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STATISTICAL FLUCTUATIONS OF TWO DIMENSIONAL TURBULENCE

Yonggun Jun, PhD

University of Pittsburgh, 2006

The statistics of two-dimensional (2D) turbulence driven by electro-magnetic force are in-

vestigated in freely-suspended soap film. The turbulent flow is analyzed using the particle

imaging velocimetry (PIV) method. In this thesis, three important features of 2D turbulence

are mainly studied.

First, the effects of addition of small amounts of polymers on 2D turbulent flows are

carefully investigated. As the polymer concentration φ increases, large scale velocity fluctu-

ations are suddenly suppressed at a certain φ. This suppression is believed to happen due

to the redistribution of saddle points of the flow. It implies that the saddle structures may

play a role in energy-transfer to large scales.

The thesis also presents 2D intermittency in inverse energy cascade regime. In this

subrange, the energy transfers from injection scale linj to large scales. Intermittency is

recognized and analyzed by the structure function Sp(l) of the velocity difference between

two points, and log-normal model of the energy dissipation rate ε. The analyses show signs

of intermittency even though its intensity is weaker than that in three-dimensional (3D)

turbulence.

Finally, single-point(SP) velocity statistics are investigated, inspired by the theory pro-

posed by Falkovich and Lebedev (FL). This theory reveals the connection between SP statis-

tics and forcing statistics. For forced 2D turbulence, the SP velocity probability distribu-

tion function (PDF) deviates from Gaussian when turbulence intensity is sufficiently strong,

which can be explained using FL theory. In the case of decaying turbulence, SP velocity

PDF gradually evolves from super-Gaussian to sub-Gaussian as time increases.
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1.0 INTRODUCTION

1.1 TURBULENCE

Turbulence is recognized as irregularly fluctuating and unpredictable motion which is com-

posed of a number of small eddies that travel in the current. It is ubiquitous but has been a

very difficult subject to study. It is natural that, in spite of the difficulty involved, turbulence

has taken the attention of engineers and physicists because of its practical importance in

applications such as weather forecasting, aeronautical engineering, etc.

1.2 NAVIER-STOKES EQUATION

The dynamics of fluids is described by two equations: the Navier-Stokes equation

∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇P + ν∇2~v, (1.1)

and the continuity equation
∂ρ

∂t
+∇ · (ρ~v) = 0, (1.2)

where ~v is the velocity, P the pressure, and ν the kinematic viscosity coefficient. Eq. (1.2)

can be rewritten as

∇ · ~v = 0 (1.3)

when ρ is constant. This is considered as an incompressible condition of fluid. The meanings

of each term of Eq. (1.1) are as follows: (1) the inertial term, (~v · ∇)~v, is responsible for

momentum transport. This is the only nonlinear term in the equation which makes the
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Figure 1: The drawing of turbulence by Leonardo da Vinci.

phenomenon complex and rich. (2)−∇P is the pressure gradients term. It does not con-

tribute to the creation of the dissipation of the energy, but it accelerates the fluid molecules

and redistributes energy among different velocity components. (3) ν∇2~v is the viscous term

dissipating the injected energy. Due to this term, the kinetic energy is not conserved.

Turbulence can be characterized in terms of Reynolds number

Re =
UL

ν
,

where U and L are the typical velocity and length scale in the flow, respectively. The

dimensionless number Re was first introduced by Osborne Reynolds to describe the transition

from a laminar to turbulent flow. The Taylor microscale Reynolds number Reλ is frequently

used for experimental and numerical works because it is independent of the system geometry.

The quantity Reλ is defined as:

Reλ ≡ vrmsλ

ν
,

where vrms is the root mean squared velocity defined as
√
〈v2

1〉 − 〈v1〉2, and the Taylor micro-

length scale λ is defined as
1

λ2
≡ 〈(∂1v1)

2〉
v2

rms

,

2



where v1 is the first component (x-component) of velocity [23]. The brackets in the above

equation are ensemble or time averages of v1.

1.3 ENERGY BALANCE EQUATION

When the total energy E is 〈~v2〉/2, the following relation can be obtained by multiplying ~v

and ensemble-averaging on both sides of Eq. (1.1):

∂E

∂t
= 〈−~v · (~v · ∇)~v − ~v · ∇p + ν~v · ∇2~v〉, (1.4)

where reduced pressure p = P/ρ. Assuming the periodic boundary condition on the cubic

volume L3, one can obtain the following relations by integrating by parts:

〈∂if〉 = 0, (1.5)

〈(∂if)g〉 = −〈f∂ig〉, (1.6)

where f and g are the arbitrary periodic functions. Using Eq. (1.3), (1.5), and (1.6), the

first two terms in the right-hand side of Eq. (1.4) vanish [23]. By use of the vector identity

(∇× ~v) · (∇× ~v) = (εijk∂jvk)(εilm∂lvm)

= ∂j(vk∂jvk)− ∂j∂k(vjvk)− vk(∂j∂jvk),

one can get
dE

dt
= ν

∫
~v · ∇2~vdV = −ν

∫
(∇× ~v)2dV = −ν

∫
ω2dV,

where the vorticity ω = ∇× ~v. The energy balance equation of Eq. (1.4) is then as follows:

dE

dt
= −2νΩ,

where the enstrophy Ω = 〈ω2〉/2. For an inviscid condition, ν = 0, the energy is a conserved

quantity. In the limit ν → 0 the total energy is not conserved, but it is constantly dissipated

[23]: limν→0 2νΩ ≡ 〈ε〉, where 〈ε〉 is the mean energy dissipation rate of the system.
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……………………....….

Injection length linj

Dissipative length ldis

Energy flux ε

Figure 2: The picture of the energy cascade in 3D turbulence.

1.4 TURBULENT CASCADE MODEL

Although there have been many studies to define the eddy [22], it is not well defined. It is,

loosely speaking, the volume where the fluid moves coherently and pressure is lower than in

the vicinity. The turbulent cascade is expressed in terms of the eddy. The cascade picture

was first given by R.F. Richardson in an evocative piece of a poem [46]:

’..Big whorls have little whorls
that feed on their velocity,
and little whorls have lesser whorls
and so on to viscosity...’

Large eddies that are given at an injection length scale linj, which is the length where the

energy is injected, break down to smaller eddies. In turn, smaller eddies break down to

even smaller eddies, and so on. This process goes on until the dissipation length scale ldis is

reached, and all the input energy is dissipated into heat due to molecular friction. This length

scale is determined by the viscosity ν and the energy dissipation rate 〈ε〉: ldis = (ν3/〈ε〉)1/4.
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The length scale from linj to ldis is called the inertial range where the energy is conserved

and is transferred to the smaller scales.

1.5 INTERMITTENCY

One of the statistical methods to investigate the phenomenology of turbulence is the structure

function Sp(l),

Sp(l) = 〈(δvl)
p〉 =

∫
(δvl)

p P (δvl)d(δvl), (1.7)

where the two-point longitudinal velocity increment δvl is defined as δvl ≡ [~v(~x+~l)−~v(~x)] · l̂,
and l̂ is the unit vector in the longitudinal direction between the two points, and P (δvl) is

the probability distribution function (PDF) of δvl. From the Karman-Howarth relation

[39], Kolmogorov derived an exact relation for the third moment in fully developed three-

dimensional turbulence in 1941, well known as Kolmogorov’s four-fifths law (K41) [31],

S3(l) = 〈(δvl)
3〉 = −4

5
〈ε〉l,

where the quantity 〈ε〉 = ν〈∑i,j(∂ivj + ∂jvi)
2〉/2 is the average energy dissipation rate and

the bracket is the ensemble or time average.

In order to illustrate intermittency, an example is presented. As shown in Fig. 3 (a),

which is an example of velocity fluctuations from a jet [24], velocity fluctuations look likely

self-similar. When, however, the signal is passed through the high-pass filter, the signal

shows intermittent behavior as shown in Fig. 3 (b). Intermittency is the rare and sudden

events switching from quiescent to bursting behaviors.

The experimental measurements [2] showed that the structure function scales as

Sp(l) = 〈(δvl)
p〉 =

∫
(δvl)

p P (δvl) d (δvl) ∼ lζp ,

where ζp is a nonlinear function of p and significantly deviated from Kolmogorov’s prediction

[31], ζp = p/3. The deviation implies that P (δvl) is not self-similar in the inertial range and

decays slowly with long tails. The presence of such tails is called intermittency. The strength

5



Figure 3: (a) velocity fluctuations from a jet and (b) velocity fluctuations after high-pass

filtering which shows intermittent bursts (Gagne 1980 [24]).
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of intermittency can be characterized in terms of µ(≡ 2ζ3 − ζ6), which indicates how much

the scaling exponent ζ6 deviates from K41 (2ζ3 = ζ6).

In order to account for intermittency, Kolmogorov suggested a hypothesis, known as

Kolmogorov’s refined similarity hypothesis [32]. He assumed the relation between two point

velocity difference δvl and the local energy dissipation rate εl:

〈(δvl)
3〉 ∼ εll,

where εl = 1/V
∫
|x<l/2| εdV and V is a volume of a diameter l. Assuming that the local

energy dissipation rate has its own scaling relation

〈εq
l 〉 ∼ lτq ,

a new scaling relation can be obtained

〈(δvl)
p〉 ∼ 〈(εll)

p/3〉

with the exponent

ζp = p/3− τp/3.

This relation has been tested and shown to be in a reasonable agreement with Kolmogorov’s

hypothesis in fully developed 3D turbulence [55, 43, 27]. Kolmogorov assumed the log-

normal distribution of P (εl), which means that they are not self-similar in all scales. The

log-normal model is good for small p but is insufficient to account for recent experimental

data [2]. Many models have been proposed to explain the anomalous scaling exponents ζp,

such as the multifractal analysis by Parisi and Frisch [42] and log-Poisson model by She and

Leveque (SL) [52]. In particular, the SL model, based on the hierarchical structure of the

energy dissipation, shows good agreement with experimental data.
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Figure 4: The scheme of the eddy cannibalization in 2D turbulence.

1.6 THE INVERSE ENERGY CASCADE IN 2D TURBULENCE

While the eddies cascade to small scales in 3D turbulence due to the vortex stretching, they

cannot cascade to small scales in 2D turbulence because there is no vortex stretching in low

dimensions. Instead of vortex stretching, there is vertex merging process in 2D turbulence.

The eddies are generated at the injection scale linj. Two eddies interact with each other.

When two neighboring eddies have the same rotating direction, they merge and become a

single larger eddies. In turn, larger eddies merge into an even larger eddy, as shown in Fig.

4. This process may be called “cannibalization” of eddies. Because the energy sustaining

the eddy is proportional to l2/3, eddy cannibalization makes the energy transfer to larger

scales. This type of the energy flow is known as the inverse energy cascade [33].

When the system is confined and the energy dissipation at large scales is weak, two large

eddies of half the size of the system exist, which is called the condensation state, first noticed

by Kraichnan [33]. In this state, the energy is concentrated at the smallest wave-number

which is comparable to the system size. This phenomenon has been verified by Smith and

8



Yakhot in computer simulation [53] and by Paret et al. in an experiment [41].

1.7 THE ENERGY SPECTRUM IN 2D TURBULENCE

Assuming that the energy is injected through a narrow energy band around the wave number

kinj, one can anticipate that the energy E = 〈v2〉/2 transfers to smaller k(< kinj) and the

enstrophy Ω = 〈ω2〉/2 transfers to larger k(> kinj) where ω = (∇× ~v) · ẑ.

The energy and enstrophy injection rates are denoted as εinj and χinj, and the the

transfer rates of the quantities are εt = (δvl)
3/l and χt = (δvl)

3/l3, respectively. If kdis is the

maximum wave number where the viscosity cannot be ignored, the energy and enstrophy

are independent of k in the inertial range (kinj < k < kdis), that is,

εt(k) = εt(kdis) and χt(k) = χt(kdis).

By dimensional analysis, one can obtain the relation,

k2
disεt(kdis) ∼ χt(kdis)

Therefore, if ν → 0 or kdis → ∞, εt(kdis) → 0 because χt(kdis) is constant over the inertial

range. This shows that the energy cannot be transfered into small scales in the inertial range

so that only the enstrophy transfers to small scales. The energy spectrum in the enstrophy

cascade regime is obtained by dimensional analysis,

E(k) ∼ χ
2/3
t k−3, (1.8)

where 〈v2〉/2 =
∫

E(k)dk.

Similarly, the energy spectrum in the inverse energy cascade regime can be obtained by

showing that only the energy transfers to large scales. It is determined by k and εt,

E(k) ∼ ε
2/3
t k−5/3. (1.9)

Fig. 5 shows a simple diagram of the energy cascade E(k) in 2D turbulence. When

the energy E and the enstrophy Ω are injected in kinj, E transfers to small k and ceases at

9



Figure 5: The scheme of the energy spectrum in 2D turbulence. kinj, kout, and kdis represent

the injection scale, outer scale, and the dissipation scale, respectively. The dark shadow

indicates the inverse energy cascade regime and the light shadow indicates the enstrophy

cascade regime.
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kout, which is the minimum wave number where the energy dissipation cannot be ignored,

while Ω goes to large k and stops at kdis. The energy spectrum for 2D turbulence was first

calculated by Kraichnan [33] based on statistical physics. Later, The energy spectrum in 2D

turbulence was confirmed through computer simulations [53, 11] and experiments [54, 51].

1.8 THESIS OVERVIEW

This thesis focuses on the statistical properties of 2D turbulence. It covers topics such as

the turbulent interaction with small amounts of polymers, intermittency in large scales,

the single-point velocity statistics in forced and decaying turbulence, and the topological

structures of flows.

Chapter 2 describes the polymer effects on 2D turbulent flow. It is investigated how the

addition of small amounts of polymers changes the large scale velocity fluctuations as the

concentrations of polymer and the energy injection rates are varied.

Chapter 3 presents the analysis of intermittency at large scales. The high-order structure

functions are analyzed by means of extended self-similarity. Also, intermittency is investi-

gated through the log-normal model and the hierarchical structures. The latter is presented

in the appendix. All analyses were performed in the inverse energy cascade regime.

Chapter 4 concerns the single-point velocity statistics in 2D forced and decaying tur-

bulence. The dependency of the PDF on Reynolds number is studied in forced turbulence.

The change of PDFs as a function of decaying time is also investigated in the soap channel

experiment.
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2.0 POLYMERS AND 2D TURBULENCE

We investigate the effect of dilute polymers on driven two-dimensional (2D) turbulence in

a soap film. Transitions from strong to weak turbulence are identified by independently

varying the polymer concentration φ and the energy injection rate εinj. Studies of velocity

structures in small scales reveal that strong saddles are suppressed whereas weak ones become

more populated. Interestingly, this redistribution of saddle points in turbulent flows strongly

correlates with the quenching of velocity fluctuations on large scales, suggesting that this

hydrodynamic structure may play a role in transferring energy from scale to scale.
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2.1 INTRODUCTION

The effects of polymers on fluid flows and turbulence have attracted much attention since the

pioneering work of Toms, who discovered that a trace amount of polymers can significantly

reduce turbulent drag in pipe flows [57]. The phenomenon appears to be counter-intuitive

because polymers typically increase the viscosity of a fluid such that hydrodynamic resistance

is expected to increase. The importance of the phenomenon is evident as turbulent drag is

a significant limiting factor for competitive sports such as swimming and sailing as well as

for the efficient transport of crude oil through pipelines. However, this fascinating effect is

not fully understood.

An early theoretical model on turbulent drag reduction was proposed by Lumley [37] who

postulated that the effect is caused by a change in the flow-wall interaction in the presence

of polymers. Tabor and de Gennes [56] gave an alternative interpretation and conjectured

that turbulent eddies can be modified by the polymer so that the drag reduction is not a

surface effect. According to this latter theory, strongly deformed polymers, if concentrated

enough, can sequester significant amounts of kinetic energy from the flow and truncate

turbulent energy cascades. The quenching of turbulence therefore requires the following two

considerations. (i) The time criterion: the strain rate σ on the scale of a polymer should

be larger than the inverse relaxation (Zimm) time τ−1(τ = ηR3
g/(kBT ) ) of the polymer,

equivalently, the Weissenberg number W = τσ > 1, where η is the viscosity of fluid, kB the

Boltzmann constant, and T the temperature. Here, Rg is the radius of gyration which is

N3/5b for an ideal chain, where N is the number of the monomers per chain, and b is the

size of the monomer. (ii) The energy criterion: the energy density of elastic deformation

of the polymer solution should be comparable to the kinetic-energy density of turbulence.

Subsequent theoretical analyses using a simplified turbulence (shell) model [8] and a more

realistic constitutive equation in the Navier-Stokes equation [17] are largely consistent with

the physical picture in [56]. Though these theoretical ideas are appealing, their quantitative

verification in laboratory experiments is still lacking. This provides a strong motivation for

the current experiment.

It was found recently that a small amount of polymers could have an effect on 2D
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turbulence [15, 1] as well as on 3D turbulence. Quenching of large-scale velocity fluctuations

was discovered in decaying turbulence in a flowing soap film [1] and later confirmed by

direct numerical simulations of a linear viscoelastic model [10]. The effect is remarkable,

considering that in 2D the energy cascade direction is reversed with the kinetic energy being

transferred from small to large scales. Since most of the injected energy cannot reach small

scales in 2D, naively one would expect that large-scale velocity fluctuations would not be

affected by polymers. It is noted that in a typical 2D turbulence experiment, the energy

injection scale linj is about two orders of magnitude greater than the dissipative scale and is

about four orders of magnitude greater than the radius of gyration Rg of polymers. One of

the aims of this work is to elucidate how the fine structures of 2D turbulence are affected by

the presence of a small amount of polymers and how these structural modifications result in

the quenching of turbulence on large scales. Since the full velocity fields ~v(~x) are acquired by

particle imaging velocimetry (PIV) and the experiment allows a precise control of the energy

injection rate εinj = 〈~f ·~v〉 (~f is an external force), it becomes feasible to calculate the energy

budget scale-by-scale and to deduce the energy consumption by polymer deformation as the

polymer concentration φ is varied. We have identified a sharp transition at φ = φC where

turbulent intensity drops precipitously along with a sharp increase in the energy uptake by

the polymers. An interesting finding of this experiment is that the quenching of turbulence

on large scales is accompanied by the suppression of strong saddles in the flow, suggesting

that there may be a connection between saddles and energy transfer in 2D turbulence.

2.2 EXPERIMENTS

Our experiments were performed using a freely-suspended soap film (7×7 cm2) in an electro-

magnetic (E&M) convection cell [48] shown in Fig. 6. Two edges of the film were in contact

with metallic electrodes, allowing a square-wave voltage V (f = 3 Hz) to be applied. The

film was placed ∼ 1 mm above a set of bar magnets with alternating poles. The width of each

magnet is a = 3 mm, the corresponding energy injection length linj = 2a/
√

3 ' 0.35 mm, and

the strength of the surface field is 3 T. A computer controlled feedback system maintained
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Figure 6: Experimental setup. A voltage difference V = V + − V − is applied to the film

generating a uniform current density J . Beneath the film is a set of bar magnets with

alternating poles.
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the film-to-magnet distance and the film thickness h ' 50 µm. For small V , the flow is lami-

nar with a set of shear bands known as the Kolmogorov flow. Upon increasing V , the system

undergoes a sequence of instabilities and becomes turbulent when V > 20 volts. The soap

solution was made of a mixture of four components (5 cc liquid detergent, 80 g ammonium

chloride, 40 cc glycerol, and 400 cc distilled water). Linear polymers (polyethylene-oxide,

Mw = 8×106, Rg ' 0.4 µm) of varying concentrations (0 < φ < 25 ppm) were used. Within

this concentration range, there is no overlap between polymer coils as evidenced by a small

φ dependence of the kinematic viscosity of the soap solution, which we determined to be

ν ' 0.016 cm2/s. To measure the velocity field ~v(~x), the film was seeded with hollow glass

spheres (diam=10 µm, ρ = 1.05 g/cm3). A 12 mJ double-pulsed Nd:YAG laser slaved to

a CCD camera (Redlake, 1016×1008 pixels) was used to illuminate the soap film. Images

(4.5× 4.5 cm2) were acquired at the center of the soap film at 30 fps, yielding typically 104

vectors per velocity field.

Fig. 7 (a) is the velocity field without polymer. In this case, velocity strongly fluctuates

in space, and the root mean squared velocity vrms ∼ 13 cm/s. The velocity field has eddies

of diverse sizes and small eddies embedded in a large eddy. This feature indicates the inverse

energy cascade. On the contrary, in Fig. 7 (b) with polymer of concentration 24 ppm,

velocity fluctuations are suppressed. There are lots of small eddies. This implies that the

energy transfer to large scales is blocked in the presence of small amounts of polymer.

In the following discussion, five different polymer concentrations φ = 0, 3, 9, 12, 24 ppm

were used and the energy injection rate εinj = 201.35 cm2/s3 was kept fixed by maintain-

ing a constant V across the film. Figure 8 shows a set of 2nd-order structure functions

S2(l) = 〈δv2
l 〉 measured using different φ, where δvl is the longitudinal velocity difference

on scale l, and 〈...〉 means the ensemble average. We found that in all cases there is a

well-developed enstrophy range (l < linj) where S2(l) ∝ l1.8±0.2. This scaling relation agrees

reasonably well with the theoretical prediction S2(l) ∝ l2 and persists down to the smallest

scale (∼ 300 µm) resolvable by the PIV. Aside from small changes in the amplitude, the

polymer appears to have no effect on this scaling behavior. For large scales (l > linj), two

classes of behaviors can be identified: (a) For 0 < φ < 10 ppm, S2(l) increases with l and is

reminiscent of an inverse energy cascade. Despite a large Taylor-microscale Reynolds num-

16



4.5 cm

(a)

(b)

linj

Figure 7: The velocity fields without polymer (a) and with polymer (b) of concentration 24

ppm.
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In increasing order of turbulence intensity, the curves correspond to φ = 24, 12, 9, 3 and 0

ppm. The inset is the plot of 〈σ2〉 (circles) and 〈ω2〉 (squares) vs. φ (see text for details).
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ber Reλ ' 152, the Kolmogorov-like scaling S2(l) ∝ l2/3 was not clearly observed due to

the limited inertial range. In spite of this shortcoming, the magnitude of S2(l) was observed

to decrease as φ was increased. (b) For φ > 10 ppm, S2(l) becomes flat for l > linj, indi-

cating the truncation of energy transfer to these large scales. The inhibition of the energy

transfer to large scales can also be seen by the decreasing total kinetic energy v2
rms/2, which

is the asymptotic value of S2(l) for l À linj. Figure 8 shows that v2
rms/2 drops sharply for

φ ≥ 10 ppm.

The abrupt change of turbulent behavior when φ increases is suggestive, indicating that

there may be a critical polymer concentration φC('10 ppm) for quenching turbulence. The

observation prompted us to examine other signatures that may be used to quantify the

effect. One of the prominent features of 2D turbulence is the coherent structures, such as

the centers where the vorticities are dominant, and saddle points where the strain rates are

dominant in the flow. In a previous study [47], we investigated the distribution of centers

and saddles via the quantity Λ = 1
2
(ω2 − σ2), which is related to the pressure by ∇2p = Λ.

Here ω2 = 1
2

∑
i,j (∂ivj − ∂jvi)

2 and σ2 = 1
2

∑
i,j (∂ivj + ∂jvi)

2 characterize the center and the

saddle structures in the flow, respectively. If Λ > 0, statistical distributions of ω2 and σ2

were measured for different φ and their probability density functions (PDF) are displayed

in Fig. 9. It is shown that for φ < φC , P (ω2) and P (σ2) are unaffected by φ, but they

become significantly narrower for φ > φC , indicating that strong centers and saddles are

suppressed. The effect is represented by the inset of Fig. 8 where 〈σ2〉 and 〈ω2〉 vs. φ are

plotted. We noted that in all cases of different φ, the “topological charges Λ”, averaged

over space, are not strictly conserved. The differences between 〈σ2〉 and 〈ω2〉 result from the

film being slightly compressible (∼ 10 %). Since polymers are mostly deformed by saddles,

it is instructive to compare the distribution of the strain rate σ with the Zimm relaxation

time of the polymer. For our system with η ' 0.02 cP and Rg ' 0.4 µm, we found

τ ' 16 ms or 1/τ 2 ' 3.91× 103 s−2, which is delineated as the vertical line in Fig. 9(a). A

simple calculation shows that for φ < φC , ∼ 38% of saddle points satisfy the time criterion

(στ > 1), and this fraction drops to ∼ 29% for φ > φC . We also noted that the vertical line

coincides approximately with the point where the two groups of PDFs cross each other. The
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φ < φC ' 10 ppm, the PDFs are nearly identical but for φ > φC , the PDFs become narrower.
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significance of this observation is discussed in the summary. A weakened saddle distribution

must be accompanied by a weakened vorticity distribution since 〈σ2〉 ∼ 〈ω2〉. This is clearly

delineated by Fig. 9(b).

To quantitatively assess the fraction of injected energy εinj that is ultimately transfered

to the polymer’s degrees of freedom and how this fraction changes with φ, we measured the

overall energy budget of the system. The E&M cell is well suited for this task since the full

velocity field can be measured using the PIV, allowing various energy rates to be calculated.

To start with, in absence of polymer, we used the Kármán-Howarth relation leading to a

linear scaling relation for the third-order velocity correlation function:

∂

∂t
〈uiu

′
j〉 =

∂

∂rs

〈uiu
′
su
′
j − uiusu

′
j〉 −

1

ρ

[
− ∂

∂ri

〈pu′j〉+
∂

∂rj

〈p′ui〉
]

+ 2ν
∂2

∂r2
s

〈uiu
′
j〉+ 〈u′jFi〉+ 〈uiF

′
j〉 − 2α〈uiu

′
j〉, (2.1)

where α is the air drag coefficient, the subscript s means the sth component of the co-

ordinates, and the prime and unprimed quantities correspond to locations ~x + ~r and ~x,

respectively. Due to the steady-state condition, the l.h.s. vanishes. For the inertial range,

the viscosity term may also be ignored. Since the Lorentz force is in the x-direction as shown

in Fig. 6, the above equation can be further simplified if only the y component is evaluated.

This yields:

∂

∂rs

〈uyu
′
su
′
y − uyusu

′
y〉 −

1

ρ

[
− ∂

∂ry

〈pu′y〉+
∂

∂ry

〈p′uy〉
]

= −2α〈uyu
′
y〉 (2.2)

All the terms in this equation can be evaluated from the measured velocity field. In particu-

lar, the pressure field can be solved based on the equation ∇2p( ~x) = −Λ(~x) using a Fourier

method under the incompressible and isotropic condition. Figure 10(a) shows the l.h.s. (Lyy,

circles) and the r.h.s. (Ryy, lines) of Eq. (2.2) for φ = 0. It is found that in the absence of

polymer, the two sides are matched if α = 0.7 s−1. In contrast, if the same calculation is

carried out for φ = 12 ppm as in Fig. 10(b), there is a significant discrepancy between the

l.h.s. and the r.h.s. of Eq. (2.2). Such discrepancy is expected because the polymer-fluid

interaction is not included in the equation.
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In the single-point limit (~r → 0), Eq. (2.2) gives the energy balance [36]:

εinj = εν + εα + εp, (2.3)

where the energy injection rate εinj = 〈uxFx〉 (see Fig.6) and the energy dissipation rates due

to fluid viscosity εν = ν〈σ2〉 and due to air friction εα = α〈v2〉 are all standard definitions

and can be evaluated. The rate of energy uptake by the polymer εp is included and will be

found by measurements. In the experiment, εinj was kept constant whereas εν and εα were

measured by varying φ. Figure 11 summarizes the result: for φ = 0, εν ' 57 cm2/s3 and

εα ' 144 cm2/s3, yielding εinj ' 201 cm2/s3. The fact that εα > εν is consistent with the

physical picture that the injected energy is predominantly transfered to large scales l > l0.

Here l0 ' (εinj/α
3)1/3/8 ' 3 cm is the outer scale of turbulence and is where S2(l) levels

off (see Fig. 8) [49]. An appreciable amount of energy (∼ 30%) is also transferred to small

scales and consumed by viscosity. In the absence of polymer, this partition of energy on

small and large scales is consistent with a previous study [48]. It is interesting to note that

when φ is increased, the fraction of energy consumed by the fluid viscosity remains almost

constant (see the heights of the dark-hatched area in Fig. 11(a)) until φ crosses φC , where

εν suffers a jump of ∼ 28.7%. The effect is more dramatic for the energy transfer to large

scales as indicated by the heights of the light-hatched area in the same figure. Here one

observes that εα keeps decreasing with φ and drops precipitously at φC . Such a strong φ

dependence is due to the significant change in vrms when the polymer was introduced into

the flow as seen in Fig. 8. Since εinj is constant, it follows that more energy is sequestered

by the polymer’s elastic deformation, and εp increases markedly around φC as delineated by

the heights of white area in Fig. 11(a).

The above measurement shows that for a given εinj, there exists a sharp change in the

turbulence behavior when φ crosses φC . Is the converse true? To find out, we conducted an

experiment in which φ = 15 ppm was fixed but εinj was varied by changing the applied voltage

(46 < V < 65 volts). For comparison, an independent run was also carried out with φ = 0.

Figure 11(b) shows that in the absence of polymers, the turbulent intensity characterized by

the vrms is a smooth increasing function of V . When the polymer is present, the situation

is somewhat different; vrms increases initially, levels off, and then increases again. It forms
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a plateau for a small range of V between 50 and 55 volts. This measurement suggests that

there exist two thresholds VC1 and VC2 marked by two arrows in the figure. We believed that

the lower threshold VC1 corresponds to the onset of the turbulent suppression and the higher

threshold VC2 corresponds to the saturation of the elastic field. However, for the entire range

of V , the measured energy transfer rate (∝ 〈δv3
l 〉) remains positive, indicating an inverse

energy cascade but with a reduced transfer rate when the polymer is present.

2.3 CONCLUSION

To summarize, the polymer effects on forced 2D turbulence in freely-suspended soap films

were investigated quantitatively using two independent control parameters φ and εinj. The

turbulent flow we measured is free from the boundary of the system so that all polymer

effects on turbulence come from the bulk of the flow. The measurement shows that when

εinj is fixed, turbulent suppression has a sharp threshold φC(' 10 ppm). However, when φ

is fixed, two thresholds can be identified, but the transitions in this case are much weaker.

We found that turbulent suppression occurs concurrently with the elimination of strong

saddles. Inspection of Fig. 9(a) reveals that those saddles that are eliminated have strength

determined precisely by the relation σ21/τ 2, indicating that the time criterion is strictly

obeyed in the experiment. Since polymer-turbulence interactions are primarily via saddles

and the weakening of saddles by polymer stretching has the drastic effect of quenching

turbulence, it is suggested that this hydrodynamic structure may play a role in transferring

energy from scale to scale. It remains an intriguing possibility that the same mechanism

operates in 3D as well as in 2D turbulence.
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3.0 INTERMITTENCY ON LARGE SCALES

It is generally believed that two-dimensional turbulence is immune to intermittency possibly

due to the absence of vortex stretching. However, in turbulence created in a freely suspended

soap film by electromagnetic forcing, it is found that intermittency is not insignificant. We

draw this conclusion based on the measured velocity structure function Sp(l)(≡ 〈|δvl|p〉) ∝ lζp

on scales l greater than the energy injection scale linj. The scaling exponent ζp vs. p

deviates from the expected linear relation and reveals intermittent behavior comparable

to that observed in fully developed 3D turbulence in wind tunnels. Our measurements

demonstrate that intermittency can be accounted for by the non-uniform distribution of

saddle points in the flow. Also, we present an alternate analysis of intermittency by the

geometrical multifractal method for two-dimensional turbulent flow. An analysis of the

averaged energy dissipation rate clearly shows that 2D turbulence has a multifractal behavior

and its probability distribution function is close to a lognormal distribution.
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3.1 INTRODUCTION

Existing experiments [41] and theory [33] suggest that 2D turbulence on large scales repre-

sents a peculiar state of matter that is not far from thermal equilibrium. This is surprising

because the system is dissipative and strongly driven by an external source. The experi-

mental evidence derives from the remarkable observation of Paret and Tabeling who showed

that in 2D turbulence created in a shallow layer of electrolyte, the energy spectrum E(k)

exhibits a k−5/3 law, whereas the probability density function (PDF) P (δvl) of the velocity

difference on scales l is, to a good approximation, a Gaussian function [41]. This measure-

ment suggests that the energy transfer rate, which is proportional to the skewness of P (δvl),

is weak compared to its 3D counterparts and may be the cause of weak intermittency. It has

been recently postulated by L’vov et al. [38] that this interesting behavior may be intimately

connected with the presence of a special dimension (dC = 4/3) in which the k−5/3 law holds

but the enstrophy flux is strictly zero. Thus, the dynamics of the system are governed by

the equipartition of enstrophy. They further argued that d = 2 is not too remote from dC

and the Gaussian statistics still prevail. It thus comes as a surprise that in our 2D soap film

driven by electromagnetic forcing, the intermittency is not negligible as anticipated. If we

characterize the strength of intermittency in terms of µ(≡ 2ζ3− ζ6), µ is only a factor of two

smaller than that in fully-developed 3D turbulence [2]. Here ζp is defined by the pth-order

longitudinal velocity structure function Sp(l)(= 〈|δvl|p〉 ≡ 〈|(~v(~x + ~l) − ~v(~x)) · l̂|p〉) ∝ lζp .

Kolmogorov predicted ζp = p/3 in 1941, but due to nonuniform distribution of the coarse-

grained energy dissipation rate εdis
l , ζp is a nonlinear function of p. In an effort to identify the

source of intermittency, Sp(l) is compared with the moments of the coarse-grained energy

dissipation rate εdis
l on scales l using the Kolmogorov refined similarity hypothesis (K62)

[32]. It is unclear at the outset whether K62 is applicable to 2D turbulence on large scales

because the energy transfer mechanism is entirely different in 2D than in 3D. However, our

measurements show that K62 in its original form works rather well for all moments up to

p = 9. This implies the coarse-grained energy transfer rate εt
l is proportional to the coarse-

grained energy dissipation rate εdis
l in the inertial range (linj ≤ l ≤ lo), and both may be

connected with the saddle structures in the flow. Here linj and lo are the energy injection
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and the outer scale of turbulence, respectively.

3.2 EXPERIMENTAL RESULTS

The experiment was carried out in a freely suspended horizontal soap film driven by electro-

magnetic forcing as mentioned in chapter 2. The only differences are that the magnet size is

smaller with a = 0.25 cm corresponding to the injection scale linj = 2a/
√

3 = 0.29 cm, and

the current I oscillates at 1 Hz instead of 3 Hz.

Figure 12(a) shows an overlaid image of the velocity ~v(~x) and the enstrophy ω(~x)2 =
∑

i,j(∂ivj − ∂jvi)
2/2 fields. An interesting feature of the image is that the enstrophy is

concentrated in patches, and strong long-lived vortices are nearly axially symmetric. The

weak vortices, on the other hand, are susceptible to be torn by the straining motion of

the flow and are elongated. Figure 12(b) is for the same ~v(~x) field, but the squared strain

rate or the saddle point σ(~x)2 =
∑

i,j(∂ivj + ∂jvi)
2/2 is plotted. By definition, the local

viscous dissipation is given by ε(~x) = νσ(~x)2, where ν is the viscosity of the film. The figure

shows that the distribution of σ(~x)2 is different from that of ω(~x)2; the saddles are more

connected and populated between vortices. An ensemble of ~v(~x) such as this one allows us to

calculate various statistical quantities of 2D turbulence. Of particular interest is the velocity

structure function Sp(l) and its relation to the locally averaged saddles or equivalently the

local dissipation rate:

εdis
l (~x) ≡ 4

πl2

∫

|~x−~x′|≤l/2

ε(~x′)d~x′ (3.1)

where ~x′ is the center of the circular box of radius l/2.

Among different moments, S2(l) and S3(l) hold special significance. The 2nd moment

represents the energy distribution on different scales. In our experiment, the shape of S2(l)

is sensitive to the forcing frequency, possibly due to a competition between time scales of

forcing and the energy transfer. For high frequencies (f ≥ 3 Hz), S2(l) is not a power law

of l for l > linj, regardless of the magnitude of forcing. For lower frequencies (f ∼ 1 Hz),

on the other hand, a limited scaling range emerges. Figure 13(a) displays the measurements

with f = 3 (circles, Reλ=80) and 1 Hz (squares, Reλ=167), respectively. One observes
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Figure 12: (a) The velocity field ~v(~x) (arrows) and the enstrophy ω2(~x) field (color rendered).

(b) The velocity field ~v(~x) (arrows) and the square of strain σ2(~x) field (color rendered). The

image size is 4 cm× 4 cm.
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Figure 13: (a) The 2nd-order δvl structure function S2(l) measured with f = 1Hz (blue,

Reλ = 167) and 3 Hz (red, Reλ = 80). The injection scale linj is marked by the vertical

arrow and the outer scale lo ' 2 cm. (b) The 3rd-order δvl structure function S(3)(l) measured

with f = 1Hz (blue in (a), Reλ = 167).
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Figure 14: The flatness Fl of P (δv(l)) (a) and the skewness Sl of P (δv(l)) (b) with Reλ = 167

and f = 1 Hz.

that although both data display a well-developed enstrophy subrange, S2(l) ∝ l1.9±0.1, the

large-scale behavior is entirely different. For 1 Hz, S2(l) ∝ l2.3/3 over about half a decade in

l. The scaling exponent is 15% greater than the theoretically predicted 2/3 and was found

to depend on Reλ systematically, i.e., ζ2 ' 0.67 ± 0.07 for Reλ = 110.3 and increases to

ζ2 ' 1.0 ± 0.1 for Reλ = 212.1. Similar to S2(l), the third moment S(3)(l) was also found

to deviate from the theoretical prediction (S(3)(l) ∼ l) as shown in Fig. 13(b), where the

subscript (3) stands for the moment calculated without the absolute sign. Here one observes

that S(3)(l) is not linear in l but oscillates in space due to the spatially periodic forcing in the

experiment. This spatial anisotropy however was not observed in the even moments Sp(l).

S(3)(l) is positive at all scales, showing that the direction of energy transfer is from small to

large scales and is consistent with the inverse energy cascade of 2D turbulence.

The low-order statistics observed in our experiment are in reasonably good agreement

with Paret’s measurements [41] and with the numerical simulation [9]. For instance, (i) the

overall skewness Sl = S(3)(l)/S2(l)
3/2 displayed in Fig. 14(b) is rather small; it is ∼ 8% near

linj and decreases to ∼ 2% for large scales. The averaged value over the inertial range is

S̄ = l−1
∫

linj<l<lo
S(l)dl = 0.03±0.02. This is to be compared with the skewness of 5% seen in
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Figure 15: (a) The normalized PDFs of δvl for various scales. (b) Sp(l) vs. l.

Paret’s experiment and 3% in the simulation. (ii) Similar to Sl, the flatness Fl = S4(l)/S2(l)
2

in Fig. 14(a) is not constant but varies from 3.25 near linj to 3.0 for large scales. The average

value F̄ = l−1
∫

linj<l<lo
F (l)dl = 3.1 agrees well with the Gaussian value of 3. It should be

emphasized that although S̄ and F̄ are reasonably consistent with the Gaussian statistics,

this does not imply that higher order statistics need to be so. As the order p increases, rare

events associated with the tails of the PDFs (see Fig. 15(a)) become more prominent. Since

these rare events are l dependent, ζp must be a nonlinear function of p.

In Fig. 15(a), the normalized PDF of δvl on various scales l =0.45, 0.68, 1.36 and 1.90

cm are plotted. As can be seen, the central part of the PDFs can be fit well by a Gaussian

distribution function (the dashed line), but systematic deviations are found in the wings of

the PDFs, particularly for small l. Each PDF consists of more than 5 × 106 data points;

the size of the data sets is thus comparable to 3D experiment in a wind channel [2]. Using

the ranking order or the Zipf distribution of δvl [18], it is possible to estimate the highest

moment Spmax(l) that can be calculated from a given data set. In our case, the highest order

turns out to be pmax ∼ 9, which is smaller than pmax = 12 (2D) [41] and 14 (3D) [2] in
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Figure 16: The scaling exponent ζp as a function of p. The slope of the solid line is ∼ 1.2.

earlier investigations. Figure 15(b) displays a set of Sp(l) for l > linj. As shown, all moments

scale as Sp(l) ∝ lζp . Although the scaling range is limited, the exponents ζp nonetheless can

be extracted from the slopes of individual curves. This is delineated as diamonds in Fig.

16. If 2D turbulence is non-intermittent as suggested, ζp would be a linear function of p.

This is not the case in our experiment; ζp bends for p > 4 and its initial slope of 1.2/3 is

greater than 1/3 as shown by the solid line. The bending of ζp indicates that the velocity

field in soap-film turbulence is intermittent, and the large initial slope suggests that the

Kolmogorov-like scaling cannot apply to our system.

To obtain the Kolmogorov-like scaling exponent and to compare our experiment with

previous investigations [41, 2], which have ζ3 = 1, the relative scaling exponents are obtained

by using an extended self-similarity (ESS) hypothesis. This is based on K41 or S3(l) ∼
l. According to the hypothesis, the pth order structure function Sp(l) scales as the third

order structure function S3(l) as Sp(l) ∼ S3(l)
ζp/ζ3 . Fig 17 shows an example of ESS at

vrms = 13.1 cm/s. The slopes on this log-log plot yield the relative scaling exponent ζp/ζ3
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Figure 17: The log-log plot of Sp(l) as a function of S3(l) at Reλ = 212. ESS tells that Sp(l)

scales as a function of S3(l) so that each plot is an increasing linear function. From bottom

to top: p = 1 to 8.
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for different p. Another way to obtain the relative scaling exponents is as follows: We

plot the ratio of the derivatives d ln(Sp(l))

d ln(l)
/d ln(S3(l))

d ln(l)
as a function of l. Here this ratio is

approximately constant (data not shown) over a broader range of l and its averaged value

ζp/ζ3(=
d ln(Sp(l))

d ln(l)
/d ln(S3(l))

d ln(l)
) over the inertial range could be better determined than individual

ζp [3]. The data is presented as squares in Fig. 18. In our experiment, the two methods

yield essentially the same result, ζp/ζ3 ' ζp/ζ3, as evidenced by the closeness of squares

and diamonds in the main figure. In Fig. 18 we also plot the data for fully-developed 3D

turbulence (triangle-downs) measured by Anselmet et al. [2] and the 2D data (triangle) by

Paret [41]. As will be shown in the Discussion, if K62 is valid and εl obeys a lognormal

distribution [23], the relative scaling exponent ζp/ζ3 can be calculated explicitly with the

result ζp/ζ3 = p/3 + (µ/18ζ3)(3p − p2), where µ(= 2ζ3 − ζ6) characterizes the width of

the distribution of εl and is the only adjustable parameter. For our experiment, a fitting

procedure yielded µ ' 0.11. This value should be compared with µ ' 0.2 for the 3D

turbulence data [2] and µ ' 0.03 for Paret’s data [41].

We next turn our attention to find whether the observed intermittency can be accounted

for in a similar fashion as K62 [32]. This hypothesis has been the cornerstone for understand-

ing 3D turbulence, and it would be interesting to see if this important idea has any relevance

to 2D turbulence. The basic observation in 3D turbulence is that velocity fluctuations possess

a broad spectrum and that the globally averaged energy dissipation rate ε cannot account

for rare, intense local fluctuations. One way to fix this statistical bias is to divide the spatial

domain into a collection of boxes of size l, each characterized by a locally averaged energy dis-

sipation rate εl(~x) as defined in Eq. (3.1). It was conjectured by Kolmogorov that for the in-

ertial range of scales, the PDF of the stochastic variable V = δvl/(lεl)
1/3 depends only on the

local Reynolds number Reλ = 〈l(lεl)
1/3〉l/ν and in the limit Reλ À 1, the PDF is universal,

independent of Reλ. If one further assumes the statistical independence between the random

variables V and εl [27], it follows that Sp(l) ≡ 〈δvp
l 〉 = 〈V p〉〈εp/3

l 〉lp/3 = Cpl
p/3+τp/3 = Cpl

ζ′p ,

where Cp is a p-dependent constant, 〈εp
l 〉 ∝ lτp and ζ ′p = p/3 + τp/3. Thus, if K62 is valid,

one expects ζp = ζ ′p for all p. By using the ratio of moments Sp(l)/S3(l)
p/3 instead of the

moment itself, the K62 can be generalized and facilitates a better determination of scaling

exponents. This is the essence of extended self-similarity and has been successfully applied
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Figure 18: The main figure shows that (i) the relative scaling exponents ζp/ζ3 (diamonds) and

ζp/ζ3 (squares) measured using different methods are consistent, (ii) ζp/ζ3 are also consistent

with the local energy dissipation rate measurements φ(p) (circles), and (iii) the intermittency

in the film is stronger than that seen in Ref. [41] (triangles) but weaker than in Ref. [2]

(triangle-downs). The solid line is for ζp/ζ3 = p/3 and the dash line is the lognormal-model

fit to our data (µ ∼ 0.11). The inset displays the correlation coefficients between |δ̃vl| and

εν
l in the inertial range.
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to turbulence with a low Re or with a nonclassical exponent (ζ3 6= 1) [7]. It is readily shown

that ζp/ζ3 = p/3 + τ ∗p/3/ζ3, where τ ∗p/3 = τp/3 − (p/3)τ1. If εl is distributed in a lognormal

fashion, τ1 = 0 and τ ∗p/3 = τp/3 = (µ/18)(3p − p3), where µ is the width of the ln(εl) dis-

tribution [23]. The above discussion shows that the reason ζp deviates from the linear p

dependence is because of the non-trivial distribution of εl characterized by τp/3. It should be

emphasized that though K62 has gained considerable experimental and numerical support

for 3D turbulence [43, 55, 27, 14], its implication for 2D turbulence remains unclear and is

analyzed below.

A difficulty in applying K62 to 2D turbulence is that energy dissipation due to the

fluid viscosity εdis
l = εν

l (≡ ν〈σ(~x′)2〉l) may not be entirely relevant to large-scale velocity

fluctuations because energy flux is reversed. To our surprise, however, we found that δvl and

εν
l are strongly correlated in soap films. The coefficient of correlation C(l) = 〈(| ˜δvl(~x)| −
〈| ˜δvl(~x)|〉) · (εν

l (~x)− 〈εν
l (~x)〉)〉/(s|fδvl|sεν

l
) is plotted in the inset of Fig. 18, where ˜δvl(~x) is the

averaged longitudinal velocity difference on the circumference of a randomly selected disk of

diameter l, εν
l (~x) is the viscous dissipation inside the disk, s|fδvl| and sεν

l
are their standard

deviations, and the angular bracket is the volume plus the time average.

We observed that the correlation is about 70% near linj and decreases to about 10%

for large l. This degree of correlation is on par with what was observed in the inertial

range of 3D turbulence [43, 55, 27, 14]. We next proceeded to calculate energy dissipation

statistics within disks of diameter l. The coarse-grained values of εdis
l (~x) are calculated

according to Eq. (3.1) and the scaling exponents τ ∗p are evaluated based on an ensemble

of disks. The resulting exponents, φ(p) ≡ p/3 + τ ∗p/3/ζ3, can thus be compared with the

relative exponents ζp/ζ3 calculated using δvl. The scaling exponents φ(p), as shown by the

solid circles in Fig. 18, are nearly identical to ζp/ζ3, indicating that intermittency in δvl is

consistent with the non-uniform distribution of εdis
l . For completeness, we also included the

air drag εα
l ≡ α〈~v(~x)2〉l in the energy dissipation, εdis

l (~x) = εν
l (~x)+εα

l (~x). Here we found that

the scaling exponents τ ∗p are unaffected by the air contribution (data not shown), suggesting

that intermittency observed in this experiment is due almost entirely to εν
l . The weak air

contribution is expected in the inertial range and is consistent with our earlier findings that

air drag is significant only for l > l0 [49].
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It remains to be clarified the striking fact that the relative scaling exponent ζp/ζ3 can

be accounted for by intermittency in the locally averaged dissipation field 〈(εdis
l )p/3〉 ∝ lτp/3

with the result ζp/ζ3 ' p/3 + (τp/3 − (p/3)τ1)/ζ3. The finding is surprising because in 2D

turbulence most of the injected energy is transferred to large l instead of being dissipated in

small l. Thus, the scaling behavior for the velocity difference δvl on large scales should be

determined by the energy transfer rate εt
l rather than the local energy dissipation rate εdis

l .

However, using the Navier-Stokes equation with a forcing term ~F , it can be shown that the

energy transfer rate to large scales is given by εt
l = εinj

l − εdis
l , where εinj

l = 〈~F (~x) · ~v(~x)〉l
is the energy injection rate. In particular, in the inertial range (linj ≤ l ≤ l0), one expects

εt
l > 0. Our observed scaling behavior therefore demands εt

l to be proportional to εdis
l or

εt
l = Aεdis

l , where A > 0 is a constant. In light of the energy budget, εinj
l = (A+1)εdis

l in the

inertial range. The above proportionalities (εt
l ∝ εdis

l ∝ εinj
l ) make physical sense, and they

imply that regions of large energy injection would on average dissipate more energy on small

scales and at the same time transfer more energy to large scales. Indeed in 2D turbulence,

longitudinal velocity fluctuations δvl were found to correlate strongly with saddle points

σ2(~x) in the flow [16], which are responsible for energy dissipation as well as for energy

transfer to large scales. In a recent study, we also found that when saddles are suppressed

by polymers, inverse energy cascade is terminated [29]. Thus, even though turbulence in

2D and 3D is very different, both in hydrodynamic structures and in the mechanism of

energy transfer, Kolmogorov’s central idea of cascade, i.e. a dynamic equilibrium of energy

flux δv3
l /l through δvl fluctuations on the scale l and energy dissipation εdis

l within it, is

remarkably preserved in two dimensions.

3.3 CONCLUSION

To summarize, we found velocity fluctuations in the inverse-energy-cascade subrange to be

intermittent in 2D flowing soap films. The intermittency correlates strongly with coarse-

grained saddle structures in the flow (or equivalently the local viscous energy dissipation

rate) in a manner similar to K62. It is unclear why our film behaves differently from previous
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studies [41]. One possible reason is the much higher turbulent intensity in the film than in the

shallow layer of an electrolyte. The second possibility is the slight compressibility (∼ 10%)

of the film.
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4.0 SINGLE-POINT VELOCITY STATISTICS

Single-point (SP) velocity statistics are investigated in forced and decaying two-dimensional

turbulence in a flowing soap film. It is shown that the probability distribution functions

(PDF) in both cases deviate from a Gaussian distribution, which is normally anticipated in

turbulent fluid flows. In the forced turbulence case, the tail of the SP velocity PDF decays

faster than Gaussian (termed the sub-Gaussian) and can be correlated with the forcing

statistics on small scales. In the decaying turbulence case, the SP velocity PDF evolves from

a sub-Gaussian to a super-Gaussian behavior as a function of time. However, for all times,

the locally averaged vorticity remains normally distributed. While our forced turbulence data

may be explained by recent theory proposed by Falkovich et al., the decaying turbulence data

remains unexplained.
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4.1 INTRODUCTION

It is generally believed that single-point (SP) velocity probability distribution functions

(PDF) in turbulent fluid flows are Gaussian, resulting from random accelerations of a fluid

element integrated over a time long compared to the correlation time of the acceleration

[5, 39]. However, this Gaussian behavior was called into question by a recent theoretical

analysis of Falkovich et al. (FKLM) [20, 21], who suggested that the tail part of the PDF,

or the so-called rare events, should be correlated with the external force field and therefore

in general is not Gaussian. According to this theory, the Gaussian SP velocity PDF only

corresponds to a special forcing protocol and thus is not representative of general turbulence

behavior. Herein we present experimental evidence obtained in two different experimental

settings that show this non-Gaussian characteristic, demonstrating that FKLM’s prediction

may be observable in laboratory experiments. Both experiments were conducted in flowing

soap films with one being constantly forced using an electromagnetic field and the other

freely decaying. In the forced 2D turbulence case, the SP velocity PDF is reasonably good

Gaussian if the strength of forcing is weak. However, for a strong forcing, the PDF develops

sub-Gaussian tails and can be modeled using a modified version of FKLM’s theory. In the

freely decaying 2D turbulence, the SP velocity statistics show prominent exponential wings

and cannot be accounted for by the theory. Though these experiments are by no means

exhaustive, they demonstrate that at least in 2D spaces, the SP turbulence statistics is not

as simple as previously perceived and calls for a better understanding of the phenomenon.

4.2 EXPERIMENTAL RESULTS

Our experiments were carried out using an electromagnetic convection cell and a vertical

soap film channel, both having been described in previous publications [50, 6]. For brevity

only information relevant to the current experiment is provided. For the driven turbulence

experiment, the film is 7×7 cm2 and is rendered turbulent by a uniform electric current in the

film suspended about z =1 mm above a set of bar magnets. The in-plane electromagnetic
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(E&M) force is spatially periodic, unidirectional, and its amplitude can be presented by

fy = f0 sin(πx/l0), where the width of the magnet l0 ∼ 2.5 mm, x and y represent directions

perpendicular and parallel to the magnets. The applied current oscillates in time as a

square wave with a frequency of 1 Hz. Depending on the injection current, the root-mean-

square (rms) velocity vrms varies between 8−14 cm/s, corresponding to a Taylor micro-scale

Reynolds number Reλ = 110− 212. The dependence of vrms on Reλ is approximately linear.

Particle imaging velocimetry (PIV) was used to measure the velocity field and about 150

fields (each contained 104 vectors) were used to calculate the velocity statistics. For the

decaying-turbulence experiment, the soap film is driven by gravity in a channel with a mean

speed of U = 1.25 m/s. Turbulence was created by inserting a comb (tooth diameter of 1 mm

and spacing 2 mm) into the flowing film. The setup is therefore akin to 3D grid turbulence.

Once turbulence is created near the comb, there is no feeding mechanism to sustain velocity

fluctuations, and consequently these fluctuations decay with time t (= y/U by Taylor frozen

turbulence assumption), where y is the downstream distance from the comb. The velocity

~v at different t was measured by a 2-channel Laser Doppler Velocimeter (LDV). Typically

106 data points were collected and the SP velocity PDF for each velocity component was

calculated separately. An additional LDV channel was also used that enabled measurement

of velocity at two separate locations simultaneously. If one uses the Taylor’s frozen turbulence

assumption, the measurements using the two probes allow the vorticity ω as a function of

t to be determined, where ω is the locally averaged vorticity over the probe separation of

1 mm.

In the decaying turbulence experiment, we used two LDV probes to measure the aver-

age vorticity in a circle of radius r = 2l/3, where l = 1 mm is the horizontal separation

between the two probes as shown in Fig. 19. The first probe on the left acquires both x

and y components of the velocity, designated as v
(1)
x (t) and v

(1)
y (t). The second probe on the

right acquires only the vertical component of the velocity, designated as v
(2)
y (t). The velocity

fluctuations are transported downstream by the mean velocity U . The Taylor frozen tur-

bulence assumption allows the average vorticity ω =
∫

S
∇× ~v · d~S/(πr2) or the circulation

Γ̄ =
∮

~v · d~l = (πr2)ω around the circle to be constructed. At a time t, the tangential

velocity component vT (t) at locations “a” and “c” can be constructed from the time series
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Figure 19: The schematic diagram for calculating the average vorticity using 2-channel

LDV. The average vorticity ω can be obtained by adding up the tangential components of

the velocity at the points a, b, and c (see the text for details).
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of v
(1)
x (t) and v

(1)
y (t) with the result: va

T (t) = ~v(1)(t− τ) · t̂a at “a” and vc
T (t) = ~v(1)(t + τ) · t̂c

at “c”, where τ = l/(
√

3U), and t̂a ≡ (
√

3/2)x̂ + (1/2)ŷ and t̂c = −(
√

3/2)x̂ + (1/2)ŷ are

the tangential unit vectors at locations “a” and “c”. Likewise, at the time t, the tangential

velocity vT (t) at position “b” is simply vb
T (t) = v

(2)
y (t). Thus the average vorticity at t is

given by ω(t) ' (2/r)(va
T (t) + vb

T (t) + vc
T (t)).

Figure 20 shows the PDFs for the velocity component y along the forcing direction for

four different injection currents for the forced turbulence experiments. As delineated in

the inset, the velocity PDF changes systematically with the current, i.e., the width of P (vy)

broadens continuously as the current increases, indicating that the turbulence intensity (vrms)

becomes stronger. The PDFs are nearly symmetric, indicating that all the odd moments

are approximately zero. Although the PDFs have similar appearance, the wings of the

PDFs become noticeably different if the PDFs are plotted in a non-dimensionalized form

vyrmsP (vy/vyrms) as shown in the main figure. Here we noticed that although the center

part of the PDFs can be collapsed and is well described by a Gaussian function (the dashed

line), the tails of the PDFs are distinctively different for different runs. Curiously, as the

current increases, the PDF decays faster in the tails and they fall well below the Gaussian

function for the largest current used in the experiment. To quantify deviations from the

Gaussian statistics, we plotted in Fig. 21 the normalized even moments Φ(p) ≡ 〈vp
y〉/〈v2

y〉p/2

for p = 2, 4, 6, 8, and 10. To ensure that the high-order moments can be reliably calculated

using the measured PDFs we also displayed in the inset the integrand v10
y P (vy) for the four

runs. The inset shows that even for the highest moment, the integrands are still reasonably

well behaved for large vy and can yield estimates for Φ(p) up to p = 10. The solid squares

in the main figure are the calculated values based on the Gaussian distribution, and the

diamonds, stars, triangles, and circles are for the runs with Reλ= 110, 137, 180 and 212,

respectively. It is evident that as far as the low moments are concerned, such as the flatness

F ≡ Φ(4), the experimental data are indistinguishable from the values derived from the

normal distribution with F = 3. As noted earlier, the skewness S ≡ Φ(3) is approximately

zero for all runs. However, for large moments (p > 6), which are more sensitive to the tails

of the PDFs, the difference between the measurement and the Gaussian prediction becomes

noticeable and this difference increases with Reλ. The above findings are consistent with
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Figure 20: The SP velocity PDF along the forcing direction when vyrms=8.4 (blue), 9.9

(green), 12.1 (red), and 13.2 (black) cm/s, corresponding to Reλ = 110, 137, 180, and 212,

respectively. The curves in the main figure are normalized whereas those in the inset are

unnormalized. The tails of the PDFs deviate from Gaussian, which is delineated by the

dashed line.
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investigations by pioneers in the field [5, 39] who used the measured S and F to justify that

the SP velocity PDF of 3D turbulence is normally distributed. Their view on this matter

has been widely accepted until recently [21]. We also investigated SP velocity PDF of the

transverse velocity component vx. Because of unidirectional forcing in this experiment, this

velocity component is not directly coupled to fy but receives energy due to the pressure

term in the Navier-Stokes equation. Interestingly P (vx) in all four cases is much closer to

Gaussian than P (vy) and thus displays a universal behavior.

An analysis of 2D decaying turbulence notes that although turbulence is not homo-

geneous in this case, the local fluctuations are nearly isotropic. Thus, in the following,

only measurements of the horizontal velocity component vx are presented. Our experiment

shows that SP velocity PDFs for decaying turbulence are significantly different from the

forced ones. We noticed that the functional form of the PDF changes continuously with

the downstream distance y or time t as depicted in Fig. 22(a). For short times, the P (vx)

is sub-Gaussian with a characteristic flat top. For long times, however, the PDFs sharpen

and develop exponential wings for large vx. Most interestingly this exponential function

appears to be the asymptotic form as illustrated in the inset, where it is shown that P (vx)

becomes nearly independent of t in late times. The observed velocity PDFs are very different

from the vorticity PDFs, which are presented in Fig. 22(b). Although P (ω̄) also becomes

narrower in late times, its functional form remains approximately Gaussian independent of t.

To analyze the time dependence of decaying turbulence, in Fig. 23(a) the flatness F of

the velocity distribution, and in Fig. 23(b) the normalized energy E/E0 and the normalized

enstrophy Ω/Ω0 are plotted as a function of t, where E = 〈v2〉/2, Ω = 〈ω̄2〉/2, and E0 and

Ω0 are the initial energy and enstrophy, respectively. One observes that F ∼ 2.2 in early

times and gradually approaches the Gaussian value of 3 at t ' 0.1 s, which corresponds to

about 30 initial eddy turnover time τi ≡ 1/f0, with f0 being the vortex shedding frequency.

Remarkably, for t > 0.1 s, the flatness increases markedly and reaches F ' 6, which is con-

sistent with the PDF being exponential. The normalized total energy E/E0 and enstrophy

Ω/Ω0 of the system also evolve with t; they both decay slowly initially and then rapidly in

long times. Inspection of Figure 23 reveals that when the flatness starts to increase sharply,
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Figure 22: The SP velocity vx (a) and vorticity ω̄ (b) PDFs at different times t in decaying

2D turbulence. As t increases (0.01, 0.02, 0.03, 0.05, 0.08, 0.11, 1.15, 0.18, 0.21, 0.26, and

0.33 s), the P (vx) becomes narrower, and evolves from sub-Gaussian (F < 3) to super-

Gaussian (F > 3). The P (ω̄) however remains approximately Gaussian. The inset displays

the late-time velocity PDFs with t=0.21, 0.26, and 0.33 s.
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most energy and enstrophy have already been drawn out of the system, and turbulence is

in its late stage of evolution. Indeed a measurement of the integral scale shows that l is

about 4.5 cm, which is about half of the channel width. Thus, it may be concluded that

the exponential SP velocity PDF is associated with the late stage of 2D decaying turbulence.

The theory of FKLM provides a general method for finding the tails of the probability

distribution functions, which are the solutions of stochastically forced differential equations.

The remarkable finding of the theory is that these rare events are not completely random

but are corresponding to “extreme” field-force configurations, which were coined as “instan-

tons” by the investigators [20]. A similar approach was also used in treating properties

of metals with quenched disorders [35]. Although a field theoretical approach was used in

FKLM’s derivation, the physical idea may be conveyed using simple pictures. It is shown

using saddle-point integrals that the tail of the SP velocity PDF is ascribed to the large-

scale velocity fluctuations that have a turnover time tL = L/v, where L is the integral scale

of turbulence. For tL shorter than the typical forcing time τ , the velocity is pumped by

the external force f (or acceleration) v ∼ ft until it is saturated at t = tL. This yields

v2 ∼ fL and the velocity distribution function Pv(v) is related to the forcing statistics Pf (f)

by Pv(v) ∝ Pf (v
2/L). In the opposite limit, when tL is much greater than τ , v2 ∼ f 2tLτ

or v3 ∼ f 2Lτ . This yields Pv(v) ∝ Pf (v
3/2/(Lτ)1/2). Hypothetically, if the forcing is a

Gaussian process, FKLM predicts Pv(v) ∝ exp(−v4) for tL ¿ τ and Pv(v) ∝ exp(−v3) for

tL À τ . In either case, the SP velocity PDF falls off faster than the force PDF. According to

this theory, the Gaussian velocity PDF corresponds to a special forcing protocol with Pf (f)

obeying an exponential distribution and the force-force correlation time τ is very short. One

of the interesting predictions of FKLM is that as one gets further into the tail of the PDF,

the statistics should become more in favor of the long forcing-time limit (tL ¿ τ). This

is because for the given integral scale L, a large velocity v implies a small tL(= L/v) and

consequently the short-forcing-time limit (τ ¿ tL) becomes increasingly more difficult to

satisfy when v increases. As noted latter, this prediction appears to be consistent with the

author’s observations.
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In order to make comparisons between theory and observation such as those in Fig.

20, a conceptual difficulty arises; namely, the force field in our experiment is not random

but is periodic in time. This difficulty however can be circumvented by recognizing that it

is the energy injection rate ε = ~f · ~v that is responsible for driving turbulent fluid flows,

v2(≡ ~f ·~vt) = εt. Unlike ~f , ε is stochastic with a defined distribution Pε(ε) and a correlation

time. This enables us to generalize FKLM to situation where the forcing itself is not ran-

dom. Using the E&M cell, the velocity fields were acquired simultaneously with the current

injection. The Pε(ε) was thus measured by knowing the phase of ~f(~x, t) and the velocity

~v(~x, t). Following FKLM’s argument, one could derive the relationships between ε and v. In

the long-forcing-time limit (tL ¿ τ), v3 ∝ εL, and Pv(v) ∼ Pε(ε
1/3). On the other hand, in

the short-forcing-time limit (tL À τ), v5 ∝ ε2Lτ , and Pv(v) ∼ Pε(ε
2/5). In our experiment,

since L ' 2.5 cm and vrms ' 13 cm/s, the energy transfer time is tL ' 0.2 s. Although the

forcing is oscillatory with a period of 1 second, the correlation time for the energy injection

is much shorter and can be estimated as τ = l0/δvl0 . Taking l0 = 0.25 cm (the magnet

size) and the velocity difference on the scale l0 to be δvl0 ' 6 cm/s, we found the energy

injection correlation time τ ' 0.04 s, which is shorter than tL. This analysis suggests that

our experiment is in the short-forcing-time regime, and Pv(v) ∼ Pε(ε
2/5) is to be expected.

The measured Pε(ε) is slightly asymmetric and is skewed towards the positive value of

ε as it should be. To compare with the velocity distribution P (vy), the symmetric part of

Pε(ε) was constructed, P S
ε (ε) ≡ (Pε(−ε)+Pε(ε))/2, and used for the calculation. In Fig. 24,

P (vy) ∼ P S
ε (ε2/5) (thick solid line) and P S

ε (ε1/3) (thin solid line) are plotted along with the

run (circles) having the strongest external forcing, Reλ = 212. For comparisons, the Gaus-

sian PDF (dashed line) is also plotted. It is evident that for this normal distribution, large

deviations were observed for vy > 2vyrms. The expected theoretical form P (vy) ∼ Pε(ε
2/5)

works significantly better than the Gaussian, and the fit to the long-forcing-time prediction

P (vy) ∼ Pε(ε
1/3) is also reasonable. For completeness, we also analyzed the measurements

using the generalized form P (vy) ∼ Pε(ε
α), where α is a free parameter. A simple fitting pro-

cedure to the data in Fig. 20 yields α ∼0.67, 0.64, 0.58, and 0.4 for Reλ= 110, 137, 180, and

212, respectively. This result is plotted in the inset of Fig. 24, showing that α is a decreasing
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Exponent α is plotted as a function of vyrms.
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function of vyrms or Reλ. This trend is consistent with the theory in that as vyrms increases,

the system is more appropriately described by the long-forcing-time behavior with a decreas-

ing α. Asymptotically one expects α = 1/3 but it is not attained in the current measurement.

4.3 CONCLUSION

To conclude, we have investigated systematically the effect of external forcing on the single-

point velocity statistics of 2D driven and 2D decaying turbulence. Remarkable differences are

found in the two cases. For a weak external forcing, the PDF is approximately a Gaussian

function. However, as the strength of the external force increases, the tail part of the

PDFs increasingly deviate from Gaussian. The faster than Gaussian decay in the wings

of the SP velocity PDF is consistent with the theoretical prediction of FKLM. The most

unexpected aspect of this experiment is the exponential tail for the decaying 2D turbulence.

Our measurement shows that such a tail appears prominently at the late stage of turbulence

evolution. Physically, this corresponds to a small number of energetic vortices and their

spatial distribution determines the shape of the PDF. There have been many discussions

about the final state of a vortex liquid, which in the limit of vanishing viscosity or a large

Reλ, is expected to be governed by the maximization of entropy of the vorticity distribution

[13]. The possible connection between our measured SP velocity PDFs and theory concerning

the time evolution towards this final state in an open system remains to be explored.
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APPENDIX A

HIERARCHICAL STRUCTURE MODEL

The lognormal model [32] proposed by Kolmogorov explains our data reasonably well. How-

ever, the lognormal model has the defect that as p → ∞, dζp/dp < 0 which is not physical

as recognized by Novikov [40]. To overcome such a short coming, a new model was pro-

posed by She and Leveque (SL) [52] based on the hierarchical structures in fully developed

turbulence. The SL model shows very good agreement with experimental and numerical

results. Later, Dubrulle [19], and She and Waymire [52] interpreted the SL model based on

log-Poisson statistics. We analyzed our data based on hierarchical structure model and the

results clearly show that 2D turbulence at large scales is intermittent.

In fully developed 3D turbulence, the non-uniform distribution of the coarse-grained

energy dissipation rate εdis
l is responsible for intermittency, and scales as δv3

l ∼ εll. This is

called the Kolmogorov refined self-similarity hypothesis (KRSH). The moments of δvl have

the scaling behavior,

〈(δvl)
p〉 ∼ 〈εp/3

l lp/3〉 ∼ lτp/3lp/3 ∼ lζp , (A.1)

where τq is the scaling exponent of the moments of εl: 〈(εl)
q〉 ∼ lτq . Here, one can obtain

the relation ζp = p/3 + τp/3. SL further assumed a hierarchical relation between the ratio of

the adjacent moments of the energy dissipation rates on scale of l as

ε
(p+1)
l = Apε

(p)β

l ε
(∞)1−β

l , 0 < β < 1, (A.2)

where

ε
(p)
l = 〈εp+1

l 〉/〈εp
l 〉 and ε

(∞)
l = lim

p→∞
ε
(p)
l (A.3)
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By definition, ε
(0)
l is scale independent simply because ε0

l = 〈ε1
l 〉/〈ε0

l 〉 = 〈ε〉. Assuming that

the most singular structures of turbulence are filaments, the quantity ε
(∞)
l associated with

such structures was derived by SL:

ε
(∞)
l ∼ l−2/3. (A.4)

From Eq. (A.2), (A.3), and (A.4), one can obtain an iteration relation:

τp+2 − (1 + β)τp+1 + βτp +
2(1− β)

3
= 0. (A.5)

SL solved the equation with the result:

β = 2/3 and τp = −2

3
p + 2(1− 2/3)p. (A.6)

This finally gives

ζp = p/9 + 2

[
1−

(
2

3

)p/3
]

. (A.7)

For p=3, ζp=3=1 as expected by K41, and for p →∞, ζp = p/9 + 2, which dζp/dp = 1/9 > 0

so that it doesn’t have the defect of the log-normal model, which has a negative slope at

large p.

Although the SL model gives good agreement with data which have the Kolmogorov-like

scaling exponents, we cannot apply the SL model to our data because the initial slope of ζp of

our data is greater than 1/3 predicted by K41. So, Dubrulle suggested that if the generalized

scale ξ(l) = 〈〈εl〉−1δv3
l 〉 is introduced, the SL model satisfies the extended self-similarity [19].

Using a different assumption of ε
(∞)
l ∼ l−∆ with 0 ≤ ∆ ≤ 1, and the definition πl = εl/ε

(∞)
l ,

we can write:
δv3

l

〈δv3
l 〉

.
=

εl

〈εl〉 =
πl

〈πl〉 , (A.8)

where the symbol
.
= means that both sides have the same scaling properties, i.e. that the

moments of both sides are proportional. Moreover, Eq. (A.2) is given by

〈πp+1
l 〉
〈πp

l 〉
= Ap

( 〈πp
l 〉

〈πp−1
l 〉

)β

, (A.9)

and

〈πl〉 ∼
( 〈δv3

l 〉
ldis〈ε〉

)∆

, (A.10)
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where ldis is the dissipative length scale and 〈ε〉 is the average energy dissipation rate of the

system. Eq. (A.10) states that the dissipative structures are spatially intermittent. Then,

one can get the relation

〈δvp
l 〉 ∼ 〈δv3

l 〉ζp/ζ3 ,

with
ζp

ζ3

= (1−∆)
p

3
+

∆

1− β
(1− βp/3). (A.11)

If ζ3 = 1 and ∆ = β = 2/3, Eq. (A.7) can be recovered.

When expressed in terms of the velocity structure function, Eq. (A.2) and (A.9) can be

written as
Sp+1(l)

Sp(l)
= Ap

[
Sp(l)

Sp−1(l)

]β

[S(∞)(l)]1−β, (A.12)

where S(∞)(l) ≡ limp→∞ Sp+1(l)/Sp(l) for 0 < β < 1, and Ap is a constant independent of

l. Since it is difficult to obtain S(∞)(l) for infinite p, S(∞)(l) can be removed by normalizing

Eq. (A.12) with Eq. (A.12) of p = 1:

Hp+1(l)

H2(l)
=

Ap

A1

[
Hp(l)

H1(l)

]β

(A.13)

where Hp(l) = Sp(l)/Sp−1(l).

Fig. 25 shows the log-log plot of Eq. (A.13). The scaling exponent β in fully developed

turbulence is a measure of intermittency [19]. For instance, when β = 1, turbulence is

nonintermittent. We found in our experiment β '0.82±0.01(circles) and 0.84±0.01 (squares)

at Reλ= 212 and 110, respectively. These are different from unity for nonintermittent flow

(solid line) and 2/3 (dashed line) for 3D turbulence. This indicates that intermittency in

2D turbulence exists even though it is small compared to that in 3D turbulence. From this

analysis, we also found β is not strongly dependent on the turbulence intensity.

Considered next is the quantity ∆, which is linked to the codimension C0 = d−D of the

dissipative structures, where d and D are the real dimension of the system and the embedded

dimension in the system. [19]. One can rewrite Eq. (A.11) as

ζp

ζ3

− Γ = (1−∆)
[p

3
− Γ

]
(A.14)
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Figure 25: The log-log plot for the test of the hierarchical structures: Hp+1(l)

H2(l)
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It is represented as the circles and the squares at Reλ=212 and 110, respectively. The solid

line and the dashed line denote the slope β=1 and 2/3, respectively.
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Figure 26: The plots of Eq (A.14). ∆ is obtained from the slopes of the plots: 0.31 for

Reλ = 212 and 0.49 for Reλ = 110.
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where Γ = (1 − βp/3)/(1 − β). Fig. 26 is the plot of Eq. (A.14) for Reλ = 212.1 (squares)

and 110 (circles). The ∆s obtained from the slopes of the plot are 0.31±0.02 for Reλ = 212

and 0.49±0.02 for Reλ = 110. These values are smaller than that in the SL model, which is

2/3 in 3D turbulence.

Fig. 27 is the plot of ζp/ζ3 based on β and ∆ obtained from experimental data. It shows

a good agreement with the experimental data up to p = 8.
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Figure 27: The plot of ζp/ζ3 based on the log-Poisson fit for Reλ = 212 (a) and 110 (b).
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APPENDIX B

LOCAL AVERAGE STATISTICS

Until now we have focused on whether 2D turbulence is intermittent and if it is, how to

describe it. A different view is that while intermittency is absent in 2D turbulence, it is

believed to result from the nonuniform distribution of the energy dissipation rate in fully

developed 3D turbulence. We present the connection between the energy transfer rate Πl

and the squared strain rate σ2
l in forced 2D turbulence. When the energy transfer rate is

conditioned by the strain rate, intermittency is surprisingly reduced.

The coarse-grained two-point velocity difference with a separation l is given by

{δv3
l (~x)} ≡ 1

N

N∑
i

[
[(~v(~x′)− ~v(~x))]

2
(~v(~x′)− ~v(~x)) · l̂

]
i

or

{δv3
l (~x)} ≡ 1

N

N∑
i

[[
δvl/2(~x)

]2 · δvL
l/2

]
i
,

where the bracket {...} denotes the circular average around a circle with a radius l/2, N

is the number of velocity difference pairs of length l/2 centered at the location ~x, and l̂ is

the unit vector in the direction between two points. The velocity difference is defined by

δvl/2 ≡ ~v(~x′)− ~v(~x) and δv2
l ≡ [(~v(~x′)− ~v(~x))]2 =

(
δvL

l

)2
+

(
δvT

l

)2
, where the superscript L

and T denote the longitudinal and transverse components of the velocity difference, respec-

tively. For isotropic turbulence, this quantity {δv3
l (~x)} corresponds to the two point velocity

difference δv3
l = [(~xl(~x + ~l) − ~v(x)) · l̂]3 usually adapted in 2D and 3D turbulence analysis.

61



Figure 28: The coarse-grained energy transfer rate Πl as a function of the coarse-grained

strain rate σ2
l . The length scales are 0.31 (squares), 0.62 (circles), 0.93 (triangle), 1.24

(triangle-down), 1.56 (diamond), 1.87 (triangle-left), and 2.17 (triangle-right) cm. The arrow

denotes σ2
l = 4500 s−2.

62



The corresponding energy transfer rate φl is

φl(~x) ≡ 1

l
{δv3

l (~x)},

which indicates the energy flow per second through the circle of a diameter l centered at

~x. The coarse-grained strain rate in the circle of the radius l/2 centered at ~x is defined as

follows:

σ2
l (~x) =

1

M

M∑
i

σ2
i (~x

′) with |~x− ~x′| < l/2

where M is the number of the points of σ2(~x′) inside the circle. It is interesting to investigate

the correlation between the the energy flux and the strain rate on the given circles.

In Fig. 28, the quantity Πl is plotted as a function of σ2
l , which is obtained by the

definition,

Πl(σ
2
l ) = 〈|φl(σ

2
l )|〉 ≡

∫ +∞

−∞
|φl|P (φl|σ2

l )dφl

where P (φl|σ2
l ) is the conditional probability distribution function of φl. The Πl(σ

2
l )s at

different scales l overlap in the range of 2500 s−2 < σ2
l < 11500 s−2. Outside the above

quoted range of σ2
l , the deviations come from the lack of statistics. The length scales in the

plot are 0.31 (squares), 0.62 (circles), 0.93 (triangle), 1.24 (triangle-down), 1.56 (diamond),

1.87 (triangle-left), and 2.17 (triangle-right) cm. In the overlapping σ2
l range, we found

the relation Πl ∼ (σ2
l )

1.6
, which is different from Kolmogorov’s prediction for 3D turbulence,

Πl ∼ σ2
l , indicating the energy flux is not entirely determined by σ2

l . This relation is universal

and independent of the Reynolds number Reλ and the length scales l in our experiment.

It is interesting to ask what is responsible for the inverse energy cascade in large scales.

To answer this question we investigated the energy transfer rate to small scales and to large

scales. The outward flux, Π+
l (circle), and the inward flux, Π−

l (square), are plotted in Fig.

29. For comparison, we display the absolute values of Π−
l . The scaling behaviors are very

similar in both cases in all length scales, while the number of events (frequency) of Π+
l is

larger than that of Π−
l for a given σ2

l (~x) ∼ 4500 s−2, as shown in Fig. 30. This suggests

that for all length scales the energy flux always fluctuates, but the inverse energy cascade in

the large scales is due to the asymmetric distribution of Π+
l and Π−

l , which means that the

frequency of Π+
l is greater than that of Π−

l at given σl.
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Figure 29: The coarse-grained outward energy flux Π+
l (circles) and inward fluxΠ−

l (squares).

The length scales l are 0.31 (a), 0.93 (b), 1.56 (c), and 2.17 (d) cm.
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l (squares). The length scales l are 0.31 (a), 0.93 (b), 1.56 (c),

and 2.17 (d) cm.

65



Figure 31: (a) The coarse-grained high order moments Gp(l). From bottom to top, p=1 to 9.

(b) The scaling exponent ζp/ζ3 as a function of p. The squares represent data from previous

analysis [29] and the circles are obtained from coarse-grained velocity difference.
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Next, we investigated intermittency through the coarse-grained high-order structure func-

tions, defined as

Gp(l) ≡ 〈〈{δv3
l }p/3〉〉

=

∫ +∞

−∞
{δv3

l }p/3P ({δv3
l }|σ2

l )d{δv3
l }

∼ lζ
∗
p

where 〈...〉 represents the conditional ensemble average, and the scaling exponent ζ∗p is used

to distinguish ζp from previous analysis [29]. Fig. 31(a) shows Gp(l) as a function of the

length l up to p = 9. The scaling range is extended to the entire inertial range and one can

obtain ζ∗p by a linear fitting algorithm. The relative scaling exponents ζ∗p/ζ
∗
3 are obtained by

the extended self-similarity (ESS) suggested by Benzi et. al. [7] and plotted in Fig. 31(b).

In the figure, the circles and the squares represent ζ∗p/ζ
∗
3 and ζp/ζ3, respectively. When

compared with our previous analysis, the intermittency effect is significantly reduced. From

this, we may conclude that intermittency stems from the non-uniform distribution of the

energy dissipation rate or the squared strain rate in fully developed turbulence.
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APPENDIX C

THE STATISTICS OF PRESSURE FLUCTUATIONS

C.1 INTRODUCTION

One of the interesting properties of turbulence is the spatial distribution of the pressure

fields. It has not attracted as much attention as the study of the velocity fields, despite its

importance. The equation of motion describing 2D turbulent flow in the soap film is the 2D

Navier-Stokes equation

∂tvi + vj∂jvi = −∂ip + ν∂j∂jvi + fi − αvi, (C.1)

where α is the drag coefficient between the air and the soap film, p is reduced pressure which

is P/ρ where P is pressure and ρ is the density of fluid. fi is the reduced force which is

Fi/ρ where Fi is the external force. The pressure gradient is one of four forces governing the

dynamics of the flow; the external force fi, the dissipative force ν∂j∂jvi, the drag force by

the air αvi, and the pressure gradient force ∂ip. Among these forces, the pressure gradient

∂ip does not contribute the creation or the dissipation of the energy, but it accelerates the

fluid molecules and redistributes energy among different velocity components.

The Poisson expression of the pressure fields can be obtained by taking the divergence

of Eq. (C.1). After applying the incompressible condition (∂ivi = 0), one gets the following

simple result:

−∇2p = Λ, (C.2)
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where Λ ≡ (σ2 − ω2)/2. Here the squared strain rate is defined as σ2 =
∑

i,j(∂ivj + ∂jvi)
2/2

and the enstrophy ω2 =
∑

i,j(∂ivj − ∂jvi)
2/2. The statistics of the quantity Λ has been

investigated by Hua [28] and Rivera et al. [47]. Rivera et al. showed that the positive tail

of the PDF of Λ decays differently from the negative tail due to the different number of

degrees of freedom of the flow structures, assuming that the statistics of the stream fields

are random Gaussian.

The spectrum of pressure fluctuations is defined as follows:

〈p2〉 =

∫ ∞

0

Epp(k)dk,

where

Epp(k) ∼ 〈ε〉4/3k−7/3 (C.3)

in the inertial range for high Reynolds numbers. This scaling relation was derived theoret-

ically with various assumptions in the 1950s by Batchelor [5]. Measurements by George,

Beuther, and Arndt [25] and Tsuji and Ishihara [58] supported the -7/3 scaling in fully

developed 3D turbulence. Others [12, 34] found deviations from such a scaling law.

C.2 EXPERIMENTAL RESULTS

Our experiments were performed using a freely-suspended soap film in an electromagnetic

convection cell as described in Chap. 4.

As shown in Fig. 32, the pressure field is color-coded with strong positive pressure being

represented by red and the strong negative pressure being represented by blue. As expected,

most of positive pressure regions are associated with the saddle structures of the flow, while

most of the negative pressure regions are associated with the vortex structures of the flow.

Both of the positive (right handed) and the negative (left handed) vortices give negative

pressure values. Careful examinations of the pressure field suggest that the negative values

of pressures are more abundant compared to the positive ones but also have large numerical
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Figure 32: The snapshot of the pressure field (color-coded) and the velocity field (arrows).
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Run No. Reλ 〈p2〉1/2/〈u2〉 −Sp Fp

1 212 0.526 0.45 4.23

2 180 0.525 0.50 4.07

3 136 0.522 0.66 5.12

4 110 0.535 0.56 4.68

Table 1: The table of the skewness Sp and the flatness Fp of pressure fluctuations.

values. Since 〈p〉 = 0 it suggests that the peak of the pressure PDF P (p) should be in the

positive p region.

Table 1 shows the summary of the measurements of pressure. Four turbulence intensities

are investigated with Taylor micro-scale Reynolds number Reλ = 212, 180, 137, and 110,

respectively. The non-dimensionalized pressure PDFs, p′ = p/σp, for all runs are plotted in

Fig. C.2, where σp is the variance of the pressure fluctuations. The inset of Fig. C.2 shows

σ2
p which is a linear increasing function of Reλ. The different color lines indicate different

runs: black (1), red (2), blue (3), and green (4). For all runs, the non-dimensionalized

PDFs collapse on to each other remarkably well, which means the reduced pressure PDF is

a universal function independent of Reλ. The the tail part of the non-dimensionalized PDF

of pressure fluctuations can be described by an exponential function, in the form of

P (p/σp) ∼ exp
[−γ± (|p|/σp)

]
,

where γ± are nondimensional parameters which are independent of Reλ but has different

values for positive and negative pressures. Experimentally, we found γ+ '2.05 and γ− '1.25.

The negative side of the PDF has a longer tail than the positive side. The exponential form of

the pressure PDF may be loosely connected with the fact that two-point velocity correlation

function on large scales is Gaussian [26]. The positive side of PDF is also approximately

exponential though near the top, it is Gaussian [45].

Fig. 34 shows the plot of the first three non-trivial moments of the pressure fluctuations

as a function of Reλ. The average pressure fluctuations pnorm ≡ 〈p2〉1/2/〈u2〉 are shown in
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Figure 33: The non-dimensionalized PDF of pressure for all runs (see Table 1). The black,

red, blue, and green lines indicate the run 1, 2, 3, and 4, respectively. The tail part of the

PDF decays exponentially.
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Figure 34: The lower moments of pressure fluctuations: (a) pnorm, (b) the skewness Sp, and

(c) flatness Fp (see the contents for the definitions)

73



-15 -10 -5 0 5 10
p/σ

p

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

σ pP(
p)

Figure 35: The pressure PDFs in presence of polymer.

Table 1. In 3D turbulence, Batchelor shows that for Gaussian velocity fields, pnorm= 0.6 [4].

Our measurements show that pnorm ' 0.53 and almost constant over the range of Reynolds

number we investigated. The useful values to characterize the PDF of fluctuating quantities

are the skewness Sp and the flatness Fp which are defined as

Sp ≡ 〈p3〉
〈p2〉3/2

,

and

Fp ≡ 〈p4〉
〈p2〉2 .

In 2D turbulence, Holzer and Siggia found that Sp = −1.92 and Fp = 9 when the velocity

is restricted to a shell, and Sp = −1.19 and Fp = 6.44 for the equilibrium spectrum E(k) ∼
k/(k2 + k2

0), with k0=6 and k < 118 [26]. As shown in Table 1, in our experiment, both of

Sp and Fp are much less than the values obtained by Holzer and Siggia. The discrepancy

may be due to the unrealistic velocity spectrum they used.
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An interesting observation was also made in the presence of different amounts of linear

polymers (the experimental details are given in Chap. 2 and in Ref. [30]) as displayed in Fig.

35. The pressure fields in this case were again calculated based on the Λ- distributions using

Eq. C.2. It is found that for low polymer concentrations (0-9 ppm) the P(p) is essentially

the same as without polymers. On the other hand, for high polymer concentrations (12 and

24 ppm), the P(p) is different for the large positive p but remains the same for negative p.

The broadening of P(p) for p/p rms¿ ¿1 makes the pdfs significantly more symmetric than

without polymers. Interesting, the change of PDFs occurs at the same polymer concentration

where turbulent quenching was observed (see. Chap. 2). While it is reasonable to speculate

that the changes in the pressure PDFs is a result of changes in the turbulent structures,

particularly the saddle structures. The basic physics is not known at present. The main

difficult is the constitutive equation for polymers in the soap films and its effect on the

pressure equation (C.2) is not characterized. Our experiment may provide some clues as

what forms of the constitutive equation are reasonable and what are not.

Regarding the power spectrum of pressure, even though one can calculate the scaling

law for Epp using a dimensional analysis as given in Eq. (C.3), the result is controversial. In

3D turbulence, there are many measurements for the pressure spectrum. George, Benther,

and Arndt showed that Epp(k) follows the classical result Epp ∼ k−7/3 [25]. Pumir also gave

support to this scaling relation using a computer simulation [45]. Recently, Tsuji and Ishihara

reported Epp(k) scales as k−7/3 for Reλ > 600 in a turbulence jet [58]. The scaling exponent

other than −7/3 was also found by other investigations. Pullin and Rogallo [44], and Cao,

Chen and Doolen [12] found that Epp(k) ∼ k−5/3 through the computational study. There

is no agreement to the scaling exponent of pressure as far as we know. In 2D turbulence, it

is predicted by the same dimensional analysis that Epp(k) ∼ k−7/3 for large scales (k < kinj)

and k−5 for small scales (k > kinj). Lesieur, Ossia, and Métais found the result in support

of Kolmogorov scaling for pressure using a quasi-normal or Eddy Damped Quasi-normal

Markovianised approximation [34]. Our data shows an agreement with the Kolmogorov

scaling of pressure in 2D turbulence. The 2D pressure power spectrum is presented in Fig.

36.

In Fig. 37, the power spectra of pressure are plotted for four different runs with Reynolds
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Figure 36: The pressure spectrum E(kx, ky) in k-space.
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Figure 37: The power spectrum of the pressure Epp(k) for four different turbulence intensities:

Reλ = (squares), 180 (circles), 137 (triangle-ups), and 110 (triangle-downs). All have same

scaling exponent in both of large and small scales.
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number Reλ = 212, 180, 137, and 110. For all runs, the scaling behavior is almost the same

except for the magnitude of the spectrum. This plot shows two scaling ranges: in the inverse

energy cascade regime, k < kinj, Epp(k) scales as k−7/3 and in enstrophy regime, k > kinj,

Epp(k) scales as k−5.

C.3 CONCLUSION

The properties of pressure fluctuations were also investigated for various turbulence intensi-

ties. The negative side of PDF of pressure fluctuations decays slower than the positive one,

but both of them have the exponential tails. It is presented that the spectra of pressure

approximately scale as k−5 in small scales and k−7/3 in large scales.
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