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This research seeks to illuminate four problems that have long plagued the anthropological study 

of human skeletal growth. These problems, and their respective research questions, are as 

follows: 

1) Sexual dimorphism: Is there a difference in skeletal growth between males and 
females? 
 

2) Population variation: Do geographically distinct populations experience different 
patterns of growth? 

 

3) Mortality bias: Is there a morphological difference between those who die and those 
who survive? 
 

4) Disease and malnutrition: What are the effects of disease and malnutrition on human 
skeletal growth? 

 

Subadult individuals from the Hamann-Todd Collection (n=33) in Cleveland, the Luis Lopes 

Collection (n=44) in Lisbon, Portugal, and the Raymond Dart Collection (n=31) in 

Johannesburg, South Africa, were analyzed to test these questions. Diaphyseal lengths were 

measured for all individuals; femora were used for all statistical analyses. The three samples 

were combined following the analysis of population variation. 
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ANOVA of femoral length by sex (controlled for age) was used to analyze the degree of sexual 

dimorphism within the combined sample, and the difference was found to be insignificant 

(p=0.367).  

 

Population variation was investigated using ANOVA; femoral length by sample (controlled for 

age) was analyzed and found to be insignificant (p=0.203).  

 

T-tests of mean femoral length for the combined sample vs. the reported means of Maresh (1955) 

were conducted for each age category in order to examine the difference between living 

standards (provided by Maresh, 1955) and their contemporaneous skeletal counterparts. Nine of 

the 13 age categories exhibited significant results (p<0.05).  

 

No significant difference was found between diaphyseal lengths of the pathological sample and 

the normal sample (p=0.25), or between the different pathological categories (p=0.388). 

ANOVA between individual pathological categories and the normal sample showed that only 

malnutrition had a significant (p=0.016) inhibitory effect on growth.  

 

The results of this study indicate that sexual dimorphism in long bone growth is not apparent 

prior to adolescence, the degree of variation between geographically disparate populations is not 

significant (p>0.05), mortality bias is a significant factor affecting juvenile skeletal remains, and 

while malnutrition significantly retards skeletal growth, the diseases tested here do not. 
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PREFACE 

This study began as a precursory investigation of methods of aging skeletal subadults. After 
extensive review of the literature regarding skeletal juveniles, it became apparent that the field of 
anthropology was laboring under a tenet that no one had attempted to validate using skeletal 
material, namely, that disease and malnutrition retard skeletal growth. Skeletal collections were 
chosen on the basis of the availability of demographic data (age, sex, and cause of death), in 
order to test three hypotheses: 

 
 
1) The presence of disease and/or malnutrition retards skeletal growth 

 
 
2) The organ system upon which a disease acts impacts the amount of skeletal growth 

retardation 
 

 
3) The severity of the disease (acute or chronic) differentially affects skeletal growth 

 
 
After analysis of two skeletal collections (Hamann-Todd, Cleveland Museum of Natural History, 
Cleveland, and Luis Lopes, Museu Bocage, Lisbon), it became apparent that the nature of the 
interactions between health status and skeletal growth is much more complex than the tenet has 
led observers to believe. Another skeletal collection was sought to test the results of the first 
analysis, and further assumptions about sexual dimorphism, population variation, and mortality 
bias. The paper that follows is the result of this further analysis.  
 
 
A note on terminology: Throughout the course of this paper, individuals who have yet to reach 
the adolescent phase will be referred to variably as subadults, children, and juveniles. These 
terms do not reflect the life stage of the individuals; they are generalized terms for any person 
who has not yet reached puberty. 
 

 
The research presented here would not have been possible without the financial support of the 
University Honors College, the U.S. Steel Foundation, the Office of Experiential Learning, the 
University Center for International Studies, and Ms. Georgia Berner. I would like to thank both 
of my research assistants, Ms. Alexandra R. Klales and Ms. Alanna J. MacCord, for their 
dedication to both skeletal research and international travel. Lyman Jellema (Cleveland Museum 
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analyzed. All statistics were provided by James J. Cray, who has my eternal thanks for 
committing himself to this tedious task. Finally, I would like to thank Dr. Jeffrey Schwartz; 
without his guidance, roguishness, and encouragement of my inquisitive nature, I would never 
have been able to complete this project. 

 

Kate MacCord 

April 2009 
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1.0  INTRODUCTION 

In the past, anthropological studies of human longitudinal skeletal growth have been conducted 

in one of three ways: 1) a literature review, 2) a population biology study of growth in living 

children, or 3) a study of archaeologically-derived skeletal remains (Johnston, 1968; Hummert 

and van Gerven, 1983; Jantz and Owsley, 1984; Mensforth, 1985; Lovejoy, 1990; Steyn and 

Henneberg, 1996). Problems implicit in such studies abound: chronological age is based on 

methodology that is both population-specific and inconsistent between authors, sex is unknown, 

cause of death is unknown, etc. These problems are overcome by utilizing skeletal collections 

that provide demographic information for each of its specimens.  

Four additional factors affecting growth and skeletal materials are not so easily 

conquered, these are: 1) sexual dimorphism, 2) population variation, 3) mortality bias, and 4) 

pathology. Each issue has the potential to bias analyses and interpretations of skeletal growth, 

and each will be addressed throughout the course of this paper. 

1.1 JUVENILE SKELETAL REMAINS 

The largest problem facing those who wish to study juvenile skeletal remains is the dearth of 

materials. Fewer than 4% of the specimens in the Luis Lopes Collection, and only 2% of the 

specimens within the Hamann-Todd and Raymond Dart Collections were applicable to this 



 2 

study. It is commonly held that infant’s and children’s skeletons will be the least well preserved 

of skeletons excavated from cemeteries because of their small size and higher organic 

composition (Saunders and Hoppa, 1993). Collections of skeletal juveniles may also be small 

because childhood mortality is not a common occurrence, and children who do die are likely to 

be interred. Along with a lack of juvenile skeletal materials, there is also a very small set of 

skeletal collections which maintain extensive demographic records on their specimens (including 

age, sex, and cause of death).  

1.2 ANIMAL MODELS 

The momentum of growth in the individual is subject to a variety of influences, the effects of 

which can be anticipated only imperfectly (McIntosh, 1957). Factors that complicate the 

interpretation of growth can be divided broadly into three groups: 1) factors which are 

hereditary; 2) circumstances of the external environment; and 3) conditions of the internal 

environment; all three must be taken into account when studying the growth of any organism. 

 

Because human growth studies can employ few controls for their subjects, they generally come 

to weak and contradictory conclusions; these will be discussed in detail later. Additionally, 

growth data that comes from skeletal juveniles is necessarily cross-sectional, which makes it 

impossible to analyze growth rates or individual growth curves.  

 

Animal models are ideal for the study of growth because the aforementioned factors can be 

largely controlled; however, the applicability to humans of results derived from non-human 
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models is problematic. There are well-documented differences between animals species used in 

research in how they utilize, metabolize, and excrete nutrients (Baker, 2008). For instance, β-

Carotene is the carotenoid with the greatest vitamin A activity, but its cleavage efficiency in the 

gut can be four times higher in chicks and rats than in pigs (Baker, 2008); no single animal 

model perfectly mimics human absorption and metabolism of carotenoids (Lee et al, 1999).  

 

Human children also develop at a slower rate and over a more protracted time period than any 

model animal, and so children will respond less rapidly to any vitamin or mineral deficiencies 

than chicks, rats, or mice (Baker, 2008). The slower growth rate also means that a great deal of 

the nutrition that children receive will be used for maintenance, not just growth.  

1.3 SEXUAL DIMORPHISM 

Sexually dimorphic growth is a problematic factor to bear in mind when studying juveniles. The 

existence of different growth rates and patterns of growth between the sexes complicates the 

interpretation of overall population growth patterns and may cut sample sizes in half if males and 

females vary significantly; however, it is believed that sexual dimorphism in long bone length 

does not develop until adolescence (Humphrey, 1998). This is supported by the work of Gindhart 

(1973), who analyzed a sample of several hundred healthy, white, middle class children from the 

Fels Institute, and found that males and females show little difference in tibial growth until 

adolescence. Maresh (1955) studied the growth of all long bones in healthy, white children from 

the Child Research Council study in Colorado and discovered that sexually dimorphic patterns 

exist in infancy, but then disappear until adolescence. 
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Gindhart (1973) also noted statistically significant differences at nearly all ages in the radius. Her 

findings about the radius reiterate those of Maresh (1955), who reported that longer forearm 

bones in boys than in girls have been demonstrated at all age periods.  

1.4 POPULATION VARIATION 

There is much debate about the applicability of growth standards between populations that are 

geographically, genetically, and socio-economically disparate. Some authors support the 

application of a single growth standard worldwide, while others promulgate the grave 

importance of developing and using growth standards that are population-specific. This question 

will be addressed briefly here, and then in further detail in the Results and Discussion sections. 

 

The use of a single growth standard for children worldwide would provide consistency in 

methodology which would allow for direct comparison of growth studies. Additionally, a host of 

research shows that differences in growth between populations are not significant before puberty 

(Sundick, 1978). The universality of human growth was demonstrated for preschool children 

raised under good nutritional and environmental conditions, regardless of genetic or ethnic 

background (Martorell et al, 1974). New growth standards developed from the WHO Multicentre 

Growth Reference Study (MGRS) (released in 2006) describe how children should grow rather 

than reference growth in particular localities, intimating a consistent pattern of growth for 

children worldwide.  
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This consistency in growth between populations is also seen in several studies of 

archaeologically derived skeletal populations. Merchant and Ubelaker (1977) found that when 

compensation was made for methodological variability (i.e. the means of determining age), only 

minimal differences existed between the Indian Knoll and Arikara rates of long bone growth 

from birth to at least 9.5 years. Saunders et al (1993) found their sample of juvenile skeletons 

from 19th century Belleville, Ontario had growth comparable to standards of the living.  

 

Despite the support for uniform growth during childhood, many physical anthropologists still 

maintain that population-specific growth standards should be developed and utilized. Saunders 

(2000) reminds us of the importance of choosing skeletal standards that are appropriate for the 

known or suspected population. It is an unfortunate reality that relative to the number of different 

human populations, few of these standardized growth profiles have been established. The main 

point of contention for a single growth reference standard is that reference standards used to 

assess growth are often based on growth rates for well-nourished children from Western and 

other developed nations (Maresh, 1955; Gindhart 1973; Saunders and Hoppa, 1993). It is 

believed that individuals who do not have the advantages of proper nutrition or adequate 

healthcare will fail to meet the standard set by their well-fed, healthy peers. This question of the 

effects of disease and malnutrition on linear skeletal growth will be addressed several times 

throughout the remainder of this paper. 

 

A further problem with using a single growth reference standard is the assumption that all 

populations have the same potential for attaining stature. This problem may be alleviated simply 

by employing a single standard until adolescence, at which point population-specific growth 
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standards could be developed. Adolescence provides a further set of issues (addressed in 

Methods section), because the timeframe in which individuals reach this phase varies widely 

between populations and between the sexes (Bogin, 1999). These complications provide an 

excellent argument for the development of population-specific growth standards. 

 

Saunders’ (2000) warning seems appropriate in light of the research of Buzina (1976), whose 

anthropometric research on three Yugoslav populations aged between birth and 18 years showed 

significant height differences between populations at all ages. Buzina (1976) attributed these 

distinctions to both environmental and hereditary disparities.  

 

The feasibility of developing a single international growth standard was further challenged by 

Eveleth and Tanner (1976), whose extensive review of child growth studies point to differences 

in achieved height and growth patterns across populations of juveniles. Among the studies 

reviewed by Eveleth and Tanner (1976) is that of Howe and Schiller (1952), whose work with 

school-aged children from Stuttgart, Germany, before, during, and after both WWI and WWII 

provides evidence of differences in height and body weight between the three different schools 

used in their study. These dissimilarities are not supported by statistical analysis, so the extent of 

the differences in the measurements is unknown.  

 

Johnston (1968) compared his juveniles (aged birth- five years) to a modern, living population 

(Maresh, 1955) and found that after the age of two, statistically significant differences were seen 

in their growth rates.  Johnston (1968) did not take into account the secular trend towards 
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increased height when he compared the Indian Knoll population (over 5,000 years old) to 

modern children. 

1.5 SECULAR TRENDS 

“During approximately the last hundred years in industrialized countries, and recently in some 

developing ones, children have been getting larger and growing to maturity more rapidly” 

(Tanner, 1962: 150). This statement highlights the phenomenon of a secular trend toward 

increased height. After analysis of four populations of children in Toronto, Hoppa and Garlie 

(1998) confirmed Tanner’s (1962) assertion. Cardoso (2008) investigated secular changes in 

body weight and height of Portuguese boys over the 20th century and concluded that there was a 

strong trend toward increased height. Hoppa and Garlie(1998) concluded that these positive 

secular changes, "support the notion of global changes in health and well-being, from the late 

19th and early 20th centuries to present day, associated with a variety of socio-economic 

improvements that are reflected in growth."   

 

In accordance with Hoppa and Garlie (1998), Jantz and Jantz (1999) found that the pattern of 

secular change is very general and cuts across socioeconomic lines, such that even the severely 

disadvantaged seem to participate in the secular gains and losses in height. The association 

between growth and environment will be investigated later in this paper, but one must bear in 

mind the trend towards increased height over time between children of the same age when 

choosing skeletal collections from which to draw samples. 
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1.6 CATCH-UP GROWTH 

Catch-up growth is a phenomenon whereby animals that experience growth retardation due to 

unfavorable conditions (illness or malnutrition) may regain some of their lost stature by an 

increased growth velocity when conditions again become favorable. The possibility that catch-up 

growth exists seems to be universally accepted, but the extent to which it influences final form is 

a matter of much inquiry. 

 

A delicate balance exists between the age at which the insult affects the animal and its duration 

and/or severity. Growth velocity is most rapid in the postnatal phase (birth through 28 days) and 

infancy phase (1-36 months), with quick deceleration towards the end of the latter (Bogin, 1999). 

Thus, the first few years of life represent a period when adverse factors can have a significant 

and lasting effect on growth. Evidence indicates that severely malnourished young animals are 

capable of reaching normal adult bone lengths if the growth period is sufficient and conditions 

become favorable (Himes, 1978). If, however, conditions remain unfavorable, normal adult size 

may never be achieved.  

Similarly, if the period of malnutrition or illness occurs relatively late during the growth period, 

then bone length will be only mildly affected by the insult because adult size was nearly attained 

(Himes, 1978). The more mature bone also has a smaller window of catch-up growth, and so 

may reach a smaller final size.  

 

Catch-up growth may also be applied to circumstances in which one part of the body experiences 

unusually high growth velocity in order to make up for a retarded velocity in another part. 

Krishna and Upadhyay (1996) conducted a study of patients with spinal deformities due to 
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tuberculosis during early childhood in order assess whether there were any compensatory growth 

mechanisms in patients with stunted spinal growth. They compared a variety of measurements 

taken on adults who had spinal deformities resultant from childhood illness with normal adults 

and found that patients with the spinal deformity had significantly shorter mean standing and 

spine heights compared to the volunteers. However, mean leg length and mean upper limb length 

were significantly higher than those without spinal deformities. This betokens the existence of a 

compensatory mechanism. 

 

Catch-up growth is an important factor affecting growth studies, because it may mask the 

presence of morbidity, and lead to an underestimation of disease and malnutrition within a 

skeletal population. This growth mechanism is also known to have a differential affect between 

the sexes, with females generally experiencing more catch-up growth than males (Stini, 1969). 

1.7 MORTALITY BIAS 

In a pioneering study of juvenile growth in archaeologically derived skeletal populations, 

Johnston (1968) warns that,  

…it must be remembered that, no matter how impressive any skeletal 

information pertaining to immature individuals may appear, and particularly 

when incremental growth is the frame of reference, some degree of error is 

introduced by the very fact that the sample is skeletal. It does not represent the 

normal, healthy population from which it was drawn. The fact that a person died 

young presupposes illness, injury, or other deficiency which prevented his 
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reaching adulthood. However, these factors, limiting as they are, are present in 

all studies of non-living material, and, if such material is to be of use at all, they 

must be borne graciously and realized analytically. (249) 

In effect, Johnston is alerting future researchers to the possibility of a mortality 

bias in juvenile skeletal populations. This caveat has been repeated subsequently in the 

literature (e.g. Sundick (1978), Lovejoy et al (1990), Saunders and Hoppa (1993), 

Saunders et al (1993), Steyn (1996), and Saunders (2000)). 

 

There are several types of mortality bias that can potentially affect the composition of a skeletal 

collection: cultural, environmental, and biological. Cultural mortality bias produces differential 

representations of individuals in cemeteries due to variations in mortuary practices (Saunders and 

Hoppa, 1993). Environmental mortality bias refers to the differential effects of skeletal 

preservation which are dependent upon conditions of interment. Both cultural and environmental 

mortality biases are contributing factors in the dearth of juvenile remains housed in human 

skeletal collections. Biological mortality bias is the physiological and morphological difference 

between those who die and those who survive. It is biological mortality bias that will be 

addressed in the remainder of this paper. 

 

The literature presents conflicting views on the overall effect of biological mortality bias on 

skeletal samples. Saunders (2000) found that the effects of mortality bias on long bone lengths of 

juvenile skeletons from archaeological samples were minimal. However, in a review of the 

literature, Saunders and Hoppa (1993) suggest that skeletal samples are potentially biased, with 

linear growth of survivors often greater than that of non-survivors. They also remind us that 
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growth profiles derived from skeletal samples may not be representative of the "true" growth 

trajectory followed by children who survived to adulthood. These same authors come to the 

conclusion that, “while the potential for such a bias exists within subadult skeletal collections, 

the effects are likely to be small at the aggregate level and error introduced by other 

methodological considerations (ageing, unknown sex, sample size, preservation, quality of 

excavation) is likely to outweigh any such error in interpretations of past populations” (Saunders 

and Hoppa, 1993:128). We can see that even within the same publication, authors may change 

their minds about the effects of mortality bias. 

 

While investigating growth and mortality using children in a rural Gambian village, McGregor et 

al (1961) concluded that growth curves of children who died were very close to the growth 

curves of those who survived. A follow-up study of children aged birth through five years in 

three Gambian villages led McGregor et al (1968; 350) to conclude that “the median heights of 

children who died were slightly less than those of survivors, but there is no evidence that rates of 

growth in height were consistently different in the two groups to draw any firm conclusion with 

respect to height, except that if there was a real difference it was a minor one”. Similarly, 

Gunnell et al (1998) reviewed data from the Boyd Orr study on diet and health in pre-war Britain 

and found no significant relationship between childhood height and overall mortality. These 

studies appear to contradict the existence of mortality bias. 

 

From their study of the Libben population, Lovejoy, et al (1990) concluded that most juvenile 

deaths are the result of acute conditions that would not affect dental or osteological maturation; 

therefore mortality bias would not have a significant effect on a juvenile skeletal sample. 
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Sundick (1978) found no significant difference in the height of children who suffer frequent 

illnesses when compared to their healthier peers and asserted that archaeological collections of 

subadult skeletons should not bear a significant difference from skeletons of those who would 

survive to adulthood. Sundick (1978; 232) goes on to state that “…it may be possible to assume 

that the subadult skeletons which are present in our archaeological collections are not very 

different from those who survived in terms of their size. They may just have succumbed to a 

relatively stressful situation that lasted for a short period of time”. Based on these studies, it 

would appear that biological mortality bias is not a significant factor affecting juvenile skeletal 

populations. 

 

In contradiction to the findings of McGregor et al (1961, 1968), Lovejoy et al (1990), and 

Sundick (1978), Cook (1981) reviewed several studies and concluded that children who die 

before the age of 7 are smaller in size than their living counterparts. Mortality bias has 

been inferred for adult skeletal samples. Kemkes-Grottenhaler (2005) analyzed a pooled-sample 

of nearly 3000 skeletons and found that both sexes display a statistically significant inverse 

relationship between adult height and age-at-death. Kemkes-Grottenhaler concludes that, "...the 

relationship between body height and longevity is not causal but coincidental: mitigated by 

diverse environmental factors such as nutrition, socioeconomic stressors, and disease load." 

(340) 

 

Sundick (1978) and Kemkes-Grottenhaler (2005) bring to light the dilemma that will be 

the topic of the remainder of the introduction, namely: the effects of disease and 

malnutrition on skeletal growth. 
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1.8 FACTORS AFFECTING GROWTH 

The effect of environment on growth has long been a source of scientific inquiry. The majority 

of investigations on this subject, whether through population biology, health sciences, or 

anthropology, have maintained that growth processes are exceedingly plastic and readily molded 

by environmental factors (Mensforth, 1985) including disease, malnutrition, and even 

psychological environment. Widdowson’s (1951) studies on mental contentment and growth in 

German orphanages showed that a child's affective reaction to supervisory personnel influenced 

weight gain; a similar response was also detected, although to a lesser extent, in stature.  

 

Skeletal growth occurs gradually from the prenatal period, when the cartilaginous anlagen of 

endochondral bones appear, until maturity with cessation of osteogenesis and epiphyseal closure. 

Bone growth involves both an increase in volume density and an increase in bone size 

(longitudinal growth for our purposes). It is likely that these two types of growth are regulated 

differently and that nutrients have different roles in the two kinds of growth (Hoppe, 2000). 

Longitudinal growth– that impacts on height– occurs at the cartilaginous plates (epiphyseal 

plates) which lie between the zones of primary (diaphyses) and secondary (epiphyses) centers of 

ossification. At these epiphyseal plates, cartilage from the epiphyseal side of the disc is turned 

into bone through a complex process of proliferation, flattening, hypertrophy and ossification. 

The newly formed bone is laid down on the diaphyseal side of the epiphyseal plate. This process 

permits longitudinal extension of the tubular appendicular bones (as well as many others bones 

of the skeleton).  
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Growth at the epiphyseal plate ceases before fusion occurs, thus, epiphyseal fusion is the result, 

not the cause of growth cessation. Nilsson and Baron (2004, 2005) found that senescence is a 

localized mechanism, intrinsic to the growth plate, and not under the control of systemic 

signaling. Chondrocytes in the resting zone have a finite proliferative capacity; proliferative 

exhaustion is followed by epiphyseal fusion. Once the epiphyseal growth plates have become 

senescent, epiphyseal fusion is mediated largely by estrogens; premature exposure to estrogen 

leads to premature epiphyseal closure (Nilsson and Baron, 2005). 

 

As bone grows longitudinally, it maintains and renews itself via the alternating processes of 

resorption (osteoclastic activity) and deposition (osteoblastic activity). These two antagonistic 

processes also permit constant remodeling of cortical bone, including expansion of the medullary 

cavity as the bone enlarges. 

 

The constant longitudinal growth of bone throughout childhood, combined with the supposition 

that all growth process are readily molded by environmental factors, provides the basis for a 

tenet long maintained in anthropology: namely, disease and malnutrition in childhood retard 

skeletal growth. Guided by this tenet, anthropologists often use the skeletal growth of an 

individual as a proxy for their health status. The assumptions of a significant and inhibitory 

relationship between skeletal growth and disease or malnutrition have existed for many years 

without rigorous investigation using human skeletal materials, despite an abundance of 

conflicting literature. 
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1.8.1 Disease 

The connection between disease and growth is complex and there is little clear evidence of the 

specific effects of various diseases on growth rates and patterns during childhood (Saunders and 

Hoppa, 1993) A comprehensive study of the effects of disease on skeletal growth requires the 

researcher to be cognizant of several factors: Is the disease major (i.e. tuberculosis) or minor (i.e. 

pneumonia)? Is the disease acute or chronic? And, what organ system does the disease 

principally affect (i.e. respiratory vs. gastrointestinal)? 

 

After a review of the available literature, Tanner (1962; 130) concluded that longitudinal studies 

conducted on well-nourished children, "...fail to reveal any retardation of growth over a 6-month 

period in children who suffered throughout it from colds, bronchitis, tonsilitis, measles and 

pneumonia”. Tanner (1962) also cited a study conducted by the Ministry of Health in 1959 of all 

social classes in England and Wales that detected no difference in weight gain during the first 

three years between babies who had excellent, average, or poor health records. Hardy (1938) 

discovered no relationship between frequency or type of illness and retardation in growth rate or 

final size at maturity. Similarly, Sundick (1978) found that children with more frequent illnesses 

compare well, as far as height with those who were healthier. Tanner (1978) argues that major 

illnesses may slow down growth, but that the effects are rarely permanent. 

 

Martorell et al (1975) conducted a study of growth and morbidity in Guatemalan children aged 

birth through seven years. They discovered that “children less ill with diarrhea had substantially 

larger increments in length and weight than children who were ill with diarrhea a greater 

percentage of the time. In contrast, fever and respiratory illnesses did not affect growth rates” 
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(1296). In a similar study, Condon-Paoloni et al (1977) found that upper and lower respiratory 

infections did not affect weight or height. However, they also noted that a high frequency of 

diarrheal infection was found to reduce weight gain, but that gain in height was not affected.  

 

Growth plate chondrogenesis is regulated by endocrine factors, while underlying cellular 

processes are regulated by paracrine factors. It is believed that the complex interaction of 

molecular signals is dysregulated during chronic illness (DeLuca, 2006). The events responsible 

for this disruption may be inflammation, protein/calorie deprivation (which contributes to 

immunosupression/immunodeficiency), uremia/metabolic acidosis, glucocorticoids, or an 

impaired GH/ IGF-1 axis (DeLuca, 2006). These factors explain why growth retardation is 

commonly seen in juvenile patients with illnesses such as rheumatoid arthritis, chronic renal 

failure, and Crohn’s disease.  

1.8.2 Malnutrition  

The term “malnutrition” is problematic because it describes a set of symptoms rather than a 

specific cause (Saunders and Hoppa, 1993).  Malnutrition results from a variety of factors: i.e. 

not only an inadequate quantity of food, but also an inadequate quality of food, wherein the 

levels of vitamins and minerals necessary for maintenance of normal bodily functions are not 

met.  

 

The significant inhibitory effects of malnutrition on skeletal growth are well-known in the 

literature. “Malnutrition delays growth” is a frequently repeated statement of JM Tanner (Tanner, 

1962; Eveleth and Tanner, 1976; Tanner, 1978). Tanner (1978; 128) states that "children 



 17 

subjected to an episode of acute starvation recover more or less completely by virtue of their 

regulative powers, provided the adverse conditions are not too severe and do not last too long. 

Chronic malnutrition is another matter. Most members of some populations, and some members 

of all populations, grow to be smaller adults than they should because of chronic 

undernourishment during most or all of their childhood”. McCance (1971; 123) agrees: "growth 

is a luxury which the undernourished can only afford after their maintenance requirements have 

been met”, and concludes that a lifetime of subnormal nutrition delays growth and produces 

small adults. In a literature review that included the works of Eveleth and Tanner (1976) and 

Acheson and Hewitt (1954), Mensforth (1985) found that comparative studies have repeatedly 

demonstrated that linear long bone growth is a sensitive indicator of differential response to 

environmental stress. 

 

Acheson and Hewitt (1959) found that starvation impairs endochondral bone growth in rats and 

results in a narrowing of the epiphyseal plate, the extent of which is related to the degree and 

duration of the malnutrition. The narrowing of the epiphyseal cartilage is the result of the 

cessation of mitosis in the cartilaginous proliferative zones and chondrocyte atrophy (Himes, 

1978). There is a corresponding decrease in width and cell numbers in the zones of resting 

cartilage, and maturing cartilage (Himes, 1978). Under conditions of protein-calorie 

malnutrition, the zone of calcifying cartilage also experiences a decrease in vascular invasion, 

with concomitant  reduction in osteoblastic activity (Himes, 1978); as a consequence, the layer of 

calcified cartilage directly adjacent to the diaphysis loses its filigree appearance and becomes 

stout and thick (producing a Harris Line) (Acheson and Hewitt, 1959). Histological studies 

indicate that narrowing and increased calcification of the growth plate accompany the 
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deceleration of growth, and that the decrease in osteogenesis occurs later (Acheson and Hewitt, 

1959). Thus, fewer cells and less activity produce smaller increments of linear growth under 

malnourished conditions. 

 

From these sources, a clear image of the detrimental effects of malnutrition on skeletal growth is 

evident. However, it is interesting to note that the studies which underlie many of Tanner’s (and 

therefore most subsequent authors) opinions on the subject are war-famine studies that recorded 

the heights of European school children during WWI and WWII (see Lumey et al, 2007, for 

information on the Dutch Hunger Winter study, and Howe and Schiller, 1952, for studies on 

Stuttgart school children from pre-WWI to post-WWII ). The growth charts show increases in 

height at all ages from 1920 to 1940, but large decreases in height during both world wars. The 

increases in height are part of the secular trend towards increased stature discussed earlier in this 

paper. These temporary decreases in the heights of school children during WWI and WWII are 

neither uniform throughout the duration of the wars, nor equivalent between age groups. Despite 

the presence of many more stressors than famine during wartime conditions, these decreases in 

height are given a simple causality and are attributed to a restriction in food intake. In contrast to 

Tanner’s war famine studies, Wu (1994) found that the Great Depression (a period of renowned 

belt-tightening) led to no discernible effect on height, and in fact height increase was faster 

during the 1930s than between 1890 and1945. 

 

In contrast to McCance’s (1971) statement about growth as a luxury, Bogin (1979) states that 

skeletal growth continues to occur even under conditions of malnutrition so severe that there is 

no weight gain. However, Bogin (1979) does not mention the possibility of depressing the 
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growth rate. In 1970, Rao and Singh attempted to evaluate the relative merits of anthropometric 

measurements as indices of nutritional status. Using a sample of over 3,000 children, aged 1-5 

years, from low income families in India, Rao and Singh (1970) found minimal differences in 

height between normal children and those diagnosed with protein-calorie malnutrition. 

1.8.3 Disease, Malnutrition, and Heredity 

The complex interaction between disease and malnutrition prohibits a simple interpretation of 

growth; further compounding matters is the influence of heredity on stature. Children suffering 

from malnutrition are at greater risk of infection than children who receive adequate nutrition. 

This immunodeficiency caused by a lack of proper nutrition leaves children at risk for the 

contraction of infectious disease, creating a perpetual cycle of ill health. This all leads to the 

following questions: can disease, malnutrition and factors of heredity be separated for analysis? 

And, to what extent does each of these influence skeletal growth? 

 

The possibility of inter-population variation has been discussed previously, and will be addressed 

again in the Materials, Results, and Discussion sections. However, intra-population variation due 

to differences in heredity and individual growth patterns is a complicated factor that requires 

some inspection. Garn (1965) makes an excellent point about growth standards when he writes,  

As a generalization, the use of averaged height data as incorporated in our 

conventional "growth" charts does a disservice to children whose parentage is 

known. It does a disservice to the children of short parents, about whom we worry 

excessively. It does a further disservice to the children of tall parents, about 

whom we so often worry too little. We tend to ignore their genetic heritage, 
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assuming that they are growing satisfactorily as long as they are above the 

population mean (917). 

 

By using reference growth standards we ignore the possibility of intra-population variability, and 

also possibly introduce both a great deal of overestimation of ill-health in children of small-

statured parents, and a simultaneous underestimation of ill-health in children of tall parents. 

According to Mensforth (1985), this is not problematic: “Although individual and population 

differences in hereditary growth potential have been demonstrated, these constitute a minor 

source of variation relative to environmental factors (250).” 

 

Many environmental factors are thought to influence the rate of growth (i.e. disease, 

malnutrition, and even mental contentment), “but in the final analysis most of them hinge upon 

the level of nutrition, in some areas acting in conjunction with infection” (Eveleth and Tanner, 

1976: 241). 
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2.0  MATERIALS 

2.1 HAMANN-TODD COLLECTION 

The Hamann-Todd Collection is housed at the Cleveland Museum of Natural History, in 

Cleveland, Ohio 

2.1.1 History 

The Hamann-Todd collection was intiated in the 1890s by Dean Hamann as an anatomical and 

skeletal collection for research and teaching use by the Western Reserve Medical School. 

Hamann went a long way in establishing the Rocky Mountain mammal sample, but was not able 

to collect a large sample of human remains (Kern, 2006). Hamann’s efforts to revise the 

anatomical laws of Ohio, together with those of Roger Perkins (director of Cleveland's Division 

of Health and Western Reserve's professor of preventive health), led to a greater emphasis on the 

collection and preservation of human remains.  

 

In 1911, new Ohio Code Sections were passed that forced the superintendents of city hospitals, 

the Cleveland Workhouse, and local mortuaries to notify Western Reserve of unclaimed bodies 

in their possession. T.W. Todd’s arrival at Western Reserve coincided with these legal changes. 

Unclaimed bodies were sent to the medical school where Todd and his assistants measured and 
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photographed them and recorded their vital statistics (i.e. age, sex, country of origin) (Kern, 

2006); the remains were then embalmed for dissection in anatomy classes. After instructional 

use, Todd had the remains macerated, labeled, and stored in army surplus-pine ammunition 

boxes (Kern, 2006). In his dissertation Todd’s student, William Cobb, recalls the perils of 

amassing a large quantity of skeletons:  

The earlier years were replete with handicaps, many of which gave rise 

to highly amusing circumstances. On one occasion, when there was no room 

elsewhere for drying a number of skulls, they were placed singly beneath the 

chairs in the ampitheater of the old medical school, so that every lecturer had to 

face this grotesque, grinning audience as well as his less attentive but not as 

severe, living hearers. (Cobb, 1932) 

 

By the time Todd died in 1938, he had accumulated more than 3000 skeletons, each associated 

with a corresponding file containing anthropometric and demographic data taken at the time of 

death: i.e. name, age, sex, ethnicity, cause of death, and a variety of anthropometric 

measurements. Many files also include photos taken prior to embalming, radiographs, notes on 

the results of any autopsies or dissections performed, and hospital records. 

 

Because it is an assemblage of unclaimed bodies from the Cuyahoga County Morgue and city 

hospitals, the Hamann-Todd collection represents an ethnically heterogeneous collection of the 

lower socio-economic levels of the city of Cleveland during the early 20th century. Cleveland had 

become an important industrial city in the 1860s when John D. Rockefeller founded the Standard 

Oil Company and Samuel Mather began steel production there. By 1880, 28% of the Cleveland 
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workforce was employed in the steel mills (Ohio History Central). Cleveland workers were hit 

hard by the Great Depression due to the workforce’s heavy reliance on industry; by 1933, 

roughly one third of the workers in Cleveland were unemployed (Ohio History Central). This 

heavily industrialized setting is reflected in the health of the collection’s subadults: e.g. 

respiratory disease or infections are indicated in the deaths of 20 out of the 39 (51%) children 

originally analyzed. 

2.1.2 Sample 

Despite the large number of individuals Todd initially collected, many subadults were returned to 

their families for interment. Of the 83 individuals under the age of 18 years that Todd collected, 

51.8 % (n=43) were returned. The original subadult collection consisted of 46 males (55.6%) and 

37 females (44.6%) (see Table 1). Twenty-eight males (60.9%) and only 15 females (40.5%) 

were repatriated (see Table 2), leaving the Hamann-Todd Collection with 40 subadult specimens. 

Of the 40, 39 were suitable for my analysis because of incomplete epiphyseal fusion. The sample 

was further reduced when the age range was truncated to 12 years (see Methods section for 

details), leaving 33 from the original collection in the statistical analysis. The composition of the 

sample included a nearly equal distribution of the sexes, with 17 males (51.5%) and 16 females 

(48.5%), whose ethnicity was recorded as either white or black. Four white juveniles (12.1%) 

and 29 black juveniles (87.9%) comprised the sample. Descriptive information is provided in 

Tables 1, 2, 3, 6, 7, and 10, as well as Graphs 1, 3, 6, and 12. 
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Table 1. Hamann-Todd specimen frequencies in original collection and sample used: sex and ethnicity 

separate 

  Original Sample 

Ethnicity Frequency Percent Frequency Percent 

W 18 21.70% 4 12.10% 

B 65 78.30% 29 87.90% 

Total 83 100.00% 33 100.00% 

  

  Original Sample 

Sex Frequency Percent Frequency Percent 

M 46 55.40% 17 51.50% 

F 37 44.60% 16 48.50% 

Total 83 100.00% 33 100.00% 
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Table 2. Frequencies and repatriation rates of Hamann-Todd collection by ethnicity, sex, and combined 

ethnicity and sex of specimens 

  Original Returned Percent Returned Sample 

MW 11 10 91% 1 

MB 35 18 51.40% 16 

FW 7 3 42.90% 3 

FB 30 12 40% 13 

Total 83 43 60% 33 

Ethnicity    

W 18 13 72.20%  

B 65 30 46.10%  

Sex    

M 46 28 60.90%  

F 37 15 40.50%  

 

 

The disparity of repatriation between blacks and whites within the collection is evident when 

broken down by race. Todd’s collection was comprised of 65 (78.3%) black and 18 (21.7%) 

white subadults. Thirteen (72.2%) white subadults were repatriated, while only 30 (46.2%) of the 

black subadults were returned to their families (Table 2), which reduced the subadult collection 

to 35 (87.5%) black and only 5 (12.5%) white specimens.  

 

Further inequality is noted when the percentage of children repatriated is broken down by sex 

and race. The original sample was comprised of 11 (13.3%) white males, 35 (42.2%) black 
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males, 7 (8.4%) white females, and 30 (36.1%) black females (Table 3). Of this original 

collection, 10 (91%) white males, 18 (51.4%) black males, 3 (42.8%) white females, and 12 

(40%) black females were repatriated (Table 3). This disparity between the children returned to 

their families changed the composition of the collection to 1 (2.5%) white male, 18 (42.5%) 

black males, 4 (10%) white females, and 18 (45%) black females (Table 3). 

 

Table 3. Hamann-Todd specimen frequencies in original collection and sample used: sex and ethnicity 

combined 

  Original Sample 

  Frequency Percent Frequency Percent 

MW 11 13.30% 1 3.00% 

MB 35 42.20% 16 48.50% 

FW 7 8.40% 3 9.10% 

FB 30 36.10% 13 39.40% 

Total 83 100.00% 33 100.00% 

 

 

Age category frequencies are provided in Table 4 and displayed in Graph 1. Age 1 year had the 

highest frequency of specimens (9), followed by ages 8 and 10 years (both had 4). No specimens 

were available for ages 0 or 9 years. Years of death for individuals range from 1917 to 1937, and 

are shown in Graph 2.  
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Table 4. Distribution of specimens in each age category by sample 

Age LL HT RD 

0 5 0 11 

1 7 9 5 

2 6 1 2 

3 1 2 2 

4 6 3 3 

5 3 2 0 

6 2 3 1 

7 1 1 3 

8 1 4 1 

9 3 0 0 

10 3 4 0 

11 5 2 0 

12 1 2 3 

Total 44 33 31 
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Figure 1. Distribution of specimens in each age category by sample: frequency x age category 
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Figure 2. Year of death distribution: frequency x stated year of death. Raymond Dart Collection not shown 

0

1

2

3

4

5

19
16

19
18

19
20

19
22

19
24

19
26

19
28

19
30

19
32

19
34

19
36

19
38

19
40

19
42

19
44

19
46

19
48

19
50

19
52

19
54

19
56

19
58

Year

Fr
eq

ue
nc

y

LL
HT



 31 

Records were available for many of these individuals and included: autopsy photos and reports, 

and hospital records. Not all specimens had each of these records. If present, autopsy photos 

were observed by the researcher and the nutritional status of the individual was recorded under 

the subjective categories: normal, malnourished, or severely malnourished. Hospital records 

provided ante mortem information about the individual’s health status, and were recorded along 

with the cause of death. 

2.2 LUIS LOPES COLLECTION 

The Luis Lopes Collection is housed at the Museu Bocage, in the National Museum of Natural 

History in Lisbon, Portugal. 

2.2.1 History 

The Luis Lopes collection was started in 1981, when the Bocage Museum (a branch of the 

Nation Museum of Natural History in Lisbon) requested permission from the Lisbon City Hall to 

collect the remains of individuals destined for communal graves at local cemeteries. Three 

Lisbon cemeteries provided the majority of the skeletal material: Alto de S. João, Prazeres, and 

Benfica. Beginning in the early 1980s, it was the practice of these cemeteries to exhume 

individuals from temporary graves after a period of five years so that the grave could be reused 

(Cardoso, 2006). Once exhumed, the family had the option of paying a fee to place the remains 

in an urn that was then enclosed in a block compartment (ossário), or of allowing the remains to 

be buried in a communal grave (Cardoso, 2006). If no one claimed the remains, or if the fee for 
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the ossário was not paid, the cemetery issued an order of removal, at which point the remains 

were either incinerated or placed in a communal grave; it is the latter that the Bocage Museum 

began to collect and curate in 1981 (Cardoso, 2006). Coffin plates and cemetery registers 

provided a host of demographic data, including: name of the individual, name of parents, place 

of birth, age at death (with a precise date), sex, marital status, occupation, occupation of parents, 

and cause of death. 

 

The collection of skeletal remains ceased in 1991, when the lead technician of the curation 

process, Luis Lopes, retired. At this point, more than 1,600 skeletons had been collected. 

Additional collection and curation was reinitiated in 2000 (Cardoso, 2006). 

 

The Luis Lopes collection is comprised of Portuguese nationals who lived in Lisbon during the 

19th and 20th centuries (1805-1975); these individuals represent the middle to low socio-

economic classes, as evidenced by occupation of the parents and place of residence within 

Lisbon (Cardoso, 2007). Portugal began industrialization well after the rest of Europe. Indeed, in 

1900 the majority of farmers were still practicing subsistence farming (Cardoso, 2007). Only the 

largest cities, such as Lisbon, had significant industries, the majority of which were small and 

manufactured traditional products (i.e. tiles, pottery, etc). Urban growth was greatest during the 

first half of the 20th century due to large migrations of rural farmers into cities in search of work, 

and Lisbon received the majority of this increase (Cardoso, 2009). This influx led to 

overcrowding and notoriously poor living conditions for the poor and working classes.  
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The health conditions in Portugal were among the lowest in Western Europe during the early 20th 

century (Cardoso, 2007). In 1920, life expectancy at birth was respectively, 35.8 and 40.0 years 

for men and women (Instituto Nacional de Estatística, 2001: taken from Cardoso, 2007). Even by 

the 1950s, the living conditions of the working classes were dismal: 43% of families lacked 

indoor plumbing, 69% were without electric power, and 81% had no toilet (Cardoso, 2009). High 

infant and childhood mortality also plagued Portugal: by 1900 approximately 50% of children 

died before they reached 15 years, and infant mortality was estimated at 200 deaths/1000 births 

(Bandeiro, 1996: taken from Cardoso, 2007). Infant mortality rates remained high until the 

1940s. The main causes of death in Lisbon during the first half of the 20th century were 

infectious or communicable disease (Morais, 2002: taken from Cardoso, 2007). 

 

Aside from being subjected to abysmal living conditions and high mortality rates, children in 

Lisbon during the early 20th century were exploited as a labor force. At about age 12, children in 

poor families were sent to work in factories to supplement family income (Cardoso, 2009).  

2.2.2 Sample 

Forty-four individuals from the Luis Lopes Collection were used for statistical analysis. 

Descriptive statistics for the sample are provided in Tables 6, 7, 10, 11, and 13, as well as in 

Graphs 1, 3, 6 and 12.  The sample comprises 23 males (52.3%) and 21 females (47.7%) (see 

Table 5). Individuals were available for each age category. Year 1 had the highest representation 

(n=7), and the first three age categories combined (ages 0 through 2) make up 41% of the 

sample. Years of deaths for the sample range from 1917 to 1958 (see Graph 2). 
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Table 5. Sex distribution by sample 

  LL HT RD 

SEX Frequency Percent Frequency Percent Frequency Percent 

Male 23 52.30% 17 51.50% 17 54.80% 

Female 21 47.70% 16 48.50% 14 45.20% 

TOTAL 44 100.00% 33 100.00% 31 100.00% 

 

Information available with each of the individuals includes age, sex, cause of death, birth date, 

death date, cemetery of interment, and nationality. 

 

2.3 RAYMOND DART ANATOMICAL COLLECTION 

The Raymond Dart Anatomical Collection is housed in the Department of Anatomy, University 

of Witswatersrand, in Johannesburg, South Africa. 

2.3.1 History 

The Raymond Dart collection was begun in 1924 by Professor Raymond Dart of the School of 

Medicine, University of Witswatersrand. The skeletal remains were prepared from dissection 

hall cadavers obtained from Transvaal hospitals (Saunders and DeVito, 1991). Hospital 

administrators provided Dart with demographic data acquired before the deaths of the patients, 

including: age, sex, and race/tribe (Saunders and DeVito, 1991). Cause of death was added to 
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each individual’s record after autopsy. The subadult individuals in the collection were acquired 

between 1927 and 1973 (Saunders and DeVito, 1991), although no record of acquisition dates or 

dates of death could be found. 

2.3.2 Sample 

Of the 3,000 skeletal individuals housed within the Raymond Dart Collection, only 31 were 

suitable for my analysis. Descriptive statistics for the sample are provided in Tables 4, 5, 6, 7, 

10, 11 and 13, as well as in Graphs 1, 3, 6 and 12.  The sample consists of 17 males (54.8%) and 

14 females (45.2%). The frequency of individuals within an age category reaches its peak at age 

0 (n=11) and rapidly declines after this point. Several of the age categories do not have any 

specimens (ages 5, 9, 10, and 11). Information available with each specimen includes age, sex, 

cause of death, and tribe.  

 

Table 6 is a list of the different tribes that comprise the sample, along with their abbreviations 

and country of origin. Table 7 is a break-down of the sample by tribe. The Sotho and Zulu tribes 

have the highest frequencies (8 and 6, respectively), and their combined percentages (25.8% and 

19.35%, respectively) make up nearly half of the sample (45.15%). All of the tribes are South 

African, except the Mashona, who are from Zimbabwe. 
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Table 6. Tribes (with abbreviations) that comprised the sample from the Raymond Dart Collection, along 

with country of origin 

Abbreviation Tribe Country 

Bush San ("Bushman") S. Africa 

Fing Amafengu S. Africa 

Hlub Hlubi S. Africa 

MixE Mixed parentage ("coloured")  

N/S 
not stated- black S. African of 

unspecified population group S. Africa 

Ndeb  Ndebele S. Africa 

Shan Mashona Zimbabwe 

Soto Sotho S. Africa 

Swaz Swazi 
S.Africa/ Swaziland 

Tswa Tswana 
S.Africa/ Botswana 

Xosa Xhosa S. Africa 

Zulu Zulu S. Africa 
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Table 7. Distribution of specimens by tribe in Raymond Dart sample 

Tribe Frequency Percent 

Fing 1 3.23% 

Hlub 1 3.23% 

Mala 1 3.23% 

Mixe 2 6.45% 

N/S 4 12.90% 

Ndeb 1 3.23% 

Shan 2 6.45% 

Soto 8 25.80% 

Swaz 2 6.45% 

Tswa 1 3.23% 

Xosa 2 6.45% 

Zulu 6 19.35% 

Total 31 100.00% 
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3.0  METHODS 

3.1 INTRODUCTION 

According to Sundick (1978),  

…the problems involved in conducting growth studies on skeletal collections 

are: 1) unknown age of the skeleton, 2) unknown sex of the skeleton, 3) possibility 

of growth retarding illnesses which led to the presence of the individual in the 

burial population, 4) secular trends which affect maturational stages and which 

may make comparisons between populations from different time periods 

inappropriate, 5) the unavailability in most instances of the proper dental 

standards to be used in the age determination of an individual from a particular 

population, 6) scarcity of individuals from the adolescent time periods and 7) the 

frequent incompleteness of the individual skeletons (228).  

 

The only difficulty proposed by Sundick (1978) that was not confronted by the methodology of 

this study is number 5; because chronological ages were known, there was no need to use dental 

standards to age the specimens. 
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Three skeletal collections were analyzed: the Hamann-Todd collection (n=33), the Luis Lopes 

collection (n=44), and the Raymond Dart collection (n=31). The specimens in these collections 

span approximately 50 years (see Graph 2 for Year of Death data). Individuals were included in 

the study on the basis of availability of the following: chronological age at death, sex, and cause 

of death.  

3.2 SPECIMEN AGE RANGE 

The study initially considered the age range from birth to 18 years, but the upper end of the range 

was lowered to 12 years for statistical analysis. This truncation was made for three reasons: 1) to 

exclude the confounding effects of the pubertal growth spurt, 2) to eliminate children who were 

working in factories (Cardoso, 2007), and 3) to utilize the measurements of Maresh (1955), 

whose data after age 12 included epiphyseal measurements. 

3.3 MEASUREMENTS 

The twelve appendicular long bones (paired humeri, radii, ulnae, femura, tibiae, fibulae) of each 

individual were analyzed when complete and the epiphyses were either unfused or preserved 

clear epiphyseal lines. Where applicable, diaphyseal lengths were measured in millimeters using 

an osteometric board and/or sliding calipers. When epiphyses were partially fused or attached via 

soft-tissue and could not be excluded from the diaphyseal measurement, the length of the 

diaphysis was determined by subtracting the length of these epiphyses from the total length of 
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the bone. When the diaphysis was bowed (i.e. as a result of rickets), the condition was noted, and 

diaphyseal measurements were taken on the osteometric board as well as via a tape measurer in 

order to determine the maximum length of the curved diaphysis. Measurements taken with a tape 

measure were used for statistical analyses. Each skeleton was visually inspected for porotic 

hyperostosis and dental enamel hypoplasias (see sections 3.8.1 and 3.9.1 for diagnostic criteria). 

3.4 USE OF FEMORA 

Femoral diaphyseal lengths were utilized for all statistical analyses in this study because they 

were most frequently preserved bones and the effects of pathology are most likely to be 

evidenced on them.  

 

Growth retardation is most marked in parts of the body where growth is most rapid during times 

of malnutrition (Stini, 1969); and stress-induced growth retardation is most pronounced in the 

rapidly growing long bones of the lower limbs (Tanner, 1978). These findings were reiterated by 

Sciulli (1994), who found that all bones are not equally affected by nutrition and disease stress 

and that the most rapidly growing ones (legs) are more influenced than others.  

3.5 AGE CATEGORIES 

Several analyses required the samples to be divided into age groups. This created 13 age 

categories that covered the age range of the sample (birth through 12 years). Each age category 
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represents 0.99 years; age category 0 includes all individuals aged birth through 0.99 years, age 

category 1 includes years 1 through 1.99, and so on. 

3.6 CONTEMPORANEOUS LIVING STANDARD: MARESH, 1955 

Analysis of mortality bias required data from a population of living children contemporaneous 

with the three skeletal samples. Mean femoral lengths reported by Maresh (1955) were used. 

Maresh (1955) used roentenograms to measure the long bone lengths of children in a 

longitudinal study of healthy, white children from Colorado. The findings were reported in 

centimeters by 6 months age categories. Each age category was reported as five percentiles 

(10%, 25%, 50%, 75%, and 95%). The 50% was taken for each 6-month age category and 

averaged to obtain mean femoral length for each age. Males and females were reported 

separately, so the mean for each sex for each age category was averaged to produce a mean 

femoral length that was not sex-specific.  

 

Maresh (1955) reported her findings without correcting the lengths for radiographic enlargement. 

She calculated magnification from roentenograms of dried bone specimens of infants, children, 

and adults of between 1.0% and 1.5% at a focal film distance of 2.3m with the bone in direct 

contact with the film-cassette surface. Mean femoral lengths for each age category were reduced 

by 1.5% to account for this enlargement; however, the amount of enlargement would have been 

increased on living children, especially at older ages, because the distance of the bone from the 

cassette increases with the growth and expansion of soft tissue. There was no data to support 
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reducing the means by more than 1.5%. These corrected means were then used for comparison 

against the combined sample. 

3.7 PATHOLOGICAL CATEGORIES 

Six pathological categories were created from the three combined samples based on a high 

frequency of occurrence; these categories include: dental enamel hypoplasia (DEH), porotic 

hyperostosis (PH), tuberculosis (TB), pneumonia (PN), malnutrition (MAL) and gastroenteritis 

(GE). Three additional categories were created to subsume individuals who fell into two (M2), 

three (M3), or four (M4) of the pathological categories. A list of the pathological categories and 

their abbreviations is given in Table 8. Pathology was diagnosed on the basis of recorded cause 

of death, hospital records, autopsy records, autopsy photos (MAL), and visual inspection (DEH 

and PH). Each individual within the combined sample was placed into one of these nine 

pathological categories. If the individual did not fit into any pathological category, it was deemed 

normal and included in the normative subset of the sample for analysis against the pathologies. 
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Table 8.  Pathological categories and their abbreviations 

Pathology Abbreviation 

Dental Enamel Hypoplasia DEH 

Porotic Hyperostosis PH 

Tuberculosis TB 

Pneumonia PN 

Malnutrition MAL 

Gastroenteritis GE 

2 pathologies M2 

3 pathologies M3 

4 pathologies M4 

 

 

ANOVA and T-tests were used to analyze the degrees of sexual dimorphism, of population 

variation, of mortality bias, and of the effects of pathology on the linear growth of the diaphyses. 

3.8 POROTIC HYPEROSTOSIS (PH) 

Porotic hyperostosis is characterized by an expansion of the cranial diploë with a corresponding 

thinning of the ectocranial cortical bone. The resulting lesion on the outer table of the skull can 

appear as benign as pin-prick sized porosity to complete erosion of the cortical layer and 

exposure of the underlying diploë. This pathology is most often linked with anemia, whether 

acquired (due to environmental stressors such as parasites, disease, or diet) or genetic. When the 
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anemic individual has depleted their store of iron, the body responds by increasing the 

production of red blood cells (erythropoiesis). If this process is extremely rapid, the diploë 

expand to accommodate the increase in marrow. The resultant hyperplasia of the marrow cavities 

increases the pressure on the ectocranial cortical bone, causing the skeletally diagnostic thinning 

and porosity. 

 

Porotic hyperostotic lesions manifest themselves in two areas of the skull: the roof of the eye 

orbit (“cribra orbitalia”) and the calvaria (“cribra crania”). Blom et al (2005) found a strong 

relationship between vault and orbital lesions: when vault lesions were present with orbital 

lesions, the orbital lesions tended to be more severe than when they were found alone. These 

results strengthen the conclusion that the orbital roof is the first expression of porotic 

hyperostosis, and the cranial vault bones are the second and more serious manifestation of the 

pathology (Lallo, 1977; Blom et al, 2005).  

 

It is difficult to identify in skeletal materials the causal mechanisms of acquired anemia. Blom et 

al (2005) found in their Andean sample that environmental stressors, such as parasites and 

disease, were more likely to be associated with the childhood anemia. There is evidence that 

dietary practices also heavily influence the incidence of anemia: frequency of porotic 

hyperostosis is significantly higher in agricultural populations than in hunting a gathering groups 

(Lallo, 1977), supposedly due to differences in diet. 

 

Iron-deficiency anemia is thought to be linked with infectious disease and, although the 

connection is a source of great debate (Oppenheimer, 2001), Lallo (1977) discovered a 
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significant (p<.001) association between porotic hyperostosis and infectious disease. Iron-

deficiency anemia has also been observed to significantly retard growth if present during the first 

two years of life (Soliman, 2009). 

3.8.1 Diagnosis 

Porotic hyperostosis was diagnosed on the appearance of porosity on the intramembranous bones 

of the ectocranium that was not deemed the result of infection, and recorded as cribra crania or 

cribra orbitalia, depending upon its location; however, these categories were later combined for 

statistical analysis. Severity of porotic hyperostosis was recorded using the following scale: 

slight, mild, moderate, or severe. Severity was not tested for statistical significance. 

3.9 DENTAL ENAMEL HYPOPLASIAS (DEH) 

Dental enamel hypoplasias are classified into three categories based on their appearance: 1) 

furrow (linear), 2) pit, and 3) plane. Furrows are the most common form of hypoplasia found in 

enamel (Hillson and Bond, 1997; Schwartz, 1995) and appear as linear impressions that run 

along the buccal surface of the tooth, paralleling the occlusal surface. Enamel hypoplasias 

develop when cells forming the enamel matrix (ameloblasts) are disrupted, causing them to 

prematurely cease secretion of matrix (Hillson, 1996). Once the stressor has subsided, the 

ameloblasts resume matrix secretion, leaving an area of thinned enamel in their wake. Thus, 

factors that initiate enamel hypoplasias are episodic in nature (Hillson and Bond, 1997). 
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Disruption of the ameloblasts may be caused by an array of stressors that act systemically, 

including: dietary deficiency, fever, or infection. Since localized trauma to the developing 

dentition may induce enamel hypoplasias formation, these cases are distinguished from systemic 

disruptions by the number of teeth affected, the former involving only one or two teeth 

(Goodman and Armelagos, 1985). Genetic conditions can also cause hypoplastic enamel defects, 

but this is very rare in most parts of the world (Hillson, 1997). Since it is seldom possible to link 

enamel hypoplasias with their underlying etiology, they are considered non-specific indicators of 

systemic stress and health (Hutchinson and Larsen, 1988). Because enamel hypoplasias can only 

form while the dental crowns are developing, they cannot be remodeled during life (except by 

abrasive factors), thus making them excellent indicators of an episode of ill-health during infancy 

and early childhood (Goodman et al, 1984).  

3.9.1 Diagnosis 

In order to be recorded as a DEH, a groove had to be sufficiently pronounced to catch a 

fingernail sliding perpendicular to it along the surface of the crown. Each instance of DEH was 

recorded. On teeth with more than one DEH, each was noted separately. The distance of each 

DEH from the cemento-enamel junction (CEJ) was measured in order to ascertain the timeframe 

in which the individual had formed the DEH. The presence of multiple DEHs and the 

information about the time of formation were not included in the analysis. 
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4.0  RESULTS 

4.1 DESCRIPTIVE 

Of the total sample, 108 individuals provided all information necessary for statistical analysis. 

Descriptive results for these individuals are seen in Tables 6 through 11 and Graphs 1-3. Of these 

108 juveniles, 44 (40.7%) were from the Luis Lopes Collection, 33 (30.6%) were from the 

Hamann-Todd Collection, and 31 (28.7%) were from the Raymond Dart Collection (see Table 

9). Age frequencies and distributions for each collection are presented in Graph 1 and in Table 4. 

The majority of individuals analyzed (58.2%) were under the age of five years. Ages 0 and 1 

make up the largest percentages of any of the age categories analyzed with 14.8% and 19.4%, 

respectively (see Table 10 for the percentages of the combined sample for each age category). 

Age frequencies for the combined sample are presented in Graph 3. 

 

Table 9. Distribution of specimens by sample 

 

 

 

 

  Frequency Percent 

LL 44 40.7 

HT 33 30.6 

RD 31 28.7 

Total 108 100 
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Table 10. Distribution of specimens by age category within the combined sample 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Age Frequency Percent 

0 16 14.8 

1 21 19.4 

2 9 8.3 

3 5 4.6 

4 12 11.1 

5 5 4.6 

6 6 5.6 

7 5 4.6 

8 6 5.6 

9 3 2.8 

10 7 6.5 

11 7 6.5 

12 6 5.6 

Total 108 100 
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Figure 3. Distribution of specimens by age category within the combined sample: frequency x age category 

 

4.2 SEXUAL DIMORPHISM 

The sexes are nearly equally represented: 57 males (52.8%) and 51 females (47.2%) (see Table 

12). Males constitute the majority of each sample, however, this majority is very small (as little 

as one specimen). The frequencies of sex by sample are provided in Tables 11 and 12, as well as 

in Graph 4. Male and female growth curves are presented in Graph 5. Mean femoral lengths for 

males and females of each age category are given in Table 13. ANOVA of femoral lengths was 

conducted on males and females (adjusted for age) in order to determine the degree of sexual 

dimorphism within the culled sample. ANOVA results show that the degree of sexual 
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dimorphism is insignificant (p=0.367). The sexes were combined for all further statistical 

analyses. 

 

 

Table 11. Distribution of specimens by sex within the combined sample 

  Frequency Percent 

Male 57 52.8 

Female 51 47.2 

Total 108 100 
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Table 12. Sex distribution by age category for each sample and the combined sample 

  LL HT RD 

  

Combined Sample 

Age Male Female Male Female Male Female Male Female 

0 2 3 0 0 8 3 10 6 

1 6 1 8 1 1 4 15 6 

2 5 1 0 1 0 2 5 4 

3 0 1 1 1 2 0 3 2 

4 3 3 1 2 2 1 6 6 

5 1 2 0 2 0 0 1 4 

6 1 1 2 1 1 0 4 2 

7 1 0 0 1 2 1 3 2 

8 1 0 1 3 0 0 2 3 

9 1 2 0 0 0 0 1 2 

10 1 2 3 1 0 0 4 3 

11 1 4 1 1 0 0 2 5 

12 0 1 0 2 1 3 1 6 

Total 23 21 17 16 17 14 57 51 
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Figure 4. Sex Distribution by sample: frequency x population 
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Figure 5. Growth curves for combined sample by sex:  mean femoral length (and SE) x age category. 

Sexes separate. 
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Table 13. Mean femoral length (with SE and 95% CI) by age category. Sexes separate. 

  Male Female 

      95% CI     95% CI 

Age Mean SE Lower Upper Mean SE Lower Upper 

0 88.5 8.18 72.237 104.763 89.33 10.56 68.339 110.328 

1 126.87 6.68 113.588 140.145 125.5 10.56 104.505 146.495 

2 164.2 11.56 141.201 187.199 151.13 12.93 125.412 176.838 

3 168.17 14.93 138.475 197.858 178 18.28 141.636 214.364 

4 197.17 10.56 176.172 218.161 211.5 10.56 190.505 232.495 

5 244 25.86 192.573 295.427 213 12.93 187.287 238.713 

6 229 12.93 203.287 254.713 234 18.28 197.636 270.364 

7 259.33 14.93 229.642 289.025 218.75 18.28 182.386 255.114 

8 260.67 14.93 230.975 290.358 297.67 14.83 267.975 327.358 

9 274 25.86 222.573 325.427 283 18.28 246.636 319.364 

10 311.75 12.93 286.037 337.463 277.33 14.93 247.642 307.025 

11 335.5 18.28 299.136 371.864 322.2 11.56 299.201 345.199 

12         324 10.56 303.005 344.995 

4.3 POPULATION VARIATION 

A scatter plot of all data points used in the statistical analyses is presented in Graph 6. Growth 

curves for each collection are offered in Graph 7; femoral length means and SE of each age 

category for each sample are given in Table 14. ANOVA of femoral lengths between the three 
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samples (adjusted for age) was conducted in order to determine the amount of population 

variation. The results show that the degree of population variation was insignificant (p= 0.203) 

(Table 15). The samples were combined for all other statistical analyses. The growth curve for 

the combined sample is seen in Graph 8. Femoral length means and SD for the combined sample 

are given for each age category in Table 16. 

 

 

 

Figure 6. Scatterplot of all data points used in statistical analyses: R femur length x age category 
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Figure 7. Growth curve by sample: mean femoral length (and SE) x age category for each sample. 
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Table 14. Mean femoral length (with SE and 95% CI) by age category for each sample 

  LL HTH RD 

      95% CI   95% CI   95% CI 

Age Mean SE Lower Upper Mean SE Lower Upper Mean SE Lower Upper 

0 76.4 11.3 53.83 98.97         94.46 7.64 79.238 109.67 

1 141.57 9.58 122.5 160.65 121 8.45 104.18 137.82 115.2 11.33 92.63 137.77 

2 165.33 10.3 144.73 185.94 127.5 25.33 77.033 177.97 153 17.91 117.31 188.69 

3 172 25.3 121.53 222.47 169 17.91 133.31 204.69 175.25 17.91 139.56 210.94 

4 207 10.3 186.4 227.6 202.33 14.63 173.2 231.47 201 14.63 171.86 230.14 

5 227 14.6 197.86 256.14 207.5 17.91 171.81 243.19         

6 232 17.9 196.31 267.69 228.67 14.63 199.53 257.8 234 25.33 183.53 284.47 

7 240 25.3 189.53 290.47 211 25.33 160.53 261.47 254.83 14.63 225.7 283.97 

8 282 25.3 231.53 332.47 299 12.67 273.77 324.23 197 25.33 146.53 247.47 

9 280 14.6 250.86 309.14                 

10 293.33 14.6 264.2 322.47 299.75 12.67 274.52 324.98         

11 322.4 11.3 299.83 344.97 335 17.91 299.31 370.69         

12 324 25.3 273.53 374.47 321 17.91 285.31 356.69 326 14.63 296.86 355.14 
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Table 15. Results of ANOVA of femoral length by sample (controlling for age) 

df F sig  

18 1.317 0.203  

Levene's Test of Equality of Error Variances 

F df1 df2 sig 

1.796 32 75 0.02 

 

 

 

Figure 8. Growth curve of combined sample: mean femoral length (with SD) x age category 
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Table 16. Mean femoral length (with SD) by age category for combined sample 

Age Mean SD 

0 88.81 16.63 

1 126.48 19.3 

2 158.39 17.11 

3 172.1 18.09 

4 204.33 38.38 

5 219.2 24.01 

6 230.67 16.48 

7 243.1 25.78 

8 279.17 42.18 

9 280 28.48 

10 297 32.09 

11 326 34.52 

12 324 20.78 

 

4.4 MORTALITY BIAS 

T-tests of mean femoral length for the combined sample and Maresh’s (1955) published means 

were conducted for each age category in order to identify the presence of mortality bias. The 

results show that the degree of mortality bias is significant (p< 0.05) at nine of the thirteen age 

categories. Means of the combined sample and Maresh’s (1955) along with significance of each 
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age category are given in Table 17. Graph 9 shows the growth curves for the combined sample 

and Maresh (1955). 

 

Table 17. Mean femoral lengths for combined sample (with SD) and Maresh (1955). T-test values by age 

category. 

  Combined Sample Maresh     

Age Mean SD Mean df sig 

0 88.81 16.63 97.91 15 0.045 

1 126.48 19.3 144.5 20 0.000 

2 158.39 17.11 175.08 8 0.019 

3 172.1 18.09 201.83 4 0.021 

4 204.33 38.38 225.42 11 0.083 

5 219.2 24.01 246.64 4 0.063 

6 230.67 16.48 270.53 5 0.002 

7 243.1 25.78 291.71 4 0.014 

8 279.17 42.18 311.9 5 0.116 

9 280 28.48 330.81 2 0.091 

10 297 32.09 348.69 6 0.005 

11 326 34.52 367.31 6 0.019 

12 324 20.78 382.77 5 0.001 
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Figure 9. Growth curve of combined sample vs. Maresh (1955): mean femoral length x age category 

4.5 PATHOLOGY 

An independent T-test was performed to determine the difference between the femoral lengths of 

individuals included in pathological categories and those included in the normal subset of the 

sample. The difference between the pathological and normal samples is insignificant (p=0.25) 

(see Table 18).  

 

Table 18. Result of T-test of femoral length difference by pathology or no pathology 

t df sig 

1.157 109 0.25 
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ANOVA was used to determine the strength of the difference in femoral lengths between 

pathological categories (controlling for age). The femoral lengths do not vary significantly (p= 

0.388) between the pathological categories (see Table 19). Mean femoral lengths are given for 

each pathological category in Table 20. The mean femoral lengths and SE are plotted for each 

pathological category in Graph 10. Graph 11 shows the means and SEs for each pathology 

plotted with the growth curve for the combined sample.  

 

Table 19. Results of ANOVA of femoral length by pathology (controlling for age) 

df F sig   

23 1.104 0.388   

Levene's Test of Equality of Error Variances 

F df1 df2 sig 

17.95 43 35 0.00 

 

 

 

 

 

 

 

 

 

 

 



*CS= Combined Sample 63 

Table 20. Mean femoral length (with SE and 95% CI) by age category for each pathology 

  CS* 

DEH PH TB 

  95% CI   95% CI   95% CI 

Age Mean Mean SE Lower Upper Mean SE Lower Upper Mean SE Lower Upper 

0 88.81                         

1 126.48         264.50 28.37 206.90 322.10         

2 158.39                 168.00 28.37 110.40 225.60 

3 172.1                         

4 204.33 239.50 28.37 181.90 297.10 190.00 40.13 108.54 271.46 221.00 28.37 163.40 278.60 

5 219.2 195.00 40.13 113.54 276.46 195.00 40.13 113.54 276.46 243.00 28.37 185.40 300.60 

6 230.67         238.50 28.37 180.90 296.10 238.50 28.37 143.54 306.46 

7 243.1         226.50 40.13 145.04 307.96         

8 279.17                 279.00 40.13 197.54 360.46 

9 280                 255.00 40.13 173.54 336.46 

10 297         268.50 28.37 210.90 326.10         

11 326         367.00 40.13 285.54 448.46 320.50 28.37 262.90 378.10 

12 324         319.67 23.17 272.64 366.70 327.00 40.13 245.54 408.46 



*CS= Combined Sample 64 

Table 20. Continued 

  CS* 

PN MAL GE 

  95% CI   95% CI   95% CI 

Age Mean Mean SE Lower Upper Mean SE Lower Upper Mean SE Lower Upper 

0 88.81 92.75 20.06 52.02 133.48 76.00 40.13 -5.46 157.46 102.40 17.94 65.97 138.83 

1 126.48 126.33 16.38 93.08 159.58 107.50 28.37 49.90 165.10         

2 158.39 164.00 28.37 106.40 221.60                 

3 172.1 163.00 28.37 105.40 220.60                 

4 204.33 179.00 28.37 121.40 236.60 128.00 40.13 46.54 209.46         

5 219.2                         

6 230.67 239.00 40.13 157.54 320.46 200.00 40.13 118.54 281.46         

7 243.1                         

8 279.17                         

9 280                         

10 297                         

11 326 321.00 40.13 239.54 402.46                 

12 324                         

 



*CS= Combined Sample 65 

Table 20. Continued 

  CS* 

M2 M3 M4 

  95% CI   95% CI   95% CI 

Age Mean Mean SE Lower Upper Mean SE Lower Upper Mean SE Lower Upper 

0 88.81 102.00 40.13 20.54 183.46                 

1 126.48 119.00 20.06 78.27 159.73         107.00 40.13 25.54 188.46 

2 158.39                         

3 172.1 189.75 28.37 132.15 247.35                 

4 204.33 181.00 28.37 123.40 238.60                 

5 219.2 220.00 40.13 138.54 301.46                 

6 230.67 243.00 40.13 161.54 324.46                 

7 243.1 211.00 40.13 129.54 292.46                 

8 279.17 303.00 40.13 221.54 384.46 307.00 28.37 249.40 364.60         

9 280                         

10 297 320.00 28.37 262.40 377.60                 

11 326 304.00 28.37 246.40 361.60                 

12 324 343.50 28.37 285.90 401.10 315.00 40.13 233.54 396.46         
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Figure 10. Growth by pathology: mean femoral length (with SE) by age category for each pathology. 
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Figure 11. Mean femoral length (with SE) by age category for each pathology- plotted against growth 

curve for combined sample 

 

Each pathological category was analyzed separately against the normal sample. ANOVA was 

used to determine the difference between femoral lengths of each individual pathological 

category against the normative sample (controlling for age). The results are presented in Table 

21. DEH, M3 and M4 had too few values for analysis. TB, PN, and M2 had insignificant results 

(p= 0.154, 0.302, and 0.334, respectively). PH and MAL were the only pathological categories to 

return significant values (p=0.022 and p=0.016, respectively), however, PN is significantly 

higher than the normal sample.  
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Table 21. Results of ANOVA of femoral length for each pathology x normal sample 

Pathology df F sig 

DEH 0 --- --- 

PH 5 3.21 0.022* 

TB 5 1.771 0.154 

PN 6 1.261 0.302 

MAL  3  5.008 0.016 

GE**      

M2 8 1.196 0.334 

M3 0 --- --- 

M4 0 --- --- 

** See Table 22 

 

GE was analyzed using a T-test because information was available only for one age category 

(Age 0). The difference between femoral lengths in the GE category and the normal sample at 

age 0 is significant (p=0.02) (Table 22); as with the results of the PH analysis, GE femoral 

lengths are significantly larger than their normal counterparts. 

 

Table 22. Result of T-test for GE: femoral lengths of pathology x normal sample 

Pathology t df sig 

GE -2.765 10 0.02 
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5.0  DISCUSSION 

Growth during childhood is assumed to be the best indicator of the health status of the child, 

consequently nutritional studies of living populations use anthropometric measurements to 

determine children’s health, as do demographic and growth studies of skeletal juveniles. 

However, childhood growth is a very complex and dynamic process involving the interaction of 

heredity, and internal and external environmental factors.  

 

The analysis of juvenile skeletal populations requires the observer to bear in mind several issues: 

sexual dimorphism, population variation, mortality bias, and pathology. Sexual dimorphism must 

be investigated in order to determine the degree of intra-population variation that is not the result 

of pathology or heredity; so must population variation. There are three types of mortality bias 

(discussed in the Introduction), and any of them can alter the composition of and the conclusions 

drawn from the sample. Disease and malnutrition have long been held to retard skeletal growth, 

and as such, have been used by anthropologists to interpret health status of individuals and 

populations via skeletal growth. 

 

Three skeletal collections (Luis Lopes, Hamann-Todd, and Raymond Dart) were analyzed in 

order to address the issues affecting the analysis of skeletal collections listed previously. These 

samples were chosen because of their abundant records, which provided at least information on 
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age, sex, and cause of death for each individual, as well as their close temporal proximity. The 

overlapping chronology of the collections minimized the problem of a secular trend towards 

increased height. 

5.1 SEXUAL DIMORPHISM 

The distribution of sexes within each of the samples is nearly equal (Table 5), with males 

comprising a slight majority of each sample. The greatest difference between the number of 

males and females within one collection (RD) is only 3 individuals (Table 12). The three samples 

were combined for statistical analysis, giving a final sample of 57 males (52.8%) and 51 females 

(47.2%). For a complete distribution of sex by age category for each sample, see Table 12. 

 

Mean femoral lengths for each age category (Table 13) show that males and females followed 

nearly identical growth curves. Only at ages 7, 8, and 10 does the mean femur length of one sex 

not fall within the 95% CI of the other sex; however, this dimorphism does not follow a single 

trend. At age 7, females fall below the 95% CI of males, but at age 8 they are above the 95% CI 

of males. At age 10 females again fall below the 95% CI of males. These discrepancies are most 

likely due to the small sample size.  

5.1.1 Conclusion 

Within the combined sample, the amount of sexual dimorphism in the femoral lengths of the 

males and females is insignificant (p=0.367). These findings support the idea that sexually 
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dimorphic patterns of linear skeletal growth do not appear until adolescence (Humphrey, 1998). 

The problem of sexually dimorphic growth of the forearm bones seen in the works of Maresh 

(1955) and Gindhart (1973) was not addressed by this analysis, and so remains unchallenged. 

5.2 POPULATION VARIATION 

Variation in growth between populations is widely debated. Studies on both living and skeletal 

samples have provided proof for both sides of the argument. Martorell et al (1975), Merchant 

and Ubelaker (1977), Sundick (1978), and Saunders et al (1993) all found that the growth 

between children of different populations showed minimal variation. The WHO Multicentre 

Growth Reference Study (MGRS) (2006) even released an international growth standard that 

was applicable to all populations.  

 

The three samples in this study were analyzed for the presence of population variation. The 

populations were geographically discrete, with no admixture. Given the vast differences between 

the hereditary, social, and geographical components of the samples, a significant degree of 

population variation would be expected. Growth curves for each population are seen in Graph 7, 

and a scatterplot of all data points used in this analysis are shown in Graph 6. From a precursory 

analysis of the scatterplot and population growth curves, no difference between the populations 

is immediately recognizable. The data points for the three samples form a tight pattern, and the 

growth curves overlap each other in many places. The only noticeable divergence is in the 

Raymond Dart collection at age 8 years, where the mean dips well below the Luis Lopes and 
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Hamman-Todd collections. The mean femoral lengths for each age category by sample bears out 

this observation (Table 14). 

 

ANOVA of mean femoral lengths between each of the three samples (adjusted for age) shows 

that the degree of population variation is insignificant (p= 0.203) (Table 15). The similarity of 

growth of three such disparate populations which all had individuals suffering from numerous 

diseases and nutritional deficits is amazing given the studies by Johnston (1962), Buzina (1976), 

Eveleth and Tanner (1976), and Bogin (1999), all of whom report that the difference in linear 

growth between populations is significant. 

5.2.1 Conclusion 

This result supports the findings of Martorell et al (1975), who demonstrated the universality of 

human growth for preschool children raised under good nutritional and environmental 

conditions, regardless of genetic or ethnic background. These data also raise the possibility that 

the trend Martorell et al (1975) described can be extended beyond preschool-aged children, to 

include all individuals prior to adolescence. The result of this analysis supports the call for a 

single international growth standard. 

5.3 MORTALITY BIAS 

Research directly examining biological mortality bias is rare. McGregor et al (1961; 1968) 

investigated growth and mortality of children in a rural Gambian village and found that the 
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difference in growth curves between the children who lived and the children who died were very 

similar. Most of the literature that deals with mortality bias provides hypotheses and opinions 

without supporting data (Johnston, 1968; Saunders and Hoppa, 1993; Steyn, 1996; Saunders, 

2001). 

 

Mortality bias was analyzed using the combined sample and Maresh’s (1955) study of 

contemporaneous living children (for more on the Maresh sample, see Methods section). T-tests 

were used to compare the combined sample to Maresh (1955) at each age category. Mean 

femoral lengths along with significance for each age category are given in Table 17. Mean 

femoral lengths for the combined sample are smaller than Maresh’s (1955) at each age category, 

and nine of the 13 age categories show significant differences (p<0.05) between the combined 

sample and Maresh (1955). The nine significant age categories form three distinct groupings. It 

is interesting to note that the ages at which the significant differences appear correspond to 

phases of rapid growth prior to adolescence. 

 

From age 0 through age 3, the combined sample is significantly smaller than Maresh’s (1955). 

This supports Saunders and Hoppa’s (1993) conclusions that the period from birth until about 

three years of age is the most crucial with respect to stunting. The first three years of life are 

what Bogin (1999) calls the “infancy stage”, which is characterized by the most rapid growth 

velocity of any of the postnatal stages; introduction of adverse factors during this stage would 

have a considerable effect on growth (Saunders and Hoppa, 1993; Bogin, 1999). The significant 

difference between the skeletal samples (whose pathologies are well documented) and the living 
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sample of healthy, well-fed children seems to support the findings of Saunders and Hoppa (1993) 

and Bogin (1999). 

 

At ages 4 and 5, the difference between the two samples drops below significant (p=0.083 and 

p=0.063, respectively), however, the significance returns again at ages 6 and 7 (p=0.002 and 

p=0.014, respectively) (Table 17). Bogin (1999) defines the stage immediately following 

“infancy” as the “childhood stage”, which lasts from about age 3 to age 7. The childhood stage 

(ages 6 to 7) ends in the mid-growth spurt, in which children experience an increase in growth 

velocity (Bogin, 1999). As with the infancy stage, the introduction of a factor adversely affecting 

growth during a time of rapid growth would necessarily produce individuals smaller than their 

peers who are not experiencing growth retardation.  

 

At ages 8 and 9 there is a return to an insignificant (p= 0.116 and p=0.091, respectively) 

difference between the combined sample and Maresh (1955); this changes at 10 years, at which 

age the combined sample dips significantly (p<0.05) below the femoral lengths of Maresh (1955) 

and stays there for the remainder of the age categories (Table 17). Following childhood is the 

juvenile stage (Bogin, 1999), which lasts from about age 7 to about age 13 in males, and from 

approximately age 7 to 10 in females. The juvenile stage is succeeded by the adolescent stage, 

during which time there is acceleration in the growth rate. At ages 11 and 12, there are more 

females in the sample than males (5:2, and 6:1, respectively) (Table 12). What may account for 

some of the difference between the combined sample and Maresh (1955), is that female growth 

begins to accelerate at an earlier age and there are a larger number of females than males at the 

older ages. 
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The non-significant differences in femoral length between the combined and Maresh’s (1955) 

samples occur during periods in which growth is normally slow or decelerating. The childhood 

phase is much slower than the preceding infancy phase, and the juvenile phase is often 

accompanied by a pronounced, but short-lived, decrease in rate of growth (Bogin, 1999). The 

slow growth rate during these ages would give subadults who had experienced depressed growth 

a period in which catch-up growth would counteract any previous difference in femoral length 

between them and their peers. This interpretation, however, is dependent upon reading the 

growth curve for a population as if it was an individual’s growth curve. Overall, the effects of 

catch-up growth within the combined sample would be difficult to support because the sample is 

cross-sectional and does not reflect any one individual’s growth rate. 

5.3.1 Conclusion 

The results of these analyses suggest that biological mortality bias does exist, and is a significant 

factor affecting juvenile skeletal remains. 

5.4 PATHOLOGY 

There is little clear evidence of the specific effects during childhood of various diseases on 

growth rates and patterns (Saunders and Hoppa, 1993). Most of the literature about the effects of 

disease and malnutrition on childhood skeletal growth is conflicting (see Introduction for a 

literature review). 
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Nine pathological categories were analyzed within the combined sample. These categories are 

listed in Table 18. 

 

ANOVA of femur length by pathology (controlling for age) was conducted to test strength of the 

difference between the pathologies (Table 19). The difference between the femoral lengths of 

each of the pathological categories was not significant (p=0.388). This contradicts the result of 

Martorell et al (1975), who found that children suffering from diarrhea experienced growth 

retardation, while respiratory infections had no effect on growth.  

 

Levene’s test of quality of error variances was run with the ANOVA of femur length by 

pathology. The result of the Levene’s test is significant (p=0.00) (Table 19).  However, ANOVA 

is a robust statistical tool, and the size of the sample is small, thus, this result most likely reflects 

the small sample size. 

 

A T-test was used to examine the strength of the difference of femoral lengths between 

pathological and non-pathological individuals (Table 18). The difference in femoral lengths 

between individuals in the pathological categories and those in the normal subset of the data was 

not significant (p=0.25). A precursory examination of the mean femoral lengths (with SE) for 

each pathological category plotted by age against the growth curve for the combined sample (see 

Graph 11) shows that many of the pathological categories closely overlay the curve.  

Following the surprising results of the pathology T-test, the data was mined for more 

information. ANOVA was conducted between each pathological category and the normal subset 
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of the sample (controlling for age) in order to further analyze the effects of malnutrition and 

disease on skeletal growth (Table 21 and Graphs 10 and 11). 

5.4.1 Insufficient Specimen Number: DEH, M3, M4– Descriptive trends: 

Three pathological categories (DEH, M3, and M4) lack sufficient specimens in the age 

categories for statistical analysis. The mean femoral lengths for these three categories are given 

in Table 20. DEH means are available for ages 4 and 5. At age 4, DEH is well above the 

combined sample mean, while at age 5 it is below the sample mean. In both cases, the sample 

mean falls within the 95% CI of DEH. M3 follows a pattern similar to DEH; age 8 is above the 

combined sample mean, while age 12 is below it, but the combined sample mean falls within the 

95% CI of both M3 age groups. A mean femur length was available for M4 only at age 1 and it 

fell below the combined sample mean for age 1; however, the combined sample mean was within 

the 95% CI range of M4. There is no distinct trend in the mean femoral lengths of the three 

pathological categories for which statistical analysis was not possible, which suggests that none 

of these pathologies significantly influenced the growth of the individuals suffering from them. 

5.4.2 Non-Significant Results: TB, PN, M2: 

Three pathological categories (TB, PN, and M2) had results that were statistically insignificant 

(p<0.05) (Table 21).  
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5.4.2.1 TB 

Tuberculosis is a chronic disease that is well-documented for causing wasting (Schwenk and 

Macallan, 2000). Chronic disease is more likely to impact growth because it affects the 

individual over a greater span of time. The wasting associated with tuberculosis is the effect of  

nutritional deficiency, which would be expected to amplify any inhibitory effects that the disease 

has on growth. Despite the consumptive effects on the lungs and body, the individuals within the 

combined sample who suffered from tuberculosis had femur length comparable to their healthier 

counterparts (p=0.154) (Table 21). This seems to support Martorell et al’s (1975) findings that 

respiratory infections had little effect on growth; however, Martorell et al (1975) focused on 

minor respiratory infections (i.e. pneumonia), not major and chronic illnesses like tuberculosis. 

5.4.2.2 PN 

Pneumonia is a relatively minor acute respiratory illness and thus would not be anticipated to 

have a significant effect on growth. The results of the ANOVA (Table 21) show that this 

expectation is true, the presence of pneumonia has little effect on femur length (p=0.302), which 

supports the work of Martorell et al (1975). 

5.4.2.3 M2 

M2 is a broad category that included individuals with any combination of two pathologies; as 

such, the effects of the pathologies on the femoral lengths would be expected to be amplified. 

The results of the ANOVA (Table 21) show that the difference in femur length between 

individuals suffering from two pathologies and those in the normal sample are not significant 

(p=0.334). 
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5.4.3 Significant Results: MAL, PH, GE 

5.4.3.1 MAL 

Malnutrition in children has been associated with stunted growth, delayed mental development, 

blindness, night blindness, and immunodeficiency, among other ailments (Allen, 1995; WHO, 

2000). Immunodeficiency resulting from a lack of proper nutrition also leaves children at risk for 

the contraction of infectious disease. Longitudinal growth retardation has been frequently cited 

in studies of malnourished children (Howe and Schiller, 1952; Tanner, 1962; McCance, 1971; 

Eveleth and Tanner, 1976; Himes, 1978; Tanner, 1978; Lumey et al, 2007); however, some 

evidence from similar studies contradicts these findings (Rao and Singh, 1970). ANOVA 

conducted on femoral lengths between the malnourished and normal samples indicates that a 

significant difference (p=0.016) exists. These results support the conclusions of earlier authors, 

that malnutrition has a significant inhibitory effect on longitudinal growth. 

5.4.3.2 PH 

Porotic hyperostosis is linked to iron-deficiency anemia, which is strongly associated with 

infectious disease (Lallo, 1977). It is believed that iron-deficiency leaves the sufferer at risk for 

infection, which in turn depletes stores of iron. Iron-deficiency anemia has also been found to 

significantly retard growth if manifested during the first two years of life (Soliman, 2009). PH 

showed a significant difference in femur length (p=0.022) (Table 21). This result seems to 

support the findings of Soliman (2009), except that the mean femoral lengths for individuals with 

PH are higher in several age categories than the mean femoral lengths of the normal sample (see 

Table 20). Graph 11 illustrates this point well. 
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Several variables could account for this curious result. First, instead of retarding growth, porotic 

hyperostosis accelerates it. This explanation can be quickly discounted because there is no 

research or literature supporting it. Second, the sample of pathological individuals is biased 

because of inaccurate records on some specimens. An inaccurate chronological age, in which an 

older child is placed into a younger category, would easily account for the cases where the 

individuals with porotic hyperostosis have longer femoral lengths than the normal sample. This 

is possible; however, it is unlikely that a sufficient amount of error exists in the collections’ 

records to account for these results. The most likely explanation is that porotic hyperostosis does 

not have a truly significant effect on growth, because, if this was the case, the data would go in 

one direction: i.e. all individuals suffering from porotic hyperostosis would either be smaller or 

taller than their healthy counterparts. 

5.4.3.3 GE 

Gastroenteritis is an inflammation of the GI tract that results in acute diarrhea. It is usually 

caused by infection and is currently the leading cause of death among children under 5 (King et 

al, 2003). The disease is acute and affects the nutritional status of the individual. Martorell et al 

(1975) found that growth in children suffering from diarrhea was substantially smaller than their 

healthier counterparts.  

 

Gastroenteritis was not included in the ANOVA because the individuals with it were all in one 

age category (age 0). A t-test was used to analyze the difference in femur lengths at age 0 

between individuals with GE and those in the normal sample (Table 22); a significant difference 

(p=0.02) was found. This seems to support the findings of Martorell et al (1975), except that the 

mean femoral lengths for children with GE were higher than the femoral lengths of the children 



 

 81 

in the normal sample (see Table 20). The results of the t-test indicate that children suffering from 

GE are substantially taller than those who do not have the disease (see Graph 11). 

 

The results of the t-test for GE are unexpected, and there are several scenarios that could account 

for them. The first scenario has children with GE (a disease that severely affects nutritional 

status) growing better than children unaffected by the disease. But there is no supporting 

evidence for this. As with porotic hyperostosis, the higher mean femoral lengths could result 

from inaccurate record keeping. This is possible. However, the most likely explanation is that the 

small sample size inordinately skews the data towards individuals with GE, thus yielding a 

higher mean femoral length than the normal sample. Until further analyses are conducted on 

larger cohorts, we are left only to concur with the study by Condon-Paoloni et al (1977), who 

found no great growth discrepancy between individuals with high or low frequencies of diarrheal 

disease. 

5.4.4 Conclusion 

Of the six pathologies tested, the only one found to significantly retard skeletal growth is 

malnutrition (p=0.016). These results seem to indicate that many diseases have little effect on 

skeletal growth, and that children will continue to grow at nearly normal rates under most 

adverse conditions, except malnourishment. 

 

The nature of the pathology results leads to two further questions: 1) Is the normal sample really 

normal? And 2) are the categories robust enough to yield firm results?  
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The normal sample was comprised of children who died of a variety of causes, many of which 

were sudden and accidental. Thus, it would appear that the normal sample is fairly well 

representative of children who experienced typical growth. In the absence of extensive medical 

records on each specimen, we cannot definitively rule out the possibility that these were not 

healthy individuals during life, and so, the adequacy of the sample can only be judged by the 

information provided. 

 

In answer to the second question, once the pathological sample was broken into separate 

pathologies for individual analysis, the sample sizes became quite small. The results of the 

ANOVA of the individual pathologies are thus tentatively given with the small sample size in 

mind. Analysis of further collections, providing a more robust sample, would address this 

problem. 
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