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 Parkinson's disease (PD) neurodegeneration of the dopaminergic cells of the substantia 

nigra has been linked to various types of cellular injury, including oxidative stress, mitochondrial 

dysfunction, and dysfunction of the ubiquitin proteasome system.  Multiple genetic mutations 

and high prevalence of idiopathic disease conceals the unifying mechanism for PD.  Given the 

selective vulnerability of dopaminergic cells, dopamine (DA) may play a major role in PD 

pathogenesis.  DA metabolism and oxidation into DA quinone (DAQ) leads to the production of 

reactive oxygen species.  In addition, DAQ can react with reduced sulfhydryls, covalently 

modifying cysteine residues.  DAQ modification of free cysteines, glutathione, and cysteines in 

proteins could result in decreased antioxidant capacity and inactivation and/or misfolding of 

proteins.   In this study, I measured the effect of DA treatment in differentiated PC12 cells, and 

found that DA exposure was toxic, lead to increased DAQ modified free cysteines, glutathione, 

and cysteines in proteins, and decreased ATP levels.  I also demonstrated that metabolism of DA 

by monoamine oxidase did not influence DA-induced toxicity, but that DA uptake by the 

dopamine transporter was necessary for DA-induced cell death.  Further, I demonstrated that 

activation of endoplasmic stress (ER) also occurred following DA exposure, with increases in 

ER chaperone proteins calreticulin, ERp29, ERp99, Grp58, Grp78, Grp94, and Orp150.  

Decreased mitochondrial levels of the glycolytic enzyme aldolase A and increased levels of 
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whole cell aldolase A were also observed following DA exposure, suggesting that DA may affect 

ATP levels by altering energy-related proteins.  Finally, to determine the role of DA oxidation in 

the rotenone model of PD, I used the mitochondrial complex I inhibitor in DA depleted cells.  I 

found no protection with DA depletion, but significant increases in rotenone toxicity when co-

treated with methamphetamine, which leads to the cytoplasmic release of DA. Since I used sub-

toxic levels of methamphetamine, this data suggests that the increased levels of DA oxidation 

lead to potentiation of rotenone-induced toxicity.  Therefore, in this thesis I show that DA 

oxidation is linked to oxidative stress, ER stress activation, and mitochondrial dysfunction, and 

thus may play a role in the pathogenesis of PD.  
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1.0  INTRODUCTION 

1.1 PARKINSON’S DISEASE  

1.1.1 Pathology, Clinical Features, and Epidemiology  

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the loss of 

pigmented dopaminergic neurons in the substantia nigra pars compacta (SNpc), the loss of SNpc 

projections to the caudate and putamen, as well as the formation of proteinaceous cytoplasmic 

inclusions called Lewy bodies (Lang and Lozano, 1998; Samii et al., 2004).  Significant damage 

to the nigrostriatal system, including the loss of 80% of striatal dopamine (DA) and 50% of 

nigral neurons, occurs before the clinical symptoms of PD typically manifest (Samii et al., 2004).  

Symptoms associated with PD include a range of movement disorders such as postural and gait 

deficits, bradykinesia, rigidity, and resting tremor.  However, autonomic dysfunction, sensory 

disturbances, and cognitive symptoms, including depression and occasionally dementia, are also 

prevalent in PD (Samii et al., 2004).  This debilitating disorder afflicts approximately one million 

North Americans, with a prevalence of 1% in people age 60 and older (Lang and Lozano, 1998; 

Twelves et al., 2003; Samii et al., 2004; Lester and Otero-Siliceo, 2006).  Despite years of study, 

the cause of the degeneration in most cases of PD remains unknown.  A number of genes have 

been identified in connection with rare familial forms of PD, providing insights to the potential 
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mechanisms of the disease.  However, 85-90% of PD cases are considered sporadic (Nussbaum 

and Polymeropoulos, 1997; Bajaj et al., 1998; Gasser, 2001), with little understanding of the 

underlying causes of neurodegeneration.   

1.1.2 Idiopathic Disease  

Most cases of idiopathic and familial PD have similar pathological hallmarks, suggesting 

that both forms of the disease have a common biological pathway (Gandhi and Wood, 2005).  

Although PD cases are primarily idiopathic; several environmental and genetic predispositions 

are thought to contribute to disease pathogenesis, including pesticide exposure, well water 

exposure, heavy metal exposure, dietary factors, and polymorphisms in monoamine oxidase-A 

(MAO-A), monoamine oxidase-B (MAO-B), the dopamine transporter (DAT), tyrosine 

hydroxylase (TH), the D2 receptor, the D3 receptor, and the D4 receptor (Gorell et al., 1997; 

Bandmann et al., 1998; Marsden and Olanow, 1998; Anderson et al., 1999b; Gandhi and Wood, 

2005; Benmoyal-Segal and Soreq, 2006; Lester and Otero-Siliceo, 2006).  Thus, finding 

common underlying mechanisms between both idiopathic and inheritable forms of PD is 

necessary for understanding the disease and for the development of new therapeutics. 

1.1.3 Genetic Disease 

 Only a small percent of PD is attributed to inheritable genetic mutations, and this makes 

up 20% of early onset PD and 1-3% of late-onset PD (Farrer, 2006; Lorincz, 2006).  There are 

currently 9 genes linked to PD, 7 of which follow Mendelian inheritance, and 2 (PARK10 and 

PARK11) that are gene loci associated with PD susceptibility (Lester and Otero-Siliceo, 2006).  
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The protein products of 6 of these genes have been identified.  These proteins include α-

synuclein, parkin, ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1), PTEN induced putative 

kinase 1 (PINK1), DJ-1, and leucine-rich repeat kinase 2 (LRRK2).   Mutations in a few of these 

proteins link PD pathogenesis to protein aggregation and dysfunction of the ubiquitin proteasome 

system (UPS), and many proteins are linked to mitochondria. 

1.1.4 Alpha-synuclein 

There are three confirmed mutations in the Park1 gene for α-synuclein, resulting in the 

protein amino acid substitutions A53T, A30P, and E36K, and duplication or triplication of the 

gene is also linked to PD (Hardy et al., 2006; Klein and Schlossmacher, 2006; Lester and Otero-

Siliceo, 2006).  Although the primary function of α-synuclein is not known, it has been shown to 

bind to lipids, be involved in vesicle function, have possible chaperone capabilities, and affect 

DA synthesis (Perez and Hastings, 2004; Hardy et al., 2006).  The most obvious link between α-

synuclein and PD is that α-synuclein is one of the main components of Lewy bodies, regardless 

of whether PD was sporadic or inherited.  In addition, mutant forms of α-synuclein increase 

sensitivity to PD-linked toxins.  Over-expression of mutant α-synuclein increases the sensitivity 

of cells to 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP), 6-hydroxydopamine (6-

OHDA), ubiquitin proteasome dysfunction-induced apoptosis, and mitochondria-dependent 

apoptosis (Tanaka et al., 2001; Sun et al., 2005; Zhou et al., 2006b).  Also, rotenone treatment 

can lead to α-synuclein accumulations in vivo and in vitro (Betarbet et al., 2000; Sherer et al., 

2002; Sherer et al., 2003c; Testa et al., 2005; Betarbet et al., 2006).  Additionally, the UPS and 

other cellular pathways may be affected by α-synuclein, since it is known to interact with 
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numerous proteins and can aggregate, even in its non-mutant form (Ghee et al., 2000; Snyder et 

al., 2003).  

1.1.5 Parkin 

Parkin (Park2) is linked to early onset PD.  Parkin is an E3 ubiquitin ligase, which is 

thought to bind specific proteins to target them for degradation by the UPS (Moore et al., 2005; 

Hardy et al., 2006; Lester and Otero-Siliceo, 2006).  Patients with parkin-related PD differ from 

others with PD pathology, since they do not develop Lewy bodies.  In vitro studies of parkin 

have found multiple binding partners, including parkin-associated endothelin receptor-like 

receptor (Pael-R), an ER stress associated protein (Imai et al., 2001); synaptic proteins CDCrel-1 

(Zhang et al., 2000), synphilin-1 (Chung et al., 2001), and synaptotagmin XI (Huynh et al., 

2003); protein biosynthesis proteins, p38 subunit of the aminoacyl-tRNA synthetase complex 

(Corti et al. 2003) and the far upstream element (FUSE)-binding protein 1 (FBP1) (Ko et al., 

2006); proteins involved in inherited neurodegenerative diseases, polyglutamine (Tsai et al., 

2003) and O-glycosylated α-synuclein (Shimura et al., 2001); structural proteins α- and β- 

tubulin (Ren et al., 2003); DAT (Jiang et al., 2004); RanBP2, an E3 SUMO ligase (Um et al., 

2006); and cyclin E, an apoptosis and cell cycle regulation protein (Staropoli et al., 2003).   How 

parkin confers neuroprotection to DA neurons remains unanswered, but recent studies have 

linked parkin to mitochondrial function and to another inheritance-linked PD protein, PINK1 

(Yang et al., 2005; Clark et al., 2006; Park et al., 2006).  Also, oxidative modification of parkin 

by nitric oxide (NO) and dopamine quinone (DAQ) have been found in in vitro studies and in 

human brain (LaVoie et al., 2005; Klein and Schlossmacher, 2006).  Thus deficiencies in parkin 

could also occur in idiopathic PD due to oxidative modifications. 
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1.1.6 UCH-L1 

An autosomal dominant form of PD can be inherited from an ubiquitin carboxyl-terminal 

hydrolase L1 (UCH-L1; Park5) mutation.  UCH-L1 is a very abundant protein; its mRNA is 

found throughout the brain with especially high expression in the DAergic neurons of the SN 

(Solano et al., 2000).  UCH-L1 hydrolyzes polyubiquitin chains into monomeric ubiquitin, aiding 

in the recycling of ubiquitin for the proteasome (Wilkinson et al., 1989).  The UCH-L1 mutation 

leads to decreased activity (approximately 50%), which would limit the availability of free 

ubiquitin for normal protein clearance (Betarbet et al., 2005; Barrachina et al., 2006).  UCH-L1 

has been shown in vitro to have an additional function as an ubiquityl ligase, but whether this 

additional function occurs in vivo has yet to be determined (Liu et al., 2002).  Decreased levels of 

UCH-L1 have been observed in vitro following oxygen-glucose deprivation and iron-dependent 

oxidation (Drake et al., 2002; Shen et al., 2006), and have been observed in vivo after 

administration of DAergic toxins, including methamphetamine and MPTP (Kuhn et al., 2003; 

Liao et al., 2005; Iwazaki et al., 2006).  Additionally, UCH-L1 has been identified as a 

component of Lewy bodies and has also been found to be down-regulated and oxidized in brain 

tissue from sporadic PD patients, and thus may also be involved in idiopathic mechanisms of PD 

degeneration (Solano et al., 2000; Nishikawa et al., 2003; Choi et al., 2004; Barrachina et al., 

2006).  
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1.1.7 PINK1 

PTEN induced putative kinase 1 (PINK1, Park6) is a nuclear encoded mitochondrial 

serine/threonine kinase related to autosomal-recessive early-onset PD (Greenamyre and 

Hastings, 2004; Hardy et al., 2006).  PINK1 has also been linked to parkin, since parkin over-

expression in PINK1 knockout (KO) mice attenuated the PINK1 KO phenotype (Clark et al., 

2006; Park et al., 2006; Tan and Dawson, 2006).  PINK1 KO Drosophila were more susceptible 

to paraquat, rotenone, osmotic stress, and the ER stress inducer dithiothreitol, suggesting that 

PINK1 is protective against mitochondrial dysfunction induced by stress (Greenamyre and 

Hastings, 2004; Clark et al., 2006; Gosal et al., 2006).  Thus PINK1 may also be related to 

idiopathic PD, since mitochondrial complex I deficits have been observed in sporadic PD 

patients (Blandini et al., 1998).  

1.1.8 DJ-1 

DJ-1 (Park7) mutations are linked with autosomal-recessive early-onset PD.  Normal DJ-

1 is an abundant protein found throughout the brain as a dimer and is thought to respond to and 

protects against oxidative stress (Gosal et al., 2006; Klein and Schlossmacher, 2006).  DJ-1 has 

been shown to inhibit α-synuclein aggregate formation in vivo and in vitro (Shendelman et al., 

2004; Meulener et al., 2005b; Zhou et al., 2006a).  Over-expression of DJ-1 protects cells against 

mitochondrial damage, and sulfoxidation of Cys106 leads to an acidic shift of the protein 

necessary for translocation of DJ-1 to the mitochondria and for a protective response to oxidative 

stress, suggesting that it could be an intracellular sensor of oxidative stress (Bonifati et al., 2003; 

Miller et al., 2003; Bandopadhyay et al., 2004; Canet-Aviles et al., 2004; Kim et al., 2005).  DJ-1 
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has also been shown to protect against oxidative stress in vitro by up-regulating glutathione 

synthesis (Zhou and Freed, 2005). There is also in vivo evidence for DJ-1 as a protector against 

oxidative stress in Drosophila and mouse models.  DJ-1 deficient Drosophila have been shown to 

be more sensitive to various oxidative stressors, including H2O2, paraquat, and rotenone 

(Menzies et al., 2005; Meulener et al., 2005a; Park et al., 2005; Yang et al., 2005).  DJ-1 KO 

mice are more susceptible to MPTP toxicity (Kim et al., 2005).  In addition, DJ-1 KO mice were 

less sensitive to signaling by the DA D2-receptor, indicating that dopaminergic 

neurotransmission was altered in these mice (Goldberg et al., 2005).  Therefore, DJ-1 may play a 

role in PD pathogenesis through its effects on mitochondria, DA receptor signalling, and 

oxidative stress. 

1.1.9 LRRK2 

Leucine-rich repeat kinase 2 (LRRK2; Park8) mutations are associated with early- to late-

onset autosomal dominant forms of PD.  Lewy body formation does not necessarily occur in all 

cases of LRRK2-related PD, and in some patients tauopathy and ubiquitin-positive inclusions 

also occur (Wszolek et al., 1997; Hardy et al., 2006; Taylor et al., 2006).  LRRK2 mutations are 

much more frequent than other PD mutations, occurring even in sporadic PD (Gilks et al., 2005; 

Hardy et al., 2006; Mata et al., 2006).   LRRK2 mRNA is expressed throughout the brain at low 

levels (Zimprich et al., 2004).  Although the function of LRRK2 remains unknown, it is a large 

protein with several predicted protein domains, including an ankyrin domain, a leucine-rich 

repeat domain, a Roc GTPase domain, a COR (C terminal of Roc) domain, a tyrosine kinase 

domain, and a WD40 domain (Bosgraaf and Van Haastert, 2003; Paisan-Ruiz et al., 2004; 

Zimprich et al., 2004; Mata et al., 2006).  The combination of the predicted protein kinase and 
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GTPase activities with the multiple predicted protein interaction domains suggests that LRRK2, 

might be involved in a multi-protein signaling complex (Mata et al., 2006).  Some binding 

partners of LRRK2 have been found, including heat-shock protein 90 and its co-chaperone, 

Cdc37, while parkin has also been found to interact with over-expressed LRRK2 in vitro (Smith 

et al., 2005b; Gloeckner et al., 2006).  Also, over-expressed mutant LRRK2 leads to cell death in 

both SH-SY5Y cells and primary neurons (Smith et al., 2005b).  LRRK2 also seems to play a 

role in regulating neuronal axon and dendritic processes; over-expressed mutant LRRK2 reduced 

branching and length of neuronal processes in vitro and shRNA knockdown of LRRK2 increased 

neuronal branching in vitro (MacLeod et al., 2006).  Therefore, the proposed functions of 

LRRK2 as a “master regulator” combined with the frequency of mutations in inheritable and 

sporadic PD suggest that LRRK2 may be an important key to understanding PD pathology (Mata 

et al., 2006).   

1.2 EVIDENCE FOR OXIDATIVE STRESS IN PD 

1.2.1   Definition of Oxidative stress 

Oxidative stress is typically denoted by an overabundance of highly reactive oxygen-

based molecules, known as reactive oxygen species (ROS), compared to the antioxidant system 

designed to remove ROS in the cellular environment (Halliwell, 1992).  ROS is detrimental to 

tissue since most cellular components, including DNA, proteins, lipids, and carbohydrates, are 

susceptible to damaging oxidative modification by various forms of ROS (Sayre et al., 2005).  

However, ROS production is a regular part of biological systems, since normal aerobic 
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mitochondrial respiration which is necessary for cell survival, results in the formation of ROS 

(Sayre et al., 2005).  Peroxynitrite, which is formed from NO and superoxide anion, and other 

reactive nitrogen species (RNS) have recently been shown to modify lipids, DNA, and proteins 

on the tyrosine and tryptophan residues, resulting in “nitrosative stress” (Alvarez and Radi, 2003; 

Pacher et al., 2007).  Cells have endogenous defense mechanisms against ROS, namely the 

antioxidant system.  The antioxidant system protects against excess ROS by binding promoters 

of ROS formation or by enzymatically degrading or directly scavenging ROS, forming lower-

oxidizing products (Cui et al., 2004).  Changes in the levels of antioxidants and antioxidant-

related proteins, through increased ROS formation, are used as markers of oxidative stress 

(Gutteridge, 1995; Barnham et al., 2004).    

Oxidative stress has been implicated in many neurodegenerative diseases, including 

Alzheimer’s disease (Butterfield et al., 2001; Honda et al., 2004), amyotrophic lateral sclerosis 

(Carri et al., 2003), Huntington’s disease (Butterfield and Kanski, 2001), and PD.  Evidence for 

oxidative stress in disease can be obtained through directly measuring modification of 

biomolecules by ROS, in addition to measuring changes in the antioxidant systems.  Although 

these changes are typically measured late in the development of disease, evidence from living 

PD patients, experimental models of PD, and studies of genetic mutations associated with PD 

have lead to an increasing body of evidence supporting oxidative stress as a contributor to PD 

pathogenesis (Hastings and Berman, 2000; Dawson and Dawson, 2003; Fiskum et al., 2003; 

Greenamyre and Hastings, 2004).  The evidence that links oxidative stress to PD, as well as 

current thoughts on potential pathways of oxidative stress in PD will be discussed below.   
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1.2.2   Antioxidant Enzymes 

Several indicators of increased oxidative stress have been observed in PD brain, 

including changes in antioxidant enzymes and levels of antioxidants.  Antioxidant enzymes are 

proteins with functions that detoxify ROS, by converting high oxidizing ROS species into a 

lower oxidizing species.  Enzymes such as catalase and glutathione peroxidase catalyze the 

reduction of hydrogen peroxide to water, and superoxide dismutase (SOD) catalyzes the 

reduction of superoxide anion into hydrogen peroxide.  There is some question of whether levels 

of catalase and glutathione peroxidase are changed, with evidence for deficits (Ambani et al., 

1975; Kish et al., 1985) and no change (Marttila et al., 1988; Sian et al., 1994a) in enzyme levels, 

in addition to up-regulated mRNA (Duke et al., 2007; Moran et al., 2007) reported in PD.  

However, there is consistent evidence that the activity of SOD is increased selectively in the SN 

of PD patients (Marttila et al., 1988; Saggu et al., 1989; Basso et al., 2003).   Elevation in the 

manganese-dependent mitochondrial form of SOD has been observed in the cerebrospinal fluid 

(CSF) of PD patients, and elevated levels of the copper/zinc-dependent cytosolic form of SOD in 

lymphocytes were found in PD patients on L-DOPA treatment alone (Yoshida et al., 1994; 

Blandini et al., 2003; Blandini et al., 2004).  Increases in the mitochondrial form of SOD 

observed in PD may be compensatory for increased ROS production by impaired mitochondria.  

The increase in cytosolic SOD observed in PD patients has recently been linked to increased cell 

death due to the L-DOPA treatment, since increased caspase-3 was found in lymphocytes of L-

DOPA treated patients only (Blandini et al., 2004).  Thus, changes in antioxidant enzymes may 

partially be the result of PD treatments, and not necessarily due to changes caused by the disease. 
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1.2.3   Glutathione 

In addition to changes in antioxidant enzymes, the major cellular antioxidant glutathione 

(GSH) is also altered in PD.  GSH plays a vital role in a variety of cellular processes in addition 

to the antioxidant system, including metabolism, synthesis of DNA and protein, gene expression, 

immunity, cell proliferation, and cell death (Wu et al., 2004).  GSH is present in cells at high 

concentrations, ranging from 0.5–10 mM.  The cysteine residue on GSH molecules can be 

oxidized by ROS, creating a disulfide bond between two GSH molecules to form oxidized 

glutathione (GSSG).  GSSG can then be converted back to GSH via the enzyme glutathione 

reductase, which is necessary to keep the GSH balance in cells. 

  Although levels of other antioxidants like ascorbic acid and alpha-tocopherol are 

unchanged in PD, an estimated 40% decrease in GSH has been observed selectively in the SN of 

PD brain (Perry et al., 1982; Perry and Yong, 1986; Riederer et al., 1989; Dexter et al., 1992; 

Sian et al., 1994b).  Decreased GSH is thought to be an early event in PD since reduced GSH 

levels occur in incidental Lewy body disease, which in some cases is thought to be a pre-

parkinsonian state (Jenner and Olanow, 1996).   Surprisingly, the decrease in total GSH is not 

associated with concurrent increases in GSSG (Sofic et al., 1992).  An increase in the levels of 

gamma-glutamyl transpeptidase, an enzyme associated with the translocation and degradation of 

GSH, was observed in PD SN, which may be a compensatory mechanism to import GSH 

precursor molecules or to breakdown excess GSSG (Sian et al., 1994a; Jenner and Olanow, 

1996).  However, the levels of most other enzymes involved in GSH synthesis and GSH-

dependent reactions remain unchanged in PD, such as gamma-glutamylcysteine synthetase (the 

rate-limiting enzyme for GSH synthesis), GSH reductase (the enzyme that reduces GSSG), or 

GSH transferase (enzymes that catalyze the conjugation of GSH to various electrophilic 
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compounds, including quinones), suggesting a failed antioxidant response occurs in PD (Sian et 

al., 1994a; van Bladeren, 2000; Prigione et al., 2006).   

Loss of GSH can lead to the reduction of S-thiolation of enzymes such as mitochondrial 

complex I and the E1 and E2 ubiquitin enzymes, linking mitochondrial function and the UPS to 

GSH loss (Jahngen-Hodge et al., 1997; Hurd et al., 2005).  Although most GSH is synthesized in 

the cytoplasm, it is transported into mitochondria, helping to detoxify superoxide anion produced 

by aerobic respiration (Zeevalk et al., 2005).  Another important role for GSH in the antioxidant 

system is the removal of H2O2 via GSH peroxidase and GSH reductase, protecting neurons from 

further ROS-production (Zeevalk et al., 2005).  GSSG formed from this reaction can then be 

reduced by GSH reductase, which is also found in mitochondria, recycling GSH and helping to 

maintain a proper GSH/GSSG ratio (Hurd et al., 2005; Zeevalk et al., 2005).  In addition, GSH 

loss can lead to damage to mitochondrial complexes I, II, and IV, which can then result in the 

increased formation of ROS (Zeevalk et al., 2005).  It has also been suggested that reduced GSH 

levels precede increased iron levels observed in PD, and thus may contribute to increased iron 

oxidation (Jenner and Olanow, 1996).   

1.2.4   Iron 

Reduced transition metals, iron (II) in particular, can catalyze the Fenton reaction during 

which H2O2 is oxidized to the highly reactive and toxic hydroxyl radical, leading to the 

production of iron (III) and ROS (Riederer et al., 1989; Youdim et al., 1989).  Increased amounts 

of iron have been found in PD SNpc (Dexter et al., 1989b; Dexter et al., 1991; Hirsch et al., 

1991; Sofic et al., 1991; Hirsch and Faucheux, 1998; Griffiths et al., 1999), including increases 

in iron (III) (Riederer et al., 1989; Yoshida et al., 2001).  Iron accumulates in brain during 
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normal aging, even to levels associated with oxidative stress and cell death (Thomas and 

Jankovic, 2004; Zecca et al., 2004).  Since PD cases are rare before the age of 50, and because 

the incidence of PD increases with age, aging is seen as risk factor for PD and may be related in 

part to iron accumulation (Samii et al., 2004).  Iron accumulation occurs in other disorders as 

well, including Alzheimer’s disease, multiple system atrophy, progressive supranuclear palsy, 

and Huntington's disease (Valberg et al., 1989; Dexter et al., 1991; Connor et al., 1992; Jenner, 

2003).  However, iron levels in SN in incidental Lewy body disease are not different from age-

matched control, suggesting that iron accumulation is not necessary for cell death and does not 

occur in all neurodegenerative disease (Dexter et al., 1994b). 

In addition to increased iron, decreased ferritin (the protein that binds and stores iron) and 

decreased copper (a metal found in antioxidant enzymes such as SOD) were also found in PD SN 

(Sofic et al., 1988; Dexter et al., 1989b; Dexter et al., 1989a; Dexter et al., 1991; Connor et al., 

1995; Zecca et al., 2001; Zecca et al., 2002b).  Oxidative stress due to iron exposure has also 

been shown to promote α-synuclein aggregation, and iron has been shown to be a component of 

Lewy bodies (Hashimoto et al., 1999; Castellani et al., 2000; Hsu et al., 2000; Ostrerova-Golts et 

al., 2000; Uversky et al., 2001; Manning-Bog et al., 2002; Cole et al., 2005).  Iron-mediated 

oxidative stress has also been shown to inhibit complex I activity (Harley et al., 1993; Jenner, 

2003).  These findings link iron accumulation to oxidative stress, mitochondrial dysfunction, and 

Lewy body pathology, which are all hallmarks of PD. 

1.2.5   DNA Oxidative Damage 

The four nucleotide bases that comprise DNA (purines, adenine and guanine, and 

pyrimidines, cytosine and thymine) are highly susceptible to oxidative damage by ROS, leading 
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to mutations, strand breakage, and ultimately cell death (Halliwell and Gutteridge, 1999).  

Increased levels of oxidized DNA have been found in many neurodegenerative disorders, 

including Alzheimer’s disease (Gabbita et al., 1998; Migliore et al., 2005), Huntington’s disease 

(Browne et al., 1997), amyotrophic lateral sclerosis (Ferrante et al., 1997), and PD (Halliwell, 

2001).  Guanine is the most sensitive to oxidative modification, and evidence for oxidative 

modification in PD is currently limited to the purines, guanine in particular.  Increases in 

oxidized purine in PD lymphocytes and leukocytes have been reported, suggesting that oxidative 

stress is systemic in patients (Petrozzi et al., 2001; Migliore et al., 2002).  In addition, increased 

levels of oxidized deoxyguanosine, 8-hydroxy-2’-deoxyguanosine, have been found in the 

caudate, putamen, SN, and cerebral cortex of PD patients as compared to control patients 

(Sanchez-Ramos et al., 1994).  Increases in the oxidized form of the intermediate 8-hydroxy-

guanine radical, 8-hydroxyguanine, combined with decreases its reduced form, 2,6-diamino-4-

hydroxy-5-formamidopyrimidine, in PD SN suggest that there is an increased oxidative 

environment in diseased brain (Alam et al., 1997b).   The oxidation of DNA bases leads to DNA 

damage, and the levels of DNA strand breakage are increased in PD lymphocytes and 

leukocytes, (Petrozzi et al., 2001; Migliore et al., 2002), and in PD midbrain, caudate 

nucleus/putamen, thalamus, and hippocampus (Hegde et al., 2006).  Imprecise antisense base 

pairing, which can lead to unstable DNA, was also found in PD midbrain, caudate 

nucleus/putamen, thalamus, and hippocampus (Hegde et al., 2006). 

In addition to cytoplasmic DNA oxidation, evidence for increased cytoplasmic RNA 

oxidation has also been observed in the SN of PD patients, and, to a lesser extent, in patients 

with multiple system atrophy-Parkinsonian type and dementia with Lewy bodies (Zhang et al., 

1999).  In patients with PD and other neurodegenerative disorders, mitochondrial DNA oxidation 
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was increased in the SN and in other brain areas (Zhang et al., 1999; Gu et al., 2002).     In 

response to mitochondrial DNA damage, increased levels of mitochondrial 8-oxo-dGTPase, the 

enzyme that removes oxidized deoxy-guanosine-triphosphate from the DNA precursor pool, 

were measured in PD SN (Shimura-Miura et al., 1999; Fukae et al., 2005).  In addition, levels of 

mitochondrial DNA deletions, which can be the result of free radical damage, are increased in 

aged SN and occur more often in PD SN (Bender et al., 2006; Burton, 2006; Kraytsberg et al., 

2006).  The increased amount of DNA oxidation, both nuclear and mitochondrial, and increased 

oxidation of RNA lends evidence to support the role of oxidative stress in PD pathology. 

1.2.6   Lipid Peroxidation 

The oxidation of unsaturated lipids is another indication of oxidative stress.  Highly 

reactive lipid peroxyradicals are formed from the reaction of ROS with the double bond of 

unsaturated fatty acids.  These lipid peroxyradicals are themselves reactive and can oxidize other 

fatty acids, leading to the formation of lipid peroxidation by-products such as 4-hydroxy-2,3-

nonenal (HNE), acrolein, F2-isoprostanes, and thiobarbituric acid reactive substances (TBARS) 

including malondialdehyde (Barnham et al., 2004). Increased HNE levels have been observed in 

many neurodegenerative disorders, including Alzheimer’s disease and amyotrophic lateral 

sclerosis (Pedersen et al., 1998; Butterfield et al., 2002).  High levels of HNE were also found in 

PD plasma and CSF (Selley, 1998).  HNE reactions with cysteine, lysine, and histidine residues 

form HNE-protein conjugates, which have also been found to be increased in PD midbrain 

(Yoritaka et al., 1996).  Levels of TBARs were higher in PD red blood cells compared to control 

(Serra et al., 2001), and increases in the TBAR malondialdehyde have also been observed in PD 

(Dexter et al., 1989b).  Increased levels of isofurans, which are formed by lipid peroxidation, 
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were measured in PD and incidental Lewy body disease patients (Fessel et al., 2003).  Increases 

in other markers of lipid peroxidation, such as fatty acid hydroperoxides and cholesterol lipid 

hydroperoxides were also observed in PD SN (Dexter et al., 1994a).   Lipid peroxidation, in 

addition to producing reactive peroxyradicals that can damage other cellular components, and 

specifically HNE has been shown to lead to DNA fragmentation and caspase-dependent 

apoptosis (Liu et al., 2000).  In addition, lipid peroxidation affects membrane fluidity and 

permeability, which leads to dysfunction of membrane-associated ion channels, changes in the 

number and affinity of membrane receptors, and alterations in organelles, leading to problems 

like lysosomal membranes breakage and the release of their proteolytic enzymes (Farooqui and 

Horrocks, 1998; Halliwell, 2006).  Therefore, oxidative damage to lipids may have serious 

effects that could contribute to the cell death observed in PD. 

1.2.7   Protein Oxidative Damage 

Oxidative damage to proteins has been well documented in neurodegenerative disease, 

including PD and AD (Beal, 2002; Castegna et al., 2003).  The most common measurement of 

protein oxidation is the formation of protein carbonyls.  Increased levels of protein carbonyls 

have been found in PD SN, basal ganglia, cortex, globus pallidus, and cerebellum (Alam et al., 

1997a; Floor and Wetzel, 1998).  Recently, advances in proteomic techniques have allowed 

investigators to detect and identify specific proteins oxidatively modified in disease.  In PD, 

proteins like DJ-1 and Cu,Zn-SOD have been identified as oxidatively modified in PD brain 

(Choi et al., 2005; Choi et al., 2006).  Increased levels of oxidized lipoproteins in CSF and 

plasma of PD patients have also been observed (Serra et al., 2001; Buhmann et al., 2004).  In 

addition to protein damage by ROS, there is also evidence for protein damage by RNS in PD; 
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increases in levels of CSF nitrates and increased brain nitrosyl adducts were found in PD 

(Giasson et al., 2000).   In addition, 3-nitrotyrosine-modified proteins were detected in Lewy 

bodies and other protein aggregates in PD brain SN (Good et al., 1998), indicating that 

aggregated protein was oxidized by peroxynitrite.  Specifically, increased amounts of nitrated 

Mn SOD have been found in the CSF of PD patients (Aoyama et al., 2000).  DJ-1, Cu,Zn-SOD, 

and Mn SOD are all proteins involved in protecting against oxidative stress, and if inactivated, 

could lead to even more oxidative stress and cell death.   

Another form of oxidized protein shown to be potentiated by oxidative stress, advanced 

glycation end-products, are proteins that have been post-translationally modified by sugars and 

then oxidized in a process called glycoxidation (Baynes, 1991).  Glycoxidated proteins have also 

been shown to be increased in PD (Castellani et al., 1996).  Protein oxidation and glycoxidation 

may lead to protein dysfunction and aggregation, which can be detrimental to normal cellular 

processes, especially in the case of antioxidant proteins.      

1.3 MITOCHONDRIAL DYSFUNCTION, OXIDATIVE STRESS, AND PD 

 1.3.1   Mitochondrial Dysfunction and Oxidative Stress 

There is a strong relationship between mitochondrial dysfunction and oxidative stress.  

Mitochondrial complexes I and III of the electron transport chain (ETC) form superoxide anion 

during normal respiration, and both ROS and RNS can inhibit mitochondrial complexes 

(Halliwell, 2001; Orth and Schapira, 2001, 2002; Fiskum et al., 2003; Turrens, 2003).  Inhibition 

of mitochondrial complex I has also been shown to generate even more ROS in isolated 
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mitochondria, suggesting that ROS-induced mitochondrial dysfunction can lead to further ROS 

production and increased damage (Pitkanen and Robinson, 1996; Votyakova and Reynolds, 

2001).  Mitochondria, through the Bcl-2 family of proteins, play a unique role in cell death 

signaling, and it has been shown that increased superoxide anion formation can lead to 

cytochrome c release, one of the key initiators of apoptosis (Atlante et al., 2000; Rego and 

Oliveira, 2003).  Therefore, mitochondrial dysfunction and oxidative stress, both of which are 

observed in neurodegenerative diseases like PD, likely contribute to the pathogenesis of disease. 

1.3.2   Evidence for Mitochondrial Dysfunction in PD 

Decreased mitochondrial complex I activity has been observed directly in the SN and 

systemically in platelets, lymphocytes, and muscle tissue of PD patients (Schapira et al., 1990b; 

Shoffner et al., 1991; Janetzky et al., 1994; Blandini et al., 1998; Winkler-Stuck et al., 2005).  

Further, defects in paired complex I/III have been observed in lymphocytes, and deficits in 

complex IV have been observed in both lymphocytes and muscle of PD patients (Winkler-Stuck 

et al., 2005; Shinde and Pasupathy, 2006).   

The genetic component of mitochondrial dysfunction in PD is being explored through the 

utilization of cybrids, cell lines in which endogenous mitochondrial DNA has been removed and 

replaced with mitochondrial DNA from PD and control patients.  Cybrid studies have shown that 

there is likely a genetic component to PD complex I dysfunction, since cybrids from PD patients 

have complex I deficiencies and abnormal mitochondrial morphology (Swerdlow et al., 1996; 

Sheehan et al., 1997; Trimmer et al., 2000).  In addition, cybrid experiments comparing maternal 

and paternal mitochondrial DNA of PD patients found that the maternal cybrid lines had reduced 

complex I activity, increased production of ROS, and more mitochondrial morphology 

 18 



abnormalities compared to the paternal lines (Swerdlow et al., 1998).  Since the source of the 

majority of mitochondrial DNA is from the mother, this suggests complex I deficiencies seen in 

PD may be inherited from the mother and thus may be present over the patient’s entire life.  

Although maternal mitochondrial deficits could play a role in some cases of PD or be due to an 

environmental affect on mitochondria and not through inheritance, there is currently no strong 

evidence that maternal inheritance of mitochondrial deficits occurs commonly in PD (Zweig et 

al., 1992; Wooten et al., 1997; de la Fuente-Fernandez, 2000).   

Many other studies are looking for polymorphisms in mitochondria DNA that are 

associated with PD to determine which genes are linked to decreased mitochondrial function.  

Cybrids made from mitochondrial DNA containing two polymorphisms associated with 

increased risk of PD contained mitochondria with altered matrix pH and calcium signaling 

(Kazuno et al., 2006), associating mitochondrial abnormalities with PD-risk.  Polymorphisms in 

complex I have been identified that result in a reduced risk of PD, although the reason for this 

protection has yet to be elucidated (van der Walt et al., 2003).  

1.3.3   Models of PD and Mitochondrial Dysfunction 

Rotenone 

 

Rotenone is a potent complex I inhibitor (Degli Esposti, 1998), commonly used as a 

pesticide.  Rotenone is a lipophilic molecule, able to cross membranes and penetrate the blood-

brain barrier easily (Talpade et al., 2000).  Rotenone was established by Betarbet et al., 2000 as a 

novel PD model in rat.  Remarkably, using rotenone to systemically and partially inhibit complex 

I led to selective dopaminergic cell toxicity in the SN, dopaminergic striatal terminal 
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degeneration, and ubiquitin- and α-synuclein-positive protein inclusions, combined with PD 

behavioral symptoms like bradykinesia, rigidity, and postural deficits (Betarbet et al., 2000; 

Sherer et al., 2003a).   Protein carbonyl formation and DNA oxidation has also been measured in 

rotenone models in vivo and in vitro, connecting mitochondrial dysfunction and oxidative stress 

(Sherer et al., 2002; Sherer et al., 2003c).  GSH levels were significantly decreased by 40% in 

vivo and 57% in vitro following chronic rotenone exposure (Sherer et al., 2003c), showing that 

chronic mitochondrial dysfunction can lead to GSH deficits.  Cell death and carbonyl formation 

due to rotenone inhibition of complex I in vitro was attenuated by transfecting cells with the 

rotenone-resistant NDI1, the single-protein equivalent of complex I from Saccharomyces 

cerevisiae (Sherer et al., 2003c).  These data indicate that rotenone-induced toxicity results from 

the loss of complex I activity and possibly the increased oxidative stress resulting from 

mitochondrial inhibition, and not by some unknown secondary mechanism.  

Rotenone-induced complex I inhibition can cause an electron leak (Hensley et al., 1998), 

which combined with O2 forms superoxide, a potent modifier of lipids, proteins, and DNA.  In 

the rotenone model a clear association between complex I deficits occurring before ROS 

production is observed, but whether this can be correlated to PD pathogenesis remains to be 

clarified.  Nevertheless, the pathological and behavioral aspects of PD were replicated, including 

oxidative damage to DNA and proteins, with chronic, systemic rotenone exposure, connecting 

mitochondrial dysfunction to selective dopaminergic system vulnerabilities, suggesting the 

treatment with rotenone may be a useful model in which to study aspects of PD (Betarbet et al., 

2000; Sherer et al., 2002; Sherer et al., 2003b; Sherer et al., 2003c; Sherer et al., 2003a). 
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MPTP 

 

A botched synthesis of the meperidine analog, 1-methyl-4-phenyl-4 propionpiperidine 

(MPPP), containing the toxic impurity MPTP, led to the discovery of a new PD toxin model in 

the 1980s.  Intravenous injection of MPTP along with the intended drug led to a reversible 

akinetic state, which was then proposed to be the result of damage to the SN (Langston et al., 

1983).  Later studies on MPTP found that it was not the toxic species directly, but when 

absorbed by cells, MPTP is converted to 1-methyl-4-phenyl-1,2-dihydroxypyridinium ion 

(MPDP+) by MAO-B, and then spontaneously oxidized into the poisonous metabolite, methyl-4-

phenylpyridinium (MPP+), with both steps leading to the formation of superoxide (Chiba et al., 

1984; Markey et al., 1984; Zang and Misra, 1992, 1993).  Although MPTP is lipophilic and can 

pass through cell membranes in the brain, MPP+ is not, and must be released by a transporter 

from astrocytes and then selectively taken up into cells through the DAT (Chiba et al., 1985; 

Javitch et al., 1985; Russ et al., 1996).  Inside dopaminergic cells MPP+ can bind and inhibit 

complex I, be taken up by the vesicular monoamine transporters (VMAT), or remain in the 

cytosol, leading to ATP loss and ROS formation (Nicklas et al., 1985; Mizuno et al., 1987; 

Singer et al., 1987; Chan et al., 1991; Ramsay et al., 1991; Chan et al., 1992; Teismann et al., 

2001).   

Other than people who inadvertently exposed themselves to MPTP, there is no evidence 

that MPTP-like toxins play a role in PD patients (Ikeda et al., 1992; Goodwin and Kite, 1998).  

Most animal models of PD using MPTP utilize non-human primates and C57black/6 strain mice, 

but not rats, because they are not sensitive to MPTP (Boyce et al., 1984; Heikkila et al., 1984; 

Sahgal et al., 1984; Gerlach and Riederer, 1996).   In vitro models, including non-dopaminergic 
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lines (such as cerebellar granule cells and pituitary cells) and dopaminergic cell lines (such as 

PC12 cells, SK-N-MC cells, SH-SY5Y cells, MES 23.5 cells, and primary mesencephalic 

cultures) typically utilize the metabolite MPP+ so that the conversion of MPTP to MPP+ is not a 

factor in toxicity (Blum et al., 2001).  Thus, many studies looking at dopaminergic cell death 

mechanisms have utilized MPTP or MPP+. 

Mitochondrial function is essential for the supply of cellular ATP, which in turn is 

necessary for calcium homeostasis, mitochondrial membrane potential, cellular membrane 

potential, and transporter function (Di Monte et al., 1988; Hollinden et al., 1988; Wu et al., 1990; 

Schmidt and Ferger, 2001).  MPTP treatment in mice has been shown to inhibit complex I, lead 

to 10-20% reductions in ATP, and lead to a 2- to 5-fold increase in the measurement of hydroxyl 

radical, one of the most reactive ROS (Mizuno et al., 1988; Chan et al., 1991, 1992; Desai et al., 

1996; Smith and Bennett, 1997; Teismann et al., 2001).  Over-expressing SOD protects against 

MPTP, suggesting that superoxide formation is important in MPTP-induced cell death 

(Przedborski et al., 1992).   Increased levels of 3-nitrotyrosine, as evidence for RNS damage, 

were also measured in mice after MPTP treatment, and NO synthase-inhibited or deficient mice 

were protected against MPTP toxicity, suggesting an additional role for nitrative damage in the 

model (Schulz et al., 1995; Hantraye et al., 1996; Przedborski et al., 1996; Liberatore et al., 

1999; Pennathur et al., 1999).  Since the reaction of superoxide with NO results in peroxynitrite 

formation, which can also inhibit mitochondrial complexes I, II, and III (Radi et al., 1991), both 

ROS and RNS production by MPTP could lead to further mitochondrial dysfunction, increasing 

levels of ROS.  Therefore, ROS and RNS production likely plays a role in the cause and effect of 

MPTP-induced toxicity. 
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DA plays a vital role in MPTP-induced neurotoxicity.  The selectivity for MPTP-induced 

toxicity in vivo is due to DAT expression, since DAT deficient mice were shown to be resistant 

to toxicity (Gainetdinov et al., 1997; Bezard et al., 1999).  Once in dopaminergic cells, MPP+ 

can be taken up into vesicles by VMAT, which displaces DA from the vesicles to the cytoplasm 

where it can be oxidized, leading to increased formation of the hydroxyl radical and to cell death 

(Chiueh et al., 1992; Lotharius and O'Malley, 2000).  Sequestering of MPTP into vesicles aids in 

reducing toxicity, since VMAT expression has been shown to suppress MPTP toxicity in vitro; 

conversely, mice in which VMAT-2 was inhibited or expressed at lower levels were more 

susceptible to MPTP toxicity (Liu et al., 1992; Takahashi et al., 1997; Gainetdinov et al., 1998; 

German et al., 2000; Staal and Sonsalla, 2000; Chen et al., 2005a).  Increased levels of DAQ 

protein modification have also been observed in MPTP mouse models (Teismann et al., 2003), 

showing that endogenous DA released by MPTP can form DAQ and modify protein.  MPTP has 

also been shown to lead to extracellular DA efflux, increased DA turnover and reduced 

intracellular levels of DA and DA metabolites, suggesting that DA homeostasis is also adversely 

affected by MPTP (Mihatsch et al., 1988; Santiago et al., 1991; Schmidt and Ferger, 2001; 

Teismann and Ferger, 2001).  

1.4 DA OXIDATION AND PD 

1.4.1   DA Oxidation 

DA can lead to oxidative stress through two pathways of ROS production.  First, the 

normal metabolism of DA by MAO produces dihydroxyphenylacetic acid (DOPAC) and leads to 
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the production of H2O2 (Maker et al., 1981) (see Figure 1a).  Secondly, spontaneous or 

enzymatic oxidation of DA into DAQ (see Figure 1b) leads to the formation of H2O2, increasing 

levels of oxidants that can further damage protein, DNA, and lipids (Graham, 1978).  The 

electron-deficient DAQ can also lead to further oxidative damage, since it readily reacts with 

cellular nucleophiles; the most reactive nucleophiles in cells are reduced sulfhydryl groups, 

which can be found on free cysteine residues, GSH, and on proteins (Tse et al., 1976; Graham, 

1978).  DAQ modification of reduced sulfhydryls on cysteines forms covalently bound cysteinyl-

DA conjugates (See Figure 1c) (Tse et al., 1976; Fornstedt et al., 1990a; Hastings and Zigmond, 

1994).  DAQ modification of free thiols and GSH will decrease the availability of antioxidants, 

adding to the oxidative stress.  In addition to reducing the antioxidant capacity, DA oxidation can 

affect vital proteins containing cysteine in their active sites, altering the function of these 

proteins, thus leading to inactivation and cell death.   
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Figure 1: Formation of ROS and other reactive species via DA metabolism and oxidation. 

A. DA metabolism by MAO leads to DOPAC formation and ROS production.  B.  Spontaneous 

or enzymatic DA oxidation leads to the formation of DAQ and ROS.  C.  DAQ can react with 

reduced sulfhydryl groups of cysteine residues, leading to the formation of 5-cysteinyl-DA 

conjugates.  

 25 



1.4.2   Evidence for DA Oxidation in PD 

The presence of high levels of DA combined with a reduced ability to cope with 

oxidative stress place dopaminergic neurons of the SN in a position of vulnerability.  Therefore, 

it is not surprising that increased cysteinyl-catecholamine conjugates have been found in PD 

brain lysates (Spencer et al., 1998; Sidell et al., 2001), showing that DAQ modification occurs 

and is accelerated in PD.  Antibodies to DAQ-modified cysteines and proteins have been 

observed in PD patients, providing evidence for an immune response to DA modification of 

proteins (Rowe et al., 1998; Salauze et al., 2005).  Neuromelanin (NM) is formed from oxidized 

catecholamines and is driven by a cytosolic excess of catecholamines; NM levels in the SN 

increase with age (Sulzer et al., 2000; Zecca et al., 2004).  The levels of NM and VMAT2 are 

inversely correlated in human SN, suggesting that increased VMAT sequestering of DA into 

vesicles reduces the levels of cytosolic DA and leads to lower DA oxidation and NM synthesis 

(Liang et al., 2004).  NM has also been shown to partially inhibit 26S proteasome activity, 

linking DA oxidation to dysfunction of the UPS, which can lead to abnormal protein 

accumulation and aggregation (Shamoto-Nagai et al., 2004).  NM levels are significantly 

reduced in PD SN, and postmortem studies show that the amount of neuromelanin in SN cells 

may be related to susceptibility, although there is some question as to whether cells containing 

more neuromelanin are preferentially lost or spared in PD (Mann and Yates, 1983; Gibb and 

Lees, 1991; Kastner et al., 1992; Zecca et al., 2002a).  Since increased NM levels are associated 

with increased cytosolic DA, increased DA oxidation levels, and increased vulnerability in PD, it 

is likely that DA levels, DA oxidation, and cell death are linked in PD.  However, NM, although 

made from oxidized DA, is thought to have antioxidant properties, since it has been shown to 
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bind heavy metals, such as iron III, removing both toxic metals and oxidized DA from the 

cytosol (Zecca et al., 1994; Zareba et al., 1995).  Therefore, the formation of NM may also be a 

mechanism by which SN cells protect themselves from heavy metal accumulation and DA 

oxidation.  

1.4.3   DA Oxidation in Models of PD and other DA toxins 

6-OHDA 

 

The chemical 6-OHDA has a similar chemical structure to DA, and is a substrate for 

DAT and NET (Luthman et al., 1989; Bove et al., 2005).  Thus, 6-OHDA can be taken up by 

dopaminergic and noradrenergic neurons of both the central and peripheral nervous system 

(Bove et al., 2005).  6-OHDA does not pass through the blood brain barrier, therefore its 

administration is typically through injection into the SN, medial forebrain bundle (MFB), 

striatum, or ventricles (Javoy et al., 1976; Blum et al., 2001; Bove et al., 2005).  In vivo, 6-

OHDA injections into the SN or MFB lead to non-apoptotic cell death within 24 h and a 

maximal reduction in striatal DA levels after 3-4 d, and if given in the striatum, lead to a 

retrograde degeneration of the nigrostriatal pathway after 1-3 weeks, in a manner which 

resembles apoptosis (Faull and Laverty, 1969; Sauer and Oertel, 1994; Jeon et al., 1995; 

Przedborski et al., 1995; Marti et al., 1997).   Thus far, no evidence for Lewy body-like protein 

inclusions following 6-OHDA administration has been found (Bove et al., 2005).  Endogenous 

levels of 6-OHDA may form from reactions between DA and H2O2, and may be catalyzed by 

nitrite and metals like iron and manganese (Slivka and Cohen, 1985; Garner and Nachtman, 

1989; Jellinger et al., 1995; Linert et al., 1996; Palumbo et al., 1999).   Basal levels of 6-OHDA 
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have been measured in rat, human brain, and L-DOPA treated PD patient urine (Blum et al., 

2001). 

The mechanism of 6-OHDA induced toxicity is thought to be due to the formation of 

ROS, such as H2O2 and the hydroxyl radical, and is supported by numerous in vivo and in vitro 

studies which have found ROS production by 6-OHDA and antioxidant protection against 6-

OHDA exposure (Heikkila and Cohen, 1971; Blum et al., 2001).  Since 6-OHDA is a substrate 

for MAO, part of the ROS generated by 6-OHDA is thought to be through its deamination by 

MAO, leading to H2O2 production (Breese and Traylor, 1971; Karoum et al., 1993).    In 

addition, like DA, 6-OHDA can auto-oxidize, generating H2O2, superoxide anion, the hydroxyl 

radical, and quinones (Saner and Thoenen, 1971; Heikkila and Cohen, 1972; Cohen and 

Heikkila, 1974; Seitz et al., 2000; Soto-Otero et al., 2000).   The auto-oxidation of 6-OHDA is 

thought to be the major source of toxicity, since MAO inhibition, which would normally help 

metabolize 6-OHDA, has been shown to exacerbate toxicity (Jonsson, 1980).  In addition, 6-

OHDA toxicity is not limited to dopaminergic cell lines in vitro, and there is also evidence for 

extracellular oxidation for 6-OHDA (Lotharius et al., 1999; Blum et al., 2001).  Lipid oxidation, 

DNA damage, protein modification, PARP activation, and reduced antioxidant levels are all 

associated with 6-OHDA exposure, suggesting that ROS formation overpowers the ability of the 

cells to deal with oxidative stress (Rotman et al., 1976; Jonsson, 1980; Bruchelt et al., 1991; 

Kumar et al., 1995).  In isolated mitochondria, there is evidence that 6-OHDA may inhibit 

mitochondria directly; although this has not been replicated in cell culture or in vivo, there is 

evidence for a ROS-mediated mitochondrial deficit in vitro following 6-OHDA exposure (Glinka 

and Youdim, 1995; Glinka et al., 1996; Wu et al., 1996; Lotharius et al., 1999; Storch et al., 

2000). 
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Methamphetamine 

  

Methamphetamine (METH) is a drug of abuse, which affects both the central and 

peripheral nervous system.  Both dopaminergic and serotonergic systems are affected by METH, 

leading to losses in both tyrosine hydroxylase (TH) and tryptophan hydroxylase, the rate limiting 

enzymes of DA and serotonin syntheses, respectively (Hotchkiss and Gibb, 1980).  Depletions in 

DA, DA metabolites, and DAT levels in striatum, serotonin levels, and serotonin uptake have 

also been observed in vivo following METH administration (Seiden et al., 1976; Wagner et al., 

1980; Finnegan et al., 1982; Green et al., 1992; Eisch and Marshall, 1998; LaVoie and Hastings, 

1999).  Long-term deficits in DA terminals have been observed in both in vivo models and in 

patients who abused METH (Woolverton et al., 1989; McCann et al., 1998).  In addition to 

terminal damage, neurodegeneration has also been observed in vivo following METH exposure 

(Ricaurte et al., 1982; Eisch et al., 1998; O'Dell and Marshall, 2005).  Toxicity due to METH is 

thought to be a combination of many factors including oxidative stress (Kita et al., 2003; 

Quinton and Yamamoto, 2006).  

The production of ROS and RNS has been observed in the METH model, including 

evidence for the hydroxyl radical and NO formation (Fleckenstein et al., 1997; Imam et al., 

1999; Kita et al., 1999; Imam et al., 2001; Fukami et al., 2004; Kawasaki et al., 2006).  Chemical 

antioxidants confer protection against METH (Wagner et al., 1986; De Vito and Wagner, 1989; 

Yamamoto and Zhu, 1998; Fukami et al., 2004; Kawasaki et al., 2006).  Inhibition or genetic 

knockdown of NO synthase and SOD over-expression has been shown to attenuate and SOD 

inhibition potentiates METH toxicity, suggesting that ROS and RNS production is a key to 

METH toxicity (De Vito and Wagner, 1989; Cadet et al., 1994; Hirata et al., 1996; Itzhak and 
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Ali, 1996; Imam et al., 2001).  Downstream effects of oxidative stress such as lipid and protein 

oxidation products, including 3-nitrotyrosine, protein carbonyls, malondialdehyde, and other 

TBARs, have all been measured following METH (Acikgoz et al., 1998; Yamamoto and Zhu, 

1998; Imam et al., 1999; Gluck et al., 2001; Imam et al., 2001; Kawasaki et al., 2006).   

The source of METH-induced oxidative stress seems to be linked to DA.  METH 

reverses DA uptake and reduces VMAT uptake of DA from the cytosol, which leads to DA 

release, DA accumulation, DA oxidation, and formation of ROS (Raiteri et al., 1979; Ricaurte et 

al., 1980; Schmidt et al., 1985; Michel and Hefti, 1990; Green et al., 1992; Brown et al., 2001; 

Quinton and Yamamoto, 2006).   In fact, DA-induced increases in oxidative stress and protein 

modification have been measured after METH administration in vivo (LaVoie and Hastings, 

1999).  Reducing levels of DA using the TH inhibitor α-methyl-p-tyrosine, protects against 

METH, and decreased VMAT2 expression in vitro is associated with increased METH toxicity 

and DA oxidation (Larsen et al., 2002), suggesting that cytosolic DA oxidation plays a major 

role in METH toxicity. 

  

DA-induced toxicity 

 

The toxicity of DA has been established both in vitro and in vivo (Barzilai et al., 2001; 

Asanuma et al., 2004).  Intrastriatal DA injections result in the selective loss of TH 

immunoreactive fibers of the striatum and increased formation of protein cysteinyl-catechols 

(Filloux and Townsend, 1993; Hastings et al., 1996; Rabinovic and Hastings, 1998; Rabinovic et 

al., 2000; Gomez-Santos et al., 2006).  Similarly, DA has been shown to be toxic to various cell 

lines (Barzilai et al., 2001).  While the exact mechanism of the DA-induced toxicity is not 

 30 



known, the toxicity of DA has been linked to oxidative stress.   Antioxidants have been shown to 

prevent DA toxicity both in vivo and in vitro (Passi et al., 1987; Hastings et al., 1996; Hoyt et al., 

1997; Si et al., 1998; Luo et al., 1999; Izumi et al., 2005) and reduce protein cysteinyl-catechol 

formation in vivo (Hastings et al., 1996).  Administration of L-buthionine sulfoximine to deplete 

GSH potentiates toxicity both in vivo and in vitro and increases the formation of cysteinyl-

catecholamines in vivo (Rabinovic and Hastings, 1998; Si et al., 1998).   Therefore, DA-induced 

toxicity is linked to the formation of ROS and DAQ-modification of proteins. 

Several proteins relevant to dopaminergic cell function have been shown to be modified 

or inhibited by exposure to DA or DAQ, including DAT, the glutamate transporter, TH, and 

tryptophan hydroxylase (Berman et al., 1996; Berman and Hastings, 1997; Kuhn and Arthur, 

1998; Xu et al., 1998; Kuhn et al., 1999; Whitehead et al., 2001).  Creatine and adenylate 

kinases, enzymes involved in maintaining the ATP to ADP ratio, are also both inhibited by DA 

exposure (Maker et al., 1986; Miura et al., 1999).  DNA polymerase was also inhibited by DA, 

indicating that DNA synthesis is affected, and thus adding a complication to in vitro studies 

using proliferating cells (Wick, 1980).  DA has also been shown to affect α-synuclein 

aggregation, by promoting the formation of a DAQ-α-synuclein adduct, which develops into 

soluble, SDS-resistant oligomers (Conway et al., 2001; Cappai et al., 2005).  Recently, covalent 

modification and inactivation of parkin by DA was reported, linking DA oxidation to inheritable 

PD (LaVoie et al., 2005).  Therefore, DA may exert some of its toxicity by modifying and 

inactivating critical cytosolic proteins. 

In addition to these proteins, DA has also been shown to lead to mitochondrial 

dysfunction, which could lead to more oxidative stress.  Respiration from isolated rat brain 

mitochondria becomes uncoupled and formation of the permeability transition pore (PTP) was 
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triggered following exposure to DAQ, which can be protected by antioxidants (Berman and 

Hastings, 1999; Kim et al., 1999; Dolder et al., 2001; Lee et al., 2002; Youn et al., 2002).  Both 

uncoupled respiration and PTP formation lead to decreases in the mitochondrial membrane 

potential and decreased ATP formation, and PTP formation can lead to cell death through 

cytochrome c release (Brookes, 2005; Tsujimoto et al., 2006).  DA and cysteinyl-DA metabolites 

have also been shown to inhibit complex I respiration, complex IV respiration, alpha-

ketoglutarate dehydrogenase activity, and pyruvate dehydrogenase activity in isolated 

mitochondria and in cell culture (Ben-Shachar et al., 1995; Li and Dryhurst, 2001; Khan et al., 

2005).  As previously mentioned, mitochondrial dysfunction is known to lead to ROS 

production, and DA-inhibited isolated mitochondria also have been shown to produce H2O2 and 

superoxide (Kim et al., 1999). Thus, oxidative stress, DA oxidation, and mitochondrial 

dysfunction all contribute to further oxidative damage in the mitochondria and the cell, 

ultimately resulting in cell death.  
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2.0  THESIS GOALS 

 The goals of the work presented in this thesis were to explore the role of dopamine (DA) 

in mediating vulnerability to toxicity in dopaminergic cells.  Previously, DA-induced 

neurodegeneration has been established in vivo, and DA toxicity in vitro, with evidence for DA 

oxidation in human PD patient brain and PD animal models.  I focused on establishing the DA-

induced toxicity model in differentiated PC12 cells, a cell line that stops proliferating and 

extends processes following NGF differentiation, and can synthesize and store DA (Greene and 

Tischler, 1976; Greene and Rein, 1977).   Using the PC12 cell line instead of primary cultures or 

in vivo studies was advantageous for measuring the changes that occurred in only DA-containing 

cells following DA- and rotenone-exposure.  I then used this cell model to further explore the 

role of DA in differentiated PC12 cell toxicity, in changes in levels of proteins of the 

mitochondrial-enriched fraction, and in rotenone-induced toxicity, to better understand potential 

vulnerabilities affected by the presence of DA in cells. 

 First, I hypothesized that DA exposure would lead to increased DA oxidation and toxicity 

in differentiated PC12 cells.  Thus, I established the DA-induced toxicity model by measuring 

the viability, catechol levels, cysteinyl-catechol levels, protein cysteinyl catechol levels, and 

ATP levels following DA exposure in differentiated PC12 cells.  Due to the high levels of 

protein modification and ATP loss detected, I further hypothesized that intracellular DA 

oxidation was associated with toxicity.  Therefore, the role of DA metabolism, DA uptake, and 
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the oxidative stress resulting from these pathways were also examined.  These results are 

discussed in Chapter 3. 

 DA quinone and oxidative modification of proteins could lead to the inactivation, 

misfolding, and increased degradation of proteins. Since I observed increases on DA-modified 

protein following DA exposure in PC12 cells (Chapter 3), I hypothesized that DA-exposure leads 

to the modification of critical proteins, resulting in the loss of normal cellular function and 

increased vulnerability to cell death.  I focused on mitochondrial proteins, since mitochondria 

play a vital role in cell death signaling, and since mitochondrial function is essential to cell 

survival.  Using a new proteomics technique, 2D-difference in-gel electrophoresis (2D-DIGE), I 

measured protein changes in a mitochondrial-enriched fraction of PC12 cells following DA 

exposure.    These data are described in Chapter 4. 

 Lastly, I wanted to determine the role of DA in rotenone-induced toxicity.  Rotenone, a 

mitochondrial complex I inhibitor, is a potent dopaminergic toxin and has been established as a 

PD model.  Rotenone also has been shown to increase reactive oxygen species formation and 

decrease ATP, which could lead to increased DA oxidation and decreased DA vesicular uptake.  

Therefore, I hypothesized that rotenone-induced toxicity may be associated with the presence 

DA, and thus rotenone may particularly affect dopaminergic cells.  These observations are 

discussed in Chapter 5. 
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3.0  DOPAMINE-INDUCED TOXICITY IN DIFFERENTIATED PC12 CELLS INVOLVES 

INTRACELLULAR DOPAMINE OXIDATION AND REQUIRES DOPAMINE UPTAKE BUT 

NOT MONOAMINE OXIDASE METABOLISM  

3.1 SUMMARY 

Degeneration of dopaminergic cells in Parkinson's disease has been linked to oxidative 

stress and mitochondrial dysfunction.  Dopamine (DA) can cause oxidative stress through 

production of H2O2, a byproduct of DA metabolism by monoamine oxidase (MAO), and through 

auto-oxidation into DA quinone (DAQ).  Reduced free cysteine and cysteines incorporated into 

glutathione or protein can react with DAQ, forming cysteinyl-catechols.  We have previously 

observed dysfunction in isolated mitochondria following DAQ and increased protein cysteinyl-

catechol levels and selective dopaminergic degeneration after intrastriatal DA injections in vivo. 

DA toxicity is established in cell culture, but the mechanism by which DA induces cell death 

remains unknown.  In this study, we measured the effects of DA exposure and the roles of MAO 

and the DA transporter (DAT) on DA-induced toxicity in differentiated PC12 cells.  We found 

that DA exposure leads to 35% loss in cell viability, 8.6-fold increase in protein cysteinyl-

catechols (24h, 150 µM), and 54% decrease in ATP levels (18h, 150 µM).  We also observed 

that DA-induced toxicity was completely attenuated by blocking DA uptake.  However, 

inhibiting MAO did not affect DA-induced toxicity.  We concluded that DA uptake is required 
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for toxicity in differentiated PC12 cells.  Thus, intracellular protein oxidation may play a major 

role in DA-induced toxicity. 

3.2 INTRODUCTION 

Parkinson’s disease (PD) pathology has been characterized by the degeneration of 

dopamine (DA) containing neurons of the nigrostriatal pathway.  The cause of this degeneration 

remains unknown, although it has been linked to oxidative stress (Koutsilieri et al., 2002; Jenner, 

2003; Sayre et al., 2005).  The relationship between DA oxidation and oxidative stress in 

degeneration has provided a possible link between the selective vulnerability of DA neurons and 

PD.  Since DA is unstable, easily oxidized into reactive oxygen species (ROS) and quinones, it 

can add to the oxidative stress of a cell.  DA can generate ROS and quinones through the normal 

metabolism of DA by monoamine oxidase (MAO), which leads to the production of H2O2 and 

dihydroxyphenylacetic acid (DOPAC) (Maker et al., 1981).  In addition, spontaneous or 

enzymatic oxidation of DA into DA quinone (DAQ) forms ROS, such as H2O2.  Both pathways 

of DA-related ROS formation can lead to cellular damage.  Transition metals can react with 

H2O2 that is not reduced by glutathione (GSH) and the GSH-dependent detoxifying enzyme 

GSH-peroxidase, leading to the formation of the hydroxy radical, which can react with protein, 

DNA, and lipids (Bolton et al., 2000; Halliwell, 2001).  Furthermore, the electron-deficient DAQ 

readily reacts with cellular nucleophiles, including reduced sulfhydryl groups, which can be 

found on free cysteine residues, GSH, and proteins (Tse et al., 1976; Graham, 1978; Fornstedt et 

al., 1990a; Hastings and Zigmond, 1994).   Modification of free thiols and GSH can lead to the 

reduction in the amount of antioxidants available to protect the cells from oxidative stress.  Many 
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vital proteins contain cysteine in their active sites, therefore modification of cysteine residues in 

proteins may alter the function of these proteins, leading to protein inactivity and cell death 

(Bailey et al., 2005). 

In vivo DA oxidation is supported by the presence of neuromelanin, an oxidized polymer 

of catecholamines and by the presence of cysteinyl-catechol conjugates in PD brain lysates 

(Spencer et al., 1998; Zucca et al., 2004).  Endogenous DA oxidation and protein modification 

has also been observed following exposure to DA toxins, such as methamphetamine (METH) 

and 1-methyl-4-phenylpyridinium (MPP+), in the form of increased protein cysteinyl-catechols 

(LaVoie and Hastings, 1999; Teismann et al., 2003).  Exogenous DA application increases the 

formation of protein cysteinyl-catechols in vitro and in vivo, and leads to selective damage to DA 

terminals in vivo (Graham, 1978; Hastings et al., 1996; Rabinovic et al., 2000).  DA has also 

been shown to be toxic in both dopaminergic and non-dopaminergic cell culture systems, 

including mesencephalic cell cultures, cortical neurons, cultured rat forebrain neurons, SH-SY5Y 

cells, SK-N-MC cells, mouse thymocytes, and undifferentiated PC12 cells (Pardo et al., 1995; 

Hoyt et al., 1997; Stokes et al., 2000; Barzilai et al., 2001; Blum et al., 2001; Asanuma et al., 

2004; Chen et al., 2004b; Moussa et al., 2006).  However, only a few studies have shown DA 

toxicity in differentiated PC12 cells (Jones et al., 2000; Koshimura et al., 2000; Ishisaki et al., 

2001).  DA-induced toxicity in vivo and in vitro has been established.  The oxidation of DA to 

ROS and reactive quinones has previously been implied in several cell culture studies, but it has 

never been measured directly. 

In this study, we sought to determine the effect of DA exposure in differentiated PC12 

cells focusing on whether DA-induced oxidation, either through H2O2 production from the 

metabolism of DA by MAO, or by oxidation of the catechol ring into reactive quinones with 
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subsequent protein modification was responsible for inducing cell death.  We found that DA 

exposure is toxic to PC12 cells, and leads to the formation of free cysteinyl-catechols and 

protein-cysteinyl catechols.  In addition, DA exposure leads to ATP deficits, indicating that DA 

exposure may affect mitochondrial respiration.  DOPAC, a metabolite of DA that can also form 

quinones and modify reduced sulfhydryls, is not a substrate of the DA transporter (DAT) and 

was not toxic to PC12 cells.  We also observed that DA-induced toxicity could be completely 

attenuated by blocking DA uptake into PC12 cells, but that inhibiting MAO did not affect DA-

induced toxicity.  Therefore, we conclude that DA must be taken up by differentiated PC12 cells 

to be toxic, and that quinone modification of intracellular protein targets is likely a major 

contributor to DA-induced toxicity. 

3.3 EXPERIMENTAL PROCEDURES 

Chemicals and Reagents: 

Cell culture media, Dulbecco’s Modified Eagle Medium (DMEM, Gibco brand), fetal 

bovine serum (HyClone brand), horse serum (HyClone brand), and trypsin (Gibco brand) were 

purchased from Invitrogen (Carlsbad, CA).  Type I rat tail collagen and nerve growth factor 

(NGF) were purchased from BD Bioscience (San Diego, CA). 14C-labeled DA was purchased 

from ICN Biomedicals (Costa Mesa, CA).  All other non-specified reagents were purchased from 

Sigma.  All solutions were made in distilled water purified with a Milli-Q system (Millipore 

Corp., Bedford, MA) unless otherwise noted. 
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PC12 Cell Culture:  

PC12 cells, DA-containing rat adrenal pheochromocytoma derived cell-line, were plated 

at a density of 19,000 cells/cm2 and differentiated in DMEM supplemented with 1% fetal bovine 

serum, 1% horse serum, and 100 ng/ml NGF over 6 d, with a change of differentiation media 

after 72 h.  After differentiation, cells were treated with DA (150 µM) in the presence and 

absence of NET inhibitors, DAT inhibitors, or MAO inhibitors (MAOIs) in differentiation media 

over 2-48 h.  Differentiated PC12 cells were also treated with 150 µM DOPAC for 24 h.  Control 

cultures underwent a media change at the same time as treated cultures.  The concentration of 

DA (150 µM, up to 48 h) was selected, since that treatment regimen resulted in significant, but 

not excessive (>50%) amounts of cell death, so that biochemical measurements and potentially 

protective treatments could be utilized. 

 

DA Uptake Inhibition Treatment: 

Cells were treated with 150 µM DA; 10 µM GBR12909 and 1µM desipramine 

(dopamine transporter [DAT] inhibitor and norepinephrine transporter [NET] inhibitor, 

respectively); 10 µM GBR12909 and 1µM desipramine for 30 minutes prior to 150 µM DA in 

the presence of DAT and NET inhibitors; or control media, on the last day of differentiation.  

Cell viability was determined by cell counting using the trypan blue exclusion method.   

 

DA Uptake Radioassay:  

Differentiated PC12 cells were treated for 30 min or 24 h with 150 µM DA + 18.18 µM 

14C-DA (10 µCi) alone, or with a 30 min pretreatment and co-treatment of 10 µM GBR12909, a 

DAT inhibitor, and 1µM desipramine, a NET inhibitor.  PC12 cells were then collected, rinsed 
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several times in PBS, and lysed in 6.5% trichloroacetic acid (TCA) with high-speed 

centrifugation.  Radioactivity was measured in an aliquot of the media, the cell supernatant, and 

the cellular pellet (dissolved in 0.1 N NaOH) in a Beckman LS 6500 scintillation counter. 

 

MAOI Treatment: 

Cells were treated with 150 µM DA alone; 100 µM clorgyline alone (monoamine oxidase 

A inhibitor); 100 µM pargyline alone (monoamine oxidase A/B inhibitor); 100 µM clorgyline 30 

min prior to 150 µM DA plus clorgyline; 100 µM pargyline 30 min prior to 150 µM DA plus 

pargyline; or control media, on the last day of differentiation.    Cell viability was determined by 

cell counting using the trypan blue exclusion method.   

 

Biochemical analysis:  

DA and DOPAC measurements were obtained from collected PC12 cells following 

treatment.  PC12 cells were force-pipetted off the plates, rinsed in PBS, and gently pelleted by 

centrifugation with the treatment medium.  PC12 cellular protein was acid precipitated in 0.1 N 

perchloric acid (PCA) and centrifuged at 14,000 x g for 25 min.   An aliquot of the supernatant 

was extracted with alumina, and injected into an HPLC system containing an ESA (Chelmsford, 

MA) Coulochem II coulometric detector (+280 V).  Free cysteinyl catechol (free cys-DA, free 

cys-DOPAC, and GSH-DA) measurements were obtained from an alumina extracted aliquot of 

the supernatant injected into an HPLC system containing a Waters Associates (Milford, MA) 460 

amperometric detector set at an oxidizing potential of 0.6 V.  Protein cysteinyl-catechols (protein 

cys-DA and cys-DOPAC) were measured from the protein pellet, as described previously 

(Hastings and Zigmond, 1994). In brief, protein from the acid precipitated pellet was hydrolyzed 
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in 6 N HCl containing 1 mg/ml BSA at 110oC for 22 h. The hydrolyzed protein samples were 

extracted with alumina prior to analysis on HPLC with a Waters 464 amperometric detector set 

at an oxidizing potential of 0.6 V.  Peaks for catechols and cysteinyl-catechols were identified 

and quantified by comparison to standards. 

 

ATP measurement: 

 Following 2-48 h DA treatment, cells were force-pipetted off the plates, rinsed in PBS, 

gently pelleted by centrifugation with the treatment medium.  PC12 cell protein was precipitated 

in 2% TCA and centrifuged at 14,000 x g for 25 min.  A luciferase-based assay was used to 

measure ATP levels in an aliquot of the resulting supernatant (Ronner et al., 1999).  A Monolight 

3010 luminometer (Pharmingen, San Diego, CA) was used to measure the light output resulting 

after an aliquot of diluted cell sample, 30mM HEPES, pH 7.75, and Enlighten 

rLuciferase/Luciferin reagent (Promega, Madison, WI) were mixed in a cuvette.  Protein 

amounts were determined by the Bradford assay (Bradford, 1976). 

 

Western Blot Analysis: 

Control PC12 cells were cultured as described above.  Following 6 d of differentiation, 

media was removed and PC12 cells were collected in PBS using force-pipetting.  Cells were 

combined with the media before pelleting, to collect any floating cells. Cells were re-suspended 

once in PBS and re-pelleted prior to lysis in a buffer containing: 9M urea, 2% w/v CHAPS, 30 

mM Tris-base, and protease inhibitor cocktail [PIC] (2.5 µL/mg protein), pH 8.5.  Protein was 

separated by 10% SDS-PAGE and transferred to nitrocellulose membranes using a Trans-blot 

SD Semi-Dry Electrophoretic Transfer Cell (Biorad).  Following transfer, the blots were washed 
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in PBS, blocked overnight at 4oC with 1:1 Odyssey blocking buffer (Li-Cor, Lincoln, NE): PBS-

T (PBS + 0.1% Tween 20), then incubated with primary antibody at RT.  The blots were then 

washed in PBS-T and incubated at RT with IR-Dye 680 or 800 secondary antibody (Li-Cor, 

Lincoln, NE).   Blots were then washed again in PBS-T, with a final wash in PBS prior to the 

scanning on the Odyssey Infrared Imaging System (Li-Cor, Lincoln, NE).  Antibodies used were 

DAT (1: 1000), NET (1:750), actin (1:100,000; Sigma).  Actin was used as a loading control.  

There was no significant difference in the actin band densities between lanes for each blot (data 

not shown). 

 

Statistical Analysis: 

Differences among group means were determined by ANOVA followed by post-hoc 

student's t-test with significance determined at p<0.05. 

3.4 RESULTS 

3.4.1   DA Induces Toxicity in PC12 Cells 

To determine whether DA was toxic to differentiated PC12 cells, the viability of DA 

exposed PC12 cells was measured using trypan blue exclusion.  PC12 cell viability was 

significantly different from matched control following 4 to 48 h of 150 µM DA treatment (Figure 

2).  The largest difference in cell viability (-35% compared to control) occurs after 24 h of DA 

exposure.  Control PC12 cell viability ranged from 83.6% - 94.4 % viable cells, with the earlier 
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time-points having the highest control viability and the later time-points having the lower 

viability.   

 

 

Figure 2: PC12 cell viability following DA treatment.   

Viability of PC12 cells treated with 150 µM DA for 2-48 h was measured using trypan blue 

exclusion.  Values are listed as mean % time-matched control ± SEM, n= 3-4.  *, significantly 

different from control, p<0.05.  

 

 

3.4.2   DA Treatment Increases Catechol Levels 

To determine the effect of DA treatment on catechol levels and to show that DA can be 

taken up and metabolized by PC12 cells, DA and DOPAC levels were measured by HPLC in 

PC12 cells following 2-48 h, 150 µM DA treatment.  Average control levels of DA in PC12 cells 
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were 6.07 nmol/mg protein.  DA levels were significantly elevated 6-fold above time-matched 

control, following a 2 h exposure to DA; these levels remained elevated approximately 7-fold 

above control after 4 and 8 h DA exposure (Figure 3A).  At later time-points (24 h and 48 h), the 

DA levels in treated cells remained above control (2.5 and 1.8-fold, respectively).  However, the 

magnitude (fold change) of the DA level increase was reduced from the shorter DA exposure 

times (Figure 3A).  Intracellular DOPAC levels were also increased following DA treatment.  

The average control level of DOPAC was 0.39 nmol/mg protein (6.4% of the intracellular DA 

levels).  DOPAC levels were elevated 20-fold above control levels following a 2 h exposure to 

DA (Figure 3B).  DOPAC levels following 4 h and 8 h DA exposure remained elevated above 

control 13-fold and 18-fold, respectively (Figure 3B).  Cellular DOPAC levels remained elevated 

above control following 24 h DA exposure (4-fold), but were significantly reduced from the 

earlier time-points (Figure 3B).  After 48 h DA treatment, DOPAC returned to control levels 

(Figure 3B).   These data show that DA and DOPAC levels are increased in PC12 cells following 

DA treatment, indicating that DA is being taken up by the cells and metabolized into DOPAC.  

The levels of DA and DOPAC in the remaining cells approach control levels after 48 h of DA 

exposure, suggesting that over time cells can break down the excess DA and DOPAC into other 

metabolites, such as homovanillic acid. 
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Figure 3: Catechol levels following DA treatment. 

PC12 cells were treated with 150 µM DA for 2-48 h, were collected, and assayed for (A) DA or 

(B) DOPAC levels by HPLC with electrochemical detection.  Values are listed as mean ± SEM, 

n = 3-6. *, Significantly different from control, p<0.05. 
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3.4.3   Exogenous DA Treatment Increases DA Oxidation Products in PC12 Cells 

We have previously shown that in vivo intrastriatal DA injections lead to increased DAQ 

modified cytosolic free cysteine, GSH, and cysteine on protein (Hastings et al., 1996; Rabinovic 

et al., 2000).  To determine if DA treatment in PC12 cells increased levels of DA oxidation 

products, free and protein cysteinyl-catechol levels were measured using HPLC with 

electrochemical detection.  Free cysteinyl-catechols are formed when oxidized catechol quinones 

react with free cysteine residues in the cytosol, or with cysteines found on GSH.  All free 

cysteinyl-catechols were elevated above control following 4 to 8 h application of DA (Figure 4).  

The average control free cysteinyl-DA (cys-DA) level was 5.7 pmol/mg protein in PC12 cells.  

Free cys-DA levels were not significantly different from control in PC12 cells treated for 2 h, but 

after 4 h levels were elevated 3.7-fold above control and were increased to 6.8-fold above control 

after 8 h of 150 µM DA exposure (Figure 4A).  At longer time-points (24 and 48 h), free cys-DA 

levels remained approximately 2-fold above control (Figure 4A).  The average control free 

cysteinyl-DOPAC (cys-DOPAC) level was 3.6 pmol/mg protein in PC12 cells.  Free cys-

DOPAC was significantly higher than control in the early DA treatment time-points; after 2h of 

150 µM DA exposure, cys-DOPAC levels were elevated 16.5-fold above control, and the levels 

remained elevated above control after 4 h and 8 h of DA treatment (Figure 4B).  Free cys-

DOPAC levels were not significantly different from control after 24 h and 48 h DA treatments 

(Figure 4B).  Free GSH-DA levels were significantly higher in DA-treated PC12 cells at all time-

points examined (2-48 h).  The average control free GSH-DA level was 52.7 pmol/mg protein in 

PC12 cells.  GSH-DA levels rose 2.4-fold above control following 2 h and were elevated to 3.5-

fold and 5.8-fold above control after 4 h and 8 h DA exposure (Figure 4C).  GSH-DA levels 
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remained increased after longer exposure times (24 h and 48 h) at 2.9- and 2.7-fold above 

control, respectively (Figure 4C).  

 

Figure 4: Free cysteinyl-catechol levels in PC12 cells following DA treatment. 

PC12 cells were treated with 150 µM DA for 2-48 h, were collected, and assayed for (A) free 

cys-DA, (B) free cys-DOPAC, and (C) GSH-DA levels by HPLC with electrochemical 

detection.  Values are listed as mean ± SEM, n= 3-6.  *, Significantly different from control, 

p<0.05. 
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Protein cysteinyl catechols are formed from oxidized catechols reacting with cysteine 

residues on proteins.  Both protein cys-DA and protein cys-DOPAC levels were elevated 

significantly above control levels after 4-24 h, 150 µM DA exposure.  The average control cys-

DA level was 34.7 pmol/mg protein in PC12 cells.  Protein cys-DA was not significantly 

increased in PC12 cells exposed to DA until 4 h of DA exposure.  At 4 h, cys-DA levels were 

elevated 5.6-fold above control, and remained above control at all later time-points, ranging from 

4.4- to 7.8-fold above control (Figure 5A).  The average control protein cysteinyl DOPAC level 

was 34.0 pmol/mg protein in PC12 cells.  Protein cys-DOPAC levels were significantly higher 

than control at all DA treatment time-points (Figure 5B).  After 2 h, 150 µM DA exposure, 

cysteinyl-DOPAC levels were elevated 3.2-fold above control, and the levels ranged from 4.8-to 

12.5-fold above control at the later time-points (Figure 5B).   Protein cysteinyl-catechol levels 

rose early and remained elevated after longer DA exposure times, indicating that DA oxidation 

occurs quickly and persists while exogenous DA is present.  
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Figure 5: Protein cysteinyl-catechol levels in PC12 cells following DA treatment. 

PC12 cells were treated with 150 µM DA for 2-48 h, were collected, and acid precipitated 

protein pellets were hydrolyzed and assayed for (A) protein cys-DA and  (B) protein cys-

DOPAC levels by HPLC with electrochemical detection.  Values are listed as mean ± SEM, n= 

3-6.  *, Significantly different from control, p<0.05. 
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3.4.4   ATP Depletion in PC12 Cells Following DA Exposure 

To determine whether DA treatment leads to energy deficits in PC12 cells, ATP was 

measured in the cells following 0-48 h, 150 µM DA exposure (Figure 6).  The average control 

ATP level was 37.9 nmol ATP/mg protein.  ATP levels were not significantly different from 

control following 2 to 8 h of DA exposure.  However, following an 18 h DA exposure, PC12 cell 

ATP levels were significantly decreased (-54%) from time-matched controls (Figure 6).  

Interestingly, the ATP levels following 24 h of DA exposure rose and were not significantly 

different from control levels.  At 48 h, ATP levels dropped again and were decreased (-36%) 

from control.  The transient increases in ATP levels following 24 h of DA exposure may be the 

result of increased ATP production via glycolysis, stimulated by DA-induced oxidative damage 

of mitochondria.  PC12 cells have previously been shown to resort to increased glycolysis when 

challenged with mitochondrial inhibitors (Kang et al., 1997).   

 

Figure 6: ATP levels in PC12 cells following DA treatment. 

PC12 cells were treated with 150 µM DA for 0-48 h, were collected, and assayed for ATP using 

a luciferase-based assay.  Values are listed as mean % matched control ATP ± SEM, n= 3-4.  *, 

significantly different from control, p<0.05. 
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3.4.5   MAO Inhibition Does Not Effect DA-Induced Toxicity 

There are two pathways for DA to increase oxidation and result in cell death.  DA can 

directly oxidize inside the cell into DAQ, modifying GSH and proteins, or DA metabolism by 

MAO results in the formation of H2O2 inside the cell, leading to increased oxidative stress.  

Therefore, we wanted to determine whether DA metabolism by MAO (or DA uptake) plays a 

role in DA-induced toxicity in PC12 cells.  To determine how blocking DA metabolism by MAO 

affected the formation of protein-cysteinyl catechols, differentiated PC12 cells were exposed to 

150 µM DA in the presence or absence of 100 µM clorgyline, a MAO-A inhibitor.  PC12 cells 

contain MAO-A and are insensitive to some MAO-B inhibitors (Youdim et al., 1986).  

Treatment with clorgyline reduced DOPAC to non-detectable levels, as measured by HPLC with 

electrochemical analysis (data not shown).  Analysis of DA oxidation was measured in PC12 

cellular protein assayed for cysteinyl-DA and cysteinyl-DOPAC adducts using HPLC.  

Following 24 h exposure to 150 µM DA, cys-DA levels were increased 5.2-fold above control 

and cys-DOPAC levels were increased 4.0-fold above control (Figure 7A).  Exposure to 100 µM 

clorgyline alone for 24 h did not affect cys-DA levels, and decreased cys-DOPAC levels -38% 

compared to control (Figure 7A).  However, exposure to 150 µM DA in the presence of 100 µM 

clorgyline for 24 h led to a 15.2-fold increase, above control, in cys-DA levels and no change in 

cys-DOPAC levels (Figure 7A).  The large increase in cys-DA levels after DA and MAOI 

treatment reflect the inability of the PC12 cells to metabolize DA into DOPAC, resulting in high 

levels of DA oxidation and cys-DA protein modification. 

To determine the effect of MAO inhibition of DA-induced toxicity, differentiated PC12 

cells were treated for 24 h with 150 µM DA in the presence or absence of 100 µM clorgyline or 
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100 µM pargyline, which are both MAO inhibitors, then assayed for viability using the trypan 

blue exclusion assay.  The viability of PC12 cells treated with 150 µM DA for 24 h was 

significantly decreased -31% compared to control (Figure 7B).  Neither pargyline nor clorgyline 

treatment alone had any effect on PC12 cell viability (data not shown).  Viability was decreased 

when the cells were pre- and co-treated with 100 µM pargyline or 100 µM clorgyline and 150 

µM DA (-28% and –34%, respectively; Figure 7B).  This data suggests that DA-induced toxicity 

is not due to the production of H2O2 via DA metabolism by MAO. 

 

Figure 7: The effect of MAO in inhibition on DA oxidation and toxicity. 

PC12 cells were treated with 150 µM DA in the presence or absence of 100 µM clorgyline or 

100 µM pargyline for 24 h.  A. PC12 cells were collected and assayed for protein cys-DA and 
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cys-DOPAC levels by HPLC with electrochemical detection.  Values are listed as mean % 

control ± SEM, n= 4-5.  *, Significantly different from control, p<0.05.  B.  Viability of PC12 

cells was measured using trypan blue exclusion.  Values are listed as mean % matched control ± 

SEM, n= 3-5.  *, significantly different from control, p<0.05. 

 

 

3.4.6   DOPAC Is Not Toxic to PC12 Cells 

To determine whether extracellular oxidation also leads to toxicity, PC12 cells were 

exposed to DOPAC and assayed for protein cysteinyl-catechols and viability.  DOPAC is a 

metabolite of DA, has a similar catechol ring that can oxidize and form DOPAC quinones, and 

thus can react with reduced sulfhydryls in the cell.  However, DOPAC is not a substrate for 

DAT, and therefore is not transported into the cells.  PC12 cells were treated with 150 µM DA or 

DOPAC for 24 h and protein cysteinyl-catechols were measured by HPLC.   Protein cys-DA was 

increased 14-fold above control following DA, but was not affected by DOPAC treatment 

(Figure 8A).  Protein cys-DOPAC levels were increased 11-fold above control following DA, 

and 6.5-fold above control following DOPAC exposure (Figure 8A).  The level of protein cys-

DOPAC formed following DA treatment versus DOPAC treatment was not significantly 

different, but the total amount of protein modification (cys-DA + cys-DOPAC) was much higher 

in the DA treated group.  The formation of protein cys-DOPAC following DOPAC treatment 

indicates that DOPAC was oxidized into DOPAC quinone and reacted with reduced sulfhydryls 

on PC12 cell proteins, likely on the outside plasma membrane surface.  PC12 cell viability was 
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not affected by 24 h exposure to DOPAC (Figure 8B), indicating that the extracellular oxidation 

of DOPAC and modification of proteins was not sufficient for PC12 cell death.   

 

Figure 8: The effect of DOPAC treatment on catechol oxidation and PC12 cell viability. 

PC12 cells were treated with 150 µM DA or 150 µM DOPAC for 24 h. A. PC12 cells were 

collected and assayed for protein cys-DA and cys-DOPAC levels by HPLC with electrochemical 

detection.  Values are listed as mean % time-matched control ± SEM, n= 3-9.  *, Significantly 

different from control, p<0.05.  B.  Viability of PC12 cells was measured using trypan blue 

exclusion.  Values are listed as mean % time-matched control ± SEM, n= 3-6.  *, significantly 

different from control, p<0.05.  
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3.4.7   DA Uptake Inhibition Completely Attenuates DA-Induced Toxicity 

To determine whether intracellular or extracellular DA oxidation was toxic to PC12 cells, 

DA uptake was blocked by GBR12909, a DAT inhibitor, and desipramine, a NET inhibitor.  The 

presence of DAT and NET in our differentiated PC12 cells was determined by Western blot 

(Figure 9A).  Since NET can transport DA into cells, we needed to inhibit NET in addition to 

DAT to make sure that DA uptake was being blocked efficiently.  First, we wanted to determine 

whether 10 µM GBR12909 and 1 µM desipramine would sufficiently block DA uptake into 

PC12 cells.  Therefore, differentiated PC12 cells were treated for 30 min or 24 h with 150 µM 

DA + 18 µM 14C-DA in the presence or absence of the DAT and NET inhibitors, and then the 

amount of intracellular radioactivity was determined by scintillation counting.  Levels of 

intracellular exogenously applied 14C-DA were decreased 57±3%, n=3 following 30 min and     

80±1%, n=3 following 24 h in PC12 cells pre-treated with DAT and NET inhibitors compared to 

PC12 cells treated with DA alone (data not shown).  Therefore, 10 µM GBR12909 and 1 µM 

desipramine were used in all other experiments to block DA uptake.   

To determine how blocking DA uptake affected the formation of protein-cysteinyl 

catechols, differentiated PC12 cells were exposed to 150 µM DA in the presence or absence of 

10 µM GBR12909 and 1µM desipramine.  The cellular protein was collected and assayed for 

cysteinyl-DA and cysteinyl-DOPAC adducts using HPLC.  Following 24 h exposure to 150 µM 

DA, cys-DA levels were increased 5.2-fold above control (Figure 9B).  Exposure to DA in the 

presence of 10 µM GBR12909 and 1µM desipramine for 24 h led to a 3.5-fold increase, above 

control, in cys-DA levels (Figure 9B).  Exposure to 10 µM GBR12909 and 1µM desipramine 

alone for 24 h led to a significant decrease (-47% compared to control) in cys-DA (Figure 9B). 

 55 



Following 24 h exposure to 150 µM DA, cys-DOPAC levels were increased 4.0-fold above 

control (Figure 9B). However, exposure to 150 µM DA in the presence of 10 µM GBR12909 

and 1µM desipramine for 24 h led to a 4.9-fold increase, above control, in cys-DOPAC levels 

(Figure 9B).  Exposure to 10 µM GBR12909 and 1µM desipramine alone for 24 h did not affect 

cys-DOPAC levels (Figure 9B).  Both protein cys-DA and cys-DOPAC conjugates were formed 

even when DA uptake was blocked.  Although we expect some DA was taken up into the cells 

despite using uptake inhibitors, most protein modification likely occurred on external proteins of 

PC12 cells. 

To determine the role of DA uptake on DA-induced toxicity, differentiated PC12 cells 

were treated with 150 µM DA for 24 h in the presence or absence of DAT and NET inhibitors, 

and the viability of the cells was assayed using the trypan blue exclusion assay.  The viability of 

PC12 cells treated with 150 µM DA for 24 h was significantly decreased -32% compared to 

control (Figure 9C).   This toxicity was completely attenuated when the cells were pre- and co-

treated with 10 µM GBR12909 and 1µM desipramine, DAT and NET inhibitors (Figure 9C).  

GBR12909 and desipramine treatment alone had no effect on PC12 cell viability (Figure 9C).  

This data suggests that DA must be taken up into PC12 cells to be toxic, and thus uptake of DA 

plays a major role in DA-induced toxicity.   Since we still observe DA oxidation, which is 

probably mostly extracellular, following DA exposure with DA uptake inhibition, the complete 

attenuation in toxicity we observe due to DA uptake inhibition can not be due to only blocking 

catechol oxidation and protein cys-catechol formation.  These results lend evidence that the 

intracellular oxidation of catechols, and perhaps the resulting protein modification of critical 

proteins by catechol-quinones, may play an important role in cell death in the DA-induced 

toxicity model.  However, additional experiments will be required to determine differences in 
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proteins targeted by DAQ modification in DA exposed PC12 cells in the presence or absence of 

DAT/NET inhibition. 

 

Figure 9:  The effect of DA uptake inhibition on DA oxidation and toxicity. 

PC12 cells were differentiated for 6 d in NGF   A. PC12 cells were collected and lysed. Samples 

containing 30 µg protein were separated by 10% SDS-PAGE and transferred to nitrocellulose.  

Blots were probed for DAT and NET immunoreactivity.  Each lane represents total cellular 

protein from a different plate of differentiated PC12 cells.  B.  PC12 cells were treated with 150 
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µM DA in the presence or absence of 10 µM GBR12909 and 1 µM desipramine for 24 h.  PC12 

cells were collected and assayed for protein cys-DA and cys-DOPAC levels by HPLC with 

electrochemical detection.  Values are listed as mean % time-matched control ± SEM, n= 3-9.  *, 

Significantly different from control, p<0.05.  C.  Viability of PC12 cells was measured using 

trypan blue exclusion.  Values are listed as mean % time-matched control ± SEM, n= 3-6.  *, 

significantly different from control, p<0.05. 

 

3.5 DISCUSSION 

3.5.1   DA-Induced Toxicity Model 

We have found that differentiated PC12 cells are susceptible to DA-induced toxicity. 

Viability of PC12 cells was affected as early as 8 h (-16% control) following DA exposure.  

Toxicity reached a maximum after 24 h, with a 35% decrease in viability from time-matched 

control (Figure 2).  Following DA, treatment levels of DA and DOPAC increased in PC12 cells, 

indicating that DA was being taken up into the cells and metabolized into DOPAC (Figure 3).    

Although DA toxicity in PC12 cells is not a novel finding, most DA-toxicity studies are 

performed with undifferentiated PC12 cells undergoing division.  Therefore viability assays in 

these studies may also reflect differences in the number of cells initially plated and changes in 

the ability of PC12 cells to proliferate following DA exposure, in addition to changes in cell loss.  

This may explain the wide range of toxicity reported in undifferentiated PC12 cells, which can 

range from approximately 10% (Perez et al., 2003; Wang et al., 2005) to 70% (Song et al., 2004; 
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Xiao-Qing et al., 2005) cell loss for 24 h, 100 µM DA exposure.  Very few studies have looked 

at DA-induced toxicity in differentiated PC12 cells.  One study by Ishisaki et al., 2001 found a 

25% cell loss in differentiated PC12 cells following 24 h of 250 µM DA exposure, which was 

attenuated by over-expression of GSH S-transferase class Pi, a detoxifying protein that 

conjugates GSH to various hydrophobic and electrophilic compounds, including catechol 

quinones (Baez et al., 1997).  Another quinone-reducing protein, NAD(P)H quinone 

oxidoreductase 1 (NQO1), has also been shown to protect SK-N-MC cells against DA exposure 

(Zafar et al., 2006b).  Decreased levels of catechol-O-methyl transferase (COMT), an enzyme 

that catalyzes the methylation of the 3-position hydroxyl group on catechols, is also associated 

with increased DA toxicity in SK-N-SH cells (Ogburn et al., 2006).  COMT assists the cell in 

preventing the formation of quinones, since the methylation of one hydroxyl group prevents the 

ability of catechols, like DA, to oxidize into quinones.  Increased oxidative stress is also 

associated with potentiating DA-induced toxicity.  The exacerbation of DA-induced toxicity by 

potassium cyanide (KCN), which has been shown to increase ROS and NO and inhibit 

antioxidant systems and mitochondrial function, has also been reported in PC12 cells (Jones et 

al., 2000).  Another study examining the effect of DA on cell death induced by serum and NGF 

withdrawal, found that a low amount of DA (10-30 µM) was protective, but that 100 µM DA 

alone induced cell death and combined with NGF and serum withdrawal, exacerbated toxicity in 

differentiated PC12 cells (Koshimura et al., 2000).  Although we found higher levels of cell 

death, these other studies support our finding that DA is toxic to differentiated PC12 cells, and 

that oxidative stress induced by DA is likely involved in cell death in this model. 
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3.5.2   DA Oxidation and the Formation of Cysteinyl-Catechol Conjugates 

We are the first to measure direct DA and DOPAC quinone modification of reduced 

cysteines both free and protein-bound in cell culture.  Free cysteinyl catechols, including cys-

DA, cys-DOPAC, and GSH-DA were all increased following DA exposure (Figure 4), indicating 

that DA and DOPAC quinones were formed and reacted with free reduced cysteine and GSH in 

PC12 cells.  Levels of free cysteinyl catechols rose early, but after 24 and 48 h of DA treatment, 

all free cysteinyl catechol levels dropped from the initial increased amounts.  At these later time-

points, the intracellular DA and DOPAC levels are also lower (See Figure 2), which is likely due 

to the metabolism of DA into DOPAC and the subsequent diffusion of DOPAC into the media.  

Lower DA and DOPAC levels likely influence the free cys-DA, cys-DOPAC, and GSH-DA 

levels, since these conjugates may be cleared quickly by the cells. We have previously observed 

the transient nature of free cysteinyl-catechols following striatal injections of DA, in which free 

cysteinyl-catechol levels also dropped 24 h after DA intrastriatal injections (Hastings et al., 

1996; Rabinovic et al., 2000).  Therefore, free cysteinyl-catechol levels are not a stable measure 

for long-term oxidative changes in the DA-induced toxicity model.  

Increased protein oxidation in the form of carbonyls have previously been measured 

following DA exposure in undifferentiated PC12 cells; these levels were observed after 6 h of 

DA exposure, however since there was only one time point, it is possible that carbonyl formation 

occurred even earlier (Keller et al., 2000).  Other markers of oxidative stress, such as increased 

ROS, carbonyl formation, decreased free thiol groups, decreased GSH, and decreased NADPH 

have been observed following DA exposure in various cell lines (Gabby et al., 1996; Offen et al., 

1997; Jones et al., 2000; Keller et al., 2000; Pedrosa and Soares-da-Silva, 2002; Grima et al., 

2003).  However, we are the first to measure direct catecholamine quinone oxidation of proteins 
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on their cysteinyl residues.    We found that both protein cys-DA and cys-DOPAC levels were 

increased as soon as 4 h following DA exposure and remained elevated after longer (24-48 h) 

DA treatments in PC12 cells (Figure 5).  In previous in vivo studies (Rabinovic et al., 2000), 

protein cysteinyl-catechol levels also remained high after 24 h following a DA intrastriatal 

injection. Therefore, this cell culture study supports the in vivo finding that protein-cysteinyl 

catechols are a better measure of long-term damage due to DA-induced oxidative stress.  One 

would expect that protein cysteinyl-catechol levels would decline over time, since modified 

proteins are more likely to be quickly targeted for degradation.  However, oxidative stress in 

general and dopaminergic toxins (including DA) have been shown to decrease proteasome 

activity (Keller et al., 2000; Asanuma et al., 2004; Bader and Grune, 2006).  One protein in the 

ubiquitin proteasome pathway linked to inheritable PD, parkin, has been shown to be modified 

by DA, leading to decreased E3 ligase activity (LaVoie et al., 2005).  Therefore, DA oxidation 

may induce toxicity both through modification of target proteins and by inhibiting protein 

degradation, leading to protein aggregation and cell death. 

3.5.3   DA-induced Toxicity and Energy Deficits 

The critical protein targets that are responsible for DA toxicity remain unknown, 

although many likely candidates may be found in mitochondria, since mitochondrial function is 

critical to cell survival.  Many neurodegenerative disorders are related to deficiencies of 

mitochondrial complex activities (Orth and Schapira, 2001; Beal, 2005; Kwong et al., 2006).  

Mitochondrial respiration, and therefore ATP production, can be disrupted by ROS and 

quinones, and ROS or sulfhydryl modifying agents have been shown to inhibit electron transport 

chain enzymes (Kenney, 1975; Yagi and Hatefi, 1987; Zhang et al., 1990; Benard and 
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Balasubramanian, 1995).  We have previously shown that DAQs uncouple mitochondria 

respiration, lead to a decrease in state 3 respiration, and result in the opening of the PTP (Berman 

and Hastings, 1999; Gluck and Zeevalk, 2004). Therefore, we wanted to determine if ATP levels 

were altered following DA exposure.  We found that ATP levels in PC12 cells were decreased -

54% and -36% from time-matched controls following 18 h and 48 h, but were not significantly 

different after 24 h of 150 µM DA exposure (Figure 6).  We believe that the increases in ATP 

levels after DA exposure for 24 h may be due to the stimulation of glycolysis induced by the 

oxidative damage of mitochondria.  Mitochondrial inhibitors have been shown to increase 

glycolysis in PC12 cells (Kang et al., 1997).  We have also observed this boost of ATP levels in 

PC12 cells after 24 h exposure to rotenone, a mitochondrial complex I inhibitor, and therefore 

we believe it is a compensatory mechanism to cope with mitochondrial dysfunction (Dukes et al., 

2005).  However following longer exposures to toxins, this compensatory mechanism seems to 

fail, resulting in decreased levels of ATP after 48 h of exposure to DA (Figure 6) or rotenone 

(Dukes et al., 2005).  DA toxicity may be partially due to mitochondrial dysfunction from protein 

modification and inactivation by DA quinone and ROS production. 

3.5.4   MAO Contribution to DA-Toxicity 

DA metabolism into DOPAC by MAO, which leads to the production of H2O2, has been 

proposed to play a role in dopaminergic neurodegeneration (Graumann et al., 2002).  Hydrogen 

peroxide, one of the less reactive forms of ROS, is itself toxic to all cells and can be oxidized to 

more reactive ROS, such as superoxide anion and hydroxyl radical, leading to oxidative damage 

(Szeto, 2006).  Hydrogen peroxide has been shown to be toxic to PC12 cells, with 0.5 mM H2O2 

leading to a 50% cell loss in undifferentiated PC12 cells (Halleck et al., 1992; Clement et al., 
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2002).  Therefore, we wanted to determine what part, if any, of DA-induced toxicity was due to 

MAO metabolism of DA.  Differentiated PC12 cells exposed to 150 µM DA for 24 h in the 

presence of 100 µM clorgyline, a MAO-A inhibitor, led to 15.2-fold increased protein cys-DA 

conjugates compared to 5.2-fold above control for DA alone treated cells.  Protein cys-DOPAC 

levels were not different from control when cells were treated with DA and clorgyline, but were 

increased 4.0-fold after DA alone (Figure 7).  Previous studies in PC12 cells have shown a mixed 

response to MAOI on DA-induced toxicity, including significant protection (Cantuti-Castelvetri 

and Joseph, 1999; Keller et al., 2000), very little protection (Perez et al., 2003), and in one study 

MAOIs potentiated DA toxicity (Weingarten and Zhou, 2001).  In this study, MAOI inhibition 

with either pargyline or clorgyline co-treated with DA did not affect DA-induced toxicity, 

indicating that MAO metabolism of DA does not play a role in cell death induced by DA. 

3.5.5   DA Uptake Contribution to Toxicity 

Since MAO inhibition did not affect DA-induced toxicity, we wanted to examine the 

contribution of extracellular versus intracellular catecholamine oxidation in toxicity.  Previous 

experiments in our lab have shown that intrastriatal DOPAC injections led to cys-DOPAC 

formation, but did not damage the dopaminergic fibers of the striatum (Hastings, unpublished 

observations).  In addition, intrastriatal injections of DA into DAT knockout mice, also did not 

cause degeneration (Hastings, unpublished observations).  Therefore, we hypothesized that PC12 

cell exposure to DOPAC would not be toxic.   We observed increased protein cys-DOPAC 

levels, but no change in viability after DOPAC exposure in PC12 cells (Figure 8), indicating that 

cell death did not rely only on extracellular oxidation of catechols and modification of proteins.   
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We utilized GBR12909, a DAT inhibitor, and desipramine, a NET inhibitor, to block DA 

uptake into PC12 cells, to determine whether DA uptake was necessary for DA-induced toxicity.  

Increases in protein-cysteinyl catechol levels after DA exposure remained similar even when DA 

uptake was blocked (Figure 9).  Although we expected most of the protein cysteinyl-catechols 

formed were extracellular, the increased levels of cysteinyl-DOPAC indicated that DOPAC was 

also being oxidized.  Whether this cysteinyl-DOPAC originated from increased DA metabolism 

inside the cell, or was due to some of the DA being taken up into the cell, we found that blocking 

most of DA uptake completely attenuated DA-induced toxicity.   The role of DA uptake in DA-

induced toxicity has been previously explored using DAT inhibitors with varying results, 

including no protection (Clement et al., 2002), partial protection (Jones et al., 2000; Keller et al., 

2000; Perez et al., 2003), and complete protection (Cantuti-Castelvetri and Joseph, 1999).  

However, NET uptake of DA was not taken into account.  NET has been shown to transport DA 

in vivo (Moron et al., 2002), NET and DAT mRNA expression has been measured in PC12 cells 

(Lorang et al., 1994; Kadota et al., 1996), and we found both DAT and NET immunoreactive 

bands in differentiated PC12 cells (Figure 9).  Therefore, differences in the ability of DAT 

inhibition to protect against DA-induced toxicity in various studies may be due to incomplete 

inhibition of DA uptake.  In addition, the question as to whether DA toxicity may be a product of 

cell culturing conditions was raised by a study that reported production of H2O2 due to DA 

oxidization in cell culture medium (Clement et al., 2002).   However, according to this study, 

100 µM DA only produced 10 µM H2O2 in DMEM after 2 h of incubation (the longest reaction 

time reported) (Clement et al., 2002), which is a relatively low amount of H2O2 that has 

previously been shown not to be toxic to PC12 cells (Chen et al., 2005b; Chai et al., 2006).  
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Therefore, we believe that DA-induced toxicity in differentiated PC12 cells was due to DA 

uptake, and not through a non-specific effect. 

Other than DA-induced oxidative stress leading to toxicity, DA could also affect cells via 

D1 receptor activation, which has been found in other cell culture systems (Chen et al., 2004b; 

Moussa et al., 2006).  Our DA uptake inhibition data suggest that extracellular DA has no effect 

on DA-induced toxicity, which would include both extracellular DA oxidation and DA signaling 

through extracellular receptors.  This concurs with another study which reported that the D1 

antagonist SCH-23390 did not affect DA-induced toxicity (Clement et al., 2002).  Although D1 

and D2 receptors have been shown to be involved in striatal cell degeneration following 6-

OHDA, methamphetamine, dopamine, L-DOPA, and MPTP treatment in vivo and in vitro (Araki 

et al., 2000; Muralikrishnan and Ebadi, 2001; Angulo et al., 2004; Ishida et al., 2004; Mark et al., 

2004; Wersinger et al., 2004; Taylor et al., 2005; Xu et al., 2005b; Fiorentini et al., 2006), our 

results suggest that intracellular DA oxidation may play a role in dopaminergic cell death 

following exogenous application of DA. 

3.5.6   Relevance of DA Oxidation to PD Neurodegeneration 

The DA-induced toxicity model employs the addition of exogenous DA, which results in 

oxidative stress and dopaminergic cell death.  In disease, increased levels of endogenous 

cytoplasmic DA could occur though various mechanisms, including vesicular dysregulation.  

Impaired DA storage has been reported in α-synuclein knockout mice (Cabin et al., 2002), and 

recently, increased cytosolic catecholamine levels were measured in A30P α-synuclein over-

expressing but not wild type α-synuclein over-expressing chromaffin cells (Mosharov et al., 

2006), possibly linking genetic PD to DA vesicular dysfunction.  Decreased vesicular 
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monoamine transporter (VMAT2) gene expression levels have also been observed in remaining 

neurons of PD patient substantia nigra (Harrington et al., 1996).  Vesicular DA concentration has 

been estimated around 1 mM in Planorbis corneus (snail) neurons (Anderson et al., 1999a).  

Therefore, if vesicular storage of DA fails, large amounts of DA could be potentially released 

inside a neuron, where it can oxidize into quinones and modify proteins.  These data suggest that 

changes in DA storage, which would lead to DA release from the vesicles, could contribute to 

the dopaminergic selectivity of neurodegeneration in PD, by increasing the availability of DA for 

oxidation.  The presence of excess DA in the cytoplasm, either through exogenous application or 

due to release of intracellular vesicular stores, may add to the oxidative stress of a cell through 

ROS and DAQ production and through the subsequent oxidation of important biomolecules, 

making dopaminergic neurons in the substantia nigra more susceptible to cell death. 
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4.0  INCREASED LEVELS OF ENDOPLASMIC RETICULUM STRESS MARKERS AND 

DECREASED LEVELS OF ALDOLASE A IN MITOCHONDRIAL-ENRICHED FRACTIONS 

OF PC12 CELLS FOLLOWING EXPOSURE TO DOPAMINE  

4.1 SUMMARY 

Oxidative stress is implicated in protein misfolding and aggregation, which may activate 

the unfolded protein response (UPR) by the endoplasmic reticulum (ER).  Dopamine (DA) can 

initiate oxidative stress via H2O2 formation by DA metabolism and oxidation into DA quinone 

(DAQ).  We have previously shown that oxidative protein modification, mitochondrial 

dysfunction in vitro, and dopaminergic cell toxicity in vivo and in vitro are induced by DAQ.  In 

this study, we used cysteine- and lysine-reactive fluorescent dyes with 2-D difference in-gel 

electrophoresis (2D-DIGE), mass spectrometry, and peptide mass fingerprint analysis to identify 

altered PC12 cell mitochondrial-enriched proteins following DA exposure (150µM, 16h).  

Quantitative changes in proteins labeled with cysteine- or lysine-reactive dyes indicated 

increases in a subset of proteins: calreticulin, ERp29, ERp99, Grp58, Grp78, Grp94, and Orp150 

(149-260%), and decreased levels of aldolase A (-58% to -61%) in 2D-DIGE experiments.  

Changes after DA exposure in levels of ER chaperones Grp78 and Grp58, and the glycolytic 

enzyme aldolase A were also measured using Western blot analysis on PC12 cell mitochondrial-

enriched fraction and whole-cell lysate.  Using an unbiased proteomics approach, our findings 
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suggest that in PC12 cells, DA exposure leads to a cellular response indicative of ER stress prior 

to the onset of cell death. 

4.2 INTRODUCTION 

Oxidative protein modification has been implicated in several neurological disorders, 

including Alzheimer’s disease, Parkinson’s disease (PD), and ischemia (Butterfield, 2004; 

Greenamyre and Hastings, 2004; Schapira, 2004; Christophe and Nicolas, 2006).  Dopaminergic 

neurons may be especially susceptible to oxidative damage due to the reactive nature of 

dopamine (DA) and its metabolite, dihydroxyphenylacetic acid (DOPAC), which are easily 

oxidized into DA quinone (DAQ) or DOPAC quinone, respectively.  Sulfhydryl groups on 

cysteinyl residues in free cysteine, glutathione, and on protein are especially vulnerable to 

quinone modification, leading to the formation of cysteinyl-DA and cysteinyl-DOPAC 

conjugates (Tse et al., 1976; Graham, 1978; Fornstedt et al., 1990a; Hastings and Zigmond, 

1994).  DA exposure in PC12 cells and in vivo has been shown to increase protein cysteinyl-

catechol levels, indicating direct DAQ modification of cysteines in cellular proteins (Hastings et 

al., 1996; Dukes and Hastings, 2002).   In addition, DA exposure has also been shown to be toxic 

to PC12 cells (Walkinshaw and Waters, 1995; Cantuti-Castelvetri and Joseph, 1999; Jones et al., 

2000; Koshimura et al., 2000; Dukes and Hastings, 2002; Xiao-Qing et al., 2005) and to 

selectively damage DA neurons in vivo (Rabinovic et al., 2000).  The presence of neuromelanin 

in normal brain and cysteinyl-catechol conjugates in PD brain suggests that DA oxidation occurs 

in vivo during normal aging and PD disease progression (Spencer et al., 1998; Zecca et al., 
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2002b).  Therefore, DA-induced toxicity may be an effective model to observe the effects of an 

endogenous toxin on the delicately balanced redox system in dopaminergic cells. 

DAQ modification of protein cysteinyl residues can be especially detrimental, since many 

vital proteins, including mitochondrial and endoplasmic reticulum (ER) proteins (Ellgaard, 2004; 

Bailey et al., 2005), contain cysteine residues whose reduced state is essential for activity; any 

modifications to these cysteines may lead to altered function or inactivation of critical protein 

pathways.  Some of these pathways, including pro- and anti-apoptotic signaling pathways, are 

shared by the mitochondria and the ER, and can influence one another because of their proximity 

(Breckenridge et al., 2003; Rao et al., 2004).  PD and other neurodegenerative disease models are 

connected by ER stress, the accumulation of misfolded and oxidized proteins, along with 

activation of the unfolded protein response (UPR) by the ER (Lindholm et al., 2006).  

Mitochondrial dysfunction, oxidative stress, protein modification, and UPR activation are all 

interrelated cell death pathways involved in disease pathogenesis. 

In this study, we utilized two dimensional-difference in-gel electrophoresis (2D-DIGE) to 

observe changes in mitochondrial-enriched fractions isolated from PC12 cells following DA 

exposure.  We used cysteine reactive maleimide-CyDyes and lysine reactive NHS-ester-CyDyes 

to label proteins, followed by mass spectrometry (MS) and peptide mass fingerprint analysis.  

Using this unbiased approached, we identified a subset of proteins in the mitochondrial-enriched 

fraction that were increased following DA exposure, most of which are ER chaperone proteins.  

Aldolase A was the only identified protein that was decreased in the mitochondrial-enriched 

fraction following DA.  Therefore, the relative increase in the levels of several ER stress proteins 

in PC12 cells following DA exposure suggests that ER stress is correlated with DA-induced 

toxicity. 
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4.3 EXPERIMENTAL PROCEDURES 

Chemicals and Reagents: 

Dulbecco’s Modified Eagle Medium (DMEM, Gibco brand), fetal bovine serum 

(HyClone brand), and horse serum (HyClone brand) were purchased from Invitrogen (Carlsbad, 

CA).  Nerve growth factor (NGF) was purchased from BD Bioscience (San Diego, CA).  

Immobiline Drystrips pH 3-10, maleimide Cy3/Cy5 dyes, N-hydroxysuccinimidyl (NHS)-ester 

Cy3/Cy5 dyes, and IPG buffer pH 3-10 were purchased from GE Healthcare (Piscataway, NJ). 

Trypsin for digesting proteins in gel plugs was from Promega (Madison, WI).  Protease inhibitor 

cocktail (PIC) included in mitochondrial isolation was obtained from Sigma (P2714; St. Louis, 

MO), and PIC added to PC12 cell whole cell lysate was obtained from Roche.  All other non-

specified reagents were purchased from Sigma.  All solutions were made in distilled water 

purified with a Milli-Q system (Millipore Corp., Bedford, MA) unless otherwise noted. 

 

Cell culture: 

Proliferating plates of PC12 cells, a dopaminergic cell line, were grown in media 

containing 7% horse serum (HS) and 7% fetal bovine serum (FBS).  For differentiation, PC12 

cells were plated at a density of 19,000 cells/cm2 in differentiation media (DMEM + 1% HS, 1% 

FBS, and 0.1 µg/ml NGF) for 6 days.  The differentiated PC12 cells were then exposed to 

control media or 150 µM DA in media for 2-24 h for Western blot analysis and 16 h for isolated 

mitochondrial experiments.  Control cultures underwent a media change at the same time as DA 

treated cultures.   
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Mitochondrial-enriched Fraction Preparation: 

PC12 cell mitochondrial-enriched fractions were prepared by a modified version of a 

mitochondrial isolation protocol (Berman and Hastings, 1999). Following exposure to control or 

DA-containing media, 10-12 100 mm diameter plates (1,500,000 cells/plate) were pooled for 

each group, collected in PBS, and combined with the treatment media prior to gentle 

centrifugation into a pellet (800 x g, 3min).  The supernatant was discarded, and the cell pellet 

was re-suspended in isolation buffer containing 225 mM mannitol, 75 mM sucrose, 5 mM 

HEPES, 1 mg/mL BSA, PIC (2 µL/mL), pH 7.4 and homogenized.  The cell homogenate was 

then centrifuged (12,000 x g) multiple times at 3°C to isolate the mitochondrial-enriched 

fraction.  Both control and DA exposed mitochondrial-enriched pellets were lysed in buffer 

containing 9M urea, 2% w/v CHAPS, 30 mM Tris-base, and PIC (2.5 µL/mg protein), pH 8.5.  

The amount of protein in the lysed control and DA exposed mitochondrial-enriched fraction was 

measured using the Bradford assay (Bradford, 1976).  The isolation procedure utilized with the 

DA and control treated PC12 cells was identical, but the mitochondrial-enriched fractions from 

the two treatment groups were not pooled until after the completion of the reaction with the 

fluorescent dyes.   

 

2D Gel Electrophoresis: 

For first dimension separation of proteins, Immobiline DryStrips (linear pH 3-10; GE 

Healthcare) were rehydrated overnight at RT, according to the manufacturer’s protocol for cup 

loading of samples.  Mitochondrial-enriched lysate from control and DA-exposed PC12 cells 

were reacted separately with either fluorescent Cy5 or Cy3 maleimide or NHS ester dyes (GE 
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Healthcare) prior to reduction by DTT.  Delaying the addition of DTT to the sample until after 

exposure to the maleimide dye allows us to look at reduced sulfhydryl labeling differences 

between control and DA-exposed samples by leaving any oxidized cysteines in their maleimide-

unreactive, oxidized form.  To confirm that the dyes exhibited no preferential chemistries, 

control and DA-exposed samples were reciprocally labeled with either Cy5 and Cy3 dyes, and 

direct comparison showed no evidence of any differential labeling affinities.   Maleimides react 

with reduced sulfhydryl groups, and thus label reduced cysteines.  In addition to being sensitive 

probes for protein levels, any cysteines modified by ROS or DAQ will be unavailable to react 

with the maleimide dye, and thus result in reduced fluorescence.  Maleimide-reactive dyes thus 

have the potential to detect altered protein levels as well as probe the redox state of constituent 

cysteine residues.  The optimal dye:protein ratio was chosen so that protein spots visualized 

using the Typhoon 9400 scanner with PMT=600 were clearly visible and not overexposed, and 

no dye-shifting of spots was visible.  Preliminary trials using variable dye to protein ratios 

indicated that a maleimide reaction ratio of 1 pmol dye to 2 µg protein for 45 min was optimal.  

After incubation, each maleimide reaction was quenched by the addition of an equal volume of 

sample loading buffer containing 130 mM DTT, 9 M urea, 2% w/v CHAPS, 2% v/v IPG buffer 

(pH 3-10; GE Healthcare), and trace amounts of bromophenol blue.   

The NHS-ester dye reaction ratio of 2 pmol dye to 1 µg protein was determined to be 

sufficient for lysine labeling.  After the addition of the NHS-ester dye to the mitochondrial-

enriched protein (prior to DTT reduction), the reaction was incubated on ice for 30 min and 

quenched by the addition of 10 nmol lysine (in 1 µL), at 4oC.  Sample loading buffer was then 

added in a 1:1 ratio.  NHS-ester dyes react with lysine residues, and are used as an indicator of 

protein amounts.  Therefore, if the relative concentration of a protein is altered following DA 
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treatment, a change in the fluorescent labeling of DA-treated mitochondria as compared to 

control will be observed.  

Following the addition of sample loading buffer for either maleimide or NHS-ester 

reacted samples, 125 µg of protein from the control mitochondrial-enriched fraction were 

combined with 125 µg protein from DA exposed PC12 cell mitochondrial-enriched fraction, and 

the total 250 µg protein were loaded onto the first dimension strip using sample cup loading.   To 

separate proteins by isoelectric point, the first dimension was run on a Multiphor II system (GE 

Healthcare) with a 3501XL electrophoresis power supply (GE Healthcare) using 4 different 

phases for a total of 75 kVhr.  The strips were prepared for the second dimension by washing 

with equilibration buffer (75 mM Tris-HCl, pH 6.8, 6M urea, 30% glycerol, 1% w/v SDS) 

containing 30 mM DTT followed by 240 mM iodoacetamide.  The strip was trimmed to 13.5 cm, 

the molecular weight standards were loaded, and the second dimension was run on a 12% SDS 

polyacrylamide gel on a Hoeffer SE600 Ruby Electrophoresis Unit (GE Healthcare).  

 

Visualization of Difference Gels and Spot Picking: 

Gels were initially scanned on a Typhoon 9400 laser scanner using ImageQuant software 

(GE Healthcare), measuring both Cy5 and Cy3 fluorescence.  After the gels were scanned, they 

were washed twice in Milli-Q H2O, then fixed in 40% methanol, and 1% acetic acid.  The gel 

was then scanned into the automated spot picker in the Genetics and Proteomics Core 

Laboratories at the University of Pittsburgh (built by Dr. Jonathan Minden of Carnegie Mellon 

University).  Target protein spots that were differentially labeled as visualized by changes in 

relative fluorescence, plus several spots that appeared not to change, were picked, and gel plugs 

were placed in a 96-well plate.  
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Trypsin Digest and Mass Spectrometry of Target Proteins: 

Gel plugs were washed twice in 50% methanol, 50% ammonium bicarbonate solution 

(50mM), dehydrated in acetonitrile, and dried by speed-vacuum prior to in-gel trypsin digest at 

42oC for 4 h, using Promega Gold trypsin reconstituted in 50% acetonitrile, 0.3% trifluoroacetic 

acid (TFA), and 1 mM ammonium citrate (200 ng/sample).  The gel plug was then rinsed twice 

in extraction buffer (1% TFA, in 50% acetonitrile and 50 % H2O).  The trypsinized protein 

solution and extraction washes were dried by speed-vacuum.   

The dried trypsinized protein was reconstituted in extraction buffer containing 100 µM 

ammonium citrate and mixed with a saturated solution of CHCA (α-cyano-4-hydroxycinnamic 

acid) and spotted on a metal MALDI plate along with a trypsin blank and standards (Applied 

Biosystems). The identification of the protein was determined using a 4700 MALDI-TOF-TOF 

(Applied Biosystems) mass spectrometer.  The resulting ion peak spectra were used for peptide 

mass fingerprinting, searched against the NCBI database by GPS Data Explorer™ MS analysis 

software (Applied Biosystems), with the peptide mass tolerance set to 50 ppm and allowing a 

maximum of 1 missed trypsin cleavage.  A positive protein identification was accepted when a 

confidence interval of >90% of the probability-based MOWSE score was determined by the GPS 

Data Explorer™ MS analysis software and the identification was replicated in two or more 

experiments.  All listed identified proteins corresponded to only one protein and related 

isoforms.  No limitations other than species designation (All species and Rattus) were used in the 

database search, with no bias towards cell type or organelle. 
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Decyder Analysis of Fold Change: 

Identified proteins were analyzed using the DeCyder DIA software (GE Healthcare).  Gel 

images from the Typhoon 9400 laser scanner (GE Healthcare) using equal PMT levels (typically 

600 V) between the Cy5 and Cy3 scans, were loaded on the software.   Each individual spot was 

identified and mapped using the DeCyder DIA software.  Previously MS-identified spots were 

located on each gel, and the normalized volume ratio calculated by the DeCyder DIA software 

was recorded for each spot. The normalized volume ratios were determined by the DeCyder DIA 

software by first calculating the direct volume ratio of the DA-exposed /control volume densities 

for every spot on the gel.  All of the ratios were then normalized so that the modal peak of all the 

ratios equals 1, because most proteins should not be up- or down-regulated.  Percent change of 

DA-exposed PC12 cell mitochondrial protein from control mitochondrial protein were 

determined from the normalized volume ratios, and the percent change was averaged over all 

gels in which the identified proteins could be determined.  Limitations in the DeCyder software 

led to inaccurate spot mapping, and prevented analysis of one protein.  This protein is designated 

as UN in Table 1.  In addition, not all proteins were identified in both cysteine and lysine gels, 

and therefore some proteins do not have data from both labeling experiments, and is listed as ND 

(no data) in Table 1.    Eight (8) maleimide (cysteine) dye gels from 6 separate experiments and 5 

NHS-ester (lysine) dye gels from 4 separate experiments were used in the DeCyder analysis.   

 

Collection of PC12 Whole-Cell Lysate for Western Blotting: 

PC12 cells were cultured and treated with 150 µM DA as described above.  Following 2, 

4, 8, 16, and 24 h of DA exposure or treatment with control media, the media was removed and 

PC12 cells were collected in PBS using force-pipetting.  Cells were combined with the media 
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before pelleting, to collect any floating cells.   Unlike the mitochondrial-enriched protein 

procedure, each 10 cm plate was collected separately.  Cells were re-suspended once in PBS and 

re-pelleted prior to lysis in a buffer containing: 20mM Tris (pH 7.5), 150mM NaCl, 1mM 

EDTA, 1mM EGTA, 1% Triton X-100, 2.5mM sodium pyrophosphate, 1mM DTT, 1mM 

sodium orthovanadate, and 1X PIC (Roche).  

 

Western Blot Analysis of MS-identified spots: 

Protein from control and DA-exposed PC12 whole cell and mitochondria-enriched 

lysates, were separated by 10, 12, or 15% SDS-PAGE and transferred to nitrocellulose 

membranes using a Trans-blot SD Semi-Dry Electrophoretic Transfer Cell (Biorad).  Following 

transfer, the blots were washed in Tris buffered saline (50 mM Tris, pH 8.0, 150 mM NaCl; 

TBS), blocked with 0.2% w/v dry milk in TBS-T (TBS + 0.1% Tween 20), then incubated 

overnight at 4oC with primary antibody in TBS-T with 0.2% w/v dry milk.  The blots were then 

washed in TBS-T and incubated at RT with the appropriate alkaline phosphatase conjugated 

secondary antibody (Biorad).   Blots were then washed again in TBS-T prior to the application of 

chemiluminescent substrate (Biorad), and exposure to Biomax MR Film (Kodak) for 

visualization of bands.  Antibodies used were Grp78 (1: 2000; Stressgen), Grp58 (1:2000; 

Stressgen), aldolase-A (1:1000; Abnova), actin (1:50,000; Sigma), and tubulin (1:12,500; 

Sigma).  The densities of immunoreactive bands were quantified using UN-SCAN-IT software 

(Silk Scientific; Orem, UT). Actin and tubulin were used as loading controls.  Data from both the 

DeCyder analysis and Western blots indicated that actin levels were not different in control and 

DA-exposed samples. 
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Statistical Analysis: 

Statistical analyses of DA-exposed cysteine and lysine Cy-dye volume densities from 

isolated mitochondrial MS-identified proteins were performed using a 1-sample two-tailed Z-test 

on the DA-treated mitochondrial protein spot volume intensities expressed as percent of control.  

The Z-test was chosen because the DeCyder DIA software calculates changes between control 

and treated samples as a normalized volume ratio of the two groups, generating one value 

comparing both groups and normalizing the entire constellation of labeled spots.  Significance 

for each DA-exposed protein from control (valued at 100% control) was determined when 

p<0.05 and the change was greater than ± 1.2-fold from control (<83.3% or >120%).  The 

percent control values were directly calculated from the normalized DeCyder volume ratios.  

Differences among group means for Western blot data analysis were determined by 

ANOVA followed by post-hoc student's t-test, with significance determined at p<0.05. 

4.4 RESULTS 

4.4.1   Comparison of 2-D DIGE using Cysteine-Reactive to Lysine-Reactive CyDyes 

To determine which proteins were changed following a 16 h exposure to 150 µM DA, 

control and DA-exposed PC12 cell mitochondrial-enriched protein fractions were analyzed 

together by 2D-DIGE.  The advantages of using 2D-DIGE methods are that two different 

samples (control and treated) can be analyzed and compared within one gel.  The 16 h time-point 

was chosen because we observed significantly increased levels of protein cysteinyl-catechols and 

low levels of cell death (-20% cell loss from control) following 16 h of 150 µM DA exposure 
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(Hastings, unpublished observations).  The increased DAQ protein modification combined with 

low toxicity allows us to measure protein modifications in the mitochondrial-enriched fraction 

obtained from living cells, prior to excessive cell death.   

Control and DA exposed mitochondrial-enriched protein samples were incubated 

separately with the cysteine-reactive maleimide Cy3- and Cy5-conjugated dyes (GE Healthcare) 

prior to sulfhydryl reduction by DTT.  The control and DA-treated fluorescent-labeled samples 

were pooled and proteins separated in 2-dimensions, first by isoelectric point, and then by 

molecular weight.  In Figure 10A, the fluorescent scan of a representative DIGE gel is displayed 

with inverted colors (control=Cy3=cyan and DA treated=Cy5=pink).  Selected spots were 

excised, trypsinized and subjected to MS studies for identification.  All protein identifications 

were confirmed in multiple cysteine-labeled gels, and labeled in Figure 10A.  

Ideally, if a reduced cysteine residue on protein was either directly modified by DAQ or 

oxidized by H2O2, the modified protein would have a reduced number of sulfhydryls available to 

react with the maleimide dye, resulting in a less labeling in the DA-treated pool.  At the onset of 

this study, we intended to focus on identifying proteins that had reduced cysteine dye labeling in 

the DA-treated fraction, and we identified aldolase A (Figure 10A, D) as significantly decreased 

in PC12 cell mitochondria following DA.  However, we observed a subset of proteins, mainly 

ER stress proteins, that displayed strikingly increased cysteine dye binding in the DA-treated 

mitochondrial fraction, including calreticulin, ER protein 29 (ERp29), ER protein 99 (ERp99), 

Grp58, Grp 78, Grp94, and oxygen regulated protein (Orp150) (Figure 10A, 10B, 10C, and 

Table 1).  Since increases in cysteine dye-labeling following DA treatment may most likely be 

attributed to increased protein levels (either due to up-regulation of the protein or a reduced rate 
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of degradation), we utilized a second dye labeling lysine residues to evaluate total protein 

amounts in each group. 

 

Figure 10: 2D-DIGE of PC12 cell mitochondrial-enriched fractions using cysteine-reactive dyes 

with insets of sample proteins. 

A. Mitochondrial-enriched fractions from control and 16 h, 150 µM DA-exposed PC12 cells 

were isolated by differential centrifugation, and equal protein amounts were reacted with either 
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Cy3 (cyan scan; control) and Cy5 (pink scan; DA-exposed) maleimide dyes. Pink spots designate 

proteins in which more cysteine labeling occurred in the DA-exposed sample, indicating 

increased protein levels following DA exposure.  Cyan spots designate proteins in which more 

cysteine labeling occurred in control, indicating cysteine modification or decreased protein levels 

following DA exposure.  Dark blue spots indicate proteins in which equal cysteine labeling 

occurred in the control and DA-exposed mitochondrial-enriched fraction. MS-identified proteins 

are indicated on the gel and listed in Table 1. Gel is representative of n=8 cysteine 2D-DIGE 

gels.  Boxes outline inset pictures in figures B-D.  B. Black and white representation of the 

control protein, Cy3 fluorescent scan and the DA-treated protein, Cy5 fluorescent scan with 

Orp150 and Grp78 spots indicated. C. Black and white representation of the control protein, Cy3 

fluorescent scan and the DA-treated protein, Cy5 fluorescent scan with the Grp58 spot indicated.  

D. Black and white representation of the control protein, Cy3 fluorescent scan and the DA-

treated protein, Cy5 fluorescent scan with the aldolase A-3 spot indicated. 

 

 

 

To determine which mitochondrial proteins were up-or down-regulated (the latter via 

reduced expression, increased degradation, and/or precipitation) following DA-exposure, control 

and DA-exposed PC12 cell mitochondrial-enriched fractions were incubated separately with the 

lysine-reactive NHS-ester Cy3 and Cy5-conjugated dyes (GE Healthcare), and analyzed by 2D-

DIGE.  In Figure 11A, the fluorescent scan of a representative lysine gel is displayed with 

inverted colors (control=Cy5=pink and DA treated=Cy3=cyan) with all confirmed protein 

identifications.  In both cysteine and lysine labeled 2D-DIGE gels, the vast majority of proteins 
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exhibit constant levels in the DA treated group as compared to control, indicating that there was 

no change in most protein levels following DA exposure.  Most visibly unchanged spots were 

not specifically selected for protein identification. 

 

Figure 11: 2D-DIGE of PC12 cell mitochondrial-enriched fraction using lysine-reactive dyes 

with insets of sample proteins. 
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A. Mitochondrial-enriched fraction from control and 16 h, 150 µM DA-exposed differentiated 

PC12 cells were isolated by differential centrifugation. Mitochondrial protein was reacted with 

either Cy5 (pink scan; control) and Cy3 (cyan scan; DA-exposed) NHS-ester dyes to label lysine 

residues.  Cyan (blue) spots designate proteins in which more lysine labeling occurred in the DA-

exposed sample, indicating increased protein levels.  Pink spots designate proteins in which more 

lysine labeling occurred in the control sample, indicating decreased protein levels induced by DA 

exposure.  Dark blue spots indicate proteins in which equal lysine labeling occurred in the 

control and DA-exposed samples.  MS-identified proteins are indicated on the gel and listed in 

Table 1. Gel is representative of n=5 lysine 2D-DIGE gels.  Boxes outline inset pictures in 

figures B-D.   B. Black and white representation of the control protein (Cy5 fluorescent scan) 

and the DA-treated protein (Cy3 fluorescent scan) with Orp150 and Grp78 spots indicated. C. 

Black and white representation of the control protein (Cy5 fluorescent scan) and the DA-treated 

protein (Cy3 fluorescent scan) with the Grp58 spot indicated.  D. Black and white representation 

of the control protein (Cy5 fluorescent scan) and the DA-treated protein (Cy3 fluorescent scan) 

with the aldolase A-3 spot indicated. 

 

 

 

Our results showed that most of the proteins that changed in the cysteine-label binding 

also changed similarly in the lysine labeling studies (Figure 12).  In fact, most proteins that 

displayed increased cysteine dye binding in the DA-treated mitochondrial fraction, like 

calreticulin A, Orp150, Grp78, and Grp58 (Figure 10A, 10B, and 10C) also displayed increased 

lysine dye binding in the DA-treated mitochondrial fraction (Figure 11A, 11B, 11C).  Decreases 
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in cysteine and lysine labeling of aldolase A following DA exposure were also observed (Figure 

10A, 10D, 11A, 11D).  Equivalent increases in both cysteine and lysine dye-labeling following 

DA treatment indicate increases in protein levels.  Similarly, corresponding decreases in both 

cysteine and lysine dye-labeling following DA treatment, strongly indicate the down-regulation 

or degradation of proteins.  Utilizing both cysteine and lysine dyes allowed us to control for 

modifications on proteins either on cysteine residues or on lysine residues, both of which could 

lead to changes in dye labeling and not changes in protein levels (though altered protein levels 

may be a consequence of the chemical modification). 

 

Figure 12: Changes in protein spot intensity of PC12 cell in the mitochondrial fraction following 

DA-exposure.  

Mitochondrial-enriched fractions from control and DA-exposed (150 µM, 16 h) differentiated 

PC12 cells were isolated by differential centrifugation, and the enriched mitochondrial protein 

was reacted with Cy3 or Cy5 maleimide or NHS-ester dyes.  Proteins listed above were 

identified by MALDI peptide mass fingerprint.  The density of protein spots was analyzed using 

Decyder DIA software, and changes in DA exposed compared to control protein were 
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determined in both maleimide (cysteine) and NHS-ester (lysine) reacted protein for most spots 

shown.  DA treated PC12 cell protein intensity is measured as average % control ± SEM, n=5-8. 

*, significance p<0.05. 

 

 

 

Levels of cysteine and lysine labeling did not correlate for two identified proteins 

following DA exposure.  Calreticulin-B and ERp99-A had increased cysteine dye labeling, while 

lysine dye labeling remained unchanged following DA exposure (Figure 12 and Table 1).  Both 

protein spots have lower dye labeling intensities compared to other protein spots in both cysteine 

and lysine dye experiments, and thus may be present at low levels, close to the limit of detection.  

Since the cysteine dye has previously been shown to have an order of magnitude greater range of 

detection (Shaw et al., 2003), it is possible that the lysine dyes are outside their quantitative 

range.  
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Table 1: Identified proteins labeled with maleimide or NHS-ester conjugated Cydyes using 2-D 

DIGE and MS. 

Proteins identified that were significantly changed from control as quantified by DeCyder 

analysis and that were changed at least ± 1.2-fold from control in cysteine (maleimide) and/or 

lysine (NHS-ester) DIGE experiments are grouped by function.  Actual molecular weight (MW 

in kDa) and isoelectric point (pI), best protein score and % confidence for each identified protein 

are also listed.  Data for which no positive identification of proteins and thus no DeCyder data 

was obtained is listed as ND. † Protein MOWSE score was obtained from the search engine 

MASCOT.   Decyder analysis of DA-treated sample spot intensity for both cysteine and lysine 

labeled experiments are listed as average % control ± SEM.  *, significance p<0.05. 
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4.4.2   Quantitative Analysis of Differential Labeling of Proteins Following DA Treatment 

Differences between Cy3 and Cy5 spot intensities were determined visually and were 

later quantified using DeCyder DIA software (GE Healthcare).  Protein spots that were visually 

more strongly labeled in the control or DA-treated, in addition to a few unchanged test spots 

were picked for identification.  Using the fluorescent scanned image, DeCyder software was 

used to map and label MS-identified spots, and then to calculate the volume density ratio of 

those spots between treatment groups.  The percent change in density of DA-exposed protein 

spots compared to control protein spots were calculated from the DeCyder volume ratios, and the 

percent change for each spot was averaged over all gels in which the identified proteins could be 

determined.  The identified proteins that were significantly changed in the DA-treated fraction 

compared to control are graphed in Figure 12 and listed in Table 1.  Some proteins whose levels 

changed as little as ± 10% from control were statistically different according to the Z test, but 

were deemed non-significant because they fell within the 83.3% - 120% range.  These proteins 

and the proteins found unchanged are listed in Table 2.  All of the significantly changed spots 

except one (aldolase A) were significantly increased in the DA-treated samples as compared to 

control, while aldolase A was the only spot identified to be significantly decreased in the DA-

treated sample (Figure 12).  Most of these proteins showed similar patterns of change on both the 

cysteine-labeled and lysine-labeled gels.  We were unable to positively identify every spot 

selected for MS analysis, including some that seemed to correspond to previously identified 

proteins in either a cysteine or lysine gel.  Therefore, some DeCyder data for identified spots 

have only a cysteine or lysine dye intensity value, with the other value listed as “ND”, indicating 

that no data for that protein spot was collected (see Table 1 and Table 2).  In one case, the outline 
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of an identified protein spot was incorrectly defined by the DeCyder program, and thus we were 

unable to collect the data, and the value was listed as “UN” (Table 2).    

 

Table 2: Unchanged identified proteins labeled with maleimide or NHS-ester conjugated Cy dyes 

using 2-D DIGE and MS.  
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Proteins identified that were not significantly changed from control in cysteine (maleimide) 

and/or lysine (NHS-ester) DIGE experiments are grouped by function.  Actual molecular weight 

(MW in kDa) and isoelectric point (pI), best protein score and % confidence for each identified 

protein are also listed. Data for which no positive identifications of proteins and thus no DeCyder 

data was obtained is listed as ND.  Data that could not be determined due to inaccurate spot 

definition in the DeCyder software is listed as UN.  † Protein MOWSE score was obtained from 

the search engine MASCOT.  Decyder analysis of DA-treated sample spot intensity for both 

cysteine and lysine labeled experiments are listed as average % control ± SEM, significance 

p<0.05. 

 

 

4.4.3   Most of the Identified Proteins Function in ATP Synthesis or as Chaperones  

We successfully identified many proteins in the mitochondrial fraction that are changed 

following PC12 cell DA exposure (Figures 10 and 11, Table 1).   Most of the proteins identified 

are involved in ATP synthesis or are chaperone proteins (Table 1).   Many ER localized 

chaperone proteins were identified in the mitochondrial-enriched fraction (Table 1).   Previously, 

ER proteins have been found associated with isolated mitochondria (Fountoulakis et al., 2002).  

Other proteins including some proteases, cytosolic structural proteins, and proteins involved in 

secretion, mitochondrial morphology, and mitochondrial molecule export were also identified 

(Table 2).   Most of these proteins were deemed not significantly changed in the DA-treated 

mitochondrial fraction as compared to control (Table 2).  Seventeen of the twenty-five identified 

proteins did not meet the two-part criteria of a change greater than ± 1.2-fold from control with 
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statistical significance on the DeCyder analysis, and three of those seventeen proteins met 

statistical significance but were changed in dye-labeling less than ± 1.2-fold from control, and 

thus were deemed not significant.  

4.4.4   Increased Levels of ER proteins GRP78 and GRP58 Following DA Exposure 

 Since many of the proteins with the greatest increases in the DA-exposed samples were 

ER chaperone proteins (Figure 12, Table 1), we were interested in whether the increases were 

due to an increased ER response to DA-induced toxicity.   Because ER may swell following 

oxidative stress (Atlante et al., 2001; Esrefoglu et al., 2003) and are closely associated with 

mitochondria (Levine and Rabouille, 2005), it is possible that DA-exposure caused  increased 

ER contamination of a crude mitochondrial preparation, rather than increased total cellular levels 

of ER stress proteins.  To evaluate this, we measured the levels of two ER-associated chaperone 

proteins, Grp78 and Grp58, using Western blot in PC12 cell whole cell lysate and mitochondrial-

enriched fractions (Figure 13).  Western blot analysis of Grp78 in the mitochondrial fraction 

showed a 224% increase compared to control (Figure 13B), validating the results obtained in 2D-

DIGE studies.   Levels of Grp78 in the DA-exposed mitochondrial fraction measured by 2D-

DIGE, DeCyder analysis (cysteine: +184-260%; lysine: +152%-168%) are similar to levels of 

Grp78 measured by Western blot analysis (+224%; Figure 12 and 13B).  We also observed a 

224% increase in Grp58on Western blot in the DA exposed mitochondrial fraction as compared 

to control (Figure 13B).   Levels of Grp58 in the DA-exposed mitochondrial fraction measured 

by 2D-DIGE, DeCyder analysis (cysteine: +134%; lysine: +147%) were significantly elevated, 

but to a lesser extent than levels of Grp58 measured by Western blot analysis (+224%; Figure 12 
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and 13B).  Lanes from representative Western blots for Grp78 and Grp58 in 16 h control and 

DA-exposed mitochondrial fractions are shown in Figure 13A.  

 

Figure 13: Western blot analysis of Grp78 and Grp58 in PC12 mitochondrial-enriched fraction 

and whole cell lysate following DA-exposure.  

Mitochondria-enriched protein and PC12 whole-cell lysate from control and 150 µM DA-

exposed PC12 cells were collected.  Samples containing 20 µg of protein were separated by 15% 

SDS-PAGE.  Following transfer to nitrocellulose, blots were probed for actin and either Grp78 

or Grp58 immunoreactivity and chemiluminescent band densities were quantitated. A. 

Representative blots for Grp78 and Grp58 are shown for PC12 mitochondrial fractions isolated 

from 16h control and 150 µM DA-treated cells.  B. Grp78/actin and Grp58/actin ratios for PC12 

mitochondrial fraction DA treated cells were quantified and compared to control.  C. Grp78/actin 

and D. Grp58/actin ratios in whole cell lysates were quantified at various time-points and 
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expressed as average DA-treated protein/actin immunoblot intensity in % control ± SEM, n=3 

separate experiments, each measured in duplicate. *, significance p<0.05. 

 

 

 

We utilized Western blot analysis of PC12 cell whole cell lysate to determine whether the 

DA-induced changes in Grp78 and Grp58 protein were due to increases in the levels of these 

proteins in the cell or increased association of ER proteins with mitochondria. Differentiated 

PC12 cells were treated with control media or media containing 150 µM DA for 2, 4, 8, 16, or 24 

h prior to collection and lysis for Western blotting.  A time-course of Grp78 and Grp58 levels in 

whole cell lysate allows us to more accurately assess the timing of the ER induced response to 

DA.   Levels of Grp78 were significantly increased from control following 8 h DA exposure 

(+186%; Figure 14A). The levels of Grp78 remained elevated above control after 16 and 24 h of 

DA exposure (+200% and +148%, respectively; Figure 14A).  Levels of Grp58 in whole cell 

lysates were significantly decreased from control after 2 h of DA exposure (-44%; Figure 14B).  

However, levels of Grp58 were increased after 4 h and 16 h of DA exposure (+141% and 

+150%, respectively; Figure 14B).  The levels of Grp78 in the mitochondrial-enriched fraction 

(224% of control) are comparable to the 16 h DA exposed whole-cell lysate levels (200% of 

control), and the levels of Grp58 after 16 h DA exposure in whole cell lysate (150% of control) 

are comparable to the DeCyder analysis (134%-147%) of spot intensity, and similar to Western 

blot analysis of the mitochondrial enriched fraction (224% of control), indicating that the 

increases in Grp78 and Grp58 occur throughout the cell and are most likely not due to increased 

ER contamination of the mitochondrial-enriched fraction in the DA sample.  
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Figure 14: Western blot analysis of aldolase A in PC12 mitochondrial-enriched fraction and 

whole cell lysate following DA-exposure.  

Mitochondria-enriched protein and PC12 whole-cell lysate from PC12 cells were collected after 

exposure to control media or media containing 150 µM DA.  Samples containing 20 µg protein 

were separated by 10% SDS-PAGE and transferred to nitrocellulose.  Blots were probed for 

aldolase A and actin or tubulin immunoreactivity.  Quantification of aldolase A/actin and 

aldolase A/tubulin ratios from PC12 cell protein was determined from chemiluminescent band 

density.  A. Representative blots for aldolase A are shown for PC12 mitochondrial fractions 

isolated from 16h control and 150 µM DA-treated cells.  B. The quantification of control and DA 
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exposed PC12 cell mitochondrial-enriched protein are reported as % control ± SEM of the 

average immunoblot intensity of aldolase A/actin.  C. Aldolase A/tubulin ratios from PC12 

whole cell lysate were quantified over various time-points.  Tubulin levels did not vary under 

different treatment conditions.  Aldolase A/tubulin ratios were reported as % time-matched 

control ± SEM.  n=3 separate experiments, each measured in duplicate. *, significance p<0.05. 

 

 

4.4.5   Levels of Aldolase A Differ In Whole Cell Lysate Compared to the Mitochondrial 

Fraction Following DA Exposure 

In addition to the ER chaperone proteins, we were also interested in confirming the levels 

of aldolase A, since it was the only identified protein significantly decreased following DA-

exposure in the PC12-cell mitochondrial fraction, according to DeCyder analysis.  Since aldolase 

A is found both in the cytoplasm (Pfleiderer et al., 1975; Wachsmuth, 1976) and associated with 

mitochondria (MacDonnell and Greengard, 1974), we were also interested in whether the 

aldolase A in the cytosolic fraction, the mitochondrial fraction, or both was lost following DA-

exposure.   We observed that the aldolase A levels in mitochondrial-enriched fraction measured 

by Western blot also followed a similar trend to levels measured by 2D-DIGE, DeCyder 

analysis.  We observed 67% of control levels of aldolase A following 16 h DA exposure using 

Western blot (Figure 14A) and 42% of control (cysteine) and 39% control (lysine) using 2D-

DIGE, DeCyder analysis (Figure 12).  Although Western blotting and 2D-DIGE DeCyder 

techniques are very different, we were able to confirm the trend of decreased in aldolase A levels 
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by comparing these two analyses.  In whole cell lysates, we observed a slight decrease in 

aldolase A after 4 h of DA exposure (-14%; Figure 14C).   However, after longer DA exposure 

times, the levels of whole cell aldolase A were increased above control (16 h, +141%; 24 h 

+128%; Figure 14C).  Thus, results using whole cell lysates did not correlate with results 

observed in the mitochondrial fraction, which are likely due to different DA-induced changes in 

cytosolic aldolase A separate from the changes observed in mitochondria.   

 

4.5 DISCUSSION 

4.5.1   Proteins with Increased Levels Identified Using DIGE  

Using an unbiased proteomics approach in this study, we found that DA exposure 

increased levels of ER chaperone proteins in differentiated PC12 cells, suggesting activation of 

an ER stress response.  We identified proteins from PC12 cell mitochondrial-enriched fractions 

that were altered following DA exposure using 2D-DIGE.  We utilized cysteine dyes that label 

reduced cysteine residues from both the control and DA-exposed mitochondrial-enriched 

fractions to detect changes in cysteine oxidation and protein levels and compared the results with 

lysine-labeling dyes that specifically detect changes in protein levels.  Using both methods, we 

observed increased levels of various ER chaperone proteins in response to DA exposure in PC12 

cells, including: Grp78 (BiP), Grp58, Grp94, Orp150, calreticulin, ERp29 and ERp99.  Some of 

these proteins, including Grp58, Grp78, Grp94, calreticulin, and Orp150 have previously been 

shown to be up-regulated following oxidative stress and ER stress (Kuwabara et al., 1996; 
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Kaufman, 1999; Kaneda et al., 2000; Lee, 2001; Nunez et al., 2001; Berridge, 2002).  ERp29 has 

been described as an escort chaperone, with possible involvement in secretion (Mkrtchian and 

Sandalova, 2006).  ERp99 is speculated to be an ER membrane sorting chaperone, since the N-

terminus has identical sequence homology to Grp94 (Mazzarella and Green, 1987).   

4.5.2   ER Chaperone Proteins Grp78 and Grp58 

Grp78 up-regulation is a classical marker for induction of the UPR, and serves to protect 

cells by binding to stress sensor proteins, PERK, IRE1, and ATF6 (Rao et al., 2004).  Using 2D-

DIGE and Western blot analysis of mitochondrial protein, we found that Grp78 was significantly 

increased above control, indicating that DA exposure led to Grp78 up-regulation.  The time-

course of Grp78 levels in whole cell lysate measured by Western blot revealed a significant 

increase in Grp78 as early as 8 h.  Levels of Grp78 remain increased above control at 16 h and 

24 h DA exposure, indicating a sustained activation of the UPR.   Prolonged UPR activation may 

contribute to cell death via multiple mechanisms, including ER calcium release, caspase-12 

activation, ROS accumulation, the ASK1/JNK stress activated kinase apoptosis pathway, and the 

p53 apoptosis pathway (Gorlach et al., 2006; Szegezdi et al., 2006; Zhao and Ackerman, 2006).  

Grp58 is an ER stress-inducible chaperone protein with thiol oxidoreductase activity that 

has been shown to be susceptible to oxidation by H2O2, and works in conjunction with 

calreticulin and calnexin to promote proper disulfide bond formation of glycoproteins 

(Mazzarella et al., 1994; Murthy and Pande, 1994; High et al., 2000; van der Vlies et al., 2002; 

Antoniou and Powis, 2003).  In the present study, we found that Grp58 levels were significantly 

elevated above control in 16 h exposed PC12 cell mitochondria using 2D-DIGE and Western 

blot analysis.  Grp58 protein increases in whole cell lysate were confirmed by Western blot 
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analysis, which revealed that there was a significant increase in Grp58 at 4 and 16 h of DA 

exposure.  The increases in Grp58 and Grp78 levels shown by 2D-DIGE DeCyder and Western 

blot analyses and the increased labeling of other ER stress proteins by 2D-DIGE strongly 

indicate ER stress activation in PC12 cells exposed to DA. 

4.5.3   Aldolase A  

Thus far, only one identified protein, aldolase A, had significantly lower labeling using 

cysteine dyes and lysine dyes in DA-exposed mitochondria.  Aldolase A catalyzes the 

breakdown of fructose-1,6-bisphosphate during glycolysis to glyceraldehyde 3-phosphate and 

dihydroxyacetone phosphate (Lorentzen et al., 2005) and is expressed in all cells throughout the 

body, including neurons (Buono et al., 2001).  It is found both in the cytoplasm and associated 

with mitochondria (MacDonnell and Greengard, 1974; Pfleiderer et al., 1975).  Nitrated aldolase 

A has been identified in vivo in aged skeletal muscle and in light exposed retina, leading to a loss 

of activity (Miyagi et al., 2002; Koeck et al., 2004; Kanski et al., 2005).  Aldolase A has been 

linked to various diseases, including Alzheimer’s disease, where antibodies to aldolase A were 

found in patient sera (Mor et al., 2005), and schizophrenia, where decreased aldolase A levels 

were found in patient prefrontal cortex (Prabakaran et al., 2004).  Therefore, our finding of 

decreased levels of aldolase A in mitochondria could be an indication of energy metabolism 

deficits, correlated with decreased ATP levels, resulting from DA exposure.  Recently, aldolase 

A was found to be associated with PD-linked proteins DJ-1 and α-synuclein in MES cells (Jin et 

al., 2006).  This association with aldolase A was decreased following rotenone exposure in MES 

cells, suggesting a novel role for aldolase A in a PD model employing selective dopaminergic 

cell death (Jin et al., 2006). 
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Result from the Western blot analyses showed that aldolase A is down-regulated or 

degraded in the mitochondrial fraction, but not throughout the cell (Figure 14) following DA 

exposure.  Aldolase A levels measured by Western blot in whole cell lysate showed an initial 

decrease following 4 h of DA exposure, but at longer exposure times, aldolase A levels were 

increased above control.  Increased levels of aldolase A have been associated with disease and 

have been found in brain tissue of patients with psychiatric disorders, including schizophrenia 

and major depression (Beasley et al., 2006).  Since PC12 cells have previously been shown to 

increase glycolysis when challenged with mitochondrial inhibitors (Kang et al., 1997), our 

observed differential protein expression in whole cells versus mitochondria could be due to the 

up-regulation of aldolase A in the cytoplasm as compensation for mitochondrial energy deficits 

induced by DA.  We have previously observed decreases in ATP levels in PC12 cells following 

18 h DA exposure that return to control at 24 h DA exposure (Hastings, unpublished 

observations).   Decreased levels of ATP that later return to control indicate that DA exposure 

leads to an energy deficit that can eventually be compensated by the PC12 cells, presumably by 

increased glycolysis.  Increasing cytoplasmic aldolase A levels after DA exposure may possibly 

be a component of the compensatory mechanism to aid in returning ATP levels back to normal.  

Although the role of aldolase A in disease has yet to be determined, changes in levels of an 

enzyme involved in ATP synthesis is likely to be involved in molecular pathways of protection 

and/or toxicity. 

4.5.4   Using Maleimide Dyes to Measure Cysteine Oxidation Changes 

In addition to using standard methodologies to examine protein levels using lysine 

reactive dyes, cysteine dyes were used to measure relative changes in cysteine oxidation states of 

 97 



mitochondrial proteins following DA exposure in PC12 cells.  Since a subset of highly reactive 

protein thiols may be selectively oxidized in neurons upon oxidative stress, we used minimal dye 

concentrations (0.125% of GE Healthcare’s recommended dye/protein ratio) to compare the 

oxidation state of reactive cysteine residues in proteins.  In addition to proteins whose 

concentration levels were altered, we were hopeful that we would observe an additional subset of 

mitochondrial proteins that had reduced cysteine labeling due to specific oxidation of reactive 

thiols, but had unaltered lysine labeling.  What we did observe was overwhelming evidence for 

up-regulation of ER chaperone proteins following DA exposure, suggesting that the cells were 

mounting a response to the oxidative stress.       

Our inability to observe changes in cysteine modification using 2D-DIGE thus far may be 

due to saturation of the maleimide CyDye, despite our efforts to use very low dye to protein 

ratio.  Another study using 2D-DIGE to examine redox- and ErbB2-dependent changes in cells 

found similar results to ours comparing cysteine and lysine dyes, using their own synthesized 

cysteine dyes, which contained an iodoacetyl cyanine group that binds with better efficiency to 

reduced thiols than the maleimide group (Chan et al., 2005).  In both the Chan et al. (2005) and 

our studies, cysteine labeling was more indicative of protein levels than changes in cysteine 

oxidation.  In addition, we have collected complementary data from 2D-DIGE experiments in 

isolated rat brain mitochondria directly exposed to DAQ, which suggest that using cysteine-

reactive dyes, even at such low concentrations, also sensitively revealed mostly protein level 

changes and not changes in the amounts of reduced cysteines (manuscript submitted).  Therefore, 

using cysteine reactive dyes to measure changes in cysteine oxidation states may require 

additional fine-tuning of the dye to protein ratio or pH, to optimize the reaction towards the most 

reactive cysteines, which have a lower pKa (Di Simplicio et al., 2003).   
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4.5.5   ER Stress and Mitochondria 

The ER plays a role in pro- and anti-apoptotic signaling in conjunction with mitochondria 

(Berridge, 2002; Breckenridge et al., 2003; Paschen, 2003; Rao et al., 2004).  One way in which 

mitochondria and the ER communicate is via calcium signaling, in which small releases of 

calcium from the ER is detected and taken up by mitochondria, and this calcium homeostasis is 

essential for the functions of both organelles (Berridge, 2002; Breckenridge et al., 2003; 

Paschen, 2003).  In addition to calcium, signaling molecules are shared between mitochondria 

and ER.    Following induction of ER stress, Grp78 has been found localized inside the 

mitochondria, within the intermembrane space, inner membrane, and matrix (Sun et al., 2006).  

Additionally, a large portion of newly synthesized Grp78 was found localized to the 

mitochondria in cells under UPR, indicating that Grp78 up-regulation may be another way that 

ER can relay information to the mitochondria (Sun et al., 2006).  Induction of ER stress has also 

been associated with translocation of c-Abl tyrosine kinase, a stress-inducible apoptosis-

regulating signaling molecule, from ER to mitochondria, resulting in cytochrome c release (Ito et 

al., 2001). Mitochondria can also communicate stress to the ER.  Many of the Bcl-2 family of 

proteins, known to regulate mitochondrial-mediated apoptosis, also seem to influence ER-

induced cell death and have been shown to localize to the ER membrane and lead to large 

calcium effluxes from the ER and concomitant large calcium influxes by mitochondria 

(Breckenridge et al., 2003; Rao et al., 2004; Gorlach et al., 2006; Szegezdi et al., 2006; Wu and 

Kaufman, 2006). Mitochondrial energy deficits caused by decreased levels of uridine 

diphosphoglucose or induced by NO have also been shown to cause the activation of ER stress, 

including the up-regulation of Grp78 (Flores-Diaz et al., 2004; Xu et al., 2004).  Mitochondria 

and ER communication is essential for the cellular response to stress and ultimately cell survival.   
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Sustained activation of ER stress can lead to activation of mitochondrial-dependent apoptosis 

involving cytochrome c release, in addition to a mitochondrial-independent caspase-12 activation 

pathway, leading to cell death (Breckenridge et al., 2003; Momoi, 2004; Rao et al., 2004; Zhao 

and Ackerman, 2006) . 

4.5.6   ER Stress and PD 

Using an unbiased approach, this study has provided evidence that DA exposure leads to 

ER stress protein up-regulation in PC12 cells, which may be involved in the mechanisms of DA-

induced toxicity. Previous studies lend evidence that ER stress may be induced by dopaminergic 

toxins.  Exposure to high levels of DA (500 µM), 6-OHDA, or MPP+ in SH-SY5Y cells, and 

expression of mutant A53T alpha synuclein in PC12 cells have been previously shown to 

increase levels of Grp78 and Chop/GADD153, an ER stress inducible transcription factor (Chen 

et al., 2004a; Gomez-Santos et al., 2005; Smith et al., 2005a).  Increases in the phosphorylation 

state of ER stress kinases were observed in MN9D cells following 6-OHDA and in PC12 cells 

following 6-OHDA, MPP+, and rotenone treatment (Ryu et al., 2002; Holtz and O'Malley, 

2003).   In MN9D cells, 6-OHDA induced an ER stress response prior to cytochrome c release, 

indicating that ER stress activation occurred prior to the onset of cytochrome c-mediated 

apoptotic signaling pathways (Holtz et al., 2006).  Others have also suggested ER stress leads to 

activation of apoptotic cell death pathways (Boyce and Yuan, 2006; Lindholm et al., 2006; 

Szegezdi et al., 2006; Wu and Kaufman, 2006).  A recent finding found that after rotenone 

exposure in MES cells, increased amounts of calreticulin precursor were associated with both α-

synuclein and DJ-1, and increased levels of Grp94 were associated with α-synuclein, linking ER 

stress proteins to proteins involved in PD pathogenesis (Jin et al., 2006). 
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  The activation of ER stress has also been observed directly in PD and ischemia in vivo 

models (DeGracia and Montie, 2004; Silva et al., 2005), and is thought to be a common 

pathological pathway in many neurodegenerative disorders (Paschen and Frandsen, 2001; 

Paschen and Mengesdorf, 2005; Xu et al., 2005a; Lindholm et al., 2006).  Many inherited forms 

of PD involve abnormalities in protein degradation or mitochondrial dysfunction, including the 

proteins α-synuclein, Parkin, DJ-1, PINK1, ubiquitin carboxyl-terminal hydrolase-1, and 

LRRK2/dardarin (Lindholm et al., 2006).  The relationships between genetic forms of PD and 

protein degradation and inclusion formation suggest that accumulation of unfolded proteins 

might contribute to the selective neuronal death observed in PD (Lindholm et al., 2006).  The 

relationship between oxidative stress, mitochondrial dysfunction, and abnormal protein 

degradation is connected to the activation of ER stress pathways in DA-induced toxicity and 

likely in the pathology of PD. 
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5.0  THE EFFECT OF ENDOGENOUS DOPAMINE IN ROTENONE-INDUCED TOXICITY 

IN PC12 CELLS  

5.1 SUMMARY 

Deficiencies in complex I have been observed in Parkinson’s disease (PD) patients.  

Systemic exposure to rotenone, a complex I inhibitor, has been shown to lead to selective 

dopaminergic cell death in vivo and toxicity in many in vitro models, including dopaminergic 

cell cultures.  However, it remains unclear why rotenone seems to affect dopaminergic cells 

more adversely.  Therefore, the role of dopamine (DA) in rotenone-induced PC12 cell toxicity 

was examined.  Rotenone (1.0 µM) caused significant toxicity in differentiated PC12 cells, 

which was accompanied by decreases in ATP levels, changes in catechol levels, and increased 

DA oxidation.  To determine whether endogenous DA makes PC12 cells more susceptible to 

rotenone, cells were treated with the tyrosine hydroxylase inhibitor α-methyl-p-tyrosine (AMPT) 

to reduce DA levels prior to rotenone exposure, and then cell viability was measured.  No 

changes in rotenone-induced toxicity were observed with or without AMPT treatment.  However, 

a potentiation of toxicity was observed following co-exposure of PC12 cells to rotenone and 

methamphetamine.  To determine whether this effect was due to DA, PC12 cells were depleted 

of DA prior to methamphetamine and rotenone co-treatment, resulting in a large attenuation in 
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toxicity.   These findings suggest that DA plays a role in rotenone-induced toxicity and possibly 

the vulnerability of DA neurons in PD. 

5.2 INTRODUCTION 

The cause of selective dopaminergic degeneration in the substantia nigra of Parkinson’s 

disease (PD) patients remains unknown, however, research has linked cell death in PD to 

oxidative stress (Dauer and Przedborski, 2003) and mitochondrial dysfunction (Schapira et al., 

1990a; Schapira et al., 1990b; Blandini et al., 1998).  Direct effects of reactive oxygen species 

(ROS), including increased lipid peroxidation, protein carbonyls, and DNA damage in PD brain 

have been observed (Beal, 2003).  Increased iron and significant decreases in the major 

antioxidant, glutathione (GSH), which also promotes oxidative stress, have also been observed in 

PD (Jenner, 2003).   

The relationship between oxidative stress and dopamine (DA) oxidation in degeneration 

has provided a link between the selective vulnerability of DA neurons and PD.  Increased DA 

metabolism, by both monoamine oxidase (MAO) and DA oxidation into DA quinone (DAQ) will 

cause increased ROS production, which may lead to oxidation of protein, DNA, and lipids 

(Graham, 1978; Maker et al., 1981; Halliwell, 1992; Hastings, 1995).  In addition to ROS, the 

electron-deficient DAQ readily reacts with cellular nucleophiles, including reduced sulfhydryl 

groups, located on free cysteine residues, GSH, and proteins (Tse et al., 1976; Fornstedt et al., 

1990b; Fumagalli et al., 1998).   Modification of free thiols and GSH can lead to the reduction in 

the amount of antioxidants available to protect the cells from oxidative stress.  In addition, free 

cysteinyl-DA conjugates can be further oxidized to form 7-(2-aminoethyl)-3,4-dihydro-5-

 103 



hydroxy-2H-1,4-benzothiazine-3-carboxylic acid (DHBT-1), a mitochondrial toxin (Li and 

Dryhurst, 1997).  DAQ modification of proteins lead to the formation of covalently bound DA-

protein conjugates, often on cysteinyl residues (Hastings et al., 1996).  Many vital proteins 

contain cysteine residues at their active sites, and therefore modification may alter the function 

of these proteins, leading to inactivation and possibly cell death.  Both in vitro (Graham, 1978) 

and in vivo (Filloux and Townsend, 1993; Hastings and Zigmond, 1994) studies support the 

hypothesis that exposure to DA increases protein cysteinyl-catechol levels, and in vivo causes 

selective damage to DA terminals (Rabinovic et al., 2000).  Protein modification by DAQ has 

also been observed following the dopaminergic toxins methamphetamine (METH) (LaVoie and 

Hastings, 1999) and 1-methyl-4-phenylpyridinium (MPP+) (Teismann et al., 2003), indicative of 

endogenous DA oxidation.   The presence of neuromelanin in the brain and cysteinyl-catechol 

conjugates in PD brain lysates (Spencer et al., 1998), suggests that DA oxidation occurs in vivo.  

Therefore, the presence of DA in the cytoplasm, especially in a reduced antioxidant environment, 

will add to the oxidative stress of a cell through ROS and DAQ production and through the 

subsequent oxidation of important biomolecules, making dopaminergic neurons in the substantia 

nigra more susceptible to cell death.    

Impairment of mitochondrial function is also likely to contribute to oxidative stress and 

cell death in PD.  The link between complex I inhibition and PD was first identified after the 

active metabolite of the dopaminergic toxin MPTP, MPP+, was discovered to be a complex I 

inhibitor.  Further studies revealed that impaired mitochondrial function, in the form of a 

complex I deficiency, occurs in PD in the substantia nigra (Mizuno et al., 1989; Schapira et al., 

1989) and systemically in platelets and muscle (Shoffner et al., 1991; Blandini et al., 1998).  The 

role of complex I inhibition in PD has been expanded through experimentation with pesticides 
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and toxins that inhibit complex I, including MPTP, paraquat, and rotenone, all of which cause 

selective DA degeneration (Dawson and Dawson, 2003; Di Monte, 2003; Greenamyre et al., 

2003).  The selective toxicity of both MPTP and paraquat is due to their similar structure, which 

makes them substrates for the DA transporter (DAT) (Pifl et al., 1993; McCormack et al., 2002; 

Shimizu et al., 2003).  Rotenone however is not a substrate for DAT.  It is lipophilic and can 

cross membranes of all cells easily.  In vivo studies have shown that chronic, systemic 

administration of rotenone produces dopaminergic degeneration and Lewy body-like 

cytoplasmic inclusions, which closely mimic the pathology of PD (Betarbet et al., 2000), 

although less selective effects have also been observed (Hoglinger et al., 2003).  The systemic 

rotenone model does represent both the central and peripheral inhibition of complex I as seen in 

PD, which leads to nigrostriatal dopaminergic degeneration (Betarbet et al., 2000), α-synuclein 

aggregation (Sherer et al., 2003a), and glial activation (Sherer et al., 2003b).  Rotenone treatment 

also functions as an effective PD model in vitro, resulting in toxicity to dopaminergic cells 

(Hartley et al., 1994), increasing oxidative stress (Sherer et al., 2002), and decreasing proteasome 

activity (Shamoto-Nagai et al., 2003).   

Partial inhibition of complex I has been shown to increase mitochondrial production of 

ROS (Pitkanen and Robinson, 1996; Votyakova and Reynolds, 2001), which may be the 

precipatory event in toxicity models.  However, the basis for rotenone-induced selective toxicity 

to dopaminergic neurons remains ambiguous.   The increased oxidative stress within 

dopaminergic neurons, due to DA metabolism and oxidation, combined with a complex I 

inhibition-induced ROS production may lead to cell death by overloading the oxidative capacity 

of dopaminergic cells.  Therefore, in this study we sought to investigate whether DA was 

involved in rotenone-induced toxicity in PC-12 cells.   We found that DA depletion prior to toxin 
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exposure did not protect against rotenone-induced toxicity.  However, rotenone toxicity was 

potentiated by METH-induced increases in cytoplasmic DA in PC12 cells.   

5.3 EXPERIMENTAL PROCEDURES 

Chemicals and Reagents: 

Cell culture media, Dulbecco’s Modified Eagle Medium (DMEM, Gibco brand), fetal 

bovine serum (HyClone brand), and horse serum (HyClone brand) were purchased from 

Invitrogen (Carlsbad, CA).  Rotenone was obtained from ICN Biomedicals (Costa Mesa, CA), α-

methyl-p-tyrosine from Fluka (Ronkonkoma, NY), and nerve growth factor (NGF) from BD 

Bioscience (San Diego, CA) and Accurate Chemical (Westbury, NY).   All other reagents were 

purchased from Sigma (St. Louis, MO). 

 

PC12 Cell Culture:  

PC12 cells, a rat adrenal pheochromocytoma derived cell-line, were differentiated in 

DMEM supplemented with 1% fetal bovine serum, 1% horse serum, and 100 ng/ml NGF for 3 d.  

Cells were then treated with rotenone (dissolved in DMSO) and/or methamphetamine, in 

differentiation media for 2-48 h.  Control cultures underwent a media change at the same time as 

rotenone treated cultures.   Cell viability was determined by cell counting using the trypan blue 

exclusion method.  Vehicle (DMSO) had no effect on cell viability (data not shown). 
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Depletion of Cellular DA: 

DA levels were depleted using the TH inhibitor α-methyl-p-tyrosine (AMPT). AMPT 

was added to the differentiating media in concentrations of 100, 300, or 1000 µM.  For 

subsequent experiments in which DA levels were depleted, 1000 µM AMPT was added 3 d prior 

to, and then sustained during rotenone treatment. 

 

Biochemical analysis:  

For DA and DOPAC measurements, PC12 cells were collected following treatment, and 

the protein was acid precipitated in 0.1 N perchloric acid and centrifuged at 14,000 x g for 25 

min.   An aliquot of the supernatant was extracted with alumina, and injected into an HPLC 

system containing an ESA (Chelmsford, MA) Coulochem II coulometric detector (+280 V).  

Protein cysteinyl catechols (protein cys-DA, cys-DOPAC, and cys-DOPA) were measured 

following hydrolysis of protein in 6 N HCl containing 1 mg/ml BSA, as described previously 

(22).  Hydrolyzed protein samples were extracted with alumina prior to analysis on HPLC with a 

Waters 460 amperometric detector set at an oxidizing potential of 0.6 V.  Peaks for catechols and 

cysteinyl-catechols were identified and quantified by comparison to standards. 

 

ATP measurement: 

 Following exposure to DA, protein from PC12 cells was precipitated in 2% 

trichloroacetic acid and centrifuged at 14,000 x g for 25 min.  A luciferase-based assay was used 

to measure ATP levels in an aliquot of the resulting supernatant (Ronner et al., 1999).  A 

Monolight 3010 luminometer (Pharmingen, San Diego, CA) was used to measure the light 

output resulting after an aliquot of diluted cell sample, 30mM HEPES, pH 7.75, and Enlighten 
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rLuciferase/Luciferin reagent (Promega, Madison, WI) were mixed in a cuvette.  Protein 

amounts were determined by the Bradford assay (Bradford, 1976). 

 

Statistical Analysis: 

Differences among group means were determined by ANOVA followed by post-hoc 

student's t-test with significance determined at p<0.05. 

5.4 RESULTS 

5.4.1  Rotenone-Induced PC12 Cell Toxicity 

Previous studies have shown the mitochondrial complex I inhibitor rotenone to be toxic 

to DA-containing cells such as undifferentiated PC12 cells (Hartley et al., 1994), SH-SY5Y cells 

(Shamoto-Nagai et al., 2003), and primary mesencephalic cultures (Lotharius and O'Malley, 

2000).  To evaluate the susceptibility of differentiated PC12 cells to rotenone toxicity, cell 

viability was determined using trypan blue exclusion, following 48 h of rotenone exposure at 

concentrations ranging from 0.5 µM to 20 µM (Figure 15).  Rotenone treatment for 48 h 

significantly decreased the number of viable cells (from -37% to -70% as compared to time-

matched control cells) at all concentrations measured (Figure 15).  Future experiments used 

either the 0.5 µM or 1 µM rotenone concentration, since these were the lowest concentrations 

that caused significant amounts of cell death.  
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Figure 15: Concentration response curve for rotenone toxicity.  

Differentiated PC-12 cells were treated for 48 h with increasing concentrations of rotenone 

dissolved in DMSO.  The number of viable cells was counted using trypan blue exclusion. Data 

expressed as mean % control viable cells ± SEM, n=3-4. *Significantly different from control, 

p<0.05.  

 

 

5.4.2   Rotenone Reduced ATP Levels in PC12 cells 

Rotenone exposure inhibits mitochondrial complex I and in part the electron transport 

chain, potentially reducing ATP synthesis.  Previous studies have shown that rotenone treatment 

in SK-N-MC human neuroblastoma cells lead to a dose-dependent loss in ATP (Sherer et al., 

2002).   Therefore, to determine whether the rotenone concentrations that caused decreases in 

viability also led to reductions in ATP level, we measured ATP levels in differentiated PC12 

 109 



cells treated with 1 µM rotenone, for 12 to 48 hours (Figure 16).  We observed significant 

decreases in ATP levels following 12, 24, and 48 h of rotenone exposure, ranging from -25% to -

65% as compared to time-matched control levels (Figure 16).   The greatest depletion occurred 

after 48 h rotenone exposure. 

 

 

Figure 16: ATP levels in PC12 cells following rotenone exposure. 

Differentiated PC-12 cells were treated with 1 µM rotenone for 12, 24, or 48 h.  ATP levels were 

measured from PC-12 cell lysate in a luminometer.  Control ATP levels were 13.0 ± 1.5 

nmol/mg protein.  Data expressed as mean % control ± SEM, n=4. *Statistically significant from 

control, p<0.05.  

 

 

5.4.3   Effects of Rotenone on Catechol Levels 

Rotenone has previously been shown to cause catecholamine release in PC12 cells 

(Taylor et al., 2000), therefore, we wanted to determine whether cellular catecholamine levels 
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were affected by rotenone.  DOPA, DA, and DOPAC amounts were measured in differentiated 

PC12 cells treated with 1 µM rotenone for 2 to 48 h and compared to time-matched control 

levels (Figure 17).  DOPA levels were significantly increased from control (+130%) following 

48 h of 1 µM rotenone treatment.  In contrast, DA levels were significantly lower than control 

following 6 to 24 h of 1 µM rotenone treatment, ranging from -18% to -25% of time-matched 

control levels.  However, the greatest decrease was observed in DOPAC levels, which were 

significantly lower (-33% to –68%) than control at all time-points observed, following 1 µM 

rotenone treatment.  The sustained low levels of DOPAC suggested that rotenone exposure might 

alter monoamine oxidase (MAO) activity, the enzyme that metabolizes DA to DOPAC.  To 

evaluate this possibility, we treated isolated rat brain mitochondria with 1 µM rotenone, exposed 

the mitochondria to 50 µM DA, and measured DA metabolites using HPLC.  The rates of DA 

metabolism were similar in rotenone-treated and untreated mitochondria, suggesting that this was 

not a direct effect of rotenone on MAO activity (data not shown). 

 

Figure 17: Catechol levels following rotenone exposure.  

Differentiated PC-12 cells were treated with 1 µM rotenone for 2 to 48 h.  DA, DOPAC, and 

DOPA levels were determined using HPLC with electrochemical detection.  Average control DA 
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levels were 2.0 ± 0.2 nmol/mg protein.  Average control DOPAC levels were 48 ± 4.9 pmol/mg 

protein.  Average control DOPA levels were 511 ± 51 pmol/mg protein.  Data expressed as mean 

% control ± SEM, n=4-5.  *Statistically significant from control, p<0.05. 

 

 

5.4.4   Effect of Rotenone on DA Oxidation 

Rotenone inhibits mitochondrial complex I, leading to ROS production (Pitkanen and 

Robinson, 1996; Votyakova and Reynolds, 2001).  Increased ROS is likely to lead to increased 

DA oxidation and DAQ formation in DA-containing neurons, which may additionally contribute 

to the rotenone-induced toxicity.  As a measure of DA oxidation and catechol oxidation in 

general, we evaluated the formation of protein cysteinyl-catechols in PC12 cells treated with 1 

µM rotenone (Figure 18).  Protein from rotenone-treated cells was acid precipitated and 

hydrolyzed to break up the protein into its amino acid components.  Protein cysteinyl-DA and 

cysteinyl-DOPAC levels were then measured using HPLC.  Protein cys-DA levels were 

increased above control (+150%) following 48 h rotenone treatment (Figure 18).  Protein cys-

DOPAC levels were also increased significantly from control (+120%-140% of control) after a 

12-48 h rotenone treatment (Figure 18), suggesting that rotenone treatment leads to increased DA 

and DOPAC oxidation resulting in protein modification in PC12 cells. 
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Figure 18: Protein cysteinyl-catechol levels following rotenone exposure.  

Differentiated PC-12 cells were treated with 1 µM rotenone for 2 to 48 h.    Protein cysteinyl-DA 

and protein cysteinyl-DOPAC levels were determined using HPLC with electrochemical 

detection.  Data expressed as mean % control ± SEM, n=4-6.  *Statistically significant from 

control, p<0.05. 

 

 

5.4.5   DA Depletion Does Not Protect PC12 Cells from Rotenone Induced Toxicity 

Because DA may make cells more susceptible to cell death due to the formation of 

reactive DA metabolites, we examined whether the presence of DA makes PC12 cells more 

susceptible to rotenone-induced toxicity.  To evaluate this initially, DA was depleted in PC12 

cells using the tyrosine hydroxylase (TH) inhibitor, α-methyl-p-tyrosine (AMPT).  Since TH is 

the rate-limiting step in DA synthesis, blocking TH will stop DOPA, the DA precursor, from 

being produced, and thus depletes cells of DA and its metabolite, DOPAC.  PC12 cells were 

treated with increasing concentrations of the TH inhibitor, AMPT (0-1000 µM) during the 3 d 
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differentiation period (Figure 19).  Results showed that DA, DOPAC, and DOPA levels were all 

significantly decreased in a concentration-dependent manner following AMPT treatment (Figure 

19).  At the highest concentration (1000 µM AMPT), DA levels were only 7.5% of control and 

DOPAC and DOPA levels were non-detectable.  AMPT (1000 µM) treatment alone had no 

effect on PC12 cell viability (Figure 20), and therefore was chosen for all subsequent DA 

depletion experiments. 

The effect of DA depletion on rotenone toxicity was determined by pretreatment with 

1000 µM AMPT for 72 h, followed by 1 µM rotenone or vehicle plus AMPT for an additional 48 

h.  Rotenone treatment alone lead to a 60% decrease in viable cells.   However, AMPT plus 

rotenone showed a similar decrease in cell viability (-60%), which did not differ from the 

rotenone-alone treated cells (Figure 20).   

 

 

Figure 19: Effect of AMPT on catechol levels.  

PC12 cells were treated with 0-1000 µM AMPT, a tyrosine hydroxylase inhibitor, for 72 h 

during differentiation.  DA, DOPAC, and DOPA levels were measured using HPLC with 

electrochemical detection. Data expressed as mean ± SEM, n=4.  *Statistically significant from 
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control, p<0.05. 

 

 

Figure 20: PC12 cell viability following DA depletion and rotenone exposure.  

PC-12 cells were treated with 1 mM AMPT or control media for 72 h, followed by 1 µM 

rotenone or vehicle for 48 h.  Cell viability was then determined using trypan blue exclusion.  

Data expressed as mean % control ± SEM, n=4. *Statistically significant from control, p<0.05. 

 

 

5.4.6   Methamphetamine Potentiated Rotenone-Induced Toxicity in PC12 Cells 

PC12 cells contain both synaptic-like vesicles and large dense core vesicles (O'Lague et 

al., 1985), which comprise a large storage capacity for DA, and thus much of the DA would be 

adequately sequestered away from any rotenone-produced ROS.  Because DA depletion did not 

attenuate rotenone-induced toxicity, we sought to determine whether increasing cytoplasmic DA 

by treatment with METH would potentiate rotenone-induced toxicity.  Previous studies in 

primary cultures have shown that rotenone potentiated toxicity induced by amphetamine, which 
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releases DA from vesicles into the cytoplasm (Lotharius and O'Malley, 2001).  First, to confirm 

the mobilization of intracellular DA stores in PC12 cells following METH treatment, we exposed 

differentiated PC12 cells to control media, 0.5 µM rotenone, 0.5 mM METH, or 0.5 µM 

rotenone plus 0.5 mM METH in media for 24 h and then measured cellular catechol levels 

(Figure 21a).   METH treatment alone did not affect DOPA levels.  However there was a 

significant increase in DOPA levels to 217% and 310% of control in the rotenone and rotenone 

plus METH-treated cells, respectively.  DOPAC levels were decreased to -55%, -24%, and -72% 

as compared to control following METH, rotenone, and rotenone plus METH treatment, 

respectively.  DA levels were not affected by rotenone treatment alone, but were significantly 

decreased (-83%) from control following 24 h METH, and decreased (–73%) after a rotenone 

plus METH treatment, indicating that exposure to METH but not rotenone is mobilizing 

intracellular DA stores in PC12 cells, leading to DA depletion.   

After confirming that METH was mobilizing DA stores, we examined the effect of 

increased cytosolic DA on rotenone-induced toxicity.   We co-treated PC12 cells with 0.5 mM 

METH and 0.5 µM rotenone, for 48 h, and measured cell viability (Figure 21b).  In these studies, 

we utilized a lower concentration of rotenone than previous experiments, which led to a 22% loss 

in viable cells.  Methamphetamine treatment alone also led to a small, but significant decrease in 

cell viability (-12% of control).  However, co-treatment of rotenone and METH lead to a 49% 

loss in cell viability, which was significantly different from control, rotenone alone, and METH 

alone groups.  In addition, rotenone plus METH appeared to potentiate toxicity beyond the sum 

of the toxicities seen in either treatment group alone. 
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Figure 21: Effect of methamphetamine and rotenone co-treatment on PC12 cell catechol levels 

and viability.  

PC12 cells were treated with control media, 0.5 mM methamphetamine, 0.5 µM rotenone, or co-

treated with 0.5 µM rotenone and 0.5 mM methamphetamine for 48 h.  A. DA, DOPAC, and 

DOPA levels were determined using HPLC with electrochemical detection.  Data expressed as 

mean % control ± SEM.  *Statistically significant from control, p<0.05. n=4.  B. Cell viability 

was determined using trypan blue exclusion.  Data expressed as mean % control ± SEM, n=4. 

*Statistically significant from control, p<0.05. †Statistically significant from methamphetamine- 

and rotenone-alone treated groups, p<0.05.  
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To determine whether the effect was due to increased cytosolic DA or due to a direct 

effect of METH, we first depleted DA with AMPT and then treated PC12 cells with METH and 

rotenone for 48 h.  In this experiment, 0.5 mM METH exposure lead to only a 7% loss in 

viability, which was not significantly different from control (Figure 22).  Rotenone exposure (0.5 

µM) lead to a 29% loss in cell viability as compared to control, which was again not significantly 

different from rotenone treatment following DA depletion with AMPT (-34% as compared to 

control) (Figure 22).  Methamphetamine and rotenone co-treatment lead to a 46% loss in cell 

viability as compared to control, which was again significantly different from control, rotenone 

alone, and METH alone treated groups (Figure 22).  However, 1000 µM AMPT pre-treatment 

followed by rotenone and METH co-treatment lead to attenuation of toxicity to only a 19% loss 

in viable cells, which represents the rescue of 60% of the cells lost following rotenone plus 

METH without pre-treatment (Figure 22).  This observation suggests that a large portion of the 

enhanced toxicity observed in rotenone/METH-induced toxicity could be due to the presence of 

DA.   
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Figure 22: Effect of DA depletion on methamphetamine and rotenone co-treatment on PC12 cell 

viability.   

PC12 cells were treated with control media, 0.5 mM methamphetamine, 0.5 µM rotenone, pre-

treated with 1 mM AMPT for 3d followed by 0.5 µM rotenone treatment, co-treated with 0.5 µM 

rotenone and 0.5 mM methamphetamine, or pre-treated with 1 mM AMPT for 3d followed by 

0.5 µM rotenone and 0.5 mM methamphetamine co-treatment for 48 h.  Cell viability was then 

determined using trypan blue exclusion.  Data expressed as mean % control ± SEM, n=4. 

*Statistically significant from control, p<0.05. †Statistically significant from methamphetamine- 

and rotenone-alone treated groups, p<0.05.  ‡Statistically significant from methamphetamine and 

rotenone co-treated group, p<0.05. 
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5.5 DISCUSSION 

5.5.1 Mitochondrial Dysfunction, Rotenone, and Dopaminergic Cell Death 

In the present study, we wanted to determine the role of DA in rotenone-induced toxicity, 

to better understand the possible contribution of DA to cell death in PD.  Oxidative stress and 

mitochondrial dysfunction, combined with DA oxidation may make dopaminergic cells a more 

vulnerable target for toxic stimuli in PD.  The rotenone model, with complex I inhibition and 

selective dopaminergic cell death, possesses many aspects of PD pathology, including evidence 

for increased oxidative stress (Sherer et al., 2002) and α-synuclein positive protein aggregates 

(Sherer et al., 2003a).  Therefore, we used rotenone, in conjunction with AMPT and METH to 

examine the contribution of DA to rotenone-induced toxicity in PC12 cells.  We found that DA 

depletion prior to toxin exposure did not protect against rotenone-induced toxicity.  However, 

rotenone toxicity was potentiated in PC12 cells by the intracellular release of DA from the 

vesicles, induced by METH exposure.   

Partial inhibition of complex I has been shown to increase mitochondrial production of 

ROS (Pitkanen and Robinson, 1996; Votyakova and Reynolds, 2001), which may be the 

precipatory event in toxicity models.  However, the basis for rotenone-induced selective toxicity 

to dopaminergic neurons remains ambiguous.   The increased oxidative stress within 

dopaminergic neurons, due to DA metabolism and oxidation, combined with enhanced ROS 

production by complex I inhibition may lead to cell death by overloading the antioxidant 

capacity of these cells.  In addition, DA oxidation may cause mitochondrial dysfunction, since 

isolated mitochondria exposed to DAQ have increased state 4 (uncoupled) respiration and 

opening of the permeability transition pore (Berman and Hastings, 1999).  DA oxidation, 
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mitochondrial dysfunction, and mitochondrial ROS production are all processes that can lead to 

an increasing cascade of oxidative damage to cellular macromolecules, which may lead to total 

mitochondrial failure and cell death.  

We found that the depletion of DA by AMPT did not protect PC12 cells from rotenone-

induced toxicity.  However co-exposure of PC12 cells to rotenone and METH, which leads to the 

release of DA stores into the cytoplasm, lead to increased toxicity.  Additionally, the potentiation 

of rotenone toxicity by METH was blocked when PC12 cells were depleted of DA prior to 

rotenone and METH co-treatment.  Although METH may have toxic actions on its own (Brown 

and Yamamoto, 2003), these data suggest that cytoplasmic DA, and perhaps increased oxidative 

stress due to DA oxidation and metabolism, may exacerbate rotenone-induced toxicity in 

differentiated PC12 cells. 

Previous studies in primary mesencephalic cultures (Sakka et al., 2003), SH-SY5Y cells 

(Shamoto-Nagai et al., 2003), and undifferentiated PC12 cells (Hartley et al., 1994) have shown 

nanomolar concentrations of rotenone to be toxic.  However, in this study, we found a 37-70% 

decrease in cell viability in NGF-differentiated PC12 cells following a 48 h, exposure to 0.5-20 

µM rotenone (Figure 15), and very little toxicity prior to 48 h (data not shown).  Differentiated 

PC12 cells seem to be less susceptible to rotenone-induced toxicity than other cellular models, 

which may be due to the presence of the growth factor NGF throughout exposure. 

  ATP levels were depleted following 1 µM rotenone exposure (Figure 16).  However, the 

levels of ATP after 24 h rotenone treatment (75% of control) were higher than the ATP levels 

following 12 h (40% of control) or 48 h (35% of control) of rotenone exposure.  The jump in 

ATP levels may be the result of glycolysis stimulated by rotenone-induced complex I inhibition.  

PC12 cells have previously been shown to resort to increased glycolysis when challenged with 
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the mitochondrial complex I inhibitor, MPP+ (Kang et al., 1997).  This has also been observed in 

primary neuronal cultures in response to oxidative stress (Ben-Yoseph et al., 1996).  Our 

observations suggest that the loss of ATP was not responsible for cell death, as also determined 

by others (Sherer et al., 2003c). 

5.5.2   Intracellular DA Efflux and Rotenone-Induced Toxicity 

Rotenone-induced catecholamine release in PC12 cells has been previously observed 

(Taylor et al., 2000), and in our study, we observed a slight, but significant, depletion of DA 

following a 6-24 h, treatment with 1 µM rotenone (Figure 17).  However at 24 h, a lower 

concentration of rotenone (0.5 µM) did not affect DA levels (Figure 21a).  Therefore, if DA is 

being released from PC12 cells following rotenone treatment, it is very small compared to the 

total DA stored in the cells.  We also observed a substantial decrease in DOPAC levels in PC12 

cells treated with rotenone (Figure 17 and Figure 21a) but found no direct effect of rotenone on 

MAO activity in isolated mitochondria.  Decreased DOPAC levels have been previously 

observed in PC12 cells following rotenone treatment (Lamensdorf et al., 2000).  Decreased 

DOPAC following rotenone in that study was accompanied by increased levels of 3,4-

dihydroxyphenylacetaldehyde (DOPAL), suggesting that rotenone leads to the inactivation of 

aldehyde dehydrogenase, the enzyme that converts DOPAL into DOPAC (Lamensdorf et al., 

2000).  DOPAL exposure has been shown previously to be toxic to dopaminergic cells 

(Mattammal et al., 1995), and thus may add to the rotenone-induced toxicity.  However, we did 

not observe the presence of DOPAL in PC12 cells following rotenone treatment.  We also 

observed increased DOPA levels following rotenone treatment (Figure 17 and Figure 21a).  

DOPA-induced toxicity has previously been shown in PC12 cells (Basma et al., 1995).  Like 
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DA, DOPA can oxidize, forming ROS and DOPA quinones, which could add to the oxidative 

damage in the cell (Graham, 1978). 

Rotenone has been shown to increase oxidative stress.  In previous cell culture studies, 

rotenone reduced GSH levels (Seyfried et al., 2000; Sherer et al., 2002), while increasing levels 

of oxidized glutathione (GSSG) (Seyfried et al., 2000).  In addition, acute and chronic rotenone 

exposure in SK-N-MC cells leads to increased carbonyl formation (Sherer et al., 2002; Sherer et 

al., 2003c).  In this study, we observed evidence for increased DA oxidation following rotenone 

treatment in PC12 cells, as levels of protein cysteinyl-DA and cysteinyl-DOPAC increased after 

12-48 h of rotenone exposure (Figure 18), suggestive of an oxidative environment in the cells.    

Previous studies have shown that depletion of DA is protective in MPP+-induced toxicity 

(Lotharius and O'Malley, 2000), and recent studies in primary mesencephalic cultures have 

suggested that DA may be involved in rotenone-induced toxicity (Sakka et al., 2003).  In 

addition, rotenone potentiated amphetamine-induced toxicity in primary mesencephalic cultures, 

which was also thought to be due to DA (Lotharius and O'Malley, 2001).  We found that DA 

depletion did not affect rotenone-induced toxicity in PC12 cells (Figure 20).  However, since DA 

may not have been accessible for oxidation due to PC12 cell’s high storage capacity, we utilized 

a way to mobilize endogenous DA stores in the presence of rotenone, to determine whether DA 

could play a role in rotenone-induced toxicity.  Previous studies have shown that METH is 

transported into cells by DAT (Fumagalli et al., 1998), where it displaces vesicular DA into the 

cytoplasm, (Cubells et al., 1994), leading to DA depletion (Fumagalli et al., 1998).  In PC12 

cells, METH treatment and rotenone/METH co-treatment lead to DA depletion (Figure 21a), 

suggesting that DA was being released from the vesicles into the cytoplasm, where it could be 

easily oxidized, metabolized, and/or released from the cell via reversal of DAT.  Results showed 
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that DA potentiates rotenone-induced toxicity following the mobilization of DA by METH 

(Figure 21b), an effect that was eliminated with prior DA depletion (Figure 22).  METH has also 

been shown to enhance 3-nitropropionic acid and glutamate toxicity (Jakel and Maragos, 2000), 

an effect thought to be dependent on DA.  Although oxidative stress is likely to be involved, the 

mechanism may be different than the intracellular effects on DA neurons. 

Rotenone and other complex I inhibitors are currently being used as PD models both in 

vivo and in vitro (Greenamyre et al., 2003).   However, the question of why complex I inhibitors 

seem to target dopaminergic neurons has remained unanswered.  The present study demonstrates 

that unsequestered, intracellular DA could play a significant role in the selective targeting of DA 

neurons in rotenone-induced toxicity.  The ability of a dopaminergic cell to deal with increased 

oxidative stress, created by complex I inhibition, may be hampered by the presence of DA, 

which may further increase oxidative stress.  The complex I deficiency observed in PD is likely 

to cause increased ROS production, which in turn will promote DA oxidation, leading to a cycle 

of increasing oxidative stress and further DA oxidation.  This will result in oxidative protein 

modifications, inactivation of critical protein functions, and/or altered protein degradation, all of 

which are likely to contribute to the pathological mechanisms involved in PD.    
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6.0  CONCLUDING REMARKS 

The underlying cause behind the selective vulnerability of the dopaminergic neurons of 

the substantia nigra remains a focus of Parkinson’s disease research.  Both inheritable and 

idiopathic forms of Parkinson’s disease are associated with oxidative stress, mitochondrial 

dysfunction, and ubiquitin proteasome pathway deficits.  A common thread of these three 

pathways is the oxidation of proteins.  Oxidative stress, i.e. the formation of excess ROS, 

increases protein oxidation.  Mitochondrial dysfunction can be the result of proteins inactivated 

by ROS modifications and can further increase ROS formation, resulting in more protein 

oxidation.  Oxidized and misfolded proteins are degraded by the ubiquitin proteasome pathway.  

The ubiquitin proteasome pathway can be adversely affected by ROS, leading to dysfunction.  

Thus, deficits of the ubiquitin proteasome pathway lead to the accumulation and aggregation of 

oxidized proteins.  Therefore, both mitochondrial dysfunction and ubiquitin proteasome pathway 

deficits can be caused oxidative stress and can lead to further oxidative stress, perpetuating a 

cycle of cellular dysfunction and injury. 

Dopamine (DA) could itself be a factor in neuronal vulnerabilities, since DA adds to the 

oxidative stress of the cell through ROS and quinone formation, which can modify proteins in 

addition to damaging DNA and lipids.  DA selectively damages dopaminergic terminals in vivo 

(Hastings et al., 1996) and in vitro (Chapter 3), and this damage occurs following an increase in 

DA-protein adduct levels.  DA quinone also increases uncoupled respiration and permeability 
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transition pore formation in isolated mitochondria (Berman and Hastings, 1999) and decreases 

ATP levels in differentiated PC12 cells (Chapter 3), linking DA oxidation to mitochondrial 

dysfunction.  Although depleting DA did not protect against rotenone, a complex I inhibitor, the 

release of vesicular DA stores exacerbated rotenone-induced toxicity (Chapter 5). These data 

suggest that DA may make dopaminergic neurons more sensitive to mitochondrial inactivation, 

due to increased oxidative stress and also perhaps directly by DAQ-induced protein inactivation.  

Exposure to DA also led to the up-regulation of endoplasmic reticulum stress proteins, indicating 

that unfolded proteins were accumulating (Chapter 4).  These results indicate that protein 

modification, mitochondrial dysfunction, and endoplasmic reticulum stress can all result from 

DA oxidation, and thus DA may play a major role in the susceptibility of dopaminergic neurons 

in Parkinson’s disease.  A summary of the events described in this document associated with 

DA-induced toxicity in differentiated PC12 cells is shown in the illustration below (Figure 23). 
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Figure 23: Summary Diagram of DA Toxicity.  

1. Dopamine (DA) is taken up by the DA transporter (DAT) into the cells. This step is necessary 

to induce toxicity in differentiated PC12 cells. 2. Once inside the cells, DA is oxidized into the 

DA quinone (DAQ), leading to the production of H2O2 and superoxide anion (O2• -). 3. DAQ 

reacts with reduced cysteine residues on proteins, leading to cysteinyl-DA modified proteins on 

the outside of the cell, in the cytoplasm, or associated with organelles such as mitochondria. 4. 

Modified proteins may be inactivated or become misfolded and aggregate. 5. Misfolded proteins 

lead to the activation of endoplasmic reticulum (ER) stress causing the ER to swell and up-
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regulating levels of chaperone proteins like Grp78 and Grp58. 6. Intracellular DA can also be 

metabolized by monoamine oxidase (MAO), producing DOPAC and leading to the production of 

H2O2. Inhibition of MAO metabolism of DA does not affect DA-induced toxicity. 7. DAQ 

inhibits mitochondrial respiration, leading to reduced production of ATP and increased 

production of H2O2 and O2• -. 

 

 

6.1 THE ROLE OF DOPAMINE IN PC12 CELL DEATH 

The data presented in this document provides evidence that DA treatment leads to 

increased protein modifications, ATP losses, ER stress activation, and toxicity (Chapters 3 and 

4).  Individually, each of these responses could result in cell death.  Therefore, the question 

remains as to which pathway(s) significantly mediate DA-induced toxicity.  To answer this 

question, the timeline of the measured responses to DA will be discussed below and shown in 

Figure 24. 
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Figure 24: Timeline of PC12 cellular responses to DA treatment. 

DA exposure leads to the rapid formation of protein cysteinyl-catechols.  These proteins may 

become unfolded, leading to increased levels of chaperone protein Grp58 (#, 4 h).  Unfolded 

proteins start to accumulate, leading to increases in Grp78 levels, indicating the beginning of ER 

stress activation after 8 h, correlating to the beginning of trypan blue exclusion-measured cell 

death.  Cellular aldolase A levels increase and mitochondrial aldolase A levels are decreased (*, 

16 h) around the same time ATP levels decrease (18h). Cellular aldolase A levels remain 

elevated after 24h (*) when ATP levels return to normal, and maximum cell death is observed.  

ATP levels decrease again after 48 h. 

 

 

 

DAQ formation and protein modification occurs rapidly, resulting in protein cysteinyl-

catechol formation as early as 2 h (Figure 4, Figure 24).  The levels of protein cysteinyl-

catechols remain elevated even when PC12 cells were treated with DA for 48 h.  These DAQ-

modified proteins and probably other oxidatively modified proteins may lose their enzymatic 
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activities or unfold.  Increases in Grp58, an ER chaperone protein, after 4 h of DA exposure 

indicate that the cells are responding to misfolded proteins fairly early (Figure 13, Figure 24).  

Following 8 h of DA exposure, the differentiated PC12 cells respond by increasing levels of 

Grp78, a chaperone protein that leads to activation of the UPR when it releases its normal 

substrates and binds to misfolded proteins (Figure 13, Figure 24).  Also after 8 h of DA 

exposure, cell death becomes apparent in PC12 cells as measured by trypan blue exclusion 

(Figure 2, Figure 24).  Between 8 and 18 h, DA exposure leads to ATP deficits, with ATP levels 

significantly decreased after 18 h, indicating that mitochondrial respiration may be affected 

(Figure 6, Figure 24).  This drop in ATP occurs around the same time as increased levels of 

cytosolic aldolase A and decreased mitochondrial aldolase A were observed (16h *, Figure 14, 

Figure 24).  Differential aldolase A levels between the mitochondrial fraction and in whole cell 

lysate could be due to various mechanisms: 1. Mitochondrial aldolase A degradation could be 

increased, which may be due to the protein’s modification by DAQ or ROS.  As compensation 

for decreased mitochondrial levels, cytosolic levels may then be up-regulated, resulting in 

increased cellular levels.  2. DA may also affect aldolase A transport to or from the 

mitochondria, resulting in less aldolase A in the mitochondria.  3. Since aldolase A has been 

shown to be part of multi-enzyme glycolytic complexes (Beeckmans et al., 1990; Minaschek et 

al., 1992; Xu et al., 1995; Singh et al., 2004), and thus release of aldolase A from mitochondrial-

bound or ER-bound glycolytic complexes could also result in decreased levels in the 

mitochondrial-enriched fraction.  PC12 cells are capable of offsetting ATP deficits through 

glycolysis, and after 24 h DA exposure, ATP levels return to normal (Figure 6, Figure 24).  It is 

at this time-point that the highest levels of cell death were observed (Figure 2, Figure 24).  Over 

time, PC12 cells are unable to maintain ATP levels, and thus the levels significantly decrease 
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again after 48 h DA exposure (Figure 6, Figure 24).  After 48 h cell viability as measured by 

trypan blue exclusion is remains fairly similar to levels observed after 24 h, indicating that the 

population of PC12 cells may be heterogeneous, with a subset of cells susceptible to DA-induced 

toxicity.  Alternatively, the amount of DA remaining in the media after 48 hr may be 

substantially reduced from the initial insult, and any remaining cells may have initiated 

compensatory mechanisms for protection against DA, leading to stabilization in the amount of 

cell death.  Even though each differentiated PC12 cell may not have the same vulnerabilities and 

may be responding to DA differently, the onset of cell death occurred prior to observable ATP 

loss and during the same timeframe as ER stress initiation by up-regulation of Grp78.  Therefore 

it is possible that neither ATP depletion nor ER stress activation initiate cell death in PC12 cells 

exposed to DA.  Thus, DA exposure may lead to the early inactivation or misfolding of critical 

protein(s) in combination with oxidative stress-mediated pathways and combined with DA- 

induced mitochondrial deficits and UPR activation over time, result in cell death. 

6.2 ROLE OF DOPAMINE IN ROTENONE-INDUCED TOXICITY 

Complex I deficits are observed in PD patients, and both complex I inhibitor models of 

PD, rotenone and MPTP, are associated with selective dopaminergic neuron toxicity.  Therefore, 

to determine whether DA was a factor in rotenone-induced toxicity, both depletion of DA and 

increased vesicular release of DA were utilized.  A diagram of the summary of the events 

associated with the role of DA in rotenone-induced toxicity in differentiated PC12 cells is 

displayed below in Figure 25.   
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PC12 cells were not particularly susceptible to rotenone-induced toxicity; micromolar 

amounts of rotenone were required to initiate cell death after 48 h (Figure 15), compared to 

nanomolar amounts used for other cell types.  Previously, rotenone has been shown to lead to 

increased DA extracellular release (Taylor et al., 2000), which could lead to increased DA 

oxidation.  Slightly reduced levels of DA were observed following rotenone (Figure 17), and 

rotenone exposure did lead to increases in protein cysteinyl-catecholamine levels, to 

approximately 150% of control levels (Figure 18, Figure 25).  Perhaps, the decreased sensitivity 

of differentiated PC12 cell death to rotenone is related to the inability of rotenone to mobilize 

DA and thus reducing levels of DA oxidation seen in this model.  This hypothesis is supported 

by the results in which α-methyl-p-tyrosine, a TH inhibitor, was used.  Inhibition of TH, and 

almost complete depletion of DA levels, did not affect rotenone-induced toxicity (Figure 20, 

Figure 25).  However, if cytosolic levels of DA were raised by the administration of 

methamphetamine combined with a lower dose of rotenone, increased cell death was observed 

(Figure 21, Figure 25).  This potentiation of toxicity was due to the presence of DA, and thus 

likely also due to DA oxidation, since prior depletion of DA attenuated the toxicity to viability 

levels above rotenone treatment alone (Figure 23, Figure 25).  These data suggest that DA is 

important to rotenone-induced toxicity. 
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Figure 25: Summary Diagram of the Role of DA in Rotenone-induced Toxicity. 

1.  Rotenone exposure leads to mitochondrial inhibition and slight increases in DAQ-modified 

proteins and cell death ( ).  2. Inhibition of TH does not protect against rotenone-induced 

toxicity.  3. Displacement of DA by methamphetamine (METH) treatment exacerbates rotenone-

induced cell death.  4. DA depletion prior to METH and rotenone exposure protects cells against 

toxicity ( ). 
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6.3 DIFFERENTIATED PC12 CELLS AS A CELL MODEL FOR DOPAMINERGIC 

NEURONS 

The differentiation of the chromaffin granule cells by NGF was first described in 1975, 

leading to the establishment of the PC12 cell line (Tischler and Greene, 1975).  The 

characterization of differentiated PC12 cells revealed that these cells stopped proliferating and 

extended processes, similar to neurons, following NGF exposure (Greene and Tischler, 1976).  

Immunohistochemical and biochemical analyses revealed that these differentiated PC12 cells 

contained all of the proteins necessary for DA synthesis (Greene and Tischler, 1976).  Unlike the 

chromaffin source cells, differentiated PC12 cells contained more DA than norepinephrine, and 

NGF treatment was shown to increase TH activity (Greene and Tischler, 1976).  Differentiated 

PC12 cells contain both vesicular-like and dense core vesicles, with catecholamine levels 

estimated from 80 to 550 mM, suggesting that PC12 cells can store a significant amount of 

catecholamines (Greene and Tischler, 1976; Finnegan et al., 1996; Colliver et al., 2000; 

Wightman et al., 2002).   PC12 cells, like dopaminergic neurons, can take up catecholamines and 

can release catecholamines in a Ca+ -dependent mechanism (Greene and Rein, 1977).  

I used NGF-differentiated PC12 cells to observe the effects of DA on a DAergic cell line, 

since PC12 cells have high levels of DA and a neuronal phenotype (extends processes).  For 

these studies, we wanted to determine what makes DA neurons more susceptible to toxins in 

order to better understand why DA neurons of the SN are lost in PD.  Although in vivo work 

definitely has advantages over cell culture models, including the preservation of intact neuronal 

circuits, we wanted to look at changes specifically in DA-containing cells, which is difficult to 

do when working with the heterogeneous populations of neurons in brain, even when using 
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primary cultures.  Ideally, we can use the knowledge gained from cell culture studies to 

investigate similar mechanisms in vivo, to better understand the pathology of disease. 

Comparisons between in vivo and in vitro studies reveal that not every feature from cell 

culture studies translate to in vivo studies, however comparisons between the two are necessary 

for critical evaluations of the data and their interpretations.  A recent paper that compared 

various features of PC12 cells to striatum, reported that the number of vesicles and baseline 

levels of DA, TH, DAT, and VMAT2 are significantly less in PC12 cells (Fornai et al., 2007).  

This study also reported that methamphetamine exposure led to decreased DA levels in PC12 

cells, which is also reported in this document (Figure 21A), but that in vivo DA levels are not 

affected by low-dose METH (1 dose, 5mg/kg).  However, extracellular DA levels were found to 

be elevated in both PC12 cells and in striatum.  A comparison of the effect of L-DOPA treatment 

on DA levels in PC12 cells and striatum, and found that DA levels rose 5-fold above control in 

PC12 cells, while in striatum, only rose 2-fold (Fornai et al., 2007).  Although, such a 

comparison is important in understanding the relevance of a cell model in comparison to an in 

vivo model, there are some concerns with this study.  First, the PC12 cells used in this study were 

not NGF-differentiated, and thus the levels of DA and DA-related proteins may have been lower 

than differentiated cells, since these DA markers have previously been shown to respond to 

NGF.  Secondly, the use of the whole striatum complicates a comparison between homogeneous 

dopaminergic cells, and tissue, which contains dopaminergic terminals, GABAergic neurons, and 

other non-neuronal cells like microglia.  In addition, the differences in intracellular DA levels 

seen following METH treatment could reflect the differences in extracellular fluid between in 

vitro and in vivo studies.  METH is known to lead to the release of vesicular DA, leading to 

extracellular DA release.  This could lead to the depletion of DA in PC12 cells, especially since 
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the cells were treated for 30 min, compared to 7 d in vivo. In addition, we and others have shown 

that high doses of METH lead to DA depletions, and we have also shown that lowering ambient 

temperature during METH administration can attenuate DA depletions (15 mg/kg, 4 doses) 

(LaVoie and Hastings, 1999; Kita et al., 2003).  Also, the DA levels following DOPA treatment 

between PC12 cells and striatum differ only in magnitude, and thus may be due to the difference 

between a treatment in a dish where DOPA can either be taken up into the cells or remain in the 

medium, and treatment in the animal where DOPA can diffuse to other areas.  Therefore, I 

believe that these discrepancies do not detract from the usage of PC12 cells as a model of 

dopaminergic cells, but do serve as a needful reminder of the differences that can occur in vivo 

and in vitro. 

6.4 2-D DIFFERENCE IN-GEL PROTEOMICS TECHNIQUE 

Proteomics research in neurodegenerative disease is particularly promising, especially in 

investigations involving altered protein expression and changes in organelles (Hanash, 2003).  

Reducing the number of proteins by subcellular fractionation of target organelles, such as 

mitochondria, concentrates a subset of proteins, improving the separation in the 2D gel (Hanash, 

2003).  Recently, 2D gel electrophoresis has successfully been used in Alzheimer’s disease 

research, leading to the identification of oxidized proteins, detection of changes in levels of 

energy metabolism enzymes and antioxidant proteins, and identification of altered synaptic and 

neurotransmitter function in Alzheimer’s disease (Butterfield, 2004).  Advances in the 

standardization of 2D protein maps help other researchers locate the position of previously 

identified proteins, allowing for direct comparisons in protein separation and identification 
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techniques (Morrison et al., 2002; Vercauteren et al., 2004).  The combination of 2D gel 

electrophoresis with mass spectrometry allows for the identification of new proteins involved in 

disease processes, especially with the advent of peptide mass spectrometry search engines, which 

not only help identify proteins, but calculate the probability of accurate identification (Butterfield 

et al., 2003).  Recent improvements in 2D-DIGE allows for two pools of proteins, for example 

control and treated or diseased samples, to be labeled with different fluorescent dyes, mixed, and 

separated on the same gel, reducing the inevitable variability that occurs from running samples 

on separate gels (Patton, 2002; Kim et al., 2004).  In fact, our gels from different experiments 

using 2D-DIGE generate highly reproducible spot patterns, allowing us to be confident in 

matching identified proteins between gels (data not shown).   The applications of proteomic 

technology for the advancement of research in neurodegenerative disorders are numerous.   

 In Chapter 4, a comparative investigation using two dimensional-difference in-gel 

electrophoresis (2D-DIGE) of mitochondrial-enriched proteins from PC12 cells with and without 

DA exposure was described.  Lysine reactive NHS-ester CyDyes were used as a general method 

to label mitochondrial-associated proteins to assay for altered protein levels following DA 

exposure.  In addition, minimal (sub-stoichiometric) amounts of the cysteine reactive maleimide-

CyDyes were used to label mitochondrial proteins, in order to target those which proteins whose 

highly reactive cysteines are modified following DA treatment.  We had expected to find and 

characterize two different sets of mitochondrial proteins: 1. proteins with similar increased or 

decreased labeling following DA exposure in both cysteine and lysine labeling, indicating 

proteins that were increased or decreased without any apparent changes in relative cysteine 

oxidation, and 2. proteins with differential relative cysteine and lysine labeling, specifically a 

loss of cysteine labeling compared to lysine labeling following DA treatment, indicating proteins 
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with cysteinyl residues that were oxidatively modified following DA exposure.  Most proteins in 

the mitochondrial fraction fell into category 1, and appeared to be increased after DA exposure.   

Following mass spectrometry (MS) and mass peptide peak analysis, the majority of these 

proteins were identified as chaperone proteins, including ER-associated proteins. 

 2D-DIGE has been useful in illuminating the up-regulation of various mitochondrial and 

ER chaperone proteins in response to DA exposure in PC12 cells, suggesting a role for ER stress 

in DA-induced toxicity.  However, identifying proteins with cysteine residues that have been 

oxidized or bound by DAQ has proved difficult.  Several proteins that appear visually control-

shifted in the cysteine (maleimide) gels, suggesting cysteine modification by ROS or DAQ, have 

been picked, but have yet to be identified through MS peptide fingerprinting or upon Decyder 

analysis are not significantly changed from control dye protein labeling.  Despite our efforts to 

label the most reactive cysteines by decreasing the cysteine dye concentration to 0.125% of the 

recommended pmol of dye per µg protein, we labeled hundreds of proteins (Figure 10).  Since 

the most reactive cysteines have a neutral pKa (Di Simplicio et al., 2003), at a pH below the 

maximal maleimide-labeling pH, modification of the pH of the reaction between protein and 

cysteine dye may optimize the reaction towards labeling only the most reactive cysteines.  Two 

studies looking at H2O2- and acute DA-induced cysteine oxidation in purified proteins and in 

PC12 cell lysates indicate that lowering the pH to 6.5 when reacting protein with cysteine-

reactive labels, in these studies biotin-conjugated iodoacetamide, can help identify reactive 

cysteines, albeit not all reactive cysteines (Kim et al., 2000; Kim et al., 2002). As in our 

methodology, decreased cysteine labeling indicates cysteine oxidation.  In the study by Kim et 

al., 2002, DA exposure (45 min, 3 mM) lead to decreased labeling of cysteine residues by biotin-

conjugated iodoacetamide of several proteins, including endoplasmic reticulum protein 72 kDa 
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(ERp72), phospholipase C-γl (PLC-γl), thioredoxin reductase (Trx-R), endoplasmic reticulum 

protein 60 kDa (ERp60), creatine kinase (CK), and glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH).  Since cysteine oxidation was found in two ER chaperone proteins in the Kim et al., 

2002 study, it is possible that some of the ER proteins we identified as increased following DA 

exposure were also modified by DA, but that the large increase in protein levels overshadowed 

the cysteine modifications.  In addition, two energy related proteins, CK and GAPDH, were also 

identified as having cysteine modifications following DA exposure, suggesting that DA may 

affect the cell’s ability to produce ATP on demand.  Thus, future experiments altering the pH of 

the protein and cysteine dye reactions may identify proteins with oxidatively modified cysteines 

after DA exposure, helping to determine the critical proteins involved in increased dopaminergic 

neuron vulnerability to cell death. 

6.5 ENDOGENOUS DOPAMINE IN PD TOXICITY 

The DA-induced toxicity model utilizes exogenously applied DA, resulting in oxidative 

stress, DAQ formation, protein modification, and cell death.  How does this translate to the 

human disease?  Direct evidence for increased DA oxidation and protein modification, namely 

increased levels of cysteinyl-catecholamine conjugates and the presence of antibodies to DAQ-

modified cysteines and proteins, has been measured in PD brain (Rowe et al., 1998; Spencer et 

al., 1998; Sidell et al., 2001; Salauze et al., 2005).  In addition, the SN neurons which are lost in 

PD contain neuromelanin (NM), which is formed from oxidized catecholamines and increases 

with age (Sulzer et al., 2000; Zecca et al., 2004).  These studies show that increased DA 

oxidation levels and protein modification are present in the region of the brain (the SN) 
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associated with the movement dysfunction observed in PD.  Levels of cytoplasmic endogenous 

DA would likely need to be increased for DA to play role in the pathogenesis of PD, therefore, 

we need to determine which proteins and pathways may play a role in affecting DA homeostasis, 

leading to increased DA oxidation. 

The affinity of the VMATs for monoamines such as DA, which transport monoamines 

from the cytosol into vesicles, is approximately 1000-fold greater than other transporters (Liu 

and Edwards, 1997).  Since the monoamines, DA in particular, have been shown to be toxic both 

in vivo and in vitro, the ability of VMATs to bind and transport monoamines even at low 

cytoplasmic concentrations is a key step in keeping DA from accumulating and causing 

oxidative damage.  The levels of DA may itself be affected by DA oxidation; proteins relevant to 

DA synthesis and uptake, such as DAT, the glutamate transporter, TH, and tryptophan 

hydroxylase, can be modified or inhibited by exposure to DA or DAQ (Berman et al., 1996; 

Berman and Hastings, 1997; Kuhn and Arthur, 1998; Xu et al., 1998; Kuhn et al., 1999; 

Whitehead et al., 2001).  Enzymes involved in maintaining the ATP to ADP ratio, like creatine 

kinase and adenylate kinase, and the V-type H+-ATPase, the driving force behind DA uptake 

into vesicles, are also both inhibited by DA exposure, which could also add to increased 

cytosolic DA accumulation (Maker et al., 1986; Miura et al., 1999; Terland et al., 2006).  In 

addition, regulatory pathways of DA may be altered through interactions between DA and 

mutant proteins associated with familial PD, also leading to increased cytosolic levels of DA and 

adding to the oxidative environment of dopaminergic cells. 

Recently, the relationship between α-synuclein, DAT, and microtubules suggests that 

microtubule stabilization is vital for DAergic cell survival, and that mutations in α-synuclein 

may lead to alterations in DAT and vesicle accumulation.  Over-expression of normal human α-
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synuclein, but not the A53T mutant, decreases DA uptake and decreases the amount of DAT 

associated with the plasma membrane (Wersinger and Sidhu, 2005).  The regulation of DAT by 

α-synuclein appears to be associated with microtubules, since chemicals that disrupt 

microtubules, also increase DA uptake, increase levels of DAT on the cell surface, and 

exacerbate DA-induced toxicity (Wersinger and Sidhu, 2005).  Formation and/or stabilization of 

microtubules may also be another role for α-synuclein, since it has been shown to interact with 

various cytoskeletal proteins, including tubulin, and to promote the formation of microtubules 

from purified tubulin (Wersinger and Sidhu, 2005).  Since microtubules are vital for vesicle 

transport, it is possible that alterations in α-synuclein may lead to destabilization of 

microtubules, disrupting the transport of vesicles, leading to alterations in the ability of a cell to 

store DA.  This hypothesis is supported by evidence for decreased levels of VMAT in PD patient 

brain and impaired DA storage in α-synuclein knockout mice and in A30P α-synuclein over-

expressing cells (Harrington et al., 1996; Cabin et al., 2002; Mosharov et al., 2006).  Therefore, 

mutations may disrupt these suggested functions of α-synuclein, leading to increased uptake of 

DA, increased cytosolic levels of DA, and increased susceptibility of cell death.  Rotenone also 

has been shown to lead to microtubule destabilization (Diaz-Corrales et al., 2005; Ren et al., 

2005).  Microtubule assembly requires ATP, therefore ATP deficits due to mitochondrial 

inhibition would adversely affect proper tubulin folding and microtubule formation (Feng, 2006).  

In addition to rotenone, other dopaminergic neurotoxins like MPTP have also been shown to 

destabilize microtubules (Brinkley et al., 1974; Marshall and Himes, 1978; Cappelletti et al., 

1999; Cappelletti et al., 2001). Both α-synuclein and complex I inhibition appear to affect 

microtubules, which are important in the transportation various biomolecules and organelles, 

including DAT, vesicles, and mitochondria. 
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The systemic mitochondrial complex I inhibition observed in PD patients may also play a 

role in the dysregulation of DA storage.  Since the uptake of DA into vesicles requires ATP, it is 

possible that mitochondrial dysfunction may affect the ability of cells to store DA.  In addition, 

rotenone and other mitochondrial inhibitors/uncouplers have been shown to lead to the release of 

DA (Taylor et al., 2000; Milusheva et al., 2005).  Rotenone administration in vivo also leads to 

decreased levels of VMAT2 (Zhu et al., 2004).  Combined with the fact that oxidized DA has 

been shown to directly inactivate the V-type H+-ATPase, the driving force behind DA uptake 

into vesicles, it is likely that mitochondrial dysfunction can lead to increased cytoplasmic DA 

levels, due to decreased DA uptake and increased DA release (Terland et al., 2006). 

6.6 DOPAMINE QUINONE VERSUS REACTIVE OXYGEN SPECIES AS A 

MEDIATOR OF TOXICITY 

Numerous in vitro and in vivo studies support the hypothesis that DA is toxic to 

dopaminergic cells (Asanuma et al., 2004).  Formation of ROS, increased levels of oxidized 

proteins, lipids, and DNA, and protection by antioxidant molecules and enzymes are all 

associated with DA-induced toxicity, suggesting that cell death is related to oxidative stress.  

DA’s ability to form quinones in addition to various ROS, both of which can modify and 

potentially inactivate vital proteins, complicates the role of DA in cell death.   This generates an 

important question for potential therapies: which is the more toxic species, DAQ or ROS?   

The role of ROS as the cause or effect in the initiation of cell death in disease is still 

debated, although evidence for oxidative stress in Parkinson’s disease is supported by both in 

vitro and in vivo models, in addition to postmortem studies (Andersen, 2004; Krantic et al., 
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2005).  But, does DA-induced oxidative stress of DAQ formation mediate DA toxicity? 

Administration of intrastriatal DOPAC injections in rat or intrastriatal DA injections in DAT 

knockout mice do not result in TH immunoreactivity loss (Hastings, unpublished observations).  

This study found that both DOPAC treatment and DAT inhibition attenuates DA-induced 

toxicity completely, although total levels of DAQ-modified protein were not affected by DAT 

inhibition combined with DA exposure (Figure 8 and Figure 9).  Although some of the DAQ-

modification is likely on proteins found on the extracellular surface of the plasma membrane, it 

is also possible that some intracellular protein targets were also modified.  Thus, there may be a 

difference in the protein targets between DA alone and DAT inhibition + DA treated PC12 cells, 

leading to protection.  This difference in protein targets may be the key to understanding the 

mechanisms of DA-induced toxicity.  In addition, since DAT inhibition would also decrease the 

amount of DA that is taken up by the cell, it is also possible that mediating a lower dose of DA 

by DAT inhibition could also lead to an increase in compensatory mechanisms by the cell, 

effectively preconditioning the cells to DA toxicity, resulting in protection.   Regardless, both in 

vivo and in vitro studies suggest that DA toxicity requires uptake, however, uptake of DA is 

required for both MAO-mediated ROS formation and DAQ-induced toxicity.  What about 

antioxidant protection?  The administration of either ascorbic acid or GSH has been shown to 

attenuate the loss of TH immunoreactivity in the striatum following DA injections (Hastings et 

al., 1996; Luo et al., 1999).  In vitro, the thiol related antioxidants, GSH and N-acetylcysteine, 

are protective against DA in PC12 cells, SH-SY5Y cells, and primary forebrain cultures (Hoyt et 

al., 1997; Lai and Yu, 1997; Si et al., 1998; Choi et al., 2000; Jones et al., 2000; Keller et al., 

2000; Kim et al., 2002; Emdadul Haque et al., 2003; Izumi et al., 2005).  However, ascorbic acid 

and the antioxidant enzymes catalase and superoxide dismutase, which would most likely affect 
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mainly ROS, have varied protective effects, from none to almost complete protection in PC12 

cells, SK-N-MC cells, SH-SY5Y cells, and primary cultures (Cheng et al., 1996; Alagarsamy et 

al., 1997; Lai and Yu, 1997; Si et al., 1998; Choi et al., 2000; Jones et al., 2000; Stokes et al., 

2000; Clement et al., 2002; Emdadul Haque et al., 2003; Izumi et al., 2005; Colapinto et al., 

2006; Zafar et al., 2006a).  Antioxidants can protect against both ROS and DAQ-mediated 

toxicity, and since reducing ROS will aid in preventing DAQ-formation, separating the effects of 

ROS and DAQ using antioxidants becomes problematic.   

MAO metabolism of DA is though to be a major source of ROS.  MAO inhibition, which 

would reduce H2O2 formed from DA metabolism, has been shown in this study (Figure 7) and by 

others to have none to very little protection against DA-induced toxicity in PC12 cells and SH-

SY5Y cells (Alagarsamy et al., 1997; Jones et al., 2000; Emdadul Haque et al., 2003; Izumi et 

al., 2005; Gimenez-Xavier et al., 2006; Zafar et al., 2006a).  One study found that MAOIs 

potentiated DA toxicity in PC12 cells (Weingarten and Zhou, 2001).  To determine whether 

MAO inhibition or another non-specific function of MAOIs mediated protection, the effect of 

either active or inactive pargyl MAOIs on DA toxicity was measured, and both were found to be 

protective against DA (Cantuti-Castelvetri and Joseph, 1999).  These results may explain why 

there are varied results using MAOIs in cell culture, likely due to non-specific protection 

mechanisms. 

Studies examining proteins that can reduce DAQ and other quinone species have aided in 

understanding the contributions of DAQ and ROS in DA-induced toxicity.  Proteins like GSH-S-

transferase and NAD(P)H quinone oxidoreductase 1 (NQO1) can detoxify DAQ, allowing the 

role of DAQ in DA-induced toxicity to be tested.  Increased expression of GSH-S transferase Pi 

(GSTp), an enzyme that conjugates GSH to many electrophilic substrates including catechol 
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quinones, was observed following DA exposure in PC12 cells (Ishisaki et al., 2001).  When 

over-expression of GSTp was induced, DA toxicity was attenuated; conversely, knockdown of 

GSTp exacerbated DA-induced cell death (Ishisaki et al., 2001).  These data suggest that 

detoxification of DAQ by GSH, catalyzed by GSTp, is vital for cell survival following 

exogenous DA exposure.  NQO1, a reducing enzyme which uses NADH or NADPH to catalyze 

the two electron reduction of various compounds including DAQ, is expressed in human SNpc in 

astrocytes, endothelium, and in some dopaminergic neurons.  In PD, expression of NQO1 in SN 

was found to be increased, except in the most end-stage cases (van Muiswinkel et al., 2004).  

Polymorphisms in NQO1 linked to PD have been observed, but appear to be linked to ethnicity, 

and thus do not affect all populations (Okada et al., 2005).  In studies utilizing 

methamphetamine-induced toxicity, in which DAQ has been shown to play a major role, 

induction of NQO1 blocked both DAQ formation and METH toxicity in vivo (Miyazaki et al., 

2006).  And, a recent in vitro study found that over-expressing NQO1 in SK-N-MC cells was 

protective against DA-induced toxicity (Zafar et al., 2006b).  Therefore, these studies indicate 

that DAQ seems to play a major role in DA-induced toxicity.   

The data presented in this document support the hypothesis that DA may play a role in 

the susceptibility of dopaminergic neurons to cell death. Dopaminergic cell health may be 

delicately balanced against the cytosolic levels of  the reactive neurotransmitter DA, and 

combined with some of the already known multiple factors involved in PD dopaminergic cell 

loss, DA may exacerbate cell death and potentiate the pathogenesis of the disease.  Thus, 

elucidating the pathways in which DA and DAQ mediate toxicity may lead to a better 

understanding to why DA neurons in the SN are lost in PD, leading to the development of 

potential therapeutic targets for PD.  
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