
 

 
 

IMPROVED MAPPING ACCURACY OF PLANETARY SURFACES USING SUPER-
RESOLUTION OF THERMAL INFRARED DATA  

 
 
 
 
 
 
 
 

by 

Christopher Gerald Hughes 

B.S. Computer Science, Dickinson College, 1996 

 
 
 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of 

Arts and Sciences in partial fulfillment  

of the requirements for the degree of 

Doctor of Philosophy 
 
 
 
 
 
 
 
 
 

University of Pittsburgh 

2011 

 



 

 ii 

UNIVERSITY OF PITTSBURGH 

ARTS AND SCIENCES 
 
 
 
 
 
 
 
 

This dissertation was presented 

 
by 

 
 

Christopher Gerald Hughes 
 
 
 

It was defended on 

November 18, 2010 

and approved by 

Thomas H Anderson, Professor, University of Pittsburgh 

Daniel J Bain, Assistant Professor, University of Pittsburgh 

Joshua L Bandfield, Research Assistant Professor, University of Washington 

William Harbert, Professor, University of Pittsburgh 

Charles E Jones, Lecturer, University of Pittsburgh 

 Dissertation Advisor: Michael S Ramsey, Associate Professor, University of Pittsburgh 

 

 



 

 iii 

Copyright © by Christopher Gerald Hughes 

2011 



 

 iv 

 

 
 
Super-Resolution is the process of obtaining a spatial resolution greater than that of the original 

resolution of a data source. This can be done through the fusion of original data with an 

additional source that has the desired resolution. These approaches can either be qualitative for 

visual appeal, quantitative for data accuracy, or some combination of both. The super-resolution 

approach offers an alternative to traditional sub-pixel deconvolution identification and provides 

higher resolution TIR data for Earth and Mars. 

 

The Thermal Emission Imaging System (THEMIS) has provided the highest spatial 

resolution (100 meter / pixel) thermal infrared (TIR) data of the Mars surface to date. These data 

have enabled the discovery of small-scale compositional units and helped to constrain surface 

processes operating at these scales. Higher resolution visible instruments have revealed smaller-

scale differences, creating a need to detect compositional variability using TIR data at scales 

below 100 meters. Putative chloride deposits identified on Mars are one such area. These 

deposits have a unique spectral signature in the TIR and are present within topographic lows. 

The super-resolution algorithm helped constrain the local mineral assemblages and stratigraphic 

order. This data reveals that associated phyllosilicate-rich units may be part of a common 

lithostratigraphic unit with a phyllosilicate-poor ST-2 material. 
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Lunar Lake playa, located ~100 km northeast of Tonopah, Nevada, has been used as an 

analog site for multiple planetary surfaces and as a vicarious calibration site for Earth-orbiting 

satellites. As such, the ability to obtain higher resolution data through super-resolution has the 

potential to improve Earth data and give to insight into the formation of similar environments on 

other planetary surfaces. Super-resolved data show Lunar Lake playa to be more compositionally 

heterogeneous than previously thought. A gradation of mineralogy exists within the playa, seen 

in both super-resolved data and in samples collected during fieldwork. The composition of the 

playa is influenced by the immediate surroundings, with variation existing between the western 

side of the playa, bounded by basaltic units, and the eastern, bounded by rhyolitic tuff. As the 

surrounding material weather, different clasts are transported onto the playa, and weather into 

different mineral assemblies. 
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1.0  SUPER-RESOLUTION OF THEMIS THERMAL INFRARED DATA: 

COMPOSITIONAL RELATIONSHIPS OF SURFACE UNITS BELOW THE 100 

METER SCALE ON MARS 

1.1 INTRODUCTION 

Compositional and/or thermophysical mapping of the martian surface using multispectral or 

hyperspectral thermal infrared (TIR) data has been ongoing since the earliest TIR instruments 

sent to Mars (e.g., Herr et al., 1970; Kieffer et al., 1976; Peterfreund et al., 1977).  However, it 

was not until the higher spectral resolution of the Thermal Emission Spectrometer (TES) and, 

later, the higher spatial resolution of THEMIS that quantitative mineral mapping was performed.  

Previous workers have used: TES data to positively identify numerous minerals on the surface 

(e.g., Bandfield, 2006; Bandfield et al., 2004a; Christensen et al., 2003; Hamilton and 

Christensen, 2005), THEMIS data to detect smaller scale outcrops (e.g., Christensen et al., 2003; 

Rogers et al., 2005), or a combination of both instruments to detect a compositional difference 

with THEMIS and then accurately identify those minerals with TES (e.g., Bandfield et al., 

2004a).  
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At the native IR resolution of THEMIS, there have been numerous important scientific 

discoveries about the surface composition and processes of Mars. These have included the 

existence of thermally-distinct layered units at the tens of meters scale (Christensen et al., 2003); 

the occurrence of kilometer-scale exposures and outcrops of bedrock (Christensen et al., 2003; 

Rogers et al., 2005); particle size differences between dune and interdune regions based on 

thermal inertia (Christensen et al., 2003); the discovery of olivine rich basalts within Ganges 

Chasma (Christensen et al., 2003) and Nili Fossae (Hamilton and Christensen, 2005), 

confirmation of water ice deposits at the southern polar cap (Christensen et al., 2003); an 

aqueous origin for some Martian deposits (Glotch and Christensen, 2005; Glotch and Rogers, 

2007); the cause and formation of polar “dark spots” (Kieffer et al., 2006); gullies formed from 

the melting of snow deposits (Christensen, 2003); evolved compositions (Bandfield, 2006; 

Bandfield et al., 2004a; Christensen et al., 2005); properties of Martian dunes (Fenton, 2005; 

Fenton and Mellon, 2006; Hayward et al., 2007); generation of higher resolution thermal inertia 

maps (Fergason et al., 2006); and identification of putative chloride deposits (Osterloo et al., 

2008).  A majority of these studies have relied on spectral deconvolution techniques (e.g., 

Ramsey and Christensen, 1998) using a spectral library to map mineral percentages at or below 

the spatial scale of the data. This approach generally works well, but is limited by the breadth of 

the spectral library (e.g., the number and particle size of the minerals used to compose the 

library), the scale of the areal mixing versus pixel size of the instrument, the presence of 

errors/noise in the data, and the ground conditions (such as sub-pixel temperature heterogeneities 

or dust cover) at the time of data collection. 
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In particular, one interesting study that combined spectral deconvolution with data from 

both THEMIS and TES was that of Bandfield et al. (2004a).  The authors presented a study of 

the identification of a spectrally-anomalous region within two craters in Syrtis Major.  This area, 

initially identified using THEMIS decorrelation stretch (DCS) images (Gillespie et al., 1986), 

had an absorption band at a shorter wavelength than the surrounding material, indicating it was 

likely a more evolved composition. Subsequent analysis using deconvolution of TES data 

identified this material to be quartzofeldspathic with a composition most akin to a quartz 

monzonite. Bandfield et al. (2004a) showed that this unit was confined to the intercrater 

materials surrounding the central peak, and explained that this quartz-bearing unit could have 

formed as an intrusion at depth, and possibly brought to the surface during the uplift of the 

central peak. Ehlmann et al. (2009) alternatively proposed the presence of hydrated silica and 

other alteration products using CRISM data in this same location. This region was chosen as the 

focus for this work because of the contrasting spectral variation of the surface units, the presence 

of only small-scale outcrops, the predominance of eolian mantling, and the uncertainty of a 

source for the spectrally-anomalous material. The application of the new super-resolution 

approach using THEMIS VIS data as the higher spatial resolution source improved TIR spatial 

data resolution by a factor of three. Using these new data, small-scale outcrops and 

compositional unit contact boundaries have been explored in an effort to better constrain the 

source and emplacement processes of this unusual compositional unit on Mars. 

1.1.1 Super-Resolution 

Satellite data collection is frequently limited by numerous trade-offs between the spatial, 

spectral, and temporal resolution of the instrument. In certain circumstances, satellites with 
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multiple instrument payloads may require a higher orbit for some of the instruments, thus 

reducing the pixel size or requiring a larger telescope for imaging spectrometers. Furthermore, 

instruments on satellites orbiting other planets may be data limited due to the bandwidth 

dedicated to that mission by the Deep Space Network. Finally, the goals of higher temporal 

resolution and/or complete planetary coverage will always conflict with the goal of higher 

spatial/spectral resolution data. As a result of these trade-offs, it is rare to have an instrument that 

collects data at an ideal spatial resolution for a particular analysis of the surface, and that also 

satisfies most or all of the previous constraints. This has lead to a series of creative image 

processing techniques, commonly grouped under the general term of “super-resolution”, which 

enhance the spatial resolution of data in some way (e.g., Tonooka, 2005; Zhukov et al., 1999). 

 

Improved IR spatial resolution on Mars is needed in order to better describe processes on 

the martian surface that operate below the 100 meter scale. These include small-scale sediment 

mixing in eolian and crater ejecta deposits, igneous and eolian layered deposits, as well as 

thermal heterogeneities that lead to anomalous thermal inertia and emissivity recovery. Super-

resolution can provide a means to improve the spatial resolution by incorporating the spectral 

information of data with a higher spatial resolution. These data can be collected by the same 

instrument or in conjunction with other higher-resolution Mars-orbiting instruments such as the 

Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) or the High Resolution 

Stereo Camera (HRSC), provided that the fundamental assumptions, such as similar surfaces 

exist under similar atmospheric conditions and illumination, of the technique are not violated 

(Tonooka, 2005). However, super-resolution using data from instruments on different satellites is 

technically possible, but would require using data that are not widely separated in time in order 
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to mitigate significant surface / atmospheric changes. Data would need to be collected during 

similar seasons and without any intervening dust storms or other major events. Differing heating 

conditions between datasets may also have the potential to cause undesirable results when using 

non-contemporaneous data. 

 

Super-resolution is the process of creating a higher spatial resolution than that of the 

original (or native) data source. This can be done through techniques that fuse the original data 

with an additional higher resolution data source. The most commonly-applied technique is pan-

sharpening, in which a single high-spatial resolution channel is used to enhance multi-spectral 

lower resolution data (Figure 1-1). This can be done in a variety of ways, including transforming 

the lower spatial resolution image to Intensity-Hue-Saturation space, and substituting in the 

single higher resolution channel for the image intensity (Garzelli et al., 2004; Wang et al., 2005; 

Zhang, 2004; Zhukov et al., 1999) or through Principle Component Analysis (PCA), in which the 

first principle component of the lower resolution multi-spectral data is replaced with the higher-

resolution channel (Garzelli et al., 2004; Wang et al., 2005; Zhang, 2004; Zhukov et al., 1999). 

The Brovey Transform (Pohl, 1999; Wang et al., 2005; Zhang, 2004) is an arithmetic approach, 

in which each channel of the lower resolution data is multiplied by the higher resolution channel, 

and the result is divided by the sum of the lower-resolution channels. Newer methods to fuse a 

single high-resolution channel to lower resolution multi-spectral data are based on wavelet 

transforms, such as the Mallat or à trous algorithms (Aiazzi et al., 2002). The work of Burt and 

Adelson (1983) used a Laplacian Pyramid to fuse multi-spectral data from lower and higher 

resolution channels together. The Multisensor Multiresolution Technique (MMT) of Zhukov et 

al. (1999) also works with multispectral data at both higher and lower spatial resolutions. 
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Figure 1-1 Comparison of the original TIR data (THEMIS image I12929010) with other pan-resolved 
techniques. (A) Daytime TIR channel 9 radiance data with the rectangle denoting the area shown in (B), (C), 
and (D). (B) Decorrelation stretch of TIR radiance data (bands 9, 6, and 4), from the original resolution data. 
(C) Channel 9 radiance data after principal component (PC) transform and replacement of PC band 1. This 
image shows significant improvement in spatial resolution compared to (A), and has strong visual appeal. (D) 
Decorrelation stretch of TIR bands 9, 6, and 4 radiance data from PC-transformed data. The data in (D) 
differ significantly from the data in (B), reflecting the fact that the PC-transform pan-resolution technique 
creates images with good visual appeal but also with loss of radiometric accuracy. 
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However, in all of these techniques there is a trade-off between visual appeal and ones that are 

most radiometric accuracy (Zhukov et al., 1999). It is rare to find a super-resolution 

methodology that is both quantitatively accurate and qualitatively acceptable. The super-

resolution technique presented here is a significant modification of an algorithm first described 

by Tonooka (2005) and applied to data from the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) of an urban target in Japan.  

1.1.2 Instrument Datasets 

The ASTER instrument is composed of three separate wavelength sub-systems, all using 

separate telescopes. ASTER has 3 channels between 0.52 and 0.86 microns at 15 m/pixel spatial 

resolution, 6 channels in the 1.6 to 2.43 micron short wave infrared (SWIR) region with at a 

spatial resolution of 30 m/pixel, and 5 channels between 8.13 and 11.65 microns at 90 m/pixel 

spatial resolution (Fujisada et al., 1998). The Signal to Noise Ratio (SNR) values range between 

44 – 368 for low gain radiance values, and 156 – 466 for high gain radiance values (Fujisada et 

al., 1998). The VIS instrument uses a 5000 x 4 element array of silicon detectors; the SWIR 

instrument uses a 2048 x 6 element array of PtSi detectors. Both form images with a pushbroom 

configuration. The TIR instrument is a 10 x 5 array of HgCdTe elements used in a whiskbroom 

configuration (Yamaguchi et al., 1998). The FOV for all three instruments is 6.09° square. Since 

January 2009, ASTER has been acquiring multispectral / multispatial data in only two 

wavelength regions. Data from the SWIR instrument are no longer usable due to a failed cryo-

cooler. Therefore, super-resolution of ASTER data after this date (as well as all THEMIS data) 

utilizes only the two datasets – the lower resolution IR and the higher VIS.  
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The Mars-orbiting THEMIS instrument (Christensen et al., 2004) has a similar spatial 

scale and spectral range as the Earth-orbiting ASTER instrument (Yamaguchi et al., 1998). 

THEMIS utilizes the same telescope for the VIS and IR instruments, with 5 VIS channels 

between 0.40 and 0.88 microns at 18 m/pixel spatial resolution, although pixel summing is 

commonly used to acquire images over larger areas at 36 m/pixel resolution (Christensen et al., 

2004). THEMIS also has 9 IR channels at 100 m/pixel spatial resolution between 6.27 and 12.98 

microns (the first two of which are duplicated for better signal to noise). An additional tenth 

channel at the same spatial resolution is centered at 14.88 microns and used for detection of 

atmospheric opacity (Christensen et al., 2004). The SNR varies from 50 (in the shortest TIR 

wavelengths, band 1 / 2) to 143 (TIR bands 3 through 9) at 245 K; the VIS instrument has a SNR 

intermediate to these values (Christensen et al., 2004). The VIS instrument contains a 1024 x 

1024 array of silicon elements with a 2.66° by 2.44° field of view (FOV) , whereas the IR 

instrument has a 320 x 240 array of uncooled microbolometers elements with a 4.6° (cross track) 

by 3.5° FOV (Christensen et al., 2004). The VIS instrument has a 5 stripe filter, with all elements 

exposed simultaneously (McConnochie et al., 2006). Groundtrack motion is also used to expand 

spatial coverage (McConnochie et al., 2006), making it both a framing and pushbroom system. 

The IR instrument has a ten stripe filters, representing nine separate wavelength ranges (bands 1 

– 10) with an image being formed in a pushbroom fashion (Christensen et al., 2004). 
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1.2 METHODOLOGY 

1.2.1 Current Approach 

The super-resolution process (Hughes et al., 2007; Tonooka, 2005) is organized into five stages 

(Figure 1-2), which are repeated if more than two datasets in different wavelength regions and 

spatial resolutions are available. For example, ASTER from 2000-2008 had three distinct 

subsystems and therefore the five stages of the model would first operate to super-resolve the 30 

m/pixel SWIR data to the 15 m/pixel VIS data. The stages are then repeated to super-resolve the 

90 m/pixel IR data to those 15 m/pixel VIS and SWIR images. Tonooka (2005) applied this 

methodology to the multi-resolution, multi-spectral ASTER data acquired in 2002. THEMIS has 

slightly better spectral resolution than ASTER in both wavelength regions, which allows the 

modified super resolution technique to more readily identify surface compositional variations 

and thus produce better results.  

 

In the first stage of the super-resolution approach, the higher resolution dataset is 

convolved with the Point Spread Function (PSF) of the lower resolution instrument. This allows 

the image resolution to be degraded to match that of the lower resolution data. These degraded 

pixels are tested for homogeneity by comparison with the original co-located higher resolution 

data, and homogeneous pixels are selected. A homogeneous pixel is one in which the standard 

deviations, calculated on a per-band basis, of all the higher-resolution pixels co-located within it 

are less than a single threshold value. The threshold value is the average of the standard 

deviations for each band for the whole image, resulting in a quick method to determine if the co-

located pixels are sufficiently similar to be considered homogeneous. The homogeneous pixels in 
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Figure 1-2 The super-resolution algorithm showing the relationship between the five stages as well as the 
input and output datasets. The ball and stick figures to the right of steps 3A and 3B represent the building of 
the cluster tree. The initial branches represent VIS clusters form in step 3A. Secondary branches represent 
co-located IR clusters from step 3B. 
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stage three are clustered together based on spectral similarity, as measured by Mahalanobis 

Distance (MD). Mahalanobis distance is analogous to Euclidian distance, but unit length is not 

constant in all dimensions, rather a single unit is equal to a standard deviation in that dimension. 

This permits the measurement of differences relative to the data being measured, rather than to 

an arbitrary fixed scale. Once these groups are created, the third stage continues by selecting and 

clustering co-located lower-resolution data in a stepwise fashion, creating a tree structure of 

pixels with similar spectral shapes. The fourth stage leverages this tree structure to assign a 

spectrum to a new super-resolved pixel with the same channels as the original lower resolution 

data. The new IR spectrum comes from the one closest in MD space from either the tree or 

immediate spatial surroundings. Finally, the fifth stage compares the new super-resolved data to 

the original data by convolving it again with the PSF, resulting in data at the original resolution. 

Radiometric differences are identified between the two datasets and a correction factor based on 

this difference is allocated across the new super-resolved pixels. Rather than allocating this 

correction factor evenly, the correction is scaled based on their MD from their source values; 

pixels with higher MD values receive a greater percentage of the correction factor. One 

interesting side-effect of this radiometric correction is that it is possible to generate super-

resolved pixels whose spectra are closer to “pure” end-member spectra than are present 

anywhere within the original resolution data. 

1.2.2 Modifications to the Super-Resolution Methodology 

The approach originally described by Tonooka (2005) has been significantly modified, adapted 

and tested to operate on data with only two wavelength regions rather than three. The algorithm 

was initially examined for performance and optimized where possible to decrease the run-time 
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and address other deficiencies. For example, in the original approach, the k-means clustering 

algorithm was used in the third stage. This technique has been replaced by the ISODATA 

clustering algorithm (Ball and Hall, 1967). Both algorithms are iterative classification 

algorithms, in which data are randomly clustered, with pixels subsequently moved to clusters 

whose center (the average of all cluster members) is closer to their value. After each set of 

moves, cluster centers are recalculated based on their member pixels, and the process repeats 

until no such moves remain. The k-means clustering technique is limited by the fact that the user 

is required to make a number of a priori assumptions, including the final number of clusters. 

ISODATA will create and merge clusters during its run, and thus does not require this 

assumption. 

 

With the use of any clustering approach for classifying similar groupings of pixels, a 

limitation arises in that repeated iterations are not strictly reproducible. The final result of the 

clustering will depend upon its initial starting conditions. These conditions include the number of 

clusters, the distances to use before either splitting or joining clusters, the number of iterations 

for clustering, how many pixels must change for the process to continue, and the initially seeded 

cluster centers. The clustering techniques use a random choice for the very first cluster center 

that could lead to different results at the end of the third stage of the super-resolution process, 

which could produce varying results. However, any differences created in cluster center values 

by this potential randomness are removed in the final radiometric correction stage. Varying 

results would lead to varying Mahalanobis Distances, which would cause the radiometric 

correction to be divided among the sub-pixels differently, and thus arrive at the same final 

product.  
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A second alteration to the algorithm in its adaptation to using THEMIS data was the 

approximation of the Point Spread Function (PSF). The PSF describes the blur inherent within a 

system, and models how the radiance from a point source is actually imaged spatially by the 

instrument in two dimensions (Townshend et al., 2000). Super-resolution makes use of the PSF 

during the degradation of the higher-resolution channels, so that the mapping of surface to image 

space is identical between the spectral regions. The PSF of the ASTER instrument was 

calculated prior to launch (Fujisada et al., 1998); however this was not the case during the pre-

launch testing of the THEMIS instrument. Furthermore, it is relatively easy to calculate the PSF 

from Earth orbit by imaging spatially-small features that have a large contrast in albedo to their 

surroundings (e.g., a small bright island in a large dark water body) or by looking at long linear 

features (e.g., buildings and bridges) in the two different directions. These in-scene calibration 

targets are obviously not present on Mars. Therefore, the THEMIS PSF used in this 

implementation of the super-resolution algorithm represents an approximation. This was based 

on what is known about the instrument and thorough iterative testing of the algorithm using 

different values of the PSF as input parameters. This approximation results in THEMIS data 

having slightly more pixel to pixel blurring than ASTER data. 

1.2.3 Identification of Acceptable Data 

Potential test locations on the surface of Mars with interesting and spectrally-diverse features 

were first identified based on a thorough literature review. These included the first 

quartzofeldspathic site (Bandfield et al., 2004a), quartzofeldspathic deposits elsewhere 

(Bandfield, 2006), a dacite lava flow (Christensen et al., 2005), olivine-rich deposits near Nili 

Fossae (Hamilton and Christensen, 2005; Hoefen et al., 2003) and regions of phyllosilicate 
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detection using VSWIR data (Poulet et al., 2005), as well as the landing sites for the Spirit and 

Opportunity rovers. Images over some of these regions were identified using the THEMIS 

website (http://themis.asu.edu/) and the JMARS visualization / GIS tool (Weiss-Malik et al., 

2005). Initially, images were deemed acceptable if both the VIS and IR wavelength data were 

acquired contemporaneously and with complete or near-complete spectral resolution. Image 

searches were constrained to pairs having at least channels 2 through 5 in the VIS and channels 3 

through 9 in the IR. Pairs that included band 1 (VIS), or channels 1, 2 and 10 (IR) were also 

acceptable, although data from these channels were rarely used due to their relatively poor 

quality or due to high atmospheric opacity. All of these constraints were important in order to 

maximize the fidelity of the algorithm, obtain the most reliable results, and increase the 

methodological similarity to the ASTER results.  

 

Nearly 1,400 contemporaneous image pairs fitting the criteria were identified, including 

one pair (V12929011 and I12929010) over the quartzofeldspathic site in Syrtis Major. The area 

of spatial overlap of the two data sets does not correspond to the location of the strongest spectral 

signature in the region (Bandfield et al., 2004a). However, a region with the quartzofeldspathic 

spectral signature is imaged in both scenes and located near the center of the images, at the 

western edge of the area of overlap (Figure 1-1). TIR emissivity and radiance data were both 

super-resolved, in order to first assess if there is a difference between super-resolved emissivity 

data, and emissivity data separated from super-resolved radiance data. In order to correlate 

quartzofeldspathic detection with surface morphology, the super-resolved IR data were then 

compared to an image acquired by the High Resolution Imaging Science Experiment (HiRISE). 
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1.2.4 Data Preprocessing Prior to Super-Resolution 

Both the VIS and IR data were obtained from the PDS data archive maintained by the THEMIS 

science team at Arizona State University. Geometrically corrected VIS data cubes (both the CUB 

and LBL file) were initially processed using the JENVI toolkit (Piatek and Moersch, 2006), 

which converts the data into floating point values and exports the images in a format easily used 

by the super-resolution program, which is written in the interactive data language (IDL).  

 

THEMIS IR data were preprocessed and downloaded using the THMPROC tool with all 

but two of default processing flags used. The unrectify flag was selected, because JENVI 

requires it, and the spatial resolution was changed. The standard 100 m/pixel IR resolution was 

degraded slightly to 108 m/pixel in order to make each IR pixel an integer multiple of the VIS 

data, which are either 18 or 36 m/pixel. This ensures that there are 9 (or 36) unique VIS pixels 

per every one unique IR pixel without the need for higher level image resampling later.  

 

THMPROC was also used to place constraints on the data volume by eliminating the area 

not covered by both the TIR and VIS datasets, in order to limit the processing time. The spatial 

extent of the IR data was limited to 0.25 degrees beyond the edges of the THEMIS VIS data. The 

resulting 32-bit image cubes containing all channels were imported into JENVI. Channels 1 and 

2 (6.78 μm) were averaged together for better signal to noise and channel 10 (14.88 μm) was 

removed due to the high atmospheric opacity, resulting in eight usable IR channels. Pixel-

integrated brightness temperature and emissivity data products were created using the 

normalized emissivity approach with an assumed maximum emissivity of 1.0 (Christensen, 

1982; Realmuto, 1990). 
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Images obtained from THMPROC are not fully atmospherically corrected. The 

attenuation from the atmosphere must be removed, and was done using the in-scene 

approximation approach (Bandfield et al., 2004b). This was done by choosing a morphologically 

bland and spectrally homogeneous region (e.g. basaltic plains) of a few hundred pixels within the 

IR radiance scene at approximately the same surface elevation as the region of interest. This 

same area was also located for the emissivity data, and the mean emissivity value extracted in 

each IR channel. Atmospherically corrected TES data (bands 9 – 35 and 65 – 110) over that 

same region were also extracted, averaged together, and convolved to the THEMIS spectral 

response functions. The mean emissivity value from THEMIS was divided by the TES-derived 

emissivity in order to derive an atmospheric correction factor, which was then applied to the 

entire THEMIS emissivity image. Some unusual spectral shapes were noted in the TIR image 

(I12929010) both before and after this correction, possibly due to slightly miscalibrated data or 

an issue during data collection; however, these unusual spectra do not overlap with the area 

containing the quartzofeldspathic signature and therefore can be ignored.  

 

Finally, the VIS radiance and IR emissivity images must be spatially aligned, and a mask 

defined, which encompasses the overlapping region of interest and removes data at the image 

borders as well as data having errors in one or more channels. Both images are subset to the 

extent of the mask, aligned to one another with co-located corners, and are thus an integer 

multiple apart in size. It is commonly necessary at this stage to visually inspect the image pairs in 

greater detail using ground features (e.g., small impact craters) to identify any possible remaining 
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 misalignment between the VIS and IR data. If one is found, it is corrected by applying a further 

manual correction until the data files are aligned to within one VIS pixel. These two datasets are 

used by the super-resolution algorithm.   

 

Previous application of the super-resolution approach (Tonooka, 2005) discovered that an 

alignment within 0.2 of the larger pixel size was sufficient for valid results. Given the relative 

resolution of the VIS and IR data, this algorithm is limited to an alignment within 0.33 of the 

larger pixel. As the resampling of the IR data to 108 m / pixel within THMPROC occurs before 

this alignment, and the alignment is performed using the smallest resolvable surface features 

within this resampled data, it is assumed that this resampling does not introduce further 

misalignment beyond the one VIS pixel limit. A significant misalignment between the datasets 

would result in a failure of the super-resolution algorithm during the clustering stage. In such a 

case, it would be unlikely that any IR cluster could achieve the minimum cluster size due to the 

misalignment causing an excess number of dissimilar spectra.  

1.3 RESULTS 

For the quartzofeldspathic region of interest, the VIS data was subset to 312 samples by 1254 

lines and included 4 wavelength channels with a spatial resolution of 36 m/pixel. The same 

region imaged by the IR sensor was 104 lines by 418 samples with a spatial resolution of 100 

m/pixel. These pixels were resampled to 108 m/pixel, in order to improve the alignment with the 

VIS data. The number of IR wavelength channels decreased from ten to eight after channels 1 
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 and 2 were averaged together due to low SNIR values at Mars temperatures and channel 10 was 

discarded due to high atmospheric opacity. Channel 3, typically used for temperature / emissivity 

separation, was included within the super-resolved data. 

 

The initial stage of the super-resolution algorithm uses ISODATA clustering with an 

assumed PSF, which is based on a similar resolution and response of the ASTER instrument. In 

both instruments, the PSF is modeled as a two dimensional Gaussian. The ASTER instrument is 

assumed to have a narrower peak, with a slightly greater percentage of the energy in any given 

pixel being contributed by that pixel versus neighboring pixels. The measured PSF of the 

ASTER instrument indicates 75.5% of the energy within any given pixel originates in that pixel. 

The PSF of THEMIS instrument was found by varying its shape until one was found that 

produced the best results, based on the radiometric accuracy and visual appearance of the final 

super-resolved product across multiple co-located image pairs. This best case PSF of the 

THEMIS indicates that only 56% of the energy originates in that pixel. Experimentation with 

altering the assumed PSF to increase the percentage of energy originating from the pixel to 

match or exceed that of ASTER did not produce significantly different results. 

 

During the clustering stage of homogeneous VIS pixels, the ISODATA algorithm was 

configured to run no more than 500 times and with a default change limit of 0.5%. With the latter 

limit, clustering ends if fewer than 212 pixels change their cluster assignment during any single 

iteration. If a cluster was created with less than 0.01% of all pixels in the scene (e.g., 5 pixels for 

this case), it was deemed to fall below the minimum cluster size and deleted. The pixels from 

this deleted cluster are then assigned to the next closest cluster to that individual pixel based on 
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the MD. Clusters with pixel members whose value exceeded four standard deviations in any 

band were marked as eligible to be split, and clusters whose centers were closer than two 

standard deviations were eligible to be joined. Only the closest four pairs of clusters could be 

joined in any one iteration, and cluster splitting was subject to further limitations based on the 

size and number of clusters in that iteration. These same values were used during clustering of 

the IR pixels co-located with each visible pixel cluster, although actual pixel counts would differ 

for the IR data. A maximum value for the VIS and IR radiance data was specified as being 

slightly higher than the highest pre-existing value; similarly, a maximum value of 1.0 would be 

used for emissivity. During the splitting of clusters, the value of each band was not allowed to 

exceed these amounts. This permitted cluster centers to be used later in the algorithm as spectra 

for newly created super-resolved pixels with values that are sane for the image area, even before 

radiometric correction. These values are based upon previous performance of the algorithm on 

both THEMIS and ASTER data, and are designed to minimize the algorithm’s runtime and 

maximize the chance that clustering before the iteration limit. 

 

The algorithm identified 42,241 homogeneous pixels in the VIS data, from which an 

initial 50 data cluster centers were chosen. The first homogeneous pixel / cluster center was 

chosen at random, with subsequent pixels clustered based on maximizing the total Mahalanobis 

distance (MD) to all other chosen pixels. Pixels that had a MD of zero to any previously chosen 

center (i.e., having the same values in all channels as that existing center) were prevented from 

being selected, and the pixel with the next greatest sum of MD to all existing centers would be 

chosen instead. By doing this, even the initially chosen cluster centers should represent different 

spectral units. 
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After all homogeneous pixels are clustered, the most likely spectrum is assigned to each 

newly created super-resolved pixel. This is done by finding the spectrum closest to the VIS pixel 

associated with the super-resolved pixel. The pixel spectrum is first compared to the cluster 

centers created in the previous step. Any homogenous pixels are within a radius of 10 low 

resolution pixels, they are also compared. The closet spectrum is used for the new pixel whether 

it originates from the clusters or from neighboring pixels. The MD distance between the VIS 

pixel and the spectrum assigned to the created pixel is also recorded for use in the next step. 

 

The image may not be radiometrically accurate, however, after each new super-resolved 

pixel has a spectrum associated to it. To determine where any correction factors are needed, the 

newly super-resolved data are convolved with the PSF and degraded to match the original spatial 

resolution, as in step 1. These data are then subtracted from the original data on a per-band basis. 

Any differences represent a correction factor, which is applied to the original data on a per-pixel 

basis. There are a number of different ways to divide this correction factor across the super-

resolved pixels such that they would convolve back to the original pixel value and maintain 

radiometric accuracy. In this algorithm, the correction factor is allocated among the super-

resolved pixels based on their MD distance from the original VIS spectrum, rather than being 

evenly divided across the sub-pixels of the degraded data. This distribution of the correction 

factor represents an assumption that pixels that are more dissimilar than their source are the 

major contributors to any radiometric inaccuracies and should receive a greater share of the 

correction. Following this, the super-resolved data should be radiometrically accurate and a 

match to the original data (see Table 1-1), which can be verified by again convolving the 

corrected pixels with the PSF. 
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Upon completion of the super-resolution program, a number of files are created, 

including the new super-resolved data, cluster maps, source maps, maps of homogeneous pixel 

locations in the higher resolution data, maps of the distance from each pixel to its source in 

Mahalanobis space, and maps of the size of correction necessary to make each pixel 

radiometrically match the original source data. These data files provide insight into how the final 

product (i.e., the super-resolved data of the lower resolution channels) was created, and can be 

used to compare the results from multiple runs in order to identify larger spatial patterns within 

the data.  

 

In order to verify the source of each of the newly super-resolved pixels, source maps for 

both the emissivity and the radiance data are examined (Figure 1-3). These maps indicate 

whether the pre-corrected value of the super-resolved pixel came from a cluster in the ISODATA 

tree or from a nearby homogeneous pixel. A super-resolved pixel that is sourced from the tree is 

more likely to represent a widely-distributed, yet sparse, end-member; whereas a pixel that is 

sourced from a neighbor is more likely to represent a continuation of the surrounding 

compositional unit. However, these are not strict rules for the super-resolution model results. The 

important test in examining the source maps is whether there is minimal to no recognizable 

spatial patterns in the distribution of choices. Such a coherent spatial pattern with one choice 

being more strongly preferred over the other would likely indicate a problem with the data in 

areas that are expected to be heterogeneous and compositionally diverse. There is no regularly 
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Table 1-1 Comparison of the original data to that of the super-resolved data over the area denoted by the 
white box in Figure 1-1A. (A) The super-resolved radiance data shows a greater dynamic range than the 
original, but, both sets of data have the same mean values over the region, indicating that radiometric 
accuracy has been preserved. All values shown are in W/cm2 str μm, and are multiplied by 104 for easier 
viewing. (B) The super-resolved emissivity data shows the same enhanced dynamic range as the radiance 
data. Some of the original emissivity data had emissivity values exceeding 1.0 following atmospheric 
correction. This issue is also seen in the super-resolved data. 
 
 

A Minimum Maximum Mean Standard 
Deviation 

 orig super-res orig super-res orig super-res orig super-res 
Band 1 / 2 0.56 0.1 1.69 2.25 0.93 0.93 0.12 0.13 
Band 3 1.15 0.58 2.72 3.47 1.65 1.65 0.17 0.18 
Band 4 1.33 0.58 2.95 3.69 1.86 1.86 0.18 0.19 
Band 5 1.61 0.82 3.32 4.07 2.19 2.19 0.19 0.2 
Band 6 2.05 1.19 3.88 4.72 2.68 2.68 0.2 0.22 
Band 7 2.15 1.4 3.92 4.7 2.77 2.77 0.2 0.21 
Band 8 2.17 1.29 3.86 4.49 2.77 2.77 0.19 0.2 
Band 9 2.06 1.29 3.56 4.17 2.61 2.61 0.17 0.18 

 
 

B Minimum Maximum Mean Standard 
Deviation 

 orig super-res orig super-res orig super-res orig super-res 
Band 1 / 2 0.882 0.868 1.140 1.151 1.021 1.021 0.033 0.032 
Band 3 0.947 0.943 1.027 1.042 1.000 1.001 0.013 0.013 
Band 4 0.930 0.926 1.006 1.016 0.967 0.967 0.009 0.009 
Band 5 0.900 0.898 0.964 0.967 0.933 0.933 0.007 0.007 
Band 6 0.913 0.912 0.932 0.935 0.932 0.932 0.001 0.001 
Band 7 0.922 0.920 0.974 0.976 0.948 0.948 0.006 0.006 
Band 8 0.938 0.935 0.999 1.001 0.969 0.969 0.007 0.007 
Band 9 0.942 0.941 1.016 1.024 0.980 0.980 0.009 0.009 



 

 23 

 

 
 
Figure 1-3 Source map results produced by the super-resolution approach. Bright pixels were sourced from 
the tree created by the ISODATA clustering process, whereas dark pixels were sourced from adjacent 
homogeneous pixels. (A) Source map for the emissivity data. (B) Source map for the radiance data. (C) 
Difference image: (A) minus (B). Light grey pixels indicate that both the emissivity and radiance were 
sourced from the same location; dark pixels indicate a source from adjacent homogenous pixels (in the 
radiance data) and from the tree (in the emissivity data). Bright pixels indicate a source from the tree (in the 
radiance data) and from adjacent homogeneous pixels (in the emissivity data). 
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discernible pattern in the source maps of either the super-resolved emissivity or radiance data, 

indicating that the spectra derived from the cluster tree are not from spatially limited areas. An 

isolated pixel can have a spectrum sourced from a spatially remote area, through the cluster tree, 

rather than rely only upon nearby homogenous pixels. There is a slightly greater occurrence of 

pixels sourced from the ISODATA tree distributed around the crater rims (Figure 1-3). These 

rim edge pixels are distributed throughout the image, rather than being allocated in any 

contiguous spatial region. During clustering, these pixels are clustered together and result in a 

center whose value is a better spectral match to their members than any spatially adjacent pixels. 

There is also no apparent pattern in the difference between these two images (Figure 1-3C), 

although the majority of pixels in the final super-resolved products were sourced from the same 

location (i.e., the ISODATA cluster created tree or the adjacent homogeneous pixels) in the two 

data sets.  

 

Because the super-resolved data represents two distinct runs of the program, with two 

different low resolution inputs (IR radiance and emissivity), seeing a pattern here would indicate 

an issue with the data. In both the emissivity and radiance source maps, the majority of pixels 

take their pre-radiometric correction values from adjacent homogeneous pixels, but a significant 

percentage are sourced from the ISODATA tree. The emissivity source map shows 84.4% of the 

super-resolved pixels were sourced from the adjacent homogeneous pixels (Figure 1-4A), 

whereas the radiance source map shows that 85.9% of the super-resolved pixels were sourced 

from adjacent pixels (Figure 1-3B). The difference between the two images (Figure 1-4C) shows 

that 92% of the super-resolved pixels came from the same source, with 4.8% sourced from the 
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Figure 1-4 Mahalanobis distance (MD) map results produced by the super-resolution approach. Bright pixels 
have a greater MD between the original VIS pixel and the VIS portion of the super-resolved spectrum 
inserted at that location. As such, these pixels will require greater radiometric correction than adjacent 
pixels. (A) Distance map for the emissivity data. (B) Distance map for the radiance data. (C) Difference 
image: (A) minus (B). Dark pixels in (C) are closer to their source in the super-resolved radiance data, bright 
pixels are closer to their source in the super-resolved emissivity data, and the light grey pixels have nearly 
equal distance between radiance and emissivity. 
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ISODATA tree in the emissivity data and from the adjacent homogeneous pixels in the radiance 

data. The remaining 3.2% of the super-resolved pixels were oppositely-sourced (i.e., from 

adjacent pixels in emissivity data and from the ISODATA tree in radiance data). 

 

The Mahalanobis distance maps used during the final radiometric correction step are 

shown in Figure 1-4. During the radiometric correction, an assumption is made that any 

correction should be weighted by the distance between the super-resolved pixel and its source. 

As with the source maps, a sufficient number of pixels with a high distance fall along the outline 

of crater rims and they can be easily discerned from the random distribution of distances in the 

remainder of the image. However, the overlap between crater rim pixels and pixels with high 

distance to their source is not complete. Statistics for these maps indicate that the pixels created 

by the super-resolution approach had spectra that matched well with their source (Table 1-2). 

Pixels whose match is perfect (an MD of zero) would receive none of the necessary radiometric 

correction in the final step, whereas those pixels with a large MD would receive a greater 

correction. This is due to the assumption that poor matches at this stage are the most likely cause 

of poor radiometric accuracy after convolving the data to the original resolution. A comparison 

(Figure 1-4C) of the two maps, by subtracting the emissivity distance map from the radiance 

distance map, shows that the two runs have very similar products. Statistics for this comparison 

can be found in Table 1-3. In this case, a majority of the pixels had a difference of 0.0, indicating 

that they derived their pre-radiometrically corrected spectra the same way. Those pixels which 

had a difference of 0.0 and were both originally sourced from the cluster tree indicate that pixels 

are clustered together similarly between runs. This is despite the initial random start and the 

difference between emissivity and radiance data. Although there was randomness in the initial 
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Table 1-2 Mahalanobis Distance between super-resolved pixels and their source, as used during radiometric 
correction. 

 
 

 Emissivity Data Radiance Data 
Average MD 0.27 0.28 
Maximum MD 33.2 34.5 
Standard Deviation of MD 0.46 0.48 
% with MD = 0 50.3 51.1 
% with MD < 1.0 95.5 95.5 
% with MD < 2.0 99.0 99.0 

 
 
 
 
Table 1-3 Difference between Emissivity and Radiance MD maps 

Minimum  
Difference 

Maximum  
Difference 

Mean 
Difference 

Standard 
Deviation 

% with no 
difference 

% with absolute difference 
< 1.0 

-2.9 5.1 0.01 0.11 83.2 99.9 
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choice of clusters, ultimately the ISODATA process terminates in the same state. The vast 

majority of both radiance and emissivity had MD values of less than 1.0, which also indicates a 

very good fit of the modeled data. The multiple runs of the algorithm (i.e., emissivity and 

radiance input data) also ensure extreme cases are not being generated. The algorithm has 

reproducible results even before the radiometric correction is applied.  

 

Super-resolved IR emissivity and radiance data were created with a spatial sampling of 

36 m per pixel (Figure 1-5C). Features such as the rim of the inner crater are more clearly 

defined, and small craters that were not visible in the original IR image are now more apparent. 

Also of note in the output product is the minimization of thermal shadowing, which is common 

in TIR data collected over topographic relief in the late afternoon (local time). These temperature 

variations, especially where they occur at the subpixel scale, can negatively impact the 

compositional interpretation of the surface (Bandfield et al., 2004b; Zhang et al., 2004).  The 

decorrelation stretch (DCS) approach can minimize this impact by highlighting similar 

composition surfaces in the same color and temperature differences within a particular unit as 

variation in the intensity of that color (Gillespie et al., 1986). However, DCS images can be 

difficult to interpret quantitatively and subpixel mixing is not easily recognized. The DCS 

images (Figure 1-6) of the original data show the effects of thermal shadowing as well as 

prominent pixel-to-pixel noise and line striping, making the interpretation of the color patterns 

more challenging for small features. These effects can be clearly seen in the DCS of IR bands 6, 

4, 2 in R, G, B, respectively (Figure 1-6E). In this color combination, the region of increased 

quartzofeldspathic material is denoted by the reddish-purple color (white arrow in the lower left 
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Figure 1-5 THEMIS radiance images and the super-resolution result for the crater central peak area. (A) IR 
radiance (channel 9) at 108 m/pixel. (B) VIS radiance (channel 3) at 36 m / pixel resolution. (C) Super-
resolved IR radiance (channel 9) now at 36 m / pixel. Figures (B) and (C) have been stretched using histogram 
matching to Figure (A) for display purposes. (D) Concentration map of quartzofeldspathic material with a 
range of 15 to 20 (cyan to green) areal percent (Bandfield et al., 2004a). 
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Figure 1-6 DCS results of the same region shown in Figure 1-5 with the original resolution shown on the left 
and super-resolved result shown on the right. The higher concentration of quartzofeldspathic material is 
denoted by the arrow (see previous figure). The super-resolved data show less thermal shadowing and pixel 
noise than the original data. These images have more muted colors because of the larger number of pixels, 
which directly affect the statistics of the DCS approach.  However the general color patterns are preserved. 
(A) Bands 8, 7, 5 in R, G, B. (B) Super-resolved bands 8, 7, 5 in R, G, B. (C) Bands 9, 6, 4 in R, G, B. (D) 
Super-resolved bands 9, 6, 4 in R, G, B. (E) Bands 6, 4, 2 in R, G, B. (F) Super-resolved bands 6, 4, 2 in R, G, 
B. The box highlights a small cluster of quartzofeldspathic pixels not evident in the original resolution data. 
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corner of the image), whereas the basaltic plains unit is blue to cyan in color. This reddish-purple 

region is along the edge of an area previously identified in Bandfield (2004a), and represents the 

strongest signature within the co-located and super-resolvable area used in this study. Other 

smaller reddish-purple areas can be seen elsewhere within the image. The dominant absorption 

band of the quartzofeldspathic material is shifted to a shorter wavelength (Figure 1-7) and 

therefore has a higher emissivity in IR band 6 (9.66 microns) resulting in the dominant reddish 

coloration of this unit. This is visible in the original resolution data; however, it is subtle and 

overprinted by pixel noise in band 4 (7.98 microns), which shows as bright green in the DCS 

image. The super-resolution version of this same DCS color combination clearly shows the 

coloration indicative of this unit without the pixel noise and with a minimum of thermal 

shadowing. In addition, the super-resolved data also reveals spatial patterns at scales not 

apparent in the original image. These were checked against a Context Camera (CTX) image of 

the region (Figure 1-8A) and the strongest quartzofeldspathic detections do not appear to 

correlate with any of the large rock outcrops/boulders. Rather this unit lies in a topographic low 

area, marked by the rectangle in the lower left of Figure 1-8A.  This area can be seen in slightly 

more detail in the segment of a Mars Orbiter Camera Narrow Angle (MOC-na) image shown in 

Figure 1-8B. The ridges surrounding this material may extend into the area shown in the HiRISE 

image in Figure 1-8C, in which high albedo material can be seen weathering out of two isolated 

peaks.  

 

Emissivity spectra were extracted from 108 m/pixel and the 36 m/pixel IR data (Figure 1-

7). Of interest was whether spectral shifts indicative of the quartzofeldspathic material would be 

detectable in the super-resolved data. In particular, did super-resolved pixels created from an 
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Figure 1-7 Sample spectra from super-resolved emissivity data. (A) Spectrum of a homogenous pixel. Error 
bars are less than the width of the line showing the spectrum, with a maximum difference from the original 
spectrum of less than 0.001. (B) Spectrum of a non-homogenous pixel. Error bars are used to indicate the 
extent of values seen in the nine super-resolved pixels derived from this original spectrum. (C) Spectra of 
both an original resolution IR pixel, and one of the co-located super-resolved pixels located within it. The 
super-resolved spectrum shows a shift in the minima, making it more similar to a mixture of the original 
spectrum plus the quartzofeldspathic spectrum used in Bandfield et al. (2004). 
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Figure 1-8 Higher spatial resolution data of the same spatial area shown in Figures 1-5 and 1-6. (A) A subset 
of CTX image P16_007108_1988, showing the central crater and surrounding area at 5.76 m / pixel (~ 40 
times greater than the super-resolved data). The central crater is located slightly off-center, allowing the 
regions of interest to the west and southwest to be shown. The large box indicates the area shown in (B) and 
the smaller box denotes the area shown in (C). (B) A segment of MOC image R22-00941 with a spatial 
resolution of 3.62 m / pixel, showing the arcuate ridge that extends from the central crater, as well as the 
depression to the south and west of this ridge. This basin is co-located with a number of quartzofeldspathic-
rich pixels identified in Bandfield et al. (2004a). (C) Two isolated high albedo peaks surrounded by weathered 
low-albedo material transported from the northeast. This image is a subset of HiRISE image 
PSP_001385_1985_RED, with a spatial resolution of 0.25 m / pixel. The higher albedo along the western 
slopes of these two peaks is shown in this image, but is also present in CTX, MRO, and THEMIS data. 
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original resolution IR pixel that had a basaltic signature show quartzofeldspathic signatures? This 

would confirm that the new higher resolution pixels created by this process were different than 

the original data and more importantly, were contributing to the average pixel-integrated 

spectrum of that original pixel. In other words, the super-resolution data would provide an 

independent means of identifying sub-pixel mixing of two compositional units, confirm the 

presence of a more areally-extensive deposit, and potentially identify the small-scale sources for 

this deposit. Example spectra from a pixel bordering on the quartzofeldspathic region are shown 

in Figure 1-7. These super-resolved pixels showed a distinct shift in the location of the 

absorption minima from longer to shorter wavelengths, and are associated with the smaller-scale 

spatial patterns seen in Figure 1-6. These spectra do not perfectly match the spectra from 

Bandfield (2004a), because they are located along the edge of the deposit and not extracted from 

the same region. A mixture between the spectra identified by Bandfield (2004a) and the 

surrounding material is evident in the spectrum, indicating that there is a local mixing between 

the two end-members in this region.  

 

A ratio of band 6 (10.21 μm) to band 5 (9.35 μm) shows these same shifts in the 

absorption minima location (Figure 1-9A). This ratio measures the lever arm between the 

location of the quartzofeldspathic minima (common in band 5) and the typical mafic minimum 

(common in band 6). Greater values would indicate a surface more enriched in 

quartzofeldspathic material. Values over the entire super-resolved area (Figure 1-9A), range 

from 0.82 (mafic-rich) to 1.35 (relatively quartzofeldspathic-rich) with a mean of 0.98 (slightly 

mafic). A very strong mafic signature accounts for 1.4% of the pixels, with an additional 44.4% 

having a definite absorption minimum in band 6. Nearly a third pixels (31.8%) show roughly  
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Figure 1-9 Band ratio image of band 6 (10.21 μm) divided by band 5 (9.35 μm) color coded and draped over 
the super-resolved temperature image with a 50% transparency. The mean value of in this image is 0.98. 
Green, and especially dark green, pixels have a more felsic component to their spectra. (A) Ratio map 
showing the total super-resolved area, using the same scale and orientation as in Figures 1-3 and 1-4. The 
super-resolved band 9 is shown beneath the color ratio map to provide spatial context. The locations of pixels 
with a higher ratio than the maximum in (B) are indicated by white arrows. The location shown in (B) is 
indicated by the large rectangle. (B) Ratio map showing the area surrounding the central crater feature, 
using the same scale and orientation as in Figures 1-5 and 1-6. The super-resolved band 9 is shown beneath 
the color ratio map to provide spatial context. 
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equal emissivity lows in bands 5 and 6 (ratio value = 0.995 – 1.005). Pixels with a mildly 

stronger quartzofeldspathic absorption account for 20.9%, and pixels having definite 

quartzofeldspathic signatures make up only 1.5% of the area. The area covered in Figure 1-9B, 

which is the same area shown in Figure 1-5, has a similar range of values as Figure 1-9A, with a 

ratio minimum of 0.82, a maximum of 1.29, and a mean of 0.99.  

 

There are seven pixels within the area of Figure 1-9A outside of the area of Figure 1-9B 

with values between 1.29 and 1.35, greater than the maximum ratio in Figure 1-9B. Four of these 

pixels form an arc to the north of the crater. This arc trends roughly parallel to the northeastern 

crater wall. One of the four points is located on the crater wall; the remaining three pixels are 

located outside the main crater wall, but appear to be along ejecta from the crater. There are also 

three pixels with a ratio value greater than 1.29 to the south of Figure 1-9B, with one point 

located on a prominent ridge inside the crater immediately to the south of Figure 1-9B, and the 

other 2 located to the southeast of the crater, also along crater ejecta. The locations of these 

pixels are indicated on Figure 1-9A. 

1.4 DISCUSSION 

The super resolution approach relies on the ISODATA clustering algorithm to create a tree of 

spectral values, with primary branches formed from the higher-resolution VIS data and 

secondary branches formed from the lower-resolution TIR data. For the THEMIS data examined 

here, this tree was the source for roughly 15% of the super-resolved pixels in the final product. 

There is a large degree of overlap between the two super-resolved data sets presented here 
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(emissivity and radiance). Nearly 92% of the pixels in both datasets have values from the same 

original source (either the ISODATA cluster tree or a nearby homogeneous pixel). These are 

indicated by the light gray pixels in Figure 1-3C. Ideally, the majority of the image would be 

gray, indicating that results are comparable between runs, even where using a different datasets 

over the same area. The distance map shows a similar pattern, with just over 83% of the pixels in 

each dataset having the same distance to their source (Figure 1-4C). This shows that the same 

matches were made in the two independent runs, even where starting with different datasets 

(radiance versus emissivity) over the same area. 

 

Source and distance maps both show a generally random spatial distribution, although 

some patterns are apparent. In particular, the inner crater rim and areas of the outer crater rim can 

be discerned in the source and distance maps. The pattern is not a complete match, with slightly 

more super-resolved pixels having an ISODATA tree source along the crater rim. This may 

reflect a lack of homogeneous pixels in this area, due to the albedo differences between sunlit 

and shadowed slopes in the visible data. The reduction in homogeneous pixels lowers the 

chances of finding an appropriate match because the number of homogeneous pixels nearby any 

given pixel is reduced. A slightly greater than average number of the crater rim pixels are also at 

a greater than average MD from their source. This may also reflect the limited number of 

possible matches that could be made for that pixel. The cluster center that forms the best possible 

match for these pixels is formed from both sunlit and shadowed slopes, and therefore does not 

match particularly well to either subset. On a larger crater, with greater sunlit or shadowed areas, 
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a sufficient number of homogeneous pixels would exist. However, with a smaller area shown 

here, and a smaller number of pixels with which to work, these clusters may not have sufficient 

members to exceed the minimum cluster size in ISODATA. 

 

The original resolution of IR channel 9 is compared to the super-resolved data of the 

same band (Figure 1-5). The reduction of shadows and increased spatial resolution allows 

geomorphic forms to be more clearly discerned in the super-resolved IR data. The clarity is 

nearly comparable to the original VIS data. In particular, this is evident along the ridges that 

radiate from the central crater along its southern and western rim, and in the greater detail in the 

shape of the relatively bright spot between these ridges.  

 

Similar levels of increased detail are also visible in the decorrelation stretch (DCS) 

images (Figure 1-6). Because the DCS results are dependent on the statistics of the input data (e. 

g., Gillespie et al., 1986), the super-resolved image does have less color intensity due to the nine-

fold increase in the number of pixels. However, each image has the same distribution of color 

patterns, which lends confidence that the super-resolution approach is not adding spurious data 

or creating artificial units not seen in the original IR data. The combination of the three DCS 

images displayed together permits differences to be visualized across a broad spectral region at a 

single glance (Bandfield et al., 2004a). The units that appear reddish-purple in Figure 1-6E 

denote emissivity spectra with absorptions at the shorter wavelengths. The spectral minima (e.g., 

Figure 1-7) have shifted towards band 5, or even band 4, from the band 6 minima seen in the 

more blue pixels in Figure 1-6E. Similar color variations are present over these regions in 

Figures 1-6A and 1-6C. Although pixels with these spectral shapes are present in the original 
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image, the super-resolved image has far more of them showing greater spatial detail. These 

patterns reveal the intermingling between the two units (i.e., the redder quartzofeldspathic and 

the bluer basaltic pixels) at a spatial scale not resolved in the original data. Furthermore, the 

super resolution results show a clear reduction in pixel to pixel noise and image line striping 

(e.g., Figure 1-6F), both of which are commonly enhanced in the DCS approach. The box in 

Figure 1-6F is centered on a cluster of pixels with the same coloration as the quartzofeldspathic 

material in the bottom left of the image. This region is just large enough (~150 m) to be detected 

in the original resolution IR data; however, noise in the DCS image makes confident detection 

questionable. This small cluster of quartzofeldspathic pixels is coincident with two small higher 

albedo mounds that are surrounded by lower albedo material (marked by the square in Figure 1-

8A), and seen in greater detail in Figure 1-8C.  

 

The CTX data shown in Figure 1-8A provides an overview of the area surrounding the 

central crater at over 40 times (5.76 m/pixel) the resolution of the THEMIS VIS/super-resolved 

THEMIS IR data. It is possible with CTX to compare the location of quartzofeldspathic 

anomalies originally detected by Bandfield et al. (2004a) and further resolved in the super-

resolved data with the corresponding geomorphic features. Two segments of this image have 

been highlighted to reflect different areas with possible quartzofeldspathic material. The larger of 

these regions (Figure 1-8B) is a semi-enclosed topographic low, and contains a number of 

THEMIS IR pixels highlighted by Bandfield et al. (2004a) as containing a significant 

quartzofeldspathic component in their spectra. The smaller region (Figure 1-8C) is the site of an 

isolated THEMIS IR pixel in the end-member map by Bandfield et al. (2004a) to the west of the  
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central crater. This single pixel corresponds to the region of the two isolated mounds. These can 

be seen more clearly at the meter (Figure 1-8A) and the centimeter (Figure 1-8C) scale, and 

consist of higher albedo material. 

 

The region denoted by the larger rectangle at the southern end of Figure 1-8A is a 

topographic low and is shown in Figure 1-8B. This is the site of the highest concentration of 

quartzofeldspathic material within the extent of Figure 1-8A. The more quartzofeldspathic-rich 

pixels are located within this topographic low, and not along the ridge separating it from the next 

depression to the northeast. However, other quartzofeldspathic pixels lie along the rough terrain 

that marks the southwestern side of the topographic low. In Figure 1-8B, there is indication of 

eolian reworking (e.g., dunes or dune-like linear features) from this terrain and deposition into 

the topographic low. These dunes are composed of a higher albedo material similar to that seen 

in the two small mounds. It appears to be covering the southwestern slope as well as part of the 

floor of the depression. If these pixels detected to the immediate southwest are associated with 

the terrain forming the ridge to that side of the depression, these dunes are likely composed of 

that weathered (i.e., quartz / feldspar minerals or hydrated silica) material (Bandfield et al., 

2004a). 

 

Figure 1-8C shows the two high albedo peaks to the west of the central crater, which is 

clearly visible, even at the scale of THEMIS VIS. The HiRISE image shows these peaks in even 

more detail (Figure 1-8C). The high albedo material appears to be located along their western 

sides, facing a region from which much darker albedo material is being weathered and 

transported to the east. The location of this higher albedo material is consistent across multiple 
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instruments on multiple satellites, making it unlikely to be the result of sun-facing slopes. It 

seems likely, given their apparently equal elevations, that these peaks may be composed of the 

same underlying bedrock as the terrain forming the southwestern ridge of the depression in 

Figure 1-8B. If this bedrock is part of the putative quartzofeldspathic body proposed by 

Bandfield et al. (2004a), it would have a minimum north-south extent of 7.5 km in this region. If 

on the other hand, these peaks are composed of the hydrated silica unit detected by Ehlmann et 

al. (2009), the results here validate the hypothesis that the material is derived from local bedrock 

and subsequently weathered. 

 

Some regions highlighted by Bandfield et al. (2004a) as having a higher concentration of 

the quartzofeldspathic signature are not homogeneous on the subpixel scale. The ratio of band 6 / 

band 5 in the super-resolved image (Figure 1-9) displays a much greater range of values than in 

the original IR data. The smaller pixel size would increase the likelihood of detecting 

compositionally “pure” pixels, composed of only a single end-member. Smaller pixels also 

permit a more accurate measurement of the surface area covered by spectral end-members with 

lower percentages. If these end-member outcrops are distributed heterogeneously, with erosion 

further distributing material, and these are subsequently sampled at a smaller spatial scale, some 

pixels will have an increase in percentage of that end-member, thus improving detectability. In 

particular, the concentration towards the lower center of Figure 1-5D is shown to be composed of 

isolated subpixels (Figure 1-9B). This is the region of the depression shown in Figure 1-8B. 

Areas with a stronger absorption in band 5 versus band 6, shown as green pixels in Figure 1-9B, 

tend to overlap regions with the terrain, as well as the dune-like material within the depression 

highlighted in Figure 1-8B. 
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The nature of a contact between two unconsolidated sedimentological units (i.e., the 

quartzofeldspathic material and the basaltic plains material) could provide insight into the 

process that produced it. Furthermore, the physical mixing of these units within a 100 m pixel 

would produce a spectrum that showed a linear combination of spectral features in proportion to 

the areal abundances of those units (Hamilton et al., 2001; Ramsey and Christensen, 1998; Wyatt 

and McSween, 2002). More traditional linear spectral deconvolution approaches have been used 

to identify the areal abundance of the spectral end-members using either their image-based or 

library-based spectra. However, these approaches are limited by the spectral resolution of the IR 

pixel, the availability and completeness of the spectral library, and the results do not reveal 

anything about the nature of the actual mixing patterns within that pixel. Using the technique 

here, the spatial resolution is improved, and the nine-fold increase in the number of IR pixels can 

be further interrogated using more traditional DCS or linear deconvolution approaches. In order 

to more accurately assess the results of super resolving THEMIS IR data, emissivity spectra were 

extracted and examined (Figure 1-7). Homogenous pixels (Figure 1-7A) show very little 

variation in their super-resolved spectra. The error bars denoting the range of values per band are 

actually less than the width of the spectral line. Non-homogenous pixels (Figure 1-7B) show 

shifts in peaks, and data values that vary as much as 0.047 from the original spectrum at any one 

band. The new spectra show that at least some sub-pixel scale surfaces have been enhanced and 

are more apparent in the super-resolved data than in the original resolution data. For example, 

the spectra (Figure 1-7C) of two nearby IR pixels at 36 m/pixel resolution show this effect. The 

dashed spectrum (quartzofeldspathic-rich) has a shift in the band minimum compared to the 

dotted spectrum (basaltic plains material). Upon super-resolution, the pixel from which the 

dotted spectrum was extracted is now subdivided into nine new IR pixels. The spectrum from 
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one of these has a band minimum, which has a well-defined shift to shorter wavelengths relative 

to the original pixel. This indicates the presence of more felsic material, and shows a shift 

towards the quartzofeldspathic solid spectrum in terms of band shape and band minimum 

(Bandfield et al., 2004a). 

1.5 CONCLUSIONS 

The super-resolution approach presented here produces enhanced IR images that are both 

visually appealing and radiometrically accurate, meaning the data can be analyzed with tools 

such the DCS and linear spectral deconvolution. Unlike pan-resolution techniques, areas where 

there is a significant difference in the appearance of a surface in the VIS and IR (such as warm 

dark sand, which would be bright in the IR and dark in the VIS) are handled accurately. 

Meaningful results are produced over these regions, with a clear reduction in pixel and line 

image noise, which appear as color variations in the DCS image of the original radiance data. 

The source of super-resolved emissivity and radiance data show a strong correlation, as does the 

pattern of Mahalanobis distances between the original and super-resolved pixels. These 

similarities indicate that it does not matter whether the radiance data is first super-resolved, 

followed by the separation of temperature and emissivity, or whether the temperature / emissivity 

separation is performed at the original resolution, and the emissivity data are subsequently super-

resolved. However, advantages to super-resolving the radiance data first include the ability to 

also have a higher resolution temperature image and a decrease in noise in the final product. The 

ISODATA clustering algorithm is detecting the same patterns within two different data sources. 
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 The similarity of the source and distance maps also indicates that although the ISODATA 

algorithm is seeded with random data, the algorithm tends to converge upon the same solution, 

which indicates a high level of reproducibility in the final results.  

 

The results reveal geomorphic and unit contact details within the smaller craters that are 

not evident in the original resolution. The super-resolved sub-pixels of an original pixel on the 

border of the area identified as a quartzofeldspathic exposure show a shift in the location of the 

spectral minima, away from the minimum of the original resolution pixel and towards the 

location of the minimum of the quartzofeldspathic signature detected in Bandfield et al. (2004a). 

This indicated a diffuse compositional boundary, likely an eolian contact of two sedimentary 

surface units rather than a contact from two distinct rock units. The contact and the areal extent 

of the unit is therefore more accurately defined, which gives strength to the idea that this 

technique can be used to enhance the detection of small scale deposits previously not identified.  

 

These results are a significant expansion beyond those presented by Tonooka (2005), 

where three separate spatial / spectral regions collected from Earth-orbit were used. This 

technique uses a more robust clustering algorithm, has been refined for accuracy, operates on 

both Earth and Mars orbital data, and can operate with only two spatial / spectral regions. It can 

be easily applied to any instrument that contains data from two different spatial / spectral 

regions, provided that both are multi-spectral, where a greater number of bands will produce both 

more and better fitting cluster centers during step 3. Here it has been used to create THEMIS IR 

data with a spatial resolution matching that of co-located THEMIS visible data. Future work will 

expand the model to use data sets collected by other instruments. For example, we expect to 
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super-resolve THEMIS IR data using higher-resolution, multi- or hyper-spectral data from 

CRISM or HRSC. The strict requirement for contemporaneous data collection will be assessed to 

explore utilization of data collected over a longer time span. This will permit a significant 

increase in the areas that could be super-resolved to resolutions of 20m or better. Further, such 

relaxation would allow the application of this technique to the same location over multiple time 

frames. Extended super-resolved coverage would be a powerful tool for detection of recent 

surface changes, small scale spatial anomalies, and potentially permit the creation of a super-

resolved thermal inertia dataset. In examining this region with both super-resolved THEMIS IR 

data and higher resolution data not available at the time of publication for Bandfield et al. 

(2004a), it is apparent that the spectra from the quartzofeldspathic material are located in regions 

composed of sub-pixel scale rocky terrain and material that is likely weathered from it. This 

material, as speculated in Bandfield et al. (2004a), could be an underlying granitoid body that 

was fractured during the later impact event. It is at least 7.5 km long in this region on the north-

south axis if both regions highlighted in Figure 1-8 are from the same body. Ehlmann et al. 

(2009) identified hydrated silica in this same area in the form of mobile material derived from an 

unknown rock unit. The source unit for the mobile material, whether hydrated silica, 

quartzofeldspathic minerals, or a combination of both, could be the unit seen cropping out.  
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2.0  MODIFICATION AND ANALYSIS OF A SUPER-RESOLUTION ALGORITHM 

2.1 INTRODUCTION 

Super-resolution is the process of obtaining a spatial resolution greater than that of the original 

(or native) resolution of a data source. The super-resolution technique presented here is a 

modification of an algorithm (Tonooka, 2005) that was tested successfully using multi-resolution 

data from the Earth orbiting Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) instrument (Yamaguchi et al., 1998). The primary focus of these 

modifications was to enable the algorithm to process data from the THEMIS instrument 

(Christensen et al., 2004). Other instruments, with higher spatial resolution in different spectral 

regions than the THEMIS instrument, have shown a need for higher resolution Thermal Infrared 

(TIR) data than provided natively by THEMIS. However, it is unlikely that any TIR instrument 

with a higher spatial resolution than the THEMIS instrument will be sent to Mars in the near 

future. The modified super-resolution algorithm may help meet the need for this higher 

resolution TIR data. THEMIS data have different spatial resolutions, different number of bands 

within each spectral range, lack an intermediate spatial / spectral range, and have data that is 

organized and processed differently than ASTER. As a result, significant modification of the 

algorithm was necessary. These modifications include changes to permit the algorithm to use 

data with only two different spatial resolutions and to expand the range of acceptable input data 
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for the instrument. In addition, other modifications included performance improvements and the 

implementation of a different clustering method within the algorithm. After these modifications, 

testing was done to ensure that no errors were introduced, and that the modified algorithm 

produced the same results on test data as the original method. The algorithm, as described, has 

been implemented in the Interactive Data Language (IDL) scripting language and should be 

easily implementable in other programming languages. 

 

2.2 MODIFICATION OF THE ALGORITHM 

The technique initially described in Tonooka (2005) is a ten step process. In the first five steps, 

the algorithm uses ASTER Visible / Near Infrared (VNIR) data to super-resolve ASTER 

Shortwave Infrared (SWIR) data. Steps six through ten repeat the same algorithmic process of 

the first five steps to super-resolve the ASTER TIR data, but make use of ASTER VNIR data 

and the newly super-resolved ASTER SWIR data as the higher-resolution data set. In adapting 

this algorithm to apply to the current ASTER and THEMIS instruments' two-resolution data, it 

was necessary to simplify the algorithm to the first five steps. When intermediate data are 

available, as in older ASTER data, those data are super-resolved first, and a three-level tree built. 

After this modification, the super-resolution algorithm can be implemented as a five-stage 

process. Within each stage, some changes have occurred from the original description provided 

in Tonooka (2005). The description of each stage and how it varies from the description of the 

original algorithm is documented below. 
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2.2.1 Step 1: Convolution with the Point Spread Function 

In the first step, higher resolution bands are convolved with the instrument’s Point Spread 

Function (PSF) to produce a dataset with the same pixel size as the lower resolution bands. The 

PSF describes the amount of blurring induced by the instrument. In an ideal instrument, 100% of 

the signal sensed within any given pixel would originate only within the area of that pixel. In 

actual instruments, a large portion of the sensed signal for any given pixel originates within the 

neighboring pixels. In many instruments, the PSF is either symmetrical or assumed to be 

symmetrical in both the X and Y axis. The original algorithm defines the PSF of the ASTER 

instrument as a 2 dimensional Gaussian, with a value determined from pre-flight measurements. 

In modifying the algorithm, the PSF specification has been converted to use the alpha notation 

described in Townshend et al. (2000). This provides a more generalized approach for PSF usage, 

and enables the application of the algorithm to other instruments. In the particular case of the 

ASTER instrument, the ASTER instrument’s PSF’s α is calculated to be approximately 6.56 x 

10-2 based on the Gaussian equation and specified standard deviation given in Tonooka (2005). 

This translates to 75.5% of a pixel’s signal originating from within that pixel, with the rest of the 

signal originating from the neighboring 8 pixels (Table 2-1). For those pixels that do not have a 

full complement of 8 neighbors, or edge pixels, a value is still calculated but these pixels are not 

considered to be fully valid data. 

 

The actual IDL code implements Step 1 as three separate actions. First, the high-

resolution image is resized to match the number of pixels in the low-resolution image. This is 

accomplished using the IDL frebin function, freely available from http://idlastro.gsfc.nasa.gov.  
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Table 2-1 The ASTER Point Spread Function (PSF) used in this algorithm, based on the Gaussian equation in 
Tonooka (2005). This PSF is based on an alpha value of 0.065, and shows 75.5% of the signal recorded for a 
pixel originates within the spatial area of that pixel, and the rest originates within the surrounding pixels. 
 
 

0.0043 0.0570 0.0043 
0.0570 0.7546 0.0570 
0.0043 0.0570 0.0043 

 
 
 
Next, the resized data are convolved with the PSF using the IDL convolve function, also freely 

available at the same site. Finally, as the data were in digital number (DN) format originally, the 

degraded resolution data are rounded to an integer value, and then reconverted to floating point. 

2.2.2 Step 2: Identifying Homogeneous Pixels 

The second step creates a homogeneous pixel map. The original implementation by Tonooka 

(2005) does this by examining the data with degraded resolution pixels and their component 

(original, high resolution) pixels. If the standard deviation, in each band, of the component pixels 

is less than a specified threshold, that degraded pixel is considered to be homogeneous. In 

Tonooka (2005), the threshold is defined as the band average of the spatial standard deviation 

over the whole image of each band. Based on this definition, the code first calculates a standard 

deviation for each band. Next, these values are averaged together to create the threshold for 

homogeneity. The component pixel’s standard deviation is then calculated for each band. If the 

greatest standard deviation is still less than the threshold value, that pixel is considered to be 

homogeneous. All edge pixels are assumed to be non-homogeneous due to their handling in step 

1 of the algorithm.  
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2.2.3 Step 3: The Cluster Tree 

The third step generates a tree by initially clustering the homogeneous pixels from the degraded 

data, and then further clustering co-located low resolution data within each cluster. In both the 

original (Tonooka, 2005) and this implementation, the distance measurement used for clustering 

is Mahalanobis distance instead of Euclidian distance. Mahalanobis distance (MD) measures the 

difference in variance and correlation between bands of data (Mimmack et al., 2001). In effect, 

MD can be thought of as being equivalent to Euclidian distance for multi-dimensional data, 

except that it takes into account the differences of scale along each axis and discounts 

dimensions which are highly correlated. The original implementation uses MD in conjunction 

with the K-Means clustering algorithm to create a tree of clusters. Because the K-Means 

algorithm requires an assumption be made a priori as to the number of clusters in the data, this 

implementation made use of a slightly modified ISODATA algorithm (Ball and Hall, 1967). The 

ISODATA algorithm used within this work was implemented by the author in IDL based on the 

published algorithm (Ball and Hall, 1967), and uses MD for clustering. 

 

The ISODATA algorithm is similar to the K-Means algorithm, but does not require any 

assumptions be made about the final number of clusters. In both cases, a number of initial cluster 

centers are provided to the algorithm as it begins. For ISODATA, choosing too few cluster 

centers initially will lead to a large number of clusters being split; choosing too many cluster 

centers initially will lead to a large number of clusters being joined. Either case increases the 

run-time of the algorithm, and in extreme cases may prevent the algorithm from running to 

completion in a reasonable amount of time.  
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In the ISODATA implementation within the modified algorithm, after the user has stated 

how many initial clusters should be used, this value is increased by 10%. A random pixel is 

selected from the degraded data. This pixel becomes the cluster center for the first cluster. The 

MD between this pixel and every other pixel is then calculated. The pixel with the largest MD is 

selected as the second cluster center. The third cluster center is the pixel with the largest 

combined MD to the first and second clusters; the fourth cluster center has the largest combined 

MD to the first three centers, etc. If the MD to any existing cluster center is found to be 0, that 

pixel is rejected, and not permitted to be a new cluster center. This prevents pixels with the same 

spectral composition from being selected multiple times, even if that spectral composition is 

sufficiently different from the rest of the image to give it the largest combined MD. After all 

potential cluster centers have been calculated, the distance between every cluster center is 

measured. The 10% additional cluster centers are then removed by finding the cluster center 

pairs which are closest to one another, and removing the first member of those pairs. This helps 

de-emphasize data variability near the extreme data values, and leads to a more even distribution 

of the initial cluster centers across the data. After the 10% additional cluster centers have been 

removed, all data are clustered within ISODATA using the remaining cluster centers to seed the 

initial iteration of the algorithm. After the initial iteration, subsequent iterations recalculate the 

cluster centers based upon the values of the data within that cluster. 

2.2.4 Step 4: Assignment of Super-Resolved Values 

During step 4, initial values are assigned to each super-resolved pixel. As in the original 

algorithm, these values are selected from both the data tree created in Step 3 and from nearby 

homogeneous pixels. The user is required to define a spatial radius, in number of low-resolution 
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pixels, to check for the best-fit. The super-resolution algorithm then finds all homogeneous 

pixels within that radial distance of the super-resolved pixel, and calculates the MD to each 

pixel. As each pixel's MD is calculated, it is compared to the current MD. If the new value is 

lower, the spectrum of that pixel and the MD value are updated, resulting in the selection of the 

spectrum that has the lowest MD from within the specified radial distance. After the best fit 

within the map is found, the data are then compared to the cluster tree. This is done by first 

finding the minimum MD between the co-located high-resolution pixel and the high-resolution 

cluster centers. The associated low-resolution sub-clusters are then compared to the original 

spectrum. If the minimum MD from these comparisons is less than the MD from the map, the 

spectrum of the sub-cluster center is used instead. 

 

In data with three spatial resolutions available, the MD is calculated by assigning 

fractional values to the high and middle resolution MD’s. Weighting between spectral regions is 

defined by user input, and required to be a value between 0 and 1. This value, W, is multiplied by 

the higher resolution MD, and 1-W is multiplied by the intermediate resolution MD. The default 

recommended W value is 0.7, reflecting the greater importance given to matching the higher 

spatial resolution data. The MD of the intermediate data measures differences within only the 

pixels co-located with the higher resolution cluster; as such, small differences within the limited 

data are magnified beyond the MD that would be calculated for them when using the entire data. 

2.2.5 Step 5: Radiometric Correction 

No significant changes from the original algorithm were made in the final step. After allocation 

of spectra in the previous step, values are only best-fit data. In order to maintain radiometric 
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accuracy, the newly super-resolved data are degraded back to the original resolution with the 

PSF for comparison to the original data. A correction factor is then calculated by finding the 

difference between the original and degraded super-resolved data. Rather than splitting this 

correction factor equally between the co-located super-resolved pixels, it is instead allocated 

according to the MD of the super-resolved pixels. Super-resolved pixels with high MD are 

poorer fits than their neighbors; in this way, the correction is given dominantly to poor fits. The 

resulting correction is then added to the values created in Step 4. 

2.3 TESTING METHODOLOGY 

2.3.1 Datasets 

Three different sets of data were used for performance and behavior analysis of the algorithm. 

The first set consisted of ASTER data acquired on May 16, 2000 over Ishioka City, Japan. This 

scene was the same scene used in Tonooka (2005), and was chosen for comparative purposes. 

The subset used for super-resolution covers an area of 9.9 x 8.1 kilometers (km). Where pixel 

locations are specified, pixel 0, 0 in the upper left of the super-resolved area was located at pixel 

2496, 2460 of the full scene VNIR data. One significant difference from the Tonooka (2005) 

paper is that the ASTER SWIR bands were crosstalk corrected prior to the application of the 

modified super-resolution algorithm. ASTER SWIR bands suffer from crosstalk contamination 

between detectors due to a stray light error in which incident light to band 4 propagates to other 

bands via multireflection (Iwasaki and Tonooka, 2005). A correction for this problem was not 

available at the time of the original super-resolution implementation. 
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The second data-set consisted of THEMIS data I33902002 (TIR) and V33902003 (VIS), 

and provided coverage of a putative chloride deposit on Mars. This deposit is located along the 

southern portion of a crater centered near 180.5° E, -27.0° N, in northwestern Terra Sirenum, 

with the chloride unit centered near 180.46° E, -27.25° N. The unit covers an area roughly 15 x 

10 km. These data were converted to emissivity and atmospherically corrected using previously 

described methods (Bandfield et al., 2004; Hughes and Ramsey, 2010) prior to application of the 

super-resolution algorithm. 

 

The third set is an artificially generated terrain, sometimes referred to as TerrGen, using 

an alpha value of 0.14645 (or 50% of the pixel energy originates from that pixel), two end-

members, and two-fold difference in spatial scale between high and low resolution pixels. Both 

the high and low resolution data have 4 bands. End-member spectra were created and selected 

separately for each resolution, with values that range between 0 and 1000. These particular 

values are meaningless. As the super-resolution algorithm looks only for spatially co-located 

patterns within data, what the data actually measures is irrelevant to the process. The algorithm 

works equally well on raw DN, radiance, emissivity, or even non-spectral measurement values, 

with the caveat that the end-user must ensure no other factors can influence patterns in one data 

set over the other. As an example, the ASTER and THEMIS data are both atmospherically 

corrected to minimize contributions from the intervening distance. 

 

Pixels were allocated randomly at a low spatial resolution, with a 30% chance of being 

purely end-member 1, 30% chance of being purely end-member 2, and a 40% chance of being a 

randomly mixed pixel. In mixed pixels, each sub-pixel had an equal chance of being either end-
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member. Mixed sub-pixels could have easily been created in this process as well, but only end-

member pixels were used to simplify measurement and interpretation of results. During this 

process, a high-resolution map and a “super-resolution” map were created. Pixels from the 

“super-resolution” map were convolved with the PSF for creation of the low-resolution map, 

leading to a large number of possible final spectra for any given low-resolution pixel. Five 

possible types of resultant spectra can be created just within the space of the low resolution pixel: 

purely end-member 1, mostly end-member 1, mixed evenly, mostly end-member 2, and purely 

end-member 2. Spectra were then modified during convolution with the defined PSF, in which 

half of the pixel value is derived from the adjacent pixels. As an example of how many ways any 

individual pixel's spectrum could be modified by the surrounding pixels, ISODATA clustering of 

this dataset found 245 separate clusters in less than 100 iterations rather than 2 (end-members) or 

5 (pixel composition types) that may be initially expected. 

 

The performance of each of the five steps is determined by user input. An initial run was 

performed for each data-set, using the default values (Table 2-2) for all variables. Default values 

were based on those provided by Tonooka (2005) for Earth, and used as a guide for THEMIS 

and TerrGen data. During testing of these variations for each step, one variable was 

systematically altered while all non-tested user input values were held fixed at their default 

value. The output data were then compared to each other and to the data from the initial super-

resolution results of each data-set. This was done by examining the behavior of the super-

resolution algorithm during data processing, the quality of the output in terms of image 

appearance, and the statistical distribution of the data as compared to the original non-super-

resolved data. 
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 Table 2-2 The default values used for variables within the super-resolution algorithm. During testing, one 
value was allowed to vary in a systematic fashion, whereas all other values were held fixed. 
 
 

Variable Earth Data Mars Data Artificial Data 
Alpha 0.06565 0.1 0.14645 
V_T_Distance 10 10 10 
V_S_T_Distance 10 n/a n/a 
Weight 0.7 n/a n/a 
ISODATA Variables    
Initial VIS Clusters 50 50 50 
Initial SWIR Clusters 10 n/a n/a 
Initial TIR Clusters 5 10 10 
ChangeLimit 0.50% 0.50% 0.50% 
MaxStdDev 4 4 4 
MinDistance 2 2 2 
MaxPairs 4 4 4 
MinMembers 0.01% 0.01% 0.01% 
VIS BandMax 255 0.012 1000 
SWIR BandMax 255 n/a n/a 
TIR BandMax 4300 1.05 1000 
Limit 100 100 100 
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2.3.2 Step 1 Testing Methodology 

To test the effect of incorrect alpha values on the super-resolution process, data were super-

resolved using 5 different alpha values. Each dataset was super-resolved with alpha values 

equivalent to 0%, 25%, 50%, 75%, and 100% of a pixel’s signal originating from within the area 

of that pixel. In cases where the correct alpha value is close to one of these values, the correct 

value was used instead. ASTER data were processed with an alpha value equivalent 75.5% 

instead of the alpha value equivalent to 75%. THEMIS data were processed with an alpha value 

equivalent to 50.6% instead of the alpha equivalent to 50% used for the ASTER and TerrGen 

data.  

2.3.3 Step 2 Testing Methodology 

Homogeneous pixels can be defined in a number of different ways. The super-resolution 

algorithm defines a single threshold value as the average of the standard deviations of each band 

for the entire image. To test the impact of other definitions, the code was modified to test the 

following threshold definitions: a single value defined as the average of the standard deviations 

of the super-resolved area or area-of-interest, multiple values, with each band being compared to 

the standard deviation of that band across the entire image, and multiple values, with each band 

being compared to the standard deviation of the super-resolved area or area-of-interest. For Earth 

data, the super-resolved area matched that used in Tonooka (2005). For artificial data, the area-

of-interest was defined as the middle 250 x 500 low-resolution pixels. For Mars data, the super-

resolved area was defined as the area immediately surrounding the putative chloride deposit.  
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2.3.4 Step 3 Testing Methodology 

Step 3 represents the most significant change from the algorithm in Tonooka (2005). There are 

several user-defined values within the ISODATA process, but the two with the largest impact on 

the final results are the initial number of clusters used and the maximum number of iterations. 

These variables define how far the system starts from a final, stable cluster map and whether or 

not a sufficient number of iterations are permitted to reach this step. Other values, such as the 

minimum number of members per cluster or maximum number of clusters to join in any 

iteration, can impact this process, but do not have the same controlling effect. As a result, testing 

of step 3 was done by varying these values one at a time. The initial number of clusters was 

varied between 5 and 1000, and the number of iterations was varied between 10 and 10,000. The 

super-resolved ASTER data results were also compared to Tonooka (2005). 

 

2.3.5 Step 4 Testing Methodology 

The main variable impacting the result of step 4 is the radius to use for searching nearby 

homogeneous pixels for initial super-resolution values. By default, the program uses a radius of 

10 low-resolution pixels, which is the same value used in Tonooka (2005). Tests were performed 

setting this value to 5, 15, and 20 pixels. Data were also super-resolved using a value of 0 (all 

values from the tree). This permitted the examination of the influence of the cluster-tree on the 

super-resolution process. 
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2.3.6 Step 5 Testing Methodology 

The correction factor calculated within this step is allocated among the super-resolved sub-pixels 

based upon their MD within the default code. This can be interpreted in two different ways, with 

both being tested. In the first method, the difference between the original and degraded super-

resolved data was divided by the convolved MD of the super-resolved pixels, and this amount 

was multiplied by the MD of each super-resolved pixel to create the correction. In the second 

method, the difference between the original and degraded super-resolved data was divided by the 

sum of the MD of the associated super-resolved pixels, and this amount was multiplied by the 

MD of each super-resolved pixel to create the correction. An additional third method was tested, 

in which just the difference between the original and degraded super-resolved data was used as 

the correction. A method based upon allocating the correction factor based using the shape of the 

instrument PSF was also considered, but was discarded when it proved infeasible to apply to data 

whose size difference was not a multiple of the scale of the PSF. 

 

The clearest way to illustrate the impact of the correction factor and different ways of 

allocating it can be seen by examining a single low-resolution pixel and its associated super-

resolved sub-pixels. ASTER band 10 data from Earth is presented in DN, whereas THEMIS 

band 4 data are emissivity values. This allows a comparison of the effects of relative scale; 

ASTER DN are generally several orders of magnitude larger than their associated MD values, 

THEMIS emissivity are of the same general magnitude. In both cases, the pixel whose upper left 

super-resolved sub-pixel was located at 240, 240 was examined. By examining a single pixel and 

a single band, it is feasible to show how the correction factor was developed, and how it was then 

allocated using different methods. 
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2.4 RESULTS 

2.4.1 Step 1 Results 

The DN and calculated calibrated radiance of the super-resolved ASTER data shows the impact 

of choosing an incorrect PSF (Figure 2-1). If the correct alpha value is used, the mean calibrated 

radiance of the super-resolved data is closest to that of the original data compared to the other 

datasets. As the alpha value moves away from the correct value in either direction, there is an 

increase in the mean calibrated radiance values. Similarly, the correct PSF produced the fewest 

number of VNIR clusters, with 100 clusters found in ISODATA. As the alpha value used for 

calculating the PSF moves away from the correct value, a greater number of clusters are found. 

 

The impact of an incorrect PSF on Mars emissivity data is less clear. All five average 

image spectra plot on the original average image spectrum. The average spectral difference 

between data super-resolved with any PSF and the original data was 4.0 x 10-5. The largest 

difference between original and super-resolved average spectrum in any one band is 1.2 x 10-3, 

with total spectral differences across all bands ranging between 9.0 x 10-5 and 0.004. The 

TerrGen data shows similar results, with all PSF values producing similarly equal results. 
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Figure 2-1 The original data compared to super-resolved data using different alpha values for calculation of 
the Point Spread Function. All images are ASTER Band 14, and are histogram matched to image A for easy 
comparison. (A) The original Band 14 data, clipped to the area of super-resolved data, with a linear 2% 
stretch. (B). The super-resolved product with an alpha of 0.06565 (75.5%), which is the correct alpha value to 
use for ASTER and produces both the most radiometrically accurate and clearest overall result. (C) The 
super-resolved product with an alpha of 0.5, or 0% of the pixel's energy originates from within its spatial 
area. (D). The super-resolved product with an alpha of 0.25 (25%). (E). The super-resolved product with an 
alpha of 0.14645 (50%). (F). The super-resolved product with an alpha of 0.0 (100%) 
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2.4.2 Step 2 Results 

The threshold used for determining whether or not a degraded high-resolution pixel is 

homogeneous or not is defined in Tonooka (2005) as the band average of the spatial standard 

deviation over the whole image of each VNIR band. This was implemented into the work 

examined here as a single value, calculated by averaging the standard deviation of each band 

together. For the ASTER data, the average standard deviation of the entire scene for bands 1, 2, 

and 3N is 32 Digital Number (DN, rounded to the nearest integer value). For the sub-scene, it is 

less than half that amount, (15 DN). As expected from this being an average, the threshold value 

is greater than the standard deviation of at least one band in both cases. Where the threshold 

values are determined by band instead, the thresholds become 35, 25, and 37 (for the whole 

image) or 12, 13, and 20 (for the sub-image). The difference between 12 DN (band 1, area of 

interest only) and 32 DN (the average of the standard deviations of the entire scene) is 

significant; 12 DN represents less than 5% of the total possible data range (0 – 255), while 32 

DN is 12.5%. The default threshold value (32 DN) identifies 82,442 pixels convolved to the 

intermediate spatial resolution (93% of the scene) and 6,991 pixels convolved to the low spatial 

resolution (70% of the scene) as homogeneous.  

 

The Mars data had a default threshold of 1.43 x 10-4 emissivity, or 2.4% of the data 

range, with the standard deviation of band 4 being one quarter and band 5 being one half of this 

value. If only the area of interest is considered, this single threshold decreases to 1.09 x 10-4 

emissivity, with an equivalent drop in standard deviation across all bands. The default value 

selects 74,393 pixels convolved to the lower resolution as homogeneous, or 11% of the scene. 
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The difference between per-band and single value can be more clearly illustrated within 

the TerrGen artificial data. Where a single threshold value is used from the entire image, the 

calculated value of 380.8 represents over one third of the data range. As the TerrGen data is 

randomly distributed, unlike a natural surface, there is no significant difference between the 

threshold values of the whole image and the image subset. Ignoring the effect of the PSF, this 

does correctly select only those pixels which are purely one of the two end-members. For those 

pixels in which there was an even contribution from both end-members, 3 bands exceed this 

threshold, whereas the pixels in which the contribution is mostly from one end-member have 2 

bands exceeding the threshold. As the impact of the PSF is considered though, contributions 

from surrounding pixels work to homogenize the data. As a result, the super-resolution program 

found 322, 648 homogeneous pixels instead of the actual 300,000 created homogeneous pixels. 

This represents 4.5% of the total scene being incorrectly selected.  

2.4.3 Step 3 Results 

During processing of both Earth and Mars data, a limitation within the IDL environment was 

encountered. Within some operating systems, IDL array creation of over 800 megabytes (MB) is 

problematic, with problems commonly occurring even before this size is achieved. Within the 

version of IDL used for this work, there is also a limit of 2.0 gigabytes (GB) for array size for 

any operating system. There were tens of thousands of homogeneous pixels in both data sets, and 

cluster assignment is done by creating a floating point array (4 bytes per array cell) with 

dimensions equal to the number of clusters on one axis and the number of homogeneous pixels 

on the other in order to track MD between pixels and cluster centers. This array rapidly exceeded 
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the memory allocation or memory addressing capability of IDL, which prevented testing of very 

large values of initial number of clusters (i.e. all homogeneous pixels as their own cluster center), 

and limited the number of iterations possible for moderately large starting values.  

 

The artificially generated data were not examined within this test due to these memory 

limitations. With over 322,000 homogeneous pixels, there was a low limit to the number of 

possible clusters. For an initial 500 clusters, this limitation was reached before 10 iterations. For 

any larger number of initial clusters, this limitation was reached during array creation and before 

any initial cluster assignments could be made. This limitation is implementation dependant; the 

algorithm would not have this issue in a different language, or if steps were taken to allow 

writing of memory to disk during array creation within the current implementation. 

 

Results from testing Earth and Mars data are presented in Table 2-3. In both data sets, a 

metastable state exists around 10 clusters, as seen in the results of an initial 5 end-members 

regardless of the number of iterations. Due to the small size relative to the initial starting value of 

the other tests, this metastable state was not encountered at other initial means starting values. 

Within 50 initial end-members and varying iterations, the default case of 100 iterations shows 

the greatest number of clusters in the Earth data, and is bordered by fewer means on either side 

in the Mars data. In most cases, the initial number of means and the number of iterations are both 

positively correlated with the final number of clusters. 
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Table 2-3 The initial starting number of VNIR clusters and the maximum number of ISODATA iterations 
are compared to the final number of VNIR clusters. These two variables are the dominant factors in 
determining the final number of clusters. Both show positive correlation with the final number. 
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2.4.4 Step 4 Results 

In the method of Tonooka (2005), a circle with a radius of 10 low-resolution pixels is checked 

first for the best-fit homogeneous pixel spectrum before comparison to the cluster tree. In the 

same data used by Tonooka (2005), this resulted in a mean MD of 1.14 and 71.8% of the super-

resolved pixels sourced from the map (Figure 2-2). With increasing radii, a decrease is seen in 

the mean MD and the percentage sourced from the map appears to asymptotically approach 82%.  

Decreasing the radius sees a significant drop-off in both fit, as measured by average MD, and 

percentage sourced from the map, with a radius of 0 showing 99.7% from the tree and an average 

MD of 2.64. The 0.3% not sourced from the tree were pixels whose MD exceeded the default 

value used to indicate no fit within the map; the same issue is present within the artificially 

generated terrain but not within the Mars data. The overall appearance of the image, in terms of 

visual appeal, improves with increasing radius.  The artificial terrain and Mars data show the 

same trend in mean MD, although the artificial terrain sources entirely from the image by a 

radius of 5, reflecting the relatively few true end-members present within the artificial terrain 

data. 

2.4.5 Step 5 Results 

Table 2-4 shows the distance, initial value, and correction factors of each of the three different 

radiometric correction methods for the ASTER data. The original low-resolution pixel associated 

with these data had a value of 1205 DN, whereas the uncorrected DN values range from 1129 to 
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Figure 2-2 This figure shows the effect of altering the radius searched within the image for an adjacent 
homogeneous pixel. (A) In all three data-sets, there is a decrease of mean Mahalanobis Distance (MD) with 
increase in radius, asymptotically approaching a lowest value for each data set. In the Earth data, this 
appears to be 0.9, for the Mars data it appears to be 0.5, and for the artificial terrain it appears to be 0.02. 
Better data fits have lower MD values. (B) The percentage of super-resolved pixels sourced from the image 
asymptotically approaches a final value. In the natural data (Earth and Mars), this value is less than 100%. 
This shows that the cluster-tree is a necessary component of the super-resolution process, and improves the 
final product. However, as can be seen in a radius of 0, it is not sufficient on its own. 
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Table 2-4 Super-resolved pixel 240, 240 of ASTER band 10 is traced from the initially assigned super-resolved value through each of the three different 
radiometric correction methods. The associated original resolution pixel has a value of 1205 DN. 
 
 



 

 69 

1234. After correction, the equal allocation method has the value closest to original data, with a 

convolved value of 1204.82. As the DN values are integers, this is rounded to 1205 DN. The 

weighted method using the convolved distance of 0.5187 as the divisor to calculate the 

correction factor produces the next best results, with a convolved value of 1204.71; this also 

rounds to 1205 DN. The weighted method using the summed distance of 18.2893 produces non-

radiometrically accurate results. The convolved and rounded value produced with this method 

1190 DN. 

 

The results of the same tests to THEMIS band 4 are shown in Table 2-5. The original 

low-resolution pixel associated with these data had an atmospherically corrected emissivity of 

0.9766, whereas the non-corrected pixels had values ranging between 0.9689 and 0.9770. The 

same pattern of correction results was seen as in the Earth data. The equally allocated correction 

produced a convolved value of 0.9763, the weighted by convolved distance correction produced 

a convolved value of 0.9761, and the weighted by summed distance method produced a 

convolved value of 0.9737. 
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Table 2-5 Super-resolved pixel 240, 240 of THEMIS band 4 is traced from the initially assigned super-
resolved value through each of the three different radiometric correction methods. The original resolution 
pixel associated with these data has an atmospherically corrected emissivity value of 0.9766. 
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2.5 DISCUSSION 

2.5.1 Step 1 Discussion 

The choice of an incorrect PSF can lead to the creation of radiometrically inaccurate products 

during the super-resolution process of Earth data. This effect is due to the contribution from 

surrounding pixels; as the calculated contribution moves away from the correct value, an 

increasing DN value is seen. At larger alpha values, this was expected; the larger alpha value 

indicates a decrease in the contribution from the pixel, with a greater signal coming from the 

surrounding pixels. However, the radiometric correction is applied only and entirely to the pixel, 

leading to overcorrection. At smaller than actual alpha values, the opposite process leads to the 

same result. During the calculation of the amount of correction necessary to make the resultant 

super-resolved product radiometrically accurate, the image is convolved with the PSF. If too 

little contribution is calculated as coming from the surrounding region, the correction factor that 

is calculated is too large. However, this correction factor is still split only within the super-

resolved sub-pixels. The correct alpha value is therefore critical, and occupies an optima for the 

radiometric correction process. 

 

Within the artificial data, with only two end-members, and the Mars data, the impact of 

an incorrect PSF is negligible. In these datasets, there is a trend towards better results with an 

increasingly centered PSF, or a higher percentage originating from within that pixel. The Mars 

data has a limited dynamic and, arguably, represents very few end-members. This commonality 

between the two datasets may be a result of few end-members. The choice of PSF may become 

important only with greater diversity, as more can be contributed from the surrounding pixels. 
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2.5.2 Step 2 Discussion 

The Earth data shows an extremely high percentage of homogeneous pixels at the default value. 

This may be accurate, given that the scene has a significant urban component, however, it may 

lead to too many pixels, relative to the total number, being used to create the cluster-tree. The 

Mars data presents a perhaps more accurate case, in selecting significantly fewer pixels. Both 

scenes select roughly the same absolute number of pixels as homogeneous; this value falls within 

the range that creates good cluster-trees. 

 

Where the Earth and Mars data are compared as percentages of homogeneity, non-

intuitive values are observed. Mars is generally spectrally bland, with a surface heavily 

dominated by basalt and dust. The Earth, in contrast, appears to have numerous end-members to 

cause heterogeneity. The difference is the comparison to the average standard deviation. Earth 

data, due to the numerous end-members, has a significantly higher standard deviation relative to 

the Mars data. This difference is responsible for the lower percentage of homogeneous pixels on 

Mars. The very spectral blandness present in most of the Mars data sets a higher threshold for 

homogeneity. A threshold choice other than standard deviation may result in better selection in 

such cases.  

 

 The artificially generated terrain with two end-members is an extreme example, created 

by selecting the two most dissimilar end-members from 1000 randomly created ones. As a result, 

it has a single threshold value over both the image and spatial subset of over one third the data 

range, and even the smallest threshold on a per-band basis is nearly one quarter of the data range. 

This led to the incorrect selection of 22,648 non-homogeneous pixels in the default case. The 
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impact of non-homogeneous pixels, selected by having too low a threshold, reduces the utility of 

the cluster-tree created in the next step. A balance is necessary between having too low a 

threshold, and including non-homogeneous pixels within the cluster-tree creation, and having too 

few pixels for good clustering. It appears to be better to be conservative, and as such, use either a 

per-band threshold, defined only from the area being super-resolved, or a single threshold 

defined by the minimum per-band standard deviation threshold. 

 

2.5.3 Step 3 Discussion 

In Tonooka (2005), k-means clustering was used to build the cluster-tree, with 50 VNIR clusters, 

10 SWIR clusters per VNIR cluster (or 500 clusters total), and 5 TIR clusters per VNIR/SWIR 

cluster (or 2500 clusters total). As these clusters were derived within k-means, these numbers 

were invariant, and required significant knowledge of the scene prior to clustering in order to 

make valid choices. ISODATA clustering, as used in this algorithm, uses these same values as 

the initial number of clusters, but allows the number of clusters to vary, alternatively splitting if 

they grow too large or joining as their centers become too close. As seen in Table 2-3, the final 

number of clusters shows a strong positive correlation to both the initial number of clusters and 

to the number of iterations used for clustering.  

 

In several cases, a relatively low number of final clusters are found, with values near or 

less than the initial number of clusters. This fact is driven by two conditions within the data. 

First, initial means are selected by picking a random starting homogeneous pixel as the first 

means. After that, initial means are selected by picking those homogeneous pixels which are 
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furthest in total MD from the previously selected means, and are not equal to any of the 

previously selected means (so as to prevent extreme end-member over-selection). Because the 

resulting initial mean pixels will be chosen from the periphery of the dataspace, there is a 

tendency towards consolidation of clusters within the first several iterations. It is not uncommon 

for the number of clusters to drop to 1/2 to 1/3 of the initial starting value. It is only after 

peripheral cluster centers have migrated inward that splitting of clusters becomes dominant, and 

the number of clusters found starts to grow. Finally, when metastable states exist, such as the 

case for 10 end-members in both datasets, clustering will halt or return repeatedly to this state. 

This returning trend can be seen in the case of Mars data with 5 initial end-members and 10,000 

iterations, in which the 11th cluster was a small offshoot of one of the other clusters. Given 

several more iterations, it is likely that this cluster would be eliminated as its members migrated 

back to the originating cluster. The formation of the offshoot cluster was driven by a few 

extreme pixels, relative to the originating cluster. There were an insufficient number of these 

pixels, however, to meet the minimum cluster size, and so the cluster was not stable across 

multiple iterations. 

 

This section of the algorithm is the one of the most time-intensive in terms of cpu usage, 

and can cause significant issues for memory management. However, improvement is possible. 

Future work should focus upon improvements to this code. These can be done by making use of 

implementations available in the libraries of other languages, such as C. 
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2.5.4 Step 4 Discussion 

The ASTER data shows a definite limit to the percentage of data sourced from the map versus 

from the cluster-tree. A radius of 10 produces acceptable results; an increasing radius results in a 

lower mean MD, which can be used as a measure of the fit of the model data to the original. A 

radius of 10 should take less time to compute than a larger one, and profiling of the algorithm 

shows this step to be the single most time-intensive step within the program. However, the 

amount of time added by increasing the radius is not linear. The majority of the time cost for this 

step is up-front, with some additional time needed for increasing the radius. The time to 

complete processing with double the radius is less than double the original time required to 

complete this step. 

 

Super-resolution of some environments may also benefit from a larger radius. In areas in 

which there are dispersed homogeneous deposits, such as certain putative chloride units on Mars, 

a radius of 10 may not be sufficient to find those units within the map. These units will be 

clustered together within the tree, and so an initial spectrum can be selected from the tree. 

However, the strength and weakness of the cluster-tree is that it averages together a large number 

of pixels; smaller scale spectral variability is lost. This is helpful when trying to determine what 

an image end-member might be, but is less useful when trying to provide a specific pixel's 

spectrum. As a result of the loss of small scale spectral variability when sourcing from the tree, a 

larger correction factor in step 5 would be necessary.  
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The artificial data was created with only two end-members. As a result, the use of the tree 

falls off immediately, with the original super-resolved values deriving entirely from the tree by a 

radius of 5 low-resolution pixels. This was due to the clustering results within the super-

resolution algorithm, resulting in 25 to 40 low-resolution clusters per run. Due to the relatively 

large threshold value, equal to slightly over 1/3 the data range, a significant percentage of the 

image was marked homogeneous. This test was meant to examine the effect of altering the radius 

with which to search for adjacent homogeneous pixels in Step 4, but served as a good illustration 

of the problems associated with choosing too large a threshold value in Step 2.  

 

When the large numbers of “homogeneous” pixels were averaged together into the 

clusters, they produced cluster centers much closer to the 5 core pixel values. However, as there 

were so many pixels with different values, a closer fit to the associated high-resolution pixel was 

always found within the immediate area. As the area searched increased, the fit of this match 

improved (i.e., mean MD decreases). The same rate of decreasing mean MD was observed in the 

artificially generated terrain as in the Earth scene. In particular, the maximum MD for a given 

radius had a trend of being roughly 2x the average MD of 5 pixel smaller radius.  

 

The suggested radial value for super-resolution has been increased from the 10 proposed 

by Tonooka (2005) to 20 based on these results. This value balances the cost of computational 

time and the improvements in spectral fits, particularly for natural data. Testing shows that the 

calls to the tree are necessary, as the mean MD for a purely image-based sourcing is more than 

2x that of the radius-10 case within the Earth data. The artificial terrain data shows a similar 

decrease in MD with an increase in radius. 
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2.5.5 Step 5 Discussion 

Although the equally weighted correction produced the most radiometrically accurate results 

when the data were convolved back to the original resolution, this method is not recommended. 

Ignoring the fitness of the data, as measured by the MD of their original assignment, and treating 

them as all equally good or bad is too simplistic an approach. Allocating the correction factor 

strictly according to the summed weight fails due to under-correction. Larger spatial scale 

differences between data-sets will lead to larger under-corrections, with the only redeeming 

quality of this method being that it will not over-correct. The method first used in Tonooka 

(2005), based on the equations 6, 7, 13, and 14 of that work, provides the best results by 

allocating the correction according to the MD of the super-resolved pixels. 

 

The correction allocations of all three methods examined ignore the impact of 

convolution with the PSF. In most cases, this leads to pixels that are radiometrically accurate 

when not convolved with their surroundings, but become slightly inaccurate when convolved. 

The magnitude of the inaccuracy is inversely proportional to the alpha value used for PSF 

generation. This is due to the correction necessary for any given low-resolution pixel being 

allocated solely among its sub-pixels, with the correction based upon uncorrected values of 

neighboring pixels. Methods of radiometrically correcting data that take this into account might 

improve the ultimate super-resolution results. Similarly, a method such as the summed distance 

method that consistently under-corrects may be applied multiple times. This may lead to more 

accurate results without the loss of the improved spatial clarity or risk of over-correction in other 

pixels.  
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2.6 CONCLUSION 

A super-resolution technique was developed for the Earth-orbiting ASTER instrument, and 

presented in Tonooka (2005). Although this technique was originally developed for just the 

ASTER instrument; it was adapted to work with data from the Mars-orbiting THEMIS 

instrument. In the process of implementing and adapting the algorithm, significant changes were 

necessary to process THEMIS data. These changes have also been applied to ASTER data, and 

found to produce equal or better results. 

 

The super-resolution method examined in this work is a 5 step process and the impact of 

making alterations to each step was examined. During the first step, the impact of choosing an 

incorrect PSF was examined. More accurate estimates of the PSF produced more radiometrically 

accurate final products, though results from an inaccurate PSF still have qualitative value. In step 

2, the choice of threshold is seen to influence clustering results. A threshold defined on a per-

band basis or as a band-average based only on the area of interest produces better results than the 

original threshold definition. The third step clusters the data; the ISODATA algorithm was found 

to be adaptable enough to recover from many poor user choices of initial starting conditions. The 

most critical choices were the starting number of clusters and the number of iterations before 

forcing a halt. With too few initial clusters, ISODATA may prematurely halt in or return 

repeatedly to a metastable state. Due to the method of end-member selection, the ISODATA 

algorithm will undergo an initial reduction in the number of clusters; a low number of permitted 

iterations will cause the clustering to end during this stage. Performance issues associated with 

the algorithm were noted in this step, particularly during the ISODATA assignment of 

homogeneous pixels to new cluster centers. The fourth step is also cpu-intensive. Increasing the 
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radius searched for good matches improves the final results at a small cost in time. The majority 

of the time-cost in this step is up-front instead of scaling linearly or exponentially with radius. 

Different methods of allocating the radiometric correction in the final step were examined; the 

method proposed in Tonooka (2005) seems to provide the best results and also accounts for 

radiometric differences at the super-resolved scale. 

 

During the processing of data for super-resolution, some performance trade-offs are 

necessary. The algorithm can run more rapidly at the cost of greater memory usage, but will hit 

limits imposed both by the operating system and the programming environment. The current 

implementation is also limited to 5 or fewer bands for high resolution data, and 10 or fewer 

bands for low resolution data due to these same memory restrictions. Workarounds for such 

arbitrary limits should be examined in future work. Similarly, the problem of determining how 

the radiometric correction should account for the PSF needs to be addressed. The results 

produced by the current algorithm are good and interpretable, but improvement is possible. 

 

The modified algorithm is an improvement of the original implementation. The algorithm 

has been extended to run on multiple data types, including both THEMIS data and 

atmospherically corrected ASTER data. As part of extending the algorithm to other data, a user-

defined PSF also has been implemented, using alpha notation. The requirement for intermediate 

spatial / spectral resolution data, provided by the ASTER SWIR instrument in the original 

implementation, has been removed after it was determined that it was not required for correct 

performance. Multiple data have been used to examine the suggested values for user input, and 

in some cases better default values have been found. These new default values were found to 
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perform better with both ASTER and THEMIS data. ISODATA has been used in place of K-

Means to build the cluster tree in the modified algorithm examined in this work. This 

replacement requires less a priori knowledge by the user, and provides greater flexibility to the 

knowledgeable user. The modified algorithm is more transparent to the user, and provides data 

from intermediate steps as well as runtime output. This permits users to determine how their final 

product was created and aids in tracing the propagation of incorrect input through the algorithm. 

In all steps, the cpu cost of the functions have been optimized for performance. 

 

The algorithm relies on a number of choices by the end user; these choices determine the 

quality of the super-resolved data. Testing of the modifications has led to a new set of default 

recommendations for these values. This default configuration produces good results for both 

ASTER and THEMIS data, and does so at a reasonable time-cost. Users with no insight into the 

algorithm can super-resolve ASTER and THEMIS data with good results by making use of the 

default values. The modified algorithm will accept other data sources for super-resolution as 

well, permitting this process to be extended to other sources of Earth and Mars data, as well as to 

other planets. These other data sets need not be limited to the spectral range examined within this 

work either. Users should ensure they understand the statistical distribution of their data prior to 

application of the algorithm, although the new default recommendations will be a good starting 

point for most data. 
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3.0  SUPER-RESOLUTION OF A PUTATIVE CHLORIDE SITE ON MARS 

3.1 INTRODUCTION 

Deposits with spectral signatures similar to those of chlorides have been identified on Mars using 

THEMIS data (Osterloo et al., 2008). These deposits, located within the southern highlands of 

Mars, have a spectrally distinct signature in the Thermal Infrared (TIR) portion of the spectrum 

and are present within topographic low points (Figure 3-1). Spectra of these deposits are 

generally featureless throughout the Visible / Near Infrared (VNIR) and TIR spectral region. 

This is consistent with anhydrous chloride, but is also consistent with unoxidized sulfides and 

homopolar compounds (Jensen and Glotch, 2011). The geologic setting may indicate that the 

deposits formed as evaporites, and therefore makes it improbable that they are sulfides or 

homopolar compounds (Jensen and Glotch, 2011). However, these materials cannot be 

eliminated spectrally, and chlorides alone cannot explain the spectral slope seen in the VNIR 

(Hunt et al., 1972; Jensen and Glotch, 2011) leading to some uncertainty as to the identity of the 

deposits. If these deposits are chlorides, it may be possible to detect small-scale associated 

mineral assemblages which may help elucidate their formation process and confirm their 

composition. These exposures can be too small for detection at the native scale of the THEMIS 

TIR instrument (100 m / pixel); however super-resolution of these pixels may increase their
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Figure 3-1 The location of the putative chloride units examined in this work. The location of the THEMIS 
VIS scenes are shown as black rectangles. The location of Figure 3-2 is shown as a white keystone shape. The 
color strip through the figure center is a THEMIS Decorrelation Image (DCS) with THEMIS TIR bands 8 / 7 
/ 5. In this DCS combination, the blue unit within the black rectangles and white keystone is the putative 
chloride unit. The underlying grayscale data is from the THEMIS nighttime 100 m global mosaic. The center 
of the image is near 180.5° E, -27.25° N. 
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detectability. This increased detectability originates by increasing the percentage of the pixel 

occupied by small-scale units, raising them above the detectability threshold. Examination of 

these regions using other instruments, such as High Resolution Imaging Science Experiment 

(HiRISE) and the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) will also 

provide insight into the morphology and mineralogical makeup of these exposures. Greater 

understanding of these exposures may help us improve our understanding of the Martian 

paleoclimate. In addition, the deposits could be considered a high priority science target for 

future Mars missions. Not only could insights here have planetary-scale ramifications, but fluid 

inclusions within salts on Earth have been shown to preserve microbial life (Schubert et al., 

2009).  

3.1.1 Evaporites on Earth 

Evaporites are precipitated from a saturated solution or brine, at the surface or nearsurface, 

through hydrologic processes driven by solar evaporation (Warren, 2006). Evaporite salts can 

accumulate as capillary efflorescence on arid surfaces, on the floor of briny lakes, or in 

nearsurface pore space (Warren, 2010). Anhydrite and halite are the two dominant evaporite 

minerals on Earth (Warren, 2010). Evaporites on Earth have formed at a variety of scales, from 

ancient marine-fed basins covering more than 1,000,000 km2 to mineral crystallization onto 

individual sediment grains (Osterloo et al., 2008; Warren, 2006; Warren, 2010). Evaporites can 

also form in colder climates, where the dilute water is frozen, leading to a concentration of the 

ionic content within the remaining liquid (Marion et al., 1999; Warren, 2010) or through heating 
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 of hydrothermal brines in volcanically active regions (Warren, 2010). The most important factor 

in the resultant mineral assemblages is the composition of the dilute water at the start of 

evaporation (Osterloo et al., 2008; Tosca and McLennan, 2006). 

3.1.2 Putative Chlorides on Mars 

Widespread deposits of putative chlorides have been detected throughout the southern highlands 

of Mars (Glotch et al., 2010; Osterloo et al., 2008; Wray et al., 2009). These deposits have been 

found at a variety of elevations, but generally within local topographic lows (Glotch et al., 2010; 

Osterloo et al., 2008). Deposits have been identified within sinuous channels and in small craters 

(Osterloo et al., 2008), and have formed inverted channel-fill (Glotch et al., 2010). Chlorides 

occur stratigraphically above phyllosilicate units, and are seen to embay phyllosilicate bearing 

hills within Terra Sirenum (Glotch et al., 2010; Wray et al., 2009).  

 

The spectra of the putative chloride deposits are generally featureless, exhibiting a 

negative slope toward longer TIR wavelengths. Such a slope can result during the conversion of 

radiance data to emissivity from incorrectly derived surface temperatures, due to thermal 

heterogeneity on the sub-pixel scale (Gillespie et al., 1998; Ramsey and Dehn, 2004; Rose and 

Ramsey, 2009; Ruff et al., 1997), or due to an incorrect assumption of unit or near-unit 

emissivity during the separation of temperature and emissivity (Ruff et al., 1997). The most 

likely explanation for anisothermality on Mars is uneven warming due to sub-pixel scale surface 

roughness. Where a pixel is anisothermal due to a high degree of sub-pixel scale surface 

roughness, this negative slope does not continue to longer wavelengths, and the derived 

emissivity displays variability associated with the solar incidence angle at the time of collection 
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(Bandfield, 2009). Higher resolution imaging data over the putative chloride sites do not show 

areas with a high degree of surface roughness (Bandfield, 2009; Osterloo et al., 2008) or 

variability associated with solar incidence angle. If a pixel’s spectrum has a negative slope due to 

generally featureless spectra and non-unit emissivity (graybody) effects, this negative slope will 

continue to longer wavelengths, and the derived emissivity is largely independent of the solar 

incidence angle at the time of collection (Bandfield, 2009). Based on these observations, pixels 

on Mars with negatively spectra contain a material whose spectrum is a graybody in the TIR 

(Bandfield, 2009; Glotch et al., 2010; Osterloo et al., 2008). Geologic materials with graybody 

effects over the spectral range covered by THEMIS are rare; however, chlorides do fit this 

description. 

 

Within the Martian system, chlorides could form from the evaporation of acidic fluids 

derived from the weathering of basaltic rocks (Hurowitz et al., 2010; Milliken et al., 2009; 

Osterloo et al., 2008; Tosca and McLennan, 2006). Evaporite minerals such as halite and gypsum 

can form in acid environments, and have been identified on Mars from satellite data and in 

Martian meteorites (Benison and LaClair, 2003; Bridges and Grady, 2000; Fishbaugh et al., 

2007; Gooding et al., 1991; Osterloo et al., 2008; Wentworth et al., 2005). Hydrated minerals 

formed in acidic environments, such as sulfates and kaolinite, have been detected by the CRISM 

and OMEGA instruments (Bibring et al., 2005; Bishop et al., 2008; Ehlmann et al., 2008; 

Ehlmann et al., 2009; Gendrin et al., 2005; Langevin et al., 2005; Mustard et al., 2008; Poulet et 

al., 2005). Precipitates consistent with an acidic environment, such as alunite, hematite, jarosite, 
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and Fe- or Mg-rich smectites (Milliken and Bish, 2010; Murchie et al., 2009; Weitz et al., 2010; 

Wray et al., 2009) also have been detected. These factors all support a widespread acidic 

depositional environment.  

 

One possible acidic depositional environment on Mars is similar to Earth's acid lakes 

(Benison and LaClair, 2003; Osterloo et al., 2008; Tosca and McLennan, 2006). The acid saline 

lake systems of Western Australia, with their variety of pH environments, have been used as 

analogs to the deposits found thus far on Mars (Baldridge et al., 2009). Such a system would 

strengthen the case for a hydrologic history of Mars. If an analogous acidic environment existed 

on Mars, it would accommodate both the deposition of both hydrated sulfate minerals and 

phyllosilicates (Baldridge et al., 2009) and the need for an alkaline environment for the 

deposition of many of the detected phyllosilicates (Bibring et al., 2005). In such a system, 

chloride deposition could occur both at the surface from the evaporation of water or as a cement 

in subsurface sedimentary deposits. Were this to occur, these deposits should have a higher 

thermal inertia (TI) than the surrounding sedimentary beds. Pixels with significantly higher TI 

have been previously identified as collocated with chlorides deposits (Osterloo et al., 2008), as 

have chloride-bearing inverted channel-fill (Glotch et al., 2010). 

3.1.3 Approach 

Super-resolution is the process of creating a higher spatial resolution than that of the original (or 

native) data source. Higher-resolution data permit a finer examination of the deposits in the TIR 

than is possible with existing data. This increase in resolution will bring the spatial resolution of 

the THEMIS TIR instrument to the same general scale as a number of VNIR instruments now in 
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orbit around Mars, and improve the comparison between instruments. By making use of a super-

resolution algorithm, the area encompassed by any one pixel will be decreased, leading to better 

detectability of sub-pixel scale outcrops. These smaller pixels can be examined in greater detail 

for both their sub-pixel composition and for their distribution. Composition may give insight into 

the formation processes at work for the main deposit, and indicate whether or not it is possible 

for the deposit to have formed as an evaporite. The combination of a better comparison with 

other existing instruments and a finer-scale composition map will give an independent way to 

test the hypothesis that these deposits are chlorides. 

3.2 METHODOLOGY 

3.2.1 Data Collection 

A number of putative chloride sites have been previously identified by Osterloo (2008). The 

largest of these, in terms of surface area exposure, were identified, and four of these were 

selected as regions of interest (ROI) for further targeting for this research by the THEMIS 

instrument (Christensen et al., 2004). The best site was then chosen for further study (Figure 3-

1). Data collected over these targeted areas were multi-spectral in both the visible and TIR 

wavelength regions. THEMIS uses the same telescope for the VIS and IR instruments, with 5 

VIS channels between 0.40 and 0.88 μm at 18 m/pixel spatial resolution and 9 IR channels at 100 

m/pixel spatial resolution between 6.27 and 12.98 μm (the first two of which are duplicated for 

better signal to noise). An additional tenth IR channel at the same spatial resolution is centered at 

14.88 μm and is used for detection of atmospheric temperatures (Christensen et al., 2004).  
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The VIS instrument contains a 1024 x 1024 array of silicon elements with a 2.66° x 2.44° 

field of view (FOV), and a 5 stripe filter, with all elements exposed simultaneously 

(McConnochie et al., 2006). Groundtrack motion is also used to expand spatial coverage 

(McConnochie et al., 2006), making it both a framing and pushbroom system. For the visible 

data, collection of bands 2 through 5 was requested. Pixel summing (aggregation of pixel data) at 

36 m / pixel is commonly used to acquire VIS images over larger areas (Christensen et al., 2004).  

Summing was set to a maximum of two for the visible data, resulting in pixels of either roughly 

18 (no summing) or 36 (2x2 summing) square meters. Preference was expressed for the 36 m / 

pixel data geometry, as it provided a greater areal coverage, and thus better mapping for the 

super-resolution process. 

 

The IR instrument has a 320 x 240 array of uncooled microbolometer elements with a 

4.6° (cross-track) x 3.5° FOV (Christensen et al., 2004). The IR instrument has ten stripe filters, 

representing nine separate wavelength ranges (bands 1–10) with an image being formed in a 

pushbroom fashion (Christensen et al., 2004). TIR data used the DAY IR (all band) specification 

for data collection. Bands 1, 2, and 10 were not used for super-resolution analysis. 

3.2.2 Site Location 

The site examined in this work (Figure 3-1) is located along the southern portion of a crater 

centered near 180.5° E, -27.0° N, in northwestern Terra Sirenum. The chloride deposit lies near 

180.46° E, -27.25° N and covers an area roughly 15 km x 10 km. This area is well covered by 

THEMIS data, including two separate contemporaneous image pairs collected in August and 
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December of 2009. In addition, there are HiRISE and CRISM data acquired during October of 

2007. The CRISM data (Figure 3-2) covers the majority of the deposit, missing only a small zone 

of the deposit extending to the west. The HiRISE data (Figure 3-3) covers the eastern margin of 

the deposit, with the color bands passing just along the easternmost margin. These data show the 

interfingering between the light-toned putative chloride deposits and the darker toned 

surrounding area. 

3.2.3 Super-Resolution 

Prior to super-resolution, data were pre-processed as described in Hughes and Ramsey (2010). 

This included degrading the resolution of the IR data to 108 m/pixel and correction of the spatial 

alignment between the two datasets prior to super-resolution. This resolution degradation works 

best when the lower resolution pixel can be completely co-located with an integer number of 

higher resolution pixels (18 or 36 m). Spatial alignment is necessary as there is a significant 

difference in the registered location of features (i.e., craters) of several lower resolution pixels 

between the two sets. Previous application of the super-resolution approach (Tonooka, 2005) 

discovered that an alignment within 0.2 of the larger pixel size was sufficient for valid results. 

Given the relative resolution of the VIS and IR data, this algorithm is limited to an alignment 

within 0.33 of the larger pixel. As the resampling of the IR data to 108 m / pixel occurs before 

manual alignment, and the alignment is performed using the smallest resolvable surface features 

within this resampled data, it is assumed that this resampling does not introduce further 

misalignment beyond the one VIS pixel limit. A significant misalignment between the datasets 

would result in a failure of the super-resolution algorithm. Super-resolution is limited to the 

spatial region covered by both data. 
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Figure 3-2 CRISM data HRL000082DA_07_IF181L_TRR2, showing IR surface brightness at 1.3 μm. The 
CRISM data covers the majority of the chloride unit, seen here along the eastern edge to center of the image 
as the diffuse lighter-toned area. This is collocated with the blue unit seen in Figure 3-1. The black rectangle 
shows the location of the HiRISE data in Figure 3-3. 
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Figure 3-3 HiRISE data PSP_005680_1525_RED. The HiRISE data cover the eastern margin of the chloride 
deposit. The putative chlorides can be seen as a lighter-toned unit to the west of the added boundary and the 
surrounding darker-toned material is present to the east. 
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3.2.4 Linear Deconvolution 

TIR spectra can be assembled through the linear addition of spectra of sub-pixel materials 

relative to their areal abundance (Ramsey and Christensen, 1998; Thomson and Salisbury, 1993). 

This means that spectra can be forward-modeled by adding sub-pixel component spectra together 

in the proper proportions. A similar process using a library of end-members can be used to 

linearly deconvolve a TIR spectrum into its subcomponent spectra and relative abundances. A 

number of previous studies have made use of this to derive sub-pixel abundance based on TIR 

data from Mars or Mars analogue sites (e.g., Baldridge et al., 2004; Bandfield, 2008; Bandfield 

et al., 2004; Christensen et al., 2005; Glotch and Rogers, 2007; Michalski et al., 2004; Osterloo 

et al., 2008; Stockstill et al., 2007). This process is limited by a number of factors. First, the 

results will be largely dependent upon the quality and breadth of the spectral library used for 

deconvolution. Second, in order to remain mathematically valid, the number of possible end-

members within a pixel must be equal to or less than the number of bands used to create the 

spectrum (Adams et al., 1986; Ramsey and Christensen, 1998). This is not a limiting factor in 

laboratory derived spectra with hundreds of separate bands, but it does limit end-member spectra 

from THEMIS data to 8 or less end-members.  

 

For the purpose of this work, a maximum of six end-members were permitted after 

eliminating four bands from use in linear deconvolution. Bands 1 and 2, even averaged together, 

displayed a significantly greater degree of variability across the data than other bands, reflecting 

the limited IR signal at these wavelengths over common Mars surface temperatures. Band 3 is 

typically used for temperature / emissivity separation, and as such shows only minimal 
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variability across the scene. An emissivity value is typically assumed and assigned to this band 

for the purpose of pixel temperature determination. Band 10 is generally used for atmospheric 

analysis, and the amount of surface signal is negligible. A blackbody was also used as an end-

member to account for variable spectral contrast between actual and laboratory end-members, 

further limiting the number of possible informational end-members, but is normalized out where 

calculating mineral end-member values for each pixel (e.g., Ramsey and Fink, 1999). 

 

The spectral libraries used included those available from the ASU spectral library 

(Christensen et al., 2000) as well as common martian surface end-members such as Surface 

Types 1 and 2 (ST 1 and ST 2) (Bandfield et al., 2000). In addition, a spectrum based upon the 

spectrally distinct unit (the putative chloride) documented in Figure 3A of Osterloo et al (2008) 

was added. Various combinations of end-members were applied, with the final reported result 

being optimized for appearance, RMS error values and spatial distribution, and a frugality of 

end-members. A solution with fewer end-members would be preferred over one with more, even 

at the expense of slightly greater average RMS error for consistency with the relatively 

homogeneous nature of the martian surface. 

 

During the deconvolution process, a number of errors can be introduced. These errors can 

include over-fitting the data, problems with pixel spectra whose emissivity is less than that of 

any end-member, or whose emissivity already exceeds 1 in the starting data. As a result, masks 

were defined based on the output of the deconvolution algorithm. Pixels whose blackbody 

contribution exceeded 100% were masked out before statistics were calculated; if spurious 

results still existed, pixels with emissivity values that were too high (significantly over 1.0) or 
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too low (under 0.8) were masked out as well. These pixels were examined separately from the 

valid results to identify the associated error. In addition, the super-resolved data were created 

using entire VIS scenes, including null-value pixels used for image rectification. The pre-existing 

mask from this data was always applied before examining the super-resolved data, as the results 

from the super-resolution process are invalid over these null-value pixels and are reset to 0 

before being output. 

3.3 RESULTS 

3.3.1 Super-Resolution Results 

Two THEMIS TIR datasets were super-resolved. THEMIS TIR scene I35462005 was super-

resolved using THEMIS VIS scene V35462006. The resulting super-resolved TIR data were 726 

x 1350 pixels. During application of the super-resolution algorithm, data were clustered into 26 

groups based on the VIS data, and then further subdivided into 265 further clusters based on TIR 

data. The super-resolved data (Figure 3-4) shows slightly greater data diversity than the original 

TIR data (Table 3-1). The band averages are roughly the same; however, the standard deviation, 

per band, is greater in the super-resolved data. Similarly, THEMIS TIR scene I33902002 was 

super-resolved with data from THEMIS VIS scene V33902003. The resulting super-resolved 

scene (Figure 3-5) also showed slightly greater data diversity than the original data (Table 3-1). 

During the super-resolution process, data from this scene-pair were clustered into 10 groups 

based on the VIS data, and then further subdivided into 34 clusters based on the TIR data. 
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Figure 3-4 THEMIS TIR I35462005 emissivity band 9. The chloride unit is shown as a darker (lower 
emissivity) irregularly shaped polygon in the northeast portion of the image. The darker color of the unit at 
longer wavelengths reflects the negative slope of these units in the TIR. The rough terrain crossing the figures 
in a roughly east-west orientation is the crater rim. (A) Original resolution data. (B) Super-resolved data. 
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Table 3-1 Statistical comparison of the original and super-resolved data for the two THEMIS scenes. The 
super-resolved data shows the same mean (within 0.0001 emissivity), but slightly greater data diversity. 

 
 
  Site 1: I33902002 
  Original 

 
Super-Resolved 

       Min      Max     Mean    Stdev 
 

     Min      Max     Mean    Stdev 
     Band 3 0.9764 0.9764 0.9764 0.0000 

 
0.9764 0.9765 0.9764 0.0000 

     Band 4 0.9304 1.0157 0.9748 0.0047 
 

0.9300 1.0138 0.9748 0.0047 
     Band 5 0.9323 1.0104 0.9742 0.0056 

 
0.9319 1.0095 0.9742 0.0056 

     Band 6 0.9439 1.0141 0.9824 0.0054 
 

0.9436 1.0135 0.9824 0.0055 
     Band 7 0.9273 1.0094 0.9788 0.0047 

 
0.9295 1.0043 0.9789 0.0047 

     Band 8 0.9387 1.0001 0.9773 0.0042 
 

0.9383 1.0015 0.9773 0.0042 
     Band 9 0.9331 0.9977 0.9744 0.0052   0.9366 0.9980 0.9744 0.0052 

            Site 1:35462002 
  Original 

 
Super-Resolved 

       Min      Max     Mean    Stdev 
 

     Min      Max     Mean    Stdev 
     Band 3 0.9174 0.9765 0.9765 0.0005 

 
0.9551 0.9776 0.9765 0.0001 

     Band 4 0.9064 1.0379 0.9749 0.0091 
 

0.9034 1.0714 0.9749 0.0092 
     Band 5 0.9077 1.0820 0.9740 0.0095 

 
0.9164 1.0592 0.9740 0.0095 

     Band 6 0.9089 1.0612 0.9832 0.0095 
 

0.9162 1.0834 0.9832 0.0096 
     Band 7 0.8806 1.0672 0.9800 0.0092 

 
0.9069 1.0552 0.9799 0.0094 

     Band 8 0.8855 1.0275 0.9786 0.0089 
 

0.8793 1.0410 0.9785 0.0090 
     Band 9 0.8740 1.0333 0.9766 0.0091   0.9087 1.0416 0.9765 0.0092 
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Figure 3-5 DCS of THEMIS TIR data I33902002 bands 8 / 7 / 5 in RGB over Site 1. The chloride unit is 
shown as the blue irregular polygon in the northeast. (A) The original resolution data show some striping still 
present within the data. (B) The super-resolved data define features with greater clarity and mute the 
striping. 



 

 98 

3.3.2 Linear Deconvolution Results 

After the exclusion of pixels specified below, statistics from the model spectra of both the base 

and super-resolved data can be found in Table 3-2. The differences between the mean values of 

the original data and the model data are consistent between the two different resolutions. The 

model data shows a slightly lower standard deviation than the starting data; this reflects that the 

spectra are being built from a handful of end-members and a blackbody, whereas the natural 

surface is composed of significantly more end-members. Table 3-3 shows the contribution of 

each end-member to building the model spectra.  

 

Four end-members plus a blackbody were found to produce the optimal deconvolution 

from the library derived end-members for the original resolution data. Spectra used were ST2 

(Bandfield et al., 2000), two different labradorite spectra from the ASU spectral library 

(Christensen et al., 2000), and the chloride unit from Osterloo et al (2008). Labradorite was 

included in the possible end-member list as Glotch et al (2010) reported that the CRISM spectra 

of the putative chloride deposits in Terra Sirenum were consistent with a ratio of a mixture halite 

and labradorite to pure labradorite between 1.0 and 2.6 μm. However, it was not possible to 

replicate these results using either labradorite end-member alone or an average of the two. Using 

either the average spectrum or either labradorite on its own as an end-member resulted in a mean 

contribution of under 2%, versus the nearly 9% between the two separate labradorite samples. 

This may be a good example of data being over-fitted. Deconvolution was re-performed as a 

result with no labradorite, as it was a minor contributor if only a single spectrum of it was used. 
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Table 3-2 Statistics of the original and model spectra. 
 
 

        
    Starting Data   
    Original Res  Super Res   
    Min Max Mean Stdev  Min Max Mean Stdev   
  Band 4 0.9304 1.0157 0.9751 0.0048  0.9300 1.0138 0.9748 0.0047   
  Band 5 0.9306 1.0195 0.9746 0.0059  0.9319 1.0095 0.9742 0.0056   
  Band 6 0.9439 1.0184 0.9827 0.0058  0.9436 1.0135 0.9824 0.0055   
  Band 7 0.9273 1.0147 0.9792 0.0050  0.9295 1.0043 0.9789 0.0047   
  Band 8 0.9336 1.0195 0.9776 0.0046  0.9383 1.0015 0.9773 0.0042   
  Band 9 0.9331 1.0136 0.9746 0.0054   0.9366 0.9980 0.9744 0.0052   
              
              
    Model From Library Spectra   
    Original Res  Super Res   
    Min Max Mean Stdev  Min Max Mean Stdev   
  Band 4 0.9476 1.0000 0.9842 0.0037  0.9473 1.0000 0.9840 0.0036   
  Band 5 0.9305 0.9995 0.9747 0.0057  0.9302 0.9973 0.9744 0.0054   
  Band 6 0.9340 0.9994 0.9758 0.0051  0.9337 0.9968 0.9755 0.0048   
  Band 7 0.9398 0.9993 0.9773 0.0042  0.9396 0.9961 0.9770 0.0040   
  Band 8 0.9450 0.9991 0.9786 0.0040  0.9448 0.9957 0.9784 0.0037   
  Band 9 0.9407 0.9999 0.9768 0.0049   0.9450 0.9963 0.9765 0.0046   
                        

  
 
 

Table 3-3 End-member contributions to the model spectra. 
 
 
  Model From Library Spectra 
  Original Res 

 
Super Res 

  Min Max Mean Stdev 
 

Min Max Mean Stdev 
ST 2 0.00 100.00 47.27 16.88 

 
0.00 100.00 47.70 16.39 

Chloride 0.00 100.00 52.73 16.88 
 

0.00 100.00 52.30 16.39 
Blackbody 0.00 98.57 39.48 13.36 

 
0.00 92.85 38.72 12.41 

RMS Error 0.0012 0.0198 0.0052 0.0010   0.0011 0.0157 0.0052 0.0010 
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Some pixels were found with incorrect model emissivity values. A total of 207 original 

resolution pixels (0.19%) were excluded due to model emissivity values exceeding 1.05. A total 

of 61 pixels (0.06%) were excluded in which modeling failed, resulting in an emissivity of 0.0 in 

all bands. The majority of the excluded pixels were found along crater rims, particularly in the 

area south of the chloride deposit along the main crater wall and with the putative chloride 

deposit. Within the super-resolved data, a total of 1,026 (0.15%) pixels were excluded. Ninety-

one (0.01%) were found in which modeling failed, resulting in an emissivity of 0.0 in all bands. 

The remaining 935 (0.14%) pixels had emissivity values that exceed 1.05 in at least one band. 

These excluded pixels tended (1010 of the 1026) to coincide with the putative chloride deposit. 

All had their model spectrum derive exclusively from chloride, to which a small component of 

blackbody contribution was added, leading to excessive emissivity values. 

3.4 DISCUSSION 

3.4.1 Super-Resolved TIR Emissivity 

The super-resolved emissivity data (Figure 3-5) derived from I33902002 show a greater spatial 

clarity than the original data. The super-resolved data, when subjected to a decorrelation stretch, 

shows the same vivid blue in the 8 / 7 / 5 decorrelation stretch that is seen in the original 

resolution data. The deposit itself appears to be less homogenously covered with the putative 

chlorides. Individual pixels show a greater degree of variability, perhaps reflecting greater and 

lesser degrees of erosion or the irregular distribution of sub-pixel scaled craters and their ejecta, 

as either would tend to expose topographically lower layers to view. 
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Super-resolved data does a better job of showing the composition of the interface 

between the putative chloride deposit and the surrounding material. The irregular nature of the 

edge of the deposit is more apparent in the super-resolved data, with regions of non-chlorides 

visibly indenting the feature along both the southern and northern margin. These regions also can 

be seen in other data sets, such as CRISM data HRL000082DA (Figure 3-2) and, to a smaller 

spatial extent, HiRISE data PSP005680_1525_RED (Figure 3-3). The DCS of the super-resolved 

data (Figure 3-5) shows that the main chloride unit, in blue, is surrounded first by a rim of purple 

pixels and then a larger extent of red pixels. Smaller scatterings of each are present within the 

main deposit as well. The red units in Figure 3-5 are associated with more weathered ST-2 

surrounding material. The purple rim seems to be closely associated with the interface between 

the weathered surrounding material and the putative chlorides. If this is so, this region may 

represent the buried margin of the chloride unit, and show the extent of excavation. The smaller 

exposure of putative chloride to the southwest shows bands of this purple, less than 100 m wide, 

cutting across the unit. These may represent regions of heavily weathered ST-2 that were slightly 

more resistant than the completely eroded surrounding material. Within these regions, there are 

small scale (sub-pixel in the super-resolved data) exposures of the chloride. This can be seen 

both in the purple color of the DCS data as well as the presence of blue pixels contained within 

the purple bands. These blue pixels are larger windows through the ST-2, showing the 

underlying deposit. No patterns are found within the THEMIS data, at the original or super-

resolved spatial resolution, which correspond with the presence of phyllosilicates in this region. 

Glotch et al (2010) report that the chloride unit is stratigraphically above the phyllosilicates, and 

do not report any exposures in this region. The weathering here may not be sufficient to expose 

any underlying phyllosilicates in detectable amounts. 
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3.4.2 Linear Deconvolution 

The blackbody contribution (Figure 3-6) shows a strong correlation with the striping in the 

original data, as well as with crater walls and rims in both the original and super-resolved data. 

The super-resolved data also shows this correlation between striping in the data and the 

blackbody end-member, though the striping is greatly muted in the super-resolved data. The 

large crater wall and the smaller crater rims are rough topography. These areas should contain 

numerous small-scale surface irregularities that act as shadowed regions (effectively 

blackbodies) to surface emissivity. Energy emitted from these surfaces is reflected within this 

terrain and never reaches the satellite. The location of the putative chloride unit shows an anti-

correlation with the blackbody end-member in both resolutions; these spectra only required 

minimal contributions from the blackbody for modeling. A bright region in Figure 3-6 can be 

seen immediately north of the putative chloride, extending approximately 8,000 square meters. 

This region is shown as shadowed in other THEMIS data, and may represent a sharp slope and 

shadowed region not visible to the satellite as a result of the topography. 

 

The RMS error maps (Figure 3-7) show a mild positive correlation with the main putative 

chloride unit, and an apparently weaker correlation for the super-resolved data. Super-resolved 

data have both a lower maximum RMS error value and fewer pixels with higher values. This 

skewing of the super-resolved data to lower RMS error values causes the deposit to not stand out 

as clearly from the surroundings. Both resolutions show noisy data, with the original resolution 

data having better correlation to crater rims and ejecta. Neither resolution has consistently higher 

RMS error values associated with the smaller exposure to the southwest of the main deposit. 
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Figure 3-6 Blackbody end-member contributions to linear unmixing. (A) Original resolution data. (B) Super-
resolved data. 
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Figure 3-7 RMS error map for deconvolution. Brighter pixels denote higher error values, indicating a poorer 
fit of the model spectrum to the original spectrum for that pixel. (A) Original resolution data. (B) Super-
resolved data. 
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End-member distributions (Figure 3-8) do a good job of isolating and highlighting the 

chloride units. The smaller exposure to the southwest is connected to the main deposit with a 

dispersed chain of blue pixels, representing exposures of chloride greater than 1200 m2 in extent. 

The area between the exposures, and continuing to the south of the secondary exposure, is purple 

in color. This area shows contribution of both chloride and ST-2, and is larger in extent than the 

similar area seen in the DCS image (Figure 3-5). Within this region, ST-2 and chloride are mixed 

at the sub-pixel scale, with rare exposures of larger chlorides (blue) or ST-2 (red). In both the 

original and super-resolved data, the putative chloride unit is modeled as being purely chloride, 

with no contribution from the ST-2 end-member. The super-resolved data shows the western 

margin of the main unit to have a more dispersed chloride signature. In the original resolution 

data, a region of ST-2 is seen covering parts of this margin; in the super-resolved data, this area 

contains a mixture of red (ST-2), blue (chloride) and purple (both) pixels instead. 

 

The smaller exposure to the southwest and the northwestern portion of the main deposit 

are shown in a lighter blue tone. These regions required less blackbody contributions than the 

main chloride unit during spectral deconvolution. This may indicate that these regions are less 

weathered. This would be consistent with the interpretation of the compositional striping over the 

southwestern exposure in the DCS image. If these materials are relatively fresh, they would have 

a smoother upper surface, and require less blackbody. However, super-resolved model data 

shows only a single complete stripe of mixed ST-2 and chloride material bisecting the 

southwestern exposure. The modeling data shows a number of partial stripes; these partial stripes 

are collocated with the other stripes seen in the DCS data. The original resolution data do not 

show these stripes, but does have isolated pixels of ST-2 composition within the deposit. 
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Figure 3-8 End-member contribution to the model spectra. Surface Type 2 is shown as red, the blackbody 
end-member is shown as green, and chloride is shown as blue. (A) Original resolution data. (B) Super-
resolved data. 
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3.4.3 Comparison Between THEMIS TIR and Other Data 

The super-resolved data has an improved resolution for comparison to other Mars data. 

Alignment between the blue unit in the super-resolved data and the lighter-toned unit in the 

CRISM IR brightness data (Figure 3-2) is excellent. The HiRISE data (Figure 3-3) also aligns 

well, with the irregular margin between the lighter and darker toned units collocated with the 

purple pixels in the DCS data. These pixels are associated with a mixed composition between 

more weathered ST-2, based on the appearance in CRISM and HiRISE data, and the chloride 

units. The small-scale nature of this mixture can be illustrated at the bend in the margin within 

the HiRISE data (Figure 3-3). The surrounding surface in this area can be seen to overlay the 

chloride unit, and both were later impacted by a crater.  

 

Compositional information from the super-resolved data show that the deposit examined 

in this work is thin, with a thickness less than 100 m. This is also seen with limited exposures in 

CRISM data. The super-resolved data shows additional ST-2 material below this point. This 

material may represent the surface on which the putative chlorides were emplaced, or it may be 

from later crater ejecta that filled in topographic lows that would expose a different underlying 

material. Neither CRISM nor THEMIS data indicate the presence of phyllosilicates in this 

immediate region. It is likely there are underlying phyllosilicates based on Glotch et al. (2010), 

but this material may not be exposed in detectable quantities here. The underlying ST-2 unit may 

be protecting any phyllosilicates from weathering. Alternatively, the phyllosilicate-rich material 

seen in Glotch et al. (2010) may be part of a continuous lithostratigraphic unit with the ST-2 

material below the chlorides, but has been subjected to a different weathering environment. 
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3.5 CONCLUSIONS 

The super-resolution process produced good results at the site examined in this work. The super-

resolved data showed an increase in data diversity over limited spatial areas, with indication that 

this diversity is associated with sub-pixel scale exposures of surfaces. Data from higher 

resolution instruments, such as CRISM and HiRISE, show small-scale variations collocated with 

these differences, but the THEMIS data can provide mineralogic composition of these difference 

units. Features, such as small craters, are more apparent in the super-resolved data. The 

relationship between the surrounding terrain, the putative chloride unit, and crater ejecta can be 

more readily determined within the super-resolved data. By using the super-resolved data in 

conjunction with CRISM data, it is possible to infer the thickness of the putative chloride unit to 

be less than 100 meters. Some features do not have the sharp margins apparent in the original 

resolution data when examined with super-resolved data. The large putative chloride exposure 

shows a more mixed region to the west and south. 

 

The putative chloride deposit shows a haloed effect, with a blend of super-resolved 

chloride and non-chloride pixels surrounding the edges of the unit. This halo shows a definite 

gradation. Within the main exposure, there are few ST-2 pixels, and only slightly more mixed 

pixels. These mixed pixels, seen in both DCS and linear deconvolution of super-resolved data, 

are composed of sub-pixel scale exposures of both ST-2 and chloride. After a relatively sharp 

margin of pure chloride pixels, there is a rim composed almost exclusively of mixed pixels for 

several hundred meters. This region is the margin of the exposure through the overlying ST-2 

material. Isolated sub-pixel scale windows through the ST-2 expose the underlying chloride to 

the surface. Surrounding all of this is a large region modeled as nearly pure ST-2. 
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Moving southwest from the main exposure, there is a corridor of these mixed pixels, 

intermingled with purer pixels of either end-member in linear deconvolution that stretches to a 

smaller exposure of the putative chloride. Unlike the main exposure, this unit is collocated with 

bands of mixed pixels. In the linear deconvolution results, these bands are partial, with only one 

band stretching the complete length of the deposit. In the DCS data, several smaller bands cover 

the length of the deposit. In either case, these bands represent heavily eroded ST-2, with 

windows of the putative chloride exposed at the sub-pixel scale over a large areal portion of the 

pixel. The centers of these bands are likely composed of heavily eroded ST-2, with pixels whose 

areal exposure is mostly chloride. This southwestern exposure appears similar to the 

northwestern segment of the larger exposure; both areas are less weathered exposures of the 

underlying unit. In the linear deconvolution results, these areas require less blackbody 

contribution. 

 

No exposures of phyllosilicates are seen at this location. There are few exposures through 

the putative chloride. In those areas where erosion has continued through the deposit, additional 

ST-2 material is exposed. This ST-2 may have one of two origins. They may represent areas in 

which ST-2 was remobilized and deposited, following the deposition of the putative chloride 

unit. Alternatively, these ST-2 exposures could be part of the same lithostratigraphic unit as the 

phyllosilicate-rich unit in Glotch et al. (2010), but subjected to different weathering conditions.  

 

The putative chloride site here is composed of a larger homogeneous unit with a smaller 

associated exposure to the southwest. These deposits are located within a regional topographic 

low, have a spectrally bland appearance, and show a negative spectral slope within the TIR. A 



 

 110 

rough, cracked surface can be seen in higher resolution data, such as HiRISE. Taken together, 

this would seem to indicate that these units are evaporites, that their depositional environment 

was as wet one, and that these conditions were not isolated to small areas of Mars. The possible 

presence of a pre-existing ST-2 surface beneath these exposures may represent a basaltic aquifer, 

leading to acidification of surface waters. This and other identified putative chloride sites are 

being examined with other data sets from orbit, but, presents a worthwhile target for future 

lander or rover missions. 
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4.0  THE USE OF LUNAR LAKE PLAYA AS A PLANETARY ANALOG AND 

CALIBRATION TEST SITE 

4.1 INTRODUCTION  

Lunar Lake Playa (Figure 4-1) is located at 38.4°N, 116°W, approximately 100 kilometers (km) 

northeast of Tonopah, Nevada (NV) and 125 km southwest of Ely, NV. The playa lies within the 

Lunar Lake caldera, along its southeastern margin. This is the youngest caldera in the multiple-

caldron complex of central Nevada (Ekren et al., 1974). The playa is roughly kidney shaped, and 

covers an area of approximately 7 km2, with a perimeter of approximately 11 km. The axes of 

the playa are 4.3 km and 1.9 km, with the strike of the major axis extending 053º. It exists within 

a closed basin, with an elevation of 1751 meters (m) above sea level (ASL). There is almost no 

topography within the playa; relief is on the centimeter-scale. Surrounding peaks generally have 

elevations between 1700 and 1800 m ASL, with an arcuate ridge (“The Wall”) at 1800 m ASL 

for an extended distance.  

 

To the north and east of the playa, there are Quaternary basaltic lava flows and tuff cones. 

These are associated with Lunar Crater (4.25 km west of the playa) and related volcanics. 

Volcanics are associated with northeast trending faults (Ekren et al., 1974). The south and west 

are bounded by uplifted Tertiary rhyolitic tuff, which are also associated with northeast trending 
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Figure 4-1 ASTER data acquired on July 30, 2006 at 11:38 am local time of Lunar Lake Playa and its 
immediate surroundings. ASTER bands 3N (0.807 μm), 2 (0.661μm), and 1 (0.556μm) are shown in RGB. 
Area covered in clasts can be seen along the western end of the playa, adjacent to the perimeter, as a medium 
gray unit extending into the lighter-toned playa. Squares are areas in which pixel surveys were conducted; 
the large square on the on the eastern side is the Survey Area 2, and the square on the western side is Survey 
Area 3. The small diamond south of Survey Area 2 is Survey Area 1, the site of the 30 m x 30 m pixel survey 
conducted in March, 2010. The yellow cross marks the location of the FLIR camera during ASTER 
overpasses on July 27 (day) and 28 (night), 2010. The black line extending across the playa marks the location 
of the partial transect. The circle on the south of the playa shows the location from which samples March-2A 
through March-2E were collected. The inset shows the approximate location of the site within Nye County, 
Nevada. 
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faults (Ekren et al., 1974; Petroy and Arvidson, 1990).The northern and western shores of the 

playa contact basaltic flows and tuff cones, and the eastern margin is marked by a sand berm. 

Small areas along the perimeter of the playa are covered to various extents with centimeter scale 

cobbles derived primarily from the surrounding basalts. Meter to decameter scale areas within 

the playa, away from the perimeter, are similarly covered with centimeter scale cobbles. Along 

the northern and western margin, these cobbles can be decimeter scale. The playa surface is 

smooth, hardpacked, and fine-grained. 

4.1.1 Uses of Lunar Lake Playa 

Lunar Lake playa and the surrounding region have a history of use as a planetary analog 

extending back 50 or more years. In the 1960s, the surrounding region was used along with the 

Nevada Test Site as a training site for the Apollo astronauts. During the late 1980s and early 

1990s, the immediate region was used as an analog for radar remote sensing of Venus, 

particularly the younger basaltic flows (Arvidson et al., 1992). The region has also been used as 

an analog for Mars, both for remote sensing and for rover exploration (Baumgartner; Petroy and 

Arvidson, 1990). Part of the reason for the multiple uses for the site is its choice as the primary 

location for the Geologic Remote Sensing Field Experiment (GRSFE), in which the Lunar Lake 

region was examined in great detail by a number of remote sensing systems during a field 

campaign. 

 

Lunar Lake also has a history of use as a calibration target for Earth-orbiting sensors. It is 

among one of several sites used for the vicarious calibration of remote sensing instruments 

because it is homogeneous on a sufficiently large scale, shows little topographic relief, has high 
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reflectance across a broad spectral range, experiences low atmospheric aerosol loading and has a 

relatively cloud-free environment (Bruegge et al., 2002; Thome et al., 1998). The designation of 

the site for the GRSFE led to it being used for other calibration measurements. Lunar Lake has 

been used for vicarious calibration of the Earth Orbiting Systems (EOS) instruments (Bruegge et 

al., 2002; Thome et al., 1998), IKONOS (Pagnutti et al., 2003), and Landsat-5 TM & Landsat-7 

ETM+ (Thome et al., 2004). Due to its smaller size, the neighboring Railroad Valley playa is 

used at times for the calibration of moderate to low spatial resolution instruments. Given the 

proximity of the two playas, both are commonly imaged in the same scene. As a result of the 

spectral, spatial, and temporal range of data collected for Lunar Lake, the site is very well 

characterized, which makes it an excellent target for the testing of new instruments and new data 

processing methods. 

4.2 DATA AND METHODS 

4.2.1 ASTER 

The ASTER instrument is composed of three wavelength sub-systems, all using separate 

telescopes. ASTER has 3 channels between 0.52 and 0.86 microns at 15 m/pixel spatial 

resolution, 6 channels in the 1.6 to 2.43 micron short wave infrared (SWIR) region with at a 

spatial resolution of 30 m/pixel, and 5 channels between 8.13 and 11.65 microns at 90 m/pixel 

spatial resolution (Fujisada et al., 1998). The Signal to Noise Ratio (SNR) values range between 

44 – 368 for low gain radiance values, and 156 – 466 for high gain radiance values (Fujisada et 

al., 1998). The VIS instrument uses a 5000 x 4 element array of silicon detectors; the SWIR 



 

 115 

instrument uses a 2048 x 6 element array of PtSi detectors. Both form images with a pushbroom 

configuration. The TIR instrument is a 10 x 5 array of HgCdTe elements used in a whiskbroom 

configuration (Yamaguchi et al., 1998). The FOV for all three instruments is 6.09° square. A 

fourth telescope pointed backward collects data in the near-infrared, and uses 4100 elements of 

the silicon detector to create along track digital elevation models (DEMs). Since April, 2008, 

ASTER has been acquiring useable multispectral / multispatial data in only two wavelength 

regions. Data from the SWIR instrument are no longer usable due to a failed cryo-cooler. 

 

Although 282 ASTER scenes are available with coverage of Lunar Lake playa, the data 

used in this work were collected on July 30, 2006 at 11:38 am local time. This scene was chosen 

for being cloud-free, having data in all three spectral regions, and for being at the same time of 

year as fieldwork conducted at Lunar Lake playa. Data in this scene were subset to lines 2278 

through 2677 and samples 420 through 755 of the 15 m / pixel resolution VIS bands (Figure 4-

1). Co-located pixels were used for the SWIR (30 m / pixel) and TIR (90 m / pixel) bands.  

4.2.2 AVIRIS 

The AVIRIS instrument is a 224 band airborne whisk-broom imaging spectrometer, with a 

spectral range between 0.4 and 2.5 μm, 10 nm band spacing, and a 1 μrad Instantaneous Field of 

View (IFOV) (Green et al., 1998). There are four spectrometer subsystems within the instrument: 

The A subsystem covers 400 – 700 nm, B covers 700 – 1300 nm, C covers 1300 – 1900 nm, and 

D covers 1900 – 2500 nm. Each subsystem is optimized for its particular wavelength region. 

Data are collected from these spectrometers and digitized to 12 bit DN; the SNR exceeds 100:1 

in all bands, and frequently exceeds 500:1 in wavelengths through 1800 nm. 
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NASA and the AVIRIS team have made four sets of data to the public through the 

AVIRIS website at http://aviris.jpl.nasa.gov; one of these sets covers the Lunar Lake region. 

Over 2 GB of data were collected by AVIRIS over Lunar Lake playa on August 19, 2009. These 

data replace previously available AVIRIS data collected in June of 1997, and require both 

different and less calibration processing. The 2009 data are orthorectified and geocorrected, and 

have a spatial resolution of 15 m / pixel. These data were subset to the area surrounding the playa 

by producing a 600 x 600 x 224 data cube. The cube was then rotated by 78.0° to align North to 

the top of the image using a 1st degree polynomial rotation, scale and translation (RST) and cubic 

convolution, which best preserves the data statistics and spectra. The centermost 400 x 400 

pixels were then used in all further analysis (Figure 4-2). 

4.2.3 Aerial Photography 

Geolocated and orthorectified aerial data of Lunar Lake playa were obtained from Microsoft 

Research Maps at http://www.msrmaps.com, with images sourced from the United States 

Geologic Survey (USGS). In addition, topography, hydrography, and geolocated / orthorectified 

aerial photography were obtained from The National Map Project at 

http://viewer.nationalmap.gov/viewer. The MSRMaps aerial image is a single band with a 

resolution of 4 m / pixel. These data also clearly show where separate images were mosaiced 

together to create the MSRMaps data, due to differences in distribution of DN and the stretches 

applied to the data. The National Map aerial data were collected by the National Agriculture 

Imagery Program (NAIP), and are provided at a 1 m / pixel resolution with a horizontal accuracy 

of at least 5 m. The topography data were collected as part of the National Elevation DATA 

(NED) at a resolution of roughly 10800 pixels per degree (ppd). This translates to 1/3 of an
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Figure 4-2 Lunar Lake Playa and its immediate surroundings are shown using data collected by the airborne 
AVIRIS instrument on August 19, 2009. The figure shown is in approximate-true color, with bands 30 (0.648 
μm), 16 (0.511 μm), and 10 (0.453 μm) shown in RGB. The spatial resolution is 15 m, the same as Figure 4-1, 
with the data clipped to show only the playa and its immediate surroundings. Areas covered in clasts are 
significantly more visible in the true color image than in the ASTER data. The stretch applied to this data 
also reveals some of the variation in the reflection of the playa. 
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arc-second or 10 m / pixel horizontal resolution, and 0.1 m vertical accuracy. Due to the size and 

resolution differences, areas were first examined in the MSRMaps data, and then only points of 

interest were examined in the NAIP and NED data. 

4.2.4 Fieldwork 

Fieldwork was conducted at Lunar Lake playa by a team from the University of Pittsburgh in 

March, 2010. A second field campaign was conducted by the author in late July, 2010. During 

the March campaign, harsh winter conditions were present at the site making field data collection 

nearly impossible. The playa surface had a centimeter-scale layer of ice, covering the entire 

surface except for the larger cobbles. During July, expected summer conditions prevailed with 

the exception of one day with significant rainfall. 

 

Fieldwork was used to better characterize Lunar Lake playa than was possible from 

remote sensing data alone. During the fieldwork, areas around the playa were characterized for 

areal abundances of surface units through pixel surveys. Samples were collected during these 

surveys, as well as during a transect across the playa. Sampling was done to permit mineralogic 

analysis, and the results used to better characterize areas of the playa from remote sensing data 

not examined in detail in fieldwork. Mapping was also done of the margin between the clay 

playa surface and the surrounding clast-rich shoreline and of strewn fields on the playa. These 

mapped areas can be compared to both original and super-resolved ASTER data, with the 

fieldwork mapping acting as a ground-truth for the remote sensing data. 
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Pixel surveys are designed to produce a reasonably-accurate measure of ground cover and 

are used as a data/algorithm validation technique. These surveys were conducted in both March 

and July of 2010. Due to the ice, the March pixel survey encompassed only the shoreline area 

along the eastern side of the playa. A 30 area (Survey Area 1) was marked out, designed to 

encompass four ASTER VNIR pixels. Two individuals each walked the diagonal and noted the 

ground cover within one meter of their stopping points every 3 meters. During the July 

fieldwork, two 90 m pixel survey were conducted. The first (Survey Area 2) was near Survey 

Area 1, and only partially on the shoreline. A second 90 m pixel survey (Survey Area 3) was 

conducted on the northwestern side of the playa. Both July pixel surveys were done by marking 

nine contiguous 30 m pixels in a 3 x 3 array, and walking the diagonals of each 30 m pixel. As in 

the March survey, the average composition of each pixel was determined by noting the ground 

cover at each stop along each diagonal. The nine sub-pixel values were then averaged together, 

producing one overall set of ground cover value per survey site. 

 

During the March campaign, poor weather conditions prevented the collection of a 

significant number of samples. However, two types of samples were collected from three 

locations. Soil samples were collected by pressing a 25 mm diameter plastic vial into the surface. 

The vials were 52 mm high; however, the vial did not penetrate more than 15 – 20 mm before 

encountering frozen soil. Soil samples March-1A through March-1F were collected from on the 

playa, inward of Survey Area 1 (Figure 4-1). These samples were collected after first removing 

ice from the surface, and pressing the vials through the water into the soil below. These samples 

were collected at 5 different distances, up to 100 m from the edge of the ice, and from both clear 

areas (no clasts) and strewn fields. Soil samples March-2A through March-2E were collected 
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from a site near the southern tip of the playa (Figure 4-1). These samples were collected from 

within a meter of the ice edge, on either side. Finally, clast samples were collected during the 

pixel survey. Clasts were sorted into two separate types: basaltic clasts and metamorphic / other 

clasts. Clast samples were also sorted by size into small and medium size. Small clasts were 

defined as centimeter-scale and medium clasts were 5 – 10 cm in diameter. 

 

Both soil and clast samples were collected during the July fieldwork. Soil samples were 

collected after a day of significant rainfall from a portion of the playa surface that appeared dry 

and from an adjacent area that appeared wet one hour after the end of the July 26th rainfall using 

the same method as March. Both locations are within the Survey Area 2 (Figure 4-1). Clast 

samples were collected from both pixel survey areas, and sorted by size into small, medium, and 

large clasts. Small and medium clasts from the July fieldwork have the same scale as the March 

fieldwork and large clasts had at least 2 dimensions greater than 10 cm 

 

During the July fieldwork, a transect was conducted across the playa (Figure 4-1). The 

transect started in the vicinity of the Survey Area 1, at the shoreline, and moved in a straight line 

across the lake. A total of 93 soil samples were collected, with an average spacing between 

samples of approximately 15 m. Rare small clasts were sometimes within 1-2 meters of a sample 

location; however, none were present at any sampling site. As a result, only soil samples were 

collected. During the transect, the playa surface was too hard to penetrate with the vials beyond 

an approximate 5 mm depth. As a result, vials were used instead to dig very shallow (under 5 

mm) trenches in the surface, and this material was collected.  
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4.2.5 Laboratory Analysis 

Collected samples were analyzed using a Nicolet Nexus 670 Fourier Transform InfraRed (FTIR) 

Spectrometer at the University of Pittsburgh Image Visualization and Infrared Spectroscopy 

(IVIS) facility. Sampling was done at 2 cm-1 spectral resolution between 400 and 2000 

wavenumber (cm-1), or ~5 – 25 μm, using the calibration method described in Ruff et al. (1997). 

Before analysis of any samples, and at least once every four hours, blackbodies were scanned at 

70° C and 100° C. The blackbody used for this work is a custom-designed cylinder in which a 

conical section has been hollowed out and a spectrally flat paint has been applied. The 

spectrometer and the analysis chamber are purged with air that has most carbon dioxide and 

water vapor removed, so as to minimize absorption features by these gasses.  

 

All samples were heated to 80° C for at least 24 hours prior to analysis. Soil and rock 

samples were analyzed using two different methods. Soils and small clasts were placed in copper 

cups painted with the same blackbody paint, and then onto a heating stage. This stage kept the 

samples at a stable temperature of 80° C during analysis. Larger rock samples were removed 

from the oven and allowed to cool during spectral acquisition. The thermal inertia was assumed 

to keep them at an adequate temperature for analysis. These samples were placed within a rock 

holder that provided no active heating.  

 

Rock samples were processed in two different states; half of the analyzed samples were 

left as-collected, while the other half were briefly rinsed under water, patted dry, rinsed with 

acetone, and patted dry a final time. Although there was very minor risk of altering the 

chemistry, and hence the spectra, of the basaltic clasts through wetting, the risk was considered 
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minimal due to: their collection from a natural surface on which it had rained immediately before 

collection; the rapid drying immediately following rinsing, followed by a rinse in acetone; and, 

their immediate placement within an oven after rinsing. The decision to rinse half of the samples 

was made to increase the probability of detecting a stronger signal from the underlying 

weathered rock surface; with a depth of penetration measured in microns, a coating of soil on the 

clast would likely conceal some or all of the rock spectrum. 

 

The blackbody, rock, or heating stage (dependent on what was being analyzed) was 

raised into a controlled environment within the analysis chamber; this area was kept at a constant 

temperature of 25° C. By keeping the environmental temperature constant, downwelling energy 

originating from multiple temperature sources in the environment could be minimized and 

modeled using the known temperature of the chamber. The spot-size is approximately 2 cm in 

diameter. During analysis, each sample was scanned 512 times, and those data averaged together 

to minimize the noise.  

 

Following collection of the spectra, the data were analyzed in two different ways. First, 

spectra were examined at a qualitative level, to ensure good data acquisition and to assess the 

materials that may be present. Following this, spectra were processed with linear deconvolution 

(Ramsey and Christensen, 1998; Thomson and Salisbury, 1993). Mixed spectra can be modeled 

by deconvolving the spectrum against a spectral library to determine the sub-pixel component. 

This process is limited by a number of factors though. First, the results will be largely dependent 

upon the quality and breadth of the spectral library used for deconvolution. Second, in order to 

remain mathematically valid, the number of possible end-members within a pixel must be equal 
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to or less than the number of bands used to create the spectrum (Adams et al., 1986; Ramsey and 

Christensen, 1998). For spectra acquired in the laboratory, this factor does not pose a constraint 

because these spectra have hundreds of separate bands. Linear deconvolution of the ASTER data 

is limited to only 5 end-members (the number of TIR bands). The Arizona State University 

(ASU) spectral library was used for the analysis (Christensen et al., 2000). 

4.3 RESULTS 

4.3.1 Fieldwork Results 

During the March fieldwork, Survey Area 1 was found to have significant spatial heterogeneity 

(Figure 4-3). Clasts covered between 0 and 95% of the surface across the survey points. Despite 

its location on the side of the playa closer to the rhyolitic tuffs, clasts tagged as “basaltic” 

outnumbered “metamorphic / other” clasts nearly 4:3. Across the space of the entire survey area, 

the three end-members were split nearly evenly, with clay/soil covering 33.5%, basalt covering 

38%, and other clasts covering 28.5%. The predicted spectrum based on these results is shown 

compared to the actual ASTER spectrum and a super-resolved spectrum in Figure 4-4. This 

super-resolved spectrum was the one located physically closest to the center of the survey area. 

The modeled spectrum featured a good fit to both the original and super-resolved spectra. 
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Figure 4-3 Survey Areas 1 and 2 shown on the NAID map. The medium red square is the location of Survey 
Area 1, and the large red square is the location of Survey Area 2. The mapped boundary of the playa is 
shown as a thick blue line, and roads are shown in yellow for reference. Black crosses show the locations of 
soil samples collection. 
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Figure 4-4 Laboratory spectra are combined in a weighted average based on the Survey Area 1 pixel survey results. Also shown are the original 
resolution ASTER TIR and the super-resolved TIR spectra. 
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During the July fieldwork, Survey Area 2 was generally homogeneous (Figure 4-3). After 

survey, the pixel had 3.8% of its surface covered with clasts. Within the nine 30m x 30m pixels, 

there was a significant variety in the amount of clast coverage, with values ranging between 

0.72% and 20.57%. It should be noted that the southeastern 30m pixel was almost entirely on the 

“beach” area (20.57% clast), and the central-eastern pixel was mostly on the beach (5.65% clast); 

the rest of the 90m pixel covered the playa (0.72% - 1.4% clast). As there were no apparent 

differences within the clast composition, all clasts were considered basaltic. The predicted 

spectrum based on these results is shown compared to the actual ASTER spectrum of the pixel 

and a super-resolved spectrum in Figure 4-5. The super-resolved spectrum shown was chosen 

from the 36 total super-resolved spectra by finding the one which best fit both the original and 

super-resolved data. 

 

Survey Area 3 (Figure 4-6) featured significant heterogeneity in surface composition, and 

was the site used for surveying with a FLIR camera during ASTER overpasses. Within the 

survey region, there were “light” (playa) and “dark” (basaltic clast) areas. Light areas had playa 

as greater than 90% of their surface. Dark areas had less than 60% playa exposure. During the 

pixel survey, the only survey points with playa exposure between these amounts were all on the 

border between light and dark areas. Areas of the same type (light or dark) were continuous on a 

decameter scale. As a whole, the 90m pixel had an average composition of 60.0% playa material, 

32.8% small basaltic clast, 6.8% medium basaltic clast, and 0.4% large basaltic clast. Within 

each of the nine 30m areas, the minimum average playa exposure was 43.4% and the largest was 

85.6%. The spectrum based on these results is shown compared to the actual ASTER spectrum 

the super-resolved spectrum in Figure 4-7.  
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Figure 4-5 Laboratory spectra are combined in a weighted average based on the Survey Area 2 pixel survey results. Also shown are the original 
resolution ASTER TIR and the super-resolved TIR spectra. 
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Figure 4-6 Survey Area 3 shown on the NAID map. The red square marks the location of Survey Area 3 and 
the yellow cross marks the location of the FLIR camera during ASTER overpasses. 
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Figure 4-7 Laboratory spectra are combined in a weighted average based on the Survey Area 3 pixel survey results. Also shown are the original 
resolution ASTER TIR and the super-resolved TIR spectra. 
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Spectra from the samples collected during the transect (Figure 4-3) can be seen in Figure 

4-8. There is a trend for the maximum absorption feature, between 9.0 and 10.0 μm, to shallow 

and shift to shorter wavelengths with increasing distance from shoreline. Similarly, other spectral 

features become muted with increasing distance from the shore as well. However, features are 

generally easily discernible at the same spectral location across all spectra. 

4.3.2 Spectral Analysis Results 

A subset of the laboratory spectra of playa surface samples and of clasts are shown in Figure 4-9 

and Figure 4-10. Figure 4-9 samples are representative of several different types of spectra seen 

during data collection. The spectra in Figure 4-10 show several different basalt clast spectra as 

well as the spectrum of the rhyolitic clasts from Survey Area 1. Spectra from both figures were 

linear deconvolved to derive end-member areal abundances. These spectra also were used in the 

creation of the model spectra shown in Figures 4-4, 4-5, and 4-7. 

 

Unmixing of the spectra shown in Figures 4-9 and 4-10 using the ASU spectral library 

(Christensen et al., 2000) produced good results. Model fits had average RMS errors between 

0.0037 (Playa II) and 0.0145 (Playa IV). Eight of the 14 minerals found through linear 

deconvolution are clays; the remaining minerals are pyroxenes, plagioclase, iron oxide, and 

potassium feldspar. Six of the nine samples contained Ca-montmorillonite and Fe-smectite, and 

palygorskite was found in five. Several minerals were found in only one sample; the “small clast 

other” spectrum was modeled as several of these. These clasts were classified during transects as 

representing either rhyolitic or metamorphic material. 
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Figure 4-8 Transect sample spectra, offset for clarity, between 8.0 and 13.0 μm. There is a readily apparent 
trend (shown with the black arrow) for the main absorption feature between 9.0 and 10.0 μm to shift to 
shorter wavelengths and become shallower with increasing distance from the shoreline. 
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Figure 4-9 Spectra of representative playa surface material, offset for clarity, between 8 and 13 μm. 
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Figure 4-10 Spectra of representative clast material, offset for clarity, between 8 and 13 μm. 
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End-members derived from linear deconvolution were then used for deconvolution of 

satellite data. Linear deconvolution is valid within the TIR spectral range, but not in the VIR or 

SWIR regions. As a result, only ASTER data were deconvolved. During the unmixing of the 

laboratory spectra, 14 end-members were found. To reduce this number to five or less in order to 

be used with the ASTER emissivity data, end-members found only in 1 sample of the laboratory 

data were eliminated. The nine remaining end-members did not produce results which appeared 

valid. During unmixing, RMS errors were significantly high either within the playa or in the 

immediate surroundings, depending on which set of end-members were used. A decorrelation 

stretch of ASTER bands 13, 12, and 10 was done instead (Figure 4-11A), in order to pick out 

interesting areas and to see if there is correlation between the decorrelation stretch and mineral 

locations based on transect sampling. The same comparison was used with super-resolved 

ASTER TIR data (Figure 4-11B) for mapping of light and dark areas in Survey Area 3. As it was 

not possible to perform linear deconvolution on the AVIRIS data, a cluster analysis (Figure 4-12) 

was done for comparison purposes. 

4.4 DISCUSSION 

Data were collected at a variety of spatial and spectral scales during the fieldwork and laboratory 

spectral analysis. Integration of these differing scales revealed information that was not 

previously apparent within the data. An analysis of remote sensing data alone would have shown 

no systematic change in the mineral content away from the shoreline. Collection of sufficient 

samples to see these patterns across the entire playa would be impractical. Data integration 

reveals Lunar Lake playa to be more varied than previously documented. 



 

 135 

 

 
 
Figure 4-11 ASTER data of the area surrounding Lunar Lake playa are shown using a decorrelation stretch of bands 13 (10.657 μm), 12 (9.075 μm), 
and 10 (8.291 μm) in RGB. Within this image, the basaltic flows are cyan, the rhyolitic material is orange, playa material is blue, and the clasts on the 
playa show up as magenta. (A) Original resolution. (B) Super-resolved. 
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Figure 4-12 The AVIRIS data was clustered using the ISODATA algorithm, with a limit of 10 iterations and 
between 5 and 20 end-members. 
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4.4.1 Fieldwork Discussion 

In Survey Area 1, the apparent location of the emissivity minima in both the original and super-

resolved data is shifted to longer wavelengths relative to the laboratory spectrum built by the 

weighted average of pixel contents. This shift could be due to the non-perfect alignment between 

the ASTER and the surveyed pixel. The surveyed pixel is also 11% of the area of an ASTER TIR 

pixel. As a significant portion of the associated ASTER pixel is over the playa surface, any 

absorption minima will be shifted to shorter wavelengths as less proportionate signal is derived 

from mafic material and more from the clays of the playa surface. The super-resolved spectrum 

overlying this survey area has a different spectral shape than the original resolution ASTER 

pixel. This is consistent with the laboratory spectra, in which clasts have shallower features than 

the playa surface clays. As this pixel survey was almost entirely on the beach area, relatively 

little playa surface would be exposed within the super-resolved area. 

 

Survey Area 2 was homogeneous and almost entirely clay, with minimal clast material. 

In the course of laying out the survey, only one of the 30 m subpixels was not entirely on the 

playa. Roughly 30% of the southeastern subpixel extended beyond the playa edge. As a result, 

clay exposed on the surface of this subpixel dropped to just below 80%, whereas the minimum 

clay exposure for the other eight 30 m subpixels was 94%. Clasts were evenly distributed 

between and within the eight playa subpixels. There were differences in how quickly the playa 

absorbed water after rainfall, but these differences were not associated with clast distribution or 

surface coloration when the surface dried. Differences between the wet sample and dry sample 

collected post-rain are minimal, and can be attributed to system noise.  
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Figure 4-5 shows a good association between the original resolution ASTER pixel and 

the model spectrum of Survey Area 2. The slight drop between bands 10 and 11 of ASTER is 

attributed to imperfect atmospheric correction. The magnitude of the spectral absorption feature 

near 9 μm is well captured within the ASTER data, and the apparent shift between the minima is 

an artifact of the location of the band centers and the number of bands on ASTER. The same is 

true for the super-resolved spectra. The majority of the 36 super-resolved spectra were nearly 

identical. Given the compositional homogeneity of this pixel, most super-resolved pixels will 

contain only playa material, with insignificant (fewer than 5%) contributions from clasts. 

 

Survey Area 3 was within a region with significant clast coverage (Figure 4-6). This was 

reflected in the survey, when individual samples would show a jump from 40% playa exposure at 

one survey point to 98% exposure at the next. A number of large clasts were also found on this 

side of the playa, unlike Survey Areas 1 or 2. This is most likely attributable to the relative 

proximity to the volcanic area to the immediate north and west of Survey Area 3. This area of the 

playa featured steep slopes to within a few meters of the playa, and then a surface composed of 

nearly-interlocking large basaltic clasts, with little exposure of any clay. 

 

The model spectrum based on Survey Area 3 (Figure 4-7) shows a better correlation to 

the original resolution ASTER spectrum than seen in the other two pixel surveys. A slight 

shoulder on the shorter wavelength side of the constructed spectrum is visible as an inflection 

point at band 11 of the original resolution ASTER data. The super-resolved spectrum shows this 

same feature. Unlike the Survey Area 2, there were noticeable differences among the 36 super-

resolved spectra associated with this pixel. These differences correlate to the differences in 
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distribution between clast and playa material on the surface. The super-resolved data does a good 

job of discriminating between the two surface types in this Survey Area despite the limited 

spectral resolution of the ASTER instrument. 

 

Spectral features in the TIR became more muted in transect samples with increasing 

distance from the playa edge, although no systematic differences were apparent in the VIS. A 

shift to shorter wavelengths can be seen in the main silicate absorption feature between 9.0 and 

10.0 μm in the TIR data as well. These changes are due to two separate differences with the 

increased distance from the playa edge. First, as water flows into the playa, it will slow down as 

it can spread over a greater surface area. This will result in larger particles coming out of 

suspension and settling, leading to a decrease in particle size with increased distance from the 

playa edge. Decreasing particle size generally has the effect of muting spectral features. Then as 

the water evaporates into the dry environment, any molecules in solution will become 

increasingly concentrated. The remaining brine will be located at increasing distances from the 

playa edge. This will alter the chemistry of the evaporitic minerals that are deposited during 

evaporation, and lead to a shift in the spectra based on the mineral composition. 

4.4.2 Spectral Analysis Discussion 

Playa surface samples collected in March generally have a deeper absorption feature than the 

July samples. The March playa samples were collected under wet conditions. When these 

samples were analyzed at the University of Pittsburgh, they were still wet. This allowed them to 

be spread into the copper cups for spectral analysis, and to dry as a single unit. In comparison, 

spectra from the transect samples show much shallower features, despite some of them being 
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collected from the same general vicinity. These samples were already dry before being placed 

into the copper cups for spectral analysis, and so were granular instead of spread like a paste. 

This led to particle size effects during analysis of these samples.  

 

Clast spectra also show a difference in the magnitude of spectral features. The cleaned 

clast samples showed similar features to their natural counterparts. The surface layer of playa 

material generally muted features. During collection, clasts had been sorted by size. Spectral 

analysis of the three sizes of basaltic clasts showed no significant differences. Clasts that were 

categorized as being either rhyolitic or metamorphic in the field were differentiated from the 

basaltic clasts. These spectra possessed a slight shoulder in their main absorption feature, on the 

shorter wavelength side of the absorption. This shoulder is due to the presence of non-clay 

minerals, particularly microcline and augite, within the samples. 

 

Linear deconvolution model data were a good fit to the original spectra (Figures 4-9 and 

4-10). The dominant minerals from deconvolution are Ca-montmorillonite and Fe-smectite. 

Given the playa environment and a surrounding composed of rhyolitic tuff and basalt, these clay 

minerals are expected. The next two most common minerals are also clays. Halloysite is 

frequently formed from the weathering of rhyolitic units, and hectorite from the weathering of 

glass. No evaporites were found through linear deconvolution. Playa IV, the worst model fit 

based on RMS error, had better fits with minerals such as jade and chlorite; however, these 

minerals were deemed unlikely and removed from the end-member list before repeating the 

deconvolution. Prior to the removal of these problem end-members, gypsum was found in 

several of the samples. Given the environment, it is possible that this was a valid result. 



 

 141 

A decorrelation stretch can emphasize spectral differences within multivariable data at 

the possible expense of magnifying noise. Figure 4-11 shows DCS images generated using 

decorrelated ASTER bands 13, 12, and 10 in RGB. The original resolution image in Fig. 4-11 

was generated after first clipping the data to the super-resolved area. Basaltic flows and 

explosive deposits are shown to the west of the playa, in cyan. The rhyolitic tuff units dominate 

to the west. Within the playa, a ring of magenta can be seen; this area represents surfaces with 

greater than 10% clast coverage. The color of this unit is slightly darker on the eastern side. This 

may be a result of mixing between basalt-derived and tuff-derived clasts on that side, but data 

can be over-interpreted using results from such a limited area. 

 

AVIRIS data provides significantly more bands of data than ASTER and the spectral 

region is far more sensitive to phyllosilicate mineralogy. ISODATA clustering was performed 

using between 5 and 20 end-members, with the algorithm selecting 20 end-members after the 

10th iteration. (Figure 4-12). It is immediately apparent that there are two separate clusters over 

the area of the playa surface, shown as brown and red in Figure 4-12. This result is reproducible 

across multiple runs. Fieldwork, laboratory spectra, and ASTER data provide no additional 

insight into the difference between these two units given their spatial distribution. The spectral 

resolution of the ASTER SWIR instrument may not be sufficient to detect this difference, and no 

differences were apparent in the VIS or TIR. The eastern side of the playa shows at least five 

different clusters along its edge. These clusters form concentric rings within the intermediate 

region between the clast-free playa and the clast-covered shoreline. Based upon fieldwork and 

laboratory spectra, these rings are primarily defined by the ratio of playa surface to clast 

coverage. In addition, they are modified by the type of clasts present, with one of the classes 
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associated with areas more rich in rhyolitic tuff clasts than basalt clasts. The unit shown in light 

pink in the northern corner of the playa is co-located with inflow channels, visible in both the 

aerial and satellite data, and is associated with the plants growing in those channels. 

4.5 CONCLUSION 

Lunar Lake playa is significantly less spectrally homogeneous than previously thought. There are 

multiple clay compositions present. These clays appear to have been dominantly developed in 

situ and influenced by the immediate surroundings. Changes in surface composition were 

observed moving away from the playa edge, indicating that surface flow is a dominant process in 

determining this composition. The surface of the playa also appears to be free of evaporitic 

deposits, though this may be biased by the timing of the fieldwork after a particularly wet winter. 

Finally, there are differences in composition within the surrounding material, with rhyolitic tuff 

dominating the eastern side and basalt the western. As these areas weather, clasts are transported 

onto the playa surface. These clasts can accumulate in large strewn fields on the surface, altering 

the spectra of the surface for that area and reducing the available surface area for a calibration 

target. These same strewn field areas have strong value for planetary analog studies. The mixture 

of basalt clasts onto a clay playa, as in Survey Area 3, produces an area that possibly replicates 

the boundaries of martian clay deposits. The high spatial resolution of the AVIRIS data, 

combined with its spectral range and resolution, provide an additional dataset with which to 

compare this area to other planets. 

 



 

 143 

Super-resolved ASTER data did a good job of discriminating surface differences not 

apparent in the original resolution ASTER data. The super-resolved ASTER data differentiated 

between clast-covered and clast-free areas within Survey Area 3, but failed to differentiate the 

shoreline subpixel area in Survey Area 2. The relatively clast-rich subpixel in Survey Area 2 

would be considered a clast-free area in Survey Area 3. This provides some constraints to the 

amount of change necessary to differentiate these surfaces, with an apparent requirement for a 

difference of 20% abundance to be noticeable in the super-resolved ASTER data. 

 

Neither the original nor super-resolved ASTER data detected the clay compositional 

differences seen in the AVIRIS data and laboratory spectra of transect samples. In both the 

AVIRIS and laboratory data, there is a change of composition moving inward from the playa 

edge. Both of these data are hyperspectral, and detecting the surface composition of a small area. 

Super-resolved ASTER data, with the same spatial resolution as the AVIRIS instrument, did not 

detect these differences in any of the three spectral regions, indicating that the requirement for 

this detection may be the number of bands. With an increase in the number of bands and a 

decrease in the width of these bands, more subtle spectral features can be detected. The ASTER 

instrument may not possess sufficient spectral resolution to detect these differences. 

 

The super-resolution process was tested with data from this site, and confirmed with 

fieldwork. No surprises were found in this confirmation process. As this process has been used 

for two different planets, processing signals from two different satellites, and run on multiple 

types of environments, the super-resolution process used within this work can be considered 

robust and a useful tool for future studies. 
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APPENDIX A 

SUPER-RESOLUTION CODE 

A.1 SUPERRES_S_T.PRO 

;Topher Hughes, spring semester 2006 

;implement algorithm from Tonooka super-resolution paper 

;first cut - do subset of ASTER imagery 

;===================================== 

;===================================== 

;STEP 0: 

;   open crosstalk corrected file 

;   define region of interest 

;   address / select region of interest in all 14 bands 

;   calculate per-band StdDev in region of interest 

;   calculate size of image @ 15, 30, and 90m 

;band - total band image 

;band1, band2, band3N, band4,....,band14 - subsetted area of band - orig resln 

;band1_S, band1_T,...,band4_V,band4_T,....,band14_V,band14_S - alt resolution 

;band1_stddev, band2_stddev,...,band14_stddev - std dev of WHOLE band 

 

 

ReadData, band1, band2, band3N, band4, band5, band6, band7, band8,$ 

          band9, band10, band11, band12, band13, band14, V_stddev,$ 

          S_stddev, T_stddev, X_15m, X_30m, X_90m, Y_15m, Y_30m, Y_90m,$ 

          vis_image, swir_image, tir_image, Orig_Variable_Value, Orig_Variable_Name 
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Orig_band1=band1 

Orig_band2=band2 

Orig_band3N=band3N 

Orig_band4=band4 

Orig_band5=band5 

Orig_band6=band6 

Orig_band7=band7 

Orig_band8=band8 

Orig_band9=band9 

Orig_band10=band10 

Orig_band11=band11 

Orig_band12=band12 

Orig_band13=band13 

Orig_band14=band14 

 

Orig_V_stddev=V_stddev 

Orig_S_stddev=S_stddev 

Orig_T_stddev=T_stddev 

 

Orig_vis_image=vis_image 

Orig_swir_image=swir_image 

Orig_tir_image=tir_image 

 

read, alpha, prompt="Alpha value to use for PSF? (ASTER: 0.06565, THEMIS: 0.1) " 

Orig_Variable_Value[8]=alpha 

Orig_Variable_Name[8]='alpha' 

 

;;;===================VNIR ISODATA Variables=================================;;; 

read, MeansSize, prompt="Initial # of VIS clusters? " 

Orig_Variable_Value[9]=MeansSize 

Orig_Variable_Name[9]='MeansSize' 

 

;need to use temp variables - IDL passes array members by value and not reference 

 

Reason="VNIR Clusters" 
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;doing  

Temp_BandMax=max(Orig_vis_image) 

 

ISODAT_Step_One, Temp_ChangeLimit, Temp_MinMembers, Temp_MaxStdDev,$ 

                 Temp_MinDistance, Temp_MaxPair, Temp_BandMax, Temp_Limit,         Reason 

 

V_ChangeLimit=Temp_ChangeLimit 

Orig_Variable_Value[11]=Temp_ChangeLimit 

Orig_Variable_Name[11]="V_ChangeLimit" 

 

V_MinMembers=Temp_MinMembers 

Orig_Variable_Value[12]=Temp_MinMembers 

Orig_Variable_Name[12]="V_MinMembers" 

 

V_MaxStdDev=Temp_MaxStdDev 

Orig_Variable_Value[13]=Temp_MaxStdDev 

Orig_Variable_Name[13]="V_MaxStdDev" 

 

V_MinDistance=Temp_MinDistance 

Orig_Variable_Value[14]=Temp_MinDistance 

Orig_Variable_Name[14]="V_MinDistance" 

 

V_MaxPair=Temp_MaxPair 

Orig_Variable_Value[15]=Temp_MaxPair 

Orig_Variable_Name[15]="V_MaxPair" 

 

BandMax_V=Temp_BandMax 

Orig_Variable_Value[16]=Temp_BandMax 

Orig_Variable_Name[16]="BandMax_V" 

 

V_Limit=Temp_Limit 

Orig_Variable_Value[17]=Temp_Limit 

Orig_Variable_Name[17]="V_Limit" 

 

;;;===================SWIR ISODATA Variables=================================;;; 

read, SWIR_MeansSize, prompt='Initial # of SWIR clusters per VNIR cluster?:' 

Orig_Variable_Value[35]=SWIR_MeansSize 
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Orig_Variable_Name[35]="SWIR_MeansSize" 

 

Reason="SWIR Clusters" 

Temp_BandMax=max(Orig_swir_image) 

 

ISODAT_Step_One, Temp_ChangeLimit, Temp_MinMembers, Temp_MaxStdDev,$ 

                 Temp_MinDistance, Temp_MaxPair, Temp_BandMax, Temp_Limit, Reason 

 

S_ChangeLimit=Temp_ChangeLimit 

Orig_Variable_Value[18]=Temp_ChangeLimit 

Orig_Variable_Name[18]="S_ChangeLimit" 

 

S_MinMembers=Temp_MinMembers 

Orig_Variable_Value[19]=Temp_MinMembers 

Orig_Variable_Name[19]="S_MinMembers" 

 

S_MaxStdDev=Temp_MaxStdDev 

Orig_Variable_Value[20]=Temp_MaxStdDev 

Orig_Variable_Name[20]="S_MaxStdDev" 

 

S_MinDistance=Temp_MinDistance 

Orig_Variable_Value[21]=Temp_MinDistance 

Orig_Variable_Name[21]="S_MinDistance" 

 

S_MaxPair=Temp_MaxPair 

Orig_Variable_Value[22]=Temp_MaxPair 

Orig_Variable_Name[22]="S_MaxPair" 

 

BandMax_S=Temp_BandMax 

Orig_Variable_Value[23]=Temp_BandMax 

Orig_Variable_Name[23]="BandMax_S" 

 

S_Limit=Temp_Limit 

Orig_Variable_Value[24]=Temp_Limit 

Orig_Variable_Name[24]="S_Limit" 
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;;;===================TIR ISODATA Variables=================================;;; 

read, TIR_MeansSize, prompt='Initial # of TIR clusters per VNIR/SWIR cluster?:' 

Orig_Variable_Value[10]=TIR_MeansSize 

Orig_Variable_Name[10]="TIR_MeansSize" 

 

Reason="TIR Clusters" 

Temp_BandMax=max(Orig_tir_image) 

 

ISODAT_Step_One, Temp_ChangeLimit, Temp_MinMembers, Temp_MaxStdDev,$ 

                 Temp_MinDistance, Temp_MaxPair, Temp_BandMax, Temp_Limit, Reason 

 

T_ChangeLimit=Temp_ChangeLimit 

Orig_Variable_Value[25]=Temp_ChangeLimit 

Orig_Variable_Name[25]="T_ChangeLimit" 

 

T_MinMembers=Temp_MinMembers 

Orig_Variable_Value[26]=Temp_MinMembers 

Orig_Variable_Name[26]="T_MinMembers" 

 

T_MaxStdDev=Temp_MaxStdDev 

Orig_Variable_Value[27]=Temp_MaxStdDev 

Orig_Variable_Name[27]="T_MaxStdDev" 

 

T_MinDistance=Temp_MinDistance 

Orig_Variable_Value[28]=Temp_MinDistance 

Orig_Variable_Name[28]="T_MinDistance" 

 

T_MaxPair=Temp_MaxPair 

Orig_Variable_Value[29]=Temp_MaxPair 

Orig_Variable_Name[29]="T_MaxPair" 

 

BandMax_T=Temp_BandMax 

Orig_Variable_Value[30]=Temp_BandMax 

Orig_Variable_Name[30]="BandMax_T" 

 

T_Limit=Temp_Limit 

Orig_Variable_Value[31]=Temp_Limit 
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Orig_Variable_Name[31]="T_Limit" 

 

;;;===================Steps 4/5 and 9/10 variables=================================;;; 

read, V_T_Distance, prompt="How many pixels away at native resolution to search for matches (V/S or V/T) 

[default is 10]: " 

Orig_Variable_Value[32]=V_T_Distance 

Orig_Variable_Name[32]="V_T_Distance"  

 

read, V_S_T_Distance, prompt="How many pixels away at native resolution to search for matches (V/S/T) [default 

is 10]: " 

Orig_Variable_Value[33]=V_S_T_Distance 

Orig_Variable_Name[33]="V_S_T_Distance"  

 

read, Weight, prompt="Amount to weight VNIR vs SWIR? (0-1, 0.7 default) " 

Orig_Variable_Value[34]=Weight 

Orig_Variable_Name[34]="Weight" 

 

basestring=' ' 

read, basestring, prompt='Enter filename base to which details will be appended: ' 

Orig_basestring=basestring 

 

print, " 1. alpha                  11. SWIR ChangeLimit   21. TIR MinDistance" 

print, " 2. initial VIS clusters   12. SWIR MinMembers    22. TIR MaxPair" 

print, " 3. inital TIR clusters    13. SWIR MaxStdDev     23. TIR BandMax" 

print, " 4. VIS ChangeLimit        14. SWIR MinDistance   24. TIR Limit" 

print, " 5. VIS MinMembers         15. SWIR MaxPair       25. V_T_Distance"       

print, " 6. VIS MaxStdDev          16. SWIR BandMax       26. V_S_T Distance" 

print, " 7. VIS MinDistance        17. SWIR Limit         27. Weight" 

print, " 8. VIS MaxPair            18. TIR ChangeLimit    28. SWIR MeanSize"  

print, " 9.  VIS BandMax           19. TIR MinMembers" 

print, " 10. VIS Limit             20. TIR MaxStdDev" 

print, "If not varying anything, choose any of the above, and enter final value equal to initial value" 

read, Variable_To_Vary_Index, prompt="Index in Orig_Variable_xxx of variable to vary? " 

 

;display name here - re-read if not correct 

NotRightVariable=1 

While NotRightVariable Do Begin 
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   ;offset for initial variables 

   Variable_To_Vary_Index+=7 

   print, "Variable to be varied is "+Orig_Variable_Name[Variable_To_Vary_Index] 

   IsRight=' ' 

   read, IsRight, prompt="Is this correct? (y/n) " 

   if IsRight eq 'y' or IsRight eq 'Y' then NotRightVariable=0 $  

      else read, Variable_To_Vary_Index, prompt="Index in Orig_Variable_xxx of variable to vary? " 

EndWhile; NotRightVariable 

 

Orig_Variable_Value[99]=Variable_To_Vary_Index 

Orig_Variable_Name[99]="Variable_To_Vary_Index" 

 

read, Variable_To_Vary_FinalValue, prompt="Final value of variable? " 

 

Orig_Variable_Value[98]=Variable_To_Vary_FinalValue 

Orig_Variable_Name[98]="Variable_To_Vary_FinalValue" 

 

read, Variable_To_Vary_StepSize, prompt="Vary by how much in each step (NEVER enter 0 - even if not 

varying)? " 

if not(Variable_To_Vary_StepSize) then Variable_To_Vary_StepSize=1 

 

Orig_Variable_Value[97]=Variable_To_Vary_StepSize 

Orig_Variable_Name[97]="Variable_To_Vary_StepSize" 

 

read, Variable_To_Vary_StepCount, prompt="How many loops per step? " 

 

Orig_Variable_Value[96]=Variable_To_Vary_StepCount 

Orig_Variable_Name[96]="Variable_To_Vary_StepCount" 

 

num_loops=Variable_To_Vary_FinalValue-Orig_Variable_Value[Variable_To_Vary_Index] 

num_loops/=Variable_To_Vary_StepSize 

num_loops*=Variable_To_Vary_StepCount 

num_loops+=Variable_To_Vary_StepCount ;to get full count on final variable value 

 

Orig_Variable_Value[95]=num_loops 

Orig_Variable_Name[95]="num_loops" 
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;we always increase (or decrease if neg) by stepsize on loop 1. adjust 

;for that 

Orig_Variable_Value[Variable_To_Vary_Index]-=Variable_To_Vary_StepSize 

 

;all user input variables must be initialized by this point - ready to begin looping 

for loop_count=1, num_loops, 1 do begin 

   ;before doing anything, set values to what they ought to be 

   ;use this to increment / decrement any variable variables ( ;-)  ) too 

    

   ;first, save our loop_count for later output 

   Orig_Variable_Value[94]=loop_count 

   Orig_Variable_Name[94]="loop_count" 

    

   if (not((loop_count-1) mod Variable_To_Vary_StepCount)) then $ ;its time to iterate 

        Orig_Variable_Value[Variable_To_Vary_Index]+=Variable_To_Vary_StepSize 

    ReInitVariables, Orig_Variable_Value, alpha, MeansSize, TIR_MeansSize, V_ChangeLimit, V_MinMembers,$ 

                    V_MaxStdDev, V_MinDistance, V_MaxPair, BandMax_V, V_Limit, S_ChangeLimit,$ 

                    S_MinMembers, S_MaxStdDev, S_MinDistance, S_MaxPair, BandMax_S, S_Limit,$ 

                    T_ChangeLimit, T_MinMembers, T_MaxStdDev, T_MinDistance, T_MaxPair, BandMax_T,$ 

                    T_Limit, V_T_Distance, V_S_T_Distance, Weight, SWIR_MeansSize, Orig_basestring,$ 

                    basestring, loop_count, Variable_To_Vary_Index, Orig_Variable_Name 

  

  

   ;dont forget pass by value / pass by reference issues. 

 

 

   ;===================================== 

   ;===================================== 

   ;STEP 1: 

   ; 

   ; 

   ; 

   ; 

   ;degrade resolution of VNIR to 30M 

   ; 

   ; local vars through here - result, max_x, max_y 

   ; result - stores size() result [1] = x, [2] = y 
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   ;first thing - reduce the size of my image by 2.0 

   mag_ratio=2.0 

 

   ;and define my Point Spread Function to convolve with my image 

   PSF_S=CalcPSF(alpha) 

    

   ;create my 30m resolution VNIR images now 

 

   band1_S=Degrade(band1, PSF_S, mag_ratio) 

   band2_S=Degrade(band2, PSF_S, mag_ratio) 

   band3N_S=Degrade(band3N, PSF_S, mag_ratio) 

 

   ;===================================== 

   ;===================================== 

   ;STEP 2: 

   ; 

   ; 

   ; 

   ; 

 

   ;generate homogeneous pixel map 

   ; 

   ; local vars through here - 

   ; result - stores size() result [1] = x, [2] = y 

   ; band1_stddev, band2_stddev, etc calc. in step 0 above 

 

   result = size(band1_S) 

 

   VNIR_30m_homog = fltarr(result[1],result[2]) ;zeroed out initially 

   mag_ratio=2.0 

 

   Homog_Pix_VNIR, band1, band2, band3N, V_stddev[0], mag_ratio, VNIR_30m_homog 

 

   Homog_30m=VNIR_30m_homog 

   Homog_30m*=255 
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   ;===================================== 

   ;===================================== 

   ;STEP 3: 

   ; 

   ; 

   ; 

   ; 

   ;build the V/S tree, using ISODATA and mahalanobis distance 

   ; 

   ; local vars through here - 

   ; result - stores result of size() function 

   ; VNIR_30m - the total vnir image 

   ; swir_image - the total swir image 

   ; seed - array involved in PRNG - DO NOT MESS WITH THIS!!!! 

   ; homog - array of indices of homogeneous pixels 

   ; Means - the 1D list of cluster means for ISODATA 

 

   ;create 2D array - each image is a column in final result 

   result=size(band1_S) 

   VNIR_30m=[[reform(band1_S,result[4],1)],$ 

              [reform(band2_S,result[4],1)],$ 

              [reform(band3N_S,result[4],1)]] 

   VNIR_30m=rotate(VNIR_30m,4) 

 

   swir_image=Orig_swir_image 

 

 

   ;swir_image is of type BYTE. Convert to type Int (-32K to +32K) so 

   ;that when we go to find diffs (for MahaDist) we don't overflow 

   ;Not sure why program has worked without this one. 20 Sep 07 

   swir_image=fix(swir_image) 

 

   ;get indices of homogeneous pixels 

   ;in theory - VNIR_30m[*,homog] (or swir_image) is pixel values 

   ;of a homogeneous pixel where homogeneous is based on VNIR pixels 

   homog=where(VNIR_30m_homog) 
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   ;Tonooka says 50 initial starters for VNIR - I'm going to end up 

   ;with a list of roughly 50 indices in homog as a result. 

   ;using -1 for blank values in next two lines 

   result=size(homog, /n_elements) 

   print, 'You have',result,' homogeneous VNIR pixels' 

;   read, MeansSize, prompt='Initial number of VNIR clusters?:' 

   ;increase MeansSize by 10%, so I can eliminate the closest 

   MeansSize=round(Orig_Variable_Value[9] * 1.1) 

   VNIRMeans=make_array(MeansSize,1,/long,value=-1L);sizex1 array, all equal -1 

 

   ;calculate the Inverted Covariance Matrix for VNIR 

   subimage=VNIR_30m[*,homog] 

   ;make sure we have more than 1 pixel for covariance 

   sizecheck=size(subimage) 

   sizecheck=sizecheck[0]-1 ;[0] is 1 if 1, so sizecheck now 0 if 1 

 

   if (sizecheck) then begin 

      VNIR30mInvCovMat=GetInvCovMatrix(subimage) ;calc only for Homog Pix 

   endif else begin 

      VNIR30mInvCovMat=make_array(3,3,/float,value=1.0) 

      print, "WARNING - FOUND ONLY A SINGLE HOMOGENEOUS VNIR PIXEL!!!!!!" 

   endelse 

 

   Distance=make_array(size(homog, /n_elements), /float, value=0.0) 

   VNIRMeans=GetInitialMeans(homog,VNIR_30m,VNIRMeans,VNIR30mInvCovMat,Distance) 

 

   ;now get rid of those extra 10% - get rid of ones closest to another 

   result=size(VNIRMeans, /n_elements) 

   numremove=round(result*10/float(11)) 

   numremove=result-numremove 

   MeansVals=VNIR_30m[*,homog[VNIRMeans]] 

   VNIRMeans=RemoveLowestMeans(VNIRMeans,numremove,MeansVals,VNIR30mInvCovMat) 

 

   ;have my initial Means to work with - time to k-means sort all of 

   ;these. I need to get back the modified means for each cluster and 
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   ;the cluster to which each pixel belongs. I think this means I need 

   ;a PROcedure to get back more than one thing 

   ;given the image array, all homogeneous pixels, the initial means, 

   ;and Cluster - another 1-D array, same size as homog that will list 

   ;the cluster to which the pixel at the common index of homog belongs 

   ;ie - cluster[x] is cluster to which VNIR_30m[*,homog[x]] belongs 

 

 

   ;VNIR_30m and homog shouldn't change 

   ; 

   ;Means will flip from a 1-D list of homog indices to a 3 column average 

   ;of all pixels assigned to that cluster. Since we're dealing with DN here 

   ;the means will also remain byte values 

   ; 

   ;Cluster will be defined as a 1-D list of same length as homog that can 

   ;have a value between 0 and 49 - value is index of Means to which it 

   ;is closest. 

   VNIRClusters=homog  ;ok, its cheap, but it does get me the same size 

   VNIRClusters[*]=-1  ;cheap too - set them all to -1 

 

   VNIRMeans=VNIR_30m[*,homog[VNIRMeans]] 

 

   ClusterChecksum=make_array(V_Limit*4, /ulong, value=0) 

   ;why *4? we exceed Limit sometimes, and *4 seems a good safe limit 

 

   ISODATA, VNIRMeans, V_Limit, VNIR_30m, homog, VNIRClusters, VNIR30mInvCovMat,$ 

      V_ChangeLimit, V_MinMembers, V_NumMembers, V_MaxStdDev, V_MinDistance,$ 

           V_MaxPair, BandMax_V, ClusterChecksum 

 

   test=histogram(VNIRClusters, omin=ohmi, omax=ohma) 

   print, "post ISODATA omin omax and histogram of VNIRClusters is ",$ 

           ohmi, ohma, " and ", test 

 

 

   ;===================================== 

   ;===================================== 

   ;STEP 3B: 
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   ; 

   ;For each VNIR cluster, cluster associated SWIR pixels 

   ; 

   ; 

 

   ;at this point, I have my 30m VNIR pixels clusters - for each VNIR cluster 

   ;select all of the SWIR pixels, and cluster them. 

 

   ;increase MeansSize by 10%, so I can eliminate the closest 

   SWIRMeansSize=round(Orig_Variable_Value[35] * 1.1) 

 

   ;save them for posterity (and changes in the for loop) 

   TrueChangeLimit=S_ChangeLimit 

   TrueMinMembers=S_MinMembers 

   TrueMaxPair=S_MaxPair 

 

   ;how many VNIR clusters are there? 

   NumVNIRClusters=max(VNIRClusters) 

   NumVNIRClusters+=1 

 

   ;make an array to store start and stop array values for VNIR arrays 

   VNIRtoSWIR=make_array(NumVNIRClusters*2) 

 

   SWIRClusters=VNIRClusters 

   SWIRClusters[*]=-1 ;same cheap trick used to create VNIRClusters 

 

   ;ok - giving up on doing this mathematically properly for now, and seeing 

   ;if I can get through this with just a single inverse covariance matrix for 

   ;each band. It should really be on a per cluster basis, but I am 

   ;running into too many problems with trying to invert the covariance 

   ;matrix - I'm getting a singular matrix (determinant before invert 

   ;is 0) too often. As a result, the invert isn't reliable. This really 

   ;stinks. 27 Feb 07. 

 

   ;this is bad if we only have a few homogenous pixels. Of couse, if we 

   ;only have a few homogeneous pixels, we have bigger issues. 
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   SWIR30mInvCovMat=GetInvCovMatrix(swir_image[*,homog]) 

 

   ohma=-1.0 

 

   ;for each cluster, calculate the initial means, and then ISODATA it 

   for VNIRclus=0, NumVNIRClusters-1, 1 do begin 

 

      ;need to reset these after each iteration 

      S_ChangeLimit=TrueChangeLimit 

      S_MinMembers=TrueMinMembers 

      S_MaxPair=TrueMaxPair 

 

      ThisSWIRMeans=make_array(SWIRMeansSize,1,/long,value=-1L) 

      SWIRhomog=where(VNIRClusters eq VNIRclus) 

 

      ;want to keep the indices so I can reassign to them later 

      ThisSWIRIndex=SWIRhomog 

 

      ;actual pixel values from homog for this VNIR cluster 

      SWIRhomog=homog[SWIRhomog] 

 

      ;cheap way to get a cluster list of the right size 

      ThisSWIRCluster=SWIRhomog 

 

      ;define MinMembers, ChangeLimit, and NumMembers per cluster 

      NumMembers=size(SWIRhomog, /n_elements) 

 

      if ( size(ThisSWIRMeans,/n_elements) ge NumMembers ) then begin 

         ThisSWIRMeans=indgen(NumMembers) 

      endif else begin 

         Distance=make_array(size(homog, /n_elements), /float, value=0.0) 

         ThisSWIRMeans=GetInitialMeans(SWIRhomog,swir_image,ThisSWIRMeans,$ 

                       SWIR30mInvCovMat,Distance) 

         ;now get rid of those extra 10% - get rid of ones closest to another 

         result=size(ThisSWIRMeans, /n_elements) 

         numremove=round(result*10/float(11)) 

         numremove=result-numremove 
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         SWIRMeansVals=swir_image[*,SWIRhomog[ThisSWIRMeans]] 

         ThisSWIRMeans=RemoveLowestMeans(ThisSWIRMeans,numremove,SWIRMeansVals,$ 

                                        SWIR30mInvCovMat) 

      endelse; ThisSWIRMeans elements vs NumMembers 

 

      ThisSWIRMeans=swir_image[*,SWIRhomog[ThisSWIRMeans]] 

 

      ;ok, now I can call ISODATA for these 

      ClusterChecksum=make_array(S_Limit*4, /ulong, value=0) 

 

      ISODATA, ThisSWIRMeans, S_Limit, swir_image, SWIRhomog, ThisSWIRCluster,$ 

               SWIR30mInvCovMat, S_ChangeLimit, S_MinMembers, NumMembers,$ 

               S_MaxStdDev, S_MinDistance, S_MaxPair, BandMax_S, ClusterChecksum 

 

      ;ok, now add ThisSWIRCluster list to SWIRClusters and mark the sizes 

      ;in VNIRtoSWIR so I can index it. To do this: 

      ;first, modify the cluster values with the previous ohma so that 

      ;they don't conflict with results from other VNIR clusters 

      ThisSWIRCluster+=(ohma+1) 

 

      ;take a histogram of ThisSWIRCluster and set VNIRtoSWIR[VNIRclus*2] 

      ;to ohmi and VNIRtoSWIR[(VNIRClus*2)+1] to ohma 

      ThisSWIRhisto=histogram(ThisSWIRCluster,omin=ohmi,omax=ohma,$ 

                              reverse_indices=ri) 

 

      VNIRtoSWIR[(VNIRclus*2)]=ohmi 

      VNIRtoSWIR[(VNIRclus*2)+1]=ohma 

 

      ;finally, copy cluster values from ThisSWIRCluster to SWIRClusters 

      SWIRClusters[ThisSWIRIndex]=ThisSWIRCluster 

 

      ;end by recording our Means permanant-like 

      if (~ohmi) then begin 

         SWIRMEANS=ThisSWIRMeans 

      endif else begin 

         SWIRMeans=[[SWIRMeans],[ThisSWIRMeans]] 

      endelse 
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   endfor; VNIRclus=0 

 

   print, "Final VNIRtoSWIR is ", VNIRtoSWIR 

 

   ;===================================== 

   ;===================================== 

   ;STEP 4: 

   ; 

   ;The super-resolved images of the six SWIR bands are generated by 

   ;allocating the most likely SWIR spectrum to each 15m-resolution pixel 

   ;based on spectral similarity in VNIR. 

 

   ;I hadn't bothered building a vis_image image yet - do it now, as I'll 

   ;need it for this step 

 

   mag_ratio=2.0 

 

   vis_image=Orig_vis_image 

 

   SWIR_15m=SuperRes_OneBand(VNIRMeans,SWIRMeans,$ 

                          VNIRtoSWIR,homog,vis_image,VNIR_30m,swir_image,$ 

                          VNIR30mInvCovMat,SWIR30mInvCovMat,$ 

                          X_15m,Y_15m,mag_ratio, V_T_Distance) 

 

 

   ;===================================== 

   ;===================================== 

   ;STEP 5: 

   ; 

   ;The super-resolved image (SWIR_15m) may not be radiometrically accurate, 

   ;so it needs to be modified. This modification is weighted by the distance 

   ;between the VNIR spectra of the 15m pixel and VNIR spectra of the SWIR 

   ;spectra assigned to the 15m pixel (whether from tree or image) 

 

   SWIR_15m=ModifySuperRes(SWIR_15m, swir_image, PSF_S, X_15m, Y_15m, mag_ratio) 
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   ;at this point SWIR 0-5 are the images, 6 is the distance map, and 7 is 

   ;the source map (I think). I probably need to add bands 8-13 for the 

   ;correction maps, so that I can save those as well.  26 Oct 2006 

 

   ;zero out my border pixels - top row, bottom row, first column, last column 

   ;top row 

 

   SWIR_15m=ZeroLines(SWIR_15m, X_15m, Y_15m) 

 

   ;===================================== 

   ;===================================== 

   ;STEP 6: 

   ; 

   ;having super-resolved the SWIR bands, it is now time to super-resolve 

   ;the TIR bands. "This step is almost the same with step 1. The degraded 

   ;VNIR and SWIR images with a 90m resolution are derived...." 

 

   ;define my Point Spread Function to convolve with my image 

   PSF_T=CalcPSF(alpha) 

 

   ;VNIR 15 to 90 m resolution switch first 

 

   ;reduce the size of my image by 6.0 for VNIR 

   mag_ratio=6.0 

 

   ;now actually degrade my resolution 

   band1_T=Degrade(band1, PSF_T, mag_ratio) 

   band2_T=Degrade(band2, PSF_T, mag_ratio) 

   band3N_T=Degrade(band3N, PSF_T, mag_ratio) 

 

   result=size(band1_T) 

 

   VNIR_90m=[[reform(band1_T, result[4], 1)],$ 

              [reform(band2_T, result[4], 1)],$ 

              [reform(band3N_T, result[4], 1)]] 

   VNIR_90m=rotate(VNIR_90m,4) 
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   ;SWIR 30 to 90 m resolution switch first 

 

   ;reduce the size of my image by 3.0 for VNIR 

   mag_ratio=3.0 

 

   ;now actually degrade my resolution 

   band4_T=Degrade(band4, PSF_T, mag_ratio) 

   band5_T=Degrade(band5, PSF_T, mag_ratio) 

   band6_T=Degrade(band6, PSF_T, mag_ratio) 

   band7_T=Degrade(band7, PSF_T, mag_ratio) 

   band8_T=Degrade(band8, PSF_T, mag_ratio) 

   band9_T=Degrade(band9, PSF_T, mag_ratio) 

 

   result=size(band4_T) 

 

   SWIR_90m=[[reform(band4_T, result[4], 1)],$ 

              [reform(band5_T, result[4], 1)],$ 

              [reform(band6_T, result[4], 1)],$ 

              [reform(band7_T, result[4], 1)],$ 

              [reform(band8_T, result[4], 1)],$ 

              [reform(band9_T, result[4], 1)]] 

   SWIR_90m=rotate(SWIR_90m,4) 

 

   ;===================================== 

   ;===================================== 

   ;STEP 7: 

   ; 

   ;"This step is almost the same with the step 2.  A homogeneous pixel is 

   ; here defined as a 90m-resolution pixel that each of the standard 

   ; deviations of 36 original VNIR pixels and 9 original SWIR pixels in a 

   ; 90m-resolution pixel is smaller than each threshold of VNIR and SWIR. 

   ; Using the original VNIR and SWIR images, the 90m-resolution homogeneous 

   ; pixel map is generated." 

 

   ; 
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   ;generate homogeneous pixel map 

   ; 

 

   ;do VNIR first 

   result = size(band1_T) 

 

   VNIR_90m_homog = fltarr(result[1],result[2]) ;zeroed out initially 

   mag_ratio=6.0 

 

   Homog_Pix_VNIR, band1, band2, band3N, V_stddev[0], mag_ratio, VNIR_90m_homog 

 

   ;now do SWIR 

   ;result is size of 90m array - same for VNIR, SWIR, or TIR 

 

   SWIR_90m_homog = fltarr(result[1],result[2]) ;zeroed out initially 

   mag_ratio=3.0 

 

   Homog_Pix_SWIR, band4, band5, band6, band7, band8, band9, S_stddev[0],$ 

                   mag_ratio, X_30m, Y_30m, SWIR_90m_homog 

 

 

   Homog_90m=floor((VNIR_90m_homog + SWIR_90m_homog) / 2.0) 

   Homog_90m*=255 

 

   ;===================================== 

   ;===================================== 

   ;STEP 8: 

   ; 

   ; 

   ; 

   ; 

   ;build the V/S/T tree, using ISODATA and mahalanobis distance 

   ; 

   ; local vars through here - 

   ; result - stores result of size() function 

   ; VNIR_90m - the total vnir image 

   ; SWIR_90m - the total swir image 
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   ; seed - array involved in PRNG - DO NOT MESS WITH THIS!!!! 

   ; homog - array of indices of homogeneous pixels 

   ; Means - the 1D list of cluster means for ISODATA 

 

   ;get indices of homogeneous pixels 

   ;in theory - Homog_90m is pixel values of a homogeneous pixel 

   ;where homogeneous is based on VNIR and SWIR pixels 

   homog=where(Homog_90m) 

 

 

   ;Tonooka says 50 initial starters for VNIR - I'm going to end up 

   ;with a list of roughly 50 indices in homog as a result. 

   ;using -1 for blank values in next two lines 

   result=size(homog, /n_elements) 

   print, 'You have',result,' homogeneous VNIR/SWIR 90m pixels' 

;   read, MeansSize, prompt='Initial number of VNIR clusters?:' 

   ;increase MeansSize by 10%, so I can eliminate the closest 

 

   MeansSize=round(Orig_Variable_Value[9] * 1.1) 

   VNIRMeans=make_array(MeansSize,1,/long,value=-1L);sizex1 array, all equal -1 

 

   ;calculate the Inverted Covariance Matrix for VNIR 

   subimage=VNIR_90m[*,homog] 

   ;make sure we have more than 1 pixel for covariance 

   sizecheck=size(subimage) 

   sizecheck=sizecheck[0]-1 ;[0] is 1 if 1, so sizecheck now 0 if 1 

 

   if (sizecheck) then begin 

      VNIR90mInvCovMat=GetInvCovMatrix(subimage) ;calc only for Homog Pix 

   endif else begin 

      VNIR90mInvCovMat=make_array(3,3,/float,value=1.0) 

      print, "ONLY ONE 90m HOMOGENEOUS VNIR PIXEL?!?!?!?" 

   endelse 

 

   Distance=make_array(size(homog, /n_elements), /float, value=0.0) 

   VNIRMeans=GetInitialMeans(homog,VNIR_90m,VNIRMeans,VNIR90mInvCovMat,Distance) 
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   ;now get rid of those extra 10% - get rid of ones closest to another 

   result=size(VNIRMeans, /n_elements) 

   numremove=round(result*10/float(11)) 

   numremove=result-numremove 

   MeansVals=VNIR_90m[*,homog[VNIRMeans]] 

   VNIRMeans=RemoveLowestMeans(VNIRMeans,numremove,MeansVals,VNIR90mInvCovMat) 

 

   ;have my initial Means to work with - time to ISODATA sort all of 

   ;these. I need to get back the modified means for each cluster and 

   ;the cluster to which each pixel belongs. I think this means I need 

   ;a PROcedure to get back more than one thing 

   ;given the image array, all homogeneous pixels, the initial means, 

   ;and Cluster - another 1-D array, same size as homog that will list 

   ;the cluster to which the pixel at the common index of homog belongs 

   ;ie - cluster[x] is cluster to which VNIR_90m[*,homog[x]] belongs 

 

 

   ;VNIR_90m and homog shouldn't change 

   ; 

   ;Means will flip from a 1-D list of homog indices to a 3 column average 

   ;of all pixels assigned to that cluster. Since we're dealing with DN here 

   ;the means will also remain byte values 

   ; 

   ;Cluster will be defined as a 1-D list of same length as homog that can 

   ;have a value between 0 and max cluster less 1 - value is index of Means 

   ;to which it is closest. 

   VNIRClusters=homog  ;ok, its cheap, but it does get me the same size 

   VNIRClusters[*]=-1  ;cheap too - set them all to -1 

 

   VNIRMeans=VNIR_90m[*,homog[VNIRMeans]] 

 

   NumMembers=size(homog, /n_elements) 

    

   ClusterChecksum=make_array(V_Limit*4, /ulong, value=0) 

 

 

   ISODATA, VNIRMeans, V_Limit, VNIR_90m, homog, VNIRClusters, VNIR90mInvCovMat,$ 



 

 165 

          V_ChangeLimit, V_MinMembers, V_NumMembers, V_MaxStdDev, V_MinDistance,$ 

          V_MaxPair, BandMax_V, ClusterChecksum 

 

   test=histogram(VNIRClusters, omin=ohmi, omax=ohma) 

   print, "post ISODATA omin omax and histogram of VNIRClusters is ", ohmi, ohma, " and ", test 

 

   ;===================================== 

   ;===================================== 

   ;STEP 8B: 

   ; 

   ;For each VNIR cluster, cluster associated SWIR pixels 

   ; 

   ; 

   ;at this point, I have my 90m VNIR pixels clusters - for each VNIR cluster 

   ;select all of the SWIR pixels, and cluster them. 

 

   ;increase MeansSize by 10%, so I can eliminate the closest 

   SWIRMeansSize=round(Orig_Variable_Value[35] * 1.1) 

 

   ;save them for posterity (and changes in the for loop) 

   TrueChangeLimit=S_ChangeLimit 

   TrueMinMembers=S_MinMembers 

   TrueMaxPair=S_MaxPair 

 

   ;how many VNIR clusters are there? 

   NumVNIRClusters=max(VNIRClusters) 

   NumVNIRClusters+=1 

 

   ;make an array to store start and stop array values for VNIR arrays 

   VNIRtoSWIR=make_array(NumVNIRClusters*2) 

 

   SWIRClusters=VNIRClusters 

   SWIRClusters[*]=-1 ;same cheap trick used to create VNIRClusters 

 

   ;ok - giving up on doing this properly for now, and seeing if I can 

   ;get through this with just a single inverse covariance matrix for 

   ;each band. It should really be on a per cluster basis, but I am 
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   ;running into too many problems with trying to invert the covariance 

   ;matrix - I'm getting a singular matrix (determinant before invert 

   ;is 0) too often. As a result, the invert isn't reliable. This really 

   ;stinks. 27 Feb 07. 

 

   ;this is bad if we only have a few homogenous pixels. Of course, if we 

   ;only have a few homogeneous pixels, we have bigger issues. 

 

   SWIR90mInvCovMat=GetInvCovMatrix(SWIR_90m[*,homog]) 

 

   ohma=-1.0 

 

   ;for each cluster, calculate the initial means, and then ISODATA it 

   for VNIRclus=0, NumVNIRClusters-1, 1 do begin 

 

      ;need to reset these after each iteration 

      S_ChangeLimit=TrueChangeLimit 

      S_MinMembers=TrueMinMembers 

      S_MaxPair=TrueMaxPair 

 

      ThisSWIRMeans=make_array(SWIRMeansSize,1,/long,value=-1L) 

      SWIRhomog=where(VNIRClusters eq VNIRclus) 

 

      ;want to keep the indices so I can reassign to them later 

      ThisSWIRIndex=SWIRhomog 

 

      ;actual pixel values from homog for this VNIR cluster 

      SWIRhomog=homog[SWIRhomog] 

 

      ;cheap way to get a cluster list of the right size 

      ThisSWIRCluster=SWIRhomog 

 

      ;define MinMembers, ChangeLimit, and NumMembers per cluster 

      NumMembers=size(SWIRhomog, /n_elements) 

 

      if ( size(ThisSWIRMeans,/n_elements) ge NumMembers ) then begin 

         ThisSWIRMeans=indgen(NumMembers) 
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      endif else begin 

         Distance=make_array(size(SWIRhomog, /n_elements), /float, value=0.0) 

         ThisSWIRMeans=GetInitialMeans(SWIRhomog,SWIR_90m,ThisSWIRMeans,$ 

                       SWIR30mInvCovMat,Distance) 

;         ThisSWIRMeans=CalcMahaDist(SWIRhomog,SWIR_90m,ThisSWIRMeans,$ 

;                                    SWIR90mInvCovMat) 

 

         ;now get rid of those extra 10% - get rid of ones closest to another 

         result=size(ThisSWIRMeans, /n_elements) 

         numremove=round(result*10/float(11)) 

         numremove=result-numremove 

         SWIRMeansVals=SWIR_90m[*,SWIRhomog[ThisSWIRMeans]] 

         ThisSWIRMeans=RemoveLowestMeans(ThisSWIRMeans,numremove,$ 

                                         SWIRMeansVals,SWIR90mInvCovMat) 

      endelse; ThisSWIRMeans elements vs NumMembers 

 

      ThisSWIRMeans=SWIR_90m[*,SWIRhomog[ThisSWIRMeans]] 

 

      ;ok, now I can call ISODATA for these 

 

      ClusterChecksum=make_array(S_Limit*4, /ulong, value=0) 

 

      ISODATA, ThisSWIRMeans, S_Limit, SWIR_90m, SWIRhomog, ThisSWIRCluster,$ 

               SWIR90mInvCovMat, S_ChangeLimit, S_MinMembers, S_NumMembers,$ 

               S_MaxStdDev, S_MinDistance, S_MaxPair, BandMax_S, ClusterChecksum 

 

      ;ok, now add ThisSWIRCluster list to SWIRClusters and mark the sizes 

      ;in VNIRtoSWIR so I can index it. To do this: 

 

      ;first, modify the cluster values with the previous ohma so that 

      ;they don't conflict with results from other VNIR clusters 

      ThisSWIRCluster+=(ohma+1) 

 

      ;take a histogram of ThisSWIRCluster and set VNIRtoSWIR[VNIRclus*2] 

      ;to ohmi and VNIRtoSWIR[(VNIRClus*2)+1] to ohma 

      ThisSWIRhisto=histogram(ThisSWIRCluster,omin=ohmi,omax=ohma,$ 

                              reverse_indices=ri) 
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      VNIRtoSWIR[(VNIRclus*2)]=ohmi 

      VNIRtoSWIR[(VNIRclus*2)+1]=ohma 

 

      ;finally, copy cluster values from ThisSWIRCluster to SWIRClusters 

      SWIRClusters[ThisSWIRIndex]=ThisSWIRCluster 

 

      ;end by recording our Means permanant-like 

      if (~ohmi) then begin 

         SWIRMEANS=ThisSWIRMeans 

      endif else begin 

         SWIRMeans=[[SWIRMeans],[ThisSWIRMeans]] 

      endelse 

 

   endfor; VNIRclus=0 

 

   ;===================================== 

   ;===================================== 

   ;STEP 8C: 

   ; 

   ;For each SWIR cluster, cluster associated TIR pixels 

   ; 

   ; 

   ;create my TIR array 

 

   tir_image=Orig_tir_image 

 

   ;at this point, I have my 90m SWIR pixels clusters - for each SWIR cluster 

   ;select all of the TIR pixels, and cluster them. 

 

   ;first, find out how many Means we want per cluster 

 

 

   ;increase MeansSize by 10%, so I can eliminate the closest 

   TIRMeansSize=round(Orig_Variable_Value[10] * 1.1) 

 

   ;save them for posterity (and changes in the for loop) 
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   TrueChangeLimit=T_ChangeLimit 

   TrueMinMembers=T_MinMembers 

   TrueMaxPair=T_MaxPair 

 

   ;how many SWIR clusters are there? 

   NumSWIRClusters=max(SWIRClusters) 

   NumSWIRClusters+=1 

 

   ;make an array to store start and stop array values for SWIR arrays 

   SWIRtoTIR=make_array(NumSWIRClusters*2) 

 

   TIRClusters=SWIRClusters 

   TIRClusters[*]=-1 ;same cheap trick used to create SWIRClusters 

 

   ;ok - giving up on doing this properly for now, and seeing if I can 

   ;get through this with just a single inverse covariance matrix for 

   ;each band. It should really be on a per cluster basis, but I am 

   ;running into too many problems with trying to invert the covariance 

   ;matrix - I'm getting a singular matrix (determinant before invert 

   ;is 0) too often. As a result, the invert isn't reliable. This really 

   ;stinks. 27 Feb 07. 

 

   ;this is bad if we only have a few homogenous pixels. Of couse, if we 

   ;only have a few homogeneous pixels, we have bigger issues. 

 

   TIR90mInvCovMat=GetInvCovMatrix(tir_image[*,homog]) 

 

   ohma=-1.0 

 

   ;for each cluster, calculate the initial means, and then ISODATA it 

   for SWIRclus=0, NumSWIRClusters-1, 1 do begin 

 

      ;need to reset these after each iteration 

      T_ChangeLimit=TrueChangeLimit 

      T_MinMembers=TrueMinMembers 

      T_MaxPair=TrueMaxPair 
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      ThisTIRMeans=make_array(TIRMeansSize,1,/long,value=-1L) 

      TIRhomog=where(SWIRClusters eq SWIRclus) 

 

      ;want to keep the indices so I can reassign to them later 

      ThisTIRIndex=TIRhomog 

 

      ;actual pixel values from homog for this SWIR cluster 

      TIRhomog=homog[TIRhomog] 

 

      ;cheap way to get a cluster list of the right size 

      ThisTIRCluster=TIRhomog 

 

      ;define MinMembers, ChangeLimit, and NumMembers per cluster 

      NumMembers=size(TIRhomog, /n_elements) 

 

 

      if ( size(ThisTIRMeans,/n_elements) ge NumMembers ) then begin 

         ThisTIRMeans=indgen(NumMembers) 

      endif else begin 

         Distance=make_array(size(TIRhomog, /n_elements), /float, value=0.0) 

         ThisTIRMeans=GetInitialMeans(TIRhomog,tir_image,ThisTIRMeans,$ 

                       TIR90mInvCovMat,Distance) 

 

         ;now get rid of those extra 10% - get rid of ones closest to another 

         result=size(ThisTIRMeans, /n_elements) 

         numremove=round(result*10/float(11)) 

         numremove=result-numremove 

         TIRMeansVals=tir_image[*,TIRhomog[ThisTIRMeans]] 

         ThisTIRMeans=RemoveLowestMeans(ThisTIRMeans,numremove,TIRMeansVals,$ 

                                        TIR90mInvCovMat) 

      endelse; ThisTIRMeans elements vs NumMembers 

 

      ThisTIRMeans=tir_image[*,TIRhomog[ThisTIRMeans]] 

 

      ;ok, now I can call ISODATA for these 

 

      ClusterChecksum=make_array(T_Limit*4, /ulong, value=0) 
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      ISODATA, ThisTIRMeans, T_Limit, tir_image, TIRhomog, ThisTIRCluster,$ 

               TIR90mInvCovMat, T_ChangeLimit, T_MinMembers, T_NumMembers,$ 

               T_MaxStdDev, T_MinDistance, T_MaxPair, BandMax_T, ClusterChecksum 

 

      ;ok, now add ThisTIRCluster list to TIRClusters and mark the sizes 

      ;in SWIRtoTIR so I can index it. To do this: 

 

      ;first, modify the cluster values with the previous ohma so that 

      ;they don't conflict with results from other SWIR clusters 

      ThisTIRCluster+=(ohma+1) 

 

      ;take a histogram of ThisTIRCluster and set SWIRtoTIR[SWIRclus*2] 

      ;to ohmi and SWIRtoTIR[(SWIRClus*2)+1] to ohma 

      ThisTIRhisto=histogram(ThisTIRCluster,omin=ohmi,omax=ohma,$ 

                              reverse_indices=ri) 

 

      SWIRtoTIR[(SWIRclus*2)]=ohmi 

      SWIRtoTIR[(SWIRclus*2)+1]=ohma 

 

      ;finally, copy cluster values from ThisTIRCluster to TIRClusters 

      TIRClusters[ThisTIRIndex]=ThisTIRCluster 

 

      ;end by recording our Means permanent-like 

      if (~ohmi) then begin 

         TIRMEANS=ThisTIRMeans 

      endif else begin 

         TIRMeans=[[TIRMeans],[ThisTIRMeans]] 

      endelse 

 

   endfor; SWIRclus=0 

 

   print, "Final SWIRtoTIR is ", SWIRtoTIR 

 

   ;===================================== 

   ;===================================== 

   ;STEP 9: 
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   ; 

   ;The super-resolved images of the five TIR bands are generated by 

   ;allocating the most likely TIR spectrum to each 15m-resolution pixel 

   ;based on spectral similarity in VNIR and SWIR. 

 

   mag_ratio=6.0 

 

   TIR_15m=SuperRes_TwoBands(VNIRMeans,SWIRMeans,TIRMeans,$ 

                        VNIRClusters,SWIRClusters,TIRClusters,$ 

                        VNIRtoSWIR,SWIRtoTIR,homog,$ 

                        vis_image,VNIR_90m,SWIR_15m,SWIR_90m,tir_image,$ 

                        VNIR90mInvCovMat,SWIR90mInvCovMat,TIR90mInvCovMat,$ 

                        X_15m,Y_15m, mag_ratio, V_S_T_Distance, Weight) 

 

 

   ;===================================== 

   ;===================================== 

   ;STEP 10: 

   ; 

   ;The super-resolved image (TIR_15m) may not be radiometrically accurate, 

   ;so it needs to be modified. This modification is weighted by the distance 

   ;between the VN/SWIR spectra of the 15m pixel and VN/SWIR spectra of the TIR 

   ;spectra assigned to the 15m pixel (whether from tree or image) 

 

   ;just in case its not set right 

   mag_ratio=6.0 

 

   TIR_15m=ModifySuperRes_T(TIR_15m, tir_image, PSF_T, X_15m, Y_15m, mag_ratio) 

 

   ;at this point TIR 0-4 are the images, 5 is the distance map, 6 is 

   ;the source map, and 7 - 11 are the correction maps. 8/15/07 

 

   ;zero out my border pixels - top row, bottom row, first column, last column 

   ;top row 

 

   TIR_15m=ZeroLines(TIR_15m, X_15m, Y_15m) 
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   ;create our calibrated radiance file 

   ; 

   ;             HARD CODING BELOW   

   ;             HARD CODING BELOW   

   ;             HARD CODING BELOW   

   ; 

   TIR_calib_rad=CalibrateTIRRadiance(TIR_15m[0:4,*]) 

   SWIR_calib_rad=CalibrateSWIRRadiance(SWIR_15m[0:5,*]) 

 

   ;add our calibrated radiances to our _15m files 

   TIR_15m=[TIR_15m,TIR_calib_rad] 

   SWIR_15m=[SWIR_15m,SWIR_calib_rad] 

 

   ;Save out our data to files with a common basename 

   WriteOutASTERData, tir_15m, homog_90m, swir_15m, homog_30m, basestring, Orig_Variable_Value, 

Orig_Variable_Name 

 

endfor; major loop for repeated runs 

 

   print, "Program Finished." 

 

end 

A.2 SUPERRES_THEMIS.PRO 

;===================================== 

;===================================== 

;STEP 0: 

;   open crosstalk corrected file 

;   define region of interest 

;   address / select region of interest in all 14 bands 

;   initially - print value of upper left and lower right corners 

 

;ok - start with initialization 

;these variables are first defined in step 0 



 

 174 

;V=VNIR S=SWIR T=TIR UL=Upper Left LR=Lower Right 

 

;other variables used 

;band - total band image 

;band1, band2, band3N, band4,....,band14 - subsetted area of band - orig resln 

;band1_S, band1_T,...,band4_V,band4_T,....,band14_V,band14_S - alt resolution 

;band1_v, band2_stddev,...,band14_stddev - std dev of WHOLE band 

 

;===================================== 

;===================================== 

;STEP 0: 

; 

; 

;   THEMIS step 0 

; 

;open file, calculate standard deviations, etc 

 

print, "Welcome to the super-res program for THEMIS" 

 

ReadThemisData, Vband1, Vband2, Vband3, Vband4, Vband5, V_pix_size,$ 

                V_numbands, X_vis, Y_vis, vis_image, Tband1, Tband2,$ 

                Tband3, Tband4, Tband5, Tband6, Tband7, Tband8, Tband9,$ 

                Tband10, T_pix_size, T_numbands, X_tir, Y_tir, tir_image,$ 

                V_nonzeroes, T_nonzeroes, V_stddev, T_stddev,$ 

                Orig_Variable_Value, Orig_Variable_Name 

 

;save all those values out to variables that I know won't change in the loop 

;these are arrays, etc - things that don't fit the Orig_Variable_Value / Name model 

;these are also all things that won't be iterated during looping (ie, non-variables) 

 

Orig_Vband1=Vband1 

Orig_Vband2=Vband2 

Orig_Vband3=Vband3 

Orig_Vband4=Vband4 

Orig_Vband5=Vband5 

Orig_vis_image=vis_image 

Orig_Tband1=Tband1 



 

 175 

Orig_Tband2=Tband2 

Orig_Tband3=Tband3 

Orig_Tband4=Tband4 

Orig_Tband5=Tband5 

Orig_Tband6=Tband6 

Orig_Tband7=Tband7 

Orig_Tband8=Tband8 

Orig_Tband9=Tband9 

Orig_Tband10=Tband10 

Orig_tir_image=tir_image 

Orig_V_nonzeroes=V_nonzeroes 

Orig_T_nonzeroes=T_nonzeroes 

Orig_V_stddev=V_stddev 

Orig_T_stddev=T_stddev 

 

read, alpha, prompt="Alpha value to use for PSF? (ASTER: 0.06565, THEMIS: 0.1) " 

Orig_Variable_Value[8]=alpha 

Orig_Variable_Name[8]='alpha' 

 

read, MeansSize, prompt="Initial # of VIS clusters? " 

Orig_Variable_Value[9]=MeansSize 

Orig_Variable_Name[9]='MeansSize' 

 

;need to use temp variables - IDL passes array members by value and not reference 

Reason="VNIR Clusters" 

;doing  

Temp_BandMax=max(Orig_vis_image) 

 

ISODAT_Step_One, Temp_ChangeLimit, Temp_MinMembers, Temp_MaxStdDev,$ 

                 Temp_MinDistance, Temp_MaxPair, Temp_BandMax, Temp_Limit, Reason 

 

V_ChangeLimit=Temp_ChangeLimit 

Orig_Variable_Value[11]=Temp_ChangeLimit 

Orig_Variable_Name[11]="V_ChangeLimit" 

 

V_MinMembers=Temp_MinMembers 

Orig_Variable_Value[12]=Temp_MinMembers 
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Orig_Variable_Name[12]="V_MinMembers" 

 

V_MaxStdDev=Temp_MaxStdDev 

Orig_Variable_Value[13]=Temp_MaxStdDev 

Orig_Variable_Name[13]="V_MaxStdDev" 

 

V_MinDistance=Temp_MinDistance 

Orig_Variable_Value[14]=Temp_MinDistance 

Orig_Variable_Name[14]="V_MinDistance" 

 

 

V_MaxPair=Temp_MaxPair 

Orig_Variable_Value[15]=Temp_MaxPair 

Orig_Variable_Name[15]="V_MaxPair" 

 

BandMax_V=Temp_BandMax 

Orig_Variable_Value[16]=Temp_BandMax 

Orig_Variable_Name[16]="BandMax_V" 

 

V_Limit=Temp_Limit 

Orig_Variable_Value[17]=Temp_Limit 

 

Orig_Variable_Name[17]="V_Limit" 

 

read, TIR_MeansSize, prompt='Initial # of TIR clusters per VNIR cluster?:' 

Orig_Variable_Value[10]=TIR_MeansSize 

Orig_Variable_Name[10]="TIR_MeansSize" 

 

Reason="TIR Clusters" 

Temp_BandMax=max(Orig_tir_image) 

 

ISODAT_Step_One, Temp_ChangeLimit, Temp_MinMembers, Temp_MaxStdDev,$ 

                 Temp_MinDistance, Temp_MaxPair, Temp_BandMax, Temp_Limit, Reason 

 

T_ChangeLimit=Temp_ChangeLimit 

Orig_Variable_Value[25]=Temp_ChangeLimit 

Orig_Variable_Name[25]="T_ChangeLimit" 
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T_MinMembers=Temp_MinMembers 

Orig_Variable_Value[26]=Temp_MinMembers 

Orig_Variable_Name[26]="T_MinMembers" 

 

T_MaxStdDev=Temp_MaxStdDev 

Orig_Variable_Value[27]=Temp_MaxStdDev 

Orig_Variable_Name[27]="T_MaxStdDev" 

 

T_MinDistance=Temp_MinDistance 

Orig_Variable_Value[28]=Temp_MinDistance 

Orig_Variable_Name[28]="T_MinDistance" 

 

T_MaxPair=Temp_MaxPair 

Orig_Variable_Value[29]=Temp_MaxPair 

Orig_Variable_Name[29]="T_MaxPair" 

 

BandMax_T=Temp_BandMax 

Orig_Variable_Value[30]=Temp_BandMax 

Orig_Variable_Name[30]="BandMax_T" 

 

T_Limit=Temp_Limit 

Orig_Variable_Value[31]=Temp_Limit 

Orig_Variable_Name[31]="T_Limit" 

 

read, V_T_Distance, prompt="How many pixels away at native resolution to search for matches [default is 10]: " 

Orig_Variable_Value[32]=V_T_Distance 

Orig_Variable_Name[32]="V_T_Distance"  

 

 

basestring=' ' 

read, basestring, prompt='Enter filename base to which details will be appended: ' 

Orig_basestring=basestring 

 

print, " 1. alpha                  7. VIS MinDistance    13. TIR MaxStdDev" 

print, " 2. initial VIS clusters   8. VIS MaxPair        14. TIR MinDistance" 

print, " 3. inital TIR clusters    9. Vis BandMax        15. TIR MaxPair" 
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print, " 4. VIS ChangeLimit        10. VIS Limit         16. TIR BandMax" 

print, " 5. VIS MinMembers         11. TIR ChangeLimit   17. TIR Limit"       

print, " 6. VIS MaxStdDev          12. TIR MinMembers    18. Distance" 

print, "If not varying anything, choose any of the above, and enter final value equal to initial value" 

read, Variable_To_Vary_Index, prompt="Index in Orig_Variable_xxx of variable to vary? " 

 

;display name here - re-read if not correct 

NotRightVariable=1 

While NotRightVariable Do Begin 

   ;offset for initial variables and SWIR variables (real indices btwn 18 and 24) 

   if (Variable_To_Vary_Index le 10) then Variable_To_Vary_Index+=7 else Variable_To_Vary_Index+=14 

   print, "Variable to be varied is "+Orig_Variable_Name[Variable_To_Vary_Index] 

   IsRight=' ' 

   read, IsRight, prompt="Is this correct? (y/n) " 

 

   if IsRight eq 'y' or IsRight eq 'Y' then NotRightVariable=0 $  

   else read, Variable_To_Vary_Index, prompt="Index in Orig_Variable_xxx of variable to vary? " 

EndWhile; NotRightVariable 

 

Orig_Variable_Value[99]=Variable_To_Vary_Index 

Orig_Variable_Name[99]="Variable_To_Vary_Index" 

 

read, Variable_To_Vary_FinalValue, prompt="Final value of variable? " 

 

Orig_Variable_Value[98]=Variable_To_Vary_FinalValue 

Orig_Variable_Name[98]="Variable_To_Vary_FinalValue" 

 

read, Variable_To_Vary_StepSize, prompt="Vary by how much in each step (NEVER enter 0 - even if not 

varying)? " 

if not(Variable_To_Vary_StepSize) then Variable_To_Vary_StepSize=1 

 

Orig_Variable_Value[97]=Variable_To_Vary_StepSize 

Orig_Variable_Name[97]="Variable_To_Vary_StepSize" 

 

read, Variable_To_Vary_StepCount, prompt="How many loops per step? " 

 

Orig_Variable_Value[96]=Variable_To_Vary_StepCount 
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Orig_Variable_Name[96]="Variable_To_Vary_StepCount" 

 

num_loops=Variable_To_Vary_FinalValue-Orig_Variable_Value[Variable_To_Vary_Index] 

num_loops/=Variable_To_Vary_StepSize 

num_loops*=Variable_To_Vary_StepCount 

num_loops+=Variable_To_Vary_StepCount ;to get full count on final variable value 

 

Orig_Variable_Value[95]=num_loops 

Orig_Variable_Name[95]="num_loops" 

 

;SWIR variables so stuff doesn't crash 

S_ChangeLimit=1 

S_MinMembers=1 

S_MaxStdDev=1 

S_MinDistance=1 

S_MaxPair=1 

BandMax_S=1 

S_Limit=1 

SWIR_MeansSize=1 

Weight=1 

V_S_T_Distance=1 

 

;we always increase (or decrease if neg) by stepsize on loop 1. adjust 

;for that 

 

Orig_Variable_Value[Variable_To_Vary_Index]-=Variable_To_Vary_StepSize 

 

;all user input variables must be initialized by this point - ready to begin looping 

for loop_count=1, num_loops, 1 do begin 

   ;before doing anything, set values to what they ought to be 

   ;use this to increment / decrement any variable variables ( ;-)  ) too 

    

   ;first, save our loop_count for later output 

   Orig_Variable_Value[94]=loop_count 

   Orig_Variable_Name[94]="loop_count" 

    

   if (not((loop_count-1) mod Variable_To_Vary_StepCount)) then $ ;its time to iterate 
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        Orig_Variable_Value[Variable_To_Vary_Index]+=Variable_To_Vary_StepSize 

  

  

   ;dont forget pass by value / pass by reference issues. 

   ReInitVariables, Orig_Variable_Value, alpha, MeansSize, TIR_MeansSize, V_ChangeLimit, V_MinMembers,$ 

                    V_MaxStdDev, V_MinDistance, V_MaxPair, BandMax_V, V_Limit, S_ChangeLimit,$ 

                    S_MinMembers, S_MaxStdDev, S_MinDistance, S_MaxPair, BandMax_S, S_Limit,$ 

                    T_ChangeLimit, T_MinMembers, T_MaxStdDev, T_MinDistance, T_MaxPair, BandMax_T,$ 

                    T_Limit, V_T_Distance, V_S_T_Distance, Weight, SWIR_MeansSize, Orig_basestring,$ 

                    basestring, loop_count, Variable_To_Vary_Index, Orig_Variable_Name 

    

 

   ;===================================== 

   ;===================================== 

   ;STEP 1: 

   ; 

   ; 

   ; 

   ; 

   ;degrade resolution of VNIR to match TIR 

   ; 

   ; local vars through here - result, max_x, max_y 

   ; result - stores size() result [1] = x, [2] = y 

 

      ;first thing - reduce the size of my image by 3.0 

      mag_ratio=T_pix_size / V_pix_size 

 

      ;and define my Point Spread Function to convolve with my image 

 

      ;this PSF is equivalent to an alpha of 0.1 (where center of the PSF 

      ;has a value of (1-2alpha)^2. As a comparison, the PSF for ASTER I've 

      ;been using is tighter, with an alpha value of 0.06565. 

      ; 

 

      PSF_T=CalcPSF(alpha) 

       

      ;create my TIR resolution VNIR images now 
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      Vband1_T=Degrade(Vband1, PSF_T, mag_ratio) 

      Vband2_T=Degrade(Vband2, PSF_T, mag_ratio) 

      Vband3_T=Degrade(Vband3, PSF_T, mag_ratio) 

      Vband4_T=Degrade(Vband4, PSF_T, mag_ratio) 

      Vband5_T=Degrade(Vband5, PSF_T, mag_ratio) 

 

 

 

   ;===================================== 

   ;===================================== 

   ;STEP 2: 

   ; 

   ; 

   ; 

   ; 

   ;generate homogeneous pixel map 

   ; 

   ; local vars through here - 

   ; result - stores size() result [1] = x, [2] = y 

   ; band1_stddev, band2_stddev, etc calc. in step 0 above 

 

      ;create an array of same size as TIR to indicate homogeneous VNIR pix 

      V_T_homog = fltarr(X_tir,Y_tir) ;zeroed out initially 

;      New_V_T_homog=fltarr(X_tir,Y_tir) ;zeroed out initially 

 

      Homog_THEMIS_Pix, Vband1, Vband2, Vband3, Vband4, Vband5,$ 

                        V_stddev[0], V_nonzeroes, V_T_homog, mag_ratio 

 

 ;     New_Homog_THEMIS_Pix, Vband1, Vband2, Vband3, Vband4, Vband5,$   

 ;                      V_stddev[0], New_V_T_homog, mag_ratio 

 

 

 

   ;===================================== 

   ;===================================== 

   ;STEP 3: 

   ; 
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   ; 

   ; 

   ; 

   ;build the V/S tree, using ISODATA and mahalanobis distance 

   ; 

   ; local vars through here - 

   ; result - stores result of size() function 

   ; seed - array involved in PRNG - DO NOT MESS WITH THIS!!!! 

   ; homog - array of indices of homogeneous pixels 

   ; Means - the 1D list of cluster means for ISODATA 

 

      ;create 2D array - each image is a column in final result 

      VNIR_T=make_THEMIS_vis_array(Vband1_T,Vband2_T,Vband3_T,$ 

                                   Vband4_T,Vband5_T,V_numbands) 

   ;should do this only on my non-zero'd pixels 

   NonZeroPix=where(VNIR_T ne 0.0) 

   test=histogram(VNIR_T[NonZeroPix], omin=ohmi, omax=BandMax_V) 

   print, "omin omax of VNIR_T are ", ohmi, BandMax_V 

 

      TIR_T=make_THEMIS_tir_array(Tband1,Tband2,Tband3,Tband4,Tband5,$ 

                                  Tband6,Tband7,Tband8,Tband9,Tband10,$ 

                                  T_numbands) 

 

     ;changed from unindented diagnostic code to indented code 17 Sep 09 

     ;should do this only on my non-zero'd pixels 

      NonZeroPix=where(TIR_T ne 0.0) 

      test=histogram(TIR_T[NonZeroPix], omin=ohmi, omax=BandMax_T) 

      print, "omin omax of TIR_T is ", ohmi, BandMax_T 

 

      ;get indices of homogeneous pixels 

      ;in theory - VNIR_T[*,homog] is pixel values of a homogeneous 

      ;pixel where homogeneous is based on VNIR pixels 

      homog=where(V_T_Homog) 

 

      ;find out how many clusters to work with 

      result=size(homog, /n_elements) 

      print, 'You have',result,' homogeneous VNIR pixels' 
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;      read, MeansSize, prompt='Initial number of VNIR clusters?:' 

      ;increase MeansSize by 10%, so I can eliminate the closest 

      MeansSize=round(Orig_Variable_Value[9] * 1.1) 

      VNIRMeans=make_array(MeansSize,1,/long,value=-1L);sizex1 array, all equal -1 

 

      ;calculate the Inverted Covariance Matrix for VNIR 

      subimage=VNIR_T[*,homog] 

      ;make sure we have more than 1 pixel for covariance 

      sizecheck=size(subimage) 

      sizecheck=sizecheck[0]-1 ;[0] is 1 if 1, so sizecheck now 0 if 1 

 

      if (sizecheck) then begin 

         VNIR90mInvCovMat=GetInvCovMatrix(VNIR_T[*,homog]);calc only for Homog Pix 

         TIR90mInvCovMat=GetInvCovMatrix(TIR_T[*,homog]) ;only current cluster 

      endif else begin 

         VNIR90mInvCovMat=make_array(V_numbands,V_numbands,/float,value=1.0) 

         TIR90mInvCovMat=make_array(T_numbands,T_numbands,/float,value=1.0) 

         print, "WARNING - FOUND ONLY ONE HOMOGENEOUS PIXEL!!!!!!!!" 

      endelse 

 

      Distance=make_array(size(homog, /n_elements), /float, value=0.0) 

      VNIRMeans=GetInitialMeans(homog,VNIR_T,VNIRMeans,VNIR90mInvCovMat,Distance) 

 

      ;now get rid of those extra 10% - get rid of ones closest to another 

      result=size(VNIRMeans, /n_elements) 

      numremove=round(result*10/float(11)) 

      numremove=result-numremove 

      MeansVals=VNIR_T[*,homog[VNIRMeans]] 

      VNIRMeans=RemoveLowestMeans(VNIRMeans,numremove,MeansVals,VNIR90mInvCovMat) 

 

      ;have my initial Means to work with - time to ISODATA cluster all of 

      ;these. I need to get back the modified means for each cluster and 

      ;the cluster to which each pixel belongs. I think this means I need 

      ;a PROcedure to get back more than one thing 

      ;given the image array, all homogeneous pixels, the initial means, 

      ;and Cluster - another 1-D array, same size as homog that will list 

      ;the cluster to which the pixel at the common index of homog belongs 
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      ;ie - cluster[x] is cluster to which VNIR_T[*,homog[x]] belongs 

 

 

      ;VNIR_T and homog shouldn't change 

      ; 

      ;Means will flip from a 1-D list of homog indices to an X column average 

      ;of all pixels assigned to that cluster. 

      ; 

      ;Cluster will be defined as a 1-D list of same length as homog that can 

      ;have a value between 0 and 49 - value is index of Means to which it 

      ;is closest. 

      VNIRClusters=homog  ;ok, its cheap, but it does get me the same size 

      VNIRClusters[*]=-1  ;cheap too - set them all to -1 

 

      VNIRMeans=VNIR_T[*,homog[VNIRMeans]] 

 

      ClusterChecksum=make_array(V_Limit*4, /ulong, value=0) 

       ;why *4? we exceed Limit sometimes, and *4 seems a good safe limit 

 

      NumMembers=size(homog, /n_elements) 

 

      ISODATA, VNIRMeans, V_Limit, VNIR_T, homog, VNIRClusters, VNIR90mInvCovMat,$ 

             V_ChangeLimit,V_MinMembers, NumMembers, V_MaxStdDev, V_MinDistance,$ 

             V_MaxPair, BandMax_V, ClusterChecksum 

 

      ;changed from unindented diagnostic code to indented real code 17 Sep 09 

      test=histogram(VNIRClusters, omin=ohmi, omax=ohma) 

      print, "post ISODATA omin omax and histogram of VNIRClusters is ", ohmi, ohma, " and ", test 

 

 

      ;===================================== 

      ;===================================== 

      ;STEP 3B: 

      ; 

      ;For each VNIR cluster, cluster associated TIR pixels 

      ; 

      ; 
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      ;at this point, I have my TIR sized VNIR pix clusters - for each cluster 

      ;select all of the TIR pixels, and cluster them. 

 

      ;increase MeansSize by 10%, so I can eliminate the closest 

      TIRMeansSize=round(Orig_Variable_Value[10] * 1.1) 

 

 

    

      ;save them for posterity (and changes in the for loop) 

      ;oy - so I'll have it doubly protected now for loops within loops. *headache* 4 Oct 09 

      ;these don't change in main loop - in ISODATA.pro file 

      TrueChangeLimit=T_ChangeLimit 

      TrueMinMembers=T_MinMembers 

      TrueMaxPair=T_MaxPair 

 

      ;how many VNIR clusters are there? 

      NumVNIRClusters=max(VNIRClusters) 

      NumVNIRClusters+=1 

 

      ;make an array to store start and stop array values for VNIR arrays 

      VNIRtoTIR=make_array(NumVNIRClusters*2, /float) 

 

      TIRClusters=float(VNIRClusters) 

      TIRClusters[*]=-1.0 ;same cheap trick used to create VNIRClusters 

 

      ohma=-1.0 

 

      ;for each cluster, calculate the initial means, and then ISODATA it 

      for VNIRclus=0, NumVNIRClusters-1, 1 do begin 

 

         ;need to reset these after each iteration 

         T_ChangeLimit=TrueChangeLimit 

         T_MinMembers=TrueMinMembers 

         T_MaxPair=TrueMaxPair 

 

         ThisTIRMeans=make_array(TIRMeansSize,1,/float,value=-1.0) 
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         TIRhomog=where(VNIRClusters eq VNIRclus) 

 

         ;want to keep the indices so I can reassign to them later 

         ThisTIRIndex=TIRhomog 

 

         ;actual pixel values from homog for this VNIR cluster 

         TIRhomog=homog[TIRhomog] 

 

         ;cheap way to get a cluster list of the right size 

         ThisTIRCluster=TIRhomog 

 

 

         ;define MinMembers, ChangeLimit, and NumMembers per cluster 

         NumMembers=size(TIRhomog, /n_elements) 

 

 

         ;ok, now I can call ISODATA for these 

 

 

         if ( size(ThisTIRMeans,/n_elements) ge NumMembers ) then begin 

            ThisTIRMeans=indgen(NumMembers) 

         endif else begin 

            Distance=make_array(size(TIRhomog, /n_elements), /float, value=0.0) 

            ThisTIRMeans=GetInitialMeans(TIRhomog,TIR_T,ThisTIRMeans,$ 

                          TIR90mInvCovMat,Distance) 

            ;now get rid of those extra 10% - get rid of ones closest to another 

            result=size(ThisTIRMeans, /n_elements) 

            numremove=round(result*10/float(11)) 

            numremove=result-numremove 

            TIRMeansVals=TIR_T[*,TIRhomog[ThisTIRMeans]] 

            ThisTIRMeans=RemoveLowestMeans(ThisTIRMeans,numremove,TIRMeansVals,$ 

                                           TIR90mInvCovMat) 

         endelse; ThisTIRMeans elements vs NumMembers 

 

 

         ThisTIRMeans=TIR_T[*,TIRhomog[ThisTIRMeans]] 
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         ClusterChecksum=make_array(T_Limit*4, /ulong, value=0) 

 

         ISODATA, ThisTIRMeans, T_Limit, TIR_T, TIRhomog, ThisTIRCluster,$ 

                  TIR90mInvCovMat, T_ChangeLimit, T_MinMembers, NumMembers,$ 

                  T_MaxStdDev, T_MinDistance, T_MaxPair, BandMax_T, ClusterChecksum 

 

         ;ok, now add ThisTIRCluster list to TIRClusters and mark the sizes 

         ;in VNIRtoTIR so I can index it. To do this: 

 

         ;first, modify the cluster values with the previous ohma so that 

         ;they don't conflict with results from other VNIR clusters 

         ThisTIRCluster+=(ohma+1) 

 

         ;take a histogram of ThisTIRCluster and set VNIRtoTIR[VNIRclus*2] 

         ;to ohmi and VNIRtoTIR[(VNIRClus*2)+1] to ohma 

         ThisTIRhisto=histogram(ThisTIRCluster,omin=ohmi,omax=ohma,$ 

                                 reverse_indices=ri) 

 

         VNIRtoTIR[(VNIRclus*2)]=ohmi 

         VNIRtoTIR[(VNIRclus*2)+1]=ohma 

 

         ;finally, copy cluster values from ThisTIRCluster to TIRClusters 

         TIRClusters[ThisTIRIndex]=ThisTIRCluster 

 

         ;end by recording our Means permanant-like 

         if (~ohmi) then begin 

            TIRMEANS=ThisTIRMeans 

         endif else begin 

            TIRMeans=[[TIRMeans],[ThisTIRMeans]] 

         endelse 

 

      endfor; VNIRclus=0 

    

      ;originally non-indented test code, but I've come to like having it reported. indented on 17 Sep 09   

      print, "VNIRtoTIR now ", VNIRtoTIR 

      test=histogram(TIRClusters, omin=ohmi, omax=ohma) 

      print, "post ISODATA omin omax and histogram of TIRClusters is ", ohmi, ohma, " and ", test 
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      ;===================================== 

      ;===================================== 

      ;STEP 4: 

      ; 

      ;The super-resolved images of the six SWIR bands are generated by 

      ;allocating the most likely SWIR spectrum to each vis-resolution pixel 

      ;based on spectral similarity in VNIR. 

 

      ;I hadn't bothered building a VNIR_V image yet - do it now, as I'll 

      ;need it for this step 

 

      openw, speclun, basestring+'--vnir-means--post-step3.txt', /get_lun 

      printf, speclun, VNIRMeans 

      free_lun, speclun 

       

      openw, speclun, basestring+'--tir-means-post-step3.txt', /get_lun, width=200 

      printf, speclun, TIRMeans/10000000.0 

      free_lun, speclun 

 

      VNIR_V=make_THEMIS_vis_array(Vband1,Vband2,Vband3,Vband4,Vband5,V_numbands) 

 

      TIR_V=SuperRes_OneBand(VNIRMeans,TIRMeans,$ 

                             VNIRtoTIR,homog,VNIR_V,VNIR_T,TIR_T,$ 

                             VNIR90mInvCovMat,TIR90mInvCovMat,$ 

                             X_vis,Y_vis,mag_ratio, V_T_Distance) 

 

      openw, speclun, basestring+'--vnir-means--post-step4.txt', /get_lun 

      printf, speclun, VNIRMeans 

      free_lun, speclun 

       

      openw, speclun, basestring+'--tir-means-post-step4.txt', /get_lun, width=200 
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      printf, speclun, TIRMeans/10000000.0 

      free_lun, speclun 

 

     

 

 

      ;===================================== 

      ;===================================== 

      ;STEP 5: 

      ; 

      ;The super-resolved image (TIR_V) may not be radiometrically accurate, 

      ;so it needs to be modified. This modification is weighted by the distance 

      ;between the VNIR spectra of the vis pixel and VNIR spectra of the TIR 

      ;spectra assigned to the vis_res pixel (whether from tree or image) 

 

      Orig_TIR_V=TIR_V 

 

      TIR_V=ModifySuperRes(TIR_V, TIR_T, PSF_T, X_vis,Y_vis, mag_ratio) 

 

 

      ;at this point TIR 0-T_numbands-1 are the images, T_numbands is the 

      ;source map, and T_numbands+1 is the distance map. Bands 

      ;T_numbands+2 to (2*T_numbands)+1 are correction maps 

 

 

      ;annoyed with seeing Emissivity values > 1.0 as they can't be 

      ;real. Let's fix those. 

 

      ;this whole thing needs a check to see if this is emissivity data we're reading 

 

      ;first - check if JENVI (8 band) or THMPROC (9 band) emissivity 

 

;      if (T_numbands eq 8) then $ 

;         qq=TIR_V[1:T_numbands-1,*] $ 

;      else $ 

;         qq=TIR_V[2:T_numbands-1,*] 
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;      num_toohigh=where(qq gt 10200000) 

;      num_toolow=where(qq lt 8500000) 

 

;      rad_fix_counter=1 

 

;      while (num_toohigh[0] ne -1) do begin 

;         qq[num_toohigh]*=0.95 

;         if (num_toolow[0] ne -1) then qq[num_toolow]*=1.05 

;         if (T_numbands eq 8) then $ 

;            TIR_V[1:T_numbands-1,*]=qq $ 

;         else $ 

;            TIR_V[2:T_numbands-1,*]=qq 

; 

; 

;         TIR_V=ModifySuperRes(TIR_V, TIR_T, PSF_T, X_vis,Y_vis, mag_ratio) 

; 

;         if (T_numbands eq 8) then $ 

;            qq=TIR_V[1:T_numbands-1,*] $ 

;         else $ 

;            qq=TIR_V[2:T_numbands-1,*] 

; 

;         rad_fix_counter+=1 

; 

;         if (rad_fix_counter lt 1000) then begin 

;            num_toohigh=where(qq gt 10200000) 

;            num_toolow=where(qq lt 8500000) 

;         endif else begin 

;            print, "Too many loops through Rad Fix" 

;            num_toohigh=-1 

;         endelse 

;      endwhile  

 

 

      ;zero out my border pixels - top row, bottom row, first column, last column 

      ;top row 

      TIR_V=ZeroLines(TIR_V, X_vis, Y_vis) 
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      ;also zero out the offset areas surrounding the images 

      TIR_V=ZeroThemisOffset(TIR_V, V_nonzeroes) 

 

      ;finally, write out our data 

      WriteOutTHEMISData, TIR_V, V_T_Homog, VNIRClusters, TIRClusters, $ 

                          basestring, Orig_Variable_Value, Orig_Variable_Name 

 

   ;end looping here 

    

      openw, speclun, basestring+'--vnir-means--final.txt', /get_lun 

      printf, speclun, VNIRMeans 

      free_lun, speclun 

       

      openw, speclun, basestring+'--tir-means-final.txt', /get_lun, width=200 

      printf, speclun, TIRMeans/10000000.0 

      free_lun, speclun 

    

endfor ;loop_count 

 

print, "sitting at end of program" 

 

end 

A.3 THEMIS-FUNCS.PRO 

PRO ReadThemisData, Vband1, Vband2, Vband3, Vband4, Vband5, V_pix_size,$ 

                    V_numbands, X_vis, Y_vis, vis_image, Tband1, Tband2,$ 

                    Tband3, Tband4, Tband5, Tband6, Tband7, Tband8, Tband9,$ 

                    Tband10, T_pix_size, T_numbands, X_tir, Y_tir, tir_image,$ 

                    V_nonzeroes, T_nonzeroes, V_stddev, T_stddev,$ 

                    Orig_Variable_Value, Orig_Variable_Name 

 

;create an array to start storing original values, so we can re-init them during looping 

Orig_Variable_Value=fltarr(100) 

Orig_Variable_Name=strarr(100) 
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; 

;Read in vis image and get its size 

;first, ask pixel size, number of bands, size of image 

read, V_pix_size, prompt="THEMIS vis pixel size (in m)? " 

Orig_Variable_Value[0]=V_pix_size 

Orig_Variable_Name[0]='V_pix_size' 

 

read, V_numbands, prompt="How many bands are there in the vis image? " 

Orig_Variable_Value[1]=V_numbands 

Orig_Variable_Name[1]='V_numbands' 

 

read, X_vis, Y_vis, prompt="Size of vis image? (format: column,row) " 

Orig_Variable_Value[2]=X_vis 

Orig_Variable_Name[2]='X_vis' 

Orig_Variable_Value[3]=Y_vis 

Orig_Variable_Name[3]='Y_vis' 

 

;create array to hold visible image 

vis_image=fltarr(X_vis, Y_vis, V_numbands) 

 

dirname=' ' 

filename=Dialog_Pickfile(filter='*.img', title="Select THEMIS VIS File ",get_path=dirname) 

openr, vislun, filename, /get_lun 

readu, vislun, vis_image 

free_lun, vislun 

 

;while here, set a default directory too, so the TIR search is easier 

 

;size it upwards to make dealing with it much easier 

vis_image*=1000000.0  ;1 million 

 

;Read in tir image 

;first, ask pixel size, number of bands, size of image 

read, T_pix_size, prompt="THEMIS tir pixel size (in m)? " 

Orig_Variable_Value[4]=T_pix_size 

Orig_Variable_Name[4]='T_pix_size' 
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read, T_numbands, prompt="How many bands are there in the tir image? " 

Orig_Variable_Value[5]=T_numbands 

Orig_Variable_Name[5]='T_numbands' 

 

read, X_tir, Y_tir, prompt="Size of tir image? (format: column,row) " 

Orig_Variable_Value[6]=X_tir 

Orig_Variable_Name[6]='X_tir' 

Orig_Variable_Value[7]=Y_tir 

Orig_Variable_Name[7]='Y_tir' 

 

 

;create array to hold visible image 

tir_image=fltarr(X_tir, Y_tir, T_numbands) 

 

filename=Dialog_Pickfile(filter='*.img', title="Select THEMIS TIR File ", path=dirname) 

openr, tirlun, filename, /get_lun 

readu, tirlun, tir_image 

free_lun, tirlun 

 

;somewhere we convert from float to integer. As a result, size TIR 

;files upward to make dealing with them much easier. 

;works regardless of radiance or emissivity. probably should make sure 

;we convert it back (divide by 10 mil) before saving out the file 

tir_image*=10000000.0  ;10 million 

;tir_image*=1.0 

 

;now have two different image files. Need to convert these over to bands 

;and calculate the standard deviations for individual bands as well as for 

;spectral ranges 

 

;vis band first 

;assume that we have at least one band, with a potential maximum of 5 

Vband1=vis_image[*,*,0] 

 

;check V_numbands and then assign bands 2,3, and 4 as needed 

if (V_numbands ge 2) then Vband2=vis_image[*,*,1] else Vband2=-1.0 

if (V_numbands ge 3) then Vband3=vis_image[*,*,2] else Vband3=-1.0 
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if (V_numbands ge 4) then Vband4=vis_image[*,*,3] else Vband4=-1.0 

 

;band5 may not be optimal quality -ask if the user wants it included 

;if there is one available 

if (V_numbands eq 5) then begin 

 

   print, "There are 5 vis bands present. However, the fifth band is not always reliable. " 

   IncludeFifth=' ' 

   read, IncludeFifth, prompt="Do you want to include the 5th vis band? (y/n)" 

 

   if ((IncludeFifth eq 'y') || (IncludeFifth eq 'Y') || (IncludeFifth eq 'yes') || (IncludeFifth eq 'Yes')) then begin 

      print, "Including Vis Band 5 in analysis" 

      Vband5=vis_image[*,*,4] 

   endif else begin 

      print, "Not including Vis Band 5 in analysis" 

      Vband5=-1.0 

      V_numbands=4 

   endelse; user indicated to include vis band 5 

endif else begin 

   Vband5=-1.0 

endelse; V_numbands eq 5 

 

 

;tir bands next 

;assume that we have at least one band, with a potential maximum of 10 

;(this max is unlikely given the current pre-processing necessary to open 

; the file under IDL. The jenvi process_themis procedure currently 

; averages bands 1 and 2 together, and gets rid of band 10) 

 

Tband1=tir_image[*,*,0] 

 

;check T_numbands and then assign bands 2 through 9 as needed 

;switch may be more elegant - just not sure how to assign -1s to it 

if (T_numbands ge 2) then Tband2=tir_image[*,*,1] else Tband2=-1.0 

if (T_numbands ge 3) then Tband3=tir_image[*,*,2] else Tband3=-1.0 

if (T_numbands ge 4) then Tband4=tir_image[*,*,3] else Tband4=-1.0 

if (T_numbands ge 5) then Tband5=tir_image[*,*,4] else Tband5=-1.0 
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if (T_numbands ge 6) then Tband6=tir_image[*,*,5] else Tband6=-1.0 

if (T_numbands ge 7) then Tband7=tir_image[*,*,6] else Tband7=-1.0 

if (T_numbands ge 8) then Tband8=tir_image[*,*,7] else Tband8=-1.0 

 

;this one is probably unlikely with our pre-processing 

if (T_numbands ge 9) then Tband9=tir_image[*,*,8] else Tband9=-1.0 

 

;thermal band 10 has "near infinite opacity" - probably don't want it. 

if (T_numbands eq 10) then begin 

   print, "There are 10 TIR bands present. Band 10 has near infinite opacity." 

   IncludeTenth=' ' 

   read, IncludeTenth, prompt="Do you want to include the 10th TIR band? (y/n)" 

 

   if ((IncludeTenth eq 'y') || (IncludeTenth eq 'Y') || (IncludeTenth eq 'yes') || (IncludeTenth eq 'Yes')) then begin 

      print, "Including TIR band 10 in super-resolution" 

      Tband10=tir_image[*,*,9] 

   endif else begin 

      print, "Not including TIR band 10 in super-resolution" 

      Tband10=-1.0 

      T_numbands=9 

   endelse; user indicated to include tir band 10 

endif else begin 

   Tband10=-1.0 

endelse; T_numbands=10 

 

;calculate standard deviations for the bands we have - do not include the 

;0 value pixels that surround the image and make it rectangular though 

 

;once again, assume we have at least one band and also assume that we 

;have pixels that overlap sufficiently that we only need to find the 

;non-zeroes for one band in each spectral range. 

V_nonzeroes=where(Vband1 gt 0.0) 

V_stddev=[-1.0,-1.0,-1.0,-1.0,-1.0,-1.0] 

 

V_stddev[1]=stddev(Vband1[V_nonzeroes]) 

 

if (V_numbands ge 2) then V_stddev[2]=stddev(Vband2[V_nonzeroes]) 
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if (V_numbands ge 3) then V_stddev[3]=stddev(Vband3[V_nonzeroes]) 

if (V_numbands ge 4) then V_stddev[4]=stddev(Vband4[V_nonzeroes]) 

if (V_numbands ge 5) then V_stddev[5]=stddev(Vband5[V_nonzeroes]) 

 

V_stddev[0]=( (total(V_stddev[1:V_numbands])) / V_numbands) 

 

 

;ok, now do the same for TIR and make the same assumptions 

T_nonzeroes=where(Tband1 gt 0.0) 

T_stddev=[-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0] 

 

 

T_stddev[1]=stddev(Tband1[T_nonzeroes]) 

 

if (T_numbands ge 2) then T_stddev[2]=stddev(Tband2[T_nonzeroes]) 

if (T_numbands ge 3) then T_stddev[3]=stddev(Tband3[T_nonzeroes]) 

if (T_numbands ge 4) then T_stddev[4]=stddev(Tband4[T_nonzeroes]) 

if (T_numbands ge 5) then T_stddev[5]=stddev(Tband5[T_nonzeroes]) 

if (T_numbands ge 6) then T_stddev[6]=stddev(Tband6[T_nonzeroes]) 

if (T_numbands ge 7) then T_stddev[7]=stddev(Tband7[T_nonzeroes]) 

if (T_numbands ge 8) then T_stddev[8]=stddev(Tband8[T_nonzeroes]) 

if (T_numbands ge 9) then T_stddev[9]=stddev(Tband9[T_nonzeroes]) 

if (T_numbands ge 10) then T_stddev[10]=stddev(Tband10[T_nonzeroes]) 

 

T_stddev[0]=( (total(T_stddev[1:T_numbands])) / T_numbands) 

 

print, "VIS standard deviations (avg and by band) are: " 

print, V_stddev 

 

print, "TIR standard deviations (avg and by band) are: " 

print, T_stddev 

 

END;PRO ReadThemisData 

 

FUNCTION Calc_Variance, band, half_size, x_centers, y_centers 

;so as to not type this 5 times for THEMIS vis 
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    var_band=image_variance(band,half_size,/pop) 

    var_band=var_band[x_centers,*] 

    var_band=var_band[*,y_centers] 

     

    return, var_band 

     

END; FUNCTION Calc_Variance 

 

PRO New_Homog_THEMIS_Pix, Vband1, Vband2, Vband3, Vband4, Vband5,$ 

                          thresh, V_T_homog, mag_ratio 

 

; re-writing to speed up - attempt to avoid for loops, 

; esp. nested for loops, by using image_variance() to 

; calculate the variance. Because stddev is the sqrt() 

; of variance, I can compare the correct pixels (center 

; of a mag_ratio x mag_ratio neighborhood) to thresh*thresh 

; to figure out homogeneity. 

;  

; Hopefully this will be faster than the previous method 

 

   ;set up indices for the center pixel locations that we want to hold on to 

   result = size(Vband1) 

    

   x_centers=findgen(result[1]) 

   y_centers=findgen(result[2]) 

 

   ignore=where(x_centers mod mag_ratio,complement=x_centers) 

   x_centers+=1 

   ;if mag_ratio is 3, x_centers is now [1,4,7,....] 

 

 

   ignore=where(y_centers mod mag_ratio,complement=y_centers) 

   y_centers+=1 

   ;if mag_ratio is 3, y_centers is now [1,4,7....] 

 

   ;the image_variance function expects the 1/2width of our neighborhood 

   knlsize=((mag_ratio-1.0)/2.0) 
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   print, "Threshold used for VNIR homogeneity is ", thresh 

 

   ;we could take the sqrt() of the variance images to get their stddev() - or we could square thresh 

   newthresh=thresh*thresh 

 

   ;surely, there's a prettier way, but..... 

   ;an undefined band will return -1 in its [0] position - undefinedband[0]+1 is equal to 0 

   if(Vband1[0]+1) then var_band1=Calc_Variance(vband1,knlsize,x_centers,y_centers) $  

                   else var_band1=make_array([result[1]/mag_ratio,result[2]/mag_ratio],/float,value=thresh);we know 

thresh < thresh*thresh 

   if(Vband2[0]+1) then var_band2=Calc_Variance(vband2,knlsize,x_centers,y_centers) $  

                   else var_band2=make_array([result[1]/mag_ratio,result[2]/mag_ratio],/float,value=thresh);we know 

thresh < thresh*thresh 

   if(Vband3[0]+1) then var_band3=Calc_Variance(vband3,knlsize,x_centers,y_centers) $  

                   else var_band3=make_array([result[1]/mag_ratio,result[2]/mag_ratio],/float,value=thresh);we know 

thresh < thresh*thresh 

   if(Vband4[0]+1) then var_band4=Calc_Variance(vband4,knlsize,x_centers,y_centers) $ 

                   else var_band4=make_array([result[1]/mag_ratio,result[2]/mag_ratio],/float,value=thresh);we know 

thresh < thresh*thresh 

   if(Vband5[0]+1) then var_band5=Calc_Variance(vband5,knlsize,x_centers,y_centers) $ 

                   else var_band5=make_array([result[1]/mag_ratio,result[2]/mag_ratio],/float,value=thresh);we know 

thresh < thresh*thresh 

                    

                    

   ;want to get max value at each location to compare to that newthresh value 

   max_var=max([[[var_band1]],[[var_band2]],[[var_band3]],[[var_band4]],[[var_band5]]],dimension=3) 

    

   ;in theory, max_var is now a 2D array with the maximum band variance at each location    

   max_var=where(max_var lt newthresh) 

   V_T_Homog[max_var]=1 

 

   ;V_T_Homog is same as old one - but still has where data is all 0s marked as homog 

   ;need to find good way to remove that before using this method 

    

   ;assume that if all 0s in band1, same as other bands 

   checkforzero=smooth(vband1,mag_ratio) 
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   checkforzero=checkforzero[x_centers,*] 

   checkforzero=checkforzero[*,y_centers] 

   checkforzero=where(checkforzero lt 0.1) 

    

read,pauseval,prompt='check here? ' 

   V_T_Homog[checkforzero]=0 ;remove any that were over all 0s 

 

END ;PRO New_Homog_THEMIS_Pix 

 

PRO Homog_THEMIS_Pix, Vband1, Vband2, Vband3, Vband4, Vband5,$ 

                      thresh, V_nonzeroes, V_T_homog, mag 

 

; variables used in this procedure 

; result - stores result of size() function 

; max_x, max_y - size of X and Y in image 

; x, y - loop variables to iterate of 2D image 

; 

;n.b. - mag is normally mag_ratio; shortened variable name in this one 

 

   result = size(Vband1) 

 

   ;and set our maxes so that we don't exceed beyond our border pixels    

   max_x = result[1] - (mag +1) 

   max_y = result[2] - (mag +1) 

 

print, "Threshold used for VNIR homogeneity is ", thresh 

 

;as of Oct 27 2006 I no longer remember why I do not check edge pixels 

;however, since I did not in my original Homog_Pix_15m I am leaving it 

;that way for now. 

 

;as of 25 Feb 07 - the reason we start at mag_ratio in and down, and end 

;before we're mag_ratio from the opposite sides is b/c of the convol() that 

;we do. We cannot rely on the convol of edge pixels to be a good answer. 

 

   for y = mag, max_y, mag do begin 

      for x = mag, max_x, mag do begin 
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         ;first thing first - if we're over something thats all 0s, bail. 

         ;it speeds it up, AND, we don't want these marked as being homog 

         if (total(Vband1[x:x+(mag-1),y:y+(mag-1)]) eq 0.00) then continue 

 

         ;going in band order, since we dont know how many bands we have 

 

         if( (Vband1[0] ge 0) &&$ 

             (stddev(Vband1[x:x+(mag-1),y:y+(mag-1)]) ge thresh) )$ 

         then continue 

 

         if( (Vband2[0] ge 0) &&$ 

             (stddev(Vband2[x:x+(mag-1),y:y+(mag-1)]) ge thresh) )$ 

         then continue 

 

         if( (Vband3[0] ge 0) &&$ 

             (stddev(Vband3[x:x+(mag-1),y:y+(mag-1)]) ge thresh) )$ 

         then continue 

 

         if( (Vband4[0] ge 0) &&$ 

             (stddev(Vband4[x:x+(mag-1),y:y+(mag-1)]) ge thresh) )$ 

         then continue 

 

         if( (Vband5[0] ge 0) &&$ 

             (stddev(Vband5[x:x+(mag-1),y:y+(mag-1)]) ge thresh) )$ 

         then continue 

 

         ;if we made it here, pix were under thresh in all bands that 

         ;were found to exist 

         V_T_homog[x / mag, y / mag] = 1 

 

      endfor; x_loop 

   endfor ;y_loop 

 

END; PRO Homog_Pix_VNIR 

 

FUNCTION make_THEMIS_vis_array, Vband1, Vband2, Vband3, Vband4,$ 
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                                Vband5, V_numbands 

 

   ;based on V_numbands, create a 2D array of my image 

 

   res=size(Vband1) 

 

   CASE V_numbands OF 

      1:arr=reform(Vband1,res[4],1) 

      2:arr=[[reform(Vband1, res(4), 1)],$ 

             [reform(Vband2, res(4), 1)]] 

      3:arr=[[reform(Vband1, res(4), 1)],$ 

             [reform(Vband2, res(4), 1)],$ 

             [reform(Vband3, res(4), 1)]] 

      4:arr=[[reform(Vband1, res(4), 1)],$ 

             [reform(Vband2, res(4), 1)],$ 

             [reform(Vband3, res(4), 1)],$ 

             [reform(Vband4, res(4), 1)]] 

      5:arr=[[reform(Vband1, res(4), 1)],$ 

             [reform(Vband2, res(4), 1)],$ 

             [reform(Vband3, res(4), 1)],$ 

             [reform(Vband4, res(4), 1)],$ 

             [reform(Vband5, res(4), 1)]] 

   ENDCASE ;V_numbands 

 

   arr=rotate(arr,4) 

 

   return, arr 

 

END; FUNCTION create_THEMIS_vis_array 

 

FUNCTION make_THEMIS_tir_array, Tband1, Tband2, Tband3, Tband4, Tband5,$ 

                                Tband6, Tband7, Tband8, Tband9, Tband10,$ 

                                T_numbands 

 

   ;based on T_numbands, create a 2D array of my image 

 

   res=size(Tband1) 
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   CASE T_numbands OF 

      1:arr=  reform(Tband1, res[4], 1) 

      2:arr=[[reform(Tband1, res(4), 1)],$ 

             [reform(Tband2, res(4), 1)]] 

      3:arr=[[reform(Tband1, res(4), 1)],$ 

             [reform(Tband2, res(4), 1)],$ 

             [reform(Tband3, res(4), 1)]] 

      4:arr=[[reform(Tband1, res(4), 1)],$ 

             [reform(Tband2, res(4), 1)],$ 

             [reform(Tband3, res(4), 1)],$ 

             [reform(Tband4, res(4), 1)]] 

      5:arr=[[reform(Tband1, res(4), 1)],$ 

             [reform(Tband2, res(4), 1)],$ 

             [reform(Tband3, res(4), 1)],$ 

             [reform(Tband4, res(4), 1)],$ 

             [reform(Tband5, res(4), 1)]] 

      6:arr=[[reform(Tband1, res(4), 1)],$ 

             [reform(Tband2, res(4), 1)],$ 

             [reform(Tband3, res(4), 1)],$ 

             [reform(Tband4, res(4), 1)],$ 

             [reform(Tband5, res(4), 1)],$ 

             [reform(Tband6, res(4), 1)]] 

      7:arr=[[reform(Tband1, res(4), 1)],$ 

             [reform(Tband2, res(4), 1)],$ 

             [reform(Tband3, res(4), 1)],$ 

             [reform(Tband4, res(4), 1)],$ 

             [reform(Tband5, res(4), 1)],$ 

             [reform(Tband6, res(4), 1)],$ 

             [reform(Tband7, res(4), 1)]] 

      8:arr=[[reform(Tband1, res(4), 1)],$ 

             [reform(Tband2, res(4), 1)],$ 

             [reform(Tband3, res(4), 1)],$ 

             [reform(Tband4, res(4), 1)],$ 

             [reform(Tband5, res(4), 1)],$ 

             [reform(Tband6, res(4), 1)],$ 

             [reform(Tband7, res(4), 1)],$ 
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             [reform(Tband8, res(4), 1)]] 

      9:arr=[[reform(Tband1, res(4), 1)],$ 

             [reform(Tband2, res(4), 1)],$ 

             [reform(Tband3, res(4), 1)],$ 

             [reform(Tband4, res(4), 1)],$ 

             [reform(Tband5, res(4), 1)],$ 

             [reform(Tband6, res(4), 1)],$ 

             [reform(Tband7, res(4), 1)],$ 

             [reform(Tband8, res(4), 1)],$ 

             [reform(Tband9, res(4), 1)]] 

      10:arr=[[reform(Tband1, res(4), 1)],$ 

             [reform(Tband2, res(4), 1)],$ 

             [reform(Tband3, res(4), 1)],$ 

             [reform(Tband4, res(4), 1)],$ 

             [reform(Tband5, res(4), 1)],$ 

             [reform(Tband6, res(4), 1)],$ 

             [reform(Tband7, res(4), 1)],$ 

             [reform(Tband8, res(4), 1)],$ 

             [reform(Tband9, res(4), 1)],$ 

             [reform(Tband10, res(4), 1)]] 

   ENDCASE ;T_numbands 

 

   arr=rotate(arr,4) 

 

   return, arr 

 

END; FUNCTION make_THEMIS_tir_array 

 

FUNCTION ZeroTHEMISOffset, TIR_V, V_nonzeroes 

 

   mask=TIR_V 

   mask[*]=0.0 

   mask[*,V_nonzeroes]=1.0 

 

   return, TIR_V*mask   

 

END; FUNCTION ZeroTHEMISOffsets 
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A.4 REINITVARIABLES.PRO 

PRO ReInitVariables, Orig_Variable_Value, alpha, MeansSize, TIR_MeansSize, V_ChangeLimit, 

V_MinMembers,$ 

                    V_MaxStdDev, V_MinDistance, V_MaxPair, BandMax_V, V_Limit, S_ChangeLimit,$ 

                    S_MinMembers, S_MaxStdDev, S_MinDistance, S_MaxPair, BandMax_S, S_Limit,$ 

                    T_ChangeLimit, T_MinMembers, T_MaxStdDev, T_MinDistance, T_MaxPair, BandMax_T,$ 

                    T_Limit, V_T_Distance, V_S_T_Distance, Weight, SWIR_MeansSize, Orig_basestring,$ 

                    basestring, loop_count, Variable_To_Vary_Index, Orig_Variable_Name 

                     

;first thing first - diagnostics 

print, "------------------------Start of ReInit--------------------------------" 

print, "alpha", alpha 

print, "MeanSize", MeansSize 

print, "TIRMeanSize", TIR_MeansSize 

print, "V_ChangeLimit", V_ChangeLimit 

print, "V_MinMembers", V_MinMembers 

print, "V_MaxStdDev", V_MaxStdDev 

print, "V_MinDistance", V_MinDistance 

print, "V_MaxPair", V_MaxPair 

print, "BandMax_V", BandMax_V 

print, "V_Limit", V_Limit 

print, "S_ChangeLimit", S_ChangeLimit 

print, "S_MinMembers", S_MinMembers 

print, "S_MaxStdDev", S_MaxStdDev 

print, "S_MinDistance", S_MinDistance 

print, "S_MaxPair", S_MaxPair 

print, "BandMax_S", BandMax_S 

print, "S_Limit", S_Limit 

print, "T_ChangeLimit", T_ChangeLimit 

print, "T_MinMembers", T_MinMembers 

print, "T_MaxStdDev", T_MaxStdDev 

print, "T_MinDistance", T_MinDistance 
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print, "T_MaxPair", T_MaxPair 

print, "BandMax_T", BandMax_T 

print, "T_Limit", T_Limit 

print, "V_T_Distance", V_T_Distance 

print, "V_S_T_Distance", V_S_T_Distance 

print, "Weight", Weight 

print, "SWIR_MeansSize", SWIR_MeansSize 

print, "Orig_basestring: ", Orig_basestring                     

print, "Current basestring: ", basestring 

 

;ok, now reset all of them. 

alpha=Orig_Variable_Value[8] 

MeanSize=Orig_Variable_Value[9] 

TIRMeanSize=Orig_Variable_Value[10] 

V_ChangeLimit=Orig_Variable_Value[11] 

V_MinMembers=Orig_Variable_Value[12] 

V_MaxStdDev=Orig_Variable_Value[13] 

V_MinDistance=Orig_Variable_Value[14] 

V_MaxPair=Orig_Variable_Value[15] 

BandMax_V=Orig_Variable_Value[16] 

V_Limit=Orig_Variable_Value[17] 

S_ChangeLimit=Orig_Variable_Value[18] 

S_MinMembers=Orig_Variable_Value[19] 

S_MaxStdDev=Orig_Variable_Value[20] 

S_MinDistance=Orig_Variable_Value[21] 

S_MaxPair=Orig_Variable_Value[22] 

BandMax_S=Orig_Variable_Value[23] 

S_Limit=Orig_Variable_Value[24] 

T_ChangeLimit=Orig_Variable_Value[25] 

T_MinMembers=Orig_Variable_Value[26] 

T_MaxStdDev=Orig_Variable_Value[27] 

T_MinDistance=Orig_Variable_Value[28] 

T_MaxPair=Orig_Variable_Value[29] 

BandMax_T=Orig_Variable_Value[30] 

T_Limit=Orig_Variable_Value[31] 

V_T_Distance=Orig_Variable_Value[32] 

V_S_T_Distance=Orig_Variable_Value[33] 
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Weight=Orig_Variable_Value[34] 

SWIRMeanSize=Orig_Variable_Value[35] 

basestring=Orig_basestring+"--loop--"+StrTrim(loop_count,2)+"--of--"+StrTrim(Orig_Variable_Value[95],2)+$ 

           "--varying-variable-is--"+Orig_Variable_Name[Orig_Variable_Value[99]]                    

  

;and, as diagnostics - show where I am at the end 

print, "------------------------End of ReInit--------------------------------" 

print, "alpha", alpha 

print, "MeanSize", MeanSize 

print, "TIRMeanSize", TIRMeanSize 

print, "V_ChangeLimit", V_ChangeLimit 

print, "V_MinMembers", V_MinMembers 

print, "V_MaxStdDev", V_MaxStdDev 

print, "V_MinDistance", V_MinDistance 

print, "V_MaxPair", V_MaxPair 

print, "BandMax_V", BandMax_V 

print, "V_Limit", V_Limit 

print, "S_ChangeLimit", S_ChangeLimit 

print, "S_MinMembers", S_MinMembers 

print, "S_MaxStdDev", S_MaxStdDev 

print, "S_MinDistance", S_MinDistance 

print, "S_MaxPair", S_MaxPair 

print, "BandMax_S", BandMax_S 

print, "S_Limit", S_Limit 

print, "T_ChangeLimit", T_ChangeLimit 

print, "T_MinMembers", T_MinMembers 

print, "T_MaxStdDev", T_MaxStdDev 

print, "T_MinDistance", T_MinDistance 

print, "T_MaxPair", T_MaxPair 

print, "BandMax_T", BandMax_T 

print, "T_Limit", T_Limit 

print, "V_T_Distance", V_T_Distance 

print, "V_S_T_Distance", V_S_T_Distance 

print, "Weight", Weight 

print, "SWIRMeanSize", SWIR_MeansSize 

print, "Orig_basestring: ", Orig_basestring 

print, "Current basestring: ", basestring                     
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END; PRO ReInitVariables 

 

 

A.5 STEP0.PRO 

;===================================== 

;===================================== 

;STEP 0: 

;   open crosstalk corrected file 

;   define region of interest 

;   address / select region of interest in all 14 bands 

;   initially - print value of upper left and lower right corners 

 

PRO ReadData, band1, band2, band3N, band4, band5, band6, band7, band8,$ 

          band9, band10, band11, band12, band13, band14, V_stddev,$ 

          S_stddev, T_stddev, X_15m, X_30m, X_90m, Y_15m, Y_30m, Y_90m,$ 

          vis_image, swir_image, tir_image, Orig_Variable_Value, Orig_Variable_Name 

 

 

;05 Sep 07 - this function is strictly a wrapper function for 

;            determining if we're reading an ASTER L1B file or 

;            a set of 3 AST_09 files. Need to decide how to handle 

;            the VNIR->TIR case for _09Ts (inclined to ignore it for 

;            now). 

; 

;            I am going to use this function to ask if we're looking 

;            at atm corrected data or not, and then call either the 

;            ReadL1BData or Read09TData function based on the answer 

; 

 

;create an array to start storing original values, so we can re-init them during looping 

Orig_Variable_Value=fltarr(100) 

Orig_Variable_Name=strarr(100) 
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Orig_Variable_Value[0]=15 

Orig_Variable_Name[0]='V_pix_size' 

 

Orig_Variable_Value[1]=3 

Orig_Variable_Name[1]='V_numbands' 

 

Orig_Variable_Value[4]=90 

Orig_Variable_Name[4]='T_pix_size' 

 

Orig_Variable_Value[5]=5 

Orig_Variable_Name[5]='T_numbands' 

 

 

print, ' ' 

print, ' ' 

print, ' ' 

print, '1. super-resolve ASTER L1B file (no atm correction)' 

print, ' ' 

print, '2. super-resolve ASTER 09T files (atm correction; 3 files needed) 

print, ' ' 

print, ' ' 

read, whichtype,  prompt='Which super-resolve? (1 or 2): ' 

 

;ask for coords in VNIR for UL and LR corners - want format x,y 

read, VUL_X, VUL_Y,$ 

      prompt='Array Location of Upper Left VNIR Corner(form x,y):' 

read, VLR_X, VLR_Y,$ 

      prompt='Array Location of Lower Right VNIR Corner(form x,y):' 

 

 

;now that we have corners, verify valid UL and LR 

;VNIR is 1/2 of SWIR and 1/6 of TIR - X,Y must /6 with no modulus 

 

if (not VUL_X mod 6) then begin 

   SUL_X = VUL_X / 2 

   TUL_X = VUL_X / 6 

endif else begin 
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   print, 'UL X coord not divisible by 6 - invalid' 

endelse 

 

if (not VUL_Y mod 6) then begin 

   SUL_Y = VUL_Y / 2 

   TUL_Y = VUL_Y / 6 

endif else begin 

   print, 'UL Y coord not divisible by 6 - invalid' 

endelse 

 

if (not (VLR_X+1) mod 6) then begin 

   SLR_X = (VLR_X-1) / 2 

   TLR_X = (VLR_X-5) / 6 

endif else begin 

   print, 'LR X coord not divisible by 6 - invalid' 

endelse 

 

if (not (VLR_Y+1) mod 6) then begin 

   SLR_Y = (VLR_Y-1) / 2 

   TLR_Y = (VLR_Y-5) / 6 

endif else begin 

   print, 'LR Y coord not divisible by 6 - invalid' 

endelse 

 

 

;now that we've defined our corners, lets define our lengths 

X_15m=(VLR_X-VUL_X)+1 

Y_15m=(VLR_Y-VUL_Y)+1 

 

Orig_Variable_Value[2]=X_15m 

Orig_Variable_Name[2]='X_vis' 

Orig_Variable_Value[3]=Y_15m 

Orig_Variable_Name[3]='Y_vis' 

 

 

X_30m=(SLR_X-SUL_X)+1 

Y_30m=(SLR_Y-SUL_Y)+1 
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X_90m=(TLR_X-TUL_X)+1 

Y_90m=(TLR_Y-TUL_Y)+1 

 

Orig_Variable_Value[6]=X_90m 

Orig_Variable_Name[6]='X_tir' 

Orig_Variable_Value[7]=Y_90m 

Orig_Variable_Name[7]='Y_tir' 

 

case whichtype of 

 

1: begin 

   print, 'Processing L1B file for super-resolution' 

   ReadL1BData, band1, band2, band3N, band4, band5, band6, band7, band8,$ 

       band9, band10, band11, band12, band13, band14, V_stddev,$ 

       S_stddev, T_stddev, X_15m, X_30m, X_90m, Y_15m, Y_30m, Y_90m,$ 

       VLR_X, SLR_X, TLR_X, VLR_Y, SLR_Y, TLR_Y, VUL_X, SUL_X, TUL_X,$ 

       VUL_Y, SUL_Y, TUL_Y, vis_image, swir_image, tir_image,$ 

       Orig_Variable_Value, Orig_Variable_Name           

   end 

 

 

2:begin 

   print, 'Processing 09T files for super-resolution' 

   Read09TData, band1, band2, band3N, band4, band5, band6, band7, band8,$ 

       band9, band10, band11, band12, band13, band14, V_stddev,$ 

       S_stddev, T_stddev, X_15m, X_30m, X_90m, Y_15m, Y_30m, Y_90m,$ 

       VLR_X, SLR_X, TLR_X, VLR_Y, SLR_Y, TLR_Y, VUL_X, SUL_X, TUL_X,$ 

       VUL_Y, SUL_Y, TUL_Y, vis_image, swir_image, tir_image,$ 

       Orig_Variable_Value, Orig_Variable_Name 

   end 

 

else:begin 

   print, 'Valid choices are 1 or 2' 

   ReadData, band1, band2, band3N, band4, band5, band6, band7, band8,$ 

          band9, band10, band11, band12, band13, band14, V_stddev,$ 

          S_stddev, T_stddev, X_15m, X_30m, X_90m, Y_15m, Y_30m, Y_90m,$ 
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          vis_image, swir_image, tir_image, Orig_Variable_Value, Orig_Variable_Name 

 

   end 

endcase; whichtype 

 

END;  PRO ReadData    - ASTER S and T version  

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

PRO Read09TData, band1, band2, band3N, band4, band5, band6, band7, band8,$ 

       band9, band10, band11, band12, band13, band14, V_stddev,$ 

       S_stddev, T_stddev, X_15m, X_30m, X_90m, Y_15m, Y_30m, Y_90m,$ 

       VLR_X, SLR_X, TLR_X, VLR_Y, SLR_Y, TLR_Y, VUL_X, SUL_X, TUL_X,$ 

       VUL_Y, SUL_Y, TUL_Y, vis_image, swir_image, tir_image,$ 

       Orig_Variable_Value, Orig_Variable_Name 

 

   ;this procedure makes an assumption that the radiance data is in the 

   ;swath before the sky irradiance data. if that order changes, I'll need 

   ;to come up with some way to differentiate between the BandX in radiance 

   ;and the BandX in sky_irradiance. 05 Sep 07 

 

 

   foundvis = 0 

 

   title='Select the VIS 09XT file' 

 

   repeat begin 

      filename=Dialog_Pickfile(FILTER='*.hdf', TITLE=title) 

 

      ;if its an hdf file, open it 

      if HDF_IsHDF(filename) then begin 

         sd_id = HDF_SD_START(filename) 

 

         ;we know we have an HDF file - but is it the right HDF file? 

         ;since I'm not certain how names are parsed look for 3N first 
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         ;if we find it, and can read it, we're looking at the right file 

         foundvis = HDF_SD_NAMETOINDEX(sd_id,'Band3N') 

      endif 

    

      ;set our title in case we didn't actually open the VIS 09XT file 

      title = 'That was not a VIS 09XT file. Please select the VIS 09XT file.' 

 

   endrep until (foundvis ne -1) ; open up VIS 09T file  

 

   ;we now have the AST_09XT file for the VIS bands. Get our corner values, 

   ;read in the data, and calculate our standard deviations for our image area 

 

   index = HDF_SD_NAMETOINDEX(sd_id,'Band1') 

   sds_id = HDF_SD_SELECT(sd_id,index) 

   HDF_SD_GETDATA, sds_id, band 

   HDF_SD_ENDACCESS, sds_id 

   band1= band[VUL_X:VLR_X,VUL_Y:VLR_Y] 

 

   index = HDF_SD_NAMETOINDEX(sd_id,'Band2') 

   sds_id = HDF_SD_SELECT(sd_id,index) 

   HDF_SD_GETDATA, sds_id, band 

   HDF_SD_ENDACCESS, sds_id 

   band2= band[VUL_X:VLR_X,VUL_Y:VLR_Y] 

 

   index = HDF_SD_NAMETOINDEX(sd_id,'Band3N') 

   sds_id = HDF_SD_SELECT(sd_id,index) 

   HDF_SD_GETDATA, sds_id, band 

   HDF_SD_ENDACCESS, sds_id 

   band3N= band[VUL_X:VLR_X,VUL_Y:VLR_Y] 

 

   V_stddev=[-1,-1,-1,-1] 

 

   V_stddev[0]=(stddev(band1)+stddev(band2)+stddev(band3N))/3.0 

   V_stddev[1]=stddev(band1) 

   V_stddev[2]=stddev(band2) 

   V_stddev[3]=stddev(band3N) 
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   result=size(band1) 

   vis_image=[[reform(band1,result[4],1)],$ 

              [reform(band2,result[4],1)],$ 

              [reform(band3N,result[4],1)]] 

   vis_image=rotate(vis_image,4) 

 

   HDF_SD_END, sd_id 

 

   foundswir = 0 

 

   title='Select the SWIR 09XT file' 

 

   repeat begin 

      filename=Dialog_Pickfile(FILTER='*.hdf', TITLE=title) 

 

      ;if its an hdf file, open it 

      if HDF_IsHDF(filename) then begin 

         sd_id = HDF_SD_START(filename) 

 

         ;we know we have an HDF file - but is it the right HDF file? 

         foundswir = HDF_SD_NAMETOINDEX(sd_id,'Band4') 

      endif 

    

      ;set our title in case we didn't actually open the SWIR 09XT file 

      title = 'That was not a SWIR 09XT file. Please select the SWIR 09XT file.' 

 

   endrep until (foundswir ne -1) ; open up VIS 09T file  

 

   index = HDF_SD_NAMETOINDEX(sd_id,'Band4') 

   sds_id = HDF_SD_SELECT(sd_id,index) 

   HDF_SD_GETDATA, sds_id, band 

   HDF_SD_ENDACCESS, sds_id 

   band4 = band[SUL_X:SLR_X,SUL_Y:SLR_Y] 

 

   index = HDF_SD_NAMETOINDEX(sd_id,'Band5') 

   sds_id = HDF_SD_SELECT(sd_id,index) 

   HDF_SD_GETDATA, sds_id, band 
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   HDF_SD_ENDACCESS, sds_id 

   band5 = band[SUL_X:SLR_X,SUL_Y:SLR_Y] 

 

   index = HDF_SD_NAMETOINDEX(sd_id,'Band6') 

   sds_id = HDF_SD_SELECT(sd_id,index) 

   HDF_SD_GETDATA, sds_id, band 

   HDF_SD_ENDACCESS, sds_id 

   band6 = band[SUL_X:SLR_X,SUL_Y:SLR_Y] 

 

   index = HDF_SD_NAMETOINDEX(sd_id,'Band7') 

   sds_id = HDF_SD_SELECT(sd_id,index) 

   HDF_SD_GETDATA, sds_id, band 

   HDF_SD_ENDACCESS, sds_id 

   band7 = band[SUL_X:SLR_X,SUL_Y:SLR_Y] 

 

   index = HDF_SD_NAMETOINDEX(sd_id,'Band8') 

   sds_id = HDF_SD_SELECT(sd_id,index) 

   HDF_SD_GETDATA, sds_id, band 

   HDF_SD_ENDACCESS, sds_id 

   band8 = band[SUL_X:SLR_X,SUL_Y:SLR_Y] 

 

   index = HDF_SD_NAMETOINDEX(sd_id,'Band9') 

   sds_id = HDF_SD_SELECT(sd_id,index) 

   HDF_SD_GETDATA, sds_id, band 

   HDF_SD_ENDACCESS, sds_id 

   band9 = band[SUL_X:SLR_X,SUL_Y:SLR_Y] 

 

   S_stddev=[-1,-1,-1,-1,-1,-1,-1] 

   S_stddev[0]=(stddev(band4)+stddev(band5)+stddev(band6)+$ 

             stddev(band7)+stddev(band8)+stddev(band9))/6.0 

   S_stddev[1]=stddev(band4) 

   S_stddev[2]=stddev(band5) 

   S_stddev[3]=stddev(band6) 

   S_stddev[4]=stddev(band7) 

   S_stddev[5]=stddev(band8) 

   S_stddev[6]=stddev(band9) 
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   result=size(band4) 

   swir_image=[[reform(band4,result[4],1)],$ 

              [reform(band5,result[4],1)],$ 

              [reform(band6,result[4],1)],$ 

              [reform(band7,result[4],1)],$ 

              [reform(band8,result[4],1)],$ 

              [reform(band9,result[4],1)]] 

   swir_image=rotate(swir_image,4) 

 

   HDF_SD_END, sd_id 

 

   foundtir = 0 

 

   title='Select the TIR 09XT file' 

 

   repeat begin 

      filename=Dialog_Pickfile(FILTER='*.hdf', TITLE=title) 

 

      ;if its an hdf file, open it 

      if HDF_IsHDF(filename) then begin 

         sd_id = HDF_SD_START(filename) 

 

         ;we know we have an HDF file - but is it the right HDF file? 

         foundtir = HDF_SD_NAMETOINDEX(sd_id,'Band14') 

      endif 

    

      ;set our title in case we didn't actually open the TIR 09T file 

      title = 'That was not a TIR 09T file. Please select the TIR 09T file.' 

 

   endrep until (foundvis ne -1) 

 

   index = HDF_SD_NAMETOINDEX(sd_id,'Band10') 

   sds_id = HDF_SD_SELECT(sd_id,index) 

   HDF_SD_GETDATA, sds_id, band 

   HDF_SD_ENDACCESS, sds_id 

   band10 = band[TUL_X:TLR_X,TUL_Y:TLR_Y] 
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   index = HDF_SD_NAMETOINDEX(sd_id,'Band11') 

   sds_id = HDF_SD_SELECT(sd_id,index) 

   HDF_SD_GETDATA, sds_id, band 

   HDF_SD_ENDACCESS, sds_id 

   band11 = band[TUL_X:TLR_X,TUL_Y:TLR_Y] 

 

   index = HDF_SD_NAMETOINDEX(sd_id,'Band12') 

   sds_id = HDF_SD_SELECT(sd_id,index) 

   HDF_SD_GETDATA, sds_id, band 

   HDF_SD_ENDACCESS, sds_id 

   band12 = band[TUL_X:TLR_X,TUL_Y:TLR_Y] 

 

   index = HDF_SD_NAMETOINDEX(sd_id,'Band13') 

   sds_id = HDF_SD_SELECT(sd_id,index) 

   HDF_SD_GETDATA, sds_id, band 

   HDF_SD_ENDACCESS, sds_id 

   band13 = band[TUL_X:TLR_X,TUL_Y:TLR_Y] 

 

   index = HDF_SD_NAMETOINDEX(sd_id,'Band14') 

   sds_id = HDF_SD_SELECT(sd_id,index) 

   HDF_SD_GETDATA, sds_id, band 

   HDF_SD_ENDACCESS, sds_id 

   band14 = band[TUL_X:TLR_X,TUL_Y:TLR_Y] 

 

   T_stddev=[-1,-1,-1,-1,-1,-1] 

   T_stddev[0]=(stddev(band10)+stddev(band11)+stddev(band12)+$ 

             stddev(band13)+stddev(band14))/5.0 

   T_stddev[1]=stddev(band10) 

   T_stddev[2]=stddev(band11) 

   T_stddev[3]=stddev(band12) 

   T_stddev[4]=stddev(band13) 

   T_stddev[5]=stddev(band14) 

 

   result=size(band10) 

   tir_image=[[reform(band10,result[4],1)],$ 

              [reform(band11,result[4],1)],$ 

              [reform(band12,result[4],1)],$ 
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              [reform(band13,result[4],1)],$ 

              [reform(band14,result[4],1)]] 

   tir_image=rotate(tir_image,4) 

   tir_image=long(tir_image) 

 

   HDF_SD_END, sd_id 

 

END; PRO Read09TData 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

PRO ReadL1BData, band1, band2, band3N, band4, band5, band6, band7, band8,$ 

       band9, band10, band11, band12, band13, band14, V_stddev,$ 

       S_stddev, T_stddev, X_15m, X_30m, X_90m, Y_15m, Y_30m, Y_90m,$ 

       VLR_X, SLR_X, TLR_X, VLR_Y, SLR_Y, TLR_Y, VUL_X, SUL_X, TUL_X,$ 

       VUL_Y, SUL_Y, TUL_Y, vis_image, swir_image, tir_image,$ 

       Orig_Variable_Value, Orig_Variable_Name 

 

;ok - start with initialization 

;these variables are first defined in step 0 

;V=VNIR S=SWIR T=TIR UL=Upper Left LR=Lower Right 

;VUL_X,VUL_Y,VLR_X,VLR_Y,SUL_X,SUL_Y,SLR_X,SLR_Y,TUL_X,TUL_Y,TLR_X,TLR_Y=0 

 

;other variables used 

;filename - name of HDF (ASTER L1B) file 

;sd_id - SDS format file handle, I think? 

;sds_id - SDS object handle, I think? 

;index - index number for band variable name 

;band - total band image 

;band1, band2, band3N, band4,....,band14 - subsetted area of band - orig resln 

;band1_S, band1_T,...,band4_V,band4_T,....,band14_V,band14_S - alt resolution 

;band1_stddev, band2_stddev,...,band14_stddev - std dev of WHOLE band 

 

;initially - select file, verify hdf format, open file 

filename = Dialog_Pickfile (filter='*.hdf') 
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;if its an hdf file, open it 

if HDF_IsHDF(filename) then begin 

   sd_id = HDF_SD_START(filename) 

 

   index = HDF_SD_NAMETOINDEX(sd_id,'ImageData1') 

   sds_id = HDF_SD_SELECT(sd_id,index) 

   HDF_SD_GETDATA, sds_id, band 

   HDF_SD_ENDACCESS, sds_id 

   band1 = band[VUL_X:VLR_X,VUL_Y:VLR_Y] 

 

   index = HDF_SD_NAMETOINDEX(sd_id,'ImageData2') 

   sds_id = HDF_SD_SELECT(sd_id,index) 

   HDF_SD_GETDATA, sds_id, band 

   HDF_SD_ENDACCESS, sds_id 

   band2 = band[VUL_X:VLR_X,VUL_Y:VLR_Y] 

 

   index = HDF_SD_NAMETOINDEX(sd_id,'ImageData3N') 

   sds_id = HDF_SD_SELECT(sd_id,index) 

   HDF_SD_GETDATA, sds_id, band 

   HDF_SD_ENDACCESS, sds_id 

   band3N = band[VUL_X:VLR_X,VUL_Y:VLR_Y] 

 

   V_stddev=[-1,-1,-1,-1]    

   V_stddev[0]=(stddev(band1)+stddev(band2)+stddev(band3N))/3.0 

   V_stddev[1]=stddev(band1) 

   V_stddev[2]=stddev(band2) 

   V_stddev[3]=stddev(band3N) 

 

   result=size(band1) 

   vis_image=[[reform(band1,result[4],1)],$ 

              [reform(band2,result[4],1)],$ 

              [reform(band3N,result[4],1)]] 

   vis_image=rotate(vis_image,4) 

 

   index = HDF_SD_NAMETOINDEX(sd_id,'ImageData4') 

   sds_id = HDF_SD_SELECT(sd_id,index) 

   HDF_SD_GETDATA, sds_id, band 
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   HDF_SD_ENDACCESS, sds_id 

   band4 = band[SUL_X:SLR_X,SUL_Y:SLR_Y] 

 

   index = HDF_SD_NAMETOINDEX(sd_id,'ImageData5') 

   sds_id = HDF_SD_SELECT(sd_id,index) 

   HDF_SD_GETDATA, sds_id, band 

   HDF_SD_ENDACCESS, sds_id 

   band5 = band[SUL_X:SLR_X,SUL_Y:SLR_Y] 

 

   index = HDF_SD_NAMETOINDEX(sd_id,'ImageData6') 

   sds_id = HDF_SD_SELECT(sd_id,index) 

   HDF_SD_GETDATA, sds_id, band 

   HDF_SD_ENDACCESS, sds_id 

   band6 = band[SUL_X:SLR_X,SUL_Y:SLR_Y] 

 

   index = HDF_SD_NAMETOINDEX(sd_id,'ImageData7') 

   sds_id = HDF_SD_SELECT(sd_id,index) 

   HDF_SD_GETDATA, sds_id, band 

   HDF_SD_ENDACCESS, sds_id 

   band7 = band[SUL_X:SLR_X,SUL_Y:SLR_Y] 

 

   index = HDF_SD_NAMETOINDEX(sd_id,'ImageData8') 

   sds_id = HDF_SD_SELECT(sd_id,index) 

   HDF_SD_GETDATA, sds_id, band 

   HDF_SD_ENDACCESS, sds_id 

   band8 = band[SUL_X:SLR_X,SUL_Y:SLR_Y] 

 

   index = HDF_SD_NAMETOINDEX(sd_id,'ImageData9') 

   sds_id = HDF_SD_SELECT(sd_id,index) 

   HDF_SD_GETDATA, sds_id, band 

   HDF_SD_ENDACCESS, sds_id 

   band9 = band[SUL_X:SLR_X,SUL_Y:SLR_Y] 

 

   S_stddev=[-1,-1,-1,-1,-1,-1,-1] 

   S_stddev[0]=(stddev(band4)+stddev(band5)+stddev(band6)+$ 

             stddev(band7)+stddev(band8)+stddev(band9))/6.0 

   S_stddev[1]=stddev(band4) 
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   S_stddev[2]=stddev(band5) 

   S_stddev[3]=stddev(band6) 

   S_stddev[4]=stddev(band7) 

   S_stddev[5]=stddev(band8) 

   S_stddev[6]=stddev(band9) 

 

   result=size(band4) 

   swir_image=[[reform(band4,result[4],1)],$ 

              [reform(band5,result[4],1)],$ 

              [reform(band6,result[4],1)],$ 

              [reform(band7,result[4],1)],$ 

              [reform(band8,result[4],1)],$ 

              [reform(band9,result[4],1)]] 

   swir_image=rotate(swir_image,4) 

 

   index = HDF_SD_NAMETOINDEX(sd_id,'ImageData10') 

   sds_id = HDF_SD_SELECT(sd_id,index) 

   HDF_SD_GETDATA, sds_id, band 

   HDF_SD_ENDACCESS, sds_id 

   band10 = band[TUL_X:TLR_X,TUL_Y:TLR_Y] 

 

   index = HDF_SD_NAMETOINDEX(sd_id,'ImageData11') 

   sds_id = HDF_SD_SELECT(sd_id,index) 

   HDF_SD_GETDATA, sds_id, band 

   HDF_SD_ENDACCESS, sds_id 

   band11 = band[TUL_X:TLR_X,TUL_Y:TLR_Y] 

 

   index = HDF_SD_NAMETOINDEX(sd_id,'ImageData12') 

   sds_id = HDF_SD_SELECT(sd_id,index) 

   HDF_SD_GETDATA, sds_id, band 

   HDF_SD_ENDACCESS, sds_id 

   band12 = band[TUL_X:TLR_X,TUL_Y:TLR_Y] 

 

   index = HDF_SD_NAMETOINDEX(sd_id,'ImageData13') 

   sds_id = HDF_SD_SELECT(sd_id,index) 

   HDF_SD_GETDATA, sds_id, band 

   HDF_SD_ENDACCESS, sds_id 
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   band13 = band[TUL_X:TLR_X,TUL_Y:TLR_Y] 

 

   index = HDF_SD_NAMETOINDEX(sd_id,'ImageData14') 

   sds_id = HDF_SD_SELECT(sd_id,index) 

   HDF_SD_GETDATA, sds_id, band 

   HDF_SD_ENDACCESS, sds_id 

   band14 = band[TUL_X:TLR_X,TUL_Y:TLR_Y] 

 

   T_stddev=[-1,-1,-1,-1,-1,-1] 

   T_stddev[0]=(stddev(band10)+stddev(band11)+stddev(band12)+$ 

             stddev(band13)+stddev(band14))/5.0 

   T_stddev[1]=stddev(band10) 

   T_stddev[2]=stddev(band11) 

   T_stddev[3]=stddev(band12) 

   T_stddev[4]=stddev(band13) 

   T_stddev[5]=stddev(band14) 

 

 

   result=size(band10) 

   tir_image=[[reform(band10,result[4],1)],$ 

              [reform(band11,result[4],1)],$ 

              [reform(band12,result[4],1)],$ 

              [reform(band13,result[4],1)],$ 

              [reform(band14,result[4],1)]] 

   tir_image=rotate(tir_image,4) 

   tir_image=long(tir_image) 

 

   HDF_SD_END, sd_id 

 

;if it wasn't an hdf file, output some error 

endif else begin 

   print, 'there was a problem - ending early' 

endelse 

 

END;  PRO ReadL1BData    - ASTER S and T version  
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A.6 STEP1.PRO 

;STEP 1 - "The degraded VNIR images with a 30m resolution are generated 

;          by pixel aggregation with the PSF of SWIR" - Tonooka 

; 

; Tonooka assumes sigma = 0.44 based on MTF results in Fujisada et al 1998 

; 

; 

; Topher Hughes, Spring Semester 2006 

; 

; This should follow the quote above  - we'll see what our results look like 

 

FUNCTION CalcPSF, alpha 

;variables used: 

; 

; 

   PSF=fltarr(3,3) 

   PSF[0,0]=alpha*alpha 

   PSF[0,2]=PSF[0,0] 

   PSF[2,0]=PSF[0,0] 

   PSF[2,2]=PSF[0,0] 

       

   PSF[0,1]=alpha*(1-(2*alpha)) 

   PSF[1,0]=PSF[0,1] 

   PSF[2,1]=PSF[0,1] 

   PSF[1,2]=PSF[0,1] 

          

   PSF[1,1]=(1-(2*alpha))*(1-(2*alpha)) 

 

   return, PSF 

 

END; Function CalcPSF 

 

FUNCTION Degrade, OrigBand, PSF, mag_ratio 
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;variables used: 

; 

;result - stores result of size() call 

;DegradedBand - the new, degraded resolution image for the band 

 

   result=size(OrigBand) 

 

   if (~result[0]) then begin 

      print, "Passed Empty Band - returning -1 value" 

      DegradedBand=-1 

   endif else begin 

      DegradedBand=frebin(OrigBand, result[1]/mag_ratio, result[2]/mag_ratio) 

      DegradedBand=convolve(DegradedBand, PSF) 

      DegradedBand=float(round(DegradedBand)) 

   endelse; OrigBand contains data 

   return, DegradedBand 

 

END; FUNC Degrade 

 

A.7 STEP2.PRO 

;STEP 2 - "A homogenous pixel is here defined as a 30m-resolution pixel that 

;   the standard deviation of four original VNIR pixels in a 30m-resolution 

;   pixcel is smaller than a threshold. Using the original VNIR images, the 

;   30m-resolution homogeneous pixel map is generated" - Tonooka 

; 

;   "In the step 2, the threshold determining homogeneous pixels was defined 

;   as the band average of the spatial standard deviation over the whole 

;   image of each VNIR band: if all VNIR bands had the spatial standard 

;   deviation smaller than this threshold in a 30m-resolution pixel, this 

;   pixel was assumed to be homogeneous" - Tonooka 

; 

; 

; Tonooka assumes sigma = 0.44 based on MTF results in Fujisada et al 1998 
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; 

; 

; Topher Hughes, Spring Semester 2006 

; 

; I am not certain about the 'band average of the spatial standard deviation 

; over the whole image of each VNIR band' part. In the main program, I define 

; my threshold as the average of the stddev() result for each band's whole 

; image. 

 

 

PRO Homog_Pix_VNIR, band1, band2, band3, thresh, mag_ratio, homog_map 

 

; variables used in this procedure 

; result - stores result of size() function 

; max_x, max_y - size of X and Y in image 

; x, y - loop variables to iterate of 2D image 

 

   result = size(band1) 

 

   ;make homog_map 2D 

   homog_map=reform(homog_map, result[1] / mag_ratio, result[2] / mag_ratio) 

 

   ;and set our maxes so that we don't exceed check our border pixels    

   max_x = result[1] - (mag_ratio +1) 

   max_y = result[2] - (mag_ratio +1) 

 

print, "Threshold used for VNIR homogeneity is ", thresh 

 

;as of Oct 27 2006 I no longer remember why I do not check edge pixels 

;however, since I did not in my original Homog_Pix_15m I am leaving it 

;that way for now. 

 

   for y = mag_ratio, max_y, mag_ratio do begin 

      for x = mag_ratio, max_x, mag_ratio do begin 

 

         ;going 3-2-1, since that is order of likeliest fails in test images 
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         if(stddev(band3[x:x+(mag_ratio-1),y:y+(mag_ratio-1)]) ge thresh)$ 

          then continue 

         if(stddev(band2[x:x+(mag_ratio-1),y:y+(mag_ratio-1)]) ge thresh)$ 

          then continue 

         if(stddev(band1[x:x+(mag_ratio-1),y:y+(mag_ratio-1)]) ge thresh)$ 

          then continue 

 

         homog_map[x / mag_ratio, y / mag_ratio] = 1 

 

      endfor; x_loop 

   endfor ;y_loop 

 

END 

 

PRO Write_StdDevVals, band1,band2,band3N 

; variables used in this procedure 

; result - stores result of size() function 

; max_x, max_y - size of X and Y in image 

; x_loop, y_loop - loop variables to iterate of 2D image 

; band_map - 2D array of std dev of pixels 

; 

; ASSUMES VNIR TO SWIR (4:1) 

; 

; 

 

   result = size(band1) 

   band_map1 = fltarr(result[1]/2 ,result[2]/2) 

   band_map2 = fltarr(result[1]/2,result[2]/2) 

   band_map3N = fltarr(result[1]/2,result[2]/2) 

 

   max_x = result[1] - 2 

   max_y = result[2] - 2 

 

   for y_loop = 0, max_y, 2 do begin 

      for x_loop = 0, max_x, 2 do begin 

 

         band_map1[(x_loop/2),(y_loop/2)] = $ 
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             float(stddev(band1[x_loop:x_loop+1,y_loop:y_loop+1])) 

 

         band_map2[(x_loop/2),(y_loop/2)] = $ 

             float(stddev(band2[x_loop:x_loop+1,y_loop:y_loop+1])) 

 

         band_map3N[(x_loop/2),(y_loop/2)] = $ 

             float(stddev(band3N[x_loop:x_loop+1,y_loop:y_loop+1])) 

 

      endfor; x_loop 

   endfor ;y_loop 

 

   ;write band std dev to disk 

 

   openw, lun, 'band1_stddev.dat', /get_lun 

   writeu, lun, band_map1 

   free_lun, lun 

 

   openw, lun, 'band2_stddev.dat', /get_lun 

   writeu, lun, band_map2 

   free_lun, lun 

 

   openw, lun, 'band3N_stddev.dat', /get_lun 

   writeu, lun, band_map3N 

   free_lun, lun 

 

END 

 

A.8 STEP3.PRO 

;STEP 3 - Generation of the multi-way V/S tree 

;"The multi-way V/S tree is generated from the 30m-resolution VNIR and SWIR 

; images, and the 30m-resolution homogeneous pixel map. First all homogeneous 

; VNIR pixels (30m) are classified based on the Mahalanobis' generalized 

; distance, so that VNIR spectra similar to each other are merged and averaged. 
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; Then, all homogeneous SWIR pixels (30m) are classifed for each VNIR merged 

; spectrum (class) in the same way, so that one or more SWIR merged spectra 

; are given to each VNIR merged spectrum." - Tonooka 

; 

;"3)generate a multi-way tree for VNIR and SWIR spectra (referred to as the 

; V/S tree) by stepwise clustering for the 30m-resolution VNIR and SWIR 

; images" - Tonooka 

; 

;"In steps 3 and 8, the k-means clustering based on Mahalanobis' generalized 

; distance was stepwise applied to each of VNIR, SWIR, and TIR. The number 

; of initial clusters given is 50 for VNIR and 10 for SWIR in step 3" 

; - Tonooka 

; 

; 

 

FUNCTION GetInvCovMatrix, total_image 

;calculate the variance-covariance matrix and then the mahabanolis distance 

;for images 

; 

;variables used: 

;result - store result of size() function 

;image_temp - image redone as a 1D array 

;total_image - array of all images, 1 image per column 

;cov_matrix - the covariance matrix of total_image 

;inv_cov_matrix - the inverted covariance matrix 

;status - the status of the inversion 

 

   ;since we have them 1 band per column, calculate the covariance matrix 

   cov_matrix=correlate(total_image,/covariance) 

 

   ;result here should be a #band x #band matrix. 

   ;we now invert it. why? because! (b/c mahalanobis uses inverted matrix) 

   inv_cov_matrix=invert(cov_matrix, status) 

 

 

; 

;   this block was here during original programming 
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;   I don't think I've ever seen it since then 

;   commenting out in preparation for conversion to looping 16 Sep 09 

;    

;   if status then begin 

;      print, "STATUS VALUE NOT 0 - SET TO ", status 

;      read, PauseVal, prompt="Would you like to see how you screwed up? " 

;   endif 

 

   return, inv_cov_matrix 

 

END ;GetInvCovMatrix 

 

 

FUNCTION GetMahaDist, loc1,loc2,InvCovMat 

;given - two separate pixels and the Inverted Covariance Matrix 

;calculate - the Mahalanobis distance between the two points 

;variables used - 

;result - used to store result of size() operation 

;diff - difference between loc1 and loc2 

;MahaDist - first, an array, then a scalar 

 

   ;first - calculate X sub i minus mean - let loc2 be the mean 

 

   ;may not need the abs() call below; leaving for now to play 

   ;it safe. 17 Sep 07 

 

   ;comfortable that I don't need to abs the below line. deleting 

   ;the enclosing call to abs() from below. 30 Sep 07 

 

   return, ( (loc1-loc2) # InvCovMat)  #  (loc1-loc2)  

 

END ;GetMahaDist 

 

FUNCTION GetAvgMahaDist, HomogIndex, total_image, InvCovMat 

 

   result=size(HomogIndex, /n_elements) 

   avgdist=0.0 
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   for firsthomog=0.0, result-2.0, 1.0 do begin 

      for secondhomog=firsthomog+1.0, result-1.0, 1.0 do begin 

         avgdist=avgdist+(GetMahaDist(total_image[*,HomogIndex[firsthomog]],$ 

                             total_image[*,HomogIndex[secondhomog]],$ 

                             InvCovMat)/(result)) 

      endfor ;secondhomog 

   endfor; firsthomog 

 

print, "Average Mahalanobis Distance between all homogeneous pixels is" 

print, avgdist 

 

   return, avgdist 

 

END ;GetAvgMahaDist 

 

FUNCTION RemoveLowestMeans, MeansList, NumToRemove, MeansVals, InvCovMat 

;given - a MahaList with 10% more Means than needed 

;remove the NumToRemove members that are closest to other members 

;variables used - 

;whichremove - which of NumToRemove Means I am currently calculating 

;minval - the lowest calculated distance between two Means 

;minval - the current calculated distance to another Means from CurrentMeans 

;CurrentMeans - the member of MeansList being examined 

;CompMeans - the member of MeansList being measured with CurrentMeans 

;MeansToRemove - the member of MeansList with lowest MahaDist to another 

;result - used to store result of size() operation 

;index - index values for MeansList and MeansVal (same order) 

;keeplist - all indices that are not MeansToRemove 

 

 

   ;I have numremove additional elements. I want to remove those 

   ;Means that are close to other means - ie, try to account for 

   ;outliers increasing the average distance so Means near one another 

   ;are both chosen. As a pair (at minimum) will be selected - remove 

   ;the first one found, and then recalcuate the minimums. 
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   for whichremove=1, NumToRemove, 1 do begin 

      result=size(MeansList, /n_elements) 

      minval=GetMahaDist(MeansVals[*,1],MeansVals[*,0],InvCovMat) 

      MeansToRemove=0 

      for CurrentMeans=0, result-2, 1 do begin 

         for CompMeans=CurrentMeans+1, result-1, 1 do begin 

            curval=GetMahaDist(MeansVals[*,CompMeans],$ 

                   MeansVals[*,CurrentMeans], InvCovMat) 

            if (curval lt minval) then begin 

               minval=curval 

               MeansToRemove=CurrentMeans 

            endif; curval lt minval 

         endfor; CompMeans 

      endfor; CurrentMeans 

 

      ;minval should be closest distance btwn 2 points, and 

      ;MeansToRemove should be its index 

 

      index=replicate(1L,result) 

      index[MeansToRemove]=0L 

      keeplist=where(index eq 1) 

      MeansList=MeansList(keeplist) 

      MeansVals=MeansVals(*,keeplist) 

    endfor; whichremove 

   return, MeansList 

 

END; RemoveLowestMeans 

 

 

;FUNCTION CalcMahaDist, HomogIndex, total_image, MahaList, InvCovMat 

;;given - the index of all homogeneous pixels, the full array 

;;(X x Y x 3 or X x Y x 6 or X x Y x 5), the number of means to calc, 

;;the array of mean pixels to calculate against, and the inverted covariance 

;;matrix - find the Mahalanobis Distance for each pixel to all mean pixels 

;; 

;;variables used: 

;;subimage - only the members of total_image in HomogIndex 
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;;result - used to store result of size() operation 

;;MahaList - list of starting points. Need to have NumToCalc values in it 

;;current - index of the MahaList we're trying to fill 

;;thispix - index of already existing MahaList values 

;;existing - index of already existing MahaList values 

;;total - the total Mahalanobis distance for thispix to all current means 

;;find_thispix - check to see if thispix is already a member of MahaList 

;;maxval - the highest total Mahalanobis distance to all current means 

;;newmeans - the index of HomogIndex that had maxval 

;;numremove - the # of Means that are additional, and can be removed 

; 

;   ;if first time called 

;   if (MahaList[0] eq -1) then begin 

;      ;pick a random index of a homogeneous pixel to start calculations 

;      ;first, figure out our range - its the total size of the homog array 

;      result=(size(HomogIndex, /n_elements))-1 

;      MahaList[0]=long(round(RANDOMU(seed)*result)) 

; 

;      ;ok, so total_image[HomogIndex[MahaList[0]]] is my random choice 

;      ;and I have an Inverted Covariance Matrix,so, call myself 

;      MahaList=CalcMahaDist(HomogIndex,total_image,MahaList,InvCovMat) 

; 

;   endif else begin 

;      ;calculate Mahalanobis distance between each existing mean 

;      ;and all other points. The new point has the greatest total 

;      ;distance from all existing points. 

;      ;Might need to toss out any that have a distance=0 since 

;      ;those would already be in my list 

; 

;      ;have MahaList, with some values and some -1 

;      ;if we use where to get all -1, the first of these is the index 

;      ;of the slot we're looking to fill. This value - 1 is the last 

;      ;existing means. 

; 

;      ;current = index of all non-set means 

;      current = where(MahaList eq -1) 

; 
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;      ;current = first one - this is the one we're trying to fill 

;      ;current is now an index value in MahaList 

;      current = current[0] 

; 

;      ;set our maxval=0 to init it, will compare total to it later 

;      maxval=0.0 

;      newmeans=-1 

; 

;      ;get size of homog so we know how many pixels to iterate over 

;      result=size(HomogIndex, /n_elements) - 1.0 

; 

;      for thispix = 0.0, result, 1 do begin 

;         ;initialize our total 

;         total=0.0 

;         ;start adding distances - calculate the total MahaDist for thispix 

;         for existing = 0, current-1, 1 do begin 

;            ;added amount previously ended with "/(current+1)" but I no 

;            ;longer see the reason for the divide. We don't need the real 

;            ;value - we just want to get which one is furthest. 

; 

;            dist_to_this_one=GetMahaDist(total_image[*,HomogIndex[thispix]],$ 

;                             total_image[*,HomogIndex[MahaList[existing]]],$ 

;                             InvCovMat) 

; 

;            ;if we're here, we have a Maha Dist of 0.0 - that would 

;            ;be the same point as an existing center I think so break 

;            ;out of the for loop 

; 

;            if ~(dist_to_this_one) then total+=dist_to_this_one else break 

;  

;         endfor ;existing 

;         ;if my total is greater than maxval,  

;         ;and if my pixel isn't already in the list,  

;         ;replace my value with maxval 

; 

;         if (total gt maxval) and (dist_to_this_one) then begin 

;               maxval = total 
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;               newmeans = thispix 

;         endif ;total gt maxval 

; 

;      endfor ;thispix 

; 

;      ;at this point, newmeans should be index of farthest pixel 

;      ;with value maxval - go ahead and add it to the list 

; 

;      MahaList[current]=newmeans 

; 

;      ;if current was not the last one in list, call me again 

; 

;      result=size(MahaList, /n_elements) 

;      if (current ne result-1) then begin 

;         MahaList=CalcMahaDist(HomogIndex,total_image,MahaList,InvCovMat) 

;      endif 

;   endelse 

;   return,MahaList  

; 

;END ;CalcMahaDist 

 

FUNCTION GetInitialMeans,HomogIndex,total_image,MahaList,InvCovMat,Distance 

;given - the index of all homogeneous pixels, the full array 

;(X x Y x 3 or X x Y x 6 or X x Y x 5), the number of means to calc, 

;the array of mean pixels to calculate against, and the inverted covariance 

;matrix - find the Mahalanobis Distance for each pixel to all mean pixels 

; 

 

   ;if first time called 

if (MahaList[0] eq -1) then begin 

   ;pick a random index of a homogeneous pixel to start calculations 

   ;first, figure out our range - its the total size of the homog array 

   result=(size(HomogIndex, /n_elements))-1 

   MahaList[0]=long(round(RANDOMU(seed)*result)) 

 

   ;ok, so total_image[HomogIndex[firstpix]] is my random choice 

   ;and I have an Inverted Covariance Matrix,so, call myself 
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   MahaList=GetInitialMeans(HomogIndex,total_image,MahaList,InvCovMat,Distance) 

 

endif else begin 

   ;this is not our first means 

   ;we need to add the distance to the last selected means to our total 

   ;we need to to select pixels to exclude: 

      ;these include any which are already in the list 

      ;it also incudes any that had 0 distance to the last added means 

      ;we select out the pixel with the max distance from the non-excluded 

   ;we call GetInitialMeans again, with the new distances and mean 

 

   ;first - find our most recently added means 

   current=where(MahaList eq -1) 

   current=current[0] 

   current-=1  

 

   ;how many pixels are we looking at: 

   num_homog=size(HomogIndex, /n_elements) 

 

   ;record old distances 

   old_dist=distance 

 

   for cp=0.0, num_homog-1, 1 do begin 

      distance[cp]+=GetMahaDist(total_image[*,HomogIndex[cp]],$ 

                             total_image[*,HomogIndex[MahaList[current]]],$ 

                             InvCovMat) 

   endfor 

 

   ;distance is now a measure of a pixels distance to all previously chosen 

   ;means. Find our exclusions, eliminate them, and pick our max from the 

   ;remain values 

 

   exclude=setunion(MahaList[0:current],where(distance eq old_dist)) 

   include=indgen(num_homog, /float) 

   include=SetDifference(include, exclude) 
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   if (include[0] eq -1) then begin 

      ;if we're here - there were no new means 

      ;shorten our MahaList, and return to end our search 

      MahaList=MahaList[0:current] 

      print, "Found less than the specified number of means - shortened list." 

      return, MahaList 

   endif; include list is empty 

       

 

   ;measurement of the maximum value 

   maxval=max(distance[include]) 

   ;indices where maxval is located 

   maxval=where(distance eq maxval) 

   ;get rid of indices that were already excluded 

   maxval=SetDifference(maxval, exclude) 

   ;in case there is more than 1, pick the first 

   maxval=maxval[0] 

 

   ;maxval is now HomogIndex index 

 

   MahaList[current+1]=maxval 

 

   if (current+1 ne size(MahaList, /n_elements)-1 ) then begin 

      MahaList=GetInitialMeans(HomogIndex,total_image,MahaList,InvCovMat,Distance) 

   endif; current+1 ne size of MahaList 

endelse; MahaList not empty 

return, MahaList 

 

END ;GetInitialMeans 

 

PRO ShowMeansDistances, total_image, homog, Means, InvCovMat 

;function will be used to measure distance between all means 

;and write the values to a formatted text file. 

;It seems like maybe my means choices aren't great and I want 

;to know why 

; 

;variables used in this procedure 
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;result - used to store the result of size 

 

result=size(Means, /n_elements) 

 

Output=make_array(result,result,/float) 

temp=total_image[*,homog[Means]] 

 

 

for x=0,result-2,1 do begin 

   for y=x,result-1,1 do begin 

print, 'Means A is ', temp[*,x], 'and Means B is ', temp[*,y], 'and their distance is ', 

GetMahaDist(temp[*,y],temp[*,x],InvCovMat) 

      Output[x,y]=GetMahaDist(temp[*,y],temp[*,x],InvCovMat) 

   endfor 

endfor 

 

print, Output 

END 

 

A.9 ISODATA.PRO 

PRO ISODAT_Step_One, ChangeLimit, MinMembers, MaxStdDev, MinDistance, MaxPair, BandMax, Limit, 

Reason 

   ;this procedure will be used to set initial parameters for ISODATA 

 

   print, "The following questions control ", Reason 

 

   read, Limit, prompt='Maximum iterations for ISODATA?: ' 

 

   read, ChangeLimit, prompt='Iterations end when % changed < (0.5 default): ' 

 

   read, MinMembers, prompt='% of total in cluster to not delete (0.01 default): ' 

   read, MaxStdDev, prompt='Std Dev threshold before splitting? (5-10 default): ' 
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   read, MinDistance, prompt='Minimum distance between centroids before joining? (2 default): ' 

 

   read, MaxPair, prompt='Maximum clusters to join together per iteration? (5 default): ' 

    

   print, "The current Max DN value in these bands is "+StrTrim(float(BandMax),2) 

   read, prompt='Max DN value to use?', BandMax 

 

END; ISODAT_Step_One 

 

FUNCTION ISODAT_Step_Two_C, Image, HomogIndex, Means, InvCovMat 

;distribute all homogeneous pixels among the current cluster centers 

 

NumHomog=size(HomogIndex, /n_elements) 

meansize=size(Means) 

bands=meansize[1] 

 

if (size(meansize, /n_elements) eq 4) then begin 

   meansize=1 

endif else begin 

   meansize=meansize[2] ; should be number of rows - which is # of clusters 

endelse 

 

Distance=make_array(NumHomog, meansize, /float) 

 

HomogImage=Image[*,HomogIndex] 

 

ex_ICM=reform(rebin(InvCovMat,bands,bands,NumHomog),bands,bands*NumHomog) 

 

for cm=0, meansize-1, 1 do begin 

 

 

   ;calc out our row 

   Row=HomogImage-rebin(Means[*,cm],bands, NumHomog, /sample) 

   ;expand it to match ex_ICM 

   Row=rebin(Row,bands,bands*NumHomog, /sample) 

   ;uniq_entries - so I can pull out my original stuff later 

   uniq_entries=bands*indgen(NumHomog, /float) 
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   stage1=total(ex_ICM*Row,1) 

 

   ;set Row back to unexpanded, and make it a 1D list 

   Row=reform(Row[*,uniq_entries],bands*NumHomog) 

 

   Distance[*,cm]=total(reform(stage1*Row,bands,NumHomog),1) 

 

endfor 

;Distance is now a NumHomog wide, meansize deep array - pick out the mins 

 

if (meansize eq 1) then begin 

   ClusterList=make_array(NumHomog,value=0L) 

endif else begin 

   Distance=min(Distance,ClusterList,dim=2,/absolute) 

   ClusterList= floor(temporary(ClusterList) / NumHomog) 

endelse 

 

return, ClusterList 

 

END; ISODAT_Step_Two_C 

 

PRO ISODAT_Step_Three, Means, ClusterList, MinMembers, WereDeleted 

;remove any cluster with less than MinMembers in it. 

;variables used: 

;current_cluster - the cluster being examined 

;meansize - used to store result of size(Means) 

;members - the pixels from ClusterList in cluster curr_cluster 

;nummembers - # of pixels from ClusterList in cluster curr_cluster 

;NewMeans - the Means list without the cluster being deleted 

 

meansize=size(Means) 

bands=meansize[1] 

if (size(meansize, /n_elements) eq 4) then begin 

   meansize=1 

endif else begin 

   meansize=meansize[2] ; should be number of rows - which is # of clusters 
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endelse 

 

histo_array=histogram(ClusterList, omin=ohmi, omax=ohma, REVERSE_INDICES=ri) 

histo_array=where(histo_array lt MinMembers) 

histo_array=reverse( histo_array[ sort(histo_array) ] ) 

 

last=ohma 

 

if (histo_array[0] ne -1) then begin 

 

   WereDeleted=1 ;ok - so we set this multiple times 

 

   for clus_ind=0, size(histo_array, /n_elements)-1, 1 do begin 

      clus_to_del=histo_array[clus_ind] 

 

      ;set the members of clus_to_del to -1 if there are any 

      if ri[clus_to_del] ne ri[clus_to_del+1] then begin 

         ClusterList[ri[ri[clus_to_del]:ri[clus_to_del+1]-1]]=-1 

      endif 

 

      ;unless last cluster, set all members gt clus_to_del to one less 

      if ((clus_to_del ne meansize)&&(ri[clus_to_del+1] ne ri[meansize])) then begin 

         ClusterList[ri[ri[clus_to_del+1]:*]]-=1 

      endif 

 

      CASE clus_to_del OF 

            0: Means=Means[*,1:*] 

         last: Means=Means[*,0:last-1] 

         else: Means=reform([Means[0:(clus_to_del*bands)-1],$ 

                     Means[(bands*(clus_to_del+1)):*]],bands,last) 

      ENDCASE 

 

      last-=1 

   endfor; clus_ind 

 

   ;keep my histograms sane - set all my -whatevers to -1 

   deleted_members=where(ClusterList le -1) 
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   if (deleted_members[0] ne -1) then begin 

      ClusterList[deleted_members]=-1 

   endif 

 

endif; histo_array has clusters to delete 

 

END; ISODAT_Step_Three 

 

FUNCTION ISODAT_Step_Four, Image, HomogIndex, Means, ClusterList 

;this step recomputes the means of the clusters based on their 

;assigned pixels. In theory, if we deleted clusters in step 3, we 

;have unassigned pixels - they are ignored during this step and only 

;the pixels assigned to a cluster during step 2 are used to compute 

;the new means 

;variables used: 

;current_cluster - the cluster we're working on 

;current_band - the band we're working on 

;meansize - used to store result of size() 

;           result[1] on Means should be #bands 

;           result[2] on Means should be #clusters 

;cluster_size - used to store result of size() on ClusterList 

;members - all members (using where) from ClusterList in a cluster 

;NewMeans - store the newly calculated Means 

; 

; 

;changed from procdedure to function, returning NewMeans 20 Sep 07 

; 

; 

meansize=size(Means) 

NewMeans=Means 

 

bands=meansize[1] 

 

if (size(meansize, /n_elements) eq 4) then begin 

   meansize=1 

endif else begin 

   meansize=meansize[2] ; should be number of rows - which is # of clusters 
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endelse 

 

;for each cluster, for each band compute the new mean 

 

for current_cluster=0, meansize-1, 1 do begin 

 

   ;select all member of cluster 

   members=where(ClusterList eq current_cluster) 

 

   for current_band=0, bands-1, 1 do begin 

 

      NewMeans[current_band, current_cluster]=$ 

         round(mean(Image[current_band,HomogIndex[members]])) 

 

   endfor; current_band 

 

endfor; current_cluster 

 

return, NewMeans 

 

END ; ISODAT_Step_Four 

 

 

FUNCTION ISODAT_Step_Five_A, Image, Homog, Means, ClusterList,$ 

                           CurrClusters, InvCovMat 

 

;compute the average distance of the samples from their cluster centers 

;variables used in this function 

;current_cluster - the cluster whose average is being computed 

;members - members of current_cluster 

;nummembers - size(members, /n_elements) 

;current_pix - the pixel whose distance is being measured 

 

NumHomog=size(Homog, /n_elements) 

bands=size(Means) 

bands=bands[1] 
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;calc out our row, and replicate it to match ex_ICM 

Row=rebin((Image[*,Homog]-Means[*,ClusterList]),bands, bands*NumHomog, /sample) 

 

;expand our Inverted Covariance Matrix 

ex_ICM=reform(rebin(InvCovMat, bands, bands, NumHomog), bands, bands*NumHomog) 

 

;set uniq_entries to recover unique entries from Row 

uniq_entries=bands*indgen(NumHomog, /float) 

 

stage1=total(ex_ICM*Row,1) 

 

;set Row back to unexploded version and stretch it out into 1-D 

Row=reform(Row[*,uniq_entries],bands*NumHomog) 

 

Row=total(reform(stage1*Row,bands,NumHomog),1) 

 

;row is now ClusterList long, and contains the distance from that pixel to 

;its cluster's mean 

 

AverageDistance=histogram(ClusterList,omax=maxclus, REVERSE_INDICES=ri) 

AverageDistance=float(AverageDistance) 

 

for cc=0, maxclus, 1 do AverageDistance[cc]=mean(Row[ri[ri[cc]:ri[cc+1]-1]]) 

 

return, AverageDistance 

 

END; ISODAT_Step_Five_A 

 

FUNCTION ISODAT_Step_Six_A, AverageDistance, ClusterList 

;compute the weighted overall average distance 

;variables used in this function- 

 

clus_weight=histogram(ClusterList) 

 

return, total(clus_weight*AverageDistance)/total(clus_weight) 

 

END; ISODAT_Step_Six_A 
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PRO ISODAT_Step_Seven, MaxPair, SkipToEleven, RunLimit, Iter, CurrClusters, MaxClusters 

;this function determines whether we go to step 8 or skip ahead to 11 

 

if (Iter eq RunLimit) then begin 

   MinDistance=0 

   SkipToEleven=1 

endif 

 

if ((Iter mod 2) eq 0 ) then begin 

   SkipToEleven=1 

endif 

 

if (CurrClusters ge (2*MaxClusters) ) then begin 

   ;How is it even possible to reach this point? 

   SkipToEleven=1 

endif 

 

END; ISODAT_Step_Seven 

 

FUNCTION ISODAT_Step_Eight_B,Image,HomogIndex, Means,ClusterList,CurrClusters 

;calculate the per cluster per band standard deviation 

;variables used in this function- 

;current_cluster - cluster being examined 

;current_band - band being examined 

;members - the members of the cluster 

;nummembers - the size of members 

;numbands - the number of bands in this spectral range 

;pixbandval - value of pixel current_pix at band current_band 

;meanbandval - value of cluster current_cluster mean at band current_band 

; 

; 

; this version does not require the avgstd.pro file 

; 

; 

   numbands=size(Means) 

   numbands=numbands[1] 
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   StdDevVector=make_array(numbands, CurrClusters, /float, value=0.0) 

 

   for current_cluster=0, CurrClusters-1, 1 do begin 

      members=where(ClusterList eq current_cluster) 

 

      if (size(members, /n_elements) lt 2) then begin 

         StdDevVector[0:numbands-1, current_cluster]=0.0 

         continue 

      endif 

 

      for current_band=0, numbands-1, 1 do begin 

         StdDevVector[current_band,current_cluster]=$ 

               STDDev(Image[current_band,HomogIndex[members]]) 

      endfor; current_band 

   endfor; current_cluster 

 

   return, StdDevVector 

 

END; ISODAT_Step_Eight_B 

 

FUNCTION ISODAT_Step_Nine, StdDevVector 

 

   MaxStdDevVector=max(StdDevVector, dimension=1) 

 

return, MaxStdDevVector 

 

END; ISODAT_Step_Nine 

 

 

PRO ISODAT_Step_Ten, Means, MaxStdDev, StdDevVector,MaxStdDevVector,$ 

                     AverageDistance, OverallAvgDist, ClusterList,$ 

                     CurrClusters, MaxClusters, MinDistance, BandMax, Split 

;this function is the splitting step. If we have one of two conditions, we 

;will split a cluster into two new means. 

; 

;The two conditions are: 
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; 

; if MaxStdDevVector > MaxStdDev   AND EITHER 

 

; A - if the cluster avg dist is > overall avg distance AND 

;            nummembers > ((2*MinMembers)+1) 

; 

; OR 

; 

; B -  CurrClusters <= MaxClusters/2 

; 

; 

;variables used in this function: 

;current-cluster - the cluster being examined 

;SplitThis - whether or not to split the current cluster 

;result - stores the result of size() 

;NewMeans - holder for our expanded Means 

;band - the band of the Max StdDevVector 

;k - the fraction to multiply times MaxStdDevVector for my +/- 

;NewClusters - the new number of clusters 

;current_band - the band which I am examining 

 

NewClusters=CurrClusters 

 

for current_cluster=0, CurrClusters-1, 1 do begin 

 

   members=where(ClusterList eq current_cluster) 

   nummembers=size(members, /n_elements) 

   SplitThis=0 

   if (MaxStdDevVector[current_cluster] gt MaxStdDev) then begin 

 

      if (AverageDistance[current_cluster] gt OverallAvgDist) then begin 

         if (nummembers gt (2*(MinDistance+1))) then begin 

            Split=1 

            SplitThis=1 

         endif; nummembers > 2(MinDistance+1) 

      endif; AverageDistance > Overall Average Distance 
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      if (NewClusters le (MaxClusters / 2.0)) then begin 

         Split=1 

         SplitThis=1 

      endif; CurrClusters > MaxClusters/2 

 

 

   endif; MaxStdDevVector > MaxStdDev 

 

   if (SplitThis eq 1) then begin 

      meansize=size(Means) 

 

      if (size(meansize, /n_elements) eq 4) then begin 

         numbands=meansize[1] 

         meansize=1 

      endif else begin 

         numbands=meansize[1] 

         meansize=meansize[2] 

      endelse 

 

      NewMeans=make_array(numbands,meansize+1) 

      NewMeans[*,0:meansize-1]=Means 

      NewClusters=NewClusters+1 

 

      k=0.75 

 

      ;find the max component. avg of that band +/- (k*maxstd) are new centers 

      band=where(StdDevVector[*,current_cluster] eq MaxStdDevVector[current_cluster]) 

 

      ;sometimes there is a tie - go for the first one. 

      band=band[0] 

 

      ;set new means equal to current means for now 

      NewMeans[*,meansize]=NewMeans[*,current_cluster] 

 

      ;modify MaxStdDev band - current is lower, new is higher 
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      if ((NewMeans[band,current_cluster] +$ 

       round(k * MaxStdDevVector[current_cluster])) gt BandMax) then begin 

         NewMeans[band,meansize]=BandMax 

      endif else begin 

         NewMeans[band,meansize]=NewMeans[band,current_cluster] +$ 

                            round(k * MaxStdDevVector[current_cluster]) 

      endelse 

 

 

      if((NewMeans[band, current_cluster]-$ 

       round(k * MaxStdDevVector[current_cluster])) lt 0) then begin 

         NewMeans[band,current_cluster]=0 

      endif else begin 

         NewMeans[band,current_cluster]=NewMeans[band, current_cluster]-$ 

                            round(k * MaxStdDevVector[current_cluster]) 

      endelse 

 

      Means=NewMeans 

 

   endif; SplitThis=1 

 

endfor; current_cluster 

 

 

CurrClusters=NewClusters 

 

END; ISODAT_Step_Ten 

 

 

FUNCTION ISODAT_Step_Eleven, Means, ClusterList, InvCovMat 

;this function computes the distances between centroids 

;variables used in this function- 

;result - store the result of size() 

;current_cluster - cluster being compared 

;current_means - the cluster being measured to 

;MeansDistances - the 2-D array of distances between means 
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;calculate the number of pairings we have 

;THE NEXT TWO LINES ASSUMED THAT ALL MEANS HAD DATA - NOT TRUE AFTER STEP 10 

;pairs=size(Means) 

;pairs=total(indgen(pairs[2]-1)) 

 

meansize=size(Means) 

meansize=meansize[2] 

 

histo_array=histogram(ClusterList, omin=ohmi, omax=ohma) 

 

;do some sanity checks - no fixes but do put out some errors 

if (ohmi ne 0) then print, 'IN STEP 11 - OHMI NE 0 - SET TO: ', ohmi 

if (ohma+1 gt meansize) then print, 'OHMA+1 GT MEANSIZE - OHMA SET TO: ', ohma 

 

MeansDistances=make_array(3,total(indgen(ohma+1)),/float, value=-1.0) 

 

current_pair=0.0 

 

for current_means=0.0, ohma-1.0, 1.0 do begin 

   for current_cluster=current_means+1.0, ohma, 1.0 do begin 

      MeansDistances[0,current_pair]=current_means 

      MeansDistances[1,current_pair]=current_cluster 

      MeansDistances[2, current_pair]=$ 

               Means[*,current_cluster]#InvCovMat#Means[*,current_means] 

      current_pair+=1 

   endfor; current_cluster 

endfor; current_means 

 

return, MeansDistances 

END; ISODAT_Step_Eleven 

 

 

FUNCTION ISODAT_Step_Eleven_A, Means, ClusterList, InvCovMat 

;this function computes the distances between centroids 

;variables used in this function- 

;result - store the result of size() 
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;current_cluster - cluster being compared 

;current_means - the cluster being measured to 

;MeansDistances - the 2-D array of distances between means 

 

;calculate the number of pairings we have 

;THE NEXT TWO LINES ASSUMED THAT ALL MEANS HAD DATA - NOT TRUE AFTER STEP 10 

;pairs=size(Means) 

;pairs=total(indgen(pairs[2]-1)) 

 

meansize=size(Means) 

meansize=meansize[2] 

 

histo_array=histogram(ClusterList, omin=ohmi, omax=ohma) 

 

;do some sanity checks - no fixes but do put out some errors 

if (ohmi ne 0) then print, 'IN STEP 11 - OHMI NE 0 - SET TO: ', ohmi 

if (ohma+1 gt meansize) then print, 'OHMA+1 GT MEANSIZE - OHMA SET TO: ', ohma 

 

MeansDistances=make_array(3,total(indgen(ohma+1)),/float, value=-1.0) 

 

current_pair=0.0 

 

for current_means=0.0, ohma-1.0, 1.0 do begin 

   for current_cluster=current_means+1.0, ohma, 1.0 do begin 

      MeansDistances[0,current_pair]=current_means 

      MeansDistances[1,current_pair]=current_cluster 

      Diff=(Means[*,current_cluster]-Means[*,current_means]) 

      MeansDistances[2, current_pair]=$ 

       Diff#InvCovMat#Diff 

      current_pair+=1 

   endfor; current_cluster 

endfor; current_means 

 

return, MeansDistances 

END; ISODAT_Step_Eleven_A 

 

FUNCTION ISODAT_Step_Twelve,MeansDistances, MaxPair, MinDistance 
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;select the smallest up to MaxPair distances between 0 and MinDistance 

;variables used- 

;sorted_indices - indices from sorting values 

;tmp_indices - indices from sorting values 

 

sorted_indices=sort(MeansDistances[2,*]) 

 

;want at most MaxPair of them 

;but first make sure I actually have at least MaxPair first 

 

CurrPair=size(MeansDistances) 

 

if (size(CurrPair, /n_elements) eq 4) then begin 

   CurrPair=1 

endif else begin 

   CurrPair=CurrPair[2] 

endelse 

 

if (CurrPair lt MaxPair) then begin 

   MaxPair=CurrPair 

endif 

 

sorted_indices=sorted_indices[0:MaxPair-1] 

 

;and I don't want any whose value is greater than MinDistance 

 

tmp_indices=where(MeansDistances[2,sorted_indices] le MinDistance) 

 

if (tmp_indices[0] ne -1) then begin 

   sorted_indices=sorted_indices[tmp_indices] 

   MeansDistances=MeansDistances[0:1,sorted_indices] 

endif else begin 

   MeansDistances=-1 

endelse 

 

return, MeansDistances 
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END; ISODAT_Step_Twelve 

 

PRO ISODAT_Step_Thirteen, ClusterList, Means, Lumps, CurrClusters 

;this procedure will lump pairs of clusters together and create a new 

;Means that is based on the weighted average of the old Means 

;variables used: 

;lumped: ensuring that no cluster is double-lumped 

;numpairs -number of pairs in Lumps 

;pair - which pair in Lumps we're working on 

;bands - the number of bands we're dealing with 

;memone, memtwo - members of the clusters being lumped 

;nummemone, nummemtwo - number of members of the clusters being lumped 

;cleanup_array - tmp holder for removing lumped Means 

 

histo_array=histogram(ClusterList, omin=ohmi, omax=ohma, REVERSE_INDICES=ri) 

 

flush, 0 

 

if (ohmi ne 0) then print, "Ohmi not 0, instead it is ", ohmi," in Step 13." 

if (ohma+1 ne CurrClusters) then print, "Ohma and CurrClusters out of sync - CurrClusters is ", CurrClusters," and 

ohma is ", ohma 

 

 

lumped=make_array(ohma+1, value=0) 

removed_clusters=make_array(ohma+1,value=0) 

numpairs=size(Lumps) 

if (size(numpairs, /n_elements) eq 4) then numpairs=1 else numpairs=numpairs[2] 

 

;make sure we're dealing with floats in here 

Means=float(Means) 

 

;assuming that if we're lumping pairs, there is more then one Means 

meansize=size(Means) 

meansize=meansize[2] 

 

if (ohma+1 ne meansize) then print, "ohma and meansize not in sync." 
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for pair=0, numpairs-1, 1 do begin 

   if (lumped[Lumps[0,pair]] OR lumped[Lumps[1,pair]]) then continue 

 

   ;set both to indicate that they've been lumped already 

   lumped[Lumps[0,pair]]=1 

   lumped[Lumps[1,pair]]=1 

 

   ;make sure Clusters to Lump aren't empty 

   if (ri[Lumps[0,pair]] eq ri[Lumps[0,pair]+1]) then continue 

   if (ri[Lumps[1,pair]] eq ri[Lumps[1,pair]+1]) then continue 

 

   ;reverse indices confuses me - use where for now 

   memone=where(ClusterList eq Lumps[0,pair]) 

   memtwo=where(ClusterList eq Lumps[1,pair]) 

   nummemone=size(memone, /n_elements) 

   nummemtwo=size(memtwo, /n_elements) 

 

   ClusterList[memtwo]=Lumps[0,pair] 

   ;calculate the weighted averages of the two clusters 

   Means[*,Lumps[0,pair]]=$ 

   round(((Means[*,Lumps[0,pair]]*nummemone)+$ 

          (Means[*,Lumps[1,pair]]*nummemtwo))/(nummemone+nummemtwo)) 

   ;set the 2nd Means to -1s 

   Means[0,Lumps[1,pair]]=-1 

endfor; pair 

 

 

;remove the deleted (set to -1) means 

kept=where(Means[0,*] ne -1) 

removed=where(Means[0,*] eq -1) 

Means=Means[*,kept] 

 

;now need to lower cluster values 

;start by reversing out removed, so we can work our way down-list 

removed=reverse(removed) 

 

for rem_idx=0, size(removed, /n_elements)-1, 1 do begin 
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   error_check=where(ClusterList eq removed[rem_idx]) 

   if (error_check[0] ne -1) then print, "FOUND REMOVED CLUSTER IN STEP 13!" 

 

   lower_list=where(ClusterList gt removed[rem_idx]) 

   if (lower_list[0] ne -1) then ClusterList[lower_list]-=1 

 

endfor; rem_idx 

 

CurrClusters=size(Means) 

 

if (size(CurrClusters, /n_elements) eq 4) then begin 

   CurrClusters=1 

endif else begin 

   CurrClusters=CurrClusters[2] 

endelse 

 

test_histo=histogram(ClusterList, omin=ohmi, omax=ohma) 

 

if (CurrClusters gt (ohma+1)) then begin 

   print, "CurrClusters larger than ohma+1 - resizing Means and CurrClusters" 

   print, "Is this a removal of means created in step 10?" 

   Means=Means[*,0:ohma] 

   CurrClusters = ohma+1 

endif 

 

if (ohmi ne 0) then begin 

   print, "OHMI NE 0 - halting program" 

   STOP 

endif 

 

END; ISODAT_Step_Thirteen 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
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PRO ISODATA, Means, RunLimit, Image, HomogIndex, ClusterList, InvCovMat,$ 

           ChangeLimit,MinMembers, NumMembers, MaxStdDev, MinDistance,$ 

           MaxPair, BandMax, ClusterChecksum 

;this procedure will take our initial means, the maximum number of loops, 

;the total image, the homogeneous pixel list, a blank array for assigning 

;homogeneous pixels to a cluster, and the Inverted Covariance Matrix and 

;perform an ISODATA clustering on the homogeneous pixels in the total image. 

;other variables which will need to be defined and may need user input are: 

; 

;ChangeLimit- the maximum fraction unchanged between runs before stopping 

;MinMembers - delete clusters with less than this percent of the members in it 

;MaxStdDev - part of cluster splitting limit. If a cluster's standard deviation 

;            exceeds this value, and there are at least twice the MinMembers in 

;            it, split the cluster unless there are already too many clusters. 

;            I will probably use Mahalanobis distance to check this, maybe. 

;MinDistance - the minimum distance between clusters before joining them. It 

;            will probably also be checked with Mahalanobis. 

; 

; 

;Other variables used in this procedure: 

; 

;result,meansize - used to store the result of size() 

;current_pix - the current pixel being assigned to a cluster 

;current_cluster - the cluster center currently being measured 

;closest_center_distance - the distance from current_pix to the closest center 

;distance - distance to current_cluster from current_pix 

;OldCluster - a copy of ClusterList pre-changes (to check for change %s) 

;remlist - list of clusters to delete 

;Iter - which iteration we're on. Some things happen on evens, etc. 

 

;initialize stuff - ISODATA step 1 

;Tou and Gonzalez (1974) describe step one as: 

;Specify the following parameters: 

;K=number of cluster centers desired    (initial size of ClusterList) 

;0n = parameter against which number of samples is compared (MinMembers) 

;0s = standard deviation parameter    (MaxStdDev) 
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;0c = lumping parameter (MinDistance) 

;L = maximum number of pairs of cluster centers which can be lumped (MaxPair) 

;I= number of iterations to allow (RunLimit) 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;ISODAT_Step_One;;;;;;;;;;;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

OldCluster = ClusterList 

MaxClusters=size(Means) 

MaxClusters=MaxClusters[2] 

CurrClusters=MaxClusters 

NumMembers=size(HomogIndex, /n_elements) 

Iter=0L 

Split=0 

 

ChangeLimit=ChangeLimit/float(100) 

ChangeLimit=round(ChangeLimit*NumMembers) 

 

MinMembers=round(MinMembers*float(NumMembers)*0.01) 

 

NumHomog=size(HomogIndex, /n_elements) 

 

;always keep MinMembers greater than 0 

if ~MinMembers then MinMembers=1 

 

repeat begin ; do 2-14 until terminate=1 

   repeat begin ;do 2-10 until none split in 10 

      repeat begin ;do 2-4 until none deleted in 3 

         ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

         ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

         ;;;;;;;;;;;;ISODAT_Step_Two;;;;;;;;;;;;;; 

         ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

         ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
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         ;assign pixels to clusters 

         ClusterList=ISODAT_Step_Two_C(Image, HomogIndex, Means, InvCovMat) 

         ;an iteration is every time that the program goes to step 1 or 2 

         Iter=Iter+1 

 

         ;reset my Split and WereDeleted 

         Split=0 

         WereDeleted=0 

 

 

         ;check for clusters that got silently dropped during the 

         ;assignment period. 

         clus_histo=histogram(ClusterList, omin=ohmi, omax=ohma) 

 

         if ((ohma+1) lt CurrClusters) then begin 

            CurrClusters=ohma+1 

            Means=Means[*,0:CurrClusters-1] 

         endif 

 

         if (ohmi ne 0) then begin 

            Means=Means[*,ohmi:CurrClusters-1] 

            CurrClusters=CurrClusters-ohmi 

            ClusterList-=ohmi 

         endif 

 

 

         ;now that all homogeneous pixels are assigned to a cluster 

         ;use the checksum function to see if we have previously had 

         ;this pattern of clusters before. If we have - we are caught 

         ;in a loop. We can use the checksums to determine this, and 

         ;can then break out of the clustering sequence. 

 

         ;get the Checksum for the current ClusterList and save it 

         ;in the array of Checksums we created. I tried passing it 

         ;ClusterChecksum[Iter] as the 2nd argument but it would not 

         ;store the value that way (never modded from 0). 

         ;spawn, 'compute-sha '+ClusterList, spawnresults 
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         ;ClusterChecksum[Iter]=spawnresults 

 

         ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

         ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

         ;;;;;;;;;;;ISODAT_Step_Three;;;;;;;;;;;;; 

         ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

         ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

         ;delete clusters with less than MinMembers in it 

         ISODAT_Step_Three, Means, ClusterList, MinMembers, WereDeleted 

 

         CurrClusters=size(Means) 

         if ( size(CurrClusters, /n_elements) eq 4) then begin 

            CurrClusters=1 

         endif else begin 

            CurrClusters=CurrClusters[2] 

         endelse 

 

         ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

         ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

         ;;;;;;;;;;;;ISODAT_Step_Four;;;;;;;;;;;;; 

         ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

         ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

         Means=ISODAT_Step_Four(Image, HomogIndex, Means, ClusterList) 

 

      endrep until (WereDeleted eq 0) ;Step 2-4 loop until none deleted 

 

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

      ;;;;;;;;;;;;ISODAT_Step_Five;;;;;;;;;;;;; 

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

      AverageDistance=ISODAT_Step_Five_A(Image, HomogIndex, Means,$ 

                                         ClusterList,CurrClusters,InvCovMat) 

 

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 



 

 258 

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

      ;;;;;;;;;;;;;ISODAT_Step_Six;;;;;;;;;;;;; 

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

      ;overall average distance is weighted by the #members in a cluster 

      OverallAvgDist=ISODAT_Step_Six_A(AverageDistance,ClusterList) 

 

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

      ;;;;;;;;;;;;ISODAT_Step_Seven;;;;;;;;;;;; 

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

      SkipToEleven=0 

 

      ISODAT_Step_Seven, MaxPair, SkipToEleven, RunLimit, Iter,$ 

                      CurrClusters, MaxClusters 

 

      Split=0 

 

      if (SkipToEleven eq 0) then begin 

         ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

         ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

         ;;;;;;;;;;;;ISODAT_Step_Eight;;;;;;;;;;;; 

         ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

         ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

         StdDevVector=ISODAT_Step_Eight_B(Image, HomogIndex, Means,$ 

                                          ClusterList, CurrClusters) 

 

         ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

         ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

         ;;;;;;;;;;;;ISODAT_Step_Nine;;;;;;;;;;;;; 

         ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

         ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
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         MaxStdDevVector=ISODAT_Step_Nine(StdDevVector) 

 

 

         ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

         ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

         ;;;;;;;;;;;;;;ISODAT_Step_Ten;;;;;;;;;;;; 

         ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

         ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

         if (Iter lt RunLimit) then begin 

 

         ISODAT_Step_Ten, Means, MaxStdDev, StdDevVector, MaxStdDevVector,$ 

                       AverageDistance, OverallAvgDist, ClusterList,$ 

                       CurrClusters, MaxClusters, MinDistance, BandMax, Split 

         endif 

 

      endif; SkipToEleven 

 

   endrep until (Split eq 0)   ;repeat step 2 - 10 until none split 

 

 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   ;;;;;;;;;;ISODAT_Step_Eleven;;;;;;;;;;;;; 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

   if (CurrClusters gt 1) then begin 

      MeansDistances=ISODAT_Step_Eleven_A(Means, ClusterList, InvCovMat) 

   endif else begin 

      MeansDistances=-1 

   endelse 

 

 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   ;;;;;;;;;;ISODAT_Step_Twelve;;;;;;;;;;;;; 
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   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

 

   if ( (MaxPair) && (MeansDistances[0] ne -1) ) then begin 

      ;pukes out when MaxPair is 0 

      MeansToLump=ISODAT_Step_Twelve(MeansDistances, MaxPair, MinDistance) 

   endif else begin 

      MeansToLump=-1 

   endelse 

 

 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   ;;;;;;;;ISODAT_Step_Thirteen;;;;;;;;;;;;; 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

   if (MeansToLump[0] ne -1) then begin 

      ISODAT_Step_Thirteen, ClusterList, Means, MeansToLump, CurrClusters 

   endif 

 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   ;;;;;;;;ISODAT_Step_Fourteen;;;;;;;;;;;;; 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

   Terminate=0 

 

   ;if we've looped our limit, terminate 

   if (Iter ge RunLimit) then begin 

      Terminate=1 

   endif 

 

   ;if we've changed less then the percent limit, terminate 
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   PercentCheck=total(ClusterList ne OldCluster) 

   if (PercentCheck le ChangeLimit) then begin 

      Terminate=1 

   endif else begin 

      OldCluster=ClusterList 

   endelse 

 

result=size(HomogIndex, /n_elements) 

 

endrep until (Terminate eq 1) 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;ok, a little diagnostics.... 

 

clus_histo=histogram(ClusterList, omin=ohmi, omax=ohma) 

 

if ((ohmi ne 0) || (ohma ne (CurrClusters-1)) ) then begin 

   print, "After final iteration, there were unassigned pixels - redoing step 2-4 loop" 

 

   repeat begin ;do 2-4 until none deleted in 3 

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

      ;;;;;;;;;;;;ISODAT_Step_Two;;;;;;;;;;;;;; 

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

      ;assign pixels to clusters 

      ISODAT_Step_Two_C, Image, HomogIndex, Means, InvCovMat, ClusterList 

 

      ;an iteration is every time that the program goes to step 1 or 2 

      Iter=Iter+1 

 

      clus_histo=histogram(ClusterList, omin=ohmi, omax=ohma) 

 

      if ((ohma+1) lt CurrClusters) then begin 

         CurrClusters=ohma+1 
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         Means=Means[*,0:CurrClusters-1] 

      endif 

 

      if (ohmi ne 0) then begin 

         Means=Means[*,ohmi:CurrClusters-1] 

         CurrClusters=CurrClusters-ohmi 

         ClusterList-=ohmi 

      endif 

 

 

      ;now that all homogeneous pixels are assigned to a cluster 

      ;use the checksum function to see if we have previously had 

      ;this pattern of clusters before. If we have - we are caught 

      ;in a loop. We can use the checksums to determine this, and 

      ;can then break out of the clustering sequence. 

 

      ;get the Checksum for the current ClusterList and save it 

      ;in the array of Checksums we created. 

      ;checksum32, ClusterList, ClusterChecksum[Iter] 

 

 

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

      ;;;;;;;;;;;ISODAT_Step_Three;;;;;;;;;;;;; 

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

      ;delete clusters with less than MinMembers in it 

      WereDeleted=0B 

      ISODAT_Step_Three, Means, ClusterList, MinMembers, WereDeleted 

 

      CurrClusters=size(Means) 

      if ( size(CurrClusters, /n_elements) eq 4) then begin 

         CurrClusters=1 

      endif else begin 

         CurrClusters=CurrClusters[2] 

      endelse 
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      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

      ;;;;;;;;;;;;ISODAT_Step_Four;;;;;;;;;;;;; 

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

      ISODAT_Step_Four, Image, HomogIndex, Means, ClusterList 

 

   endrep until (WereDeleted eq 0) ;Step 2-4 loop until none deleted 

endif 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

result=size(HomogIndex, /n_elements) 

 

END; PRO ISODATA 

 

A.10 STEP4.PRO 

FUNCTION GetHomogWithinDist, HomogIndex, current_X, current_Y, Distance,$ 

                             LoResX, LoResY 

;Use this function to compute all pixels located within a radius of 

;Distance to the specificed pixel. Find which of those are Homogeneous. 

;Return that list. 

 

   ;specify Number of angles to measure for our circle - more is better, but 

   ;less will use significantly less memory for current_X  and current_Y 

   Nang=20 

 

 

   within_distance=circ(current_X, current_Y, Distance, LoResX, LoResY, Nang) 
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   within_distance=setintersection(within_distance,HomogIndex) 

 

   return, within_distance 

 

END; GetHomogWithinDist 

 

FUNCTION GetImageDistance, HomogIndex, spectrum, LoResImg, InvCovMat,$ 

                           within_distance, bands 

 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   ;;;;;;;;;;;;Step4 Part 1 - Pixs w/in Distance;;;;;;;;;; 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   num_within_dist=size(within_distance, /n_elements) 

 

   if(within_distance[0] ne -1) then begin 

      ;now that we know all homog means within distance, create an array 

      ;of Mahalanobis distances between pix and means 

 

      ;first create an array of hires spectrum repeated for each lores pix 

      diff_array=rebin(spectrum,bands,num_within_dist) 

 

      ;subtract the lores within distance from this array 

      diff_array=temporary(diff_array)-LoResImg[*,within_distance] 

 

      ;replicate it so we can create our full # matrix 

      diff_array=rebin(diff_array,bands,num_within_dist*bands,/sample) 

 

      ;pull together uniq_homog for our full # matrix 

      uniq_homog=bands*indgen(num_within_dist) 

 

      ;expands the InvCovMat for our full # matrix 

      ex_InvCovMat=$ 

        reform(rebin(InvCovMat,bands,bands,num_within_dist),$ 

                     bands,bands*num_within_dist) 
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      ;now # it with the InvCovMat and the rotate of itself 

      dist_res=total((diff_array*ex_InvCovMat),1) 

      dist_res=$ 

      rotate(reform(dist_res,bands,num_within_dist),4)#$ 

      diff_array[*,uniq_homog] 

 

      dist_res=diag_matrix(dist_res) 

 

      dist_res=min(dist_res, mindex, /absolute) 

      dist_res=[within_distance[mindex],abs(dist_res)] 

 

      ;at this point, dist_res[0] is the index of the homog pixel 

      ;with min val and dist_res[1] is the actual value 

 

   endif else begin 

      dist_res=[-1,-1] 

   endelse ; are there homog LoRes pix within distance? 

 

   return, dist_res 

 

END; GetImageDistance 

 

FUNCTION GetTreeDistance, Means, bands, InvCovMat, num_means, spectrum 

 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   ;;;;;;;;;;;Step4 Part 2 - Pix vs Tree;;;;;;;;;;;;;;;;;; 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   ;first create an array of 15m pix spectra repeated for each 30m means 

   diff_array=rebin(spectrum,bands,num_means) 

 

   ;next subtract out the Means 

   diff_array=temporary(diff_array)-Means 
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   ;replicate it so we can create our full # matrix 

   diff_array=rebin(diff_array,bands,num_means*bands,/sample) 

 

   ;pull together uniq_homog for our full # matrix 

   uniq_homog=bands*indgen(num_means) 

 

   ;expands the InvCovMat for our full # matrix 

   ex_InvCovMat=$ 

     reform(rebin(InvCovMat,bands,bands,num_means),bands,bands*num_means) 

 

   ;now # it with the InvCovMat and the rotate of itself 

   means_res=total((diff_array*ex_InvCovMat),1) 

   means_res=rotate(reform(means_res,bands,num_means),4)#$ 

                diff_array[*,uniq_homog] 

 

   means_res=diag_matrix(means_res) 

 

   means_res=min(means_res,mindex, /absolute) 

   means_res=[mindex,abs(means_res)] 

 

   ;at this point, means_res[0] is the # of the Means 

   ;with min val and means_res[1] is the actual value 

   return, means_res 

 

 

END; GetTreeDistance 

 

FUNCTION SuperRes_OneBand, VNIRMeans,SWIRMeans,$ 

                        VNIRtoSWIR,HomogIndex,VNIR_15m, VNIR_30m, SWIR_30m,$ 

   VNIRInvCovMat, SWIRInvCovMat, X_15m, Y_15m, mag_ratio, Distance 

;this function calculates the initial spectra for 15m pixels in the SWIR 

;bands. It checks first for matches within an initial distance (#pixels) 

;and then checks for closer matches within the VNIR-SWIR tree 

; 

;takes: 

;VNIRMeans,SWIRMeans - Means calculated by ISODATA (cluster means) 

;VNIRtoSWIR - the SWIR clusters for each VNIR cluster - there are 2*#VNIR 
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;             clusters. The first entry is the first SWIR cluster for that 

;             VNIR cluster, and the second entry is the last SWIR cluster - 

;             VNIR clusters with 1 SWIR cluster will have value recorded in 

;             both boxes as a result 

;HomogIndex - the 30m resolution index of homogeneous pixels (not sure I need) 

;VNIR_15m, VNIR_30m, SWIR_30m  - the 15m and 30m resolution images 

;X_15m, Y_15m - the size of the 2D image at 15m (VNIR) resolution 

; 

;key variables: 

; 

;SWIR_15m - the 15m SWIR image 

;xxbands, xxmeansize - used to store results from size() 

;mag_ratio - how super is our resolution (2x to go from 30m to 15m) 

 

   ;create our initial variables 

   VNIRbands=size(VNIR_15m) 

   VNIRbands=VNIRbands[1] 

 

   SWIRbands=size(SWIR_30m) 

   SWIRbands=SWIRbands[1] 

 

   X_15m=float(X_15m) 

   Y_15m=float(Y_15m) 

 

   appended_bands=2 

 

   SWIR_15m=make_array((2*SWIRbands)+appended_bands,(X_15m)*(Y_15m),value=-1.0) 

 

   ;commented out for looping - 4 Oct 09 

   ;;find out what distance they want to use for the first stage 

   ;read, Distance,prompt='How many pixels away at native resolution to search for matches [default is 10]: ' 

 

   ;the 15m VNIR spectra is now compared to the 30m homogeneous pixels within 

   ;Distance (#30m pix) of it. The SWIR spectrum colocated with the 30m VNIR 

   ;pix with the minimum Mahalanobis distnace is is initially assigned to the 

   ;15m SWIR pix, although it may change if there is a closer match in the tree. 
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   ;create arrays of size X_15m*Y_15m that has the current X and Y locations 

   cur_X=floor((reform(rebin(indgen(X_15m),X_15m,1,Y_15m),$ 

             X_15m*Y_15m,1))/mag_ratio) 

   cur_Y=floor((reform(rebin(rotate(indgen(Y_15m),4),X_15m,Y_15m,1),$ 

             X_15m*Y_15m,1)) / mag_ratio) 

 

 

   ;calculate out the size of our VNIRMeans (how many do we have?) here 

   ;so we don't have to do it thousands of times in the for loop 

   VNIR_num=size(VNIRMeans) 

   if ( size(VNIR_num, /n_elements) eq 4) then begin 

      VNIR_num=1 

   endif else begin 

      VNIR_num=VNIR_num[2] 

   endelse 

 

 

   ;for each 15_m pix, check within Distance of it and then within the tree 

   for cp=0.0, ((X_15m*Y_15m)-1), 1 do begin 

 

      if (~(cp mod (250*X_15m))) then begin 

         flush,0 

         print, "Started row ", (cp /(X_15m))+1, " of ", Y_15m, "at ", systime() 

      endif 

 

      ;find closest MahaDist homog pixel within range: 

 

      ;first, define all homog pixels that are within the range 

      within_distance=GetHomogWithinDist(HomogIndex, cur_X[cp], cur_Y[cp],$ 

                                Distance, X_15m/mag_ratio, Y_15m/mag_ratio) 

 

      ;image_dist[0] will be the index of the homog pixel within range 

      ;with the lowest Mahalanobis Distance, and image_dist[1] will be 

      ;the actual distance 

      image_dist=GetImageDistance(HomogIndex, VNIR_15m[*,cp], VNIR_30m,$ 

                                 VNIRInvCovMat, within_distance, VNIRbands) 
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      ;find closest (Maha Dist) cluster center: 

 

      ;tree_dist[0] will be the index of the cluster with the lowest 

      ;Mahalanobis Distance, and clust_dist[1] will be the actual distance 

      tree_dist=GetTreeDistance(VNIRMeans, VNIRbands, VNIRInvCovMat,VNIR_num,$ 

                                 VNIR_15m[*,cp]) 

 

 

      ;If image_dist exists and has a lower value, assign it and go to the 

      ;next pixel. Otherwise, find the SWIR spectra associated with the  

      ;VNIR means from tree_dist that is closest to the current spectra 

      ;and assign it. 

 

      ;explicitly using a le rather than the lt that may be specified by 

      ;Tonooka - I think in cases of a tie, preferences should go to "real" 

      ;spectra rather than cluster centers 

 

      if ((image_dist[0] ne -1) && (image_dist[1] le tree_dist[1])) then begin 

         SWIR_15m[0,cp]=SWIR_30m[*,image_dist[0]] 

 

         ;set the fake 7th band to indicate source - 0 is from circle  

         SWIR_15m[SWIRbands,cp]=0 

 

         ;set the fake 8th band to indicate Mahalanobis distance 

         SWIR_15m[SWIRbands+1,cp]=image_dist[1] 

 

      endif else begin 

 

         ;ok, if we're here we need to figure out which of the associated 

         ;SWIR cluster means is closest (Mahalanobis-wise) to the current 

         ;pixel, cp. 

 

         min_clus=VNIRtoSWIR[(2*tree_dist[0])] 

         max_clus=VNIRtoSWIR[(2*tree_dist[0])+1] 
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         ;branch_dist[0] will be the index of the cluster with the lowest 

         ;Mahalanobis Distance, and clust_dist[1] will be the actual distance 

         branch_dist=GetTreeDistance(SWIRMeans[*,min_clus:max_clus],$ 

                 SWIRbands, SWIRInvCovMat,(max_clus-min_clus)+1,$ 

                 SWIR_30m[*,((cur_Y[cp]*(X_15m/mag_ratio))+cur_X[cp])]) 

  

 

         ;branch_dist[0]+min_clus should be the right means to assign 

         SWIR_15m[0,cp]=SWIRMeans[*,min_clus+branch_dist[0]] 

 

         ;set the fake 7th band to indicate source - 255 is from tree 

         SWIR_15m[SWIRbands,cp]=255 

 

         ;set the fake 8th band to indicate Mahalanobis distance 

         SWIR_15m[SWIRbands+1,cp]=tree_dist[1] 

 

      endelse; Are we dist_res or means_res? 

 

   endfor; cp 

 

return, SWIR_15m 

 

END; SuperRes_SWIR 

 

A.11 STEP5.PRO 

FUNCTION ZeroLines, SuperRes_Image, X_size, Y_size 

;this function expects to receive an image in BIP format - 1 column of 

;data per band, as well as the X and Y dimensions for the image when in 

;2D format. 

 

zeroline=findgen(X_size) 

SuperRes_Image[*,zeroline]=0 
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;bottom row 

zeroline+=(X_size*(Y_size-1.0)) 

SuperRes_Image[*,zeroline]=0 

 

;first column 

zeroline=findgen(Y_size) 

zeroline*=X_size 

SuperRes_Image[*,zeroline]=0 

 

;last column 

zeroline+=(X_size-1.0) 

SuperRes_Image[*,zeroline]=0 

 

return, SuperRes_Image 

 

END; FUNCTION ZeroLines 

 

FUNCTION ModifySuperRes, SWIR_15m, SWIR_30m, PSF_S, X_15m, Y_15m, mag_ratio 

;since the original (30m) SWIR image is a "measurement" the 15m image 

;needs to be compatible with it. This modificiation  is weighted by the 

;distance 

; 

;SWIR_15m 0-5 are the bands 

;SWIR_15m 6 is the source map (spectra is from either the image or the tree) 

;SWIR_15m 7 is the distance map 

;SWIR_15m 8-13 are the correction maps 

; 

;new SWIR_15m sub k = SWIR_15m sub k + alpha sub k  X distance map 

 

backup_orig=SWIR_15m 

 

swirbands=size(SWIR_15m) 

swirbands=(swirbands[1] / 2.0) - 1   ;swirbands=6 

 

distance_map=SWIR_15m[swirbands+1,*] 

 

;back to code pre-dating the HI trip in 11/06 now 
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distance_map=reform(distance_map, X_15m, Y_15m) 

 

convol_distance_map=frebin(distance_map, X_15m/mag_ratio, Y_15m/mag_ratio) 

convol_distance_map=convolve(convol_distance_map, PSF_S) 

 

correction=make_array(X_15m, Y_15m, swirbands) 

 

;swirbands-1 b/c count from 0 

for which_band=0, swirbands-1, 1 do begin 

   ;pull together our images first 

   orig_15m_image=SWIR_15m[which_band,*] 

   orig_15m_image=reform(orig_15m_image, X_15m, Y_15m)  

 

   orig_30m_image=SWIR_30m[which_band,*] 

   orig_30m_image=reform(orig_30m_image, X_15m/mag_ratio, Y_15m/mag_ratio) 

 

   ;do our convols  

   convol_15m=frebin(orig_15m_image, X_15m / mag_ratio, Y_15m / mag_ratio) 

   convol_15m=convolve(convol_15m, PSF_S) 

 

   ;calculate alpha. think of alpha as offset per maha distance 

   ;we convolve both the distance map and the hires data to lores 

   ;find the difference from the original image, and divide that by 

   ;the convolved distance amount. 

 

   ;ok, trying to clean up code 22 Sep 07. We only multiply and divide by 

   ;the distance map. If our distance is 0, things become upset. But, if 

   ;distance is 0, we really don't need any sort of correction. 

   bs=where(convol_distance_map eq 0.0) 

 

   if (bs[0]+1) then convol_distance_map[bs]=1.0 

 

   alpha=((orig_30m_image - convol_15m)/convol_distance_map) 

 

   ;any place that had a convol_distance_map value of 0 shouldn't 

   ;be corrected. Set all my bs values to 0. Do same for distance 

   if (bs[0]+1) then alpha[bs]=0.0 
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   if (bs[0]+1) then convol_distance_map[bs]=0.0 

 

  ; alpha=((orig_30m_image - convol_15m)/convol_distance_map) 

 

;   changing to use the finite() function as I'm generating 

;   -NaNs and cant find a way to detect them otherwise 19 Aug 2010 

   ;at this point some of alpha is set to 'Inf' - reset those to 0 

;   infinites=where(alpha eq !VALUES.F_INFINITY) 

;   nans=where(alpha eq !VALUES.F_NAN) 

 

;   if (infinites[0] ne -1) then alpha[infinites]=0.0 

;   if (nans[0] ne -1) then alpha[nans]=0.0 

 

   bad_values=finite(alpha) 

   bad_values=where(alpha eq 0) 

   if (bad_values[0] ne -1) then alpha[bad_values]=0.0 

 

 

   ;alpha is 30m - double it to get to 15m sizing for multiplication 

 

   alpha=frebin(alpha,X_15m, Y_15m) 

 

   ;correction is alpha X d_15m in paper - assume mult 

 

   correction[0,0,which_band]=alpha*distance_map 

 

endfor; which_band 

 

;now that we've calculated our correction - add it to our SWIR_15m 

 

;ok - convert the correction to columnar form 

correction=rotate(reform(correction,X_15m*Y_15m,swirbands),4) 

 

;now add the correction to the columns that are SWIR bands 

SWIR_15m[0:swirbands-1,*]+=correction 

 

;round it - DNs are only integers 
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SWIR_15m[0:swirbands-1,*]=round(SWIR_15m[0:swirbands-1,*]) 

 

;record our correction as well 

;SWIR_15m 8 - 13 are our correction (for ASTER) 

SWIR_15m[swirbands+2:((2*swirbands)+1),*]=correction 

 

return, SWIR_15m 

 

END 

 

A.12 STEP7.PRO 

;STEP 7 -  

; 

; I am not certain about the 'band average of the spatial standard deviation 

; over the whole image of each VNIR band' part. In the main program, I define 

; my threshold as the average of the stddev() result for each band's whole 

; image. 

 

PRO Homog_Pix_SWIR, band4, band5, band6, band7, band8, band9, thresh,$ 

                     mag_ratio, X_30m, Y_30m, homog_map 

 

; variables used in this procedure 

; result - stores result of size() function 

; max_x, max_y - size of X and Y in image 

; x, y - loop variables to iterate of 2D image 

 

   max_x = X_30m - (mag_ratio +1) 

   max_y = Y_30m - (mag_ratio +1) 

 

   ;specifying value for ASTER SWIR 

   num_bands=6.0 

 

print, "Threshold used for SWIR homogeneity is ", thresh 
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;as of Oct 27 2006 I no longer remember why I do not check edge pixels 

;however, since I did not in my original Homog_Pix_15m I am leaving it 

;that way for now. 

 

   for y = mag_ratio, max_y, mag_ratio do begin 

      for x = mag_ratio, max_x, mag_ratio do begin 

 

         if(stddev(band4[x:x+(mag_ratio-1),y:y+(mag_ratio-1)]) ge thresh)$ 

          then continue 

         if(stddev(band5[x:x+(mag_ratio-1),y:y+(mag_ratio-1)]) ge thresh)$ 

          then continue 

         if(stddev(band6[x:x+(mag_ratio-1),y:y+(mag_ratio-1)]) ge thresh)$ 

          then continue 

         if(stddev(band7[x:x+(mag_ratio-1),y:y+(mag_ratio-1)]) ge thresh)$ 

          then continue 

         if(stddev(band8[x:x+(mag_ratio-1),y:y+(mag_ratio-1)]) ge thresh)$ 

          then continue 

         if(stddev(band9[x:x+(mag_ratio-1),y:y+(mag_ratio-1)]) ge thresh)$ 

          then continue 

 

         homog_map[x / mag_ratio, y / mag_ratio] = 1 

 

      endfor; x_loop 

   endfor ;y_loop 

 

END 
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A.13 STEP9.PRO 

FUNCTION GetImageTwoBandsDistance, HomogIndex, VNIRspectrum, VNIRLoRes,$ 

              VNIRInvCovMat, within_distance, VNIRbands, SWIRspectrum,$ 

              SWIRLoRes, SWIRInvCovMat, SWIRbands, Weight 

 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   ;;;;;;;;;;;;Step9 Part 1 - Pixs w/in Distance;;;;;;;;;; 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   num_within_dist=size(within_distance, /n_elements) 

 

   if(within_distance[0] ne -1) then begin 

      ;now that we know all homog means within distance, create an array 

      ;of Mahalanobis distances between pix and means 

 

      ;VNIR first 

      spectrum=VNIRspectrum 

      InvCovMat=VNIRInvCovMat 

      bands=VNIRbands 

      LoResImg=VNIRLoRes 

 

      ;first create an array of hires spectrum repeated for each lores pix 

      diff_array=rebin(spectrum,bands,num_within_dist) 

 

      ;subtract the lores within distance from this array 

      diff_array-=LoResImg[*,within_distance] 

 

      ;replicate it so we can create our full # matrix 

      diff_array=rebin(diff_array,bands,num_within_dist*bands,/sample) 

 

      ;pull together uniq_homog for our full # matrix 
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      uniq_homog=bands*indgen(num_within_dist) 

 

      ;expands the InvCovMat for our full # matrix 

      ex_InvCovMat=$ 

        reform(rebin(InvCovMat,bands,bands,num_within_dist),$ 

                     bands,bands*num_within_dist) 

 

      ;now # it with the InvCovMat and the rotate of itself 

      dist_res=total((diff_array*ex_InvCovMat),1) 

      dist_res=$ 

      rotate(reform(dist_res,bands,num_within_dist),4)#$ 

      diff_array[*,uniq_homog] 

 

      dist_res=diag_matrix(dist_res) 

 

      ;SWIR second 

      spectrum=SWIRspectrum 

      InvCovMat=SWIRInvCovMat 

      bands=SWIRbands 

      LoResImg=SWIRLoRes 

 

 

      ;first create an array of hires spectrum repeated for each lores pix 

      sdiff_array=rebin(spectrum,bands,num_within_dist) 

 

      ;subtract the lores within distance from this array 

      sdiff_array=temporary(sdiff_array)-LoResImg[*,within_distance] 

 

      ;replicate it so we can create our full # matrix 

      sdiff_array=rebin(sdiff_array,bands,num_within_dist*bands,/sample) 

 

      ;pull together uniq_homog for our full # matrix 

      uniq_homog=bands*indgen(num_within_dist) 

 

      ;expands the InvCovMat for our full # matrix 

      ex_InvCovMat=$ 

        reform(rebin(InvCovMat,bands,bands,num_within_dist),$ 
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                     bands,bands*num_within_dist) 

 

      ;now # it with the InvCovMat and the rotate of itself 

      sdist_res=total((sdiff_array*ex_InvCovMat),1) 

      sdist_res=$ 

      rotate(reform(sdist_res,bands,num_within_dist),4)#$ 

      sdiff_array[*,uniq_homog] 

 

      sdist_res=diag_matrix(sdist_res) 

 

 

      ;re-examining code on 15 Sep 07 - I am not sure why 

      ;I am dividing the weight factor by the number of bands 

      ;as that seems to make _no_ sense. As an example, I think 

      ;my default ASTER weighting of 0.7VNIR/0.3SWIR actually 

      ;ends up as weighting 0.23VNIR/0.05SWIR (or 82%/18%) 

      ; 

      ;After thinking about it, I looked at Tonooka's paper - I  

      ;have Weight/VNIRbands and (1-W)/SWIRbands because thats what 

      ;he says. I don't understand. This is not the first time that 

      ;I've felt that way. *sigh* 

 

      dist_res*=(Weight/VNIRbands) 

      sdist_res*=((1-Weight)/SWIRbands) 

 

      dist_res=abs(dist_res)+abs(sdist_res) 

 

 

      ;no abs() or /abs below - already set abs() above this 

      dist_res=min(dist_res,mindex) 

      dist_res=[within_distance[mindex],dist_res] 

 

      ;at this point, dist_res[0] is the index of the homog pixel 

      ;with min val and dist_res[1] is the actual value 

 

   endif else begin 

      dist_res=[-1,10000000.0] 
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   endelse ; are there homog LoRes pix within distance? 

 

   return, dist_res 

 

END; GetImageTwoBandsDistance 

 

 

FUNCTION SuperRes_TwoBands, VNIRMeans,SWIRMeans, TIRMeans,$ 

                        VNIRClusters,SWIRClusters,TIRClusters,$ 

                        VNIRtoSWIR,SWIRtoTIR,HomogIndex,$ 

                        VNIR_15m,VNIR_90m,Orig_SWIR_15m,SWIR_90m,TIR_90m,$ 

                        VNIRInvCovMat,SWIRInvCovMat,TIRInvCovMat,$ 

                        X_15m,Y_15m, mag_ratio, Distance, Weight 

 

;this function calculates the initial spectra for 15m pixels in the SWIR 

;bands. It checks first for matches within an initial distance (#pixels) 

;and then checks for closer matches within the VNIR-SWIR tree 

; 

;takes: 

;VNIRMeans,SWIRMeans - Means calculated by ISODATA (cluster means) 

;VNIRClusters, SWIRClusters - the cluster assignments in VNIR and SWIR 

;VNIRtoSWIR - the SWIR clusters for each VNIR cluster - there are 2*#VNIR 

;             clusters. The first entry is the first SWIR cluster for that 

;             VNIR cluster, and the second entry is the last SWIR cluster - 

;             VNIR clusters with 1 SWIR cluster will have value recorded in 

;             both boxes as a result 

;HomogIndex - the 90m resolution index of homogeneous pixels 

;VNIR_15m, VNIR_30m, SWIR_30m  - the 15m and 30m resolution images 

;X_15m, Y_15m - the size of the 2D image at 15m (VNIR) resolution 

; 

;key variables: 

; 

;TIR_15m - the 15m SWIR image 

;xxbands, xxmeansize - used to store results from size() 

;mag_ratio - how super is our resolution (6x to go from 90m to 15m) 

 

   ;create our initial variables 
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   appended_bands=2.0; we add a source map and a distance map to 15m data 

 

   VNIRbands=size(VNIR_15m) 

   VNIRbands=VNIRbands[1] 

 

   ;passed in SWIR_15m as Orig_SWIR_15m so I could really only deal with 

   ;with my data bands and not my correction maps, source, or distance map 

   SWIRbands=size(Orig_SWIR_15m) 

   SWIRbands=(SWIRbands[1] / 2.0)-1.0 

   SWIR_15m=Orig_SWIR_15m[0:SWIRbands-1,*]  ;-1 since still counting from 0 

 

   TIRbands=size(TIR_90m) 

   TIRbands=TIRbands[1] 

 

   X_15m=float(X_15m) 

   Y_15m=float(Y_15m) 

 

   TIR_15m=make_array((2*TIRbands)+appended_bands,(X_15m)*(Y_15m),value=-1.0) 

 

   ;the 15m VNIR spectra is now compared to the 90m homogeneous pixels within 

   ;Distance <# 90m pix> of it. The TIR spectrum colocated with the 90m VN/SWIR 

   ;pix with the minimum Mahalanobis distance is initially assigned to the 

   ;15m TIR pix, although it may change if there is a closer match in the tree. 

 

   ;;;;;;;;;;;;;; 

   ;;;;;;;;;;;;;; 

   ;code from Newsgroup (NOT MINE!) to find members within a circle - first snip 

   ;is over the entire image, then you tell it later from which point and distance 

   ;specify Number of angles to measure for our circle - more is better, but 

   ;less will use significantly less memory for current_X  and current_Y 

   Nang=20 

 

   ;create arrays of size X_15m*Y_15m that has the current X and Y locations 

   cur_X=floor((reform(rebin(indgen(X_15m),X_15m,1,Y_15m),$ 

             X_15m*Y_15m,1))/mag_ratio) 

   cur_Y=floor((reform(rebin(rotate(indgen(Y_15m),4),X_15m,Y_15m,1),$ 

             X_15m*Y_15m,1)) / mag_ratio) 
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   ;;;;;;;;;;;;;; 

   ;;;;;;;;;;;;;; 

 

 

 

   ;for each 15_m pix, check within Distance of it and then within the tree 

   for cp=0.0, ((X_15m*Y_15m)-1), 1 do begin 

 

      flush,0 

      if (~(cp mod (250*X_15m))) then begin 

         print, "Started row ", (cp /(X_15m))+1, " of ", Y_15m 

      endif 

 

 

      ;find closest MahaDist homog pixel within range: 

 

      ;first, define all homog pixels that are within the range 

      within_distance=GetHomogWithinDist(HomogIndex, cur_X[cp], cur_Y[cp],$ 

                             Distance, X_15m/mag_ratio, Y_15m/mag_ratio) 

 

      ;image_dist[0] will be the index of xxx_90m within range 

      ;with the lowest Mahalanobis Distance that is homogeneous, and 

      ;image_dist[1] will be the actual distance 

      image_dist=GetImageTwoBandsDistance(HomogIndex, VNIR_15m[*,cp],$ 

                              VNIR_90m, VNIRInvCovMat, within_distance,$ 

                              VNIRbands, SWIR_15m[*,cp], SWIR_90m,$ 

                              SWIRInvCovMat, SWIRbands, Weight) 

 

      ;find closest (Maha Dist) cluster center: 

 

      ;I don't think there's a pretty way to do this. I need to calculate 

      ;out my distances to all vnir clusters and to all swir clusters 

      ;thats a lot of calls to GetTreeDistance and at least 1 for loop. 

      ;I'm going to re-use a lot of my code from the original step9.pro 

      ;(unlike step4.pro) to do that. 

 

      ;How many VNIRmeans do I have?  
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      num_means=size(VNIRMeans) 

      if ( size(num_means, /n_elements) eq 4) then begin 

         num_means=1 

      endif else begin 

         num_means=num_means[2] 

      endelse 

 

      ;set up a var to store my Maha Dist 

      tree_dist=image_dist 

 

      for current_VNIRMeans=0, num_means-1, 1 do begin 

 

         ;calculate out my Maha Dist to the current VNIR cluster 

         VNIR_dist=VNIR_15m[*,cp] - VNIRMeans[*,current_VNIRMeans] 

         VNIR_dist=(VNIR_dist#VNIRInvCovMat)#VNIR_dist 

 

 

         ;multiply by my weighting factor here 

         VNIR_dist*=(Weight/VNIRbands) 

 

         ;set which SWIR clusters to check 

         min_clus=VNIRtoSWIR[(2*current_VNIRMeans)] 

         max_clus=VNIRtoSWIR[(2*current_VNIRMeans)+1] 

 

         ;branch_dist[0] will be the index of the cluster with the lowest 

         ;Mahalanobis Distance, and clust_dist[1] will be the actual distance 

         ; 

         ;I've got to be honest here. I dont really know what the heck I'm 

         ;doing in the SWIR_90m reference below. Its cool though! When did 

         ;I write that code? Did I ever double-check it to make sure it was 

         ;accurate? I suspect I wrote it within 24 hrs of this comment =( 

         ; 

         branch_dist=GetTreeDistance(SWIRMeans[*,min_clus:max_clus],$ 

                 SWIRbands, SWIRInvCovMat,(max_clus-min_clus)+1,$ 

                 SWIR_90m[*,((cur_Y[cp]*(X_15m/mag_ratio))+cur_X[cp])]) 
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         ;branch_dist[0]+min_clus is swir cluster of minumum Maha 

         ;branch_dist[1] is an unweighted Maha Dist though; fix that 

         branch_dist[0]+=min_clus 

         branch_dist[1]*=( (1-Weight) /SWIRbands ) 

         branch_dist[1]+=VNIR_dist 

 

         ;ok, check my distances. If I'm closer, replace tree_dist 

         if (branch_dist[1] lt tree_dist[1]) then tree_dist=branch_dist 

      endfor; current_VNIRMeans 

   

 

      ;at this point, if there is a better spot in the tree, we have it 

      ;if tree_dist lt image_dist, we need to find the TIR 

      ;spectra associated with it that is closest, else if it doesn't exist 

      ;assign dist_res to the current pixel. 

 

      if (tree_dist[1] ge image_dist[1]) then begin 

         ;image is closer; record spectra from image match 

         TIR_15m[0,cp]=TIR_90m[*,image_dist[0]] 

 

         ;set the fake 6th band to indicate source - 0 is from circle 

         TIR_15m[TIRbands,cp]=0 

 

         ;set the fake 7th band to indicate Mahalanobis distance 

         TIR_15m[TIRbands+1,cp]=image_dist[1] 

      endif else begin 

         ;ok, if we're here we need to figure out which of the associated 

         ;TIR cluster means is closest (Mahalanobis-wise) to the current 

         ;pixel, cp. 

 

         min_clus=SWIRtoTIR[(2*branch_dist[0])] 

         max_clus=SWIRtoTIR[(2*branch_dist[0])+1] 

 

         ;if tree is VNIR, and branch is SWIR.....twig for TIR? 

         twig_dist=GetTreeDistance(TIRMeans[*,min_clus:max_clus],$ 

                 TIRbands, TIRInvCovMat,(max_clus-min_clus)+1,$ 

                 TIR_90m[*,((cur_Y[cp]*(X_15m/mag_ratio))+cur_X[cp])]) 
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         ;mindex+min_clus should be the right means to assign 

         TIR_15m[0,cp]=TIRMeans[*,min_clus+twig_dist[0]] 

 

         ;set the fake 6th band to indicate source - 255 is from tree 

         TIR_15m[TIRbands,cp]=255 

 

         ;set the fake 7th band to indicate Mahalanobis distance 

         TIR_15m[TIRbands+1,cp]=branch_dist[1] 

      endelse; tree_dist vs image_dist 

 

   endfor; cp 

 

return, TIR_15m 

 

END; SuperRes_TwoBands 

 

A.14 STEP10.PRO 

FUNCTION ModifySuperRes_T, TIR_15m, TIR_90m, PSF_T, X_15m, Y_15m, mag_ratio 

;since the original (30m) SWIR image is a "measurement" the 15m image 

;needs to be compatible with it. This modificiation  is weighted by the 

;distance 

; 

;TIR_15m 0-4 are the bands 

;TIR_15m 5 is the source map (spectra is from either the image or the tree) 

;TIR_15m 6 is the distance map 

;TIR_15m 7-11 

; 

;new TIR_15m sub k = TIR_15m sub k + alpha sub k  X distance map 

 

backup_orig=TIR_15m 
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tirbands=size(TIR_15m) 

tirbands=(tirbands[1] / 2.0)-1.0 

 

distance_map=TIR_15m[tirbands+1,*] 

 

;back to code pre-dating the HI trip in 11/06 now 

distance_map=reform(distance_map, X_15m, Y_15m) 

convol_distance_map=frebin(distance_map, X_15m/mag_ratio, Y_15m/mag_ratio) 

convol_distance_map=convolve(convol_distance_map, PSF_T) 

 

 

;create array to store correction for each band 

correction=make_array(X_15m, Y_15m, tirbands) 

 

for which_band=0, tirbands-1, 1 do begin 

   ;pull together our images first 

   orig_15m_image=TIR_15m[which_band,*] 

   orig_15m_image=reform(orig_15m_image, X_15m, Y_15m)  

 

   orig_90m_image=TIR_90m[which_band,*] 

   orig_90m_image=reform(orig_90m_image, X_15m/mag_ratio, Y_15m/mag_ratio) 

 

   ;do our convols  

   convol_15m=frebin(orig_15m_image, X_15m / mag_ratio, Y_15m / mag_ratio) 

   convol_15m=convolve(convol_15m, PSF_T) 

 

   ;calculate alpha. think of alpha as offset per maha distance 

   ;we convolve both the distance map and the hires data to lores 

   ;find the difference from the original image, and divide that by 

   ;the convolved distance amount.  

 

   ;ok, trying to clean up code 22 Sep 07. We only multiply and divide by 

   ;the distance map. If our distance is 0, things become upset. But, if 

   ;distance is 0, we really don't need any sort of correction. 

   bs=where(convol_distance_map eq 0.0) 
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   if (bs[0]+1) then convol_distance_map[bs]=1.0 

    

   alpha=((orig_90m_image - convol_15m)/convol_distance_map) 

 

   ;any place that had a convol_distance_map value of 0 shouldn't 

   ;be corrected. Set all my bs values to 0. Do same for distance 

   if (bs[0]+1) then alpha[bs]=0.0 

   if (bs[0]+1) then convol_distance_map[bs]=0.0 

 

   ;at this point some of alpha is set to 'Inf' - reset those to 0 

   infinites=where(alpha eq !VALUES.F_INFINITY) 

   nans=where(alpha eq !VALUES.F_NAN) 

 

   if (infinites[0] ne -1) then alpha[infinites]=0.0 

   if (nans[0] ne -1) then alpha[nans]=0.0 

 

   ;alpha is 90m - sextuple it to get to 15m sizing for multiplication 

 

   alpha=frebin(alpha,X_15m, Y_15m) 

 

   ;correction is alpha X d_15m in paper - assume multiply?? 

   correction[0,0,which_band]=alpha*distance_map 

 

endfor; which_band 

 

;now that we've calculated our correction - add it to our TIR_15m 

 

;ok - convert the correction to columnar form 

correction=rotate(reform(correction,X_15m*Y_15m,tirbands),4) 

 

;now add the correction to the columns that are TIR bands 

TIR_15m[0:tirbands-1,*]+=correction 

 

;round it - DNs are only integers - byte for VNIR, SWIR and UINT for TIR 

TIR_15m[0:tirbands-1,*]=round(TIR_15m[0:tirbands-1,*]) 

 

;record our correction as well 
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;TIR_15m 7-11 are our correction (for ASTER) 

TIR_15m[tirbands+2:((2*tirbands)+1),*]=correction 

 

return, TIR_15m 

 

END 

 

A.15 POSTSTEP10.PRO 

PRO WriteOutASTERData, tir_15m, homog_90m, swir_15m, homog_30m, $ 

                       basestring, Orig_Variable_Value, Orig_Variable_Name 

;write out the data we want to keep 'permanently' 

 

 

   ;when we get around to looping and need to put the loop val in number 

   ;use strtrim(loopcount,2) to get it as a string with no spaces 

 

   ;data 

   tirfile=basestring+'--tir_15m.dat' 

   openw, lun, tirfile, /get_lun 

   writeu, lun, tir_15m 

   free_lun, lun 

 

   ;header 

   header_tirfile=basestring+'--tir_15m.hdr' 

   openw, lun, header_tirfile, /get_lun 

   printf, lun, "ENVI" 

   printf, lun, "description = {" 

   printf, lun, "     super-res loop "+StrTrim(Orig_Variable_Value[94],2)+$ 

                  " of "+StrTrim(round(Orig_Variable_Value[95]),2)+". Variable "+$ 

                  Orig_Variable_Name[Orig_Variable_Value[99]]+" has value "+$ 

                  StrTrim(Orig_Variable_Value[Orig_Variable_Value[99]],2)+". }" 

   printf, lun, "samples = "+StrTrim(round(Orig_Variable_Value[2]),2) 

   printf, lun, "lines = "+StrTrim(round(Orig_Variable_Value[3]),2) 
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   printf, lun, "bands = "+StrTrim(round(((3*Orig_Variable_Value[5])+2)),2) 

   printf, lun, "file type = ENVI Standard" 

   printf, lun, "data type = 4" 

   printf, lun, "interleave = bip" 

   free_lun, lun 

 

   tirhomogfile=basestring+'--tir_homog_map.dat' 

   openw, lun, tirhomogfile, /get_lun 

   writeu, lun, byte(homog_90m) 

   free_lun, lun 

 

   swirfile=basestring+'--swir_15m.dat' 

   openw, lun, swirfile, /get_lun 

   writeu, lun, swir_15m 

   free_lun, lun 

 

   header_swirfile=basestring+'--swir_15m.hdr' 

   openw, lun, header_swirfile, /get_lun 

   printf, lun, "ENVI" 

   printf, lun, "description = {" 

   printf, lun, "     super-res loop "+StrTrim(round(Orig_Variable_Value[94]),2)+$ 

                  " of "+StrTrim(round(Orig_Variable_Value[95]),2)+". Variable "+$ 

                  Orig_Variable_Name[Orig_Variable_Value[99]]+" has value "+$ 

                  StrTrim(Orig_Variable_Value[Orig_Variable_Value[99]],2)+". }" 

   printf, lun, "samples = "+StrTrim(round(Orig_Variable_Value[2]),2) 

   printf, lun, "lines = "+StrTrim(round(Orig_Variable_Value[3]),2) 

   printf, lun, "bands = "+StrTrim(round(((3*Orig_Variable_Value[5])+2)),2) 

   printf, lun, "file type = ENVI Standard" 

   printf, lun, "data type = 4" 

   printf, lun, "interleave = bip" 

   free_lun, lun 

 

 

   swirhomogfile=basestring+'--swir_homog_map.dat' 

   openw, lun, swirhomogfile, /get_lun 

   writeu, lun, byte(homog_30m) 

   free_lun, lun 
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END; WriteOutASTERData 

 

PRO WriteOutTHEMISData, tir_v, homog, VNIRClusters, TIRClusters, $ 

                        basestring, Orig_Variable_Value, Orig_Variable_Name 

;write out the data we want to keep 'permanently' 

 

 

 

   ;when we get around to looping and need to put the loop val in number 

   ;use strtrim(loopcount,2) to get it as a string with no spaces 

 

 

   tirfile=basestring+'--tir_15m.dat' 

   openw, lun, tirfile, /get_lun 

   writeu, lun, tir_v 

   free_lun, lun 

 

 

   q=tir_v 

   q_bands=size(tir_v) 

   q_bands=(q_bands[1]/2)-1 

   ;set the band values back to original scale  

   q[0:q_bands-1,*]/=10000000.0 

   ;band q[q,*] should be source, and not need correcting 

   ;set the correction bands to the same scale as original data 

   q[q_bands+1:(2*q_bands)+1,*]/=10000000.0 

   tirfile=basestring+'--tir-mod_15m.dat' 

   openw, lun, tirfile, /get_lun 

   writeu, lun, q 

   free_lun, lun 

 

;header 

   header_tirfile=basestring+'--tir-mod_15m.hdr' 

   openw, lun, header_tirfile, /get_lun 

   printf, lun, "ENVI" 

   printf, lun, "description = {" 
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   printf, lun, "     super-res loop "+StrTrim(round(Orig_Variable_Value[94]),2)+$ 

                  " of "+StrTrim(round(Orig_Variable_Value[95]),2)+". Variable "+$ 

                  Orig_Variable_Name[Orig_Variable_Value[99]]+" has value "+$ 

                  StrTrim(Orig_Variable_Value[Orig_Variable_Value[99]],2)+". }" 

   printf, lun, "samples = "+StrTrim(round(Orig_Variable_Value[2]),2) 

   printf, lun, "lines = "+StrTrim(round(Orig_Variable_Value[3]),2) 

   printf, lun, "bands = "+StrTrim(round(((2*Orig_Variable_Value[5])+2)),2) 

   printf, lun, "file type = ENVI Standard" 

   printf, lun, "data type = 4" 

   printf, lun, "interleave = bip" 

   free_lun, lun 

 

 

   ;when I pass V_T_Homog, its all 0s and 1s - make 0s and 255s 

   q=homog 

   q*=255 

   tirhomogfile=basestring+'--tir_homog_map.dat' 

   openw, lun, tirhomogfile, /get_lun 

   writeu, lun, byte(q) 

   free_lun, lun 

 

   ;and put out cluster maps 

   homogaddresses=where(homog ne 0) 

   q=float(homog) 

   vclus=VNIRClusters 

   tclus=TIRClusters 

   vclus+=1.0 

   tclus+=1.0 

 

   q[homogaddresses]=1.0 ;just to be certain 

   q[homogaddresses]=vclus 

 

   vclusfile=basestring+'--vnir_cluster_map.dat' 

   openw, lun, vclusfile, /get_lun 

   writeu, lun, byte(q) 

   free_lun, lun 
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   q[homogaddresses]=1.0 ;just to be certain 

   q[homogaddresses]=tclus 

 

   tclusfile=basestring+'--tir_cluster_map.dat' 

   openw, lun, tclusfile, /get_lun 

   writeu, lun, float(q) 

   free_lun, lun 

 

 

END; WriteOutTHEMISData 

 

FUNCTION CalibrateTIRRadiance, tir_img 

;convert the super-resolved DN to calibrated radiance 

;we're going to use the values given on the ASTER website 

;as of 24 Sep 07 

; 

;Radiance=(DN value - 1) * Unit Conversion Coefficient 

; 

;band 10 - 6.882 x 10^-3 

;band 11 - 6.780 x 10^-3 

;band 12 - 6.590 x 10^-3 

;band 13 - 5.693 x 10^-3 

;band 14 - 5.225 x 10^-3 

 

   tir_img-=1 

 

   tir_img[0,*]*=0.006882 

   tir_img[1,*]*=0.006780 

   tir_img[2,*]*=0.006590 

   tir_img[3,*]*=0.005693 

   tir_img[4,*]*=0.005225 

 

 

   return, tir_img 

 

END; CalibrateTIRRadiance 

 



 

 292 

FUNCTION CalibrateSWIRRadiance, swir_img 

;convert the super-resolved DN to calibrated radiance 

;we're going to use the values given on the ASTER website 

;as of 24 Sep 07 

; 

;Radiance=(DN value - 1) * Unit Conversion Coefficient 

; 

;band   high     normal   low-1   low-2 

;4      0.1087   0.2174   0.290   0.290 

;5      0.0348   0.0696   0.0925  0.409 

;6      0.0313   0.0625   0.0830  0.390 

;7      0.0299   0.0597   0.0795  0.332 

;8      0.0209   0.0417   0.0556  0.245 

;9      0.0159   0.0318   0.0424  0.265 

 

   swir_img-=1 

 

   ;assume normal gains for now - need some way to check which gain to use 

   swir_img[0,*]*=0.2174 

   swir_img[1,*]*=0.0696 

   swir_img[2,*]*=0.0625 

   swir_img[3,*]*=0.0597 

   swir_img[4,*]*=0.0417 

   swir_img[5,*]*=0.0318 

 

   return, swir_img 

 

END; CalibrateSWIRRadiance 
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