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Gestures and speech converge during spoken language production.  Although the temporal 

relationship of gestures and speech is thought to depend upon factors such as prosodic stress and 

word onset, the effects of controlled alterations in the speech signal upon the degree of 

synchrony between manual gestures and speech is uncertain.  Thus, the precise nature of the 

interactive mechanism of speech-gesture production, or lack thereof, is not agreed upon or even 

frequently postulated.  In Experiment 1, syllable position and contrastive stress were manipulated 

during sentence production to investigate the synchronization of speech and pointing gestures.  

An additional aim of Experiment 2 was to investigate the temporal relationship of speech and 

pointing gestures when speech is perturbed with delayed auditory feedback (DAF).  

Comparisons between the time of gesture apex and vowel midpoint (GA-VM) for each of the 

conditions were made for both Experiment 1 and Experiment 2.  Additional comparisons of the 

interval between gesture launch midpoint to vowel midpoint (GLM-VM), total gesture time, 

gesture launch time, and gesture return time were made for Experiment 2.  The results for the 

first experiment indicated that gestures were more synchronized with first position syllables and 

neutral syllables as measured GA-VM intervals.  The first position syllable effect was also found 
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in the second experiment.  However, the results from Experiment 2 supported an effect of 

contrastive pitch effect.  GLM-VM was shorter for first position targets and accented syllables.  

In addition, gesture launch times and total gesture times were longer for contrastive pitch 

accented syllables, especially when in the second position of words.  Contrary to the predictions, 

significantly longer GA-VM and GLM-VM intervals were observed when individuals responded 

under provided delayed auditory feedback (DAF).  Vowel and sentence durations increased both 

with (DAF) and when a contrastive accented syllable was produced.  Vowels were longest for 

accented, second position syllables.  These findings provide evidence that the timing of gesture is 

adjusted based upon manipulations of the speech stream.  A potential mechanism of entrainment 

of the speech and gesture system is offered as an explanation for the observed effects.    
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1.0  INTRODUCTION 

1.1 STATEMENT OF THE PROBLEM  

 

We gesture simultaneously while we speak, though it is not clear if manual gesture and spoken 

language are part of a unified communication system.  Intuitively, it appears that the modalities 

of speech and gesture fuse to express communicative information.  Yet, the vast majority of 

research of the relationship of speech and gesture is based upon just that, intuition and informal 

observations.  In fact, it is not clear whether speech and gesture truly are interactive or at what 

point during the processing of speech and manual gestures the assumed interaction occurs.  The 

purpose of the present investigation was to measure the effect of three variables, prosodic stress, 

syllable position, and the temporal perturbation of speech upon the degree of synchronization 

between the speech and deictic (i.e., pointing) gestures.  The aim was to test the notion that the 

perceived tight temporal synchrony of speech and gesture is evidence of an integrated 

communication system.   

I measured the degree of temporal synchrony between gesture apex (i.e., time of 

maximum extension of the deictic gesture) and vowel midpoint utilizing a novel methodology.  

This methodology consisted of capacitance sensors for the temporal measures of gesture 

movement and acoustic analyses of the temporal parameters of the speech signal.  The 
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investigation was comprised of two experiments.  The first was a controlled paradigm of typical 

adults producing compound words within seven word utterances.  Syllable position and the 

prosodic variable of contrastive pitch accent were manipulated in Experiment 1.  In the second 

experiment, typical adults produced the same compound words within utterances, though with 

the additional manipulation of speech perturbation.  Contrastive pitch accent, syllable position, 

and temporal perturbation of speech via delayed auditory feedback (DAF) were manipulated in 

Experiment 2.  Syllable position was manipulated to control for a possible confounding effect of 

word onset synchrony.  Prosodic stress and speech perturbation were chosen to not only test 

whether a predictable temporal relationship between speech and gesture exists, but also to 

examine the mechanism of this potential interaction.  Manipulation of prosodic stress, 

specifically contrastive pitch accent, investigated the role of the phonological encoder in the 

timing of manual gestures.  In contrast, imposing an auditory delay perturbed the timing of 

speech production at a lower-level of motor processing ( i.e., at the motor programming level) at 

which speech and gesture are hypothesized to be temporally entrained.    

  

1.2 BACKGROUND 

 

The relationship between speech and gesture has long intrigued scholars from an array of 

disciplines.  A myriad of associations between gesture and speech exist in the literature, such as 

the evolution of spoken language from manual gestures (Blute, 2006; Corballis, 2003; 2010; 



3 

 

Hewes, 1972; Rizzolatti & Arbib, 1998), the concurrent acquisition of gesture and language 

development milestones (Bates & Dick, 2002; Capone & McGregor, 2004; Goldin-Meadow, 

1998; Iverson, 2010; Iverson & Thelen, 1999; Kent, 1984; McNeill, 1992; Volterra, Caselli, 

Capirci, & Pizzuto, 2004), the facilitatory effect of gestures on word learning (Acredolo & 

Goodwyn, 1985, 1988; Capone & McGregor, 2005; Goodwyn & Acredolo, 1993; Goodwyn, 

Acredolo, & Brown, 2000; Namy, Acredolo, & Goodwyn, 2000; Weismer & Hesketh, 1993; 

though see Johnston, Durieux-Smith, & Bloom, 2005), the capability to provide prognoses for 

children with language deficits and autism spectrum disorders as a function of their early gesture 

use (Brady, Marquis, Fleming, & McLean, 2004; Fenson, et al., 1994; Shumway & Wetherby, 

2009; Smith, Mirenda, & Zaidman-Zait, 2007; Thal, 1991; Thal & Bates, 1988; Thal & Tobias, 

1992, 1994; Thal, Tobias, & Morrison, 1991; Watt, Wetherby, & Shumway, 2006), the ability to 

enhance speech intelligibility for adults with dysarthria (Garcia & Cannito, 1996; Garcia, 

Cannito, & Dagenais, 2000; Garcia & Dagenais, 1998), and the facilitation of word recall for 

children (Pine, Bird, & Kirk, 2007), typical adults, (Beattie & Shovelton, 2006; Morrel-Samuels 

& Krauss, 1992; Ravizza, 2003) as well as adults with aphasia (de Ruiter, 2006; Feyereisen, 

2006; Hanlon, Brown, & Gerstman, 1990; Marshall, 2006; Miller, 2006; Pashek, 1997; Power & 

Code, 2006; Raymer, Singletary, Rodriguez, Ciampitti, Heilman, & Rothi, 2006; Richards, 

Singletary, Rothi, Koehler, & Crosson, 2002; Rose, 2006; Rose & Douglas, 2001; Rose, 

Douglas, & Matyas, 2002; Scharp, Tompkins, & Iverson, 2007).  Although it is tempting to 

impose explanatory power upon the relationship of speech and gesture for such stimulating 

topics, it is first necessary to evaluate the basic assumption that the two systems are indeed 

integrated.  Moreover, even if these tantalizing statements regarding the relationship of speech 

and gesture ring true, there are virtually no data on the mechanism of their interaction.    To be 
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sure, experimental investigations of this still mostly anecdotal relationship of speech and gesture 

are in their infancy and are not usually theoretically motivated.  The existing literature is 

constituted primarily of studies that are observational and do not directly manipulate the 

variables of interest.  Furthermore, disparate gesture classification schemes and design flaws are 

pervasive in this literature.  Thus, many of the basic tenets regarding the relationship between 

speech and gesture are tenuous and in need of both expanded theoretical postulation and 

empirical scrutiny.  

Despite the lack of systematic research regarding the relationship of speech and gesture, 

it is generally accepted that the two processes are interactive during the production of 

communication.  Specifically, the apparent synchronous temporal relationship of speech and 

gesture is cited as premier evidence of the interactive nature of speech and gesture production 

(e.g., Goldin-Meadow, 1999; Iverson & Thelen, 1999; Krauss, Chen, & Gottesman, 2000; 

McNeill, 1992).  Yet, not only is there limited empirical investigation of the relative timing of 

speech and gesture, but there are also few predictive and testable models that encourage 

systematic exploration of specific points of interaction as well as the temporal consequence of 

these two production systems.  The common observation is that gesture and speech roughly 

occur at similar times during communication.  Remarkably, in the past two decades of gesture 

research this statement has most often been simply left at that.   

Even though many individuals have observed that speech and gesture are produced in 

tight temporal synchrony, the mechanism responsible for this potential synchronization as well 

as factors that may affect the degree of time separating two actions have not been elucidated.  In 

fact, it is not at all clear that speech and gesture truly synchronize in a predictable manner or if it 

is merely a common observation that gesture and speech roughly occur at similar times during 
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communication due to independent but temporally similar processes.  In order for speech and 

gesture to synchronize in some uniform manner, there must be interaction between the speech 

production and gesture production systems.  However, where in the speech and gesture systems 

this interaction occurs, or if there is any interaction at all, is unclear.  

The traditional hypothesis is that gesture and speech share a seamless interaction at all 

points within their respective production mechanisms, resulting in a perceived tight temporal 

synchrony (McNeill, 1985; 1992).  However this hypothesis leads to nebulous points of 

interaction, thus making it impossible to make predictions regarding the effects of specific 

speech and gesture variables upon the timing of the other movement. Recently de Ruiter (1998; 

2000) proposed a model of gesture production with an explicit point of interaction with the 

speech production system.  In short, de Ruiter’s Sketch model (see Figure 1) is an extension of 

Levelt’s (1989) model of speech production (see Figure 2) and predicts that speech and gesture 

originate and interact only at the stage of conceptualization when one accesses spatio-temporal 

and propositional information from working memory.  According to de Ruiter, any phonological 

or motor processes that occur later in the speech system, such as assigning prosodic stress to a 

syllable or altering the timing of movement by perturbing the execution of speech or gesture 

movements, do not influence the timing of gesture.   



 

 

 

 

 

Figure 1 The Sketch model.  Adapted from “Gesture and Speech Production,” by J.P. de Ruiter, 
1998,  Unpublished doctoral dissertation, Katholieke Universiteit, Nijmegen, Germany, p. 16. 
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The prediction of the current study, counter to de Ruiter, is that the degree of synchrony 

between speech and gesture does indeed differ as a function of processes below the level of the 

conceptualizer.  The first alternative hypothesis is that gestures temporally align with 

prosodically stressed syllables due to interaction between gesture planning processes and 

phonological encoding processes within the formulation stage of speech production.  The second 

alternative hypothesis is that increased synchrony of prosodically prominent syllables and 

gestures results from temporal entrainment of oral and manual movements.  The present 

experiments focused on the effects of prosodic prominence and speech perturbation upon the 

degree of temporal synchronization between speech and deictic gestures in order to 

experimentally test these hypotheses. 
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Figure 2 A blueprint for the speaker:  Levelt’s (1989) model of speech production as illustrated 
in de Ruiter (1998).  Adapted from “Gesture and Speech Production,” by J.P. de Ruiter, 1998,  
Unpublished doctoral dissertation, Katholieke Universiteit, Nijmegen, Germany, p. 9. 
 

As one might expect, because experimental study of the gesture-speech linkage is only 

budding, the existing literature on the effect of prosodic stress and perturbation of speech on the 

temporal synchrony of speech and gesture is equivocal.  This work is thought-provoking but far 

from definitive.  First, there is evidence to suggest that gestures temporally align with 

prosodically stressed syllables.  Second, observational work implies that the temporal parameters 
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of a gesture change to remain synchronized with the corresponding speech signal, even when the 

speech signal is perturbed. 

Though the majority of investigations found that gestures and prominent syllables tend to 

co-occur (Bull & Connelly, 1985; de Ruiter, 1998; Loehr, 2004; McClave, 1998; Nobe, 1996; 

Rochet-Capellan, Laboissière, Galvàn, & Schwartz, 2008; Yasinnik et al. 2004), the 

psychological reality of this assertion is disputable for several reasons.  First, McClave (1994) 

demonstrated that beat gestures occurred with unstressed syllables just as frequently as with 

stressed syllables.  Also, de Ruiter (1998) found that lexical stress did not affect the timing of the 

corresponding gesture for Dutch speakers.  In addition to conflicting findings in the literature, 

abundant design and methodological concerns limit the validity of the findings.  With the 

exception of de Ruiter (1998) and Rochet-Capellan and colleagues (2008), investigators have not 

directly manipulated speech and/or gesture when investigating the effects of prosodic stress upon 

synchronization.  Most often, examiners perceptually judged the acoustic signal and visually 

identified the elusive boundaries of gesture in frame-by-frame video analysis.  While de Ruiter 

utilized an ultrasound system to record gesture signals and Rochet-Capellan and colleagues used 

an infrared tracking device to record gesture and speech movements, only Rochet-Capellan et al 

have measured the specific temporal parameters of the unfolding gesture relative to the 

accompanying speech signal.  It is also important to point out that the only investigators to 

directly manipulate the stimuli to elicit predictable prosodic stress have done so only with Dutch 

(de Ruiter, 1998) and Brazilian Portuguese (Rochet-Capellan, et al., 2008) speakers and with a 

three word phrase and one of four bisyllabic nonword responses, respectively.  Certainly, it is 

difficult to identify a predictable effect of prosodic stress upon the timing of gesture given such 

imprecision in studies that employed natural speaking contexts and constrained spoken responses 
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in the studies that employed an experimental paradigm. Provided the available data, the 

observation that gestures occur roughly at the time of a prosodically stressed syllable during 

spoken language production remains correlational relationship at best.   

Even if gestures temporally co-occur with prosodically prominent syllables, as the 

existing literature implies but de Ruiter argues against in his Sketch Model, it is not clear why 

this alignment exists.  The understanding of the mechanism of gestures aligning with 

prosodically stressed syllables remains where it was in 1969 when Dittmann and Llewellyn 

stated “the really interesting question which this research has raised are those of why body 

movements should be located as they are in the rhythmic stream of speech” (p. 104).  It is indeed 

possible that gesture processes interact with speech processes at the level of the phonological 

encoder in the Formulator, as posited in the first alternative hypothesis.  However, it is also 

possible that gesture aligns with prosodically prominent syllables due to temporal entrainment of 

the oral and manual motor systems at a lower level in the production systems.  de Ruiter himself 

postulated that a “phase locking mechanism at the level of lower level motor planning, instead of 

a higher level synchronization process” (1998; p. 61) may be responsible for gesture 

synchronizing with prosodically strong syllables given his unpredicted finding that gesture 

apices aligned with contrastively stressed syllables.   

Although de Ruiter (1998) argues for a possible interaction at the level of motor 

planning, one could conjecture that in fact the interaction is at the level of motor programming.  

There is an abundance of theory and experimentation on the topic of motor control and the role 

of feedback in open versus closed loop systems which will not be reviewed within this 

document.  However, it is necessary to clarify the specific level of motor processing that it 

essential for the research questions.  Adhering to a linguistic-focused model such as the Sketch 
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Model (1998) and Levelt’s (1989) model of speech production provides ample information 

regarding linguistic and phonologic processes but does not describe motor processing in 

adequate detail.  For that reason, along with the alternative hypothesis that an interaction may not 

only occur at the level of phonological encoding but also at a “lower-level” of motor processing, 

forces one to meld a linguistic model with a model of speech production from a motor 

perspective.  Anita van der Merwe’s (1997) four-level framework of speech sensorimotor control 

(Figure 3) is a well-specified model of speech motor control.  Her model is founded in current 

neurophysiological data and reflects the transition from historical view of two stages of motor 

production (i.e., motor programming and execution) to a three-stage view (i.e., motor planning, 

motor programming, and execution).   



 

Figure 3 Four-level framework of sensorimotor control of speech production.  Adapted from “A 
theoretical framework for the characterization of pathological speech sensorimotor control” by 
A. van der Merwe, 1997, In M. McNeil (Ed.), Clinical Management of Sensorimotor Speech 
Disorders.  New York, NY:  Thieme Medical Publishers, Inc, p. 8. 
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Even though it is quite possible that speech and gesture interact at more than one level of 

motor processing, the temporal perturbation of speech via DAF manipulates processing at the 

motor programming level.  In contrast to a motor plan which specifies the generalities of a 

movement including the basic trajectory of movement, the sequence of movement, and so on, the 

motor program specifies the spatio-temporal and force dimensions of the movement.  A second 

facet of the motor program is the “sensory feedback can be utilized to change or update a 

program should the need arise” (p. 11).  One form of sensory feedback that can be integrated by 

the motor program is auditory information, such as that manipulated in this investigation.  

Another advantage of van der Merwe’s sensorimotor model of speech production is that it 

purposefully mirrors current opinion of motor control in general (e.g., limb motor control).  She 

states the “interface between preplanned motor programs and real-time updating based on 

sensory input, therefore, seems to be intrinsic to the motor programming of movement, including 

speech movements” (p. 11).  Thus, the proposed entrainment of the speech and gesture systems 

is rooted in the level of motor programming for both the speech and manual movements.  

However, it is important to note that this investigation did not explicitly dissociate the three 

stages of motor processing.  Although the current hypothesis is that speech perturbation affects 

the level of motor programming, perturbation and entrainment of speech and gesture also 

potentially involves the level of motor planning and/or execution.  Systematic dissociation of 

these motor processing levels relative to the relationship of speech and gesture remains a topic 

for future research.    

13 
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If temporal entrainment of the speech and gesture movements at the level of motor 

programming prevails, then one would anticipate that a perturbation of one of the movements 

would result in a corresponding temporal modification of the affiliate movement.  This relatively 

straight-forward paradigm has rarely been utilized as a tool to examine the temporal relationship 

of speech and gesture.  Only one group of researchers altered the timing of gesture (Levelt, 

Richardson, & La Heij, 1985) and measured the effects on the timing of speech.  Likewise, 

McNeill (1992) is the only individual to directly perturb speech production and report the 

resultant effects on the execution of gesture by recording the qualitative effects of DAF.  These 

experiments, along with observations of the synchronization of gesture during speech 

dysfluencies produced by adults and children who stutter (Mayberry & Jaques, 2000; Mayberry, 

Jaques, & DeDe, 1998) and ad hoc analyses of speech errors produced by typical adults (de 

Ruiter, 1998) suggest that speech and gesture remain synchronized even when the timing of one 

of the movements is halted in some way.  However, a systematic investigation of the temporal 

synchronization of speech and gesture following speech perturbation has yet to be conducted. 

Yet, these prior experiments offer preliminary evidence that the oral and manual 

movements associated with speech and gestures may be temporally entrained.  It is further 

hypothesized that entrainment of the two motor behaviors results from the coupling of gesture 

movements to the rhythmic production of prominent syllables.  This hypothesis was first put 

forth by Tuite in 1993, though in vague terms.  Tuite’s hypothesis will be amalgamated with 

work by Cummins and Port (e.g., Port, 2003) which, in line with dynamic systems theory, 

proposes that neurocognitive oscillators produce pulses that act as attractors for other behaviors 

such as speech production.  Specifically the oscillator pulses attract “perceptually prominent 

motor events, like vowel onsets or taps of a finger” and “the phase of the internal system is 
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adjusted so that the perceptually salient event is synchronous with the oscillator pulse” (Port, 

2003, p. 607).    Thus, the second alternative hypothesis asserts that speech is a rhythmic 

oscillator that entrains manual gesture movements at these oscillator pulse points.   

The general purpose of this project was to explore the theoretical temporal relationship of 

speech and gesture as a function of (i) contrastive pitch accent (i.e., present or absent), (ii) 

syllable position (i.e., first and second postion), and (iii) speech perturbation (i.e., 200 ms 

auditory delay or no auditory delay) upon the degree of temporal synchrony of speech and 

deictic (i.e., pointing) gestures produced by typical, young, English-speaking adults.  Two 

experiments were conducted to address this purpose.  

Synchrony was measured as an interval from gesture apex to vowel midpoint (GA-VM).  

Vowel midpoint was chosen as the acoustic dependent variable for two reasons.  First, vowel 

midpoint incorporates duration which is frequently proposed as the most consistent acoustic 

correlate of prosodic stress (Fry, 1955; Sluijter & van Heuven, 1996; van Kuijk & Boves, 1999; 

Wouters & Macon, 2002).  Second, the finding that prosodic stress influences the vowel/nucleus 

of a syllable to a much greater degree than the on- and offset of a syllable is reflected in the 

choice of vowel midpoint rather than a measure of rime, syllable, or word duration (Adams & 

Munro, 1978; Fry, 1955; Greenberg, Carvey, Hitchcok, & Chang, 2003; Suijter & van Heuven, 

1996; Tuller, Harris, & Kelso, 1982; Tuller, Kelso, & Harris, 1982; Turk & White, 1999; van 

Kuijk & Boves 1999). A recent investigation completed by Krahmer and Swerts (2007) provides 

strong support for choosing vowel duration as the acoustic dependent variable in this particular 

paradigm as well.  Ten Dutch speakers were asked to produce a single utterance, Amanda goes to 

Malta, with either no pitch accent, pitch accent on the second syllable of Amanda or pitch accent 

on the first syllable of Malta.  The participants were also instructed to produce a beat gesture, 
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head nod, or eyebrow raise along with the pitch accent 50% of the time.  Vowel duration was 

significantly greater for syllables that were pitch accented compared to those that were not, 

regardless of position within the utterance or word.   

Gesture apex was chosen as the gesture dependent variable also for two reasons.  First, it is a 

single time moment when the gesture reaches its point of maximum extension and measuring a 

precise moment in time is conducive for an interval-based measure of temporal synchronization.  

Second, a gesture apex is thought to be synonymous to a gestural stroke which holds the 

semantic information of the gesture.  In addition to the gesture apex to vowel midpoint (GA-VM) 

interval, the total gesture time (gesture onset to offset) and gesture launch (gesture onset to 

apex), and gesture return (gesture apex onset to gesture offset) will be measured in Experiment 2.  

These variables parallel the observations made by previous researchers’ studies of the effect of 

speech perturbation upon the timing of gesture (de Ruiter, 1998; Mayberry & Jaques, 2000; 

Mayberry, Jaques, & DeDe, 1998; McNeill, 1992).   
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1.3 SPECIFIC AIMS, RATIONALE, EXPERIMENTAL QUESTIONS, AND 

HYPOTHESES 

 

Experiment 1: 

 

Specific Aim:   

To assess the influence of (i) contrastive pitch accent, (ii) syllable position, and (iii) their 

interaction on the degree of synchrony between the apices of deictic gestures directed toward a 

visual display and vowel midpoints of syllables produced within corresponding carrier phrases. 

 

Rationale:   

There are four motivating factors for choosing contrastive pitch accent as an independent 

variable.  First, this study attempted to disambiguate previous research that reported an effect of 

prosodic prominence upon the temporal synchronization of speech and gesture, though with 

increased control of confounds present in the literature to date.  Second, any effect of a prosodic 

variable, in this case pitch accent, upon the timing of gesture is counter to de Ruiter’s Sketch 

Model (1998; 2000), which asserts there is no communication between the gesture and speech 

systems below the level of the conceptualizer (Levelt, 1989).  Third, pitch accent is notoriously 

difficult to identify with certainty within spontaneous speech (e.g., Bolinger, 1972); therefore, 



18 

 

contrastive pitch accent was chosen as the prosodic dependent variable so that the pitch-accented 

syllable may be reliably identified in each response.  Finally, because a pitch-accented syllable is 

assigned greater prominence than all other stressed syllables within a given intonational phrase, 

the paradigm was developed to measure the greatest potential effect of prosody upon the 

temporal synchronization of speech and gesture.   

Syllable position was manipulated to discriminate between an effect of pitch accent and 

an effect of word onset.  It is well documented in the literature that gesture onset tends to precede 

the onset of its lexical affiliate (Bernardis & Gentilucci, 2006; Butterworth &  Beattie, 1978; 

Chui, 2005; Feyereisen, 1983; Krauss et al., 1996; 2000; McNeill, 1992; Morrel-Samuels & 

Krauss, 1992; Ragsdale & Silvia, 1982).  Hence, the hypothesis that the onset of gesture occurs 

prior to the onset of the lexical affiliate was tested in these experiments.  Also, it is possible that 

gestures synchronize with the onset of their lexical affiliates instead of with prosodically 

prominent syllables.  These two main effects are not dissociable for syllables in the first syllable 

position.  Additionally, an interaction effect between prosodic stress and syllable position may 

exist if there is interaction between the phonetic plan of the Formulator and the gesture planner 

since both stress assignment and lexical access occur within the Formulator.  That is, pitch-

accented syllables in the initial position should have greater synchrony with gestures than all 

other syllables if both syllable position and prosodic stress play a role in the synchrony of gesture 

and speech.    

Contrastive pitch accent and syllable position were manipulated within compound word 

pairs imbedded within utterances (i.e., seven words total for each utterance).  The compound 

words were produced within controlled carrier phrases and spoken by the participants while 

simultaneously pointing to a corresponding picture of the item.  The task was tightly constrained 
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in this experiment in an attempt to isolate the effect of prosodic stress from other acoustic-

phonetic and lexical effects as well as potential cognitive processes that could affect the temporal 

relationship of gesture and speech.  The utterances are long and varied in content to encourage 

more natural suprasegmental characteristics than single word or short phrase productions.  

Compound word pairs such as lifeboat/lifeguard and toothbrush/paintbrush were selected due to 

ability to emphasize the contrastive element of the word pair (e.g., Is that a life’boat?;  No, that 

is a lifeGUARD’) and to make comparisons of the same phonetic structure both with and without 

pitch accent.  Thus, it is anticipated that acoustic vowel duration would be longer for syllables 

with pitch accent compared to the same syllables without pitch accent for Experiments 1 and 2.  

An additional advantage of manipulating pitch accent on the second syllable of the compound 

word is the ability to place accent on a normally unstressed syllable, thus eliminating the 

potential confounding effect of metrical stress (i.e., lexical stress).   
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Experimental Questions and Hypotheses:   

 

1)  Do the apices of deictic gestures synchronize with the vowel midpoints of pitch-
accented syllables in compound words spoken within carrier phrases more than the 
same syllables without pitch accent regardless of word position? 

 

H0
1:  There is no significant difference between the mean GA-VM interval for 

syllables produced with contrastive pitch accent and the mean GA-VM interval for the 

same syllables produced with no contrastive pitch accent. 

   

2)  Do the apices of deictic gestures synchronize with the vowel midpoints of the first 
syllable more than the second syllable of compound words spoken within carrier 
phrases regardless of pitch accent assignment? 

 

H0
2:  There is no significant difference between the mean GA-VM interval for 

syllables in the first syllable position and the mean GA-VM interval for syllables in the 

second position. 

 

3) Is there a significant interaction between pitch accent and syllable position upon the 
degree of synchronization between the apices of deictic gestures and the vowel 
midpoint of pitch-accented syllables of compound words spoken within carrier 
phrases? 

 

 H0
3:  There is no significant interaction between pitch accent (i.e., presence and 

 absence of pitch accent) and syllable position (i.e., first and second position of 

 compound word pairs) on the mean GA-VM interval.   
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4) Are the vowel durations of syllables with contrastive pitch accent longer than for the 
same syllables produced without contrastive pitch accent? 
 
H0

4:  The vowel durations of syllables with contrastive pitch accent are not significantly 
longer than for syllables produced with neutral pitch accent.   

 

 

Experiment 2: 

 

Specific Aim:   

To assess the influence of (i) contrastive pitch accent, (ii) syllable position, (iii) speech 

perturbation via DAF, and (iv) their interaction during the production of utterances by typical 

adults on (a) the degree of synchrony between deictic gestures and speech and (b) the individual 

temporal parameters of deictic gestures (i.e., total gesture time, gesture launch time, and gesture 

return time). 

 

Rationale:   

The primary goal of Experiment 2 was to explore the mechanism responsible for 

temporal synchronization of prosodic stress and gesture.   Accordingly, one core component of 

Experiment 2 differed from the first experiment; the perturbation of speech.  An auditory delay 

of 200 ms was imposed on 50% of the experimental trials to breakdown the temporal fluidity of 

the spoken production.  The rationale for choosing DAF as an independent variable was both 

theoretical and practical.   
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While a finding of increased speech-gesture synchrony for accented syllables compared 

to non-accented syllables is a contribution to existing research and indicates that the speech and 

gesture systems must interact at some level, this finding alone does not indicate where synchrony 

is generated or why synchrony occurs, only that it does.  If we adhere to de Ruiter’s Sketch 

Model (1998, 2000) and the parallel speech production model (Ferreira, 1993; Levelt, 1989), 

then the interaction of the two systems potentially occurs at the level of the phonological encoder 

where prosody is generated.  Yet this explanation seems to fall short.  If an interaction exists at 

the level of the phonological encoder, specifically the Prosody Generator, it is still not clear why 

gestures synchronize with prominent syllables rather than the onset of the lexical item.   

It can also be hypothesized that the potential interaction is not at the level of the 

phonological encoder, but instead at a lower level or motor programming within the speech 

system that is not encompassed by a modular, top-down, linear, linguistic-based model such as 

those models proposed by Levelt (1989) and de Ruiter (1998, 2000).  The implication is that the 

manual gesture and oral speech movements are temporally entrained according to tenets of 

dynamics systems theory.  According to such a view, neurocognitive oscillators produce pulses 

that act as attractors for the most perceptually prominent points of motor behaviors, such as 

finger taps or vowel onsets (Port, 2003; Tuite, 1993).  In this case, it is proposed that the speech 

and gesture system are two internal, coupled oscillators and the vowels of pitch-accented 

syllables act as attractors for the apexes of concurrent manual gestures.  According to this view, 

gestures synchronize with prominent syllables not only as an intrinsic coordination of motor 

behaviors but also to increase salience of, and therefore attention paid to, the prominent syllable 

or lexical item by the communication recipient (Jones & Boltz, 1989; Large & Jones, 1999).  

Greater details of this rationale are provided within the review of the literature. 
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One way to investigate the potential entrainment of speech and gesture is to perturb one 

of the systems and examine the resultant effects on the other system, though few investigators 

have examined the effect of perturbation upon the temporal synchronization of speech and 

gesture (de Ruiter, 1988; Levelt et al., 1985; Mayberry & Jaques, 2000; Mayberry, Jaques, & 

DeDe, 1998; McNeill, 1992). While these studies presented intriguing observations of 

synchronized speech and gesture even in the face of perturbation, no one has conducted a 

systematic study of the influence of speech perturbation upon the quantitative parameters of 

gesture.  Additionally, this is the first study that attempted to examine the mechanism of speech-

gesture synchronization.    

Manipulating the presence and absence of an auditory delay allows one to perturb the 

speech system in order to test the theoretical prediction that a disruption of the spoken 

production will also disrupt manual gesture production secondary to the coupling of these two 

oscillatory systems.  Although there are other ways to perturb the speech system such as 

introducing a physical barrier to speech (Abbs & Gracco, 1984; Folkins & Zimmerman, 1981; 

Gracco & Abbs, 1985; Kelso & Tuller, 1983; Kelso, Tuller, Vaikiois-Bateson, & Fowler, 1984; 

Shaiman, 1989; Shaiman & Gracco, 2002), anesthetizing the articulators (e.g., Ringel, 1970) 

utilizing a metronome to alter the rate of speech (e.g., Cummins & Port, 1998), eliciting speech 

errors (e.g., de Ruiter, 1998), or observing the spontaneous dysfluencies of individuals who 

stutter (Mayberry & Jaques, 2000; Mayberry et al., 1998), DAF was selected as the variable of 

choice not only because of its well-documented effects upon the timing of speech (e.g., Howell 

& Archer, 1984) but also because of the use of DAF in a rudimentary, though influential, study 

of DAF upon the execution of gesture conducted by McNeill (1992).    
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DAF is described by Pfordresher & Benitez (2007, p. 743) as “a constant time lag (that) 

is inserted between produced actions (e.g., piano keypress) and the onsets of auditory feedback 

events (e.g., the onset of a pitch)”.  There are two seemingly oppositional effects of DAF upon 

speakers.  DAF can increase fluency for individuals who stutter (e.g., Harrington, 1998; 

Kalinowski, Stuart, Sark, & Arnson1996).  Conversely, DAF causes a breakdown of fluency in 

typical speakers characterized by decreased speech rate, prolonged voicing, increased speech 

errors (e.g., phoneme exchanges), increased vocal intensity, and increased dysfluencies (e.g., 

prolongations and part-word repetitions) (e.g., Burke, 1975; Howell & Archer, 1984; Stuart, 

Kalinowski, Rastatter, & Lynch, 2002).  Though the perturbation caused by DAF “clearly 

reflects temporal coordination of actions and sound” (Pfordresher & Benitez, 2007, p. 743) and 

involves the temporo-parietal regions of the cortex (Hashimoto & Sakai, 2003), the mechanism 

of the auditory perturbation is not clear at this time. 

 Regardless of the underlying mechanism, the consistent finding that DAF causes 

lengthened articulatory durations was taken advantage of in the current experiment.  

Accordingly, the time required to produce each response utterance was expected to be longer 

when an auditory delay is present relative to when there is no delay.  Mean time error (MTE) 

per trial was measured to validate the effect of DAF upon the temporal execution of speech 

production.  For instance, 17 speakers similar to those that will be enrolled in the current 

experiment produced an average of approximately 4 syllables per second when presented with a 

200 ms auditory delay compared to approximately 6 syllables per second when reading the 

same passage without an auditory delay (Stuart, et al., 2002, p. 2238).  MTE is a measure often 

used to reflect the expected lengthened duration to complete a spoken word production under 

the influence of DAF compared to NAF conditions.  Elman defines MTE as the “mean 
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difference between the time it takes a subject to complete a pattern with DAF and the time it 

takes with normal auditory feedback (p. 109, 1983).  MTE is measured in milliseconds and the 

greater the MTE measurement, the time difference between DAF and NAF conditions.  

Likewise, the temporal variables associated with the production of the corresponding deictic 

gesture were also predicted to be different for DAF conditions compared to normal auditory 

feedback (NAF) conditions.  It is anticipated that MTE would be positive, indicating longer 

utterance duration for DAF trials compared to NAF trials.  Additionally, the mean utterance 

durations for the two conditions were compared using a dependent samples t-test for each 

participant to test the prediction that speech rate is reduced under the influence of DAF. 

The dependent variables for measuring the temporal parameters of the deictic gestures 

during DAF and NAF conditions consisted of total gesture time (ms) and gesture launch time 

(ms) (i.e., time from gesture onset to gesture apex).  These variables were chosen to measure a 

potential temporal disruption of gesture that may result due to the disruption of the speech 

system.  In other words, if there is no lower level entrainment of the speech and gesture 

systems, then the deictic gesture should be executed no differently for DAF and NAF 

conditions.  Alternatively, if the gesture movement is affected by the speech movement timing, 

then gesture launch time and total gesture time would be longer for DAF trials relative to the 

NAF trials.  A significant difference between the mean GA-VM intervals for DAF and NAF 

conditions would indicate that the two systems are not entrained during this task.  The rationale 

for this prediction is that the timing of gesture would be the same in both tasks although the 

onset of the spoken affiliate would be delayed in the DAF condition, thus lengthening the GA-

VM interval.   
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Lastly, the rationale for selecting a 200 ms auditory delay was based upon the ubiquitous 

finding that this duration yields the most consistent breakdowns in the temporal execution of 

speech produced by typical adults (Finney & Warren, 2002; Marslen-Wilson & Tyler, 1981; 

Stuart, et al., 2002), perhaps due to the fact that 200 ms is approximately the length of an 

average syllable.   

 

Experimental Questions and Hypotheses 

 

1) Do the apices of deictic gestures synchronize with the vowel midpoints of pitch-
accented syllables in compound words spoken within short utterances more than the 
same syllables without pitch accent regardless of word position? 

 

H0
1:  There will be no significant difference between the mean GA-VM interval 

for syllables produced with contrastive pitch accent and the mean GA-VM interval for 

the same syllables produced with no contrastive pitch accent. 

   

2)  Do the apices of deictic gestures synchronize with the vowel midpoints of the first 
syllable more than the second syllable of compound words spoken within short 
utterances regardless of pitch accent assignment? 

 

H0
2:  There is no significant difference between the mean GA-VM interval for 

syllables in the first syllable position and the mean GA-VM interval for syllables in the 

second position. 

 

3) Is the mean gesture apex to vowel midpoint interval for DAF conditions significantly 
different that in NAF conditions? 

 



27 

 

H0
3:  There is no significant difference between the mean GA-VM interval for the 

 DAF condition and the mean GA-VM interval for the NAF conditions. 

 

4) Is there a significant interaction between pitch accent, syllable position, and DAF 
upon the degree of synchronization between the apices of deictic gestures and the 
vowel midpoint of pitch-accented syllables of compound words spoken within short 
utterances? 

 

 H0
4:  There is no significant interaction between pitch accent (i.e., presence and 

 absence of pitch accent) and syllable position (i.e., first and second position of 

 compound word pairs) on the mean GA-VM interval. 

 

5) Is total gesture time greater when an auditory delay of 200 ms is imposed while 
producing short utterances compared to when there is no auditory delay? 

 

H0
5:  There is no significant difference between the mean total gesture time 

accompanying utterances produced with an auditory delay and the mean total gesture 

time during narratives produced without an auditory delay. 

 

6) Is gesture launch time greater when an auditory delay of 200 ms is imposed while 
producing short utterances compared to when there is no auditory delay? 

 

H0
6:  There is no significant difference between the mean gesture launch time 

accompanying utterances produced with an auditory delay and the mean gesture launch 

time during narratives produced without an auditory delay. 
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7) Are the durations of utterances spoken under the influence of DAF longer than the 
durations of the same utterances produced without DAF? 
H0

7:  The durations of utterances in the DAF condition are not significantly longer than 
the utterances in the NAF condition.   
 

8) Are the vowel durations of syllables with contrastive pitch accent longer than for the 
same syllables produced without contrastive pitch accent? 
 
H0

8:  The vowel durations of syllables with contrastive pitch accent are not significantly 
longer than syllables produced with neutral pitch accent.   
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2.0  LITERATURE REVIEW  

 

Before discussing the temporal relationship of speech and gesture, a brief overview of gesture 

and prosody is provided.  Next, the key hypotheses and models of gesture production are 

discussed with their assertions regarding speech/gesture synchronization.  An integration of these 

hypotheses/models of gesture production with models of speech production that incorporate a 

stage of phonological encoding, followed by a discussion of how the predictions could be 

explained from a dynamic systems perspective is then presented.  Lastly, variables that are 

hypothesized to affect the temporal synchronization of speech and gesture are reviewed. 

Investigations of the role of prosodic prominence and perturbation on the temporal 

synchronization of speech and gesture are the primary focus of this critical review.   
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2.1 GESTURE IDENTIFICATION AND CLASSIFICATION 

 

2.1.1 What are Gestures? 

 

One of the first methodological obstacles confronted in gesture literature is a discrepancy of 

taxonomy.  Gestures are typically defined as arm and hand movements that are temporally 

coordinated with speech (Goldin-Meadow, 1999; McNeill, 1992). Gestures do not include 

conventional and rule-bound movements found in sign languages.  On the contrary, the majority 

of gestures are arbitrary and variable in form.  In addition, gestures do not include nonverbal 

elements such as facial expressions or self- and object-touching movements.  Most often in the 

literature, gestures consist only of manual movements and not extraneous movements of the head 

(i.e., nodding) or other body parts, though some investigations of gesture do include other types 

of body movements such as leg, foot, head, and torso movements.   
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2.1.2 What are the types of gestures? 

 

In general there are two broad classifications of hand movements that accompany speech.  There 

are those gestures that do not relate to the semantic meaning of the verbal message and those that 

do relate to the semantic meaning of the verbal message.  These will be referred to as marking 

movements and meaningful movements, respectively.   The various classification labels, 

citations, and examples for these gesture types are described in Tables 1 and 2.  

The most frequently studied gesture types are those in the meaningful movement 

category such as deictic and iconic gestures. Deictic gestures are pointing gestures that can be 

used to point to both concrete and abstract referents.  Deictic gestures have a relatively fixed 

manual construction in Western culture which consists of extending the index finger with the 

other three fingers folded back to the palm.  Deictic gestures are also the first type of gesture to 

be used by children.  Although the present investigation focuses on the use of deictic gestures, 

other types of gestures are described to provide background information for the literature review. 

  Iconic gestures are movements that carry some semantic meaning related to the 

accompanying spoken message.  A similar gesture type is a metaphoric gesture.  Metaphoric 

gestures carry more abstract semantic meaning in contrast to iconic gestures that “represent body 

movements, movements of objects or people in space, and shapes of objects or 

people...concretely and relatively transparently” (Goldin-Meadow, 2003, p. 7).  Yet the 

distinction between degree of iconicity for iconic and metaphoric gestures is ambiguous. As 

Krauss and Hadar state (1999, p. 100), simply because the distinction is widely accepted does not 

make it useful.  For that reason, iconic and metaphoric gestures are often collapsed into a single 
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category and are referred to as representational or lexical gestures.  Consequently, in this 

document both iconic and metaphoric gestures are defined as representational gestures.  

Representational gestures are idiosyncratic and have no fixed form or movement.  A single 

movement of a representational gesture may hold multiple meanings as well.   

It is also important to note that while a representational gesture is related to the semantic 

content of the accompanying speech, the gesture need not have a one-to-one correspondence to a 

single word.  In fact, it is common for a representational gesture to offer additional information 

that is not present in the speech stream (e.g., spreading hands wide in front of you to indicate the 

concept of large while stating he gave me a present).  Likewise, an individual can use a deictic 

gesture to point to indicate information that is not present in the speech stream (e.g., pointing to 

the door while stating he went that way).  Conversely, a gesture can directly match the 

information communicated in the speech and be redundant with the spoken message (e.g., 

pointing towards the ground while stating the elevator went down).   

Marking gestures are less often investigated due to the assumption that they do not carry 

semantic meaning and are therefore less integrated with the speech system. 

Marking gestures are most often referred to as beat gestures.  Traditionally these gestures are 

thought to mark the rhythm of an utterance (Efron, 1941; Ekman & Freisen, 1972; McNeill, 

1992).  However, as Feyereisen (2000, p. 150) states “evidence of their connections with prosody 

in normal or brain-damaged subjects is still lacking”.  Beat gestures are composed of short, quick 

movements and are the last type of gestures to emerge in development due to the presumed 

connection to higher-level discourse formulation (McNeill, 1992).  Although marking gestures 

are thought to correspond with the rhythm of speech, they are not the focus of the present project 

because of the difficulty of controlling their presence in discourse.  The goals of the present 
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project will be extended to more natural spontaneous speech and a variety of gestures in the 

future.   

 
Table 1 Gesture Taxonomy: Marking Movements 

Gesture Description Gesture Type Citation 
Short and fast movements of the 
hands that mark the rhythm of 
speech or emphatically mark a 
lexical item or topic change. 

Beats 
 

nondepictive speech 
markers 

 
batons 

 
 

motor 

McNeill, 1992 
 

Rime & Schiaratura, 1991 
 

Efron, 1941; Ekman & 
Freisen, 1972 

 
Krauss, Chen, & 
Gottesman, 2000 
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Table 2 Gesture Taxonomy: Meaningful Movements 
Gesture Description Gesture Type Citation Example 
Movements of the hand 
or finger that point 
toward an object that is 
either concrete or 
abstract. 

Deictic 
 

Ekman & Friesen, 1969; 
McNeill, 1992; Rime & 
Schiaraturan, 1991;  

Pointing to a ball 
while requesting. 

 
Pointing in the 
direction the event 
being described. 

Movements that reflect 
the content of the verbal 
output.   Often indicates 
qualities of an object, 
person, or action such as 
movement, size, shape, 
and position.   

Iconic 
 
 

symbolic 
 

 
illustrators 

 
 

representational 
 
 

conversational 
 

McNeill, 1992; Rime & 
Schiaratura, 1991 

 
Acredolo & Goodwyn, 1988; 
2002 

 
Cohen, 1977; Ekman & 
Friesen, 1969 

 
Iverson, Capirci, 
Longobardi, & Caselli, 1999 

 
Krauss, Dushay, Chen, & 
Rauscher (1995) 

Rotating finger while 
describing a spinning 
motion.   

 
Using an opening and 
closing motion of the 
hand in reference to a 
bird’s beak.   

Movements that reflect 
some abstract concept in 
the accompanying 
speech.  They are image 
based, but abstract in 
nature. 

Metaphoric McNeill, 1992 Using a cupped hand 
as a presentation of a 
question (McNeill, 
1992). 

Movements that may or 
may not accompany 
speech but provide 
information to a listener 
based upon a shared, 
symbolic meaning of the 
movement.   

Emblem 
 
Symbolic 

 
 
 

Goldin-Meadow, 2003 
 

Rime & Schiaratura, 1991; 
Acredolo & Goodwyn, 1988 

 
 

Placing an extended 
index finger in front 
of your puckered lips 
to communicate “be 
quiet” 

Movements that reflect 
either the concrete or 
abstract content of the 
accompanying verbal 
output. 

Lexical Krauss, Chen, & Gottesman, 
2000; Krauss & Hadar, 1999 

Include examples for 
both iconic and 
metaphoric gestures. 
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2.1.3 What are the components of gesture? 

Once a manual movement is identified as a gesture, the segments that comprise a gesture can 

also be coded.  The initiation and termination of a gesture can be identified but other points 

within a gesture can be coded as well.  The gestural stroke is the portion of the gesture that 

corresponds to the most meaningful part of the movement and is also characterized by the 

greatest extension of movement (McNeill, 1992, 2005).  Before and after a gestural stroke, the 

manual movement may pause, presumably to retain synchronization with the lexical affiliate 

(Krauss et al., 1996; McNeill, 1992).  These are referred to as the pre-stroke hold and the post-

stroke hold, respectively.  A gestural stroke is obligatory while the gestural holds are not.  A 

gestural retraction phase, when the hand returns to a rest position, completes the movement to a 

termination point.   

One other gestural segment, a gesture apex, has been coded in recent investigations.  A 

gesture apex is roughly synonymous with a gestural stroke but differs in the measurement 

procedure.  An apex is coded according to movement parameters such that the point of maximum 

extension of the hand or fingers is considered the apex.  If the apex is held, one can also measure 

the initiation, hold time, and termination of the apex.  The gesture apex is the dependent variable 

of gesture for this project.   
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2.2 OVERVIEW OF PROSODY 

 

2.2.1 What is prosody? 

 

Providing a comprehensive discussion of the prosodic characteristics of speech is well beyond 

the scope of this manuscript.  However, it is important to provide some background information 

to clarify the role of prosody as it pertains to the objectives of the current project.  Prosody 

encompasses the suprasegmental elements of speech, such as stress, rhythm, rate of speech, 

pauses, melody, and intonation (e.g., Crystal, 1975; Kent, 1997; Lehiste, 1970).  Prosody is the 

reason that a single utterance can be produced in a countless number of ways and is the source of 

the saying it’s not what you say, but how you say it.  Prosody can provide cues for the emotional 

characteristics of an utterance and give an indication of the communication act of the utterance 

(e.g., declarative statement vs. question).  The prosodic characteristics of speech are not confined 

to a single phonologic or syntactic unit and therefore prosodic variables can be found within 

units of syllables, words, and utterances.   

Because prosody breaks speech down into smaller components and prosodic cues can act 

as perceptual cues, prosody is also a fundamental construct for spoken word recognition for 

infants, children, and adults (e.g., Gerken, Juszyk, & Mandel, 1994; Grosjean & Gee, 1987; 
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Hirsh-Pasek, Nelson, Jusczyk, Cassidy, Druss, & Kennedy, 1987).  Children also develop the 

ability to control the prosodic characteristics of speech at an early age, even before they master 

control of segmental elements (Crystal, 1979; MacNeilage & Davis, 1993; Snow, 1994).  

Prosody can also affect speech development.  For instance, less salient syllables (i.e., weakly 

stressed syllables) are often omitted by young children (Gerken, 1991; Schwartz & Goffman, 

1995; Snow, 1998).   

All anatomical structures involved in speech production, (i.e., respiratory, pharyngeal, 

laryngeal, nasal, oral) are also involved in the modulation and production of prosody.  As such, 

there are a variety of ways to measure prosody, though no variable consistently reflects prosodic 

changes in every production.  Furthermore, many variables are proposed to correlate to 

perceptual judgments of prosody, though there is much disagreement in the literature regarding 

the reliability and validity of these measures.  Most often, the percept of prosody is composed of 

quantifiable acoustic correlates including variations in fundamental frequency (f0), amplitude, 

and segment/syllable duration and pause times (Emmorey, 1987; Kent, 1997; Kent & Read, 

1992).  Additionally, prosody can be measured physiologically using kinematic variables such as 

jaw displacement and velocity profiles of lip and jaw movement (Dromey & Ramig, 1998; 

Goffman & Malin, 1999; McClean & Tasko, 2002, 2004; Schulman, 1989) and even rib cage 

displacement (Connaghan, Moore, Reily, Almand, & Steeve, 2001).  Likewise, almost all 

breakdowns in communication, whether they are higher-level deficits such as language 

impairments in children and aphasia in adults or lower-level deficits such as dysarthria, are 

accompanied by some element of abnormal prosody and the corresponding percept of unnatural 

speech.   
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Prosody is a component of all levels of the speech and language system.  For instance, 

parameters of prosody have been associated with the level of discourse (e.g., emotional 

intonation patterns), syntax (e.g., phrase marking), phonology (e.g., stress assignment), and 

articulation (e.g., rate of speech) (Emmorey, 1987; Hird & Kirsner, 1993; Levelt, 1989).  

Because prosody interfaces with both linguistic and phonologic levels of processing, prosodic 

variables provide a unique opportunity to examine the point of translation between higher-level 

linguistic processes and lower-level phonologic and articulatory processes.  Most importantly for 

the current discussion, the accessed prosodic structure representation is hypothesized to be the 

conduit between higher and lower levels of speech and language planning.  As Wheeldon (2000) 

states, “the claim is that, following the generation of the syntactic structure of an utterance, an 

intervening prosodic structure is generated that groups words into prosodic units and that it is 

these prosodic units which guide the generation of the phonological form of the utterance” (p. 

249).  Thus, the generation of prosodic structure is critical in converting syntactic representations 

to executable speech.   

Though what are the actual units of prosodic structure?  The past two to three decades 

have resulted in a surge of interest prosodic theory in the field of linguistics.  A number of 

individuals have led the way on developing theories in relation to prosodic structure (e.g., 

Beckman & Edwards, 1994; Halle & Vergnaud, 1987; Hayes, 1986, 1989, 1995; Gussenhoven, 

2004; Liberman & Prince, 1977; Nespor & Vogel, 1986; Pierrehumbert, 1980; Selkirk, 1980, 

1984, 1986, 1995, 1996).  However, there are discrepancies within the linguistic literature 

regarding the number and type of prosodic units.  The prosodic constituents proposed by 

Elisabeth Selkirk (1984) are adopted here given that these constituents are also incorporated 

within the models of speech production (Ferreira, 1993; Levelt, 1989) that will be employed in 



this investigation.   For a thorough tutorial on differing viewpoints on the units of prosodic 

structure please refer to Shattuck-Hufnagel and Turk (1996).   

Prosodic constituents are ordered in a hierarchical structure according to a Strict Layer 

Hypothesis.  The Strict Layer Hypothesis asserts that a prosodic unit is composed of one or more 

units that are in the domain immediately subordinate to that level.  The constituents proposed by 

Selkirk include the utterance (U), intonational phrase (IPh), phonological phrase (PPh), prosodic 

word (PWd), foot  (ω), and syllable.  Refer to Figure 4 for an example of the layers of the 

prosodic hierarchy.    

 

Figure 4 Prosodic hierarchy. Adapted from “Creation of prosody during sentence production” by 
F. Ferreira, 1993, Psychological Review, 100, p. 236.  
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The dominating unit of the prosodic hierarchy is the utterance (U) which is made up of 

one or more intonational phrases (IPh).  Intonational phrases are thought of as idea units and are 

defined by prosodic boundary cues such as pausing, pitches resetting, and syllable lengthening 

(Gerken & McGregor, 1998).  As we will discuss later, pitch accent is assigned at the level of the 

intonational phrase.  The subordinate unit to an intonational phrase is a phonological phrase 
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(PPh).  Phonological phrases are most similar to the structure of syntactic phrases (e.g., noun 

phrases and verb phrases), though they often do not have a one-to-one correspondence to 

syntactic boundaries.  Selkirk summarizes the composition of phonological phrases according to 

the X-max algorithm (Selkirk, 1986).  The X-max algorithm states that the syntactic structure is 

scanned and the information up to and including the right bracket of a syntactic phrase is 

included in a phonological phrase.   

Prosodic words (PW) are the next level of the prosodic hierarchy.  In the simplest terms, 

a prosodic word can be thought of as a lexical (i.e., content) word plus any adjacent grammatical 

morphemes (i.e., function words).  For example, the phrase the ocean forms only one prosodic 

word.  Metrical stress is assigned at the level of the prosodic word.  There are also constraints for 

the stress patterns assigned to a prosodic word.  These constraints are reflected in the foot (ω) 

structure of the prosodic word, which is the next level of the prosodic hierarchy.  In American 

English, metrical feet are either trochaic or monosyllabic.  A trochaic foot consists of a strong 

syllable followed by a weak syllable and a monosyllabic foot consists of a single syllable which 

can be either weak or strong.  Linguists have posited that iambic feet (i.e., a weak syllable 

followed by a strong syllable) are not permissible in American English but that it is permissible 

for some syllables to be unfooted.  An unfooted syllable descends from a prosodic word rather 

than a foot.  Furthermore, prosodic words in American English can have only two unfooted 

syllables, one on either edge.   

Consequently, syllables are the smallest and final constituent of the prosodic hierarchy, 

though even a syllable can be broken down into its phonetic components.  The syllable is 

comprised of an onset, nucleus, and coda (i.e., the final phoneme of the syllable).  Together the 

nucleus and coda are referred to as a rime.  The nucleus is obligatory while the onset and coda 
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are not. As discussed above, each individual syllable can be footed or unfooted and can be weak 

or strong in metrical stress assignment.  Each syllable can also be pitch-accented within an 

intonational phrase.  Now let’s turn to discuss prosodic stress in more detail.     

 

2.2.2 What is prosodic prominence? 

At the outset, it is important to note that there is a distinction to be made between prosodic 

prominence and intonation.  Bolinger (1958) was among the first to propose a greater 

specification of intonation across an utterance.  Bolinger and other contemporary linguists (e.g., 

Cruttenden, 1997; Gussenhoven, 2004; Hayes & Lahiri, 1991; Ladd, 1996; Liberman, 1975; 

Pierrehumbert, 1980; Pierrehumbert & Beckman, 1988) discuss this distinction at length, even 

though terms like prominence, stress, accent, focus, rhythm, and intonation are still often used 

interchangeably both in research and clinical arenas.  The difference between prominence and 

intonation is discussed given this frequent confusion of terminology.   

Prosodic prominence is typically characterized by stress.  Most often, stress is thought of 

as a dichotomy, i.e., a syllable is either stressed (i.e., strong) or unstressed (i.e., weak).  Several 

types of stress have been posited including metrical (i.e., lexical) stress, sentential stress, and 

contrastive stress (i.e., emphatic stress, also termed accent).  A syllable can be assigned stress at 

a lexical level as metrical stress or at a higher level of prominence as pitch accent.   

Prosodically prominent syllables are temporally organized to create a rhythmic structure 

for speech production.  That is, stressed and unstressed syllables are successively arranged in 

such a way that a rhythm (i.e., meter) of speech is attained. Languages vary with respect to the 
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ways in which sequences of syllables are assigned stress value.  Specifically, English has been 

described as a stress-timed, isochronous language, in which stress tends to be distributed evenly 

across periodic intervals in accordance with a preferred metrical pattern of alternating strong (S) 

and weak (W) syllables (Abercrombie, 1967; Hayes, 1985; Lehiste, 1977; Liberman & Prince, 

1977; Nespor & Vogel, 1989; Pike, 1945; Selkirk, 1984).   

In contrast, intonation is the melody of an utterance rather than the rhythm of an 

utterance.  An utterance can be produced multiple times with the same stress and rhythm pattern, 

but with very different intonation patterns.  The primary function of intonation is to convey 

communicative information such as providing the distinction between a declarative statement 

and a question (Ladd, 1980, 1996) and relaying the emotion associated with an utterance.  Levelt 

states that intonation “expresses a speaker’s emotions and attitudes” and “is a main device for 

transmitting the rhetorical force of an utterance, its obnoxiousness, its intended friendliness or 

hostility” and “signals the speaker’s intention to continue or to halt, or to give the floor to an 

interlocutor” (1989, p. 307).  Also in contrast to prominence, intonation is related to changes of 

pitch rather than temporal changes of phonetic segments.  

With that being said, let’s return to discussing two specific types of prosodic prominence, 

stress and pitch accent.  Syllables are stressed by increasing the effort involved in producing the 

syllable.  Hence, stressed syllables are correlated to changes in duration, amplitude, and/or 

fundamental frequency of a syllable (Lehiste, 1970).  More recently, differences in spectral tilt 

between stressed and unstressed syllables were also measured (Sluijter, 1995; Sluijter & van 

Heuven, 1997).  Additionally, vowel quality differs for stressed and unstressed syllables.  

Stressed syllables are composed of full vowels compared to unstressed syllables that are usually 

composed of reduced, centralized vowels.  These acoustic changes lead to an increase in 
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perceptual salience or prominence.  As stated earlier, no single acoustic variable directly and 

consistently corresponds to the percept of stress, though durational measures tend to be the best 

acoustic predictor of stress.  Research has demonstrated that durations of stressed syllables are 

significantly longer (65-100%) in duration than unstressed syllables (Fry, 1955; Kent & Reed, 

1992; Liberman & Prince, 1977; Rusiewicz, Dollaghan, & Campbell, 2003).  Stress also tends to 

be acoustically realized within the nucleus (i.e., vowel) of a syllable (Edwards, Beckman, & 

Fletcher, 1991; de Jong 1991, 2004; Harrington, Fletcher, & Roberts, 1995; Summers, 1987).   

Individual lexical items hold intrinsic metrical stress (i.e., lexical stress).  Metrical stress 

is “a structural, linguistic property of a word that specifies which syllable in a word is in some 

sense stronger than any of the others” (Sluijter & van Heuven, 1996, p. 2471) and is an “abstract 

feature on the level of the lexicon” (van Kuijk & Boves, 1999, p. 96; see also Kent & Read, 

2002). The dominant stress pattern of English is a strong-weak stress pattern, i.e., a trochaic 

pattern.  An example of a trochee is puppet.  Conversely, an iambic stress pattern consists of a 

weak syllable followed by a strong syllable (e.g., baboon).    

A second type of prosodic prominence is pitch accent.  Unlike metrical stress, which is 

associated with individual words, pitch accent is assigned to syllables at the intonational phrase 

level.  It is important to note, that like stress and rhythm, pitch accent assignment varies 

considerably across languages.  Only pitch accent in American English is summarized here. 

Pitch accent is often discussed as a prominence marker as well as a landmark for the 

creation of an intonational contour.  The aims of the current project involve the former function 

of pitch accent.  Ferreira (1993, p. 238) nicely summarizes the definition of pitch accent as a 

“general term to describe the presence of some sort of prosodic prominence on an element of a 

sentence”.  She continues to state that “a pitch accent affects the likelihood of an intonational-
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phrase boundary” (p. 238).  Additionally, pitch accent “expresses the prominence of a concept, 

the interest adduced to it by the speaker, or its contrastive role” (Levelt, 1989, p. 307).  Also, 

pitch accent “is a phonetic feature, with measurable correlates in production, acoustics, and 

perception…in principle, each word, including monosyllabic function words, can be accented” 

(Van Kuijk & Boves, p. 96; see also Kent & Read, 2002).  Hence, a syllable can be stressed or 

unstressed but then can also be accented or unaccented, though typically only stressed syllables 

are accented in spontaneous conversation.  Pitch accent, by definition, is characterized by either 

a quick rising or falling of pitch, though few researchers have actually conducted acoustic 

analyses of the phonetic realization of pitch accent (e.g., Grabe, 1998; Neijt, 1990).  In fact, there 

is not only evidence that accented syllables have increased vowel durations (Beckman & Cohen, 

2000; Cooper, Eady, & Mueller, 1985; de Jong, 2004; Turk & White, 1999), but also that pitch 

accent is associated with increased rime duration, even when pitch accent is placed on a normally 

unstressed syllable (Sluijter & van Heuven, 1995).  Thus, duration is an acoustic correlate of 

both metrical stress and pitch accent.  Campbell summarizes, “durational lengthening serves as a 

cue to stress and focus (i.e., accent) marking in speech” (2000, p. 322).   

There are numerous pitch accent intonational patterns such as H* (high), L* (low), H*L 

(high-low), and L*H (low-high).  In these notations, the asterisked tone is the pitch-accented tone 

and it may be preceded or followed by a second rising or falling tone. A number of factors come 

into play when designating a syllable as a pitch accented syllable.  Most often it is a stressed 

syllable that is given pitch accent.  There is usually only one syllable that is accented in an 

intonational phrase (Beckman, 1986; Hayes, 1995; Gussenhoven, 1991, 2004; Shattuck-

Hufnagel, 1995).  Another variable that determines whether or not a syllable is assigned pitch 

accent is the context and focus of the utterance.  Pitch accent is more likely to be assigned to new 
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or contrastive lexical items in an utterance rather than known lexical items.  When a sentence is 

produced, the greatest amount of prominence will be given to the pitch accented lexical item, 

regardless of the metrical structure of the remainder of the utterance.  As Levelt (1989, p. 305) 

states, “pitch accent will overrule everything else” during spoken language planning and 

execution.  Pitch accent is not to be confused with idiosyncratic emotional changes in f0 such as 

an increase in f0 associated with excitement.  However, it is true the subjective distribution of 

pitch accent makes the empirical study of the phenomenon difficult, especially for the acoustic 

correlates of pitch accent in spontaneous conversational speech.   In fact, this individual and 

context dependent assignment of pitch led Bolinger to write his 1972 document aptly titled, 

Accent is Predictable (If You’re a Mind Reader).  As a result, it is critical that the location of 

pitch accent be controlled during empirical study.   

Consequently, that is why contrastive pitch accent was chosen as the specific independent 

variable for the current project.  Contrastive pitch accent is also commonly referred to as 

contrastive or emphatic stress.   Ellis Weismer and Hesketh (1998, p. 1445) state that the 

function of contrastive stress is to act as a “focusing device, with its placement within the 

utterance being more dependent upon situational or pragmatic factors than grammatical or 

semantic factors”.  A lexical item is given contrastive accent when it is novel or in opposition to 

the context or line of discourse.  For instance, Speaker 1 may ask, did the running back score the 

touchdown?, while Speaker 2 clarifies, no, the QUARTERBACK, scored the touchdown.  In this 

case the contrast is between the types of players.  Pitch accent is assigned to designate the lexical 

item as more important because of its contrastive role.  Manipulation of contrastive conditions 

allows for predictable assignment of pitch accent.   

 



46 

 

2.2.3 Pitch Accent and the phonological encoder 

 

The concept of phonological encoding was defined by Levelt (1989) as the process by which a 

lemma is translated into a phonetic plan as a string of pronounceable syllables via 

morphological, metrical, and segmental representations of the lemma.  Levelt also states that the 

duration of syllables is set at this stage.  A great deal of interest has been generated on the role of 

phonological encoding in recent years, though the many responsibilities of the phonological 

encoder are not of relevance for this project. This discussion focuses solely on the creation of 

pitch accent within Prosody Generator of the phonological encoder.  This is one of the few 

components of speech production that Levelt theorizes about which span a unit larger than a 

prosodic word.  However, his theory pitch accent assignment across an utterance was largely 

unsubstantiated.   Fortunately for the purposes of this series of experiments as well as for 

consistency with the models described previously, Ferreira (1993) has applied data from her 

work with prosody to broaden Levelt’s 1989 model to span the planning of multiword utterances.  

Moreover, her study was largely based on contrastive pitch accent protocols.  Ferreira’s study 

and the mechanism of contrastive pitch accent placement according to Ferreira and Levelt are 

jointly reviewed. 

Ferreira (1993) conducted four experiments that demonstrated that prosodic structure is a 

psychological reality in sentence production and that the processing of prosodic structure is 

independent of the processing of phonetic segments.  Of these four experiments, two employ a 

contrastive stress paradigm which consisted of undergraduate students (n=10 in each experiment) 

silently reading a short sentence on a card and then reading it aloud.  Each of the ten sentences 
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were produced both in a neutral condition without contrastive stress and in a prominent 

condition with contrastive stress.  The participants were instructed to emphasize the capitalized 

word in the prominent condition and were also provided a leading question that provided 

additional cause to emphasize the target item.  An example sentence pair is “The crate contains 

the missing book” compared to “The CRATE contains the missing book”.  Findings included an 

increase in duration of both the target word and following pause in the prominent condition 

relative to the neutral condition.  Ferreira also manipulated intrinsic word duration in the second 

contrastive stress paradigm so that a word with a vowel of long duration (e.g., mouse) was 

compared to vowel of short duration (e.g., cat) in both prominent and neutral conditions.  

Manipulation of intrinsic word duration yielded the finding that “word and pause durations trade 

off so as to respect the total duration of the interval allocated to a word” (p. 245).  That is, word 

duration was increased in the prominent conditions regardless of intrinsic words duration, though 

the following pause duration actually decreased in the prominent condition when intrinsic word 

duration was long. 

Ferreira (1993) elegantly translated these findings to provide greater specification to 

Levelt’s (1989) model of speech production.  As mentioned earlier, Levelt specifies the 

production processes for single lexical items (i.e., prosodic words) to a greater degree than for 

sentential contexts.  According to Levelt (1989) prominence markers, in our case pitch accent for 

the purpose of contrastive emphasis, are first designated within the conceptualizer during 

planning of the preverbal message prior to retrieval of a particular lemma for that discourse 

representation.  A prominence marking is converted to a pitch accent and related acoustic 

parameters in later processing within the Formulator.   



Prosodic features are planned specifically within the Prosody Generator within the 

phonological encoder within the formulator (see Figure 5).  Levelt states that the Prosody 

Generator is a “processing component that computes, among other things, the metrical and 

intonational properties of the utterance” (p. 365).  The Prosody Generator is responsible for the 

creation of the prosodic hierarchy constituents (e.g., prosodic words, phonological phrases, etc.) 

and the metrical grid for these constituents across the entire utterance.  Extra beats are assigned 

to a lexical item if it is designated as having pitch accent after its metrical stress is retrieved from 

the lexicon.  Ferreira (1993) modifies Levelt’s proposal to further specify that a metrical grid “is 

constructed for the sentence to represent its overall stress and timing pattern and to reflect the 

changes in its metrical pattern brought about by the sentential context:” (p. 247). 

 

 

Figure 5 Stages of phonological encoding according to Levelt (1989).  Adapted from Levelt, 
W.J.M. (1989). “Speaking: From intention to articulation” by W.J.M Levelt, 1989, Cambridge: 
MIT Press, p. 158. 
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Stress and timing across an utterance are affected by a number of elements according to 

metrical grid proposals originally laid out by Selkirk (1984) and as adapted by Levelt (1989) and 

Ferreira (1993).  Let’s utilize one of Ferreira’s examples for discussion purposes.  Her example 

utterance is the girls argued.  First, the level of stress on the metrical grid is dependent upon 

metrical stress assignment.  In our example, the first word is a function word and does not 

receive metrical stress, but rather is thought to cliticize with an adjacent content word.  The 

second word, girls, is a one-syllable content word which does have metrical stress.  The final 

word, argued, is a two-syllable content word that is a trochee with metrical stress with first 

syllable metrical stress assignment.   

 

 x x 
x x x x 
x x x x 

the  girls  ar gued 

 

According to Ferreira’s findings (1993), the second element that affects stress and timing across 

an utterance is prosodic constituent boundaries.  That is, words in the final positions of prosodic 

constituents (e.g., prosodic words, phonological phrases, intonational phrases, utterances) receive 

additional stress.  The boundaries in our example can be notated as the following (PWd=prosodic 

word; PPh=phonological phrase; IPh=intonational phrase; Utt=utterance):  

 

((((the girls) PWd) (argued) PWd) PPh) IPh ) Utt 
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An extra beat is added for each boundary.  In the case of multisyllabic words, extra stress is 

added to the already metrically stressed syllable. The first word has no prosodic constituent 

boundaries, the second word has two boundaries and the final word has four boundaries.  The 

grid below reflects the alterations that result. 

  x 
  x 
 x x 
 x x 
 x x 

x x x x 
x x x x 

the  girls  ar gued 

 

 Ferreira also proposes that prosodic constituent boundaries affect the assignment of silent 

demibeats.  Selkirk (1984) initially postulated that silent demibeats were assigned at the right 

boundary of prosodic, rather than syntactic, constituents.  Silent demibeats correlate to durational 

timing features in contrast to stress assignment indicated by beats.  Hence a beat x is added 

vertically, and a demibeat x is added horizontally for every boundary.  For multisyllabic words, 

the silent demibeats are added to the final syllable, regardless of its metrical stress assignment 

due to the acoustic-phonetic phenomenon of syllable final lengthening.  The modified grid is as 

follows: 

  x 
  x 
 x x 
 x x 
 x x 

x x                      x x 
x xxx x xxxxx 

the  girls  ar gued 

  

 Pitch accent is realized by placing additional stress and lengthened segment duration for 

the target word above and beyond the stress of any other word in the utterance according to the 

pitch-accent prominence rule (Levelt, 1989; Selkirk, 1984).  Even though it would seem that 
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some look-ahead mechanism is necessary to assure that the syllable is designated as having more 

prominence than later syllables, Levelt proposes that pitch accent can be assigned incrementally 

like all other processes in his speech production model.  He states that once stress is assigned to 

the pitch accented syllable, then all subsequent syllables will be assigned stress that is less than 

that level.  Ferreira does not address this issue.  However, the assignment of stress and timing 

based upon metrical stress and prosodic boundaries may be difficult to reconcile with 

incremental assignment of pitch accent prominence if much greater prominence is placed on a 

later word due to the number of boundaries it has in comparison to early words.  This is the case 

in our example where the final word has two more beats and demibeats than the preceding word 

due to prosodic constituent boundaries.  For instance, if contrastive accent is placed on the 

second word of our example, girls, then greater prominence is placed on that word than any other 

word.  In order to be consistent with Ferreira’s model of prosody processing in utterances we 

will assume that prosodic constituent boundaries determine the initial metrical grid but that a 

look-ahead mechanism is necessary to assign greater stress to an accented word when the most 

prominent syllable is in a later incremental position.  In other words, the metrical grid for an 

utterance is constructed according to the metrical structure accessed in the lexicon, modified 

given the prosodic constituent boundaries, then the additional beats required to make the pitch 

accented word the most prominent of the utterance are assigned.  Therefore, if contrastive accent 

is placed on girls in reference to the question, Who was arguing?, the grid would look like:   
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 x  
 x x 
 x x 
 x x 
 x x 
 x x 

x x                      x x 
x xxx x xxxxx 

the  girls  ar gued 

 

Thus, de Ruiter’s model for gesture production processing was adapted using the parallel 

speech production component of the model to incorporate Ferreira’s findings and hypotheses of 

the generation of prosodic prominence across an utterance.  de Ruiter’s hypothesis that gesture 

and speech production processes do not interact below the level of the conceptualizer remains the 

same following this modification.  Though, the enhancement of the processes responsible for the 

assignment of pitch accent allows for greater validity and subsequent explanatory worth for the 

manipulation of prosody within the present investigation. 

This summary has provided a cursory and admittedly over-simplified review of prosody 

and prosodic prominence.  Notably, these distinctions between different types of prosodic 

prominence, as presented within this section, rarely are made in the literature pertaining to the 

effect of prosody upon the timing gesture.  Also, the construction of rhythm and assignment of 

pitch accent across an utterance has not been incorporated into any model of gesture production.  

In fact, few theorists have considered the effect of prosodic prominence at all upon the 

production of gesture and opposing views on the role of prosody exist among their hypotheses.  

The next section presents these hypotheses/models of gesture production and their statements 

about the temporal relationship of speech and gesture.  
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2.3 THEORIES OF GESTURE PRODUCTION 

 

In order to complete a systematic examination of the relative timing of gesture and speech, it is 

also essential to approach the research questions within a theoretical framework, rather than 

relying on anecdotal observations.  However, rarely have researchers accomplished this goal.  To 

be fair, this is most likely due to the absence of testable models of gesture production to use as a 

foundation for their research questions.  Until fairly recently, theories of gesture production have 

consisted of nonspecific statements and assumptions in contrast to a more desirable predictive 

model with explicit points of interaction between the speech and gesture systems and subsequent 

effects upon the temporal expression of gesture in relation to the speech signal.  Indeed, both 

types of models, those with stringent predictions and those with more general hypotheses bring 

something to scientific progress and innovation.  In this section, a total of five theories and 

models of gesture production are reviewed.  This is not an exhaustive review of every theory or 

model of gesture production in the literature.  There are a number of other thought-provoking 

accounts of the production and purpose of gesture that are not included in this review.  The 

majority of these authors conjecture that gesture and speech are completely independent 

processes (e.g., Butterworth & Beattie, 1978; Butterworth & Hadar, 1989; Feyereisen & 

deLannoy, 1991; Hadar, 1989; Hadar, Wenkert-Olenik, Krauss, & Soroker, 1998) and others are 
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concerned only with the shared linguistic formulation processes of speech and gesture (e.g., Kita 

& Özyürek, 2003; Morsella & Krauss, 2004).  Accordingly, only those theories and models that 

are dependent upon the tight temporal synchrony of speech and gesture are presented.  The first 

model, the Sketch Model (de Ruiter, 1998, 2000) provides the foundation for the null hypothesis 

of the current investigation.   Following the discussion of the Sketch Model, a brief synopsis of 

the Growth Point Theory (McNeill, 1985, 1987, 1992, 2000, 2005), the Rhythmical Pulse 

Hypothesis (Tuite, 1993), the Facilitatory Model (Krauss, Chen, & Chawla, 1996; Krauss, Chen, 

& Gottesman, 2000), and the Entrained Systems Model (Iverson & Thelen, 1999) is presented.   

 

2.3.1  Sketch 

de Ruiter’s (1998; 2000) Sketch Model, is perhaps the best-specified, though least tested model 

of gesture production to date.  According to the Sketch Model, the primary purpose of gesture is 

to communicate to the recipient, similar to McNeill’s stance.  In contrast to McNeill, the model 

does not rule out the ability of gesture to enhance lexical retrieval and formulation processes for 

the speaker, as Krauss and colleagues counter (Krauss, Chen, & Chawla, 1996; Krauss, Chen, & 

Gotttesman, 2000).  de Ruiter is among the first to address the need for specific points of 

interaction between gesture and speech production along with the consequences upon the 

synchronization of the two.  In spite of the headway made by de Ruiter, there are both theoretical 

notions from others in the gesture literature as well as sparse, empirical evidence to suggest that 

certain predictions of de Ruiter’s Sketch model should be challenged.   
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The Sketch Model is an extension of Levelt’s (1989) model of speech production (Figure 

2).  The reader is encouraged to review Levelt’s comprehensive text for a complete account of 

the model.  In brief, Levelt’s model is a stage-based, information-processing model that assumes 

that speech production proceeds through several stages beginning with creating communicative 

intentions and accessing representations in long-term and working memory for single word 

encoding.  The communicative message is generated at the conceptualization stage via spatial, 

propositional, and kinesthetic representations.  The resulting preverbal message is then encoded 

grammatically and phonologically with access to the lexicon at the formulation stage.  Also 

during the formulation stage, the Prosody Generator assigns metrical patterns to the lexical items 

and determines the distribution of stressed syllables and assigns the phonetic correlates of pitch 

accent.  This step in the formulation stage is critical for the predictions of Experiment 1.  Finally, 

the motoric execution of the subsequent phonetic plan is completed at the articulation stage.  

Speech production planning is incremental according to Levelt and the constructed unit is a 

phonological word which can be composed of more than one lexical item (i.e., clitics along with 

their associated content words), though the model does consider some aspects of multiword 

utterance generation such as pitch accent assignment.   

According to de Ruiter, gesture production is completed in parallel to speech production, 

with a specific point of interaction between the two systems (Figure 1).  The conceptualizer is 

the only segment of the speech production system that is linked to the gesture system.  de Ruiter 

asserts that gestures originate in the conceptualizer by accessing spatiotemporal information 

from working memory for the gesture while propositional information is accessed for the 

preverbal message.  The output of the conceptualizer is the preverbal message, which is sent to 

the formulator and the sketch, which is sent to the gesture planner.  The information that is 
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encoded in the sketch differs depending on the type of gesture that is to be produced.   He 

summarizes the encoded information for a deictic gesture, the gesture of interest for this 

investigation, is “a vector in the direction of the location of the referent…(and) a reference to the 

appropriate pointing template in the gestuary” (2000, p. 295).   A gestuary stores templates for 

gestures and gesture conventions such as those that are important for deictic gestures.  The 

gestuary will hold a template for the conventualized pointing movement (i.e., extended index 

finger with other fingers retracted).  However, information such as the direction of movement, 

speed of movement, position of the hand in space, and even which hand is used is dependent 

upon many online factors.  Therefore, the template is just that, “an abstract motor program” (p. 

296).  It is modified given the semantic and physical context in which the deictic gesture is 

produced.  The sketch is sent to the gesture planner after the gesture template is retrieved from 

the gestuary and encoded within the sketch. 

The gesture planner then constructs a motor program for the deictic gesture after 

accessing the motor template in the gestuary and information about the speaker’s environment 

(e.g., which hand is free, how large is the gesture space, location of the referent).  The gesture 

planner sends the motor program for the deictic gesture to the lower level motor control 

modules(s) (2000, p. 297) which then executes the movement.   

This model was chosen as the theoretical foundation of this research not only because it 

poses explicit points of interaction between the speech and gesture systems, but also because the 

model is the only one to provide hypotheses regarding the temporal relationship of speech and 

gesture production in adults.  de Ruiter (2000) rightly acknowledges the daunting task of reliably 

determining the temporal boundaries of gestures as well as classifying the relevant 

lexical/conceptual units to utilize as the reference points for temporal measures of synchrony.  
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He states that gestural onsets are “roughly” synchronized with the onset of “conceptual affiliate” 

(p. 291).  With consideration of this potential caveat, de Ruiter puts forth several hypotheses 

regarding the synchronization speech and gesture.  First, the model predicts that gestural onset 

will precede the onset of the conceptual affiliate due to the assumption that “the preverbal 

message is sent to the formulator only after the gesture planner has finished constructing a motor 

program and is about to send it to the motor-execution unit…once the motor program for the 

gesture has been constructed, the gesture planner will send a message to the conceptualizer 

specifying when the generation of speech can be initiated” (p. 299).   

The Sketch Model also makes predictions regarding the synchronization of speech and 

multiple phases of gesture, specifically pre- and post-gestural holds.  A pre-gestural hold occurs 

when a manual movement begins then halts for the conceptual affiliate’s onset prior to executing 

the gestural stroke.  According to the model, the gesture sketch can be sent to the gesture planner 

with subsequent initiation of the gesture while the preverbal message is sent to the Formulator 

after the sketch is sent.  Once the preverbal message moves on to the Formulator, the 

conceptualizer alerts the gesture planner to continue with the execution of the gestural stroke.  It 

is not clear from the model’s predictions though whether the stroke then also precedes the 

conceptual affiliate since the signal to resume gesture stroke execution occurs prior to 

grammatical and phonological encoding in the formulation stage of speech production.  A post-

gestural hold occurs when the “hand remains motionless after the stroke has been completed 

until the related speech has been fully produced (de Ruiter, 2000, p. 299).  According to the 

model, the gesture planner only receives a signal from the conceptualizer to retract the gesture 

after completion of the preverbal message.  Again, the precise relationship between gestural 

onset and conceptual affiliate execution is not clear from the model.  de Ruiter purposefully 
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remains vague on the specific temporal parameters of the speech-gesture relationship because of 

the aforementioned difficult prospect of identifying affiliates and reliably measuring the on and 

offsets of gesture and speech, as well as a lack of empirical investigations to guide theoretical 

hypotheses.   

A key tenet of the Sketch Model is that there is no communication between the speech 

and gesture systems below the level of the conceptualizer.  de Ruiter states that “the model does 

not permit representations active in the formulator to influence the timing of gesture” (p. 305) 

and there is no feedback from the Formulator available to the gesture planner.  Consequent to 

this prediction, prosodic stress should have no effect upon the timing of the gesture.  In fact, de 

Ruiter explicitly states that “lexical stress or pitch accent are therefore predicted to have no effect 

on speech/gesture synchronization” (pp. 305-306).  Likewise, de Ruiter also claims that 

perturbation of speech cannot affect the timing of gesture execution because this is below the 

level of the conceptualizer.  Therefore, once the gesture is initiated it cannot be altered by 

changes in the speech signal such as a hesitation, speech error, change in speech rate, etc.  Again, 

he explicitly claims that “once the gesture stroke has started to execute, it can no longer be 

interrupted” (p. 306).  The current project aims to test these two predictions.  

  While de Ruiter is one of few theorists to consider the role of prosodic stress on the 

timing of gesture and speech, he is the only to posit that prosodic stress does not affect the timing 

of gesture.  For instance, McNeill’s phonological synchrony rule from his seminal work (1992) 

states simply the opposite such that the stroke of the gesture synchronizes with the most 

prominent syllable of the accompanying speech.  Similarly, Tuite’s hypothetical relationship 

between gesture and speech production is built upon the notion that gestures synchronize with 

prominent syllables.  Two other notable theories presented by Krauss and colleagues (1996; 
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2000) and Iverson and Thelen (1999) discuss the importance of speech/gesture synchronization, 

though not in reference to prosodic variables. A brief review of those theories of gesture 

production as they relate to temporal synchronization and the Sketch Model follows.   

 

2.3.2 Growth Point 

de Ruiter’s  hypothesis regarding the purpose of gesture parallels that of David McNeill’s  

(1992) which repeatedly contends that the goal of a gesture is to communicate.  McNeill’s work 

is often referred to as the Growth Point Theory based upon his postulation that “the growth point 

is the speaker’s minimal idea unit that can develop into a full utterance together with a gesture” 

(1992, p. 220).  McNeill’s work is the most frequently cited theory, though a lack of testable 

predictions diminishes its validity.  Nevertheless, McNeill’s (1985, 1987, 1992, 2000, 2005) 

hypotheses have generated great interest in gesture and inspired the surge of empirical research 

of the relationship of gesture and speech conducted in the past two decades.  Another positive 

consequence of McNeill’s Growth Point Theory is the spawning of more thorough and predictive 

models such as de Ruiter’s Sketch Model.  The basic premises of McNeill’s work are reviewed 

in order to provide the reader with a historical perspective of the issues as well as to observe the 

pertinent similarities and differences with the Sketch Model particularly in reference to the 

temporal synchronization of speech and gesture.   

McNeill (1985, 1987, 1992, 2000, 2005) asserts that speech and gesture are part of a fully 

integrated system with the combined purpose to communicate a speaker’s underlying mental 

representations.  He states that “gestures exhibit images that cannot always be expressed in 
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speech, as well as images the speaker thinks are concealed…speech and gesture must cooperate 

to express a person’s meaning.” (1992, p. 11).  McNeill’s theory further stresses that gestures are 

manifestations of a person’s inner “thought” process and that gestures are “the person’s 

memories and thoughts rendered visible” (p. 12).  A critical hypothesis is that gesture and speech 

are tightly linked at all possible levels of the speech formulation and speech production process.   

The support for this hypothesis is primarily anecdotal and mostly based upon individual 

observations of adults and children during cartoon narration tasks, most often a Sylvester and 

Tweety cartoon (see Figure 6).  An example is of a man saying “and he bends it way back” while 

making an arcing motion with his hand.   This example is frequently cited as evidence for the 

communicativeness of gestures and evidence for an integrated gesture and communicative 

system. 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Sylvester and Tweety cartoon narration example.  Adapted from “Hand and Mind: 
What Gestures Reveal about Thought,” 1992, D. McNeill (Ed.), Chicago: The University of 
Chicago Press, p. 13. 

 

 

 

 

 

 

McNeil (1992) provides five arguments for the proposed integrated system (pp. 23-24): 

1. Gestures occur only during speech. 
2. Gestures and speech are semantically and pragmatically coexpressive. 
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3. Gestures and speech are synchronous. 
4. Gestures and speech develop together in children. 
5. Gestures and speech break down together in aphasia. 

 

Upon first glance the arguments seem intuitive and plausible.  Yet, the theory is lacking 

virtually any support from empirical investigations and the arguments are imprecise and are 

insufficiently operationalized.   

The third argument is particularly relevant for the current project.  McNeill (1992) 

emphasizes the tight coexpressive synchrony of speech and gesture, though synchrony is never 

properly defined or quantified.  Of the three phases of gesture production, preparation phase, 

stroke phase, and retraction phase, the Growth Point Theory notes that the stroke phase is the 

fundamental portion of the gesture and most important for the synchronization to speech. Also, 

McNeill rightly acknowledges the potential differences in temporal synchrony measurements 

based upon different gesture phase dependent variables.  He states, “the synchrony rules refer to 

the stroke phase: anticipation refers to the preparation phase…it is only the stroke of the gesture 

that is integrated with speech into a single smooth performance, but the preparation for the stroke 

slightly leads the coexpressive speech” (p. 26).  This distinction between gesture phases will also 

be important in our later discussion of equivocal findings of empirical studies of the temporal 

relationship of gesture and speech.   

McNeill hypothesizes three “synchrony rules”: the Phonological Synchrony Rule, 

Semantic Synchrony Rule, and Pragmatic Synchrony Rule. The Semantic Synchrony Rule posits 

that speech and gesture present the same semantic meaning, or “idea unit”, simultaneously while 

the Pragmatic Synchrony Rule posits that speech and gesture serve a shared pragmatic function.  

The Semantic and Pragmatic Synchrony Rules are not applicable for this project.  The 
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Phonological Synchrony Rule does relate to the current research questions and is in stark contrast 

to de Ruiter’s hypothesis regarding prosodic stress and gesture timing.  The Phonological 

Synchrony Rule represents the temporal properties of the relationship of speech and gesture and 

posits that the gestural stroke either occurs with or ends at the “phonological peak syllable” of 

the speech. However, the Growth Point Model neither defines how to determine the 

“phonological peak syllable” nor what is considered a unit of speech within which to classify 

prosodic stress.  

There is no doubt that the Growth Point Theory has sparked considerable interest in the 

potential relationship between speech and gesture.  Also, the hypotheses articulated by McNeill 

are certainly accepted by many.  On the other hand, the hypotheses regarding the temporal 

synchrony of gesture laid out by McNeill are not supported by controlled empirical inquiry and 

are also not built within an information-processing model framework to provoke investigation 

that could support or refute specific points of interaction between gesture and speech production.  

The next hypothesis of our discussion is even more poorly specified than the Growth Point 

hypothesis, though it is the hypothesis of gesture production that is most founded on the 

relationship to prosodic stress.   

 

2.3.3 Rhythmical pulse 

 

de Ruiter’s prediction that prosodic stress does not affect the timing of gesture not only conflicts 

with McNeill’s (1992) Phonological Synchrony Rule, but also the prediction is contradictory to 
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work by Tuite (1993) that proposes an interaction of gesture and speech at an unspecified lower 

level of motor processing in the speech production process.  Tuite’s (1993) Rhythmical Pulse 

Hypothesis asserts that gesture and speech are linked prosodically and that gesture and speech 

originate from a kinesic base.  Tuite argues that this kinesic base is “represented as a rhythmical 

pulse” (p. 99).  The pulse peak corresponds to the stroke portion of the gesture and the 

intonational peak of spoken language.  The pulse may be most simply expressed as a beat 

movement or may be overlaid with spatial or semantic properties and expressed as a deictic or 

iconic gesture.  Regardless of the type of gesture, the Rhythmical Pulse Hypothesis theorizes that 

the gestural stroke “tends to coincide with the nuclear syllable of the accompanying tone group” 

(p. 100; Figure 7). Tuite’s Rhythmical Pulse Hypothesis is novel in that he considers the 

temporal relationship of gesture and speech as related to a motoric interaction of gesture and 

speech.  Even though Tuite does not directly situate his hypothesis within a dynamic systems 

perspective, the notions of rhythmical pulses and pulse peaks is very much in line with work in 

the dynamic systems literature (Barbosa, 2001, 2002; Cummins & Port, 1996; Jones & Boltz, 

1989; Large & Jones, 1999; Lashley, 1951; O’Dell & Nieminen, 1999; Port, 2003).  Tuite’s 

hypothesis is integrated with such work in a subsequent section of this document.   



 

Figure 7 Rhythmic pulse alignment across speech and gestures. Adapted from “The production 
of gesture” by L. Tuite, 1993, Semiotica, 93, p. 99. 
 

 

 
The Rhythmical Pulse Hypothesis also shares similarities with McNeill’s model.  Similar 

to the Growth Point model’s Phonological Synchrony Rule, The Rhythmical Pulse Hypothesis 

postulates that the gestural stroke coincides with the intonation peak of the associated lexical 

item and that gestures occur more or less rhythmically in time.  However, Tuite’s proposal 

encompasses beat, deictic, and lexical gestures manual gestures as well as non-manual 
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manifestations of the rhythmical pulse such as head, leg, or foot movements.  Although Tuite’s 

hypothesis is similar to McNeill’s work in regards to the role of prosody upon gesture/speech 

synchronization, the Rhythmical Pulse Hypothesis contradicts McNeill’s work in regards to the 

purpose of gesture.  According to Tuite, gesture is “production-centered rather than reception-

oriented” and “the activity of gesture primarily occurs for the ‘benefit’ of the speaker/gesturer 

and not for the listener” (Tuite, 1993, p. 94).   Indeed, Tuite’s conception is remarkably vague, 

but nonetheless an interesting origin of inquiry of the temporal relationship of speech and gesture 

and warrants further expansion, especially if data generated by the current study supports the 

concept of motor coordination of speech and manual movements during communication.  Before 

discussing the integration of these models with models of speech production.  A brief review of 

two other models of gesture production and their predictions is offered regarding the temporal 

parameters of gesture in relation to the accompanying speech signal. 

 

2.3.4 Facilitatory  

de Ruiter is not the first or only author to utilize Levelt’s (1989) model of speech production as a 

scaffold for a model of gesture production.  Robert Krauss and others (1996, 2000) presented a 

model of gesture production in which the sole purpose of gesture is to assist the speaker in 

lexical retrieval, rather than to provide communicative information to the recipient.  Hence, this 

model will be referred to as the Facilitatory Model for ease of discussion.  Krauss and colleagues 

(1996, 2000) propose that gestures originate prior to the conceptualization stage of speech 

production by the spatial/dynamic feature selector and are linked to visual images in working 
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memory.  In other words, both gestures and words are retrieved from a spatial and dynamic 

mental representation.   

The Facilitatory Model specifies gesture production as a three-stage process as shown in 

Figure 8.  The three stages are spatial/dynamic feature selection, motor planning, and motor 

system execution.  After a mental representation is activated in memory, the spatial/dynamic 

feature selector identifies and specifies spatial and dynamic features such as direction, contour, 

size, shape, speed, etc.  The spatiodynamic features are then fed into the motor planner.  The 

description of the motor planning process is extremely vague and simply states that the abstract 

features are translated into a motor program which provides the commands for motor execution 

of the gesture.  This motor program is then executed and is monitored by the kinesic monitor.   



 

Figure 8.  A facilitatory model of the speech-gesture production system.  The model is a 
modification of Levelt’s (1989) speech production model.  Adapted from “Lexical gestures and 
lexical access: A process model,” by R.M. Krauss, Y. Chen, and R.F. Gottesman, 2000, In 
Language and Gesture, D. McNeill (Ed.), New York: Cambridge University Press, p. 267. 
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All of the above stages occur separately but in parallel to the speech formulation and 

conceptualizing processes.  It is not until after the gesture is executed that the kinesic monitor 

provides input to the phonological encoder, which is embedded in the formulation stage of 

speech production.  The input to the phonological encoder is said to include features of the 

original representation in motoric form.  The features themselves are not necessarily the features 

of the spoken lexical items since the gesture production began prior to conceptualization.  

However, in this model the input from the gesture system to the phonological encoder is thought 

to help in facilitating lexical retrieval because of cross-modal priming. Krauss and colleagues 

propose that a gesture is terminated when the acoustic signal of the lexical target is heard by the 

speaker. 

Like all gesture production hypotheses, there is little empirical work to support or refute 

the Facilitatory Model.  One piece of evidence that Krauss and colleagues (1996, 2000) cite is 

the temporal relationship between gesture and speech production.  In contrast to McNeill’s 

assertion that production of gesture coincides with the production of the spoken word associate, 

Krauss and others claim that gestures precede their lexical affiliate.  According to Morrel-

Samuels & Krauss (1992), lexical gestures precede their lexical affiliate by an average of 0.99 

seconds (range of 0 to 3.75 seconds).  The argument then follows that the gesture must be 

initiated prior to the conceptualization stage of speech production in order to be executed prior to 

execution of the spoken lexical item and allowing for possible lexical retrieval enhancement.  

This argument also is in opposition to de Ruiter’s postulation that gesture originates within the 

conceptualizer.     
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As previously stated, the Facilitatory Model is similar to the Sketch Model since it also an 

extension of Levelt’s (1989) model of speech production.  Additionally, both the Sketch Model 

and Facilitatory Model predict that gesture can be beneficial to the speaker.  However, there are 

also many discrepancies between the two models.  As already pointed out, the Krauss et al. 

(1996, 2000) hypothesize that gesture is initiated prior to the conceptualization stage versus the 

Sketch Model that hypothesizes that gesture originates within the Conceptualizer.  Hence, in de 

Ruiter’s model, the Conceptualizer is responsible for generating the gestural “sketch” as well as 

the preverbal message that is then sent to the Formulator for grammatical and phonological 

encoding.  Also in contrast to the Sketch Model, gestures are accompanied by lexical affiliates 

(i.e., a single lexical item) rather than conceptual affiliates.  Another difference between the two 

models is that the Sketch Model accounts for all gesture types with the exception of beats (i.e., 

iconics, deictics, emblems), however the Facilitatory Model makes predictions only regarding 

lexical (i.e., iconic) gestures.  Most importantly for our purposes, the Facilitatory Model neither 

accounts for the role of prosody nor perturbation in the temporal synchronization of gesture and 

speech.  Therefore, although the Facilitatory Model is similar to the Sketch Model in its 

construction it fails to offer relevant predictions for the current experiments.  The final theory 

that is discussed, the Entrained Systems Theory also does not incorporate prosodic stress or 

perturbation as pertinent variables. Nonetheless, it is briefly summarized for sake of complete 

review of relevant hypotheses of speech/gesture temporal synchronization.  Furthermore, the 

premise of the theory will be incorporated with a hypothesis temporal entrainment of the speech 

and gesture systems developed in a later section.  
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2.3.5 Entrained systems  

Iverson and Thelen (1999) proposed the final gesture production theory of this review.  Iverson 

and Thelen propose an entrained system of speech and manual movements that is rooted in 

dynamic systems theory.  For discussion purposes, this theory as the Entrained Systems Theory.  

Like the four preceding theories, Iverson and Thelen’s postulation is reliant upon the assumption 

that speech and gesture are temporally synchronous and are part of a unified system.  In contrast 

to the Sketch Model, Growth Point Theory, Rhythmical Pulse Hypothesis, and Facilitatory 

Model which do not consider the development of communication and motor processes in 

children, the intention of Iverson and Thelen is to explain the co-emergence of vocal and manual 

movements from infancy to toddlerhood.   

Iverson and Thelen state it is “through rhythmical activity, and later through gesture, the 

arms gradually entrain the activity of the vocal apparatus…this mutual activation increases as 

vocal communication through words and phrases becomes more practiced, leading to a tight 

synchrony of speech and gesture in common communicative intent” (p. 36).   Figure 9 conveys 

the four phases of the developmental progression of the rhythmic entrainment of the speech 

production system to the manual gesture system.  The important tenet of this hypothesis is that as 

the novelty and effort of a behavior decreases the mutual entrainment and degree of synchrony 

between the two effectors will increase.  Conversely, when an infant begins to acquire speech 

and language, gestures most often precede their spoken affiliates and the two effectors are 

entrained to a lesser degree.  The authors hypothesize that motor control of the hands is relatively 



more stable and the preferred mode of communication rather than the vocal apparatus secondary 

to the novel and effortful process of speech processing and execution at that particular point in 

development. 

 

Figure 9 Four phases of entrainment in the first two years.  Adapted from “Hand, mouth and 
brain: The dynamic emergence of speech and gesture,” by J.M. Iverson & E. Thelen, 1999,  
Journal of Consciousness Studies, 6, p. 31. 
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Iverson and Thelen (1999) propose four early phases of infant development that consist 

of a loose coupling of hand-to-mouth movements.  These initial linkages are thought to reflect 

co-occurring manual and mouth movements during the first six months of life.  At six to eight 

months of age, an infant begins to gain control of the manual and vocal systems.  The authors 

state this is the time period that vocalization and arm/hand movements are entrained through 

rhythm.  At this age, rhythmic movements of the arms and hands are often accompanied by 

canonical babbling (Iverson, Hall, Nickel, & Wozniak, 2007).  They further state that it is the 

entrainment of rhythmic manual movements that will later act as the vehicle for mandibular 
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oscillations to be overlaid with babbling and later assist infants to gain even greater control over 

the individual systems.  The third phase of the progression reflects further developments of 

motor control and is termed a time of “flexible coupling”.  This phase occurs prior to an infant’s 

first birthday and is associated with an increase in the independent use of gesture from speech 

and vice versa.  During this time, gestures (i.e., pointing gestures) are used as the predominant 

communication modality.  The Entrained Systems Theory asserts that the threshold for gestures 

is lower and the activation for gestures is higher than for vocalization due to the infant having 

greater control of the limbs and hands compared to the oral articulators.   

The fourth and final phase of the Entrained Systems Theory occurs around 16 to 18 

months of age when speech and gesture begin to converge and synchronize once again.  This 

emergence of synchronous speech and gesture accounts for the presumed tight temporal 

synchrony of gestures and speech that is so often referred to in the literature.  Iverson and Thelen 

(1999) postulate that as speech becomes more practiced and less effortful, the activation will 

heighten and the threshold will lower for speech production.   The activation then “has the effect 

of capturing gesture and activating it simultaneously” (p. 35) which then manifests as a 

synchronous and entrained production of speech and gesture.  Balog and Brentari (2008) indeed 

found evidence for this fourth phase of the Entrained Systems theory.  They investigated the co-

occurrence of rising and falling intonation contours in the vocalizations of children between the 

ages of 12 and 23 months of age in a 30-40 minute play exchange with their mothers and 

examiner.  Older children (18 to 23 months) were found to synchronize their intonational 

patterns and nonverbal body movements more often than younger children (12 to 17 months).  

The activation and entrainment proposed for toddlers is theorized to continue throughout one’s 

lifespan.   
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In short, the Entrained Systems Theory relies upon the belief that “the ‘stroke’ (or active 

phase) of the gesture is timed precisely with the word or phrase it accompanies” (p. 35).  

Although the model does not predict the precise temporal relationship of speech and gesture or 

the precise speech variable that is proposed to coincide with the gestural stroke, the coupling of 

movements implies a simultaneous activation and production of movement similar to Tuite’s 

Rhythmical Pulse Model and the Growth Point Model.  On the other hand, this theory is novel 

since it is the only to make predictions about the simultaneous development of the speech and 

gesture production systems.  Though, the authors make no explicit statements about what affects 

the synchronization of speech and gesture produced by older children and adults.  Iverson and 

Thelen also are among the only theorists to postulate a motoric level of interaction of the speech 

and gesture systems rather than a conceptual, lexical, or phonological level of interaction.  

Similarly, they are the only theorists to structure their postulations within a dynamic systems 

framework. 
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Table 3 Summary of Gesture Production Theories 

 Citation(s) Basic Premise Temporal Synchrony 
Sketch  
 
 
 

de Ruiter, 
1998, 2000 

-Gesture originates in the conceptualizer where spatio-
temporal information is accessed from working 
memory and sent as a “sketch” to the gesture planner 
which then constructs a motor program for subsequent 
motor execution. 
 
-This model is also an extension of the Levelt (1989) 
model of speech production. 
 
-Gestures do not have lexical affiliates, they have 
“conceptual affiliates” that can span phrases rather than 
words. 
 
-The model includes iconic, deictic, emblem gestures, 
not beat gestures.  
 
-Gesture aids the speaker and the conversational 
recipient. 

-Gestural onset is “roughly” synchronized with the onset of 
the “conceptual affiliate”. 
 
-de Ruiter rightly acknowledges the difficult task of reliably 
determining the temporal boundaries of gesture as well as the 
relevant lexical affiliate of which to assess their shared 
temporal parameters. 
 
-The preverbal message is sent to the formulator after the 
gesture planner creates the associated gesture’s motor 
program. 
 
-Lexical stress and pitch-accent are clearly stated as having no 
affect upon the synchronization of speech and gesture. 
 
-After the initiation of gesture execution, it cannot be 
interrupted. 

Growth Point 
 
 
 
 
 

McNeill, 
1985, 1987, 
1992, 2000, 
2005 

-Speech and gesture form a shared system which 
expresses a speaker’s mental representations to a 
listener.   
 
-They are tightly linked at all levels of production. 
 
-Gestures primary function are to communicate to the 
conversational recipient. 

-The synchronization of speech and gesture is emphasized as 
evidence for an integrated system.   
 
-The stroke is the most important phase of the gesture for 
synchrony. 
 
-The gestural stroke begins with or ends at the phonologic 
peak syllable. 
 
-Provides three rule of synchronization; (1) Phonological 
Synchrony Rule, (2) Semantic Synchrony Rule, and (3) 
Pragmatic Synchrony Rule. 

Rhythmical 
Pulse 
 
 
 
 
 

Tuite, 1993 -Gesture and speech are linked prosodically and 
originate from a kinesic base which is either a gestural 
stroke or intonational peak of the spoken phrase. 
 
-Gesture can be a manual or nonmanual movement. 

-The gestural stroke coincides with the nuclear syllable of the 
spoken “tone group”. 
 
-The gestural stroke can also precede the lexical affiliate 
secondary to the increased processing time required for 
speech production. 

Facilitatory 
 
 
 
 
 

Krauss, 
Chen, & 
Chawla, 
1996; 
Krauss, 
Chen, & 
Gottesman, 
2000; Krauss 
& Hadar, 
1999 

-Gestures facilitate lexical access via cross-modal 
priming. 
 
-Model is an extension of Levelt’s (1989) model of 
speech production. 
 
-Input from the gesture system to the phonological 
encoder is thought to help enhance lexical retrieval 
because of shared spatiodynamic features that 
originated in working memory.  
 
-The model only includes lexical (iconic) gestures. 
- Gestures aid the speaker not the conversational 
recipient. 

-The onset of gesture precedes the lexical affiliate. 
 
-Gesture must be initiated prior to the conceptualization stage 
of speech production in order to be executed prior to 
execution of the spoken lexical item and allowing for possible 
lexical retrieval facilitation. 

Entrained Iverson & 
Thelen, 1999 

-Gesture and speech originate as a coupled system in 
the earliest stages of development. 
 
-Vocal and motor behaviors are entrained rhythmical 
movements that progress to a tight temporal synchrony 
of speech and gesture. 

-The gestural stroke is timed precisely with its lexical affiliate. 
 
-There is no specific variable proposed the gestural stroke co-
occurs with (i.e., stressed syllable; onset of semantic affiliate, 
etc.) 
 
-Children go through periods of vocal-motor coupling that are 
more or less entrained as a function of effort versus 
automaticity.   
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Table 4 Temporal Synchrony: Predictions of Models and Theories 

 
 

Onset of gesture relative to speech Prosodic effect 

Integrated -Stroke begins with or ends at the 
phonologic peak syllable  
 
-Preparation movement of the gesture 
precedes speech 

Yes 

Facilitatory -Gestural onset precedes lexical affiliate 
 Not stated  

Sketch -Gesture roughly synchronizes with onset 
of conceptual affiliate 
 

No 

Rhythmical Pulse -Gestural stroke co-occurs with or 
precedes the nuclear syllable of a “tone 
group” 
 

Yes 

Entrained -Gestural stroke timed precisely with 
affiliate 
 

Not stated 
 

 

 

2.3.6  Gesture production theory summary  

Thus, contradictory hypotheses regarding the effect of prosody upon the temporal synchrony of 

speech and gesture abound (Table 3).  de Ruiter stands alone among contemporary theorists in 

his postulation that gestures are not affected by prosodic stress.  Others have either hypothesized 

increased synchronization of prosodic stress and gestural stroke (McNeill, 1992; Tuite, 1993), or 

have not made explicit predictions regarding this potential relationship (Iverson & Thelen, 1999; 

Krauss et al., 1996, 2000).  de Ruiter’s hypothesis regarding the cessation of interaction between 

the speech and gesture production systems below the level of the Conceptualizer yields a 

predicted null effect of prosodic stress upon gesture timing.  In other words, there is no predicted 
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interaction between the levels of motor processing of the production mechanisms (i.e., 

phonological encoding, articulation, motor execution, etc.) and the production of gesture.   

Specifically, de Ruiter states that because the Formulator and points below in the speech 

production system do not affect gesture timing and vice versa, then variables such as prosodic 

stress, lexical access, and the interruption of speech cannot affect the timing of gesture 

production.  Yet, not only do other theories (Krauss et al. 1996; 2000; McNeill, 1992; Tuite, 

1993) predict that these variables actually do affect the temporal relationship of gesture and 

speech (Table 4), but there are also existing data that point to such variables affecting the 

synchronization of speech and gesture (Bull & Connelly, 1985; de Ruiter, 1998; Loehr, 2004; 

Mayberry & Jaques, 2000; Mayberry, Jaques, & DeDe, 1998; McClave, 1998; McNeill, 1992; 

Morrel-Samuels & Krauss, 1992; Nobe, 2004).   

 

2.4 INTERACTION OF LINGUISTIC, SPEECH, AND MANUAL PROCESSES 

 

I have provided considerable detail regarding de Ruiter’s hypothesis that processes within the 

Formulator do not affect the timing of gesture.  Likewise, the process of assigning prosodic 

stress and accent to a syllable has been described at length as well as the common prediction that 

gestures align with prosodically stressed syllables, perhaps due to interaction between the 

Formulator and the Gesture Planner.  Conversely, it is also possible that the interaction between 

the speech and gesture production systems is actually not at the level of the phonological encoder 
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but rather at the level of motor programming.  Expressly, speech and gesture may synchronize 

due to some form of entrainment of the speech and manual motor systems rather than because of 

an interaction of higher-level phonological processes and the gesture production system.  The 

Sketch Model, like the vast majority of modular, linguistic-focused production models cannot 

account for such an interaction.  However, as the reader recalls from the earlier discussion, 

hypotheses such as those proposed by McNeill (1992), Tuite (1993), and Iverson and Thelen 

(1999) posit interactions of the speech and gesture systems below the level of phonological 

processing.  Specifically, it is hypothesized that the speech and gesture systems are temporally 

entrained.   

No doubt, there is inherent semantic and visual-spatial information encoded in not just 

the speech stream, but also the gesture movement.  Therefore, the unified, multimodal 

production of manual gesture and speech offers a unique opportunity to investigate the 

amalgamation of linguistic processes with both speech and manual motor behaviors.  

Nevertheless, the convergence of linguistic, speech, and manual processes is rarely contemplated 

not only from a gestural perspective but from other viewpoints as well.  Historically, each of 

these entities is studied as independent phenomenon.  However, there is increasing interest in and 

evidence for the interaction of manual processes with speech and language processes from 

behavioral, neuropsychological, and neurophysiological data.  A brief discussion of some of 

these findings is presented to provide the reader with a comprehensive rationale for this 

investigation.   
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2.4.1  Shared neuroanatomical substrates 

Theorists of language evolution have proposed the hypothetical progression of fine manual 

movements to intentional language as well as the hemispheric lateralization of oral and manual 

movements in our ancestors and modern-day humans as evidence for shared motor processes of 

the two systems (Arbib, 2005; Corballis, 2002; 2003; 2010;  Gentilucci & Dalla Volta, 2007; 

Lieberman, 1998). Additionally, significant changes of neural architecture during evolution 

suggest that spoken language may have stemmed from manual gestures.  A major location of 

cortical change is Broca’s area (see Gentiluccia & Dalla Volta, 2007 for a review).  This area in 

the left inferior frontal gyrus is typically associated with ventral premotor cortex (area F5) in 

primates bilaterally (see Figure 10).  Extensive investigation has found that F5 is a sight for 

“mirror neurons” in monkeys.  The purpose of these mirror neurons is to activate both when the 

monkey is doing an action as well as simply viewing an individual performing the same action.  

Studies have found that F5 only responds for hand and mouth movements, such as grasping, 

sucking, and facial gestures.  In fact, Ferrari and colleagues (2003) have further isolated neurons 

of F5 to include neuronal populations for ingestive mouth movements separate from 

communicative mouth movements in addition to the already well established manual mirror 

neuronal populations.  It follows that this area of the cortex may have enabled our ancestors to 

develop manual and facial movements simultaneously, potentially for a common goal (i.e., 

communication).  It also follows that this area serves an imitative purpose for motor learning and 

performance, thus allowing one to go from being an observer to a performer (e.g., Studdert-

Kennedy, 2002).   

 



 

Figure 10 Primate cortical area 5 and human Broca’s area.  Adapted from “Language within our 
grasp,” by G. Rizzolatti & M.A. Arbib, 1998, Trends in Neuroscience, 21, p. 190. 
 

 
An analog mirror neuron area has been found in Broca’s area as well as the superior 

temporal sulcus and primary motor cortex in modern humans (Avikainen, Forss, & Hari, 2002; 

Grèzes, Armony, RoI& Passingham, 2003).  Not only is there activation in these areas during the 

observation and production of speech movements, but similar to F5 in monkeys, the area also is 

active for the observation and production of finger and hand movements (Heiser, Iacoboni, 

Maeda, Marcus, & Mazziota, 2003; Rizzolatti & Arbib, 1998).  Likewise, there is neuroimaging 
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data that demonstrates excitability of Broca’s area during the execution of hand and arm 

movements (Bonda, Petrides, Frey, & Evans, 1994; Schlaug, Knorr, & Seitz, 1994), as well as 

activation of the hand motor cortical area of the language dominant hemisphere during reading, 

but not of the leg motor cortex (Meister, Boroojerdi, Foltys, Sparing, Huber, and Topper, 2003).  

Lastly, Gentilucci and colleagues have demonstrated that the size of grasped objects affects the 

size of mouth opening and the amplitude of syllable production (Gentilucci, Benuzzi, Gangitano, 

et al., 2001; Gentilucci, Santunione, Roy, & Stefanini, 2004).  These results were in line with 

previous data that reflected excitability of the hand motor area during speech tasks (Seyal, Mull, 

Bhullar, Ahmad, & Gage, 1999; Terai, Ugawa, Enomoto, Furubayashi, Shiio, Machii, et al., 

2001; Tokimura, Tokimura, Oliviero, Asakura, & Rothwell, 1999).  Meister et al.  interpreted 

this finding as support for “the hypothesis that there are phylogenetically old connections 

between these two regions which evolved during the evolution of speech” (p. 406).   Indeed, 

there is ample evidence for multiple shared neuroanatomical substrates for the sequential and 

temporal aspects of speech, language, and manual processes in humans such as lateral 

perisylvian cortex, supplementary motor cortex, premotor cortex, cerebellum, and Broca’s area 

(e.g., Erhard, Kato, Strupp, et al., 1996; Fried, Katz, McCarthy, et al., 1991; Grabowski, 

Damasio, & Damasio, 1998; Krams, Rushworth, Deiber, et al., 1998; Ojemann, 1984; Peterson, 

Fox, Posner, et al., 1989).   
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2.4.2  Developmental parallels 

Others have turned to the shared ontogenetic roots of linguistic, speech, and language tasks and 

have asserted that the co-emergence of arm/hand movements and speech/language 

developmental milestones and the expression of similar endogenous rhythmic patterns across 

systems.  For example it is often accepted that rhythmic hand banging emerges at the 

approximate time of canonical babbling of repeated consonant-vowel [CV] syllables) is evidence 

of the development of an integrated verbal and manual communication system, at least in early 

development (Bates & Dick, 2002; Capone & McGregor, 2004; Goldin-Meadow, 1998; Iverson 

& Fagan, 2004; Iverson, 2010; Iverson, Hall, Nickel, & Wozniak, 2007; Iverson & Thelen, 1999; 

Kent, 1984; McNeill, 1992; Volterra, Caselli, Capirci, & Pizzuto, 2004).  Many have asserted 

that the co-emergence of arm/hand movements and speech and language milestones is evidence 

of the development of an integrated verbal and manual communication system (Balog & 

Brentari, 2008; Bates & Dick, 2002; Capone & McGregor, 2004; Goldin-Meadow, 1998; Iverson 

& Thelen, 1999; Kent, 1984; McNeill, 1992; Volterra, Caselli, Capirci, & Pizzuto, 2004).  The 

integration of manual and verbal communication has been stated to have possible linguistic roots 

(Balog & Brentari, 2008; Bate & Dick, 2002; Capone & McGregor, 2004; Goldin-Meadow, 

1998; McNeill, 1992) and motor roots (Iverson, Hall, Nickel, & Wozniak, 2007; Iverson & 

Thelen, 1999; Kent, 1984).  Yet, the crucial question is whether the parallel development of 

gesture and speech, especially in the toddler years and beyond, is coincidental or if the 

communication system is truly integrated across manual and verbal modalities.  Gentilucci and 

colleagues (Gentilucci & Dalla Volta, 2007; Gentilucci, Stefanni, Roy, & Santunione, 2004) do 
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suggest that gesture and speech are integrated via a shared mirror neuron system that assists in 

communication development in children given their findings that relatively greater effects were 

found in children than adults in their investigation of syllable production while observing large 

and small fruits being brought to a mouth.   

The emerging gesture, linguistic, speech, and manual milestones are organized in Table 5 

modified from Bates & Dick (2002, p. 294) and Iverson & Thelen (1999, p. 30).  The message 

that this information sends is that it certainly does seem likely that manual, linguistic, and 

oral/speech milestones are being reached in a sequential and correlated manner.  However, this 

does not constitute causation or concrete evidence that the systems are integrated.  One can only 

speculate at this time that manual and speech systems are coupled in development and that 

linguistic units are related to both manual and oral movements. 
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Table 5 Gestural, Speech, and Linguistic Milestones 

Age  Gesture  Linguistic Speech/Oral Manual 
Newborn   Sucking, crying, 

vegetative sounds 
Hand to 
mouth/reflexive 
grasping  

6-8 months   Cooing, sound 
play, rhythmic 
canonical 
babbling 

Reaching, 
rhythmic waving 
and rhythmic 
hand banging 

8-10 
months 
(9-14 months 
for Iverson & 
Thelen, 1999) 

deictic  
 
gestural 
routines  

Word 
comprehension 

Variegated 
babbling, first 
word use 
following gesture 
use, gestures and 
speech do not 
share referents, 
gesture and 
speech are 
temporally 
asynchronous 

First gestures, 
gestures precede 
words, fine motor 
finger skills 
improve 11-13 

months  
lexical-
recognitory 
or gestural 
names 
 
ritualized 
requests 

Word 
production/naming 

12-18 
months  
(16-18 months 
for Iverson & 
Thelen, 1999) 

lexical- 
iconic 

Increased word 
learning 

Vocabulary is 
increasing 

Fine motor finger 
control continues 
to improve 

 
 

2.4.3 Concomitant deficits 

 

It is well-established that individuals often exhibit concomitant deficits following stroke, 

traumatic brain injury, and other organic etiologies.  However, more subtle concomitant motor 

deficits have been described for other disordered populations such as children with language 
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impairment (Bishop, 2002; Bishop & Edmundson, 1987; Corriveau & Goswami, 2009; Gross-

Tsur, Manor, Joseph, & Shaleve, 1996; Hill, 2001; Hill, Bishop, & Nimmo-smith, 1998; 

Johnston, Stark, Mellits, & Tallal, 1981; Powell & Bishop, 1992).  Hill completed a review of 

the specific language impairment literature (2001) and concluded that language impairments and 

motor impairments do indeed coexist and that there is a shared underlying mechanism for both 

deficits.  Bishop and colleagues (Bishop 1990; 2002; Hill, Bishop, & Nimmo-Smith, 1998; 

Powell & Bishop, 1992) have also asserted that children with specific language impairment (SLI) 

frequently exhibit manual motor impairments even in the absence of diagnosed speech or other 

motor disorders based upon empirical investigations.  While it is anticipated that individuals with 

neurological infarcts are likely to exhibit speech, language, and manual deficits due to the close 

proximity of their cortical regions, it is not at all obvious why children with language 

impairments also may exhibit differences of coordination or timing of manual movements.     

An extensive review of the literature by Hill (2001) indicated a high rate of comorbidity 

of SLI and limb motor skill.  Hill’s motivation in completing the review was to determine 

whether SLI was specific to language or if these children also exhibit deficits that are seemingly 

unrelated to linguistic factors. The purpose of the review was to identify co-morbid relationships, 

not to identify why deficits of language and limb control may coexist.   

A more recent investigation of motor deficits and language impairment was completed by 

Bishop (2002).  Bishop and colleagues completed a number of twin studies attempting to 

determine a genetic etiology for specific language impairment.  Subsequent to their investigation 

of language skills, they began to see a common occurrence of motor deficits with these children 

compared to their age matched peers.  In a series of two experiments, the motor skills of children 

with language impairments and children with both speech and language impairments were 
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compared to the motor skills of their peers.  It was predicted that children with only speech 

deficits would have greater motor impairment than children with speech deficits along with 

language impairment.  These children with speech and language impairment were predicted to 

exhibit significantly more motor impairments than children with only language impairment and 

children with no history of communication disorders.   

All children completed a tapping task to assess motor skill in experiment one.  The 

dependent variable was number of thumb taps in 30 seconds on a tally counter held in the palm 

of the hand.   As predicted, the three disordered groups performed significantly slower than the 

resolved, unaffected, and control groups.  Furthermore, a trend of slower performance was 

observed with the individuals with a speech deficits, either alone or with co-occurring language 

impairment to perform more slowly than children with SLI.  However, this trend failed to reach 

significance.   

Experiment 2 was completed two to three years following experiment 1.  Of the original 

twin sample, 37 pairs with at least one twin with a history of SLI participated along with a group 

of twins from the general population (51 MZ pairs, and 49 DZ pairs).  The motor task was 

changed in experiment two to a peg moving paradigm, Annett’s Peg-Moving task.  The 

participants moved ten pegs as quickly as possible from the back to front row of a pegboard.  

There were three trials for each hand, in alternating succession though the performance was 

again combined across all trials, regardless of hand.  The correlation of performance between 

hands for the new sample was r=0.832 (n=200).  The average peg moving rate was calculated in 

pegs per second to provide a more even distribution of the data for comparison purposes.  The 

speech and language impaired group performed at significantly slower rate than children 

developing typically.  Again there was a nonsignificant trend of the speech impaired children 
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performing slower than the typical children.  The results of experiments one and two 

demonstrated that children with speech deficits are also likely to be slower than their peers on 

manual motor tasks.   

Even more recently and more relevant for the current project, Corriveau and Goswami 

(2009) explored a potential underlying mechanism regarding the fairly consistent findings of 

slow, less accurate, and less coordinated fine motor skills exhibited by children with SLI relative 

to their peers.  Interestingly, Corriveau and Goswami found that 21 children with SLI were only 

impaired relative to 21 age- and 21 language-matched peers when asked to manually tap to an 

external stimulus (i.e., pacing and entraining to a metronome), not when tapping to an internally 

generated rhythm (i.e., keeping the pace after the metronome was turned off).  The researchers 

also examined the children’s motor dexterity via a peg insertion task but only found a significant 

group difference in the number of pegs inserted using the non-dominant hand.  Further, 

Corriveau and Goswami conducted multiple regression analyses which revealed that although 

the performance on the pegboard task was not correlated to language and reading abilities, 

performance on metronome rhythmic entraining task was “related to all measures of language 

and literacy” (p. 127).  Thus, the authors posit a deficit of auditory rhythmic processing in 

children with SLI.  They further hypothesize that a deficit of auditory rhythmic processing could 

result in difficulties with the segmentation and subsequent language that occurs based upon 

prosodic cues.   

Corriveau and Goswami’s (2009) study does not parse the relative contribution of the 

perception and production of rhythm, but certainly exemplifies the need for additional study on 

the entrainment of children and adults with communication disorders.  The results of the 

experiments in this literature base also signal the need for more controlled investigation of motor 
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task performance of children with not only speech deficits but also language impairments as 

well.  The relevant implication for this line of work is that linguistic and manual movements not 

only display shared processing in typical development and adult use, but also in the breakdown 

of language, such as that exhibited by children with language deficits.  Thus, the concomitant 

manual and language deficits are indicative of interactive mechanisms, particularly for temporal 

processing of language and manual functions.   

The present investigation seeks to complement this literature by not only understanding 

mechanism underlying the potential rhythmic processing deficits of individuals with speech and 

language disorders understood, but also the potential therapeutic benefit of motor entrainment 

tasks.  This line of thought is in agreement with Corriveau and Goswami’s (p. 129) statement:  

Although this idea may appear speculative, it is of note that patients with movement 
 disorders such as Parkinson’s disease can be helped by auditory rhythms (e.g., Thaut et 
 al., 1996).  If auditory rhythms can be used to rehabilitate motor problems, then there is 
 some plausibility in the reciprocal idea that motor rhythms might be able to help in the 
 development of better auditory rhythmic sensitivity in children with auditory rhythmic 
 sensitivity in children with auditory processing problems and poor language. 
 

There is potential to not only facilitate language skills via improved auditory rhythmic sensitivity 

but also to affect the speech production processes of children and adults with speech sound 

production disorders via the interaction and possible entrainment of speech and manual 

movements (Garcia & Cannito, 1996; Garcia, Cannito, & Dagenais, 2000; Hammer, 2006; 

Hustad & Garcia, 2005).  For instance, Garcia and Cannito (1996) found that intelligibility was 

enhanced for a single speaker with dysarthria when an individual only listened, not viewed, the 

participant’s speech with gestures compared to when they spoke without gestures.   This finding 

was found specifically for a condition in which the number of beat gestures, those gestures 
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thought to be most likely to entrain to the rhythm of speech, also increased.  The authors 

postulated that the temporal and prosodic features of the speech of the individual with dysarthria 

may have been aided by the accompanying beat gestures.  Garcia, Dagenais, and Cannito (1998) 

later examined the acoustic parameters of this speaker’s productions and found that the 

utterances produced with gestures also had relatively shorter interword-intervals implying a 

possible increase in natural prosodic intervals.  However, this hypothesis has yet to be fully 

explored.   

 

2.4.4  Facilitating effects of manual movements 

In somewhat incongruous contrast to impaired manual task performance exhibited by those with 

language deficits, manual movements may actually facilitate word retrieval and word learning 

for individuals with language deficits as well as typical adults and children.  There is increasing 

interest regarding the effects of gesture and other manual movements such as finger tapping on 

the recovery of word retrieval processes of adults with aphasia.  For instance, Hanlon, Brown, 

and Gertsman (1990) found that pointing with the right hand led to improved naming 

performance  for individuals with nonfluent aphasia more so than pointing with the left hand.  

There were no facilitatory effects of pointing in the confrontation naming tasks for the 

participants with fluent aphasia.  Paskek (1997) not only demonstrated immediate benefits of 

gesture for word retrieval but also sustained improvement six months post-training for a case 

study of an individual with severe Broca’s aphasia and apraxia of speech.  The participant was 

trained to label sixty pictures that also had a corresponding representational gesture.  Pashek’s 



90 

 

results showed that naming was better in gesture+speech condition relative to speech only 

condition.  Similar to Hanlon, et al., the long-term facilitatory benefit of the gesture+speech 

condition held only for the right hand.  Additionally, Rose and Douglas (2001) conducted study 

with six individuals with aphasia.  Their research also demonstrated a facilitatory effect for 

gestures during object naming; however, the effect was only for iconic gesture types, not 

pointing, cued articulation, or visualization cues.  Again, a recent surge of interest on this topic 

has commenced.  The reader is encouraged to review the discussions of the utility of gestures for 

aphasia treatment by Rose (2006) and Raymer (2007) and these other recent references (de 

Ruiter, 2006; Feyereisen, 2006; Power & Code, 2006; Raymer, Singletary, Rodriguez, Ciampitti, 

Heilman, & Rothi, 2006; Richards, Singletary, Rothi, Koehler, & Crosson, 2002; Rose, 2006) for 

more information.  

Despite the recurring finding that gesture helps to facilitate word retrieval for adults with 

aphasia and the use of manual cueing for children with autism (e.g., McLean & McLean, 1974), 

the manual modality has rarely been experimentally manipulated as a cue for word learning and 

recall for children with language impairments.  In fact, Ellis Weismer and Hesketh’s (1993) 

study of the role of prosodic and gestural cues on word learning by children with specific  

language impairment (SLI) remains the only of its kind. Eight typically developing children and 

eight children with specific language impairment in kindergarten participated in the study.  

Novel words were trained using an “outerspace creature” named Sam.  In the visual cue 

condition, an iconic gesture was produced simultaneously with the novel word.  The novel words 

were nonsensical (e.g., pod, gi, wug) but were meant to convey spatial concepts such as beside 

and on top of.  To test to the children’s retention of the novel words, they were asked, Where is 

Sam?.  As expected the children with SLI were more inaccurate then the children with typical 
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language skills across all conditions, except for the visual cue condition for which they 

performed the same.  Thus, the iconic gestures increased word learning for both children with 

and without language impairments.   

Others have described improved word learning and retrieval performance via gestural cues 

for typically developing children.  The belief that iconic gestures can enhance language 

development has even prompted the recent and overwhelming interest in the use of “baby signs” 

with infants (e.g., Acredolo & Goodwyn, 1990).  While it is often implied that one of the 

advantages of teaching signs to hearing infants is to speed and increase language skills of young 

children, the validity of this claim remains in dispute (see Johnston, Durieux-Smith, & Bloom, 

2005).  However, the call for controlled, theoretically-based research on this topic, particularly 

given the public’s interest in the utility of signs with infants, has slowly spawned such 

investigations.  Recently, Capone & McGregor (2005) completed a study of novel word learning 

with and without the presence of iconic gestures by toddler-aged children. They manipulated the 

use of iconic gestures in learning of labels six novel objects by nineteen toddlers, ages 27 to 30 

months.  These objects were purchased from a kitchen supply store, though the labels were 

actually nonsense words.  Each iconic gesture either referred to the object’s shape or function.  

As predicted, the children were able to most accurately retrieve the object labels that were 

trained in the experimental condition.  The authors speculate that “perhaps our gestures drew 

attention to an important aspect of the word learning problem (shape, function, or both), thereby 

reinforcing salient semantic content of the spoken language” (p. 1478).  Later Capone (2007) 

expanded that the results were consistent with an associationistic account with the lexical-

semantic system consisting of a “distributed neural network of auditory, visual, tactile, 

proprioceptive, olfactory, and/or gustatory features (i.e., information nodes)” (p. 735).  While it 
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appears evident that manual gestures do enhance lexical retrieval for adults with aphasia, 

children with language impairments, and typically developing children, the mechanism of this 

facilitatory effect is yet unknown.   

Perhaps one of the most intriguing investigations of the facilitatory effect of manual 

movements on word retrieval is Ravizza’s (2003) study of the effect of “meaningless 

movements” (i.e., finger tapping) upon lexical retrieval with college-aged adults.  In short, she 

demonstrated that word retrieval was performed with greater accuracy in the finger tapping 

condition in a tip-of-the-tongue (TOT) paradigm.  The stimuli were composed of 200 definitions 

taken from previous TOT paradigms (e.g., a professional mapmaker-cartographer; a bottle 

designed to be carried in one’s pocket-flask).  Experiment 1 lasted one hour and consisted of 70 

definitions while Experiment 2 lasted 2 hours at consisted of 165 definitions.  Participants were 

instructed to read the definition and then to type in the lexical item immediately if they knew the 

answer.  If the answer was unknown, the computer would ask if they were in a TOT state which 

was defined as “a feeling that one ‘knows’ a word but is not able to articulate it at the present 

time” (p. 611).  If the participant claimed to be in TOT state, they were asked to rate how likely 

they were to recognize the word on a 5-point scale.  Then they were given the definition again 

for 30 seconds.  At this time, dependent upon group assignment, the participants either sat still or 

were to tap both index fingers on the table at their own pace.  Participants in both groups were 

told to depress two foot pedals to restrict foot movements while the no movement group also 

were required to depress finger keys as well.  If the participant recalled the word during this 

period, they were instructed to type it in.   Results established that lexical access occurred with 

greater accuracy in the finger tapping condition.  Ravizza hypothesizes that “movements 

somehow boost activation levels of lexical items …that are insufficiently primed when people 
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are in a TOT state” (p. 612).  These findings suggest that it is not just the shared semantic 

properties of gesture and speech that potentially facilitates lexical retrieval, but that the basic 

movement of the hand or finger may interact with the speech and language system to improve 

word learning and word recall.   

 

2.4.5 Dual-task paradigms 

Investigators have also studied the interactions between linguistic, speech, and manual tasks by 

employing concurrent task paradigms to compare the tradeoffs of duration and accuracy for each 

variable (Chang & Hammond, 1987; Dromey & Bates, 2005; Dromey & Benson, 2003; 

Hamblin, 2005; Hiscock & Chipuer, 1986; Kinsbourne & Cook, 1971; Kinsbourne & Hiscock, 

1983; LaBarba, Bowers, Kingsber, & Freeman, 1987; Peters, 1977; Seth-Smith, Ashton, and 

McFarland, 1989; Smith, McFarland, & Weber, 1986; Thornton & Peters, 1982).  The rationale 

for conducting a concurrent task (i.e. dual task) paradigm is to examine the allocation of 

resources between two or more processes given the well-established fact that single tasks are 

performed faster and with greater accuracy than when performed concurrently with a second 

task.  There is a distribution or allocation of resources across task processes because there is only 

a limited pool of resources.   Additionally, it is hypothesized that the more similar two tasks are 

to one another, the more interference that results as a result of shared or proximal 

neuroanatomical structures.  According to Dromey and Benson, “if the left hemisphere is 

occupied with communication, it has been reasoned that performance of the right hand, which it 
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controls, would deteriorate more than the left in a concurrent speaking and manual task” (p. 

1235).     

Dromey and colleagues (2003; 2005) have carried out the most recent and the well-controlled 

studies of the concurrent effects of linguistic, cognitive, and motor tasks.  However, these studies 

are not without caveats.  The greatest potential confound is the lack of a manipulation of 

complexity of task and the inability to assess the contribution and fluctuation of attention to task 

performance.  Still, a brief discussion this work is provided information on the tradeoff of speed 

and accuracy of speech production during the co-production of a manual task.   

The purpose of the first investigation (2003) was to “compare three different types of 

distractor tasks to evaluate their influence on speech movements…each type of distractor was 

anticipated to require different processing resources, which might then result in different effects 

on motor performance” (p. 1235).  There was a linguistic and a cognitive task that consisted of 

noun to verb generation and mental arithmetic, respectively.    The motor task required the 

twenty participants to put three washers on a bolt and then tighten nut on it.  A strain gauge 

system was used to measure lip and jaw kinematics.  The participants recited Mr. Piper and 

Bobby would probably pick apples along with a pacing beep spaced every 3 seconds.  Each 

individual recited this sentence 15 times in isolation and simultaneously with each of the 

concurrent tasks.  Results showed that even though the manual motor task was not cognitively 

demanding, there was a significant difference in lower lip (LL) displacement and velocity in the 

speech only compared to the speech+motor task.  Because there were significant difference of 

LL displacement and velocity, the authors stated that the processing demands were enough to 

change the speech performance of the subjects.  According to Dromey and Benson, these 

differences result from undershooting their articulatory targets during the tasks because they 



95 

 

have more than one motor demand.  Other studies found the concurrent motor tasks have an 

effect on the finger movements but not on the speech and attributed this to speech “winning out” 

in the hierarchy of importance (Smith, McFarland, and Weber, 1986).  However, there are other 

studies that found opposite results in that there were effects for both (Chang & Hammond, 1987; 

Kelso, Tuller & Harris, 1983). 

Dromey and Bates (2005) followed up the 2003 manuscript with a similar investigation 

of three different types of concurrent tasks (i.e.,  cognitive, linguistic, and visuomotor tasks) 

along with a speech task which required the participants to recite Peter Piper would probably 

pick apples 15 times.  The general methodology was the same as in the earlier experiment.  

However, the motor task was changed to a visuomotor task.  A moving target was viewed on a 

computer screen and each of the 20 participants attempted to track and click on the target as 

often as possible.  Again, the motor task interfered with the speech task.  Lower lip + jaw 

displacement and utterance duration were significantly reduced for the combined speech and 

visuomotor task compared to the speech only task.  One explanation given for these two effects 

was possible temporal entrainment of the speech and manual systems.  That is to say, individuals 

were instructed to track a fast-moving target with a hand movement which then in turn increased 

the rate of speech and reduced amplitude of articulator movement.   

In fact, the finding that temporal rate and variability are highly correlated across different 

effectors is not unique to this experiment.   For instance, as finger tapping rate increases, speech 

rate increases (Franz, Zelaznik, & Smith, 1992; Kelso, Tuller, & Harris, 1981; Klapp, Porter-

Graham, & Hoifjeld, 1991; LaBarba et al., 1987; Smith, McFarland, and Weber, 1986).    These 

data are indicative of synchronization as a result of temporal entrainment across the speech and 
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manual systems. Let us now turn to a discussion regarding temporal entrainment and dynamic 

systems as it relates to speech and upper limb motor processing. 

 

2.5  DYNAMIC SYSTEMS THEORY AND TEMPORAL ENTRAINMENT 

 

The topic of temporal entrainment and dynamic systems theory has been alluded to throughout 

this manuscript.  As stated previously, simple top-down modular processing accounts that focus 

on linguistic processes such as models presented by de Ruiter (1998, 2000) and Levelt (1989) 

fail to distinguish the mechanism by which gesture synchronizes with prominent syllables.  The 

model of sensorimotor speech motor control presented by van der Merwe (1997) allows for 

greater specification of the various levels of motor processing, most importantly for our 

purposes, the level of motor programming.  Yet, this model does not provide information 

regarding the interface of speech with other motor systems at the level of motor programming.  

In order to flesh out this issue, one must turn to a nonlinear account of motor behavior like 

concepts encased by dynamic systems theory.  Even though the notion of a motor program seems 

at odds with the tenets of dynamic systems theory, there are indeed similarities, particularly 

between the motor programs and coordinative structures.  Schmidt and Lee (1999) summarize 

that, “in both the motor program and coordinative structure concepts, the many degrees of 

freedom in the musculature are reduced by a structure or organization that constrains the limbs to 

act as a single unit…also, both notions involve the tuning of spinal centers, corrections for errors 
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in execution, and freedom of the executive level from the details of what occurs at the lower 

levels in the motor system” (p. 155).   

In recent decades, nonlinear science has emerged as a viable alternative to traditional top-

down, executive controlled theories.  The application of nonlinear dynamics stemmed originally 

from work in the area of physics, and later, motor control.  However, principles of nonlinear 

dynamics are now being applied to just about any behavior or event, from cognitive-linguistic 

processing (e.g., Thelen & Smith, 2002) to inanimate properties like biological and chemical 

processes (e.g., Lorenz & Diederich, Telgmann, & Schutte, 2007).  In this section, a brief history 

and overview of dynamic systems theory is provided and the evidence for coordinated temporal 

processing is described.  Again, the application of nonlinear dynamics is vast.  Hence, this 

section focuses specifically on the relevance of the topic to speech and upper limb movements.   

 

2.5.1 History and Overview of Dynamic Systems Theory 

Nonlinear science has roots in Chaos theory in physics and chemistry (see Gleick, 1987) and was 

later extended to the development of dynamic systems theory.   The attraction of these concepts 

for the explanation of human behavior is based on the fact that many, if not most, human actions 

and cognitive processes display nonlinearity and considerable variability.  Lashley’s (1951) 

groundbreaking manuscript was among the first to describe the nonlinearity of complex 

biological systems in contrast to the traditional view of examining linear processing.  Likewise, 

Bernstein (1967) advanced the call for an alternative to traditional top-down processing accounts 

in his description of the degrees of freedom problem.  Bernstein conjectured that executive 
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control was not necessary in the planning and execution of movement.  Conversely, he stated 

that groups of muscles acted together as functional synergies to complete a motor goal since 

there are potentially countless ways to actually attain each motor goal.  The functional grouping 

of muscle groups are described as “coordinative structures that are constrained to act as a unit in 

a motor task (and) behave as limit-cycle oscillators, that is, they have a preferred frequency and 

amplitude of oscillation, and they return to their preferred state after perturbation” (Smith, 

McFarland, & Weber, 1986, p. 471).  Thus, the major foundations of dynamic systems theory 

were in place, namely the concepts of nonlinearity, elimination of central control, and 

coordination of structures.   

There are several major points of divergence between a dynamic systems perspective and 

a traditional view of linear behavior.  Perhaps the greatest of these is the eradication of a central 

command executive.  In contrast, the structures involved in a dynamic system are self-

organizing.  That is, the system has a “natural tendency to perform certain patterns and to switch 

into patterns that are more efficient under certain parameter conditions…without conscious 

involvement associated with volitional control” and “suggest that patterns of coordination 

emerge spontaneously from the interaction of the available degrees of freedom of the system” 

(Schmidt & Lee, 1999, p. 220).  Another important component of a dynamic system is stability, 

or lack thereof.  A dynamic system, by definition, is a system that is always in a state of flux.  

The system has preferred patterns or attractor states, but those states can change under the 

influence of other parameters, both internal and external to the system. 

The behavior of interest is often described according to its position within a phase space 

and a given moment of that behavior is described according to its relative phase.  Most often the 

coupling of two effectors (i.e., fingers, limbs, lower lip, mandible, etc.) is studied and the 
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temporal rhythms of the two also play a role in the stability of the behaviors.  There are many 

classic examples that exemplify these somewhat abstract ideas including bimanual coordination 

of finger-thumb closure (Kelso, 1984), finger-oscillation (Kelso, 1984), finger tapping (Tuller & 

Kelso, 1989), and pendulum swinging (Schmidt, Shaw, & Turvey, 1993).  Kelso’s (1984) classic 

study of finger closure is summarized to provide a quick exemplar (see Schmidt & Lee, 1999 for 

review). The results of these other cited studies are very similar.  

If one opens and then closes the index finger and thumb bilaterally at a rate of one 

“pinch” every one second, the time of opening and closing of each hand would be performed 

simultaneously even though there is no instruction to do so.  When two effectors are in 

synchrony, they are said to be in-phase and have a relative phase angle of 0˚.  An in-phase 

pattern is the naturally preferred pattern.  Conversely, one can also perform the bilateral opening 

and closing movements in opposition to one another with relative ease.  For example, when the 

left fingers are opening, the right fingers are closing.  This pattern is identified as anti-phase and 

the relative phase angle is 180˚.  Not only is there a natural tendency for a complex system to be 

in-phase or anti-phase, but variability of a system can lead to stability without conscious control.  

Thus, the system is self-organizing.  For instance, if one performs the anti-phase finger closing 

task, but then increases the rate of pinching gradually there will be increased variability (i.e., 

decrease of stability) as the rate increases then an intriguing switch from anti-phase to in-phase 

coordination.   

It is thought that certain patterns of coordination, especially in-phase coordination, 

maximize the efficiency of the coordinative structures performing the behavior.  Each of the 

hands is performing a rhythmic oscillatory movement.  Therefore, each of these coordinated 

structures is termed an oscillator and the coordinated right and left hands are described as 
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coupled oscillators.  These terms apply not to just this example but to all examples of two or 

more effectors that perform oscillatory movement patterns and are temporally coordinated.  

Thus, time is fundamental to entrainment.   

The oscillators are said to be entrained when they influence one other mutually to 

“produce a single coordinated behavior, synchronous in time and space” (Iverson & Thelen, 

1999, p. 28).  Similarly, Thelen and Smith (2002, p. 304) iterate “to the degree that two 

component systems have a history of time-locked activity, they will come to entrain each other 

and to mutually influence each other”.  Yet another clear definition comes from Clayton, Sager, 

and Will (2004) who define entrainment as “a phenomenon in which two or more independent 

rhythmic processes synchronize with each other” (p. 1) and in “such a way that they adjust 

towards and eventually ‘lock in’ to a common phase and/or periodicity.  Merker, Madison, and 

Eckerdal (2009) use the more descriptive term of “pulse-based rhythmic entrainment” (p. 4) to 

describe this phenomena.  This term will be utilized in later parts of this manuscript particularly 

because it encompasses the hypotheses regarding the entrainment of speech and manual 

movements posited but Tuite (1993) and Port (2003).   

The idea of entrainment actually was first presented 70 years ago by von Holst (1937, 

1939, 1973) in response to his observations of the mutual influence of fin movements of 

swimming fish.  The general idea of entrainment is that the preferred temporal pattern of one 

oscillator will interface with the preferred temporal pattern of the second oscillator, resulting in 

either an identical rhythmic pattern or a compromise rhythmic pattern somewhere in between the 

two patterns when they are produced in isolation.  Smith et al. (1986, p. 471) further specify that 

“two oscillations are entrained if they occur at the same frequency or at harmonically related 

frequencies and have a consistent phase relationship”.  A few examples of oscillators that can 
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entrain one another are the) and finger tapping along with metronome beats (e.g., Aschersleben, 

2002), repetitive phrase production along with metronome beats (Cummins & Port, 1998) and 

finger tapping and repetitive syllable production (Kelso, Tuller, Harris, 1981; Smith et al., 1986).   

It is important to note that two oscillators need not be produced in perfect rhythmic 

harmony in order to be entrained.  Instead, it is more likely that two oscillators are share a pulse-

based entrainment (Bluedorn, 2002; Clayton, Sager, and Will, 2004; Merker, Madison, and 

Eckerdal, 2009).  That is, that the pattern of one behavior (e.g., marking beat gestures) is co-

occurs at certain points in time with the cycle of another behavior (e.g., pitch accented syllables 

in the speech stream).  Bluedorn provides a summary of pulse-based entrainment as follows: 

Entrainment is the process in which the rhythms displayed by two or more 
phenomena become synchronized, with one of the rhythms often being more powerful or 
dominant and capturing the rhythm of the other.  This does not mean, however, that the 
rhythmic patterns will coincide or overlap exactly; instead, it means the patterns will 
maintain a consisitent relationship with each other.  (2002, p. 149) 

 
Entrainment can be external, such that a rhythmic behavior of one species is entrained to 

that of another.  Examples are limitless but include fireflies synchronizing illumination, 

synchronization applause patterns, and even parrots “dancing” to music (Schachner, Brady, 

Pepperberg, & Hauser, 2009).  Tapping (e.g., Correiveau & Goswami, 2007) or repetitive phrase 

production along with a metronome is another example of external entrainment (Cummins & 

Port, 1998).  Entrainment can also be internal, such that one rhythmic pattern of an individual is 

entrained to another rhythmic pattern within the same individual.  For example breath groups 

tend to synchronize with ambulation patterns while jogging.  Another example is the rhythmic 

synchronization of movements of the right and left arms (Kugler & Turvey, 1987).  As reviewed 
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in an earlier section, Iverson and Thelen (1999) conjectured that gesture and speech may also be 

oscillators that can be internally entrained.  This leads us to the crux of the current research.   

 

2.5.2 Dynamic systems theory and speech 

 

In short, dynamic systems theories attempt to explain the behavior and activity of complex 

systems.  Thus, the application to human movement and later speech production was a straight-

forward progression of the dynamic systems movement.  There have been a number of studies of 

the dynamic properties of speech following similar paradigms utilized to study manual and limb 

movements (e.g., Saltzman & Byrd, 2000; Saltzman & Munhall, 1989; Tuller, Harris, & Kelso, 

1982; Tuller, Kelso, & Harris, 1982, 1983; see Kelso and Tuller, 1984 for review).  A limitation 

of linear models is that they often cannot account for the fluid coarticulatory processes of speech 

production.  A dynamic systems approach can more adequately describe context-dependent 

coarticulation by viewing speech production as a coordinative process. 

It is proposed that speech articulators can also be thought of as coordinative structures.  

Saltzman and Byrd (2000) nicely summarize Saltzman and Munhall’s (1989) task-dynamic 

model of speech production as follows, “in the task-dynamic model of speech production, 

articulatory movement patterns are conceived of as coordinated, goal-directed gestures that are 

dynamically defined…in particular, they have been modeled as critically damped oscillators that 

act as point attractors” (p. 501).   The coordinative structures work together to produce 

articulatory gestures which are “changes in the cavities of the vocal tract – opening or closing, 



103 

 

lengthening or narrowings, lengthenings or shortenings” (Liberman & Whalen, 2000, p. 188).  

The vocal tract configurations for a given gesture are created by goal-directed movements of the 

various structures involved in speech such as the velum, parts of the tongue, mandible, and lips.  

Although, many theorists have applied extensive and sophisticated mathematical work to the 

relative phase of oscillators involved in speech and various types of action, that is not the role of 

dynamic systems theory in this research endeavor.  The reader is referred to the following 

references for greater detail on specific dynamic pattern models of speech production and more 

general motor behaviors (Haken, Kelso, & Bunz, 1985; Saltzman & Munhall, 1989)  

  Recovery from perturbation can be examined to study the stability of a motor 

behavior, including speech production.  Perturbation studies also provide abundant information 

regarding the role of sensory feedback for motor control.  There is a wealth of data on the 

sensory information that is utilized by the motor system for upper limb movements.  For instance 

the visual location of a target can be altered during reaching tasks to measure the compensation 

of movement (e.g., Paulignan, Jeannerd, MacKenzi, & Marteniuk, 1991; Prablanc, O’Martin, 

1992).  In addition, perturbation studies have demonstrated the importance of both visual 

feedback and proprioceptive sensory information for accurate pointing trajectories (e.g., Bard, 

Turrell, Fleury, Teasdale, Lamarre, & Martin, 1999; Komilis, Pelisson, Prablanc, 1993).  Later,  

a perturbation study that randomly applied a load to the wrist during pointing in an effort to 

examine the resultant effects on the timing of speech is reviewd (Levelt, Richardson, La Heij, 

1985).     

There is also a plethora of experimental findings that demonstrate the importance of 

various types of sensory feedback on speech motor control.  There are two broad categories of 

speech perturbation studies, those that directly affect the biomechanics of speech and those that 
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affect the auditory feedback of speech.  Many investigators have manipulated the biomechanics 

of articulator movement by introducing a bite block (Folkins & Zimmerman, 1981; Kelso & 

Tuller), applying a mechanical load to an articulator, most often the mandible or lower lip, either 

in a consistent or transient manner (Abbs & Gracco, 1982, 1984; Folkins & Abbs, 1975; Gracco 

& Abbs, 1985, 1986; Kelso & Tuller1984; Kelso, Tuller, Vatikiotis-Bateson, & Fowler, 1984; 

Shaiman, 1989; Shaiman & Gracco, 2002), or by removing afferent information from the motor 

system by using local anesthetics like Xylocaine and nerve blocks (Kelso & Tuller, 1983; see 

Abbs, Folkins, Sivarajan, 1976 for review).  Repeatedly, it has been demonstrated that accurate 

acoustic goals can be attained even in the face of these biomechanical perturbations.  Therefore, 

there are many configurations of the vocal tract that are permissible for attaining an acoustic 

goal.  In sum, “this ability to use different movements to reach the same goal under different 

conditions, called motor equivalence, is a ubiquitous property of biological motor systems” 

(Guenther, Hampson, & Johnson, 1998, p. 6). 

The sensory feedback that results from biomechanical perturbations is received and 

processed much more quickly than perturbations of auditory information.  Auditory perturbations 

include manipulations of the feedback of fundamental frequency (e.g., Brunett, Freedland, 

Larson, & Hain, 1998), masking noise (e.g., Ringel & Steer, 1963; Kelso & Tuller, 1983), and 

the feedback of the auditory signal with the presence of a delay (e.g., Howell & Archer, 1984; 

Stuart, Kalinowski, Rastatter, & Lynch, 2002).  Even though there is a longer latency of response 

for auditory perturbations, the sensory information provided by the acoustic signal is clearly 

important for monitoring the accuracy of speech production.  Most importantly for the present 

investigation, the “effects of delayed auditory feedback on speech are simply another example of 

deterioration in the performance of any serially organized motor behavior when a competing, 
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rhythmic, out-of-synchrony event is co-occurring” (Smith, 1992, p. 253).  As stated in the 

Introduction, DAF causes a temporal disruption of speech characterized by decreased speech 

rate, increased speech errors (e.g., phoneme exchanges), increased vocal intensity, and increased 

dysfluencies (e.g., Burke, 1975; Howell & Archer, 1984; Stuart, Kalinowski, Rastatter, & Lynch, 

2002).  Thus, if speech and gesture are coupled oscillators that entrain and mutually influence the 

timing of one another, the temporal disruption of speech that results from DAF should also affect 

the temporal pattern of gesture production.   
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2.5.3 Speech and manual coordination 

 

As discussed earlier, there are abundant behavioral, neuropsychological, and neurophysiological 

data to suggest that there is indeed an interface between speech and manual movements.  

Likewise, there is evidence from studies embedded in dynamic systems theory that also supports 

a shared processing of speech and manual motor patterns, particularly for rhythmic movements.  

Many have investigated the influence of rhythmicity on the coordination of bimanual or limb 

movements as previously described.  Also, there is growing interest in the effect of external 

rhythms imposed by a metronome in speech cycling and synchronous speech tasks (Cummins, 

2002a, 2002b; Cummins & Port, 1998; Port, Tajima, & Cummins, 1998; Tuller & Kelso, 1990).  

Such research aims to find the underlying harmonics of the percept of speech rhythm.  Although 

there is a long way to go, the evidence suggests that individuals prefer simple harmonic ratios 

(i.e., 1:1, 2:1, and 3:1) not just for limb and hand movements, but also for production of 

prominent prosodic features of speech.  This work has prompted others to generate models of 

rhythmic speech production based on the notion of coupled oscillators (Barbosa, 2001, 2002; 

Port, 2003; O’Dell & Nieminen, 1999).  Gracco (1994, p. 24) summarizes by stating that “any 

centrally generated rhythmic mechanism for speech and any other flexible behavior must be 

modifiable by internal and external inputs” and that the “rhythmic mechanism is the foundation 

for the serial timing of speech movements”.   
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Still others have taken this line of questioning a step further.  Since it is proposed that (1) 

speech movements can be coupled to an external stimulus and (2) that manual movements can be 

coupled to each other, to external stimuli, and to other limb movements, then it can be further 

hypothesized that speech and manual production are potentially rhythmically coordinated and 

entrained to each other.  There is limited experimental and theoretical work on this topic, though 

what exists is intriguing and holds promise for future investigations such as the one at hand.   

Perhaps the most interesting aspect of the dynamic systems perspective for the current 

investigation is the concept of coordination across effectors.  The argument is that there are 

effector-independent representations, particularly for the temporal parameters of motor behaviors 

that can transfer across different systems.  Typically, experiments have examined the transfer of 

motor learning from one side to the other (e.g., Vangheluwe, Suy, Wenderoth, & Swinnen, 2006) 

and from arm to leg transfer or vice versa (e.g., Keele, Jennings, Jones, Caulton, & Cohen, 1995; 

Kelso & Zanone, 2002).   

Another line of research that was already briefly addressed focuses on the shared 

temporal parameters of movements across different motor systems, most often the frequency and 

amplitude of oscillatory movements.  Kelso and Tuller (1984) describe this notion of stable 

temporal patterning such that “the temporal stability often takes the form of a phase constancy 

among cooperating muscles as a kinematic parameter is systematically changed; we believe that 

this invariant temporal structure is a fundamental ‘signature’ of coordinated activity, including, 

perhaps, the production of speech” (p. R931).  The search for a so-called temporal invariant has 

been arduous.  Nevertheless, there is evidence for a systematic change of temporal patterning of 

one oscillator in relation to the other (Munhall et al. 1985; Franz, Zelaznik, & Smith, 1992; 
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Kelso, Tuller, & Harris, 1981; Klapp, Porter-Graham, & Hoifjeld, 1991; LaBarba et al., 1987; 

Ostry et al., 1987; Ostry, Cooke, & Munhall, 1987; Smith, McFarland, and Weber, 1986).   

In fact, Kelso, Tuller, & Harris (1981) claimed that even disparate motor acts like speech 

and finger movement can be organized as a single coupled unit.  Based on this earlier work by 

Kelso et al., Smith and colleagues (1986) found support for both changes in amplitude and 

frequency of movement due to interactions between repetitive speech and finger tapping 

performed simultaneously.  Eight individuals were instructed to repeat /stak/ and tap their fingers 

at either a comfortable rate or at varying rates.  Tapping and syllable repetition occurred at a 

harmonic ratio of 1:1 when participants were permitted to perform the tasks at their preferred 

rate.  Even though there was not absolute coordination when the participants were instructed to 

alter the rate of only one of the movements, a systematic change of frequency was observed, 

such that a frequency somewhere in between the two original frequencies was adopted.  Thus, 

there was an interaction and entrainment between speech and manual movements. Moreover, the 

authors point out that the lack of practice may have hindered the emergence of absolute 

coordination in the rate-change conditions.  Subsequently, Franz, Zelaznik, and Smith (1992) 

also demonstrated that the temporal patterns of repetitive movements of the mandible and single 

syllable repetition were significantly correlated to the repetitious productions of finger and 

forearm movements.  Hence, the limited research on interactive temporal patterns suggests that 

different motor systems, whether bilateral systems, upper and lower limb systems, or even 

manual and speech systems can indeed be entrained and affect the temporal parameters of the 

other.   
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2.5.4 Speech and gesture entrainment 

 

Which brings us back to the issue at hand, are speech and gesture temporally entrained?  Based 

upon the general principles of dynamic systems theory, the wealth of experimental data on the 

rhythmic coordination of manual, limb, and/or articulator movements, the interface of temporal 

patterns shared across manual and speech systems, and emerging theoretical thought on the 

topic, it certainly is worth exploring this question.  However, even those that have initiated the 

study of the shared temporal patterns of speech and manual activity have only examined simple 

repetitive syllable production and finger tapping.  Secondly, individuals have theorized that there 

are rhythmic commonalities between hand gestures and speech (Cummins & Port, 1996; 

Wachsmuth, 1999) and that speech and gesture are entrained (Iverson & Thelen, 1999), perhaps 

according to prominent moments in the speech signal and manual movement (Tuite, 1993).  This 

is the first investigation that systematically explored the hypothetical entrainment of speech and 

gesture.     

The proposal is that speech and gesture are two internal, coupled oscillators.  In contrast 

to speech or finger movements being entrained to the rhythmic pulse of a metronome, they are 

self-entrained according to rhythmic pulses.  According to Port et al. (1998, p. 2), self-

entrainment is the mutual influence of two oscillators that are actually “parts of a single physical 

system…when a gesture by one part of the body tends to entrain gestures by other parts of the 

same body”.   As the reader recalls from the review of Iverson and Thelen’s (1999) Entrained 

Systems Theory of gesture production, they hypothesize that speech and gesture become 

temporally synchronized in early development by way of rhythmical activity of the arms, hands, 
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and speech apparatus.  The rhythmic coordination of early movements results in entrainment of 

the manual and speech systems.  Correspondingly, Tuite (1993) suggests that speech and gesture 

are synchronized according to their rhythmical pulses.  According to this view, a gestural stroke, 

or in the case of the present experiment a gesture apex, synchronizes with a prosodically 

prominent syllable because of a shared kinesic base.  Hence, it is logical to integrate these 

hypotheses of gesture production with a dynamic theory of rhythmic speech production.  Port 

(2003) proposed that the rhythm of speech is temporally spaced according to regular periodic 

patterns generated by neurocognitive oscillators.  These oscillators produce pulses, similar to 

Tuite’s view, that “attract perceptual attention (and) influence the motor system…by biasing 

motor timing so that perceptually salient events line up in time close to the neurocognitive 

pulses” (p. 599).  The notion of periodic pulses has also been applied to work with perception 

and attention (e.g., Large & Jones, 1999) as well.  According to Port, a salient perceptual event 

corresponds to such moments as the onset of a prominent vowel.  Port states that “for English, 

this is especially true for syllables with pitch accent or stress” (p. 609). 

The theoretical concept of pulse, be it Tuite’s (1993) or Port’s (2003) conception, holds a 

prosodically prominent (i.e., salient) syllable as the pulse that can then entrain other oscillators.    

Even though Port’s hypothesis is based upon work with speech cycling tasks (e.g., Cummins & 

Port, 1998) which require the simultaneous production of short phrases (e.g., Dig for a duck) 

with an external oscillator (i.e., a metronome), his broader intent is to explain self-entrainment of 

internal oscillators across systems.  He summarizes, “these oscillations can be described as 

neurocognitive because they represent major neural patterns somewhere in the brain and are 

cognitive because they may be time-locked to events across many different modalities-audition, 
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cyclic attention, speech, limb motion, etc.-in order to solve a wide range of problems in complex 

motor coordination, and in the prediction of environmental events” (p. 609).   

By integrating the hypotheses put forth by Port (2003), Tuite (1993), and Iverson and 

Thelen (1999) we can develop a more elaborative hypothesis of speech and gesture entrainment. 

It is proposed that indeed speech and gesture are temporally synchronous due to temporal 

entrainment of the two motor systems as Iverson and Thelen hypothesize.  It is also proposed 

that this entrainment occurs as a result of the self-entrainment of two internal coupled oscillators.  

That is the rhythmic production of speech, marked by prominent acoustic events such as pitch 

accented and/or stressed syllables, acts as a rhythmic pulse and influences the temporal pattern of 

coinciding manual gestures.  Specifically the most salient portion of the accented syllable (i.e., 

vowel midpoint) entrains the most salient portion of the gesture (i.e., gesture apex), resulting in 

the perceived temporal synchronization of speech and gesture.  It can be further hypothesized 

that speech acts as the because it is a more continuous and rhythmic behavior than gesture.  That 

is, speech is produced with an acceptable rhythmic structure and the gestures themselves are 

almost always transient and non-obligatory.   Yet, it is possible that entrainment of speech and 

gesture is a “two-way street” (Rochet-Capellan, Laboissière, Galvàn, & Schwartz, 2008).  In 

other words, rather than an accented syllable acting as the attractor for a gesture, the gesture may 

act as the attractor for accompanying speech production, counter to Port’s (2003) hypothesis.  

Nonetheless, this hypothetical source of entrainment or which rhythm is more “powerful” as 

Bluedorn (2002, p. 149) puts it, was not tested in this investigation.  In future investigations, one 

could manipulate the timing of gesture (e.g. by altering the visual target or physically perturbing 

hand movement) to examine whether speech entrains to gesture.   In this investigation, only the 
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speech signal was manipulated; hence, only the hypothesis that speech is the attractor for gesture 

was tested.   

2.6 TEMPORAL SYNCHRONY OF SPEECH AND GESTURE 

It is evident from our theoretical discussion regarding gesture production that many have placed 

great worth on the perceived temporal synchronization of speech and gesture.  However, do 

speech and gesture form an integrative system or is it merely coincidental the two movements 

roughly co-occur during spoken language production?  The answer to this question is unclear 

given the available literature.  Even the definition of synchrony is ambiguous in the vast majority 

of studies with virtually no identification of precise temporal boundaries in any of the 

investigations.  Almost 20 years later, the following statement by Butterworth and Hadar (1989) 

in reference to McNeill’s (1985) early postulations still rings true in regards to both the theory 

and empirical work on the temporal synchronization of speech and gesture.  They summarize, 

“he treated the synchrony between a gesture and a section of speech as if it were completely 

transparent, and his own examples consist of a portion of transcribed speech with a description of 

the accompanying gesture underneath it…no temporal parameters are specified…the most that 

can be implied is that there is some temporal overlap in the production of the speech and the 

gesture” (p. 170).   

To be sure, the entire experimental topic of gesture production and its relationship to 

speech and language processes is just beginning and it is difficult to gather reliable and valid 

information from the majority of existing data, especially regarding the temporal synchronization 
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of speech and gesture.  Though it is also true that the hypothesized synchronization of speech 

and gesture is a vital tenet of gesture production models as well as relevant for understanding 

linguistic and speech processes and the potential interface of the oral and manual motor systems.  

Thus, synchronization of speech and gesture warrants careful reflection within an empirical 

paradigm.  It is argued that this has not been achieved to date, though existing research does 

provide a number of thought-provoking findings and methodologies to build upon.  Three other 

hypotheses are presented regarding the temporal relationship of gesture and speech before 

reviewing the literature that examines the hypotheses that gesture remains synchronized with 

speech in spite of perturbation and that gesture coincides with syllables with prosodic stress.   

 

2.6.1 Gestures precede and/or synchronize with speech 

 

The most readily predicted and supported finding regarding the temporal synchrony of speech 

and gesture is that gestures precede or fully synchronize with their lexical affiliates (Bernardis & 

Gentilucci, 2006; Blake, Myszczyszyn, Jokel, & Bebiroglu, 2008; Butterworth & Beattie, 1978; 

Chui, 2005; Feyereisen, 1983; Krauss, et al. 1996, 2000; McNeill, 1992; Morrel-Samuels & 

Krauss, 1992; Ragsdale & Silvia, 1982).  That is, no study found that gestures are initiated after 

their lexical affiliates.   However, it is still not clear whether gestures co-occur with the onset of 

speech or if they commence prior to the speech signal.  One of the main reasons for this 

ambiguity is that inconsistent measurement points have been used for calculating the time 

interval between the manual and speech movements.  For instance, some have measured gestural 
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onset to speech onset (Bernardis & Gentilucci, 2006; Morrel-Samuels & Krauss, 1992), while 

others have chosen to measure the interval between the gestural stroke and a point in the speech 

signal (Chui, 2005; McNeill, 1992; Nobe, 1996).  Most recently, Blake et al. (2008) examined 

whether five to ten year old children would precede and/or synchronize with the onset of a noun 

phrase during narrative production, regardless of whether they exhibited specific-language 

impairment or were developing language typically.  Indeed, gestures, especially iconic gestures, 

for both groups either simultaneously co-occurred with the lexical “concept” or directly preceded 

the spoken production of that lexical “concept”.  A caveat to this investigation is that the 

determination of the timing relationship between speech and the lexical affiliate was made via 

visual and auditory inspection, with only 79% reliability from 18% of the sample. 

The project at hand does not examine whether gestures precede or synchronize with the 

lexical affiliate in general, but how the degree of synchrony between gestures and speech may be 

manipulated.  Nevertheless, the experiments’ methodologies will lend insight into whether 

gestures always occur before or simultaneously with the lexical affiliate.  Both the onset and 

apex of the gesture will be temporally measured, hence allowing for a comparison of these 

disparate measurement points in the existing literature. 

 

2.6.2 Lexical familiarity  

 

A second prediction regarding speech-gesture synchrony is that the degree of synchrony 

increases with decreasing lexical familiarity.  This prediction stems from Krauss and colleagues’ 
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Facilitatory Model (1996, 2000).  Morrel-Samuels & Krauss (1992) completed one of the only 

studies that examined this prediction.  Sixty gesture-lexical affiliate combinations selected from 

a picture description task were rated by 17 participants as familiar or unfamiliar on a seven-point 

scale.  According to Morrel-Samuels & Krauss (1992), lexical gestures precede their lexical 

affiliate by an average of 0.99 seconds (range of 0 to 3.75 seconds).  The authors also found that 

the time between gesture onset and voice onset time of the lexical affiliate increased as the 

familiarity decreased.  Morrel-Samuels and Krauss used these data to argue that the gesture must 

be initiated prior to the conceptualizing stage of speech production in order to be executed prior 

to execution of the spoken lexical item and allowing for possible lexical retrieval enhancement.  

However, a caveat of this study was that the difference in synchrony time could be solely 

attributed to the robust finding that lexical access requires less time for frequent compared to 

infrequent words.  Thus, the planning and production of a gesture could proceed without any 

interaction with the speech system and the word frequency effect alters the time between gesture 

production and lexical affiliate production.    

A more recent study (Bernardis & Gentilucci, 2006) employed a different approach to the 

question by examining the effect of meaningful speech and gestures versus pseudowords and 

gestures upon the temporal synchronization of the co-expression of the speech and gesture in a 

more controlled paradigm with Italian speakers.  Each participant viewed a screen and one of 

three words (no, stop, ciao) and one pseudoword (lao) was presented quasi-randomly.  One of 

five responses was required: gesture only, verbal production only, simultaneous production of 

gesture and speech, verbal production of the word with a meaningless gesture, or gesture of the 

word with verbal production of the pseudoword.  Using kinematic measures of the manual 

movements and acoustic measures of the speech signal, results indicated that the temporal 
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relationship of the onset of meaningful gesture and the onset of meaningful speech was 

significantly different depending on whether meaningful speech and gesture were simultaneously 

produced or if a pseudoword or pseudogesture was produced.   The interval between gesture 

onset and speech onset (Experiment 1, 547 ms and Experiment 2, 518 ms) significantly differed 

from the same interval for pseudowords and meaningful gestures (Experiment 2, 693 ms), and 

words and meaningless gestures (Experiment 1, 375 ms).  Although these two investigations (see 

Table 6) point to a potential effect of ease of lexical access on the temporal production of 

gesture, additional studies are required that manipulate lexical frequency and minimize working 

memory differences across conditions.  Again, this hypothesis will not be studied in the current 

project.  Though, though lexical frequency is another variable that could be manipulated in future 

research to test de Ruiter’s prediction that processing within the Formulator does not affect the 

timing of gesture
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Table 6 Temporal Synchrony: Lexical Frequency Findings 

 
 

n Participant  
Description 

Stimuli Task Gesture Types  
Included 

Morrel-Samuels 
& Krauss (1992) 

n=17 -9 men; 8 women 
-Undergraduates 

-13 pictures of 
landscapes, abstract art, 
buildings, people, and 
machines 
 
-221 narratives with 
2,328 hand movements 

Picture description 
 
 

-“Speech-related” 
-Gestures were hand 
movements that 
moved at least 1.5 
inches in 0.8 sec 

n=129 77 men; 52 women in 
groups of 10 

-2,328 movements 
yielded agreed upon 197 
lexical affiliates 
-Final stimulus set was 
60 hand movements 

-Identified lexical affiliates of the 
2,328 hand movements 
-8 of the 10 people in a group 
needed to agree on the affiliate 

See above 

n=17 9 men; 8 women -60 lexical affiliates  
-28/60 were multi-word  

Rated lexical familiarity of the 60 
lexical affiliates on a 7-point 
scale 

See above 

Bernardis & 
Gentilucci  
(In press) 

n=28 
14 in Exp. 1 
14 in Exp. 2 

Right-handed, Italian-
speaking 21-24 year 
olds 

-3 real words (no, stop, 
ciao) 
-1pseudoword (lao) 

-Response to computer generated 
task 
-4 blocks with 15 trials each, 
quasi- counterbalanced and 
randomized 
- After each trial, the participant 
was required to respond in one of 
four ways as stated in the 
Condition column.   

Emblem gestures and 
1 “pseudo”-gesture 
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Table 6 (continued).  Temporal Synchrony:  Lexical Frequency Findings 

 
 

Independent  
Variables 

Dependent  
Variables 

Interval  
Time Points 

Results Summarized                                                        

Morrel-Samuels 
& Krauss (1992) 

Familiarity of lexical affiliate Gesture-speech 
 synchrony 

-Gestural onset 
-Voice onset of 
lexical affiliate 
(measured from 
“slow-motion” 
analysis of 
recording  

-Gestural onset always precede the onset of the lexical 
affiliate 
-Range of synchrony = 0-3.8 sec (M=0.99 sec; 
SD=0.83 sec) 
-The longer the gesture, the greater the synchrony 
-The more familiar the lexical affiliate, the tighter 
synchrony between gesture and speech are according 
to a multiple regression analysis 

Bernardis & 
Gentilucci  
(In press) 

Condition 
-Accurate gesture 
-Spoken response of the word 
-Simultaneous production of: 
accurate gesture and accurate 
word 
-meaningless gesture and accurate 
word 
-accurate gesture and pseudoword 

Gesture-speech 
synchrony 

-Gestural onset 
-Speech onset 

-Gestural onset always preceded the lexical affiliate 
even for the pseudoword and pseudogesture 
- The interval between word onset and meaningless 
gestures significantly decreased (546.8 vs. 375.2 ms) 
compared to the interval between pseudowords and 
meaningful gestures significantly increased (517.8 vs. 
693.1 ms) when comparing to the interval between 
word and meaningful gesture 
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2.6.3 Development and disorders 

 

One can expect that if little is known about the precise temporal relationship of speech and 

gesture production in adults then even less is known about the same hypotheses in childhood and 

in disordered populations.  Indeed, this is true.  Though virtually no data is available for the 

synchronization of speech and gesture produced by individuals with communication disorders, 

there is some evidence to suggest that synchrony increases during development (see Table 7).   

The emergence of speech-gesture synchrony is thought to occur around the time of two-word 

speech.  Butcher (Butcher & Goldin-Meadow, 2000) was the first to examine the timeline of the 

synchronous production of speech and gesture in her dissertation.  A total of six children were 

initially observed during play between the ages of 12 and 21 months and then observed another 5 

to 11 times.  Speech and gesture became synchronous (i.e., the video frame which held the 

gestural stroke’s apex also included a vocalization) around the time that children were also first 

observed to produce two-word speech.  This finding was replicated by McEachern & Haynes 

(2004) with more controlled time intervals between observation sessions and more controlled 

observation procedures than employed by Butcher and Goldin-Meadow’s earlier study (2000).  

Balog and Brentari’s (2008) more recent investigations of the relationship of nonverbal body 

movements and intonation patterns in the vocalizations of 12-23 month old children 

demonstrated that body movements and speech show signs of synchronization, even before the 

age of two, particularly for falling intonation contours. 
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To date, there has been no investigation of the degree of gesture-speech synchrony for almost 

all disordered populations (e.g., children and adults with language disorders, childhood apraxia 

of speech, aphasia, Down’s syndrome, autism, dysarthria, etc.).  The only exception is Mayberry 

and colleagues’ observational work with children and adults who stutter (Mayberry & Jaques, 

2000; Mayberry, Jaques, & DeDe, 1998), which will be reviewed in the next section on 

perturbation.  Yet, a number of studies do suggest a number of theoretically, diagnostically, and 

therapeutically intriguing differences between the production of gestures for many of these 

populations and those produced by typical children and adults (Attwood, Frith, & Hermelin, 

1988; Blake, Myszczyszyn, Jokel, & Bebiroglu, 2008; Caselli, Vicari, Longobardi, et al., 1998; 

Corriveau & Goswami, 2009; Garcia & Cannito, 1996; Garcia & Dagenais, 1998; Hanlon, 

Brown, & Gerstman, 1990; Hill, 2001; Hill, Bishop, & Nimmo-smith, 1998; Hustad & Garcia, 

2005; Iverson, Longobardi, & Caselli, 2003; Osterling & Dawson, 1994; Pashek, 1997; Raymer, 

Singletary, Rodriguez, et al., 2006; Rose & Douglas, 2001; Smith, Mirenda, & Zaidman-Zait, 

2007; Stefanini, Caselli, & Volterra, 2007; Stone, Ousley, Yoder, et al., 1997; Thal, O’Hanlon, 

Clemmons, Fralin, 1999; Thal & Tobias, 1992).  The temporal relationship between gesture and 

speech during development and for individuals with speech, language, and other disorders is a 

premature focus for the present project.  Still, one prospective goal of this program of research is 

to cultivate a long-term research plan that extends the methodology and findings of these 

experiments to children developing speech and language as well as children and adults with 

speech and language disorders.   
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Table 7 Temporal Synchrony: Developmental Findings 

 
 

n Participant  
Description 

Stimuli Task Gesture Types  
Included 

Butcher (1995) 
Butcher & Goldin-
Meadow (2000) 

n=6 -3 boys; 3 girls 
-Initially tested between the 
ages of 12 & 21 months 
-Final testing session 
completed between the ages 
of 19 and 27.5 months  
 

-Spontaneous play 
interaction with examiner 
and/or caregiver (one hour) 
-The first half hour of the 
interaction was used as the 
experimental conversation 
unless there were less than 
100 communicative 
behaviors in which case the 
coder continued until the 
100 communicative 
behavior mark.   
-The length of interaction 
was 30 to 48 minutes 

-The children were observed 
at variable intervals.   
-Four of the children were 
observed approximately every 
2 weeks and the other two 
were tested approximately 
every 6 to 8 weeks.   
 

-Hand movements were 
classified as a gesture 
according to 4 criteria.  -First, 
the movement had to be 
directed toward another 
individual.  -Second, the 
gesture could not be a self-
adaptor and the movement 
had to be empty-handed.   
-Third, the movement was 
excluded it was part of a game 
(e.g., patty-cake) or ritual act.   
-Finally, imitated gestures 
were excluded.   

MacEachern & 
Haynes (2004) 

n=10 -4 boys; 6 girls 
-Typically developing 
children determined via 
parent report, MacArthur 
Communicative 
Development Inventory, 
Denver Developmental 
Screening Test, and hearing 
screening 
-Initially tested between the 
ages of 15 and 17 months 
-Final testing session 
completed at approximately 
21 months of age  

-Spontaneous play 
interaction (one hour) 
-Children were seen every 
30 days (+/- 7 days) for six 
months.  
-Thus, there was a total of 
six sessions for each child 

-A one hour spontaneous play 
sample was videorecorded 
while the infant interacted 
with his/her caregiver in a 
room in the Auburn 
University Speech and 
Hearing Clinic.  -The 
caregiver and child were 
provided with age appropriate 
toys and several “stations” of 
toys to elicit different types of 
play activities such as gross 
motor play, snacking, reading, 
etc. 

-The children’s 
communicative behaviors 
were coded as in the Butcher 
dissertation and Butcher and 
Goldin-Meadow investigation 
as gesture alone, speech 
(verbalization or vocalization) 
alone, or gesture and speech 
(See above).   
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Table 7 (continued)  Temporal Synchrony:  Developmental Findings 

 
 

Procedures Results Summarized                                                    

Butcher (1995) 
Butcher & 
Goldin-Meadow 
(2000) 

-The interaction was transcribed and then coded for gestures, speech, and gesture/speech 
combinations.   
-Gesture and speech were both considered communicative behaviors.   
-Vocalizations were classified as either meaningful or meaningless.  Meaningful 
vocalizations were not necessarily real English words, they were also consistent speech 
sounds that were used idiosyncratically in reference to an object or event.  Meaningless 
vocalizations were communicative but not used as a consistent reference to an object or 
event. 
-Gestures were classified according to handshape, movement type, a space in which they 
were produced.   
-Gesture-Speech relationships were also coded.  Gestures were either coded as produced 
in isolation or with speech.  If a gesture was coded as co-occurring with speech, it was 
designated as with occurring with a meaningless or meaningful vocalization.   
-The temporal relationship of gesture and speech was examined by measuring the time 
between the gesture and the speech it accompanied to the nearest video frame with was 
1/30 of a second.  The point of the gesture that was measured as the referent point was 
the stroke or peak (furthest movement of the gesture before retraction of the hand).  -
Speech and gesture were considered synchronous if this point of the gesture was 
accompanied by the vocalization.   
-Synchrony was measured between gesture and both meaningful and meaningless 
vocalizations.  

-5/6 participants produced asynchronous gesture-
speech combinations at the initial session.   
-The gesture-speech combinations of the sixth child 
were synchronous at all sessions.   
-Temporal synchrony does not seem to manifest 
until children began to produce two-word speech.   
-Speech and gesture are not unified in early 
development. 
-5/6 children also produced a higher proportion of 
gestures without speech relative to what is 
expected for adults.   
-These children produced between 60-97% of their 
gestures in isolation compared to adults who 
produce only 10% of gestures in isolation.   
-Early on in the one-word speech period, children 
do not produce gesture+meaningful speech 
combinations.   
 

MacEachern & 
Haynes (2004) 

-Gestures, vocalizations, and verbalizations were considered communicative behaviors 
-Gesture-speech combinations in which the gestural stroke or the peak of gesture 
extension occurred after the vocalization/verbalization were classified as asynchronous  
-Five dependent variables at each of the 6 test session ages (16-21 months) were 
analyzed separated with ANOVAs.   
-These variables were mean number synchronized vocalizations, synchronized 
verbalizations, single word+gesture complementary combinations, single word+gesture 
supplemental combinations, and two-word utterances.  

-As one would expect, synchronized vocalization 
and gestures decreased with age as verbalization 
and gesture synchronization increased. 
-The children demonstrated vocal-gesture 
synchrony at the earliest ages tested (15-17 
months) leading the authors to conjecture that 
synchronization of vocalization and gesture begins 
prior to these ages 



123 

 

2.6.4 Prosodic Prominence 

The next hypothesis, that gestures coincide with prominent syllables, is relevant for the 

present series of experiments.  Recall that this hypothesis is pivotal for theories such as 

McNeill’s Growth Point theory and his phonological synchrony rule (1992) but rejected 

outright by others (de Ruiter, 1998, 2000).  One of the earliest proposals regarding the 

temporal relationship of speech and gesture is that manual and even other body 

movements co-occur with the suprasegmental properties of speech such as intonation and 

rhythm (Birdwhistell, 1952; 1970; Kendon, 1972; 1980) and that the body moves closely 

in time with speech (Condon & Ogston, 1966; Dittman & Llewellyn, 1969).  Thus, the 

idea that gestures correspond to the prosody of spoken language is not new.  It has long 

been accepted that beat gestures are tightly linked to stressed syllables and “move to the 

rhythmical pulsation of speech” (McNeill, 1992, p. 15).  However, few experimental 

investigations of the relationship of gestural movements and prosodic features of speech 

have been conducted to date and nothing is known about the mechanism of this potential 

temporal relationship. 

Yet, in comparison to our first three hypotheses, the hypothesis that gestures 

coordinate with prominent syllables has actually been the subject of the greatest amount 

of empirical scrutiny.  Even so, there are many limitations in this work.  For example, 

there are inconsistent findings between these studies, though even the investigations that 

share the affirmation that syllable prominence affects the timing of gesture are difficult to 

equate given widely divergent stimuli, methodologies, segmentation of speech and 



 

gesture, and temporal boundaries measures.  Consequently, the majority of the 

researchers were more interested in identifying a general co-occurrence of gesture and 

prominent syllables rather than measuring the degree of synchrony between specific 

points within the speech signal and the gesture movement.  Likewise, the objective of 

most of these studies was to observe, not manipulate, speech-gesture synchrony. 

Birdwhistell (1952; 1970) was the first to cite a relationship between body 

movement and language, particularly intonation.  Birdwhistell proposed that the 

relationship between body movement and intonation is one in which kinesic stress and 

linguistic stress coincide.  According to Birdwhistell, one can track synchrony of small 

movements of the arms, hands, face, and so on, referred to as kines, and the units of 

speech.  However, Birdwhistell did not make any specific predictions about this 

relationship.  Kendon (1972; 1980) also proposed a relationship between gesture and 

intonation.  Gestural strokes are proposed to coincide or slightly precede stressed 

syllables.  In addition, he observed a tendency for gestural phrase boundaries to coincide 

with tone groups (i.e., prosodic phrases, phonemic clauses, intonation groups, tone units, 

intonational phrase).  Individuals such as Birdwhistell, Kendon, McNeill, and Tuite 

hypothesized that prosodic stress and manual gestures synchronize, but only offered 

cursory anecdotes or observational accounts as support for their assumptions.  Empirical 

study of these hypotheses does exist, though they have yielded conflicting and equivocal 

findings and are far from optimal in their methods and design.   

To date, there have been nine experiments that examined of the effect of syllable 

prominence upon the timing of gesture (Bull & Connelly, 1985; de Ruiter, 1998, 

Experiments 1 & 2; Loehr, 2004; 2007; McClave, 1994, 1998; Nobe, 1996, Experiment 
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4; Rochet-Capellan, Laboissière, Galvàn, & Schwartz, 2008; Yasinnik, Renwick, & 

Shattuck-Hufnagel, 2004).  Each of these studies is summarized in Tables 8, 9, 10, and 

11.  It is difficult to reconcile the findings from this body of work given the fact that 

disparate methodologies, classification schemes, and temporal measures were employed.  

For instance, the type of gestures varied.  Bull and Connelly (1985) offered the first 

account of the relationship of stress and body movement, though included not just arm 

and hand movements, but movements of the trunk, head, legs, and feet.  McClave (1994) 

examined solely beat gestures, while de Ruiter (1998) and Rochet-Capellan and 

colleagues (2008) examined only deictic gestures.  Nobe (1996) and McClave (1998) 

coded all representational gestures, Loehr (2004; 2007) coded all gestures including head 

and eyebrow movements, and Yasinnik et al. (2004) coded gestures according to their 

movement (i.e., discrete and continuous) rather than their semantic relationship to the 

lexical affiliate.   

 Not only do these studies differ in the type of gestures examined, but they also 

differ in the way in which syllable prominence was classified.  Certainly, quantitatively 

measuring syllable prominence has proven difficult for many because there are different 

types of prominence (i.e., lexical stress, emphatic stress, nuclear stress, pitch-accent) and 

both perceptual (i.e., loudness, pitch), acoustic (i.e., duration, intensity, fundamental 

frequency, pitch changes), and physiologic correlates (e.g., kinematic) of stress as 

previously described.   Therefore, the selection of an independent variable of syllable 

prominence should be well-motivated and reliably identified.   

125 

 



 

 
Table 8 Speech and Gesture Elicitation and Classification Procedures:  Prosody and the 
Temporal Synchrony of Speech and Gesture in Spontaneous Speech 

 

Citation 

Temporal 
synchrony as 
a function of 
prosody? 

Spontaneous 

Controlled 
Speech 
and/or 
gestures 

Gesture Types Identification of Prosodic 
Prominence  Temporal boundaries 

Bull & Connelly 
(1985) Yes Yes -  “Tonic stress” 

Imprecise  
All body parts included, no specific 
boundary markings 

McClave (1994) No 

 
+ 
 
Two 
conversations 

- Beats Stressed syllables and  
tone units 

Imprecise  
Downpoint of gesture (lowest 
spatial position)  
No specific point of measurement 
within a syllable 

Nobe (1996, 
Experiment 4) 

Yes 
 

+ 
 
Cartoon 
narration 

- 
Representational  
(iconics, deictics, 
metaphorics) 

Intonation units and 
corresponding 
fundamental frequency 
and intensity peaks 

Imprecise 
Collapsed both gestural onsets and 
strokes in most analyses  
No details about the measurement 
point within the peak syllable 
However, this was one of only two 
studies to employ acoustical 
analyses of prosody. 

McClave (1998) Yes 

+  
 
Two 
conversations 
 

- 

Representational  
 
Beats included in 
only some 
analyses 

Tone unit nucleus (last 
major pitch change 
within a tone unit) 

Imprecise 
Gestural preparation and stroke 
No details about the measurement 
point within the nucleus syllable 

Yasinnik, 
Renwick & 
Shattuck-
Hufnagel (2004) 

Yes 

 
+ 
 
Three lectures 

- Discrete and 
continuous 

Pitch-accented syllables 
using ToBI system 

Imprecise 
Co-occurrence of a “hit “ (a stop or 
pause of manual movement) and 
pitch-accented syllables   
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Table 9 Summary of Methodology and Results:  Prosody and Temporal Synchrony of 
Speech and Gesture in Spontaneous Speech 

Citation Stimuli Participants 

Bull & Connelly 
(1985) Dyadic conversation lasting 15-20 minutes n=10 British students 

McClave (1994)  
Two dyadic one-hour conversations about no particular topic. 

n=4 (two females; two males) 
 
no additional information 
regarding participant 
demographics 

Nobe (1996, 
Experiment 4) 

Cartoon narration:  Sylvester and Tweety cartoons  
 
After watching each of 12 episodes, the participant immediately recalled the events of the 
cartoon to a naïve listener 

n=6 (five females; one male) 
 
taken from McNeill’s existing 
data 
 
native English speakers 
 
graduate students 

McClave (1998) 

 
Task and participants were identical to McClave’s earlier study (1994) 
 
Two dyadic one-hour conversations about no particular topic 
 

n=4 (two females; two males; 
undergraduates; individuals in 
conversational groups knew 
each other well) 

Yasinnik, Renwick 
& Shattuck-
Hufnagel (2004) 

Portions of a lecture were selected for each participant.  The durations of the segments were 
5, 7.5, and 1.83 minutes.     

n=2 American English 
speaking males and 1 
Australian English speaking 
male 
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Table 9 (continued)  Summary of Methodology and Results:  Prosody and the Temporal 
Synchrony of Speech and Gesture in Spontaneous Speech 

Citation Gesture and Speech Segment Classification  

Bull & Connelly (1985) 
-Gestures were defined as any body movement that emphasized speech 
-Movements were coded as related to “tonic stress”  
-No criteria provided for identification of stress 

McClave (1994) 

-A portion of the conversation that was “densely packed with gesticulations” (p. 47) was analyzed. 
-“Over” 50 beats were analyzed every 1/30 sec by advancing individual frames of the videorecording. 
-The onset of a syllable was matched with the presence of absence of manual movement in a given frame.  
-Tone units were identified according to six criteria outlined by Kendon (1972).   
-The nucleus of each tone unit was identified as the most prominent syllable. 
-The description is unclear regarding the distinction between unstressed and stressed syllables.   
-The downward movement of the beat was also analyzed as a relevant point of movement in relation to stressed vs. 
unstressed syllables.   

Nobe (1996, Experment 4) 

-Only a small portion of the representational gestures were “randomly” chosen for analysis (n=48). 
-No information provided regarding how these gestures and accompanying speech were chosen and what the total 
sample of gestures were. 
-Furthermore, no information was provided regarding the identification and classification of gestures. 
-Intonation units were selected based upon being segmented by silent pauses, under one intonation contour, and a single 
semantic unit.  There was no reliability for this identification process. 
-Peak fundamental frequency and peak intensity were identified within the intonation groups using SoundScope 
software.  No information is provided regarding the analysis process or reliability of the identification process.  

McClave (1998) 

-As in the earlier study, a portion of the videotapes that were “densely packed with gestures” was chosen for analysis, 
though other sections were included if deemed “noteworthy” (p. 74) 
-“Over” 125 gestures from only 3 of the 4 speakers were analyzed frame-by-frame from the videotape  
-The fourth speaker was excluded because he produced few gestures 
-Gestures were classified according to McNeill’s classification systems and then collapsed as propositional (i.e., 
representational) gestures or beat gestures. 
-The preparation, stroke, hold, and retraction for each gesture was identified. 
-The identification of tone units was the same as the earlier study (see above) 
-In order to analyze pitch changes, CSL was used to analyze the narrow-band spectrograms and measure the 
fundamental frequency of syllables in the tone units. 
-The Tone and Break Indexes (ToBI) was also utilized to identify the pitch contour of the tone group.     
-The variability of pitch was considered relative to an individual’s frequency range.  Fro three participants of shift of up 
to 5 Hz was stable, while for the fourth a shift of up to 8 Hz was stable. 
-For each syllable, except for the first, the direction of F0 change and direction of gesture was identified. 

Yasinnik, Renwick & Shattuck-
Hufnagel (2004) 

-Gestures were segmented using iMovie software.  Using frame-by-frame advancement, gestures were classified as 
discrete (i.e., with an abrupt stop of movement) and continuous (i.e., repetitive movements without “hits”).  A discrete 
gesture included hits (i.e., abrupt stop or pause).   
-Gesture onsets and offsets were marked.  The stroke or apex was not measured. 
-The prosodic structure, including pitch-accents and intonational phrases, of the speech segments was coded using 
ToBI. 
-The ToBI files were aligned with the acoustic wave files. 

 



 

Table 9 (continued) Summary of Methodology and Results:  Prosody and the Temporal 
Synchrony of Speech and Gesture in Spontaneous Speech 

 
Citation Results summarized 

Bull & Connelly (1985) -emphatic movements of the body most often performed by arms, hands, and head 
-90.5% of “tonic stresses” were accompanied by body movement 

McClave (1994) 
-No quantitative or statistical results are provided.   
-All results are merely descriptive examples chosen from the sample. 
-These examples demonstrated that beats coincided with both stressed and unstressed syllables.   

Nobe (1996,  
Experiment 4) 

-77% (37/48) gestures “occurred in” intonation units with coinciding fundamental peak frequency and intensity. 
-36/37 of these consisted of strokes that occurred prior to the acoustical peaks, the other stroke coincided with the 
peaks.  However, it is also noted that the stroke may have started earlier than the peaks.  Thus, the temporal boundaries 
remain imprecise despite the implementation of acoustic analyses. 
-The remaining 11 gestures (23%) “occurred in” intonation units with non-coinciding peak F0 and intensity.  These 
gesture “onset/stroke preceded and/or co-existed with, but did not start after, the last primary peak of either F0 or 
intensity” (p. 55). 
-6 of these 11 gestures had strokes that “co-existed with” the peak F0, compared to only three that coincided with peak 
intensity.  Thus, it appears that the gesture may be more likely to synchronize with peak F0 than peak intensity. 
-From these findings, Nobe presents an acoustical peak synchrony rule, which closely parallels McNeill’s phonological 
peak synchrony rule, though with acoustic data instead of perceptual trends.   

McClave (1998) 

-Only correlation statistics for three of the subjects.  The statistical analyses were completed for each participant 
individually. 
-McClave does not report what proportion of the “over” 125 gestures were propositional versus beat types. 
-Only 1/3 participants demonstrated a trend of parallel movement of pitch and hand (e.g., falling hand movement with 
corresponding falling pitch movement). 
-Further analyses were biased in that they only used data from the participant who exhibited the tendency to have 
parallel speech and gesture movements. 
-Nonetheless, the trend of parallel pitch and hand movements was only upheld for propositional gestures, not beat 
gestures. 
-For this one participant, the gestural stroke was the best correlate with pitch changes. 
-“Stress and strokes of propositional gestures tended to converge for all three subjects the majority of the time” (p.84) 
-Propositional gesture’s stroke coincided with the tone unit nucleus 53% of the time. 
-Propositional gesture’s stroke coincided with another stressed syllable of the tone unit an additional 25% of the time. 

Yasinnik, Renwick & 
Shattuck-Hufnagel (2004) 

-Each speaker was analyzed individually. 
-Speaker 1: 90% (158 of 206) hits occurred on a pitch-accented syllable.  Labeling was done while listening to the 
speech signal). 
-Speaker 2:  90% (117 of 130) hits occurred on a pitch-accented syllable for multisyllabic words.  65% (75 of 116) hits 
occurred on a pitch-accented syllable for monosyllabic words. Labeling was done in silence.   
-Speaker 3:  irrelevant, only measured pause times of the intonational phrases. 
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Table 10 Speech and Gesture Elicitation and Classification Procedures:  Prosody and 
the Temporal Synchrony of Speech and Gesture in Controlled Speech Production 

 

Citation 

Temporal 
synchrony as 
a function of 
prosody? 

Spontaneous 
Controlled 
nd/or Gesture Types Identification of Prosodic 

Prominence  Temporal boundaries 

de Ruiter (1998) 
Experiment 1 No - 

 
+ 
 
Picture 
(array of 4) 
Gesture also 

ed 

Deictic  
Lexically stressed 
syllables within bi- and 
trisyllabic words 

Acceptable precision  
Gestural apex (point when 
movement is at its max  extension) 
and pointing initiation (point when 
hand velocity was more than 1% for 
the trial) 
Speech measurement points were 
beginning and end of each article, 
noun, and stressed syllable 

de Ruiter (1998) 
Experiment 2 Yes - 

+ 
Picture 

Gesture 
ed 

Deictic  

Contrastive stressed 
syllables within mono- 
and trisyllabic color 
adjectives and 
trisyllabic nouns 

Acceptable precision 
Gesture Speech 
Synchrony=beginning of gestural 
apex – beginning of utterance 
Other speech measurement points 
included adjective onset, adjective 
offset, noun onset, noun offset, and 
stressed syllable onsets and offsets 
for adjectives and nouns  

Loehr (2004; 
2007) Yes 

 
+ 
 
Six 
conversations 
 

- 

Iconics, deictics, 
metaphorics, 
emblems, beats, 
and head 
movements 

Pitch-accented syllables 
using ToBI system 

Imprecise 
Gestural apex (the final video frame 
of the gestural stroke), also 
preparations, holds, and retractions 
Synchrony: two events (i.e., pitch-
accent and gestural apex) occurring 
within 275 msec 

Rochet-Capellan 
et al (2008) Yes - 

+ 
Nonword 
 

Deictic  Apex of jaw-opening  

Acceptable precision 
Measures between initiation of 
point, apex of point, jaw initiation 
and jaw apex for the first and 
second syllable of the nonword 
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Table 11 Summary of Methodology and Results:  Prosody and the Temporal Synchrony 
of Speech and Gesture in Controlled Speech Production 

Citation Stimuli Participants 

de Ruiter (1998) 
Experiment 1 

The participants were instructed to place their hand on a fixed point on a table.  They were 
seated facing a plate of plexiglass which held four LEDs and four different drawings 
projected at a time above the LEDs.  There was also a fixation LED. 
 
The participants looked first at the fixation point, heard a warning tone for 500 ms, followed 
by a 1000 ms pause, then one of the four LEDs below the four black and white drawing 
would flash for 1000 ms.   
 
The participants were required to state “the X” in reference to the picture name while also 
pointing to the picture.    There were a total of 16 pictures.   
 
There were 4 trochees, 4 iambs, 4 trisyllabic words with first syllable stress, and 4 trisyllabic 
words with final syllable stress.  All words consisted of single morphemes. 
 
The onset of each stressed syllable was either a plosive or sibilant. 
 
There were a total of 96 trials, with picture location and presentation carefully controlled. 

n=12 right-handed, native 
Dutch speakers (9 females; 3 
males), participants reported 
normal vision  
 
Data was only analyzed for 8 
of the 12 participants due to 
equipment failure (n=1), 
lifting of finger instead of 
whole hand and finger (n=2), 
and totally separate 
movements of the hand and 
speech (n=1) 

de Ruiter (1998) 
Experiment 2  

The experimental procedures were generally the same as in Experiment 1. 

The pictures  were also the same, however, they were presented either in an array of 4 
identical objects of different colors, or 4 different objects all of the same color. 

Participants were asked to “emphasize” what distinguished a presented picture while 
simultaneously pointing to the picture. 

n=11 right-handed, native 
Dutch speakers (9 females; 2 
males), participants reported 
normal vision  
 
Data was analyzed for only 8 
of the 11 speakers due to not 
lifting the entire hand (n=1), 
failing to respond within time 
allotted (n=1), and “lack of 
time” (n=1) 

Loehr (2004; 2007) 

The participants were asked to have a natural conversation on any topic for one hour. 
 
Four clips of conversation were chosen for analysis for a total of 164 seconds with a total of 
147 gestures.  The conversational sample was not randomly chosen.   

N=15 English speakers, 
separated into 6 conversational 
groups.  The participants in 
each were friends. 

Rochet-Capellan et 
al (2008) 

Labeling of nonwords papa and tata while simultaneously pointing to the target written 
word.  Stress assignment was indicated by a ’following the syllable to be stressed. 

n=20 young adult Brazilian 
Portuguese speakers (4 men, 
16 women) 
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Table 11 (continued) Summary of Methodology and Results:  Prosody and the Temporal 
Synchrony of Speech and Gesture in Controlled Speech Production 

 
Citation Gesture and Speech Segment Classification  

de Ruiter (1998) 
Experiment 1 

 
-The speech was recorded using a DAT recorder while the manual movement was monitored with a Zebris ™ CMS 
motion analyzer. The motion analyzer consisted of an ultrasound buzzer placed to the index finger knuckle of the right 
hand.  The ultrasound signal is then picked up by the Zebris system.  The ultrasound system has a 5 ms resolution and a 
spatial resolution of 1mm.    Post-data collection, the speech signal and motion data were synchronized. 
-Gesture variables were onset of pointing and apex (i.e., point of maximal forward extension) of pointing. 
-Speech variables were article onset, noun onset, stressed syllable onset, stressed syllable offset, and noun offset.   

de Ruiter (1998) 
Experiment 2 

 
-Speech variables were article utterance onset, adjective onset, adjective offset, noun onset, noun offset.  Stressed 
syllable onsets and offset for adjectives and nouns were also measured. 
-Gesture variables were onset of pointing, apex onset, apex offset.  The apex was divided into two measurement points 
because individuals demonstrated a hold of the apex in this experiment. 
-A total of 4% of the trials were in error and excluded from analyses. 

Loehr (2004; 2007) 

 
-Gestures were segmented frame-by-frame (each frame=33 ms) using Anvil software (Kipp, 2001) and were classified 
using a modified version of McNeill’s classification system. 
-Gestural apex was marked as the stroke’s final frame or when the stroke’s direction changed. 
-The speech signal was segmented into pitch-accents, phrase accents, and boundary tones using ToBI.  A corresponding 
pitch track was created using the Praat tool (Boersma, 2001). 
-Pitch-accents were classified as “the point of highest (or lowest) pitch within the vowel of the associated stressed 
syllable” (p. 78).  Interrater reliability for pitch-accent coding was 91% for all sound files.      

Rochet-Capellan et al (2008) 

 
-Gestures and speech variables were segmented using an Optotrack system. 
-10% of peak velocity=onset for both gesture and speech movement 
-Gesture variables: onset, forward stroke (onset to apex), pointing plateau (apex hold), and return stroke 
-Speech variables: onset and apex of jaw movement for first and second syllables of nonwords. 

 



 

Table 11 (continued) Summary of Methodology and Results: Prosody and the Temporal 
Synchrony of Speech and Gesture in Controlled Speech Production 

Citation Results summarized 

de Ruiter (1998) 

 
-Gesture apex is temporally close to noun onset on average (M=59 msec prior to noun onset). 
-A regression analysis was conducted to predict the apex times using speech “landmarks, article onset, noun onset, 
stressed syllable onset, stressed syllable offset, and noun offset. 
-Noun onset was the best predictor of apex time (p<.001), article onset was also significant (p<.001). 
-Stressed syllable onset and offset were not significant predictors of apex time. 
-In addition, the apex of the gesture actually occurred earlier in the stress-final conditions relative to the stress-initial 
conditions which is the opposite direction anticipated.  The difference in apex time was not significant. 
-Therefore, the findings of Experiment 1 demonstrated that stress position did not affect the temporal parameters of the 
gesture apex. 
-However, because of the limited intonational contour of the article+noun stimuli construction, a second Experiment 
utilizing contrastive stress was completed to further examine whether syllable prominence affects the timing of gesture. 

de Ruiter (1998) 
Experiment 2 

 
-Stress location was a significant variable for several analyses. 
-There was a main effect for stress location the amount of time between onset of pointing and apex onset (termed 
“Launch” period).  The Launch is shorter for syllable initial stress than all other stress locations for adjectives only. 
-There was a main effect for stress location and the beginning of the gestural apex.  The correlation between apex 
beginning and each stress location was significant. 
There was a main effect for stress location and apex duration.   
-There was no main effect of stress location upon the timing of beginning of pointing  

Loehr (2004; 2007) -Gestural apexes were significantly more likely to align with pitch-accented than non-pitch-accented syllables using a 
chi-square test (p<.001). 

Rochet-Capellan et al 
(2008) 

-Synchronization was observed for stressed syllables. 
-Synchrony of the gesture apex and jaw opening apex for stressed syllables in first syllable position. 
-Synchrony of onset of the gesture return stroke and jaw opening apex for stressed syllables in the second syllable 
position. 
-stress in speech always occurred sometime between the onset and offset of the gesture apex. 
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Of the nine investigations of interest, seven different measures of syllable 

prominence were utilized.  Perceptual correlates of prominence were used by five of the 

investigations.  McClave (1994, 1998) selected stressed syllables and tone unit nuclei, 

although a clear description of the identification process and reliability was not reported.  

Loehr (2004; 2007) and Yasinnik et al. (2004) used the Tones and Break Indices (ToBI; 

Beckman & Elam, 1997) to initially identify pitch-accented syllables.   

In addition to perceptually rating the speech samples according to ToBI 

guidelines, Loehr also utilized acoustic waveforms and corresponding spectrograms and 

to mark accent as the point of highest or lowest pitch within the perceived stressed 

syllable.  Likewise, Nobe (1996)  measured prominence acoustically.  Nobe identified the 

peak fundamental frequency and peak intensity within an intonation unit (i.e., bounded 

by silent pause, under one intonation contour, one semantic unit) using an oscilloscope 

trace in a sample of continuous speech.   

Only two other sets of investigators employed a controlled paradigm to attempt to 

control the prosodic characteristics of the spoken productions.  de Ruiter (1998) carefully 

controlled the task to reliably identify the syllables with lexical stress for his first 

experiment and contrastive stress for his second experiment, though identification of 

stressed and unstressed syllables was based solely on perceptual judgment.  Rochet-

Capellan (2008) and others also completed a tightly constrained task to control for the 

placement of stress on two bisyllabic nonwords and the simultaneous production of 

deictic gestures.  To date, this is the only investigation to utilize kinematic measures of 

jaw movement as the correlate of prominence.   
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The selection of the appropriate measure of stress or prominence becomes even 

more difficult for spontaneous speech samples such as those analyzed by the lion's share 

of these researchers.  Determining the syllables that are stressed and where the larger 

unit, such as an intonational phrase begins and ends is less than straightforward in 

spontaneous speech.  However, the ambiguity for identifying prominence in spontaneous 

speech lies in the syntactic construction of lexical items in phrases, sentences, and 

conversation.  Once placed within a larger intonational phrase unit, emphasis or accent 

may be placed upon any given lexical item.  Therefore, it is not certain that a lexically 

stressed syllable is also the most prominent syllable within a phrase.  However, it is often 

difficult to deduce syllable prominence within spontaneous connected speech and 

subsequently difficult to select the relevant syllable for temporal synchrony measures.  

Despite this inherent limitation in identifying prosodic prominence in spontaneous 

speech, until fairly recently, the majority of investigators chose to use spontaneous 

samples for their analyses. 

 

2.6.4.1 Spontaneous speech paradigms  First, the experiments that employed a 

spontaneous speech paradigm will be reviewed.  These investigations are often vague in 

their description of methodology and are imprecise in their measurement of gesture-

speech synchrony.  Moreover, the sample sizes were small ranging from three to fifteen 

participants, as were the number of gestures and amount of speech analyzed.  

Bull and Connelly (1985) were the first to study the concurrence of emphatic 

stress and body movement.  They found that syllables with primary stress produced in 
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spontaneous conversations were likely to be accompanied by movements of the 

arms/hands as well as the trunk, legs/feet, and head. They examined the movement and 

speech of 20 British students, separated in opposite sex pairs, 10 of whom were friends, 

the other 10 were strangers.  The participants discussed three items that they disagreed 

upon as determined by an “attitude questionnaire” for 15 to 20 minutes.  These 

conversations were videotaped.   

These same subjects were used in the gesture identification process.  Each 

participant was instructed to watch the videotape with no audio playback and identify 

when a body movement occurred as an emphasis to speech.  The participants identified 

emphasis body movements for themselves and their conversational partners.  The coding 

system consisted of identifying which part of the body performed the movement, what 

the video frame numbers were associated with the movement, and whether the movement 

was “very” or “quite” emphatic.  Both raters needed to agree upon whether a movement 

was used for emphasis in order to be included.  Arm/hand emphasis movements were 

further classified as unilateral/bilateral and whether or not they came into contact with 

another object or body part.   

A subset of the conversations (six pairs, three familiar and three unfamiliar) were 

examined to investigate body emphasis movements and their relation to tonic stress.  The 

definition of tonic stress (i.e., primary stress) and how it was identified was not reported. 

Transcripts were completed of the conversations and “scored for primary stress” (p. 179) 

with interrater reliability of stress coding calculated as 79% accurate.  

Bull and Connelly’s (1985) results indicated that emphasis body movements were 

most often performed by the arms/hands and the head and that most emphasis arm/hand 
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movements were unilateral and did not come into contact with an object or other body 

part (72%).  Bull and Connelly (1985) state that “a mean 90.5% of the tonic stresses 

within the segments of tape scored were accompanied by body movement” (p. 179) of a 

total of 277 tonic stresses coded.  A total 540 movements were coded as related to tonic 

stress and were distributed across movements of the arm/hand (34%), trunk (15%), head 

(35%), and legs/feet (16%).   

McClave (1994) was the first to examine the effect of stress upon the timing of 

manual gestures.  She remains the only individual to examine this relationship with beat 

gestures specifically.  This is also one of the only investigations that failed to find that 

gestures coincided with prominent syllables.  Two conversational groups, one consisting 

of two females and the other with two males, were instructed to talk about any topic for 

one hour.   There was no other information provided regarding the four participants.  

Additionally, the selection of conversation to be analyzed was not necessarily 

representative of the entire sample given that an indeterminate number (“over 50”) of 

gestures were chosen from a portion of the conversations that was “densely packed with 

gesticulations” (p. 47).   

The gestures and speech were then classified from this sub-sample.  Each gesture 

was observed by advancing the video recording frame-by-frame, 1/30 second at a time.  

The speech signal was segmented by first identifying tone units.  Tone units were 

classified according to pause boundaries, pitch movements, presence of anacrusis (i.e. 

syllables that are unstressed and spoken faster at the beginning of a tone unit), final 

syllable lengthening, and register changes.  Virtually no information is given regarding 

how the syllables within the tone unit were classified as stressed or as a nucleus of the 
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tone unit.  The points within the gesture and speech signal that was measured in terms of 

synchrony to the other were not reported.   

McClave (1994) does not provide any quantitative data within her results.  There 

is a spattering of qualitative examples, but no clear measurement data or statistical 

analyses.  She summarizes the findings by stating that beat gestures co-occurred with 

both stressed and unstressed syllables.  However, it is not at all apparent that this 

conclusion can be reached based upon the many caveats and complete lack of 

quantitative data.   

McClave (1998) later conducted a re-analysis of the above data and analyzed both 

representational gestures and beat gestures.  More gestures were chosen for analysis, but 

again the exact number was not disclosed.  “Over 125” gestures were chosen again based 

upon being in a “densely packed” portion of the sample or from a section that was 

“noteworthy” (p. 74), thus introducing selection bias in the replication study as well.  In 

fact, sample was further biased given that one of the four speakers was excluded 

secondary to not producing many gestures, though the criterion for exclusion was not 

stated.  In contrast to her earlier study, beat gestures and representational gestures were 

identified according to McNeill’s gesture classification system (1992).  However, the 

number of each gesture type analyzed was not reported.  In addition, the preparation, 

stroke, hold, and retraction of each gesture were coded.  The identification of tone units 

was the same as in the earlier study though ToBI (Beckman & Elman, 1997) and analysis 

of a narrow-band spectrogram were also used to help determine the pitch contour of a 

tone unit and subsequent pitch shifts within the tone unit.   A greater than 5 to 8 Hz pitch 
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variation was considered a significant shift based upon an individual’s own pitch 

fluctuations.   

Some statistical analyses were included in this later study, though they were 

correlational.  Not only did the analyses consist of only correlations, but they were 

conducted for each of the three subjects individually.  What’s more, analyses were further 

reduced to only the single subject that demonstrated a trend of parallel hand and pitch 

movement.  Hence, the validity of the findings is questionable.  For this single 

conversational speaker, the gestural stroke was found to be the best correlate to pitch 

shifts for representational gestures.  The gestural stroke coincided with a syllable with 

some degree of stress 78% of the time, 53% with a tone unit nucleus and 25% with 

another stressed syllable.  This analysis was not completed for beat gestures.   

Two other more recent studies made use of ToBI to segment prominent syllables 

within a larger intonation unit.  The first is just as vague as McClave (1994, 1998) in the 

description of methodology and results.  Yasinnik et al. (2004) analyzed the speech and 

gestures produced by three lecturers.  A caveat of subject selection, besides there only be 

three speakers, was that two of the individuals spoke American English while the third 

“appeared to” speak Australian English (p. C-98).  The content and degree of spontaneity 

(i.e., spontaneous versus reading) was not reported.  Video recordings of the lectures 

were transferred digitally to a Macintosh computer and iMovie was used to analyze the 

video segments frame-by-frame.  Each frame was 33 ms in duration and a total of 14.33 

minutes of speech was analyzed.  Pitch-accented syllables were coded within the 

digitized sound files.  As previously stated, the classification of gesture types was distinct 

for this experiment.  The type of movement was the determinant of gesture classification 
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such that if a manual movement was punctuated by an abrupt stopping point or change in 

direction, the gesture was classified as discrete.  If a manual movement was more 

repetitive and did not have any abrupt pauses or stopping points then it was classified as 

continuous.  The on- and offset of each gesture were coded as well.  Synchronization was 

defined as the co-occurrence of a hit (i.e., a stop or pause of manual movement) and a 

pitch-accented syllable.   

Because slightly different methods were used for each of the three participants, 

their data were analyzed separately, similar to McClave (1998).  Of the three speakers 

analyzed, only analyses and results for the first two speakers are relevant for the current 

discussion.  For Speaker 1, 158 of 206 (90%) hits occurred in the same video frame as a 

pitch-accented syllable.  For Speaker 2, 117 of 130 (90%) hits co-occurred with a pitch-

accented syllable for multisyllabic words.  Fewer hits coincided with pitch-accented 

syllables for monosyllabic words (65%, 75 of 116).  The primary difference between the 

analyses for the two speakers is that the coder was able to listen to the speech signal 

when identifying gestures for Speaker 1 but not for Speaker 2.  The high percentages for 

co-occurrence are especially striking due to the coding of a hit in contrast to a gestural 

onset, stroke, or apex.  Any given gesture could consist of multiple hits but only one 

onset or apex.  Therefore, even though there are potentially more hits than apexes, they 

still coincide with pitch-accented syllable the vast majority of the time.  Yet again, this 

experiment is sorely lacking in numerous controls and has many caveats which limit the 

external validity of these intriguing findings.  Similarly to McClave’s investigations, 

there was no measurement of the degree of synchrony between speech and gesture, just 
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the perceived overlap of a prominent syllable with some point within the manual 

movement.   

Loehr (2004; 2007) is one of only two researcher teams (also Rochet-Capellan et 

al., 2008) to consider what degree of temporal distance between a point in the gesture and 

the speech signal reaches synchronization for not just prosodic prominence but within all 

speech-gesture synchrony literature.  Loehr’s dissertation (2004) and later published 

manuscript (2007) consisted of a variety of questions, one of which was “do the unit 

boundaries of each modality align” (p.71).  Loehr was interested in investigating whether 

a specific level or levels of prosodic assignment (i.e., pitch-accent) again coded according 

to ToBI guidelines, were likely to synchronize with the gestural apex.  In his study, the 

gestural apex was defined as the video frame which held either the gestural stroke’s final 

movement or a change of direction of the stroke. 

All manual and head movements were coded for 15 participants who were 

separated into conversational groups of two or three speakers, yielding a total of 6 one-

hour conversations.  The participants, all friends, were encouraged to discuss any topic.  

Only 164 seconds of the six hours of conversation, from a total of four clips was chosen 

by author with a resulting 147 gestures.  The distribution of gesture types (e.g., 

representational, beat, head movements) was not reported.  Perceptual judgments of 

stressed syllables within the conversational speech segments were made and pitch 

accented syllables were judged perceptually and by identification of highest or lowest 

pitch “within the vowel of the associated stressed syllable” (p. 187). 

Loehr did not measure the degree of synchrony between gestural apex and pitch-

accent, but was more systematic in his classification of synchrony that most other 
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researchers.  He pondered “how close in time must two annotations be to be considered 

‘near’ each other” (p. 99).  Based upon averages within his own data, he calculated that a 

pitch-accented syllable and gestural stroke that occurred within 275 ms of each other 

were synchronous, which was approximately equal to one standard deviation of the 

average time interval between the beginning or ending of a gestural apex and the nearest 

tone.  Even though this measurement is better motivated than simply observing whether a 

given video frame hold a manual movement and a prominent syllable, it is not clear why 

both the beginning and end point of the apex were collapsed and what point within each 

tone was coded.  Furthermore, 275 ms is at least if not more than the average syllable 

length (Rusiewicz, 2003).  Therefore, it is not clear what gestural strokes are actually 

aligning with in the speech signal.  After coding whether or not a gestural apex occurred 

within 275 ms of any particular point within the boundary tones, it was found that 

gestural apexes were significantly more likely to align with pitch-accented syllables that 

syllables that were not pitch-accented according to a chi-square test (p<001).  Interrater 

reliability was also completed for coding of pitch-accented syllables and was acceptable 

(91%).    

This investigation offers insight on the general co-occurrence of head and body 

movements in conversation, though the potentially selection process of analyzed speech 

units was potentially biased and certainly limited.  It is interesting to note that the tempo 

of hand movements, head movements, and speech seemed to share a common tempo of a 

third of a second.  However, the measures are do not yield the quantitative data to 

strongly support this somewhat anecdotal statement empirically.  Additionally, the 

experiment is limited by the video frame resolution of 33 milliseconds for the precise 
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identification of the time of gesture apex.  The caveat of video time resolution is shared 

by a number of relevant studies, including the study conducted by Nobe (1996). 

Nobe completed a series of five experiments in his 1996 dissertation.  Only 

Experiment 4 is relevant for the current discussion.  Nobe was also the only investigator 

to use the ever-popular cartoon narration task as stimuli.  In fact, the narratives for this 

investigation were initially collected by David McNeill and were based upon the 

Sylvester and Tweety cartoons that were often used by McNeill (1992) and others.  A 

total of 12 episodes were shown to 6 individuals (five females, one male) who were 

native English speaking graduate students.  After watching each episode, each individual 

immediately recalled the events of the cartoon to a naïve listener.  A total of 48 

representational gestures were chosen “randomly” from the 72 descriptions, however 

Nobe does not provide information regarding how these gestures were chosen, nor what 

proportion of the sample these 48 gestures represented.  Additionally, the process of 

identifying and classifying the gestures and the reliability of this process was not 

reported.    

A prominent syllable was defined as a syllable with peak f0 and/or peak intensity 

within an intonation unit.  Therefore, it was possible for a syllable to possess both peak f0 

and intensity, or just one of the two. These measures were made using SoundScope 

software, but there were no details of the manner in which the peak f0 and intensity were 

measured or how reliable these measures were.    Furthermore, the methodology for 

identifying gestural onsets and strokes was not described.   

Much like the majority of the other studies described (Loehr, 2004; McClave, 

1998; Yasinnik et al., 2004) there was a tendency for gestures to coincide with prominent 
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syllables.  Thirty-six (75%) of the gestural strokes “co-existed with” with a syllable with 

both peak f0 and peak intensity (p. 53).  Another six gestures (12.5%) co-existed with a 

syllable with peak f0 and three gestures (6.3%) co-existed with a syllable with peak 

intensity.  Thus, 95.8% of gestural strokes coincided with a prominent syllable and 

gesture was slightly more likely to occur with syllables with peak f0 than peak intensity.  

Based upon these data, Nobe posited a rule of acoustic peak synchrony, which parallels 

McNeill’s phonological peak synchrony rule but refines it to acoustical rather than 

perceptual results.  The investigation does offer a novel and useful approach for 

classifying prosodic prominence, though is lacking in a number of other areas such as 

sample size, gesture selection and classification, and reliability.  Another drawback of the 

experiment was that the results are purely descriptive with no accompanying statistical 

analyses.  Also, it is not clear if there was a particular point within the peak syllable and 

within the gestural stroke that was the focus for synchronization classification.  Like all 

other studies to date, there was no measure of the amount of synchrony (i.e., temporal 

interval) between speech and gesture.  Finally, this study like the other four outlined thus 

far, utilized spontaneous speech samples which are difficult to control in regards to both 

speech and gestures produced.  Subsequently, the last set of experiments that are 

discussed were completed using controlled paradigms that are quite distinct from those 

that used spontaneous samples.         

 

2.6.4.2 Controlled paradigms Even though the studies described above offer 

valuable insight onto the perceived temporal relationship of speech and gesture in 
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naturalistic speaking situations, it is not possible to state that there is a predictable and 

consistent synchronization of gestures and prosodically prominent syllables from these 

findings.  However, there are three investigations that indeed attempted to elicit speech 

and gesture utilizing a controlled paradigm (de Ruiter, 1998; Krahmer & Swerts, 2007; 

Rochet-Capellan et al., 2008).  As will be exemplified, the collective findings that 

prosodically prominent syllables and gesture have a tendency to temporally co-occur both 

in spontaneous speech and controlled speech production, at least in simplistic, 

constrained stimuli in non-English productions, further support the relevance of and need 

for the current project. 

Not only did de Ruiter construct and describe the Sketch Model in his 1998 

dissertation, but he also completed a series of three experiments to test a number of 

predictions made by the Sketch Model.  The first two of these experiments examined the 

effect of stress upon the synchronization of a gestural apex and it lexical affiliate in a 

constrained task.  Lexical stress within bi- and trisyllabic nouns was manipulated in 

Experiment 1, while lexical and contrastive stress in mono- and trisyllabic adjectives and 

nouns was manipulated in Experiment 2.  Likewise, de Ruiter was the only researcher to 

control for gesture type and occurrence.  de Ruiter was also the only investigator to 

measure a temporal interval of synchrony in contrast to a general co-occurrence of some 

point in the speech and gesture production.  Moreover, de Ruiter completed temporal 

measurements for a number of dependent variables within the speech and gesture 

productions which allowed for greater specificity of synchronization points.  Indeed, 

these experiments are far less naturalistic than those that employed spontaneous speech 

tasks.  However, these experiments provide essential information on the potential effect 
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of prosodic prominence upon speech-gesture synchrony without any number of 

extraneous variables due to the unstructured nature of the task impeding the validity of 

the findings.   

Twelve right-handed Dutch speakers with normal vision participated in 

Experiment 1, though 4 were excluded secondary to equipment failure and incorrect 

manual movements.  The participants were seated at a table and instructed to place their 

hand on a designated neutral position on the table.  Four pictures were displayed on a 

vertically mounted plate of plexiglass at the far edge of the table.  These pictures were 

projected via slide projectors.  A red LED was under each picture and an additional LED 

was in the center of these pictures and acted as a fixation point.  Each picture was 

illustrated with white lines on a black background and was 18 x 18 cm.  First, the 

participant heard a warning tone for 500 ms while the fixation LED flashed.  After a 1 s 

pause, one of the LEDs under the pictures flashed for 1s.  The participant was required to 

label the indicated picture while also pointing to the picture.  Each verbal response was to 

be given as a [determiner] + [noun] construction.  A total of 2500 ms was allotted for the 

participant’s response after each flashing LED.  A total of 16 different nouns were used 

as stimuli which consisted of four trochees, four iambs, four trisyllabic words with initial 

position stress, and four trisyllabic words with final position stress.   The presentation of 

the pictures was carefully controlled and resulted in a total of 96 trials.  Speech was 

recorded using a DAT recorder while the manual movement was monitored with a Zebris 

™ CMS motion analyzer.  The motion analyzer consisted of an ultrasound buzzer placed 

to the index finger knuckle of the right hand.  The ultrasound signal was then picked up 
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by the Zebris system.  Post-data collection, the speech signal and motion data were 

synchronized. 

 There were many dependent variables in de Ruiter’s (1998) study, especially 

compared to similar investigations of prosodic stress and speech-gesture synchrony.  

Speech signal dependent variables included determiner onset, determiner offset, noun 

onset, stressed syllable onset, stressed syllable offset, and noun offset.  Deictic gesture 

dependent variables included the onset of pointing and the apex of gesture (i.e., “maximal 

forward extension”) (p. 33).    A number of analyses were completed, though the analyses 

of stress position are the focus here.  Specifically, de Ruiter asked, “what is it that the 

speech/gesture system attempts to synchronize with the apex?” (p. 35).  The short answer 

to this question according to the findings of Experiment 1 was that the speech/gesture 

system did not attempt to synchronize with lexically stressed syllables.  de Ruiter 

completed a regression analysis that used the variables of the speech signal to predict 

when the apex of gesture would occur.  The onset and offset of the stressed syllable were 

not predictive of apex (p<.45 and .73, respectively). Furthermore, the gestural apex was 

not reached later as would be expected for final position stress relative to initial position 

stress.  Though, it is important to note the apex never occurred following the stressed 

syllable.  These findings indicated that despite the results of the other descriptive studies, 

the timing of gesture was not be affected by prosodic prominence.  Yet, de Ruiter rightly 

acknowledges that the limited scope of the paradigm resulted in a limited prosodic 

contour and that lexical stress within a bi- or trisyllabic word may not be the equivalent 

of a “peak syllable” (p. 36) in a more naturalistic context.  Experiment 2 attempted to 
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address this limitation by expanding the length and prosodic variability within the 

stimuli. 

 A more naturalistic task was utilized by including contrastive stress.  de Ruiter 

(1998) chose contrastive stress because he was interested in measuring the effect of a 

pitch-accented syllable within a phrase with more than one stressed syllable.  When 

contrastive stress is present, the pitch-accented syllable is made even more prominent.  

He states, “the new design enhances the phonetic realization of stress, it allows for a 

wider range of stressed syllable positions, and it introduces a more marked intonational 

contour in the production of the speech” (p. 37).  Data was analyzed for 8 Dutch speakers 

in Experiment 2, though 3 other participants were excluded due to time constraint effects 

and incorrect manual movement.  The general setup of the experiment was identical to 

Experiment 1.  The primary difference between these two studies was the stimuli used.  

The pictures were the same; however, they consisted of different colors to introduce a 

contrastive element to the task.   For example, four pictures of a butterfly were shown, 

each comprised of a different color.  The participant would respond by placing emphasis 

on the contrastive lexical form, in this case the color of the illuminated picture (e.g., the 

GREEN butterfly).  The adjectives were all color descriptors that were either 

monosyllabic or trisyllabic with final position stress.  The number of each canonical 

shape was not reported.  de Ruiter was forced to use these canonical shapes because there 

are no multisyllabic color descriptors with initial position stress in Dutch.  The nouns 

used were identical to Experiment 1.   

The pictures were presented in an array of four that were either four identical 

pictures of different colors or four pictures that were different but with the same colors.  
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The structure of the required response was [determiner]+[adjective]+[noun] (e.g., the 

green butterfly).  The participants were instructed to place emphasis on the contrastive 

element of the picture of interest (i.e., picture with flashing LED underneath) while 

pointing to the picture.    The participants were given four seconds to respond in this 

experiment.  Following 24 practice trials, 96 experimental trials were presented in a 

carefully controlled manner.  In addition, half of the sample was presented in reverse 

order of the other half of the group to further control for order effects.  Four percent of 

the experimental trials were excluded due to participant error. 

The dependent variables were modified because of the lengthened stimuli in 

Experiment 2.  The onset of pointing was still measured for the deictic gesture, though 

the apex was actually measured according to two time points instead of one.  This is 

because participants held on to the apex with a pause of movement prior to retraction 

instead of a more continuous apex and retraction in the previous experiment.  Hence, the 

beginning and end of gestural apex were measured.  The apex beginning was defined as 

the point when “the forward extension of the hand exceeds 95% of the maximum 

extension reached during the entire trial” and the apex end was defined as the point when 

“the hand is extended less than 95% of the maximum extension” (de Ruiter, 1998; p. 39).  

Another dependent variable is derived from subtracting the onset of pointing from the 

onset of the apex.  This dependent variable is the launch.  Finally, the duration of the 

apex was also calculated by subtracting the apex onset time from the apex offset time.  

Speech dependent variables included utterance onset, adjective onset, adjective offset, 

noun onset, noun offset, stressed syllable onset for both adjectives and nouns, and 

stressed syllable offset for both adjectives and nouns.   
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 Again, this review only is focused on the analyses of stress upon the dependent 

variables.  de Ruiter also rightly acknowledges that contrastive and lexical stress cannot 

be completely dissociated since the contrastive element will always occur on the lexically 

stressed syllable, at least in this protocol.  Therefore, the factors of stress and contrast 

were collapsed as one factor in the analysis. In contrast to Experiment 1, prosodic 

prominence was a significant factor in a number of analyses.  The onset of the deictic 

gesture occurred earlier for the first two stress locations (530 and 528 ms, respectively) 

than for stress locations 3 and 4 (551 and 553 ms, respectively).  This results was 

significant using a one-tailed t-test [t1(7) =  -2.05, p = .04, t2(15) = -1.86, p = .04].  

Similarly, the launch was longer when the prominent syllable occurred later in speech 

compared to earlier (F(3,21) = 9.89, p < .001), though post-hoc analysis demonstrated 

that this main effect was due to a significant difference between the first stress position 

and the other three positions.  The launch was also longer for syllables with final position 

compared to initial position for adjectives, but not for nouns.  As would be expected from 

the launch analyses, stress position also had a significant effect on the apex onset time.  A 

significant correlation (r = .61, p < .001) between apex onset and stress position further 

confirmed this relationship.  Finally, apex duration also increases with stress position (F 

(3,21) = 22.64, p < .001).   

In sum, a prominence effect was found only when a more naturalistic prosodic 

context was examined. Though, it can be argued that the prosodic contour of an phrase 

like the GREEN crocodile and the affiliated deictic gesture is still very constrained.  It 

may seem that by taking away the ability to create novel speech and gesture that this 

would impede the ability to relate the findings to spontaneous speech.  This is somewhat 
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true, but, by taking away the novelty of the task a confounding variable is also controlled.  

In spontaneous speech tasks, it is quite possible that lexical frequency may interfere with 

any potential prosodic stress effect since lexical frequency has also been found to affect 

the timing of the gesture.  Therefore, it is actually beneficial to provide the participant 

with the required vocal response.  Likewise, the constrained deictic gesture is more of a 

benefit than a hindrance.  In order to measure strictly the effect of prosody upon gesture, 

it is not critical that the gesture be of any particular type or independently constructed by 

the participant.  In other words, the aim is to measure a phonologic/phonetic effect upon 

the timing of gesture, not a conceptual/lexical effect.  Again, by providing the required 

gesture response and by making the manual response a simple deictic gesture, the lexical 

and cognitive requirements are lessened resulting in greater assurance that the effect that 

is being studied is truly the one that is being manipulated.  Lastly, the response 

requirements would not affect the timing relationship between a given syllable and the 

gestural apex at such a finite level. At the most, the gesture may roughly co-occur with 

the speech signal because it is a relatively short vocal response and because the 

participants were instructed to point at the picture while naming it.  Only if there was 

truly an effect of prosodic stress would you expect the timing of the speech and gesture to 

vary depending upon the carefully controlled stress conditions.    

 It is difficult to account for the findings of Experiment 2 within the scaffold of the 

Sketch Model.  These results are actually support for the Growth Point Model and refute 

de Ruiter’s assertion that the Formulator does not interact with the gesture production 

system.  de Ruiter states that “this suggests that there is some form of information 

exchange between phonological encoding and pointing planning or even execution 
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processes” (p. 46).  He later continues, “the finding cannot be incorporated at the level of 

the conceptualizer or gesture planner, because these processes do not have access to 

information at the word or syllable level” (p. 61).  Subsequently, de Ruiter postulates 

interdependent manual and articulatory motor processes that may account for these 

findings, in short a “phase locking mechanism at the level of lower level motor planning, 

instead of a higher level synchronization process” (p. 61).  The Sketch Model has not yet 

been modified to account for the findings of Experiment 2.  Additional research is 

required that manipulates prosodic prominence in a controlled paradigm both in 

constrained and naturalistic contexts.  Experiments 1 and 2 of the current project aim to 

accomplish this goal.   

 Similar to de Ruiter, Rochet –Capellan and colleagues manipulated lexical stress 

in a controlled paradigm with non-English speaking participants to examine whether 

gestures synchronized with syllables with lexical stress.   Twenty Brazilian Portugeuse 

speakers were instructed to produce two simple, nonword, phonetic forms, /papa/ and 

/tata/ while simultaneously pointing to the written nonword projected onto a screen in 

front of them.  Also designated in the written word was whether the participant was to 

place stress on the first syllable, pa’pa or ta’ta, or on the second syllable papa’ or tata’.  

The text stimuli were presented either in a near position (10 cm from midline) or far 

position (50 cm from midline).  They were also shown a picture of a “smiley face” and 

were instructed the label they produced was to be thought of as the “smiley face’s” name 

to make the task more natural.  Though tightly constrained to only include a single 

nonword response, the phonetic context and manipulation of the independent variables 

(stress position, spatial position, and consonant) were well-controlled and the 160 
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experimental trials were randomized for each of the four blocks, yielding 40 experimental 

trials per block.  

 Also like de Ruiter’s use of the Zebris ultrasound system, a novel methodology 

for measuring the gesture and speech variables was employed by Rochet-Capellan and 

her colleagues.  Both the finger movements of the pointing gesture and jaw movements 

of the spoken responses were measured using Optotrak (Northern Digital, Waterloo, 

Ontario, Canada).  The onset, offset, and apex of jaw and finger movements were tracked 

using three-dimensional infra-red emitting diodes (IREDs).  Although this methodology 

is frequently employed to measure speech movements, this is the first investigation to 

integrate the use of IRED tracking for measuring the synchronization of gestures and 

speech. 

 A number of time points were measured for each trial.  The initiation, apex, and 

termination of the pointing gesture were recorded.  Additionally, the time from gesture 

onset to apex (forward stroke), time from gesture apex to the start of the return gesture 

stroke (pointing plateau), and the return stroke (leaving plateau to the termination of the 

gesture) were recorded.  The initiation of jaw movement for each of the two syllables, as 

indicated by the point of reaching 10% of peak velocity, was recorded for each trial.  

Likewise, recordings were made of two jaw apices (i.e., the maximum displacement of 

the jaw marker) for the two syllables in each trial.   

 Indeed, results of this study indicated that synchronization occurred between 

gesture and speech movements as a function of prosodic stress.  However, results were 

dependent upon not only presence or absence of stress, but also syllable position.  As 

predicted, jaw apex and gesture apex occurred closely in time, though only when 
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syllables in the initial position were stressed.  When, second syllables were stressed, the 

jaw apex was closely aligned temporally with the onset of the return stroke and the 

pointing plateau was significantly lengthened (157 ms) compared to when stress was on 

the first syllable (127 ms).  Though it is interesting to note that despite syllable position, 

stress was always produced sometime during the time between the onset and offset of the 

gesture apex (pointing plateau).  The authors discussed their findings as evidence for a 

“bidirectional link between the hand/finger and the jaw” (p. 1519) and support for a 

dynamic systems perspective of interaction and coupling of two oscillatory systems, as 

hypothesized in the current project.   

 Yet, Rochet-Capellan et al.’s findings are contradictory to de Ruiter’s results from 

his first experiment.  While de Ruiter did not find that stress position in single words did 

not affect the time of gesture apex, Rochet-Capellan and others found that indeed gesture 

apex was produced synchronously with the jaw apex of stressed syllables at least in the 

first position of words.  An obvious difference, other than language produced by the 

participants, is that de Ruitier manipulated lexical stress using real lexical items, while 

Rochet-Capellan and her co-authors manipulated stress using phonetically simple 

nonword forms.  Though Rochett-Capellan et al.’s experiment and both experiments 

conducted by de Ruiter share many features as well, namely an unnatural context 

consisting of single word or phrase production produced by non-English speaking 

participants.  Additional research is required that manipulates prosodic prominence in a 

controlled paradigm that extends beyond the word/phrase level with English-speaking 

participants.  The experiments of the current project aim to accomplish this objective.   
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2.6.4.3 Summary of prosodic prominence and temporal synchrony Though the 

majority of investigations found that gestures and prominent syllables have a tendency to 

co-occur (de Ruiter, 1998; Loehr, 2004; McClave, 1998; Nobe, 1996; Rochet-Capellan et 

al., 2008; Yasinnik et al. 2004), the psychological reality of this assertion is disputable for 

several reasons.  First, McClave (1994) demonstrated that beat gestures occurred with 

unstressed syllables just as frequently as with stressed syllables.  de Ruiter (1998) also 

found, with a more convincing empirical paradigm than McClave’s earlier study, that 

lexical stress did not affect the timing of the gestural apex.  Second, the abundant caveats 

in the affirmative investigations greatly diminish the validity of the findings.  Perhaps the 

greatest drawback of these investigations is the manner in which synchrony is defined 

and subsequently measured.  Gesture and speech are not absolutely coordinated.  In fact, 

it is highly unlikely that any two events, especially two human movement events, are 

separated by an interval of 0 ms.  As a result, measuring the degree of synchrony between 

a point in the manual gesture and the speech signal potentially would lend greater insight 

to the effect of a variable, in this case prosodic prominence, upon temporal 

synchronization.  Such a measurement opens up greater predictions regarding what may 

or may not reduce the interval between these two time points, in contrast to the more 

typical observation of a manual movement and some ambiguous point of the associated 

prominent syllable co-occurring within a 33 ms video frame.    Such a measurement was 

only included in Rochet-Capellan and others’ work. 

 Another limitation of these investigations, with the exception of de Ruiter’s 

(1998) experiments, is the complete lack of systematic control of potential confounds as 

well as the failure to directly manipulate of the independent variable of interest, namely 
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prosodic stress.  It is nearly impossible to address these concerns with spontaneous 

speech and is therefore not surprising that the five experiments that utilized a 

spontaneous speech paradigm are the most difficult to determine what is causing any 

possible relationship between stress and gesture timing.  de Ruiter’s manipulation of 

lexical and contrastive stress was novel and provides the strongest data regarding this 

hypothesis.  Yet, de Ruiter’s two experiments produced conflicting findings. In 

Experiment 1 lexical stress was did not predict the timing of a gestural apex, while in 

Experiment 2 contrastive stress within a larger intonational contour did tend to affect the 

timing of the gestural apex. 

 Despite these many methodological limitations and variations, it is intriguing that 

many suggested a potential interaction between prosodic prominence and the timing of 

the associated gesture.  These findings highlight the need for a more well-controlled 

empirical protocol to further examine this relationship.  The experiments conducted by de 

Ruiter and Rochet-Capellan and colleagues stand out among the other investigations and 

the most theoretically based and carefully controlled.  For this reason, the basic 

methodology of these experiments were expanded upon for this project’s first and second 

experiments.   

 

156 

 



 

2.6.5 Gesture and speech perturbation    

Perturbing the production of speech or gesture can also lend insight on the effect 

of processes below the level of the Conceptualizer upon the timing of gesture.  If there is 

no interaction at the level of the Formulator or below, then perturbing one the production 

systems should not affect the planning and execution of the other system.  However, if 

there is interaction between the two systems at points lower than the Conceptualizer, then 

perturbing one system could hypothetically alter the timing of the other.  In fact, an effect 

of perturbation upon the corresponding movement indicates a level of interaction even 

lower than the Formulator.  It can be hypothesized that perturbing the speech or gesture 

movement would only effect the timing of the affiliate initiated movement if the two 

motor systems were entrained as presented in an earlier section.   Evidence to support this 

claim comes from one study that perturbed gesture production (Levelt et al., 1985) and 

studies of speech perturbation caused by stuttering (Mayberry & Jaques, 2000; Mayberry, 

Jaques, & DeDe, 1998), DAF (McNeill, 1992), and speech errors (de Ruiter, 1998) 

(Tables 10 and 11). However, there has been no study to date that has systematically 

investigated the effects of speech perturbation upon the temporal parameters of 

accompanying gestures in a controlled paradigm. 

 

2.6.5.1 Perturbing gesture Levelt and colleagues (1985) conducted a series of four 

experiments and sought to explain whether the temporal relationship of speech and 
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gesture was interactive or ballistic (i.e., independent).  This study is particularly 

interesting to relate to the Sketch Model since de Ruiter based his model on Levelt’s 

model of speech production.  Levelt and colleagues’ work supported the notion that 

speech and gesture do in fact interact during the planning phase of production but are 

then independent during the execution phase.  Only the fourth experiment is relevant for 

examining the temporal relationship of gesture and speech production and more than two 

decades later is still the only investigation in which gesture was impeded.   

In this fourth experiment, fourteen right-handed Dutch-speaking participants were 

seated in view of four red light-emitting diodes (LEDs).  Each participant was instructed 

to point and state “this light” or “that light” as an LED was illuminated.  The finger 

movements were measured by way of an infrared system and the participant’s voice onset 

time was also measured.  In order to study the hypothesized interaction of speech and 

gesture during motor execution, each participant’s wrist was attached to an apparatus that 

could alter the load imposed upon the pointing arm.  The apparatus “basically consisted 

of a suspended mass attached by means of a cord running over a system of pulleys to the 

subject’s wrist” (Levelt et al., p. 155).   

The dependent variables measured were voice onset time and apex of the pointing 

gesture.  The primary independent variable was the time the load was applied, beginning 

of the gesture or halfway through the gesture.  Participants also conducted the task with 

no load applied.  In short, Levelt et al. (1985) found that speech was halted only when the 

load was applied at the beginning of the gesture, not when the gesture was halfway to 

termination.  Voice onset times were similar for the no load condition and halfway-

loaded condition, but voice onset time was significantly longer, on average 40 
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milliseconds longer, for the beginning-loaded condition.  When no load was applied in 

Experiment 4 as well as the preceding three experiments, speech and gesture were tightly 

linked in time.  The investigators concluded that gesture and speech are ballistic “since 

motor execution will fly blind on whatever it was set out to do in the planning phase, or 

at least without concern for the other motor system involved” (p. 135).    

A major caveat to Levelt et al.’s work is that the task was simplistic and nearly 

automatic.  This controlled study offered possible support for the independence of speech 

and pointing gestures during execution for tasks with no semantic, syntactic, or prosodic 

demands but does not offer insight on the temporal relationship of speech and gestures in 

conversational speech or even in experimentally controlled utterances.  Impeding gesture 

is inherently more difficult than impeding speech.  Perhaps that is why Levelt and 

colleagues work is the only study of the effect of gesture perturbation on gesture-speech 

synchrony.  Perturbing the speech signal for the purpose of measuring the effect on 

gesture timing is also difficult to achieve, though three types of studies have 

demonstrated that altering the timing of speech by some type of perturbation affects the 

timing of the corresponding gesture.  

 

2.6.5.2  Perturbing speech  McNeill (1992) was the only investigator that 

experimentally altered the timing of the speech signal in order to measure the effect on 

the timing of coinciding gestures.   McNeill accomplished the perturbation of speech by 

imposing delayed auditory feedback during two experiments.  The description of this 

work is far from scientific and was presented within his 1992 text.  There is no report of 
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quanitative data and no report of the measure of temporal synchrony.  Nevertheless, the 

results offer some interesting information and are often used as additional evidence of 

speech-gesture synchronization and integration.  

McNeill’s first experiment consisted of an unreported number of participants sho 

were subjected to a 200 ms auditory delay during Sylvester and Tweety cartoon 

narrations.  They also narrated the cartoons with no imposed delay.  As expected from 

myriad previous research utilizing delayed auditory feedback procedures, the 200 ms 

auditory delay resulted in slowed speech and dysfluencies characterized by prolongations 

and repetitions.  In addition, gestures were produced more frequently and with greater 

perceived complexity when the auditory delay was imposed to when there was no delay.  

The criteria for judging gesture complexity was not described nor are the measurement 

procedures for determining the temporal relationship of gesture and speech.  Yet, 

McNeill reports that “despite the slowing down and consequent disturbance of rhythm, 

the gesture is still synchronous with the coexpressive part of the utterance” (p. 275) and 

later state that the “the relationship of gesture to speech in time is ordinarily firmly fixed” 

(p. 278).   

The results of second exploratory experiment presented by McNeill are actually 

contradictory to such statements.  Two of McNeill’s colleagues actually participated in 

this second experiment.  These individuals recited predetermined utterances from 

memory with a series of continuous iconic gestures that were also predetermined.  For 

example, the phrase you take the cake out of the oven was accompanied by the iconic 

gesture of hands taking a cake out of the oven.  Auditory delays of 0, 0.1, 0.2, 0.3, 0.45, 

and 0.5 seconds were imposed during the participants’ recitation of the sentences.  The 
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participants were required to “talk though” the DAF and force “themselves to vocalize 

continuously, no matter how strong the impulse was to slow down” (p. 280).  A critical 

flaw was that only the 0.2 s delay condition was able to be identified after the completion 

of the study because the identification key was lost for the other conditions.  In contrast 

to the maintenance of synchrony despite the auditory delay in the first experiment, 

gesture had a tendency to precede the corresponded spoken affiliates in the second 

experiment.  McNeill explains these disparate results as a function of spontaneous versus 

recited utterances.  It is also quite possible that any effect or lack there of in this second 

experiment many have resulted from a participant bias given that they were McNeill’s 

colleagues.  Hence, the only two experimental paradigms to directly perturb speech 

yielded discordant results in regards to the effect on the temporal parameters of 

associated gestures.   

A cartoon narration task was also employed by Mayberry and colleagues’ 

investigations of the timing of gesture in relation to speech produced by adults and 

children who stutter (Mayberry & Jaques, 2000; Mayberry, Jaques, & DeDe, 1998).  

Observing the timing of gesture and speech during spontaneous dysfluencies enables one 

to study a naturally occurring perturbation of speech.  Six adults who stuttered and six 

typical speakers participated in their first investigation (Mayberry, Jaques, & DeDe, 

1998).  In addition, two eleven-year-old boys who stuttered and two typically speaking 

boys completed the same task in a second component of the study.  Later, Mayberry and 

Jaques (2000) presented the same data from the adult participants in another manuscript, 

though the reported results are the same with no more elaboration of quantitative 

measures.   
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The findings were similar for both the adults and children with the exception that 

the young participants produced fewer overall gestures than the adult participants.  

Dysfluent utterances were accompanied by fewer gestures.  Normal dysfluencies 

produced by both the control and experimental group were accompanied by gestures 

while atypical dysfluencies produced by the experimental group were accompanied by 

few gestures.  Interestingly, in the rare instances that a gesture was produced with an 

atypical dysfluency, the manual movement would either cease movement midair or fall to 

rest and then begin again within milliseconds of the resolved lexical affiliate.   

Gesture onset always synchronized with fluent speech and never on a repetition or 

prolongation of atypical dysfluencies in contrast to typical dysfluencies in which the 

gesture onset did coincide with the onset of the dysfluent lexical affiliate.  Mayberry et al. 

(1998) concluded “gesture execution is so tightly linked to speech production during 

spontaneous expression that gesture almost never uncouples from speech, even in the 

face of frequent and often massive disruptions to speech expression caused by stuttering” 

(p. 85).  These results are interesting though are flawed by the recurring issue of 

including only observational accounts, no explicit criteria the classification of synchrony, 

and a lack of quantitative data.  Not only is it not clear what the degree of synchrony is 

between speech and the accompanying gesture is in typical and atypical dysfluencies, by 

Mayberry and others do not make predictions about what stage of speech and gesture 

production the synchrony between the two is achieved and subsequently maintained in 

atypical dysfluent utterances.  In fact, basic descriptive statistics regarding the number of 

utterances, percentage with dysfluencies, type of dysfluencies, percentage with 

accompanying gestures, and so on were not reported.   
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The last piece of perturbation evidence for shared processing of gesture and 

speech comes from speech error data.  In addition to de Ruiter’s (1998) investigation of 

prosody’s role in speech/gesture temporal synchronization and the construction of the 

Sketch Model, he also presented ad hoc data from speech errors that occurred during one 

of his prosodic stress tasks.   A total of 28 speech errors were produced by six of the eight 

participants in de Ruiter’s second experiment. The details of this task were outlined in the 

previous section. To review, the participants were required to point to one of 4 pictures 

while labeling the item with an emphasis on the contrastive element of the picture.  For 

instance, both a green and violet crocodile were presented and if the violet one was 

indicated the participant would point and state the VIOLET crocodile.  Eleven errors were 

consisted of overt repairs and 17 were hesitations.  The individuals tended to hesitate or 

repair their color adjectives because some were the less frequent of the options for the 

color such as violet and purple.  Additionally, de Ruiter acknowledged that the stimulus 

pictures for the lizard and crocodile looked similar.   

These data can be considered a reflection of a perturbation of speech since on 

average the onset of speech occurred 166 ms later than in non-error responses.  What is 

more important though is that not only did the onset of speech occur later but the timing 

of the deictic gesture was also delayed to stay in sync with the speech signal.  The onset 

of the gesture was delayed by 84 ms and the duration of the gesture launch (time from 

onset to apex) took an additional 117 ms on average, yielding a delay of gesture apex of 

184 ms.  de Ruiter completed an additional correlational analysis which indicated that the 

alteration of gesture timing did in fact occur on individual trials and was not simply a 

false impression created by means across the trials. 
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Table 12 Speech and Gesture Elicitation and Classification Procedures: Perturbation 
and the Temporal Synchrony of Speech and Gesture  

Citation 

 
Speech and 
gesture 
remain 
synchronized 
with 
perturbation 

Spontaneous 

Controlled 
Speech 
and/or 
gestures 

Gesture Types Type of Perturbation Temporal boundaries 

Levelt et al. 
(1985) 

Yes-if 
perturbed 
early 
No-if 
perturbed 
late 

No Yes for 
both Deictic  Load randomly applied 

to wrist 
Voice onset time 
Gesture apex 

McNeill (1992)  
Experiment 1 Yes Yes No Not specified DAF Not specified 

McNeill (1992) 
Experiment 2 No No Yes Iconic  DAF Not specified 

Mayberry & 
Jaques, (2000); 
Mayberry, 
Jaques, & DeDe 
(1998) 

Yes Yes No Not specified Fluency disorder Not specified 

de Ruiter (1998) 
Experiment 2 Yes No Yes Deictic Speech errors 

Gesture onset 
Gesture launch (onset to apex) 
Speech onset 

164 

 



 

165 

 

 
Table 13 Summary of Methodology and Results:  Perturbation and Temporal Synchrony 
of Speech and Gesture 

Citation Stimuli Participants 

Levelt et al. (1985) One of four LEDs would illuminate with the response of pointing to the light while stating 
this light or that light n=14 adults 

McNeill (1992)  
Experiment 1 Cartoon narration of Sylvester and Tweety cartoon  Not reported  

McNeill (1992) 
Experiment 2 Recitation of memorized utterances n=2 adults 

Mayberry & Jaques, 
(2000); Mayberry, 
Jaques, & DeDe 
(1998) 

Cartoon narration task 

n=6 typical adults; n=6adults 
with fluency disorder; n=2 
eleven year-old boys with 
fluency disorders 

de Ruiter (1998) 
Experiment 2 

Four contrastive pictures presented, one of which was designated as the target picture.  The 
participants were required to point to the picture while stating a three word phrase including 
the contrastive element such as the VIOLET crocodile.   The stimuli that were included in 
this analysis were 28 items that were erroneously produced with either overt repairs or 
hesitations. 

n=6 adults 

 



 

Table 13 (continued) Summary of Methodology and Results:  Perturbation and the Temporal 
Synchrony of Speech and Gesture 

Citation Gesture and Speech Segment Classification  

Levelt et al. (1985) Gesture and speech were stringently controlled, therefore no classification procedure was necessary 

McNeill (1992)  
Experiment 1 Not specified  

McNeill (1992) 
Experiment 2 Not specified  

Mayberry & Jaques, (2000); 
Mayberry, Jaques, & DeDe 
(1998) 

Not specified  

de Ruiter (1998) 
Experiment 2 Gesture and speech were stringently controlled, therefore no classification procedure was necessary 
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Table 13 (continued) Summary of Methodology and Results:  Perturbation and the Temporal 
Synchrony of Speech and Gesture   

Citation Results summarized 

Levelt et al. (1985) Participants’ speech and gesture productions remained synchronized when the wrist perturbation occurred at the 
beginning of the gesture, not when applied halfway through the gesture 

McNeill (1992)  
Experiment 1 

Increased frequency and “complexity” of gestures with DAF 
Perceived synchronization of speech and gesture with DAF 

McNeill (1992) 
Experiment 2 Gestures preceded speech 

Mayberry & Jaques, 
(2000); Mayberry, Jaques, 
& DeDe (1998) 

Fewer gesture produced with atypical dysfluent utterances 
Gestures produced with atypical dysfluencies characterized by a cessation of movement with a re-initiation of 
movement occurring with the lexical affiliate was fluently produced 

de Ruiter (1998) 
Experiment 2 The onset of the gesture was delayed to remain synchronized with the lexical affiliate 

 

 

2.6.5.3 Summary of perturbation and temporal synchrony Like the manipulation of 

prosodic stress, perturbing speech or gesture tests the hypothesis that speech and gesture form an 

interactive system and that their interaction occurs below the level of the Formulator.  Thus far, 

the studies conducted on this topic have pointed to a tendency for speech and gesture to remain 

synchronized even when one of the movements is halted.  On the other hand this work is 

preliminary and exploratory and there is data to suggest that synchrony may not be maintained in 

all circumstances (McNeill, 1992, Experiment 2).  

Unlike the manipulation of prosodic stress, perturbing the production of speech tests an 

interaction of speech and gesture at a lower level than the phonological encoder (i.e., the motor 

programming level).  While finding an effect of prosodic stress upon the degree of 

speech/gesture synchronization may provide the first systematic evidence for some relationship 

of speech and gesture, the underlying mechanism of the relationship is ambiguous.  A prosodic 

stress effect may be indicative of the phonetic plan from the Formulator communicating with 
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the Gesture Planner.  On the other hand, a prosodic stress effect could actually reflect self-

entrainment of gesture and prominent syllables.  Even de Ruiter (1998) postulated that a “phase 

locking mechanism at the level of lower level motor planning, instead of a higher level 

synchronization process” (p. 61) may be responsible for gesture synchronizing with 

prosodically strong syllables.   

2.7 SIGNIFICANCE 

 

Thus, by measuring the temporal parameters of gesture following manipulation of not 

only prosodic stress, but also speech perturbation, one can begin an exploration of the 

mechanism of speech/gesture synchronization.  This project acts as a fundamental contribution to 

the gesture literature by offering a controlled research paradigm with a reduction of confounding 

variables prevalent in similar investigations of the temporal synchronization of speech and 

gesture.  Secondly, the use of acoustic analyses of the speech signal and novel use of capacitance 

analyses of deictic gestures is not only a contribution to the literature because of its 

innovativeness, but also because of the improved temporal precision of measurement.  Also, it is 

notable that this measure is the only interval-based measure of speech-gesture synchronization to 

date.  Subsequently, this new methodology and measure of the co-production of gesture and 

speech can be utilized for testing many other research questions regarding the temporal 

relationship of speech and gesture in both controlled and more naturalistic tasks.  Furthermore, 

the experiments lend insight for both models of gesture and speech production and potential 

mechanisms of interaction between the gesture planner and the speech production system.  This 
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is the first investigation to specifically examine the role of not only the phonological encoder, but 

also temporal entrainment upon the degree of synchronization between a manual gesture and 

speech.  Additionally, the experiments will add to the growing literature not only on prosody but 

also the interaction of spoken language processes with motor behaviors.  Lastly, this 

investigation provides a foundation for a future plan of research on the interaction of speech, 

language, and manual motor processes during development as well as in typical and disordered 

populations.   

 

 169 



 

3.0  EXPERIMENT 1 

3.1 RESEARCH METHODS 

3.1.1 Purpose  

The purpose of Experiment 1 was to assess the influence of (i) contrastive pitch accent, 

(ii) syllable position, and (iii) their interaction on the degree of synchrony between the apices of 

deictic gestures directed toward a visual display and vowel midpoints of target syllables 

produced within corresponding carrier phrases.   

 

3.1.2 Experimental Design 

 

Experiment 1 consisted of a two-way, within group repeated measures design.  The 

primary variables are contrastive pitch accent (present or absent) and syllable position (first or 

second). These variables were manipulated via presentation of the bisyllabic compound noun 

stimuli.  The gesture apex-vowel midpoint (GA-VM) interval for each syllable was measured as 

the dependent variable. 
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3.1.3 Participants 

Participant enrollment began following approval of the research protocol by the University of 

Pittsburgh Institutional Review Board.  Right-handed, monolingual English speakers without a 

history of speech, language, hearing, developmental, or neurological disorders were enrolled in 

the study.  Participants were between the ages of 18 and 40.  Because there were no anticipated 

differences in vowel duration or gesture time based upon gender, both male and female 

participants were enrolled.  

Power was set at 0.80, α=.05.   The estimated effect size was derived from de Ruiter’s 

Experiment 2 from his dissertation work (1998).  As the reader recalls from the literature review, 

this experiment is the most similar existing investigation to the current project.  It is the only 

experiment that directly manipulated contrastive stress.  Furthermore, the experiment utilized 

deictic gestures and measured the affect of contrastive stress on the temporal parameters of the 

participants’ deictic gestures.  The effect size from the statistical results from this study were 

calculated and used to estimate an appropriate sample size for Experiment 1 and 2 of the current 

investigation. The effect of contrastive accent upon the duration of the launch (gesture onset to 

apex) and duration of the apex (onset to offset of the apex) are not only relevant to the GA-VM 

interval measured in both of the present experiments, but are in fact dependent variables of the 

second experiment.  de Ruiter’s results indicate an effect size of contrastive stress upon the 

gesture launch time was d =0.76 and the effect size of contrastive stress upon the duration of the 

apex was d=2.37.  These two effect sizes correspond to a large and huge effect, respectively, 

according to conventional classifications. Based upon this information, Cohen’s definition of a 

large effect size (d=0.8) was chosen with an across-condition correlation of 0.5 resulting in a 

sample size of 15 individuals.  This effect size and subsequent sample size are conservative 
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given de Ruiter’s findings.  However, the conservative estimate helped to ensure adequate power 

if there was greater variability in the current experiments due to the differences of between de 

Ruiter’s work and this experiment (e.g., temporal measure of only gesture vs. interval measure 

between gesture and speech segments, Dutch vs. English speakers, de Ruiter’s inability to 

separate metrical stress and contrastive accent). 

Participants were recruited via flyer, and Psychology 101 courses at the University of 

Pittsburgh, the University of Pittsburgh clinical research website 

(http://www.clinicalresearch.pitt.edu/), and word of mouth (Appendix A).  Fliers were posted 

within the University of Pittsburgh community and distributed in the mailboxes of students 

within the School of Health and Rehabilitation Sciences.  Additionally, some participants were 

provided extra credit for their participation within a given course when approved by the 

instructor.  Both a verbal announcement and written information regarding the investigation were 

given directly to the students of these courses.  Additionally, each individual was reimbursed 

fifteen dollars for their participation time.  They were told that they would receive ten dollars 

with the possibility of receiving a five-dollar “bonus” if they performed the task accurately.  This 

“bonus” served as an incentive to remain attentive throughout the task.  In fact, each participant 

received a total of fifteen dollars, regardless of accuracy.  

Participants responded to the recruitment notice via Email or phone call to the principal 

investigator.  A standardized phone script was used to review the purpose, criteria, and 

procedures of the study.  The principal investigator described the study to the potential 

participant in greater detail including the time required for participation.  If the individual 

expressed continued interest in participating in the experiment, they were then scheduled for 

completion of both the screening and experimental procedures.  No private, identifying 
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information regarding the participants was recorded until after the participants were consented, 

with the exception of the individual’s name, phone number, and Email address.  This information 

was necessary in order to contact the individual.  If an individual chose not to participate, missed 

their appointment or could not be reached to reschedule, or did not agree to the consent process, 

their identifying contact information was destroyed.  Likewise, no family history information 

was collected at any time.   

The primary investigator reviewed each page of the consent form with participants upon 

their arrival for their scheduled experimental session.  After the consent was reviewed and 

signed, the participants were screened via interview questions (Appendix B) to ensure that 

according to their report they were right-handed, monolingual English speakers who did not have 

a history of speech, language, hearing, developmental, neurological or motoric disorders.  

Furthermore, each individual was required to pass an audiological screening to assure that they 

could hear at a level of at least 25 dB at 500, 1000, 2000, and 4000 Hz.  These characteristics 

were exclusionary due to the possibility of resultant effects upon speech and/or gesture response.   

The individuals also were questioned regarding past places of residence so that 

differences in regional dialects would be identifiable. Even though consideration of dialect is 

included in the study’s design, each stimulus has only one permissible form of metrical stress 

assignment regardless of dialect according to the Merriam-Webster online dictionary (www.m-

w.com) and no differences of dialect were anticipated for the relative timing of speech and 

gesture. Demographic information including age, gender, ethnic/racial background, and highest 

level of completed education was also collected.    

Lastly, a vision screening was completed prior to the initiation of the experiment to 

assure that a visual deficit did not interfere with the participants’ ability to complete the trials 
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accurately.  It was permissible for a participant to have normal or corrected-to-normal vision.  

Two lines from the Snellen eye chart (Snellen, 1862) were presented to each participant. The 

Snellen eye chart has been traditionally used and consists of only ten letters, C, D, E, F, L, N, O, 

P, T, Z.  A total of 15 letters were shown to each participant in the same font style and size (44 

point Times New Roman) projected on the Plexiglas, identical to the font and size of the text 

prompts used in the experimental trials.  Likewise, the distance to the screen was the same 

distance that was calibrated for the experimental trials (see section 3.1.5).  Participants were to 

be excluded from the study if they failed to name any of the fifteen letters correctly. 

 

3.1.4 Stimuli  

Stimuli consisted of 60 frequent bisyllabic compound words represented by color 

illustrations.  See Appendices C, D, and E for a written list and examples of the illustrations.  

Each stimulus was a noun with a concrete visual representation (e.g., surfboard).  Furthermore, 

each stimulus was composed of a single morpheme (e.g., no plurals) and had only one semantic 

meaning.  Also, the stimuli were composed of word pairs.  Fifteen of the stimulus pairs shared 

the first syllable of the compound word (e.g., lifeguard and lifeboat). The other fifteen shared the 

second syllable of the compound word (e.g., rowboat and lifeboat).  Because the first syllables of 

the word pairs were the same, contrastive stress could be manipulated on the second syllable.  

Likewise, contrastive pitch accent was manipulated on the first syllable for the word pairs that 

shared the second syllable of the compound word.  The presence and absence of pitch accent was 

manipulated in response to prompt questions that were visually presented with 44 point Times 

New Roman text prior to each stimulus presentation.  Is the football above the square? is an 
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example of a prompt question.  The prompt question was presented visually, rather than 

auditorily, to reduce the potential confounds of varying prosodic and temporal characteristics of 

an acoustic signal.  Though it is an interesting line of inquiry, there is no research to date to 

suggest that prosodic contours differ in response to a visual stimulus compared to an auditory 

stimulus.     

Stimuli were presented via Stimulate software onto an 18-inch by 24 -inch piece of 

Plexiglas that is positioned horizontally using a back projection system.  Stimulate is a custom 

software package created by Necessity Consulting.  It is a script driven program utilized for the 

presentation of video and auditory stimuli as well as the collection of various types of data.  

Stimulate was also used for the synchronized collection of acoustic and capacitance data in the 

current series of experiments.  Velum was placed on the Plexiglas to reduce glare from the 

projection system.  Likewise, the stimuli were back projected to not only reduce glare from the 

light source of the projector, but to eliminate shadows created by the gesturing hand during the 

task when front projection is used.  The screen resolution was set at 1024 x 768 pixels. 

Illustrations of the stimuli were set at a standardized height of 2.25 inches, though the 

actual size of the stimuli was considerably greater when projected onto the 18 x 24 inch screen 

(i.e., approximately 4 .5 inches in height).  The stimuli were presented two at a time.  One of the 

illustrations acted as the target and the other as a distractor.  A distractor was included to 

decrease automaticity of responses.  The illustrations were presented in one of four possible 

locations (i.e., above, below, to the right, to the left) relative to an illustration of one of eight 

possible shapes,  (1) square, (2) circle, (3) cross, (4) triangle, (5) diamond, (6) star, (7) rectangle, 

and (8) oval. The shapes were set at a standardized .75 inch height.  A variety of shapes and 

locations were chosen to increase attention to the task and reduce the risk of rote phrasing 
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patterns. The shape was always in the central position of the screen and the four locations of the 

stimulus drawings were the same distance from the center shape to yield similar gesture spaces 

for all four positions (See Figure 11).  Each drawing was approximately one inch from the 

centrally located shape.  Each target word was presented in two of the four possible locations 

resulting in 120 trials per participant.  Estimating that each trial took approximately 15 seconds, 

the total time required for the experimental trials of Experiment 1 was 1800 seconds or 

approximately 30 minutes.  Because a repeated measures design was utilized, presentation of 

target and distractor illustrations, position relative to the shape, and type of shape was 

randomized in order to control for sequencing effects. Furthermore, the location of each stimulus 

and the type of reference shape was randomized to decrease anticipation of response and 

sequencing effects. 
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Figure 11 Example of a stimulus presentation.  The preceding text prompt for a contrastive trial 
with this display would be, Is the baseball above the square?.  The required spoke response then 
would be, No, the FOOT’ball is above the square. 
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3.1.5 Equipment and Data Collection Procedure 

Individuals who passed the screening questions sat in a stationary chair for recording of their 

speech and manual gestures.  They extended their arms on the two arms of the chair and their 

right hand further extended and resting on the starting position as described below.  The 

participants were gently restrained from moving their torso forward by fastening a Velcro fabric 

belt around their lower torso and chair back.  Also, each participant was instructed to keep their 

legs and torso still during the trials to further control the distance from the gesture acquisition 

device and reduce extraneous body, arm, and hand movements.   

The individuals directly faced the Plexiglas screen and the gesture movement acquisition 

device.  Their right hand rested on an optical reflective sensor that also acts as the before-

mentioned starting position.  The sensor is light-sensitive and was used to measure the time of 

hand lift and return during the gesture movement. See Figure 12 for a visualization of the 

equipment and participant setup.  The hand rested on the sensor in front and slightly to the right 

of the participant.   
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Figure 12 Equipment Setup.   

 

 

 

 

A head-worn hypercardioid condenser microphone (Crown CM-312AHS) mounted on to 

a Sony MDR-V6 headphone was placed on the participant’s head with a microphone to mouth 

distance of approximately two inches.  A cardioid microphone was chosen because its heart-

shaped sensitivity pattern is optimal for reducing noise from other directions and is most 

commonly used for vocal recordings.  The frequency range of the microphone is appropriate at 

50 to 17,000 Hz with sensitivity up to 3.8 mV/Pa low impedance of 75 ohms.  The gain of the  

audio signal was amplified using a TAPCO Mix 120 Mixer.    

The spoken responses were digitally audio recorded at a sampling rate of 48 kHz for 

acoustic analyses.  A high sampling rate was chosen to assure adequate recording of high 

frequency consonant sounds should phonemes other than vowels be incorporated into post hoc 
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analyses.  Thus, this sampling rate was more than sufficient to capture the formant frequencies of 

English vowels.  A sampling rate of 48 kHz was also chosen because it is the sampling rate used 

by digital media including PC sounds cards.  Vowel midpoint was calculated from the acoustic 

signal collected for each trial.   External filters are not necessary for the acoustic or capacitance 

recordings.  The acoustic output was captured with the sound card (C-Media AC97; C-Media, 

Inc., Version 5.12.1.25) situated on the motherboard of the custom-built PC.     

The Facilitator (KayPENTAXTM, Model 3500) was utilized to amplify the spoken 

productions of the participants via Sony MDR-V6 Monitor Series headphones.  Each participant 

spoke into the lapel microphone provided by the Facilitator and the output from the microphone 

was routed to the device. The device was set at a constant level and amplified each participant’s 

vocal output to approximately 70 dB SPL.   The Facilitator is capable of speech-voice 

amplification with a pass band of 70 to 7800 Hz.  Amplification and playback of responses were 

conducted in Experiment 1 only to be parallel to the procedures of Experiment 2.   

The movement of the deictic (i.e., pointing) gestures was captured using capacitance 

sensors within a modified theremin device (Theramax PAiA 9505KFPA) (Figure 13) and 

recorded using a Dataq acquisition system (WinDaq/Lite, DI-400; Dataq Instruments WinDaq 

Acquisition, Version 3.07).  A traditional theremin is an electronic musical instrument that 

requires no direct physical contact to produce and modulate sound.  The theremin produces a 

very unique sound that has been used in soundtracks for sci-fi films, other film soundtracks, and 

even popular music.  The theremin was first inadvertently developed by Russian physicist, Leon 

Theremin, in 1921 while working with capacitive sensors and short-wave radio equipment for 

the Russian government.  Capacitance by definition is the ability of a circuit element to store an 

electrical charge (http://www.qprox.com/background/capacitance.php).   The amount of 
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electrical charge stored by an object is dependent upon the distance between it and another 

object.  Capacitance is the charge associated with two adjacent objects that are separated by a 

non-conducting agent, most often air.   The amount of capacitance increases as the size of the 

objects increases and the distance between them decreases.  The amount of capacitance is also 

dependent upon the material composition of objects.  For instance, metal conducts much better 

than plastic.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 Theremax theremin modified for equipment setup as shown in Figure 12. 
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A theremin works according to these properties.  Much like in the mechanics of touch 

screen devices, it is the ability of human flesh to hold an electrical charge that interacts with the 

conductors of the theremin.  The human body is an excellent conductor and can accumulate 

charge well. Thus, we are able to accumulate static charge by creating friction between our shoes 

and carpet while walking across a room.  We also will accumulate more charge when walking 

next to a wall than in the middle of a room since the human body, like any object, has greater 

capacitance with decreased distance from another object.  In fact, the human body can be 

detected up to a .5 meter away from capacitance sensors 

(http://www.qprox.com/background/capacitance.php).  This distance is much greater than the 

two (i.e., at closest approximation to the antenna) to eighteen inch space (i.e., at furthest distance 

from antenna) applied in the current investigation.   

It is important to note that there was no physical contact with the Theramax theremin.  

The device takes advantage of the electrical charge that is inherent within the body/hand and the 

antennas of the theremin.  The device and the participants were electrically isolated.  That is, 

there was no charge distributed by the device to the participant.  Properties of capacitance, 

similar to the device used in these experiments, are utilized in an abundance of commercial 

devices such as iPods, cellular phones, microwaves, and other touch screen machines.   

A theremin consists of two antennas: the horizontal antenna modulates frequency and the 

vertical antenna modulates intensity.  Specifically, for the Theramax unit used in these 

experiments, a Hartley variable oscillator operated at a frequency of 750 kHz.  For each antenna, 

“the signal from this variable oscillator is mixed with a constant reference frequency in a ring 

modulator and the result passed through a single pole of low pass filter to leave only the 
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difference between the variable and reference oscillator frequencies” 

(http://www.paia.com/theremax.asp).  The reader is referred to the PAiA website for technical 

details and schematics of the design and mechanics of the device.  Thus, the signals of the two 

oscillators are mixed and yield output signals, notably the sum and difference of the two 

frequencies.  The difference of the two frequencies is audible.  For example if the frequency of 

one oscillator is 750 kHZ and the other is 752 kHZ, then 2 kHZ is audible.  An oscillator is de-

tuned as one’s hand is moved towards an antenna, resulting in a change in the capacitance level 

and a change in the frequency or intensity output signal.   

As mentioned previously, these output signals are typically used to create music.  The 

Theremax theremin used in the present investigation is also capable of creating sound as the 

result of modulating frequency and amplitude of a tone.  In addition to a signal that can be 

perceived auditorily there is also a visual output signal of each antenna.  Importantly, the visual 

output of the theremin is linear.  There are two output channels, one for the horizontal frequency 

antenna and one for the vertical intensity antenna.  Thus, in addition to hearing the resulting tone, 

one can visualize the linear signal associated with the frequency and intensity channels.   

Consequently, the methodology of this project takes advantage of the linear output of the 

two antennas for the measurement of the time of gesture apex.  As previously discussed, 

capacitance and the associated electrical charge increase as an object nears another.  Therefore, 

as the hand and finger draw closer to the frequency antenna while executing a deictic gesture, the 

charge increases.  The maximum charge corresponds to the point of maximum extension, i.e., 

gesture apex, of the finger and hand movement.  The peak voltage of the associated linear output 

is displayed and recorded on a Dataq oscilloscope as the time point of gesture apex.   
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A single antenna of the theremin was housed horizontally behind the Plexiglas screen.  

The voltage trace and peak were recorded as the participant brings their finger in approximation 

to the screen during the pointing movement.  The distance of the participant to the theremin and 

screen was calibrated prior to the initiation of the experiment.  To calibrate the participant-to-

screen distance, the participant was first asked to maximally extend their arm and fingers in 

relation to the screen.  Next, a two-inch foam block was placed between their index finger and 

the screen to assure that the participant-to-screen distance is calibrated consistently across 

participants.  Thus the location of each participant’s seated location differed dependent upon the 

length of their extended arm, hand, and index finger.  However, each participant’s index finger 

was two inches from the screen at the point of maximum extension.  Lastly, the starting position 

was slightly cupped in a convex fashion to designate neutral position. The synchronized acoustic 

and capacitance recordings were archived from the PC to an external hard drive. 

 

3.1.5 Task 

 

3.1.5.1 Stimulus Presentation:  Familiarization First, the participants were shown the 

stimulus pictures to ensure their familiarity with and correct verbal production of the stimulus 

item.  Each of the 60 stimuli were displayed individually in the center of the Plexiglas screen and 

cycled through twice.  The first rotation presented the stimuli along with the associated verbal 

label printed in black 44 point Times New Roman font.  Prior to the second rotation, the 

participants read instructions in 44 point Times New Roman font to label each picture as it was 
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3.1.5.2 Instructions The instructions for the practice and experimental trials were the same and 

were presented via written text (44 point Times New Roman) on the screen. The instructions 

emphasized the requirement to answer the prompting question while pointing to the correct 

response.  The participants were also given a motivation within the instructions both to point to 

and label the stimuli.  They were told their responses would be shown to two examiners after the 

experiment was completed.  In this explanation, one of these examiners would only see their 

responses and the second would only hear their responses.  Further, the participants were told 

that these examiners must identify the chosen stimuli pictures.  Therefore, both the gestured and 

spoken response were imperative.  However, there were in fact no confederates that were 

identifying their responses.  The participants were given this information only to increase the 

validity of their responses since they may have viewed the dual-response as redundant.   

 Lastly, a single audiovisual model was shown within the instructions.  The audiovisual 

model consisted of a female completing four practice trials, two with pitch accent and two with 

neutral accent.  The purpose of the audiovisual model was to encourage accurate pointing (e.g., 

completely lifting and extending the arm and hand as far as possible with a straight arm) and the 

placement of pitch accent when appropriate.   
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Instruction Screen 1: 

Please begin with your hand on the outline of the hand.  This is the starting point.    
 
Instruction Screen 2:   
You will first read a question.  This question will ask about the picture you will 
see on the next screen.   
 
Instruction Screen 3:   
The pictures you will see are the same pictures you just labeled.  When you see 
the picture on the next screen, you will answer the question while also pointing to 
the picture.   
 
Instruction Screen 4: 
It is important that you both label and point to the picture. After you’re done, 
your responses will be shown to two different individuals.  One of these 
individuals will be only listening to your voice and the other individual will be 
viewing in silence and will only be able to see your pointing gestures. 
 
Instruction Screen 5:   
Let’s walk through an example.  For instance, you read a question similar to the 
following, “Is the tugboat above the square?”. 

 
Instruction Screen 6: 
Sometimes the answer to the question will be a “no” answer.  In this case, please 
emphasize what is different about the picture that makes the answer “no”.  
 
Instruction Screen 7: 
For example, if a picture of a steamboat appeared above a square a “no” 
response is required.  In order for the response to be completely understood, 
please emphasize what is different about the picture as follows. “No, the 
STEAMboat is above the square.” 
 
Instruction Screen 8:   
Let’s see an example.  (Audiovisual model will be shown) 

 
Instruction Screen 9: 
Other answers will be “yes” answers.  For example, if a picture of a tugboat 
appeared above a square, then the correct answer would be “Yes, the tugboat is 
above a square”.  When a “yes” answer is required, there is no need to 
emphasize the picture label in any way. 
 
Instruction Screen 10. 
Let’s see an example. (Audiovisual model will be shown.) 

 
Instruction Screen11: 
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Remember…Always point to the picture while answering the questions.  Please 
lift your hand from the starting position when pointing.    

  
Instruction Screen 12: 
 After each response, you will be given time to place your hand on the starting 
position.   
 
Instruction Screen 13: 
Would you like these instructions repeated? 
 
Instruction Screen 14: 
Okay….Let’s try a few examples. 
 
Instruction Screen 15: 
Remember to:  
*Keep your back against the chair 
*Extend your arm when pointing 
*Both point and speak when responding 

 

3.1.5.3  Stimulus Presentation:  Practice Trials The participants were seated looking at the 

screen with their hand in a neutral starting position.  Each participant completed eight practice 

trials which were identical to the presentation format of the experimental trials.  These eight 

trials consisted of four compound nouns not present in the experimental set (steamboat, tugboat, 

handshake, handcuffs).  Each picture was shown in two different positions.  Furthermore, each 

word was produced with and without contrastive accent.  If the participant misunderstood the 

directions or did not respond with the appropriate verbal or manual response during any of these 

practice trials, the examiner provided verbal feedback regarding the appropriate response.  For 

instance, if the participant did not lift the hand from the neutral position during the practice trials, 

they were instructed to lift and extend their hand toward the screen.  Additionally, the 

instructions were repeated if the participant incorrectly produced the carrier phrase or did not 

mark contrastive accent.  Correct or incorrect accent placement during the practice trials was 

perceptually judged online by the examiner.  It was important that the participants provided an 
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appropriate response during the practice trials since there was no feedback or repetition during 

the experimental trials.  The experimental trials commenced after the eight practice trials were 

completed.   

 

3.1.5.4 Stimulus Presentation:  Experimental Trials Each individual completed 120 trials 

in Experiment 1. The format for stimulus presentation was identical for practice and 

experimental trials.  Each trial consisted of a shape in the center of the screen and two stimulus 

pictures. The presentation order of the target words, the distractor words, and their location were 

randomized.  Likewise, the presentation order of the eight shapes (square, circle, cross, triangle, 

diamond, star, rectangle, oval) were randomized and each trial was unique in wording.  The 

objective of decreasing predictability of response was to decrease the likelihood of an individual 

initiating the deictic gesture or spoken response prior to the stimulus display.   

The beginning of each trial was marked by a 6 second presentation of the question 

prompt (e.g., Is the bathtub above the square?) followed by the 7 second presentation of the 

pictures and shape.  The beginning of each response was marked by the lift of the hand from the 

neutral position.  The termination of both the trial and response was marked by the return of the 

hand to the neutral position.  Thus, the trials were self-paced.  After the optical sensor recorded 

the termination of the gesture, a blank screen was presented for a randomly determined 

interstimulus interval (ISI) to allow adequate time to return to the neutral position.  The ISI 

varied between 1 and 3 seconds.  The rationale for randomizing the ISI was to further reduce 

anticipation of response initiation (e.g., Franks, Nagelkerke, Ketelaars, & van Donkelaar, 1998).   

Of the 120 trials, 60 required a contrastive accent response (e.g., No, the HOTtub is above 

the square” and the other 60 required a neutral response (e.g., Yes, the bathtub is above the 
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square”.  Additionally, 60 of the responses manipulated accent on the first syllable while the 

other 60 manipulated accent on the second syllable of compound words.  Thus, 30 responses 

elicited contrastive accent on the first syllable, 30 responses elicited neutral accent on the first 

syllable, 30 responses elicited contrastive accent on the second syllable, and 30 elicited neutral 

accent on the second syllable.  It is important to recall that each target word was presented twice, 

resulting in the number of trials noted above.   

To reiterate, the participant was provided no information or feedback during the 

experimental trials.  Thus, there was also no repetition of trials if a participant provided an 

incorrect response.  Production of incorrect contrastive stress, an incorrect label of the stimulus 

picture, failure to respond prior to the presentation of the next stimulus item, and failure to point 

were considered as incorrect responses. A list of all required responses was followed during the 

experimental trials.  If an item was produced in error, the examiner noted the error and the 

accuracy of the production was later reviewed during the data reduction process.  Data points 

that were produced incorrectly were removed from the final data set.  A discussion of excluded 

trials is presented in the Results section.   

 

3.1.5.5  Data Reduction GA-VM interval was measured for each target syllable.  The 

acoustic signal was analyzed using Adobe Audition 3.0 software to obtain the time of vowel 

midpoint from a wide-band spectrographic display with a 300 Hz bandwidth filter.   Each vowel 

of the target syllable was isolated according to a modification of the criteria outlined by Higgins 

and Hodge (2002).  They describe the procedure to isolate a vowel as follows “cursors were 

placed on the first and last glottal pulses that excited the first two formants of the vowel 

segment….the length of the vowel was measured as the distance between the cursors”  (p. C-45).  
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However, Higgins and Hodge’s procedures needed to be altered for the present investigation due 

to differences in phonetic contexts between their stimuli, hVd, hV, and the current bisyllabic 

word stimuli, that were utilized in the current set of experiments.  For instance, many of the 

stimuli were composed of vowels that were influenced by coarticulatory effects of adjacent nasal 

(e.g., thumbprint) and liquid (e.g., wheelchair) phonemes.  Therefore, the guidelines employed 

by Shriberg, Campbell, Karlsson, Brown, McSweeney, & Nadler, 2003) were combined with 

those originally proposed for this investigation.  Their guidelines were to identify vowels “by 

strong glottal pulsing in the presence of formant structure…nasalized portions of the vowel were 

in the vowel nucleus duration measures….vowels were segmented from the offset of the 

preceding consonant to the onset of the following consonant” (p. 561).  The vowel onset, offset 

and subsequent duration was measured for each of the target syllables.  Vowel midpoint was 

calculated by dividing each of the vowel durations by two.   

The time of gesture apex of each deictic gesture was extracted from the output voltage 

signal of the theremin recorded by the Dataq system.  As an individual pointed to the stimulus 

picture, they raised their arm and hand, formed a pointing shape with their index finger 

extended, and moved the hand and finger toward the screen.  Moving the hand and finger 

toward the screen also brings the hand and finger closer to the antennas of the theremin.  As 

noted previously, the maximum voltage charge of the horizontal frequency antenna occurs at 

the point of maximum finger extension (i.e., at the point that the finger is closest to the 

horizontal antenna).  This point of maximum extension is the gesture apex as illustrated in 

Figure 14.  This time point was automatically extracted using the Stimulate software package.  

Also, the examiner verified the measure of gesture apex to assess the presence of outliers.  If 

the automatic extraction of gesture apex was unsuccessful for a trial, the examiner utilized both 
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the voltage trace from the frequency antenna, intensity antenna, as well as the acoustic signal 

generated from the antennas to discern the time of gesture apex.  If the movement produced an 

invalid response for the capacitance sensors of the theremin, the video recording was used for 

final backup analysis.  The trial will be discarded if the movement is produced erroneously 

(e.g., failure to lift hand completely). 

 

 

 

 vowel 

gesture  

 

 

 

 

 

 

 

Figure 14 Capacitance voltage trace with gesture apex location and corresponding acoustic 
signal with approximate vowel midpoint highlighted. 

 

 

The interval between gesture apex and vowel midpoint was then calculated for each trial.  

Please refer to Figures 15 and 16 for examples of the predicted differences for GA-VM 

intervals.  The interval is equal to the amount of time in milliseconds between the gesture apex 
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and vowel midpoint.  The interval was reported as an absolute number given that the 

measurement could be negative if the vowel midpoint occurs prior to the gesture apex. If the 

interval was not recorded as an absolute number then the negative values would offset the 

positive values when summed.  The information regarding which time point occurred first was 

also recorded in order to analyze whether the gesture apex occurred prior to the vowel 

midpoint or vice versa. 

 

 

Figure 15 Predicted GA-VM interval of pitch accented syllable and deictic gesture. 
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Figure 16 Predicted GA-VM interval of neutral syllable and deictic gesture. 
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The GA-VM dependent variable was summed for each of the four conditions (i.e.., first 

syllable-contrastive accent; first syllable-neutral accent, second syllable-contrastive accent, 

second syllable-neutral accent) for descriptive analyses (e.g., mean, standard deviation, etc.) 

and statistical comparisons.  As described above, there were 120 total data points for the 

dependent variable for each participant, 30 from each of the four conditions (i.e., presence of 

pitch accent on first syllable, presence of pitch accent on second syllable, absence of pitch 

accent on first syllable, absence of pitch accent on second syllable).  Hence, 1800 total data 

points were projected across the 15 participants, with 450 measures of the GA-VM interval in 

each of the four conditions.   

Two (i.e., 13.3%) of the participants were randomly chosen for interrater reliability. A 

second, independent judge was trained to identify vowel onsets and offsets for all 120 data 

points for each participant.  Thus, there were a total of 240 points for reliability.  Correlation 

coefficients for GA-VM measurements were calculated.  Additionally, the means and standard 

deviations of the two judges’ vowel measurements are also reported.  Lastly, the number and 

percentage of excluded trials due to inaccurate stress production, incorrect spoken label 

production, or incorrect gesture movement are reported. 

 

3.1.6 Statistical Analyses  

 

In addition to descriptive statistics, a two-way repeated measures analysis of variance 

(ANOVA) was completed for the dependent variable with the significance level set at α = .05.  
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The independent variables were the presence/absence of contrastive pitch accent and first/second 

syllable position.  The dependent variable was the GA-VM interval.   

The results were assessed for deviation from normality.  Stem and leaf plots generated by 

SPSS 16.0 indicated some concerns regarding normality of the data for some conditions.  As a 

result, the values for GA-VM were transformed by computing the base 10 logarithm of (x + 1).  

The results of the ANOVA run on the log-transformed data were consistent with the results of 

the ANOVA’s run on the original data.  Therefore, the results presented are from the original, 

non-transformed dataset.   

 

3.2 RESULTS OF EXPERIMENT 1 

 

3.2.1 Included and excluded participants  

 

A total of 18 individuals were recruited from the University of Pittsburgh community for 

Experiment 1.  None was subsequently excluded on the basis of the exclusionary criteria (e.g, 

failed hearing or vision screening).  The data collected from three of the participants were later 

excluded due to equipment failure. Thus, the results presented are for fifteen participants as 

projected by the initial power analysis.   

The four male and 11 female participants ranged in age between 21-33 years (M=24 

years, SD=3.3 years) and completed between 15 and 19 years of education (M=16.8 years, 

 195 



 

SD=1.3 years).  All 15 participants were Caucasian and did not speak any languages fluently 

other than English.  Each participant was paid 15 dollars and several also received extra course 

credit for taking part in the study.  The experimental trials required approximately 30 minutes to 

complete, though breaks were also permitted after each block of trials. 

 

 

3.2.2 Dependent Variable:  GA-VM interval 

A total of 120 trials were presented to each participant, yielding a total of 1800 possible 

responses for this experiment.  Seventy-five (4.2%) of these responses were produced in error 

and excluded from the analyses.  Two independent raters listened to each trial to rate accuracy of 

response.  If there was a disagreement between the two raters, a consensus rating was reached by 

a third independent rater who made the final judgment regarding the accuracy of the response.   

Consensus ratings were required between zero and three times per participant.  Responses 

were excluded if the participant produced the spoken response with incorrect stress placement 

(59), produced the wrong target (13), or failed to respond (3).  The number of excluded trials is 

less than the 6.5% in a similar study using far more simplistic stimuli (Rochet-Capellan et al., 

2009).  There were no exclusions based upon inaccurate or incomplete gesture movements.  In 

addition to the response produced in error, the paired response of the target was also excluded.  

For example, if briefcase was produced with stress on the second syllable instead of the first 

syllable in the contrastive condition, then the neutral response of briefcase was also excluded.  

Thus, a total of 150 (8.4%) responses were excluded from the analyses, yielding 1650 responses.  
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These 1650 data points were aggregated for each participant and then compared using a two-way 

repeated measures ANOVA. 

Interrater reliability was completed using all trials for two of the participants, or 13% of 

the data set.  A Pearson product-moment correlation coefficient was computed to assess the 

relationship between the two individuals completing acoustic measures of vowel on- and offsets.  

Adequate reliability was attained (r=.890) and similar means and standard deviations were noted 

for the author and reliability volunteer, (M=1856.82 ms, SD=467.49 ms) and (M=1858.70 ms, 

SD=418.25 ms), respectively.  No reliability was calculated for the gesture movements due to the 

automatic extraction of these times points by way of Theramax theremin and recorded by the 

Dataq system.   

 Tables 14 and 15 and Figure 17 show the descriptive data for GA-VM intervals 

across conditions (pitch accent on syllable 1, neutral accent on syllable 1, pitch accent on 

syllable 2, and neutral accent on syllable 2).  The two-way repeated measures ANOVA revealed 

a significant main effect of syllable position [F(1,14) = 20.268, p<.0000] and pitch accent 

[F(1,14) = 7.499, p<.016].  There was no significant interaction between these two factors 

[F(1,14) = 2.220, p<.158].    The main effect of syllable position was in the predicted direction; 

however, the main effect for pitch accent was in the opposite direction as predicted.  Thus, the 

mean GA-VM interval was shortest for first position syllables with no pitch accent (M=65.16 

ms, SD=6.94 ms) and longest for second position syllables with contrastive pitch accent 

(M=250.44 ms, SD=146.58 ms).  This finding is opposite to stated prediction that syllables with 

contrastive pitch accent would exhibit the greatest synchronization.     
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Figure 17 GA-VM intervals (ms) for each condition.  Error bars represent one standard 
deviation.  
 

 

There was one extreme outlier of the 15 participants sampled as indicated by stem and 

leaf plots generated by SPSS 16.0.  This participant was a 25 year old male.  Though he was able 

to complete the task according to the stated instructions, several notes were made by the 

examiner during the experimental trials. These notes included, “did not always fully extend 

arm”, “little synchrony noted visually-held apex longer for some of the trials”.  These perceptual 

observations translated to exceptionally long GA-VM intervals for this participant in the second 

syllable with neutral stress conditions.  The mean GA-VM interval for this condition was 191.18 

ms (SD=123.62 ms) and this participant averaged 528.50 ms(SD=192.70 ms).  Nonetheless, 

when this individual was removed from the dataset, the results of the analyses did not change.  A 

main effect for syllable position [F(1,13) = 20.720., p<.001] and pitch accent [F(1,13) = 10.254, 

p<.007] was found.  There was not significant interaction for syllable position and pitch accent 

[F(1,13) = 3.583, p<.081]. Thus, the data resulted in failing to reject H03. 
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Table 14 Descriptive Results for GA-VM Intervals (ms).  

 Condition Mean (ms) Standard Deviation (ms) Range (ms) 

+PA/1st  84.85 16.54 64.43-132.10 

-PA/1st 65.16 6.94 53.88-77.71 

+PA/2nd 250.44 146.58 69.02-537.98 

-PA/2nd  191.18 123.62 65.43-531.50 

 

 

 
Table 15 Analysis of Variance Summary Table for GA-VM Intervals. * Indicates Statistical 
Significance. 
Variable df SS MS F p-value η2 power 

Contrast 14 23377.24 23377.24 7.499 .016* .49 .721 

Position 14 318876.05 318876.05 20.268 .000* .591 .987 

Con. x Posit. 14 37029.61 2644.97 2.20 .158 .857 .284 

 
 As expected, vowel duration (ms) was increased for pitch accented syllables.  

Syllables in the first position were longer in duration when produced in the contrastive accent 

condition (M=154.66 ms, SD=51.74 ms) relative to when the same syllables were produced in 

the neutral accent condition (M=129.99 ms, SD=36.10 ms).   This difference was significant 

according to a dependent samples t-test [t(410)=-11.82, p<.000].  Likewise, syllables in the 

second position were longer in duration when produced in the contrastive accent condition 

(M=234.19 ms, SD=81.45 ms) relative to when the same syllables were produced in the neutral 

accent condition (M=154.66 ms, SD=51.74 ms).   This difference was also significant according 
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to a dependent samples t-test [t(428)=-18.15, p<.000].  Thus, speakers modulated contrastive 

pitch accent as a function of segment duration as found consistently in prior literature.  

Unexpectedly, vowel duration was longer for both second position syllables than their first 

position syllable counterparts, (see Figure 18).  One would predict that vowel durations would be 

longer for first position neutral syllables compared to second position neutral syllables because 

of the trochaic metrical pattern bias of English.  On the contrary, second position neutral vowels 

averaged 154.66 ms (SD=51.74 ms) in duration compared to the average duration of 129.99 ms 

(SD=36.10 ms) for first position neutral vowels.  Interestingly, the contrastive pitch accented 

vowels in the second position were also greater in duration (M=168.88 ms, SD=60.76 ms) than 

vowels in the first position with pitch accent (M=129.99 ms, SD=36.10 ms).    

 

 

Figure 18 Vowel durations (ms) for each condition.  Error bars represent one standard deviation.  
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In summary, both H01 and H02 were rejected based upon the significant GA-VM intervals 

as a function of contrastive pitch accent and syllable position and the fact that a nondirectional 

alternative hypothesis and subsequent two-tailed statistical procedure was applied.  HO3 was also 

rejected because there was no interaction of syllable position and presence/absence of pitch 

accent.  The apex of deictic gestures was more likely to synchronize with first position syllables 

compared to second position syllables as hypothesized.  Yet, the main effect of contrastive 

accent is not consistent with the motivated direction of the predicted results.  In other words, a 

relationship between the timing of a deictic gesture and the corresponding lexical item does exist 

based upon this data set, though the effect of syllable position and prosodic prominence result in 

an explanatory quagmire.   

 

3.3 DISCUSSION OF EXPERIMENT 1 

 

The purpose of Experiment 1 was to investigate the influences of prosodic stress and 

syllable position on the timing of the point of maximum extension of deictic gestures.  Though it 

is often observed that gestures and their lexical affiliates roughly occur in time during spoken 

language production, this study is only one of three that has directly manipulated prosodic stress 

and controlled the gesture elicitation procedure.  The present experiment stands alone in 

experimentally studying the effect of prosodic stress and syllable position on the timing of 

deictic gestures in a complete multiword utterance and for English-speaking participants. 

 201 



 

Overall, it was clear that there was a coordination of speech and gesture and that the time of 

gesture apex was differentially influenced by (1) first versus second syllable position and (2) 

presence versus absence of contrastive pitch accent.   The greatest synchronization on average 

(i.e., smallest mean GA-VM interval) was noted for first position syllables with neutral stress 

while the least synchronization (i.e., largest mean GA-VM interval) was measured for second 

position syllables with contrastive stress.  This finding was inconsistent with the hypotheses 

initially presented.   

The lack of synchronization of gesture apices to prosodically stressed syllables in 

Experiment 1 is consistent theoretically with de Ruiter’s (1998; 2000) Sketch Model and is 

evidence against Tuite’s Rhythmic Pulse Model.  The Sketch Model posits that there is no 

interaction between the speech and gesture production systems at the level of the Formulator, the 

mechanism responsible for lexical retrieval and prosodic stress assignment among other planning 

processes.  Thus, the manipulation of contrastive pitch accent on a given syllable should not have 

affected the timing of the corresponding deictic gesture.  According to de Ruiter, speech and 

gesture are initiated at the same time, though the onset of gesture most often occurs before the 

onset of the lexical affiliate because “gesture production is less complex, and therefore less time 

consuming, than for speech” (de Ruiter, 1998, p. 61).  The current results do not indicate the 

gesture planner interacts with the phonological encoder due to the lack of synchronization 

between syllables with contrastive pitch accent and deictic gesture.  If there were no interaction 

between processing levels lower than the Conceptualizer, then one would expect both the gesture 

and lexical affiliate to be initiated relatively simultaneously. The Sketch Model postulates that 

the processing involved in produced a gesture, especially a deictic gesture, is less complex, takes 

less time and therefore causes the gesture to precede the lexical affiliate.   If this is accurate, then 
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one would expect the greatest synchronization (i.e., smallest GA-VM intervals) to be measured 

for the first syllable position, regardless of pitch accent assignment.  Indeed, this was the case in 

the current experiment such that the GA-VM intervals were significantly lower for the first 

syllable position, regardless of pitch accent assignment.  In other words, the apex of gestures 

coincided with the initial onset of a word, not with prosodically prominent syllables.   

What is perhaps most striking is the extremely small GA-VM intervals averaged across 

participants for the first position syllables.  The intervals between a gesture apex and the first 

syllable midpoint were no greater than 65 and 85 milliseconds for neutral and contrastive 

conditions, respectively.  To put this in perspective, 100 ms is the benchmark for software 

developers so that processing will seem instantaneous and is also the human reaction time for 

advanced athletes.  In fact, one of the fast human reflexes, the patellar (i.e., knee jerk) reflex 

requires approximately 50 ms.  This extreme tightness between the gesture apex and vowel 

midpoint was unanticipated for neutral syllables.  However, there is previous research that 

demonstrated a tight interval for first position stressed syllables. Rochet-Capellan and others 

(2008) found that jaw apex-pointing apex intervals averaged only 11 ms for stressed, initial 

syllables in the nonsense word task.  In contrast, the jaw apex-pointing apex interval for second 

position stressed syllables was nearly 15 times longer, 151 ms in duration.  These authors did not 

make any comparisons between stressed and unstressed syllables like in the current experiment 

(e.g., PA’pa vs. pa’PA) but rather the differences in the timing of deictic gestures dependent 

upon first or second position stress (e.g., PA’pa vs. paPA’).   However, the general findings of 

Rochet-Capellan et al. and Experiment 1 certainly share parallels.  Future analyses of 

Experiment 1 data could include measuring the vowel midpoint of the nontarget syllables and the 
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non-absolute values of the GA-VM intervals to further relate these findings to those of Rochet-

Cappellan et al. and support the selection of dependent variables for later investigations.   

There are several theoretical postulations to account for these seemingly puzzling findings.  

First, it is possible the gesture apex was not the appropriate time point to use as the 

synchronization point to the spoken response.  Gesture apex was chosen for valid reasons and 

because of the desire to record a single time point within the gesture for the dependent measure.  

Yet, when looking at entire movement trajectory, perhaps the maximum point of extension is not 

the ideal time point for such a measure.  A measure of the entire gesture stroke, or the portion of 

the gesture that corresponds to the most meaningful part of the movement and includes the 

gesture apex, may be a better reflection of the synchronization of speech and gesture.  The 

midpoint of the gesture launch (i.e., time from gesture onset to gesture apex) is a possible time 

interval to use.  The measure may be less sensitive to idiosyncratic movement patterns as well, 

for instance if a participant moved their arm/hand toward the screen but pulsed a bit closer prior 

to their return to the rest position.  Additionally, gesture launch midpoint is a more analogous 

gesture measure to the acoustic measure since vowel midpoint was chosen to capture stress 

changes across an entire vowel instead of choosing a single time point in the signal like peak 

fundamental frequency.  A visual inspection of random gesture and speech displays across 

participants further supports the need to record additional points in the gesture, in particular the 

gesture launch duration and midpoint.  Figure 19 is a single, but seemingly representative 

example of a speech/gesture response.  The light blue line is the gesture apex and occurs after the 

vowel midpoint of the target syllable, which is in the second position and produced with 

contrastive pitch accent.  In contrast, the gesture onset occurs prior to the initiation of the vowel, 
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with the gesture launch midpoint occurring at a more synchronous moment with the target vowel 

midpoint.   

 

 

Gesture Launch  

ms 

Gesture Launch 
Midpoint 

Vowel 2: Contrastive 

Gesture Apex 

Figure 19 Comparison of gesture launch and gesture apex in relation to the stressed second 
position syllable.  The response is: “No, the lightBULB’ is below the square”. The top trace is 
the acoustic signal and the bottom signal is the voltage trace obtained from the theremin. 
 

 

It also is possible that other points in the gesture are altered to align with prosodically 

prominent syllables, even in this experiment.  For instance once an apex is reached, it can be held 

before return to a rest position.  An individual may hold a gesture apex to wait for the stressed 

syllable, especially for stressed syllables in the second position.  This hypothesis also was put 

forth by de Ruiter (1998) who found that the duration of gesture apices were indeed longer for 

later stressed syllables in a contrastive stress task.  He states, “if the operation of the strict 

phonological synchrony rule is by itself not sufficient to obtain full synchronization, the 
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conceptualizer might compensate by lengthening the gesture upon receiving feedback from the 

comprehension system” (p. 45).   

Hence, measuring additional variables other than the gesture apex may clarify why greater 

synchronization was noted for neutral syllables than pitch accented syllables.  Certainly, the 

synchrony of gesture apices and first position syllables is not unexpected.  On the other hand, the 

finding that gesture apices synchronized with unstressed syllables was an unexpected finding.  

One would predict that gestures would either synchronize with prosodically prominent syllables 

or not synchronize as a function of this variable at all.  Upon first glance, it appears that the data 

do not support a lower-level entrainment of the speech and gesture, such as that proposed by 

Tuite (1993) and Iverson and Thelen (1999).  In fact, this study was not explicitly designed to 

examine the dynamic entrainment of speech and gesture. Yet the observation that gestures 

synchronized with the contrastive stress independent variable, albeit the control condition, leads 

one to inquire further about the role of lower-level processes in the timing of speech and gesture.  

Therefore, it is proposed that additional work be completed to systematically study the temporal 

relationship of gesture and prosodically stressed syllables employing additional manipulation of 

the spoken response and additional dependent measures.  The objectives of Experiment 2 were in 

line with such a proposal.  
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4.0  EXPERIMENT 2 

4.1 RESEARCH METHODS 

4.1.1 Purpose  

The objective of Experiment 2 was to assess the influence of (i) contrastive pitch accent, 

(ii) syllable position, (iii) speech perturbation, and (iv) their interaction during the production of 

deictic gestures directed toward a visual display and vowel midpoints of target syllables within 

corresponding carrier phrases produced by typical adults on the degree of synchrony between 

deictic gestures and speech.  The temporal synchrony of speech and gesture was examined by 

measuring the dependent variables of (a) GA-VM interval and two temporal parameters of 

deictic gestures, (b) total gesture time and (d) gesture launch time. 

 

4.1.2 Experimental Design 

Experiment 2 consisted of a three-way (2 x 2 x 2), within group repeated measures 

design.  The three variables of Experiment 2 were contrastive pitch accent (i.e., present or 

absent), speech perturbation (i.e., presence or absence of 200 ms auditory delay), and syllable 

position (first or second). These variables were manipulated via presentation of the bisyllabic 

 207 



 

compound noun stimuli.  The dependent variables measured were the GA-VM interval for each 

target syllable as well total gesture time and gesture launch time. 

 

4.1.3 Participants 

 

Though the participants for Experiment 2 were independent from the sample of 

Experiment 1, the inclusionary and exclusionary criteria for the participants were the same as 

were the recruitment, consent, and screening procedures.  As stated in Chapter 3, effect sizes 

from de Ruiter’s (1998) study of the effect of contrastive stress upon the timing of deictic 

gestures were calculated and guided the estimate of effect size and resultant sample size for this 

investigation.  Power was set at 0.80, α=.05.  An estimated effect size of d=0.8 with an estimated 

across-condition correlation of r=0.5 yielded a sample size of 12 participants.  Again, however, 

15 participants were enrolled to be conservative.   

 

4.1.4 Stimuli  

The stimuli were identical to those used in Experiment 1.  Likewise, the presentation 

order of each stimulus picture, location, and centrally located shape were randomized as in 

Experiment 1.  In contrast to Experiment 1, the stimuli were presented a total of four times, 

resulting in a total of 240 trials per participant.  Each target word was presented twice under the 

influence of DAF and twice without DAF.  The same comparisons were made for contrastive 
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pitch accent and syllable position both with and without DAF imposed by doubling the amount 

of trials from Experiment 1.  Similar to Experiment 1, there were 120 unique responses; though 

in this experiment they were produced twice, once with DAF and once without DAF.  Estimating 

that each trial took approximately 15 seconds, the total time required for the experimental trials 

of Experiment 2 was 3600 seconds or approximately 60 minutes for each participant.   

 

4.1.5 Equipment and Data Collection Procedure  

 

The equipment and data collection procedures were also identical to Experiment 1 with 

two notable exceptions. First, an optical sensor was placed at the starting location directly in 

front of each the participant’s right arm, which was bent in a forward direction.  This sensor is 

light-sensitive and automatically recorded the time of gesture onset and offset.  The 

synchronized acoustic, capacitance, and optical sensor recordings were archived from the PC to 

an external hard drive. 

Second, the participants’ speech was perturbed secondary to the manipulation of the 

presence and absence of delayed auditory feedback (DAF).  DAF is described by Pfordresher & 

Benitez (2007, p. 743) as “a constant time lag (that) is inserted between produced actions (e.g., 

piano keypress) and the onsets of auditory feedback events (e.g., the onset of a pitch)”.  DAF 

causes a breakdown of fluency in typical speakers characterized by decreased speech rate, 

prolonged voicing, increased speech errors (e.g., phoneme exchanges), increased vocal 

intensity, and increased dysfluencies (e.g., prolongations and part-word repetitions) (e.g., Burke, 

1975; Howell & Archer, 1984; Stuart, Kalinowski, Rastatter, & Lynch, 2002).  
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A 200 ms auditory delay was chosen.  The rationale for selecting a 200 ms auditory delay 

is based upon the ubiquitous finding that this duration yields the most consistent breakdowns in 

the temporal execution of speech produced by typical adults secondary to the asynchrony the 

individual’s spoken production and auditory feedback of their speech (Finney & Warren, 2002; 

Marslen-Wilson & Tyler, 1981; Stuart, et al., 2002).  Additionally, a 200 ms delay is typically 

chosen with delayed auditory feedback (DAF) because it is approximately the length of an 

average syllable (Smith, 1992).   

Consequently, the time to produce the speech required in each trial, as well as the 

syllables and words therein, was expected to increase when an auditory delay was present 

relative to when there was no delay.  Likewise, the temporal variables associated with the 

production of the corresponding deictic gesture also were predicted to be different for DAF 

conditions compared to normal auditory feedback (NAF) conditions.  Although the speech of 

many typical speakers is perturbed by DAF as previously described, it cannot be assumed that 

all speakers produced delayed spoken productions.  Therefore, the sentence durations for each 

speaker were compared as a function of NAF and DAF conditions to assure that utterances 

spoken under DAF were longer than the same sentences produced without DAF.  Mean time 

error (MTE) for each individual was measured to validate the effect of DAF upon the temporal 

execution of speech production.  MTE is a measure often used to reflect the expected 

lengthened duration to complete a spoken word production under the influence of DAF 

compared to NAF conditions.  Elman defines MTE as the “mean difference between the time it 

takes a subject to complete a pattern with DAF and the time it takes with normal auditory 

feedback” (p. 109, 1983).  The greater the MTE measurement (recorded in milliseconds), the 
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greater the time difference between DAF and NAF conditions.  Sentence duration was also 

analyzed across participants using a three-way ANOVA. 

The Facilitator (KayPENTAXTM, Model 3500) was utilized to amplify and delay the 

spoken productions of the participants.  The Facilitator is an external device that is capable of 

real time amplification, delayed auditory feedback, immediate loop playback, speech range 

masking, and metronomic pacing.  Each participant spoke into the microphone provided by the 

Facilitator and the output from the microphone was routed to the device. The Facilitator is 

capable of presenting an auditory delay between 10 and 500 ms in 10 ms increments, though 

only a 200 ms delay was used in this experiment as motivated earlier.   The feedback, real-time 

and delayed, was presented via Sony MDR-V6 Monitor Series Headphones. 

The device was set at a constant level and amplified each participant’s vocal output to 

approximately 70 dB SPL, regardless of the presence or absence of an auditory delay.  The 

Facilitator is capable of speech-voice amplification with a pass band of 70 to 7800 Hz.  Higher 

loudness levels have been found to elicit greater speech disruptions (e.g., Elman, 1983).  

Furthermore, the majority of experiments have manipulated the intensity of the auditory 

feedback to be at a comfortable listening level and it is commonly accepted that 70 db SPL 

approximates typically conversational loudness levels.  In fact, Howell and Sackin (2002) found 

that this loudness level approximated 70 dB SPL for all eight of the participants in their study of 

the effects of DAF on syllable repetition. The nonaltered auditory feedback (NAF) conditions 

also were amplified to 70 dB SPL to remain consistent with the DAF conditions.   

The issue of order effects is addressed in various ways in the speech perturbation 

literature.  While researchers who have imposed a mechanical load upon an articulatory 

structure like the lower lip presented the experimental and control trials in a randomized fashion 
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(e.g.., Munhall, Löfqvist, & Kelso, 1994), those that have imposed an auditory delay typically 

used a block design to counterbalance the DAF and NAF conditions to control for practice 

effects (e.g., Pfordresher & Benitez, 2007; Finney & Warren, 2002; Howell & Dworzynski, 

2001; Howell & Sackin, 2002; Jones & Striemer, 2007; van Wijngaarden & van Balken, 2007).  

In line with previous research, DAF and NAF conditions were counterbalanced.  Blocks of 20 

trials of either the DAF or NAF conditions were presented in succession. For example, 20 trials 

of DAF were followed by 20 trials of NAF, then 20 trials of DAF, 20 of NAF and so on.  The 

presentation order of the two conditions was randomized across participants such that some 

began with NAF trials and others with DAF trials.  Additionally, the trials within each block 

were randomized to control for practice effects of the stimuli that may have affected the 

temporal parameters of the other two independent variables (i.e., syllable position and 

contrastive pitch accent). 

Another notable difference between investigations who utilized a mechanical load to 

perturb speech and those who utilized DAF is the control for habituation and anticipation of the 

perturbation.  Typically, a mechanical load is imposed on a small number of trials to control for 

any effects of habituation and anticipation.  For example Munhall et al. (1994) imposed a load 

to the lower lip on only 12% of the trials.  There is no such control for habituation in the DAF 

literature.  The same trials that are presented in the NAF conditions are also presented in the 

DAF conditions.  Likewise, the counterbalanced NAF and DAF blocks prohibit the 

effectiveness of reducing the number of experimental trials since they still will be presented in 

succession and, thus, anticipated.  There is concern about individuals habituating to an auditory 

delay when used for prolonged lengths of time as a fluency-enhancing technique but this is not 

addressed in studies that utilize DAF in a similar manner to the present experiment.  Thus, 
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identical stimuli were presented in the NAF and DAF counterbalanced conditions.  Each target 

word was presented twice, once in the presence of DAF and once without.  Thus, a total of 240 

trials were completed by each participant, 120 in the NAF condition and 120 in the DAF 

condition.   

4.1.6 Task 

4.1.6.1 Instructions The instructions were similar to those in Experiment 1 though information 

regarding the DAF was provided to reduce possible disruptions and subsequent errors that could 

occur from the unanticipated perturbation.   Although alerting the participants to DAF introduced 

knowledge of the perturbation, anxiety about possible equipment failure and/or incorrect 

response on the part of the participants was reduced by providing this information.  The 

instructions conveyed that their speech would sound louder to them through the earphones and 

that on some trials their speech could be heard later than they when they actually speak.   

 

4.1.6.2  Stimulus Presentation:  Familiarization The familiarization procedure was similar to 

Experiment 1.  However, the participants also were familiarized with the auditory delay.  After 

they were familiarized with the stimulus pictures, they were told that they would read, but hear 

their voice later than when they actually spoke.  They were then visually presented with the first 

four sentences from the Rainbow Passage ( http://web.ku.edu/idea/readings/rainbow.htm ).   

Each sentence was back-projected in isolation via text on the Plexiglas screen.  The participants 

were instructed to read each sentence at comfortable loudness level.  A 200 ms delay was 

imposed by the Facilitator while they read the four sentences.  They were not given any further 
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instruction regarding whether to “ignore” or to “pay attention” to the DAF.  The familiarization 

with the DAF was simply to demonstrate to the participants that the delay was a known and 

acceptable component of the experiment.   

 

4.1.6.3  Stimulus Presentation:  Practice Trials Participants completed the same eight 

practice trials as in Experiment 1.  They were not exposed to delayed auditory feedback during 

the practice trials. 

 

4.1.6.4  Stimulus Presentation:  Experimental Trials Each individual completed 240 trials 

in Experiment 2. The stimulus presentation for the experimental trials was exactly the same as in 

Experiment 1. Remembering that double the number of trials was presented in Experiment 2, 60 

trials required a contrastive accent response (e.g., No, the HOTtub is above the square) and the 

other 60 required a neutral response (e.g., Yes, the bathtub is above the square).  Additionally, 60 

of the responses placed accent on the first syllable while the other 60 placed accent on the second 

syllable of compound words.  Thus, 60 responses had contrastive accent on the first syllable 

(e.g., HOTtub), 60 had neutral accent on the first syllable (e.g., hottub), 60 had contrastive accent 

on the second syllable (e.g., lifeGUARD), and 60 had neutral accent on the second syllable (e.g., 

lifeguard). 

Again, unlike Experiment 1, a 200 ms delay was imposed during 50% of the trials.  

Therefore, 30 trials in each condition were produced with DAF and the other 30 without DAF 

resulting in 120 total trials produced under the influence of DAF and 120 without the influence 

of DAF.  Thus, each individual was presented with 60 total stimuli that elicited pitch accent on 
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the first syllable position.  Thirty of these responses were produced under the non-altered 

auditory feedback condition and the other thirty under the DAF condition. The 30 stimuli that 

manipulated pitch accent placement on the first syllable of compound words in the NAF 

condition were the same 30 stimuli in the DAF condition.  This was also the case for the stimuli 

with manipulation of pitch accent on the second syllable, neutral pitch accent on the first 

syllable, and neutral pitch accent on the second syllable. The examiner provided no information 

or feedback during the experimental trials. 

 

4.1.7 Data Reduction 

Measurement of the GA-VM interval was completed for each trial as described for Experiment 

1.  A number of additional dependent measures of gesture were obtained in this experiment.  

These three variables were total gesture time, gesture launch time, and sentence duration.  Total 

gesture time equals the time measured in milliseconds between gesture onset and offset as 

recorded by the optical sensor.  Gesture launch time equals the time in milliseconds between 

gesture onset and gesture apex.  Acoustic analyses were completed using Adobe Audition 3.0 

software to calculate sentence duration for each trial.  Total sentence duration was equal to the 

duration from the onset of the utterance to the offset of the utterance.  Specifically, the acoustic 

waveform was analyzed and the onset of the initial word of the carrier phrase and the offset of 

the shape label were isolated.  The time between these two points in milliseconds equals the total 

sentence duration. Lastly, MTE was measured for each individual by comparing the mean 

difference between the total sentence duration of the trials produced without an auditory delay 

and the trials produced under the influence of a 200 ms delay.   
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Interrater reliability was calculated for 13.3% of the participants (n=2).  Just as in 

Experiment 1, a second, independent judge was trained to identify the onset and offset of the 

target vowels.  For this experiment the second judge also measured the onset and offset of the 

sentence.   A Pearson product-moment correlation coefficient was computed to assess the 

relationship between the two individuals completing acoustic measures.  Adequate reliability was 

attained for both vowel onsets and offsets (r=.981) and sentence onsets and offsets (r=.997).  

Similar means and standard deviations of the on and offset points were noted for the author and 

reliability volunteer for both vowels and sentences.  The mean vowel time points for the author 

were 2800.12 ms, SD=490.43 ms) and 2792.43 ms (SD=489.79 ms) for the second judge.  

Likewise, the author’s mean sentence on and offset measures were 2174.39 (SD=1307.38 ms) 

compared to 2167.26 ms (SD=1293.89 ms) for the second judge.  No reliability was calculated 

for the gesture movements due to the automatic extraction of these times points by way of 

Theramax theremin and recorded by the Dataq system.   

The gesture dependent variables and GA-VM interval listed above were summed for each 

of the eight conditions (i.e., (1) first syllable-contrastive accent with NAF; (2) first syllable-

contrastive accent with a DAF; (3) first syllable-neutral accent with NAF;  (4) first syllable-

neutral accent with DAF; (5) second syllable-contrastive accent with NAF; (6) second syllable-

contrastive accent with DAF; (7) second syllable-neutral accent with NAF; (8) second syllable-

neutral accent with DAF) for comparisons for descriptive analyses  (e.g., mean, standard 

deviation, etc.) and statistical comparisons. 
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4.1.8 Statistical Analyses 

 

As noted earlier in this chapter, a three-way ANOVA was completed with sentence duration as 

the dependent variable to analyze differences in utterance length between DAF and NAF trials.  

A dependent samples t-test also was performed to test the prediction that pitch accented vowels 

would be longer than vowels with no contrastive pitch accent.  In addition to descriptive 

statistics, a separate three-way repeated measures analysis of variance (ANOVA) was completed 

for each of the dependent variables.  The independent variables were the presence/absence of 

contrastive pitch accent, the presence/absence of speech perturbation via 200 ms auditory delay, 

and first/second syllable position. The dependent variables were GA-VM interval, total gesture 

time, and gesture launch time.  Post-hoc simple main effects were analyzed using Bonferroni 

corrected pairwise comparisons.   
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4.2 RESULTS OF EXPERIMENT 2 

 

4.2.1 Included and Excluded Participants 

A total of 28 individuals were recruited from the University of Pittsburgh community for 

this study and were independent of the participants enrolled in the first experiment.  There were 

no participants excluded on the basis of the exclusionary criteria (e.g., failed hearing or vision 

screening).  The data collected from 13 of the participants were later excluded due to equipment 

failure, specifically a software problem that caused the gesture onset and offset time points to be 

omitted from data recording. Thus, the results presented are for fifteen participants, three more 

than projected by the initial power analysis.   

The four male and eleven female participants ranged in age between 22-31 years (M=25.1 

years, SD=3.2 years) and completed between 12 and 17 years of education (M=16 years, SD=1.5 

years).  All 15 participants were Caucasian and did not speak any languages fluently other than 

English.  Each participant was paid 15 dollars and several also received extra course credit for 

taking part in the study.  The experimental trials required approximately 60 minutes to complete, 

though often the participants took breaks during the procedure.   
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4.2.2 Data Reduction 

A total of 240 trials were presented to each participant, yielding 3600 possible responses 

for this experiment.  Of these, 169 were excluded (4.7%) of these responses were produced in 

error and excluded from the analyses.  Two independent raters listened to each trial to rate 

accuracy of stress placement.  If there was a disagreement between the two raters, a consensus 

rating was reached by a third independent rater who made the final judgment regarding the 

accuracy of the response.  Consensus ratings were required for zero to five responses per 

participant.  Responses were excluded if the participant produced the spoken response with 

incorrect stress placement (77), produced an error on the target (e.g., speech error, hesitations, 

coughed; 78), failure of DAF equipment (7), or gesture error (7; e.g., scratched head before 

pointing).  As in Experiment 1, the number of excluded trials was less than the 6.5% in a similar 

study using bisyllabic nonword stimuli and corresponding pointing gestures (Rochet-Capellan et 

al., 2009).  Errors for each participant ranged from 0 to 44 excluded responses (M=11.3, 

SD=11.0).   

A conservative approach was taken for including trials that were important for later 

paired comparisons that may be of interest.  Therefore, in addition to the response produced in 

error, all three paired responses of the target also were excluded.  To be clear, these additional 

three responses were excluded even though they actually were produced accurately.  For 

example, if briefcase was produced with stress on the second syllable instead of the first syllable 

in the contrastive condition and with DAF, (1) the same response produced without DAF was 

excluded as were (2-3) the neutral responses of briefcase produced in the DAF and NAF 

conditions.  Thus, a total of 676 (18.8%) responses were excluded from the analyses, yielding 

2924 responses.   

 219 



 

The results were assessed for extreme outliers and deviation from normality.  Stem and 

leaf plots generated by SPSS 16.0 did not indicate extreme outliers for any of the ANOVA’s 

performed.  Based upon the same stem and leaf plots and assessment of the means and standard 

deviations, there were concerns regarding normality of the data for some conditions of some of 

the dependent measures.  As a result, the values for GA-VM, total gesture time, gesture launch 

time, and sentence duration were transformed by computing the base 10 logarithm of (x + 1).  

The results of the ANOVA’s run on the log-transformed data were consistent with the results of 

the ANOVA’s run on the original data.  Therefore, the results presented are from the original, 

non-transformed dataset.   

  

4.2.3 Sentence Duration and Effects of Speech Perturbation 

The data first were analyzed to evaluate the effects DAF to assure that each subject’s 

speech indeed was perturbed, as evidenced by the production of longer utterances in the trials 

produced with DAF compared to these same trials produced with no auditory delay.  Mean time 

error (MTE) was calculated for each participant (Elman, 1983).  Indeed, MTE was positive for 

all participants, indicating that the time from utterance onset to offset was longer for responses 

spoken with DAF than those same responses without DAF for all participants.  The mean MTE 

was 867.53 ms (SD=681.52 ms) and ranged from 120 to 2346 ms across participants.  In other 

words, on average utterances were 867 ms longer in the DAF condition than when spoken in the 

NAF condition.  The average MTE for the participants was greater than the average MTE of 381 

ms (SD=343 ms) calculated by Elman (1983).   The increase in average MTE is likely accounted 

for by the discrepancy in task requirements since the participants in Elman’s investigation were 
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only asked to open and close their lips in a tapping fashion.  As expected, there was increased 

variability of sentence duration for DAF trials as compared to the same responses produced 

without an auditory delay. 

A three-way ANOVA was performed to assess the impact of DAF on the duration of the 

spoken responses, as well as the other manipulated variables (i.e., contrastive pitch accent and 

syllable position).  As expected, only two  main effects were significant.  Indeed, sentences were 

significantly longer in duration when produced with DAF [F(1,14) = 24.049, p<.0000].  

Sentences were significantly longer in the DAF condition (M=3123.35 ms; SD=214.05 ms) than 

the NAF condition (M=2256.80 ms; SD=68.91 ms) as illustrated in Figure 20.  Taken along with 

the MTE calculations, it was confirmed that DAF perturbed the spoken productions of each 

participant, allowing further investigation of the effects of this perturbation on the temporal 

characteristics of the corresponding deictic gesture, thus allowing the investigation of the effects 

of all 15 participants.  Also as expected, sentence durations were longer for the contrastive pitch 

accent trials (M=2874.92 ms; SD=148.33 ms) than for neutral stress trials (M=2505.23 ms; 

SD=121.19 ms); [F(1,14) = 39.420, p<.0000].  This 369 ms increase was confirmation that 

participants increased the duration of vowels when produced with contrastive pitch accent.  

Additional analyses of vowel durations will be presented later.  There were no significant 

interactions observed for sentence duration. 
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Figure 20 Sentence duration times (ms) for DAF and NAF conditions. 

 

 

4.2.4 Vowel Durations   

Vowel As expected, vowel duration (ms) was increased for pitch accented syllables 

(M=248.82 ms, SD=118.27 ms) relative to neutral syllables (M=177.16 ms, SD=78.55 ms), just 

as in the first experiment of this investigation.   This difference was significant according to a 

dependent samples t-test [t(1461)=-19.314, p<.000].  Vowels were also longer in DAF 

conditions (M=265.84 ms, SD=122.73 ms) than vowels produced in without auditory feedback 

(M=194.69 ms, SD=85.42 ms).  This difference was also significant [t(1461)=-19.618, p<.000].   

Once again, though still unexpectedly, vowel duration was longer for both second 

position syllables than their first position syllable counterparts (see Figure 21).  Second position 

syllables averaged 235.07 ms (SD=109.55 ms) compared to 190.38 ms (SD=99.80 ms) for first 
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position syllables [t(1461)=-11.17, p<.011].  Moreover, second position syllables significantly 

differed in duration as a function of contrast [t(730)=17.781, p<.000].  Vowel durations were 

almost 100 ms longer on average for second positions syllables with contrastive pitch accent 

(M=275.59 ms, SD=113.36 ms) relative to when the second position syllables were produced 

with neutral stress (M=195.22 ms, SD=87.19 ms).  Thus, individuals significantly lengthened 

vowel durations in the presence of DAF, when assigned contrastive pitch accent, and when in the 

second position of the target word (see Figure 21).   

 

 

Figure 21 Vowel durations (ms) for control and experimental conditions:  contrast (neutral and 
contrastive accent), syllable position (first and second position), and perturbation (NAF and 
DAF).  Error bars correspond to one standard deviation. 
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4.2.5 Dependent Variable:  GA-VM Interval 

Table 16 and Figure 22 show the descriptive data for GA-VM intervals across for the 

three independent variables, contrast, syllable position, and speech perturbation.  The three-way 

repeated measures ANOVA revealed a significant main effect only of perturbation [F(1,14) = 

6.593, p<.022].  There was a significant interaction between perturbation and syllable position 

[F(1,14) = 17.063, p<.001].    Refer to Table 17 and Figure 23 for presentation of summary data.   

 

 

Figure 22 GA-VM intervals (ms) for control and experimental conditions: contrast (neutral and 
contrastive accent), syllable position (first and second position), and perturbation (NAF and 
DAF).  Error bars correspond to the standard error. * Indicates significant main effect. 

 

 

 224 



 

 

Table 16 GA-VM Intervals (ms) for Each Condition (-PA: Neutral Accent; +PA: Contrastive 
Accent). 
Condition Mean (ms) Standard Deviation Range 

-PA/1st/NAF 250.26 110.30 69.41-428.66 

-PA/1st/DAF 322.28 232.92 83.66-895.07 

-PA/2nd/NAF 238.52 166.82 59.90-535.40 

-PA/2nd/DAF 445.63 327.42 63.48-1043.08 

+PA/1st/NAF 274.77 131.37 109.26-510.29 

+PA/1st/DAF 307.41 217.06 57.30-801.50 

+PA/2nd/NAF 216.73 155.53 69.73-691.48 

+PA/2nd/DAF 422.06 399.43 63.43-1452.70 

 
GA-VM intervals were significantly longer for target syllables produced with an auditory 

delay (M=374.35 ms, SD=68.19 ms) as compared target syllables produced without an auditory 

delay (M=245.07 ms, SD=25.53 ms).  In regards to the interaction effect, the GA-VM intervals 

for NAF trials were shorter for second position syllables (M=227.63 ms, SD=37.72 ms) than for 

first position syllables (M=262.51 ms, SD=28.42 ms).  The results for GA-VM intervals for the 

DAF trials were in the opposite direction.  GA-VM intervals for DAF trials were shorter for first 

position syllables (M=314.85 ms, SD=56.08 ms) than for second position syllables (M=433.85 

ms, SD=91.55 ms).  Counter to the predicted outcomes, GA-VM intervals were not significantly 

shorter for first position syllables or for syllables with contrastive pitch accent. 
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Table 17 Analysis of Variance Summary Table for GA-VM Intervals; * Indicates Statistical 
Significance. 
Variable df SS MS F p-value η2 power 

Contrast 14 2392.178 2392.178 .148 .707 .010 .065 

Position 14 53059.231 53059.231 .630 .441 .043 .115 

Perturbation 14 501379.999 501379.999 6.593 .022* .320 .666 

Con. x Posit. 14 5668.783 5668.783 .627 .442 .043 .115 

Con. x Pert. 14 3177.110 3177.110 .895 .360 .060 .143 

Posit. x Pert. 14 177609.448 177609.448 17.063 .001* .549 .970 

Cn x Pos x Pert 14 2648.814 2648.814 .343 .567 .024 .085 

 

 

Figure 23 GA-VM intervals (ms) for perturbation by syllable position.  Error bars correspond to 
standard error. 
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The significant two-way interaction of perturbation x position was further analyzed 

utilizing a post hoc analysis of simple main effects using the Bonferroni correction.  The analysis 

of simple main effects allows one to examine the effects of one independent variable while the 

other independent factor is held constant.  Significance was adjusted from .05 to .025 because 

two post hoc tests were performed to interpret the interaction between DAF and syllable 

position.  As presented in Table 18, the effect of DAF was only significant for the second 

syllable position [t(30)=3.84, p<.0003] and not for the first syllable position [t(30)=.97, p<.170].  

Hence, DAF perturbed the synchronization of the gesture apex and vowel midpoint only for the 

target syllables in the second position.  

 
Table 18 Results of Post Hoc Simple Main Effects of Perturbation x Position Interaction.  
df=Degrees of Freedom, t=Test Statistic, and p=Significance Level.  * Indicates Statistical 
Significance. 
Pairwise Comparisons for Syllable Position df t p 

DAF versus NAF: first syllable 30 .97 .170 

DAF versus NAF: second syllable 30 3.84 .0003* 

 

 These results are counter to the predicted outcomes.  H0
1 and H0

2 were not rejected 

because there were no significant differences between the GA-VM intervals as a function of 

presence/absence of pitch accent and first/second syllable position, respectively.  Failure to reject 

H0
1 and H0

2 is also contradictory to the findings of Experiment 1 where a significant main effect 

was found for both contrast and position for GA-VM interval.  The findings do result in rejection 

of H0
3 and H0

4.  GA-VM intervals were significantly longer for DAF trials compared to NAF 

trials.  Likewise, an interaction of syllable position and DAF was demonstrated such that GA-

VM intervals were longest for trials produced with DAF and second position target syllables.  
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The contradictory findings to Experiment 1 support the earlier proposal that additional measures 

of the gesture movement were required to elucidate whether speech and gesture are temporally 

entrained.  The conclusion that there was less synchrony for DAF trials than NAF trials does not 

provide support for tight entrainment of the two systems when faced with perturbation.  

However, additional dependent variables are necessary to explore the temporal relationship of 

speech and deictic gesture.  

 

4.2.6  Dependent Variable:  Total Gesture Time 

Total gesture time was predicted to increase as a function of increased spoken response 

time, whether due to DAF or contrastive pitch accent.  Though there were significant effects 

found for the dependent measure of total gesture time, gestures required approximately 1 ½ 

seconds to complete regardless of condition (see Figure 24).  On average, gestures were 155 ms 

longer for utterances produced with contrastive pitch accent (M=1632.26 ms, SD=145.36 ms) 

than the same utterances produced without contrastive pitch accent (M=1477.16 ms, SD=109.85 

ms).  Total gesture time was longer for second position syllables (M=1575.09 ms, SD=123.09 

ms) compared to first syllable position (M=1534.34 ms, SD=130.19 ms).  Lastly, it was predicted 

that the time to complete a gesture would be longer for sentences produced with DAF relative to 

NAF and this was indeed the case.  Total gesture time for DAF conditions averaged 1609.40 ms 

(SD=150.55 ms) compared to 1500.03 ms (SD=103.39 ms) for NAF conditions. 
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Figure 24 Total gesture time (ms) for control and experimental conditions: contrast (neutral and 
contrastive accent), syllable position (first and second position), and perturbation (NAF and 
DAF).  Error bars correspond to standard error. * Indicates significant main effect. 
 

 

Total gesture time was analyzed for syllable position, presence/absence of contrastive 

pitch accent, and presence/absence of speech perturbation with a 2 x 2 x 2 ANOVA (see Tables 

19 and 20).  A significant main effect for contrast [F(1,14) = 10.087, p<.007] and syllable 

position [F(1,14) = 6.344, p<.025] emerged.  There was a significant two-way interaction 

between contrast and syllable position [F(1,14) = 23.004, p<.000] (see Figure 25).    Total 

gesture time was longest for trials that held contrastive pitch accent on the second syllable 

(M=1671.87 ms, SD=140.28 ms).  Furthermore, there was an average 79 ms difference between 

the total gesture time for first and second position condition when produced with contrastive 

stress and only a 2 ms difference for first and second position condition when produced with 

neutral stress.   
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Table 19 Total Gesture Time (ms) for Each Condition. 

Condition Mean (ms) Standard Deviation Range 

-PA/1st/NAF 1408.40 327.73 1060.17-2033.14 

-PA/1st/DAF 1543.65 546.94 1018.37-2759.00 

-PA/2nd/NAF 1445.90 368.92 1045.97-2250.89 

-PA/2nd/DAF 1510.71 476.20 1008.33-2420.85 

+PA/1st/NAF 1529.50 465.60 1049.90-2508.00 

+PA/1st/DAF 1655.79 711.63 982.41-3229.29 

+PA/2nd/NAF 1616.30 462.24 1109.03-2570.89 

+PA/2nd/DAF 1727.44 636.54 1069.80-3089.11 
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Table 20 Analysis of Variance Summary Table for Total Gesture Time; * Indicates Statistical 
Significance. 
Variable df SS MS F p-value η2 power 

Contrast 14 721625.745 721625.745 10.087 .007* .419 .839 

Position 14 49824.507 49824.507 6.344 .025* .312 .649 

Perturbation 14 358870.516 358870.516 4.434 .054 .241 .500 

Con. x Posit. 14 44409.168 44409.168 23.004 .000* .622 .994 

Con. x Pert. 14 2619.955 2619.955 .153 .701 .011 .065 

Posit. x Pert. 14 13735.943 13735.943 2.142 .165 .133 .276 

Cn x Pos x Pert 14 5732.915 5732.915 1.046 .324 .070 .159 

 

 

Figure 25 Total gesture time (ms) indicating a significant two-way interaction for position x 
contrast.  Error bars correspond to standard error. 
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The significant two-way interaction of contrast x position was further analyzed utilizing a 

post hoc analysis of simple main effects using the Bonferroni correction. Significance was 

adjusted from .05 to .025 because two post hoc tests were performed to interpret the interaction 

between contrast and syllable position.  As presented in Table 21, the effect of syllable position 

was only significant for the second syllable position [t(30)=17.50, p<.0000] and not for the first 

syllable position [t(30)=1.57, p<.063].  These results signify individuals lengthened the time of 

their gesture when trials were produced with contrastive pitch accent, but reached significance 

only for the condition with accent on the later second syllables.   

 

Table 21 Results of Post Hoc Simple Main Effects of Contrast x Position Interaction.  
df=Degrees of Freedom, t=Test Statistic, and p=Significance Level.  * Indicates Statistical 
Significance. 
Pairwise Comparisons for Syllable Position df t p 

Contrast versus neutral: first syllable 30 1.57 .063 

Contrast versus neutral: second syllable 30 17.50 .0000* 

 

The increased total gesture time for the DAF condition relative to the NAF condition was 

marginally significant [F(1,14) = 4.434, p<.054].  A subsequent calculation of effect size 

resulted in a small-medium effect size (f=.19).  That is, even though there were increased gesture 

times on average for DAF trials, this difference did not reach significance or a substantial effect 

size.   

On average, individuals did not produce gestures, from the time of onset to offset, with 

any vast variability.  However, the significant effects of position, contrast, and marginal effect of 

perturbation indicates that individuals altered the timing of a gesture in response to changes 

within the spoken response.  The significant interaction of position x contrast demonstrated that 
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individuals lengthened their gesture time the most when speakers produced prosodic prominence 

on the second syllable of the target word.  Yet, in regards to the stated hypotheses, H0
5 could not 

be rejected because there was no significant difference of total gesture time for DAF compared 

to NAF trials.  The next dependent measure presented, gesture launch time, enabled a more 

focused exploration of this potential temporal relationship, specifically from the onset to the apex 

of the deictic gesture.   

 

4.2.7  Dependent Variable:  Gesture Launch Time 

It was hypothesized that gesture launch time would increase as the spoken response 

increased in duration.  Spoken response time could increase either secondary to speech 

perturbation via DAF or secondary to the production of contrastive pitch accent.  Results for 

gesture launch time are shown in Tables 22 and 23 and Figure 26.  The time of gesture onset to 

gesture apex was influenced by several factors.  As expected, the longest gesture launch times 

were observed for the trials spoken with DAF (M=834.52 ms, SD=98.64 ms) compared to the 

shortest gesture launch times noted for trials spoken without an auditory delay (M=789.61 ms, 

SD=63.82 ms).  Yet, only one main effect was significant.  Like total gesture time but unlike 

GA-VM, the ANOVA revealed a significant main effect of contrast [F(1,14) = 17.880, p<.001].  

On average, gesture launch times were 120 ms longer for trials produced with contrastive pitch 

accent compared to when the same sentences were produced without pitch accent.   
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Figure 26 Gesture launch time (ms) for control and experimental conditions: contrast (neutral 
and contrastive accent), syllable position (first and second position), and perturbation (NAF and 
DAF).  Error bars correspond to standard error. * Indicates significant main effect. 
 

 

Even though there was a significant main effect of syllable position on total gesture time, 

this effect was not found for the initial segment of the total gesture (i.e., gesture launch).  In fact, 

gesture launch times for first and second position syllables differed only by 17 ms on average.  

However, syllable position did interact with contrast to effect the duration of gesture launch time 

analogous to the dependent measure, total gesture time.  There was a significant two-way 

interaction between contrast and syllable position [F(1,14) = 5.910, p<.029] (see Figure 26).   

The average time from gesture onset to gesture apex was shortest for trials produced with no 

pitch accent on the second syllable (M=741.20 ms, SD=60.43 ms) but longest for trials produced 

with pitch accent on the second syllable (M=899.50 ms, SD=91.11 ms).  As shown in Figure 27, 

mean gesture launch time decreased from first to second position conditions for neutral syllables 

but increased from first to second position conditions for accented syllables.   
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Table 22 Descriptive Data for Gesture Launch Time (ms) for Each Condition. 

Condition Mean (ms) Standard Deviation Range 

-PA/1st/NAF 734.11 218.79 469.67-1261.57 

-PA/1st/DAF 792.66 423.86 424.39-2085.00 

-PA/2nd/NAF 734.88 210.97 475.69-1135.56 

-PA/2nd/DAF 747.52 261.81 448.79-1257.11 

+PA/1st/NAF 815.55 287.04 507.86-1524.29 

+PA/1st/DAF 872.82 443.53 507.00-2183.86 

+PA/2nd/NAF 873.90 286.95 530.32-1577.78 

+PA/2nd/DAF 925.09 427.55 535.67-2145.67 

 

Table 23 Analysis of Variance Summary Table for Gesture Launch Time; * Indicates Statistical 
Significance. 
Variable df SS MS F p-value η2 power 

Contrast 14 428759.617 428759.617 17.880 .001* .561 .975 

Position 14 8226.406 8226.406 .728 .408 .049 .125 

Perturbation 14 60521.668 60521.668 1.202 .291 .079 .176 

Con. x Posit. 14 45048.364 45048.364 5.910 .029* .297 .619 

Con. x Pert. 14 2605.854 2605.854 .939 .349 .063 .148 

Posit. x Pert. 14 5069.546 5069.546 .785 .391 .053 .131 

Cn x Pos x Pert 14 2974.495 2974.495 .663 .429 .045 .118 
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Figure 27 Gesture launch time (ms) indicating a significant two-way interaction of position x 
contrast.  Error bars correspond to one standard deviation. 

 

The significant two-way interaction of contrast x position was further analyzed utilizing a 

post hoc analysis of simple main effects using a the Bonferroni correction.  Significance was 

adjusted to .025.  As presented in Table 24, the effect of contrast was significant for both first 

[t(30)=2.49, p<.009] and second syllable position [t(30)=4.88, p<.0000].  The time for an 

individual to move from gesture onset to gesture apex was longer for trials produced with 

contrastive pitch accent than those produced with no accent, regardless of the position of the 

accented syllable. 
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Table 24 Results of Post Hoc Simple Main Effects of Contrast x Position Interaction.  
df=Degrees of Freedom, t=Test Statistic, and p=Significance Level.  * Indicates Statistical 
Significance 
Pairwise Comparisons for Syllable Position df t p 

Contrast versus neutral: first syllable 30 2.49 .009* 

Contrast versus neutral: second syllable 30 4.88 .0000* 

 

There were no other significant interactions though the gesture launch times across the 

eight possible conditions are noteworthy in several ways.  Mean gesture launch time was longest 

for trials which were produced not only with contrastive pitch accent on the second syllable, but 

also with an auditory delay (M=925.09 ms, SD=427.55 ms).  The shortest gesture launch times 

were noted for the trials produced with no contrastive accent and no auditory delay.  There were 

two scenarios with no accent and no auditory delay, one with a first syllable comparison and the 

other with a second syllable comparison.  The mean gesture launch times were 734.11 ms 

(SD=218.79 ms) and 734.88 ms (SD=210.97 ms), respectively.  Thus without an influence of 

either DAF or contrastive pitch accent or both, there was notable consistency of the mean and 

variability of gesture launch time.   

The primary motivation for measuring gesture launch time was to evaluate the potential 

effect of speech perturbation on the timing of the meaningful portion of the gesture.  For this 

objective, H0
6 failed to be rejected, though marginally significant and qualitatively longer gesture 

durations were noted for DAF trials.  Alternatively, the analysis of gesture launch time offered 

insight on a significant relationship between contrastive pitch accent and the meaningful portion 

of the gesture such that gesture launch times were longer for pitch accented trials.  This finding 

was most salient for trials produced with pitch accent on the second syllable of the target word.   
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4.2.8 Further Examination of Deictic Gesture Timing    

A number of significant findings of Experiment 2 indicated changes in the gesture 

movements that co-varied with changes in the speech movements.  Nonetheless, a number of 

inconsistencies and perplexing aspects of the data spurred the analysis of two additional 

variables, gesture launch midpoint to vowel midpoint (GLM-VM) interval and gesture return 

time.  GLM-VM interval shares similarities to the measure GA-VM interval, though captures the 

midpoint of the launch period leading to the apex of the movement.  The motivation for 

analyzing GLM-VM is that this measure may be a more accurate single time point to analyze for 

each deictic gesture if one is interested in examining the pulse of movement rather than the 

arguable termination of the meaningful and programmed portion of the movement.  The 

prediction was that GLM-VM intervals would be smaller for first position target syllables and for 

syllables with contrastive pitch accent compared to their counterparts, second position syllables 

and neutral syllables, respectively.  If speech and gesture were tightly entrained even when faced 

with perturbation, then no difference was expected to be found for the GLM-VM intervals for 

DAF versus NAF conditions.   

Gesture return time was also calculated to further examine the data of Experiment 2.  

Gesture return is equal to the time from gesture apex to gesture return.  Gesture return time was 

analyzed to provide a complete assessment of two components of the total gesture, gesture 

launch and gesture return.  In particular, gesture return time was included to examine the 

discrepancy of a significant main effect of contrast and position for total gesture time, but only 

contrast for gesture launch.  However, it is predicted that there will be no significant differences 
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for any of the three variables for gesture return because both the meaning and the spatio-

temporal parameters of the gesture are specified within the launch portion of the gesture.   

 

4.2.8.1 Gesture Launch Midpoint to Vowel Midpoint Interval The midpoint of the gesture 

launch (GLM) was calculated by dividing the gesture launch duration by two and adding that 

value to the time of gesture onset.  Vowel midpoint was previously measured and calculated for 

the GA-VM interval measures.  Therefore, no additional reliability measurements were 

necessary.  A 2 (presence/absence of contrastive pitch accent) x 2 (1st and 2nd syllable position) x 

2 (presence/absence of DAF) ANOVA was conducted on GLM-VM.  The skewness for GLM-

VM ranged between .316 and 1.115 (M=.819, SD=.33).  Like the other three dependent measures 

of gesture-speech synchrony, the data were transformed by computing the base 10 logarithm of 

(x + 1) to increase normality.  Unlike the other dependent measures, this transformation did 

change the results of the ANOVA.   After log transformation, Shapiro-Wilk tests of normality 

were nonsignificant for all eight conditions, indicating an adequate normal distribution for 

subsequent analysis.  As a consequence, the results presented for GLM-VM are from the 

transformed dataset.   

 Results were consistent with the predictions for the factors of syllable position 

and contrast.  Like, GA-VM for Experiments 1 and 2, the interval between gesture launch 

midpoint and vowel midpoint was shorter on average for first position syllables (M=2.40, 

SE=.08) compared to second position syllables (M=2.67, SE=.08) as displayed in Tables 25 and 

26 and displayed in Figure 28.  Results indicated a significant main effect of syllable position 

[F(1,14) = 5.301, p<.037] (see Table 27).  GLM-VM also was shorter for syllables with 

contrastive pitch accent (M=2.50, SE=.08) relative to the same syllables produced without pitch 
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accent (M=2.57, SE=.07) as also shown in Figure 28.  This main effect was also significant 

[F(1,14) = 27.848, p<.000] (see Table 27). A main effect of GA-VM was not noted in the results 

of this experiment but a main effect was established in the first experiment.  However, the mean 

GA-VM intervals were actually longer for contrastive stressed syllables in Experiment 1.    

 

 

Figure 28 GLM-VM Intervals (ms) for control and experimental conditions:  contrast (neutral 
and contrastive accent), syllable position (first and second position), and perturbation (NAF and 
DAF) from transformed dataset.  Error bars correspond to standard error. * Indicates significant 
main effect. 

 

An auditory delay resulted in longer GLM-VM intervals (M=2.62, SE=08) compared to 

when there was no auditory delay (M=2.44, SE=.07).  This main effect was also significant 

[F(1,14) = 32.932, p<.000] .  These results are also presented via Tables 26 and 27and Figure 28.  

This finding is consistent with the GA-VM interval results from both Experiment 1 and 2.  There 

were no significant interactions.   

 

 240 



 

Table 25 Descriptive Data for GLM-VM Intervals (ms) for Each Condition:  Log Transformed 
Data. 
Condition Mean (ms) Standard Deviation Range 
-PA/1st/NAF 2.35 0.30 1.93-2.83 

-PA/1st/DAF 2.48 0.34 1.83-2.97 

-PA/2nd/NAF 2.63 0.28 1.89-2.98 

-PA/2nd/DAF 2.80 0.29 2.17-3.18 

+PA/1st/NAF 2.27 0.33 1.74-2.78 

+PA/1st/DAF 2.49 0.35 1.94-3.06 

+PA/2nd/NAF 2.52 0.32 1.84-3.02 

+PA/2nd/DAF 2.73 0.36 2.02-3.25 
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Table 26 Analysis of Variance Summary Table for GLM-VM Intervals:  Log Transformed Data. 
* Indicates Statistical Significance 
Variable df SS MS F p-value η2 power 

Contrast 14 .126 .126 5.301 .037* .275 .573 

Position 14 2.21 2.21 27.848 .000* .665 .998 

Perturbation 14 .966 .966 32.932 .000* .702 1.000 

Con. x Posit. 14 .023 .023 1.522 .238 .098 .210 

Con. x Pert. 14 .028 .028 4.463 .053 .242 .503 

Posit. x Pert. 14 .003 .003 .604 .450 .041 .112 

Cn x Pos x Pert 14 .007 .007 1.873 .193 .118 .248 

 

The significant main effects and descriptive data for syllable position and contrast for 

GLM-VM interval offers further support that individuals altered the temporal parameters of their 

deictic gesture to coordinate with the temporal parameters of the spoken response.  The 

significant main effect of speech perturbation for GLM-VM interval also provides replication 

that the time between the gesture and target syllable becomes longer when speech is produced 

under the influence of an auditory delay.   

 

4.2.8.2 Gesture Return Time Gesture return time is equal to the time between gesture 

apex and gesture offset.  Hence, gesture return time plus gesture launch time is equal to the total 

gesture time for each individual trial.  A base 10 logarithm of (x + 1) transformation was 

performed on the data with no change in the results.  Also, three extreme outliers were identified 
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via stem and leaf plots generated by SPSS 16.0 software.  Analyses were performed a second 

time with the extreme outliers removed.  Again, there was no change in the results of the three-

way ANOVA.  Therefore, data are presented for all fifteen participants and on the original 

dataset prior to transformation. 

 As predicted, there were no significant differences between control and experimental 

conditions for contrast, syllable position, or perturbation (see Figure 29 and Tables 27 and 28).  

There were also no significant interaction effects.  Gesture return times were longer for trials 

produced with DAF (M=774.87 ms, SE=66.05 ms) than for trials without an auditory delay 

(M=710.87 ms, SD=44.21 ms).  In fact, gesture return times were the longest for trials produced 

with DAF and contrastive stress on the second syllable (M=802.35 ms, SD=275.33 ms).  

Although this finding was not significant, it is the same as the descriptive results for gesture 

launch time.   
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Figure 29 Gesture return time (ms) for control and experimental conditions:  contrast (neutral 
and contrastive accent), syllable position (first and second position), and perturbation (NAF and 
DAF).  Error bars correspond to standard error.  There were no significant main effects. 
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Table 27 Gesture Return Time (ms) for Each Condition. 
Condition Mean (ms) Standard Deviation Range 

-PA/1st/NAF 674.29 135.24 449.67-954.13 

-PA/1st/DAF 750.98 251.85 494.60-1409.80 

-PA/2nd/NAF 711.02  169.80 535.53-1115.33 

-PA/2nd/DAF 763.19 239.53 501.27-1338.54 

+PA/1st/NAF 713.95 207.43 329.86-1172.10 

+PA/1st/DAF 782.96 337.36 475.41-1785.44 

+PA/2nd/NAF 742.40 202.19 489.00-1185.58 

+PA/2nd/DAF 802.35 275.33 534.13-1589.37 

 

Table 28 Analysis of Variance Summary Table for Gesture Return Time.  No Significant 
Differences Noted. 
Variable df SS MS F p-value η2 power 

Contrast 14 37903.492 37903.492 1.521 .238 .098 .210 

Position 14 17560.094 17560.094 1.942 .185 .122 .55 

Perturbation 14 124641.833 124641.833 3.919 .068 .219 .454 

Con. x Posit. 14 2.284 2.284 .000 .988 .000 .050 

Con. x Pert. 14 .019 .019 .000 .999 .000 .050 

Posit. x Pert. 14 2115.972 2115.972 1.319 .270 .086 .188 

Cn x Pos x Pert 14 448.469 448.469 .092 .766 .007 .059 
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4.2.9 Summary  

This experiment tested a number of hypotheses.  As predicted, both sentence durations 

and vowel durations were significantly longer for DAF trials compared to NAF trials. Vowel 

durations were also significantly greater for syllables produced with contrastive pitch accent than 

when they were produced with no pitch accent, as well as for second position syllables compared 

to first position syllables.  

Contrary to expectations and the results of Experiment 1, GA-VM was not affected by 

the presence of contrastive stress or first syllable position.  However, the GA-VM interval was 

affected by DAF given that there was significantly greater asynchrony as measured by GA-VM 

intervals for responses produced with an auditory delay.  An interaction of syllable position and 

speech perturbation was found as a result of a greater difference in GA-VM interval for NAF and 

DAF conditions for a second position syllable compared to the first position syllable.  In 

summary, the time between a gesture apex and vowel midpoint did not decrease for stressed 

syllables or across syllable positions, though it did increase for trials produced with an auditory 

delay. 

The remaining hypotheses corresponded to changes in the duration of the gesture that 

may result from elongation of the spoken response secondary to DAF.  Total gesture time and 

gesture launch time were longer for DAF trials than NAF trials, though this finding did not reach 

significance for either dependent measure.  The average times to execute a complete gesture and 

a gesture launch were significantly longer for utterances produced with contrastive pitch accent.  

Total gesture time was also significantly longer for second position syllables than first position 

syllables, though gesture launch time was not.  A significant interaction effect for both total 

gesture time and gesture launch time was detected for contrast x position.  For both measures, 
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the time to complete the gesture segment of interest was longest for trials produced with 

contrastive pitch accent on the second syllable.   

Two additional analyses were conducted to further explore the temporal relationship of 

speech and gesture and explicate the incongruent findings, particularly for GA-VM interval.  The 

findings for GLM-VM interval for the factor of syllable position were similar to the GA-VM 

interval results from Experiment 1, even though the GA-VM interval results from Experiment 2 

were not.  Like the findings for GA-VM interval in the first experiment, gesture launch midpoint 

was more synchronized to vowel midpoint for first position syllables than second position 

syllables.  Also like the results for GA-VM interval for the first experiment, there was a main 

effect of contrast for GLM-VM interval in this experiment, though in the opposite and in this 

case, expected direction.  On average, gesture launch midpoints were more synchronized with 

vowel midpoints of target syllables produced with contrastive pitch accent than with neutral 

stress.   GLM-VM intervals were shortest in duration for trials produced with contrastive pitch 

accent on the first syllable without the influence of an auditory delay. 

Taken together, the results demonstrate that the temporal parameters of speech are altered 

by the presence of contrastive pitch accent and an auditory delay of 200 ms.  Likewise, the 

presence of pitch accent, speech perturbation, and position of the target syllable affected the 

temporal parameters of the affiliated deictic gesture.  Total gesture times and gesture launch 

times were longer for trials produced with pitch accent than for those same responses without 

pitch accent.  The gestures were longest when the accent is placed on the second syllables, which 

were the longest in duration and also produced later than first syllable targets.  Subsequently, 

greater synchrony was noted for contrastive stressed syllables as measured by GLM-VM 

interval.  Perturbing speech by way of DAF also elongated the interval between the gesture and 
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speech stream as measured by both GA-VM interval and GLM-VM interval.  Perturbing and 

lengthening speech also resulted in the increase of total gesture time, gesture launch time, and 

gesture return time, albeit not significantly.  These findings are enumerated further in the 

Discussion section that follows. 

   

4.3 DISCUSSION OF EXPERIMENT 2 

 

The aim of Experiment 2 was not only to test whether speech and gesture co-occur in 

time, but also to explore the underlying mechanism of the supp osed speech-gesture 

synchronization.  The objectives of Experiment 1 also were addressed in this experiment.  The 

effects of contrastive pitch accent (present versus absent) and syllable position (first versus 

second) on the relative timing of deictic gestures were investigated once again, although 

additional dependent measures in Experiment 2 provided an opportunity to expand the 

examination of the role of these variables on speech-gesture synchrony.  The other primary 

distinction between the first and second experiment of this investigation was the manipulation of 

auditory feedback during the participants’ responses.  The participants heard their responses 

amplified via headphones for all trials, but half of the trials were delayed by 200 ms while the 

other trials were played in real-time. 
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4.3.1 Vowel and Sentence Durations 

Results indicated that individuals make changes to the duration of both vowels and 

sentences as a result of DAF and contrastive pitch accent.  These findings not only validated the 

procedures of the current experiment but lend support to previous studies of the effects of DAF 

and pitch accent on acoustic duration measures.  Though DAF is a long-studied and widely 

employed methodology (e.g., Elman, 1983), there are very few studies that have looked at the 

effects of DAF at the segmental, rather than the utterance level for typical fluent speakers.  To 

the author’s knowledge, this study stands alone in identifying that individuals made adjustments 

to individual vowels within utterances.   

The participants also consistently lengthened pitch accented syllables, especially in the 

second syllable position (M=275.59 ms), and even to a greater degree when isolating second 

position accented syllables produced with DAF (M=307.15 ms), compared to first position 

syllables with pitch accent which averaged 190.38 ms in duration.  It has been well-established 

that though pitch accent is primarily thought to affect the fundamental frequency contour of a 

syllable and vowel, the duration of the syllable, rime, and vowel is likely to transform as well 

(e.g., van Kuijk & Boves, 1999).  This research adds to that literature and highlights the complex 

nature of a variety of prosodic prominence units.  The data also demonstrate that individuals may 

over-compensate when asked to place contrastive stress on a normally unstressed vowel, as with 

the bisyllabic compound word pairs which typically would be produced with lexical stress on the 

first syllable.  In other words, participants were familiar with and automatically assigned lexical 

stress and even contrastive pitch accent on the first syllable of these trochaic lexical items.  

When asked to place emphasis in an unusual and non-automatic manner on the second position 

syllable, participants produced relatively greater prosodic prominence as demonstrated by greatly 
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increased vowel durations within these second position syllables with contrastive pitch accent.  

The possible implications of this unbalanced prominence assignment across first and second 

syllables will be discussed further in a later section.  

 

4.3.2 Effects of Speech Perturbation 

 

The major prediction of this second experiment that was not upheld was that speech and 

gesture would remain synchronized even when speech was perturbed via DAF.  In fact, the 

opposite finding was observed.  Speech and gestures were more asynchronous when produced 

under the influence of DAF.  However, there are indications that the gesture did temporally 

unfold differently during DAF trials compared to their NAF counterparts.  Qualitative changes in 

total gesture time, gesture launch time, and gesture return time suggest that there is potentially 

some interaction and feedback between the two motor systems. 

If one only considers the finding that the intervals between gesture apices or gesture launch 

midpoints with vowel midpoints increases with the addition of DAF, then it would seem that de 

Ruiter’s Sketch Model (1998; 2000) is supported (see Figure 30).  As stated in the Discussion 

section for Experiment 1, it is possible that the formulation, planning, and programming of a 

gesture and its lexical affiliate are initiated simultaneously in the conceptualizer, though 

increased time is necessary preceding the production of speech because of increased 

complexities of movement planning and execution.  A deictic gesture requires even less planning 

and programming compared to iconic gestures according to the Sketch Model.  Specifically a 

deictic gesture is initiated in the conceptualizer along with the target word.  Then the preverbal 
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message, coded for the “representation of the content of speech” (de Ruiter, 2000, p. 289), is sent 

to the formulator and the sketch, coded for the “spatio-temporal representations” of the gesture is 

sent to the gesture planner.  There is where the interaction between the two systems ceases.  The 

sketch holds information regarding the direction of the referent.  Once sent to the gesture 

planner, a motor program for the deictic gesture is created by way of accessing the motor 

program template for the fairly consistent, conventional hand configuration of a deictic gesture.  

This is a much more simplistic process not only compared to the formulation of speech within 

the formulator, but also compared to the planning of iconic gestures which do not have a one-to-

one template in the gestuary.  That is to say, there are unique spatio-temporal representations that 

need to be incorporated for each individual iconic gesture.   
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Access 
gestuary   

No interaction after 
the sketch and 
preverbal message 
leave conceptualizer 

Point of 
interaction 

Figure 30 Specifications of speech and gesture interactions proposed by the Sketch Model.  
Adapated from “Gesture and Speech Production,” by J.P. de Ruiter, 1998, Unpublished doctoral 
dissertation, Katholieke Universiteit, Nijmegen, Germany, p. 16. 
 

 

If gesture and speech cease interaction before the level of the formulator, then neither 

prosodic stress nor speech perturbation should affect the execution of the gesture because there is 

no feedback mechanism from the formulator to the gesture planner.  Therefore, even though 

speech is perturbed and consequently lengthened in the presence of DAF, the gesture continues 

uninterrupted because the gesture system has not received feedback that the lexical affiliate will 

be reached later than thought when initiated together in the conceptualizer.  As a result, the 
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interval between a gesture apex and/or gesture launch midpoint and the target vowel would be 

longer for DAF trials than for NAF trials as observed in this study.  However, there are three 

points to be made that may challenge a strict adherence to the Sketch Model that are explained 

below.   

First, it is possible that there is indeed interaction between the two systems below a point of 

conceptualization but that the planning of a deictic gesture is unique in its level of convention 

and automatic planning, particularly in the recurring task requirement of this experiment.  

Gesture onsets are consistently found to occur up to a second before the onsets of the associated 

spoken lexical item (e.g., Morrel-Samuels & Krauss, 1992).  A deictic gesture motor program is 

arguably simpler and more rote than an arbitrary and idiosyncratic iconic gesture.  Therefore, a 

deictic gesture may be less susceptible to changes in its execution, in this case temporal changes.  

An iconic gesture may be more likely to exhibit changes in the gesture launch period, as well as 

pre-stroke, post-stroke, or apex holds to maintain synchrony.   

This account could also reconcile the findings between this experiment and McNeill’s 

(1992) exploratory study of the effect of DAF on gesture production.  In contrast to the 

controlled paradigm and use of deictic gestures of Experiment 2, McNeill first had individuals 

spontaneously narrate a cartoon.   McNeill’s qualitative observations included an increase in the 

amount of gesture and that “gesture is still synchronous with the coexpressive part of the 

utterance” (p. 275).  Interestingly, McNeill did not observe the same synchrony, though vaguely 

described in the first of his experiments, in a second protocol.  In the second experiment, 

participants were trained to recite utterances from memory while executing a series of fluid, 

continuous, iconic gestures.  Even though the gestures were iconic, they were perhaps accessed 

differently from the gestuary because they were set and memorized in their form, rather than 
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created spontaneously as in McNeill’s first experiment.  Not only was the automaticity and 

constraint of the responses more similar to the current study, so too were the results.  In contrast 

to McNeill’s first study in which the spontaneous gestures remained perceptually synchronized 

with the spoken targets, there was noted asynchrony in the second experiment.  In fact, gestures 

were noted to precede the spoken targets just as in the current experiment.  Again, the 

dissociation between spontaneous and prescribed gestures may explain the differences between 

the findings of the present experiment and Mayberry and colleagues’ (Mayberry & Jaques, 2000; 

Mayberry, et al., 1998) work that described a cessation and subsequent synchronization for 

children and adults with fluency disorders while spontaneously describing a cartoon.  In brief, 

the availability of feedback to and from the speech system may be different for automatic, 

conventional gestures compared to individually specified, spontaneous gestures.  Future 

investigations that employ a more natural, spontaneous production paradigm and different 

gestures types could further examine these disparate findings.  

Another possibility is that DAF was not the appropriate method of perturbation.  There is a 

wide range of effects of DAF upon typical speakers (Smith, 1992).  Even though the MTE was 

positive for all fifteen participants, there was a relatively wide range of mean durational 

difference between NAF and DAF trials, 120 to 2346 ms. Therefore, it is possible that 

individuals with greater speech disruptions when faced with DAF may also be differentially 

susceptible to gesture disruptions.   

Moreover, DAF is a relatively slow and also continuous perturbation method.  Frequency 

shifted feedback is another auditory feedback tool to used to alter the speech individuals with 

fluency disorders (e.g., Howell and Archer, 1984) and individuals with Parkinson’s disease 

(Brendel, Lowit, & Howell, 2009).   Frequency shifted feedback results in reduced speech rates 

 254 



 

for speakers with communication disorders and typical speakers (Tourville, Reilly, & Guenther, 

2008).  However, it is not clear if the rate of susceptibility of frequency shifted feedback and 

delayed auditory feedback is the same across individuals.  It is also not known if the temporal 

changes are similar across the two feedback methods.  Thus, the effect of frequency shifted 

feedback upon the timing of gestures remains an empirical question. 

Additionally, the continuous feedback provided by DAF and frequency shifted feedback 

may not be appropriate for studying the effect of speech perturbation on gesture timing since the 

feedback mechanism shared between the gesture and speech systems may not be continuous as 

suggested by Levelt et al. (1985).  Levelt and colleagues imposed a load to the wrists of their 

Dutch-speaking participants during a deictic gesture and simple spoken response task.  In short, 

the participants pointed to a light while stating, this light or that light.  Speech and gesture were 

synchronized when no load was applied and also when the load was applied halfway through the 

gesture.  However, voice onset times were longer when a load was applied to the wrist at the 

onset of the gesture.  A controlled, automatic response was employed in this study conducted by 

Levelt et al. and once more, there was limited feedback and ensuing changes in the execution of 

one motor behavior based upon perturbation of the other.  Levelt et al. summarized, “the 

experimental findings show…that once the pointing movement had been initiated, gesture and 

speech operate in almost modular fashion…there is nevertheless, evidence to suggest that 

feedback from gesture to speech can come into play during the first milliseconds of gesture 

execution” (p. 162).   Evidence for the significant effects of early compared to late perturbation 

of oral movements was also provided by Gracco and colleagues (e.g., Abbs & Gracco, 1988).   

Accordingly, there are similar ways to perturb speech in a precise, fleeting moment during 

speech production rather than a continuous, relative slow auditory closed-loop of feedback.  It is 
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possible to impose transient mechanical perturbations of the mandible (e.g., Shaiman, 1989) and 

lower lip (e.g., Abbs and Gracco, 1984).  Usually, this literature is interpreted as evidence for the 

remarkable adaptability of the motor system, in this case the speech motor system as well as the 

dynamic coordination of structures.  Such methodology could be adapted to not only study the 

coupling of two articulators like the mandible and tongue, but two internally coordinated 

structures like the jaw and hands during spoken language production.  Rochet-Capellan et al.’s 

(2008) findings that jaw aperture was synchronized with pointing gestures further support the use 

of kinematic methodologies to study the entrainment of speech and gesture.  Future 

investigations also could modify the existing rhythmic speech task constructed by Cummins and 

Port (1998) to systematically study the effects of perturbation of speech and/or gesture upon the 

other system.  During Cummins and Port’s investigation, individuals were required to recite the 

phrases big for a duck or geese for a duke along with metronome-like beeps.  One could easily 

create iconic gestures to mirror the lexical response and ask the individuals either to produce the 

gestures and speech at a habitual rate and/or along with the metronome.  Transient perturbations 

to the mandible could be employed and the resultant disruptions upon the gesture and also 

speech system measured.   

Perturbation of gestures also can lend insight on the interactive nature of speech and 

gesture.  Levelt and others (1985) are the only researchers to date to perturb a gesture, in their 

case by imposing a load on the wrist while pointing.  A replication of this work would certainly 

be worthwhile, though there are other designs and methodologies that could address this question 

as well.  One methodology for studying deictic gestures specifically that stands out as both valid 

and feasible is the double-step perturbation paradigm (e.g., Prablanc & Martin, 1992; Bard, 

Turrell, Fleury, Teasdale, Lamarre, & Martin, 1999).  This paradigm is used to examine goal-
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directed movement, such as reaching and ocular gaze.  Instead of imposing a direct load to the 

limb, the movement of the arm/hand is perturbed by changing the location of a target on a visual 

display (e.g., Prablanc & Martin, 1992).  Not only is the trajectory of the arm/hand changed, but 

there is also an observed hesitation and lengthening of limb movement during reaching tasks.  A 

double-step perturbation paradigm may be modified for a simultaneous speech and gesture task 

with systematic changes in the visual display of varying conditions.  For example, the time of 

target change could differ between no shift of target, early shift, and later shift, similar to the 

perturbation times used by Levelt and colleagues.    

In short, it is certainly feasible to construct paradigms that employ a constrained task with 

other gesture types and other speech and/or gesture perturbation methods.  Future investigations 

may also aim to examine the effects of speech perturbation and/or gesture perturbation in a less-

constrained task such as a story retell, passage reading, cartoon narration, or even spontaneous 

conversation.  

Finally, a third argument for against strict adherence to the Sketch Model is the durational 

changes of deictic gestures when produced in DAF conditions.  There were increases in overall 

duration of the gesture, gesture launch time, and gesture return time for DAF trials.  Indeed the 

difference in duration for NAF and DAF conditions were not significant for these three 

dependent measures, but they were consistent.  It is also worth noting that that a larger sample 

size may have been necessary to detect the effect of DAF upon the duration of gesture.  The 

initial sample size was based upon data that corresponded to the effect of contrastive pitch 

accent, not speech perturbation via an auditory delay.  The effect size of DAF for total gesture 

time was d=0.38, a small to medium effect size.  The estimated effect size for this series of 

experiments was d=0.76 based upon de Ruiter’s data for the effect of contrastive stress on 
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gesture launch time.  If instead, 0.38 is used as the estimate of effect size, power set at 0.80 and 

alpha set at 0.05 the required sample size increases to 57 participants.  Retrospectively, this 

difference is logical because the increase in vowel duration associated with contrastive pitch 

accent is likely a steadier occurrence than the anticipated variable temporal effects of auditory 

delays across and within participants.  Hence, future investigations employing DAF should 

consider utilizing a small to medium effect size when calculating sample size rather than medium 

to large effect size. 

 

4.3.3 Effects of Syllable Position and Contrastive Pitch Accent 

 

The effects of syllable position and contrastive pitch accent will be discussed 

concurrently given that they not only were studied in Experiment 1, but also because many of the 

effects of these two factors interacted in the second experiment.  Syllable position affected the 

timing of gesture in several ways.  As in Experiment 1 and as predicted, greater synchrony was 

noted for first position syllables compared to second position syllables.  However, this effect was 

not found for the measure of GA-VM interval as in Experiment 1, but was found for the measure 

of GLM-VM interval.  Only one other main effect of syllable position was observed; gestures 

were longer when produced with second syllable position trials than first syllable position trials.   

A number of significant interactions emerged for syllable position, with second position 

syllables seeming to affect the timing of gesture to a greater extent than first syllable positions.  

The execution of a complete gesture movement and the movement from gesture onset to apex 

required increased time for trials produced with contrastive pitch accent on the second syllable of 
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the target word.  Even though gestures seemed to extend their temporal envelope to match the 

later production of the prosodically prominent second syllable, greater asynchrony was noted for 

second position syllables produced with DAF according to the intervals between gesture apices 

and vowel midpoints.   

The timing of gestures changed as a function of contrastive pitch accent, though there was 

no effect of contrastive pitch accent for GA-VM interval in this experiment as there was in the 

preceding study.  The data from Experiment 1 demonstrated that there were actually significantly 

shorter GA-VM intervals for neutral trials compared to contrastive trials.  This finding was 

perplexing in the first experiment and led to the suggestion that the gesture apex measure may 

not be capturing the pulse of movement, but rather the end point of the pulse.  Thus, the 

measurement of gesture launch time and gesture launch midpoint to vowel midpoint intervals 

was motivated in the Discussion section of the first experiment.   

Interestingly, there was indeed an effect of contrastive pitch accent in the predicted 

direction as indicated by the interval between gesture launch midpoint and vowel midpoint.  

GLM-VM intervals were shorter on average for contrastive trials than for neutral trials and also 

shorter for first position syllables than second position syllables.  In fact, review of the 

descriptive data for the transformed dataset showed that greatest synchrony was noted for first 

position syllables produced with pitch accent without auditory delay (M=2.27, SE=.084) while 

the least synchrony was noted for second position syllables produced with neutral stress and 

DAF (M=2.71, SE=.072).  These main effects for GLM-VM interval are in line with the 

alternative hypotheses stated for the originally presented GA-VM dependent variable. 

Not only were gesture launch midpoints more synchronous with stressed vowel midpoints 

than neutral vowel midpoints, but also gesture launch times were significantly longer on average 
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for trials with contrastive pitch accent.  Gesture launch times were longest for accented second 

position syllables.  Total gesture time was also significantly longer for second position syllables 

with contrastive accent, but not for accented first position syllables.  Increased gesture time 

demonstrates that the time to execute a gesture took longer when a syllable not only was 

produced in the later of the two positions, but also when produced with the longest vowel 

duration across all contrastive and syllable position conditions (i.e., second position accented 

syllables).  In other words, second position accented syllables were the longest and latest in 

duration and so too were the gesture launch and total gesture time, providing evidence that the 

gesture movement is pulsing with prominent syllables, especially in the second syllable position.   

The findings that gesture launch and total gesture times were significantly different for 

second position stressed syllables offer support for a mechanism of lower-level entrainment of 

the speech and gesture, such as that proposed by Tuite (1993) and Iverson & Thelen (1999).  If 

there were no entrainment and the motor processes proceeded according to the Sketch Model (de 

Ruiter, 1998, 2000), then one would anticipate that that the GLM-VM intervals would be 

shortest for first position syllables regardless of stress assignment and that gesture times would 

be consistent and not change as a function of contrast, position, or perturbation.   

Continuing this line of reasoning, it is possible that gestures coincided with the second 

position pitch accented syllables because they were produced with greater duration and possibly 

greater motoric effort than their first syllable position counterparts.  In other words, the pulse in 

the speech stream would be the vowel with the greatest duration and/or effort as a result of 

motoric behaviors.  One could argue that the exaggerated contrastive pitch accent on the second 

position syllables in this rote, repetitive, and constrained task were the only syllables that were 
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strong enough attractors to entrain the corresponding pulse (i.e., gesture launch) of the deictic 

gesture consistently.   

de Ruiter (1998, p. 61) also posed such an explanation for his finding that pointing gestures 

co-varied in time with peak syllables in a contrastive stress task.  He stated: 

When peak syllables are produced in speech, the outgoing airflow is maximal.  
The motor system could therefore plan the moment of maximal exhalation to co-occur 
with the outward motion of the hand.  Since the moment of maximal exhalation varies 
with the location of the peak syllable, the phonological synchrony rule might be 
explained by a phase locking mechanism at the level of motor planning, instead of a 
higher level synchronization process.   

 

Syllables with longer durations typical require more exhalation than syllables that are 

shorter.  For example, Tuller, Harris, and Kelso (1982) demonstrated that acoustic durations 

were longer and muscular activity for a myriad of oral muscles was longer and higher in 

amplitude for stressed vowels compared to unstressed vowels.   

The simultaneous occurrence of a gesture may actually increase this oral motor effort 

according to a recent series of experiments by Krahmer and Swerts (2007).  Speakers were asked 

to repeat Amanda went to Malta in a variety of conditions.  The participants were instructed to 

either stress Aman’da or Mal’ta while at the same time producing either a manual beat gesture, 

an eyebrow movement, or a head nod.  These visual beats were produced either congruently or 

incongruently with the target stressed syllable.  As one would expect, the perception of 

prominence was enhanced when a visual beat occurred on the target syllable.  However, the 

production of a beat changed the acoustic parameters of the vowel, even when the individuals 

were instructed to produce a beat on an unstressed syllable.  Vowels were lengthened when a 

beat gesture was produced at the same time, even when the speaker was consciously attempting 

to produce the vowel as unstressed.   
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This distinct difference in the production parameters of stressed and unstressed syllables, 

in this case duration, is further supported by literature examining the physiologic differences of 

the production of iambic versus trochaic items.   Kinematic research on speech production 

conducted by Goffman and Malin (1999) demonstrated that iambs were distinct from trochees in 

a surprising way.  Iambs (e.g., puhPUH) were more stable and displayed high-amplitude 

modulation for both preschool aged children and young adults.  Children were more likely to 

produce movements that were indistinct across the two syllables for the trochaic forms.  In other 

words, children produced the strong-weak items more like strong-strong items while they 

distinctly produced modulated weak-strong patterns for the iambic forms.  Goffman and Malin 

conjectured that “in trochees children can rely on existing resources and routines of the general 

motor system, thereby minimizing the degree of reorganization or modification required…the 

production of iambs, however clearly violates this basic organization” (p. 1013).   

Although the participants in the present study were young adults, Goffman and Malin’s 

hypothesis could apply to these findings.  Rather than a developmental process necessitating the 

increased modulation of prosodic prominence for iambs, the individuals in the current study 

increased the modulation of contrastive pitch accent for trochees that would not typically be 

represented and programmed organized in that fashion with stress on the second syllable. 

This mechanism also could unite the present data set and the findings of Rochet-Capellan 

and colleagues (2008).  In their study, the deictic gesture apex was synchronized with the 

maximum jaw displacement first syllable when stressed and the return gesture was synchronized 

with the maximum jaw displacement when the second syllable was stressed.  There are two 

points of interest in relating Rochet-Capellan et al.’s study to this experiment.  First, the 

bisyllabic nonwords, papa and tata, employed as stimuli by Rochet-Cappelan et al. are not only 
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more simplistic than the stimuli of Experiment 1, but arguably they were not manipulating 

prosody from a phonological encoding standpoint, rather they were instructing the participants to 

increase their motoric effort on a given syllable.  Thus, if speech and gesture synchronize due to 

entrainment of the two motor systems, it is not a surprise that Rochet-Capellan et al. found 

evidence for synchrony of deictic gestures and syllables with maximum displacement, and 

possibly greater exhalation.  In the present study, individuals lengthened the pulse of the manual 

movement (i.e., gesture launch) to correspond with the later, lengthened, and markedly 

prominent pulse within the speech stream (i.e., accented second position syllable). 

Second, participants produced the bisyllabic stimuli in isolation in the investigation 

conducted by Rochet-Capellan and others.  One would expect the second syllables to be 

produced with longer duration due to final syllable lengthening.    However, this was not the 

case.  When the syllables were stressed, the first position syllable jaw opening was longer (183 

ms) than then second position syllable (144 ms).  The stressed syllables were always longer in 

duration than the unstressed syllables.  Thus, Rochet-Capellan and others found evidence that 

deictic gestures synchronize with syllables of increased motoric effort and perhaps Experiment 2 

did so as well.   

To conclude, viewing the synchronization of speech and gesture from a motor 

entrainment perspective also explains prior research that revealed that not only are hand gestures 

synchronized with pitch accented syllables, but eyeblinks, head movements, and even torso 

movements are as well (Birdwhistell, 1952; 1970; Bull & Connelly, 1985; Loehr, 2004; 2007).  

If there was a unique and absolute cognitive-linguistic relationship responsible for gesture-

speech synchrony as posited by theorists like McNeill (1992), de Ruiter (1998; 2000) and 

Krauss, Chen, & Gottesman (2000), then such observations would be difficult to explain.  
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Though Levelt (1989) is a well-specified and testable model of spoken language production, an 

integrative model of speech motor control such as proposed by Ballard, Robin, and Folkins 

(2003) which supports the coordination of motor behaviors across systems may frame studies of 

oral/manual interactions.  Ballard et al. state that, “neurological and evolutionary evidence 

strongly suggest that neural networks are large, flexible, multifaceted, multifunctional, and 

overlapping in function” (p. 46).  Though this model is largely unspecified, the fundamental 

tenets of the authors’ postulations are certainly consistent with the rationale and findings of 

Experiment 2.  Fusing the foundation of Ballard et al.’s integrative model of speech motor 

control and the specifications of a dynamic systems approach to understanding the coordination 

and entrainment of speech and gesture (e.g., Kelso & Tuller, 1984; Iverson & Thelen, 1999; 

Tuite, 1993) will be a source for future theoretical consideration and subsequent empirical 

testing.   
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5.0  CONCLUSIONS  

5.1 LIMITATIONS AND IMPLICATIONS FOR FUTURE RESEARCH  

  

This investigation offered insight on the temporal synchronization of speech and gestures.  

The three variables manipulated, syllable position, contrastive pitch accent, and speech 

perturbation distinctively affected the temporal characteristics of the spoken response and 

corresponding deictic gesture.  Evidence for entrainment of the two motor systems was 

demonstrated, though synchronization of the two systems actually decreased when speech was 

perturbed.  The methodology employed was unique in the level of experimental control, stimuli, 

and data collection procedures relative to other studies of the role of prosodic stress and speech 

perturbation on the synchronization of speech and gesture.  Also, the timing of speech and 

gesture was studied using longer utterances and more natural responses than similar controlled 

research paradigms that examined the effect of prosodic stress on speech-gesture 

synchronization, and the only experimental study on the topic to enroll English-speaking 

individuals.  This was the first systematic investigation that explored the effect of speech 

perturbation upon the synchrony of manual and speech movements.    

The results of the study are intriguing, though also reveal several limitations of the 

current work and motivate extensions of this research to future empirical study of the interaction 

of speech and gesture systems.  The limitations of the study primarily center on the measurement 
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of the speech and gesture signal and the required response.  Some of the limitations were 

discussed in previous sections as well (e.g., type of gesture and perturbation method). 

As was stated in the rationale for the first study, there is a multitude of ways to measure 

prosodic stress.  Increased vowel duration was chosen as the acoustic correlate of contrastive 

pitch accent because of the relatively consistent and robust changes as a function of prosodic 

stress.  However, there are other acoustic and physiologic correlates that may better expose the 

temporal relationship between speech and gesture.  The current data support the measurement of 

the stroke (i.e., launch) portion of the gesture as the pulse of the oscillator, not the arguable end 

point of the gestural stroke.  Gesture launch midpoint was analyzed for the second study with 

distinctly different results compared to time of gesture apex.  However, the voltage traces 

generated by the capacitance sensor of the theremin can also be analyzed to determine the peak 

velocity of manual movement.  Reaching studies have demonstrated that velocity decreases as an 

arm/hand approaches the target (e.g., Wu, Trombly, Lin, & Tickle-Degnen, 2000).  It is plausible 

that the velocity of arm/hand movement also slows as one gets closer to the apex of a gesture.  

Therefore, the time of peak velocity may correspond to the point of maximum motoric effort that 

overlays the pulse of movement.   

The optimal measure of the oscillator pulse within the speech stream is also an empirical 

question.  If one is interested in studying single time points of movement, then peak amplitude 

and/or peak fundamental frequency are alternative acoustic measures.  However, based upon 

these results and those of Rochet-Cappellan et al. (2008), the speech and gesture system appear 

to share dynamic motor linkages.  Rochet-Cappellan and colleagues kinematically studied the 

synchronization of finger movements and mandibular movements in during the repetition of 

puhpuh or muhmuh with prominence on one syllable while pointing to a smiley face.  The 
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investigators were able to make precise measurements of timing of the jaw and finger by 

capturing the movement infrared-emitting diodes via an Optotrak system and found predictable 

relationships between jaw opening and pointing.  Future investigations could utilize an optical 

tracking system or ideally a multiple camera high-speech optical motion capture system to better 

understand the entrainment of speech with other motor systems, including the hands.  For 

instance, one could approach the logical next step in this line of research is to examine the phase 

transitions of oscillating speech and manual movements.  Using an optical motion capture system 

would also allow tracking of the movements of not just hand and finger movements that 

accompany speech, but also facial movements to test the predictions of Tuite’s Rhythmical Pulse 

model and experimentally replicate the descriptive and perceptual findings from previous studies 

(Birdwhistell, 1952; 1970; Bull & Connelly, 1985; Loehr, 2004; 2007).  Sophisticated equipment 

like an optical motion capture system would also allow data to be collected on multiple gesture 

types within a three-dimensional space.  To date, there has been no experimental investigation of 

the synchronization of speech and gestures that did not elicit deictic gestures.  As discussed 

earlier, there is reason to conjecture that the interaction of speech and manual movements may 

differ based upon the type of gesture and automaticity of the task.   

Indeed the present experiments employed a controlled protocol, though the responses 

were longer and more natural than prior research of this type.  Yet, there are several limitations 

of the responses.  First is an issue of time resolution.  Significant effects of syllable position were 

found in the dataset, though manipulation of prosodic stress across different points in an 

utterance may lead to a better understanding of speech and gesture synchronization.  An example 

of a paradigm that could be modified for American English speakers is Krahmer and Swerts 
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(2007) repetitive production of Amanda went to Malta with stress placed on an earlier or later 

word within the utterance.   

A second limitation of the responses of Experiments 1 and 2 is the production of yes or 

no.  Prominence could be placed upon this first word of the sentence and a pause inserted 

between yes/no and the next word of the response, the.  Thus, the words yes or no could act as a 

separate intonational phrase and the prominence of the spoken item could act as a periodic 

attractor, rather than the target accented syllable within the compound word.   

The dynamic coordination of speech and manual movements have been studied, but few 

studies have gone beyond examining the temporal parameters of tightly constrained vocal 

productions and co-occurring finger tapping.  Past research has revealed a tight coupling of 

finger tapping with taps simultaneously produced with single, repeated syllables (e.g., stak stak 

stak…) (Chang & Hammond, 1987; Smith, McFarland, & Weber, 1986).  This research also 

showed that when the amplitude and frequency of one movement was increased, the same 

parameters of the associated movement were increased as well.  An extension of this paradigm 

that is relevant to the current study was completed by Hiscock and Chipuer (1986).  Individuals 

were required to tap and iambic or trochaic rhythm with their right or left hand while reciting one 

of four, ten-syllable utterances.  Two of the utterances exhibited an iambic rhythm (e.g., the 

cause of crime eludes the brightest minds) and two exhibited an irregular rhythm (e.g., the 

Vancouver summer is delightful).  The rhythms were the same in one condition and mismatched 

in others.  Although both utterances similarly decreased the rate of tapping, only the mismatch 

rhythm condition resulted in significant disruption of the tapping rhythm.  Implementations of 

these investigations of in reference to speech and gesture movements, rather than speech and 
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finger tapping movements would help to elucidate the coordination of these two internal coupled 

oscillators.   

Concepts such as periodic attractors, coupled oscillators, and temporal entrainment are 

embodied within dynamic systems theory.  Dynamic systems approaches hold vast promise for 

understanding complex, divergent, and variable human behaviors, like speech and gesture, that 

yet have organization, consistency and even coordination of structures emerge from the seeming 

unlimited degrees of freedom.  The study of dynamic coordinative systems, namely oral and 

manual movements, is blossoming, but still only its provenance.  

 

5.2 THEORETICAL IMPLICATIONS  

 

Iverson and Thelen (1999) and Tuite (1993) are the only investigators to formulate 

theories of speech and gesture production from a dynamic systems perspective.  Both theories, 

the Entrained Systems theory (Iverson & Thelen) and Rhythmical Pulse Model (Tuite) assert that 

rhythm is the underlying mechanism of interaction and overlay of the two systems.  Iverson and 

Thelen’s work reflects early developmental processes within the first 18 months of life and posits 

that the degree of coupling of speech and gesture is dependent the level of effort and 

automaticity of the respective motor behaviors (also see Iverson & Fagan, 2004 and Iverson, 

2010).  Even though they do not elaborate upon the potential attractors, they do specify that it is 

the gestural stroke that is synchronized with the lexical affiliate.   
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In contrast, Tuite does not make any statements about developmental progression of 

gesture and speech production, but does hypothesize that a kinesic base unites the speech and 

gesture in time by way of coupling pulses within the two systems.  He further hypothesizes that 

the pulse peak corresponds to the stroke portion of the gesture (or peak of another movement like 

an eyebrow raise) and intonation peaks of the prominent syllables in the speech stream.  Yet, he 

stops short of explaining the actual origin of a kinesic base and the details of the corresponding 

pulses or exactly what the units of the pulse peaks are for speech.   

More recent theorizing by Port (2003) may not address gesture specifically, but does 

spell-out the idea of coupling of pulses for external and internal oscillators.  Importantly for the 

current investigation, Port conjectures that prosodic structure, as realized in vowels, is the 

periodic pattern that organizes not just speech, but the coordination of multiple modalities with 

the speech system.  He states that they pulses are associated with neurocognitive oscillations that 

arise from “major neural patterns somewhere in the brain” (p. 609).   

Amalgamation of the theoretical work by Iverson and Thelen (1999), Tuite (1993), and 

Port will offer testable predictions for future empirical work on the entrainment of speech and 

gesture.  Though rudimentary, some of the basic predictions of an integrated interpretation of 

these theories would include: 

1. As the strength and stability of one motor behavior increases, so will the 

likelihood that two systems will entrain. 

2. The entrainment and subsequent synchronization of speech and gesture is 

dependent upon prominent neurocognitive pulses that act as periodic attractors 

within two rhythmic systems.   
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3. A neurocognitive pulse for a gesture system corresponds to the purposeful stroke 

and vowel with the greatest motoric effort within a unit of speech. 

4. Variability of synchrony will be least for the strongest attractors. 

5. Neurocognitive pulses can be coordinated between multiple internal oscillators 

manifested in oral, manual, facial, and other body movements.   

Systematic inquiry of these predictions among others will offer rich opportunities for 

compelling scientific explorations of the integration of speech, manual, and linguistic process. 
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APPENDIX A 

RECRUITMENT FLYER 

PARTICIPANTS NEEDED  

 

Adults between the ages of 18 and 40 are needed to participate in a 

research study looking at the production of  

speech and gestures. 

 

Requirements: 

 Right-handed 
 English spoken as primary language 

 No history of speech, language,  
or hearing problems 

Participation will require one 90-minute visit to 

Forbes Tower at the University of Pittsburgh 

 

For more information, please call or Email  

Heather Rusiewicz 

412-396-4205 

hrusiewicz@gmail.com 
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APPENDIX B 

SCREENING QUESTIONS 

Date of Birth:_____________ Today’s Date:_______________ Age (years):__________ 

. 

Are you fluent in any language other than English? 

 

If you speak another language other than English, how often do you speak in this 

language 

YES             NO 

 

       Daily     Weekly 

 

      Monthly   Rarely 

.  

Were you ever diagnosed with a speech or language disorder (e.g., 

articulation/phonological disorder, stuttering, etc.)? 

YES             NO 

.  

Were you ever diagnosed with a neurological disorder (e.g., epilepsy, cerebral 

palsy, etc.)? 

YES             NO 

. 

Do you have normal or corrected-to-normal vision?  YES             NO 

.   

Which hand do you use to perform most one-handed tasks such as writing? RIGHT        LEFT 

. 

Please describe your ethnic/racial background (circle all that apply).   Caucasian 

African American 

Hispanic 

Asian 

Pacific Islander 

Other:______________ 

. 

Please list any previous locations you have resided for one year or more other than 

Pittsburgh/Western Pennsylvania. 

 

  1._________________ 

 

  2._________________ 

 

3._________________ 
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APPENDIX C 

STIMULI SET 1; SHARE FIRST SYLLABLE, CONTRASTIVE STRESS ON SECOND 

SYLLABLE  

bathrobe bathtub 

football footprint 

grapevine grapefruit 

icecube icecream 

lifeboat lifeguard 

blackbird blackboard 

toothpaste toothbrush 

thumbtack thumbprint 

birdcage birdbath 

lighthouse lightbulb 

eggnog eggplant 

fishbowl fishhook 

seagull seahorse 

snowball snowflake 

teapot teacup 
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APPENDIX D 

STIMULI SET 2; SHARE SECOND SYLLABLE, CONTRASTIVE STRESS ON FIRST 

SYLLABLE 

suitcase briefcase 

jukebox mailbox 

birdhouse doghouse 

toothbrush paintbrush 

football baseball 

bluebird blackbird 

lighthouse greenhouse 

cupcake pancake 

stoplight flashlight 

footprint handprint 

keyboard surfboard 

notebook matchbook 

wheelchair highchair 

horseshoe snowshoe 

hottub bathtub 
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APPENDIX E 

EXAMPLE STIMULI ILLUSTRATIONS 
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