

Sync & Sense Enabled Adaptive Packetization VoIP

by

Boonchai Ngamwongwattana

B.Eng., King Mongkut’s Institute of Technology, Ladkrabang, Thailand, 1994

M.S., Telecommunications, University of Pittsburgh, 2001

Submitted to Faculty of Telecommunications Program,

Graduate School of Information Sciences, University of Pittsburgh

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

University of Pittsburgh

2007

© Copyright 2007 by

Boonchai Ngamwongwattana

All rights reserved.

ii

University of Pittsburgh

School of Information Sciences

Department of Information Sciences and Telecommunications

This dissertation was presented

by

Boonchai Ngamwongwattana

It was defended on

April 6, 2007

and approved by

Dr. Richard Thompson (Advisor)

Dr. David Tipper

Dr. Martin Weiss

Dr. Joseph Kabara

Dr. Stephen Walters

 iii

Sync & Sense Enabled Adaptive Packetization VoIP
Boonchai Ngamwongwattana, Ph.D.

University of Pittsburgh, 2007

The quality and reliability problem of VoIP comes from the fact that there is a

mismatch between VoIP and the network. Namely, VoIP has a strict requirement of

bandwidth, delay, and loss, but the network cannot guarantee such a requirement. A solution

is to enhance VoIP with an adaptive-rate control, called adaptive-rate VoIP. Adaptive-rate

VoIP has the ability to detect the state of the network and adjust the transmission accordingly.

Therefore, it gives VoIP the intelligence to optimize its performance, and making it resilient

and robust to the service offered by the network. The objective of this dissertation is to

develop an adaptive-rate VoIP system, which is composed of three components: rate

adaptation, network state detection, and adaptive-rate control. In the rate adaptation

component, we study optimizing packetization for rate adaptation. The advantage is that rate

adaptation is independent of the speech coder. The study shows that the VoIP performance is

primarily affected by three factors: packetization, network load, and significance of VoIP

traffic; and, optimizing packetization allows us to ensure the highest possible performance. In

the network state detection component, we propose a novel measurement methodology called

Sync & Sense. Sync & Sense is unique in that it can virtually synchronize the transmission

and reception timing of the VoIP session without requiring a synchronized clock. The

simulation result shows that Sync & Sense can accurately measure one-way network delay.

Other benefits include the ability to estimate the available bandwidth and the full spectrum of

the delays of the VoIP session. In the adaptive-rate control component, we consider the

design choices and develop an adaptive-rate control that makes use of the first two

components. The integration of the three components is a novel and unique adaptive-rate

VoIP called Sync & Sense Enabled Adaptive Packetization VoIP. The simulation result

shows that our adaptive VoIP can optimize the performance under any given network

condition, and deliver a better performance than traditional VoIP. The simulation result also

demonstrates that our adaptive VoIP possesses the desirable properties, which include fast

response, aggressiveness, TCP-friendliness, and fair bandwidth allocation.

iv

Acknowledgements

I would like to acknowledge many people for helping me during my doctoral work.

First of all, I would like to thank my advisor, Dr. Richard Thompson. Throughout my

doctoral work, he offered me generous guidance, time and support. I am grateful and greatly

appreciate all the help. Many thanks go to the committee members: Dr. David Tipper, Dr.

Martin Weiss, Dr. Joseph Kabara, and Dr. Stephen Walters. Their comments allowed me to

improve this dissertation and make it even better. I would also like to thank the

Telecommunications program, School of Information Sciences, at the University of

Pittsburgh, for a wonderful study experience. I wish to thank all of my friends I met in

Pittsburgh. I always remember the good times we had. Finally, I am grateful to my parents

for their love and support. I am especially grateful to my mother and my wife for their

patience, love, care, and support, and for believing in me. I would like to dedicate this

dissertation to my daughter and son.

v

Table of Contents

List of Tables ... ix

List of Figures ... x

Chapter 1 Introduction .. 1

1.1 Challenge in Achieving Quality of Service for VoIP ... 2

1.2 Problem Statement and Research Objectives ... 3

1.3 Dissertation Outline .. 6

Chapter 2 Optimizing Packetization for Improving VoIP Performance................................... 7

2.1 Background and Related Research ... 8

2.2 Variable Rate VoIP Based on Packetization... 9

2.3 Effect of Packetization on VoIP Performance .. 12

2.3.1 Study Methodology.. 12

2.3.2 Simulation Results ... 14

2.4 Summary ... 23

Chapter 3 Sync & Sense: Measurement Methodology for Network State Detection............. 26

3.1 Background and Related Research ... 27

3.1.1 The Extent of RTP to Network State Detection... 29

3.1.2 End-to-End Measurement Techniques... 31

3.2 Sync & Sense Measurement Methodology... 33

3.2.1 Sensing Phase... 34

3.2.2 Synchronizing Phase.. 38

3.3 Performance Study.. 46

vi

3.3.1 Simulation Setup.. 46

3.3.2 Sync & Sense Demonstration .. 47

3.3.3 Contributing Factors to the Performance... 49

3.4 Network State Detection ... 58

3.4.1 Available Bandwidth Estimation ... 58

3.4.2 Propagation Delay Estimation and Delay Assessment .. 62

3.5 Dealing with Network Pathologies ... 68

3.6 Detecting Route Change ... 69

3.6.1 Extended Sync & Sense Algorithm ... 70

3.6.2 Simulation Result... 72

3.7 Summary ... 74

Chapter 4 Sync & Sense Enabled Adaptive Packetization VoIP.. 76

4.1 Background and Related Research ... 77

4.2 Design of Adaptive-Rate Control ... 80

4.2.1 Placement of the Control ... 80

4.2.2 Decision Metrics .. 81

4.2.3 Increase/Decrease Algorithm... 83

4.3 Sync & Sense Enabled Adaptive Packetization VoIP .. 87

4.3.1 Sync & Sense Enabled Adaptive-rate Control... 87

4.3.2 Sync & Sense Implementation... 95

4.3.3 Jitter Buffer Management .. 98

4.4 Performance Study in High Statistical Multiplexing Environment 100

4.4.1 Simulation Setup.. 101

4.4.2 Network with High Statistical Multiplexing Traffic.. 102

4.4.3 Comparative Performance between Adaptive VoIP and CBR VoIP................... 105

4.5 Performance Study in Low Statistical Multiplexing Environment............................. 108

4.5.1 Simulation Setup.. 108

4.5.2 Comparative Performance between Adaptive VoIP and CBR VoIP................... 109

4.5.3 Heterogeneous Network with TCP Flows ... 115

4.5.4 Heterogeneous Network with CBR VoIP Flows ... 118

vii

4.5.5 Homogeneous Adaptive VoIP Network .. 121

4.6 Summary ... 124

Chapter 5 Conclusion.. 127

5.1 Contributions... 127

5.2 Future Research .. 128

Bibliography ... 130

viii

List of Tables

Table 2-1 Important characteristics of well-known speech coders... 9

Table 2-2 Delay and loss performance for bottleneck link of 128 Kbps 15

Table 2-3 Delay and loss performance for bottleneck link of 256 Kbps 16

Table 2-4 Delay and loss performance for bottleneck link of 512 Kbps 17

Table 2-5 Delay and loss performance for bottleneck link of 768 Kbps 18

Table 2-6 Delay and loss performance in the case of multiple VoIP flows 22

Table 3-1 Demonstration of the synchronization process of Sync & Sense........................... 45

Table 4-1 Comparative performance between adaptive VoIP and CBR VoIP..................... 105

Table 4-2 Comparative Performance between adaptive VoIP and CBR VoIP 114

ix

List of Figures

Figure 2-1 Relationship between packetization and bandwidth requirements 11

Figure 2-2 Simulation network topology.. 13

Figure 2-3 Plot of end-to-end delay for bottleneck link of 128 Kbps..................................... 15

Figure 2-4 Plot of end-to-end delay for bottleneck link of 256 Kbps..................................... 16

Figure 2-5 Plot of end-to-end delay for bottleneck link of 512 Kbps..................................... 17

Figure 2-6 Plot of end-to-end delay for bottleneck link of 768 Kbps..................................... 18

Figure 2-7 Plot of end-to-end delay in the case of multiple VoIP flows 22

Figure 3-1 Round-trip time calculation as provided by RTCP... 30

Figure 3-2 Dynamics of VoIP packets when the network is (a) lightly (b) heavily loaded ... 36

Figure 3-3 Dispersion gaps as measured by Sync & Sense .. 37

Figure 3-4 (a) Typical pattern of one-way network delay and (b) the corresponding plot..... 38

Figure 3-5 Flow chart of the Sync & Sense algorithm ... 44

Figure 3-6 Simulation network topology.. 47

Figure 3-7 Sync & Sense demonstration .. 48

Figure 3-8 Performance of Sync & Sense when the number of hops is 2 51

Figure 3-9 Performance of Sync & Sense when the number of hops is 4 52

Figure 3-10 Performance of Sync & Sense when the number of hops is 6 53

Figure 3-11 Performance of Sync & Sense when the number of hops is 8 54

Figure 3-12 Performance of Sync & Sense when the number of hops is 10 55

Figure 3-13 Available bandwidth estimation.. 61

Figure 3-14 Mechanism for estimating propagation delay ... 65

Figure 3-15 Detecting route change.. 73

x

Figure 4-1 Flow chart of the adaptive-rate control algorithm... 94

Figure 4-2 Sync & Sense measurements in adaptive packetization VoIP.............................. 96

Figure 4-3 Jitter buffer management in adaptive packetization VoIP 99

Figure 4-4 Simulation network topology for high statistical multiplexing........................... 102

Figure 4-5 Simulation result for high statistical multiplexing.. 104

Figure 4-6 Plot of comparative performance between Adaptive VoIP and CBR VoIP 106

Figure 4-7 Simulation network topology for low statistical multiplexing............................ 109

Figure 4-8 Interaction between adaptive VoIP and TCP flows .. 110

Figure 4-9 Interaction between CBR10 VoIP and TCP flows.. 111

Figure 4-10 Interaction between CBR20 VoIP and TCP flows.. 112

Figure 4-11 Heterogeneous network with TCP flows .. 116

Figure 4-12 Heterogeneous network with CBR VoIP flows .. 119

Figure 4-13 Homogeneous adaptive VoIP network.. 122

xi

Chapter 1

Introduction

Voice over Internet Protocol, also called VoIP, IP telephony, and Internet telephony

is one of the fastest-growing areas in communications today. VoIP allows the routing of

voice conversations over packet-switched networks, including the Internet. Given the

ubiquitous presence of IP, VoIP has brought tremendous attention and opportunities. The

benefits of VoIP are numerous and can go beyond free long distance calls. The ability to

carry traditional telephone traffic, in addition to data traffic, on a single network allows more

efficient use of the IP network. This consolidation in turn allows the reduction of the overall

network cost, which includes infrastructures, administration, skilled personnel, etc. VoIP can

facilitate tasks that may be difficult to accomplish using the traditional telephone networks.

VoIP can provide mobility that allows users to make a call anywhere as long as a network is

available. VoIP can integrate with other services available on the Internet that brings new

kinds of services. Click-and-talk is an example, which allows a website user to click a button

and immediately speak with a customer service representative. Another example is unified

communication services that allow users to communicate using data, voice, and video within

the same platform or device.

Whereas the concept of VoIP itself is brilliant, the challenge of VoIP is due to the fact

that it depends upon the network connection. The quality and reliability of the VoIP call

relies entirely on the quality-of-service provided by the network. Packet-switched networks

are well known to have a bursty traffic pattern, in which quality-of-service cannot be

guaranteed. Variable and high network delays and excessive packet loss can significantly

reduce the voice quality and cause problems that distract the call conversation. Besides the

quality and reliability, other major challenges of VoIP include interoperability and security.

Interoperability involves standardization of the issues within the industry, which can ease,

1

 2

encourage, and accelerate the adoption of VoIP. The two major competing standards for

VoIP are the ITU standard’s H.323 and the IETF standard’s SIP. Because the Internet is an

integral part of a VoIP system, VoIP is subject to all of the security risks that affect data

networks. The main security issues are authenticity, privacy, and availability. VoIP security

is an emerging issue. There is an increasing awareness of the potential security problems, as

well as initiatives to improve VoIP security. Although these challenges have slowed VoIP

progress, they cannot stop the growth of VoIP. The benefits of VoIP are tremendous and

appear to overshadow the challenges. VoIP has come a long way and is continuing to

improve in all aspects.

1.1 Challenge in Achieving Quality of Service for VoIP

The quality and reliability problem of VoIP comes from the fact that VoIP relies on

the network, particularly packet-switched networks, to transport the voice packets. Thus, the

problem lies on the quality-of-service provided by the network. A high network delay and

excessive packet loss can easily reduce the quality of VoIP. Whereas packet-switched

network was originally designed for data traffic, it offers best-effort service in which quality-

of-service cannot be guaranteed. Specifically, network delay, packet loss, and available

bandwidth can be variable, unpredictable, and unbounded. The best-effort service model

works best for data traffic, but not VoIP traffic. VoIP has specific and somewhat strict

requirements that must be met; namely, a fixed amount of bandwidth, a low packet delay,

and minimal packet loss. The fundamental mismatch between the needs of VoIP and the

service provided by the network is indeed the inherent problem of VoIP. Researchers have

spent a great deal of effort attempting to overcome this challenge. The solution can be

classified into two broad categories: network approach and endpoint approach.

The network approach aims at improving the network so that it can support the need

of VoIP. This can be done by adding some kind of quality-of-service mechanisms to the

network. Integrated Services [1], for example, is an architecture that specifies the elements to

guarantee quality-of-service. It allows each individual application that needs some kind of

guarantees to make a reservation of the requirements. As opposed to Integrated Services that

provides a fine-grained quality-of-service system, Differentiated Services is an alternative

 3

that offers a coarse-grained control system. Differentiated Services [2] operate on the

principle of traffic classification, where each packet is placed into a limited number of traffic

classes. This allows the network to offer preferential treatment for higher-priority traffic.

Overprovisioning network capacity [3] also falls into this category. Although it may not

provide any specific mechanism, it simply makes network congestion a rare event. Thus,

overprovisioning can implicitly improve quality-of-service. Nonetheless, the network

approach has challenges of its own. Deployment in a large scale is typically difficult. It also

requires tremendous collaboration among the Internet service providers.

As a matter of fact, it is almost impossible to rely on the network approach because

such a quality-of-service guaranteed network may not be available. The bottom line is that

VoIP still has to operate on best-effort service networks. The endpoint approach is a

necessity as it aims at improving the endpoint to be resilient and robust to the service offered

by the network. For example, low bitrate speech coders and voice activation detection help to

reduce the bandwidth requirement, which could potentially minimize network congestion. A

jitter buffer allows VoIP to deal with variable and unpredictable network delays. Enhancing

VoIP with an adaptive-rate control allows the endpoint to be network-aware and intelligent

enough to optimize its performance. However, the endpoint approach has challenges of its

own as well. Its effectiveness may be limited if the network exhibits large delays and

excessive packet loss. Due to the fact that VoIP traffic is relatively small, the solutions may

not be able to make a significant impact to the performance gain. The solutions can at least

allow the endpoint to mitigate the problem and improve a certain degree of performance. An

important advantage of the endpoint approach is its independence from the network. Given

the limitations of both the network and endpoint approaches, no single solution can

practically achieve the quality-of-service goal. A combination of the solutions offers a great

potential to achieve quality-of-service for VoIP.

1.2 Problem Statement and Research Objectives

This research addresses the problem of the fundamental mismatch between VoIP and

the network. Whereas VoIP has strict requirements for bandwidth, delay, and loss, the

network (namely, best-effort service networks) cannot guarantee to provide such

 4

requirements. VoIP typically uses UDP as its transport protocol, with no control mechanism.

VoIP simply transmits packets at a constant rate regardless of the state of the network. Such

an implementation cannot deal with varying network condition. In addition, network

congestion can further degrade the performance of VoIP. We focus on the endpoint approach

by enhancing VoIP with an adaptive-rate control, called adaptive-rate VoIP. Adaptive-rate

VoIP has the ability to detect the state of the network and adjust the transmission accordingly.

This solution gives VoIP the intelligence to optimize its performance, making it resilient and

robust to the service offered by the network. An advantage of this solution is that it follows

the end-to-end principle [4], which is implicitly enforced by the Internet. Whereas the best-

effort network is relatively dumb, the end-to-end principle implies that the endpoints must be

network-aware and intelligent. Hence, adaptive-rate VoIP is well suited the current Internet

model.

Research in the area of adaptive-rate VoIP is somewhat in its infancy. Only a limited

number of studies are available [5, 6, 20, 21, 22, 35]. Most of the studies focus on a specific

element in developing an adaptive-rate VoIP system. For example, Qiao et al [5] develop an

objective measure of perceived speech quality to be used with an AIMD-based control

mechanism. Beritelli et al [6] study an adaptive-rate VoIP system that is based on TCP-

friendly algorithms. More related research is discussed in the later chapters. Here, we take a

comprehensive approach in studying and developing an adaptive-rate VoIP system.

Adaptive-rate VoIP is generally composed of three components: rate adaptation, network

state detection, and adaptive-rate control. We carefully look at each component, identify the

problems, and find the solution to overcome them.

Rate adaptation is a fundamental basis for adaptive-rate VoIP. In fact, the idea of

enhancing real-time applications with an adaptive-rate control has been around for many

years. Though, it has been largely studied in the context of video, not VoIP. Several factors

are believed to limit initiatives for adaptive-rate VoIP. An important factor is that variable

bitrate speech coders were virtually non-existent in the past. Recent development of variable

bitrate coders, such the GSM Adaptive Multi-Rate (AMR) coder [7], enables VoIP to

perform rate adaptation, which results in more studies about adaptive-rate VoIP. A problem

of using variable bitrate coders is that they typically operate by trading off quality for lower

bitrate. As a consequence, the change in voice quality due to rate adaptation could distract

 5

the user. In the rate adaptation component, we propose an alternative of using packetization

as a means for rate adaptation. This means rate adaptation can be done by using any constant

bitrate speech coder. Because the output bitrate from the coder remains the same, there is no

impact on the audio quality of the produced voice frames.

Network state detection is a crucial component of adaptive-rate VoIP because the

control needs to know the state of the network before making a decision. The perceived

quality of VoIP depends upon both end-to-end delay and packet loss. End-to-end delay

affects conversational interactivity and echo, and packet loss affects clarity. Detecting the

state of the network for VoIP must serve the objective of obtaining a measure of both the

delay and loss. This task, however, cannot be accomplished by the standard RTP (Real-Time

Transport Protocol) and its associated RTCP (Real-Time Transport Control Protocol). This is

because RTP is a protocol framework that is deliberately not complete and only provides

functions expected to be common for real-time applications [8]. As the matter of fact, the

application must have its own mechanisms for functions not provided by RTP, because the

application has the best knowledge of its data and control decision. For adaptive-rate VoIP,

obtaining the one-way network delay is a daunting task. The challenge is that the endpoints

typically operate independently and without support from the network. Without a

synchronized clock, it is almost impossible to measure the one-way delay. In the network

state detection component, we propose a novel measurement methodology called Sync &

Sense of periodic stream. Sync & Sense has the ability to virtually synchronize the

transmission and reception timings, which enables it to obtain the full spectrum of the delays

of the VoIP session. In addition, Sync & Sense can estimate the available network bandwidth.

Sync & Sense truly serve the objective of detecting the state of the network for VoIP, and

provide a wider range of indications about the network condition.

Adaptive-rate control is at the center of adaptive-rate VoIP. It makes a decision based

on information as provided by the network state detection component. Most of the earlier

works in adaptive-rate VoIP rely on packet loss to detect the state of the network because

they lack a method to measure the one-way network delay. Sync & Sense allows us to

overcome this barrier. In the adaptive-rate control component, we design the control that

makes use of the proposed components of rate adaptation and network state detection. The

integration of the three components is a novel and unique adaptive-rate VoIP called Sync &

 6

Sense Enabled Adaptive Packetization VoIP. Sync & Sense enables the adaptive-rate control

to make a decision based on both delay and loss. Observing the trend of one-way network

delay allows our adaptive VoIP to gain more insight about the network state and better

respond, in order to optimize the performance. While any proposed adaptive-rate VoIP must

demonstrate that it can deliver a performance improvement over traditional VoIP, other

important issues have barely been explored. A key objective in our design is that the adaptive

VoIP must possess the desirable properties. The adaptive VoIP must be quick to adjust the

transmission to the changing network condition. The adaptive VoIP must have the adequate

aggressiveness to compete with TCP for its needed share of bandwidth. At the same time, the

adaptive VoIP must be responsive to network congestion and demonstrate a degree of TCP-

friendliness. In a homogeneous adaptive VoIP network, the adaptive VoIP must be able to

provide a fair bandwidth allocation to all the competing flows.

1.3 Dissertation Outline

This dissertation is organized following the three components that comprise an

adaptive-rate VoIP system. Chapter 2 addresses the rate adaptation component, where we

study optimizing packetization for rate adaptation. Chapter 3 addresses the network state

detection component, where we propose a novel measurement methodology called Sync &

Sense of periodic stream. Chapter 4 addresses the adaptive-rate control component, where we

design a control based on the two proposed components of rate adaptation and network state

detection. In addition, chapter 4 includes the integration of the three proposed components

that results in a novel adaptive-rate VoIP called Sync & Sense Enabled Adaptive

Packetization VoIP. Each chapter begins with its own background and related research in

which problems and issues are discussed. Then, the proposed research work is presented.

This dissertation is especially organized in such a way that each chapter is complete on its

own and can be read individually or as part of the overall dissertation. This is because the

proposed work in each component is unique in itself. For instance, the knowledge and

findings about optimizing packetization can be applied in any adaptive-rate VoIP system.

Sync & Sense is not restricted to be used for adaptive-rate VoIP. It can be use for other

purposes, for example, to monitor and collect statistics of the routes of the VoIP sessions.

Chapter 2

Optimizing Packetization
for Improving VoIP Performance

A problem of VoIP is that its performance is usually unpredictable and could be

degraded at any time. This is because packet-switched networks, including the Internet, never

guarantee the requirement of any traffic. On the contrary, VoIP has several specific

requirements of available bandwidth, delay, and loss. The solution to this problem is that

VoIP should be more flexible in its requirements. Adaptive-rate VoIP is an approach that

allows the bandwidth requirement to be variable, instead of fixed. Adaptive-rate VoIP

attempts to adjust the transmission rate to match the available network bandwidth. This can

help to minimize network congestion, which in turn can lower the delay and reduce packet

loss. The challenge of this approach is how to make VoIP to be able to transmit packets at

variable rates. Most speech coders are typically constant bitrate. Variable bitrate speech

coders were non-existent in the past, until recently. This is believed to be a reason that

limited initiatives in research about adaptive-rate VoIP. Many of adaptive-rate VoIP systems

that have been proposed recently are based on variable bitrate speech coders.

Here, we propose an alternative, based on constant bitrate coders, that uses

packetization as a means to vary the bandwidth requirement of VoIP. We explore how

packetization can change the transmission rate. We then study the effect of packetization on

VoIP performance. Through simulation-based study, we found that optimizing packetization

can help to improve the delay and loss performance. In addition, cross traffic and

significance of VoIP traffic play an important role in determining the performance. Under

different levels of network load, there is an optimal packetization that can minimize the end-

to-end delay. The findings from the study provide insights about when and how adaptive-rate

7

 8

VoIP can improve the performance. This study also demonstrates the feasibility of adaptive-

rate VoIP based on packetization.

2.1 Background and Related Research

As is well known, a packet-switched network service does not guarantee available

bandwidth, and delay and loss bounds. At any time, it is possible that network congestion can

cause large delay and excessive packet loss. The TCP protocol has a congestion control

mechanism that backs off in the event of packet loss, ensuring that congestion can be

resolved. Real-time applications, including VoIP, on the other hand, usually send packets at a

constant rate without a control mechanism. The inherent problem is that they cannot react to

network congestion. As a consequence, the performance is degraded when the requirement is

not met. The idea of enhancing real-time applications with an adaptive-rate control has been

around for a decade. However, the research in this area has been largely focused in the

context of video, not VoIP. This is due to several reasons. Usually, there is more room to

play with video because the bandwidth requirement is relatively large. Many adaptive-rate

control schemes for video are well-known, for example, RAP [9] and TFRC [10]. Some

argue that VoIP traffic will be a tiny percentage of all traffic on a transmission link since

VoIP traffic is orders of magnitude less than video traffic. Another reason is that variable

bitrate speech coders were virtually non-existent in the past. Most speech coders are

generally model-based, which send parameters representing the model, independent of

network condition. Some have proposed the use of banks of speech coders, each with a

different bitrate, and then switching among them to perform adaptive-rate control [11]. This

approach has some drawbacks. One is the problem of implementing many speech coders in

the same platform. Another, the transition from one coder to the other might not be

transparent to the user and could cause some distraction. Variable bitrate speech coders have

been developed only recently. A well-known example is the GSM Adaptive Multi-Rate

(AMR) coder [7]. The AMR coder uses eight different bitrates: 4.75, 5.15, 5.90, 6.70, 7.40,

7.95, 10.2 and 12.2 Kbps. The voice quality (e.g. MOS) varies depending on the bitrate. The

higher the bitrate, the better is the voice quality. The AMR coder is expected to be used in

many applications such as IP telephony and wireless systems. It was devised by ETSI for the

third-generation mobile system. Optimizing packetization in order to improve VoIP

 9

performance has been studied in [16]. Here, we further extend the study to examine the

limitation of such an approach, as well as the feasibility of using such an approach for

adaptive-rate VoIP.

2.2 Variable Rate VoIP Based on Packetization

Packetization is a parameter that must be specified when setting up VoIP applications

or networks. Packetization determines how many sample voice frames, produced by the

speech coder, are to be loaded into the same packet, before leaving the sender. Packetization

delay refers to the delay incurred in this process. As more voice frames are to be loaded, the

packetization delay increases. Since a speech coder produces a sample voice frame at a

specific rate, it takes time to collect the needed number of voice frames. VoIP is delay-

sensitive. Thus, packetization generally needs to be small so that it does not cause too much

delay. A typical VoIP packet requires at least 40 bytes of overhead; 20 bytes of the IP header,

8 bytes of the UDP header, and 12 bytes of the RTP header. The overhead from the data link

layer may be added, but it is usually not considered because the data link layer overhead

varies when the packets travel across different physical networks. Depending on the speech

coder type and packetization, the payload of a VoIP packet typically ranges from 10 to 40

bytes. It can be seen that, for VoIP, the packet overhead is usually larger than the payload.

Thus, a large percentage of the bandwidth requirement is used for the transport of overhead

bytes. Determining packetization is critical because it not only affects the packetization delay,

but also the packet size and bandwidth requirement.

Table 2-1 Important characteristics of well-known speech coders

Standard Coding Effective Voice

Bandwidth (Kbps)

Sample Voice

Frame Delay (ms)

Sample Voice

Frame Size (bits)

G.711 PCM 64 0.125 8

G.726 ADPCM 32 0.125 4

G.729 CS-ACELP 8 10 80

 10

Table 2-1 shows important characteristics of well-known speech coders, which are

needed for calculating bandwidth requirements. Effective voice bandwidth refers to the

output bitrate of the coder. Sample voice frame delay refers to the time interval in which the

coder samples voice signal and outputs a voice frame. Sample voice frame size refers to the

size of the output voice frame. It is the smallest data unit for the payload of a voice packet.

Below, we explore the relationship between packetization and bandwidth requirements.

Let

Dframe Sample voice frame delay (ms)

 F Sample voice frame size (bits)

 n Number of sample voice frames in the payload

 H Header size of the voice packet (bits)

 Effective voice bandwidth =
frameD
F Kbps (2-1)

 Overhead bandwidth =
framenD

H Kbps (2-2)

 Network bandwidth =
framenD
nFH + Kbps (2-3)

Effective voice bandwidth in Equation 2-1 is the output bitrate of the speech coder, which is

constant regardless of packetization. The effect of packetization can be seen in Equation 2-2,

which depends on the number of sample voice frames in the payload. Small packetization

results in a large overhead bandwidth. On the other hand, increasing packetization helps to

reduce the overhead bandwidth. The network bandwidth requirement of VoIP (Equation 2-3)

is the sum of effective voice bandwidth (Equation 2-2) and overhead bandwidth (Equation 2-

3). Hence, packetization also has an impact on the bandwidth requirement.

Figure 2-1 is a composite plot of the above equations, which illustrates the effect of

packetization. The plot is based on parameters from the G.726 standard. The lower horizontal

scale is the number of sample voice frames in the payload. Accordingly, the upper horizontal

scale is the packetization delay, which is the product of the number of sample voice frames

and the sample voice frame delay. The dashed line represents the effective voice bandwidth.

 11

The difference between the solid line and the dashed line represents the overhead bandwidth.

It can be seen that packetization has an impact on the overhead bandwidth by which it

exhibits a decreasing function. With small packetization, the payload-to-overhead ratio is

small. That is, in addition to the effective voice bandwidth, a large percentage of the

bandwidth is required for the transport of the packet overhead. This results in a large network

bandwidth requirement. By using large packetization, we increase the payload-to-overhead

ratio. This helps to reduce the overhead bandwidth, which in turn also reduce the bandwidth

requirement. However, a drawback of large packetization is that it increases packetization

delay. This is undesirable because it could affect the limited end-to-end delay budget.

0 80 160 240 320 400 480 560 640 720 800
0

20

40

60

80

100

120

Number of frames in the payload

Ba
nd

w
id

th
 (K

bp
s)

Network bandwidth
Effective bandwidth

Packetization delay (ms)
10 20 30 40 50 60 70 80 90 100

Figure 2-1 Relationship between packetization and bandwidth requirements

A typical setting for VoIP is to use a fair value of packetization that compromises

between the bandwidth requirement and the incurred packetization delay. The problem is that

pre-determined packetization cannot allow optimal performance. This is because the network

condition varies over time. By varying packetization, we would be able to adjust the

bandwidth requirement to match the available network bandwidth, which could help to

optimize the performance. Figure 2-1 illustrates how we can make use of packetization.

 12

When sufficient network bandwidth is available, using small packetization allows minimal

packetization delay. When the network is congested, using large packetization reduces the

bandwidth requirement, which could help reduce the congestion. Figure 2-1 also shows that

only a certain range of packetization is feasible for varying the bandwidth requirement. Small

packetization (e.g. less than 10-ms packetization delay) causes an extremely large bandwidth

requirement, which is not worth the decreased packetization delay. Large packetization (e.g.

more than 30-ms packetization delay) does not significantly reduce the bandwidth

requirement, but may incur too much packetization delay.

Adaptive-rate VoIP can use packetization as a means for adjusting the transmission

rate. This approach has an advantage that it can work with any constant bitrate speech coder.

Another advantage is that rate adaptation is independent to the output bitrate of the coder.

Therefore, rate adaptation is likely to be transparent to the user. A side effect of this approach

is variable packetization delay, which must be managed at the receiver. Compared to variable

bitrate coders, rate adaptation is done at the coder. There is no impact on packetization.

However, varying the output bitrate of the coder can affect the output voice frame and the

audio quality. Rate adaptation could cause distraction and may not be transparent to the user.

2.3 Effect of Packetization on VoIP Performance

The previous section describes the relationship between packetization and bandwidth

requirements. It demonstrates that packetization is an excellent approach for varying the

bandwidth requirement and for adaptive-rate VoIP. Here, we extend the study to determine

whether varying packetization can offer benefits beyond the bandwidth requirement.

Specifically, if we could optimize packetization under a current network condition, we

should be able to improve the performance of VoIP. This study also demonstrates the

feasibility of adaptive-rate VoIP based on packetization.

2.3.1 Study Methodology

We conduct a simulation study using the Network Simulator 2 or ns-2 [12]. The

network topology for the simulation is shown in Figure 2-2. All nodes implement FIFO

scheduling and drop-tail queuing. The link between node 0 and 1 has capacity of 10 Mbps

 13

with propagation delay of 35 milliseconds. To ensure that the network is fairly congested, the

offered load on this link is set to 60 percent on average. The link between node 1 and 2 has

limited capacity so as to create the bottleneck. The link capacity varies as a factor in the

simulation, with propagation delay of 5 milliseconds. Cross traffic on each link is generated

from nine Pareto sources with the α parameter of 1.5, i.e. the inter-arrival time has infinite

variance. The aggregation of many Pareto sources with α less than 2 has been shown to

produce Long Range Dependent (LRD) traffic [13]. Measurement studies have shown that

packet size distribution on the Internet is centered on three values [14, 15]. Namely, about

60% of the packets are 40 bytes, 25% are 550 bytes, and 15% are 1500 bytes. In our

simulation, we follow such a finding when generating the cross traffic. Note that, in terms of

load distribution, about 7% of the load is 40-byte packets, 35% is 550-byte packets, and 58%

is 1500-byte packets. The VoIP session lasts 120 seconds in which the source is assumed

using the ADPCM codec, with the effective voice bandwidth of 32 Kbps.

Figure 2-2 Simulation network topology

Packetization and cross traffic load offered to the bottleneck link are the key factors

in the simulation. From Figure 2-1, we consider the feasible range of packetization from 80

to 240 bytes of payload; or, accordingly, from 10 to 30 milliseconds of packetization delay.

With the small voice frame delay of 0.125 milliseconds, the packetization can have any value

within the feasible range. In the simulation, we use the increment step of 5 milliseconds. So,

the values of the packetization factor are 10, 15, 20, and so on, in milliseconds. Because the

VoIP bandwidth requirement is relatively small, it is also interesting to study how that plays

 14

a role on the performance. Thus, we add another factor: the significance of VoIP traffic,

which is defined as the effective voice bandwidth divided by the bottleneck link capacity. It

is used for comparative purpose only to estimate the percentage of VoIP traffic. Given a

VoIP flow, the actual traffic varies as it depends on the packetization.

To evaluate the performance, we make measurements of one-way network delay and

packet loss. Note that the network delay is associated with the packet level. Whereas

packetization is the factor that contributes a delay to the sample voice frame, evaluation of

the delay performance must be done at the voice frame level that includes the effect of

packetization delay. Here, we define one-way end-to-end delay as the latency of a voice

frame from when the codec begins to collect the voice samples to when that voice frame is

received at the receiver and ready to be decoded. The end-to-end delay can be found by the

sum of the measured network delay and the corresponding packetization delay. We use the

90th percentile of end-to-end delay as a performance metric, instead of the commonly used

mean delay. In VoIP, early arriving packets are held in the jitter buffer so that late arriving

packets can still be in time for a smooth playout. The 90th percentile of end-to-end delay

virtually accounts for an estimate of the jitter buffer delay. Thus, it can better reflect the

actual delay that the user may experience. Similarly, packet loss is associated with the packet

level. Since packetization determines the number of voice frames in the payload, more voice

frames are lost when a packet with large packetization is lost. Thus, the measured packet loss

is converted to voice frame loss, based on the corresponding packetization. Voice frame loss

rate is used to indicate the percentage of voice frames being lost in the network.

2.3.2 Simulation Results

Table 2-2, 2-3, 2-4, and 2-5 are the simulation results showing the effect of

packetization when the bottleneck link capacity is 128, 256, 512, and 768 Kbps, respectively.

The tables show the performance of the VoIP flow under the two factors: packetization and

cross traffic load offered to the bottleneck link. Each cell in the table includes the 90th

percentile of end-to-end delay (on the top) and voice frame loss rate (on the bottom).

Focusing on the delay performance, we accordingly use the data from the tables to plot the

90th percentile of end-to-end delay in Figure 2-3, 2-4, 2-5, and 2-6.

 15

Table 2-2 Delay and loss performance for bottleneck link of 128 Kbps

 Packetization (ms)

 10 15 20 25 30

60 540.93 ms

7.83%

655.65 ms

4.41%

715.65 ms

2.47%

763.15 ms

1.44%

803.15 ms

0.80%

50 376.83 ms

0.63%

225.48 ms

0.05%

206.46 ms

0.03%

201.63 ms

0.02%

201.98 ms

0.03%

40 214.44 ms

0.10%

180.71 ms

0.09%

173.58 ms

0.07%

173.73 ms

0.12%

176.66 ms

0.10%

30 150.30 ms

0.10%

146.33 ms

0.05%

148.85 ms

0.12%

152.17 ms

0.03%

154.69 ms

0.07%

A
ve

ra
ge

 c
ro

ss
 tr

af
fic

 lo
ad

 o
ve

r

bo
ttl

en
ec

k
lin

k
(%

)

20 130.1 ms

0.12%

133.81 ms

0.16%

133.65 ms

0.18%

136.00 ms

0.12%

139.07 ms

0.10%

10 20 30 40 50 60
100

150

200

250

300

350

Packetization (ms)

90
th

 p
er

ce
nt

ile
 e

nd
-to

-e
nd

 d
el

ay
 (m

s)

50%
40%
30%
20%

Avg cross
traffic load

Figure 2-3 Plot of end-to-end delay for bottleneck link of 128 Kbps

 16

Table 2-3 Delay and loss performance for bottleneck link of 256 Kbps

 Packetization (ms)

 10 15 20 25 30

75 384.49 ms

4.25%

452.28 ms

2.86%

477.28 ms

1.98%

500.27 ms

1.67%

520.51 ms

1.48%

70 305.63 ms

1.44%

283.91 ms

0.56%

268.11 ms

0.40%

249.28 ms

0.33%

231.92 ms

0.38%

65 268.19 ms

1.10%

232.13 ms

0.59%

217.46 ms

0.28%

216.04 ms

0.25%

214.02 ms

0.15%

60 156.63 ms

0.42%

141.02 ms

0.10%

134.80 ms

0.08%

136.54 ms

0.06%

140.13 ms

0.12%

50 135.38 ms

0.23%

125.29 ms

0.14%

126.41 ms

0.19%

127.84 ms

0.02%

131.91 ms

0.15%

A
ve

ra
ge

 c
ro

ss
 tr

af
fic

 lo
ad

 o
ve

r

bo
ttl

en
ec

k
lin

k
(%

)

40 92.50 ms

0.20%

95.59 ms

0.25%

100.14 ms

0.23%

106.08 ms

0.17%

111.16 ms

0.33%

10 20 30 40 50 60

100

150

200

250

300

350

Packetization (ms)

90
th

 p
er

ce
nt

ile
 e

nd
-to

-e
nd

 d
el

ay
 (m

s)

70%
65%
60%
50%
40%

Avg cross
traffic load

Figure 2-4 Plot of end-to-end delay for bottleneck link of 256 Kbps

 17

Table 2-4 Delay and loss performance for bottleneck link of 512 Kbps

 Packetization (ms)

 10 15 20 25 30

80 266.30 ms

3.65%

283.17 ms

2.69%

300.67 ms

2.73%

308.65 ms

2.44%

327.38 ms

2.4%

75 218.01 ms

1.11%

232.58 ms

0.91%

235.13 ms

0.48%

234.74 ms

0.77%

235.13 ms

0.53%

70 150.23 ms

0.43%

143.11 ms

0.24%

141.54 ms

0.17%

145.09 ms

0.08%

147.16 ms

0.17%

65 107.15 ms

0.14%

104.82 ms

0.16%

107.32 ms

0.12%

109.81 ms

0.15%

112.79 ms

0.07%

60 81.82 ms

0.06%

85.00 ms

0.04%

89.26 ms

0.05%

93.86 ms

0.06%

99.04 ms

0.02%

A
ve

ra
ge

 c
ro

ss
 tr

af
fic

 lo
ad

 o
ve

r

bo
ttl

en
ec

k
lin

k
(%

)

50 74.73 ms

0.07%

79.58 ms

0.04%

84.86 ms

0.05%

90.05 ms

0.02%

94.88 ms

0.07%

10 20 30 40 50 60
60

80

100

120

140

160

180

Packetization (ms)

90
th

 p
er

ce
nt

ile
 e

nd
-to

-e
nd

 d
el

ay
 (m

s)

70%
65%
60%
50%

Avg cross
traffic load

Figure 2-5 Plot of end-to-end delay for bottleneck link of 512 Kbps

 18

Table 2-5 Delay and loss performance for bottleneck link of 768 Kbps

 Packetization (ms)

 10 15 20 25 30

85 230.23 ms

4.93%

248.33 ms

4.14%

259.03 ms

4.30%

269.96 ms

4.15%

279.69 ms

4.28%

80 155.31 ms

1.52%

162.12 ms

1.23%

168.39 ms

1.28%

171.26 ms

1.38%

176.39 ms

1.15%

75 121.67 ms

0.74%

121.41 ms

0.66%

122.81 ms

0.57%

126.47 ms

0.54%

129.80 ms

0.72%

70 83.89 ms

0.31%

86.77 ms

0.28%

90.82 ms

0.17%

95.64 ms

0.31%

99.93 ms

0.15%

A
ve

ra
ge

 c
ro

ss
 tr

af
fic

 lo
ad

 o
ve

r

bo
ttl

en
ec

k
lin

k
(%

)

60 69.37 ms

0.12%

74.00 ms

0.17%

79.02 ms

0.12%

83.92 ms

0.10%

88.88 ms

0.12%

10 20 30 40 50 60

60

80

100

120

140

160

180

200

220

Packetization (ms)

90
th

 p
er

ce
nt

ile
 e

nd
-to

-e
nd

 d
el

ay
 (m

s)

80%
75%
70%
60%

Avg cross
traffic load

Figure 2-6 Plot of end-to-end delay for bottleneck link of 768 Kbps

 19

The effect of packetization on the performance can be seen from the plot of end-to-

end delay. Whereas the voice frame loss rate is relatively the same, the plot of the end-to-

delay illustrates a concave curve; except in the case of the bottleneck link of 768 Kbps,

which will be discussed later. The concave curve demonstrates that the important inherent

trade-off of packetization. Recall that end-to-end delay consists of two delay components:

packetization delay and network delay, more specifically queuing delay. Packetization

appears to have an impact on both of the delay components, but in an opposite direction.

While small packetization is desirable in order to minimize packetization delay, it results in a

large bandwidth requirement. This causes no problem if sufficient network bandwidth is

available, i.e. the network is lightly loaded. In this case, the plot of end-to-end appears as a

straight line because it is mainly affected by packetization delay. Thus, it is best to use the

smallest packetization. If the network load increases, such a large bandwidth requirement

becomes a problem because it causes an increase in the network delay. Due to congestion at

the bottleneck queue, the increasing network delay can be much higher than the saving in

delay when using small packetization. As a consequence, the end-to-end delay remains high.

This happens to the left side of the inflection point. On the other hand, large packetization

may not be desirable because of the increased packetization delay, but it can reduce the

bandwidth requirement. This, in turn, could help to avoid congestion and minimize network

delay. A problem is that, if not used properly, too large packetization may unnecessarily

contribute more delay to the end-to-end delay. This can be seen to the right of the inflection

point, in which the end-to-end delay is directly affected by packetization delay. The plot of

end-to-end delay suggests that optimizing packetization can help the VoIP flow to achieve

the highest possible performance. The packetization is optimal when the network delay is

minimized and there is no excess packetization delay. This result is consistent with the

mathematical analysis and experiment study in [16].

Consider the network load factor. As the offered load to the bottleneck link increases,

the overall end-to-end delay increases more dramatically. This is primarily due to the effect

of queuing delay. As the offered load increases, network bandwidth becomes less available.

It is necessary for the optimal packetization to be larger in order to reduce the bandwidth

requirement even more, to match the decreasing available bandwidth. This shows that the

 20

optimal packetization is not stationary, but instead varies depending on the current network

condition.

Not shown in the plot of end-to-end delay, Table 2-2, 2-3, and 2-4 include the delay

performance when the voice frame loss rate is more significant, at higher offered load. It can

be seen that the end-to-end delay as a function of packetization does not exhibit the concave

curve as mentioned earlier. Instead, smaller packetization gives a smaller delay, while larger

packetization gives a higher delay. This happens because the effect of packet loss takes over

the effect of queuing delay. With small packetization, the bandwidth requirement could be

larger than the available network bandwidth. It would have resulted in a very high delay if

the bottleneck link had an infinite queue size. In reality, routers and switches have a limited

size buffer. As the bottleneck link is based on FIFO scheduling and drop-tail queuing,

excessive loss as experienced by the VoIP flow means that the cross traffic encounters the

same excessive loss as well. Therefore, as more packets are dropped at the bottleneck, it

shortens the queue length and results in a lower delay. This shows that the effect of

packetization that exhibits as the concave curve happens only when packet loss does not

cause a significant impact. When the network becomes congested, excessive packet loss is

another factor that can affect the network delay, and hence the end-to-end delay.

The factor of the significance of VoIP traffic plays an important role in determining

the effectiveness of optimizing packetization. From Figure 2-3, 2-4, 2-5, and 2-6, the

significance of VoIP traffic is 25%, 12.5%, 6.25%, and 4.16%, respectively. We can see from

the figures that, when the significance of VoIP traffic is high, optimizing packetization can

considerably help to reduce the end-to-end delay. As the significance of VoIP traffic gets

smaller, the benefit of optimizing packetization decreases. In Figure 2-6, the plot of end-to-

end delay does not exhibit the concave curve, regardless of how congested the network is. In

such an environment with a large bottleneck link, optimizing packetization appears to give no

benefit. This happens because the VoIP traffic is a small fraction of the bottleneck link. The

change in the bandwidth requirement cannot make a significant impact on the overall traffic

load, hence relatively causing no impact on the network delay. Accordingly, examine Table

2-5, given an offered load, the delay and loss performance appears to be the same, regardless

of the packetization. Note that the table shows the end-to-end delay. The network delay can

be found by which it is the end-to-end delay less the corresponding packetization delay. In

 21

this situation, the performance is largely determined by the overall traffic load. Therefore,

small packetization should be used in order to avoid an unnecessary extra delay caused by

the packetization delay.

The findings above suggest that using pre-determined packetization cannot allow the

highest possible performance. This is because the performance depends upon several factors,

including packetization, network load, significance of VoIP traffic, and packet loss.

Adaptive-rate VoIP can take advantages of the findings by attempting to optimize

packetization based on observing the current network condition. In a situation where the

VoIP flow does not make up a significant amount of traffic, the performance is dominated by

the overall traffic load. Adaptive-rate VoIP can optimize the performance by operating at the

smallest packetization. Although this may cause a large bandwidth requirement, it has little

impact on the increasing network delay. Using small packetization ensures to eliminate

unnecessary delay due to packetization.

Because the VoIP bandwidth requirement is relatively small, the significance of VoIP

traffic becomes the factor that limits the effectiveness of optimizing packetization.

Nonetheless, the significance of VoIP traffic can increase when multiple VoIP flows share

the same bottleneck link. In such a case, we expect that optimizing packetization can yield

the benefit to all the VoIP flows. To confirm this presumption, we extend our simulation

study by using a broadband bottleneck link of 1.544 Mbps, with the offered load around 60

percent on average. We increase the number of VoIP flows across the network. In each case,

we observe the delay and loss performance. Hence, the performance is studied under two

factors: packetization and the number of VoIP flows. The result is shown in Table 2-6, and

accordingly the plot of end-to-end delay is shown in Figure 2-7. Each cell in the table

includes the average of the 90th percentile of end-to-end delay from the corresponding flows

(on the top), and the average of voice frame loss rate from the corresponding flows (on the

bottom).

 22

Table 2-6 Delay and loss performance in the case of multiple VoIP flows

 Packetization (ms)

 10 15 20 25 30

8 131.34 ms

1.67%

126.89 ms

0.74%

119.01 ms

0.49%

115.10 ms

0.43%

114.82 ms

0.42%

7 121.43 ms

1.01%

107.80 ms

0.58%

102.39 ms

0.42%

101.61 ms

0.31%

102.92 ms

0.27%

6 104.10 ms

0.58%

90.65 ms

0.33%

89.63 ms

0.24%

90.11 ms

0.22%

94.08 ms

0.23%

5 84.37 ms

0.36%

79.23 ms

0.27%

81.75 ms

0.21%

85.02 ms

0.17%

89.40 ms

0.20%

N
um

be
r o

f
V

oI
P

flo
w

s a
cr

os
s

th
e

ne
tw

or
k

4 72.62 ms

0.26%

73.37 ms

0.23%

77.12 ms

0.18%

81.56 ms

0.13%

86.38 ms

0.18%

10 20 30 40 50 60
60

70

80

90

100

110

120

130

140

Packetization (ms)

90
th

 p
er

ce
nt

ile
 e

nd
-to

-e
nd

 d
el

ay
 (m

s)

8 Flow s
7 Flow s
6 Flow s
5 Flow s
4 Flow s

VoIP Flow s

Figure 2-7 Plot of end-to-end delay in the case of multiple VoIP flows

 23

As expected, Table 2-6 and Figure 2-7 show the same pattern of result as in the

previous simulation. Due to the high speed bottleneck link, a couple of VoIP flows can be

minority traffic in which the performance is dominated by the overall traffic load. The

concave curve starts to appear when four VoIP flows share the same bottleneck. That is, the

VoIP traffic becomes significant enough to have an impact on the network. The significance

of VoIP traffic increases as the number of VoIP flows increases. With the increasing number

of VoIP flows, the network also becomes more congested. Optimizing packetization helps to

reduce the overall VoIP bandwidth requirement. This in turn minimizes congestion, and

results in reducing the end-to-end delay. This simulation shows that, in a high speed network,

we can still benefit from optimizing packetization, if multiple VoIP flows make up a

significant level of traffic load. This is particularly true in a mostly VoIP network, but not the

public Internet.

2.4 Summary

This chapter addresses a fundamental issue of adaptive-rate VoIP. VoIP typically has

a fixed bandwidth requirement. The question is how to make VoIP to be able to vary the

bandwidth requirement; in other words, to transmit packets at variable rates. A common

approach to this question is to use variable rate speech coders. Here, we propose an

alternative of using packetization as a means to vary the bandwidth requirement of VoIP. We

begin by studying the relationship between packetization and bandwidth requirements.

Whereas the effective voice bandwidth (or the output bitrate of the coder) is fixed, the needed

overhead bandwidth is a decreasing function of packetization. Hence, the network bandwidth

requirement, which is the sum of the voice and overhead bandwidth, is also a decreasing

function of packetization. Therefore, by varying packetization, we can adjust the bandwidth

requirement. The advantage of using packetization is that the output voice frames from the

speech coder are not affected by, and are independent to, the rate adaptation by packetization.

Thus, rate adaptation is likely to be transparent to the user.

The primary goal of this chapter is to study the effect of packetization on VoIP

performance. This study answers the question whether or not adaptive-rate VoIP based on

packetization can actually help to optimize the performance. The simulation result shows that

 24

the VoIP performance is mainly affected by three factors: packetization, network load, and

significance of VoIP traffic. The effect of packetization is illustrated in the concave curve of

the plot of end-to-end. The concave curve also shows the inherent trade-off of packetization.

Namely, small packetization is usually preferred for minimal incurred packetization delay.

But, because of a large bandwidth requirement, it has a potential to cause congestion, which

could result in increasing end-to-end delay. On the other hand, when the network becomes

congested, large packetization can reduce the bandwidth requirement, which could help to

minimize the congestion and reduce the end-to-end delay. However, using too large

packetization may incur unnecessary extra delay due to packetization. Optimizing

packetization allows us to vary the bandwidth requirement to match the available network

bandwidth. When network congestion is minimized, the VoIP flow can achieve the highest

possible performance.

The network load factor basically affects the overall delay and loss performance.

When the network load increases, available bandwidth becomes less available. The optimal

packetization needs to be larger in order to reduce the bandwidth requirement even more to

match the decreasing network bandwidth. The factor of the significance of VoIP traffic plays

a role in determining the effectiveness of optimizing packetization. The VoIP flow must

make up a significant level of traffic load so that it can have an impact on the network.

Otherwise, the performance would be dominated by the other traffic. In a situation where the

VoIP flow is minority traffic, using the smallest packetization is suggested because it causes

no excess packetization delay. Although this may cause a large bandwidth requirement, it has

little impact on the increasing network delay.

Because VoIP performance depends upon several factors, it is clear that using pre-

determined packetization cannot allow the highest possible performance. The findings from

this study can be very useful and provide insights about when and how adaptive-rate VoIP

can improve the performance. Adaptive-rate VoIP can take advantages of optimizing

packetization by observing the current network condition and then respond properly. This

study also demonstrates the feasibility of adaptive-rate VoIP based on packetization.

However, in order to build an adaptive-rate VoIP system, observing the state of the network

becomes the next challenge that must be accomplished. Because the VoIP sender and

receiver are typically not time synchronized, it is almost impossible to observe the packet

 25

delay; unless we use an external source that provides a synchronized timing. Observing the

state of the network is thus limited to the commonly used packet loss and delay variation. In

the next chapter, we focus on the issue of detecting the state of the network. We propose a

measurement methodology that allows adaptive-rate VoIP to be able to observe the full

spectrum of the network characteristics, including network delay, available network

bandwidth, packet loss, and etc.

Chapter 3

Sync & Sense: Measurement Methodology
for Network State Detection and Delay Assessment

Unreliable and unpredictable voice quality is a major problem for VoIP. The

underlying cause of the problem is that packet-switched networks, including the Internet,

only provide best-effort service, which offers no guarantees regarding delay, loss, and

bandwidth. Under such an environment, VoIP needs to be flexible and adaptable in order to

gain the most from whatever the available resources. For example, a VoIP system may

observe alternate routes and choose the optimal one for transmitting the packets. A VoIP

system may be equipped with a control mechanism that attempts to adjust the bandwidth

requirement to match the available network bandwidth. Detecting the state of the network is

an essential component that allows this adaptability. In other words, a VoIP system needs to

be able to know the characteristics of the network before it can react upon them. Because

VoIP is delay-sensitive, detecting the state of the network must serve the objective of

acquiring the delay characteristics, particularly the one-way network delay. This, however, is

a daunting task. The challenge lies in the fact that the Internet implicitly enforces the end-to-

end principle. This means the endpoints are expected to operate independently, without

support from the network. Because the VoIP sender and receiver have their own independent

clock, without external synchronized timing, it is almost impossible to measure one-way

network delay.

Here, we propose a novel measurement methodology for VoIP called Sync & Sense

of periodic stream that can overcome such a challenge. Sync & Sense has the ability to

virtually synchronize the transmission and reception timing of the VoIP session, which

enables the measurement of one-way network delay, more specifically the queuing delay

component. Because queuing delay is highly variable and typically unpredictable, being able

26

 27

to measure the queuing delay is very crucial. It allows Sync & Sense to estimate the

propagation delay and obtain the full spectrum of the delays of the VoIP session. In addition,

Sync & Sense has the ability to estimate the available network bandwidth. Along with packet

loss, Sync & Sense can provide a wider range of indications about the network condition.

Our simulation study shows that the Sync & Sense measurement methodology is highly

accurate and robust to packet loss. Therefore, Sync & Sense can offer tremendous benefits to

VoIP. Adaptive-rate VoIP can significantly benefit from Sync & Sense by which it can have

the clear picture of the network condition, and react properly to optimize the performance.

3.1 Background and Related Research

As is well-known, packet-switched networks, including the Internet, provide best-

effort service that offers no guarantees for packet delivery. The transmitted packets could be

delayed, lost, duplicated, corrupted, etc. It is the application’s responsibility to ensure that the

transmission of the packets is successful and meets the quality of service requirement. The

Internet, in fact, implicitly enforces the end-to-end principle. That is, the endpoints are

expected to operate independently, without assistance from the network. At the same time,

the endpoints are expected to be smart enough to have mechanisms for error detection, flow

control and congestion control. Detecting the state of the network is an essential component

because it allows the control to be able to observe the network condition before making a

control decision. For data applications, detecting the state of the network can be simple. Data

traffic is loss-sensitive, but delay-insensitive. Thus, detecting packet loss is effective and

sufficient as it serves the objective of avoiding excessive packet loss. This allows less

retransmission and results in optimal throughput. The packets may experience considerable

delay, but it is really not an interest of the control. The major concern is to ensure the

reliability of the transmission and the integrity of the data.

VoIP typically uses UDP as its transport protocol, with no control mechanism. Voice

packets are transmitted at a constant rate regardless of the state of the network. In dealing

with the unpredictable behavior in the network characteristics, researchers aim to enhance

VoIP with some kind of control. Adaptive-rate VoIP is expected to be smart enough to detect

the state of the network, and adapt the transmission accordingly for optimal performance.

 28

VoIP traffic is delay-sensitive and has a strict delay requirement. ITU-T Recommendation

G.114 [17] specifies the one-way transmission time of 150 milliseconds or less for acceptable

voice quality. In fact, both delay and loss are critical to VoIP. The perceived quality is

generally determined by one-way end-to-end delay for echo and conversational interactivity,

and packet loss for voice clarity [18]. Therefore, detecting the state of the network for VoIP

must serve the objective of minimizing delay and avoiding excessive packet loss. That is, the

control must observe and consider both one-way end-to-end delay and packet loss for its

decision making.

Most of the previous works on adaptive-rate VoIP [6, 19, 20] primarily focus on

using packet loss as a means for detecting the state of the network. A number of works take

the next step by incorporating measurements into a perceived quality assessment scheme. In

Qiao et al’s work [5], speech quality is predicted from packet loss rate using a PESQ

(Perceptual Evaluation of Speech Quality) based method. Mohamed et al [21] focus on

developing a neural network based automaton that measures speech quality in real-time. The

authors build a database comprised of a set of samples of distorted speech signals (based on

packet loss rate and loss distribution) and their associated subjective quality scores (i.e.

MOS). The database is used to train the neural network to assess speech quality.

What the previous works mentioned above have in common is that they seem to

address only voice quality as indicated by packet loss, but not conversational interactivity as

indicated by one-way end-to-end delay. Delay matters significantly, but is often ignored. In a

sense, packet loss seems to be the only available implicit indication that allows the endpoint

to detect the state of the network. Given the end-to-end principle, the endpoints are expected

to operate without assistance from the network. Since the VoIP sender and receiver have

their own independent clock, without an external synchronized timing, it is almost impossible

to measure the one-way delay. This might be a reason why one-way delay is ignored in the

previous works. Although round-trip delay can be obtained, one-way delay is often not well

approximated by dividing the round-trip delay in half [22]. This is due to the fact that the

network is asymmetric. While RTP (and its associated RTCP) is primarily designed to satisfy

the needs of real-time applications including VoIP, one must be aware that RTP is a protocol

framework that is deliberately not complete [8]. The RTP specification includes only

functions expected to be common across all the applications for which RTP would be

 29

appropriate. Relying on RTP and RTCP may not be sufficient in detecting the state of the

network. Specifically, RTP does not provide a mechanism for measuring one-way network

delay. Therefore, in order to serve the objective of detecting the state of the network, VoIP

needs an additional mechanism that can observe the one-way network delay.

3.1.1 The Extent of RTP to Network State Detection

This section examines the RTP specification (RFC 1889) [8] with an aim to describe

the extent of RTP to detecting the state of the network. As stated in the specification, RTP

(Real-time Transport Protocol) provides end-to-end network transport functions suitable for

applications transmitting real-time data such audio or video. However, RTP itself does not

provide any mechanism to ensure timely delivery, or provide congestion control or other

quality of service guarantees. RTP represents a new style of protocol following the two

philosophies of the end-to-end principle and application level framing. The end-to-end

principle [4] implies that the endpoints are intelligent and network-aware. This is well suited

to the Internet as a dumb network. The concept of application level framing [23] states that,

because different applications have different needs, the application has the best knowledge of

its data to make a decision about how that data should be transported. It is clear from the

specification that, whereas VoIP is based on RTP, additional mechanisms may still be

required in order to meet the needs of the application. Below, we summarize the functions

provided by RTP that allows the application to detect the state of the network. The

observation of one-way network delay is not mentioned in the specification and is the

problem that must be addressed by the application itself.

The primary functions provided by RTP include payload type identification, sequence

number, and timestamp. The sequence number is used by the receiver to restore packet

sequence as well as detect packet loss. It is important to note that the timestamp is not a

reading of the system clock. It does not facilitate the receiver to measure one-way network

delay of the RTP packet. The timestamp is used by the receiver to schedule the playout of the

voice. The initial value of the timestamp is randomly chosen. The timestamp reflects the

sampling instant of the first octet of payload in the RTP packet.

 30

As RTP provides delivery of real-time data, it is augmented by its associated control

protocol called RTCP. RTCP provides periodic reports along with the RTP session. While

RTP packets are sent every few milliseconds, RTCP reports are sent on the scale of seconds.

Five types of the RTCP packet are defined in the specification: receiver report (RR), sender

report (SR), source description (SDES), membership management (BYE), and application-

defined (APP). RR is of interest here as it provides reception quality feedback. The reception

quality feedback can be useful for applications like adaptive-rate VoIP. The RR packet

format includes the LSR and DLSR fields that allow the sender to calculate the round-trip

time. LSR (last sender report) is the timestamp of the most recent SR packet received by the

receiver. DLSR (delay since last sender report) is the delay between receiving the last SR

packet and sending this RR packet. When receiving an RR packet, the sender subtracts the

LSR field from the current time, which gives the delay between sending the SR packet and

receiving this RR packet. To get the round-trip time, the sender subtracts the DLSR field to

remove the offset introduced by the delay in the receiver. The process is shown in Figure 3-1,

an example taken from the RTP specification.

Figure 3-1 Round-trip time calculation as provided by RTCP

 31

Besides the round-trip time, the RR packet format includes the following fields that

provide information about the network condition. The cumulative number of packets lost

field provides long-term packet loss measurements. The fraction lost field gives a short-term

measurement from a single RR packet. While packet loss tracks persistent congestion, the

inter-arrival jitter field can provide a measure of transient congestion. Since the inter-arrival

jitter field is only a snapshot of the jitter at the time of a report, it is necessary to analyze a

number of reports over time.

3.1.2 End-to-End Measurement Techniques

Besides using RTCP, end-to-end measurement techniques may be used to detect the

state of the network. Without support from the network, these techniques utilize some kind of

probe packets. The sender transmits probe packets of a certain pattern through the network to

the receiver. Along the path, the probe packets experience variable delays incurred by the

network. This causes a changing pattern of the probe packets, for instance, the interval gap

between consecutive packets and packet loss. By observing the incoming probe packets, the

receiver may infer the state of the network. End-to-end measurement techniques may be

classified into three major categories: variable packet size probing, packet pair/train probing,

and periodic stream probing. Below is a brief review of the techniques. A more

comprehensive survey can be found in [25].

Variable packet size probing aims to measure the capacity of each hop along the path.

The technique measures the round-trip time (RTT) from the sender to each hop of the path as

a function of the probe packet size. The technique uses the Time-To-Live (TTL) field of the

IP header to force the probe packets to expire at a particular hop. The router at that hop

discards the probe packets, and returns an ICMP packet of time-exceeded error message back

to the sender. The sender uses the received ICMP packet to measure the RTT to that hop. The

RTT to each hop consists of three delay components in the forward and reverse paths:

transmission, propagation, and queuing delays. Whereas multiple probe packets are

transmitted, the technique assumes that at least one of those packets, together with the ICMP

reply, will experience no queuing delay. Thus, the minimum RTT can be measured. Using

variable packet sizes allow the technique to estimate the link capacity because the

 32

transmission delay is a function of packet size and link capacity, whereas both the

transmission delay and packet size are known. The following tools are based on the variable

packet size probing technique: Patchar [49], Clink [50], and Pchar [51].

Packet pair/train probing is a technique to measure the end-to-end capacity of the path.

Packet pair means that two packets of the same size are transmitted back-to-back. Assuming

no cross traffic at the moment, when the packet pair goes through the link, they are separated

(or dispersed) because of the limited link capacity. Along the end-to-end path, the dispersion

is at most caused by the bottleneck link. Thus, the receiver can estimate the end-to-end path

capacity by observing the dispersion of the packet pair. Packet pair techniques were

originally discussed in the classic papers by Jacobson [31] and Bolot [26]. A problem of the

packet pair technique is that, in reality, cross traffic can affect the dispersion of the packet

pair and cause underestimation and overestimation of the path capacity. Several works

propose to use statistical methods to filter out erroneous measurements due to the effect of

cross traffic [38, 52, 53]. Packet train is a method that extends the packet pair technique by

using multiple back-to-back packets. Available tools based on the packet pair/train probing

technique are Bprobe [52], Nettimter [54], and Pathrate [55].

Periodic stream probing is a technique to estimate end-to-end available bandwidth.

The sender transmits a periodic stream of equal-sized packets at a given rate. If the

transmission rate is higher than the available bandwidth, the stream will induce congestion

and cause an increasing trend in one-way network delay. At the same time, the receiver

would observe the reception rate that is lower than the transmission rate. Based on the

observations in the one-way delay or reception rate, the technique alters different

transmission rates in order to search the given transmission rate that matches the available

bandwidth. To observe one-way delays, the transmitted packets need to be time-stamped. A

problem is that the endpoints are not clock-synchronized, which could affect the delay

observations and the algorithm decision. Available tools based on the periodic stream

probing technique are Pathload [56], TOPP [57], and PathChirp [58].

 33

3.2 Sync & Sense Measurement Methodology

As discussed earlier, the RTP specification includes only functions expected to be

common across all the applications for which RTP would be appropriate. The reception

quality feedback of RTCP provides some information that can be useful for adapting the

transmission rate. However, the reception quality feedback appears not to be able to serve the

objective of detecting the state of the network for VoIP. Specifically, it lacks the

measurement of one-way network delay, which is an important factor that determines the

delivered quality. Thus, it is up to the application, such as adaptive-rate VoIP, to come up

with a solution to measure the one-way network delay. Although there are several one-way

delay measurement tools available, they rely on having an implementation of a synchronized

clock between the endpoints, either using GPS (Global Positioning System) or NTP

(Network Time Protocol). Examples of these tools are OWAMP (One-way Active

Measurement Protocol) [59] and PingER (Ping End-to-end Reporting) [60]. These tools

practically provide active measurement to study about the network delay and performance,

rather than to be embedded in VoIP for the purpose of adaptability. Packets must be time-

stamped both on the sender and receiver, thereby allowing accurate measurements to be

made. The use of timestamp, however, is a drawback because it can affect the RTP packet

format. The important drawback is that this approach requires support from the network.

Since the Internet implicitly enforces the end-to-end principle, the endpoints are expected to

be independent from the network. In reality, we could not assume that the endpoints are

equipped with a synchronized timing source. Given such a constraint, measurement of one-

way network delay becomes a real challenge.

Here, we propose a novel measurement methodology called Sync & Sense of periodic

stream. Sync & Sense overcomes the challenge by which it can virtually synchronize the

transmission and reception timing of the VoIP session. This allows Sync & Sense to be able

to measure one-way network delay. Along with packet loss, Sync & Sense is a methodology

that can truly achieve the objective of detecting the state of the network for VoIP. Note that

Sync & Sense does not synchronize the clocks of the endpoints such as provided by NTP.

The NTP protocol [24] specifies the message format, which includes timestamps. A few

primary reference clocks are required by which the gateways use NTP to cross-check the

clocks and synchronize them to local hosts. Sync & Sense is designed to have the desirable

 34

properties. First, Sync & Sense follows the end-to-end principle, which is necessary for a

system to work over the Internet. Sync & Sense performs on the receiving end by which it

simply observes incoming RTP packets and makes measurements. Sync & Sense does not

require any support from the network, making it independent of the network environment.

Second, Sync & Sense is based on passive (or non-intrusive) measurement. Sync & Sense

measures one-way network delay from the incoming RTP packets that can reflect a true

quality-of-service of the VoIP session. In contrast to active measurement methods, Sync &

Sense does not introduce extra traffic that could affect the VoIP session. Third, Sync & Sense

detects the state of the network in a continuous manner, as opposed to a snapshot manner.

This allows Sync & Sense to provide the clear picture of the network condition. Making

measurements for every single incoming RTP packet is the finest grain available.

As indicated by its name, the two phases of the Sync & Sense methodology are

synchronizing and sensing. The synchronizing phase is the ability to virtually synchronize

the transmission and reception timing of the VoIP session, based solely on observing the

incoming RTP packets. The sensing phase is the ability to measure dispersion times of the

incoming RTP packets and further find the delay characteristics. Initially, Sync & Sense

attempts to synchronize timing. When synchronized, the measurement can begin. The

synchronizing phase also runs throughout the session, which constantly reaffirms the

synchronization. This allows accurate measurements for each individual packet. Although the

synchronizing phase leads to the sensing phase, it is more intuitive to convey the idea in the

reverse order. Below, we describe the sensing phase, followed by the synchronizing phase.

3.2.1 Sensing Phase

Sync & Sense is considered in the same category of periodic stream probing because

it utilizes the RTP packets themselves as the probe packets. Sync & Sense is different from

existing works in several ways. As designed for VoIP, Sync & Sense performs passive

measurement and does not introduce additional probing traffic to the network. Sync & Sense

leaves the RTP frame format intact, and does not require time-stamping the packets in order

to observe one-way network delays. Importantly, Sync & Sense can virtually synchronize the

timing of the VoIP session, allowing measurement of one-way network delay. The RTP

 35

packet format contains information that allows Sync & Sense to learn about the transmission

pattern. In other words, Sync & Sense can have the probing pattern without requiring any

initial setup. For example, an arriving RTP packet has payload size of 160 bytes. The RTP

header indicates the G.711 PCM codec type. The characteristic of the PCM codec is that it

outputs a sample frame of 1 byte every 0.125 milliseconds. Using this fact, Sync & Sense can

calculate the packetization, which equals to 20 milliseconds (160 bytes * 0.125 ms). This

means that the probing pattern is a periodic stream of 200-byte packets transmitted every 20

milliseconds. And, the transmission rate is 80 Kbps ((40 bytes of IP/UDP/RTP headers + 160

bytes of payload) / 20 ms). The ability to know the probing pattern upon receiving a RTP

packet is an important advantage, particularly for adaptive-rate VoIP. This is because the

transmission rate of adaptive-rate VoIP constantly changes. Since no initial setup is needed,

Sync & Sense can continuously monitor the state of the network, even when the transmission

(or the probing pattern) changes.

Figure 3-2 illustrates the dynamics of VoIP packets that traverse the network. When

the network is lightly loaded, the packets could experience a very minimal queuing delay.

Hence, the packets arrive at the receiver with the same interval gap as the inter-departure gap

(or the packetization delay), as shown in Figure 3-2 (a). In this case, the network delay

includes only propagation, transmission, and router processing delays. Assuming the end-to-

end path does not change over the course of the session, every packet experiences the same

network delay. Figure 3-2 (b) shows a condition where at least one link along the path is

heavily loaded. The packets experience variable queuing delay in addition to the constant

delays of propagation, transmission, and router processing. Given that the sender and

receiver have no synchronized clock, the receiver is somewhat limited to obtain the network

characteristics. Besides packet loss, the receiver may observe inter-arrival gaps between the

incoming packets. Since there is no timing reference that the receiver can use, the receiver is

restricted from making any measurements. For example, from Figure 3-2 (b), packet #3

experiences a queuing delay, but inter-arrival gap #3 appears smaller than the inter-departure

gap. The receiver may infer a congestion condition, but would not be able to measure the

queuing delay.

 36

Figure 3-2 Dynamics of VoIP packets when the network is (a) lightly and (b) heavily loaded

Let’s assume for now that the first arriving packet experiences no queuing delay. The

sensing phase of Sync & Sense works as follows. Sync & Sense learns the packetization

delay (or the inter-departure gap) upon receiving a RTP packet, as mentioned earlier. Sync &

Sense uses the packetization delay to construct the transmission timing on the receiver.

Figure 3-3 illustrates how Sync & Sense observes the incoming packets and makes

measurements. The intervals between the dashed lines on the receiver represent the

constructed transmission timing. Since the sender and receiver have no synchronized clock,

Sync & Sense has no way to measure the constant delays of propagation, transmission, and

router processing. The transmission and reception timing are virtually synchronized by which

there is an unknown offset of such delays.

 37

Figure 3-3 Dispersion gaps as measured by Sync & Sense

As shown in the figure, Sync & Sense ‘senses’ the state of the network by measuring

what we call dispersion gap, instead of inter-arrival gap. The dispersion gap describes how

the inter-departure gap (or packetization delay) has dispersed when the packet arrives at the

receiver. The dispersion gap can be written as:

 ΔD = Dpack + Dqueue (3-1)

The above equation shows that the dispersion is caused by queuing delay. When the network

is lightly loaded, the dispersion gap is relatively equal to the packetization delay. As

mentioned earlier, once receiving a RTP packet, Sync & Sense knows the packetization delay.

Sync & Sense can simply calculate the queuing delay from the above equation. Being able to

measure the queuing delay is crucial. This allows Sync & Sense to determine other delay

components, as well as to estimate the available network bandwidth. Note that the

assumption made above that the first arriving packet has zero queuing delay is unrealistic. In

the next section, we describe how Sync & Sense can synchronize the transmission and

reception timing when the first arriving packet does experience a queuing delay.

 38

3.2.2 Synchronizing Phase

The Internet traffic is known to have a characteristic of bursty behavior; more

specifically, with a long-tail distribution. This can be seen in a large number of empirical and

theoretical studies of the Internet traffic, for example in [27, 28, 48]. The implication of the

bursty behavior is that, when packets travel across the network, some of those packets may

experience a very minimal queuing delay. Based on this implication, Sync & Sense employs

a unique technique that can virtually synchronize the transmission and reception timing of

the VoIP session. We use Figure 3-4 to demonstrate the synchronizing phase of Sync &

Sense. Figure 3-4 (a) shows a typical pattern of one-way network delay when packets travel

across the network. Figure 3-4 (b) is the corresponding plot between packet sequence number

and arrival time (in milliseconds) as the receiver monitors the arriving packets.

40

60

80

100

120

N
et

w
or

k
D

el
ay

 (m
s)

0 10 20 30 40 50
0

50

100

150

200

250

300

350

400

450

500

Packet Sequence Number

A
rri

va
l T

im
e

(m
s)

an epoch of
excursion

inter-arriv al gap

queuing
delay

dispersion
gap

Figure 3-4 (a) Typical pattern of one-way network delay and (b) the corresponding plot as the

receiver monitors the arriving packets

 39

Assume the packets in the figure are based on RTP, and are transmitted with a

packetization delay of 10 milliseconds. Also, we assume that the end-to-end routing path

does not change over the course of the session. That is, every packet experiences the same

constant delays of propagation, transmission, and router processing, plus the variable queuing

delay. From Figure 3-4 (b), we can draw a diagonal baseline, given at least two lowest points

in the arrival time. This diagonal baseline represents the transmission timing because the

packets are transmitted as a periodic stream. For example, packet #5 and #10 are transmitted

at time 50 and 100 milliseconds, respectively. As the observations of the packet arrival time

represent the reception timing, Figure 3-4 (b) shows that both the transmission and reception

timing are synchronized on the same time scale. It is, however, a virtual synchronization

because it ignores the unknown constant latency of the forwarding path, which includes

propagation, transmission, and router processing delays. This synchronization allows Sync &

Sense to make measurements of the queuing delay. From the figure, the points (or packet

sequence numbers) in which their arrival times are on the baseline indicate that the packets

experience zero queuing delay. The points in which their arrival times are above the baseline

indicate that the packets experience a queuing delay. For a given sequence number, the

queuing delay can be measured, which is equal to the time difference between the arrival

time and the baseline.

Although it may look easy to draw a baseline for the synchronization as shown in

Figure 3-4 (b), algorithmically, it is not simple. This is because the algorithm has to look

forward for the incoming packets, having no idea when it will be able to draw the baseline.

Below, we describe how the Sync & Sense algorithm searches and constructs such a baseline.

As Sync & Sense monitors the arriving packets, it observes the inter-arrival gaps and uses

them to construct an epoch of excursion of queuing delay. Consider packets #5 to #25 in the

figure, the epoch begins with a packet having a very minimal queuing delay, followed by

several packets having variable queuing delays, and ends with a packet having a very

minimal queuing delay. We denote here a valid complete epoch of excursion of queuing

delay (E) is the time from an arriving packet with a very minimal queuing delay to the next

arriving packet with a very minimal queuing delay. Let the first arriving packet be packet #0

and the following arriving packets be labeled packet #i, where i = 1, 2, 3,…, n. Accordingly, i

 40

also denotes the number of inter-arrival gaps. An ongoing epoch of excursion can be found as

the sum of inter-arrival gaps (ΔA), or

 E = ∑ (3-2)
=

Δ
n

1
A

i

i

Assume, for now, that the first arriving packet experiences a very minimal queuing delay.

The baseline for the transmission timing can be constructed when a valid complete epoch of

excursion is found. That is, as illustrated in Figure 3-4 (b), given two arriving packets with a

very minimal queuing delay, the baseline can be drawn. Once constructed, the baseline is

also extendable for use with the future arriving packets. Algorithmically, an ongoing epoch

of excursion is found complete when the following condition is satisfied:

nDpack – ε ≤ E ≤ nDpack (3-3)

The above condition basically means that a complete epoch of excursion must be a multiple

of packetization delays. This can also be seen in Figure 3-3, which shows a valid complete

epoch. As a matter of fact, the probability of a packet having a very minimal queuing delay,

when traversing the network, is very low. Rather, the arriving packets would at least have a

minimal queuing delay. In order to compensate for such a minimal queuing delay, we need to

allow an error margin (ε) in Equation 3-3. Specifically, a complete epoch of excursion is

allowed to be a little bit smaller than a multiple of packetization delays.

Our simulation study of the Sync & Sense algorithm shows the error margin

parameter, as small as one millisecond, can play an important role in the Sync & Sense

performance. With the error margin, the baseline for the transmission timing gets a little bit

larger, like a band. Thus, more of the arriving packets with a minimal queuing delay can be

on the baseline. This makes it easier for Sync & Sense to find a complete epoch of excursion,

which helps to speed up the synchronization. In addition, using the error margin causes

epochs of excursion to be shortened. As a result, Sync & Sense can find more of the

complete epochs. This allows Sync & Sense to reaffirm the synchronization more often,

which helps to ensure accurate measurements. Note that we could also use the error margin

 41

such that a complete epoch of excursion is allowed to be a little bit larger than a multiple of

packetization delays (or E ≤ nDpack + ε). Although this helps to catch more of the arriving

packets with a minimal queuing delay as well, it may allow the measurement error to

accumulate. When we only allow a complete epoch to be a little bit smaller than a multiple of

packetization delays (or nDpack – ε ≤ E), we restrict measurement error accumulation. If a

complete epoch is found that is smaller than a multiple of packetization delays, Sync & Sense

adjust the transmission timing to a new lower baseline. Over time, such an adjustment can

lower the baseline even more, which helps to reduce the measurement error to the minimal.

As mentioned above, the condition for a complete epoch of excursion (Equation 3-3)

allows Sync & Sense to construct the synchronized timing. However, a complete epoch may

be found to be invalid, specifically if the first arriving packet does not actually have a very

minimal queuing delay. For example, from Figure 3-4 (b), consider if the first arriving packet

is packet #10. When packet #16 arrives, a complete epoch can be observed, but it is invalid.

This results in a false baseline of the transmission timing, and false measurements for the

arriving packets that follow. This kind of situation can be prevented. Besides Equation 3-3,

extra conditions are needed to ensure that a complete epoch of excursion is found valid. Sync

& Sense actually declares the synchronization when the following conditions are satisfied:

• A complete epoch of excursion must comprise at least three inter-arrival gaps.

• Sync & Sense finds two consecutive epochs of excursion.

When the network is loaded, packets usually arrive at the receiver unequally spaced. It is

possible that, by chance, a couple of arriving packets may have their inter-arrival gaps equal

to the packetization delay. This may be observed as a complete epoch of excursion, but it is

not valid. The former condition ensures that a complete epoch is long enough, which can

eliminate the probability of encountering such a problem. Similarly, it is possible that a

complete epoch of excursion, which is not valid, may happen accidentally. By looking for

two consecutive epochs, the latter condition dramatically reduces the probability of observing

invalid epochs of excursion. Since network delay is highly variable, it is considerably less

likely that two consecutive complete epochs of excursion may happen by chance; unless such

complete epochs are valid. Our simulation study shows that the above strategy works

 42

remarkably well. When the synchronization is declared, the following observed epochs allow

Sync & Sense to reaffirm the synchronization over the course of the session.

Note that the synchronizing process is not affected by packet loss. From Figure 3-3, if

packet #2 is lost, upon receiving packet #3, Sync & Sense can observe the inter-arrival gap

that begins from the arrival of packet #1. Hence, this observed inter-arrival gap accounts for

both packet #2 and #3. By checking the packet sequence number, Sync & Sense knows that it

must advance the transmission timing accordingly by two packetization delays. This can also

be seen in Equation 3-2. Note that i is counted based on the packet sequence number. In the

event of packet loss, the observed inter-arrival gap (ΔA) includes more than one of the

individual inter-arrival gaps. Thus, i must advance in accordance to the number of lost

packets. Therefore, once the synchronization is declared, the measurements can go on

without interruption from the event of packet loss.

A practical issue for VoIP is silence suppression, which is a process of not

transmitting the actual voice packets when one of the parties on a call is not speaking.

Silence suppression allows bandwidth savings because, typically, one party in a conversation

speaks at any one time. Silence suppression works by which the sender transmits comfort

noise packets when silence periods are detected. RFC 3389 [29] describes RTP payload

format for comfort noise. The comfort noise payload, also known as a Silence Insertion

Descriptor (SID) frame, includes a description of the noise level. The receiver uses this SID

frame to drive the Comfort Noise Generator (CNG) and produce an appropriate amount of

comfort noise. As mentioned earlier, the synchronizing phase of Sync & Sense relies on

observing the periodic stream of incoming packets. Enabling silence suppression on the VoIP

session could affect Sync & Sense if the comfort noise packets are not transmitted in a

periodic manner. Sync & Sense would need to resynchronize the timing every time the voice

packets are resumed, which could significantly degrade the synchronization performance.

However, the transmission rate of the comfort noise packets is implementation specific. To

ensure continuous synchronization for Sync & Sense, the comfort noise packets must be

transmitted periodically in the same rate as the voice packets.

We assume earlier that the first arriving packet has a very minimal queuing delay and,

when a valid complete epoch of excursion is found, the baseline for the transmission timing

can be constructed. But, we really cannot assume this. The remaining issue is how Sync &

 43

Sense determines whether or not the first arriving packet has a very minimal queuing delay,

as for the beginning of the epoch. Initially, Sync & Sense assumes the first arriving packet

has a very minimal queuing delay, even it actually does not. When the following packets

arrive, Sync & Sense starts monitoring the ongoing epoch of excursion, using Equation 3-2.

For each arriving packet, Sync & Sense computes the dispersion gap, which can be written as:

 ΔD = E – (n – 1)Dpack (3-4)

= – (n – 1)D∑
=

Δ
n

1
A

i

i
pack (3-5)

As we can see from Equation 3-1, when the arriving packet has zero queuing delay, the

dispersion gap is equal to the packetization delay. In other words, the dispersion gap must be

equal or larger than the packetization delay. Sync & Sense uses this fact to prove whether or

not the assumption, that the first arriving packet has a very minimal queuing delay, is correct.

If it is true, we will never find a dispersion gap smaller than the packetization delay. That is,

in Figure 3-4 (b), the first arriving packet is on the diagonal baseline. Specifically, Sync &

Sense uses the following condition to test each arriving packet:

 ΔD ≥ Dpack – ε (3-6)

The above condition must hold for all arriving packets. When an arriving packet’s dispersion

gap violates Equation 3-6, it means that the assumption is wrong: the first arriving packet

does not have a very minimal queuing delay. Sync & Sense abandons the ongoing epoch and

starts the synchronizing process over again. The last arriving packet is assumed to have the

minimal queuing delay and the new epoch begins. If the assumption is correct, Equation 3-6

will never be violated, the ongoing epoch will be found complete eventually. For the same

reason as in Equation 3-3, the error margin (ε) is allowed in Equation 3-6.

Figure 3-5 shows the flow chart of the Sync & Sense algorithm. Table 3-1

demonstrates the synchronization process of Sync & Sense. The error margin used in this

example is one millisecond. The data in the table is in accordance with Figure 3-4 (b).

 44

Assume the first arriving packet is packet #10, which does not experience a very minimal

queuing delay. The alternating background colors in the table represent the observed epochs

of excursion.

Figure 3-5 Flow chart of the Sync & Sense algorithm

 45

Table 3-1 Demonstration of the synchronization process of Sync & Sense

Packet

Inter-
arrival

Gap (ΔA)

Epoch
(E)

Dispersion
Gap (ΔD) Notes

10 0 0 0 Start new epoch
11 49.375 49.375 49.375
12 3.750 53.125 43.125
13 2.500 55.625 35.625
14 2.500 58.125 28.125
15 2.500 60.625 20.625
16 2.500 63.125 13.125
17 3.750 66.875 6.875 Eq.3-6 violated; Start new epoch
18 2.500 2.500 2.500 Eq.3-6 violated; Start new epoch
19 19.687 19.687 19.687
20 2.500 22.187 12.187
21 19.688 41.875 21.875
22 3.750 45.625 15.625
23 2.500 48.125 8.125 Eq.3-6 violated; Start new epoch
24 2.500 2.500 2.500 Eq.3-6 violated; Start new epoch
25 2.500 2.500 2.500 Eq.3-6 violated; Start new epoch
26 53.178 53.178 53.178
27 3.750 56.928 46.928
28 2.500 59.428 39.428
29 2.500 61.928 31.928
30 2.500 64.428 24.428
31 19.688 84.116 34.116
32 3.750 87.866 27.866
33 19.687 107.553 37.553
34 2.500 110.053 30.053
35 2.500 112.553 22.553
36 3.750 116.303 16.303
37 3.750 120.053 10.053 Eq.3-3 satisfied; Valid complete epoch
38 9.8051 9.8051 9.8051
39 10.000 19.8051 9.8051

40 10.000 29.8051 9.8051 Eq.3-3 satisfied; Valid complete epoch;
Synchronization declared

 46

3.3 Performance Study

Performance is the most important issue for Sync & Sense. Because Sync & Sense

needs to spend some time to construct the synchronized timing before making measurements,

the question needed to be answered is how long it takes for Sync & Sense to get

synchronized. Another performance question is how accurate the measurements made by

Sync & Sense are. In the following, we conduct a simulation study that demonstrates and

evaluates the performance of Sync & Sense. The error margin is an important parameter in

the Sync & Sense algorithm. The study also attempts to determine the optimal value of the

error margin that gives the best performance. In addition, we study the factors that can affect

the performance of Sync & Sense.

3.3.1 Simulation Setup

The performance study is conducted using the Network Simulator 2 or ns-2 [12]. The

simulations that follow are based on the network topology in Figure 3-6. The number of

nodes varies as this is a factor under study. All nodes implement FIFO scheduling and drop-

tail queuing. All links, except the last hop link, have capacity of 10 Mbps. The last hop link is

set to have a limited capacity of 1.544 Mbps, so as to create the bottleneck. The propagation

delay from the sender to the receiver is fixed at 40 milliseconds, regardless of the number of

hops. In other words, the sum of propagation delays from all the links is always equal to 40

milliseconds. To make the simulation more realistic, each link has a fair amount of cross

traffic, which accounts for 60 percent load on average. This level of cross traffic load also

introduces a decent amount of packet loss. The cross traffic is generated as Long Range

Dependent (LRD) by using nine Pareto sources with the shape parameter (α) set to 1.5.

Packet sizes of the cross traffic are distributed following the studies in [14, 15]; 60% of the

packets are 40 bytes, 25% are 550 bytes, and 15% are 1500 bytes. Note that, in terms of load

distribution, about 7% of the load is 40-byte packets, 35% is 550-byte packets, and 58% is

1500-byte packets. The Sync & Sense algorithm is implemented at the VoIP receiver. The

VoIP flow is based on the ADPCM codec, with the packetization delay of 10 milliseconds.

 47

Figure 3-6 Simulation network topology

3.3.2 Sync & Sense Demonstration

The objective of this section is to demonstrate the performance of Sync & Sense. We

closely monitor the cross traffic on the bottleneck link, and accordingly examine how well

Sync & Sense makes measurements of the queuing delay. Figure 3-7 shows the results from

an instance of the simulations, where the network topology consists of 6 hops. In this

simulation, the error margin parameter of Sync & Sense is set to one millisecond. Figure 3-7

(c) shows the actual one-way network delay of the VoIP packets that arrive at the receiver.

Accordingly, Figure 3-7 (b) shows the packets lost in the network. This simulation

environment allows us to easily obtain the actual queuing delay of each individual packet

since the measurements are made within the same time domain. In order to evaluate the

accuracy of Sync & Sense, we present the result in the form of measurement error, as shown

in Figure 3-7 (a), which is the difference between the queuing delay measured by Sync &

Sense and the actual queuing delay.

 48

-2

-1

0

M
ea

su
re

m
en

t E
rro

r (
m

s)

 P
ac

ke
t

lo
ss

0 2000 4000 6000 8000 10000 12000

50

100

150

200

250

Packet sequence number

N
et

w
or

k
de

la
y

(m
s)

Figure 3-7 Sync & Sense demonstration

The figure demonstrates that Sync & Sense can provide impressive measurement

accuracy. The measurement error is, in overall, less than 0.25 milliseconds, given that packet

loss is persistent and the network delay is highly variable as high as hundreds of milliseconds.

Negative error means that Sync & Sense underestimates the measurements. This is because

the baseline for the transmission timing is constructed using the arriving packets with a

minimal, but not actually zero, queuing delay. For the very first arriving packets, the

measurements have error up to 2 milliseconds. Our examination shows that this is a direct

result of the error margin parameter. Using a large error margin allows a wider error in the

measurements, but Sync & Sense can get synchronized quicker, within tens of the arriving

 49

packets. As seen from the figure, the measurement errors get narrower as time goes by. This

is because, when Sync & Sense observes more arriving packets, it can find new baselines for

the transmission timing with smaller and smaller error. Specifically, when a dispersion gap is

found less than the packetization delay (violating Equation 3-6), such a dispersion gap

constitutes a better and more accurate baseline. Eventually, no dispersion gap ever violates

Equation 3-6 again. That is, the baseline has reached the bottom that reflects the actual

transmission timing.

3.3.3 Contributing Factors to the Performance

The synchronization process of Sync & Sense relies on the assumption that some

arriving packets may experience a very minimal queuing delay when traveling from the

sender to the receiver. This allows Sync & Sense to construct the synchronized timing and

make measurements. Factors that could impact this assumption include the number of hops

between the sender and receiver and the underlying cross traffic. As the number of hops

increases, the chance that the arriving packets experience a very minimal queuing delay

decreases. In other words, Sync & Sense would observe fewer arriving packets with a very

minimal queuing delay. This could potentially affect the performance of Sync & Sense.

Besides the number of hops, the error margin parameter is another factor that has a direct

impact on the performance. Using a large error margin helps Sync & Sense to get

synchronized easier and faster, but incurs a higher error in the measurements. On the contrary,

using a small error margin ensures minimal measurement error, but it could take a long time

to get synchronized. In the following, we conduct an extensive simulation study to examine

these contributing factors to the performance of Sync & Sense. We also attempt to determine

the optimal value of the error margin parameter that could overall yield the best performance.

The simulation setup is based on the network topology in Figure 3-6. The number of

hops between the sender and receiver is the factor under study. We repeat the simulation by

modifying the network topology with increasing number of hops from 2, to 4, 6, 8, and 10,

respectively. Each hop link has an offered load of 60 percent on average, which introduces an

observable amount of packet loss. This ensures that each link is fairly congested. In order to

study the error margin factor, the Sync & Sense algorithm is modified to produce multiple

 50

copies of the measurements, based on different error margin values. The value of the error

margin ranges from zero to 3 milliseconds, with the increment step of 0.1 milliseconds. Each

simulation runs for 120 seconds and is repeated 100 times with different random cross traffic.

Two performance metrics are used to evaluate Sync & Sense: synchronization and

accuracy. In the synchronization metric, we consider the number of packets leading to

synchronization, which determines how fast Sync & Sense can get synchronized and start to

provide the measurements. Besides the initial synchronization, it is possible that Sync &

Sense may lose its synchronization and needs to reconstruct the synchronized timing. During

the course of the session, some of the arriving packets may be in the synchronizing phase.

Hence, we also consider synchronization rate, which refers to the percentage of the arriving

packets in which the measurements can be made. The accuracy metric refers to the

measurements of queuing delay made by Sync & Sense, in comparison to the actual queuing

delay obtained by the simulation timestamps. In other words, we use measurement error to

characterize the accuracy. Care is especially taken when considering measurement error. The

conventional method of using the mean of measurement errors to assess the accuracy could

be misleading. A considerable number of small errors could weigh down or ‘hide’ some large

errors in the measurements. Instead, we use the percentile of the x-ms accuracy. For example,

a reading of 99th percentile of the 1-ms accuracy means that 99 percent of all the

measurements are accurate with possible errors of 1 millisecond or less. This method is more

effective and can truly assess the accuracy of Sync & Sense. In addition, we also consider the

maximum error, which reveals the worst case scenario of error in the measurements.

Figure 3-8, 3-9, 3-10, 3-11, and 3-12 are the simulation results when the number of

hops between sender and receiver are 2, 4, 6, 8, and 10, respectively. Each figure includes the

plots of performance metrics versus the error margin parameter: (a) synchronization rate, (b)

number of packets leading to synchronization, (c) maximum error, and (d) percentile of the x-

ms accuracy. The plot of the number of packets leading to synchronization is displayed with

the 0.5 (median) and 0.8 percentile, so as to reflect its long-tail distribution. As we have seen

from Figure 3-7, the measurement error is caused by underestimation. The plot of maximum

error and percentile of the x-ms accuracy is displayed with absolute measurement error, with

no negative sign. The plot of the percentile of the x-ms accuracy includes 1-ms and 0.1-ms

benchmarks, with the addition of 10-µs and 1-µs for higher precision.

 51

60

70

80

90

100

S
yn

ch
ro

ni
za

tio
n

ra
te

 (%
)

0

50

100

150

200

250

300

350

400

450

500

N
um

be
r o

f p
ac

ke
ts

 le
ad

in
g

to
 s

yn
ch

ro
ni

za
tio

n 0.5 percentile
0.8 percentile

0

1

2

3

M
ax

im
um

 e
rr

or
 (m

s)

0 0.5 1 1.5 2 2.5 3

60

70

80

90

100

Error margin (ms)

Ac
cu

ra
cy

 (%
)

1-ms acc
0.1-ms acc
10-us acc
1-us acc

Figure 3-8 Performance of Sync & Sense when the number of hops is 2

 52

60

70

80

90

100

S
yn

ch
ro

ni
za

tio
n

ra
te

 (%
)

0

50

100

150

200

250

300

350

400

450

500

N
um

be
r o

f p
ac

ke
ts

 le
ad

in
g

to
 s

yn
ch

ro
ni

za
tio

n 0.5 percentile
0.8 percentile

0

1

2

3

M
ax

im
um

 e
rro

r (
m

s)

0 0.5 1 1.5 2 2.5 3

60

70

80

90

100

Error margin (ms)

Ac
cu

ra
cy

 (%
)

1-ms acc
0.1-ms acc
10-us acc
1-us acc

Figure 3-9 Performance of Sync & Sense when the number of hops is 4

 53

60

70

80

90

100

S
yn

ch
ro

ni
za

tio
n

ra
te

 (%
)

0

50

100

150

200

250

300

350

400

450

500

N
um

be
r o

f p
ac

ke
ts

 le
ad

in
g

to
 s

yn
ch

ro
ni

za
tio

n 0.5 percentile
0.8 percentile

0

1

2

3

M
ax

im
um

 e
rro

r (
m

s)

0 0.5 1 1.5 2 2.5 3

60

70

80

90

100

Error margin (ms)

Ac
cu

ra
cy

 (%
)

1-ms acc
0.1-ms acc
10-us acc
1-us acc

Figure 3-10 Performance of Sync & Sense when the number of hops is 6

 54

60

70

80

90

100

S
yn

ch
ro

ni
za

tio
n

ra
te

 (%
)

0

50

100

150

200

250

300

350

400

450

500

N
um

be
r o

f p
ac

ke
ts

 le
ad

in
g

to
 s

yn
ch

ro
ni

za
tio

n 0.5 percentile
0.8 percentile

0

1

2

3

M
ax

im
um

 e
rro

r (
m

s)

0 0.5 1 1.5 2 2.5 3

60

70

80

90

100

Error margin (ms)

Ac
cu

ra
cy

 (%
)

1-ms acc
0.1-ms acc
10-us acc
1-us acc

Figure 3-11 Performance of Sync & Sense when the number of hops is 8

 55

60

70

80

90

100

S
yn

ch
ro

ni
za

tio
n

ra
te

 (%
)

0

50

100

150

200

250

300

350

400

450

500

N
um

be
r o

f p
ac

ke
ts

 le
ad

in
g

to
 s

yn
ch

ro
ni

za
tio

n 0.5 percentile
0.8 percentile

0

1

2

3

M
ax

im
um

 e
rro

r (
m

s)

0 0.5 1 1.5 2 2.5 3

60

70

80

90

100

Error margin (ms)

Ac
cu

ra
cy

 (%
)

1-ms acc
0.1-ms acc
10-us acc
1-us acc

Figure 3-12 Performance of Sync & Sense when the number of hops is 10

 56

From the figures, the number of hops between sender and receiver appears to have

little impact on the synchronization rate as long as the error margin parameter is not too small.

Sync & Sense can achieve a synchronization rate as high as 98 percent, even when we

increase the number of hops up to 10 hops. The impact of the number of hops is more evident

when we use a small value of error margin. It can be seen from the figures that, when the

error margin is less than 0.5 milliseconds, the synchronization rate drops significantly when

the number of hops increases. This corresponds to the plot of the number of packets leading

to synchronization, which shows that more of the arriving packets are needed for Sync &

Sense to get synchronized. Note that, in order to provide a clear view of the plots of the

number of packets leading to synchronization, we limit the display of 500 packets at

maximum. Not shown in the plots, when using a small error margin, the median of the

number of packets leading to synchronization could be as high as a few thousand packets,

particularly when the number of hops is large.

The results show that the error margin parameter plays an important role in

determining the synchronization performance. As seen from the figures, using a zero value of

error margin is highly ineffective. Ideally, the Sync & Sense algorithm is based on the

assumption that some of the arriving packets experience zero queuing delay when traveling

from the sender to the receiver. But, in practice when the number of hops increases, the

chance that the arriving packets experience zero queuing delay would be extremely small.

Using a small value of the error margin helps the synchronization performance considerably.

This is because, not only the arriving packets with zero queuing delay, but also the arriving

packets with a minimal queuing delay can be used to construct the synchronized timing. The

plot of the number of packets leading to synchronization reflects the time period in which

Sync & Sense needs to wait for an adequate number of the arriving packets with a minimal

queuing delay for the synchronization. As seen from the figures, the number of packets

leading to packetization drops significantly when we increase the value of the error margin.

In terms of the accuracy performance, the simulation results show that Sync & Sense

can provide impressive measurement accuracy, even when we increase the number of hops

up to 10 hops. As seen from the figures, 99.9 percent of the measurements are accurate

within a possible error of 1 millisecond or less. The impact of the number of hops can be

seen at the maximum error and a higher precision of accuracy (e.g. less than 1 millisecond).

 57

It can be seen from the figures that, when the number of hops increases, the maximum error

increases, as well as the accuracy of the higher precision decreases.

The error margin parameter also plays a key role in the accuracy performance. By

using a small value of the error margin, we choose to use only the arriving packets with a

minimal queuing delay to construct the synchronized timing. Thus, this limits the error to the

minimal. As we have learned earlier, using a relatively larger value of the error margin is

necessary to achieve higher synchronization performance. This allows Sync & Sense to use

the arriving packets, not only with a minimal queuing delay, but also a larger minimal

queuing delay, to construct the synchronized timing. As a consequence, the disadvantage is

accepting more error in the measurements. As seen from the figures, an increasing error

margin has a direct impact on the maximum error.

A conclusion is that the error margin parameter is the controlling factor to the

performance of Sync & Sense. An increasing number of hops between sender and receiver

affects the synchronization performance such that it causes more of the packets to arrive with

a larger minimal queuing delay. Using a relatively larger value of the error margin allows

Sync & Sense to use those arriving packets with a larger minimal queuing delay to construct

the synchronized timing. This, as a result, helps to increase the synchronization performance.

The maximum synchronization performance can be achieved when we use an appropriate

error margin value that matches those arriving packets with a minimal queuing delay.

However, using a larger error margin value accepts more error in the measurements. Because

the error margin parameter has both positive impact on the synchronization performance and

negative impact on the accuracy performance, a compromise value of error margin should be

chosen in order to optimize the performance between synchronization and accuracy. In this

simulation study, given up to 10 hops, the error margin parameter of 1.5 milliseconds is the

smallest value that allows minimal measurement error, while ensuring the highest possible

synchronization. In reality, the actual number of hops is usually unknown. Besides, the

underlying cross traffic is unknown and variable. It would be safer to use a relatively large

value of the error margin. This study also shows that the negative impact to the accuracy is

somewhat contained. As we can see in the case of 10 hops, even with the error margin of 3

milliseconds, 99.9 percent at 1-ms accuracy is still achievable, with limited maximum error.

Hence, a value of the error margin within the range 1.5 to 3 milliseconds is recommended.

 58

3.4 Network State Detection

Given no support from the network, protocols and applications rely on the end-to-end

approach to detect the state of the network. Because endpoints are not typically time

synchronized, the only observations that are commonly available to infer the state of the

network are limited to packet loss and round-trip delay. Such observations work well with

data applications because delay is not a significant issue. On the contrary, VoIP is highly

sensitive to delay, particularly one-way network delay. The problem is that one-way network

delay cannot be measured if the endpoints are not time synchronized. The Sync & Sense

methodology solves this problem. Sync & Sense has the ability to measure one-way network

delay, more specifically the variable queuing delay component, of the packets traveling from

the sender to the receiver. Knowing the queuing delay component is very crucial because it

allows us to connect the dots of the other delay components. The result is that Sync & Sense

can offer the full spectrum of metrics to detect the state of the network. Namely, besides the

commonly used packet loss, Sync & Sense can estimate the available network bandwidth and

assess all the delay components in VoIP. Sync & Sense offers tremendous benefits to VoIP

applications. The extended information about the state of the network allows adaptive-rate

VoIP to make a better control decision to optimize performance. A VoIP agent, including

routers and gateways, could use this extended information to compare alternate routes and

choose the optimal one for transmitting packets. Because the transmitted RTP packets

themselves are used as probe packets, the measurements are in-band, which can reflect the

quality of the VoIP session. The extended information can also be used for management

purposes, for example, to monitor and collect statistics of the routes of the VoIP sessions. In

the following, we describe how the Sync & Sense methodology can be applied to obtain a

variety of information about the state of the network.

3.4.1 Available Bandwidth Estimation

The Sync & Sense methodology utilizes the RTP packets, transmitted periodically, as

the probe packets. Whereas Sync & Sense is implemented on the receiver, it can learn about

the pattern of the probe packets without requiring any initial setup. The codec type identified

in the RTP packet header and the packet size simply allow Sync & Sense to calculate the

 59

transmission rate. Specifically, transmission rate is equal to the packet size divided by the

packetization delay. At the receiver, Sync & Sense monitors the incoming packets and makes

measurements of the dispersion gap. While the packetization delay (or inter-departure gap) is

the interval in which the packets are transmitted; the dispersion gap describes how the inter-

departure gap has dispersed when the packets arrive at the receiver. The dispersion is caused

by the effect of the queue and the underlying cross traffic. Hence, the dispersion gap can

reflect the characteristic of the network. Similar to calculating the transmission rate, Sync &

Sense can calculate the reception rate, which is equal to the packet size divided by the

dispersion gap.

As the dispersion gap reflects the network condition, so does the reception rate. When

the network is lightly loaded, the packets experience a small delay. The dispersion gap of the

arriving packets would be slightly larger than the packetization delay, and the reception rate

would be relatively equal to the transmission rate. On the other hand, when the network is

congested, the packets experience a large and variable delay. The dispersion gap of the

arriving packets would be much larger than the packetization delay, and the reception rate

would be much lower than the transmission rate. We can see that, the reception rate provides

an estimate of available bandwidth of the network. The arriving packets are the probe packets

that sample the network bandwidth. As network congestion increases, the available

bandwidth decreases. As a matter of fact, the reception rate can never exceed the

transmission rate. Sync & Sense is limited to estimate the available bandwidth relative to the

transmission rate.

As mentioned above, the measurement of the reception rate is an effective tool to

sense the state of the network. The difference between the reception rate and the transmission

rate can be used as a measure of congestion. The lower the reception rate, compared to the

transmission rate, the more the congestion. While the reception rate can give an idea of mild

to moderate congestion, the observation of packet loss provides an indication of more serious

congestion. With both the reception rate and packet loss, Sync & Sense can offer the whole

range of detecting the state of the network.

Because the network delay is highly variable, it is usually difficult to make use of raw

observations of the reception rate. For a meaningful interpretation, it is necessary to get rid of

the spikes and find the average of the reception rate. The exponential smoothing method is a

 60

common and widely used technique that averages and predicts the next value on the basis of

a time series of past values. With this method, the moving average of the reception rate can

be calculated from the following equation:

iR = α 1R −i + (1 – α) i

D

P
Δ

 (3-7)

where P is the packet size, including IP/UDP/RTP headers and the payload, ΔD is the

dispersion gap and α is a smoothing factor (0 < α < 1). The exponential smoothing method

takes into account the past values, but the more distant ones have less weight. The α

parameter determines how the weight is distributed. The smaller the value of α, the greater

the weight is given to the more recent observations. A small value of α allows the average to

quickly reflect rapid changes in the reception rate, but it may be vulnerable to the spikes. On

the other hand, a large value of α is better to get rid of the spikes, but the average may be

slow to reflect the instantaneous reception rate. The exponential smoothing method is also

used in TCP for estimating the average round-trip time. A value for α between 0.8 and 0.9

was suggested in the TCP specification [30], which has proven to spread out the weight

efficiently. In the following simulation, we use the value α = 0.875, as suggested in

Jacobson’s classic congestion paper [31], which examines this issue extensively.

 Below, we present a simulation result that demonstrates the ability of Sync & Sense

to estimate the available bandwidth, or the reception rate. We use the same network topology,

with 10 hops, as well as parameters as described in section 3.4.1. The VoIP flow is based on

the ADPCM codec, with the packetization delay of 10 milliseconds. So, the transmission rate

is 64 Kbps. The Sync & Sense algorithm uses the error margin parameter of 1.5 milliseconds.

Figure 3-13 (a) shows the cross traffic on the bottleneck link. The envelope line is the

average cross traffic on a larger time scale of one second. The shaded area within the

envelope line is the cross traffic on a smaller time scale, which is sometimes bursty beyond

the bottleneck link capacity of 1.544 Mbps. Figure 3-13 (c) and (d) shows the packets lost in

the network and the actual one-way network delay, respectively. Figure 3-13 (b) shows the

moving average of the reception rate as measured by Sync & Sense.

 61

0.0

0.5

1.0

1.5

2.0

2.5

C
ro

ss
 tr

af
fic

 o
n

bo
ttl

en
ec

k
lin

k
(M

bp
s)

0

20

40

60

A
ve

ra
ge

re
ce

pt
io

n
ra

te
 (K

bp
s)

 P
ac

ke
t

lo
ss

0 2000 4000 6000 8000 10000 12000

50

100

150

200

Packet sequence number

N
et

w
or

k
de

la
y

(m
s)

Figure 3-13 Available bandwidth estimation

The figures show that the moving average reception rate is largely a mirror of the

cross traffic. In other words, the reception rate reflects the available network bandwidth, as

well as the changes in the underlying traffic. When the link utilization is low, the bottleneck

link can accommodate the bandwidth required by the VoIP flow. Thus, Sync & Sense

observes the reception rate that is fairly close to the transmission rate. Note that the reception

rate remains below the transmission rate because of the cross traffic imposed on the other

hop links as well. Accordingly, when the cross traffic load increases and the link utilization

gets close to its full capacity, Sync & Sense observes that the reception rate drops

dramatically. It can be seen from the figures that the average reception rate is a mirror of the

 62

network delay as well, because the increased network delay is basically caused by limited

available bandwidth. Consider Figure 3-13 (c), packet losses mostly occur when the

bottleneck link is congested; whereas some packet losses may be caused by other hop links.

Because Sync & Sense observes both the reception rate and packet loss, it is possible to

distinguish the packet losses incurred on the bottleneck link. These packet losses happen

when the reception rate drops dramatically. This information can be beneficial to adaptive-

rate VoIP, for example, to respond to different packet losses appropriately and efficiently.

This simulation demonstrates that the reception rate does not only provide an estimate of the

available bandwidth, but is also an effective tool to detect the state of the network.

3.4.2 Propagation Delay Estimation and Delay Assessment

The main objective of this section is to demonstrate how the Sync & Sense

methodology can be applied to estimate the propagation delay, without requiring

synchronization between the sender and receiver. Besides, we also go through different types

of delay. This allows us to demonstrate that Sync & Sense can enable an agent or application

to be able to assess all the delay components in VoIP. We begin with network delay, which

consists of four components: transmission, router processing, queuing and propagation delay.

Router processing delay is the time it takes for the router to prepare the packet for delivery.

Router processing delay is normally insignificant because it is very small relative to the other

delays. So, router processing delay can be negligible in the calculation. Transmission or

serialization delay is the time required to put all the bits in the packet for transmission. It is

equal to the packet size divided by the transmission link capacity. In a high speed network,

transmission delay can be very small and negligible. Transmission delay on a limited

bandwidth access link may be relatively large. But, because the access link is usually close or

directly connected to the endpoints, the link capacity is often known by the sender. Thus,

transmission delay can be estimated.

Queuing delay is the time that packet waits in a buffer to be transmitted. It depends

on several factors, including the egress link capacity, the size of the buffer, the router

scheduling policy, and the amount of congestion. Because the underlying cross traffic can

change rapidly and dramatically, queuing delay is typically highly variable and unpredictable.

 63

We have demonstrated in the previous section that Sync & Sense can overcome the

difficulties in obtaining the queuing delay. With Sync & Sense, queuing delay of each

arriving packet can be measured. Propagation delay is the time it takes for the packet to

travel along the physical path. It is equal to the path distance between the sender and receiver

divided by the speed of the electronic signal. Depending on the type of medium, the

electronic signal typically travels at 2/3 of the speed of light. Since the endpoints normally do

not know the distance, propagation delay cannot be calculated. In a synchronized system, we

can obtain the network delay by using the timestamps when the packet leaves the sender and

arrives at the receiver. Such a measurement includes all the four delay components. To

identify the propagation delay, further analysis is usually needed. Below, we present a novel

mechanism based on Sync & Sense that can estimate propagation delay without requiring

synchronization.

Recall that Sync & Sense can virtually synchronize the transmission and reception

timing by which there is an unknown offset that includes propagation, transmission and

router processing delay. Since router processing delay is negligible, the unknown offset is

reduced to the sum of propagation and transmission delays. The mechanism requires that the

sender logs the time when the packet is transmitted. Upon receiving the packet, the receiver

is required to return an acknowledgement immediately to the sender. The acknowledgement

can be as simple as a UDP packet. The sender then logs the time when receiving the

acknowledgement packet. This allows the sender to obtain the round-trip time of the

transmitted packets. The observed round-trip time (RTT) can be broken down into the delay

components as follows:

RTT = (Dtran + Dprop + Dqueue) + (+) (3-8) ack

tranD + ack
propD ack

queueD

That is, the observed RTT consists of two sets of transmission, propagation, and queuing

delays, the former for the RTP packet on the forwarding path and the latter for the

acknowledgement packet on the reverse path.

Several delay components in the Equation 3-8 are known. The sender can calculate

Dtran. Similarly, on the receiver, can be calculated and Dack
tranD queue can be measured as

provided by Sync & Sense. The acknowledgement functions to relay both and Dack
tranD queue

 64

back to the sender. Due to asymmetric routing, the RTP and acknowledgement packet may

not travel on the same physical path. This analysis assumes that the difference in the distance

would not make a significant difference between Dprop and . This is because, in

calculating propagation delay, the denominator of the speed of light is extremely large. Thus,

we assume that the sum of D

ack
propD

prop and is equal to 2Dack
propD prop. By rearranging the terms, we

define as the observed RTT, excluding the known delay components, or: TRT ′

TRT ′ = RTT – (Dtran + Dqueue +) (3-9) ack

tranD

TRT ′ = 2Dprop + (3-10) ack

queueD

Thus, Equation 3-10 is a reduced form of Equation 3-8, where Dprop and are still

unknown.

ack
queueD

The same assumption used by Sync & Sense can be applied here. Whereas the

underlying traffic has bursty behavior, when the acknowledgement packets travel across the

network, some of those packets may experience a very minimal queuing delay. As the sender

monitors the incoming acknowledgement packets, it can estimate the propagation delay by

looking for the minimum of the observations of TRT ′ , or:

 Min { , 1TRT ′ 2TRT ′ , 3TRT ′ ,…, nTRT ′ } ≈ 2Dprop (3-11)

As soon as the sender receives an acknowledgement packet with a minimal queuing delay,

 in Equation 3-10 is eliminated. Then, the propagation delay can be estimated, as the

minimum divided by two. A question with this scheme is that the sender would not

know whether the observed

ack
queueD

TRT ′

TRT ′ has the minimum value. As a consequence, it is possible

that may be incorrectly perceived as an integral part of the propagation delay. Such a

problem can be eliminated if the sender observes sufficient number of the incoming

acknowledgement packets. Due to the fact that the Internet traffic typically has a long-tail

distribution, a large majority of the incoming acknowledgement packets would only

experience a small queuing delay. This ensures that the problem, if it happens, would be very

limited. In our simulation study in section 3.4.3, we see that a few hundred arriving packets

ack
queueD

 65

are needed for Sync & Sense to get synchronized. Recall that the synchronizing phase of

Sync & Sense requires that two epochs of excursion must be found. Looking for the

minimum is even easier because only one minimum TRT ′ TRT ′ is needed. Therefore, it can

be expected that the minimum TRT ′would appear within tens of the arriving packets.

Figure 3-14 Mechanism for estimating propagation delay

Note that, with the above mechanism, the propagation delay is estimated on the

sender side. Whereas a VoIP session consists of two separate RTP flows, the receiver also

performs the same mechanism when receiving the acknowledgement packet from the sender.

It is also necessary that the acknowledgement packet from the sender includes Dtran. This

allows the receiver to calculate the network delay, which is the sum of the three delay

components: queuing delay as provided by Sync & Sense, propagation delay as calculated

from the above mechanism, and transmission delay as relayed by the sender’s

acknowledgement. Figure 3-14 illustrates the mechanism for estimating propagation delay

and the exchange of information between the sender and receiver. The figure shows two

 66

separate flows of the VoIP session: the solid lines for the sender’s flow and the dashed lines

for the receiver’s flow. We use superscript (S) and (R) to distinguish the delay components

between the sender flow and the receiver flow, respectively.

The calculated network delay is associated with the packet level. In VoIP, it is

necessary to assess the delay in the voice frame level. This is because sample voice frames

produced from the codec are not transmitted immediately. They spend time waiting to be

loaded into the same packet before leaving the sender. The delay incurred in this process is

called packetization delay. To the receiver, packetization delay can be simply calculated by

identifying the codec type in the RTP packet header. The calculation was discussed in section

3.3.1. Here, we define one-way end-to-end delay of a voice frame as the sum of the network

delay and the packetization delay. It is the time from which the voice frame is generated by

the codec to which it arrives at the receiver and is ready to be decoded.

Being able to measure the network delay and the end-to-end delay provides a

substantial benefit to VoIP. A VoIP agent, including routers and gateways, could use this

information to evaluate alternate routes and choose the optimal one for the transmission.

Whereas the variation in network delay can also be used as an indication of congestion, the

measured network delay also helps to improve the calculation of the delay variation, called

jitter. The RTP specification [8] is limited to use inter-arrival jitter, because it is assumed that

the sender and receiver are not time synchronized. Inter-arrival jitter is defined as the mean

deviation (smoothed absolute value) of the difference in the inter-arrival gap compared to the

inter-departure gap for a pair of packets. The measured network delay allows the calculation

of absolute jitter, which is the mean deviation of the queuing delay for an arriving packet.

In dealing with delay variation, the receiver uses a jitter buffer (also called playout

buffer). A jitter buffer holds early arriving packets so that late arriving packets can still be in

time; and thus all arriving packets can be played out smoothly. Because the current network

condition is not known a priori, an adaptive jitter buffer is preferred over a fixed jitter buffer.

An adaptive jitter buffer attempts to match the jitter delay to the delay characteristic of the

network. There is no standard algorithm for calculating the jitter delay; examples can be

found in [32, 33, 34]. The objective is to keep the jitter delay as small as possible, while at

the same time minimizing packets being dropped by the jitter buffer itself. A problem with

adaptive jitter buffers is that the algorithm tries to reach what it sees as an optimal jitter delay

 67

without being aware of the actual end-to-end delay. The consequence is that packets could be

unnecessarily dropped by the buffer, even if the actual delay is still below the delay budget.

As the end-to-end delay can be measured, Sync & Sense allows the receiver to combine the

unique benefits of both adaptive and fixed jitter buffers. When the observed delay never

exceeds the delay budget, it is better to use a fixed jitter buffer. This can prevent any packet

being dropped by the jitter buffer. Also, a fixed jitter buffer does not cause distortion on the

playout as is the case with an adaptive jitter buffer. The receiver may use an adaptive jitter

buffer when the observed delay appears higher than the acceptable level. In this case, it is

necessary to compromise some packet loss in order to reduce the end-to-end delay.

Below, we summarize all delay components of a VoIP session in a grand equation of

mouth-to-ear delay:

 Dm2e = Dcodec + (Dpack + (Dtran + Dprop + Dqueue)) + Djit (3-12)

where network delay Dnet = Dtran + Dprop + Dqueue, and end-to-end delay De2e = Dpack + Dnet.

Mouth-to-ear delay accounts for the total latency of a voice sample from the speaker’s mouth

on one end to the listener’s ear on the other end. Codec delay includes algorithmic delays for

compression (on the sender) and decompression (on the receiver). Codec, packetization, and

transmission delays are constant. Propagation delay is also constant, and can be estimated by

using the Sync & Sense based mechanism. Queuing delay is variable, which can be measured

by Sync & Sense. Depending on the type of jitter buffer, jitter delay can be constant or

variable. As we have discussed so far, Sync & Sense enables the receiver to be able to assess

all the delay components in Equation 3-12, without requiring synchronization between the

sender and receiver. Note that processing delays in the endpoints and routers are omitted in

the equation. These delays are typically negligible, but they could vary depending on the

utilization of the processor. It is usually difficult to measure these delays. In the above

equation, these delays would be perceived as part of the propagation delay.

 68

3.5 Dealing with Network Pathologies

Network pathologies are unusual or unexpected behaviors of the network, for

example, out-of-order delivery, packet replication, and packet corruption. As shown

previously in the performance study, Sync & Sense can provide accurate measurements of

queuing delay, under a common network assumption. Namely, a network is a series of FIFO

queue servers in which packets get queued behind each other while in transit. Under this

assumption, the network delay has its integrity intact. Therefore, the observed network delay

can be useful, as it allows Sync & Sense (and any methods) to infer the network condition.

Unfortunately, several network pathologies violate this assumption. This restricts the use of

the observed network delay because it may be misleading. Below, we identify network

pathologies that could be potential problems for Sync & Sense.

Packet reordering can occur any time when a route changes, if the new route has a

lower propagation delay than the old one. Sync & Sense can easily detect this problem by

observing out-of-sequence packets. Since a decrease in propagation delay due to the route

change would be perceived by Sync & Sense as falling queuing delay, it is necessary for

Sync & Sense to abandon the existing synchronized timing. Then, Sync & Sense can start the

synchronizing phase again and get synchronized based on the new route. Although packet

reordering may allow Sync & Sense to infer as a route change, the problem of a route change

itself can be undetectable in many cases. If the new route has a lower propagation delay than

the old one, packet reordering may not happen. This is because cross traffic also has an

impact on the delay of the packets. If the new route has a higher propagation delay than the

old one, packet reordering certainly does not occur. This is undetectable and Sync & Sense

may perceive the increased delay as additional queuing delay. Another potential problem is

multi-channel links, which may operate in parallel. A router may balance its outgoing load

across two different links. In this case, a packet may go out over the first channel and the

next packet may go out over the other channel. They don’t queue behind each other. Multi-

channel links violate the assumption that there is a single end-to-end forwarding path.

As the network becomes more heterogeneous, wireless networks are often part of the

forwarding path. Due to relatively low quality of the wireless link, several mechanisms are

employed in order to improve the performance. In many wireless networks, the data link

layer may perform error recovery, such as retransmission, to provide reliability of the

 69

wireless link to the upper layer. This could alter the integrity of the network delay

assumption. As a matter of fact, since voice packets are based on UDP, they should be

discarded in the event of packet loss, even in the link level. Furthermore, in cellular networks,

handoff typically results in more delay. The additional delay is introduced since it takes time

to forward packets to the new base station and to perform the handover procedure.

The solution to the above mentioned problems lies in detecting whether the integrity

of the network delay assumption is violated. This is not an easy task, given that Sync &

Sense operates in an end-to-end fashion, with no explicit support from the network. In fact,

any end-to-end control mechanism is vulnerable to these network pathologies. For instance,

TCP relies on the round-trip time observations in its timeout and retransmission strategies.

Misleading delay observations could easily affect TCP performance. In case of Sync & Sense,

if the problem is momentary, it can be resolved upon detecting it. When a route change is

detected, Sync & Sense can simply abandon the existing synchronized timing and get

synchronized again based on the new route. In other cases, such as in wireless environments,

the underlying assumption may be completely broken. Upon detecting this, it would be safer

to disable any measurement by Sync & Sense. Nevertheless, we believe that there are

solutions to deal with the network pathologies. Further research is needed to study each

individual of the network pathologies and explore the options to deal with them.

3.6 Detecting Route Change

In this section, we present a solution that allows Sync & Sense to deal with the

problem of a route change. A route change, in which the new route has a lower propagation

delay, than the old one, is not a problem for Sync & Sense. Such a route change usually

results in packet ordering. Thus, Sync & Sense can simply detect it by observing out-of-

sequence packets. Nonetheless, packet reordering may not occur, due to the effect of cross

traffic. The Sync & Sense algorithm itself has the ability to detect and adjust if the

propagation delay has decreased. Referring to Figure 3-4 (b), epochs of excursion are always

on or above the baseline for the transmission timing. That is, the propagation delay is

considered equal to zero. A decrease in propagation delay, due to a route change, would

cause Sync & Sense to observe the epoch of excursion running relatively below the baseline.

 70

As soon as the route changes, the dispersion gap of the arriving packets would violate

Equation 3-6. This causes Sync & Sense to abandon the ongoing epoch of excursion. Sync &

Sense then restarts the synchronization process with the arriving packet that violates

Equation 3-6. When Sync & Sense observes two valid complete epochs of excursion, the

synchronization is declared. This results in a new lower baseline that reflects the decrease in

propagation delay. On the contrary, an increase in propagation delay due to a route change is

a problem for Sync & Sense. It is undetectable because epochs of excursion are still above

the baseline for the transmission timing and would never violate Equation 3-6. In the

following, we present an extension to the Sync & Sense algorithm, which is aimed to solve

the problem when the new route has a higher propagation delay.

3.6.1 Extended Sync & Sense Algorithm

When the propagation delay increases, the ongoing epoch of excursion will never end.

In other words, it will never come back down to the baseline for the transmission timing. The

basic idea of the solution is that, when the propagation delay increases, there will be a new

higher baseline that can complete the ongoing epoch of excursion. The goal of the algorithm

is to find such a new higher baseline, which only exists if the route has changed. We denote

the baseline for the transmission timing as the primary. This primary baseline is based on

Equation 3-6 in which the dispersion gap of an arriving packet must be equal or greater than

the packetization delay. This condition allows Sync & Sense to run a search to find the first

arriving packet with zero queuing delay. Once Sync & Sense declares the synchronization, it

runs another search for the secondary baseline. This secondary baseline is used to find

complete epochs of excursion that are above the primary baseline, if the propagation delay

has increased. Since the synchronization has been declared, the queuing delay for each

arriving packet can be calculated. Hence, the secondary baseline can run based on the raised

queuing delay. For illustration purpose, we assume the first arriving packet as seen by the

secondary baseline has the queuing delay of 10 milliseconds, which is assumed to be due

totally to an increase in propagation delay. In other words, this arriving packet has zero

queuing delay based on the new route, but it is perceived as having 10-millisecond queuing

delay based on the old route (using the primary baseline). If the mentioned assumption is

 71

correct, the arriving packets that follow must have the queuing delay equal or greater than 10

milliseconds. Therefore, similar to Equation 3-6, the secondary baseline uses the following

condition to test each arriving packet:

 Dqueue ≥ – ε (3-13) queueD̂

where is the raised queuing delay that is assumed to be due totally to the increase in

propagation delay. The above condition must hold for all arriving packets. The secondary

baseline runs exactly the same as the primary baseline. When Equation 3-13 is violated, it

means that the assumption, which is not totally due to the increase in propagation

delay, is wrong. The ongoing epoch of excursion is abandoned. D

queueD̂

queueD̂

queue, which has lower

queuing delay than , becomes the next . In other words, the secondary baseline

moves lower, and the new epoch of excursion begins. Eventually, reaches the lowest

point that reflects the raised queuing delay, due to the increase in propagation delay. Then,

Equation 3-13 will never be violated. When two valid complete epochs of excursions are

found, it proves that the propagation delay has indeed increased. Therefore, Sync & Sense

abandons the existing synchronization. When Sync & Sense restarts the synchronizing phase,

it will be automatically based on the new route.

queueD̂ queueD̂

queueD̂

 As described above, the secondary baseline uses Equation 3-13 to test from top

to bottom. Whenever the queuing delay shows an increasing trend, it is possible that this may

be caused by an increase in propagation delay. It is necessary for the secondary baseline to

reset to the highest queuing delay, when an increasing trend is detected. This allows

the secondary baseline to work its way down to find the bottom, which reflects the raised

queuing delay due to the increase in propagation delay. To detect an increasing trend in the

queuing delay, Sync & Sense maintains a set of the queuing delays { , i = 1,…,n} of the

most recent arriving packets, where n = 12 (empirically selected). For each arriving packet,

Sync & Sense uses the following equation to test the queuing delay trend:

queueD̂

queueD̂

i
queueD

 72

 QT =
()

n

DDI
n

2

1
queuequeue∑

=

−>
i

ii

 (3-14)

where I(X) is one if X holds, and zero otherwise. This method measures the fraction of

consecutive queuing delay pairs that are increasing; thus, 0 ≤ QT ≤ 1. If the queuing delays

are independent, the value of QT is 0.5. If there is a strong increasing trend, QT approaches

one.

3.6.2 Simulation Result

Below, we demonstrate how the extended Sync & Sense algorithm deals with the

event of route change. Unless specified otherwise, we conduct a simulation using the same

network topology, with 10 hops, as well as parameters as described in section 3.4.1. We

impose route changes by increasing/decreasing the propagation delay on one of the links. The

extended Sync & Sense algorithm is implemented at the VoIP receiver. The error margin

parameter is set to 1.5 milliseconds. The simulation result is shown in Figure 3-15. Figure 3-

15 (c) shows the actual one-way network delay of the VoIP packets. Route changes can be

seen from the figure since minimum network delay reflects the propagation delay.

Accordingly, Figure 3-15 (b) shows the packets lost in the network. Figure 3-15 (a) shows

the accuracy performance in the form of measurement error.

From the figures, we can see that Sync & Sense can quickly detect the decrease in

propagation delay, and resynchronize the timing based on the new route. Large measurement

errors can be seen for a short period of time while Sync & Sense adjusts its baseline for

transmission timing to the new lower propagation-delay route. Overall, Sync & Sense

performs very well in the event of a decrease in propagation delay. In the case of an increase

in propagation delay, the simulation result shows that the extended Sync & Sense algorithm

works as expected. The figures show that, as soon as the route changes, the measurement

error surges and is equal to the increased amount in propagation delay. This is because the

measurements are still made based on the primary baseline, which is based on the old route.

It takes a while before the secondary baseline gets synchronized and detects the increase in

 73

propagation delay. Once detected, Sync & Sense can quickly resynchronize the primary

baseline to be based on the new higher propagation-delay route.

-10

0

10

20

30

M
ea

su
re

m
en

t e
rr

or
 (m

s)

 P
ac

ke
t

lo
ss

0 2000 4000 6000 8000 10000 12000

50

100

150

200

Packet sequence number

N
et

w
or

k
de

la
y

(m
s)

Figure 3-15 Detecting route change

The drawback of the extended Sync & Sense algorithm is that such a surge in the

measurement error may stay for a longer period of time. This drawback seems inevitable due

to the nature of the problem. The duration of the surge in the measurement error is essentially

due to the underlying traffic. If the network is lightly loaded, it is likely that the secondary

baseline can get synchronized very soon. On the other hand, if the network is congested, it

would take longer to detect the route change.

 74

3.7 Summary

This chapter focuses on network state detection, which is an essential component for

a VoIP system enhanced with the ability to adapt in response to the network condition; for

example, adaptive-rate VoIP. The objective of detecting the state of the network is to acquire

the characteristics of the network that are critical to the control decision. For VoIP, both

delay and loss are critical to voice quality. One-way end-to-end delay affects echo and

conversational interactivity, while packet loss affects voice clarity. Detecting packet loss is

very simple as it can be done by observing out-of-sequence packets. However, measuring

one-way end-to-end delay is a real challenge. This is due to the reality that the endpoints are

normally not time synchronized. Without external synchronized timing, it is almost

impossible to measure one-way network delay. Here, we propose a novel measurement

methodology for VoIP called Sync & Sense, which can overcome the challenge and truly

serve the objective of detecting the state of the network for VoIP.

As indicated by its name, the Sync & Sense methodology consists of two phases. The

synchronizing phase is the ability to virtually synchronize the transmission and reception

timing of the VoIP session, based solely on observing the incoming RTP packets. The

synchronization relies on the assumption that some arriving packets may experience a very

minimal queuing delay when traveling from the sender to the receiver. Epoch of excursion of

queuing delay is defined as the time from an arriving packet with a very minimal queuing

delay to the next arriving packet with a very minimal queuing delay. The Sync & Sense

algorithm tracks the transmission timing by using the known packetization delay. At the

same time, it tracks the reception timing by observing inter-arriving gaps of the arriving

packets, and searches for epochs of excursion. The synchronization can be constructed based

on the fact that the elapsed time of a valid complete epoch of excursion must be equal to the

elapsed time of the transmission timing. Sync & Sense ensures that this condition, along with

additional conditions, is satisfied before declaring the synchronization. Once synchronized,

the sensing phase operates by measuring dispersion gaps of the arriving packets. The

dispersion gap is the interval in which the arriving packet disperses from the packetization

delay. The dispersion is caused by queuing delays in the network. In other words, the

dispersion gap includes both the queuing delay and the packetization delay. Since the

dispersion gap can be measured and the packetization delay is known, Sync & Sense can find

 75

the queuing delay. Being able to measure the queuing delay allows Sync & Sense to estimate

the propagation delay and obtain the full spectrum of the delays of the VoIP session. In

addition, Sync & Sense has the ability to estimate the available network bandwidth. Along

with packet loss, Sync & Sense can provide a wider range of indications about the network

condition.

Our simulation study shows that Sync & Sense can provide impressive performance,

in terms of synchronization and measurement accuracy. Sync & Sense is robust to packet

loss. A potential factor that could affect the performance is the number of hops between

sender and receiver. This is because, as the number of hops increases, Sync & Sense would

observe fewer arriving packets with a very minimal queuing delay. However, this problem is

manageable by using an error margin in the synchronizing process. The simulation result

shows that the error margin parameter is the controlling factor over the performance. Using a

relatively large value of the error margin allows Sync & Sense to use, not only the arriving

packets with a very minimal queuing delay, but also the arriving packets with a larger

minimal queuing delay to construct the synchronized timing. Thus, this can help to increase

the synchronization performance. A drawback of using a larger error margin is accepting

more error to the measurements. Nonetheless, the simulation result shows that the impact is

very small and limited. Given the drawback, a compromise value should be chosen in order

to optimize the performance between synchronization and accuracy.

Like other probing schemes, Sync & Sense operates under the assumption that a

network is a series of FIFO queue servers in which packets get queued behind each other

while in transit. Under this assumption, the network delay has its integrity intact. Therefore,

the observed network delay can be useful to infer the state of network. Unfortunately, several

network pathologies violate this assumption and restrict the use of the observed network

delay; for example, route change, multi-channel links. The solution to this problem lies in

detecting whether the integrity of the network delay assumption is violated. However, this is

not an easy task, given that Sync & Sense operates in an end-to-end fashion. Here, we also

present an extended Sync & Sense algorithm that aims to deal with the problem of route

change. Future research is needed to study each individual of the network pathologies and

explore the options to deal with them.

Chapter 4

Sync & Sense Enabled
Adaptive Packetization VoIP

Requiring fixed bandwidth is an inherent problem with VoIP. This is because packet-

switched networks, including the Internet, provide no guarantees about bandwidth, as well as

delay and loss. Because the available network bandwidth can vary at any time, it often results

in unreliable and unpredictable voice quality. A solution to this problem is to enhance VoIP

with the ability to adapt its transmission to match the available bandwidth, called adaptive-

rate VoIP. Whereas adaptive-rate VoIP attempts to minimize network congestion, it helps to

lower network delay and reduce excessive packet loss. An adaptive-rate VoIP system is

composed of three fundamental components: rate adaptation, network state detection, and

control mechanism. In the previous chapters, we have studied the first two components. We

demonstrate that packetization is an effective means that allows VoIP to perform rate

adaptation. And, we propose a novel measurement methodology for VoIP called Sync &

Sense of periodic stream. Without requiring external support for synchronization, Sync &

Sense has the ability to virtually synchronize the transmission and reception timing that

allows measurement of one-way network delay. In addition, Sync & Sense can estimate the

full spectrum of the delays of the VoIP session and estimate the available network bandwidth.

Here, we design an adaptive-rate control that makes use of our previously proposed

components of rate adaptation and network state detection. The integration of the three

components is a novel and unique adaptive-rate VoIP called Sync & Sense Enabled Adaptive

Packetization VoIP. Unlike other adaptive-rate VoIP systems that are based on a variable bit

rate speech coder, our adaptive VoIP has the advantage that it works with any constant bitrate

coder. As rate adaptation is independent of the coder, it is likely to be more transparent to the

user. Unlike other adaptive-rate VoIP, in which the control decision is primarily based on

76

 77

packet loss, the Sync & Sense methodology allows our adaptive VoIP to be able to make the

control decision based on both delay and loss. While responding to packet loss is reactive,

observing of the trend of one-way network delay allows our adaptive VoIP to implement a

proactive strategy that reduces the transmission rate in anticipation of potential packet loss.

In addition, the delay trend allows our adaptive VoIP to gain more insight about the network

state and to better respond in order to optimize the performance.

To test our proposed adaptive VoIP, we conduct a simulation study in which the

performance is compared against traditional VoIP. In a high statistical multiplexing

environment, the result shows that our adaptive VoIP can optimize the performance under

any given network load. On the other hand, traditional VoIP cannot, because of its inability

to adapt. In a low statistical multiplexing environment, we examine the interaction between

our adaptive VoIP flow and other types of traffic flow that compete for the shared network

bandwidth. The result shows that our adaptive VoIP has the needed aggressiveness to

compete with TCP for its share of bandwidth; at the same time, it is responsive to network

congestion. In a homogeneous adaptive VoIP network, the result shows the benefit that more

flows can be accepted with minimal impact on the performance. The adaptive VoIP flows

automatically choose to operate at a lower rate when the network gets more congested.

4.1 Background and Related Research

Adaptive-rate control is a critical component of any adaptive-rate VoIP. The control

aims at optimizing the delay and loss performance, while at the same time it attempts to

minimize network congestion. Thus, adaptive-rate control can also be viewed as congestion

control. Congestion control is a necessity, especially in packet-switched networks, because

the network generally admits all traffic from its users. Congestion control on each endpoint

as a whole helps to prevent the overall network from over-utilization. This in turn allows the

endpoints to optimize the performance. AIMD (Additive Increase Multiplicative Decrease) is

the most common and well-known algorithm for congestion control, as it is used in the TCP

protocol. For data applications, AIMD has proven to be an effective scheme, not only for

minimizing congestion, but also optimizing the throughput. AIMD drastically reduces the

transmission when it observes an indication of congestion, usually packet loss. This is a

 78

quick and effective means to clear congestion. As packet loss is minimized, decreased

retransmission allows increased throughput. Without the indication of congestion, AIMD

assumes more bandwidth is available, and increases the transmission conservatively.

For VoIP, the performance refers to the delivered quality, rather than the throughput.

Thus, the main objective of adaptive-rate control can be different from AIMD, although they

both attempt to minimize network congestion. As VoIP is delay-sensitive, designing

adaptive-rate control must aim at minimizing the delay as the top priority, and minimizing

packet loss as well. Several other issues should also be considered. Namely, rate adaptation

should be smooth so it does not cause distraction. The interaction of the traffic flows should

be examined; whereas the adaptive-rate VoIP flow should demonstrate that it can compete

with the AIMD-based TCP flow in order to acquire its share of bandwidth. The adaptive-rate

control should provide a fair bandwidth allocation when the adaptive flows share the same

link. Additionally, we need to determine the position of adaptive-rate VoIP towards TCP-

friendliness because attempting to achieve fairness would not allow optimize the

performance.

Our survey indicates that research in this area is still in its infancy. Only a limited

number of studies related to adaptive-rate VoIP are available [5, 6, 20, 21, 22, 35]. Although

all studies aim at improving the performance in comparison to traditional VoIP, their focus is

specific and does not cover the desirable properties that adaptive-rate VoIP should possess.

For example, little attention has been paid to minimizing one-way end-to-end delay, which

affects echo and conversational interactivity of the perceived quality. In most of the studies,

the adaptive-rate VoIP makes a decision based on packet loss, which only affects voice

clarity of the perceived quality. Some studies adopt the AIMD algorithm as part of the

control mechanism. Some studies aim for adaptive-rate VoIP to be TCP-friendly. In the

following, we briefly summarize some of the existing papers on adaptive-rate VoIP.

Abreu-Sernandez et al [20] propose an adaptive multi-rate speech coder for VoIP.

The coder incorporates a control mechanism that selects one of five possible operating modes,

depending on network congestion. The transmission rate ranges from 8.8 to 10.6 Kbps. Rate

adaptation is based on the following loss levels: less than 15%, 15 – 20%, 25 – 30%, 30 –

35%, and more than 35%. The sender obtains the average loss rate from RTCP receiver

reports sent from the receiver. Qiao et al [5] propose the use of an objective measure of

 79

perceived speech quality (i.e. objective MOS score) with the control mechanism. The

adaptive-rate VoIP is based on the AMR (Adaptive Multi-Rate) speech coder [7]. On the

receiver, speech quality is predicted from packet loss rate using a PESQ (Perceptual

Evaluation of Speech Quality) based method. The predicted speech quality serves as a

feedback that is sent to the sender via RTCP reports, every five seconds. The control

mechanism adopts the AIMD algorithm. When the predicted MOS increases by 0.2, the

bitrate of the coder is set to the next higher step. When the predicted MOS decreases by 0.5,

the bitrate of the coder is reduced by half (to the closest step). In between those two

thresholds, the bitrate of the coder is set to the next lower step.

In Barberis et al’s work [21], the control makes a decision based on delay and loss

measurements as provided by RTCP receiver reports. Rate adaptation is assumed using a

hypothetical speech coder in which the transmission rate varies between 8 and 64 Kbps in

steps of 8 Kbps. The AIMD algorithm is adopted. When packet loss rate exceeds the loss

threshold, the transmission rate is reduced by half. If the measured delay increases by 10

percent of the mean delay, the transmission rate decreases by a step. The transmission rate

conservatively increases when delay and loss are below their thresholds. Beritelli et al [6]

study adaptive-rate VoIP that is based on TCP-friendly algorithms, including RAP and TFRC.

Whereas TCP-friendly algorithms were designed to achieve fairness with TCP flows, the

authors aim to study the performance aspect when they are applied to VoIP. In addition, both

RAP and TFRC algorithms are modified in which the control mechanism uses delay

variation as part of the rate adjustment decision. Following the RAP and TFRC algorithms,

the delay variation is calculated using RTT (Round-Trip Time). Rate adaptation is achieved

through the AMR speech coder.

Mohamed et al [22] primarily focus on developing a neural network based automaton

that measures speech quality in real-time. The authors develop a database comprised of a set

of samples of distorted speech signals and their associated subjective quality scores (i.e.

MOS). Distorted speech signals are based on packet loss rate and loss distribution (i.e. the

number of consecutively lost packets). The database is used to train the neural network to

assess speech quality. The control mechanism is a hybrid of using the TFRC scheme [10] and

the trained neural network. The TFRC scheme periodically calculates a suggested

transmission rate. The neural network measures the MOS score based on the network

 80

condition. Rate adaptation is done by changing different speech coders. RTCP reports are

used to transport feedback from the receiver to the sender.

4.2 Design of Adaptive-Rate Control

In this section, we discuss design choices for adaptive-rate control, which is a key

component of adaptive-rate VoIP. An adaptive-rate control takes into account the

observations provided by the network state detection component before making a decision on

rate adaptation. The object is to optimize the delay and loss performance; at the same, also

minimizing network congestion. We identify three key issues that should be considered when

designing adaptive-rate control, as follows: placement of the control, decision metrics, and

increase/decrease algorithm. Below, we discuss each issue in details.

4.2.1 Placement of the Control

Whereas following the end-to-end principle [4] is the key requirement in our design

of adaptive-rate control, both endpoints of the VoIP session are expected to be able to operate

intelligently and independently, without support from the network. Under this architecture

and because a VoIP session is actually two separate streams of RTP packets, monitoring the

network condition can only be done at the receiver by observing the incoming packets.

However, rate adaptation must be done at the sender. The choice is where the control should

be placed, either at the sender or the receiver.

In sender-based control, observations about the network must be reported back to the

sender. Utilizing RTCP is a common scenario. The observations (such as packet loss and

inter-arrival jitter) are summed up into a reception feedback report. The report is sent out

periodically, usually on the time scale of seconds. Although this helps to reduce the feedback

traffic, it limits the decision frequency of the control. The major drawback is that the control

decision is restricted with the pace of receiving the feedback. As a consequence, the control

may be too slow to respond to the network. If the control needs to make the decision more

frequently, it is would be necessary to use alternate feedback schemes rather than RTCP. But,

because all the network observations must be fed back to the sender, this could introduce

additional traffic on the reverse path.

 81

On the other hand, receiver-based control seems to be a better choice. Since

observations about the network are obtained by the receiver, they can be processed

immediately and continuously. In this scenario, the feedback conveys the control decision

about the rate change. The feedback may be sent only upon a rate change. This can

significantly help to reduce the feedback traffic to minimal. Inevitably, since feedback lost in

the network is a potential problem, to ensure reliability, the feedback may be transported

using the TCP protocol.

4.2.2 Decision Metrics

Decision metrics refer to the observations, as provided by the network state detection

component, which the control uses to infer the network condition and make a decision.

Packet loss is the most common decision metric in any control mechanism. This is because it

can be simply obtained by observing out-of-sequence packets. In packet switched networks,

packets get lost for two reasons. First, random loss occurs independently due to bit errors,

hardware errors, etc. Second, network congestion can cause overflows of any insufficient

buffer capacity somewhere on the path. On most network paths, loss due to damage is rare.

So it is probably that a packet loss is due to congestion in the network [31]. This has been a

fundamental assumption in the design of congestion control in TCP as well as numerous

proposed control schemes. Nowadays, the network becomes more and more heterogeneous.

A network is not necessarily entirely wired. A wireless segment, for example, could well

contribute to a higher loss probability. End-to-end based control would not able to distinguish

a packet loss from any causes, and would have to take into account all lost packets no matter

what the causes are. Nonetheless, packet loss still seems to be the most feasible implicit

indication of network congestion. This is primarily due to the presence of competing TCP

traffic. Depending on its use, packet loss as a decision metric can be classified into loss event

and loss rate. In loss event, the control responds to any events of packet loss, which is a

conservative strategy. In loss rate, the control monitors the loss rate and makes a decision

whenever the loss rate reaches a threshold. Loss rate can be simply obtained as the loss count

divided by the total number of packets received. Loss rate is generally a decision metric that

is less responsive than loss event.

 82

Besides packet loss, the receiver may observe packet inter-arrival gaps and use them

as a decision metric. Constant packet rate traffic is a good property of VoIP because the

inter-departure gap is fixed and known by the receiver. As the packets traverse the network,

they arrive at the receiver with variable delays and inter-arrival gaps. The delay variation can

suggest congestion in the network. When the inter-arrival gap equals, or is close to, the inter-

departure gap, it suggests the network is under no congestion. High expansion/contraction of

the inter-arrival gap shows the degree of congestion. Due to the bursty nature of Internet

traffic, however, observing the delay variation can be less meaningful and only provides

transient congestion. High delay variation may appear at times, but not necessarily because

the network as a whole is over-utilized. As the matter of fact, packet loss is still a better and

more effective decision metric to detect persistent or threatening congestion in which a

response is needed.

Another means to obtain decision metrics is to use the reception feedback report

provided by RTCP. The report is intended to serve as feedback to the sender about reception

statistics, which include packet loss count and inter-arrival jitter (or delay variation). It is

transmitted periodically, usually on the time scale of seconds. The limitation is that the

control on the sender can only view packet loss in the form of cumulative loss count and

fraction loss between the report intervals. Similarly, the inter-arrival jitter is only a snapshot

of the average at the time of a report. The control may calculate packet loss rate for a

decision metric. In addition, RTCP also provides a mechanism in which the sender can

compute the round-trip time between the sender and receiver. This, however, is a very coarse

estimate because most network paths have asymmetrical delays.

Mentioned above are feasible decision metrics that are available under standard RTP

/RTCP implementation. The Sync & Sense measurement methodology proposed in the

previous chapter allows more options for the decision metric. Sync & Sense has the ability to

measure the reception rate of the incoming packets, which also indicates the available

network bandwidth. When sufficient network bandwidth is available, the reception rate

would relatively equal to the transmission rate. When the network becomes more congested,

the available bandwidth decreases. The reception rate would be lower than the transmission

rate. The difference between the reception rate and the transmission rate can be an effective

decision metric that reflects the network condition. The lower the reception rate is from the

 83

transmission rate, the more the congestion. While the reception rate can give an idea of mild

to moderate congestion, packet loss is an indication of severe congestion. The reception rate

together with packet loss, hence, can provide the full range of detecting the state of the

network.

In addition, Sync & Sense has the ability to measure the one-way network delay of

the arriving packets. The trend of one-way network delay can be very useful to sense the

state of the network. An increasing delay trend usually indicates that network congestion is

building up. As network bandwidth becomes less available, packets arrive at the receiver

with progressively higher delays. A number of researchers have confirmed that there is a

correlation between delay and loss on the Internet [36, 37, 38, 39]. Specifically, there is a

range of one-way network delay in which packet loss is likely, which we denote as the delay

threshold. This is simply due to the fact that, when the bottleneck link queue is full, packet

loss begins to occur. In reality, the correlation can be affected by several factors, including

the number of hops along the path. Nonetheless, the delay threshold is bounded. Assuming

all the links are bottlenecks, the upper bound of the delay threshold is the sum of the queuing

time from every link. This could happen when a packet arrives at the end of the queue on

every link, but it is extremely unlikely. As a matter of fact, a few bottleneck links with

limited capacity would dominate to the one-way network delay. Therefore, the delay

threshold can be used as a proactive decision metric that allows the control to respond sooner

to prevent potential packet losses.

4.2.3 Increase/Decrease Algorithm

The increase/decrease algorithm determines the rate change in response to network

condition as indicated by the decision metrics. The choices of the increase/decrease

algorithm rely on the capability of rate adaptation, which is essentially based on the speech

coder being used. Waveform speech coders (such as PCM, ADPCM) produce tiny sample

voice frames at the basic sampling rate. The G.711 PCM coder, for instance, generates a one-

byte voice frame every 0.125 milliseconds. Packetization thus can be as small as one byte up

to hundreds of bytes. This allows fine-grain rate adaptation. The control can have great

flexibility in adjusting the transmission rate. It may choose to increase the rate aggressively,

 84

in order to quickly gain the available bandwidth. Or, it may choose to increase the rate

conservatively, in order to avoid network congestion. Because the step of the rate change is

small, multiple adjustments are usually needed. Accordingly, the control must make

decisions more frequently. The decision frequency can be as often as one round-trip time, at

the maximum rate. This allows the control to observe the impact of the rate change before

making the next decision. In sender-based control, it takes at least one round-trip time from

when the sender switches to a new rate to when the sender receives a feedback of such a rate

change. Similarly, in receiver-based control, it takes at least one round-trip time from when

the receiver sends a rate change command (to the sender) to when the receiver observes an

arriving packet with such a rate change. As the rate change is made over short time intervals,

the control is responsive and can react to rapid changes in the network. However, the

downside is additional traffic load on the network, due to the increased amount of feedback

exchanged between the sender and receiver.

Unlike waveform coders, voice source speech coders (such as G.729, G.723.1)

produce sample voice frames that are parameters of the model of voice source signals. A

voice frame is generated every compression cycle, which is typically in the few tens of

milliseconds range. Accordingly, the size of a voice frame is in the few tens of bytes range.

Thus, packetization is limited to a couple of voice frames, without causing too much

packetization delay. This results in coarse-grain rate adaptation, which allows only a certain

number of transmission rates. Similarly, variable rate speech coders (such as AMR [7]) are a

type of voice source coders that can produce sample voice frames at different bitrates. They

can be used for coarse-grain rate adaptation as well. Because the step of the rate change is

large, the rate change can be less frequent. That means less feedback is exchanged between

the sender and receiver. The advantage is very little additional traffic needed for the feedback.

However, the control may not benefit quickly from rapid changes in the network. The goal of

coarse-grain rate adaptation is to adjust the transmission rate to the average available

bandwidth, rather than the instantaneous. Since the VoIP bandwidth requirement is relatively

small, coarse-grain rate adaptation should be suitable for VoIP. Fine-grain rate adaptation

may not actually benefit much from instantaneous increases in the available bandwidth.

In the steady state, the control may reach equilibrium in which the transmission rate

matches the available network bandwidth. However, oscillation around the optimal rate is

 85

inevitable. This is due to the property of a control that it always attempts to perform

optimization. Given a steady state, the situation can be illustrated as follows. When no sign

of congestion is seen, the control would increase the transmission rate. But moments later,

such a rate increase would cause the control to observe congestion. The control would then

need to reduce the transmission rate back to where it was. Rate adaptation in a smooth

manner is a desirable property for adaptive-rate VoIP, because it can minimize distraction to

the user that may be caused by the rate change. With small steps of the rate change, fine-

grain rate adaptation has a major advantage that it allows smooth transmission rate and

minimal rate oscillation. In contrast, coarse-grain rate adaptation could suffer from rate

oscillation. The degree of the problem tends to be higher when the adaptive-rate VoIP is

based on a variable rate speech coder. This is because the bitrate is associated with the audio

quality of the output voice frames. The oscillation in the voice quality could noticeably

reduce the perceived quality.

Issues to be considered when designing the increase/decrease algorithm for real-time

applications include aggressiveness, responsiveness, convergence, smoothness, and fairness

[40, 41]. Aggressiveness and responsiveness refer to the transient state where the control

attempts to adapt the transmission rate to reach equilibrium. An increase algorithm or

aggressiveness determines the ability of the control to acquire the available bandwidth; while,

a decrease algorithm or responsiveness determines its ability to avoid network congestion.

Convergence measures how fast the algorithm converges to the optimal transmission rate.

The most common increase/decrease algorithm is AIMD (Additive Increase/Multiplicative

Decrease), which is used in the TCP protocol. AIMD possesses most of the mentioned

desirable properties and has proven for decades to be successful and practical over the

Internet. Adopting the AIMD algorithm is an option for adaptive-rate control. However, one

property that AIMD lacks is smoothness. This is due to the fact that AIMD was originally

designed for data communications, in which smoothness is not a concern. AIMD halves the

transmission rate in response to a single congestion indication. This is unnecessarily severe,

particularly for VoIP, which could degrade the perceived quality. Therefore, the smoothness

issue should be addressed when adopting the AIMD algorithm. Adjusting the aggressiveness

and responsiveness can improve the smoothness of AIMD. For fine-grain rate adaptation, any

plausible increase/decrease algorithm can be supported, including adopting the AIMD and

 86

similar algorithms. Because coarse-grain rate adaptation only allows a certain number of

transmission rates, it leaves very few options for the increase/decrease algorithm. A stepwise

algorithm is a possibility. Adopting the AIMD and similar algorithms is possible, but would

not be complete.

Fairness (also called TCP friendliness or TCP compatibility) is an emerging issue,

especially for VoIP. Because real-time applications rarely implement congestion control,

they do not share the available bandwidth fairly with competing TCP traffic. While the

network today has an increasing amount of real-time traffic, the concern is that the current

situation could evolve to the starvation of TCP traffic in the future. Non-TCP applications are

currently encouraged to implement a congestion control mechanism so that they behave

fairly to competing TCP traffic. As suggested in [42], a TCP-friendly flow should not have

its long-term throughput exceed a conforming TCP flow under the same condition. Several

protocols for real-time applications have been developed to achieve fairness and, at the same

time, ensure smooth transmission. GAIMD [43], SIMD [41], and IIAD [44] are some of the

proposed protocols that are based on the AIMD algorithm. Non-AIMD algorithms that offer

TCP-friendliness and smooth transmission include TFRC [10] and LDA [45].

Most TCP-friendly protocols, however, are studied in the context of video streaming

applications. This is because video traffic consumes considerable amount of bandwidth and

could threaten unfairness to competing TCP traffic. The issue of fairness for adaptive-rate

VoIP is somewhat unclear because it has not been studied extensively. Compared to other

types of traffic, adaptive-rate VoIP requires a relatively small amount of bandwidth; usually

within tens of Kbps range. Adaptive-rate VoIP traffic is less likely to be a threat to other

traffic. Instead, adaptive-rate VoIP traffic could be affected by other traffic. In TCP-

dominant networks, the AIMD algorithm creates a race condition in which TCP flows

compete to get their share of bandwidth. One key design element for adaptive-rate control is

that the increase/decrease algorithm must, likewise, be equipped with adequate

aggressiveness in order to compete with TCP traffic. If the algorithm is less aggressive than

the AIMD algorithm, the adaptive-rate VoIP flow might not be able to get its needed

bandwidth. Since VoIP is delay-sensitive and has a strict delay requirement, we believe that

the increase/decrease algorithm should give a higher priority to optimizing the performance.

 87

This is because we could not optimize both the performance and fairness at the same time.

Nevertheless, this question remains open to future research.

4.3 Sync & Sense Enabled Adaptive Packetization VoIP

We now present our novel adaptive-rate VoIP called Sync & Sense enabled adaptive

packetization VoIP. This work incorporates the knowledge we have gained about optimizing

packetization, in Chapter 2, which can help to minimize delay and loss. And, it incorporates

the Sync & Sense measurement methodology, proposed in Chapter 3, which provides a full

range of observations about the state of the network. We design a new adaptive-rate control

that (1) uses packetization as a means for rate adaptation and (2) makes use of the Sync &

Sense methodology. We thoroughly consider design choices and desirable properties, as

mentioned in the previous section. We then use simulations to refine the design and test

validity of the assumptions. In the following, we present Sync & Sense enabled adaptive-rate

control. We then discuss important issues of implementing Sync & Sense in an adaptive

packetization environment. Finally, we discuss jitter buffer management in which the jitter

buffer needs to adapt in accordance with varying packetization.

4.3.1 Sync & Sense Enabled Adaptive-rate Control

Let us begin with the choice of rate adaptation because the design of an adaptive-rate

control relies on the speech coder being used. We choose coarse-grain rate adaptation

because it is supported by any speech coder. This means, our adaptive-rate control can work

with any speech coder. With Sync & Sense, the receiver can monitor the arriving packets for

observations about the state of the network. It is clear that the control should be placed on the

receiver. This allows the control to process the observations immediately and continuously.

In this case, whenever there is a need to adjust the transmission rate, the control immediately

sends a feedback command to the sender. This allows a prompt reaction to the changes in the

network. This also helps to limit the feedback traffic to the minimal. We certainly cannot rely

on the RTCP feedback report, which is sent out periodically in the time scale of seconds. In

our design, we assume that the sender must have a client-server UDP port opened for

accepting the command feedback packets, in addition to the standard ports for RTP and

 88

RTCP. We may also use a TCP port instead, in order to provide reliable transport of the

command feedback.

As for the decision metrics, our design assumes the traditional wired packet-based

network. We believe that our adaptive VoIP should first and foremost be developed and

proven to work under this assumption. In future research, we can focus on improving its

capability toward heterogeneous environments, including wireless networks. The assumption

of the traditional network is that random loss due to bit errors is very rare. Therefore, packet

loss is an indication of network congestion, and it can be an effective decision metric. Given

that Sync & Sense provides measurements of one-way network delay, one may be tempted to

have the control make a decision based on the delay budget. Specifically, ITU-T

Recommendation G.114 [17] specifies the one-way transmission time of 150 milliseconds or

less for acceptable voice quality. However, because a VoIP flow typically has a less

significant traffic impact, the network delay is often and largely determined by the

underlying network traffic. It is more possible for the VoIP flow to optimize variations of the

delay, rather than reducing the delay. We use the trend of one-way network delay as another

decision metric because it allows the control to infer network conditions beyond congestion

as indicated by packet loss. In addition, we can take advantage of the studies that there is a

correlation between one-way network delay and packet loss [36, 37, 38, 39]. Thus, observing

the correlation can give an idea of the upper bound delay in which packet loss is likely,

where we denote as the delay threshold. While packet loss is a reactive metric, the delay

trend and delay threshold provides a proactive metric in which the control can respond

sooner to prevent potential packet losses.

The delay threshold can be estimated from the history of the observations of network

delay and packet loss event. A packet loss event could be a single packet loss or a burst of

consecutive packet losses. Initially, when the session starts, the control has no delay

threshold. When packet loss events occur, the delay observations of the previous arriving

packet are recorded. These delay observations are used to calculate the delay threshold. We

use a common technique called the exponential smoothing method to average the delay

observations. The moving average of the delay threshold can be calculated as follows:

DThres(i) = α DThres(i – 1) + (1 – α) DLoss (4-1)

 89

where DLoss is the delay observation of the previous arriving packet before the packet loss

event and α is a smoothing factor (0 < α < 1). This equation is updated every time a packet

loss event is observed. The α parameter determines how the weight is distributed. We use the

α value of 0.875 so that the greater weight is given to the average. With the lesser weight

given to the more recent DLoss observations, it allows us to filter out the noise or variations

of the DLoss observations. The delay threshold usually stays within a certain range of delays.

This is due to the fact the bottleneck link contributes a significant and relative large impact to

the DLoss observations. In addition, most of the packet loss events happen on the bottleneck

link. The noise can be caused by traffic mix on the bottleneck link. When the majority of

traffic is elephants, or large-size packets, the DLoss observations tend to be higher. On the

other hand, when the majority of traffic is mice, or small-size packets, the DLoss

observations tend to be lower. Also, increasing the number of hops in the path tends to add

more variation to the DLoss observations. For example, packet loss events on non-bottleneck

links would result in unusually low DLoss observations. As a matter of fact, the routing path

may change during the session. As new packet loss events are observed, the moving average

of the delay threshold can reflect the changing characteristics of the path.

As mentioned earlier, our adaptive VoIP is based on coarse-grain rate adaptation.

Since only a certain number of transmission rates are available, the increase/decrease

algorithm is limited to a stepwise fashion. The algorithm always starts off with the highest

transmission rate, in order to test whether the network can support the best transmission

mode. With the decision metrics mentioned above, the algorithm uses two strategies, running

in parallel, in the decision making. The packet loss strategy runs by default. The delay

threshold strategy relies on the Sync & Sense methodology. It is only available when Sync &

Sense can get its synchronization running. In addition, the delay threshold strategy can start

after a number of packet loss events have been observed, at which point the delay threshold

is available. In terms of decision frequency, it is best to make a decision as often as possible

so that the algorithm is responsive to rapid changes in the network. The nominal decision

frequency is set to every one second, which is a highest possible frequency. This ensures that

the decision interval is always larger than any round-trip time, which limits the maximum

decision frequency.

 90

Upon the decision interval, the algorithm makes a rate adjustment and immediately

sends a command feedback to the sender. Note that, although the decision has been made, the

algorithm is required by at least a round-trip time to be able to observe the effect of the rate

change. That is, a half round-trip time is for the feedback command to get to the sender; and,

the other half round-trip time is for the first packet with the new rate to arrive at the receiver.

During this round-trip time, the algorithm continues to observe the decision metrics based on

the arriving packets with the previous rate. It will be wrong to take into account any

observations during this period of time. Therefore, out of one second of the decision interval,

the algorithm disregards any observations for such a period of round-trip time, until receiving

the first arriving packet with the new rate. We call this round-trip time the silence period.

The algorithm has the remainder of the decision interval to evaluate the effect of the rate

change.

The stepwise increase/decrease algorithm reduces its rate by one step when

congestion is observed, and increases its rate by one step in the absence of congestion. The

decision is made at each time interval. In coarse-grain rate adaptation, a step of rate change is

usually large. A step increase in the transmission rate could be too high and overshoot the

available bandwidth. In this case, it would be too slow to respond at the next decision interval.

As Sync & Sense provides continuous observations for every arriving packet, we can add the

following rule, called fast response, so that the algorithm is quick to react to the overshoot.

Following a step increase in the transmission rate (after the silence period), if a negative

indication (from packet loss or the delay threshold) is observed, the algorithm makes a

decision immediately to lower the rate by one step, instead of waiting until the next interval.

Fast response is a conservative strategy to increase the transmission rate, which is like

dipping a toe into unknown water. It tries just a little bit to see if the water is too hot or too

cold, and continues if the water seems to be nice and warm.

In the packet loss strategy, an observation of packet loss is considered a sign of

network congestion. Given that packet loss is due to congestion, it can be classified into self-

induced and independent. Self-induced packet loss means that the rate change by the

algorithm can make an impact on the network, particularly the bottleneck link. Directly, an

increase in the transmission may induce congestion and cause packet loss. Indirectly, the

transmission rate may stay unchanged, but the increasing cross traffic induces congestion. In

 91

this case, responding to packet loss would help to reduce congestion. On the other hand,

independent packet loss means that the rate change by the algorithm has no impact on the

network. This kind of packet loss may happen on a large capacity bottleneck link where the

VoIP flow contributes little significant traffic, or may happen on non-bottleneck links. In this

case, responding to packet loss would have no impact on congestion. For the VoIP flow, it

would be better to stay with the highest transmission rate to retain the highest possible

performance. Using the trend of one-way network delay and the delay threshold, it is possible

for the algorithm to identify a packet loss whether or not it is self-induced. This is because

self-induced packet loss is usually correlated with an increasing delay trend and a high delay

threshold. This intelligence would allow the algorithm to better optimize the performance.

However, we choose to use a conservative packet loss strategy. That is, the algorithm

responds to every packet loss event. Another reason is that responding to packet loss is a

factor that determines fairness to competing TCP flows. Since this packet loss strategy is in

line with that being used by TCP, our increase/decrease algorithm would be able to

demonstrate a degree of fairness to competing TCP flows. This issue, however, is not our

main focus in the design because we give a higher priority to optimizing the performance.

Future research would be needed to study the fairness issue.

In the delay threshold strategy, the algorithm monitors the trend of one-way network

delay of the arriving packets. Because of variations in the network delay, it is necessary to

smooth the trend and get rid of the spikes. We use the same technique of exponential

smoothing average, as in the calculation of the delay threshold. With every arriving packet,

the algorithm updates the delay trend using the following equation:

DTrend(i) = α DTrend(i – 1) + (1 – α) DNet (4-2)

where DNet is the delay observation of the arriving packet. The smoothing factor α is set to

0.875. This smoothing method has also been used in TCP to calculate the smooth round-trip

time estimate. Setting the α parameter between 0.8 and 0.9 is suggested in the TCP

specification [30] to spread out the weight efficiently. Upon the decision interval, the

algorithm checks to see if the delay trend has crossed the delay threshold. Specifically, there

are four possible scenarios: (1) the delay trend stays below the delay threshold, (2) the delay

 92

trend has crossed above the delay threshold, (3) the delay trend has crossed below the delay

threshold, and (4) the delay trend stays above the delay threshold.

In the first scenario, the delay trend stays below the delay threshold: DTrend(i – 1) <

DThres and DTrend(i) < DThres. This indicates that the network has sufficient available

bandwidth to accommodate the current transmission rate and there is no congestion,

particularly on the bottleneck link. The algorithm thus increases the transmission rate by one

step, with an attempt to achieve greater performance.

In the second scenario, the delay trend has crossed above the delay threshold:

DTrend(i – 1) < DThres and DTrend(i) ≥ DThres. This indicates that congestion is building up

and packet loss is imminent. The algorithm thus reduces the transmission rate by one step, in

order to combat congestion. However, the rate reduction may or may not help to reduce

congestion. It would help if the congestion is self-induced. Namely, the VoIP flow makes a

significant traffic on the bottleneck link. In this case, the increasing delay trend could be

caused by the recent rate increase or an increase in the cross traffic. It would not help if the

congestion is independent. That is, the bottleneck link has a large capacity in which the rate

reduction is relatively too little to make any impact on the congestion.

In the third scenario, the delay trend has crossed below the delay threshold:

DTrend(i – 1) ≥ DThres and DTrend(i) < DThres. This indicates that network congestion has

subsided. If the congestion is self-induced, this would be an effect of the recent reduction in

the transmission rate. Otherwise, the amount of cross traffic might have decreased. Thus, the

algorithm increases the transmission rate by one step, with an attempt to achieve greater

performance.

In the last scenario, the delay trend stays above the delay threshold: DTrend(i – 1) ≥

DThres and DTrend(i) ≥ DThres. This indicates an ongoing congestion. The conventional

wisdom would have been to reduce the transmission rate to combat congestion. But, this

strategy has a problem and has proven to be ineffective in our experiments. This is because

the interaction among competing flows also has an impact on the behavior of the flows,

particularly in a low statistical multiplexing environment. TCP flows typically create a race

condition in the network in which they compete for their shares of bandwidth. The AIMD

algorithm used in TCP has some degree of aggressiveness in acquiring the available

bandwidth. It gradually increases the window size (or the transmission rate) until a packet

 93

loss is observed; then, reduces the window size by half in response to the packet loss. In this

scenario, reducing the transmission rate could help to reduce congestion, but it is in a wrong

direction. This is because it is releasing available bandwidth to the competing TCP flows.

TCP data packets normally have a large packet size, which can cause large queuing delay. As

the competing TCP flows gain greater shares of bandwidth, the algorithm would observe

higher increasing delay trend. When the algorithm responds by reducing the rate, it would

observe even higher increasing delay trend. This vicious cycle would eventually cause the

algorithm to operate at the minimum transmission rate. Therefore, while the objective is to

reduce congestion, at the same time the algorithm must maintain its aggressiveness to

compete for its share of bandwidth. In this scenario, the algorithm, instead, increases the

transmission rate by one step. By doing so, the competing TCP flows would not be able to

advance the window size much further because packet loss happens sooner. This balance of

power allows all competing flows to get their needed shares of bandwidth. The strategy to

increase the transmission rate also has a benefit to allow a more accurate delay threshold. The

noise, such as unusually low DLoss observations, caused by packet losses on non-bottleneck

links could cause the delay threshold to be lower than it is supposed to be. Increasing the

transmission rate allows the algorithm to push until packet losses on the bottleneck link are

observed. The delay threshold can then become more accurate in providing a guideline for

potential packet loss.

In summary, the delay threshold strategy allows the algorithm to test the condition of

self-induced congestion. The delay trend crossing above the delay threshold is an indication

of a congestion buildup. The algorithm thus responds by reducing the transmission rate. If the

congestion is indeed self-induced, the rate reduction would cause the delay trend to fall

below the delay threshold. Hence, this strategy can proactively prevent potential self-induced

packet loss. Nonetheless, following the rate reduction, the algorithm may also observe the

delay trend remains above the delay threshold. There are two possibilities. First, the cross

traffic are TCP flows. The recent rate reduction allows the competing TCP flows to gain

more available bandwidth, causing the delay trend to move even higher. Second, the

congestion is independent. The recent rate reduction makes no impact. The delay trend

remains high because it is determined by the cross traffic. The algorithm cannot distinguish

between the two cases. However, the same response by increasing the transmission rate

 94

works in both cases. It allows the algorithm to maintain its aggressiveness to compete with

TCP flows. In the case of independent congestion, it allows the algorithm to operate at a

better transmission mode to optimize the performance.

Figure 4-1 shows the flow chart of the adaptive-rate control algorithm.

Figure 4-1 Flow chart of the adaptive-rate control algorithm

 95

4.3.2 Sync & Sense Implementation

The Sync & Sense measurement methodology presented in the previous chapter is

based on observing a periodic stream of incoming packets. However, in adaptive

packetization VoIP, the periodic stream constantly changes its rate following the control

decision. Here, we take a closer look at the issues that may affect Sync & Sense and how to

implement Sync & Sense in an environment of adaptive packetization VoIP. Referring to

Equation 3-3, in the previous chapter, Sync & Sense finds a complete epoch of excursion of

queuing delays when the ongoing epoch is equal (within the error margin) to a multiple of

packetization delays. In adaptive packetization VoIP, rate adaptation is done by varying

packetization delay. This can affect the condition of a complete epoch of excursion. When

Sync & Sense is yet to observe a complete epoch of excursion, it has no reference for the

transmission timing. If the transmission rate changes (due to the packet loss strategy), Sync

& Sense needs to restart the synchronizing phase and look for a new epoch. Once a complete

epoch is found, the key issue is what happens when the transmission rate changes. If Sync &

Sense needs to abandon the ongoing epoch and start over, this would dramatically affect and

reduce the synchronization rate performance.

Figure 4-2 is a revisit of Figure 3-3, in the previous chapter, illustrating how Sync &

Sense makes measurements in adaptive packetization VoIP. Starting from packet #2, the

transmission rate is reduced. In other words, the packetization delay gets larger. When Sync

& Sense observes an arriving packet with a changing payload size, packet #2, it can follow

this rate change by advancing the transmission timing by the corresponding packetization

delay. The intervals between the dashed lines on the receiver are the constructed transmission

timing. From the figure, we can see that the inter-arrival gap includes the change in

packetization delay. Therefore, at the end of an epoch, the transmission and reception timing

advance by the same amount of time. The figure demonstrates that, in adaptive packetization

VoIP, Sync and Sense can continuously provide delay measurements, unaffected by changes

in the transmission rate. For Sync & Sense to work with adaptive packetization VoIP,

Equation 3-3 must be updated to:

∑
=

n

1
packD

i

i – ε ≤ E ≤ (4-3) ∑
=

n

1
packD

i

i

 96

The above equation basically means that Sync & Sense finds a complete epoch of excursion

when the ongoing epoch is equal (with an error margin) to the sum of packetization delays.

Figure 4-2 Sync & Sense measurements in adaptive packetization VoIP

In the previous chapter, Sync & Sense has proven that it is not affected by packet loss.

From Figure 4-2, if packet #3 is lost, Sync & Sense can still continue to observe the inter-

arrival gap. Upon receiving packet #4, Sync & Sense observes the inter-arrival gap beginning

from the arrival of packet #2. This already includes the inter-arrival gap that would have been

from the lost packet #3. By checking the packet sequence number, Sync & Sense knows to

advance the transmission timing accordingly by adding two packetization delays. Therefore,

both the ongoing epoch and the transmission timing can advance correctly in the event of

packet loss. Nonetheless, in adaptive packetization VoIP, a scenario of packet loss can have

an impact on Sync & Sense. From Figure 4-2, if packet #2 is lost, a problem arises. Upon

receiving packet #3, Sync & Sense has no way to know whether packet #2 is transmitted

 97

based on the old or new packetization. This problem could happen during the silence period.

After a command feedback is sent to the sender, Sync & Sense is expecting incoming packets

with a different packetization. It is the packet loss at the end of the silence period that causes

the problem. The lost packet could be the last of the previous rate stream or the first of the

new rate stream. Advancing the transmission timing with the incorrect packetization delay

can affect the measurement accuracy. A solution is to abandon the ongoing epoch and restart

the synchronizing phase. This, however, comes at a heavy price because it typically takes

some time to re-synchronize. This reduces the synchronization rate performance. As a result,

Sync & Sense would not be able to continuously provide delay measurements to the

adaptive-rate control.

The answer to this problem comes down to the choice between the measurement

accuracy and the synchronization rate. For adaptive packetization VoIP, the latter is more

important because it allows the control to fully use the delay threshold strategy. To maintain

the synchronization, when Sync & Sense observes an arriving packet with a different

packetization, it assumes this packet is the first of the new rate stream. This assumption could

also be wrong if this packet is actually the last of the previous rate stream. Although the

result of this strategy is an error in the delay measurements, it causes relatively little impact

on how the adaptive-rate control makes a decision. Since the control adjusts the transmission

rate in a stepwise fashion, a step of the rate change is really a small change in packetization,

for example 5 milliseconds. The size of the error is equal to the change in packetization delay,

which is relatively small compared to the network delay. It is possible that the measurement

error may accumulate following several consecutive wrong assumptions in this situation. But,

the probability would be very low. Besides, Sync & Sense can automatically catch the error

and correct it when the condition of Equation 3-6, the dispersion gap must be equal or larger

than the packetization delay, is found. Lastly, the delay trend and delay threshold are

compared with respect to each other. The measurement error incurred in both the delay trend

and delay threshold thus does not affect the control decision.

 98

4.3.3 Jitter Buffer Management

In packet-switched networks, packets typically arrive at the receiver with variable

network delays. The variation in the packet inter-arrival times is called jitter. For VoIP, jitter

must be removed so that voice frames can be decoded in a constant rate and played out

smoothly. A jitter buffer does this job by storing a number of voice packets to normalize the

delay variations. If a packet arrives too quickly, it will be held for a small duration of time so

that it and late arriving packets can be played out at a constant rate. A typical jitter buffer

deals with voice packets with fixed packetization. In adaptive packetization VoIP, additional

jitter buffer management is needed to prevent buffer underflow and overflow. Note that

buffer underflow and overflow can happen in any jitter buffer when the buffer is too small to

accommodate the delay variations. In an underflow, the buffer is empty when the speech

coder needs to play out a sample. In an overflow, the buffer is already full and another packet

arrives. Such a packet thus needs to be discarded. Both cases cause gaps in the speech and

degrade the voice quality. Below, we discuss a special case of buffer underflow and overflow

that could happen due to the change of packetization, and a simple solution that can fix this

problem.

Figure 4-3 illustrates most of the processes in VoIP, along with the time line. Line A

is the time in which sample voice frames are produced by the speech coder, at a constant rate,

for example, every 5 milliseconds. Each dot represents a sample voice frame. Several voice

frames may be loaded into the same packet, called packetization. For example, voice frames

#5 and #6 are loaded together and transmitted as a single packet. The dashed line represents

transmission of the packet from the sender (line A) to the receiver (starting from line B). Line

B is the minimum delay incurred on every packet traveling across the network, which

includes, for the most part, propagation delay, and delays in routers and switches. The jitter

buffer is represented by the time from line B to line D. Packets may arrive at any time

between line B and line D due to the variation in network delay. The packets arriving on line

B are early. Thus, they are held in the jitter buffer. All voice frames leave the buffer at a

constant rate on line D (ignoring line C, for now), to be decoded and played out. The time

from line A to line D is the playout time.

 99

Figure 4-3 Jitter buffer management in adaptive packetization VoIP

From Figure 4-3, when packetization includes one voice frame, the generated voice

frame is loaded into a packet and transmitted right away. Assume it takes 5 milliseconds for

the speech coder to collect enough voice samples and produce a voice frame. Upon line D,

the voice frame is unloaded from the packet and leaves the jitter buffer immediately. Thus,

the packetization delay is 5 milliseconds. When packetization includes more than one voice

frame, a delay artifact can be seen in the figure. For example, voice frames #5 and #6 are

loaded into the same packet. It takes 5 milliseconds to generate voice frame #5. The

generated voice frame #5 must wait for another 5 milliseconds for voice frame #6 to be

generated. Then, both voice frames can be transmitted together as a packet. Note that, at this

time, voice frame #6 incurs 5-millisecond packetization delay. Ignoring line C, for now,

when the packet arrives at the receiver and reaches line D, voice frame #5 is unloaded first

and leaves the buffer right away. Voice frame #6 must wait for 5 milliseconds to be unloaded.

Therefore, this process of packetization (and de-packetization) incurs 10 milliseconds to both

voice frames #5 and #6.

Figure 4-3 also illustrates how, during the time of packetization change, the

packetization delay can cause buffer underflow and overflow. Starting on voice frame #5, the

control increases packetization to 10 milliseconds. Ignoring line C, for now, if the packet

containing voice frames #5 and #6 arrives too late at time 6, the packetization delay causes a

buffer underflow. At time 5, there is no voice frame to be played out. Similarly, starting on

 100

voice frame #11, the control decreases packetization back to 5 milliseconds. If the packet

containing voice frames #9 and #10 arrives too late at time 10, the packetization delay causes

a buffer overflow. At time 11, voice frame #10 is ready to be played out. But, at the same

time, voice frame #11 arrives and needs to be played out as well. Either voice frames #10 or

#11 must be discarded. The probability of encountering the above buffer underflow and

overflow scenarios is very low. This is because it only happens during the time of

packetization change and the packets arrive so late, just before overflow on line D. Besides, a

typical network delay distribution has a long tail toward high delays. Thus, most of the

packets would arrive well before line D. A rather common scenario is that the packets arrive

before line D. Line C shows a jitter buffer management that must be coordinated with the

control. From the figure, upon receiving the packet containing voice frames #5 and #6, the

control observes the increase in packetization by 5 milliseconds. The control must reduce the

jitter buffer accordingly by the size of the packetization delay; that is, from line D to line C.

Voice frame #5 thus can be played out at time 5, and there is no buffer underflow. Similarly,

upon receiving the packet containing voice frame #11, the control observes the decrease in

packetization by 5 milliseconds. The control must increase the jitter buffer accordingly by the

size of the packetization delay; that is, from line C to line D. Voice frame #10 thus can be

played out at time 10, followed by voice frame #11 at time 11, and there is no buffer

overflow.

4.4 Performance Study in High Statistical Multiplexing Environment

Characterizing aggregate network traffic is difficult because it is a mix of traffic

flows from a variety of applications. It depends upon several factors, including the

application itself, transport protocol, user behavior, etc. Whereas most traffic is carried by the

TCP protocol, researchers have recently adopted a flow based approach. That is, TCP traffic

can generally be categorized into two types: so-called mice and elephants [46, 47]. Mice are

short-lived TCP flows in which data is sent in its entirety within the slow start phase.

Without congestion control, mice are not sensitive to the bandwidth sharing imposed by TCP.

Mice can start when other flows are reducing their transmission. Web-like traffic is an

example of mice. On the contrary, elephants are long-lived TCP flows that extend pass the

 101

slow start phase. Thus, elephants share the bandwidth according to the congestion control

mechanism of TCP. FTP traffic is an example of elephants. As a consequence, mice and

elephants, as well as UDP traffic, have a totally different behavior from a modeling point of

view. This is an important issue that needs to be considered in the performance study of our

adaptive packetization VoIP. Therefore, we classify our simulation into 2 cases: high and low

statistical multiplexing environments.

Because of high statistical multiplexing, the aggregate competing traffic is relatively

insensitive to the adaptive VoIP flow under study. This can also be a model for different

circumstances. For instance, the competing traffic is composed of a large number of UDP

flows. Or, the majority of the competing traffic is mice. Under this environment, the change

in the transmission rate of adaptive VoIP has relatively little impact on the behavior of the

competing traffic. The adaptive VoIP flow thus must be aware of network congestion and

react promptly in order to optimize the delay and loss performance. In the following, we

present the performance study in a high statistical multiplexing environment to evaluate our

adaptive packetization VoIP in comparison to traditional VoIP. The simulation result also

demonstrates how the adaptive VoIP flow behaves in this environment.

4.4.1 Simulation Setup

The performance study is conducted using the Network Simulator 2 or ns-2 [12]. The

network topology for this study is shown in Figure 4-4. All nodes implement FIFO

scheduling and drop-tail queuing. All links have capacity of 10 Mbps, except the link

between node 9 and 10 that is the bottleneck with a limited capacity of 512 Kbps. The

propagation delay along the path is set to 40 milliseconds. The cross traffic on each link

creates load around 60 percent on average. For a high statistical multiplexing environment,

the cross traffic can be generated using ON/OFF sources with the shape parameter of the

Pareto distribution set to 1.5 [40]. Specifically, we use nine sources on each node to create

the cross traffic. Packet sizes of the cross traffic are distributed following the studies in [14,

15]; 60% of the packets are 40 bytes, 25% are 550 bytes, and 15% are 1500 bytes. Note that,

in terms of load distribution, about 7% of the load is 40-byte packets, 35% is 550-byte

packets, and 58% is 1500-byte packets. The adaptive VoIP flow is assumed using the

 102

ADPCM codec, in which the packetization is variable among 10, 15, 20, 25, and 30

milliseconds. The corresponding transmission rates are 64, 53.3, 48, 44.8, and 42.6 Kbps,

respectively.

Figure 4-4 Simulation network topology for high statistical multiplexing

One-way network delay and packet loss are measured in each simulation, which runs

for 120 seconds. Note that the network delay is associated with the packet level. To evaluate

the performance of VoIP, the measurements must be in the voice frame level. This is because

packetization delay is a factor that affects the delay of the voice frame. Instead of the

network delay, we use one-way end-to-end, which is the latency of a voice frame from when

the codec begins to collect the voice samples to when the voice frame is received at the

receiver and begins to be decoded. The end-to-end delay can be found as the sum of the

measured network delay and the corresponding packetization delay. Similarly, packet loss is

associated with the packet level. A lost packet with larger packetization causes more damage

than that with smaller packetization because more voice frames are lost. Thus, we consider

voice frame loss, instead of packet loss. Packet loss can be converted to voice frame loss

based on the corresponding packetization.

4.4.2 Network with High Statistical Multiplexing Traffic

Figure 4-5 is an instance of the simulation results of an adaptive packetization VoIP

flow across a network with high statistical multiplexing traffic. We monitor several points in

the network so that we can observe and demonstrate the action of the adaptive VoIP flow.

 103

Figure 4-5 (a) shows the cross traffic on the bottleneck link. The envelope line is the average

cross traffic on a larger time scale of one second. The shaded area within the envelope line is

the cross traffic on a smaller time scale, which is sometimes bursty beyond the bottleneck

link capacity. Accordingly, Figure 4-5 (b) shows the transmission rate of the adaptive VoIP

flow in response to the changing cross traffic. Figure 4-5 (c) and (d) show the performance of

the adaptive VoIP flow in terms of voice frame loss and end-to-end delay, respectively.

Voice frame loss in Figure 4-5 (c) is normalized so that a packet loss with 10-ms

packetization causes voice frame loss of 10. A packet loss with larger packetization causes

correspondingly more voice frame loss. For example, a packet loss with 20-ms packetization

causes voice frame loss of 20.

The result demonstrates that the proposed adaptive VoIP works as designed. The

adaptive VoIP flow responds to every packet loss event. It is able to cautiously maintain a

high transmission rate over the course of the session. The silence period strategy helps to

prevent unnecessarily drastic rate reduction due to instantaneous spikes of packet loss. At

time around 110 seconds, packet loss is very excessive. The result shows that the adaptive

VoIP flow can quickly reduce the transmission rate to the minimum. When the congestion is

clear, it can also quickly return to operate at the maximum transmission rate. The result also

shows that the adaptive VoIP flow responds to the delay threshold strategy. This can be seen

between time 20 and 40 seconds, for example. As seen in the figure, the fast response

strategy results in the transmission rate that often surges to a higher rate and quickly drop

back when a packet loss or the delay trend crossing above the delay threshold is observed.

Both the delay threshold and fast response strategies help to prevent many potential packet

losses.

 104

0

200

400

600

800

C
ro

ss
 tr

af
fic

 o
n

bo
ttl

en
ec

k
lin

k
(K

bp
s)

40

50

60

70

A
V

oI
P

tra
ns

m
is

si
on

 ra
te

 (K
bp

s)

0

10

20

30

A
Vo

IP
vo

ic
e

fra
m

e
lo

ss

0 20 40 60 80 100 120

100

200

300

400

Time (sec)

A
V

oI
P

en
d-

to
-e

nd
 d

el
ay

 (m
s)

Figure 4-5 Simulation result for high statistical multiplexing

 105

4.4.3 Comparative Performance between Adaptive VoIP and CBR VoIP

An important question is whether adaptive packetization VoIP can deliver a better

performance than traditional VoIP. To answer this question, we conducted a set of

simulations that compares the performance between the two. As we learned from Chapter 2,

offered load is a key factor that affects the performance. In each simulation, from the

network topology in Figure 4-4, we vary the offered load on the bottleneck link from 60 to 85

percent. Under the same condition, we repeat the simulation by replacing the adaptive VoIP

source (and the receiver) with the following constant bit rate CBR VoIP sources: CBR10,

CBR15, and CBR20 with the packetization delay of 10, 15, and 20 milliseconds, respectively.

The CBR VoIP is assumed using the ADPCM codec as same as the adaptive VoIP. To

characterize the performance, the measured one-way network and packet loss are converted

to end-to-end delay and voice frame loss, respectively, based on the corresponding

packetization of the packet. In VoIP, early arriving packets are held in a jitter buffer for a

smooth playout. We use the 90th percentile of end-to-end delay as a performance metric

because it virtually accounts for an estimate of the jitter buffer delay. Thus, it can reflect the

actual delay that the user may experience. Another performance metric is voice frame loss

rate that indicates the percentage of voice frames being lost in the network.

Table 4-1 Comparative performance between adaptive VoIP and CBR VoIP

 Offered load (%)

 60 65 70 75 80 85

AVoIP 96.45 ms

0.21%

120.84 ms

0.33%

187.57 ms

1.09%

233.28 ms

1.55%

244.29 ms

2.11%

310.87 ms

4.98%

CBR10 103.22 ms

0.24%

133.82 ms

0.41%

196.87 ms

1.42%

234.33 ms

2.05%

246.89 ms

2.63%

289.96 ms

6.19%

CBR15 101.59 ms

0.21%

128.98 ms

0.33%

202.86 ms

1.04%

245.99 ms

1.52%

261.41 ms

2.15%

321.66 ms

5.31%

CBR20 105.15 ms

0.17%

126.66 ms

0.31%

206.81 ms

0.86%

253.67 ms

1.28%

273.09 ms

1.83%

339.89 ms

4.84%

 106

60 65 70 75 80 85

100

150

200

250

300

350

Offered load (%)

90
th

 p
er

ce
nt

ile
 e

nd
-to

-e
nd

 d
el

ay
 (m

s)

AVoIP
CBR10
CBR15
CBR20

60 65 70 75 80 85
0

1

2

3

4

5

6

Offered load (%)

V
oi

ce
 fr

am
e

lo
ss

 (%
)

AVoIP
CBR10
CBR15
CBR20

Figure 4-6 Plot of comparative performance between Adaptive VoIP and CBR VoIP

 107

Table 4-1 shows the simulation results. Each cell in the table includes the 90th

percentile of end-to-end delay on the top and voice frame loss rate on the bottom. Figure 4-6

(a) and (b) are the corresponding plots of the 90th percentile of end-to-end delay and voice

frame loss rate, respectively, from the table. Comparing among the CBR VoIP sources,

CBR15 and CBR20 tend to give a better performance under the offered load of 65 percent or

below. This is because they require less network bandwidth than CBR10; thus, causing less

congestion. Beyond the offered load of 70 percent, the available bandwidth is decreasing and

very limited. Since CBR10 demands the most network bandwidth, it causes severe

congestion and excessive packet loss. As a consequence of FIFO queue, the packet loss

affects all traffic sharing the bottleneck link and reduces the overall network delay. The same

situation happens to CBR15, and CBR20. Therefore, CBR10 gives the best end-to-end delay

performance, followed by CBR15 and CBR20. On the contrary, CBR10 gives the worst

voice frame loss rate, followed by CBR15, and CBR20. Although CBR15 and CBR20 give

less voice frame loss, it should be noted that their voice frame losses are consecutive, based

on packetization. It is usually difficult to recover voice quality from consecutive losses. Thus,

the same voice frame loss rate impacts voice quality of CBR20, more than CBR15, and

CBR10, respectively. The results show that the adaptive VoIP can compromise between the

end-to-end delay and voice frame loss performance. Overall, the adaptive VoIP appears to

give an optimal performance because its flexibility in adapting the transmission rate helps to

minimize network congestion. Beyond the offered load of 75 percent, the adaptive VoIP

rarely operates at the maximum transmission rate, using 10-ms packetization. As the effect of

packet loss, CBR10 still gives a better end-to-end delay performance, but a worse voice

frame loss rate.

Although it may seem that the adaptive VoIP does not give a significant advantage

over CBR VoIP, the following should be noted. In this simulation, the VoIP flow does not

make a significant traffic over the large bottleneck link. Thus, the performance is largely

determined by the overall traffic load. Higher performance gain can be expected when the

VoIP traffic is more significant. The advantage of the adaptive VoIP is its flexibility to adapt

to the optimal transmission for the current network condition, and balance the delay and loss

performance. Inflexibility is the problem for traditional CBR VoIP because the network load

constantly changes.

 108

4.5 Performance Study in Low Statistical Multiplexing Environment

By low statistical multiplexing environment, we mean that the competing traffic is

somewhat sensitive to the adaptive VoIP flow under study. In addition, the behavior of each

individual flow also has an impact on the other flows. This can be a model for circumstances,

for instance, in which elephants are a majority of the competing traffic. In this environment,

several aspects other than the delay and loss performance need to be studied. The adaptive

VoIP must demonstrate that it has the capability to compete with other flows to acquire its

share of network bandwidth. In addition, it should provide a fair bandwidth allocation when

adaptive VoIP flows share the same network. Although TCP-friendliness is not a major

concern in our design, the adaptive VoIP must not be unresponsive, but rather be friendly to

the competing TCP flows, to a certain extent. In the following, we present the performance

study that examines the issues mentioned above. The simulation compares the performance

of the adaptive VoIP with traditional VoIP, as well as demonstrates how the adaptive VoIP

interacts with other traffic types.

4.5.1 Simulation Setup

An objective of this performance study is to investigate the interaction among traffic

flows that compete for the shared network bandwidth. To achieve such an objective, it is

necessary to use a simple bottleneck network topology. This allows the interpretation of the

results to be more straightforward and reliable. All the simulations are based on the Network

Simulator 2 or ns-2 [12], with the network topology shown in Figure 4-7. The adaptive VoIP

source stays in all simulations, and is assumed using the ADPCM codec with the

packetization variable among 10, 15, 20, 25, and 30 milliseconds. The corresponding

transmission rates are 64, 53.3, 48, 44.8, and 42.6 Kbps, respectively. The other traffic

sources vary based on the study cases. All nodes implement FIFO scheduling and drop-tail

queuing. The bottleneck link has a limited capacity, depending on the study cases, ensuring

to create contention among traffic flows. The propagation delay on the bottleneck link is set

to 5 milliseconds.

 109

Figure 4-7 Simulation network topology for low statistical multiplexing

4.5.2 Comparative Performance between Adaptive VoIP and CBR VoIP

TCP is the most common protocol used in packet-switched networks. Any developed

protocol thus must be tested with TCP to ensure that it can work in the most common

environment. In this section, we examine how the adaptive VoIP interacts with TCP as well

as study the performance, in comparison with traditional VoIP. This set of simulations is

based on the network topology in Figure 4-7, where the other traffic source is an FTP agent

running on the TCP Reno protocol. The FTP packet size is set to 1040 bytes. The long

session of FTP ensures that the TCP congestion control is fully performed. Since TCP

constantly attempts to acquire the available bandwidth, the bottleneck link capacity of 256

Kbps is sufficient to ensure contention. In the simulation, the adaptive VoIP must defend its

required bandwidth from 42.6 to 64 Kbps. To compare the performance with traditional VoIP,

we repeat each simulation by replacing the adaptive VoIP source (and the receiver) with the

following constant bit rate CBR VoIP sources: CBR10, CBR15, and CBR20 with the

packetization delay of 10, 15, and 20 milliseconds, respectively. The CBR VoIP is assumed

using the ADPCM codec as same as the adaptive VoIP.

Figure 4-8 is the simulation result showing the interaction in the case of the adaptive

VoIP; where (a), (b), and (c) is the adaptive VoIP transmission rate, voice frame loss and

end-to-end delay, respectively; and (d) and (e) is the FTP average transmission rate on a 1-ms

time scale and TCP window size, respectively. Note that voice frame loss in the figure is

normalized so that a packet loss with 10-ms packetization causes voice frame loss of 10. A

packet loss with larger packetization causes correspondingly more voice frame loss. For

example, a packet loss with 20-ms packetization causes voice frame loss of 20.

 110

40

50

60

70

A
Vo

IP
tra

ns
m

is
si

on
 ra

te
 (K

bp
s)

0

10

20

30

A
Vo

IP
vo

ic
e

fra
m

e
lo

ss

0 20 40 60 80 100 120
0

200

400

600

Time (sec)

A
V

oI
P

en
d-

to
-e

nd
 d

el
ay

 (m
s)

0

100

200

300

FT
P

tra
ns

m
is

si
on

 ra
te

 (K
bp

s)

0 20 40 60 80 100 120
0

10

20

Time (sec)

TC
P

 W
in

do
w

 s
iz

e

Figure 4-8 Interaction between adaptive VoIP and TCP flows

 111

0

10

20

30
C

B
R

10
vo

ic
e

fra
m

e
lo

ss

0 20 40 60 80 100 120
0

200

400

600

Time (sec)

C
B

R
10

en
d-

to
-e

nd
 d

el
ay

 (m
s)

0

100

200

300

FT
P

tra
ns

m
is

si
on

 ra
te

 (K
bp

s)

0 20 40 60 80 100 120
0

10

20

Time (sec)

TC
P

 w
in

do
w

 s
iz

e

Figure 4-9 Interaction between CBR10 VoIP and TCP flows

 112

0

10

20

30
C

B
R

20
vo

ic
e

fra
m

e
lo

ss

0 20 40 60 80 100 120
0

200

400

600

Time (sec)

C
B

R
20

en
d-

to
-e

nd
 d

el
ay

 (m
s)

0

100

200

300

FT
P

tra
ns

m
is

si
on

 ra
te

 (K
bp

s)

0 20 40 60 80 100 120
0

10

20

Time (sec)

TC
P

 w
in

do
w

 s
iz

e

Figure 4-10 Interaction between CBR20 VoIP and TCP flows

 113

The result in Figure 4-8 shows that the TCP control mechanism is the main driving

force of the interaction. The TCP window size, in Figure 4-8 (e), shows how TCP progresses

to acquire the available bandwidth, starting from the slow start phase (exponential increase)

and followed by the congestion avoidance phase (additive increase). When TCP hits the

maximum available bandwidth, a packet loss timeout occurs. The next cycles of the TCP

window size then repeat over and over. This TCP behavior drives the adaptive VoIP such

that the voice frame loss is mostly periodic and the end-to-end delay has a saw-like shape, as

seen in Figure 4-8 (b) and (c), respectively. Accordingly, the adaptive VoIP and TCP

transmission rates peak about the same time. That means both the adaptive VoIP and TCP

observe packet loss about the same time as well. The adaptive VoIP is quick to respond to

packet loss, based on the fast response strategy. At the same time, the TCP window size

starts over at one. This results in a relatively synchronized transmission rate between the

adaptive VoIP and TCP, as seen in Figure 4-8 (a) and (d), respectively.

At time around 25, 55, and 85 seconds, for example, it can be seen from Figure 4-8 (e)

that the TCP window size advances more than other times. At the same times, the adaptive

VoIP reduces the transmission rate. This is a result of asymmetrical observation that two

competing flows do not always infer the same network condition at the same time. During

these times, TCP does not observe packet loss, but the adaptive VoIP does. Hence, TCP can

gain more bandwidth, while the adaptive VoIP loses its bandwidth share. When large packets

from TCP occupy more of the bottleneck queue, it increases the delay to the adaptive VoIP.

While the increasing delay triggers the delay threshold, the adaptive VoIP learns that

reducing the transmission rate does not help to improve the delay trend; instead, it is worse.

Therefore, increasing the transmission is a better move to maintain the aggressiveness against

the competing flow. As can be seen in Figure 4-8 (a), right after the incidents, the adaptive

VoIP is able to reclaim its necessary bandwidth share. Without the delay threshold strategy,

the adaptive VoIP could have been trapped to operate at the minimum transmission rate.

Given that, it would be difficult for the adaptive VoIP to compete with TCP and reclaim its

bandwidth share.

Similar to Figure 4-8, Figure 4-9 and 4-10 are the results showing the interaction in

the case of the CBR10 and CBR20 VoIP, respectively; where (a) and (b) is the CBR VoIP

voice frame loss and end-to-end delay, respectively; and (c) and (d) is the FTP average

 114

transmission rate on a 1-ms time scale and TCP window size, respectively. The results show

that the CBR VoIP voice frame loss and end-to-end delay is completely determined by the

behavior of TCP. There is basically no interaction because the CBR VoIP has no control

mechanism. The TCP window size, in Figure 4-9 (d) and Figure 4-10 (d), can repeat its

progress cycle in a periodic pattern. This, in turn, results in the CBR VoIP having a periodic

pattern of voice frame loss and saw-like shape end-to-end delay, as seen in Figure 4-9 (a), (b),

and Figure 4-10 (a), (b). The only difference between the cases of CBR10 and CBR20 is that

they have a different bandwidth requirement. CBR10 VoIP requires 64 Kbps. When

competing for shared bandwidth, TCP observes packet loss timeouts sooner. As TCP backs

off more often, the bottleneck queue is less filled with large TCP packets. As a result, CBR10

VoIP has a lower end-to-end delay. This, however, comes at a price. Because packet losses

occur more often, CBR10 VoIP has a higher voice frame loss. On the other hand, CBR20

requires 48 Kbps. When competing for shared bandwidth, TCP observes packet loss timeouts

later. As TCP backs off less often, the bottleneck queue is more filled with large TCP packets.

As a result, CBR20 VoIP has a higher end-to-end delay. Because packet losses occur less

often, CBR20 VoIP has a lower voice frame loss.

Table 4-2 Comparative Performance between adaptive VoIP and CBR VoIP

 90th Percentile End-

to-End Delay (ms)

Voice Frame

Loss Rate (%)

AVoIP 524.25 3.556

CBR10 471.38 4.858

CBR15 593.72 2.737

CBR20 706.23 1.750

Table 4-2 shows comparative performance of the 90th percentile of end-to-end delay

and voice frame loss rate among the adaptive VoIP, CBR10, CBR15, and CBR20, when

competing with TCP. The result suggests that, in the case of the CBR VoIP, sending more

packets (such as CBR10) allows the CBR VoIP to get a greater share of the bottleneck

 115

bandwidth. Because it has no control mechanism, the CBR VoIP flows are unresponsive. The

consequence of sending more packets, when competing with TCP, is greater packet losses.

Packet loss does not only affect the CBR VoIP itself, but also affects the TCP throughput.

That is a reason why researchers are promoting TCP-friendliness to minimize the impact

from unresponsive CBR flows. The dilemma of VoIP is that both delay and loss affect the

overall performance. As seen from the table, having a lower delay results in a higher loss and

vice versa. This is particularly the case for the CBR VoIP because it uses a fixed

packetization. The adaptive VoIP has the flexibility to minimize congestion and, at the same

time, maintain aggressiveness. This results in a balance between the delay and loss that gives

an optimal performance.

4.5.3 Heterogeneous Network with TCP Flows

In this section, we extend the previous simulation to a more realistic environment,

where many TCP flows share the bottleneck link. The adaptive VoIP flow under study is

expected to encounter more stress in this environment. This is because the increasing number

of TCP flows creates more contention in sharing the limited resource. An interesting question

to study is whether the adaptive VoIP is able to maintain its aggressiveness to compete with

TCP and to not easily get trapped to operate at the minimum transmission rate. We use the

same network topology in Figure 4-7, where the other traffic sources include four FTP agents,

based on the TCP Reno protocol. The bottleneck link capacity is set to 512 Kbps. Figure 4-11

is the simulation result showing the interaction among all the competing flows. Figure 4-11

(a) shows the adaptive VoIP transmission rate. Figure 4-11 (b), (c), (d), and (e) shows the

average transmission rate on a 1-ms time scale of FTP0, FTP1, FTP2, and FTP3, respectively.

 116

40

50

60

70

A
Vo

IP
tra

ns
m

is
si

on
 ra

te
 (K

bp
s)

0

200

400

FT
P0

tra
ns

m
is

si
on

 ra
te

 (K
bp

s)

0

200

400

FT
P1

tra
ns

m
is

si
on

 ra
te

 (K
bp

s)

0

200

400

FT
P2

tra
ns

m
is

si
on

 ra
te

 (K
bp

s)

0 20 40 60 80 100 120
0

200

400

Time (sec)

FT
P3

tra
ns

m
is

si
on

 ra
te

 (K
bp

s)

Figure 4-11 Heterogeneous network with TCP flows

 117

From the figure, FTP0 starts off at time zero and gets the full bandwidth capacity.

The adaptive VoIP session begins at time 10 seconds. It can operate at higher transmission

rates, which oscillate between 64 and 48 Kbps. The rate oscillation is due to the interaction

with TCP, as described in the previous section. At time 30 and 40 seconds, FTP1 and FTP2

begin their sessions, respectively. The adaptive VoIP now competes with three TCP flows.

The transmission rate of FTP0 drops quickly, as new FTP sessions started. At equilibrium,

the transmission rates of FTP0, FTP1, and FTP2 converge by which each gets an average

bandwidth share around 160 Kbps. As seen from the figure, the adaptive VoIP responds to

the decreasing available bandwidth as well, by operating at a lower transmission rate than the

previous period, with one competing TCP flow. When FTP3 starts at time 60 seconds, with

four competing TCP flows, the adaptive VoIP further reduces the transmission rate to the

minimum. The result shows that, from time to time, the adaptive VoIP is able to increase the

transmission rate to maintain its aggressiveness. The adaptive VoIP appears not to get

trapped to operate at the minimum transmission rate, even when competing with many TCP

flows. From time 90 seconds onward, FTP3 and FTP2 end their sessions, respectively. FTP0

and FTP1 converge to a new equilibrium with the transmission rate around 250 Kbps. As

more bandwidth becomes available, the adaptive VoIP can also quickly move to operate at a

new equilibrium with a higher transmission rate. This simulation demonstrates that the

adaptive VoIP has the aggressiveness to compete in a TCP-dominant network, in order to

acquire its needed share of bandwidth. At the same time, the adaptive VoIP is responsive to

network congestion and also TCP-friendly. As more TCP flows share the same network, the

adaptive VoIP tends to operate at a lower transmission rate.

 118

4.5.4 Heterogeneous Network with CBR VoIP Flows

The problem of unresponsive flows is a current research topic, particularly in the area

of TCP-friendliness. Unresponsive flows do not use any congestion control. So, they do not

respond to network congestion. This behavior can result in both unfairness and congestion

collapse. The impact of unfairness is that well-behaved responsive flows, such as TCP, could

encounter bandwidth starvation. As the adaptive VoIP implements a congestion control, it

could face the same problem as TCP. When competing with unresponsive flows, the adaptive

VoIP would be likely to operate at a lower transmission rate. This is simply because the

adaptive VoIP responds to packet losses, but the unresponsive flows do not. In this section,

we investigate the above mentioned issue. We examine the interaction between the adaptive

VoIP and CBR VoIP, as well as study how the adaptive VoIP is affected by the unresponsive

CBR VoIP. We use the same network topology in Figure 4-7, where the other traffic source

is a 64Kbps CBR VoIP source, based on the ADPCM codec with 10-ms packetization. The

adaptive VoIP source is based on the same codec with variable packetization, giving the

transmission rates among 64, 53.3, 48, 44.8, and 42.6 Kbps. Because both sources require

bandwidth of 64 Kbps at most, the bottleneck bandwidth must be less than 128 Kbps in order

to create congestion. Thus, the bottleneck link capacity is set to 110 Kbps.

Figure 4-12 is the simulation result showing the interaction between the adaptive

VoIP and CBR VoIP. Figure 4-12 (a), (b), and (c) shows the adaptive VoIP transmission rate,

voice frame loss, and end-to-end delay, respectively. Figure 4-12 (d) and (e) shows the CBR

VoIP voice frame loss and end-to-end delay, respectively. Note that voice frame loss in the

figure is normalized so that a packet loss with 10-ms packetization causes voice frame loss of

10. A packet loss with larger packetization causes more voice frame loss as the basis of 10.

For example, a packet loss with 20-ms packetization causes voice frame loss of 20.

 119

40

50

60

70

A
Vo

IP
tra

ns
m

is
si

on
 ra

te
 (K

bp
s)

0

10

20

30

A
Vo

IP
vo

ic
e

fra
m

e
lo

ss

0 20 40 60 80 100 120
0

100

200

300

400

Time (sec)

A
V

oI
P

en
d-

to
-e

nd
 d

el
ay

 (m
s)

0

10

20

30

C
B

R
10

vo
ic

e
fra

m
e

lo
ss

0 20 40 60 80 100 120
0

100

200

300

400

Time (sec)

C
B

R
10

en
d-

to
-e

nd
 d

el
ay

 (m
s)

Figure 4-12 Heterogeneous network with CBR VoIP flows

 120

The figure shows an especially interesting result. The adaptive VoIP can operate at

the maximum transmission rate without any voice frame loss, after time around 20 seconds.

At the same time, with its fixed rate of 64 Kbps, the CBR VoIP experiences excessive voice

frame loss. It could have been the reverse. With congestion control, the adaptive VoIP would

operate at a lower transmission rate. The following analysis explains what happens. At the

beginning, both flows start off with the transmission rate of 64 Kbps. The aggregate

transmission rate overflows the bottleneck link of 110 Kbps. Both flows thus experience

packet losses. Whereas the CBR VoIP is unresponsive, the adaptive VoIP responds to packet

losses and quickly reduces its transmission rate to 44.8 Kbps. As a result, the aggregate

transmission rate is less than the bottleneck link capacity and the congestion is clear. Soon,

this allows the adaptive VoIP to observe no indication of congestion and starts to increase the

transmission rate again. For the first 22 seconds, the process of reducing and increasing the

transmission rate repeats over and over as the adaptive VoIP attempts to maintain its

aggressiveness to acquire its needed share of bandwidth.

At time around 20 seconds, the adaptive VoIP has an opportunity to operate at the

maximum transmission rate of 64 Kbps. This is probably because of the recent shuffling of

the transmission rate, which also causes the CBR VoIP to experience packet loss at the

moment. When both flows transmit packets at 64 Kbps, the packet drop rate at the bottleneck

link can be simply calculated as 18 Kbps. With the same packet size of 80 bytes, the drop

rate is 28.125 packets per second. In other words, one packet is dropped every 35.55

milliseconds. At 64 Kbps, both sources transmit a packet every 10 milliseconds. In the FIFO

queue, packets from both sources interleave to enter the bottleneck link. So, both sources

would have an equal chance of their packets being dropped. However, the shuffling of the

transmission rate allows the adaptive VoIP to transmit packets in the order in which it never

observes packet loss. On the other hand, this causes the CBR VoIP to transmit packets that

are synchronized with the packet drop rate. Because of its fixed transmission rate, the CBR

VoIP continues to encounter excessive packet loss, without an opportunity to change the

outcome.

This simulation shows that the adaptive VoIP, just like TCP, faces unfairness when

sharing the network with unresponsive CBR VoIP flows. The adaptive VoIP needs to operate

at a lower transmission rate in order to avoid congestion, and could encounter bandwidth

 121

starvation. Nevertheless, flexibility is the strength of the adaptive VoIP. In a network with

CBR traffic, adapting the transmission rate could result in the shuffling effect that allows the

adaptive VoIP to be in a better position to acquire its needed share of bandwidth.

4.5.5 Homogeneous Adaptive VoIP Network

In the previous sections, we have seen how the adaptive VoIP interacts with TCP and

unresponsive CBR VoIP. The last scenario is to study how the adaptive VoIP flows behave

in a homogeneous adaptive VoIP network. Since all the adaptive VoIP flows implement the

congestion control, the overall network congestion should be minimized. This would allow

optimal performance to all the competing flows. With the same congestion control, it can

also be expected that a fair bandwidth allocation should be provided among the competing

flows. In this section, we set up a homogeneous adaptive VoIP network, based on the

network topology in Figure 4-7, with three adaptive VoIP sources. The adaptive VoIP

sources are based on the ADPCM codec with variable packetization, giving the transmission

rates among 64, 53.3, 48, 44.8, and 42.6 Kbps. In order to ensure congestion in the

simulation, the bottleneck link capacity is set to 120 Kbps. Specifically, with two competing

flows, the aggregate bandwidth is at most 128 Kbps. With three competing flows, the

aggregate bandwidth is at most 127.8.

Figure 4-13 is the simulation result showing transmission rate and voice frame loss of

the three adaptive VoIP flows: AVoIP0, AVoIP1 and AVoIP2, respectively. Note that voice

frame loss in the figures is normalized so that a packet loss with 10-ms packetization causes

voice frame loss of 10. A packet loss with larger packetization causes correspondingly more

voice frame loss. For example, a packet loss with 20-ms packetization causes voice frame

loss of 20.

 122

40

50

60

70

A
Vo

IP
0

tra
ns

m
is

si
on

 ra
te

 (K
bp

s)

0

10

20

30

A
Vo

IP
0

V
oi

ce
 fr

am
e

lo
ss

40

50

60

70

A
Vo

IP
1

tra
ns

m
is

si
on

 ra
te

 (K
bp

s)

0

10

20

30

A
Vo

IP
1

vo
ic

e
fra

m
e

lo
ss

40

50

60

70

AV
oI

P2
tra

ns
m

is
si

on
 ra

te
 (K

bp
s)

0 20 40 60 80 100 120
0

10

20

30

Time (sec)

A
Vo

IP
2

vo
ic

e
fra

m
e

lo
ss

Figure 4-13 Homogeneous adaptive VoIP network

 123

From the figure, AVoIP0 starts off at time zero second and gets the needed maximum

bandwidth of 64 Kbps. AVoIP1 starts at time 10 seconds. So, the aggregate bandwidth from

both flows is now 128 Kbps, which is more than the bottleneck bandwidth. Both flows

observe packet losses and respond accordingly, which results in the transmission rate

alternating between 64 and 53.3 Kbps. AVoIP2 starts at time 40 seconds. At the moment, the

three flows transmit packets at the maximum rate. This gives the aggregate bandwidth of 192

Kbps, which is much more than the bottleneck bandwidth. As a consequence, all three flows

experience excessive packet loss. The figure shows that the three flows can quickly respond

to the decreasing bandwidth, by reducing the transmission rate to the minimum of 42.6 Kbps.

Nevertheless, the three flows still suffer some packet losses because the new aggregate

bandwidth of 127.8 Kbps is slightly more than the bottleneck bandwidth.

At time 80 seconds, AVoIP0 ends its session. The figure shows that both AVoIP1 and

AVoIP2 can quickly respond to the bandwidth that becomes available. Both flows attempt to

increase the transmission rate to the maximum. As seen from the figure, AVoIP1 is able to

operate at 64 Kbps with no packet loss; while AVoIP2 has the transmission rate alternating

between 64 and 53.3 Kbps, with no packet loss as well. What happens is a result of

asymmetric observation. AVoIP2 appears to have a lower delay threshold than AVoIP1.

Hence, AVoIP2 has its fast response strategy triggered sooner than AVoIP1. As AVoIP2

reduces its transmission rate in response to the delay threshold strategy, it proactively

prevents congestion and packet loss from happening. As a result, AVoIP1 continues to

observe no congestion. Although asymmetric observation results in an unfair bandwidth

allocation between the two flows, both have the best possible performance. Because

congestion never happens, both AVoIP1 and AVoIP2 experience no packet loss and very

small delay. Although AVoIP1 gets more bandwidth than AVoIP2, the impact is very limited.

Since rate adaptation is done by packetization, the only impact to AVoIP2 is an extra 5-ms

packetization delay added to the end-to-end delay.

This simulation demonstrates the ability of the adaptive VoIP to constantly adjust its

transmission rate to the optimal. In a homogeneous network of the adaptive VoIP, the

network can have the flexibility to accept more VoIP flows without causing severe

performance degradation. Namely, the adaptive VoIP flows can automatically choose to

operate at a lower transmission rate when the network gets congested. The result also shows

 124

that adaptive VoIP can provide fair overall bandwidth allocation, but with a variation. This is

due to the fact that the rate adaptation is large-grain. It is impossible for the adaptive VoIP to

operate at any transmission rate that gives a fair share of bandwidth. Asymmetrical

observation is another effect because the competing flows may not infer the same network

condition at the same time. Asymmetrical observation is not uncommon. In well developed

TCP-friendly protocols, researchers need to deal with this problem as well, in order to

achieve fair bandwidth allocation.

4.6 Summary

The main focus of this chapter is to design an adaptive-rate control that makes use of

the components we have proposed in the previous two chapters; namely, rate adaptation and

network state detection. Integrating the three components allows us to develop a novel and

unique adaptive-rate VoIP called Sync & Sense enabled adaptive packetization VoIP. Since

rate adaptation is based on packetization, our adaptive VoIP can work with any constant

bitrate speech coder. The advantage is that rate adaptation is independent to the coder and is

likely to be more transparent to the user. By incorporating the Sync & Sense methodology,

our adaptive VoIP has the ability to make the control decision based, not only on the

commonly used packet loss, but also one-way network delay. In the design of the adaptive-

rate control, we identify three key issues: placement of the control, decision metrics, and

increase/decrease algorithm.

It is clear that the placement of the control should be on the receiver. Because Sync &

Sense performs on the receiver, this allows the control to immediately and continuously

process the observations about the state of the network. The control sends a command

feedback to the sender only when there is a need to adjust the transmission rate. In terms of

the decision metrics, we use packet loss as it is an effective indication of network congestion.

In addition, the control monitors the trend of one-way network delay. Studies have shown

that there is a correlation between one-way network delay and packet loss in which packet

loss is likely, which we denote as the delay threshold. Monitoring the delay trend allows the

control to respond sooner in anticipation of the potential packet losses. Therefore, the

increase/decrease algorithm is based on both the packet loss and delay threshold strategies,

 125

running in parallel. Since rate adaptation relies on the speech coder being used, the algorithm

is limited to a stepwise fashion. That is, it reduces the transmission rate by one step when

congestion is observed, and increase the transmission rate by one step in the absence of

congestion. In the packet loss strategy, the algorithm conservatively responds to every packet

loss event. In the delay threshold strategy, the algorithm monitors the delay trend if it has

crossed the delay threshold. The decision to adjust the transmission rate is based on the four

possible scenarios. The delay trend allows the algorithm to test the condition of self-induced

congestion. As a result, the algorithm can effectively respond to the congestion. Specifically,

if the congestion is self-induced, the algorithm responds by reducing the rate. If the

congestion is none self-induced, the algorithm increases the rate in order to optimize the

performance. If the congestion is due to TCP traffic, the algorithm increases the rate to

maintain its aggressiveness to compete for its needed share of bandwidth.

The simulation study is divided into two parts. In high statistical multiplexing, the

aggregate competing traffic is relatively insensitive to the adaptive VoIP flow under study.

The result shows that our adaptive VoIP is aware of network congestion and can react

promptly and appropriately. Under any offered load, it can compromise between the delay

and loss performance, and give an optimal performance. In low statistical multiplexing, the

competing traffic is sensitive to the adaptive VoIP flow under study. Thus, besides the

performance, interaction among the competing flows is of interest in the simulation. In a

heterogeneous network with TCP traffic, the result shows that our adaptive VoIP has the

aggressiveness to compete for its needed share of bandwidth. At the same time, it

demonstrates a certain degree of TCP-friendliness in which it responds to congestion in the

same manner as TCP does. In a heterogeneous network with CBR VoIP traffic, the result

shows that our adaptive VoIP encounters the unfairness, just like TCP does. However,

flexibility is the strength of the adaptive VoIP that could allow it to be in a better position to

acquire the needed share of bandwidth. In a homogeneous adaptive VoIP network, the flows

can automatically choose to operate at a lower transmission rate when the network gets

congested. This allows the network to accept more VoIP flows without causing severe

performance degradation. The result also demonstrates that our adaptive VoIP can provide

fair overall bandwidth allocation, but with a variation. This is due to the effect of

asymmetrical observation, as well as the fact that the rate adaptation is large-grain. In terms

 126

of comparative performance, the simulation results also show that our adaptive VoIP

performs better than traditional CBR VoIP in all aspects mentioned above. Inflexibility is a

problem for CBR VoIP because the transmission often does not match the changing network

condition.

Chapter 5

Conclusion

This dissertation addresses the inherent problem of VoIP: the mismatch between

VoIP and the network. Namely, VoIP has a strict requirement of bandwidth, delay, and loss,

but the network (particularly best-effort service networks) never guarantees such a

requirement. To deal with this problem, we focus on the endpoint approach to enhance VoIP

with an adaptive-rate control, called adaptive-rate VoIP. Adaptive-rate VoIP has the ability to

detect the state of the network and adjust the transmission accordingly. Therefore, it is

network-aware and intelligent enough to optimize its performance, making it resilient and

robust to the service offered by the network. Adaptive-rate VoIP is generally composed of

three components: rate adaptation, network state detection, and adaptive-rate control. In this

dissertation, we take a comprehensive approach in studying and developing an adaptive-rate

VoIP system. We carefully look at each component, identify the problems, and find the

solution to overcome them. Below, we describe the contributions of this dissertation,

followed by future research areas.

5.1 Contributions

The contribution of this work is threefold. First, we study optimizing packetization,

which can be used as an alternative means for rate adaptation, instead of using variable

bitrate speech coders. As an advantage, optimizing packetization allows any constant bitrate

speech coder to perform rate adaptation. Since rate adaptation is independent of the coder, it

causes no impact on the output voice frames from the coder. Second, we propose a novel

measurement methodology called Sync & Sense of periodic stream. Sync & Sense is unique

in that it can virtually synchronize the transmission and reception timing of the VoIP session,

127

 128

without requiring a synchronized clock. Sync & Sense has the ability to measure one-way

network delay and obtain the full spectrum of the delays of the VoIP session. In addition,

Sync & Sense can estimate the available network bandwidth. Sync & Sense truly serves the

objective of detecting the state of the network for VoIP, as well as providing a wider range of

indications about the network condition. Third, we carefully consider the design choices of

adaptive-rate control. The goal is to design an adaptive-rate control that makes use of the two

proposed components of rate adaptation and network state detection, as well as possesses the

desirable properties. Specifically, we ensure that the control is quick to respond to changing

network conditions, aggressive enough to compete with TCP for its needed share of

bandwidth, responsive to network congestion, friendly to the competing TCP traffic, and

convergent to a fair bandwidth allocation among the homogeneous adaptive VoIP flows. The

integration of the three proposed components is a novel and unique adaptive-rate VoIP called

Sync & Sense Enabled Adaptive Packetization VoIP.

The contributions mentioned above are not restricted to our adaptive VoIP. The

proposed work in each component is unique in itself and can be adopted by other systems.

The knowledge and findings about optimizing packetization show the general benefits and

limitations of adaptive-rate VoIP. They can be applied in any adaptive-rate VoIP system.

Sync & Sense offers an indispensable method of detecting the state of the network. Sync &

Sense can be beneficial to many VoIP applications. For example, a VoIP agent, including

routers and gateways, can use the observations of the delay, loss, and bandwidth as provided

by Sync & Sense to compare alternate routes and choose the optimal one for transmitting

packets. Sync & Sense can be used for management purposes to monitor and collect

performance statistics. This can also be used as the input for perceptual speech quality

assessment algorithms. The design consideration of adaptive-rate control offers a practical

guide that discusses the issues and the desirable properties. Since the proposed adaptive-rate

control is independent of the speech coder, it can be applied in any VoIP system.

5.2 Future Research

The studies in this dissertation are conducted using a simulation methodology. The

simulation simplifies many procedures and allows us to closely refine the design, validate the

 129

assumption, and examine the interested issues. Throughout the simulations, end-to-end delay

and voice frame loss are used to evaluate the performance. Extending the evaluation scheme

is an interesting future research. This will allow us to evaluate voice quality, which is more

useful than performance. This may be done by feeding the end-to-end delay and voice frame

loss results into an objective speech quality assessment scheme. Further step would be

extending the studies in a real-world experiment. We will have the opportunity to verify the

simulation results, discover new findings, refine the existing works, and conduct subjective

speech quality assessment. Another area of future research is about Sync & Sense. Sync &

Sense relies on the common network assumption that a network is a series of queue servers in

which packets get queued behind each other while in transit. This, however, may not be the

case in some circumstances. Multi-channel links, for example, violate the assumption that

there is a single end-to-end forwarding path. As the network becomes more heterogeneous,

wireless networks are often part of the forwarding path. Since wireless networks employ

additional mechanisms to deal with the link reliability, handover, and etc, it has a potential to

affect the assumption as well. Future research is needed to study each individual case and

explore the options to improve the capability of Sync & Sense.

The proposed adaptive VoIP is designed with the objective that it should possess the

desirable properties. We achieve the objective to a certain degree. However, several areas can

be an interesting future research. Further refinement would be needed if we wish to ensure

the adaptive VoIP to be TCP-friendly to a higher degree. In a homogeneous adaptive VoIP

network, more studies would be needed to ensure that a fair bandwidth allocation is provided,

especially in a larger network scale. Extending the study of the adaptive VoIP into a wireless

area would be a challenging future research. Whereas the proposed adaptive VoIP is an

option that makes use of the Sync & Sense methodology, Sync & Sense offers tremendous

benefits that can enable different kinds of adaptive VoIP as well. Future research may

explore other alternatives that can benefit from Sync & Sense. For example, Sync & Sense

enabled adaptive route VoIP would allow the sender to assess the observations of the delay,

loss, and bandwidth among different routes and switch to transmit packets on the optimal

route.

Bibliography

[1] B. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. “Resource ReSerVation

Protocol (RSVP) – Version 1 Functional Specification,” Internet Engineering Task

Force, RFC 2205, September 1997.

[2] S. Blake, D. Black, M. Carlson, E. Davis, Z. Wang, and W. Weiss. “An Architecture

for Differentiated Services,” Internet Engineering Task Force, RFC 2475, December

1998.

[3] S. Shenker. “Fundamental Design Issues for the Future Internet,” IEEE Journal of

Selected Areas in Communications, Volume 13, Number 7, September 1995.

[4] J. H. Saltzer, D. P. Reed, and D. D. Clark. “End-to-End Arguments in System Design,”

ACM Transactions on Computer Systems, Volume 2, Number 4, November 1984.

[5] Z. Qiao, L. Sun, N. Heilemann, and E. Ifeachor. “A new method for VoIP Quality of

Service control use combined adaptive sender rate and priority marking,” ICC 2004 –

IEEE International Conference on Communications, Volume 27, Number 1, June 2004.

[6] F. Beritelli, G. Ruggeri, and G. Schembra. “TCP-Friendly Transmission of Voice over

IP,” Proceedings of IEEE ICC, New York, USA, April 2002.

[7] ETSI EN 301 704 V7.2.1 (2000-04), Digital cellular telecommunications system

(Phase 2+); Adaptive Multi-Rate (AMR) speech transcoding (GSM 06.90 version 7.2.1

Release 1998).

[8] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. “RTP: A Transport Protocol

for Real-Time Applications,” Internet Engineering Task Force, RFC 1889, January

1996.

[9] R. Rejaie, M. Handley, and D. Estrin. “RAP: An End-to-end Rate-based Congestion

Control Mechanism for Realtime Streams in the Internet,” Proceedings of IEEE

INFOCOM, New York, USA, March 1999.

130

 131

[10] S. Floyd, M. Handley, J. Padhye, and J. Widmer. “Equation-Based Congestion Control

for Unicast Applications,” Proceedings of ACM SIGCOMM, Stockholm, Sweden,

August 2000.

[11] J.-C. Bolot, and A. Vega-Garcia. “Control mechanisms for packet audio in the

internet,” Proceedings of IEEE INFOCOM, San Francisco, USA, March 1996.

[12] The Network Simulator – ns-2, http://www.isi.edu/nsnam/ns/.

[13] M. S. Taqqu, W.Willinger, and R. Sherman. “Proof of a Fundamental Result in Self-

Similar Traffic Modeling,” ACM Computer Communications Review, pp. 5 – 23, April

1997.

[14] K. Claffy, G. J. Miller, and K. Thompson. “The nature of the beast: recent traffic

measurement from an Internet backbone,” Proceedings of INET '98, Geneva,

Switzerland, July 1998.

[15] K. Thompson, G. J. Miller, and R. Wilder. “Wide-Area Internet Traffic Patterns and

Characteristics,” IEEE Network, pp. 10 – 23, November 1997.

[16] B. Ngamwongwattana. “Optimizing Packetization for Minimal End-to-End Delay in

VoIP Networks,” Master Thesis, University of Pittsburgh, 2001.

[17] ITU-T Recommendation G.114. “One-way Transmission Time,” May 2000.

[18] R. Dai. “A White Paper on SMOS,” http:// www.sageinst.com, November 2001.

[19] V. Abreu-Sernandez and C. Garcia-Mateo. “Adaptive multi-rate speech coder for VoIP

transmission,” Electronics Letters, Volume 36, Number 23, November 2000.

[20] A. Barberis, C. Casetti, J.C. De Martin, and M. Meo. “A Simulation Study of Adaptive

Voice Communications on IP Networks,” Computer Communications, 2001.

[21] S. Mohamed, F. Cervantes-pérez, and H. Afifi. "Integrating Networks Measurements

and Speech Quality Subjective Scores for Control Purposes," Proceedings of IEEE

INFOCOM, April 2001.

[22] K. Claffy, G. Miller, and H-W. Braum. “Measurement Considerations for Assessing

Unidirectional Latencies,” Internetworking: Research and Experience, 4 (3), pp. 121-

132, September 1993.

[23] D. D. Clark and D. L. Tennenhouse. “Architectural Considerations for a New

Generation of Protocols,” Proceedings of the SIGCOMM Symposium on

 132

Communications Architectures and Protocols, Computer Communications Review,

Volume 20, Number 4, September 1990.

[24] D. L. Mills. “Network Time Protocol,” Internet Engineering Task Force, RFC 1305,

March 1992.

[25] R. S. Prasad, M. Murray, C. Dovrolis, and K. Claffy. “Bandwidth estimation: metrics,

measurement techniques, and tools,” IEEE/ACM Transaction on Networking, Volume

17, Issue 6, November 2003.

[26] J. C. Bolot. “Characterizing End-to-End Packet Delay and Loss in the Internet,”

Proceedings of ACM SIGCOMM, San Francisco, USA, September 1993.

[27] F. Tobagi, A. Markopoulou, and M. Karam. “Is the Internet ready for VoIP?,”

Proceedings of IWDC, Capri, Italy, September 2002.

[28] A. Markopoulou, F. Tobagi, and M. Karam. “Assessment of VoIP quality over Internet

backbones,” Proceedings of IEEE INFOCOM, New York, NY, USA, June 2002.

[29] R. Zopf. “Real-Time Transport Protocol (RTP) Payload for Comfort Noise (CN),”

Internet Engineering Task Force, RFC 3389, September 2002.

[30] J. Postel. “Transmission Control Protocol,” Internet Engineering Task Force, RFC 793,

September 1981.

[31] V. Jacobson. “Congestion Avoidance and Control,” Proceedings of ACM SIGCOMM,

Computer Communication Review, August 1988.

[32] R. Ramjee, J. Kurose, D. Towsley, and H. Schulzrinne. “Adaptive playout mechanisms

for packetized audio applications in wide-area network,” Proceedings of IEEE

INFOCOM, Toronto, Canada, June 1994.

[33] S. B. Moon, J. Kurose, D. Towsley, “Packet Audio Playout Delay Adjustment:

Performance Bounds and Algorithms,” ACM Multimedia Systems, 1998.

[34] A. Kansal and A. Karandikar. “Adaptive Delay Estimation for Low Jitter Audio over

Internet,” Proceedings of IEEE GLOBECOM, San Antonio, TX, USA, November

2001.

[35] J. W. Seo, S. J. Woo, and K. S. Bae. “A Study on the Application of an AMR Speech

Coder to VoIP,” Proceedings of IEEE International Conference on Acoustics, Speech,

and Signal, Volume 3, May 2001.

 133

[36] L. S. Brakmo, S. W. O’Malley, and L. Peterson. “TCP Vegas: New Techniques for

Congestion Detection and Avoidance,” Proceedings of ACM SIGCOMM, August 1994.

[37] S. B. Moon. “Measurement and Analysis of End-to-End Delay and Loss in the

Internet,” Ph.D. Thesis, University of Massachusetts, Amherst, 2000.

[38] V. Paxon. “Measurements and Analysis of End-to-End Internet Dynamics,” Ph.D.

Thesis, University of California, Berkeley, 1997.

[39] L. Roychoudhuri, E. Al-Shaer, H. Hamed, and G. B. Brewster. “On Studying the

Impact of the Internet Delays on Audio Transmission,” IEEE Workshop on IP

Operations and Management, 2002.

[40] Y. R. Yang, M. Kim, and S. Lam. “Transient Behaviors of TCP-friendly Congestion

Control Protocols,” Proceedings of IEEE INFOCOM, April 2001.

[41] S. Jin, L. Guo, I. Matta, and A. Bestavros. “TCP-Friendly SIMD Congestion Control

and its Convergence Behavior,” Proceedings of IEEE ICNP, November 2001.

[42] S. Floyd and K. Fall. “Promoting the Use of End-to-End Congestion Control in the

Internet,” IEEE/ACM Transactions on Networking, August 1999.

[43] Y. R. Yang and S. Lam. “General AIMD congestion control,” Proceedings of IEEE

ICNP, November 2000.

[44] D. Bansal and H. Balakrishnan. “Binomial congestion control algorithms,” Proceedings

of IEEE INFOCOM, April 2001.

[45] D. Sisalem and A. Wolisz. “LDA+: A TCP-Friendly Adaptation Scheme for

Multimedia Communication,” Proceedings of IEEE International Conference on

Multimedia, August 2000.

[46] Y. Joo, V. Ribeiro, A. Feldmann, A. C. Gilbert, and W. Willinger. “TCP/IP traffic

dynamics and network performance: A lesson in workload modeling, flow control, and

trace-driven simulations,” Proceedings of ACM SIGCOMM, Computer

Communication Review, 2001.

[47] N. Brownlee and K. Claffy. “Understanding Internet traffic streams: Dragonflies and

tortoises,” IEEE Communications Magazine, Volume 40, Number 10, October 2002.

[48] Q. Li and D. L. Mills. “Jitter-based delay-boundary prediction of wide-area networks,”

IEEE/ACM Transactions on Networking, Volume 9, Number 5, October 2001.

 134

[49] V. Jacobson. “Pathchar: A Tool to Infer Characteristics of Internet Paths,”

ftp://ftp.ee.lbl.gov/pathchar/, April 1997.

[50] A. B. Downey. “Using Pathchar to Estimate Internet Link Characteristics,”

Proceedings of ACM SIGCOMM, September 1999.

[51] B. A. Mah. “Pchar: A Tool for Measuring Internet Path Characteristics,”

http://www.kitchenlab.org/www/bmah/Software/pchar/, February 2005.

[52] R. L. Carter and M. E. Crovella. “Measuring Bottleneck Link Speed in Packet-

Switched Networks,” Performance Evaluation, Volume 27, 1996.

[53] K. Lai and M. Baker. “Measuring Bandwidth,” Proceedings of IEEE INFOCOM, April

1999.

[54] K. Lai and M. Baker. “Nettimer: A Tool for Measuring Bottleneck Link Bandwidth,”

Proceedings of the USENIX Symposium on Internet Technologies and Systems, March

2001.

[55] C. Dovrolis. “Pathrate: A measurement tool for the capacity of network paths,”

http://www.pathrate.org, January 2004.

[56] M. Jain and C. Dovrolis. “End-to-End Available Bandwidth: Measurement

Methodology, Dynamics, and Relation with TCP Throughput,” IEEE/ACM

Transaction on Networking, Volume 11, Issue 4, August 2003.

[57] B. Melander, M. Bjorkman, and P. Gunningberg. “A New End-to-End Probing and

Analysis Method for Estimating Bandwidth Bottlenecks,” Proceedings of IEEE

GLOBECOM, 2000.

[58] V. J. Ribeiro, R. H. Riedi, R. G. Baraniuk, J. Navratil, and L. Cottrell. “pathChirp:

Efficient Available Bandwidth Estimation for Network Paths,” Proceedings of Passive

and Active Measurement Workshop, April 2003.

[59] S. Shalunov, B. Teitelbaum, and A. Karp. “A One-way Active Measurement Protocol

(OWAMP),” Internet Engineering Task Force, RFC 4656, September 2006.

[60] W. Matthews and L. Cottrell. “The PingER Project: Active Internet Performance

Monitoring for the HENP Community,” IEEE Communications Magazine, May 2000.

	Sync & Sense Enabled Adaptive Packetization VoIP
	List of Tables
	List of Figures
	1 Introduction
	1.1 Challenge in Achieving Quality of Service for VoIP
	1.2 Problem Statement and Research Objectives
	1.3 Dissertation Outline

	2 Optimizing Packetization for Improving VoIP Performance
	2.1 Background and Related Research
	2.2 Variable Rate VoIP Based on Packetization
	Table 2-1 Important characteristics of well-known speech coders
	Figure 2-1 Relationship between packetization and bandwidth requirements

	2.3 Effect of Packetization on VoIP Performance
	2.3.1 Study Methodology
	Figure 2-2 Simulation network topology

	2.3.2 Simulation Results
	Table 2-2 Delay and loss performance for bottleneck link of 128 Kbps
	Figure 2-3 Plot of end-to-end delay for bottleneck link of 128 Kbps
	Table 2-3 Delay and loss performance for bottleneck link of 256 Kbps
	Figure 2-4 Plot of end-to-end delay for bottleneck link of 256 Kbps
	Table 2-4 Delay and loss performance for bottleneck link of 512 Kbps
	Figure 2-5 Plot of end-to-end delay for bottleneck link of 512 Kbps
	Table 2-5 Delay and loss performance for bottleneck link of 768 Kbps
	Figure 2-6 Plot of end-to-end delay for bottleneck link of 768 Kbps
	Table 2-6 Delay and loss performance in the case of multiple VoIP flows
	Figure 2-7 Plot of end-to-end delay in the case of multiple VoIP flows

	2.4 Summary

	3 Sync & Sense: Measurement Methodology for Network State Detection and Delay Assessment
	3.1 Background and Related Research
	3.1.1 The Extent of RTP to Network State Detection
	Figure 3-1 Round-trip time calculation as provided by RTCP

	3.1.2 End-to-End Measurement Techniques

	3.2 Sync & Sense Measurement Methodology
	3.2.1 Sensing Phase
	Figure 3-2 Dynamics of VoIP packets when the network is (a) lightly and (b) heavily loaded
	Figure 3-3 Dispersion gaps as measured by Sync & Sense

	3.2.2 Synchronizing Phase
	Figure 3-4 (a) Typical pattern of one-way network delay and (b) the corresponding plot as the receiver monitors the arriving packets
	Figure 3-5 Flow chart of the Sync & Sense algorithm
	Table 3-1 Demonstration of the synchronization process of Sync & Sense

	3.3 Performance Study
	3.3.1 Simulation Setup
	Figure 3-6 Simulation network topology

	3.3.2 Sync & Sense Demonstration
	Figure 3-7 Sync & Sense demonstration

	3.3.3 Contributing Factors to the Performance
	Figure 3-8 Performance of Sync & Sense when the number of hops is 2
	Figure 3-9 Performance of Sync & Sense when the number of hops is 4
	Figure 3-10 Performance of Sync & Sense when the number of hops is 6
	Figure 3-11 Performance of Sync & Sense when the number of hops is 8
	Figure 3-12 Performance of Sync & Sense when the number of hops is 10

	3.4 Network State Detection
	3.4.1 Available Bandwidth Estimation
	Figure 3-13 Available bandwidth estimation

	3.4.2 Propagation Delay Estimation and Delay Assessment
	Figure 3-14 Mechanism for estimating propagation delay

	3.5 Dealing with Network Pathologies
	3.6 Detecting Route Change
	3.6.1 Extended Sync & Sense Algorithm
	3.6.2 Simulation Result
	Figure 3-15 Detecting route change

	3.7 Summary

	4 Sync & Sense Enabled Adaptive Packetization VoIP
	4.1 Background and Related Research
	4.2 Design of Adaptive-Rate Control
	4.2.1 Placement of the Control
	4.2.2 Decision Metrics
	4.2.3 Increase/Decrease Algorithm

	4.3 Sync & Sense Enabled Adaptive Packetization VoIP
	4.3.1 Sync & Sense Enabled Adaptive-rate Control
	Figure 4-1 Flow chart of the adaptive-rate control algorithm

	4.3.2 Sync & Sense Implementation
	Figure 4-2 Sync & Sense measurements in adaptive packetization VoIP

	4.3.3 Jitter Buffer Management
	Figure 4-3 Jitter buffer management in adaptive packetization VoIP

	4.4 Performance Study in High Statistical Multiplexing Environment
	4.4.1 Simulation Setup
	Figure 4-4 Simulation network topology for high statistical multiplexing

	4.4.2 Network with High Statistical Multiplexing Traffic
	Figure 4-5 Simulation result for high statistical multiplexing

	4.4.3 Comparative Performance between Adaptive VoIP and CBR VoIP
	Table 4-1 Comparative performance between adaptive VoIP and CBR VoIP
	Figure 4-6 Plot of comparative performance between Adaptive VoIP and CBR VoIP

	4.5 Performance Study in Low Statistical Multiplexing Environment
	4.5.1 Simulation Setup
	Figure 4-7 Simulation network topology for low statistical multiplexing

	4.5.2 Comparative Performance between Adaptive VoIP and CBR VoIP
	Figure 4-8 Interaction between adaptive VoIP and TCP flows
	Figure 4-9 Interaction between CBR10 VoIP and TCP flows
	Figure 4-10 Interaction between CBR20 VoIP and TCP flows
	Table 4-2 Comparative Performance between adaptive VoIP and CBR VoIP

	4.5.3 Heterogeneous Network with TCP Flows
	Figure 4-11 Heterogeneous network with TCP flows

	4.5.4 Heterogeneous Network with CBR VoIP Flows
	Figure 4-12 Heterogeneous network with CBR VoIP flows

	4.5.5 Homogeneous Adaptive VoIP Network
	Figure 4-13 Homogeneous adaptive VoIP network

	4.6 Summary

	5 Conclusion
	5.1 Contributions
	5.2 Future Research

	Bibliography

