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PHARMACODYNAMICS OF IV CITALOPRAM USING FUNCTIONAL MRI 
 

Kristin L. Bigos, PhD 
 

University of Pittsburgh, 2007 
 
 

 

Although much is known about the role of serotonin (5-HT) in the pathophysiology of 

depression, little is known about the temporal and regional brain alterations in 5-HT as they 

relate to the treatment of depression and anxiety.  This study aimed to evaluate the acute effects 

of the selective serotonin reuptake inhibitor (SSRI), citalopram, on neuronal activation elicited 

during an emotional task using functional MRI (fMRI) in healthy subjects.  Eight healthy men 

completed the double-blind placebo-controlled crossover study of citalopram (20 mg infused 

over 30 min) and normal saline.  Subjects performed the emotional task once before 

drug/placebo infusion (Faces 1) and twice during drug/placebo infusion, once early in the 

infusion (Faces 2) and once at the end of infusion (Faces 3).   

 

A main effect of task was found in the L and R amygdala.   A cluster in the right amygdala had 

increased activation for the Faces 2 task during the citalopram infusion, compared to the baseline 

Faces 1 task.  An even greater bilateral amygdala response to citalopram was found at the end of 

infusion (Faces 3), when the citalopram concentrations approach their maxima, compared to the 

baseline Faces 1 task.  This suggests that acute citalopram administration potentiates the 

amygdala response to emotional stimuli.  An exploratory analysis was done using serotonin 

transporter genotype as a covariate.  S allele carriers (2 s/s and 3 s/l) had a greater baseline 
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amygdala response than l/l (n=3) homozygotes.  However l/l homozygotes had a greater response 

to citalopram, comparing the Faces 3 to the Faces 1 task.   

 

This study generated the first in vivo human data regarding the regional effects of acute 

intravenous SSRI administration on affective task-related neuronal activation.  An understanding 

of the regional effects of SSRIs may aid in understanding the mechanism by which these agents 

produce their therapeutic effects.  By including 5-HTTLPR genotype in the analyses, we may 

account for some of the variability in response to citalopram and other SSRIs.  These efforts 

contribute to the identification of biological mechanisms and pathways that mediate response to 

SSRIs, and contribute to our understanding of individual differences in complex behaviors and 

vulnerability to psychiatric illnesses.   
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1. Pharmacokinetics and Pharmacodynamics of Psychotropics 

1 



1.1. Introduction 

 

Currently available treatments for psychiatric illnesses are derivatives in one way or another of a 

serendipitous discovery, rather than the result of incorporating principles of pharmacology with 

fundamental knowledge of disease.12  Many of the current biological theories about the 

pathophysiology of psychiatric illnesses have developed from pharmacological studies of the 

mechanisms of action of available psychiatric medications.  Because of this, the neuronal 

pathways through which these treatments alter mood or behavior are poorly understood.  This 

body of work aims to begin to determine the way in which psychiatric medications modify brain 

circuitries related to mood and behavior.  Specifically, this dissertation focuses on the 

pharmacodynamics of psychotropics, with an emphasis on the neuronal effects of the selective 

serotonin reuptake inhibitor, citalopram. 

  

1.2.  Pharmacodynamics  

 

There is considerable individual variability in response to drugs.  A goal of pharmacodynamics, 

the study of the processes that occur between the administration of a drug and the 

pharmacological response,13 is to understand and explain some of the this variability.  Several 

mathematical models have been used to describe the relationship between drug concentration and 

response.   
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The most common model is known as the Emax model:13 

 

E = (Emax * C) / (EC50 + C) 

 

where:  E is the intensity of the pharmacological effect, Emax is the maximal pharmacological 

intensity, C is the concentration of the drug at the time of the effect, and EC50 is the 

concentration at which the effect is 50% of the Emax.  Most of the models described in the 

following chapters have been developed using more sophisticated mathematical modeling, which 

is often necessary in order to describe complicated biological systems.  The following section 

describes the use of pharmacokinetics, which is defined as the mathematical description of the 

concentration time profile, can be a useful link to understanding response and/or toxicity.  

 

1.3.  Pharmacokinetics 

 

Pharmacokinetics involves the processes of absorption, distribution, metabolism, and excretion 

of drugs, and can be expressed mathematically to relate time and drug dose to the drug 

concentration.  Therefore pharmacokinetics is important in the selection and administration of a 

drug, as well as its dose and dosage form.  Pharmacokinetic parameters include drug 

concentration (typically measured in plasma or serum), volume of distribution, and clearance.  

Volume of distribution (Vd) is a measure of the apparent space in the body into which the drug 

distributes, thus it relates the amount of drug in the body to the concentration of the drug in the 

blood or plasma.  Clearance (Cl) reflects the rate of elimination of the drug from the body. The 

rate of elimination of a drug from the body is often characterized by its half-life (t½), which is a 
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derived parameter that depends on both the clearance and volume of distribution of the drug.  

Half-life describes the time required to eliminate half of the drug in the body.  These descriptors 

of drug exposure can be determined by modeling drug concentration measurements.   

 

Pharmacokinetics and pharmacodynamics are used to study factors that contribute to variability 

in drug response.  Two well-known variables, sex and age, are discussed in the following 

sections.  Other covariates, secondary variables that can affect the relationship between the 

dependent and independent variables of primary interest, include race, genetic polymorphisms, 

comorbid illness, and concomitant medications.  Figure 1.1 highlights the sources of variability 

in the general patient population.  The following section highlights the differences in 

pharmacokinetics and pharmacodynamics due to sex.   

  

Figure 1.1.  Sources of variability in general patient populations.  

   

 

By:  Katie Rose Zemaitis© 2007
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1.4.  Sex Differences in the Pharmacokinetics and Pharmacodynamics of Psychotropics  

 

Historically, women of childbearing age have been excluded from pharmacokinetic and 

pharmacodynamic studies; therefore, psychotropics and most other medications have been 

developed without regard for potential sex differences.14-18  Women are clearly different from 

men in their clinical characteristics of psychiatric illness and their response to treatment.  

Depressive disorders are 2 to 3 times more common in women,19 and more often present with 

atypical symptoms.20  Schizophrenic women have a later disease onset and a better response to 

antipsychotics than schizophrenic men.17, 21-26  Nearly twice as many women as men suffer from 

anxiety disorders, and anxiolytics are prescribed almost twice as often for women.27  Women 

with bipolar disorder are more likely to present with features that may predict poor prognosis, 

including depression and rapid cycling.28, 29  Physiological factors can also affect the 

pharmacokinetics of psychotropics between women and men including differences in body 

weight and composition, metabolizing enzymes, and hormone concentrations.  Ignoring these sex 

differences during drug development may lead to increased adverse reactions or an inadequate 

response in women or men.14, 30, 31  This section addresses known sex differences in the 

pharmacokinetics and pharmacodynamics of psychotropics (antidepressants, antipsychotics, 

antianxiety agents, and antimania agents), as well as specific issues that face women with 

psychiatric illness.  This review reflects the paucity of data and highlights the need for more 

research in this area.   
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1.4.1. Methods 

 

A literature search was performed using several sources including:  MEDLINE® searches (1966 

through week 3 of March 2003) using the keywords: sex, gender, antidepressants, antipsychotics, 

anxiolytics, antimania and mood-stabilizing agents in various combinations; and a search of the 

57th edition of the Physicians Desk Reference (2003)32 for each psychotropic.  Although the data 

are limited, sex differences in pharmacokinetics have been shown for several antidepressants 

(Table 1.1), antipsychotics (Table 1.3), and anxiolytics (Table 1.5).  There is also evidence for 

sex related pharmacodynamic differences, including response rates and adverse effects, for 

antidepressants (Table 1.2), antipsychotics (Table 1.4), and anxiolytics (Table 1.6).  Data on the 

pharmacokinetic and pharmacodynamic sex differences in antimania agents are limited.  These 

data are outlined in the text below.  

  

1.4.2. Antidepressants 

 

1.4.2.1. Sex-related Differences in Clinical Characteristics of Depression 

 

There are marked sex differences in the epidemiology of depression between men and women.  

Women suffer from major depressive disorder (MDD) at least twice as often as men,33 and 

exhibit more atypical symptoms of depression, with greater somatization, increased suicide 

attempts, and comorbid anxiety.34, 35   Men however tend to have more comorbid alcohol or drug 

abuse and completed suicides than women.34, 35  Between 20 and 30% of women report elevated 

levels of depressive symptomatology during pregnancy and in the postpartum, and the 
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prevalence of depression is approximately 10% prepartum and 7% postpartum.36  Cyclic changes 

in mood, as evidenced by premenstrual dysphoric disorder (PMDD) and premenstrual syndrome 

(PMS), suggest that mood can fluctuate as hormone levels cycle.37, 38  Serotonin (5-

hydroxytryptophan; 5-HT) levels parallel changes in estrogen, which may provide a rationale for 

pulse dosing of antidepressants6, 39-42 or may actually exacerbate side effects in PMDD.43  

 

1.4.2.2. Pharmacokinetics of Antidepressants 

 

Physiological differences that may affect pharmacokinetics include average body weight, body 

water distribution, and the affinity and/or capacity of metabolizing enzymes for the administered 

drug.  Concomitant medications may also affect the metabolizing pathways for various 

hormones.  The resulting changes in hormone concentrations could contribute to attenuated 

responses, the occurrence of an adverse event, or have a neuroprotective effect.44-48  Non-

metabolic factors that affect drug disposition include absorption, distribution (including protein 

binding) and elimination.  This section reviews the sex differences in these pharmacokinetic 

parameters and their potential impact on antidepressant drug disposition, which are summarized 

in Table 1.1.   
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Table 1.1.  Sex differences in the pharmacokinetics of antidepressants 
 

ANTIDEPRESSANT SEX DIFFERENCES 
TCAs Tricyclic Antidepressants 
Clomipramine Women have higher concentrations of desmethylclomipramine (DMC) 

and lower hydroxylation rates of clomipramine.  Women have higher 
DMC levels and DMC/8-HDMC at 8 h.49  

Desipramine No effect of sex on desipramine clearance in adolescents50 
Nortriptyline Women have higher steady state nortriptyline levels, and different 

nortriptyline to hydroxynortriptyline ratios than men51 
SSRIs Selective Serotonin Reuptake Inhibitors 

Three studies (n=32) showed 1.5 to 2 times higher AUC for women 
compared to men32 

Citalopram 

Dose-corrected concentrations are higher in female adolescents 
compared to males52 
Girls (6 to 11 years) have 3 times higher AUC and Cmax than boys.  Sex 
difference does not persist in adolescence.32  
Men have more pronounced concentration increase with dose doubling 
after 14 weeks of treatment than women (4.6 vs. 2.4 fold)53  

Fluvoxamine 

Men have 40% to 50% lower plasma drug concentrations54 
Desmethylsertraline clearance decreases in older men but not in older 
women32 

Sertraline 

Young women, elderly men, and elderly women have similar terminal 
elimination (t½ 32-37 h), which are greater than those in young men (22 
h)55 

Others  
Adolescent women have higher AUC, Cmax, Vd, t½ of parent, and AUC 
of metabolite, but no difference in apparent clearance (Cl/F)56 

Bupropion 

Elderly women have a longer t½, larger Vd, and lower Cl than young 
men57 
Women have a longer t½ (37 hours vs. 26 hours)32  Mirtazapine 
Men have 50% lower plasma concentrations than women58, 59 
Women have higher Cmax and AUC after first dose, but differences are 
not found with multiple dosing32 
Nefazodone and hydroxynefazodone levels 50% higher in elderly 
women compared to elderly men, young men, and young women.60  

Nefazodone 

Doses may need to be increased in the 2nd and 3rd trimesters of 
pregnancy61 

Trazodone Elderly women have a longer t½ (7.6 h) compared to young women (5.9 
h), secondary to increased Vd

62 
Venlafaxine No sex differences reported32 

*Table legend:  area under the curve (AUC), maximum concentration (Cmax), half-life (t½), 
volume of distribution (Vd), clearance (Cl), bioavailability (F) 
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Most antidepressants are weak bases and therefore are more effectively absorbed under basic 

conditions.  Women secrete less gastric acid resulting in a more basic environment, which could 

potentially lead to an enhanced absorption of antidepressants in the stomach.63  Women have a 

slower rate of gastric emptying than men thus increasing antidepressant absorption time.64  This 

increase persists even after menopause and is accentuated by exogenous estrogen and 

progesterone.64, 65  Colonic transit times are also prolonged in women, giving the compounds 

more time to be absorbed in an environment where the pH favors absorption of weak bases.  In 

spite of these differences, bioavailability has not been shown to be greater in women, although a 

larger area under the curve has been found for bupropion,56 citalopram,32 and fluvoxamine.32 

 

The volume of distribution affects the amount of drug exposure at the receptor.  There are 

substantial differences in body composition between men and women that can affect the volume 

of distribution.  In young women, adipose tissue comprises 33% of body weight, compared to 

18% in young men.66, 67  In elderly women, 48% of bodyweight is adipose tissue, compared to 

36% in old men. 66, 67  Thus for lipophilic drugs, there is a much larger volume of distribution in 

women, which can result in a prolonged half-life and lower plasma concentrations.  Both 

trazodone62 and bupropion57 have a larger volume of distribution in women because of greater 

body fat, which is further exaggerated in elderly women.  An increase in the half-life of a drug 

could be due primarily to an increase in the volume of distribution as found for trazodone62 or 

bupropion,57 and/or a change in the clearance of the drug from the body.  Sweet illustrated how 

the change in half-life of bupropion between elderly women and young men could be due to a 

combination of changes in both the volume of distribution and clearance.57  Additionally, 
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Kristensen found that women (30 to 39 years of age) had significantly lower protein binding of 

imipramine than men the same age and women of other age groups.68 

 

Drugs used to treat depression are metabolized by, inhibit, and/or induce a wide range of the 

cytochrome P450 (CYP) enzymes.69  Sex differences in CYP isozyme function that affect 

antidepressant clearance have been reported for CYP 3A4 (nefazodone, sertraline, mirtazipine) 

and CYP 1A2 (fluvoxamine).  These differences may be confounded when a drug has a high 

clearance and/or is a co-substrate for both CYP 3A and the p-glycoprotein multi-drug resistance 

pump1 (MDR1).70  High clearance (or flow-limited clearance) drugs depend on the rate of blood 

flow into the eliminating organ (i.e. liver, kidney) and thus indirectly liver size.  Women have a 

smaller liver and a lower liver blood flow rate compared to men, therefore observed sex 

differences may not be due to metabolic differences, but rather due to differences in blood flow.  

Similarly, the MDR1 pump provides cytosolic access for the compound to metabolizing 

enzymes.  Thus if one is administered a drug which is a co-substrate for both the CYP 3A4 

enzyme and MDR1 pump, an increase in the activity in the MDR1 pump could be mistaken for a 

decreased CYP 3A metabolizing capacity, and conversely a decrease in MDR1 activity could be 

mistaken for an increased CYP 3A metabolizing capacity.70  Women have only 30% to 50% of 

the hepatic expression of p-glycoprotein compared to men,70, 71 and differences have been 

reported for the 3A4 metabolized drugs nefazodone,60 sertraline,55 and citalopram.52  Ronfeld 

reported that the half-life of sertraline is shorter in young men than in young women.55  Reis and 

colleagues showed that adolescent men had a higher citalopram clearance compared to 

adolescent women, which is consistent with the possibility of the contribution of liver size (i.e., 

enzymatic capacity) and/or hepatic blood flow.52  In addition, sex differences in the disposition 
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of the predominately CYP 1A2 metabolized drug, fluvoxamine, have been demonstrated.  In 

these studies, men had lower plasma levels of fluvoxamine than women,54 and the doubling of 

the fluvoxamine dose while at steady state resulted in a much more dramatic increase in 

fluvoxamine concentrations in women compared to men.53  Mirtazipine (CYP 3A4, 1A2 and 

2D6 metabolized) was reported to have a longer half-life in women compared to men,32 and men 

had half the mirtazipine concentrations of similarly treated women.58, 59   Another study reported 

higher concentrations of desmethylclomipramine and lower hydroxylation rates of clomipramine 

in women compared to men.49  Women have also been found to have higher steady state 

nortriptyline levels, as well as different nortriptyline to hydroxynortriptyline ratios than men.51   

 

Furthermore antidepressants that inhibit CYP 3A may shift the metabolism of estrogen from 

CYP 3A to CYP 1A resulting in a decreased production of the highly genotoxic 16-α-

hydroxyestrone form, possibly resulting in a protective effect.45  Estrogen is a substrate for both 

CYP 3A4 and CYP 1A2, as well as an inhibitor of CYP 1A2, thus higher levels of endogenous 

or exogenous estrogens may impact antidepressant metabolism.72  The concomitant 

administration of CYP 1A2 metabolized antidepressants could result in higher plasma levels of 

either the antidepressant or estrogen and therefore a greater risk of adverse events.20, 73, 74  CYP 

1A2 activity is decreased during the late luteal phase of the menstrual cycle, which could 

possibly affect fluvoxamine clearance.75, 76  Lower CYP 1A2 activities have been reported during 

pregnancy, evidenced by the increase in the half-life of caffeine.77  During pregnancy, higher 

estrogen and progesterone levels and may affect either CYP 3A4 (induction by progesterone) 

and CYP 1A2 (inhibition). These changes could affect the clearance of the CYP 3A4 (sertraline, 

citalopram, trazodone, and fluoxetine) and CYP 1A2 (fluvoxamine, amitriptyline, clomipramine 
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and imipramine) metabolized medications. Total body volume and protein binding are increased 

during pregnancy, as well as changes in clearance.  One study suggests that nortriptyline doses 

may need to be increased during the 2nd or 3rd trimester.61  

 

1.4.2.3. Pharmacodynamics of Antidepressants 

 

Sex differences in responses to various classes of antidepressants are summarized in Table 1.2. 

 
 

Table 1.2.  Sex differences in the pharmacodynamics of antidepressants 
 

ANTIDEPRESSANT SEX EFFECTS 
TCAs Tricyclic antidepressants 
Amitriptyline Men respond better than women to TCAs78  
Clomipramine Women show more pronounced anti-obsessional effect in response to 

intravenous administration79 
Women have a longer time to response20 Imipramine 
Women are more likely to withdraw from therapy on imipramine than 
on sertraline20 

SSRIs Selective Serotonin Reuptake Inhibitors 
Citalopram Response for treatment of alcohol dependence was greater in men (44% 

decrease) than in women (26% decrease)80  
Women of reproductive age (<44 years) are more responsive than men81  Fluoxetine 
Hemispheric asymmetry (EEG, perceptual) and treatment response in 
depressed women but not men82 

Paroxetine Number of symptoms in discontinuation syndrome in dysthymic 
patients associated with female sex and age at onset83 
Women more likely to respond to sertraline than imipramine20 Sertraline 
Sex associated with response for behavioral disturbances in Alzheimer’s 
disease84 

 
 
 
Changes in serotonin and norepinephrine activity in women may modify responses to 

antidepressants or the modes of administration of antidepressants that are effective.4-7   Most 

women with depression exhibit “atypical” reverse neurovegetative symptoms, which are 
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responsive to different agents than the typical symptomatology.  Estrogens inhibit monoamine 

oxidase (MAO) activity, which may impact on the differential responses observed with 

MAOIs.85-87   Women who present with atypical depression tend to respond more readily to 

treatment with MAOIs than TCAs.86  Raskin published a post-hoc analysis of two large inpatient 

clinical trials evaluating response to antidepressants.88  The first study, comparing 

chlorpromazine and imipramine to placebo, found that imipramine was significantly more 

effective for men than placebo.  Older women and men (>40 years) had a similar response to 

imipramine, however young men (<40 years) responded better than young women, whose 

response was not better than placebo.  In a second study, comparing phenelzine and diazepam 

with placebo, a trend toward a better response to phenelzine treatment in young women was 

reported.  A study of amitriptyline showed that men responded better than women did to TCAs.78  

Davidson and Pelton reported on five randomized clinical trials comparing: (1) phenelzine and 

imipramine in inpatients; (2) phenelzine and imipramine in outpatients; (3) amitriptyline and 

bupropion in inpatients; (4) isocarboxazid at two different dose levels in inpatients; and (5) 

isocarboxazid and placebo in outpatients.87  These investigators did not find a difference in 

response across drugs for the entire population studied, but found that depressed women with 

panic attacks responded better to MAOIs than TCAs, and depressed men with panic attacks 

responded better to TCAs than to MAOIs.87  Quitkin and colleagues showed that phenelzine was 

significantly better than imipramine in the treatment of depression with atypical characteristics.85   

 

Possible differences in serotonergic activity between women and men may also contribute to 

differential responses to antidepressants.  A study evaluating the response to imipramine and 

sertraline demonstrated that women were much more likely to have a favorable response to 

sertraline and imipramine; conversely, men were more likely to respond to imipramine.20  Post-
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menopausal women showed a similar response rate to both sertraline and imipramine in this 

study.  In other studies, women of reproductive age were more responsive to treatment with 

fluoxetine than men,81 and the number of symptoms associated with discontinuation of 

paroxetine was greater in women.83  

 

Antidepressants are classified as pregnancy category C (some risk to the fetus),32 however failure 

to treat depression during this period can lead to a high risk of morbidity for the mother and 

infant.89-91  Antidepressant exposure may also impact the neural development of the child, which 

may not manifest itself until much later in life.  Use of pregnancy databases such as Motherisk92 

may help to provide a more specific evaluation of the risk to the fetus and the potential impact on 

neural development.  Ericson reported on 986 women who had reported taking antidepressants 

during pregnancy.93  There was an excess of high parity births and a reduction in multiple births 

in the antidepressant exposed group, otherwise there were no differences in parturition compared 

to women not taking antidepressants.  There were no other significant effects on pregnancy 

mediated by antidepressants.  Kulin reported on a case-controlled assessment of exposure during 

pregnancy to sertraline, fluvoxamine and paroxetine.94  There did not appear to be an increase in 

the teratogenic risk based on the assessment of 267 women exposed to antidepressant.  However, 

the relatively small numbers of exposures assessed may not detect an increased risk of 

teratogenicity.   
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EFFECTS OF ESTROGEN/PROGESTERONE95 

 
The administration of exogenous estrogen and progesterone may have specific effects that 

modulate the response to antidepressants, as shown in Figure 1.2.69, 95   

E2 has direct effects on transcription 
factors and nerve growth factors that 
may mediate the therapeutic effects 
of antidepressants: 
 ↑ serotonin and NE activity4-7 
 ↑ 5-HT2AR binding potential8 
 ↑ serotonin receptors in rats9 
 ↑ 5-HT2AR mRNA expression10 

 ↑ 5-HT1AR promoter via nuclear 
factor-κB11 

Second Messenger Pathways 
 
 Activation of CREB results in ↑ serotonin, NE, 
and BDNF/trkB 

 Antidepressants ↑ expression of CREB in 
hippocampus1 

 5-HT activates ERK2 
 Li+ inhibits conversion of IP to free inositol by 
IMP3 

B-Raf MEK 1/2 ERK 1/2

cAMP PKA AC CREB

PI3K

DAG PKC 

AKT/PKBPDK 1/2 IP3

IP Inositol

PIP2

PLC

E2

 

 

 

 

 

 

 
Figure 1.2.  Estrogen and 
Antidepresssants. 
 
Long-term and rapid actions of 
estrogen (E2) in the brain (Adapted3, 

96).  E2 acts at the estrogen receptor 
(ER), which has effects on 
transcription factors (left) and 
second messenger pathways (right).  
Activation of adenylate cyclase 
(AC) results in the cAMP-dependent 
activation of protein kinase A (PKA), leading to the phosphorylation and activation of cAMP-
responsive element binding protein (CREB). E2 can also activate the mitogen-activated protein 
kinase (MAPK) pathway by the activation of the MAPK kinases B-Raf, MEK 1/2, and 
extracellular regulated kinases 1/2 (ERK 1/2).  E2 can also activate phosphatidylinositol-3 kinase 
(PI3K) that activates phosphoinositide-dependent kinase (PDK 1/2) and the Akt/protein kinase B 
(AKT/PKB) pathway through phosphatidylinositol bisphosphate (PIP2).  E2 can also activate 
phospholipase C (PLC), which cleaves PIP2 to generate inositol 1,4,5- trisphosphate (IP3) and 
diacylglycerol (DAG), leading to the release of Ca+2 and activation of protein kinase C (PKC) 
respectively.  IP3 can also be dephosphorylated to inositol monophosphate (IP) and then 
dephosphorylated to free inositol by inositol monophosphatase (IMP).   
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Estrogens have some dopamine modulatory activity97 as well as up regulating serotonin (5-HT) 

and norepinephrine (NE) activity.4-7  Estrogen’s dopamine modulatory effects may be 

neuroprotective, whereas its actions on the serotonin and norepinephrine systems may regulate 

affect.97  As reviewed by Joffe and Cohen, estrogen may exert its antidepressant effects by 

modulating the serotonergic system, and/or by its direct effects on transcription factors and nerve 

growth factors that may mediate the therapeutic effects of antidepressants.98  A meta-analysis of 

the effect of hormone replacement therapy found that estrogen significantly reduced depressed 

mood.99   

 

Estrogen and other gonadal hormones may facilitate down-regulation of 5-HT2 receptors 

associated with chronic administration of antidepressants.  Exogenous estradiol and progesterone 

administration in postmenopausal women resulted in a time-delayed up-regulation of 5-HT2AR  

binding potential as measured using positron emission tomography (PET).8  Duman proposed a 

molecular theory of the antidepressant effects of 5-HT and NE systems, by which these systems 

regulate the cAMP-mediated signal transduction cascade.1  This cascade activates protein kinases 

that phosphorylate proteins including cAMP-response element-binding protein (CREB).  Long-

term use of both SSRIs and selective NE antidepressants has been shown to induce the 

expression of CREB in the hippocampus.100
  Estradiol can also activate the cAMP cascade, 

inducing the expression of CREB, and subsequently activating specific target genes including 

brain derived neurotrophic factor (BDNF).  BDNF is a nerve growth factor (NGF) involved in 

neurodevelopment and maintenance of the mature brain, and which itself has antidepressant 

actions.  Long-term administration of antidepressants including SSRIs, MAOIs, and atypical and 

selective NE agents, and ECT, have been found to increase the expression of BDNF and its 
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receptor (trkB) in the hippocampus.101  Estradiol administration has also been shown to cause an 

up-regulation of the NGF receptor, trkA.102  Moreover, estradiol has been shown to increase 

serotonin receptors in rats.9  Using a genetic animal model for depression, 5-HT2A receptor 

mRNA expression abnormalities found in rats were reversed in several affected brain areas by 

17β-estradiol treatment.10  Estradiol can up-regulate the 5-HT1A receptor promoter via a 

mechanism involving synergistic activation of nuclear factor-κB and ERα.11 

 

A potential consequence of these changes in neurotransmitter systems is that older 

postmenopausal women who use estrogens typically report fewer depressive symptoms than 

nonusers, although large randomized, placebo-controlled trials have not been performed.103  A 

meta-analysis of the effect of hormone replacement therapy found that estrogen significantly 

reduced depressed mood.99  In a clinical trial of perimenopausal women treated with fluoxetine 

(20 mg/d), women treated adjunctively with estrogen replacement showed a greater improvement 

in HAM-D scores (40.1%) than the control group (17.0%).104  Cyclic changes in mood, as 

evidenced by premenstrual dysphoric disorder (PMDD) and premenstrual syndrome (PMS), 

suggest an effect on mood secondary to hormone fluctuation.37  As estrogen levels peak, 

serotonin levels in plasma also peak. This may provide rationale for pulse dosing of 

antidepressants,6, 39-42 or may actually exacerbate side effects43 in PMDD. 

 

17 



1.4.3. Antipsychotics 

 

1.4.3.1. Sex-related Differences in Clinical Characteristics of Psychotic Disorders 

 

There is considerable heterogeneity in schizophrenia, which has lead to the characterization of 

five schizophrenic subtypes, as classified by the DSM-IV105, including the paranoid, the 

disorganized, the catatonic, the undifferentiated, and the residual.  Beratis and colleagues 

reported that the frequency of disease in men was more than three times greater than that of 

women for the residual and catatonic subtypes.106  The higher proportion of male schizophrenics 

in the residual subtype suggests that more men evolved into this subtype than women, whereas 

the men in the catatonic subtype appear to reflect an intrinsic characteristic of that subtype.  In 

general, schizophrenic women have a later onset of illness, a better neuroleptic response, shorter 

hospital stays, and lower relapse rates than men.17, 21-26   Seventy-five percent of schizophrenic 

patients with late onset (>45 years) are women.107  One study of late paraphrenic patients 

demonstrated a high female to male ratio (42:5),108 which may be due to the decline in 

circulating estrogen and relative excess of dopamine receptors.23  It has also been suggested that 

psychosocial factors may delay the onset of schizophrenic symptoms in women, including better 

coping behavior strategies and social support.108  The disorganized subtype is the only group 

where female schizophrenics that have an earlier onset of illness compared to men.109  

Neuroleptic-refractory chronic schizophrenic women are thought to be a severely ill subgroup of 

female schizophrenics with distinct onset of illness, course and treatment response 

characteristics.  One study reported that these women had a similar age of onset to the men and 

longer duration of illness prior to clozapine initiation.21  Unlike most schizophrenic women, 

18 



these women did not have a better therapeutic response than men, and had similar pharmacologic 

indices including prolactin levels and homovanillic acid.  Tardive dyskinesia, a manifestation of 

supersensitive dopamine receptors in the nigrostriatum, is more common in women (26.6%) than 

men (21.6%),110 and may be a consequence of estrogen withdrawal at menopause.17  Despite the 

aforementioned differences, symptoms of schizophrenia during acute psychotic episodes do not 

differ between men and women, either in type or severity.111  

 

NEUROCOGNITION 

 

Several studies have reported differences in neurocognition between male and female 

schizophrenics.  In a study of patients with psychotic disorders, there were sex differences on 

multiple cognitive indices suggesting that men had a better level of cognitive functioning than 

women.112  There were no significant sex differences on the estimates of premorbid IQ, however 

the women showed a significantly greater estimated deterioration in full-scale, verbal, and 

performance IQ than did the men after a period of untreated psychosis.112  Women also tend to 

have a greater impairment on measures of conceptualization and attention.113  

 

1.4.3.2. Pharmacokinetics of Antipsychotics 

 

Sex differences in CYP P450 isozyme function that affect antipsychotic clearance have been 

reported for CYP 3A4 (clozapine, pimozide, quetiapine, and ziprasidone) and CYP 1A2 

(clozapine, olanzapine, pimozide, and ziprasidone).  Other antipsychotics are metabolized by 

CYP 2D6 (clozapine, haloperidol, olanzapine, perphenazine, risperidone, and thioridazine).  

During pregnancy, the induction of CYP 3A4 and the inhibition of CYP 1A2 may also result in 
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changes in clearance of these drugs.  Additionally CYP 1A2 activity is decreased during the late 

luteal phase of the menstrual cycle and could result in changes in clearance.76  A recent study 

showed that men required a higher olanzapine dose, 15.8 mg/day to reach the therapeutic 

concentration of 23.2 ng/mL, than women, who required only 8.6 mg/day;114 however, it is 

possible that this sex-dose difference could have been due to a disproportionate number of men 

who smoked, and therefore had greater CYP1A2 metabolism.  It has recently been shown that 

elderly, nonsmoking women have a 60% higher concentration of olanzapine compared to young 

smoking men.115  Perry and colleagues developed a dosing nomogram for clozapine that included 

sex and dose-sex interaction as predictors of steady-state clozapine concentration, as shown in 

Table 1.3.116   

 
 
 

Table 1.3.  Sex differences in the pharmacokinetics of antipsychotics 
 

ANTIPSYCHOTIC SEX DIFFERENCES 
Phenothiazines Sex differences were not addressed in the PDR for chlorpromazine, 

mesoridazine, prochlorperazine, or trifluoperazine32 
Miscellaneous Sex differences were not addressed in the PDR for clozapine, haloperidol, 

loxapine, molindone, perphenazine, pimozide, thoiridazine, thiothixene, 
or ziprasidone32 

Clozapine These equations were derived to predict clozapine steady-state plasma 
concentrations to serve as a clozapine-dosing guide for clinicians:116  

Men:   clozapine (ng/mL) = 111 (smoke) + 0.464 (dose) + 145  
Women:  clozapine (ng/mL) = 111 (smoke) + 1.590 (dose) – 149 

Olanzapine  Clearance of olanzapine is approximately 30% lower in women than in 
men32 

Men require a higher olanzapine dose, 15.8 mg/day to reach the 
therapeutic concentration of 23.2 ng/mL, than women, who require only 
8.6 mg/day114  

Elderly, nonsmoking women have 60% higher concentrations compared 
to young smoking men115 

Quetiapine No known sex differences32 
Risperidone Population PK analysis did not identify important differences in the 

disposition of risperidone due to sex32 

20 



1.4.3.3. Pharmacodynamics of Antipsychotics 

 

Sex-related effects on the pharmacodynamics of antipsychotics are summarized in Table 1.4. 

 

Table 1.4.  Sex differences in the pharmacodynamics of antipsychotics 
 

ANTIPSYCHOTICS SEX DIFFERENCES 
Phenothiazines Sex differences were not addressed in the PDR for chlorpromazine, 

mesoridazine, prochlorperazine, quetiapine, or trifluoperazine32 
Miscellaneous Sex differences were not addressed in the PDR for clozapine, haloperidol, 

loxapine, molindone, pimozide, thioridazine, or thiothixene32 
Schizophrenic women responded better than men at 100mg/day of 
clozapine, but there were no sex differences at doses of 300 or 
600mg/day117 

Clozapine 

Differences in leptin levels were not seen in either the group treated with 
olanzapine or the group treated with clozapine, which could be due to an 
increase of leptin in the men that resulted in similar leptin levels118 
Weight gain associated with olanzapine or risperidone treatment is 
positively correlated for male gender119 

Olanzapine  

No apparent differences in effectiveness and adverse effects32 
Perphenazine Women treated with conventional antipsychotics (i.e. perphenazine or 

zuclopenthixol) have significantly higher leptin levels than men in the 
conventional antipsychotic group118 

Risperidone Weight gain associated with olanzapine or risperidone treatment is 
positively correlated for male gender119 

Ziprasidone No known sex differences32  
 
 
 
In general, schizophrenic women have a better response to neuroleptics than men.  Treatment 

response occurs sooner (12.1 vs. 42.1 weeks), the dose of neuroleptic required for treatment is 

lower, and the frequency of nonremission is lower (2% vs. 18%) in schizophrenic women 

compared to men.111, 120, 121  In one study schizophrenic women responded better than men at 100 

mg/day of clozapine, but there were no sex differences at doses of 300 or 600 mg/day.117  

Another complication is that patients with schizophrenia smoke more than the general population 

and more than other psychiatric patients.  Medicated schizophrenics who smoke present more 
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symptoms of schizophrenia than non-smokers.  In one study, male smokers were more impaired 

at baseline and up to 2 weeks following antipsychotic withdrawal than nonsmokers, while there 

were no differences in the female group.122 

  

ANTIPSYCHOTIC-INDUCED WEIGHT GAIN 

 

Weight gain is often an undesired effect of antipsychotic treatment, which often leads to 

noncompliance and the potential for morbidity.  The newer agents, including clozapine and 

olanzapine, have the greatest potential to induce weight gain.123  The prevalence of obesity is 

higher in women who are treated with atypical antipsychotics compared to men, as reviewed by 

Russell and Mackell.124  In addition, women usually have higher levels of the hormone leptin, 

which is involved in the regulation of body weight.  A study evaluating the effects of 

antipsychotics on leptin levels reported that women treated with conventional antipsychotics (i.e. 

perphenazine or zuclopenthixol) had significantly higher leptin levels than men in the 

conventional antipsychotic group.118  These differences were not seen in either the group treated 

with olanzapine or the group treated with clozapine, which could be due to an increase of leptin 

in the men that resulted in similar levels.  One study of weight gain associated with olanzapine or 

risperidone treatment was positively correlated with male gender.119  

 

HYPERPROLACTINEMIA 

 

The inhibition of prolactin release by dopamine is blocked by some antipsychotics, which can 

lead to hyperprolactinemia resulting in menstrual disturbances and impotence.  A study reported 

that antipsychotic-induced hyperprolactinemia was more frequent and occurred at a lower daily 
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dose of antipsychotics in women, suggesting a sex-related difference in the sensitivity of the 

hypothalamic-pituitary system to antipsychotics.125  Another study evaluating the neuroendocrine 

response to antipsychotics evaluated the influence of drug type and sex on thyrotropin-releasing 

hormone (TRH) stimulated secretion of prolactin and thyroid-stimulating hormone (TSH).126  

Prolactin plasma levels were markedly elevated in both amisulpride and flupenthixol treatment 

groups, and this elevation was significantly more pronounced with amisulpride compared to 

flupenthixol in women but not in men.  Additionally, the prolactin response to TRH was 

significantly blunted only in the male patients.   
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1.4.4. Anxiolytics 

 

1.4.4.1. Sex-related Differences in Clinical Characteristics of Anxiety Disorders 

 

Benzodiazepines are the most widely prescribed psychotropic drugs in the world.  

Benzodiazepines are indicated for their anxiolytic (alprazolam, clonazepam, clorazepate, 

cloradiazepoxide, diazepam, lorazepam, and oxazepam) and hypnotic (flurazepam, temazepam, 

and triazolam) properties by the Food and Drug Administration (FDA).  Benzodiazepines are 

commonly used to treat anxiety disorders which include generalized anxiety disorder, panic 

disorder, social anxiety disorder, posttraumatic stress disorder, obsessive compulsive disorder 

(OCD), and severe phobias.127  It is estimated that women are prescribed benzodiazepines almost 

twice as often as men, which is consistent with the data showing that women have twice the 

prevalence of anxiety disorders.27  Specifically anxiolytic benzodiazepine users are significantly 

more often women than men, whereas hypnotic users are more likely to be male.27  Selective 

serotonin reuptake inhibitors (SSRIs), which are effective antidepressants, are also powerful 

antianxiety agents and therefore often used to treat some anxiety disorders.  Sex differences in 

SSRIs are detailed earlier in the section on antidepressants, and therefore, are not covered here. 

 

Menstrual cycle, pregnancy, or childbirth can be a precipitating or exacerbating factors in 

anxiety disorders, especially OCD.128  One study found that 42% of women with OCD had a 

premenstrual worsening of their symptoms, 21% described premenstrual dysphoria, and 29% 

reported postpartum exacerbation of OCD symptoms.129  Additionally, women with OCD may 
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be at increased risk for postpartum depression, which merits further evaluation to reduce 

maternal and infant morbidity. 

 

1.4.4.2. Pharmacokinetics of Anxiolytics 

 

Sex differences in the pharmacokinetics of anxiolytics are summarized in Table 1.5. 
 
 
 

Table 1.5.  Sex differences in the pharmacokinetics of anxiolytics 
 

ANXIOLYTIC SEX DIFFERENCES 
Benzodiazepines Sex differences were not addressed in the PDR for the pharmacokinetics 

or pharmacodynamics of alprazolam, diazepam, clorazepate, 
midazolam, triazolam32 

Alprazolam Most studies have not found differences,130 although one study reported 
differences in t½ and Cl between women and men131 

Diazepam Women have a larger Vd and a higher intrinsic Cl compared to men130 
Oxazepam Men have a higher Cl reflecting a higher activity of UDPGT66 

Older women (63 to 78 years) have a shorter t½ (2.41 h) compared to 
older men (3.38 h)18  

Triazolam 

Women tend to have higher Cl (8.7 vs. 5.5 mL/kg/min) but no 
difference in t½

132 
Older women have a longer t½ (18.4 h) compared to older men (9.9 h), 
and older women have a reduced Cl (0.74 mL/kg/min) compared to 
older men (1.41 mL/kg/min)18  

Temazepam 

Men have a higher Cl reflecting a higher activity of UDPGT133 
Other  
Buspirone No significant sex differences have been reported134, 135 

 
 
 
Many benzodiazepines (alprazolam, clonazepam, diazepam, midazolam, and triazolam) are 

metabolized by CYP 3A, which has known sex differences and therefore could affect the 

clearance of these drugs.  Additionally CYP3A4 is induced during pregnancy, which could result 

in an increased clearance for benzodiazepines, though this has not been reported.  A study of the 

pharmacokinetics of triazolam and temazepam found that older women (63 to 78 years) had a 
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shorter half-life for triazolam (2.41 h) compared to older men (3.38 h).18  Older women had a 

longer half-life for temazepam (18.4 h) compared to older men (9.9 h), and older women had a 

reduced clearance (0.74 mL/kg/min) compared to older men (1.41 mL/kg/min).18  The higher 

clearance of temazepam and oxazepam in men may reflect a higher rate of glucuronidation or a 

higher level of activity of the uridyl diphosphate glucuronyl transferase (UDPGT) enzyme 

system, which may result in higher concentrations in women.66, 133  Greenblatt and colleagues 

have shown that women have a larger volume of distribution for diazepam and a higher intrinsic 

clearance compared to men.130      

 

1.4.4.3. Pharmacodynamics of Anxiolytics 

 

Sex-related differences in the pharmacodynamics of anxiolytics are summarized in Table 1.6. 
 
 
 

Table 1.6.  Sex differences in the pharmacodynamics of anxiolytics 
 

ANXIOLYTIC SEX DIFFERENCES 
Clonazepam No known sex differences32 
Triazolam No evidence for sex differences in pharmacodynamic effects or in the 

kinetic-dynamic relationship120 
  
 
 
Although women are prescribed anxiolytics more often than men and there are observed 

pharmacokinetic differences, most studies report that response rates are similar between men and 

women.  Despite similar response rates, there are special considerations that need to be addressed 

when prescribing benzodiazepines to women of childbearing age. 

 

26 



EFFECTS IN PREGNANCY 

 

Benzodiazepines may cause fetal malformations when taken during the first trimester of 

pregnancy.  Administration of a benzodiazepine within the last weeks of pregnancy has resulted 

in central nervous system (CNS) depression in the newborn (Prod Info Halcion®, 1997), and 

children may be at risk for withdrawal symptoms during the neonatal period.  Most 

benzodiazepines (alprazolam, diazepam, clonazepam, chlorazepate, lorazepam, and oxazepam) 

are considered pregnancy category D, which means that positive evidence of human fetal risk 

exists, but benefits in certain situations (i.e. life-threatening situations or serious diseases for 

which safer drugs cannot be used or are ineffective) may make use of the drug acceptable despite 

its risks.  Other benzodiazepines (triazolam and temazepam) are considered pregnancy category 

X, in which studies in animals or humans have demonstrated fetal abnormalities or there is 

evidence of fetal risk based on human experience, or both, and the risk clearly outweighs any 

possible benefit.  

 

LONG-TERM USE AND DEPENDENCE 

 

Long-term use of benzodiazepines may be qualitatively different in women and men.  Romach 

and colleagues studied the clinical characteristics of persistent users of alprazolam or lorazepam 

who wished to discontinue their medications.136  Male subjects were more numerous in this 

study, and differed from women in several aspects.  These men had histories of alcohol and drug 

abuse/dependence more often than women, and were consuming more alcohol at the time of 

assessment.  Most of the men had used other benzodiazepines for control of symptoms in the 
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past, used their drug for a shorter length of time, and had made more attempts to stop the use of 

the medication.  Additionally men experienced symptoms including agitation, tension, and 

restlessness, upon discontinuation more frequently than women.   
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1.4.5. Antimania Medications 

 

1.4.5.1. Sex-related Differences in Clinical Characteristics of Mania and Bipolar 
Disorders 

 

Mania is characterized by excessive elation typically accompanied by dysphoria and/or psychotic 

features, and has symptoms of irritability, severe insomnia, hyperactivity, uncontrollable speech 

and activity, impaired judgment, and risky behaviors.  Mania and bipolar disorder, the mixture of 

mania and depression, are treated with antipsychotics, anticonvulsants, and/or sedatives. Sex 

differences in antipsychotics and sedative-antianxiety agents are detailed in earlier sections and 

therefore will not be covered here.  This section focuses on mood-stabilizing medications 

including lithium salts and certain anticonvulsants with mood-stabilizing properties.127  

 

Although men and women have similar lifetime prevalence rates of bipolar disorders, sex 

differences exist in the phenomenology and course of illness.  Women have higher rates of 

bipolar depression and type II bipolar disorder (depression with hypomania), a greater likelihood 

of having depression precede mania or hypomania, are more often hospitalized for mania, and 

have a rapid-cycling course more often than men.28, 29  Because women with bipolar disorder 

reportedly have more features that may predict a poor prognosis, including depression and rapid 

cycling, it is particularly important to study response to therapy with regard to sex.   
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1.4.5.2. Pharmacokinetics and Pharmacodynamics of Antimania Agents 

 

Lithium is a first-line agent for both acute mania and maintenance therapy, despite inducing 

adverse effects in 35 to 93% of patients who take it.137  During pregnancy, a 30 to 50% increase 

in renal clearance of lithium has been reported.138  Antiepileptic drugs (phenytoin, phenobarbital, 

carbamazepine) also appear to be cleared faster during pregnancy.139  Viguera and colleagues 

studied the response to lithium maintenance therapy, and found that women had a similar 

response despite significantly lower serum concentrations of lithium.127  Other studies have also 

reported similar response rates in women and men.140  Despite similar treatment outcomes, 

women experience different side effects of lithium treatment.  Women are more likely to gain 

weight during the first year of treatment (47% vs. 18%) and are subsequently more likely to 

develop clinical hypothyroidism (37% vs. 9%), whereas men are more likely to develop tremors 

(54% vs. 26%).137  Studies have shown that bipolar women are at high risk to have an affective 

episode during pregnancy and in the postpartum period.29  Both lithium and anticonvulsant mood 

stabilizers, including valproic acid, are associated with teratogenic risk.  These drugs are 

considered pregnancy category D and should be used with great caution in pregnant women. 

 

1.4.6.   Summary 

 

Women are clearly different from men in clinical characteristics of psychiatric illness and their 

response to treatment.  Despite these differences, there has been little research done on the 

pharmacokinetics and pharmacodynamics of  psychotropics in women.14  As a result, funding 

agencies including the National Institutes of Health have expanded their opportunities for 

research on women’s health.  Population (mixed effects) pharmacokinetic modeling techniques 
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may be useful in evaluating sex differences when concentration data are collected and dosing 

history and sample timings are known.   Additional information on the teratogenicity of 

psychotropics is needed and could be collected using birth registries and long-term follow up as 

has been done for fluoxetine.   As more data become available, clinicians should consider these 

pharmacokinetic and pharmacodynamic differences between women and men in prescribing 

psychotropics and evaluating their response.  
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1.5. Population Pharmacokinetics in Geriatric Psychiatry 

 

Although geriatric patients are the major recipients of drugs, taking an average of 5 or more 

mediations each day,141 most research during drug development is conducted in healthy young 

adults.  There is evidence that physiological changes during aging contribute to differences in 

both drug disposition and response in older individuals compared to young adults.142, 143  

Geriatric patients are a heterogeneous population, which is evident in the highly variable drug 

concentrations and differences in dose-concentration-response relationships.  Adverse drug 

events are common in older adults and are often preventable.  A cohort study of Medicare 

enrollees (30,397 person-years) evaluated the incidence and severity of adverse drug events; of 

the 1523 events identified, 38.0% were serious, life-threatening, or fatal, and 27.6% were 

considered preventable.144  Another study found that 1 in 6 older patients (aged 70 years and 

older) admitted to a general ward experienced adverse drug reactions, 24% of which were 

considered severe reactions.145    Safe and effective drug therapy in the elderly requires an 

understanding of both drug disposition and response in older individuals. 

 

More than a decade ago, the Expert Working Group of the International Conference on 

Harmonisation of Technical Requirements for the Registration of Pharmaceuticals for Human 

Use (ICH) recognized the paucity of clinical trials in elderly individuals and identified the need 

for the explicit study of the geriatric population.  The ICH developed guidelines for Dose-

Response Information to Support Drug Registration (E4)146 and Studies in Support of Special 

Populations: Geriatrics (E7).147  The U.S. Food and Drug Administration Center for Drug 

Evaluation and Research has adopted these as Guidelines for Industry as part of the requirements 
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for drug registration.  Unfortunately these documents do not address the heterogeneity in the 

elderly population and/or the approach to capturing these differences.  One of the major issues of 

studying the elderly relates to the ability to study a large number of people in a minimally 

invasive way.  Population pharmacokinetics provides a potential means of addressing this 

issue.148  Specifically, this section describes the use of population pharmacokinetics to evaluate 

the magnitude and consistency of drug exposure in the elderly.  

 

Pharmacokinetic studies are typically done in a population of healthy adults, and involve 

intensive sampling of a small number of subjects.  Most studies to date have studied young 

adults and then extrapolated the data to older adults.  Older adults have decreased hepatic and/or 

renal function compared to younger adults as well as other physiological changes, and therefore 

direct comparisons cannot be made.  Occasionally, younger adults with impaired renal function 

are used to predict the pharmacokinetics in the elderly, though this ignores other physiological 

changes that occur with aging.  The goal of population pharmacokinetic modeling is to 

characterize and model sources of variability in drug concentration.   

 

1.5.1. Classical Pharmacokinetic Modeling 

 

Most of the classical pharmacokinetic modeling techniques include averaging or pooling the 

data.149  The averaging approach, as named, involves the calculation of the average value of the 

data at each sampling time and then a model is fitted to the mean data.  Parameter values can 

then be determined from this mean profile.  This approach requires complete data, as every 

subject contributes one data point (i.e. plasma concentration) at each time point.  Although this 

method is simple, the model may blunt the concentration-time profile, resulting in poorly 
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estimated parameters.  In addition, this approach confounds sources of variability.  Pooled data 

approaches (e.g. naïve pooled method) use a similar method in which all data from all 

individuals are regarded as coming from a single individual.150  These models perform well when 

the variations between subjects are small, but like the averaging approaches, they confound 

different sources of variability.  

 

In general, classical pharmacokinetic modeling requires intense sampling of a small number of 

subjects (6 to 12 subjects).  Classical methods are limited if data are not complete.  Additionally 

the small number of subjects may not be representative of the variability in drug exposure in the 

population.   There are also limits to this approach if the drug exhibits nonlinear 

pharmacokinetics, which means that the drug exhibits different pharmacokinetic characteristics 

at different doses.  This happens when, for example, the capacity to eliminate the drug has been 

saturated.151  Classical pharmacokinetic approaches use drug concentrations from an individual 

patient, and therefore it is difficult to discern different sources of variability.  This limitation has 

lead to excluding populations of people that contribute to the variability, including women, 

minorities, patients with co-morbidities, and the very young and very old.  Sometimes, 

individually determined pharmacokinetic characteristics are summarized as a mean and standard 

deviation, based on estimates determined using classical approaches, to attempt to reflect the 

variability between subjects.  This, however, is subject to the limitations described above.  In 

contrast to the classical approaches, population pharmacokinetics models drug concentrations 

from a population of patients, and is able to distinguish interindividual (between-subject) and 

intraindividual (within-subject) variability.   
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1.5.2. Population Pharmacokinetic Modeling 

 

Population pharmacokinetics is the quantitative assessment of typical pharmacokinetic 

parameters, and the interindividual, intraindividual, and residual variability in drug 

concentration.152  Nonlinear mixed-effects modeling approaches analyze the data of a population 

of patients (i.e. all individuals at once), but take into account each individual uniquely.153  One 

advantage of population pharmacokinetics is that data can be used from many sparsely sampled 

individuals, which is often more feasible in the geriatric population than a small number of 

intensively sampled individuals typical of the classical studies.154-156  Additionally, taking 

measurements from a larger number of individuals informs the nature of the interindividual 

variability to a much better degree than taking many samples in few subjects.  Population 

pharmacokinetic methods use the concept of mixed-effects models (mixed = random + fixed, or 

varying + constant).  Fixed effects include model parameters (clearance and volume of 

distribution) as well as covariates (e.g. age, weight, sex, and race).  Random effects include both 

inter- and intraindividual variability. This type of nonlinear mixed-effects modeling generally 

uses Bayesian statistics to obtain individual estimates of pharmacokinetic parameters.157  

Covariate effects are then assessed using every data point contributed by all of the individuals, 

thus every individual’s data contributes to the identification of sources of variability.    

Population pharmacokinetics can ascertain where variability arises, which is important for 

geriatric patients who often exhibit highly variable drug concentrations.  It also allows for 

different numbers of data points per individual to be incorporated into the model, and can 

incorporate all available data from various routes of administration to inform the model.158  

Population pharmacokinetics can also be used to detect unanticipated drug interactions.  These 

advantages of population pharmacokinetics make it well-suited to analyze sparse data collected 
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from older individuals.  The advantages and limitations of both classical and population 

pharmacokinetic modeling are listed in Table 1.7. 

 
 

Table 1.7.  Advantages and disadvantages of classical  
vs. population pharmacokinetic modeling 

 
CLASSICAL PHARMACOKINETIC MODELING POPULATION PHARMACOKINETIC MODELING 
Intense data required Can use sparse data in many subjects 
Precisely timed data required Data can be collected at different time points (i.e. 

collected during typical clinic visits) 
Complete data required  Different numbers of data points per individual can 

be incorporated into the model 
Uses averaging or pooling techniques to 
estimate mean parameters 

Uses Bayesian statistics to obtain individual 
estimates of pharmacokinetic parameters 

Tends towards an upward bias in estimation 
of interindividual variability 

Identifies random and fixed effects to identify 
sources of variability  

Data must be from same route of 
administration 

Can use data from various routes of administration 
simultaneously 

Confounded if different dosages exhibit 
different pharmacokinetic characteristics  

Nonlinearities can be easily identified across a range 
of dosages 

Covariates identified using summary 
parameters 

Covariate effects are assessed using the entire 
dataset 

Fairly easy and fast Technically difficult and time intensive 
 
 
 
There are several software programs that can be used to model population pharmacokinetic data, 

the most well-known of these is NONMEM® (GloboMax, Ellicott City, MD); however the use of 

these programs remains technically difficult and often time intensive.  There are newer software 

packages on the horizon, including System for Population Kinetics (SPK) from the University of 

Washington (https://spk.rfpk.washington.edu) and WinNonMix® (Pharsight Corporation, Mountain 

View, CA), which are more graphically driven and more user-friendly, although these are still in 

relatively early stages of development.    
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To illustrate the differences between classical and population pharmacokinetic analysis methods, 

data were generated and then analyzed using both classical and population pharmacokinetic 

techniques, as shown in Figure 1.3.   
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A.  Naïve Pooled Method B.  Individual Nonlinear Regression

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1.3.  Classical and population pharmacokinetic methods.  The classical pharmacokinetics methods shown are the naïve 
pooled method (A) and the individual nonlinear regression approach (B).  The population pharmacokinetic method (nonlinear mixed-
effects modeling) is shown with individual data and the population prediction (data points and solid line respectively; C) as well as 
with a single individual showing the individual (solid line) and population prediction (dotted line) pharmacokinetic profile (D). 

D.  Nonlinear Mixed-Effects Modeling
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C.  Nonlinear Mixed-Effects Modeling
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Olanzapine concentrations were simulated using WinNonlin® 4.0.1 (Pharsight Corporation, 

Mountain View, CA), based on pharmacokinetic data adapted from Callaghan et al.,159 as well as 

data from our laboratory.  Specifically, individual sets of pharmacokinetic parameters were 

generated for 12 individuals based on the reported interindividual variability on the 

pharmacokinetic parameters in Callaghan et al.  The first example uses a classical 

pharmacokinetic analysis approach, the naïve pooled method (panel 1.2 A).  These data points 

enter the non-linear regression and least squares estimation as a single individual and the least 

squares estimator determines the best parameters for all of the data points together, thus unique 

patterns within individuals are ignored.  No information on the variability across the individuals 

contributing to the analysis is provided by this approach.  Another classical pharmacokinetic 

approach, the individual nonlinear regression approach (panel 1.2 B), estimates each individual’s 

pharmacokinetic parameters based on their own concentration measurements over time.  This 

approach can be adapted to estimate population concentrations by summarizing the individually 

estimated pharmacokinetic parameters with means, medians, or modes and variances.  However, 

these values tend to be upwardly biased and continue to require intense pharmacokinetic 

sampling to execute successfully.  Population pharmacokinetics can be used to analyze the same 

data set, with only a sparse number of samples.  A population model was determined by the 

nonlinear mixed-effects pharmacokinetic analysis in WinNonMix® 2.0.1 (Pharsight Corporation, 

Mountain View, CA) with sparse data (panel 1.2 C).  Panel 1.2 D shows a single individual, with 

the individual predictions from the nonlinear mixed-effects population analysis as well as the 

population prediction.  This illustrates the simultaneous nature of estimation of the 

pharmacokinetic characteristics of the population and the individual, all using Bayesian and 

related techniques. 
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1.5.3. Examples of Population Pharmacokinetic Studies  

 

1.5.3.1. Pharmacokinetic Characterization and Covariate Analysis 

 

Most of the research in the pharmacokinetics of the geriatric population lies outside the field of 

geriatric psychiatry.  As noted above, population pharmacokinetic techniques allow us to 

determine pharmacokinetic parameters in a large population of patients even when the number of 

samples in each patient is very small.  Krecic-Shepard et al. used sparse sampling to determine 

the clearance of sustained-release (SR) nifedipine.160  Clearance was determined in 226 patients 

with hypertension and/or coronary artery disease by a single concentration sample between 4 and 

12 hours after drug administration using nonlinear mixed-effects modeling.  This study was also 

designed to determine the demographic and clinical covariates that affect nifedipine clearance.  

Clearance was affected by race (slower in black subjects compared to white), sex (slower in men 

than in women), smoking status (slower in smokers compared to nonsmokers), and alcohol 

consumption (slower with alcohol use compared to no alcohol).  This study had a large age range 

(36 to 96 years), although most patients were over 60 years, but did not identify age as a 

significant covariate on clearance. 

 

Another feature of population pharmacokinetic techniques is the ability to identify factors that 

contribute to the variability in pharmacokinetic parameters.  A study by Kang et al. evaluated the 

effects of age and sex on the clearance of SR racemic verapamil.161  Patients with heart disease 

(n=186) contributed both sparse and extensive verapamil concentration measurements, which 

provided the basis for the pharmacokinetic analyses using a nonlinear mixed-effects modeling 

approach.  This study found that sex significantly affected the steady-state clearance of 
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verapamil SR, with women having a faster clearance, and therefore a lower exposure, compared 

to men.  Estimates of clearance were also affected by race (faster in black subjects compared to 

white subjects) and smoking status (faster in smokers compared with nonsmokers). 

 

It is well established that renal function declines with age, which may impact the 

pharmacokinetics of renally excreted drugs.  Population pharmacokinetics can be used to 

evaluate the impact of renal function on drug exposure, which is particularly important in the 

elderly population.  Population pharmacokinetics were used to evaluate the antibiotic cefotaxime 

and its active metabolite, desacetylcefotaxime, which are both excreted primarily through renal 

elimination.162  Cefotaxime (1000 mg) was infused three times a day in 25 elderly individuals 

(age 66 to 93 years).  Cefotaxime clearance increased with body weight and serum protein 

concentration, and decreased with age and serum creatinine concentration.  This example also 

highlights the use of population pharmacokinetics in simultaneous parent drug (cefotaxime) and 

metabolite (desacetylcefotaxime) modeling.   

  

1.5.3.2. Identification of Drug Interactions 

 

Population pharmacokinetics can also be used to detect pharmacokinetic drug interactions 

between combinations of drugs that are commonly combined for treatment purposes.  

Combination treatments are the major therapeutic strategy for human immunodeficiency virus 

(HIV) infection; therefore, it is important to identify patient characteristics that contribute to 

interindividual variability in the pharmacokinetics of each drug as well as the combination of 

drugs, which may relate to drug exposure and clinical response.  Population pharmacokinetics of 

combined nevirapine, zidovudine, and didanosine were evaluated in 175 patients infected with 
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HIV as part of the AIDS Clinical Trials Group Protocol 241.163    Patients were randomized to 

receive either a double combination of zidovudine and didanosine, or a triple combination of 

nevirapine, zidovudine, and didanosine.  Approximately 3.5 samples per subject were measured 

during the 44 weeks of treatment.  Pharmacokinetic analyses determined that sex significantly 

correlated with nevirapine clearance.  Body weight and age were correlates of zidovudine 

clearance and body weight was a correlate of volume of distribution.  Body weight was a 

significant correlate of both clearance and volume of distribution at steady state for didanosine.  

Bioavailability of zidovudine was reduced to 67.7% during the triple combination (with 

nevirapine) compared to the double combination (without nevirapine); no differences in 

bioavailability were found for didanosine.  This demonstrates the ability to capture the covariate 

effects of multiple drugs simultaneously, in addition to whether or not a drug interaction is 

present.  

 

1.5.3.3. Therapeutic Drug Monitoring 

 

Population pharmacokinetic approaches have been used to optimize the dose of phenytoin in 

patients with epilepsy, and the population data were then used to determine the variability in 

concentration resulting from a particular dosage.164  These elements were combined to produce a 

nomogram that reflects the regions of possible elimination rates given a particular dosage 

regimen and the resulting pseudo-steady-state concentration.  Then if a new target concentration 

is desired, the dosage can be determined graphically from the nomogram.  Subsequent to these 

analyses, Sheiner and Grasela evaluated the performance of NONMEM® in determining 

phenytoin exposure given routine clinical pharmacokinetic data, and found that reasonably good 

predictions of exposure could be determined using this type of sparse data.165  Killilea and 
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colleagues determined that Bayesian regression of sparse samples could accurately predict 

exposure, but that these samples needed to be taken over multiple occasions to robustly predict 

exposure.166  Other investigators have utilized these approaches for therapeutic drug monitoring 

of phenytoin exposure under both steady-state and non-steady-state conditions.167, 168  These 

investigators concluded that the programs worked in a reasonably unbiased fashion and provided 

the best estimates when samples were taken beyond an initial five-day window of treatment.   

 

1.5.3.4. Determining Consistency of Drug Exposure 

 

In addition to pharmacokinetic differences, patient adherence contributes to variability in clinical 

outcome.  Population pharmacokinetics can be used to determine the relationship between 

intraindividual variability in drug concentrations and its association with patient response.  

Brundage and colleagues showed that intraindividual variability of efavirenz concentrations is a 

predictor of virologic response to antiretroviral therapy.169  Concentrations were obtained for 50 

children as part of the Pediatric AIDS Clinical Trials Group Study 382, a concentration-

controlled trial of efavirenz in combination with other antiretroviral medications.  Nonlinear 

mixed-effects modeling was used to determine individual pharmacokinetic parameters of 

efavirenz from 24-hour concentration-time profiles at weeks 2 and 6.  Pharmacokinetic 

parameters were used to predict trough concentrations during one year of therapy (one sample 

per visit, up to 12 visits).  Inconsistencies in drug exposure can be detected by evaluating the 

differences between the observed (i.e. measured in the laboratory) and predicted (i.e. generated 

by the pharmacokinetic model) concentrations, which yields an integrated pharmacokinetic 

adherence measure (IPAM).  The discrepancy between observed and predicted concentration was 

expressed as the ratio of the observed concentration (Cobs) to the predicted concentration (Cpred), 
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or Cobs/Cpred.  The IPAM score was defined as the fraction of available ratios that Cobs was in the 

range of ± 50% the Cpred.  A high IPAM score reflects a high concentration predictability, or low 

intraindividual concentration variability.  Only 8 of the 33 children (24%) in the high-

predictability group experienced viral rebound as measured by plasma HIV-1 RNA levels (>400 

copies/mL), compared with 9 of the 17 children (53%) in the low-predictability group.  Children 

with a low IPAM score also had a significantly shorter time to their first viral rebound.   

 

1.5.4. Population Pharmacokinetic Examples in Geriatric Psychiatry 

 

1.5.4.1. Pharmacokinetic Characterization and Covariate Analysis 

 

Psychiatry is lacking basic pharmacokinetic data let alone sophisticated population 

pharmacokinetic evaluations.170  Recently our research group has used population 

pharmacokinetic techniques to evaluate the disposition of psychiatric drugs in the elderly.  We 

designed a study to determine whether the disposition of citalopram could be captured using only 

1 to 2 blood samples per subject.171  Nonlinear mixed-effects modeling was used to evaluate the 

data collected in two studies of bipolar and elderly depression respectively.172, 173  In the first 

study, patients with bipolar depression were treated with citalopram for an initial 8-week 

response phase and then a 16-week continuation phase for responders.  Plasma samples were 

obtained at baseline, week 1, week 8, and the end of the study.  A total of 45 patients in this 

study provided 85 citalopram samples.  The second study was a randomized, double-blind, 

placebo-controlled study of citalopram for the treatment of geriatric depression.  Older depressed 

patients (75 years and older) were treated with citalopram or placebo for 8 weeks.  Plasma 

samples were obtained at baseline, week 4, and week 8 (or at study termination).  Sixty-six 
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patients provided 116 concentration samples in this study, for a total of 199 plasma citalopram 

concentrations from 106 patients for both studies.  The pharmacokinetic characteristics of 

citalopram were well-captured, while taking only one or two blood samples per patient.  In this 

analysis, the covariates age and weight had a significant effect on the clearance and volume of 

distribution of citalopram.  Clearance decreased with increasing age and increased with 

increasing body weight.  This sparse sampling design was adequate to support population 

pharmacokinetic analyses in a clinically treated population including older adults.  

 

A similar analysis was done for the Maintenance Therapies in Late-Life Depression trial.174  

Older adults (69 years and older) with major depressive disorder were treated with paroxetine.  A 

total of 171 patients provided 1970 paroxetine concentrations and a nonlinear mixed-effects 

model was developed with these sparse samples.  Weight and cytochrome P450 (CYP) 2D6 

genotype had a significant effect on the maximal elimination velocity (i.e., the rate of 

metabolism of the drug) and sex had an effect on the volume of distribution.175  Race, significant 

in the initial analysis as a covariate affecting rate of metabolism, was no longer significant when 

the CYP2D6 predicted phenotype (by genotype) was considered.   

 

DeVane and colleagues have used similar methods to evaluate the population pharmacokinetics 

of alprazolam.176  Two blood samples collected at a random time during two different dose 

intervals were collected in 94 psychiatric inpatients receiving alprazolam.  Mixed-effects 

modeling determined mean alprazolam clearance (0.05 L/h/kg), volume of distribution (0.7 L/kg) 

and absorption rate constant (1.1 h-1).  Clearance was affected by sex (increased by 59% in 
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women compared to men), age (decreased by 23% in patients older than 60 years), and disease 

(decreased by 26% in patients with multiple organ disease). 

 

The population pharmacokinetics of lithium were characterized by Gaillot and colleagues, using 

intense sampling on three different occasions after single and multiple dosages, as well as sparse 

sampling on two occasions.177  The aim of this study was to examine whether or not a universal 

dosage for lithium was possible a priori.  Average pharmacokinetics as well as the 

interindividual variability were determined for the population.  The total number of patients in 

this analysis (n=24) is not typically sufficient to adequately determine interindividual variability, 

but the investigators determined that any given fixed dosage would result in too large a 

proportion of patients falling either above or below the defined therapeutic range for this drug, 

and therefore no single dose could be recommended a priori.  In another study, nonlinear mixed-

effects modeling was applied using sparse therapeutic drug monitoring data to determine the 

population pharmacokinetics as well as important covariates affecting lithium disposition.178  

Concentration measurements were taken 12 hours after the dose in 79 psychiatric inpatients.  

Steady state lithium concentrations were reasonably well predicted by this model.  Lean body 

weight and serum creatinine were determined to be the best predictors of lithium clearance.   

 

Other investigators utilized population pharmacokinetic approaches, using NONMEM®, to 

evaluate the disposition of lithium in Japanese patients.179  These investigators evaluated a 

number of potential covariates affecting disposition using 303 samples from 90 patients.  They 

determined that age, total body weight, and serum creatinine affected the clearance of lithium.  In 

addition, the interindividual variability of elimination was approximately 25%, in this 
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population.  These approaches provide utility in the area of therapeutic drug monitoring where 

concentrations can be reasonably well-predicted from dose, and then further refined after initial 

measurements. 

 

There is a paucity of data regarding the pharmacokinetics of the antipsychotics, with most 

studies involving a small number of healthy subjects.  Callahan et al. reported a population 

pharmacokinetic analysis of olanzapine in 1711 patients with schizophrenia during phase II and 

phase III clinical trials.159  Smoking and sex were identified as important factors contributing to 

clearance and volume of distribution, though the actual data and model were not reported.  In 

another study, by Kimko and colleagues, data from one phase I and one phase II clinical trial of 

quetiapine in patients with schizophrenia were analyzed with nonlinear mixed-effects modeling 

to develop a pharmacokinetic-pharmacodynamic (PK-PD) model.180  This PK-PD model was 

used to simulate the results of a phase III trial of quetiapine.  Simulation results were compared 

with those in the actual trial to evaluate how well the simulations were able to predict the 

outcome.  The actual trials results fell within the predicted response scores (± 1 standard error) 

for all doses (75, 150, 300, 600, or 750 mg/d) except the placebo group. 

 

The Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) was a multi-site 

National Institute of Mental Health (NIMH) funded research project that evaluated the clinical 

effectiveness of atypical antipsychotics in the treatment of schizophrenia and Alzheimer's 

disease.  This was the first systematic evaluation of the response to antipsychotics.181   An 

ancillary study to the CATIE trial, Atypical Antipsychotics: Determinants of Concentration, was 

designed to reliably capture the concentration exposure of antipsychotics using mixed-effects 
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population pharmacokinetic methodologies.  The CATIE Alzheimer’s disease trial contributed 

795 concentrations in 260 patients (230 concentrations of olanzapine, 223 of quetiapine, 210 of 

risperidone, and 132 of citalopram).  The CATIE schizophrenia trial contributed 5660 samples in 

1212 patients (1528 concentrations of olanzapine, 1137 of quetiapine, 1274 of risperidone, 681 

of ziprasidone, 641 of perphenazine, 216 of clozapine, 69 of aripiprazole, 18 of fluphenazine, 

and 96 of combination therapy).  Our research group is in the process of constructing separate 

population pharmacokinetic models for each drug, and specific covariates are being evaluated as 

potential contributors to variability in drug exposure.182-184  This study will allow us for the first 

time to evaluate the pharmacokinetics of the antipsychotics, as well as the factors that contribute 

to variability in exposure within a psychiatric population.  

 

Another NIMH funded multi-site study Depression: The Search for Treatment-Relevant 

Phenotypes (SPECTRUM) is aimed to define treatment-relevant phenotypes of depression in 

order to aid practicing clinicians in achieving durable recovery from major depression.  The 

SPECTRUM study assesses the impact of the SSRI, escitalopram, and/or interpersonal 

psychotherapy on patients with depression.  This study will provide up to five escitalopram 

concentration samples per patient in approximately 228 patients with depression.  Additionally 

this study employs the use of electronic medication event monitoring (MEMS™) in order to 

monitor pharmacotherapy adherence, which is defined as the subject taking the medication at the 

prescribed time, and to provide the input profile for the pharmacokinetic modeling.  This will 

further enhance the understanding of patterns of drug exposure. 
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1.5.4.2. Identification of Drug Interactions 

 

Population pharmacokinetics can also be used to determine the impact of exposure to a 

concomitant medication on the pharmacokinetics of another drug, which is particularly important 

for elderly individuals who regularly take multiple medications.  A drug interaction between 

alprazolam and imipramine was identified with a population pharmacokinetic approach.185  

Alprazolam (4 mg/d) was found to decrease the clearance of imipramine by 20%, using a 

traditional pharmacokinetic approach.  However mixed-effects modeling determined that the 

interaction is dependent on the simultaneous concentration of alprazolam, which could not have 

been determined using the traditional pharmacokinetic study design.   

 

1.5.4.3. Determining Consistency of Exposure and Clinical Trial Simulation 

 

Continuing Pharmacotherapy in Agitation and Dementia (CPAD) is a study that used population 

pharmacokinetic analyses to assess the consistency of risperidone exposure in older patients with 

dementia-related agitation and/or delusions.186  Risperidone was administered for 12 weeks and 

plasma samples obtained at baseline and weeks 1, 2, 4, 6, 8, 10, and 12. The observed 

concentrations (Cobs) of risperidone formed the basis for applying a Bayesian pharmacokinetic 

(mixed-effects modeling) approach to determine the ideal predicted concentration for an 

individual given a previously established population pharmacokinetic model, dosage history, and 

timing of the concentration sample.  The predicted risperidone concentrations from the model 

(Cpred) were compared with the observed concentrations (Cobs) in the form of the ratio, Cpred/Cobs.  

If the model overestimates the measured concentration, this ratio increases.  Assuming that the 

pharmacokinetic model is adequate, a higher ratio suggests that the patient has not received or 
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absorbed as much drug as prescribed.  If the measured concentration is larger relative to the 

predicted concentration, the Cpred/Cobs ratio decreases, which suggests that the patient is receiving 

or absorbing more of the drug than was prescribed.  In this study, the central tendencies of the 

Cpred/Cobs ratios across groups were not significantly different; however the modeled Cpred/Cobs 

ratios for risperidone had a much higher within-subject variance in the inpatients than in the 

community care patients (117.03% vs. 72.35%).   

 

The CATIE and SPECTRUM studies have been simulated by our research group to assess the 

feasibility of accurately and precisely identifying the consistency of concentration exposure and 

to evaluate the impact of electronic monitoring on measuring consistency of exposure to 

pharmacotherapy.187  These studies were simulated separately using nonlinear mixed-effects 

pharmacokinetic modeling.  The first step simulated datasets of “virtual patients,” each with a 

unique virtual concentration-time profile under the sampling conditions of each study.  Virtual 

patient characteristics were generated using Monte Carlo (i.e. random number generating) 

simulation methods.  In this study, two versions of the dosing history and sample times were 

simulated.  The true dosage history and sample times were simulated using MEMS™ data, and 

the other simulation was done with incorrectly-reported dosage history and sample times.  The 

second step estimated the concentrations and pharmacokinetic parameters from the datasets of 

the virtual patients; first using accurate dosage history and sample times from MEMS™ data, and 

then with inaccurate dosage history and sample times.  The Cpred/Cobs ratio was calculated for 

each concentration observation.  In these simulations, the use of electronic monitoring improved 

the identification of atypical exposure by population pharmacokinetics both for selective 

serotonin reuptake inhibitors and atypical antipsychotics.187  Erratic exposure patterns were 
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detected with population pharmacokinetic techniques in the absence of MEMS™ data.  The 

Cpred/Cobs ratio increased with decreasing adherence (or increasingly erratic exposure) when 

exact dosage history was not accurately known.  These simulations demonstrated the usefulness 

of the combination of population pharmacokinetics with electronic monitoring, as a robust 

method for accurately and precisely capturing both magnitude and consistency of 

pharmacotherapy exposure. 

 

1.5.5. Summary 

 

As reflected from the examples discussed in this section, most population pharmacokinetic 

studies have been done in the adult population, but have recently expanded to include children 

and elderly individuals.  These techniques are particularly relevant for the very young and the 

very old because of the use of sparse sampling strategies.  Population pharmacokinetic 

techniques contribute to a greater understanding of drug disposition and response in older 

individuals, by modeling drug concentrations from a population of patients and characterizing 

the degree of variability in drug exposure for this population.  Another advantage is the ability to 

identify factors that contribute to the variability in pharmacokinetics, including age, sex, race, 

weight, renal function, and concomitant medications.  Population pharmacokinetics can also be 

used to measure patient adherence and evaluate its effect on clinical outcome.  As shown with 

the examples from the CATIE and SPECTRUM studies, population pharmacokinetics can be 

used to design and simulate data for large clinical trials, which can decrease the time and 

resources spent and therefore defray costs.188, 189  The following section is an example of the use 

of population pharmacokinetic methodologies to identify contributors to variability in olanzapine 

pharmacokinetics using data from the CATIE trials. 
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1.6.  Population Pharmacokinetics of Olanzapine 

 

1.6.1. Introduction 

 

The Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) was the first systematic 

evaluation of the clinical response to atypical antipsychotics in the treatment of Alzheimer's 

disease and schizophrenia.  In the schizophrenia trial (CATIE-SZ), olanzapine was the most 

effective antipsychotic studied in terms of the rates of discontinuation before 18 months for any 

cause (64%), compared to perphenazine (75%), quetiapine (82%), risperidone (74%), and 

ziprasidone (79%).181  However, olanzapine was associated with greater weight gain and 

increases in measures of glucose and lipid metabolism.181  In the Alzheimer’s disease trial 

(CATIE-AD), there were no significant differences among treatments.  The median time to 

discontinuation of treatment for any reason was similar for olanzapine (8.1 weeks), risperidone 

(7.4 weeks), quetiapine (5.3 weeks), and placebo (8.0 weeks).191   

 

The CATIE trials reported overall high rates of discontinuation due to lack of efficacy and/or 

intolerable side effects for all antipsychotics.  One reason for the high rates of discontinuation 

may relate to the wide variability in the pharmacokinetics of these drugs, which often results in 

differences in the pharmacodynamics, both in the response to a drug and the incidence of adverse 

effects.  For example, if a patient clears a drug faster than average, they will experience lower 

drug levels and may not respond as well at the same dose.  Conversely, if a patient clears the 

drug slower than average, they will have higher drug levels and may be at a higher risk of 

experiencing adverse effects.  Therefore, in order to limit the variability in response to a drug, it 

is necessary to limit or control for the variability in the pharmacokinetics.  This is particularly 

53 



important in an older population such as patients with Alzheimer’s disease, where the variability 

is often greater.170  

 

Population pharmacokinetic methodologies provide a means of estimating the magnitude of drug 

exposure in a large number of patients in a minimally invasive way, using sparse sampling.190  

These methodologies also allow one to identify factors that contribute to variability in drug 

exposure as well as detect potential pharmacokinetic drug interactions.190  Limited data on the 

pharmacokinetics of olanzapine has been published.159  Most studies were conducted in a small 

number of subjects, and other studies elude to population analyses but do not report actual values 

or the magnitude of effect of the contributors to variability.159, 192, 193  The CATIE trials afforded 

a unique opportunity to study a large number of subjects treated with antipsychotics.  This 

ancillary study to the CATIE trials aimed to capture the magnitude and variability of 

concentration exposure of antipsychotics using mixed-effects population pharmacokinetic 

methodologies.  This allowed us, for the first time, to evaluate the pharmacokinetics of 

olanzapine, as well as identify factors that contribute to variability in exposure, in large 

populations of patients with schizophrenia and Alzheimer’s disease. 
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1.6.2. Methods 

 

1.6.2.1. Participants and Interventions 

 

A detailed description of the study design and methods has been published for CATIE-SZ194 and 

CATIE-AD.195  Patients with Alzheimer's disease and schizophrenia were recruited from 

multiple U.S. sites between January 2001 and December 2004.  Patients were treated with oral 

olanzapine (2.5 to 20 mg/day taken once a day for AD and 7.5 to 30 mg/day taken once or twice 

daily for SZ, with the exception of one patient in the SZ trial who received up to 80 mg/day).  

Demographic information was collected at study visits, including height, weight, age, sex, 

smoking status, and concomitant medications.  Race was self-reported and included the 

following categories:  American Indian, Asian alone, Black/African American, Native Hawaiian, 

White alone, and two or more races.  Subjects also reported whether they were of Hispanic 

ethnicity, as a separate category from race.  Plasma samples were collected during the study 

visits.  Each subject provided between one and six plasma samples for determination of 

olanzapine concentrations.  Data was excluded for missing (or incorrect) dose, time of dose, 

sample, or time of sample.   

 

1.6.2.2. Analytical Procedures  

 

Plasma levels of olanzapine were determined using liquid chromatography tandem mass 

spectrometry (LC-MS-MS).196  Briefly, 0.5 mL of plasma was alkalized with 0.5 mL of saturated 

aqueous solution of sodium carbonate and extracted by a liquid-liquid extraction method (15% 
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methylene chloride in pentane).  The organic extract was dried and reconstituted in mobile phase 

and an aliquot was injected into the LC-MS-MS system.  The compounds were separated on a 

phenyl-hexyl (5 micron 50 x 4.6 mm) column by isocratic elution using a mobile phase 

containing aqueous 78 µM ammonium acetate, methanol and acetonitrile (5:45:50).  The 

analytes were ionized in the mass spectrometer in a TurboIon source with positive ion 

atmospheric pressure electrospray ionization and detected with multiple reaction-monitoring 

modes.  The ion transitions monitored were m/z 313 → 256 for olanzapine and m/z 327 → 270 

for the internal standard (LY 170222).  These transition ions were selected based on predominant 

fragmentation pathways of olanzapine and internal standard and their intensity as observed in 

their product ion mass spectra.  The olanzapine standard was linear over the range of 0.1 ng/mL 

to 100 ng/mL when 0.5 mL of plasma was used for the analysis (r2 > 0.999).  The intra- and 

inter-assay variations were less than 15% for the spiked standard curve and quality control 

samples.  The variations for the long-term patient quality control samples were <10%. 

 

1.6.2.3. Population Pharmacokinetic Analysis 

 

The population pharmacokinetic analysis included the development of a structural base model, 

which defines the pharmacokinetic parameters and describes the plasma concentration-time 

profile for olanzapine.  The final model was then developed by testing the effects of subject-

specific covariates including age, height, weight, sex, race, and smoking status, on 

pharmacokinetic parameter estimates.  Non-linear mixed effects modeling was used for the 

population pharmacokinetic analysis using NONMEM® (Version 5, Level 1.1; GloboMax, 

Ellicott City, MD).197, 198  One and two compartment models were evaluated.  Pharmacokinetic 
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parameters, including clearance (Cl) and volume of distribution (Vd), as well as interindividual 

(between-subject) and intraindividual (within-subject) variability were estimated.  Continuous 

covariates (e.g., age, height, weight) and discrete covariates (e.g., sex, race, smoking status) were 

introduced into each parameter in a stepwise fashion.  Concomitant medications that had an 

incidence of approximately 1% or greater were also individually tested as discrete covariates to 

identify potential pharmacokinetic drug interactions with olanzapine.  

 

1.6.2.4. Statistical Analyses 

 

The developed models were evaluated using both statistical and graphical methods.  The 

likelihood ratio test was used to discriminate between alternative models.  This test is based on 

the property that the ratio of the NONMEM objective function values (-2 log-likelihood) are 

asymptotically χ2 distributed.  An objective function decrease of 3.84 units was considered 

statistically significant (χ2, df=1, p<0.05).  Likewise, a covariate was retained in the model if it 

decreased the objective function value by 3.84 units.  Covariate influence on interindividual 

variability and goodness-of-fit was also examined. 

   

Post-processing of NONMEM outputs was performed using Prism® (version 4.03; GraphPad 

Software, Inc., San Diego, CA).199  Linear regression was used to determine the magnitude of 

contribution to the variability of clearance for significant covariates.  Unpaired t-tests were 

performed for each significant covariate.  ANOVA was used to compare clearance for each of 

the race categories, and Bonferroni’s multiple comparison test was used to correct for multiple 

comparisons.  Data are reported as mean ± SD; p-values <0.05 were considered statistically 
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significant.  All plots were generated using Prism; horizontal lines represent the median for each 

dataset. 

 

1.6.3. Results 

 

Patients with Alzheimer's disease (n=117) and schizophrenia (n=406) provided 1527 plasma 

olanzapine concentrations (200 samples from CATIE-AD and 1327 from CATIE-SZ) for the 

population pharmacokinetic analyses.  Patient demographics are summarized in Table 1.8. 

 
 

Table 1.8.  CATIE patient demographics  
 

 All patients 
(n=523) 

Schizophrenia 
(n=406) 

Alzheimer’s Disease 
(n=117) 

Age –median year ± SD  
 range 

45 ± 18 
(18 to 103) 

42 ± 7.9 
(18 to 65) 

78 ± 10.9 
(54 to 103) 

Sex –no. (%)     
 Male 332 (63) 289 (71) 43 (37) 
 Female 191 (37) 117 (29) 74 (63) 
Race –no. (%)    
 White 346 (66) 253 (62) 93 (80) 
      Black/African 

American 
149 (28) 131 (32) 18 (15) 

 Asian 19  (4) 14 (3) 5 (4) 
 American Indian 5 (1) 4 (1) 1 (1) 
 Two or more races 4 (1) 4 (1) 0 (0) 
Smoking status –no. (%)    
 Active smoker 274 (52) 267 (66) 7 (6) 
 Non-smoker* 249 (48) 139 (34) 110 (94) 

*includes inactive (past) smokers 
 
 

The population pharmacokinetic model adequately described the olanzapine pharmacokinetics in 

this population of patients with Alzheimer’s disease and schizophrenia.  A one-compartment 

pharmacokinetic model with additive error best described the data.   
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Table 1.9  Olanzapine pharmacokinetic parameters. 
Pharmacokinetic parameters are 

summarized in Table 1.9.  The population 

mean clearance and volume of distribution 

were 16.1 L/h and 2150 L, respectively.  

The absorption constant Ka was fixed at 0.5  

Pharmacokinetic 
parameter 

All patients 
(n=523) 

Clearance (L/h) 
 Population mean 16.1
  % standard error 7.3
 Interindividual variability 68%
Volume of distribution (L) 
 Population mean 2150
 % standard error 26.0
 Interindividual variability 86%

h-1 based on previous literature reports.159 

 

Elimination of olanzapine varied nearly 10-fold (range 6.66 to 67.96 L/h).  Smoking status, sex, 

and race accounted for 26%, 12%, and 7% of the variability, respectively (p<0.0001 for each 

parameters; table 1.10).   

 
 

Table 1.10.  Olanzapine clearance by population 
 

Population  Mean clearance 
(L/h) 

Standard 
deviation 

p-value 

Smoking status  <0.0001
 Smokers  (n=274) 31.23 10.88 
 Non-smokers (n=249) 20.15 7.50 
Sex  <0.0001
 Men  (n=332) 28.83 11.02 
 Women (n=191) 20.96 8.77 
Race  <0.05*

 Black/African American (n=149) 30.40 11.80 
 White (n=346) 24.26 10.19 
 Asian (n=19) 22.66 8.55 
 American Indian (n=5) 25.89 9.16 
 Two or more races (n=2) 22.41 3.71 

*ANOVA overall p value 
 
 
 
Smokers cleared olanzapine 55% faster than non/past-smokers (p<0.0001, unpaired t-test; figure 

1.4).  Men cleared olanzapine 38% faster than women (p<0.0001, unpaired t-test; figure 1.5).  
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Patients who identified themselves as Black or African American cleared olanzapine 26% faster 

than other races (ANOVA overall p<0.05; figure 1.6).  Olanzapine clearance was significantly 

higher in Black/African American patients compared to White patients (ANOVA mean 

difference 6.141 L/h, p<0.001) and Asian patients (mean difference 7.738 L/h, p<0.05), and was 

also higher than American Indian patients and those who identified with two or more races 

(mean differences 4.514 L/h and 7.995 L/h respectively, p>0.05) though these did not reach 

significance likely due to small sample sizes, table 1.11.  Figure 1.7 illustrates the combined 

effect of sex, race, and smoking status, by comparing Black/African American men who smoke 

with non-Black/African American women who do not smoke (35.70 ± 10.70 L/h vs. 16.70 ± 

4.662 L/h, p<0.0001 unpaired t-test).  Hispanic ethnicity did not have an effect on olanzapine 

clearance.  

 
 

Table 1.11.  Olanzapine clearance by race 
 

Bonferroni's Multiple Comparison Test Mean 
difference

P 
value 

95% CI 
of difference 

  Black vs. White 6.141 < 0.001 3.216 to 9.067
  Black vs. Asian 7.738 < 0.05 0.4649 to 15.01
  Black vs. American Indian 4.514 > 0.05 -9.060 to 18.09
  Black vs. Two or more races 7.995 > 0.05 -7.133 to 23.12
  White vs. Asian 1.597 > 0.05 -5.439 to 8.632
  White vs. American Indian -1.627 > 0.05 -15.08 to 11.82
  White vs. Two or more races 1.854 > 0.05 -13.16 to 16.87
  Asian vs. American Indian -3.224 > 0.05 -18.23 to 11.78
  Asian vs. Two or more races 0.257 > 0.05 -16.17 to 16.68
  American Indian vs. Two or more races 3.481 > 0.05 -16.55 to 23.51

 

 
None of the 41 concomitant medications tested had an effect on olanzapine clearance.  None of 

the covariates (including concomitant medications) had an effect on the volume of distribution of 

olanzapine. 
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Figure 1.4.  Olanzapine clearance by smoking status  
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Figure 1.5.  Olanzapine clearance by sex  
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Figure 1.6.  Olanzapine clearance by race  

Black White Asian Indian 2+
0

15

30

45

60

75 Black/African American (n=149)
White (n=346)
Asian (n=19)
American Indian (n=5)
Two or more races (n=4)

C
LE

A
R

A
N

C
E 

(L
/h

)

 

 Figure 1.7.  Combined effect of smoking, sex, and race on olanzapine clearance 
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1.6.4. Discussion 

 

Dose-adjusted steady-state concentrations of olanzapine vary 26-fold in patients treated with 

standard doses of olanzapine.200  This pharmacokinetic variability likely contributes to the wide 

variability in response to olanzapine.  This study showed that olanzapine clearance varies nearly 

10-fold and is impacted by sex, race, and smoking.   

 

CYP1A2 is the major enzyme responsible for metabolizing olanzapine, with minor pathways 

including CYP2D6 and flavin-monooxygenase FMO3.201  Polyaromatic hydrocarbons in 

cigarette smoke are known to induce the liver enzyme cytochrome P450 (CYP) 1A2.202, 203  

Therefore, it is not surprising that clearance of olanzapine is accelerated in patients who smoke, 

which has been previously reported.159, 204  This is a potentially serious problem due to the fact 

that many patients with schizophrenia smoke.  In this population, 66% of patients with 

schizophrenia were active smokers.  Due to faster clearance, it may be necessary to increase the 

dose in patients who smoke.  Conversely, doses may need to be decreased following smoking 

cessation.   

 

Sex differences in pharmacokinetics have been reported for many psychotropic medications.69, 95  

Differences in olanzapine clearance due to sex have been previously reported.159, 204-206  In this 

study, men cleared olanzapine 38% faster than women.  Estrogen is a known inhibitor of 

CYP1A2, which could explain the slower olanzapine clearance found in women.72  Other 

possible mechanisms include sex differences in blood flow and liver size, as well as differences 

in expression of metabolizing enzymes and transporters.69, 95  
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This is the first study to find racial differences in olanzapine clearance.  Patients who identified 

themselves as Black or African American cleared olanzapine faster than patients of other races. 

There are many possible factors underlying these racial differences, potentially arising from both 

the sociologic and possible biologic realms.207  One possible explanation for racial differences in 

pharmacokinetics is the known genotypic differences in metabolizing enzymes.  Genetic 

polymorphisms found in the CYP1A2 gene,208 but there are limited data on the effects of 

CYP1A2 genetics on drug metabolism.  However, more than 80 allelic variants have been 

identified for the CYP2D6 gene among different racial populations, which results in variable 

enzymatic activity.209  Feng and colleagues found that race was a significant predictor of 

paroxetine clearance, but was no longer significant when CYP2D6 genotype was incorporated in 

the model, which suggests that race is acting a surrogate for CYP2D6 genotype.175, 210  The 

average paroxetine clearance was 27.4 L/h for the African American population compared to 

only 21.9 L/h for the Caucasian population, which may relate to the 3-fold higher frequency of 

the *4 null allele in Caucasians compared to African Americans.211   

 

Another possible explanation is that there are differences in adherence, or drug intake rates 

across the different racial populations.  A consistently lower intake of the drug would result in an 

increased estimate of clearance due to lower drug concentrations.  Additionally, if patients were 

inconsistently taking the medication, this would contribute to variability in apparent elimination 

across occasions.  There is also greater genetic diversity in African populations than in either 

European or Asian populations, which leads to considerable heterogeneity in African 

populations.212  Other potential reasons for the racial differences found in this study may arise, as 

the race covariate is collected primarily as a social category, not a biological category.213  Due to 
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the multifactorial nature of race, this finding requires further study.  Therefore conclusions 

regarding dosage should not be made on the basis of race.   

 

In summary, sex, race, and smoking status impact olanzapine clearance and therefore impact 

drug exposure.  Differences in olanzapine exposure due to sex, race, and smoking status may 

account for some of the variability in response to olanzapine. 
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1.7. Summary 

 

As more data become available, clinicians should consider these pharmacokinetic and 

pharmacodynamic differences between women and men, young and elderly, different racial 

backgrounds, and/or smoking status, in prescribing psychotropics and evaluating their response.  

Population pharmacokinetic techniques contribute to a greater understanding of drug disposition 

and response, by modeling drug concentrations from a population of patients and characterizing 

the degree of variability in drug exposure for this population.  This allows us to identify factors 

that contribute to the variability in pharmacokinetics, including age, sex, race, weight, smoking, 

and concomitant medications.  As shown with olanzapine, differences due to sex, race, and 

smoking status, which contribute to variability in exposure to olanzapine, may account for some 

of the variability in response.  However, characterizing the variability in the pharmacokinetics of 

a drug is only one step to a better understanding of how and why psychotropics work differently 

in each individual.  The following chapter describes an approach to elucidating the neural 

pathways that produce changes in mood and behavior in order to better understand the 

pharmacodynamics of a particular drug or class of drugs, as well as to learn more about the 

pathophysiology of psychiatric illnesses.    
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2. Introduction to Citalopram Pharmacodynamics 
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2.1. The Serotonergic System 

 

Serotonin, 5-hydroxytryptamine (5-HT), is a monoaminergic neurotransmitter known to mediate 

mood and emotion, as well as a host of other basic functions including sleep and appetite.  

Serotonergic neurons project to most regions of the brain, with primary targets including the 

amygdala, hippocampus, hypothalamus, substantia nigra, caudate, putamen, nucleus accumbens, 

and multiple cortical areas.214  There is a great deal of evidence that dysregulation of the 

serotonin system is involved in the pathophysiology of depression, anxiety, and other psychiatric 

illnesses.  In fact, many regions implicated in depression are regions regulated by serotonin 

including the amygdala, hypothalamus, caudate, as well as the frontal and cingulate cortices, as 

reviewed by Staley et al.215   

 

2.2.  Selective Serotonin Reuptake Inhibitors 

 

Selective serotonin reuptake inhibitors (SSRIs), the second most commonly prescribed class of 

drugs, are the first line therapy for the treatment of depression and anxiety.   SSRIs act at the 

serotonin transporter (5-HTT) to block the reuptake of serotonin, thus increasing serotonin 

concentration in the synapse.  Due to their actions at the serotonin transporter, SSRIs can also be 

used to measure serotonin function in the brain of both healthy and depressed patients.  One 

common measure of serotonin function is an increase in hormones in response to SSRIs.  

Serotonergic neurons stimulate the secretion of several hormones including adrenocorticotropic 

hormone (ACTH) and prolactin from the pituitary.216  Studies have shown that intravenous (IV) 

administration of the SSRI, citalopram, increases plasma prolactin and cortisol levels in a dose-
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related manner.217-219  Additionally, depressed patients have a significantly blunted prolactin 

secretion after administration of citalopram when compared to healthy subjects.220  The 

mechanism underlying the secretion of cortisol after administration of an SSRI has not yet been 

elucidated; however it is possible that direct effects of the SSRI on the pituitary mediate the 

release of ACTH, which results in a release of cortisol.216  Alternatively, SSRIs may have a 

direct effect on the adrenal glands.221  This neuroendocrine response to SSRIs has often been 

used as a probe for brain serotonin function; however, this measure does not indicate which 

regions of the brain are activated by SSRIs.  In fact, while much is known about the action of 

SSRIs at the cellular level, it is still largely unknown how the effects of these agents on 

functional interactions between distinct brain regions alter mood and behavior.     

  

2.3.  Citalopram 

 

The SSRI, citalopram, is a particularly useful probe of the serotonin system due to its high 

affinity for the serotonin transporter.222  Citalopram is approved by the U. S. Food and Drug 

Administration (FDA) for the treatment of depression, and is also commonly used in the 

treatment of other psychiatric illnesses, including obsessive compulsive disorder and panic 

disorder.222, 223  Citalopram is commercially available as an oral tablet (Celexa®), but is also 

available in an intravenous formulation under an investigational new drug (IND) application.  

Citalopram, the only SSRI available in IV formulation, is well-tolerated at doses up to 40 mg.217, 

219, 220, 224  Like other SSRIs, citalopram is believed to exert its pharmacological effects by 

blocking serotonin (5-HT) reuptake at the serotonin transporter (5-HTT).  Citalopram is 

particularly selective for 5-HTT, having negligible effects on other transporters including 
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dopamine and norepinephrine transporters, and little to no affinity for other neurotransmitter 

receptors such as the gamma amino butyric acid (GABA), opioid, and muscarinic receptors.222, 

223  Citalopram exists as a racemic mixture, and studies have shown that the S-enantiomer is 

significantly more potent in inhibiting 5-HT reuptake than the racemate.225  Because of its 

selectivity and tolerability, IV citalopram can be used as a probe for in vivo assessments of 

serotonin function.   

 

Neuroimaging techniques have been used to detect drug-induced changes at the neuronal level.  

Positron emission tomography (PET) studies have shown that citalopram alters cerebral glucose 

metabolism, as measured by changes in the radiotracer [18F]-2-deoxy-2-fluoro-D-glucose ([18F]-

FDG), in areas of the brain thought to be involved in the pathophysiology of depression and 

anxiety.  One such study in healthy men and women showed that IV citalopram decreased 

cerebral glucose metabolism in the right (R) anterior cingulate gyrus, R superior and R middle 

frontal gyrus, R parietal cortex (precuneus), R superior occipital gyrus, left (L) thalamus, and R 

cerebellum, while it increased glucose metabolism in the L superior temporal gyrus and L 

occipital cortex.226  In another PET study, patients with geriatric depression demonstrated greater 

left-hemisphere cortical decreases after administration of IV citalopram than elderly comparison 

subjects, while the control subjects demonstrated greater right-hemisphere cortical decreases 

than the patients.227  The depressed patients also demonstrated greater metabolic increases in the 

R putamen and L occipital cortex after IV citalopram compared to the elderly control subjects.227  

These results support the hypothesis of serotonin dysregulation and potential compensatory 

responses in depressed patients.  The regions identified overlap with areas thought to be 
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important in the pathophysiology of depression and anxiety and may indicate regions important 

for treatment response.   

 

2.4.  Functional Magnetic Resonance Imaging  

 

Neuroimaging techniques acquire substantial data sets, reflecting the acquisition of many 

hundreds of repeated measures of brain structure or function within a single subject in a short 

period of time.  One such technique, functional magnetic resonance imaging (fMRI), can been 

used to non-invasively measure both spatial and temporal drug-induced changes in task-related 

neuronal activation, by detecting changes in the blood oxygenation level dependent (BOLD) 

signal.  The BOLD signal, an indicator of neuronal activation, is generated by increases in local 

cerebral blood flow and the subsequent increase in the percentage of oxygenated hemoglobin.  

An increase in oxygenated hemoglobin, which is less paramagnetic than deoxygenated 

hemoglobin, can be measured using T2*-weighted magnetic resonance imaging, which is the 

basis of fMRI.  This method uses blood oxygenation as an endogenous contrast with 

hemodynamic specificity similar to nuclear tracer techniques (i.e. PET) without the exposure to 

radioactivity.  Compared to PET, fMRI also has better spatial (4 mm3 voxels and smaller 

compared to 8 mm3 voxels in PET) and temporal resolution, on the order of a few seconds 

compared to 40-60 seconds or even minutes.  Additionally, fMRI is unique due to its ability to 

detect functional interactions between brain regions while subjects are performing tasks.  The 

efficiency of fMRI allows for the ability to investigate the specificity of a drug or gene effect by 

examining its influence on multiple functional systems (e.g., prefrontal, striatal, limbic) in a 
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single subject.  The ability to rapidly assay differences in brain with power and sensitivity places 

neuroimaging at the forefront of available tools for the in vivo study of psychotropics.     

 

Advances in fMRI allow researchers to study regional brain activity while subjects are 

performing sensory, motor, cognitive, or affective tasks using rapid sequential imaging.  Studies 

designed to determine the networks in the brain responsible for mood and cognition have found 

that performance of cognitive or emotional processing tasks results in increased blood flow in 

several distinct areas of the prefrontal cortex associated with these tasks, and corresponding 

decreased blood flow in other areas requiring deactivation to facilitate task performance.228  

Tasks have been designed to activate more specific regions of the brain involved in the 

regulation of mood and behavior, including the amygdala, a brain region critical in mediating 

emotional arousal.  PET studies found that the amygdala is the only structure in which regional 

blood flow and glucose metabolism consistently correlate positively with depression severity, 

and metabolism in the amygdala decreases toward normal during antidepressant drug 

treatment.228  The amygdala is known to play an important role in the recognition of certain 

facial emotions, particularly fear.  Functional MRI tasks have been designed to engage the 

amygdala through the cognitive evaluation of angry and fearful human faces.229  

 

Using fMRI, some psychoactive drugs have been shown to produce regionally specific patterns 

of neuronal activation during cognitive and affective tasks.230, 231  One study found that oral 

dextroamphetamine (0.25 mg/kg body weight), a nonspecific monoaminergic agonist, induced a 

significant increase in the BOLD signal of the R amygdala in response to the fearful faces 

task.231  Functional MRI has been used to evaluate the effects of the oral SSRIs, fluoxetine232 and 
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paroxetine,233 on neuronal motor pathways, and one study found that chronic fluoxetine 

treatment decreased amygdala activation.234  Studies evaluating the acute effects of SSRIs during 

cognitive or affective tasks are limited.  One study found that IV citalopram (7.5 mg) 

pretreatment decreased the R amygdala response to aversive faces in a single-blind study of 12 

healthy men.235 

 

2.5.  Serotonin Transporter Genetics  

 

The serotonin transporter (5-HTT) regulates the magnitude and duration of serotonergic 

responses by modulating the levels of 5-HT in the synapse.236  Dysregulation of 5-HTT has been 

associated with several psychiatric disorders including anxiety237-241 and depression.242, 243  A  

common polymorphism exists in the transcriptional control region upstream of the 5-HTT coding 

sequence, which in humans is encoded by a single gene (SLC6A4) on chromosome 17q11.2.244  

Insertion or deletion of a 44 base-pair segment in this 5-HTT gene-linked polymorphic region (5-

HTTLPR) results in long (l) and short (s) variants, and these genotypes are distributed according 

to Hardy-Weinberg equilibrium: 32% l/l, 49% l/s, and 19% s/s.245  The s allele is associated with 

decreased transcriptional efficiency of the  5-HTT gene promoter and a decrease in 5-HTT 

expression and 5-HT uptake.244, 245  The s allele is also differentially associated with anxiety-

related behavioral traits in healthy subjects; those carrying the s allele have been shown to be 

slightly more likely to have abnormal levels of anxiety245-248 and develop conditioned fear 

responses,249 resulting in an increased incidence of affective illnesses,250 especially in the context 

of environmental stress,251, 252 when compared to those homozygous for the l allele.  Hariri et al.  

showed that individuals with one or two copies of the s allele exhibit greater amygdala neuronal 
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activation in response to fearful stimuli compared with individuals homozygous for the l allele, 

as measured by change in BOLD fMRI signal.253  There have been multiple replications of the 

association between the s allele and relatively increased amygdala reactivity in both healthy 

volunteers 254-259 and patients with mood disorders.260, 261  Additionally, the s allele has been 

linked with reduced functional coupling between the amygdala and medial prefrontal cortex.262  

As the magnitude of amygdala reactivity (as well as its functional coupling with medial 

prefrontal cortex) is associated with temperamental anxiety, these imaging genetics findings 

suggest that the 5-HTTLPR s allele may be associated with increased risk for depression upon 

exposure to environmental stressors because of its mediation of exaggerated corticolimbic 

reactivity to potential threat.263 

 

The 5-HTTLPR polymorphism may also predict variability in response to treatment, specifically 

the neuronal response to SSRIs.  Because SSRIs, including citalopram, act directly on the 5-

HTT, genetic differences in the transporter may result in variability in the therapeutic response to 

these drugs.  One study in patients with late-life depression showed a decrease in depressive 

symptoms during acute treatment with paroxetine, as evidenced by mean reductions from 

baseline on the 17-item Hamilton Rating Scale for Depression, which was significantly more 

rapid for patients with the l/l genotype than for those with either s/l or s/s genotype.264  A similar 

study found that patients with the s/s genotype carried 3 times more risk of non-remission for a 

major depressive episode (>7 on the 21-item Hamilton Depression Rating Scale) after 12 weeks 

of treatment with oral citalopram than patients with l/l or l/s genotype.265 
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2.6.  Summary  

 

Although much is known about the role of 5-HT in the pathophysiology of depression, little is 

known about the temporal and regional brain alterations in 5-HT as they relate to the treatment of 

depression and anxiety.  IV citalopram can be used as an in vivo probe of 5-HT function, due to 

its selectivity and tolerability.  Functional MRI can been used to non-invasively measure both 

spatial and temporal drug-induced changes in task-related neuronal activation, by studying 

regional brain activity while subjects are performing sensory, motor, cognitive or affective tasks.  

Using fMRI, some psychoactive drugs have been shown to produce regionally specific patterns 

of neuronal activation during cognitive and affective tasks.  Additionally, 5-HTT genotype can 

predict task-related neuronal activation as measured by fMRI.  

 

In the following study, we aimed to evaluate the effects of IV citalopram on neuronal activation 

elicited during an emotional task using fMRI in healthy subjects.  We hypothesized that acute IV 

citalopram administration will oppose the task-related increase in neuronal activity in the 

amygdala, as measured by fMRI, and that this opposition will be blunted in subjects with at least 

one s allele for the 5-HTTLPR compared to subjects who are homozygous for the l allele.  This 

study will generate in vivo human data regarding the regional effects of acute SSRI 

administration on affective task-related neuronal activation.  Functional MRI will allow us to 

better understand the actions of SSRIs at the neuronal level in real-time, and may help to 

elucidate the functional interactions between distinct brain regions involved in the actions of 

SSRIs.  An understanding of the regional effects of SSRIs will aid in predicting patient response 

to these agents.  By including 5-HTTLPR genotype in the analyses, we may account for some of 

the variability in response to citalopram and conceivably other SSRIs.  These efforts will 
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contribute to the identification of biological mechanisms and pathways that mediate response to 

SSRIs as well as may contribute to individual differences in complex behaviors and vulnerability 

to psychiatric illnesses.   
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3. Methods 
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3.1. Specific Aims 

 

SPECIFIC AIM 1.  To evaluate the effects of IV citalopram on task-related neuronal activation 

elicited during an affective task using fMRI in healthy subjects.  This study is a double-blind 

placebo-controlled randomized crossover of IV citalopram (20 mg infused over 30 min) and 

normal saline (0.9% sodium chloride solution) during two fMRI scans.  During each scan, 

subjects will complete a series of affective tasks, known to robustly activate the amygdala, and 

sensorimotor control tasks.  We predict that task-related neuronal activation in the amygdala will 

be decreased during citalopram infusion compared to placebo. 

 

SPECIFIC AIM 2.  To evaluate the impact of a polymorphism in the promoter region of the 

serotonin transporter gene (5-HTTLPR) on task-related neuronal activation during IV citalopram 

administration.  Subjects will be prospectively genotyped for the 5-HTTLPR and changes in 

neuronal activation will be compared between subjects who have at least one copy of the s allele 

(s/s or s/l) and subjects homozygous for the l (l/l) allele.  We predict that changes in neuronal 

activation in response to acute administration of citalopram will be blunted in subjects who carry 

the s allele for the 5-HTTLPR. 
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3.2. Drug Information 

 

Parenteral citalopram was administered under IND #48,032 of the Food and Drug 

Administration (FDA), held by one of the listed investigators, Dr. Bruce G. Pollock.  This 

protocol was submitted to the FDA as part of this IND.  The recommended starting dose of oral 

citalopram is 20 mg daily with a maximum dose of 60 mg/day.  Although 40 mg is well tolerated 

in both oral and IV formulations, 20 mg was chosen due to the potential for nausea and vomiting 

that may compromise the safety of the subject.219, 226  In addition, BOLD is a sensitive response 

measure which may lose specificity for regional activation at doses higher than 20 mg.   

 

3.3. Design and Overview 

 

This study is a randomized, double-blind, placebo-controlled crossover of IV citalopram (20 mg 

infused over 30 min) and normal saline (0.9% sodium chloride solution) during two one-hour 

fMRI scans while subjects complete affective and sensorimotor tasks.  An unblinded 

investigational pharmacist at the University of Pittsburgh Medical Center randomized each 

subject to receive either citalopram or placebo on their first visit and the opposite treatment on 

the following visit, as shown in Table 3.1.  Visits were separated by a minimum washout period 

of two weeks.  All subjects gave informed consent before undergoing any research procedures.  

Eight subjects, three homozygous for the l allele (l/l) and five with at least one s allele (s/l or s/s), 

were recruited to participate in the study.   
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Table 3.1.  Treatment randomization  

Subject  
number 

5-HTT 
genotype 

Visit 1 Visit 2 

3 L/L citalopram placebo 
4 L/L placebo citalopram
25 L/L placebo citalopram

18 S/S citalopram placebo 
20 S/S placebo citalopram
22 S/L citalopram placebo 
26 S/L citalopram placebo 
29 S/L placebo citalopram

 

 

3.4. Screening Visit 

 

This study recruited healthy, right-handed, non-smoking Caucasian men between the ages of 18 

and 60 years.  These selection criteria were designed to minimize between-subject variation and 

possible age-related and ethnic differences in fMRI response.266  Subjects were recruited from 

established research studies being conducted at the University of Pittsburgh by these 

investigators, as well as through advertisements.  All subjects signed a University of Pittsburgh 

Institutional Review Board (IRB) approved consent form prior to any research procedures 

(Appendix B).   

 

The screening visit for the study was conducted at the General Clinical Research Center (GCRC) 

of the University of Pittsburgh Medical Center (UPMC).  Screening included a complete medical 

history, physical examination (including height, weight, blood pressure and heart rate), 

biochemical and hematological laboratory screen (albumin, BUN, calcium, CBC, chloride, 

creatinine serum, glucose, hematocrit, hemoglobin, serum phosphorus, potassium, prothrombin 
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time, partial thromboplastin time, AST/ALT, and sodium), blood alcohol, serum cotinine, and 

urine drug screen, within 28 days of the first study day.  Subjects provided a 10 mL blood 

sample, which was used to sequence the 5-HTTLPR.  An electrocardiogram (ECG) was done to 

rule out subjects with cardiac electrophysiological abnormalities, particularly bradycardia (heart 

rate less than 50 beats per minute), which may increase the risk of cardiac side effects associated 

with SSRIs.  The modified Structural Clinical Interview for Diagnosis of DSM-IV Disorders 

(SCID) was conducted by a trained interviewer to screen subjects for psychiatric illness.267  In 

addition to the SCID, subjects completed the Beck Depression Inventory, which is a 21-item 

self-report rating inventory measuring characteristic attitudes and symptoms of depression.268  

When a clinically significant, unanticipated disease or condition was identified during the 

conduct of screening, the participant was informed of the discovery by the investigators, and the 

participant was referred appropriately.   

 

Subjects were excluded for past or current psychiatric disorder, neurological disorder (including 

stroke, brain tumor, epilepsy, significant head injury, Alzheimer’s, Parkinson’s or Huntington’s 

disease) or an uncontrolled medical disorder.  Subjects were also excluded for having a positive 

alcohol or cotinine level on the screening visit or study visit.  Subjects taking known cytochrome 

P450 enzyme-inducing or enzyme-inhibiting agents within one month of the study, or any 

chronic medications (including over the counter drugs) within one week of the study were also 

excluded.  Subjects were excluded if they have ever had an adverse reaction to oral citalopram or 

any other SSRI.  Subjects who have a contraindication to MRI, including a pacemaker, 

defibrillator or other medical implant, bullets, shrapnel, or other metal objects, or claustrophobia 

were not eligible. 

81 



3.5. Study Visits 

 

Subjects refrained from the use of over the counter and prescription drugs and grapefruit juice 

for one week prior to the first study visit and refrained from alcohol and caffeine for 48 hours 

prior to each study visit.  Subjects were admitted to the General Clinical Research Center 

(GCRC) the morning of the study day and completed a baseline BDI.  A baseline 

electrocardiogram was recorded.  Vital signs (blood pressure and heart rate) were also measured 

at baseline, after the infusion, and before discharge.  A urine sample for drug screening was 

obtained and intravenous catheters were placed in each forearm, one for drug/placebo infusion 

and the other for multiple blood sampling.  Subjects were escorted to the Magnetic Resonance 

Research Center (MRRC) where they completed an MR safety questionnaire, which was 

reviewed orally with MRRC staff prior to each scan to ensure their safety while in the magnet.  

Subjects were in the scanner for one hour as detailed in Figure 3.1.   

 

 

Figure 3.1.  Study design 
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During the first 15 minutes a series of structural scans was acquired, which were used to align 

the functional MRI acquisition and for cross-registration of the functional scans for the group 

analyses.  Immediately after the structural scan, the subjects performed tasks during the 45 

minute functional scanning.  The infusion began at time 0 min, after the structural scan and the 

baseline FACES 1 functional scan.  Either citalopram (20 mg in 0.9% saline) or placebo (0.9% 

saline) was infused for 30 minutes while subjects were asked to perform the tasks.  Subjects 

rested for one minute between tasks while investigators prepared the next task and gave the 

subjects instructions.  Blood samples (10 mL) were taken between tasks to determine drug 

concentrations at baseline (0 min), during the infusion (6, 15, and 21 min), at the end of infusion 

(30 min), at the end of the scan (36 min), and after the scan (45, 60, 90, 150, and 360 min).  

Before discharge, the subjects had an ECG and completed the BDI and a side effect 

questionnaire.  One week following each study visit, the subjects were called by one of the listed 

investigators and completed the BDI and side effect questionnaire.  The subjects were paid a 

total of $225 for participating in the study, which included $100 for each of the two study visits, 

and $25 for the screening visit.   

 

3.6. fMRI Tasks 

 

A blocked design was used for the fMRI tasks.  The first block of tasks (FACES) included an 

emotion task (faces) and a sensorimotor task (shapes).  During the FACES task, subjects were 

asked to match one of two faces to a target face, all expressing the same emotion (angry, fearful, 

surprised, or neutral).  An example of each emotional stimuli is shown in Figure 3.2.  Two 

hundred eighty-eight different images were used from the NimStim Face Stimulus Set. 
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(www.macbrain.org)  For each block (e.g. FACES 1), there were four sub-blocks each 

containing six stimuli of random emotion (angry, fearful, surprised, and neutral).  The identity of 

both faces was always different and an equal number of male and female faces were presented.  

Developed by Hariri, this task is known to elicit a robust amygdala response.229, 253 

 

 
Figure 3.2  Emotional stimuli 

A.  Angry B.  Fearful 

C.  Surprised D.  Neutral 
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As a sensorimotor control task (shapes), subjects were asked to match one of two geometric 

shapes with a simultaneously presented target shape, Figure 3.3.  Six different sets of geometric 

forms were used in the control condition.  Between images, subjects were instructed to fixate on 

a black cross-hair in the middle of the screen.   

Figure 3.3.  Sensorimotor stimuli  

As shown in Figure 3.1, FACES involved 9 experimental 

blocks: 5 blocks of the shapes task (control) interleaved with 4 

blocks of the faces task (experimental).  Each block contained 

6 trials, lasting 5 seconds each.  Before each block, a brief 

instruction (“match emotion” or “match form”) was presented 

for 2 seconds.  During the task, subjects responded with button 

presses, which allowed us to determine accuracy and reaction time.  A complete FACES block 

takes approximately 6 minutes and was completed once before the infusion and twice during the 

infusion.   

 

In the second block, the sensorimotor control task (TAP) was done to acquire a baseline fMRI 

BOLD signal for each subject and to compare the time course of the hemodynamic response 

function across the entire scanning session.  Subjects were instructed to press both buttons, with 

their index fingers, every time they see the word TAP appear on the screen.  The stimulus 

appeared every 12 seconds and remained on the screen for 1 second.  In the interim, subjects 

were instructed to fixate on a white cross-hair in the middle of the screen. This task takes 5 

minutes and was completed twice during the infusion and once after the infusion.  
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3.7. Scanning Procedures 

 

All fMRI scans were conducted at the University of Pittsburgh Medical Center Magnetic 

Resonance Research Center (MRRC) on a 1.5 Tesla Signa MR Scanner (General Electric 

Medical Systems, Milwaukee, WI).  Structural MRIs were performed prior to the functional 

scans to align the functional MRI acquisition and to cross-register the functional scans for the 

group analyses.  The structural scans were acquired as T1-weighted images, and aligned within 

the anterior commissure-posterior commissure line.  A high resolution anatomical image was 

acquired for each subject using a volumetric three-dimensional Spoiled Gradient Recalled 

Acquisition sequence.  Within plane structural images were acquired as 37 oblique axial slices 

(3.8 mm thick), with an in-plane resolution of 0.9375 mm2, and a field of view of 24 cm.   

 

Blood oxygenation level-dependent (BOLD) functional images were acquired using a reverse 

spiral sequence covering 28 axial slices (3.8 mm thick) encompassing the entire cerebrum and 

the majority of the cerebellum (TR/TE = 2000/35 ms, FOV = 24 cm, matrix = 64 x 64).  

Scanning parameters were selected to optimize BOLD signal while maintaining enough slices to 

acquire whole brain data.  Stimulus presentation was performed using E-prime (Psychology 

Software Tools, Inc., Pittsburgh, PA) on the standard MRRC computer, which also collected 

accuracy and reaction time data.  The stimuli were projected on a screen positioned above the 

subject’s chest and were seen by the subject through a series of mirrors.  The stimuli subtended 

approximately 30º of the visual field.  Before the collection of fMRI data for each subject, we 

acquired and visually inspected localizer scans for artifacts (e.g. ghosting) as well as good signal 
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across the entire volume of acquisition, including the medial temporal lobes.  All subjects 

included in these analyses were cleared of such problems.  

 

3.8. Analytical Procedures 

 

Blood samples were collected from an indwelling forearm catheter contralateral to the infusion 

catheter, into appropriately labeled vacutainers and centrifuged at 4°C at 1700 g (2300-2500 

RPM).  Plasma or serum were decanted, transferred to appropriately labeled polypropylene tubes 

and stored at -80°C.  Assays were performed in the Geriatric Psychopharmacology Laboratory.  

Citalopram concentrations were determined using a high-performance liquid chromatographic 

technique previously described.269  The limit of quantitation using ultraviolet (UV) detection is 5 

ng/mL, and coefficients of variation are 2.9% at 15 ng/mL and 1.8% at 220 ng/mL.   

 

3.9. Genotyping 

 

Coded blood samples were genotyped for the serotonin transporter polymorphism (5-HTTLPR).  

The presence of s and l alleles was determined using polymerase chain reaction amplification 

followed by electrophoresis, in the laboratory of Dr. Robert E. Ferrell.270  A polymorphism found 

in the l allele of approximately 15% of Caucasian subjects (Xu and Goldman, unpublished), 

which results in an A to G substitution,271 was also analyzed.  One l/l homozygote had an A/G 

allele, but because it was only one subject, it could not be considered in the analysis.   
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3.10. Functional Magnetic Resonance Image Analysis 

 

3.10.1. Data Preprocessing 

 

Whole-brain image analysis was completed using the general linear model of SPM2 

(http://www.fil.ion.ucl.ac.uk/spm).  Images for each subject were realigned to the first volume in 

the time series to correct for head motion, spatially normalized into a standard stereotactic space 

(Montreal Neurological Institute template) using a 12-parameter affine model and smoothed to 

minimize noise and residual difference in gyral anatomy with a Gaussian filter, set at 6 mm full 

width at half maximum.  Voxel-wise signal intensities were ratio normalized to the whole-brain 

global mean.   

 

3.10.2.  Region of Interest Analysis 

 

Predetermined condition effects at each voxel were calculated using a t-statistic, producing a 

statistical image for the contrast of the face-processing (emotional task) vs. shapes (sensorimotor 

task) for each subject.  To assess the main effects of task-specific regional responses all six runs 

from both visits for each individual subject were averaged together using a one-sample t-test.  

These individual effects of task were then averaged across all eight subjects to examine task-

specific activity at a group level. 

   

Region of interest (ROI) analyses were used to compare neuronal activation between baseline 

(Faces 1 task) and during citalopram or placebo treatments (Faces 2 and 3) within specific 
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regions known to be engaged by this task.  An automated approach was used to define specific 

ROIs exhibiting an effect of interest.272, 273  The primary ROI, the amygdala, was used to test our 

hypotheses regarding the effects of citalopram and the role of genotype on the effects of 

citalopram.  A paired-t test was used to assess changes across the scanning session (i.e. Faces 3 

vs. Faces 1) within a single visit for each subject to examine effects of drug administration or 

habituation.  The relationship between citalopram concentrations and amygdala reactivity was 

determined using linear regression analyses of the single-subject amygdala BOLD values and 

corresponding drug concentrations at the respective time of each scan.  Genotype effects were 

explored using an analysis of variance (ANOVA) comparing amygdala reactivity between 

genotype groups (l/l homozygotes vs. s allele carriers) using the baseline task (Faces 1) on the 

first visit to prevent bias due to habituation to task.  As a result of the a priori interest in the 

differential response of the amygdala, second-level analyses (i.e. linear regression or paired t-

test) were completed using a mask including all voxels in the amygdala.  A statistical threshold 

of p < 0.05, uncorrected, and at least 10 contiguous voxels, were used for all statistical analyses.  

 

3.11. Pharmacokinetic Analysis 

 

Given the timing of the fMRI tasks, an optimal sampling strategy was determined using the D-

optimal sampling algorithm in Adapt II (release 4). This model was informed using IV 

citalopram data from 379 subjects (unpublished).  Citalopram kinetics were modeled using a 

two-stage population approach with a three-compartment continuous infusion model using 

individual nonlinear regression in WinNonlin® 4.0.1 (Pharsight Corporation, Mountain View, 

CA).  Modeling was done for total citalopram concentrations.   Given the known rate of infusion 
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(0.67 mg/min), the measured concentrations were used to estimate the following 

pharmacokinetic parameters: volume of distribution of the central compartment (V1), the rate 

constant for the return of drug from compartment 2 to compartment 1 (K21), the rate constant for 

the return of drug from compartment 3 to compartment 1 (K31), and the macro-constants for the 

tri-exponential decay alpha (α), beta (β) and gamma (γ).  Average concentrations associated with 

each scan were calculated based on the individual fitted parameters for the 3-compartment 

citalopram pharmacokinetic model.  Average concentrations during each of the scans were 

estimated and used in a linear regression with BOLD response measurements for each individual.  

Post-processing of WinNonlin estimates were plotted using Prism® (version 4.03; GraphPad 

Software, Inc., San Diego, CA).199  
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4. The Effects of Citalopram on Neuronal Activity 
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4.1.  Demographics 

 

All subjects provided written informed consent prior to any research procedures.  Twenty-one 

subjects were screened for this study.  Two subjects were excluded for past or current psychiatric 

illness.  Eight subjects were excluded due to an abnormal ECG at screening.  One subject was 

excluded due to elevated liver enzymes.  Ten subjects were enrolled in the study.  Of these, one 

subject withdrew because of claustrophobia in the scanner, and one subject withdrew due to 

bradycardia upon admission for the first study visit. Eight healthy men completed the study 

between November 2005 and February 2007.    The mean age of the subjects was 28 years (range 

19 to 50 years).  Their mean height was 182.35 cm (range 170 to 194 cm) and mean weight was 

81.2 kg (range 58.7 to 97.5 kg); height and weight data was not available for one subject (n=7).  

The average level of education was 16 years (range 13 to 23 years).   
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4.2.  Adverse Effects 

 

Subjects completed the Citalopram Symptom Checklist (Appendix D) before discharge on each 

study visit, and by phone one week after study visit.  Subjects rated their symptoms on a 4-point 

scale (0 =  not at all, 1 = a little, 2 = some, 3 =  a lot).  Subjects reported the following symptoms 

after citalopram and placebo at discharge on the day of the study visit (Table 4.1) and one week 

after each visit (Table 4.2).  All data are shown as median (range).   

 
 

Table 4.1.  Citalopram symptoms during study visit. 
 

 Citalopram Placebo 
Loss of appetite 0 (0) 0 (0) 
Tired 0 (0 to 2) 0 (0 to 1) 
Lightheadedness/Feeling faint 0 (0 to 1) 0 (0) 
Nausea 0 (0 to 2) 0 (0) 
Vomiting (yes/no) none none 
Headache 0 (0) 0 (0) 
Tense/Nervous/On edge/Restless 0 (0) 0 (0) 
Difficulty concentrating 0 (0 to 1) 0 (0) 
Shaky/Tremors 0 (0) 0 (0) 
Heart racing 0 (0) 0 (0) 
Sweating 0 (0) 0 (0) 
Diarrhea 0 (0) 0 (0) 
Short tempered/Irritable 0 (0) 0 (0) 
Happy 0 (0 to 3) 0.5 (0 to 2) 
Energetic 0 (0 to 2) 0.5 (0 to 2) 
Low energy/Fatigued 0 (0 to 1) 0 
Dry mouth 0 (0 to 2) 0 (0 to 1) 

 

Subjects reported mild or no side effects for both drug and placebo visits.  Wilcoxon matched-

pairs tests were performed for each symptom using Prism; no significant differences were found 

between drug and placebo visits. 
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Table 4.2.   Citalopram symptoms one-week after study visit. 

Citalopram Placebo  
Loss of appetite 0 (0) 0 (0) 
Tired 0 (0 to 1) 0 (0) 
Lightheadedness/Feeling faint 0 (0 to 2) 0 (0) 
Nausea 0 (0) 0 (0) 
Vomiting (yes/no) none none 
Headache 0 (0) 0 (0) 
Tense/Nervous/On edge/Restless 0 (0) 0 (0) 
Difficulty concentrating 0 (0 to 1) 0 (0) 
Shaky/Tremors 0 (0) 0 (0) 
Heart racing 0 (0) 0 (0) 
Sweating 0 (0) 0 (0) 
Diarrhea 0 (0) 0 (0) 
Short tempered/Irritable 0 (0) 0 (0) 
Happy 0 (0 to 3) 0 (0 to 2) 
Energetic 0 (0 to 2) 0 (0 to 2) 
Low energy/Fatigued 0 (0) 0 (0) 
Dry mouth 0 (0 to 1) 0 (0) 

 

Two subjects were lost to follow up and did not contribute to the data in this table.  There were 

no significant differences at follow-up between drug and placebo.  All subjects scored less than 

10 on the Beck Depression Inventory at every evaluation.  
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4.3. Main Effects of Task 

 

The emotional paradigm, the faces task, is known to elicit a robust amygdala response.229, 253  

The following figures represent the statistical difference between the faces (emotional) and 

shapes (control) tasks.  Figure 4.1 shows a group map including all scans of all subjects (46 

scans) of the region of interest analysis of neuronal activation statistically greater in the faces 

task than in the shapes task in the right (R) and left (L) amygdala.  Table 4.3 shows the statistics 

at the voxel level, as well as cluster size, for both R and L amygdala.  Cluster size reflects the 

number of contiguous voxels activated.   

 
 

Figure 4.1.  Group map of main effect of task in R and L amygdala (faces > shapes) 

 
Sagittal view (top left), coronal view (top right), axial view (bottom left), 

 and T score (bottom right), for all figures. 
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Table 4.3  Main effect of task in the amygdala (faces > shapes) 
 

Voxel-level Region Coordinates 
x,y,z (mm) 

Cluster size
(kE) 

T 
Puncorr PFWE-corr PFDR-corr 

R amygdala 22 -2 -20 64 16.10 <0.001 <0.001 0.010 
L amygdala -24 -4 -18 77 8.38 <0.001 0.033 0.010 

 

These data show that the Faces task activated the bilateral amygdala, which will be used to test 

the effect of drug and genotype in all further analyses.  Figure 4.2 shows activation in the 

orbitofrontal cortex (BA11), a region also known to be activated during the faces task.  Table 4.4 

shows the statistics for an activated cluster in BA11. 

 
 

Figure 4.2.  Group map of main effect of task in BA11 (faces > shapes)  

 

 

Table 4.4  Main effect of task in BA11 (faces > shapes) 

Voxel-level Region Coordinates 
x,y,z (mm) 

Cluster size
(kE) 

T 
Puncorr PFWE-corr PFDR-corr  

BA11 -4 46 -22 48 4.53 0.001 0.941 0.108 
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Figure 4.3 shows activation in the left and right inferior prefrontal gyrus (BA47).  BA47 is 

modulated by the amygdala, and therefore this effect is likely an indirect effect of amygdala 

activation.  Table 4.5 shows the statistics for activated clusters in L and R BA47.  

 
 

Figure 4.3.  Group map of main effect of task in L and R BA47 (faces > shapes) 

 

 

Table 4.5.  Main effect of task in BA47 (faces > shapes) 

Voxel-level Region Coordinates 
x,y,z (mm) 

Cluster size
(kE) 

T 
Puncorr PFWE-corr PFDR-corr 

L BA47 -32 26 4 45 9.10 <0.001 0.076 0.108 
R BA47 30 34 -18 139 5.43 <0.001 0.793 0.108 

 

Figure 4.4 shows activation in the subgenual cortex (BA 25), which like BA47, is modulated by 

the amygdala.  Table 4.6 shows the statistics for an activated cluster in BA25. 
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Figure 4.4.  Group map of main effect of task in BA25 (faces > shapes).  

 

 

Table 4.6  Main effect of task in BA25 (faces > shapes) 
 

Voxel-level Region Coordinates 
x,y,z (mm) 

Cluster size
(kE) 

T 
Puncorr PFWE-corr PFDR-corr 

BA25 6 18 -18 64 4.06 0.002 0.944 0.991 
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4.4. Effects of Citalopram on Task-related Neuronal Activity 

 

The first specific aim of this study was to evaluate the effects of IV citalopram on task-related 

neuronal activation elicited during an affective task using fMRI.  As shown in figure 3.1, 

subjects performed the task once before drug/placebo infusion (Faces 1) and twice during 

drug/placebo infusion, once early in the infusion (Faces 2) and once at the end of infusion (Faces 

3).  Figure 4.5 shows a cluster in the right amygdala that has increased activation for the Faces 2 

task during the citalopram infusion, compared to the baseline Faces 1 task.  Table 4.7 shows the 

statistics of the activated cluster.   
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Figure 4.5.  Acute citalopram increases R amygdala activation (Faces 2 > Faces 1) 

 

 
 

Table 4.7  Acute citalopram increases R amygdala activation (Faces 2 > Faces 1). 
 

Voxel-level Region Coordinates
x,y,z (mm) 

Cluster size
(kE) 

T 
Puncorr PFWE-corr PFDR-corr 

R amygdala 22 -4 -20 55 3.01 0.010 0.817 0.829 
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Figure 4.6 shows an even greater response to citalopram, at the end of infusion (Faces 3), when 

the citalopram concentrations approach their maxima.  Table 4.8 shows the statistics for the 

clusters with highest activation.  There were no regions in the amygdala that decreased during 

Faces 2 or Faces 3 compared to Faces 1. 

 
 

Figure 4.6.  Acute citalopram increases bilateral amygdala activation (Faces 3 > Faces 1). 

 

 
 

Table 4.8  Acute citalopram increases bilateral amygdala activation (Faces 3 > Faces 1). 
 

Voxel-level Region Coordinates 
x,y,z (mm) 

Cluster size
(kE) 

T 
Puncorr PFWE-corr PFDR-corr 

L amygdala -24 -6 -22 115 6.05 <0.001 0.235 0.273 
R amygdala 22 4 -16 56 3.39 0.006 0.750 0.273 
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The following analyses reflect changes in amygdala activation during the placebo condition.  

Figure 4.7 shows two regions in the L amygdala that decrease in Faces 2 compared to Faces 1 

during the placebo condition.  One subject was excluded in this analysis due to movement (n=7).  

A decrease in amygdala activation may be the result of habituation to the task, where the 

amygdala reacts less over time because the stimulus is less novel.  Table 4.9 shows the statistics 

for the activated clusters. 

 

Figure 4.7.  L amygdala activation decreases during early placebo condition 
(Faces 2 < Faces 1). 

 
 
 

Table 4.9.  L amygdala activation decreases during early placebo condition 
(Faces 2 < Faces 1). 

 
Voxel-level Region Coordinates

x,y,z (mm) 
Cluster size

(kE) 
T 

Puncorr PFWE-corr PFDR-corr
L amygdala -30 2 -24 13 3.90 0.004 0.626 0.458 
L amygdala -20 -6 -8 26 3.87 0.004 0.632 0.458 
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Figure 4.8 shows a small region in the right amygdala that had increased activation during the 

Faces 3 task compared to the baseline task (Faces 1) during the placebo condition.  Table 4.10 

shows the statistics for this cluster.  One subject was excluded in this analysis due to an artifact 

in the scan (n=7).   

 
 

Figure 4.8.  R amygdala activation increases during late placebo condition 
(Faces 3 > Faces 1). 

 
 
 
 

Table 4.10.  R amygdala activation increases during late placebo condition 
(Faces 3 > Faces 1). 

 
Voxel-level Region Coordinates

x,y,z (mm) 
Cluster size

(kE) 
T 

Puncorr PFWE-corr PFDR-corr
R amygdala 22 -8 -12 15 2.47 0.024 0.924 0.991 
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4.5. Serotonin Transporter Polymorphic Modulation of Citalopram Response 

 

4.5.1. Effect of 5-HTT Genotype on Baseline Amygdala Reactivity 

 

This study also aimed to determine whether 5-HTTLPR genotype predicts the BOLD fMRI 

response following IV citalopram administration.  An exploratory analysis was done to 

determine the effect of 5-HTT genotype on baseline amygdala reactivity, as well as its effect on 

citalopram modulation of amygdala reactivity.  Figure 4.9 shows that s allele carriers have a 

greater baseline amygdala response compared to l/l homozygotes, which replicates data from 

Hariri et al. as well as other studies.253, 274  The data used in this analysis were from the first scan 

(Faces 1) of each subject’s first visit, in order to prevent bias due to habituation.  Table 4.11 

shows the statistics for the clusters of highest activation in the left and right amygdala. 
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Figure 4.9.  S allele carriers have a greater baseline amygdala response 
compared to l/l homozygotes. 

 

 

Table 4.11  S allele carriers have a greater baseline amygdala response 
compared to l/l homozygotes. 

 
Voxel-level Region Coordinates

x,y,z (mm) 
Cluster size

(kE) 
T 

Puncorr PFWE-corr PFDR-corr 
L amygdala -26 2 -16 37 3.94 0.004 0.742 0.548 
R amygdala 30 2 -20 30 3.86 0.004 0.755 0.548 

 

 

Figure 4.10 shows the fitted response data for baseline activation in the left amygdala for l/l 

homozygotes (n=3) and s allele carriers (n=5).  Figure 4.11 shows the fitted response data for 

baseline activation in the right amygdala for the same subjects.  S allele carriers (s/s and s/l) had 

greater baseline amygdala activation in both the left and right amygdala. 
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Figure 4.10.  Baseline L amygdala activity by genotype. 

l/l s/s or s/l
-2

-1

0

1

2

5-HTT genotype

fM
R

I B
O

LD
 r

es
po

ns
e

at
 [-

26
, 2

, -
16

]

 

 
Figure 4.11.  Baseline R amygdala activity by genotype. 
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4.5.2. Effect of 5-HTT Genotype on Citalopram Modulation of Amygdala Reactivity 

 

An exploratory analysis was done to visualize the effect of 5-HTT genotype on citalopram 

modulation of amygdala reactivity.  SPM2, the software used to analyze the fMRI data, cannot 

execute a direct drug*genotype interaction, therefore separate analyses were done on each 

genotype using a paired t-test to compare citalopram effects (Faces 3 > Faces 1).  Figure 4.12 

shows the effects of citalopram on amygdala reactivity in l/l homozygotes (n=3).  A robust effect 

was found in both the left and right amygdala.  Table 4.12 shows the statistics on these clusters.   

 

Figure 4.12.  Citalopram effect on amygdala reactivity (Faces 3 > Faces 1) 
in l/l homozygotes. 

 
 
 

107 



Table 4.12.  Citalopram effect on amygdala reactivity (Faces 3 > Faces 1) 
in l/l homozygotes. 

 
Voxel-level Region Coordinates 

x,y,z (mm) 
Cluster size

(kE) 
T 

Puncorr PFWE-corr PFDR-corr 
L amygdala -18 -2 -26 94 15.57 0.002 1.000 0.396 
R amygdala 16 0 -16 33 11.01 0.004 1.000 0.396 

 

 

Figure 4.13 shows the effects of citalopram on amygdala reactivity in the s allele carriers (n=5).  

Only the left amygdala shows an effect in this group, which appears to be relatively smaller and 

weaker than the effect seen in the l/l homozygotes.   Table 4.13 shows the statistics for this 

cluster. 

 

Figure 4.13.  Citalopram effect on amygdala reactivity (Faces 3 > Faces 1) 
in s allele carriers. 
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Table 4.13.  Citalopram effect on amygdala reactivity (Faces 3 > Faces 1) 
in s allele carriers. 

 
Voxel-level Region Coordinates

x,y,z (mm) 
Cluster size

(kE) 
T 

Puncorr PFWE-corr PFDR-corr 
L amygdala -26 -6 -26 36 5.32 0.003 0.982 0.698 

 

 

4.6. Discussion  

 

The amygdala is believed to play a key role in processing emotionally salient, threat-relevant, 

events that require further online processing by cortical regions.  Emotional disorders such as 

depression and anxiety have been associated with hyperactivity of the amygdala, but it is 

unknown whether antidepressant treatment directly affects amygdala responses to emotionally 

significant information.   

 

This study investigated the acute effects of IV citalopram and found that acute exposure to 

citalopram increased the amygdala response to emotional stimuli.  Based on these data, it seems 

that the immediate effects of citalopram, which involve blocking the serotonin transporter and 

thus increasing the available synaptic serotonin, act to potentiate amygdala activity.  There are 

reports that SSRIs are actually anxiogenic, and that only after several days or weeks on the 

medications that the true anxiolytic and antidepressant effects are seen.  Other studies, however, 

find almost immediate therapeutic benefit from SSRIs. 

 

Del-Ben and colleagues studied IV citalopram (7.5 mg infused over 7.5 min) in twelve healthy 

men in a single-blind placebo controlled crossover.235  The right amygdala/amygdaloid complex 
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(BA34) response to covert recognition of aversive compared to neutral faces was attenuated by 

citalopram.  This group had actually predicted that citalopram would increase the amygdala 

response similar to our findings.  Our results may differ for several reasons.  This group gave a 

sub-therapeutic dose and scanned quickly after drug administration.  It is possible that not 

enough drug reached the brain in time to produce an effect, and the effects seen may be due to 

habituation in stead of drug effects.  Additionally, the washout in this study was a minimum of 3 

days, which is not enough time for citalopram to be eliminated, considering its 36-hour half-life.   

 

Harmer et al. studied the chronic effects of 7 days of oral citalopram administration on amygdala 

responses to masked presentations of fearful and happy facial expressions in never-depressed 

volunteers using fMRI.275  A double-blind, between-groups design was used with subjects 

randomized to citalopram (20 mg/day) or placebo.  Subjects receiving citalopram showed 

decreased amygdala responses to masked presentations of threat compared with those receiving 

placebo.  Citalopram also reduced responses within the hippocampus and medial prefrontal 

cortex specifically during the fear-relevant stimuli.  These neural differences were accompanied 

by decreased recognition of fearful facial expressions assessed after the scan.  By contrast, there 

was no effect of citalopram on the neural or behavioral response to the happy facial expressions.  

These results using chronic (7 days) oral citalopram are the opposite of our data with acute 

administration (single IV dose).  It may be that the initial increase in serotonin, which acts to 

potentiate amygdala reactivity, is the stimulus needed to start a negative feedback that ultimately 

results in a down-regulation of the system.  Future studies should focus on the acute versus 

chronic effects of SSRIs.  Future analyses of our data will include a direct drug*genotype 

interaction using a software package capable of such analysis. 
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5. Pharmacokinetic/Pharmacodynamic Modeling of Citalopram 

 

 

111 



5.1. Citalopram Pharmacokinetics 

 

Blood samples were collected at 0, 6, 15, 21, 30, 36, 35, 60, 90, 150, and 360 minutes after the 

start of infusion.  Seventy-three samples were collected (15 missing samples) for the eight 

subjects.  Citalopram kinetics were modeled using a two-stage population approach with a three-

compartment continuous infusion model using individual nonlinear regression in WinNonlin® 

4.0.1 (Pharsight Corporation, Mountain View, CA).  The nonlinear regression was carried out 

with uniform weighting on the data values, since the maximum to minimum concentrations were 

within a 2-3 fold range.  The model successfully converged for 7 of the 8 subjects.  One 

individual was not able to be estimated due to missing blood samples, which led to insufficient 

data for the nonlinear regression and undefined parameter estimates.   The two-compartment 

model previously described,219 did not adequately capture the concentrations measured during 

the infusion.  In addition, the Akaike's Information Criterion (AIC) was lower for 7 of 8 

individuals using the 3 compartment model structure.    Therefore, the three compartment model 

structure was selected.   

 

The measured concentrations were used to estimate the following pharmacokinetic parameters: 

volume of distribution of the central compartment (V1), the rate constant for the return of drug 

from compartment 2 to compartment 1 (K21), the rate constant for the return of drug from 

compartment 3 to compartment 1 (K31), and the macro-constants for the tri-exponential decay 

alpha (α), beta (β) and gamma (γ).  Average concentrations associated with each scan were 

calculated based on the individual fitted parameters for the 3-compartment citalopram 

pharmacokinetic model.  A summary of the parameters was determined using the geometric 
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mean as a population descriptor with the standard deviations calculated for each parameter to 

reflect the population variability associated with that parameter, as shown in table 5.1.  Figure 

5.1 shows the population prediction curve generated for all individuals using the mean 

parameters.  Individual pharmacokinetic data and individual predications are shown in figure 5.2. 

 

 

Table 5.1.  Citalopram pharmacokinetic parameters.  

Pharmacokinetic 
parameter 

V1 k21 k31 alpha beta gamma 

Geometric mean 25.49878 0.020513 0.082882 2.05949 0.036281 2.43E-05
Standard deviation 21.69853 0.02973 0.068761 1.693856 0.035713 0.000423
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Citalopram Pharmacokinetics
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Figure 5.1.  Citalopram pharmacokinetics.  Solid line is the population predicted concentration. 
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Figure 5.2.  Individual pharmacokinetic profiles 
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5.2. Correlation Between Citalopram Concentration and Amygdala Activity 

 

A simple regression with correlation was performed in SPM2, using the average citalopram 

concentration calculated for each subject, during each scan, correlated with fMRI BOLD signal 

change representing the effect of citalopram (Faces 3 > Faces 1 during citalopram visit).  Right 

amygdala was correlated with citalopram concentration as shown in Figure 5.3.  Table 5.2 shows 

the statistics for this region of activation. 

  

Figure 5.3.  Right amygdala activation correlates with citalopram concentration. 

 

 

Table 5.2.  Right amygdala activation correlates with citalopram concentration statistics. 

Voxel-level Region Coordinates
x,y,z (mm) 

Cluster size
(kE) 

T 
Puncorr PFWE-corr PFDR-corr 

R amygdala 22   2 -16 42 3.64 0.001 0.155 0.896
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Figure 5.4 shows a linear regression of local maximum activation data extracted from the linear 

regression performed in SPM2 in the previous figure regressed with the individual citalopram 

concentrations (r2 = 0.4112, slope = 0.04073 ± 0.01118, F = 13.27, p = 0.0017). 

 
 

Figure 5.4.  Linear regression of right amygdala activation (local maximum) 
with citalopram concentration.  
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Figure 5.5 shows a linear regression of average cluster activation data extracted from the linear 

regression performed in SPM2 regressed with the individual citalopram (r2 = 0.2711, slope = 

0.03464 ± 0.01303, F = 7.065, p = 0.0155) 
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Figure 5.5.  Linear regression of right amygdala activation (cluster average) 
with citalopram concentration.   
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5.3. Discussion 

 

A 3-compartment model adequately described the citalopram pharmacokinetics.  Citalopram 

concentrations were highly correlated with fMRI BOLD response in the right amygdala.  This is 

evidence that the differences found in amygdala reactivity are truly reflective of drug-induced 

changes in the neuronal response to emotional stimuli.  Future studies should utilize different 

doses as well as different timing of the tasks to better elucidate the time course of action.   
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6. Conclusions 
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The amygdala is believed to play a key role in processing emotionally salient events, and 

hyperactivity of the amygdala has been associated with psychiatric disorders, including 

depression and anxiety.  Until recently, the role of the amygdala in the effects of antidepressant 

treatment has been unknown.  This study is the first to show that acute IV administration of the 

SSRI, citalopram, increases the amygdala response to emotional stimuli.  Citalopram increased 

amygdala reactivity at two time points during the infusion, and citalopram concentrations were 

highly correlated with fMRI BOLD response in the right amygdala.  This is evidence that the 

differences found in amygdala reactivity are truly reflective of drug-induced changes in the 

neuronal response to emotional stimuli.  Conversely, administration of chronic (7 days) oral 

citalopram, resulted in a decrease in amygdala reactivity.275  These findings suggest that the 

immediate effects of citalopram, which involve blocking the serotonin transporter and thus 

increasing the available synaptic serotonin, act to potentiate amygdala activity, which then in 

turn may be the stimulus needed to start a negative feedback that ultimately results in a down-

regulation of the system.   

 

The development of novel psychoactive drugs requires a better understanding not only of their 

mechanism of action, but their sites and time-courses of action.  Future studies should focus on 

the acute versus chronic effects of SSRIs.  Ideally the same individual would undergo a similar 

drug paradigm before and after a single dose of citalopram, and then again after several weeks of 

treatment.  Future studies should also utilize different doses as well as different timing of the 

tasks to better elucidate the time course of action.  Additionally, while it is important to study 

these drug effects in healthy individuals in order to understand the functional interactions in a 

healthy brain, it is also necessary to study populations of patients with disorders such as 
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depression and anxiety in order to elucidate the disruptions in brain circuitry as well as the 

alterations with treatment.   

 

An exploratory analysis using serotonin transporter genotype as a covariate found that while s 

allele carriers (s/s and s/l) had a greater baseline amygdala response, l/l homozygotes had a 

greater response to citalopram.  This is not surprising as subjects with the l/l genotype have a 

greater number of serotonin transporters, which is the site of action of SSRIs.  Therefore genetic 

differences in the serotonin transporter may account for some of the variability in response to 

SSRIs.  In the future, this data set will be used to analyze a direct drug*genotype interaction, and 

additional subjects will be recruited to increase the power to detect genetic differences.  Future 

studies will also investigate other genes related to the serotonin system, including 5-HT1A, 5-

HT2A, and BDNF.  

 

Neuroimaging technologies, because of their unique ability to capture the structural and 

functional integrity of distributed neural circuitries within individuals, provide a powerful 

approach in identifying regional effects of either drugs or genes.  This study was able to find a 

robust drug effect after analyzing only eight individuals.  These results are likely due to the use 

of a homogenous patient population, thus controlling for age, race, sex and other external 

variables.  Additionally, this was the smallest sample size to reproduce the effect of serotonin 

transporter genotype on baseline amygdala reactivity.  While the genetic findings are 

preliminary, due to the small sample size (3 l/l and 5 s allele carriers), it is important to note the 

effects of genotype on citalopram modulation of amygdala reactivity.   
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Multidisciplinary research capitalizing on such neuroimaging based integration will contribute to 

the identification of predictive markers and biological pathways for neuropsychiatric disease 

vulnerability as well as the generation of novel targets for therapeutic intervention.  Such 

knowledge will contribute to our understanding of the mechanism of action of current treatments 

as well as the development of novel therapeutics, tailored to individual neurobiologies, which 

will be more effective in combating the enormous personal and public health burden associated 

with common psychiatric disorders.   
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Abbreviations 
 
 
5-HT  5-hydroxytryptophan, serotonin 
5-HTT  serotonin transporter 
5-HTTLPR 5-HTT gene-linked polymorphic region 
AC  adenylate cyclase 
ACTH  adrenocorticotropic hormone 
AIC  Akaike's Information Criterion 
AIDS  acquired immune deficiency syndrome 
ALT  alanine aminotransferase 
ANOVA analysis of variance 
AST  aspartate aminotransferase 
AUC  area under the curve 
BA  Brodmann area 
BDI  Beck Depression Inventory 
BDNF  brain derived neurotrophic factor 
BOLD  blood oxygenation level dependent 
BUN  blood urea nitrogen 
CATIE  Clinical Antipsychotic Trials of Intervention Effectiveness 
CBC  complete blood count 
Cl  clearance 
Cmax  maximum concentration 
CNS  central nervous system 
Cobs   observed concentration  
CPAD  Continuing Pharmacotherapy in Agitation and Dementia 
Cpred  predicted concentration 
CREB  cAMP-responsive element binding protein 
CYP  cytochrome P450 
DAG  diacylglycerol 
DMC  desmethylclomipramine 
DSM-IV Diagnostic and Statistical Manual of Mental Disorders, 4th edition 
E2  estrogens 
ECG  electrocardiogram 
ECT  electroconvulsive therapy 
EEG  electroencephalography 
ER  estrogen receptor 
ERK  extracellular regulated kinases 
F  bioavailability 
FDA  Food and Drug Administration 
FDR  false discovery rate 
FMO  flavin-monooxygenase 
fMRI  functional magnetic resonance imaging 
FWE  family wise error 
GABA  gamma amino butyric acid 
GCRC  General Clinical Research Center 
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h  hour 
HAM-D Hamilton Depression Rating Scale 
HIV  human immunodeficiency virus 
HRF  hemodynamic response function 
IMP  inositol monophosphatase 
IND  investigational new drug 
IP  inositol monophosphate 
IP3   inositol 1,4,5- trisphosphate 
IPAM  integrated pharmacokinetic adherence measure 
IRB  institutional review board 
IV  intravenous 
Ka  absorption constant 
kE  cluster size 
MAO  monoamine oxidase 
MAOI  monoamine oxidase inhibitor 
MAPK  mitogen-activated protein kinase 
MDD  major depressive disorder 
MDR1  multi-drug resistance pump1 
MEMS  electronic medication event monitoring 
min  minutes 
MRI  magnetic resonance imaging 
MRRC  Magnetic Resonance Research Center 
NE  norepinephrine 
NGF  nerve growth factor 
NIMH  National Institute of Mental Health 
OCD  obsessive compulsive disorder 
PD  pharmacodynamics 
PDK  phosphinositide-dependent kinase 
PDR  Physician’s Desk Reference 
PET  positron emission tomography 
PI3K  phosphatidylinositol-3 kinase 
PIP2   phosphatidylinositol bisphosphate 
PK  pharmacokinetics 
PKA  protein kinase A 
PKB  protein kinase B 
PKC  protein kinase C 
PLC  phospholipase C 
PMDD  premenstrual dysphoric disorder 
PMS  premenstrual syndrome 
RNA  ribonucleic acid 
ROI  region of interest 
SCID  Structural Clinical Interview for Diagnosis of DSM-IV Disorders 
SD  standard deviation 
SPECTRUM Depression: The Search for Treatment-Relevant Phenotypes 
SR  sustained release 
SSRI  selective serotonin reuptake inhibitor 
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t½  half-life 
TCA  tricyclic antidepressant 
TRH  thyrotropin-releasing hormone 
TSH  thyroid-stimulating hormone 
UDPGT uridyl diphosphate glucuronyl transferase 
UPMC  University of Pittsburgh Medical Center 
UV  ultraviolet 
Vd  volume of distribution 
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A. Principal Investigator: Kristin L. Bigos, BS 
 

Co-Investigators:    Bruce G. Pollock, MD, PhD, Robert R. Bies, PharmD, PhD,  
     Howard J. Aizenstein, MD, PhD, Robert R. Ferrell, PhD, 
     Ahmad R. Hariri, PhD 
 
B. Protocol Title:    Pharmacodynamics of IV Citalopram using Functional MRI 
 
C. Hypothesis and Specific Aims 
 
This study aims to evaluate the effects of intravenous (IV) citalopram on neuronal activation elicited 
during an affective task using functional magnetic resonance imaging (fMRI) in healthy subjects.  A 
second specific aim is to evaluate the impact of a polymorphism in the promoter region of the 
serotonin transporter gene (5-HTTLPR) on task-related neuronal activation during IV citalopram 
administration.  We hypothesize that acute IV citalopram administration will oppose the task-related 
increase in neuronal activity in the amygdala, as measured by fMRI, and that this opposition will be 
blunted in subjects who carry the s allele for the 5-HTTLPR.   
 
D. Background Information and Significance 
 
The Serotonergic System.  Serotonin, 5-hydroxytryptamine (5-HT), is a monoaminergic 
neurotransmitter known to mediate mood and emotion and a host of other basic functions including 
sleep and appetite.  Serotonergic neurons project to most regions of the brain, with primary targets 
including the amygdala, hippocampus, hypothalamus, substantia nigra, caudate, putamen, nucleus 
accumbens, and multiple cortical areas.214  There is a great deal of evidence that dysregulation of 
the serotonin system is involved in the pathophysiology of depression and other psychiatric 
illnesses.  In fact, many regions implicated in depression are regions regulated by serotonin 
including the amygdala, hypothalamus, caudate, as well as the frontal and cingulate cortices, as 
reviewed by Staley et al.215  The most common treatments for depression are selective serotonin 
reuptake inhibitors (SSRIs), which act at the serotonin transporter (5-HTT) to block the reuptake of 
serotonin, thus increasing serotonin concentration in the synapse.  Because of these actions, 
SSRIs can also be used to measure serotonin function in the brain of both healthy and depressed 
patients.   

Citalopram.  The SSRI, citalopram, is approved by the FDA for the treatment of depression, and is 
also commonly used in the treatment of other psychiatric illnesses, including obsessive compulsive 
disorder and panic disorder.222, 223  Citalopram is commercially available as an oral tablet (Celexa®), 
but is also available in an intravenous formulation under an IND.  Citalopram, the only SSRI 
available in IV formulation, is well-tolerated at doses up to 40 mg.217, 219, 220, 224  Like other SSRIs, 
citalopram is believed to exert its pharmacological effects by blocking 5-HT reuptake at the 
serotonin transporter, and has negligible effects on other transporters including dopamine and 
noradrenaline transporters, and little to no affinity for other neurotransmitter receptors such as the 
gamma amino butyric acid (GABA), opioid, and muscarinic receptors.222, 223  Because of its 
selectivity and tolerability, IV citalopram, can be used as a probe for in vivo assessments of 
serotonin function.  Positron emission tomography (PET) studies have shown that citalopram alters 
cerebral glucose metabolism, as measured by changes in the radiotracer [18F]-FDG, in areas of the 
brain thought to be involved in the pathophysiology of depression and anxiety.  One such study in 
healthy men and women showed that IV citalopram decreased cerebral glucose metabolism in 
the right (R) anterior cingulate gyrus, R superior and R middle frontal gyrus, R parietal cortex 
(precuneus), R superior occipital gyrus, left (L) thalamus, and R cerebellum, while it increased 
glucose metabolism in the L superior temporal gyrus and L occipital cortex.226  The regions 
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identified overlap with areas thought to be important in the pathophysiology of depression and 
may indicate regions important for treatment response; however PET has low spatial resolution 
and therefore may not be sensitive enough to detect effects on many smaller subcortical 
structures.   

FUNCTIONAL MAGNETIC RESONANCE IMAGING.  When compared to PET, fMRI has better spatial 
and temporal resolution, and can been used to non-invasively measure drug-induced changes 
in task-related neuronal activation.  fMRI allows researchers to study regional brain activity while 
subjects are performing sensory, motor, cognitive, or affective tasks using rapid sequential 
imaging.  Tasks have been designed to activate specific regions of the brain involved in the 
regulation of mood and behavior, including the amygdala.  Regional blood flow and glucose 
metabolism in the amygdala consistently correlate positively with depression severity, and 
metabolism in the amygdala decreases toward normal during antidepressant drug treatment.228  
It is known that the amygdala plays an important role in the recognition of certain facial 
emotions, particularly fear, and one task has been designed to engage the amygdala through 
the cognitive evaluation of angry and fearful human faces.229  Using fMRI, researchers have 
been able to show that some psychoactive drugs cause regionally specific patterns of neuronal 
activation during cognitive and affective tasks.230, 231  One such study found that oral 
dextroamphetamine (0.25 mg/kg), a nonspecific monoaminergic agonist, induced a significant 
increase in the blood oxygenation level dependent (BOLD) signal of the R amygdala in 
response to the fearful faces task.231  fMRI has been used to evaluate the effects of the oral 
SSRIs, fluoxetine232 and paroxetine,233 on neuronal motor pathways, and one study found that 
chronic fluoxetine treatment decreased amygdala activation.234 However no studies have 
evaluated the acute effects of SSRIs on cognitive or affective tasks.  A pilot study evaluated the 
effects of IV citalopram (7.5 mg over 7.5 min) on fMRI response in a single-blind crossover 
design in 12 healthy young men; however the investigators did not employ a task.276  Compared 
to placebo infusion, neuronal activity was increased in the anterior cingulate gyrus, caudate, R 
posterior orbitofrontal cortex, R amygdala, and R brainstem extending into the hypothalamus, 
while neuronal activity was decreased in the R hippocampus and R precuneus.  To date there 
have been no studies which evaluate the acute effects of SSRIs on task-related neuronal 
activation related to mood or cognition.  This study is designed to determine the effects of the 
SSRI, citalopram, on affective task-related neuronal activation. 

SEROTONIN TRANSPORTER GENETICS.  The serotonin transporter (5-HTT) regulates the 
magnitude and duration of serotonergic responses by modulating the levels of 5-HT in the 
synapse.236  Dysregulation of 5-HTT has been associated with several psychiatric disorders 
including depression242, 243 and anxiety.237-241  A polymorphism exists in the transcriptional 
control region upstream of the 5-HTT coding sequence.244  Insertion or deletion of a 44 base-
pair segment in this 5-HTT gene-linked polymorphic region (5-HTTLPR) results in long (l) and 
short (s) variants.  The s allele is associated with decreased transcriptional efficiency of the  5-
HTT gene promoter and a decrease in 5-HTT expression and 5-HT uptake.244, 245  The s allele is 
also differentially associated with anxiety-related behavioral traits in healthy subjects; those 
carrying the s allele have been shown to be slightly more likely to have abnormal levels of 
anxiety245 and develop conditioned fear responses,249 resulting in an increased incidence of 
affective illnesses,250 when compared to those homozygous for the l allele.  Studies have found 
that individuals with one or two copies of the s allele exhibit greater amygdala neuronal 
activation in response to fearful stimuli compared with individuals homozygous for the l allele, as 
measured by change in BOLD fMRI signal.253, 274  Therefore 5-HTT genotype can predict task-
related neuronal activation as measured by fMRI.  This study aims to determine whether the 5-
HTTLPR polymorphism can predict the objective BOLD fMRI response to IV citalopram. 
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SIGNIFICANCE.  The development of novel psychoactive drugs requires a better understanding 
not only of their mechanism of action, but their sites and time-courses of action as well.   
Antidepressants are the second most commonly prescribed class of medications in the United 
States.  While much is known about their mechanism at the cellular level, it is still largely 
unknown how their effects on functional interactions between distinct brain regions alter mood 
and behavior.  Further elucidation of these mechanisms through functional studies will be useful 
in explaining the variability in patient response.  This study will generate the first in vivo human 
data regarding the regional effects of acute SSRI administration on affective task-related 
neuronal activation.  Functional MRI will allow us to better understand the actions of SSRIs at 
the neuronal level in real-time, and may shed light onto the functional interactions between 
distinct brain regions involved in the actions of SSRIs.  An understanding of the regional effects 
of SSRIs will aid in predicting patient response to these agents.  By including 5-HTTLPR 
genotype in the analyses, we may account for some of the variability in response to citalopram.  
 
E.   Progress Report and Preliminary Studies 
 
Data on the safety of IV citalopram is included in the section above.217, 219, 220, 224  There are no 
data using fMRI in the evaluation of IV citalopram. 
 
F. Research Design and Methods 
 
DRUG INFORMATION.  Parenteral citalopram will be administered under IND #48,032 of the FDA, 
held by one of the listed investigators, Dr. Bruce G. Pollock.  Once approved, this protocol will 
be submitted to the FDA as part of this IND.  The recommended starting dose of oral citalopram 
is 20 mg with a maximum dose of 60 mg/day.  Although 40 mg is well tolerated in both oral and 
IV formulations, 20 mg was chosen due to the potential for nausea and vomiting that may 
compromise the safety of the subject.219, 226  In addition, BOLD is a sensitive response measure 
which may lose specificity for regional activation at doses higher than 20 mg.   

DESIGN AND OVERVIEW.  This study is a randomized, double-blind, placebo-controlled crossover 
of IV citalopram (20 mg infused over 30 min) and normal saline during two one-hour fMRI scans 
while subjects complete affective and sensorimotor tasks.  An unblinded investigational 
pharmacist at the University of Pittsburgh Medical Center will randomize each subject to receive 
either citalopram or placebo on their first visit and the opposite treatment on the following visit.  
Visits will be separated by a minimum washout period of two weeks.  All subjects will give 
informed consent before undergoing any research procedures.  Sixteen subjects, eight 
homozygous for the l allele (l/l) and eight with at least one s allele (s/l or s/s), will be recruited to 
participate in the study.   

SCREENING VISIT.  Subjects will be recruited from established research studies being conducted 
at the University of Pittsburgh by the investigators.  Through their initial participation, subjects 
completed behavioral measures and provided a genetic sample.  The subjects’ samples have 
been genotyped for the 5-HTTLPR.  Subjects will also be recruited in the community through 
advertisements.  This study will recruit healthy, right-handed, non-smoking Caucasian men 
between the ages of 18 and 60 years.  These selection criteria are designed to minimize 
between-subject variation and possible age-related and ethnic differences in fMRI response.266  
As part of this study, subjects will provide a 10 mL blood sample, which will be used to 
sequence the 5-HTTLPR to ensure that other polymorphisms in the 5-HTT gene, in particular 
the A to G substitution in the l allele, are characterized.  The screening visit for the study will be 
conducted at the General Clinical Research Center (GCRC) of the University of Pittsburgh 
Medical Center (UPMC).  Screening will include a complete medical history, physical 
examination (including height, weight, blood pressure and heart rate), biochemical and 
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hematological laboratory screen (albumin, BUN, calcium, CBC, chloride, serum creatinine, 
glucose, hematocrit, hemoglobin, serum phosphorus, potassium, prothrombin time, partial 
thromboplastin time, AST/ALT, and sodium), blood alcohol, serum cotinine, and urine drug 
screen, within 28 days of the first study day.  An electrocardiogram (ECG) will be done to rule 
out subjects with cardiac electrophysiological problems, in particular bradycardia (heart rate less 
than 50 beats per minute), which may increase the risk of cardiac side effects associated with 
SSRIs.  The modified Structural Clinical Interview for Diagnosis (SCID) of DSM-IV Disorders will 
be conducted by a trained interviewer to screen subjects for psychiatric illness.267  In addition to 
the SCID, subjects will complete the Beck Depression Inventory, which is a 21-item self-report 
rating inventory measuring characteristic attitudes and symptoms of depression (Beck et al., 
1961).  If a clinically significant, unanticipated disease or condition is identified during the 
conduct of screening, the participant will be informed of the discovery by the investigators, and if 
requested, the participant will be referred appropriately.  If a subject has a BDI score of 10 or 
greater at any time, they will be removed from the study and referred to a psychiatrist for 
assessment and follow-up.  If the subject endorses the suicide item on the BDI, they will be 
immediately referred to the emergency department at Western Psychiatric Institute and Clinic.  If 
the subject scores a 10 or higher, but does not endorse the suicide item, we will offer a referral 
and follow-up with the subject the next day.   

STUDY VISITS.  Subjects will refrain from the use of over the counter and prescription drugs and 
grapefruit juice for one week prior to the first study visit and refrain from alcohol and caffeine for 
48 hours prior to each study visit.  Subjects will be admitted to the GCRC the morning of the 
study day and will complete a baseline BDI.  A baseline electrocardiogram will be done; any 
subject with an abnormal ECG will be removed from the study and referred for follow-up care 
with a physician.  Vital signs (blood pressure and heart rate) will be also measured at baseline, 
after the infusion, and before discharge.  A urine sample for drug screen will be obtained and 
intravenous catheters will be placed in each forearm, one for drug/placebo infusion and the 
other for multiple blood sampling.  Subjects will be escorted to the MRRC where they will 
complete an MR safety questionnaire, which will be reviewed orally with MRRC staff prior to 
each scan to ensure their safety while in the magnet.  In subjects with a questionable history of 
metallic fragments, an X-ray study of the suspected body area will be performed prior to the MRI 
to rule out such.    Subjects will be in the scanner for one hour as detailed in the figure below.  
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-23 to -8 (min) 

TAP 2 
16 to 21

FACES 1 
-8 to 0 

TAP 1 
1 to 6

FACES 2 
7 to 15

Infusion 
0 to 30 (min)

FACES 3 
22 to 30 

TAP 3 
31 to 36

   

  
During the first 15 minutes a series of structural scans will be acquired, which will be used to 
align the functional MRI acquisition and for cross-registration of the functional scans for the 
group analyses.  Immediately after the structural scan, the subjects will perform tasks during the 
45 minute functional scanning.  A blocked design will be used for the fMRI tasks.  The first block 
of tasks (FACES) includes an emotion task (faces) and a sensorimotor task (shapes).  During 
the faces task, subjects will be asked to match the facial expression (either angry or afraid) of 
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one of two faces to that expressed by a simultaneously presented target expression.  The faces 
task is known to elicit a robust amygdala response.229, 253  Twelve different images will be used, 
six per block, all derived from a standard set of pictures of facial affect.    The identity of all three 
faces is always different and an equal number of male and female faces will be presented.  As a 
sensorimotor control task (shapes), subjects will be asked to match one of two geometric 
shapes with a simultaneously presented target shape.  Six different sets of geometric forms will 
be used in the control condition.  Between images, subjects will be instructed to fixate on a 
black cross-hair in the middle of the screen.  As shown in the figure, FACES, involves 9 
experimental blocks: 5 blocks of the shapes task (control) interleaved with 4 blocks of the faces 
task (experimental).  Each block contains 6 trials, lasting 5 seconds each.  Before each block, a 
brief instruction (“match emotion” or “match form”) will be presented for 2 seconds.  During the 
task, subjects will respond with button presses, which will allow us to determine accuracy and 
reaction time.  A complete FACES block takes approximately 8 minutes and will be completed 
once before the infusion and twice during the infusion.  In the second block, the sensorimotor 
control task (TAP) will be done to acquire a baseline fMRI BOLD signal for each subject and to 
compare the time course of the hemodynamic response function across the entire scanning 
session.  Subjects will be instructed to press both buttons, with their index fingers, every time 
they see the word TAP appear on the screen.  The stimulus will appear every 12 seconds and 
will remain on the screen for 1 second.  In the interim, subjects will be instructed to fixate on a 
white cross-hair in the middle of the screen. This task takes 5 minutes and will be completed 
twice during the infusion and once after the infusion.  

As indicated in the figure, the infusion will begin at time 0 min, after the structural scan and the 
baseline FACES 1 functional scan.  Either citalopram (20 mg in 0.9% saline) or placebo (0.9% 
saline) will be infused for 30 min while subjects are asked to perform the tasks.  Subjects will 
rest for one minute between tasks while investigators prepare the next task and give the 
subjects instructions.  Blood samples (10 mL) will be taken between tasks to determine drug 
and metabolite concentrations at baseline (0 min), during the infusion (6, 15, and 21 min), at the 
end of infusion (30 min), at the end of the scan (36 min), and 45, 60, 90, 150, and 360 min.  
Additional blood samples (5 mL) will be taken to determine cortisol and prolactin concentrations 
at 0, 15, 30, 45, 60, 90, and 150 min.   

Before discharge, subjects will have an ECG and complete the BDI and side effect 
questionnaire.  If a subject has an abnormal ECG, they will be evaluated by the admitting 
physician, Dr. Aizenstein, and referred for follow-up care.  If a subject has ECG changes after 
drug administration, the adverse event will be reported according to IRB and FDA regulations.    
One week following each study visit, the subjects will be called by one of the listed investigators 
and complete the BDI and side effect questionnaire.   

SCANNING PROCEDURES.  All fMRI scans will be conducted at the University of Pittsburgh 
Medical Center Magnetic Resonance Research Center (MRRC) on a 1.5 Tesla Signa MR 
Scanner (General Electric Medical Systems, Milwaukee, WI).  During the screening visit, 
subjects will be given the opportunity to become acclimated to the study conditions in a 
simulation scanner.  Structural MRI will be performed prior to the functional scans to align the 
functional MRI acquisition and to cross-register the functional scans for the group analyses.  
The structural scans will be acquired as T1-weighted images, and aligned within the anterior 
cortex-posterior cortex line.  A high resolution anatomical image will be acquired for each 
subject using a volumetric three-dimensional Spoiled Gradient Recalled Acquisition sequence.  
Low resolution anatomical images will be acquired as 36 oblique axial slices with a slice 
thickness of 3.8 mm, an in-plane resolution of 0.9375 mm2, and a field of view of 240 mm2.  
Functional scanning will be performed using a one-shot spiral pulse sequence, with TE = 35 
msec and TR = 2000 msec.  Twenty-six oblique axial slices will be acquired as T2*-weighted 
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images with a slice thickness of 3.8 mm, an in-plane resolution of 64 x 64 (with 3.75 mm2 
pixels), and a field of view of 240 mm2.  Stimulus presentation will be performed using E-prime 
(Psychology Software Tools, Inc., Pittsburgh, PA) on the standard MRRC computer, which will 
also collect accuracy and reaction time data.  The stimuli will be projected on a screen 
positioned above the subject’s chest and will be seen by the subject through a series of mirrors.  
The stimuli subtend approximately 30º of the visual field.  

ANALYTICAL PROCEDURES.  Blood samples will be collected from an indwelling forearm catheter 
contralateral to the infusion catheter, into appropriately labeled vacutainers and centrifuged.  
Plasma or serum will be decanted, transferred to appropriately labeled polypropylene tubes and 
stored at -80°C.  Assays will be performed in the laboratory of Dr. Pollock.  Citalopram 
concentrations will be determined using a high-performance liquid chromatographic technique 
previously described.269  The limit of quantitation using ultraviolet (UV) detection is 5 ng/mL, and 
coefficients of variations are 2.9% at 15 ng/mL and 1.8% at 220 ng/mL.  Both the R(-) and S(+) 
enantiomers of citalopram will be measured separately, as well as its metabolites 
demethylcitalopram and didemethylcitalopram.  The limit of quantitation for each enantiomer is 
10 ng/mL by UV detection.  Serum cortisol and prolactin will be quantified using an enzyme-
linked immunoassay (Diagnostic Systems Labs; Webster, TX).  Prolactin measures are linear 
from 2 to 180 ng/mL with a coefficient of variation of 1.2 to 10.7%.  Cortisol measures are linear 
from 0.5 to 60 μg/mL with a coefficient of variation of 1.0 to 7.4%.    

GENOTYPING.  Coded blood samples have been genotyped for the serotonin transporter 
polymorphism (5-HTTLPR) as part of participation in previous studies by these investigators.  
The presence of s and l alleles was determined using polymerase chain reaction amplification 
followed by electrophoresis.270  As part of this study, samples will be sequenced in the 
laboratory of Dr. Ferrell, to ensure that other polymorphisms in the 5-HTT gene are 
characterized.  A polymorphism found in the l allele of approximately 15% of Caucasian 
subjects (Xu and Goldman, unpublished), which results in an A to G substitution,271 will be taken 
into consideration when comparing s and l genotypes.  Research subjects recruited from the 
community will be genotyped for the 5-HTTLPR.  During the screening visit, a 10 mL sample will 
be taken for genotyping.  This sampled will be genotyped and stored using only their subject 
number (without identifiers) in the laboratory of Dr. Ferrell.  Their genotype information will only 
be shared with the co-investigators listed on this protocol. 
   
G. Biostatistical Design and Analysis 
 
SAMPLE SIZE ANALYSIS.  In a previous fMRI study using the FACES task, the percent change in 
BOLD fMRI signal had a standard deviation of 0.187% in subjects with the l (l/l) allele (n=14) 
and 0.299% in subjects with at least one s (s/s or s/l) allele (n=14).253  The pooled standard 
deviation for both groups (all genotypes) was 0.245%.  We believe that although we are 
proposing a crossover study, the within-subject variability in signal change would not be greater 
than the intersubject variability observed previously, and therefore the intersubject variability will 
provide a more conservative sample size estimate.  Based on the proposed sample size of 16 
subjects, we have an 80% power, with a type-I error of 5% (α=0.05), to detect a difference of 
0.260% BOLD fMRI signal change using a t-test.  A previous fMRI study using this task resulted 
in a signal difference much larger than 0.260%, between drug and placebo.230 
IMAGE ANALYSIS:  DATA PREPROCESSING.  fMRI data will be corrected for movement using a 6-
parameter linear algorithm,277  and spatially smoothed using an 8 mm full width-half maximum 
Gaussian filter.  A linear detrending algorithm will be performed using only the data within 3 
standard deviations (SD) of the mean to estimate the linear trend.  An outlier-correction 
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algorithm will also be performed to remove data that are more than 7 SD from the mean.  Global 
normalization will be performed multiplicatively to give each subject a mean intensity of 3000.   

REGION OF INTEREST ANALYSIS.  The anatomical regions of interest (ROI) were selected from 
those known to be altered by citalopram226, 276 and/or involved in perceptual face processing.231, 

278  An automated approach will be used to define the primary ROI, the amygdala, as previously 
described.266, 279  Secondary regions of interest will be mapped separately using Talairach 
coordinates (x, y, z; mm) determined by PET studies of citalopram.226  The primary ROI will be 
used to test our hypotheses regarding the effects of citalopram and the role of genotype on the 
effects of citalopram.  A set of mean fMRI signal values will be calculated for each subject for 
each task (faces and shapes) within each block (FACES 1, 2, and 3).  This difference between 
faces and shapes for each block will be compared using an analysis of variance (ANOVA) to 
test for a significant interaction of treatment by task, i.e. whether citalopram alters the amygdala 
BOLD response to an emotional task.  Similarly, we will use an ANOVA to test for a significant 
interaction of treatment*task*genotype, i.e. if patients who carry the s allele have a different 
response to citalopram during task.  If significant differences are identified, a t-test will be used 
to compare each combination of block, treatment, and genotype.  A similar analysis will be 
conducted for each additional ROI.  A set of mean fMRI signal values will be calculated for each 
subject for each task, within each block, during each treatment.  The analysis for significant 
differences in activations will be performed using an ANOVA, and post-hoc t-tests will be used 
to compare each combination when indicated.   

EXPLORATORY ANALYSIS.  An exploratory analysis will be used to identify regions of the brain 
that have different activation during the citalopram and placebo treatments, which have not 
been previously described.  In this analysis, we will conduct an ANOVA to compare the 
interaction of block by treatment.  This will generate an F-map summarizing the effect of 
treatment on response to faces across blocks for each voxel, i.e. a brain image in which each of 
the 64x64x26 voxels is an F-value representing the effect for that particular location in the brain.  
The F-map will then be thresholded with an alpha of 0.01.  To correct for multiple comparisons, 
we will only consider those voxels which are significant for eight contiguous voxels.280  In 
examining these group differences, all data must first be normalized into a standard brain 
coordinate system, such as Talairach space, in order to take into account the variability in brain 
shape and size across subjects. 

CONTROL TASK ANALYSIS.  The sensorimotor control task (TAP) will be done to acquire a 
baseline fMRI BOLD signal for each subject and to compare the time course of the 
hemodynamic response function (HRF) across the entire scanning session.  To test whether 
citalopram alters the overall HRF, we will use this task as a covariate and therefore control for 
systematic differences in the BOLD signal.  This would be necessary if, for example, citalopram 
changed the coupling of neural activation. 

PHARMACOKINETIC ANALYSIS.  An optimal sampling strategy given the timing of fMRI tasks was 
determined using the D-optimal sampling algorithm in Adapt II (release 4). This model was 
informed using IV citalopram data from 379 subjects (unpublished).  Citalopram kinetics will be 
modeled using a mixed-effect population approach with a two-compartment continuous infusion 
model, as previously described.219  Given the known rate of infusion (0.67 mg/min), we can use 
the concentrations measured to estimate the following pharmacokinetic parameters: volume of 
distribution of the central compartment (Vc), volume of the peripheral compartment (Vp), 
intercompartmental clearance (Cld), and systemic clearance (Cl).  Acute exposure will be 
determined by the plasma area under the concentration time curve from 0 to 360 min (AUC360).  
Modeling will be done for total citalopram concentrations and for both the R and S enantiomer 
separately.  Pharmacokinetic parameters will be individually correlated with BOLD fMRI 
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response as an exploratory analysis to determine whether any kinetic parameters or acute 
exposure (AUC360) predict BOLD fMRI response to citalopram. 

HORMONE ANALYSIS.  Area under the curve (AUC) from 0 to 150 min for cortisol and prolactin 
has previously been used to measure the neuroendocrine response to IV citalopram.219  We 
propose to estimate AUC from 0 to 150 min for cortisol and prolactin, and correlate these values 
with the percent BOLD fMRI signal change during citalopram treatment.  Previous literature 
using fMRI, without a task, found significant correlations between hormone AUCs and neuronal 
activation in several brain regions after IV citalopram (7.5 mg/7.5 min).276  
 
H. Human Subjects  
 

1. Subject population 
 
Subjects will be recruited from established research studies being conducted at the University of 
Pittsburgh by the investigators, including the Functional Genomics Imaging Study (FIGS) and 
Neuroimaging Markers of Vulnerability to Depression.  Through their initial participation, 
subjects completed behavioral measures and provided a genetic sample, which has been 
genotyped for the 5-HTTLPR.  Subjects will also be recruited in the community through 
advertisements, which will be posted throughout the university and UPMC.  

There are well-characterized differences in fMRI response between men and women, and 
between young and elderly subjects; therefore this pilot study will be conducted in healthy non-
smoking men (age 18 to 60 years), in order to limit variability due to sex or age and to increase 
the probability of detecting a treatment effect.  Similarly, there are known differences between 
subjects of different racial and ethnic origins; therefore this study will be restricted to the study of 
Caucasian (white) subjects in order to maximize the probability of detecting a main effect of 5-
HTT genotype.  Additionally, there are no human data on the effects of IV citalopram on task-
related neuronal activation; therefore it is appropriate to limit the study population to generate 
pilot data to power a larger analysis.   

Additionally, the extraordinary cost of MRI limits the number of subjects that can be scanned.  In 
order to maintain a balanced design that will have the power to detect a difference between 
responses of individuals of different genotypes, it is necessary to recruit the same number of 
individuals of each genotype.  If patients were recruited without regard to genotype, it is very 
likely that the number of individuals of each genotype would be skewed.  This would lead to an 
unbalanced sample and a loss of power in the analysis.  Therefore sixteen subjects (8 l/l and 8 
s/l or s/s) will be selected to participate in this study.   

Subjects will be excluded if they have a past or current psychiatric disorder, neurological 
disorder (including stroke, brain tumor, epilepsy, significant head injury, Alzheimer’s, 
Parkinson’s or Huntington’s disease) or an uncontrolled medical disorder.  Subjects will be 
excluded for having a positive alcohol or cotinine level on the screening visit.  Subjects will be 
excluded for having a positive drug screen on a screening or study visit.  Subjects taking known 
cytochrome P450 enzyme-inducing or enzyme-inhibiting agents within one month of the study, 
and/or any chronic medications (including over the counter drugs) within one week of the study 
will also be excluded.  Subjects will also be excluded if they have ever had an adverse reaction 
to oral citalopram or any other SSRI.  Subjects who have a contraindication to MRI, including a 
pacemaker, defibrillator or other medical implant, bullets, shrapnel, or other metal objects, or 
claustrophobia will not be eligible. 
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The safety and effectiveness of citalopram have not been established in pediatric patients; 
therefore children under the age of 21 will not be recruited for this study.  Celexa® (oral 
citalopram) is not approved for use in treating any indications in the pediatric population.   

 
2. Targeted/Planned Enrollment Table   
 

Ethnic Category Females       Males Total 
Hispanic or Latino 0 0 0 
Non Hispanic or Latino 0 16 16 
Ethnic Category Totals 0 16 16 

Racial Categories  
American Indian 0 0 0 
Asian 0 0 0 
Native Hawaiian or other 
Pacific Islander 0 0 0 
Black or African American 0 0 0 
White 0 16 16 
Racial Categories:  
Total of all Subjects 0 16 16 

 
3. Sources of Research Material 
 

All specimens and data collected are for research purposes only.  Medical and psychiatric 
information will be obtained for the purposes of screening for healthy subjects.  Blood samples 
will be obtained for the purpose of measuring drug and hormone concentrations, genotype 
analyses, and medical screening.  Total blood collected in this study is 325 mL, which is less 
than a normal blood donation (480 mL).   Urine will be collected for screening for drugs of 
abuse.   
 

4.  Recruitment Methods and Consent Procedures 

Subjects will be recruited from research studies being conducted by these investigators, 
including the Functional Imaging Genomics Study (FIGS; IRB#0403005) and Neuroimaging 
Markers of Vulnerability to Depression (IRB#011170).  These subjects have given their consent 
to be contacted for future research studies.  Subjects will be informed of this new research study 
by one of the listed investigators and given the option of participating.  The recruitment letter is 
included in Appendix 3.  Subjects interested in this study will be asked to provide written 
consent using a University of Pittsburgh Institutional Review Board (IRB) approved consent 
form.  It may be necessary to recruit additional subjects that have not formerly participated in a 
study.  In the event that additional subjects must be recruited, advertisements will be posted 
throughout the university and the University of Pittsburgh Medical Center (UPMC), and potential 
subjects will also be appropriately consented and screened for this study.  The advertisement is 
included in Appendix 4.  We will also include an advertisement on the Office of Clinical 
Research website.  

The study will be explained to the subjects by Kristin Bigos (PI) and given a chance to ask 
questions.  Then Howard Aizenstein, a co-investigator and admitting physician for this study, will 
be called.  The subject will have a chance to discuss the study with Dr. Aizenstein over the 
phone, and have any questions answered by the physician.  Ms. Bigos will sign the consent 
form and Dr. Aizenstein will sign the consent form at a later time. 
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5. Potential Risks 
 

This research study is considered moderate risk.  Citalopram is not FDA-approved for 
parenteral use, therefore the probability and magnitude of harm or discomfort anticipated in this 
research study is greater than encountered in daily life. However, the planned research 
activities do not pose a significant likelihood of a serious adverse event to involved research 
subjects.  Common adverse events (occurring in 10-25% of people) of chronic oral citalopram 
include nausea, dry mouth, somnolence, insomnia, and increased sweating. (Celexa [package 
insert]. St. Louis, MO: Forest Pharmaceuticals Inc.; 2004)  Infrequent adverse events (occurring 
in 1-10% of people) include diarrhea, tremor, fatigue, ejaculation disorder, upper respiratory 
infection, rhinitis, anxiety, anorexia, abdominal pain, agitation, impotence, and decreased libido.  
Recently the risk of suicide has been suggested to be associated with chronic use of SSRIs. 
(Celexa [package insert]. St. Louis, MO: Forest Pharmaceutical Inc.; 2004)  It is possible, 
however unlikely, that acute IV citalopram will increase the risk of suicide in these patients.   

No serious or life-threatening side effects have been reported during the use of IV citalopram.  
Based upon our experience to date with these procedures, the following adverse events are 
expected during the study day.  Likely adverse events (occurring in more than 25% of people) 
include lightheadedness and feeling tired.  Common adverse events (10% to 25%) include 
nausea, loss of appetite, difficulty concentrating, low energy/fatigue, and headache.  Infrequent 
adverse events (1% to 10%) include vomiting, shaky, heart racing, sweating, dry mouth, and 
hunger.  Rare adverse events (<1%) include diarrhea, discomfort in the chest, EKG 
(electrocardiogram) changes, stiff neck, and increase in blood pressure.  When they occur, 
these side effects usually last 30 to 90 minutes and usually resolve by the end of the 
appointment.  Citalopram can also cause symptoms during the next 24 hours.  These side 
effects can last for several hours. Common adverse events (10% to 25%) include 
lightheadedness, nausea, diarrhea, loss of appetite, difficulty concentrating, low energy/fatigue, 
and headache.  Infrequent adverse events (1% to 10%) include dry mouth, shaky, trouble 
sleeping, heart racing, short-tempered, and sweating.  

There are risks associated with needle insertion for catheter placement, blood draws, and blood 
loss. Common side effects (occurring in 1% to 25% of people) include bruising, mild bleeding, or 
soreness, similar to the effects of any type of needle insertion.  There is a rare (<1%) risk of 
infection associated with catheter placement in your vein.   Blood loss can result in a temporary 
feeling of lightheadedness or dizziness. There is no risk of anemia in a healthy person with the 
amounts of blood drawn in this study.  Drinking fluids is encouraged after the study to help 
replace fluid lost due to blood draws, and your body should replace the blood lost over a few 
days following the study.  There is a rare risk (<1%) of fainting due to the blood draws. 
 
The risk associated with genotyping for polymorphisms is primarily the loss of confidentiality.  
There is a possibility that if the results of the research study involving the genetic material 
provided by the subject were to become generally known, this information could impact future 
insurability, employability, or reproduction plans, or have a negative impact on family 
relationships, and/or result in paternity suits or stigmatization.  There is also potential for 
discomfort or anxiety during the psychiatric interview.   
 
The X-ray study to rule out the presence of metallic fragments prior to the MRI procedure will 
involve a maximum radiation exposure of 0.3 rems to the involved area of the body.  For 
comparison, this is a small fraction of the maximum single organ radiation exposure (50 rems) 
permitted, per year, to radiation workers by federal regulation. There is no minimal amount of 
radiation exposure that is recognized as being totally free of the risk of causing genetic 
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mutations or cancer.  However, the risk associated with the radiation exposure received from 
this X-ray procedure is considered to be low and comparable to everyday risks. 
 

6. Risk Management Procedures 
 

To minimize risk, all research procedures on both study days will be conducted at the UPMC 
GCRC and MRRC, and citalopram will be administered under the supervision of a physician.  All 
patient records generated in this research study including genetic information will be stored in a 
locked file cabinet.  Patient identity on these records will be indicated by a case number rather 
than by patient name.  The information linking these case numbers with the subjects’ names will 
be kept separate from the research records.  All records will be handled in a confidential manner 
consistent with other hospital medical records.  Data will be collected on standard forms and 
double-key verification will be used to minimize errors.  Data will be stored in a secure, limited-
access database and backed-up on a regular basis.   A Clinical Database Manager will maintain 
the database throughout the study, and there will be a monthly review of the data by the 
investigators and peripheral support personnel.  All blood samples, including genetic samples, 
will be coded using an alphanumeric coding scheme that is free of patient identifiers; with the 
identity of the subject known only to named co-investigators.  Removing patient identifiers from 
biological and genetic samples will minimize the risks associated with loss of confidentiality.    
DNA will be used only for the analysis of genetic polymorphisms potentially related to the 
synthesis, metabolism and/or transport of drugs and/or endogenous compounds.  DNA will not 
be used to diagnose medical or psychiatric conditions.  Because these polymorphisms are of no 
proven clinical significance, no genotype information will be given to the subjects; genotype will 
simply be used as a covariate in the analysis of the data.  Coded blood samples and genetic 
material will be stored for a minimum of 5 years after the completion of the study.  Information 
linking these code numbers to the corresponding subjects’ identities will be kept in a separate, 
secure location.  If a subject chooses to withdraw from the study, their genetic sample will be 
destroyed.  All blood samples and genetic material will be under the control of the principal 
investigator of this research project.  Samples will not be given to other investigators.  However, 
patients may give permission to be recontacted to obtain consent to use their samples for other 
research projects.   The future testing to be completed on the subjects’ samples would be 
limited to the assessment of genetic polymorphisms.  No other genetic testing (e.g. associated 
with diagnosis) will be completed. 

Data and safety monitoring will be conducted by the investigators listed on this protocol.  The 
investigators will ensure the maintenance of confidentiality and report adverse events in 
compliance with IRB policies.  Adverse events will be reported to the IRB according to chapter 3 
of the IRB manual (sections 3.4 and 3.5) and reported to the FDA in accordance with IND 
regulations.  The accrued, unblinded data will be reviewed on an ongoing basis to determine 
whether a change in the risk to benefit ratio has taken place. The investigators will meet formally 
when 50% of the patients have been recruited for this study and every six months after.  The 
summary reports of these reviews will be submitted to the IRB at the time of annual renewal.   
 

7. Evaluation of Risk/Benefit Ratio 
 

The subjects will receive no direct benefit from participating in this research study.  The results 
of this study will contribute to our knowledge and understanding of the neuronal effects of IV 
citalopram and the effects of the serotonin transporter polymorphism.  The safety of IV 
citalopram has been well documented; therefore the risks are reasonable compared to the 
anticipated benefits to the advancement of mental health research.  A better understanding of 
the regional effects of SSRIs would benefit mental health research from drug development to 
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clinical research.  By evaluating the genetics of the serotonin transporter we may explain some 
of the variability in response to citalopram.  

 
8. Costs and Payments 
 

The MRRC pilot imaging program allocated this study 20 hours in the MR scanner.  The other 
12 hours of scan time as well as all other research costs will be supported by the NIH grant 
MH65416.  The study will pay for the research only costs.  All procedures required for the 
purposes of the study are not considered standard of care.  Neither the subject nor the 
insurance provider will be charged for the costs of any of the procedures performed for the 
purpose of this research study.  The subjects will be paid a total of $225 for participating in the 
study, which includes $100 for each of the two study visits, and $25 for the screening visit.   
 
I. Justification for Utilization of GCRC Resources 
 
The principal investigator, Kristin L. Bigos, is a graduate student at the University of Pittsburgh 
and this protocol will serve as her doctoral dissertation.  This research study is supported by a 
NIH career development award (K24) of Dr. Bruce G. Pollock, co-advisor of Ms. Bigos and co-
investigator of this study.  This pilot study will be used to justify the use of fMRI in the study of 
psychotropic drugs in patients with psychiatric illness and may lead to larger NIH clinical trials. 
 
J. Study Size and GCRC Resources 
 

1. Number of Research Subjects: 16 subjects  
 
2. Total number of Inpatient Days: 0 days 
 
3. Total number of Outpatient Days:  

30 screening visits (maximum), 32 study visits;  Total of 62 outpatient days 
 
4. Estimated GCRC Inpatient Ancillary Cost of the Study:  $0 
 
5. Estimated GCRC Outpatient Ancillary Cost of the Study:  $2331 
 
6. Description of other GCRC Resources Requested:            A GCRC nurse 

will accompany the subjects to the MRRC for monitoring and blood sampling.  
 
K. Research Needs to be Provided by the Investigator’s Lab 
 
The investigator’s lab will provide the drug and blood collection tubes.  
 
L. Funding Support 
 
This research study is supported by a NIMH career development award MH65416 and an 
NRSA F31 MH076420.  Twenty hours of scan time have been allocated for this study by the 
MRRC as part of the Pilot Imaging Program.  The additional 12 hours of scan time as well as all 
other research costs (including salary support, drug and analysis costs, subject payments, etc.) 
will be supported by the NIH grant MH65416. 
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Protocol Appendix 1  Letter of Support 
 

 
 
April 26, 2005 
 
 
 
 
Institutional Review Board 
University of Pittsburgh 
3500 5th Ave 
Pittsburgh PA, 15213 
 
 
To Whom It May Concern: 
 
I support Kristin L. Bigos as the Principal Investigator of the study “Pharmacodynamics of IV 
Citalopram using Functional MRI”.  I am a co-investigator for this study as well as a co-advisor 
for Ms. Bigos, who is a doctoral candidate in the Department of Pharmaceutical Sciences.  This 
protocol will serve as her doctoral dissertation.  
 
Sincerely, 
 
(original copy is signed and dated) 
 
Bruce G. Pollock, MD, PhD 
Professor of Psychiatry, Pharmacology, and Pharmaceutical Sciences 
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Protocol Appendix 2  Qualifications of Investigators 
 
 
Kristin L. Bigos, BS, (PI) is a Doctoral Candidate in the Clinical Pharmaceutical Scientist PhD 
Program at the University of Pittsburgh.  She has worked at the Pharmacodynamic Research 
Center at the School of Pharmacy since 1999 on multiple studies of the pharmacokinetics and 
pharmacodynamics of psychotropics.   
 
Bruce G. Pollock, MD, PhD, is a Professor of Psychiatry, Pharmacology, and Pharmaceutical 
Sciences at the University of Pittsburgh.  Dr. Pollock is the director of the Geriatric 
Psychopharmacology Program at the Western Psychiatric Institute and Clinic.   His research 
involves population pharmacokinetic measures of drug exposure and treatment adherence, 
pharmacogenetics of antidepressant response to SSRI pharmacotherapy in late-life, and the 
pharmacologic management of behavioral disturbances in patients with Alzheimer’s dementia.   
 
Robert R. Bies, MD, PhD, is an Assistant Professor of Pharmaceutical Sciences and 
Psychiatry at the University of Pittsburgh.  His work involves mathematical modeling of disease 
progress, pharmacokinetics, and pharmacodynamics using both classical and Bayesian 
approaches. 
 
Howard J. Aizenstein, MD, PhD, is an Assistant Professor of Psychiatry at the University of 
Pittsburgh School of Medicine.  Dr. Aizenstein’s research uses functional MRI informed by 
neural network modeling to predict treatment response variability in late-life depression.   
 
Robert E. Ferrell, PhD, is a Professor of Human Genetics in the Graduate School of Public 
Health at the University of Pittsburgh.  Dr. Ferrell has more than 25 years experience in 
conducting research on the influence of genetic variation on normal and disease phenotypes in 
humans.   
 
Ahmad Hariri, PhD, is an Assistant Professor of Psychiatry and the Director of the 
Developmental Imaging Genomics Program at the University of Pittsburgh.  Dr. Hariri has 
pioneered the use of non-invasive functional neuroimaging in the study of genetically driven 
variation in brain function and behavior.  He has also conducted fMRI studies of affect regulation 
with a focus on the dynamic interactions of the prefrontal cortex and amygdala. 
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Protocol Appendix 3  Recruitment Letter 
 
 
April 19, 2007 
 
 
 
«First» «M» «Last» 
«Street_Address» 
«City», «State»  «zip» 
 
Dear Mr./Ms. «Last», 
 
You previously participated in a research study with us entitled the “Functional Imaging 
Genomics Study”* at the University of Pittsburgh.  Through this study, you gave us permission 
to contact you for future studies. 
 
We are contacting you to see if you would be willing to participate in a study of how 
antidepressant medications change brain function.  This study involves a short screening visit 
and two study visits (approximately 8 hours each study visit).  The study visits include brain 
scans that take pictures of your brain using magnetic resonance imaging (MRI) to test where an 
antidepressant, called citalopram, works in the brain.  This study will also examine genetic 
(inherited) differences in areas of the brain associated with mood and feeling. 
 
If we do not hear from you within two weeks, we will call you to invite you to participate in this 
study.  If you do not wish further contact with an investigator, or would like more information 
about this study, please call Kristin Bigos at 412-648-9436 or 412-648-8430.  
 
Sincerely, 
 
 
 
Ahmad R. Hariri, PhD 
 
 
 
*or “Neuroimaging Markers of Vulnerability to Depression” depending on which study the 
subject participated in 
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Protocol Appendix 4  Advertisement 
 

Clinical Research Study 
 

• Are you a healthy Caucasian (white) man 
between the ages of 18 and 60? 

• You may be eligible for a research study being 
conducted by the University of Pittsburgh 
Schools of Pharmacy and Medicine.  

• The purpose of this study is to understand how 
antidepressant medications change brain 
function using brain scans (MRIs). 

• The study involves short screening visit to 
determine if you are physically and mentally 
healthy. 

• If you are healthy, you will complete 2 study 
visits lasting approximately 8 hours each.  
During these visits, you will receive either an 
antidepressant (citalopram) or placebo, during 
an MRI.   

• You will be compensated $225 for your time. 

Please contact Kristin Bigos at (412) 648-9436 
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CONSENT TO ACT AS A PARTICIPANT IN A RESEARCH STUDY 

 
Title: Pharmacodynamics of IV Citalopram using Functional MRI  
 
Principal Investigator: Kristin L. Bigos, B.S.     
    Doctoral Candidate, Department of Pharmaceutical Sciences  
    University of Pittsburgh School of Pharmacy 
    806 Salk Hall, 3501 Terrace Street, Pittsburgh, PA  15261 
    (412) 648-9436 
 
Co-Investigators:  
Bruce G. Pollock, M.D., Ph.D.   
Professor of Psychiatry, Pharmacology,    
and Pharmaceutical Sciences 
University of Pittsburgh School of Medicine  
E833 WPIC, 3811 O’Hara Street  
Pittsburgh, PA  15213 
(412) 246-6274 
 
Robert R. Bies, Pharm.D., Ph.D. 
Assistant Professor of Pharmaceutical 
Sciences and Psychiatry 
University of Pittsburgh School of 
Pharmacy  
805 Salk Hall, 3501 Terrace Street  
Pittsburgh, PA  15261 
(412) 648-8430 
 
Howard J. Aizenstein, M.D., Ph.D. 
Assistant Professor of Psychiatry 
University of Pittsburgh School of Medicine 
E721 WPIC, 3811 O’Hara Street  
Pittsburgh, PA  15213 
(412) 586-9237 

 
Robert R. Ferrell, Ph.D. 
Professor of Human Genetics 
University of Pittsburgh  
Graduate School of Public Health  
A304 Crabtree Hall, 130 DeSoto Street 
Pittsburgh, PA  15261  
(412) 624-3018 
 
Ahmad R. Hariri, Ph.D. 
Assistant Professor of Psychiatry  
University of Pittsburgh School of Medicine 
E729 WPIC, 3811 O’Hara Street 
Pittsburgh, PA  15213 
(412) 246-5879 
 
 
 
 
 
 
 
 
 

 
Source of Support: National Institute of Mental Health (NIMH) MH65416 and MH076420 
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What is the purpose of this research study? 
 
The purpose of this study is to understand how antidepressant medications change brain function 
using brain scans.  These brain scans will take pictures of your brain using magnetic resonance 
imaging (MRI) to test where an antidepressant, called citalopram, works in the brain.  This study 
will also examine genetic (inherited) differences in areas of the brain associated with mood and 
feeling. 
 
Who is being asked to participate in this research study? 
 
You are being asked to participate in this study because you are a healthy man between the ages 
of 18 and 60 years.  If you choose not participate in this study, your participation in previous 
research studies will not be affected.  This study is being performed on 16 men.  
 
What will my participation in this research study involve? 
 
If you decide to participate in this study, you will undergo the following research procedures that 
are not part of your standard medical care. 

Screening Procedures 
Procedures used to determine whether or not you are eligible to participate in a research study 
are called “screening procedures.”  For this research study, you will undergo the following 
screening procedures at the General Clinical Research Center (GCRC) at UPMC Montefiore 
Hospital. 
 
A study psychiatrist or a study clinician will perform a clinical evaluation using a structured 
research assessment.  You will be asked to provide information regarding any past or present 
psychiatric symptoms you are having, drug and alcohol use, any significant past or present 
medical illnesses, and any medications you have been taking (including all over-the-counter and 
alternative prescriptions).  You will also be asked to complete the Beck Depression Inventory 
(BDI), which is a questionnaire about your feelings and emotions.  This questionnaire is used to 
evaluate the symptoms of depression.  The psychiatric evaluation will last up to one hour. 
 
A physical exam will be performed, which will last approximately one hour.  You will have an 
electrocardiogram (ECG), which is a test used to evaluate the rhythm and electrical activity of 
the heart, to make sure you don’t have any problems with your heart. If a clinically significant, 
unexpected disease or condition is uncovered during these screening procedures, the research 
staff will refer you for appropriate follow-up care.  This condition may or may not affect your 
participation in this study.  If you have an abnormal ECG you will not be permitted to continue 
in the study.   
 
Approximately two (2) teaspoons of blood will be drawn from a vein in your arm for routine 
laboratory tests, for example to examine your blood counts (number of red blood cells), by a 
trained nurse.  Your blood sample will also be used to see whether variation in certain genes (e.g. 
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inherited traits) may explain the differences in response to the study drug.  You will provide a 
urine sample to be tested for drugs of abuse.  All screening procedures including the physical 
exam, blood and urine samples, and the interview will take approximately two hours. 

Experimental Procedures:   
If you are eligible and agree to participate in this study, you will undergo the experimental 
procedures described below.  You will complete two study visits separated by at least two weeks.  
You can expect to spend approximately 8 hours total completing the procedures (taking into 
account breaks, wait times etc.). 
 
You will not take any over-the-counter, prescription medications, or grapefruit juice, for one 
week prior to the start of each study day or during the study day without the knowledge of the 
study investigators.  You will not have any beverages that contain alcohol or caffeine for 48 
hours before each treatment day.  Examples of caffeine containing beverages include coffee, tea, 
colas (e.g. Pepsi and Coke), and Mountain Dew. 
 
You will be admitted to the GCRC on the morning of each study visit.  You will have an ECG 
and a nurse will take your blood pressure and pulse.  You will be asked to complete the BDI 
questionnaire about your feelings and emotions.  You will give a urine sample to screen for the 
use of street drugs.  A positive test result for either cocaine or heroin will end your participation 
in the study.  A trained nurse will place a plastic tube in a vein in each of your arms so that the 
study drug or placebo can be infused during the study and to get blood samples during the study.  
If you are uncertain about whether or not you have metal fragments in your body, you will be 
asked to undergo an X-ray of that area of your body to be certain that such metal fragments are 
not present before you undergo the MRI scan.  You will be asked to sign a separate consent form 
for this X-ray study. 
 
You will be taken to the Magnetic Resonance Research Center (MRRC) at the UPMC 
Presbyterian University Hospital, B-Wing on the 8th floor.  You will complete a safety 
questionnaire, which will be reviewed with the MRRC staff.  A magnetic resonance imaging 
(MRI) system will be used to make an image of your brain. The MRI will take place at the 
MRRC.  MRI is widely used in routine clinical practice.  MRI works on the principle of 
magnetism in atoms.  The MRI device uses a strong magnet and radiowaves to obtain a picture 
of the brain anatomy.  Because of the powerful magnet, you will be instructed to remove all 
jewelry and other metal-containing objects before entering the scan room.  In the scan room you 
will lie on a narrow bed with a plastic-encased metal coil close to your head.  The bed slides into 
a small tunnel about 6 feet long. During the scan you may hear loud, knocking or banging 
sounds.  You will be in the tunnel for about one hour.  You will be asked to lie very still during 
the scan.  While in the tunnel, you will perform tasks, which involves looking at shapes and faces 
and pressing a button with your index finger.  The technician running the MRI scan will be able 
to hear you at all times.  If you need to stop you can simply say so and the scan will be stopped. 
 
During the MRI, you will receive an infusion of either placebo (normal saline solution) or the 
drug citalopram (20 mg) through the tube in the vein of one of your arms.  In the pill form, 
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citalopram (Celexa®) is approved by the U.S. Food and Drug Administration (FDA) for the 
treatment of depression.  In intravenous (IV) form, citalopram is an “investigational” drug.  This 
means that the IV form is not approved for general use by the FDA.  Citalopram stimulates the 
function of serotonin (a naturally occurring chemical in the brain) and the release of hormones 
into the blood, such as prolactin.  Hormone levels in the blood after taking citalopram are 
thought to be related to the amount of serotonin in the brain.  
 
Small amounts of blood will be taken through the tube in the vein of your other arm at multiples 
times throughout the scan to measure drug and hormone (prolactin and cortisol) levels.  Because 
they are taken through the tube in your vein, they do not require additional needle sticks.  These 
small amounts of blood will be taken six times during each scan.  After the scan, you will return 
to the GCRC to be monitored and you will be offered lunch.  Five more blood samples will be 
taken over approximately five hours.  After the last sample, the tubes will be removed from your 
arms.  A total of about 22 tablespoons of blood (less than a standard Red Cross blood donation) 
will be removed from your body during the screening visit and the two study visits.  
 
After each of the study days, prior to being discharged, you will have an ECG and a nurse will 
take your blood pressure and pulse.  You will complete the BDI questionnaire about your 
feelings and emotions, and another questionnaire about your physical feelings.  You will be 
asked the question, “Since you received the study medication, have you noticed anything 
unusual?”  During the week after each of the treatment days, you will receive a phone call from 
one of the study investigators and the same question will be asked.  You will also be asked to 
complete the questionnaires about your emotional and physical feelings over the phone.  We are 
asking you questions about your feelings and emotions to make sure you are not feeling 
depressed or having thoughts about suicide. 
 
The investigators of this study will have access to the data and blood samples that you provided 
as part of your participation in FIGS.  Your data from FIGS (e.g. questionnaires, laboratory tests, 
medical histories, assessments, etc.) will be combined in a database for use in this study.   
 
Your genetic sample will be stored in Dr. Robert Ferrell’s lab at the University of Pittsburgh, 
Graduate School of Public Health.  If you previously participated in FIGS or Neuroimaging 
Markers of Vulnerability to Depression studies, the investigators listed on the first page of this 
form will have access to the data and blood samples that were previously provided.  Your sample 
will be labeled by a study code, which will not contain any personal identifiers.  Access to the 
samples is strictly limited to Dr. Ferrell and his staff.  Ms. Bigos, the Principal Investigator (PI) 
of this study, will assume overall responsibility for the samples.   You may request that your 
sample be destroyed.  To do so, you must send your request in writing to Ms. Bigos at the 
address listed on the front page of this form.  Your sample will be used for the analysis of genetic 
(inherited) differences in areas of the brain associated with mood and feeling.  At this time, the 
genetic testing to be conducted cannot yet be interpreted or applied to determine ways to prevent 
or treat mood or anxiety disorders.  Therefore, the results of the genetic analyses will not be 
provided to you, nor will they be placed in your medical record.   
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Your research records and any information resulting from the analysis of your genetic material 
will be stored in the computerized database and identified by a study code.   A master list linking 
you code number with your name will be kept in a secured and locked location separate from this 
information.  Hard copies of your research records will be kept in locked filing cabinets in 
locked offices.   
 
The use of your research records, biological sample and genetic material will be under control of 
the Principal Investigator (PI) of this research project, Kristin Bigos.  Ms. Bigos may release 
your research records, biological sample or genetic material to other qualified investigators for 
other studies related to mood and/or anxiety disorders.  These items will be always provided in 
de-identified form, i.e. with all personal identifiers removed (e.g. name, social security number, 
birth date, etc.).   
 
What are the possible risks, side effects, and discomforts of this study? 
 
As with any experimental procedure, there may be adverse events or side effects that are 
currently unknown, and certain of these unknown risks could be permanent, severe, or life-
threatening. 
 
RISKS OF THE STUDY DRUG 
 
Citalopram is widely used in the U.S. and other countries to treat depression and generally 
causes few problems.  No serious or life-threatening side effects have been reported during the 
use of IV citalopram.  Based upon our experience to date with these procedures, we expect that 
you may experience the following side effects during the test:  
 

Likely adverse events (more than 25%, or more than 25 out of 100 persons): 
lightheadedness, and feeling tired. 

Common adverse events (10% to 25%, or from 10 to 25 out of 100 persons): nausea, loss 
of appetite, difficulty concentrating, low energy/fatigue, and headache.   

Infrequent adverse events (1% to 10%, or from 1 to 10 out of 100 persons): vomiting, 
shaky, heart racing, sweating, dry mouth, and hungry. 

Rare adverse events (<1%, or less than 1 in 100 persons): diarrhea, discomfort in the 
chest, ECG (electrocardiogram) changes, stiff neck, and increase in blood pressure. 

 
A physician and emergency drugs and equipment will be readily available should you experience 
any adverse reactions from administration of the study drug.  When they occur, these side effects 
usually last 30 to 90 minutes and usually resolve by the end of the appointment.  Citalopram can 
also cause symptoms during the next 24 hours.  These side effects can last for several hours and 
include: 
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Likely adverse events (more than 25%, or more than 25 out of 100 persons): none. 

Common adverse events (10% to 25% or from 10 to 25 out of 100 persons): 
lightheadedness, nausea, diarrhea, loss of appetite, difficulty concentrating, low 
energy/fatigue, and headache. 

Infrequent adverse events (1% to 10% or from 1 to 10 out of 100 persons): dry mouth, 
shaky, trouble sleeping, heart racing, short-tempered, and sweating.  

Rare adverse events (<1%, or less than 1 in 100 persons): none. 
 

If at any time you have a question about the study, please call the principal investigator, Kristin 
Bigos, at 412-480-3933.  After leaving the hospital, if you feel sick, or experience any of the 
above side effects, Dr. Aizenstein can be reached at 412-867-8121 (24-hour emergency number).  
Recently the risk of suicide has been suggested to be associated with chronic use of 
antidepressants.  It is possible, however unlikely, that a single dose of IV citalopram will cause 
you to become depressed or suicidal.  If you become sad or depressed, or have thoughts of 
suicide, please call Dr. Aizenstein at the number listed above.  If you become depressed, you will 
be removed from the study and referred to a psychiatrist.  If at any time, you have thoughts of 
suicide, you will be referred to the emergency department at Western Psychiatric Institute and 
Clinic.   
 
RISKS OF THE MRI 
 
There are risks associated with exposure of magnetic waves during MR imaging in a 1.5T 
scanner. There is a potential risk of heart rhythm disturbances in patients who have previous 
heart rhythm abnormalities or in patients who have certain types of heart pacemakers.    There is 
the potential risk related to the machine itself attracting metal.  Therefore, if you have metal 
within your body (e.g. pacemakers) you will be excluded from the study.  Subjects with dental 
fillings can be studied without risks.  Some people become claustrophobic (highly fearful of the 
small space) while in the scanning machine.  People with claustrophobia may find this procedure 
uncomfortable as it involves having one's head confined to a relatively small space.  If you 
experience such a sensation, the staff will stop the procedure immediately and quickly remove 
you from the scanner.  You may experience muscle aches and fatigue from lying still for the 
MRI scan. 
 
RISKS OF THE BLOOD TESTS 
 
There are risks associated with needle insertion for catheter (small plastic tube) placement and 
blood draws and blood loss. There is a rare [occurs in less than 1% of people (less than 1 out of 
100 people)] risk of infection associated with catheter placement in your vein.  Common side 
effects [occurs in 1% to 25% of people (1 to 25 out of 100 people)] include bruising, mild 
bleeding, or soreness, similar to the effects of any type of needle insertion.  Blood loss can result 
in a temporary feeling of lightheadedness or dizziness. There is no risk of anemia in a healthy 
person with the amounts of blood drawn in this study.  Drinking fluids is encouraged after the 
study to help replace fluid lost due to blood draws, and your body should replace the blood lost 
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over a few days following the study.  There is a rare risk [occurs in less than 1% of people (less 
than 1 out of 100 people)] of fainting due to the blood draws. 
 
RISKS OF GENETIC TESTING 
 
There is a possible risk that if the results of the research studies involving genetic material were 
to become generally known, this information could impact future insurability, employability, 
reproductive plans, or have a negative impact on family relationships. 
 
OTHER RISKS 
 
Some of the questions in the initial interviews may be painful or uncomfortable for you to 
answer, and you may refuse to answer any specific questions or to discontinue the interview at 
any time. 
 
There is a potential for a breach of confidentiality, which could impact future insurability, 
employability, or reproductive plans, or could have a negative impact on family relationships, 
and/or result in paternity suits or stigmatization. 

      
What are the possible benefits of my participation in this research study? 
 
You will not receive any direct benefit as a result of your participation.   However, information 
obtained may improve our knowledge and treatment of mood and anxiety disorders and this 
knowledge may benefit patients with these disorders in the future.   
 
If I agree to take part in this research study, will I be told of any new risks that may be found 
during the course of the study? 
 
The personal results of this research study will not be provided to you because the data cannot 
yet be interpreted or applied in a clinically relevant or meaningful manner.  You will be promptly 
notified if, during the course of this research study, any new information develops, which may 
cause you to change your mind about continuing to participate. 

 
Will I or my insurance provider be charged for my participation in this research study? 
 
Neither you, nor your insurance provider, will be charged for the costs of any of the procedures 
performed for the purpose of this research study (i.e., the Screening Procedures or Experimental 
Procedures described above).  The study will pay for the research only costs. 

 
Will I be paid if I take part in this research study? 
 
You will receive up to $225 for completion of this study.  This includes $25 for completion of 
the screening procedures, and $100 for the completion of each of the two MRI study visits.  If 
you do not complete all of the study procedures, you will be paid only for those that you have 
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completed (e.g. if you complete screening procedures, but are not eligible for the study you will 
receive $25 total for your participation).  In addition, any parking fees related to your 
participation in this study will be paid for by the study. 
 
Who will pay if I am injured as a result of my participation in this research study? 
 
University of Pittsburgh researchers and their associates who provide services at the University 
of Pittsburgh Medical Center (UPMC) recognize the importance of your voluntary participation 
in their research studies.  These individuals and their staffs will make reasonable efforts to 
minimize, control, and treat injuries that may arise as a result of this research.  If you believe that 
you are injured as a result of the research procedures being performed, please contact 
immediately the Principal Investigator listed on the first page of this form.  
 
Emergency medical treatment for injuries solely and directly related to your participation in this 
research study will be provided to you by the hospitals of the UPMC.  It is possible that the 
UPMC may bill your insurance provider for the costs of this emergency treatment, but none of 
these costs will be charged directly to you.  If your research-related injury requires medical care 
beyond this emergency treatment, you will be responsible for the costs of this follow-up care 
unless otherwise specifically stated below. There is no plan for monetary compensation. You do 
not, however, waive any legal rights by signing this form. 
 
Who will know about my participation in this research study? 
 
Any information about you obtained from or for this research study will be kept as confidential 
(private) as possible.  Your biological samples will be stored in a secure laboratory in a locked 
freezer.  This sample will be labeled with a study code, not your name.  Your research records 
and any information resulting from the analysis of your genetic material will also be identified 
by your study code.    Your records will be stored in locked file cabinets and all data will be kept 
in properly secured computer databases.   A master list linking you study code number with your 
name will be kept in a secured and locked location separate from your sample and study data.    
You will not be identified by name in any publication of the research results unless you sign a 
separate consent form giving your permission (release). 
 
Will this research involve the use or disclosure of my medical record information? 
 
This research study will not involve the recording of current and/or future identifiable 
information from your hospital and/or physician’s office records. 
 
Who will have access to my identifiable information related to my participation in this 
research study? 
 
In addition to the investigators listed on the first page of this authorization (consent) form and 
their research staff, the following individuals will or may have access to identifiable information 
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(which may include your identifiable medical record information) related to your participation in 
this research study:    
 
Authorized representatives of the University of Pittsburgh Research Conduct and Compliance 
Office may review your identifiable research information (which may include your identifiable 
medical record information) for the purpose of monitoring the appropriate conduct of this 
research study.  
 
In unusual cases, the investigators may be required to release identifiable information (which 
may include your identifiable medical record information) related to your participation in this 
research study in response to an order from a court of law.  If the investigators learn that you or 
someone with whom you are involved is in serious danger or potential harm, they will need to 
inform, as required by Pennsylvania law, the appropriate agencies (e.g. Allegheny County Office 
of Children Youth and Families, local authorities). 
 
Authorized representatives of the National Institute of Mental Health (NIMH) may review and/or 
obtain identifiable information (which may include your identifiable medical record information) 
related to your participation in this research study for the purpose of monitoring the accuracy of 
the research data.  While the NIMH understands the importance of maintaining the 
confidentiality of your identifiable research and medical record information, the University of 
Pittsburgh and UPMC cannot guarantee the confidentiality of this information after it has been 
obtained by the NIMH. 
 
Authorized representatives of the U.S. Food and Drug Administration may review and/or obtain 
identifiable information (which may include your identifiable medical record information) 
related to your participation for regulatory oversight of the radiotracers used in this research 
study.  While the U.S. Food and Drug Administration understands the importance of maintaining 
the confidentiality of your identifiable research and medical record information, the University 
of Pittsburgh and UPMC cannot guarantee the confidentiality of this information after it has been 
obtained by the U.S. Food and Drug Administration. 
 
Authorized representatives of UPMC hospitals or other affiliated health care providers may have 
access to identifiable information (which may include your identifiable medical record 
information) related to your participation in this research study for the purpose of (1) fulfilling 
orders, made by the investigators, for hospital and health care services (e.g., laboratory tests, 
diagnostic procedures) associated with research study participation; (2) addressing correct 
payment for tests and procedures ordered by the investigators; and/or (3) for internal hospital 
operations (i.e. quality assurance). 
 
For how long will the investigators be permitted to use and disclose identifiable information 
related to my participation in this research study? 
 
The investigators may continue to use and disclose, for the purposes described above, 
identifiable information (which may include your identifiable medical information) related to 
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your participation in this research study indefinitely.  Per University policy, researchers are 
required to maintain research records for a period of at least at least five (5) years, after which 
these records may be destroyed. 
 
May I have access to my medical record information that results from my participation in this 
research study?   
 
This research study will result in identifiable information that will be placed into your medical 
records held at the University of Pittsburgh Medical Center.  The nature of the identifiable 
information resulting from your participation in this research study that will be recorded in your 
medical record includes only laboratory tests from the screening visit. 
 
Is my participation in this research study voluntary? 
 
Your participation in this research study to include the use and disclosure of your identifiable 
information for the purposes described above, is completely voluntary.  (Note, however, that if 
you do not provide your consent for the use and disclosure of your identifiable information for 
the purposes described above, you will not be allowed, in general, to participate in the research 
study.)  Whether or not you provide your consent for participation in this research study will 
have no effect on your current or future relationship with the University of Pittsburgh.  Whether 
or not you provide your consent for participation in this research study will have no effect on 
your current or future medical care at a UPMC hospital or affiliated health care provider or your 
current or future relationship with a health care insurance provider. 
 
May I withdraw, at a future date, my consent for participation in this research study? 
 
You may withdraw, at any time, your consent for participation in this research study, to include 
the use and disclosure of your identifiable information for the purposes described above.  (Note, 
however, that if you withdraw your consent for the use and disclosure of your identifiable 
information for the purposes described above, you will also be withdrawn, in general, from 
further participation in this research study.)  Any identifiable research or medical record 
information recorded for, or resulting from, your participation in this research study prior to the 
date that you formally withdrew your consent may continue to be used and disclosed by the 
investigators for the purposes described above. 
 
To formally withdraw your consent for participation in this research study you should provide a 
written and dated notice of this decision to the principal investigator of this research study at the 
address listed on the first page of this form. 
 
Your decision to withdraw your consent for participation in this research study will have no 
effect on your current or future relationship with the University of Pittsburgh.  Your decision to 
withdraw your consent for participation in this research study will have no effect on your current 
or future medical care at a UPMC hospital or affiliated health care provider or your current or 
future relationship with a health care insurance provider. 
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****************************************************************************** 
 
VOLUNTARY CONSENT  
 
All of the above has been explained to me and all of my current questions have been answered.  I 
understand that I am encouraged to ask questions about any aspect of this research study during 
the course of the study, and that such future questions will be answered by the researchers listed 
on the first page of this form. Any questions I have about my rights as a research participant will 
be answered by the Human Subject Protection Advocate at the University of Pittsburgh IRB 
Office (1-866-212-2668).   
 
By signing this form, I agree to participate in this research study.  A copy of this consent form 
will be given to me. 
 
   
Participant’s Name (print) 
 
__________________________________  __________________ 
Participant’s Signature    Date/Time 
 
****************************************************************************** 
 
CERTIFICATION OF INFORMED CONSENT  
 
I certify that I have explained the nature and purpose of this research study to the above-named 
individual(s), and I have discussed the potential benefits and possible risks of study participation.  
Any questions the individual(s) have about this study have been answered, and we will always be 
available to address future questions as they arise.   
 
___________________________________  ____________________ 
Physician Investigator’s Signature   Date/Time 
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Institutional Review Board 
IRB # 0507026 
 

 
ADDENDUM CONSENT FORM: ADDITIONAL X-RAY EXAM FOR MRI STUDY 

 
Title: Pharmacodynamics of IV Citalopram Using Functional MRI  
 
Principal Investigator: Kristin L. Bigos, B.S.     
    Doctoral Candidate, Department of Pharmaceutical Sciences  
    University of Pittsburgh School of Pharmacy 
    806 Salk Hall, 3501 Terrace Street, Pittsburgh, PA  15261 
    (412) 648-9436 
 
Co-Investigators:  
Bruce G. Pollock, M.D., Ph.D.   
Professor of Psychiatry, Pharmacology,    
and Pharmaceutical Sciences 
University of Pittsburgh School of Medicine  
E833 WPIC, 3811 O’Hara Street  
Pittsburgh, PA  15213 
(412) 246-6274 
 
Robert R. Bies, Pharm.D., Ph.D. 
Assistant Professor of Pharmaceutical 
Sciences and Psychiatry 
University of Pittsburgh School of 
Pharmacy  
805 Salk Hall, 3501 Terrace Street  
Pittsburgh, PA  15261 
(412) 648-8430 
 
Howard J. Aizenstein, M.D., Ph.D. 
Assistant Professor of Psychiatry 
University of Pittsburgh School of Medicine 
E721 WPIC, 3811 O’Hara Street  
Pittsburgh, PA  15213 
(412) 586-9237 

 
Robert R. Ferrell, Ph.D. 
Professor of Human Genetics 
University of Pittsburgh  
Graduate School of Public Health  
A304 Crabtree Hall, 130 DeSoto Street 
Pittsburgh, PA  15261  
(412) 624-3018 
 
Ahmad R. Hariri, Ph.D. 
Assistant Professor of Psychiatry  
University of Pittsburgh School of Medicine 
E729 WPIC, 3811 O’Hara Street 
Pittsburgh, PA  15213 
(412) 246-5879 
 
 
 
 
 
 
 
 
 

 
Source of Support: National Institute of Mental Health (NIMH) MH65416 and MH076420 
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DESCRIPTION 
 
You have consented to participate in a research study entitled “Pharmacodynamics of IV 
Citalopram using Functional MRI.”  As addressed in the consent form for this research study, 
you have agreed to undergo a brain imaging procedure called Magnetic Resonance Imaging 
(MRI).  The MRI device uses a strong magnet to obtain a picture of the brain.  Because of the 
powerful magnet, metal objects within your body could move, and this movement could result in 
your injury.  Based on the medical or occupational history that you have provided, there is a 
possibility that some foreign metal object(s) may be present in your body or around your eyes.  
In order to determine whether any foreign metal exists within your body, you will need to have 
an additional X-ray exam prior to receiving the MRI study. 
 
The additional X-ray exam involves exposure to radiation.  The maximum amount of radiation 
exposure that you will receive from the additional X-ray exam is approximately 0.3 rem (a unit 
of radiation exposure) to the area of the body evaluated with minimal exposure of other areas of 
your body.  For comparison, the amount of radiation exposure you will receive from this X-ray 
exam is a small fraction (about 1-2 %) of the annual radiation exposure (20 rems) permitted to 
the most sensitive organs of radiation workers by federal regulations.  There is no minimal level 
of radiation exposure that is recognized as being totally free of the risk of causing genetic 
mutations (abnormal cells) or cancer.  However, the risk associated with the amount of radiation 
exposure that you will receive from this additional X-ray exam is considered to be low and 
comparable to everyday risks. 
 
COSTS AND PAYMENTS 
 
There are no costs related to participation in the additional X-ray exam.  You will not be paid to 
participate in the additional X-ray exam.  
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***************************************************************************** 
 
I understand that, in order for me to have the MRI study and continue to participate in the main 
research study, I will need to have the additional X-ray exam.  I understand that I may refuse to 
participate in the additional X-ray exam, which will also result in my withdrawal from the main 
research study.  As addressed in the consent form for the main research study, I understand that 
such refusal to participate in the additional X-ray exam will have no effect on my current or 
future medical care or any other benefits to which I am otherwise entitled. 
 
VOLUNTARY CONSENT 
 
I certify that I have read the proceeding, or it has been read to me, and I understand its contents.  
Any questions that I have pertaining to this additional X-ray exam and/or the main research 
study have been, and will continue to be, answered by the investigators listed on the first page of 
the consent form for the main research study at the telephone numbers given.  Any questions I 
have about my rights as a research participant will be answered by the Human Subject Protection 
Advocate at the University of Pittsburgh IRB Office (866-212-2668).   
 
By signing this form, I agree to participate in this additional X-ray exam.  A copy of this signed 
addendum will be given to me. 
 
 
   
Participant’s Name (print) 
 
 
__________________________________  __________________ 
Participant’s Signature    Date/Time 
 
CERTIFICATION OF INFORMED CONSENT 
 
I certify that I have explained the nature and purpose of this additional X-ray exam to the above-
named individual(s), and I have discussed the potential benefits and possible risks of study 
participation.  Any questions the individual(s) have about this additional X-ray exam have been 
answered, and we will always be available to address future questions as they arise. 
 
 
___________________________________  ____________________ 
Physician Investigator’s Signature   Date/Time
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APPENDIX C 
 
 

Pharmacodynamics of IV Citalopram Using Functional MRI 
Flowsheet 



 

PHARMACODYNAMICS OF IV CITALOPRAM USING FUNCTIONAL MRI 

IRB #0507026 
Principal investigator:  Kristin L. Bigos 

 
Subject Number:  ____________  Study Visit:  _____________  Date:  _____________ 

INITIAL AND RECORD ACTUAL TIME IN ALL BLANK AREAS 
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Protocol 
Time 

Clock 
Time 

Drug/Placebo 
Infusion 

MRI Blood Samples 
Record actual clock time 

Monitoring Vitals 

 Admission          
 Subject admitted to GCRC.  Collect urine for drug screen_______
 No drugs or GF juice for 1 wk.  No EtOH or caffeine for 48 h____ 
 Insert IV catheters in each forearm_______ 

ECG_______ 
BDI________ 

BP_________ 
HR_________ 

  Subject escorted to the MRRC.  Negative drug screen_________ MR safety___  

-23 min    Structural scan    

-8 min    FACES 1    

 
10 ml purple top___________
  5 ml red top _____________

0 min   Start infusion   

1 min    TAP    

6 min    10 ml purple top___________   

7 min    FACES 2    

 
10 ml purple top___________
  5 ml red top _____________

15 min     

16 min    TAP    

21 min    10 ml purple top___________   

22 min    FACES 3    

 
10 ml purple top___________
  5 ml red top _____________

30 min   Stop infusion   

31 min    TAP    

 
10 ml purple top___________  

BP_________ 
HR_________ 

36 min   

 10 ml purple top___________
  5 ml red top _____________

45 min     

 
10 ml purple top___________
  5 ml red top _____________

60 min     

  Subject escorted back to GCRC and served LUNCH ___________ 

 
10 ml purple top___________
  5 ml red top _____________

90 min     

 
10 ml purple top___________
  5 ml red top _____________

150 min     

 10 ml purple top___________
ECG_______ 
BDI________ 
CSC_______ 

BP_________ 
HR_________ 

360 min   



 

 
 
 
 
 
 
 
 
 

APPENDIX D 
 

Citalopram Symptom Checklist 
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                                   Citalopram Symptom Checklist 
 

SN _____________       Date ___________ 
 
 

 
 

Since the last questionnaire: 
 
 

 
 

 
Not at all 

 
A little 

 
Some 

 
A lot 

 
1.  Loss of appetite 

 
 

 
0 

 
1 

 
2 

 
3 

 
2.  Tired 

 
 

 
0 

 
1 

 
2 

 
3 

 
3.  Lightheadedness / Feeling faint 

 
 

 
0 

 
1 

 
2 

 
3 

 
4.  Nausea 

 
 

 
0 

 
1 

 
2 

 
3 

 
5.  Vomiting 

 
 

 
NO 

 
YES 

 
6.  Headache 

 
 

 
0 

 
1 

 
2 

 
3 

 
7.  Tense / Nervous / On edge / Restless 

 
 

 
0 

 
1 

 
2 

 
3 

 
8.  Difficulty concentrating 

 
 

 
0 

 
1 

 
2 

 
3 

 
9.  Shaky / Tremors 

 
 

 
0 

 
1 

 
2 

 
3 

 
10. Heart racing 

 
 

 
0 

 
1 

 
2 

 
3 

 
11. Sweating 

 
 

 
0 

 
1 

 
2 

 
3 

 
12. Diarrhea 

 
 

 
0 

 
1 

 
2 

 
3 

 
13. Short tempered / Irritable 

 
 

 
0 

 
1 

 
2 

 
3 

 
14. Happy 

 
 

 
0 

 
1 

 
2 

 
3 

 
15. Energetic 

 
 

 
0 

 
1 

 
2 

 
3 

 
16. Low energy / Fatigued 

 
 

 
0 

 
1 

 
2 

 
3 

 
17. Dry mouth 

 
 

 
0 

 
1 

 
2 

 
3 

 
18. Other ______________________ 

 
 

 
0 

 
1 

 
2 

 
3 
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APPENDIX E 
 

Functional MRI Run Sheet
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PHARMACODYNAMICS OF IV CITALOPRAM USING FUNCTIONAL MRI 

Date ID Exam No. 

 
 SCANNING SEQUENCES FOR fMRI 

 
NB - Right and Left Glove Box are needed for the tap task.  For the faces task only the right glove box is needed. 
 
Series 1,2 3 – Localizers 
Plane Mode PSD TE TR FOV Slice/Gap #sli Matrix NEX Freq Dir Auto Shim Time 
Cor 
Ax Obl  
Sag Obl  

2D 
2D 
2D 

SE 
SE 
SE 

Min 
Min 
Min 

400 
400 
400 

24 X 24 
24 x 24 
24 x 24 

5/1 
5/1 
5/1 

16 
7 
7 

256 x 128 
256 x 128 
256 x 192 

1 
1 
1 

SI 
AP 
SI 

Y 00:57 
00:57 
00:57 

 
Series 4– In Plane Structural – position the 27th slice on the AC-PC line (11th from the bottom) 
Plane Mode PSD TE TR FOV Slice/Gap #sli Matrix NEX Freq Dir Auto Shim Time 
Ax Obl  2D SE MF 500 24 x 24 3.8/0 37 256 x 192 1 AP Y 3:28 

 
Series 5 – Coronal 3D SPGR 
Plane Mode PSD TE TR Flip FOV Slice/Gap #sli Matrix NEX Freq 

Dir 
Options Auto 

Shim 
Time

Coronal 3D SPGR 5 25 40 24 x 
18 

1.5 124 256 x 
192 

1 AP 3/4 
FOV 

Y 7:44 

 
For Faces Task remove 7 slices from the top and 2 slices from the bottom (9 slices total) of the in-plane structurals for 28 slices 
total. 
For the Tap Task remove 11 slices from the structural such that brain coverage is maximized. 
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Series 6 – Axial spiral fMRI – Faces #1 
Plane Mode PSD TE TR Flip FOV Slice/Gap #sli Matrix NEX Freq Dir Time 
Axial 2D splx91_1 35 2000 70 24 3.8/0 28 64 x 64 1 RL 6:34 

 
CV’s - # interleaves= 1,  #temporal frames= 195,  do field map= 1,  #disdaqs= 2,  recon size=64,  reverse spiral= 1  
3D acquisition= 0,  phase encodes for 3D= 1 

 
Series 7 – Forward spiral fMRI – Tap Task #1 
Plane Mode PSD TE TR Flip FOV Slice/Gap #sli Matrix NEX Freq Dir Time 
Ax Obl 2D splxcnv4_1 35 2000 70 24 3.8/0 26 64 x 64 1 RL 6:30 

 
CV’s - # interleaves= 1,  #temporal frames= 193,  do field map= 1,  #disdaqs= 2,  recon size=64,  reverse spiral= 0  
3D acquisition= 0,  phase encodes for 3D= 1 
 
Series 8 – Axial spiral fMRI  - Faces #2 
Plane Mode PSD TE TR Flip FOV Slice/Gap #sli Matrix NEX Freq Dir Time 
Axial 2D splx91_1 35 2000 70 24 3.8/0 28 64 x 64 1 RL 6:34 

 
CV’s - # interleaves= 1,  #temporal frames= 195  do field map= 1,  #disdaqs= 2,  recon size=64,  reverse spiral= 1  
3D acquisition= 0,  phase encodes for 3D= 1 
 
Series 9 – Forward spiral fMRI – Tap Task #2 
Plane Mode PSD TE TR Flip FOV Slice/Gap #sli Matrix NEX Freq Dir Time 
Ax Obl 2D splxcnv4_1 35 2000 70 24 3.8/0 26 64 x 64 1 RL 6:30 

 
CV’s - # interleaves= 1,  #temporal frames= 193,  do field map= 1,  #disdaqs= 2,  recon size=64,  reverse spiral= 0  
3D acquisition= 0,  phase encodes for 3D= 1 
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Series 10 – Axial spiral fMRI  - Faces #3 
Plane Mode PSD TE TR Flip FOV Slice/Gap #sli Matrix NEX Freq Dir Time 
Axial 2D splx91_1 35 2000 70 24 3.8/0 28 64 x 64 1 RL (1) 6:34 

 
CV’s - # interleaves= 1,  #temporal frames= 195,  do field map= 1,  #disdaqs= 2,  recon size=64,  reverse spiral= 1  
3D acquisition= 0,  phase encodes for 3D= 1 
 
Series 11 – Forward spiral fMRI – Tap Task #3 
Plane Mode PSD TE TR Flip FOV Slice/Gap #sli Matrix NEX Freq Dir Time 
Ax Obl 2D splxcnv4_1 35 2000 70 24 3.8/0 26 64 x 64 1 RL 6:30 

 
CV’s - # interleaves= 1,  #temporal frames= 193,  do field map= 1,  #disdaqs= 2,  recon size=64,  reverse spiral= 0  
3D acquisition= 0,  phase encodes for 3D= 1 
 
 
Comments: 
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