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APPLICATIONS OF THE REFLECTED ORNSTEIN-UHLENBECK

PROCESS

Wonho Ha, PhD

University of Pittsburgh, 2009

An Ornstein-Uhlenbeck process is the most basic mean-reversion model and has been used in

various fields such as finance and biology. In some instances, reflecting boundary conditions

are needed to restrict the state space of this process. We study an Ornstein-Uhlenbeck

diffusion process with a reflecting boundary and its application to finance and neuroscience.

In the financial application, the Vasicek model which is an Ornstein-Uhlenbeck process

has been used to capture the stochastic movement of the short term interest rate in the

market. The shortcoming of applying this model is that it allows a negative interest rate

theoretically. Thus we use a reflected Ornstein-Uhlenbeck process as an interest rate model

to get around this problem. Then we price zero-coupon bond and European options with

respect to our model.

In the application to neuroscience, we study integrate-and-fire (I-F) neuron models. We

assume that the membrane voltage follows a reflected Ornstein-Uhlenbeck process and fires

when it reaches a threshold. In this case, the interspike intervals (ISIs) are the same as the

first hitting times of the process to a certain barrier. We find the first passage time density

given ISIs using numerical inversion integration of the Laplace transform of the first passage

time pdf. Then we estimate the unknown identifiable parameters in our model.
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1.0 INTRODUCTION AND LITERATURE REVIEW

1.1 INTRODUCTION

Diffusions are fundamental processes that help to explain the movement of particles. They

are thus important and have been used in various fields such as physics, engineering, biology

and finance. The Wiener process, which models Brownian motion, is a typical example of

a diffusion process and has been used extensively to describe random movements of parti-

cles in a fluid or fluctuations of the stock market. In certain cases, particles are subject to

a phenomenon called mean reversion, that is they eventually tend toward the mean value.

Commodities and interest rates in financial markets and cellular motion in biology are exam-

ples of mean-reverting processes. The most basic mean-reversion model is that of Ornstein

and Uhlenbeck [59] and appears as the only solution of the Langevin’s stochastic differen-

tial equation. Considering a pollen grain in a fluid, we think of two forces that affect the

movement of pollen. Drag, due to a pollen grain colliding with the molecule of the fluid, and

fluctuations of fluid molecules are the two forces acting on a pollen grain. Thus, the drift

term in the Ornstein-Uhlenbeck process represents the amount of momentum lost by drag

force and the diffusion term is subjected to a rapidly fluctuating random force.

In some instances, reflecting boundary conditions are needed to restrict the state space

of diffusion processes. In finance, modeling the currency exchange rate needs two reflecting

boundaries because the monetary authority controls the bilateral exchange rates of the par-

ticipating countries to lie within intervention limits [3]. In a queuing system, the number

of customers are represented by a diffusion process defined over the real line, so a reflecting

boundary at zero is imposed to restrict the state space [20]. Another example arises in pop-

ulation growth models, for which a diffusion process is related to the number of individuals
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that are capable of reproduction and is limited according to resources and external forces

such as predators [50]. In this paper, we study an Ornstein-Uhlenbeck diffusion process with

a reflecting boundary and its application to finance and neuroscience.

In the financial application, we choose the Vasicek model [60], which is an Ornstein-

Uhlenbeck process, as an interest rate model and impose a reflecting boundary at zero

to avoid negative interest rates. Then, we price a zero-coupon bond and European path-

dependent options with this interest rate model. Path-dependent options are options whose

payoff at expiry depends on the history of the underlying asset price. Barrier options are

a class of path-dependent options which were first priced by Merton [44]. They differ from

vanilla options in that part of the option contract is triggered if the underlying price hits

some barrier at any time prior to expiry. If the trigger price is reached at any time before

maturity, it causes an option with pre-determined characteristics to come into existence

(knock-in) or it will cause an existing option to cease to exist (knock-out). Asian options

depend on the average price of the underlying asset. Their payoffs are the difference between

the asset price at expiry and their average over some period prior to expiry if the difference is

positive, and zero otherwise. Another type of path-dependent option is the Lookback option

that depends on the maximum or minimum of the asset price over some period [36].

In the application to neuroscience, we study integrate-and-fire (I-F) neuron models [51].

According to these models, neurons fire when the membrane potential reaches a certain

threshold and then recover to the initial potential after firing. Assuming that the mem-

brane potential of the neuron follows a reflected Ornstein-Uhlenbeck process, we study the

first-passage time (FPT) density of this process to estimate the parameters when only the

first-passage time data is accessible. No closed-form solution exists for the FPT density

of the reflected Ornstein-Uhlenbeck process except one special case. However, the Laplace

transform of the FPT density is accessible and we can find the FPT density by inverting it

numerically. Then, the MLEs of the identifiable parameters are estimated using Newton’s

method.

This paper begins with a brief literature review of the previous work regarding the

Ornstein-Uhlenbeck process, the reflected Ornstein-Uhlenbeck process and their FPT density

problems in the context of finance and biology. In Chapter 2, we provide background on the
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reflected Ornstein-Uhlenbeck process. We introduce a one-dimensional stochastic differential

equation with a lower reflected boundary and apply it to an Ornstein-Uhlenbeck process. We

then investigate the Laplace transforms of the FPT densities which can be expressed in terms

of Hermite functions. Numerical methods to simulate the reflected Ornstein-Uhlenbeck pro-

cess and to invert the Laplace transform of its first-passage time density are also introduced

in this chapter. Applications of the reflected Ornstein-Uhlenbeck are discussed in Chapter

3 and Chapter 4 respectively. We give an expression for pricing a zero-coupon bond and an

European option in finance. We study the asymptotic inference of the unknown parameters

of neural firing. In Chapter 5, we summarize our numerical computations under various

conditions, and discuss the results. Finally we indicate our future work in Chapter 6.

1.2 LITERATURE REVIEW

Ricciardi and Sato (1988) studied the asymptotic behavior of the FPT density for the

Ornstein-Uhlenbeck process in the context of a neural firing model [53]. They developed

explicit expressions for its moments suitable for computational purposes and their work

made it possible to derive the density numerically. In part due to their work, maximum

likelihood estimation for the FPT is now feasible.

Ricciardi and Sacerdote (1987) considered the Ornstein-Uhlenbeck process with a con-

stant reflecting boundary with applications to mathematical biology and obtained the Laplace

transform of the transition density [52]. The Laplace transform of the FPT density and its

moments for this process were studied by [24]. Their formula appeared to be suitable for

numerical computation.

Linetsky (2005) investigated the analytical representation of transition densities for re-

flected diffusion processes using spectral methods [39]. He provided explicit expressions for

reflected Brownian motion and reflected Ornstein-Uhlenbeck process. The transition den-

sity of the reflected Ornstein-Uhlenbeck process that Linetsky provided corresponds to the

inversion of Laplace transform obtained in Ricciardi and Sato (1987).

Ward and Glynn (2002) showed the tractability of the steady-state and the transient
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behavior of the Ornstein-Uhlenbeck process with a zero reflecting boundary in the context

of queuing systems [61]. They included the minimal nondecreasing process to the Ornstein-

Uhlenbeck stochastic differential equation to make the process positive. They provided an

approximation for its moments and the expected value of FPT when the barrier is far away

from the origin.

Bo, Zhang and Wang (2006) studied the Laplace transform of the FPT of reflected

Ornstein-Uhlenbeck process with two-sided boundaries [5]. They extended the model that

Ward and Glynn used and provided an explicit expression of the Laplace transform.

Goldstein and Keirstead (1997) studied interest rates with reflecting and absorbing

boundaries [21]. Their results enabled us to have a closed-form solution of discount bond and

European-type derivatives in terms of eigenfunction expansions for some specifications of the

process. They showed that a reflecting boundary model works well under the risk neutral

measure but necessarily generates arbitrage opportunities under the forward measure.

Kuan and Webber (2003) priced a barrier option on a zero-coupon bond with a one-factor

interest model [32]. A bond price was represented using the affine term structure model with

the Vasicek interest rate model. They chose the Vasicek model, which is the same as the

Ornstein-Uhlenbeck process, to capture the dynamics of the short term interest rate and

priced a bond using affine term structure expression. The problem to price a barrier bond

option was related to find the FPT density with a time-dependent barrier. They solved it

numerically.

Diffusion model for spike activity of a neuron was firstly introduced by Gerstein and

Mandelbrot (1964) [18]. They assumed that the membrane potential follows a Brownian

motion with drift. Soon after, Stein (1965) and Calvin and Stevens (1965) proposed the

Ornstein-Uhlenbeck process to model a leaky integrate-and-fire stochastic behavior of a neu-

ron [57, 6].

Lansky, Sacerdote and Tomassetti (1995) suggested that the Feller process could explain

the inhibitatory reversal potential so that both drift and diffusion terms are linear in the

voltage [33]. They compared the Ornstein-Uhlenbeck process and Feller process to see which

model was preferable to express the stochastic behavior of a neuron and showed that the

Feller process suits well if we can track the trajectories between spikes. However, these two
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models are not easily distinguishable when only the FPT data were available. Because the

FPT density of the Feller process was not tractable, Iyengar and Liao (1997) proposed the

generalized inverse Gaussian family to model the reversal potential [27].

Several attempts have been made to estimate the parameters of the Ornstein-Uhlenbeck

process in the context of the neural firing. This work was done under the assumption

that we only had the FPT data. The first serious attempt was due to Inoue, Sato and

Ricciardi (1995) [25]. They estimated two parameters in the model, the mean and variation

coefficient, with moment methods. Paninski, et al. (2004) constructed the likelihood using

an integral representation of a Gaussian density over the path instead of using the Laplace

transform [48]. Ditlevsen and Ditlevsen (2006) used moments methods to estimate the

parameters in the Ornstein-Uhlenbeck process when one of the parameters was known [13].

Mullowney and Iyengar (2006) estimated all of the unknown identifiable parameters in the

Ornstein-Uhlenbeck process [45]. The FPT density was obtained by inverting the Laplace

transform of the FPT density numerically. They used Newton’s method to estimate the

identifiable parameters. Iyengar and Mullowney (2007) studied the asymptotic behavior of

these parameters and showed that their estimates are consistent, asymptotically normal and

efficient [28].
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2.0 REFLECTED ORNSTEIN-UHLENBECK PROCESS

2.1 INTRODUCTION

A reflected diffusion process is a process that returns continuously and immediately to the

interior of the state space when it attains a boundary. The process either can spend zero

time at the boundary or stay some length of time that has positive Lesbegue measure. If

the time spent by the process on the boundary equals zero, i.e, the measure of the set of

moments of time spent by the process on the boundary equals zero, the process is said to be

one with instantaneous reflection. If the time is positive, the process is said to be one with

delayed reflection [54, 19].

The difference between instantaneous reflection and delayed reflection can be explained

by the physical behavior and exit velocity of the particle at the boundary. The velocity

on arriving at the boundary is the same as the exit velocity. If the particle reenters into

the interior of the state space with finite velocity, positive time is required to get finite

displacement. Thus, the velocity at reflection is reduced partially. This results in a delayed

reflection and the boundary is said to be elastic. If, however, the exit velocity is infinite,

the particle has no time to stay at the boundary since otherwise an infinite displacement in

finite time would occur [54, 30].

We apply the instantaneous boundary condition with a constant lower reflecting bound-

ary for our purpose. We have two approaches to characterize the boundary problem in a

given diffusion process. First, we use the Fokker-Planck equation, which is also known as

Kolmogorov’s forward equation, with a constant reflecting boundary to get the transition

density and the FPT density. The Fokker-Planck equation describes the time evolution of

the probability density function of the position of a particle, and can be generalized to other
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observables as well. Because direct representation of these densities are not tractable, we

adopt the Laplace transform method to get a closed form solution of each density and then

invert it using numerical integration. Second, we apply the stochastic differential equation

(SDE) in Skorokhod’s sense to simulate trajectories of a process when the drift and diffusion

coefficients satisfy the Lipschitz condition [54, 55]. An efficient way to simulate the sample

path is to develop time discretization schemes. Thanks to the work from many authors, we

can adopt the Euler method to simulate the path of the process [31, 38, 41, 7].

2.2 ORNSTEIN-UHLENBECK PROCESS

The Ornstein-Uhlenbeck process, also known as a mean-reverting process, is a stochastic

process given by the SDE

dXt =

(
µ− Xt

τ

)
dt+ σdWt, (2.1)

where Wt is a standard Brownian motion and µ, τ, σ are parameters. Here, 1/τ is the speed of

reversion to its long term mean µτ and σ is the diffusion coefficient which is an instantaneous

volatility of short-term interest rate in finance.

The drift term is positive if Xt is lower than the equilibrium level µτ and negative if Xt

is higher than µτ . In other words, the equilibrium level pulls the process toward itself. The

equation (2.1) is autonomous meaning that the drift and diffusion terms do not depend on

time t. Thus the solution is homogeneous and the transition density is stationary [2]. We

can get the strong solution using Ito’s lemma to the function f(Xt, t) = Xte
t/τ :

Xt = X0e
−t/τ + µτ(1− e−t/τ ) +

∫ t

0

σe(s−t)/τdWs

= X0e
−t/τ + µτ(1− e−t/τ ) +

√
σ2τ

2
e−t/τW (e2t/τ − 1) (2.2)

The representation (2.2) shows that the Ornstein-Uhlenbeck process is a Gaussian process

because it is a linear combination of increments of a time-transformed Brownian motion.
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The mean and covariance of this process are given by

E(Xt) = X0e
t/τ + µτ(1− e−t/τ ) (2.3)

Cov(Xs, Xt) =
σ2τ

2
[e−|t−s|/τ − e−|t+s|/τ ]. (2.4)

When the starting point of (2.1) is µτ , trajectories of this process fluctuate around µτ

and joint probabilities are unchanged by time shifts. Thus the process is stationary. The

Ornstein-Uhlenbeck process is the only process that has stationary, Markovian and Gaussian

properties [16].

The limiting distribution can be obtained easily from the solution (2.2) and the fact that

Xt is normally distributed. As t increases to∞, the distribution of Xt converges to a normal

distribution with mean µτ and variance σ
2τ
2 [22]. Moreover, the Ornstein-Uhlenbeck process

is a continuous time version of the first-order autoregressive process, AR(1), in discrete time.

2.3 REFLECTED ORNSTEIN-UHLENBECK PROCESS

2.3.1 Diffusion process with a Reflecting Boundary

Consider a stochastic process {Xt : 0 ≤ t ≤ T} which satisfies the one-dimensional SDE

dXt = a(t,Xt)dt+ b(t,Xt)dWt (2.5)

where the drift a(t, x) and diffusion b(t, x) are continuous with respect to their arguments

and satisfy a Lipschitz condition in x. If b(t,Xt) is not degenerate, Xt can have any value

in R. In our applications, we want to restrict the state space of the process Xt by giving a

lower reflecting boundary r. In this case, the process is defined on the interval [r,∞) with

the initial condition X0 ∈ [r,∞). According to Skorohod’s [54] concept of the instantaneous

reflection, there exists a continuous non-decreasing process Lt such that L0 = 0 and a pair

(Xt, Lt) satisfies the following SDE

dXt = a(t,Xt)dt+ b(t,Xt)dWt + dLt (2.6)
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and

dLt = I(Xt = r)dLt (2.7)

where I(·) is the indicator function. Here, Lt increase only at the points where the process

Xt = r. Moreover, Lt is the local time process at the reflecting boundary. Local time of a

process Xt is the time spent by a particle at a certain level and guarantees the smoothness of

the process Xt. Local time is the density of the occupation time of a process and is defined

[30]

Lt = lim
ε↓0

1

2ε

∫ t

0

I(x− ε < X(s) < x+ ε)ds. (2.8)

Then the process Xt can be represented in the form

Xt = X0 +

∫ t

0

I(Xs > r)a(s,Xs) +

∫ t

0

I(Xs > r)b(s,Xs)dWs + Lt (2.9)

with

Lt =

∫ t

0

I(Xs = r)dLt. (2.10)

Chitashvili et al. [7] showed that finding a process that satisfies (2.6) was equivalent to

finding a solution of the following stochastic equation

Xt = max

[
sup

0≤s≤t

(∫ t

s

a(u,Xu)du+

∫ t

s

b(u,Xu)dWu

)
+ r,

X0 +

∫ t

0

a(u,Xu)du+

∫ t

0

b(u,Xu)dWu

]
. (2.11)

The existence and uniqueness of the solution of equation (2.11) has been studied by several

authors [7, 40, 56]. We then can construct an instantaneous reflecting process and sample

paths using the expression above.

The discretized approximation of the process that satisfies (2.11) can be written as

X̂n+1 = max
[
X̂n + a(tn, X̂n)(tn+1 − tn) + b(tn, X̂n)(Wn+1 −Wn), r

]
(2.12)

on the partition of the interval [0, T ] such that max
0≤n≤k

|tn+1 − tn| → 0 as k →∞.
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The convergence of the discretized expression X̂n to the solution of the process (2.11)

was proved by several authors [41, 38, 7], who showed that

E|X̂t −Xt|2m ≤ Km∆1− 1
m +O(∆1− 1

m ) (2.13)

under the following Lipschitz and growth conditions:

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ K|x− y|, ∀x, y, t (2.14)

|a(t, x)|2 + |b(t, x)|2 ≤ K2(1 + |x|2), ∀x, t (2.15)

|a(t1, x)− a(t2, y)|+ |b(t1, x)− b(t2, y)| ≤ K|t1 − t2|, ∀t1, t2. (2.16)

Let us consider the numerical approximation (2.12) again. Equation (2.6) and the process

Lt can be derived by applying Ito’s lemma to the function f(Xt) = max(Xt, r). This function,

however, is not twice differentiable at x = r, so an approximation of it around the reflecting

boundary is needed. Consider

fε(x) =


r if x ≤ r

1
2ε
x2 if r < x ≤ r + ε

x− ε
2

if x > r + ε

(2.17)

which is smooth and tends to f(x) as ε ↓ 0. Ito’s lemma then yields

df(Xt) = I(Xt > r)a(t,Xt)dt+ I(Xt > r)b(t, Yt)dWt + dLt (2.18)

and

Lt = lim
ε→0

1

2ε

∫ t

0

I(r < Xs ≤ r + ε)b2(s, r)ds. (2.19)

Here, Lt corresponds to the local time of Xt.

Now, consider the reflected diffusion process and the absolute value process |Xt|. These

two process have the same distribution only if Xt is a standard Wiener process Wt. Let
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WR
t = max

0≤s≤t
(Wt − Ws) be the Wiener process reflected at zero. The distribution of this

process is

P (WR
t < y) = P

[
max
0≤s≤t

(Wt −Ws) < y

]
= P

[
max
0≤s≤t

(Wt −Wt−s) < y

]
= P

[
max
0≤s≤t

Ws < y

]
=

∫ y

0

√
2

πt
e−

u2

2t du

= P [|Wt| < y]

and the transition density of these processes is

pW (x, t|x0) =
1√
2πt

(
e−

(x0−x)
2

2t + e−
(x0+x)2

2t

)
. (2.20)

However, if Xt is an Ornstein-Uhlenbeck process (2.1), the reflected process and absolute

value process are not the same. Since the transition density of the Ornstein-Uhlenbeck is

normal, the transition density of |Xt| can be written as the sum of two normal densities over

a restricted range, i.e.,

p(a)(x, t|x0) = p(x, t|x0) + p(−x, t|x0), x0, x > 0. (2.21)

In the case of the reflected Ornstein-Uhlenbeck process with zero boundary, however, the

transition density is represented by

p(r)(x, t|x0) = p(x, t|x0)− σ2

2

∫ t

0

exp

[
−t− s

τ

]
p(r)(0, s|x0)

∂

∂x
p(x, t− s|0)ds (2.22)

which we get by adjusting the boundary flux condition. The details will be investigated in

the next section. Thus, dealing with reflection at a barrier is a more complicated problem

than dealing with the absolute value of a process [4].
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2.3.2 Reflected Ornstein-Uhlenbeck Process

Suppose {Yt : t ≥ 0} is a reflected Ornstein-Uhlenbeck process defined on [r,∞) with drift

(µ− Yt/τ) and constant diffusion parameter σ. Then, based on the expression in (2.6), the

process {Yt : t ≥ 0} satisfies the following SDE

dYt =

(
µ− Yt

τ

)
dt+ σdWt + dLt (2.23)

Y0 ∈ [r,∞)

where {Lt : t ≥ 0} is a continuous nondecreasing process which increases only when Yt = r

to keep Yt ≥ r for all t. In other words, Lt is the process satisfying

∫
[r,∞)

I(Yt > r) dLt = 0,

∫
[r,∞)

I(Yt = r) dLt = Lt. (2.24)

For instantaneous reflection, the explicit solution of the equation (2.23) is given by

Yt = Xt − Lt (2.25)

where Lt = − sup
0≤s≤t

x̄(s), x̄(s) = max
0≤s≤t

{−x(s) + r, 0} and Xt is an unrestricted Ornstein-

Uhlenbeck process.

When τ → ∞, (2.23) reduces to reflected Brownian motion. For reflected Brownian

motion, the local time process Lt can be described in terms of an unreflected Brownian

motion with drift and the solution is analytically tractable [22]. In the general case, however,

the state-dependent drift makes it impossible to express Lt explicitly. Thus many methods

used in the analysis of the reflected Brownian motion are not appropriate for the reflected

Ornstein-Uhlenbeck process.
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2.4 TRANSITION DISTRIBUTION

When the state space of a diffusion process is restricted by a boundary, the solution of the

Kolmogorov equation of this process should satisfy a certain boundary condition, which we

consider here for a reflected Ornstein-Uhlenbeck process.

Let {Xt : t ≥ 0} be an Ornstein-Uhlenbeck process satisfying the SDE (2.1) defined

over [r,∞) with a constant reflecting boundary r. We consider the case of a lower constant

reflecting boundary r ≤ X0 throughout.

The transition density p(x, t|x0) of the process Xt satisfies the following Kolmogorov

forward equation

∂

∂t
p(x, t|x0) =

∂

∂x

[
−
(
µ− x

τ

)
p(x, t|x0) +

σ2

2

∂

∂x
p(x, t|x0)

]
(2.26)

with the initial condition

lim
t↓0

p(x, t|x0) = δ(x− x0) (2.27)

where δ(x− x0) is a Dirac delta function.

The reflecting boundary at r < x0 implies that no particles exist below r [9], so that

∫ ∞
r

p(x, t|x0)dx = 1. (2.28)

Then we take the derivative with respect to t on both sides of the equation (2.28) and

integrate to obtain the reflecting boundary condition

∫ ∞
r

p(x, t|x0)dx =

[(x
τ
− µ

)
p(x, t|x0) +

σ2

2

∂

∂x
p(x, t|x0)

]
x=r

= 0. (2.29)

Ricciardi and Sacerdote (1987) derived an integral representation for the transition den-

sity of this process by inverting the Laplace transform [52]. Let p(x, t|x0) and p(r)(x, t|x0)

be the transition densities and P (x, t|x0) and P (r)(x, t|x0) be the transition distributions of

the Ornstein-Uhlenbeck process and the reflected Ornstein-Uhlenbeck process respectively.
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They showed that the Laplace transform p
(r)
λ (x|x0) of the transition density for all x > r is

given by

p
(r)
λ (x|x0) =


pλ(x|x0)−

∂pλ+1/θ(x|r)
∂x

Pλ(r|x0)

pλ+1/θ(r|r)
if x > r

2

σ2

Pλ(r|x0)

pλ+1/θ(r|r)
if x = r

. (2.30)

For simplicity, we consider the normalized Ornstein-Uhlenbeck process, i.e. µ = 0, τ = 1

and σ = 1 in equation (2.1). The Laplace transform of the transition density is

p
(r)
λ (x|x0) = pλ(x|x0) +

22λ−1

λπ
e−x

2

Γ

(
λ+ 1

2

)
Γ

(
λ

2
+ 1

)
Hλ(−x0)Hλ+1(r)Hλ(−x)

Hλ+1(−r)
(2.31)

and

p
(r)
λ (r|x0) =

1

λ

Hλ(−x0)

Hλ+1(−r)
(2.32)

where

pλ(x|y) =


22λ−1

π
e−x

2

Γ

(
λ

2

)
Γ

(
λ+ 1

2

)
Hλ(−x)Hλ(y) if x ≥ y

22λ−1

π
e−x

2

Γ

(
λ

2

)
Γ

(
λ+ 1

2

)
Hλ(−y)Hλ(x) if x < y

(2.33)

Here, Hλ(x) is the Hermite function which satisfies the ordinary differential equation (ODE)

d2Hλ(x)

dx2
− 2x

dHλ(x)

dx
− 2λHλ(x) = 0. (2.34)

The solution of (2.34) for all |x| <∞ is [35]

Hλ(x) =
∞∑
m=0

Γ
(
m+λ

2

)
Γ
(
λ
2

)
m!

(2x)m (2.35)

and reduce to the Hermite polynomials when λ = 0,−1,−2, · · · .

14



2.5 FIRST PASSAGE TIME (FPT) DISTRIBUTION

First passage time problems have been researched extensively in the field of stochastic pro-

cesses. The analytical solution to this problem, however, does not exist in many cases, even

for simple underlying models. We consider the Laplace transform of the FPT distribution of

the reflected Ornstein-Uhlenbeck process, which is tractable, and then invert it numerically.

We define the first passage time, Tf , to a horizontal barrier xf thus:

Tf = inf{t > 0 : Xt = xf}. (2.36)

Then Tf is the first-passage time (FPT) or first-hitting time of the process Xt to a horizontal

barrier xf .

Consider the Ornstein-Uhlenbeck process Xt with a lower reflecting boundary r and

assume that r < x0 < xf , the Laplace transform of the FPT density was obtained for

µ = 0, τ = 1 and σ =
√

2 [24]. Using this result, we can construct the Laplace transform of

the FPT density of the reflected Ornstein-Uhlenbeck process.

Let {Xt : t ≥ 0} be the Ornstein-Uhlenbeck process satisfying the SDE (2.1) defined over

[r,∞) with a constant reflecting boundary r. Applying Ito’s lemma to the transformation

Ys =

√
2

σ2τ
(Xt − µτ), s =

t

τ
(2.37)

changes {Xt} to {Ys} which satisfies the stochastic differential equation

dYs = −Ysds+
√

2dWs (2.38)

Y0 =

√
2(X0 − µτ)

σ
√
τ

on the state space [ν,∞) where ν =

√
2(r − µτ)

σ
√
τ

.

Let g(s|y0, S, ν) be the FPT density of the process Ys for a barrier S. The Laplace

transform of the FPT density is

g(λ|y0, S, ν) =

∫ ∞
0

g(s|y0, S, ν)e−λs ds. (2.39)
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The function g(λ|y0, S, ν) is given by

g(λ|y0, S, ν) = e−(S2−y20)/4H(λ, y0, ν)

H(λ, S, ν)
(2.40)

where

H(λ, z, ν) = D−λ(z) +
D−λ−1(ν)D−λ(−z)

D−λ−1(−ν)
. (2.41)

Here Dλ(y) is the parabolic cylinder function.

Since Dλ(y) can be expressed in terms of the Hermite function Hλ(y) via the following

relation

Dλ(y) = e−
y2

4 2−
λ
2H−λ(−

y√
2

), (2.42)

we can rewrite the expression (2.41) as

H(λ, z, ν) = e−
z2

4 2
λ
2

[
Hλ(−

z√
2

) +
Hλ+1(− ν√

2
)Hλ(

z√
2
)

Hλ+1( ν√
2
)

]
. (2.43)

Thus the Laplace transform of the FPT for the process (2.38) can be represented by Hermite

functions

g(λ|y0, S, ν) = e−(S2−y20)/4H(λ, y0, ν)

H(λ, S, ν)

=

Hλ(− y0√
2
) +

Hλ+1(− ν√
2
)Hλ(

y0√
2
)

Hλ+1( ν√
2
)

Hλ(− S√
2
) +

Hλ+1(− ν√
2
)Hλ(

S√
2
)

Hλ+1( ν√
2
)

(2.44)

Now the Laplace transform of the FPT density of the reflected Ornstein-Uhlenbeck pro-

cess defined over [r,∞) with a constant reflecting boundary r is

p̂(λ|Θ) = g

(
λτ

∣∣∣∣∣
√

2(X0 − µτ)

σ
√
τ

,

√
2(Xf − µτ)

σ
√
τ

,

√
2(r − µτ)

σ
√
τ

)
(2.45)

=

Hλθ4(−θ1) +
Hλθ4+1(−θ3)Hλθ4(θ1)

Hλθ4+1(θ3)

Hλθ4(−θ2) +
Hλθ4+1(−θ3)Hλθ4(θ2)

Hλθ4+1(θ3)

(2.46)

where Θ = (θ1, θ2, θ3, θ4) =
(
X0−µτ
σ
√
τ
,
Xf−µτ
σ
√
τ
, r−µτ
σ
√
τ
, τ
)

is the parameter space.
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Then the FPT density of the reflected Ornstein-Uhlenbeck process can be derived by

inverting this Laplace transform using the inversion integral [8]

p(t|Θ) =
1

2πi

∫ c+i∞

c−i∞
etλp̂(λ|Θ) dλ (2.47)

where c is the abscissa of convergence of p̂. The integration is done along the vertical line

x = c in the complex plane with c greater than the real part of all singularities of p̂.

2.5.1 Asymptotics for a reflecting boundary

Consider the Laplace transform of the FPT (2.44) of the process Yt which satisfies the

stochastic differential equation (2.38). We now use another representation of the Hermite

function (2.35) (Lebedev, 1972):

Hλ(x) = 2−λ
√
π

[
1

Γ
(

1+λ
2

)F (λ
2
,
1

2
;x2

)
+

2x

Γ
(
λ
2

)F (1 + λ

2
,
3

2
;x2

)]
(2.48)

Here, F (α, γ;x) is the Kummer function defined as

F (α, γ;x) =
∞∑
m=0

(α)m
(γ)m

xm

m!
(2.49)

with (α)m = Γ(α+m)
Γ(α)

.

Thus (2.44) can be expressed as

g(λ|y0, S, ν) =
Φ(λ, y0, ν)

Φ(λ, S, ν)
(2.50)

where

Φ(λ, x, ν) = F

(
λ

2
,
1

2
;
x2

2

)
− λνx

F
(
λ
2

+ 1, 3
2
; x

2

2

)
F
(
λ+1

2
, 3

2
; x

2

2

)
F
(
λ
2

+ 1, 1
2
; x

2

2

) (2.51)

Now it is easy to show that the Laplace transform of the FPT of the reflected Ornstein-

Uhlenbeck process agrees with that of the unrestricted Ornstein-Uhlenbeck process when the

reflecting boundary tends to −∞. For real and large |x|, the asymptotic representation of

F (α, γ;x) is [14]

F (α, γ;x) ∼ Γ(γ)

Γ(α)
exxα−γ[1 +O(|x|−1)] (2.52)
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We get

lim
r→−∞

p(λ|Θ) =
Ψ(λ, y0)

Ψ(λ, S)
(2.53)

=
Hλθ4(θ1)

Hλθ4(θ2)
(2.54)

where

Ψ(λ, x) = F

(
λ

2
,
1

2
;
x2

2

)
+
√

2x
Γ
(
λ+1

2

)
Γ
(
λ
2

) F

(
λ+ 1

2
,
3

2
;
x2

2

)
(2.55)

by substituting (2.52) into (2.51).

2.6 COMPUTATION

2.6.1 Simulating the reflected Ornstein-Uhlenbeck Process

The Euler method is the simplest numerical procedure to simulate the sample path of a

diffusion process given an initial value [31]. Consider a process {Xt : 0 ≤ t ≤ T} satisfying

the SDE

dXt = a(t,Xt)dt+ b(t,Xt)dWt. (2.56)

For equidistant discretization times 0 = t1 < t2 < · · · < tn < · · · < tN = T , an Euler

approximation is a continuous time stochastic process {Yt : 0 < t < T} satisfying

Yn+1 = Yn + a(tn, Yn)(tn+1 − tn) + b(tn, Yn)(Wtn+1 −Wtn) (2.57)

for n = 0, 1, 2, · · · , N − 1 with initial value Y0 = X0 where Yn = Ytn .

The Ornstein-Uhlenbeck process has drift a(t,Xt) = (µ−Xt/τ) and constant diffusion

b(t,Xt) = σ. Thus the Euler approximation of the Ornstein-Uhlenbeck process Yt is simu-

lated as

Yn+1 = Yn +

(
µ− Yn

τ

)
(tn+1 − tn) + σ(Wtn+1 −Wtn). (2.58)
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The increments of the Brownian motion are generated by

Wtn+1 −Wtn =
√

(tn+1 − tn)Zn+1 (2.59)

where Zn+1 are independent random variables from the standard normal distribution and

W0 = 0.

Now, we simulate the reflected Ornstein-Uhlenbeck process by imposing a boundary

condition to (2.57). Reflecting barrier holds a particle at barrier until a jump happens to

carry it to a proper direction, i.e., if Xt hits a lower reflecting barrier r at time t, then it

remains at r or moves up to the state r + 1 at time t+ 1 with their respective probabilities

[9]. The Euler approximation of the reflected Ornstein-Uhlenbeck process is defined

Yn+1 =

 Yn + ∆Yn+1 if Yn + ∆Yn+1 ≥ r

r if Yn + ∆Yn+1 < r
(2.60)

where ∆Yn+1 =
(
µ− Yn

τ

)
(tn+1 − tn) + σ(Wtn+1 −Wtn). This discretization is the same as

(2.12) in the previous section.

Figure 1 shows a simulated path of the reflected Ornstein-Uhlenbeck process with the

equilibrium state µτ = 20. Because the initial value was given the same as the reflecting

boundary, the path hits the boundary several times before the drift term dominates.

2.6.2 FPT density

The inversion of the Laplace transform can be done formally using the inversion integral.

However, we are not applying this expression to compute the FPT density because of the

computational inefficiency and difficulty. There are many different algorithms available for

the numerical inversion of the Laplace transform. Week’s method uses the expansion of

the Laplace transform in terms of Laguerre functions [62]. This method is computationally

efficient but the implementation is not quite straightforward. The Post-Widder algorithm

uses the sampling method and has a simple expression [29]. However, its convergence is slow

and it is sensitive to the roundoff error. Mullowney and Iyengar used the the Fourier Series

method to invert the Laplace transform of the Ornstein-Uhlenbeck process because this
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Figure 1: Ornstein-Uhlenbeck process reflected at zero with (µ, τ, σ,X0) = (2, 10, 2, 0)

method is highly efficient for multiple time variations and is easy to compute [11, 12, 45].

Here we apply the same method that they used since the Laplace transform of the FPT

can be expressed in terms of the Hermite functions in both cases. In this algorithm, the

integration (2.47) is assumed to have a discretized path

λk = σ0 + ik∆λ 0 ≤ k ≤ N (2.61)

where ∆λ = π/Tmax is the step size and Tmax is a tuning parameter that we must determine.

Using the trapezoidal rule, a Fourier series expression gives

p̃N(t|Θ) =
eσ0t

Tmax
Re

[
p̂(σ0|Θ)

2
+

N∑
k=1

p̂

(
σ0 +

ikπ

Tmax
|Θ
)
e

ikπ
Tmax

]
. (2.62)

The incidental parameters ∆λ and N affect the numerical performance of this algorithm.

Thus, Tmax must be determined greater than the maximum FPT series and N is chosen large

enough to attain efficiency and accuracy. The approximation error |p̃(r)
N (t|Θ) − p(r)(t|Θ)|

converges to the trapezoidal discretization error when N is large. We set σ0 = 0 because
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the Hermite function is an entire function of the complex value λ, and it is not zero for

Re(λ) > 0.

2.6.3 Hermite function

The Laplace transform of the FPT density (2.46) consists of ratios of Hermite functions on

a wide range of parameters. In the context of our application, identifiable parameters are

defined on the domains: −∞ < θ3 < θ1 < θ2 < ∞ and 0 < θ4 < ∞. Thus an accurate

representation of the Hermite function and its partial derivatives are required to make the

ML algorithm robust. Recall that the power series representation of the Hermite function

(2.35)

Hλ(x) =
∞∑
m=0

Γ
(
m+λ

2

)
Γ
(
λ
2

)
m!

(2x)m

converges uniformly in x. Our inversion integration (2.62) is done along the complex axis

of the order parameter λ. When the argument of the Hermite function is small (|x| < 2),

the power series expression computes the Hermite function with approximately 100 terms

for any λ values on the complex axis. This expression, however, loses accuracy for large

values of |x| and |λ|. For large values of |x|, the huge cancellation errors occur in the power

series on the complex axis as λ → ∞ because the sum of an alternating series results in

cancellation across orders of magnitude greater than the accuracy of the chosen floating

point representation [45]. The onset of the phenomenon is observed for smaller λ with

increasing |x| until eventually, the power series gives unreliable results.

Thus we need asymptotic representations of the Hermite functions for |x| → ∞ and

|λ| → ∞. The following asymptotic representation, which is known as Darwin’s expansion,

comes from the relationship between the Hermite function and the parabolic cylinder function
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[35, 1] for the case η =
√
x2 + 4λ− 2→∞:

Hλ(x) = 23/4

√
Γ
(
λ+1

2

)
Γ
(
λ
2

) exp

[
x2

2
± ϑ+G

(
λ− 1

2
, x
√

2

)]
(2.63)

ϑ =
xη

4
+

(
λ− 1

2

)
ln

 x+ η

2
√
λ− 1

2


G

(
λ− 1

2
, x
√

2

)
= − ln η

2
+
d3

η3
+
d6

η6
+
d12

η12
+O

(
1

|η|15

)
Here d3, d6, · · · are coefficients that are described in formula 19.10.13 in (Abramowitz, M.

and Stegun, I. A.) [1].

Now, consider the case where the power series is not reliable (|x| → ∞) and |λ| << |x|.

Though (2.63) gives reasonable approximations of Hermite functions in this region, we have

a more accurate asymptotic representation (Lebedev) [35]:

Hλ(x) =
2

Γ
(
λ
2

) {(−2x)−λ

[
n∑
k=0

(−1)kΓ(λ+ 2k)

k!(2x)2k
+O(|x|−2n−2)

]

+h(x)
√
πex

2

xλ−1

[
n∑
k=0

Γ(1− λ+ 2k)

Γ(1− λ)k!(2x)2k
+O(|x|−2n−2)

]}
, (2.64)

where h(x) is the Heaviside function. Note that the representation (2.64) does not give an

accurate approximation when λ is large. Thus, we can compute the Hermite function on the

entire region by piecing together without losing accuracy.

The partial derivatives of the Hermite function and p̂(λ|Θ) with respect to θ1,2,3 can be

derived using the recursion relation of the Hermite function:

∂

∂x
Hλ(x) = 2λHλ+1(x). (2.65)

For the partial derivatives with respect to θ4, we see the functional dependence of the θ4

in θ1, θ2 and θ3. Such a dependence is discarded when computing derivatives. If we do

not ignore this dependence, we need additional terms
∂θ1,2,3

∂θ4

that cannot be expressed

with θ1,2,3 when computing partial derivatives. This requires further information about

parameters(V0, Vf , r, µ, σ) that cannot be obtained from our FPT data. Thus, independence

in identifiable parameters is necessary in applying our MLE algorithm.

Convergence of the asymptotic expressions of Hermite function and its partial derivatives

is guaranteed by Mullowney, et al. [45].
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3.0 INTEREST RATE MODELS

The movement of the interest rate reflects a finite number of random shocks in view of our

uncertainty about the future. Thus it is natural to regard the interest rate as a random

quantity and model it through a stochastic process with Brownian motion as a source of

randomness. The risk-free rate of interest (short-term interest rate) is modeled by the rate

of return on a discount bond with time to maturity as the parameter. The price of the

bond fluctuates continuously in response to changes in interest rates, as well as the supply

and demand, time to maturity, and credit quality of that particular bond. Once bonds are

issued, they generally trade at premiums or discounts to their face values until they mature

and return to full face value. Yield refers to the annual return on an investment and the

yield on a bond is based on both the purchase price of the bond and the interest, or coupon,

payments received. The yield curve is a line graph that plots the relationship between yields

to maturity and time to maturity for bonds of the same asset class and credit quality. A

yield curve depicts yield differences, or yield spreads, that are due solely to differences in

maturity. It therefore conveys the overall relationship that prevails at a given time in the

marketplace between bond interest rates and maturities. This relationship between yields

and maturities, i.e., the dependence of the yield curve on the time to maturity, is known as

the term structure of interest rates.

The theory of interest rate dynamics assumes that the discount bonds are perfect assets,

that is default-free and available in a continuum of maturities. The most popular and widely

used approach to model the term structure of interest rates in continuous time has been

to assume the short-term interest rate follows a diffusion process. The earliest model was

developed by Merton (1973) [44]. He used a Brownian motion to model the spot rates. The

analytic solution of the bond prices are easy to obtain because this model assumed that the
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interest rates follows a normal distribution.

Another model was developed by Vasicek [60]. His model is based on the assumption

about the stochastic evolution of interest rates by exogenously specifying the process de-

scribing the short-term interest rate. He used the Ornstein-Uhlenbeck process to capture

the stochastic movement of the short term interest rate in the market. The mean reversion

property in his model is particularly attractive because without it, interest rates could drift

permanently upward the way stock prices do and this is simply not observed in practice.

The main problem with applying the Vasicek model to the interest rate is that it allows

a negative interest rate theoretically. Cox, Ingersoll and Ross (1985) introduced another

model (CIR model) [10] to prevent the drawback of the Vasicek’s model. They added the

square root diffusion term in the Vasicek’s model and this precluded the negative interest

rates. However, this model may not be a good choice when the interest rate is low because

the diffusion term that explains the volatility becomes negligible. For example, the short

term interest rates in Japan stayed below 1% in the mid-1990s and in United States fell to

zero in the 1930s [21]. Thus the Ornstein-Uhlenbeck process with a reflecting boundary at

the origin can explain a stochastic behavior of low interest rate without losing the volatility.

In this chapter, we price a discount Bond for an interest rate with a reflecting boundary.

Then we discuss about pricing a European path dependent option, especially the up-and-in

barrier option, with an interest rate as an underlying.

3.1 PRICING A ZERO-COUPON BOND

We price a discounted zero-coupon bond with interest rate rt which follows the Ornstein-

Uhlenbeck process reflected at zero under the risk neutral measure Q. Thus rt is defined on

[0,∞) and has the SDE

drt = κ(θ − rt)dt+ σdWQ
t (3.1)

Consider a zero-coupon bond that pays $1 at time to maturity T if and only if rT = r∗.

Such a contingent claim is known as an Arrow-Debreu security and its value at time t with
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maturity time under the risk-neutral measure Q is

G(rt, r
∗, t, T ) = EQ

t

[
e
∫ T
t ru duδ(rT − r∗)

]
(3.2)

where δ(rT ′ − r∗) is a Dirac delta function when t = T .

When the current spot rate is r, we can obtain the price of a discount bond when a

reflecting boundary is imposed on the spot rate process by integrating (3.2):

B(r, t, T ) =

∫ ∞
0

G(r, r∗, t, T ) dr∗. (3.3)

The analytical representation of G(r, r∗, t, T ) was obtained by Goldstein et al. [21]. They

solved the partial differential equation (PDE) using the method of separation of variables to

transform the PDE to an ODE (ordinary differential equation). Then they adopted a Sturm-

Liouville theory to solve the equation. When the reflected Ornstein-Uhlenbeck process is used

as a spot rate process on [0,∞), G(rt, r
∗, t, T ′) is expressed in terms of the Hermite function

as

G(r, r∗, t, T ′) =
∑
j

hje
−αj(T ′−t)e−ar+

b
2
r2e

1
4( r−dc )

2

2
1
2(−νj+ 1

2)Hνj− 1
2

(
r − d
c
√

2

)
(3.4)

where

hj =
ear
∗− b

2
r∗2e

1
4

(
r∗−d
c

)2

2
1
2(−νj+ 1

2)Hνj− 1
2

(
r∗−d
c
√

2

)
∫∞

0

[
e

1
4( s−dc )

2

2
1
2(−νj+ 1

2)Hνj− 1
2

(
s−d
c
√

2

)]2

ds

(3.5)

and

(a, b, c, d, αj) =

(
κθ

σ2
,
κ

σ2
,

(
1

2b

) 1
2

,
a

b
− 1

b2σ2
, νjbσ

2 +
a

b
− bσ2

2
− 1

2b2σ2

)
. (3.6)

We also need to choose {νj} that satisfies

ac e−
z2

4 2
1
2(−νj+ 1

2)Hνj− 1
2

(
z√
2

)
=

∂

∂z

[
e−

z2

4 2
1
2(−νj+ 1

2)Hνj− 1
2

(
z√
2

)]
(3.7)

for z = −d
c
.
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3.1.1 Numerical Work

Pricing of a zero-coupon bond with the expression (3.3) needs heavy computation especially

determining the solution of a Green’s function. Thus we leave it to our future work. We

instead apply the numerical procedure to price the bond.

We price a current value of a zero-coupon bond that pays $1 at maturity time T numer-

ically. The price of a zero-coupon bond at time t is

B(r, t, T ) = EQ
[
e−

∫ T
t rudu|Ft

]
(3.8)

where Ft is the history of the interest rate up to time t.

We first simulate the sample paths of a rt up to time T using the Euler method. The

integral term inside (3.8) from t to T can be calculated by applying a simple trapezoidal

rule. We then do the same procedure n times and find the arithmetic average to find the

final value of the discounted zero-coupon bond.

We price the zero-coupon bond for the Ornstein-Uhlenbeck process using both a closed-

form representation and numerical work to see the validity of our algorithm. The explicit

expression of the discounted bond price with an Ornstein-Uhlenbeck process is [43]

B(r, t, T ) = e−A(t,T )r+D(t,T ) (3.9)

where

A(t, T ) =
1− e−κ(T−t)

κ

B(t, T ) =

(
θ − σ2

2κ2

)
[A(t, T )− (T − t)]− σ2A(t, T )2

4κ
.

We then compute the zero-coupon bond for the reflected Ornstein-Uhlenbeck process and

compare the discounted price between two models. For the parameters, we set κ = 0.3, θ =

0.07, r0 = 0.01, dt = 0.001 and T = 1. With these parameters, we find n = 10000 discounted

zero-coupon bond prices at time t0 and average these for the final valuation.
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The discounted prices of these bond at current time are shown in Table 1. Because

our algorithm gives us a good approximation to price discounted bond for the Ornstein-

Uhlenbeck process, we price the discounted bond with the same algorithm for the reflected

Ornstein-Uhlenbeck case.

Since the reflected Ornstein-Uhlenbeck does not allow a negative interest rate while the

Ornstein-Uhlenbeck does, the integrated value of the process is greater in case of the reflected

Ornstein-Uhlenbeck process and this results in a lower price for the discounted bond price.

The difference in price between two processes is large when σ is large, because the trajectories

of the Ornstein-Uhlenbeck process may have negative values more often when σ is large.

Table 1: Discounted Zero-Coupon Bond Prices for different volatilities.

σ OU(explicit) OU(simulated) Reflected OU(simulated)

0.03 0.9821 0.9819 0.9778

0.05 0.9823 0.9821 0.9703

0.07 0.9826 0.9832 0.9620

0.3 0.9939 0.9929 0.8671

3.2 PRICING EUROPEAN OPTIONS

We focus on the problem of pricing European option and up-and-in barrier option on an

interest rate rt that follows an Ornstein-Uhlenbeck process reflected at zero. We price these

options under risk-neutral measure, i.e. the current value of these options are equal to the

expected values of the future payoffs of these options discounted at the risk-free interest

rate. Thus one assumption that we need to impose is the reflected Ornstein-Uhlenbeck

model corresponds to the risk-free interest rate.
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3.2.1 Numerical Pricing

We consider two type of European options on rt with maturity time T . We first consider a

simple vanilla call option. This option pays $1 at time T only if rT is greater than the strike

price K. Thus the payoff at maturity is

V (rT , T ) =

 1 if rT ≥ K

0 otherwise
. (3.10)

Then the discounted value of (3.10) at time t0 is

V (r0, t0) = EQ
[
e
∫ T
t0
ruduI(rT ≥ K)

]
. (3.11)

Second, we consider an up-and-in barrier option. Consider an option that pays $1 at

maturity time T with strike K and upper barrier H. The payoff of this barrier option at

time T is

C(rT , T ) =

 1 if rT > K, max
0≤s≤t

rs ≥ H

0 otherwise
. (3.12)

and the discounted value of (3.12) is

C(r0, t0) = EQ

[
e
∫ T
t0
ruduI(rT ≥ K, max

t0≤s≤T
)

]
. (3.13)

Then we price these options using our numerical algorithm. We set K = 0.04 and

H = 0.06. For the others, we use the same values that we set to price discounted bond price.

Table 2 reports prices of call options and barrier option with different volatilities computed

by out numerical method. The result shows that the price of options are cheaper when we

consider the Ornstein-Uhlenbeck process as an underlying and the difference in price between

two processes gets larger as σ gets larger.
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Table 2: European Call Option and Barrier Option Prices for different volatilities.

Call Option Barrier Option

σ OU Reflected OU OU Reflected OU

0.03 0.2730 0.3119 0.1516 0.1699

0.05 0.3517 0.4790 0.2972 0.4008

0.07 0.3786 0.5725 0.3656 0.5347

0.3 0.4294 0.7494 0.4304 0.7470
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4.0 NEURAL FIRING MODELS

It has long been established that certain biophysical dynamics of neurons such as membrane

potential and synaptic inputs exhibit stochastic activity. Because such dynamics are hard to

measure, most experiments record the action potential, or spikes and analyze the interspike

intervals (ISIs) in the case of modeling neural activity.

The input to a neuron is often described by the flow of ions through the cell membrane

that occurs when electrochemical signals cause an activation of ion channels in the cell.

The cell membrane is surrounded by charged ions on either side of it that determines its

capacitance. A neuron responds to such a signal with a change in voltage, which is observed

to sometimes result in a voltage spike called an action potential.

The most successful and widely-used models of action potential generation was developed

by Hodgkin and Huxley [23], which is based on the conductance properties of the neuron cell

membrane resulting from the activity of sodium and potassium ion channels. This model

consists of four coupled nonlinear ordinary differential equations for membrane potential V

and ionic conductance. The FitzHugh and Nagumo model is a simplified version of the

Hodgkin and Huxley model [17, 46]. It only contains the membrane voltage coupled to a

refractory period that brings back the membrane voltage to rest after the neuron has fired.

We deal with another class called integrate-and-fire (I-F) models, which was first inves-

tigated by Lapicque in 1907 and recently studied by many others [34, 57, 26, 28]. The basic

circuit of an integrate-and-fire model consists of a capacitance C in parallel with a resistance

R driven by a current I(t). When R and C are constant, the conservation of current implies

that

I(t) = C
dV

dt
+
V

R
. (4.1)
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Here V/R is the current through the resistor by Ohm’s law and CdV/dt through the ca-

pacitance. This model describes the dynamics of the membrane potential with the leakage

that is induced by resistance and the exponential decay of the membrane potential with time

constant τ = RC. The neuron fires when V reaches its firing threshold Vf and the membrane

voltage is reset to its initial resting value V0.

A diffusion process has been extensively used to model Vt. In this case, the ISIs are

the same as first hitting times of the process to a certain barrier. The first model to use

stochastic processes for the behavior of a neuron was proposed by Gerstein and Mandelbrot

(1964) [18]. They assumed that the membrane potential followed a Brownian motion with

drift and did not have any leakage. This assumption resulted in the inverse Gaussian density

to the ISIs. Stein (1965) proposed a leakage term in Gerstein-Mandelbrot’s model to deal

with the decay of the membrane potential; this model led to the Ornstein-Uhlenbeck process

[57]. Tuckwell (1979) included the reversal potential by modifying the Stein’s model to

explain the dependence of the input effects on the actual value of the membrane potential

[58], which led to the Feller process [15, 33]. The Feller process, which is called the CIR

model in financial literature, is bounded from below to explain the effect of the action of

an inhibitory reversal potential. By suitable transformation of the Feller process, we can

restrict the state space from zero to infinity.

After the membrane potential is reached and the neuron fires, it frequently goes below

the resting baseline starting level, called hyperpolarization. Thus we can set a reflecting

boundary for the Ornstein-Uhlenbeck model to capture the process of the membrane poten-

tial with the hyperpolarization level. In a reflected Ornstein-Uhlenbeck model, a reflecting

boundary is the maximum hyperpolarization level [49].
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4.1 INFERENCE BASED ON THE FPT

We want to estimate parameters of the reflected Ornstein-Uhlenbeck process given FPT data

only. Because we only can observe FPT data in neural firing application, not all parameters

are identifiable. Thus we need to determine the identifiable parameters. We then verify

regularity conditions for asymptotic efficiency and normality to show that information matrix

is feasible for computation.

Recall the Laplace transform of the first passage time density of the reflected Ornstein-

Uhlenbeck process in equation (2.46)

p̂(r)(λ|Θ) =

Hλθ4(−θ1) +
Hλθ4+1(−θ3)Hλθ4(θ1)

Hλθ4+1(θ3)

Hλθ4(−θ2) +
Hλθ4+1(−θ3)Hλθ4(θ2)

Hλθ4+1(θ3)

(4.2)

where Θ = (θ1, θ2, θ3, θ4) =
(
X0−µτ
σ
√
τ
,
Xf−µτ
σ
√
τ
, r−µτ
σ
√
τ
, τ
)

is the parameter space.

Lemma 1. Θ is identifiable.

Proof. Let Θ = (θ1, θ2, θ3, θ4) and H = (η1, η2, η3, η4) be two parameter space of p̂(λ|·). We

only need to show that distinct values of Θ have distinct Laplace transforms i.e.

p̂(λ|Θ) = p̂(λ|N)⇐⇒ Θ = H. (4.3)

The parameters θ3 and η3 are linear transform of the reflecting boundary and define the

support of the pdf’s of p(t|Θ) and p(t|H). Thus it is immediate that θ3 = η3. For the

rest of the other parameters, we prove the identifiability using asymptotic properties of the

Laplace transform of the FPT density. As previously discussed, p̂(λ|Θ) agrees with the

Laplace transform of the FPT density of the unrestricted Ornstein-Uhlenbeck process (2.54)

as θ3 → −∞. In this case, it is not difficult to show θ1, θ2 and θ4 are identifiable [28] using

the following asymptotic expansion for the Hermite function (2.35) defined on [1]: for fixed

x and λ→∞,

Hλ(x) ∼
√
π[1 + O((2λ)−3/2)]

2λΓ
(
λ+1

2

) exp

[
x2

2
+ x
√

2λ+
x3 − 3x

6
√

2λ
− x2

4(2λ)

]
. (4.4)
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Thus, the parameter space is the open set Θ = {θ ∈ R4 : θ3 < θ1 < θ2, θ4 > 0}. Next,

we investigate the properties of the Hermite function Hλ(x) and the Laplace transform of

the FPT density p̂(r)(λ|Θ).

We rewrite equation (2.46) as

ĝ(λ|Θ) =
Hλθ4(θ1)

Hλθ4(θ2)

(
H∗λθ4(θ1) +H∗λθ4+1(θ3)

H∗λθ4(θ2) +H∗λθ4+1(θ3)

)
(4.5)

where H∗λθ4+1(θ3) =
Hλθ4+1(−θ3)

Hλθ4+1(θ3)
, H∗λθ4(θ1) =

Hλθ4 (−θ1)

Hλθ4 (θ1)
and H∗λθ4(θ2) =

Hλθ4 (−θ2)

Hλθ4 (θ2)
.

Then the expansion (4.4) gives

H∗λθ4+1(θ3) ∼ [1 +O(λ−3/2)] exp

(
−2θ3

√
2λθ4 + 2 +

3θ3 − θ3
3

3
√

2λθ4 + 2

)
(4.6)

H∗λθ4(θ1) ∼ [1 +O(λ−3/2)] exp

(
−2θ1

√
2λθ4 +

3θ1 − θ3
1

3
√

2λθ4

)
(4.7)

H∗λθ4(θ2) ∼ [1 +O(λ−3/2)] exp

(
−2θ2

√
2λθ4 +

3θ2 − θ3
2

3
√

2λθ4

)
(4.8)

and

Hλθ4(θ1)

Hλθ4(θ2)
∼ [1 +O(λ−3/2)] exp

(
θ2

1 − θ2
2

2

)
×

exp

(
−
√

2λ(θ2 − θ1)
√
θ4 +

(θ3
1 − 3θ1)− (θ3

2 − 3θ2)

6
√
θ4

√
2λ

− θ2
1 − θ2

2

4θ4(2λ)

)
(4.9)

H∗λθ4(θ1)

H∗λθ4+1(θ3)
∼ [1 +O(λ−3/2)] exp

(
2θ3

√
2λθ4 + 2− 2θ1

√
2λθ4

)
×

exp

(
3θ1 − θ3

1

3
√

2λθ4

− 3θ3 − θ3
3

3
√

2λθ4 + 2

)
. (4.10)

Extending the argument x and the order parameter λ to the complex plane, Hλ(x)

does not vanish when Re(λ) ≥ 0 and the expansion (4.4) is valid in that right half plane

as |λ| → ∞ [35]. Because θ3 < θ1 < θ2, the Laplace transform decays exponentially as√
|2λ| → ∞ [42]. Thus the inversion integral (2.47) is valid.

Lemma 2. All partial derivatives of p̂ with respect to Θ decay exponentially as
√
|2λ| → ∞

in the region Re(λ) ≥ 0.
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Proof. Let

H1(x, ν) =
∂Hν(x)

∂x
, H2(x, ν) =

∂Hν(x)

∂ν
, H12(x, ν) =

∂2Hν(x)

∂x∂ν
, . . . (4.11)

and

p̂i =
∂p̂

∂θi
, p̂ij =

∂2p̂

∂θi∂θj
, . . . . (4.12)

The partial derivatives with respect to θ are easy once we write the Laplace transform of the

FPT density (2.46) as

log p̂(λ|Θ) = f(λ|θ1, θ2, θ4) + h(λ|θ1, θ2, θ3, θ4) (4.13)

where

f(λ|θ1, θ2, θ4) = logHλθ4(θ1)− logHλθ4(θ2) (4.14)

h(λ|θ1, θ2, θ3, θ4) = log[H∗λθ4(θ1) +H∗λθ4+1(θ3)]

− log[H∗λθ4(θ2) +H∗λθ4+1(θ3)]. (4.15)

Then, the partial derivatives can be written as

p̂i(λ|Θ) = p̂(λ|Θ)

[
∂

∂θi
f +

∂

∂θi
h

]
(4.16)

p̂ij(λ|Θ) = p̂(λ|Θ)

[
∂2

∂θiθj
f +

∂2

∂θiθj
h

]
(4.17)

p̂ijk(λ|Θ) = p̂(λ|Θ)

[
∂3

∂θiθjθk
f +

∂3

∂θiθjθk
h

]
(4.18)

p̂ijkl(λ|Θ) = p̂(λ|Θ)

[
∂4

∂θiθjθkθl
f +

∂4

∂θiθjθkθl
h

]
(4.19)

Since p̂(λ|Θ) decays exponentially as
√
|2λ| → ∞, it is sufficient to show that the derivatives

of f and h with respect to θ increase at most polynomially in |λ|. All partial derivatives

of f are investigated by Iyengar [28] and the proof was done using the recursion relation
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H1(x, ν) = 2νHν+1(x) of the Hermite function and the asymptotic expression (4.4). Now we

focus on the partial derivatives of h. Deriving partial derivatives are easy : for example

∂

∂θ1

h =
∂
∂θ1
H∗λθ4(θ1)

H∗λθ4(θ1) +H∗λθ4+1(θ3)
(4.20)

(4.21)

∂

∂θ3

h =
∂
∂θ3
H∗λθ4+1(θ3)

H∗λθ4(θ1) +H∗λθ4+1(θ3)
−

∂
∂θ3
H∗λθ4+1(θ3)

H∗λθ4(θ2) +H∗λθ4+1(θ3)

(4.22)

∂

∂θ4

h =
∂
∂θ4
H∗λθ4(θ1) + ∂

∂θ4
H∗λθ4+1(θ3)

H∗λθ4(θ1) +H∗λθ4+1(θ3)
−

∂
∂θ4
H∗λθ4(θ2) + ∂

∂θ4
H∗λθ4+1(θ3)

H∗λθ4(θ2) +H∗λθ4+1(θ3)

(4.23)

∂2

∂θ1∂θ3

h =
− ∂
∂θ1
H∗λθ4(θ1) ∂

∂θ3
H∗λθ4+1(θ3)

[H∗λθ4(θ1) +H∗λθ4+1(θ3)]2

(4.24)

∂2

∂θ1∂θ4

h =
∂2

∂θ1∂θ4
H∗λθ4(θ1)[H∗λθ4(θ1) +H∗λθ4+1(θ3)]

[H∗λθ4(θ1) +H∗λθ4+1(θ3)]2

−
∂
∂θ1
H∗λθ4(θ1)[ ∂

∂θ4
H∗λθ4(θ1) + ∂

∂θ4
H∗λθ4+1(θ3)]

[H∗λθ4(θ1) +H∗λθ4+1(θ3)]2
. (4.25)

Thus we need to carefully investigate the derivatives of H∗. The derivatives of H∗λ(x) with

respect to x and λ are

∂

∂x
H∗λ(x) = H∗λ(x)

[
−H1(−x, λ)

Hλ(−x)
− H1(x, λ)

Hλ(x)

]
(4.26)

∂

∂λ
H∗λ(x) = H∗λ(x)

[
H2(−x, λ)

Hλ(−x)
− H2(x, λ)

Hλ(x)

]
. (4.27)

It is easy to show that |H1/H| = O(|λ|1/2) once we use the recursion and asymptotic ex-

pansion of the Hermite function. However the ratio |H2/H| needs more work. Consider the

integral representation [1] of the Hermite function that is valid for Re(λ) > 0

Hλ(x) =
1

Γ(λ)

∫ ∞
0

e−t
2+2txtλ−1dt. (4.28)

Then, the the derivative with respect to λ is

H2(x, λ) =
1

Γ(λ)

∫ ∞
0

e−t
2+2txtλ−1(log t)dt−Ψ(λ)Hλ(x). (4.29)
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Here, Ψ(λ) = Γ′(λ)/Γ(λ) is the digamma function: note that Ψ(λ) ∼ log λ as |λ| → ∞

[1]. We now can show the integral representation (4.29) is O(| log(λ)Hλ(x)|) using Laplace’s

method when there are logarithmic singularities [47]. Thus, |H2/H| = O(| log(λ)|). Now, it

is not difficult to show that | ∂
∂θi
h| = O(|λ|1/2), | ∂2

∂θiθj
h| = O(|λ|) and | ∂3

∂θiθjθk
h| = O(|λ|3/2) for

i, j, k = 1, 2, 3. For example, (4.20) can be rewritten as

∂

∂θ1

h =
H∗λθ4(θ1)/H∗λθ4+1(θ3)

1 + (H∗λθ4(θ1)/H∗λθ4+1(θ3))

[
−H1(−θ1, λθ4)

Hλθ4(−θ1)
− H1(θ1, λθ4)

Hλθ4(θ1)

]
. (4.30)

Then we can show | ∂
∂θi
h| = O(|λ|1/2) because the term H∗λθ4(θ1)/H∗λθ4+1(θ3) is asymptotically

goes away.

Next, we focus on the partial derivatives of the f(λ|θ1, θ2, θ4) with respect to Θ.

∂

∂θ1

f =
H1(−θ1, λθ4)

Hλθ4(−θ1)
(4.31)

∂

∂θ4

f = λ

[
H2(−θ1, λθ4)

Hλθ4(−θ1)
− H2(−θ2, λθ4)

Hλθ4(−θ2)

]
(4.32)

∂2

∂θ1θ4

f = λ

[
H12(−θ1, λθ4)

Hλθ4(−θ1)
− H1(−θ1, λθ4)H2(−θ2, λθ4)

Hλθ4(−θ1)Hλθ4(−θ2)

]
(4.33)

and similar for others. Thus, it is sufficient to show that each ratios Hi/H,Hij/H, and

Hijk/H increase at most polynomially in |λ|. The recursion relation H1(x, ν) = 2νHν+1(x) of

the Hermite function and the asymptotic expression (4.4) gives |H1/H| = O(|λ|1/2), |H11/H| =

O(|λ|), and |H111/H| = O(|λ|3/2).

Theorem 1. Suppose that the parameter space Θ contains the true value θ0 in its interior.

Then, with probability tending to 1 as n → ∞, there exist solutions θ̂n of the likelihood

equations based on T1, . . . , Tn such that

(a) θ̂jn is consistent for θ0
j , j = 1, 2, 3, 4

(b)
√
n(θ̂n − θ) is asymptotically normal with mean 0 and covariance matrix I(θ)−1

(c) θ̂jn is asymptotically efficient.
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Proof. We verify the seven conditions in Lehmann [37] and follow the proof for the unre-

stricted Ornstein-Uhlenbeck process case given in Iyengar [28]. We have already proved three

conditions: identifiability, common support, and the existence of a pdf. We prove the other

four conditions below.

(i) Differentiability with respect to θ1,2,3,4.

From Lemma 2, there exist positive continuous Aθ and Bθ such that

|p̂ijkl(λ|θ)| ≤ Aθe
−Bθ
√
|2λ| ≤ Ae−B

√
|2λ| (4.34)

for each θ in an open subset ω in Θ containing the true parameter θ0. Here, A and B are

the suprema of Aθ and Bθ over the closure ω̄. Thus pijkl(t|θ) is the inverse of p̂ijkl(t|θ) [8].

(ii) Function of p.

Since there exist constants Ai and Bi such that

Aip̂(λ|θ) ≤ p̂i(λ|θ) ≤ Bip̂(λ|θ), (4.35)

pi is integrable and satisfies∫ ∞
0

∂

∂θi
p(t|θ)dt =

∂

∂θi

∫ ∞
0

p(t|θ)dt = 0. (4.36)

This fact tells us that the expected score is zero and

Ijk(θ) = Eθ

[
∂

∂θj
log p(T |θ) ∂

∂θk
log p(T |θ)

]
= Eθ

[
− ∂2

∂θj∂θk
log p(T |θ)

]
. (4.37)

(iii) Nonsingular information matrix.

We need to prove that the statistics ∂
∂i

log p(T |θ) are affinely independent with probability 1

for i = 1, 2, 3, 4. Thus it is enough to show that the constants a, b, c, d, e do not exist which

satisfies

a
∂

∂θ1

log g(T |θ) + b
∂

∂θ2

log p(T |θ) + c
∂

∂θ3

log g(T |θ) + d
∂

∂θ4

log p(T |θ) = e. (4.38)

Rewriting the above equation with the inversion formula of the Laplace transform gives

1

2πi

∫ 0+i∞

0−i∞
eTλ[ap̂1(λ|θ) + bp̂2(λ|θ) + cp̂3(λ|θ) + dp̂4(λ|θ)]dλ = e. (4.39)
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Because the Laplace transform of p̂ decays exponentially as
√
|2λ| → ∞ (Lemma 2), the

inverse transform cannot be a constant.

(iv) Bounds on fourth order derivatives.

We shall show that there exist functions Hijkl(t) such that∣∣∣∣ ∂4

∂θi∂θj∂θk∂θl
log p(t|θ)

∣∣∣∣ ≤ Hijkl(t) for all θ ∈ ω (4.40)

where Eθ0 [Hijkl(T )] < ∞. From part (i), there exists a constant Aθ such that |p̂ijkl(λ|θ)| ≤

Aθp̂(λ|θ) so that |pijkl(t|θ)| ≤ Aθp(t|θ). We now consider the function H with suprema Aθ

and νθ that is an exponential tail of p(t|θ). Hence, νmin = inf
θ∈ω

νθ yields an upper bound.

4.2 MAXIMUM LIKELIHOOD ESTIMATION OF IDENTIFIABLE

PARAMETERS

We estimate the identifiable parameters in the model given the FPT data using maximum

likelihood (ML) method. We construct the log-likelihood function,

lnL(Θ|T1, . . . , Tn) =
n∑
i=1

ln p(Ti,Θ) (4.41)

with respect to the identifiable parameter Θ. Here, Ti’s are the FPT data that are ob-

served and p(Ti,Θ) is the FPT density. The maximum likelihood estimate (MLE), Θ̂ =

(θ̂1, θ̂2, θ̂3, θ̂4), of the parameters is the solution of the equations

∂

∂θi
lnL(Θ|T1, . . . , Tn) = 0 i = 1, 2, 3, 4. (4.42)

Since the derivatives of p(Ti,Θ) with respect to Θ exist up to second order, we can solve

the equation (4.42) numerically using Newton’s method that is asymptotically efficient

(Lehmann, 1983):

Θ(n+1) = Θ(m) −H(Θ(n))F (Θ(n)) (4.43)

Θ(n) = (θ
(n)
1 , θ

(n)
2 , θ

(n)
3 , θ

(n)
4 )T . (4.44)
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Here, H(Θ(n)) is the Hessian matrix of lnL(Θ|T1, . . . , Tn) and F (Θ(n)) is the system (4.42).

Then the MLE Θ̂ can be obtained as

Θ̂ = lim
n→∞

Θ(n) = (θ̂1, θ̂2, θ̂3, θ̂4) (4.45)

We use the Fisher information matrix, I(Θ̂), which can be obtained through the Hessian

evaluated at the MLE, H(Θ̂), to construct approximate confidence intervals for the estimates.

I(Θ̂) = −H(Θ̂) (4.46)

We proved that the MLEs of the parameters Θ are asymptotically normal as n→∞. Thus

√
I(Θ̂n)(Θ̂n −Θ) −→ N(0, I) (4.47)

where

I(Θ̂n)−1 =


Var(θ̂1,n) Cov(θ̂1,n, θ̂2,n) Cov(θ̂1,n, θ̂3,n) Cov(θ̂1,n, θ̂4,n)

Cov(θ̂2,n, θ̂1,n) Var(θ̂2,n) Cov(θ̂2,n, θ̂3,n) Cov(θ̂2,n, θ̂4,n)

Cov(θ̂3,n, θ̂1,n) Cov(θ̂3,n, θ̂2,n) Var(θ̂3,n) Cov(θ̂3,n, θ̂4,n)

Cov(θ̂4,n, θ̂1,n) Cov(θ̂4,n, θ̂2,n) Cov(θ̂4,n, θ̂3,n) Var(θ̂4,n)

 . (4.48)
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5.0 NUMERICAL RESULTS

In this chapter, we give numerical results for the estimation algorithm. We used MATLAB

7.0 software to simulate sample paths and FPT data. Then a C++ program was used to

compute the Hermite function, to invert Laplace transform and to estimate the parameters

given through simulated samples. Because estimating θ4 seems difficult, we performed the

inference in two ways: first estimating the three parameters, (θ1, θ2, θ3), when θ4 is fixed and

then estimating θ4 along with the other three parameters. Figure 2 shows a histogram of the

2000 first-passage time samples simulated from the reflecting Ornstein-Uhlenbeck process,

for which the identifiable parameters are Θ = (−3.16,−1.05,−3.37, 10).

5.1 ESTIMATION OF θ1, θ2, θ3 FOR FIXED θ4

Figure 3 displays the true and ML pdf evaluated on the axis t with the same time step (∆t =

10−4) used to generate the sample. The true pdf is computed with the same parameters used

to generate the samples in Figure 2. The ML pdf is computed with the MLE parameters

evaluated using our numerical algorithm. The estimated parameters for this case are

θ̂1 = −3.08, θ̂2 = −1.01 and θ̂3 = −3.31, (5.1)

with corresponding asymptotic covariance matrix

Cov =


0.0053 0.0032 0.0108

0.0032 0.0027 0.0124

0.0101 0.0124 0.0811

 . (5.2)
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Figure 2: Histogram of First Passage Samples of a Reflected Ornstein-Uhlenbeck process

for parameters (V0, Vf , µ, σ, τ, r) = (0, 10, 1.5, 1.5, 10,−1) ⇔ Θ = (−3.16,−1.05,−3.37, 10).

Simulation parameters: n=2000 samples with time step ∆t = 10−4.

Though there is a certain deviation around the maximum, the estimated ML pdf seems

to be a good approximation of the true pdf.

Then we estimated the identifiable parameters with different sample sizes (n=2000, 4000,

8000 and 15000) to see the effect of sample size. The results of estimation are shown in Table

3. Without any doubt, the estimates become more precise, i.e., the estimates get closer to

the trues value and the standard errors get smaller as the sample size n→∞.

5.1.1 Effect of volatility

In simulating the trajectory of the reflected Ornstein-Uhlenbeck process, a random noise

is induced from the term σ∆W . If σ is too small, the mean reverting term dominates
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Figure 3: True and estimated pdf: 2000 samples with time step ∆t = 10−4. True and ML pa-

rameters are Θ = (−3.16,−1.05,−3.37, 10) and Θ̂ = (−3.08,−1.01,−3.31, 10) respectively.
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Table 3: Estimates and standard errors with varying FPT sample size. True parameters:

(V0, Vf , µ, σ, τ, r) = (0, 10, 1.5, 1.5, 10,−1) ⇔ Θ = (−3.16,−1.05,−3.37, 10)

n θ̂1 θ̂2 θ̂3

2000
-3.08 -1.01 -3.31

(0.073) (0.052) (0.285)

4000
-3.12 -1.04 -3.32

(0.051) (0.037) (0.188)

8000
-3.17 -1.06 -3.44

(0.039) (0.027) (0.185)

15000
-3.14 -1.05 -3.42

(0.028) (0.019) (0.136)

the random noise and the trajectories seldom reach the reflecting boundary. If a reflected

Ornstein-Uhlenbeck process has a high volatility, i.e., σ is large, we can intuitively say

that the process has a high probability to hit the reflecting boundary and this affects the

magnitude of the FPT random variable. We display the Euler solution of the reflected

Ornstein-Uhlenbeck process with different volatilities in Figure 4. The trajectories are more

volatile as σ becomes large, so they easily move below the starting point V0 = 0 and hit a

reflecting boundary.

Table 4 is a summary of the descriptive statistics of the FPT samples with different

diffusion coefficients. We see that the sample mean and median of the FPT samples get

smaller as σ gets larger. The sample standard deviation is more interesting and needs to be

investigated carefully. In Table 4, the standard deviation is maximized around σ = 2 and

decreases as σ gets larger or smaller. Thus we can argue that a random noise term begins

to dominate the mean reverting term around σ = 2 in our numerical example when we fix

the other parameters. This results in a large sample standard deviation at σ = 2.

A similar argument can be given through the probability density function of the FPTs.

Figure 5 displays the true probability density functions with different values of σ. We can
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Table 4: Descriptive statistics of the FPT samples for parameters (V0, Vf , µ, τ, r) =

(0, 10, 1.5, 10,−1).

true value FPT samples

σ θ1 θ2 θ3 min max median mean stdev

0.5 -9.49 -3.16 -10.12 5.68 21.4 10.52 10.78 2.02

1.0 -4.74 -1.58 -5.06 2.81 36.41 9.66 10.28 3.55

1.5 -3.16 -1.05 -3.37 1.77 40.56 8.66 9.57 4.51

2.0 -2.37 -0.79 -2.53 1.12 43.66 7.49 8.66 4.95

2.5 -1.90 -0.63 -2.02 0.92 41.92 6.48 7.70 4.88

3.0 -1.58 -0.53 -1.69 0.74 41.33 5.47 6.69 4.57

3.5 -1.36 -0.45 -1.45 0.59 35.48 4.64 5.81 4.23

4.0 -1.19 -0.40 -1.26 0.38 29.75 3.91 4.98 3.74

see that large σ makes the density skewed to the right, which is consistent with the mean

and median changes in Table 4. The spread of a density is large around σ = 2 and this result

corresponds to the sample standard deviation in Table 4.

Then we estimate θ1,θ2 and θ3 of the FPT samples in Table 4. The results are summarized

in Table 5. Our algorithm suffers from numerical accuracy in computing and fails to discrim-

inate θ̂1 and θ̂3 when σ = 4 though the estimated standard errors are small enough. In fact,

the true values of θ1 and θ3 are not different because we set the reflecting boundary(r = −1)

close to the starting point(V0 = 0) in simulating the FPT samples. In the case of σ < 1,

our algorithm fails to converge and we cannot estimate the MLE for the parameter θ3. This

makes sense because a small σ means that the trajectories rarely hit the reflecting boundary.

This is equivalent to setting the reflecting boundary at r = −∞.
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Table 5: ML estimates of θ1,θ2 and θ3 with varying volatility σ for fixed θ4 = 10.

true parameters estimated parameters

σ θ1 θ2 θ3 θ1 θ2 θ3

1.5 -3.16 -1.05 -3.37
-3.11 -1.04 -3.32

(0.051) (0.037) (0.188)

2 -2.37 -0.79 -2.53
-2.34 -0.77 -2.51

(0.048) (0.042) (0.122)

2.5 -1.90 -0.63 -2.02
-1.93 -0.66 -2.09

(0.091) (0.099) (0.238)

3 -1.58 -0.53 -1.69
-1.81 -0.75 -2.21

(0.126) (0.104) (0.329)

3.5 -1.36 -0.45 -1.45
-1.25 -0.36 -1.33

(0.109) (0.136) (0.196)

4 -1.19 -0.40 -1.26
-1.07 -0.24 -1.07

(0.086) (0.054) (0.065)
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(a) σ = 1 (b) σ = 2

(c) σ = 3 (d) σ = 4

Figure 4: Euler Solution of the reflected Ornstein-Uhlenbeck process with parameter

(µ, τ, V0, r) = (1.5, 5, 0,−1).
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Figure 5: True pdf for parameters (V0, Vf , µ, τ, r) = (0, 10, 1.5, 10,−1) and σ = 0.5, 1, 2, 3, 4.
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5.1.2 Effect of a reflecting boundary

We showed that the FPT distribution of a reflected Ornstein-Uhlenbeck process converges to

that of an Ornstein-Uhlenbeck process as the reflecting boundary r → −∞. In this section,

we investigate how far a reflecting boundary be in numerical sense to converge to the FPT

distribution of an Ornstein-Uhlenbeck process.

We first simulate 2000 FPT samples from the Ornstein-Uhlenbeck (without reflecting

boundary) for the parameters (V0, Vf , µ, σ, τ) = (0, 10, 1.5, 3, 5). This sample is now re-

garded as the FPT samples from the reflected Ornstein-Uhlenbeck process for the param-

eters (V0, Vf , µ, σ, τ, r) = (0, 10, 1.5, 3, 5,−∞). In simulating the samples, the volatility is

given a value somewhat high (σ = 3) so as to allow the trajectories of the process to go

below the starting point(V0) with a high probability. Figure 6 shows the simulated path of

the Ornstein-Uhlenbeck process for different volatilities(σ = 1, σ = 3) given the equilibrium

state µτ = 7.5. We see that Fig 6(b) is more volatile than Fig 6(a) and easily moves below

the starting point V0 = 0.

With the simulated samples we then estimate the parameters using our numerical algo-

rithm by varying the reflecting boundary. Table 6 shows the estimates and log-likelihood

value under various conditions and Figure 7 displays the FPT pdf with different reflecting

boundaries. In Table 6, the estimates and log-likelihood are the same when r ≤ −15. This

is supported by Figure 7. It seems that imposing a reflecting boundary r ≤ −5 makes little

difference in the pdf.
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(a) Ornstein-Uhlenbeck process with parameter (µ, τ, σ, V0) =
(1.5, 5, 1, 0).

(b) Ornstein-Uhlenbeck process with parameter (µ, τ, σ, V0) =
(1.5, 5, 3, 0).

Figure 6: Euler Solution of the Ornstein-Uhlenbeck process with different volatilities.
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Table 6: ML estimates of 3 parameters with different reflecting boundaries

r θ3 θ1 θ2

-0.1 -1.13
-0.87 0.54

(0.044) (0.013)

-0.5 -1.19
-0.89 0.52

(0.041) (0.014)

-1 -1.27
-0.91 0.50

(0.040) (0.014)

-2 -1.42
-0.95 0.47

(0.039) (0.015)

-3 -1.57
-0.99 0.44

(0.040) (0.016)

-4 -1.71
-1.02 0.42

(0.040) (0.017)

-5 -1.86
-1.04 0.41

(0.040) (0.018)

-10 -2.61
-1.06 0.40

(0.040) (0.018)

-15 -3.35
-1.07 0.39

(0.040) (0.019)

-17 -3.65
-1.07 0.39

(0.042) (0.019)

-20 -4.10
-1.07 0.39

(0.040) (0.019)
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r)2.png

Figure 7: True pdf for parameters (V0, Vf , µ, τ) = (0, 10, 1.5, 10) and r =

−0.5,−1,−2,−5,−10,−15.
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5.2 ESTIMATION OF θ1, θ2, θ3, θ4

In the previous section, we computed estimates for θ1, θ2 and θ3 from the FPT samples for

fixed θ4. This constraint seems unreasonable for real data because the FPT random variable

and its density are clearly a function of the four identifiable parameters: θ1,2,3,4. We now

allow for variation in θ4 and investigate the effect of this parameter on the estimates. The

MLE estimates are computed from the samples shown in Figure 2. Our numerical algorithm

gives the estimates

Θ̂ = (−3.07,−0.84,−3.36, 8.81) (5.3)

with corresponding asymptotic covariance matrix

Cov =


0.0074 0.0407 −0.0025 −0.2580

0.0407 0.7173 −0.2764 −4.8757

−0.0025 −0.2764 0.2531 1.9735

−0.2580 −4.8757 1.9735 33.2345

 . (5.4)

We see that standard deviation of the parameter θ4 is much higher than that of the

others. This reflects the fact that θ4 has less information compared with the others. Thus

if we don’t know θ4, we need a considerably larger sample size in order to estimate all the

parameters with the same reasonable accuracy as the 3 parameter algorithm. In Table 7, we

estimate 4 parameters with different sample size. Though we estimate the parameters with

n = 30000 samples, we do not obtain the same level of accuracy that we get from n = 2000

samples in the 3 parameter estimation.

The probability density function associated with these estimates is shown in Figure 8.

There also exist deviations from the true pdf around the maximum that was shown in Figure

3 for the 3 parameter estimation. However, we do not see a great difference between the

two pdfs. To quantify the similarity, we compute the root mean square deviation (RMSD)

between the pdf with true parameters and the pdf with the estimated MLE parameters, i.e.:

εj =

√√√√( n∑
i=1

[p(Ti,Θ)− pj(Ti, Θ̂n)]2

)
/n (5.5)
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where j indicates the three and four parameter estimates respectively. We find that ε3 ≈

3.4 × 10−4 and ε4 ≈ 3.8 × 10−4 for the data in Figure 3 and Figure 8. For the numerical

inversion integration, we set ∆λ = 0.015. The trapezoidal integration error then is of the

order O(10−4). Thus both ε3 and ε4 are of the same order.

Table 7: ML estimates of 4 parameters with different sample size

n θ1 θ2 θ3 θ4

2000
-3.07 -0.84 -3.36 8.81

(0.086) (0.847) (0.503) (5.765)

4000
-3.10 -0.73 -3.43 7.94

(0.057) (0.437) (0.437) (2.728)

15000
-3.11 -0.76 -3.39 8.06

(0.039) (0.332) (0.323) (2.144)

30000
-3.13 -0.72 -3.41 7.82

(0.026) (0.213) (0.211) (1.339)
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Figure 8: True and estimated pdf: 2000 samples with time step ∆t = 10−4. True and ML

parameters are Θ = (−3.16,−1.05,−3.37, 10) and Θ̂ = (−3.07,−0.84,−3.36, 8.81) respec-

tively.
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6.0 FUTURE WORK

6.1 ESTIMATION PRECISION AND MODEL COMPARISON

Estimating the identifiable parameters given the FPT samples are discussed in Chapter 5.

We estimated 3 parameters first and then estimated θ4. When we did not assume θ4 was

known, we encountered precision problems, i.e., the standard error of this parameter was

always considerably greater than those of the other parameters. We can also see the same

problem when we consider the unrestricted Ornstein-Uhlenbeck process. In neuroscience

applications, θ4 is meaningful 5 to 20 millisecond range and this helps us estimate the other

parameters. However, in general, this assumption is not realistic. In the future, we will

study the analytical expression of the information matrix for these parameters and will solve

this problem by applying a variance stabilizing method.

We also want to compare which model better captures the stochastic behavior of the

neuron among Ornstein-Uhlenbeck, reflected Ornstein-Uhlenbeck and Feller process. The

inference for our model was done by maximum likelihood approach and this would help us

adopt the Kullback-Leibler divergence to model comparison.

6.2 ESTIMATING PARAMETERS GIVEN TRAJECTORIES

We estimated the identifiable parameters under the assumption that we can only observe

the FPT samples. Suppose, however, we can observe the history of the sample paths. For

example, in finance, the interest rate data from the past to the present is recorded.

In section 2.4, we discussed the transition distribution of the reflected Ornstein-Uhlenbeck
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process. Because the Laplace transform of the transition density is tractable, we can compute

the transition density by inverting the Laplace transform numerically. We then are able to

construct the joint density of the reflected Ornstein-Uhlenbeck process given the sample

paths and parameters since it has the Markov property:

p(x0, x1, · · · , xn) = p(x0)p(x1|x0)p(x2|x1) · · · p(xn|xn−1)

= p(x0)
n∏
i=1

p(xi|xi−1).

Thus the likelihood of the reflected Ornstein-Uhlenbeck process can be accessible numeri-

cally. We can then apply the same method that was applied in estimating the identifiable

parameters to estimate all parameter of our process. However, we still need to check the

conditions that we discussed in Section 4.1.
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