

rate. We consider two different multiplicative models, the proportional hazards (PH)

model of Cox (1972) and Gray’s piecewise-constant time-varying coefficients (PC-TVC)

model (1992). For the additive model, we use Aalen’s linear model (1989) which also

incorporates time-varying coefficients. Particular attention is given to data exhibiting

time-varying regression coefficients.

The effect of misspecifying the true model for the conditional hazard rate is assessed

by looking at the power of the individual models to detect an existing effect and by

the observed bias and mean square error for each conditional model-based estimator

of survival. We also show that Aalen’s model formulae appears to be a first order

Taylor series approximation of that of Gray’s TVC model. This is also supported by

our empirical finding that when the true underlying model for the data is multiplicative
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with TVC present, Aalen’s linear model shows a comparably higher flexibility under

misspecification than Cox PH model.
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3.2 Introduction

The body of existing literature examining the effect of model misspecification for right-

censored survival data is not very extensive. Based on the theoretical findings of Cox

and Reid [33] (1984) regarding parameter orthogonality and approximate conditional in-

ference, Solomon [34] examined the problem of misspecifying regression models in the

analysis of survival data by considering accelerated life (AL) and proportional hazards

(PH) models as the two alternatives. In the case of independent censoring, she found

that to first order regression parameters were proportional under both alternative (i.e.

AL and PH) models. This issue was revisited by Hutton and Solomon [35] in 1997, when

they proposed a one-parameter family mixture survival model which includes both the

accelerated life and proportional hazards models. Struthers and Kalbfleisch [36] (1986)

also examined the problem of misspecifying the Cox PH model when the true model for

the data was an accelerated failure time model or when some covariates were ommitted

from the model. Inference for misspecified parametric survival models was discussed by

Hjort [37] in 1992. The effects of model misspecification in estimating covariate effects

and robustness of the Cox PH model when the true model for the data took the form

of several parametric models were studied by Li, Klein and Moeschberger [38] in 1996.

In the second part of this thesis we examine the effect of model misspecification for

two classes of non-parametric survival models frequently used for the analysis of right-

censored survival data, additive and multiplicative models for the conditional hazard
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rate. The additive class will be represented by Aalen’s linear model [3], while the multi-

plicative class will be represented by the Cox proportional hazards model [1] and Gray’s

piecewise-constant time-varying coeffcicients model [2]. Both Aalen’s linear model and

Gray’s TVC model incorporate time-varying coefficients.

We perform a simulation study to cross-analyze survival data that follow either Aalen’s

linear model [3], Cox’s PH model [1] or Gray’s TVC model [2] for the conditional hazard

rate involving a single continuous covariate. Particular attention is given to data from

a model with time-varying regression coefficients.

It is often the case that right-censored survival data are analyzed without prior verifica-

tion of the assumptions of an assumed model. The effect of misspecifying the true model

is assessed by estimating the power of Aalen’s, Cox’s and Gray’s model, respectively,

to detect an existing effect and by comparing the mean square error and bias of the

conditional estimator of survival obtained for each of the three models used in analyzing

the data. Formulas for the bias and the mean square error of the conditional survival

distribution rely on the ability of the fitted model to estimate survival. In this part we

therefore see a direct application of the concepts developed in the first part of the thesis.

Specifically, the survival function estimator for Gray’s PC-TVC model [27] (Valenta and

Weissfeld, 2002) is now being used for the evaluation of the bias, mean sqaure error and

the true survival function when Gray’s model is assumed.
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Under the multiplicative Cox PH model, the effect of one subject’s set of covariates

z ∈ Rp on the conditional hazard rate λ(t|z) is assumed to be proportional to that of

any other subject, and is defined as:

λ(t|z) = λ0(t) exp {βIz} , (24)

where λ0(t) denotes the baseline hazard rate, which for the purpose of estimating the

model parameters, β, is treated as a nuissance function. Parameter estimation for this

model proceeds by maximizing the partial likelihood.

Gray’s PC-TVC model is a generalization of the Cox PH hazards model which incorpo-

rates piecewise-constant time-varying regression coefficients. This allows for the model-

ing of right-censored survival data which violates the PH assumption. Another important

distinction is that Gray’s PC-TVC model also incorporates penalized splines in order to

estimate the model parameters. Gray’s PC-TVC model for the conditional hazard rate

has the following form:

λ(t|z) = λ0(t) exp {β(t)Iz} , (25)

where β(t) = β(τj) for t ∈ [τj; τj+1) , j = 0, . . . , q. Here τj, j = 1, . . . , q, denote the

internal knots, τ0 = 0, and τq+1 = T denotes the maximum observed (survival or censor-

ing) time. Parameter estimates are obtained via maximization of the penalized partial

likelihood (Gray [2]).

Aalen’s additive model specifies a linear effect of the vector of subjects’ covariates on
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the conditional hazard rate:

λ(t|z) = β(t)Iz, (26)

where β(.) ∈ Rp+1 is a vector of time-varying coefficients and z ∈ Rp+1 is a vector of

covariate values with z0 = 1 being the intercept of the linear model. Note that in this

formulation of Aalen’s linear model β0(t) represents a baseline hazard of the underlying

population. The regression coefficients, β(t), are usually estimated in their cumulative

form under Aalen’s model as

Bj(t) =

t8
0

βj(y)dy, j = 0, . . . , p. (27)

The cumulative regression coefficients estimates B̂(t) =
p
B̂0(t), . . . , B̂p(t)

Q
are obtained

for each observed failure time except the last p + 1 ordered cases. This is a convenient

form allowing for a straightforward evaluation of the survival function, as shown in (28)

Ŝ(t|z) = exp
X
−

t$
0
λ(y)dy

~
= exp

X
−

t$
0
zIβ̂(y)dy

~

= exp

X
zI

t$
0
β̂(y)dy

~
= exp

p
zIB̂(t)

Q
.

(28)

In this study we use the ordinary least squares estimates of B̂(t) suggested by Aalen

in 1989 [3]. An apparent drawback of Aalen’s estimating procedure is that it allows for

negative estimates of the conditional hazard rate. Consequently, the estimated survival

function based on Aalen’s model is not necessarily a monotone function and therefore

has to be corrected for non-monotonicity.
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3.3 Bias and mean square error of the estimated survival

The bias of the survival function estimate at time t is defined as:

Bias
p
Ŝ(t|z)

Q
= E

p
Ŝ(t|z)

Q
− S(t|z). (29)

where Ŝ(.|.) and S(.|.) denote the estimated and true survival function, respectively.

Consequently, the empirical bias is defined as:

�Bias pŜ(t|z)Q = 1

ns

ns3
i=1

Ŝ
(i)
(t|z)− S(t|z), (30)

where ns represents number of simulations, Ŝ
(i)
(.|.) denotes the realization of survival

function estimate from the i-th simulation, S(.|.) denotes the true survival function and

z is a px1 vector of covariate values at which the survival function is, conditionally,

evaluated.

Using the notation in (29), the mean square error (MSE) of the estimated survival

function evaluated at time t for a covariate vector z ∈ Rp is defined as follows:

MSE
p
Ŝ(t|z)

Q
= E

p
Ŝ(t|z)− S(t|z)

Q2
. (31)

Similarly, the empirical MSE calculated at time t for a covariate vector z ∈ Rp will have

the form:

�MSEpŜ(t|z)Q = 1

ns

ns3
i=1

w
Ŝ
(i)
(t|z)− S(t|z)

W2
. (32)
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Results from the MSE analysis will be presented in relative form, i.e. as ratios of the

MSE for the model under evaluation (say, Cox) and that from which the data were

generated (e.g. Aalen).
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3.4 Simulation study design

The simulation study we performed consists of four parts. In parts one (Section 3.8.1.)

and two (Section 3.8.2) we study right-censored survival data generated from Aalen’s

linear model for one continuous covariate. This case will be further referred to as the

“Aalen Data Model”. In Sections 3.8.1. and 3.8.2. we examine separately the case of

constant and time-varying regression coefficients for the Aalen Data Model. The time-

varying coefficients in the Aalen Data Model are modeled using functions from the power

family.

Part three (Section 3.8.3) features survival data generated from Gray’s TVC model

(“Gray Data Model”). Here the time-varying coefficients were modeled using a general

linear trend. Finally, in part four (Section 3.8.4) we assess data simulated from the Cox

PH model (“Cox Data Model”) for one continuous covariate.

In each of the three components survival data were cross-analyzed assuming Aalen’s

linear, Cox PH and Gray’s PC-TVC model, respectively. The power to detect the main

effect, the bias and mean square error (MSE) of the survival estimate are reported for

each of the three analysis models.

The bias and MSE were evaluated at 15 different time points and for 7 quantiles of the

covariate distribution. The time points were selected as the following quantiles of the

true survival distribution corresponding to the mean (z = 5) of the covariate distrib-
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ution: .99,.95,.90,.80,.75,.70,.60,.50,.40,.30,.25,.20,.10,.05,.01. Quantiles of the covariate

distribution (N(5,1)) for which the three survival function estimators were evaluated are

the following: .01,.10,.25,.50,.75,.90,.99.

For Aalen’s linear model we used 10 different statistics to test the significance of the

main effect. They were obtained using different weight functions, K(.), which appear in

the general formulae for the test statistic[39]:

U(t) =

t8
0

K(s)dB̂(s) (33)

Using the notation of Lee and Weissfeld[39] , the weight functions, K(.), we used are the

following: 1, K2(t), K2(t)
�
Y.(t), K2(t)Y.(t), K2(t)

�
Ŝ(t−), K2(t)Ŝ(t−),

�
Y.(t), Y.(t),�

Ŝ(t−) and Ŝ(t−), where Y.(t) represents a number of patients being in the risk set

at time t and Ŝ(t) is a Kaplan-Meier survival estimate calculated at time t. These

weight functions were designed specifically to detect different types of trends in the

hazard[39]. We report the range of powers observed for the 10 statistics used in assessing

the significance of the main effect when Aalen’s analysis model is used.

For both Cox and Gray’s model, the power to detect non-proportionality of the hazards

is also reported. Results obtained from the simulation study are each based on 1000

simulations and a sample size of 300. They are presented for three different levels

of censoring (light, moderate and heavy). The quality of the survival approximation

obviously deteriorated with increasing level of censoring. Embedded in the corresponding

formulas (to be introduced in the following paragraphs) is the asymptotic behavior of
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simulated survival times resulting from increasing the size of the main effect. We are

presenting the results for the size of the main effect which allows for enough variability

in the generated survival times as well as for the manifestation of the effect of the

time-varying regression coefficients where they are present.

For both Aalen’s and Gray’s model we have also considered other scenarios for modeling

time-varying trends in the regression coefficients which lead to a closed form in evaluating

both the simulation procedure and the formula for the true survival function given

an assumed model. For the Aalen Data Model such suitable trends are obtained, for

instance, using general linear, hyperbolic and piecewise constant functions or functions

taking the form of some suitable probability density or a ratio of the probability density

and cumulative density (e.g. using Cauchy distribution). For the Gray Data Model,

other trends of choice would be e.g. a logarithmic or a piecewise-constant trend. The

results we obtained for these other trends appeared to be consistent with those we

obtained for our trends of choice.
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3.5 Aalen Data Model

For the purpose of our simulations from Aalen’s linear model with a single continuous

covariate we assume that the baseline hazard is negligible (i.e. we set β0(t) = 0). We have

generated right-censored survival data that follows Aalen’s linear model with a single

continuous covariate. The cases of constant and time-varying regression coefficients,

β(t), are considered separately. Time-varying coefficients are generated using functions

from the power family:

β(t) = (t+ c)n, (34)

where c > 0, n ∈ N .

For z ∈ R+, simulations of the survival data from the corresponding Aalen model proceed

as follows:

− log(1− u) =
t8
0

z(y + c)ndy =
z

n+ 1

�
(y + c)n+1

=t
0
=

z

n+ 1

�
(t+ c)n+1 − cn+1

=t
0
, (35)

where u is distributed according to a uniform U [0, 1] random variable.

Solving equation (35) for t renders the following solution:

t =
w
cn+1 − n+ 1

z
log(1− u)

W 1
n+1 − c. (36)

The true survival function may in this case be evaluated as follows:

S(t|z) = exp
l
−z (t+ c)

n+1 − cn+1
n+ 1

M
. (37)
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In the case of a constant trend in the regression coefficient (β(t) = k, k > 0), the

formulae for generating survival times from the corresponding Aalen model takes on the

following form:

t = − log(1− u)/(zk), (38)

and the true survival function is evaluated as:

S(t|z) = exp {−zkt} . (39)
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3.6 Gray Data Model

For Gray’s TVC model the time-varying regression coefficients β(t) were modeled using

a general linear trend β(t) = kt+ c, k W= 0, c ∈ R. Let u again represent a uniform

U [0, 1] random variable. For z W= 0 and baseline hazard λ0(t) = 1, the survival data

generated from Gray’s TVC model are simulated as follows:

− log(1− u) =
t8
0

e(ky+c)zdy =
1

k

kt+c8
c

euzdu =
ecz
p
etkz − 1

Q
kz

, (40)

and, after a little algebra, we obtain

t =
1

kz
log
p
1− e−czkz log(1− u)

Q
. (41)

The true survival function may then be evaluated as

S(t|z) = exp
−

t8
0

e(ky+c)zdy

 = exp
−
^
e(ky+c)z

kz

�t
0

 = exp
e

cz
p
1− etkz

Q
kz

 . (42)
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3.7 Cox Data Model

The main focus of this study is to assess ability of the different models to identify

and correctly quantify the true nature of continuous effects with possibly time-varying

coefficients when the true model for the data is either additive or multiplicative. Since

under the Cox PH model the effects appearing in the model are assumed to remain

constant over time, the Cox PH model covers the case of a multiplicative model where

TVC are not present.

Assuming again that the baseline hazard λ0(t) is set to 1, both the simulation procedure

and the true survival function may be easily evaluated in the closed form.
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3.8 Summary of the results

In each of the following four sections simulated right-censored survival data were cross-

analyzed assuming either an additive or a multiplicative model for the hazard rate.

Aalen’s linear model was our choice for the class of additive models while the Cox PH

model and Gray’s PC-TVC model represented the class of multiplicative models. Both

Aalen’s linear model and Gray’s PC-TVC model incorporate time-varying coefficients.

In all instances, Gray’s PC-TVC model was fitted with 10 knots and 4 degrees of freedom

for fitting piecewise-constant splines. Results we present are all based on 1000 simula-

tions, a sample size of 300 and a variable level of censoring. They are shown for the size

of the main effect allowing for both enough variability in simulated survival times (i.e.

main effect significance) and a manifestation of the effect of time-varying coefficients,

β(t), where they are present.

The results are shown for a selected set of time points and a selected set of quantiles z of

the covariate distribution. As described in Section 3.4, the time points were not chosen

arbitrarily. Rather they are pre-selected probability quantiles of the true conditional

survival distribution given the mean (z=5) of the covariate distribution (see Section 3.4

for more details).
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3.8.1 Aalen Data Model with TVC (power trend β(t) = (t+ 1)3)

Survival data following the Aalen Data Model with one continuous covariate and time-

varying coefficients of the form β(t) = (t + 1)3 were cross-analyzed assuming Aalen’s

linear, Cox PH and Gray’s PC-TVC analysis model, respectively. Table 2 describes the

true survival probabilities associated with selected time points and quantiles z of the

covariate distribution N(5,1).

The middle column of Table 2 presents the pre-selected set of survival probabilities

given the mean covariate value. In other words, the set of time points listed in the

first column of Table 2 are the probability quantiles of Section 3.4 for the mean of the

covariate distribution (z=5). As we move horizontally away from the middle column

of Table 2 we observe how the true probability distribution varies marginally accross

different values of the covariate distribution N(5,1). By applying the cubic trend to the

range of survival times listed in the first column of Table 2 we may inspect the range of

time-varying coefficients realized over the corresponding time points. We find that the

regression coefficients ranged from 1 to about 3.2 which would seem to be sufficiently

variable for our purposes, especially when this range is viewed relative to the specified

size of the main effect.

Table 3 presents the power of the three analysis models to detect a single continuous

effect when data are generated from the Aalen Data Model with TVC of the form

β(t) = (t+1)3. Results are shown for a variable level of censoring. The power to detect
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non-proportionality of the hazards when the assumed model is multiplicative is also

reported based on the Cox and Gray analysis model. As mentioned earlier, the results

we obtained for other suitable trends in β(t) appeared to be consistent with those we

obtained for the power family. We considered three levels of censoring (light, moderate

and heavy).

Results shown in Table 3 reveal that the Cox PH model had very good power to detect an

existing main effect in Aalen’s additive model for the hazard rate (Aalen Data Model).

In fact, Aalen’s model - the correct analysis model for the data at hand - had a lower

power for all 10 statistics used when the censoring was light or moderate. We also

observe that time-varying effects for the Aalen Data Model do not translate into non-

proportional hazards when the data are being (incorrectly) analyzed as multiplicative.

The power to detect non-proportional hazards is close to the size of the tests when the

hazards are in fact proportional. This is obviously the reason why Gray’s analysis model

lagged behind the other two models in terms of power.

As shown in Figures 3 through 5, the bias of Aalen’s analysis model increased linearly

over time, while both multiplicative models rendered their maximum biases in the neigh-

borhood of the median survival time. However, the absolute magnitude of the bias was

otherwise comparable for all three analysis models. The relatively better performance

of Aalen’s analysis model in terms of bias however seemed to have deteriorated with

increasing censoring. When comparing the performance of the individual models in
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terms of both the bias and the MSE we focus on the times up to the censoring limit. It

is because the survival times were not observable beyond that limit and the estimates

of the bias and the MSE shown for these times are based on projecting the last avail-

able survival estimate into the range of times for which no (censored or un-censored)

observations were available.

In terms of the MSE Aalen’s analysis model generally outperformed both multiplica-

tive models for the 25th, 50th and 99th percentile of the covariate distribution N(5,1),

yet only for times in the larger neighborhood of true median survival times. For the

other percentiles of the covariate distribution and all corresponding time quantiles the

MSE of both multiplicative models appeared to be smaller than that of Aalen’s linear

model - the correct analysis model. For the highest level of censoring (62 %), however,

both multiplicative models did noticeably worse in terms of the MSE only for the 99th

percentile of the covariate distribution.
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Table 2: True survival probabilities for Aalen Data Model with TVC

present (power trend β(t) = (t+ 1)3)

Aalen Data Model, β(t) = (t+ 1)3

Time points Quantiles of covariate distribution z ∼ N(5,1)

t z(0.01) z(0.10) z(0.25) z(0.50) z(0.75) z(0.90) z(0.99)

0.002 0.995 0.993 0.991 0.990 0.989 0.987 0.985

0.010 0.973 0.963 0.957 0.950 0.943 0.938 0.928

0.020 0.945 0.925 0.913 0.900 0.887 0.876 0.857

0.042 0.888 0.847 0.824 0.800 0.776 0.756 0.721

0.053 0.857 0.807 0.780 0.750 0.721 0.697 0.656

0.065 0.826 0.767 0.735 0.700 0.667 0.639 0.593

0.089 0.761 0.684 0.643 0.600 0.560 0.526 0.473

0.117 0.690 0.597 0.549 0.500 0.455 0.419 0.362

0.147 0.613 0.506 0.453 0.400 0.353 0.316 0.261

0.184 0.525 0.408 0.353 0.300 0.255 0.220 0.171

0.205 0.476 0.357 0.301 0.250 0.207 0.175 0.131

0.230 0.423 0.302 0.248 0.200 0.161 0.132 0.095

0.298 0.292 0.180 0.136 0.100 0.073 0.055 0.034

0.358 0.202 0.108 0.075 0.050 0.033 0.023 0.012

0.471 0.085 0.033 0.019 0.010 0.005 0.003 0.001
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Table 3: Power Analysis for Aalen Data Model with TVC present

(power trend β(t) = (t+ 1)3)

β(t) = (t+ 1)3 Aalen Data Model

z ∼ N(5,1) Aalen’s Model Cox Model Gray’s Model

Censoring Power (Range) Power nPH Power Power nPH Power Power nPH

4.8% .315 : .931 N/A .934 .046 .871 .050

24.2% .291 : .866 N/A .868 .049 .790 .042

62.0% .304 : .579 N/A .577 .042 .450 .038
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Figure 3: Bias and RMSE for Aalen Data Model with a Power Trend in β(y), Light

Censoring
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Aalen Data Model, 24.2% censoring, Z~N(5,1), beta(y) = (y+1)^3
Absolute Bias and MSE Relative to Aalen's Model
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Figure 4: Bias and RMSE for Aalen Data Model with a Power Trend in β(y), Moderate

Censoring
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Aalen Data Model, 62% censoring, Z~N(5,1), beta(y) = (y+1)^3
Absolute Bias and MSE Relative to Aalen's Model
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Figure 5: Bias and RMSE for Aalen Data Model with a Power Trend in β(y), Heavy

Censoring
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3.8.2 Aalen Data Model with TVC absent (constant β(t) = 1)

Here we follow a scenario analogous to that of the previous section. Tables 4 and 5 shown

below relate to the additive Aalen Data Model in which the regression coefficient β(t)

remains constant (β(t) = 1). Table 4 describes the true survival probabilities for this

model and Table 5 shows the power of the three analysis models to detect an existing

main effect in the Aalen Data Model with a constant regression coefficient β(t). The

results are again shown for a variable level of censoring.

The power to detect non-proportionality of the hazards when the assumed model is mul-

tiplicative is also reported based on the Cox and Gray analysis models. The results we

obtained in this section are very similar to those that we observed for the Aalen Data

Model when time-varying coefficients were present. We may notice that for both multi-

plicative models the power to detect non-proportional hazards has slightly decreased in

comparison with the previous results and consequently still remains in the margin for

error. All of the patterns in the bias and MSE shown in Figures 6 through 8 remain very

close to what we have observed in the previous section. While there is a small increase

of scale in the bias for all three models, proportionally, the picture remains the same.

The true model for the data being analyzed again outperformed the two multiplicative

models in terms of the MSE for the 25th, 50th and 99th percentile of the covariate dis-

tribution in the larger neighborhood of the median survival time. For all other quantiles

of the covariate distribution and all time quantiles under the consideration both the Cox
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PH and Gray’s PC-TVC model performed better in terms of the MSE when compared

to Aalen’s linear model.
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Table 4: True survival probabilities for Aalen Data Model with TVC ab-

sent (constant β(t) = 1)

Aalen Data Model, β(t) = 1

Time points Quantiles of covariate distribution z ∼ N(5,1)

t z(0.01) z(0.10) z(0.25) z(0.50) z(0.75) z(0.90) z(0.99)

0.002 0.995 0.993 0.991 0.990 0.989 0.987 0.985

0.010 0.973 0.963 0.957 0.950 0.943 0.938 0.928

0.021 0.945 0.925 0.913 0.900 0.887 0.876 0.857

0.045 0.888 0.847 0.824 0.800 0.776 0.756 0.721

0.058 0.857 0.807 0.780 0.750 0.721 0.697 0.656

0.071 0.826 0.767 0.735 0.700 0.667 0.639 0.593

0.102 0.761 0.684 0.643 0.600 0.560 0.526 0.473

0.139 0.690 0.597 0.549 0.500 0.455 0.419 0.362

0.183 0.613 0.506 0.453 0.400 0.353 0.316 0.261

0.241 0.525 0.408 0.353 0.300 0.255 0.220 0.171

0.277 0.476 0.357 0.301 0.250 0.207 0.175 0.131

0.322 0.423 0.302 0.248 0.200 0.161 0.132 0.095

0.461 0.292 0.180 0.136 0.100 0.073 0.055 0.034

0.599 0.202 0.108 0.075 0.050 0.033 0.023 0.012

0.921 0.085 0.033 0.019 0.010 0.005 0.003 0.001
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Table 5: Power Analysis for Aalen Data Model with TVC absent (β(t) = 1)

β(t) = 1 Aalen Data Model

z ∼ N(5,1) Aalen’s Model Cox Model Gray’s Model

Censoring Power (Range) Power nPH Power Power nPH Power Power nPH

8.4% .320 : .923 N/A .923 .047 .851 .047

28.5% .335 : .852 N/A .849 .036 .758 .043

63.5% .324 : .565 N/A .561 .034 .428 .037
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Figure 6: Bias and RMSE for Aalen Data Model with a Constant Trend in β(y), Light

Censoring
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Aalen Data Model, 28.5% censoring, Z~N(5,1), beta(y) = 1
Absolute Bias and MSE Relative to Aalen's Model
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Figure 7: Bias and RMSE for Aalen Data Model with a Constant Trend in β(y), Mod-

erate Censoring
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Aalen Data Model, 63.5% censoring, Z~N(5,1), beta(y) = 1
Absolute Bias and MSE Relative to Aalen's Model
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Figure 8: Bias and RMSE for Aalen Data Model with a Constant Trend in β(y), Heavy

Censoring
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3.8.3 Gray Data Model with a linear trend in TVC (β(t) = 5t)

In this section we cross-analyze right-censored survival data generated from Gray’s TVC

model for a single continuous covariate assuming Aalen’s linear, Cox PH and Gray’s PC-

TVC analysis models, respectively.

For the Gray Data Model we considered a linear trend in time-varying coefficients

β(t) = 5t and the main effect generated from normal distribution with the mean

5 and standard deviation 1 (i.e. N(5,1)). Note that there is an ambiguity in specifying

the slope for the regression coefficient and the parameters of the main effect. In other

words, Gray’s TVC model specified by the regression coefficient β(t) = 5t and the main

effect N(5,1) is identical to that for which β(t) = t and z ∼ N(25,52).

Table 6 describes the true survival probabilities corresponding to selected sets of time

points and quantiles z of the covariate distribution N(5,1). Table 7 presents the power

of the three analysis models to detect an existing continuous effect in Gray Data Model

where TVC are modeled using β(t) = 5t. The results are again shown for a variable

level of censoring. The power to detect non-proportional hazards is reported based on

the Cox and Gray’s analysis models.

The power to detect a single continuous main effect from the Gray Data Model with

time-varying coefficients being modeled using a linear trend β(t) = 5t was, as shown

in Table 7, very high for all three analysis models under consideration. Both tests
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of non-proportionality of the hazards had generally a good power when the censoring

level was low or moderate and their power decreased with the introduction of heavier

censoring. This was to be expected because the range of observed times to an event

is inversely proportional to the level of censoring. As the range of the observed failure

times decreases, the range of the corresponding values of time-varying coefficients and

thus the power of the corresponding tests for non-proportionality of the hazard also

decreases.

Gray’s analysis model - the correct model for the data being analyzed - clearly outper-

formed the other two models in terms of bias and MSE as shown in Figures 9 through 11.

Gray’s analysis model maintained a very low level of the bias for all levels of censoring.

The bias of the Gray’s model remained very low in both absolute and relative terms.

Here we should perhaps emphasize once more that we are primarily interested in how

all the models perform (in terms of bias and MSE) for times not exceeding the censoring

limit. For both Aalen’s and Cox’s analysis model the maximum bias was observed for

times in the neighborhood of the median survival time corresponding to the mean of the

covariate distribution.

The bias appeared to be smaller for Aalen’s analysis model than for Cox analysis model,

except for the case of two extreme covariates (1st and 99th percentile of the covariate

distribution), when censoring was light or moderate. The reason is that Aalen’s model

incorporates time-varying coefficients and even though the model is not multiplicative,
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its flexibility in terms of time-varying effects prevail over that of the Cox model when

the main effects are not very extreme. Gray’s TVC model formulae (25) and Aalen’s

linear model formulae (26) are actually related through the first order Taylor series

approximation. Recalling the Gray’s TVC model formulae (25) we can write:

λ(t|z) = λ0(t) exp {β(t)Iz} ≈ λ0(t) [1 + β(t)Iz] = λ0(t) + [λ0(t)β(t)]
I z (43)

We observe that through the first order Taylor series approximation the baseline hazards

of both models correspond directly while the regression coefficients from Aalen’s linear

model are obtained as a product of the baseline hazard evaluated at time t and time-

varying regression coefficients from Gray’s TVC model evaluated at time t.

This mathematical relationship between Aalen’s linear and Gray’s TVC model is the

reason why under light and moderate censoring Aalen’s analysis model seems to have

performed better for Gray’s model data in terms of the bias when compared to the Cox

model, with the exception of extreme covariates (1% and 99% quantile of the covariate

distribution). Since any linear model is concerned with predicting the mean, it is no

surprise that the approximation failed for extreme covariates if we recall that the nature

of the true underlying model for the data is not actually linear. With the introduction

of the heavy censoring time-varying covariate effects effectively vanish and we no longer

observe this phenomenon.
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Inspecting the results for RMSE reveals that misspecifying Gray’s TVC model - the true

model for the data in this section - has far more serious consequences relative to what

we have observed for the Aalen Data Model. Results related to the RMSE shown in

Figures 9 through 11 are presented only for the range [0,50]. The actual range for RMSE

associated with 99th percentile of the covariate distribution N(5,1) was [0,803] for the

Cox analysis model and [0,44076] for Aalen’s analysis model when censoring was light.

Both ranges decreased with increasing level of censoring.

Inflation of the relative error associated with the 99th percentile of the covariate dis-

tribution underlines the great flexibility maintained by Gray’s PC-TVC model over the

whole range of covariate values. Aalen’s analysis model seemed to have performed bet-

ter than Cox model in terms of RMSE when censoring was light or moderate and the

covariate values were not extreme. This again reflects a comparatively better adaptivity

of Aalen’s linear model to the presence of TVC than that of Cox PH model even though

the class of the model is misspecified. Since the time-varying effects in our simulations

diminished with increasing level of censoring, Cox analysis model again prevailed over

Aalen’s model in terms of RMSE when censoring increased to heavy.
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Table 6: True survival probabilities for Gray Data Model with a linear

trend in TVC (β(t) = 5t)

Gray Data Model, β(t) = 5t

Time points Quantiles of covariate distribution z ∼ N(5,1)

t z(0.01) z(0.10) z(0.25) z(0.50) z(0.75) z(0.90) z(0.99)

0.009 0.991 0.990 0.990 0.990 0.990 0.990 0.989

0.033 0.959 0.955 0.953 0.950 0.947 0.944 0.938

0.052 0.928 0.917 0.909 0.900 0.889 0.879 0.858

0.075 0.878 0.848 0.827 0.800 0.768 0.735 0.668

0.084 0.856 0.816 0.787 0.750 0.706 0.660 0.567

0.092 0.835 0.785 0.748 0.700 0.643 0.585 0.468

0.105 0.795 0.723 0.670 0.600 0.519 0.437 0.288

0.116 0.756 0.661 0.591 0.500 0.398 0.302 0.148

0.127 0.716 0.597 0.510 0.400 0.284 0.185 0.059

0.137 0.674 0.528 0.424 0.300 0.181 0.095 0.015

0.143 0.650 0.490 0.378 0.250 0.135 0.060 0.006

0.149 0.624 0.449 0.330 0.200 0.094 0.034 0.002

0.163 0.557 0.348 0.219 0.100 0.029 0.005 0.000

0.173 0.505 0.275 0.148 0.050 0.009 0.001 0.000

0.190 0.416 0.167 0.062 0.010 0.000 0.000 0.000
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Table 7: Power Analysis for Gray Data Model with β(t) = 5t

β(t) = 5t Gray Data Model

z ∼ N(5,1) Aalen’s Model Cox Model Gray’s Model

Censoring Power (Range) Power nPH Power Power nPH Power Power nPH

7.6% .793 : 1.00 N/A 1.00 .855 1.00 .805

22.8% .769 : 1.00 N/A 1.00 .777 1.00 .715

62.4% .687 : .982 N/A .983 .384 .982 .377

It is important to note that extreme covariate values are often of interest in clinical

practice. The expected probability of survival at some point in time given a patient’s

(extreme) covariate values may well take part in a clinical decision process. It may, for

instance, serve as one of the indicators for assessing patient’s eligibility for receiving

a transplant. In other words, the ability to correctly quantify survival expectation for

subjects with extreme covariates may play an important role in real life decision making.

This leads to a following - though perhaps almost trivial - summary of the findings from

this section: there is no substitute to Gray’s analysis model when it is the true model for

the data. Substantial bias is observed in the neighborhood of median survival times for

both alternative models and relative mean square errors tend to be inflated for extreme

covariate values, which remains the case when Aalen’s analysis model is used for all

74



levels of censoring. The magnitude of the observed error when the Gray Data Model

was misspecified was, in terms of both bias and MSE, generally much higher than that

observed in the case of the Aalen Data Model.

The powers recorded in Table 7 may perhaps give a wrong impression that the main

effect from the Gray Data Model is almost equally likely to be identified using each of

the three analysis models. It is not generally the case. If, for instance, the regression

coefficients are such that their average over time is approximately zero than the power

to identify the main effect using Cox analysis model will diminish significantly relative

to using native Gray’s analysis model. We illustrate these cases using the logarithmic

and adjusted linear trend in β(t), respectively. The corresponding powers are presented

in Tables 8 and 9, respectively.

Table 8: Power Analysis for Gray Data Model with β(t) = log(t)

β(t) = log(t) Gray Data Model

z ∼ N(2.5,1) Aalen’s Model Cox Model Gray’s Model

Censoring Power (Range) Power nPH Power Power nPH Power Power nPH

12.6% .052 : .780 N/A .320 1.00 1.00 1.00

25.4% .062 : .691 N/A .194 1.00 1.00 1.00

50.7% .043 : .622 N/A .078 .992 .981 .994
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Table 9: Power Analysis for Gray Data Model with β(t) = t− 1

β(t) = t− 1 Gray Data Model

z ∼ N(5,1) Aalen’s Model Cox Model Gray’s Model

Censoring Power (Range) Power nPH Power Power nPH Power Power nPH

12.5% .100 : .825 N/A .754 .960 .990 .941

30.1% .060 : .731 N/A .582 .991 .948 .888

48.2% .053 : .576 N/A .351 .819 .836 .807

The results shown in Tables 8 and 9 document the built-in averaging effect of the Cox

PH model expressed in the loss of power relative to Gray’s PC-TVC model. They also

support our previous finding that Aalen’s linear model seems to be more adaptive to the

presence of time-varying effects than the Cox PH model even when the true model for

the data is multiplicative. Since the powers to detect the main effect from Gray Data

Model shown in Tables 8 and 9 diminished for both Cox’s and Aalen’s analysis model

relative to what we observe in Table 7, we may expect that the corresponding bias and

RMSE will be of even greater magnitude for non-native models than that we report in

Figures 9 through 11.

76



Gray Data Model, 7.6% censoring, Z~N(5,1), beta(y) = 5y
Absolute Bias and MSE Relative to Gray's Model
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Figure 9: Bias and RMSE for Gray Data Model with a Linear Trend in β(y), Light

Censoring
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Gray Data Model, 22.8% censoring, Z~N(5,1), beta(y) = 5y
Absolute Bias and MSE Relative to Gray's Model
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Figure 10: Bias and RMSE for Gray Data Model with a Linear Trend in β(y), Moderate

Censoring
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Gray Data Model, 62.4% censoring, Z~N(5,1), beta(y) = 5y
Absolute Bias and MSE Relative to Gray's Model
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Figure 11: Bias and RMSE for Gray Data Model with a Linear Trend in β(y), Heavy

Censoring
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3.8.4 Cox Data Model (constant β(t) = 0.5)

Table 10 describes the true survival probabilities based on the Cox Data Model for a

single continuous covariate with a constant regression coefficient β(t) = 0.5. They are

shown for selected sets of time points and quantiles z of the covariate distribution N(5,1).

Table 11 presents the power of the three analysis models to detect an existing continuous

effect in the Cox Data Model with β(t) = 0.5. Results are again shown for a variable

level of censoring. The size of the tests for non-proportionality of the hazards is also

reported based on the Cox’s and Gray’s analysis models.

The results from Table 11 indicate that all three models maintained a very high power

to detect an existing main effect from the Cox Data Model across all levels of censoring.

The observed bias and MSE are smallest for the Cox analysis model - the true model

for the data being analyzed. However, the error committed by the two alternative

models differed dramatically. Gray’s PC-TVC model seemed to render a reasonably

small error in terms of both the bias and the MSE, especially when censoring was light

or moderate. This should not be very surprising since Gray’s PC-TVC model may be

viewed as a piecewise PH model where the estimation is based on the penalized partial

likelihood. On the other hand, the error observed for Aalen’s analysis model appeared

to be dramatic in terms of both the bias and MSE. The most serious bias was observed

for Aalen’s analysis model in the neigborhood of the median survival time corresponding

to the mean of the covariate distribution.
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The RMSE presented in Figures 12 through 14 is again restricted to the range [0,50].

The actual range of RMSE values from Aalen’s analysis model generally exceeded the

range of the values we have observed for Aalen’s model in the previous section when

TVC were present. For example, for a light level of censoring the actual range of RMSE

values associated with the 99th percentile of the covariate distribution was [0, 2.8 ∗ 106]

for Aalen’s analysis model, while for Gray’s analysis model the range was [0,6.7].

This seems to support our finding from the previous section that when time-varying

effects are present, Aalen’s analysis model may gain some flexibility even though the

class of the model is not correct. The argument is actually made using a reversed

implication: when TVC are not present in the true underlying multiplicative model for

the data, Aalen’s analysis model cannot materialize its flexibility towards time-varying

effects and the observed MSE is of a greater magnitude than if TVC were present.

Finally, Table 11 reveals that the power of both tests detecting non-proportionality of

the hazards remained appropriately within the margin for error. The size of the test

for non-proportionality based on the Gray’s routine appeared to be larger than that of

the test implemented in Splus 2000 for Cox’s PH model (Grambsch and Therneau [40],

1984).
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Table 10: True survival probabilities for Cox Data Model with β(t) = 0.5

Cox Data Model, β(t) = 0.5

Time points Quantiles of covariate distribution z ∼ N(5,1)

t z(0.01) z(0.10) z(0.25) z(0.50) z(0.75) z(0.90) z(0.99)

0.001 0.997 0.995 0.993 0.990 0.986 0.981 0.968

0.004 0.984 0.973 0.964 0.950 0.931 0.907 0.849

0.009 0.968 0.946 0.928 0.900 0.863 0.819 0.714

0.018 0.933 0.889 0.853 0.800 0.732 0.655 0.490

0.024 0.914 0.859 0.814 0.750 0.668 0.579 0.398

0.029 0.895 0.829 0.775 0.700 0.607 0.508 0.319

0.042 0.852 0.764 0.694 0.600 0.489 0.379 0.195

0.057 0.805 0.694 0.610 0.500 0.379 0.268 0.109

0.075 0.751 0.617 0.520 0.400 0.277 0.176 0.053

0.099 0.686 0.530 0.423 0.300 0.185 0.102 0.021

0.114 0.648 0.482 0.372 0.250 0.143 0.072 0.012

0.132 0.605 0.428 0.317 0.200 0.105 0.047 0.006

0.189 0.487 0.297 0.193 0.100 0.040 0.013 0.001

0.246 0.392 0.206 0.118 0.050 0.015 0.003 0.000

0.378 0.237 0.088 0.037 0.010 0.002 0.000 0.000
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Table 11: Power Analysis for Cox Data Model with β(t) = 0.5

β(t) = 0.5 Cox Data Model

z ∼ N(5,1) Aalen’s Model Cox Model Gray’s Model

Censoring Power (Range) Power nPH Power Power nPH Power Power nPH

6.2% .663 : 1.00 N/A 1.00 .040 1.00 .056

23.6% .712 : 1.00 N/A 1.00 .035 1.00 .041

62.7% .852 : .999 N/A .999 .050 .996 .051
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Cox Data Model, 6.2% censoring, Z~N(5,1), beta(y) = 0.5
Absolute Bias and MSE Relative to Aalen's Model
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Figure 12: Bias and RMSE for Cox Data Model with a Constant Trend in β(y), Light

Censoring
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Cox Data Model, 23.6% censoring, Z~N(5,1), beta(y) = 0.5
Absolute Bias and MSE Relative to Aalen's Model
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Figure 13: Bias and RMSE for Cox Data Model with a Constant Trend in β(y), Moderate

Censoring
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Cox Data Model, 62.7% censoring, Z~N(5,1), beta(y) = 0.5
Absolute Bias and MSE Relative to Aalen's Model
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Figure 14: Bias and RMSE for Cox Data Model with a Constant Trend in β(y), Heavy

Censoring
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3.9 Conclusions

The simulation study we performed indicates that when the true underlying model for

right-censored survival data is multiplicative, misspecifying the class of the model at

the analysis stage has far more serious consequences in terms of the observed bias and

MSE of the estimates of the conditional survival distribution than when the scenario is

reversed. In particular, when the survival data followed the Aalen Data Model we have

observed that for the 1%, 10%, 75% and 90% quantiles of the covariate distribution the

mean square errors of the survival estimates were smaller for both multiplicative models

at all time points under consideration than those for the native Aalen’s model. This was

the case irrespective of whether the time-varying coefficients were present or not.

This was virtually never the case when the true underlying model for the data was

multiplicative. In that case the correct analysis model for the data almost always out-

performed the other non-native analysis models in terms of both bias and MSE. Conse-

quences for misspecifying the multiplicative model for the data seemed to be generally far

more serious as compared to what we have observed when the true underlying model for

the data was additive. Aalen’s model appeared to have gained some flexibility relative

to the Cox analysis model when time-varying coefficients were present in the underlying

multiplicative model for the data. Our results indicate, however, that there is no substi-

tute for Gray’s PC-TVC model when it is the native model for the data. The observed

margin for error when the Gray Data Model is misspecified was the greatest of the four
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cases we have studied in terms of both the bias and MSE. Results obtained from our

simulation study support a case for virtual exclusivity of Gray’s analysis model when

the true underlying model for the data is multiplicative and time-varying coefficients are

present.

Statement of Relevance

As mentioned earlier, in practice it is often the case that right-censored survival data are

being analyzed using generally available statistical software without prior verification

of the assumptions of the underlying statistical model for the data. The simulation

study we performed assessed the consequences when the assumptions are not met. The

consequences were expressed in terms of the observed bias and mean square error of the

conditional estimator of survival, and also in terms of power of the individual analysis

models to detect an existing main effect in the model. We have observed that when

the true model for the data is misspecified at the analysis stage, the magnitude of

the observed error may be enormous (e.g. Gray Data Model). Conclusions of our

study underline the importance of using appropriate rather than convenient statistical

procedures when analyzing right-censored survival data.
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