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δ = reward− V (s)

Vnew(s) = V (s) + learningRate× δ

Vnew(s) = V (s) + learningRate× [reward− V (s)]

V (s) = reward [reward−V (s)]

δ



δa1 = reward− Vold(a1)

δa2 = reward− Vold(a2)

δa3 = reward− Vold(a3)

. . .

reward− V (s)






Vnew(s) = V (s) + learningRate× [reward− V (s)]

Vnew(a1) = V (a1) + learningRate× [reward− V (a1)]

Vnew(a2) = V (a2) + learningRate× [reward− V (a2)]

Vnew(a3) = V (a3) + learningRate× [reward− V (a3)]

δ = reward− Vold(s) = reward− [Vold(a1) + Vold(a2) + Vold(a3) + . . .

V (s) = V (a1) + V (a2) + V (a3) + . . .

V (s) = V (s bias) + V (a1) + V (a2) + V (a3) + . . .



V (global) = 0

V (light) = 0

V (noise) = 0



δglobal = 3− V (global) . . . ⇒ . . . V (global) = 3

δlight = 3− V (light) . . . ⇒ . . . V (light) = 3

δnoise = . . . ⇒ . . . V (noise) = 0

reward− V (S) = 3− V (s)






Vnew(global) = unchanged

Vnew(a1) = unchanged

Vnew(a2) = unchanged

Vnew(a3) = unchanged

V (global) V (light)

δglobal = 1− V (global) . . . ⇒ . . . ⇒ V (global) = 1

δlight = 1− V (light) . . . ⇒ . . . ⇒ V (light) = 1

δnoise = 1− V (noise) . . . ⇒ · · · ⇒ V (noise) = 1

V (noise)



δglobal = 1− V (global) . . . ⇒ . . . ⇒ V (global) = 1

δlight = 1− V (global) . . . ⇒ . . . ⇒ V (light) = 1

δnoise = 1− V (global) . . . ⇒ · · · ⇒ V (noise) = −2 ∗ ∗ ∗
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a b s t r a c t

Recent attempts to map reward-based learning models, like Reinforcement Learning [Sutton, R. S., &
Barto, A. G. (1998). Reinforcement Learning: An introduction. Cambridge, MA: MIT Press], to the brain
are based on the observation that phasic increases and decreases in the spiking of dopamine-releasing
neurons signal differences between predicted and received reward [Gillies, A., & Arbuthnott, G. (2000).
Computational models of the basal ganglia. Movement Disorders, 15(5), 762–770; Schultz, W. (1998).
Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80(1), 1–27]. However, this
reward-prediction error is only one of several signals communicated by that phasic activity; another
involves an increase in dopaminergic spiking, reflecting the appearance of salient but unpredicted non-
reward stimuli [Doya, K. (2002). Metalearning and neuromodulation.Neural Networks, 15(4–6), 495–506;
Horvitz, J. C. (2000). Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward
events. Neuroscience, 96(4), 651–656; Redgrave, P., & Gurney, K. (2006). The short-latency dopamine
signal: A role in discovering novel actions?Nature Reviews Neuroscience, 7(12), 967–975], especiallywhen
an organism subsequently orients towards the stimulus [Schultz, W. (1998). Predictive reward signal
of dopamine neurons. Journal of Neurophysiology, 80(1), 1–27]. To explain these findings, Kakade and
Dayan [Kakade, S., & Dayan, P. (2002). Dopamine: Generalization and bonuses. Neural Networks, 15(4–6),
549–559.] and others have posited that novel, unexpected stimuli are intrinsically rewarding. The
simulation reported in this article demonstrates that this assumption is not necessary because the effect
it is intended to capture emerges from the reward-prediction learning mechanisms of Reinforcement
Learning. Thus, Reinforcement Learning principles can be used to understand not just reward-related
activity of the dopaminergic neurons of the basal ganglia, but also some of their apparently non-reward-
related activity.

© 2008 Elsevier Ltd. All rights reserved.

Reinforcement Learning (RL) is becoming increasingly important
in the development of computational models of reward-based
learning in the brain (Gillies & Arbuthnott, 2000). RL is a class of
computational algorithms that specifies how an artificial ‘‘agent’’
(e.g., a real or simulated robot) can learn to select actions in
order to maximize total expected reward (Sutton & Barto, 1998).
In these algorithms, an agent bases its actions on values that it
learns to associate with various states (e.g., the perceptual cues
associated with a stimulus). These values can be gradually learned
through temporal-difference learning, which adjusts state values
based on the difference between the agent’s existing reward
prediction for the state and the actual reward that is subsequently
obtained from the environment. This computed difference, termed
reward-prediction error, has been shown to correlate very well

✩ Contributed article.∗ Tel.: +1 412 624 3191; fax: +1 412 624 9149.
E-mail address: patryk@cnbc.cmu.edu.

with the phasic activity of dopamine-releasing neurons projecting
from the substantia nigra in non-human primates (Schultz, 1998).
Furthermore, in humans, the striatum,which is an important target
of dopamine, exhibits an fMRI BOLD signal that appears to reflect
reward-prediction error during reward-learning tasks (McClure,
Berns, & Montague, 2003; O’Doherty, Dayan, Friston, Critchley, &
Dolan, 2003; Tanaka et al., 2004). This fMRI finding complements
the physiology data because striatal BOLD is assumed to reflect, at
least in part, afferent synaptic activity (Logothetis, Pauls, Augath,
Trinath, & Oeltermann, 2001) and the dopamine neurons project
heavily to the striatum.

Although the aforementioned physiological responses appear
to be related to the reward-prediction computations of RL, there
is also an increase in dopaminergic phasic activity in response to
arousing and/or novel stimuli that is seemingly unrelated to re-
ward (Dommett et al., 2005; Doya, 2002; Horvitz, 2000; Redgrave,
Prescott, &Gurney, 1999). A similar phenomenonhas been recently
observed in humans using fMRI (Bunzeck &Düzel, 2006). There are
several reasons why this ‘‘novelty’’ or ‘‘saliency’’ response is said to
be unrelated to reward-prediction error: (1) it appears very early,

0893-6080/$ – see front matter© 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2008.09.004
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before the identity of the stimulus has been assessed, so that an ac-
curate reward prediction cannot be generated; (2) it corresponds
to an increase in neural activity (i.e., it is positive) for both aversive
and appetitive stimuli; and (3) it habituates (Redgrave & Gurney,
2006). Indeed, these saliency/novelty responses of the dopamine-
releasing neurons are most reliable when the stimuli are unpre-
dicted and result in orienting and/or approach behavior (Schultz,
1998) regardless of the eventual outcome, highlighting the fact that
they are qualitatively different from learned reward prediction.
The challenge, therefore, has been to explain this apparent para-
dox (i.e., how novelty affects the reward-prediction error) within
the theoretical framework of RL.

Kakade and Dayan (2002) attempted to do exactly this; in their
article, they postulate two ways in which novelty responses could
be incorporated into RL models of dopaminergic function—both
involved the inclusion of new theoretical assumptions. The first
assumption, referred to as novelty bonuses, involves introducing
an additional reward when novel stimuli are present, above and
beyond the usual reward received by the agent. This additional
reward enters into the computation so that learning is based
on the difference between the agent’s existing reward prediction
and the sum of both the usual reward from the environment
and the novelty bonus. Thus, the novelty becomes part of the
reward that the agent is attempting to maximize. The second
assumption, termed shaping bonuses, can be implemented by
artificially increasing the values of states associated with novel
stimuli. Because the temporal-difference learning rule used in RL is
based on the difference in reward-prediction between successive
states, the addition of a constant shaping bonus to states concerned
with the novel stimuli has no effect on the final behavior of the
agent. However, a novelty response still emerges when the agent
enters the part of the state space that has been ‘‘shaped’’ (i.e., that
is associated with novelty).

Although the addition of each of these assumptions is sufficient
to explain many observed effects of novelty, the assumptions also
interfere with the progression of learning. As Kakade and Dayan
(2002) point out, novelty bonuses can distort the value function
(i.e., the values associated with each state by the agent) and
affect what is ultimately learned because they are implemented
as an additional reward that is intrinsically associated with novel
states. The problem is that the agent learns to predict both
the primary and novelty components of the reward. Although
Kakade and Dayan point out that shaping bonuses do not cause
this type of problem because they become incorporated into
the reward predictions from preceding states, their addition is
still problematic because shaping bonuses introduce biases into
the way an agent will explore its state space. Thus, although
these additional assumptions may explain how novelty affects
the reward-prediction error in RL, they are problematic. Further,
the explanations come at the cost of reducing the parsimony of
modeling work that attempts to use RL to understand the behavior
of real biological organisms.

The simulation reported below was carried out in order to test
the hypothesis that a simple RL agent, without any additional
assumptions, would develop a reward-prediction error response
that is similar to the non-reward-related dopamine responses that
are observed in biological organisms. An RL agent was given the
task of interacting with two types of object – one positive and
the other negative – that appeared at random locations in its
environment. In order to maximize its reward, the agent had to
learn to approach and ‘‘consume’’ the positive object, and to avoid
(i.e., not ‘‘consume’’) the negative object. There were three main
predictions for the simulation.

The first prediction was simply that, in order to maximize its
reward, the agent would in fact learn to approach and ‘‘consume’’
the positive, rewarding objects while simultaneously learning to

avoid the negative, punishing objects. The second prediction was
slightly less obvious: that the agent would exhibit an orienting
response (i.e., learn to shift its orientation) towards both negative
and positive objects. This prediction was made because although
the agent could ‘‘sense’’ the appearance of an object and its
location, the positive or negative identity of the object (i.e., the
cue that the agent would eventually learn to associate with the
reward value of the object) could not be determined by the agent
until after the agent had actually oriented towards the object.
Finally, the third (and most important) prediction was related
to the simulated dopaminergic phasic response in the model;
this prediction was that, when the object appeared, the agent
would exhibit a reward-prediction error that was computationally
analogous to the phasic dopamine response observed in biological
organisms, being positive for both positive and negative objects.
This response was also predicted to vary as a function of the
distance between the agent and the stimulus, which in the context
of the simulation was a proxy measure for stimulus ‘‘intensity’’
or salience. As will be demonstrated below, these predictions
were confirmed by the simulation results, demonstrating that
the apparently non-reward-related dopamine responses can in
principle emerge from the basic principles of RL. The theoretical
implications of these results for using RL to understand non-
reward-related activity in biological organisms will be discussed
in the final section of this article.

1. Method

As already mentioned, RL algorithms specify how an agent can
usemoment-to-moment numerical rewards to learnwhich actions
it should take in order tomaximize the total amount of reward that
it receives. In most formulations, this learning is achieved by using
reward-prediction errors (i.e., the difference between an agent’s
current reward prediction and the actual reward that is obtained)
to update the agent’s rewardpredictions. As the rewardpredictions
are learned, the predictions can also be used by an agent to select
its next action. The usual policy (defined in Eq. (2)) is for the agent
to select the action that is predicted to result in the largest reward.
The actual reward that is provided to the agent at any given time is
the sum of the immediate reward plus some portion of the value of
the state that the agent enters when the action is completed. Thus,
if the agent eventually experiences positive rewards after having
been in a particular state, the agent will select actions in the future
that are likely to result in those rewarded states; conversely, if the
agent experiences negative rewards (i.e., punishment) it will avoid
actions in the future that lead to those ‘‘punished’’ states.

The specific algorithm that determines the reward predictions
that are learned for the various states (i.e., the value function V ) is
called Value Iteration1 and can be formally described as:

1 Another Reinforcement Learning algorithm, called Trajectory Sampling (Sutton
& Barto, 1998), is frequently used instead of Value Iteration when the state space
becomes so large that it cannot be exhaustively iterated or easily stored in a
computer’s memory. Rather than iterating over every state in the state space and
applying the value function update equation based on the actions that appear to
lead to the most reward, Trajectory Sampling works by following paths through
the state space. Similar to Value Iteration, the actions leading to the most reward
are usually selected fromeach state, but occasionally a randomexploratory action is
chosenwith some small probability. Thus the algorithm is: From some starting states,
select an action leading to the most reward [e.g., reward + γ V (s�)] with probability ε,
or select a random exploratory action with probability 1 − ε. Apply V (s) ← V (s) +
α[reward + γ V (s�) − V (s)] during non-exploratory actions from states.

Besides overcoming the technical limitations of computational time andmemory,
Trajectory Sampling may be appealing because it may better reflect the manner in
which real biological organisms learn: by exploring paths in a state space. On the
task described in this paper, Trajectory Sampling yields results that are qualitatively
identical to those obtained with Value Iteration. However, for conciseness those
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For all possible states s,

V (s) ← V (s) + α

�
max

action∈M
{reward + γ V (s�)} − V (s)

�
(1)

where s corresponds to the current state, V (s) is the current
reward prediction for state s that has been learned by the
agent, maxaction∈M{} is an operator for the maximum value of the
bracketed quantity over the set of all actions M available to the
agent, V (s�) is the agent’s current reward prediction for the next
state s�, α is some learning rate (between 0 and 1), and γ is a
discount factor reflecting how future rewards are to be weighted
relative to immediate rewards. The initial value function was set
so that V (s) was 0 for all states s.

The value function V (s) was implemented as a lookup table,
which is formally equivalent to the assumption of perfectmemory.
Although function approximators such as neural networks have
been used with some success to represent value functions (Baird,
1995), a lookup table was used to ensure that the results were
not dependent on the types of generalization mechanism that are
providedby various function approximators. The agentwas trained
for 1500 learning iterations over its state space. Because of the
unpredictability of the identity of the objects, a value function
update parameter of less than one (α = 0.01) was used during
the learning to allow for averaging of different outcomes. Finally,
the discount factor was set to γ = 0.99 to encourage the agent
to seek reward sooner rather than delay its approach behavior
until the end of the trial (although changing it from a default
value of 1 had no effect on the results reported here). In order to
independently determine whether 1500 learning iterations were
sufficient for learning to complete, the average amount of change
in the learned was monitored and was found to have converged
before this number of iterations.

After training, the specific algorithm that governs the agent’s
behavior (i.e., the policy of actions that it takes from each given
state) is:

π(s) = argmax
action∈M

[reinforcement + γ V (s�)] (2)

where π(s) is the action the agent will select from state s, and
the right side of the equation returns the action (e.g., change of
orientation, movement, or no action) which maximizes the sum of
the reward and the discounted value of the resulting state s�.

In the simulation that is reported below, all of the states that
were visited by the agent were encoded as 7-dimensional vectors
that represented information about both the external ‘‘physical’’
state of the agent and its internal ‘‘knowledge’’ state. The physical
information included both the agent’s current position in space and
its orientation. The knowledge information included the position
of the object (if one was present) and the identity of that object
(if it had been determined by the agent). The specific types
of information that were represented by the agent are shown
in Table 1.

results are not reported here in detail. Value Iteration was selected for the
simulation in this paper for two main reasons. First, because Trajectory Sampling
involves stochasticity in the selection of trajectories; the large amount of branching
that is due to the many possible sequences of actions in this task may result in
agents that lack experience with some states unless the exploration–exploitation
parameter (i.e., ε-greediness (Sutton & Barto, 1998)) is carefully selected. This lack
of experience with particular states can be disruptive of an agent’s performance
when a lookup table memory structure is used because of the lack of generalization
of value to similar (but possibly unvisited) states. Thus, it was preferred to take
advantage of the exhaustive exploration of state space that is guaranteed with
Value Iteration. Second, the use of Value Iteration obviated the need to specify that
additional exploration–exploitation parameter, thereby simplifying the simulation.
Note that Trajectory Sampling can ultimately approximate Value Iteration as the
number of trajectories approaches infinity (Sutton & Barto, 1998).

There were a total of 21,120 states in the simulation2. However,
the states in which there was an unidentified positive and
unidentified negative object are, from the perspective of the agent,
identical, so there are therefore only 16,280 distinct states. Thus,
during each iteration of learning, it was necessary to visit some of
those ‘‘identical’’ states twice to allow for the fact that half of the
time theymight be followedwith the discovery of a positive object,
and half of the time they might be followed with the discovery of
a negative object.3

At the beginning of each simulated testing trial, the agent was
placed in the center of a simulated linear 11 × 1 unit track with
five spaces to the ‘‘east’’ (i.e., to the right) of the agent and five
spaces to the ‘‘west’’ (i.e., to the left) of the agent. As Table 1 shows,
the agent’s state-vector included an element indicating its current
location on the track (i.e., an integer from 0 to 10), as well as
an element (i.e., a character ‘‘n’’, ‘‘s’’, ‘‘e’’, or ‘‘w’’) representing its
current orientation (i.e., north, south, east, or west, respectively).
The agent’s initial orientation was always set to be ‘‘north,’’ and
no other object was present in the environment (i.e., the value of
‘‘OBJECT’’ in the agent’s state-vector was set to equal to ‘‘0’’).

During each time-step of the simulation, the agent could
perform one of the following actions: (1) do nothing, and remain
in the current location and orientation; (2) orient to the north,
south, east orwest; or (3)move one space in the environment (east
or west). The result of each action took place on the subsequent
simulated time-step. All changes in the location and/or orientation
of the agent in space occurred through the selection of actions by
the agent. However, during every time-step of the simulation, even
when a ‘‘do nothing’’ actionwas selected, timewas incremented by
1 until the end of the trial (i.e., time-step 20).

The agent’s environment was set up so that half of the time,
an object appeared at a random location (but not in the same
location as the agent) after ten time steps; 50% of the objects were
positive (represented by a ‘‘+’’; see Table 1) and 50% of the objects
were negative (represented by a ‘‘−’’). The delay before the object
appeared was introduced to allow the observation of any behavior
the agent may have exhibited before the appearance of the object.
If the agent was not oriented towards the object when it appeared,
then the element representing the ‘‘OBJECT’’ identity in the agent’s
state vector was changed from ‘‘0’’ to ‘‘?’’ to reflect the fact that
the identity of the object that was now present was currently
unknown. However, if the agent was oriented towards the object,
then on the subsequent time-step the ‘‘OBJECT’’ element was set to
equal to the identity of the object, so that ‘‘0’’ became either ‘‘+’’
or ‘‘−’’ for positive and negative objects, respectively.

If the agent moved to an object’s location, then during the next
time-step the object vanished. If the object had been positive,
then the agent’s ‘‘CONSUMED’’ flag was set equal to true and the
agent was rewarded (reward = +10); however, if the object

2 The number of 21,120 states can be calculated as follows: 11 possible agent
locations × 4 possible agent orientations × (10 time-steps before an object
might appear + 10 time-steps where no object appeared + 10 time-steps where
the agent had been positively reinforced + 10 time-steps where the object had
been negatively reinforced + 11 possible object locations × (10 time-steps with
a positive identified object + 10 time-steps with a negative identified object
+ 10 time-steps with an unidentified positive object + 10 time-steps with an
unidentified negative object))].
3 The existence of these ‘‘hidden’’ states must be considered during training

because Value Iteration only looks ‘‘one step ahead’’ from each state in the state
space. The fact that states with negative and positive unidentified objects are
effectively identical would prevent learning about and averaging the values in the
two different subsequent states in which either the positive or negative object
becomes identified. A Trajectory Sampling approach on the other hand maintains
the hidden state information (i.e., the identity of the unidentified stimulus)
throughout the trial and so with that variant of RL the hidden states are not a
concern.
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Table 1
The dimensions used in the RL simulations and the possible values of those dimensions.

Dimension no. Description Possible values

1 Position of agent Integer (0–10)
2 Orientation of agent Character (‘‘n’’, ‘‘s’’, ‘‘e’’, or ‘‘w’’)
3 Position of object Integer (0–10)
4 Identity of object Character (‘0’’, ‘‘?’’, ‘‘+’’, or ‘‘−’’)
5 ‘‘Shocked’’ by object Boolean (true or false)
6 ‘‘Consumed’’ object Boolean (true or false)
7 Time since trial onset Integer (0–20)

had been negative, then the ‘‘SHOCKED’’ flag was set to true
and the agent was punished (reward = −10). (Note that the
flags were set in this way regardless of whether the agent had
or had not identified the object; e.g., the agent could consume
an object without ever orienting towards it.) On the subsequent
time-step, the ‘‘SHOCKED’’ or ‘‘CONSUMED’’ flag was cleared. The
agent was also given a small penalty (reinforcement = −1) for
each movement or orienting action, and received no reward or
punishment (reinforcement = 0) if it performed no action.

Both the overt behaviors (i.e., orienting and movement) and a
measure of reward-prediction error were quantified for the agent.
The overt behavior (i.e., the list of actions selected by the agent)
was used as an indication of whether the task had been learned.
The measure of reward-prediction error was used to test the
hypothesis about the emergence of the non-reward dopaminergic
phasic signal. The reward-prediction error, δ, was measured at the
time t of the appearance of an object by subtracting the reward
prediction at the previous time-step, i.e., V (s) at time step t − 1,
from the reward prediction when the object appeared, i.e., V (s) at
time t , yielding the quantity δ = V (st) − V (st−1).

2. Results

Simulated behavior. The overt behavior of the agents was first
quantified. The results of this analysis showed that, after training,
the agent approached and obtained positive reinforcement fromall
of the positive objects and never approached any of the negative
objects. Together, these results provide behavioral confirmation
that the agents learned to perform the task correctly. This
conclusion is bolstered by the additional observation that, during
the trialswhennoobject appeared, the agent remainedmotionless.
As predicted, the agent oriented to both positive and negative
objects.

Simulated reward-prediction error. The central hypothesis of
this paper is that the appearance of an unpredictable stimulus
will consistently generate a positive reward-prediction error, even
if that object happens to be a ‘‘negative’’ object that is always
punishing. In support of this hypothesis, the agent exhibited
a positive reward-prediction error whenever an (unidentified)
object appeared, but not when nothing appeared. Also consistent
with the central hypothesis is the fact that the magnitude of the
agent’s phasic response (δ, measured as described in the Method
section) was sensitive to the simulated ‘‘intensity’’ of the stimulus,
defined using the distance between the agent and the object (see
Fig. 1). A regression analysis indicated that the magnitude of δ was
inversely related to the distance from the object, so that closer
objects caused a stronger response (r = −0.999, p < 0.001; β =
0.82). This negative correlation was caused by the small penalty
(reinforcement = −1) that was imposed for each movement that
the agent was required to make in order to approach the positive
object, consume it, and thereby obtain reward.

Given that positive and negative objects appeared in this
simulation with equal probability (p = .25), the question arises:
Why was the agent’s reward-prediction error signal positive at
the time of the object’s appearance? Reasoning along the lines

Fig. 1. This figure shows the reward-prediction error (i.e., δ) when the object
appeared as a function of the location of the object relative to the location of the
agent. The responses are identical for both positive and negative objects. When no
object appeared, the response was 0. Note that the size of the response is inversely
correlated with distance from the object when it appeared. There is no data for
location 0 because the object would be immediately consumed had it appeared
there.

of Kakade and Dayan (2002), one might predict that the signal
should reflect the average of all of the learned rewards from such
situations, and therefore be equal to zero. The key to understanding
this result is to note that not only does RL make an agent less
likely to choose actions that result in negative reinforcement, it
alsomakes an agent less likely to enter stateswhich eventually lead
to negative reinforcement. This results in a kind of ‘‘higher-order’’
form of learning that is depicted in Fig. 2 and described next.

At the beginning of learning (see Fig. 2A), the agent orients
to both ‘‘+’’ and ‘‘−’’ objects, approaches them, and is both
rewarded and punished by consuming each type of object. If
the agent’s learned state values were unable to influence the
agent’s actions (see Fig. 2B), then the agent would continue to
approach and consume the objects. The appearance of the cue
would then predict an average reward of 0 and there would not be
a sudden increase in reward-prediction error. However, the agent
in this simulation does use learned state values to influence its
actions (see Fig. 2C), and although the agent still has to orient to
the unknown object to determine its identity, it will no longer
consume a negative object if it approached it (as it might if trained
with a random exploration algorithm like trajectory sampling (see
Footnote 1)). Furthermore, because temporal-difference learning
allows the negative reward prediction to ‘‘propagate’’ back to
preceding states, and because there is a small cost for moving in
space, the agent learns to avoid approaching the negative object
entirely. Thus, after this information has been learned, the value
of the state when the object first appears (indicated as ‘‘V’’ in the
first circle in each sequence) is not based on the average of the
positive and negative outcome state values, but is instead based on
the average of positive and the ‘‘neutral’’ outcome that is attained
once the agent learns to avoid the negative objects. This is why the
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Fig. 2. Illustration showing how an RL agent develops positive reward-prediction
error when it is trained with both rewarding and punishing stimuli in its
environment and is able to choose whether to approach and consume them.
(A) The situation before learning: all states begin with a value of 0, and the agent
has not yet learned the rewarding and punishing values of the ‘‘+’’ and ‘‘−’’
stimuli. (B) A temporal-difference learning algorithm is used without allowing
those values to affect the actions of the agent: the agent learns reward predictions
based on experience but is unable to use the learned values to influence its own
behavior. In this case, the reward-prediction error when the object appears will
be the average of the positive and negative outcomes (i.e., 0). (C) We show what
happened in the present simulation. The agent quickly learns to avoid consuming,
or even approaching, the negative object. The result is that when the stimulus
appears, the reward-prediction error is based on the average of the positive
stimulus and a neutral outcome in which the negative stimulus is avoided and is
consistently greater than 0. Note: This figure does not illustrate the fact that in the
present simulation, more distant objects require more actions (and therefore more
intervening small punishments) in order to approach them. That fact is what causes
the decreasing magnitude of the novelty/saliency response for objects that appear
more distantly from the agent (e.g., as plotted in Fig. 2).

average of all rewards actually obtained by the trained agent was
greater than zero, and explains why the agent’s reward prediction
(and therefore reward-prediction error when the object suddenly
appears) was a net positive. This is illustrated in Fig. 3. In fact,
as long as the agent can learn to change its behavior and avoid
the negative object, the value of the negative object is ultimately
irrelevant to the final behavior of the agent and the magnitude of
the novelty/saliency response.

Fig. 3. (A) Demonstrates the changes in reward prediction that would have
occurred if RL did not result in higher-order learning (i.e., if the agent could not
take measures to avoid the negative outcome), so that the agent was forced to
consume all the objects that appeared. When an object appears, the agent does
not know yet its identity but generates a net reward prediction of zero because the
reward prediction is the average of the positive and negative consequences (i.e., half
the time the object has been positive, and half the time it has been negative).
(B) Demonstrates what actually occurred: higher-order learning permitted the
agent to avoid the negative object, so that when the stimulus appeared, the agent
had a greater-than-0 reward prediction because it is the average of the positive
outcome and null outcomes. The curly brace spans the difference in reward-
prediction values that represents this reward-prediction error.

The simulation results are critically dependant on three
assumptions. First, the stimuli had to be ‘‘salient’’ in that the
magnitude of the reinforcement predicted by the initial cue was
sufficiently large (e.g., +10) relative to the costs of orienting and
approaching (e.g., −1). If the magnitude had been relatively small,
the agent would not have learned to orient, nor would it have
generated the positive reward-prediction error response. Second, a
delay prior to recognizing the stimuli was also necessary. (Delay is
a proxy for ‘‘novelty’’ under the reasoning that a familiar stimulus
would be quickly recognized.) Without a delay, the agent would
have simply generated the appropriate positive or negative reward
prediction error for the actual perceived object. Finally, the agent’s
behavior had to be determined by the values that it had learned. If
the agent could not use learned values to control its own behavior
(i.e., whether to approach the stimuli), then its reward prediction
when an object appeared would have equaled 0, the average of the
equiprobable positive and negative outcomes.

3. General discussion

The simulation reported in this article demonstrated that a
positive reward-prediction error occurs when an unpredictable
stimulus, either rewarding or punishing, appears but cannot be
immediately identified. Furthermore, the simulation indicated that
the size of the reward-prediction error increases with proximity of
the stimulus to the agent, which in the context of the simulation
is a proxy for stimulus intensity and is thus related to salience. In
the theoretical framework of RL, reward predictions are normally
understood to reflect the learned value of recognized stimuli, or of
the physical and/or cognitive states of an agent (Reichle & Laurent,
2006). However, the reward-prediction error reported here has
a qualitatively different interpretation because it is generated
before the agent has recognized the object. Together, these results
support the hypothesis that RL principles are sufficient to produce
a response that is seemingly unrelated to reward, but instead
related to the properties of novelty and saliency. This conclusion
has several important ramifications for our general understanding
of RL and for our interpretation of RL as an account of reward
learning in real biological organisms.

First, the reward prediction that is generated by an RL agent
when an unidentified stimulus appears is not necessarily a strict
average of the obtainable rewards as suggested by Kakade and
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Dayan (2002), but can in fact be greater in magnitude than that
particular average. Kakade and Dayan would predict that the
average reward prediction should be equal to zero because, the
trials were rewarded and punished equally often. This surprising
result emerged because the agent learned in an ‘‘on-policy’’
manner; that is, the agent learned not only about negative
outcomes, but also about its ability to avoid those outcomes.
This ability of the reward system to cause an agent to avoid
negative outcomes should be carefully considered in translating
our understanding of RL to real organisms. This fact is potentially
even more important given the apparent asymmetry in the
capacity of the dopaminergic phasic response to represent positive
reward prediction error better than negative reward prediction
error (Niv, Duff, & Dayan, 2005). It may be sufficient to indicate
that a particular sequence of events leads to a negative outcome,
but that for the purposes of action selection, the magnitude of that
outcome is unimportant.

A second ramification of the current simulation is that the
novelty response may emerge from an interaction between
perceptual processing systems and reward-prediction systems.
Specifically, the novelty responsemay be due to a formof similarity
between novel objects and objects that have not yet undergone
complete perceptual processing4. In this simulation, novelty was
implemented by introducing a delay before the object’s identity
(and consequently its rewarding or punishing nature) became
apparent to the agent. This was done under the assumption that
novel objects take longer to identify, but this assumption also
resulted in the positive and negative objects being perceived
similarly when they first appeared (i.e., they were both encoded
as ‘‘?’’). In contrast, Kakade and Dayan (2002) suggest that novelty
responses and ‘‘generalization’’ responses are essentially different
despite being manifested similarly in the neurophysiology data.

A third ramification of the current simulation results is that
they show that the additional assumptions of novelty and shaping
bonuses that were proposed by Kakade and Dayan (2002) are
not necessary. Instead, novelty-like responses can emerge from
realistic perceptual processing limitations and the knowledge of
being able to avoid negative outcomes. This is fortunate because,
as pointed out by Kakade and Dayan, novelty bonuses distort
the value function that is learned by an agent, and shaping
bonuses affect the way in which agents explore their state spaces.
The inclusion of either of these assumptions thus reduces the
parsimony of models based on RL theory. Interestingly, the results
presented here also help explain why the biological novelty
response might not be disruptive to reward-based learning in real
organisms: the novelty response is in fact already predicted by
RL. That is, the novelty response reflects behaviors and reward
predictions that are inherent in an agent that has already learned
something about its environment.

An alternative (but not mutually exclusive) interpretation
of the present simulation results is that there is indeed an
abstract (perhaps cognitive) reward that agents obtain by orienting
towards and identifying objects. In studies of dopaminergic

4 One potential objection to the present work is that the orienting response
appears to be hard-wired in themammalian brain, for example, in projections from
the superior colliculus (Dommett et al., 2005; Redgrave et al., 1999). In the present
simulation, the agents were not hard-wired to orient to objects but instead learned
an orienting behavior that permitted the eventual selection of an action (e.g., either
approach or avoidance) that maximized reward. Similarly to hard-wired responses,
these orienting behaviors occurred very rapidly, before the objects were identified,
and were directed towards all objects. The goal of this work was not to make the
claim that all such responses are learned, but rather that they can co-existwithin the
RL framework. Nevertheless, it would be interesting to investigatewhether reward-
relatedmechanismsmight be involved in setting up connectivity in brainstem areas
in order to generate this phasic dopamine response.

activity, positive phasic responses can occur to unanticipated cues
that are known to predict a reward. This simulation, however,
demonstrates how these kinds of responses can also occur in
response to a cue that could ultimately predict either reward or
punishment. The only consistent benefit that is predicted by the
cue is the gain in information obtainedwhen the agent determines
the identity of the object. Thus, if there is a valid, learned ‘‘reward
prediction’’ when the unidentified object appears, it is one that
is satisfied after the agent obtains the knowledge about whether
to approach or avoid the stimulus. The value of this information
is based not on the average of the obtainable outcomes, but is
instead based on the knowledge of the effective outcomes – that
the agent can either consume the positive reward or avoid the
negative reward (see Fig. 2).

Finally, it is important to note that the opportunities to
take particular actions (e.g., to orient) may themselves take on
rewarding properties through some generalization or learning
mechanism not included in this simulation. For example, the very
act of orienting and determining ‘‘what’s out there’’ could become
rewarding to an organism based on the association between that
action and the above-demonstrated emergent, always-positive
reward-prediction error when new stimuli appear. A similar idea
has been recently advanced by Redgrave and Gurney (2006) who
hypothesize that an important purpose of the phasic dopamine
response is to reinforce actions that occur before unpredicted
salient events. The results here are not incompatible with that
hypothesis, however it should benoted that Redgrave andGurney’s
hypothesis is not directly tested in this simulation because no
actions (i.e., exploration) were required of the agent in order for
the salient event (the appearance of the object) to occur. However,
the simulatedphasic signal coincidedwith the timeof the orienting
response, suggesting that the two may be strongly related.

In closing, this article has demonstrated that RL principles can
be used to explain a type of seemingly non-reward related activity
of the dopaminergic neurons. This result emerged from the fact
that the temporal-difference learning rule (such as that used by
Kakade and Dayan (2002)) was embedded in a simulation in which
the agent could select actions that had an effect on the eventual
outcome. In the simulation, the agent learned that the outcome of
orienting to an object that suddenly appeared could always either
be rewarding or neutral because the negative outcome could be
avoided. Therefore when the agent had an opportunity to orient,
its reward-prediction error was always positive, computationally
analogous to the novelty and saliency responses observed in
biological organisms.
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	3.11. Striatal Mask. A mask based on the caudate and putamen masks built into AFNI's drawing tools were used for group analyses restricted to the striatum.
	3.12. Striatal regions involved in hand movements during CONTROL trials. Panels (A), (B), and (C) show axial, coronal, and saggittal views of the region in the left putamen that was strongly correlated with hand movements. (D) Average deconvolved impulse response function, i.e., regression coefficients, for all voxels depicted in Panels A-C (y-axis: percent change from average voxel activity for all modeled runs; x-axis, seconds; t=0 is the time of the color cue stimulus onset). [Voxelwise threshold p < 0.05, extent threshold of 40 for a corrected threshold of p < 0.0001] 
	3.13. Striatal regions involved in eye movements during CONTROL trials. Panels (A), (B), and (C) show axial, coronal, and saggittal views of the region in the bilateral anterior putamen regions that were strongly correlated with hand movements. (D) Average deconvolved impulse response function, i.e., regression coefficients, for all voxels depicted in Panels A-C (y-axis: percent change from average voxel activity for all modeled runs; x-axis, seconds; t=0 is the time of the color cue stimulus onset). [Striatal mask; Voxelwise threshold p < 0.0045, extent threshold of 13 for a corrected threshold of p < 0.0001]
	3.14. Striatal regions involved in covert attention shifts during CONTROL trials. Panels (A), (B) and (C) show axial, coronal, and saggittal views of the bilateral anterior caudate regions that were strongly correlated with covert shifts of visual-spatial attention. (D) Average deconvolved impulse response function, i.e., regression coefficients, for all voxels depicted in Panels A-C (y-axis: percent change from average voxel activity for all modeled runs; x-axis, seconds; t=0 is the time of the color cue stimulus onset). [Striatal mask; Voxelwise threshold p < 0.02, extent threshold of 25 for a corrected threshold of p < 0.0001] 
	3.15. Whole-brain correlations for hand movements during CONTROL trials. A. An axial view through the dorsal cerebral cortex supporting the hypothesis that there was significant, extensive activation in the contralateral left primary motor cortex correlating with right-hand movements (172 voxels, peak t-value=5.34, coordinate=-55mm, -24mm, 39mm). B. An axial view through ventral-occipital cerebral cortex showing that there were extensive visual activations likely due to visual input during the task (782 voxels on left, peak t-value=7.09, coordinates=-23mm, -77mm, -12mm; 145 voxels on right, peak t-value=4.33, coordinate=27mm, -87mm, 16mm). C. A coronal view of the activations shown in panel A. D. A saggittal view showing both motor (top) and visual (bottom) activations. [Voxelwise threshold was p < 0.01 and cluster extent threshold was 39 for a corrected threshold of p < 0.0001.]
	3.16. Left Thalamus Activation for Right-Hand Movements. At a less conservative threshold the left thalamus was correlated with right hand movements, as indicated in these (A) axial, (B) coronal, and (C) saggittal images by a white circle. The peak voxel of this 17-voxel region was located at -14mm, -18mm, 10m with t = 3.681 and did not survive corrections for multiple comparisons. [Voxelwise threshold was p < 0.02 and cluster extent threshold was 17.]
	3.17. Whole-brain correlations for eye movements during CONTROL trials. There were extensive visual activations likely due to visual input during the task (not shown). (A,B,C) As hypothesized, bilateral frontal eye field activations were observed (74 voxels on the left, peak t-value=4.39, coordinate=-39mm, -9mm, 36mm; 60 voxels on the right, peak t-value=4.17, coordinate=36mm,-12mm,32m. In addition, likely reflecting the involvement of covert attention in saccadic eye movements, a region in the superior parietal lobule was also active (66 voxels on the right, peak t-value=4.94, coordinate=39mm,-59mm,42mm. Regions shown in A-C survived corrections for multiple comparisons at p < 0.0001. [For Panels A-C, voxelwise threshold was set to p < 0.015 and cluster extent threshold was 51 voxels for a corrected threshold of p < 0.0001] (D) Activation in substantia nigra was also observed for eye movements (17 voxels at p < 0.0062, peak t-value=5.12) but this region did not survive correction for multiple comparisons.
	3.18. Whole-brain correlations for covert attention shifts during CONTROL trials. (A) An axial view through dorsal cerebral cortex shows regions in the superior parietal lobule (i.e., precuneus) that were involved in covert shifts of visual-spatial attention reported in table 3.4 (page 83). (B) Same as (A), but at a less conservative voxelwise threshold of p < 0.01 some activation of the frontal eye fields (FEF) in the right hemisphere was also seen for covert attention shifts. (C-D) Coronal and axial views showing bilateral cerebellar activation correlating with attention shifts. In addition, there were extensive visual activations likely due to visual input during the task (not visible in these particular views). [Voxelwise threshold for A, C and D was set to p < 0.006 and cluster extent threshold was set to 31 voxels for a corrected threshold of p < 0.0001.] 
	3.19. Movement-related Striatal Activity during entire experiment. Although Figures 3.12 -  3.14 show movement signals without the presence of reinforcement, it was interesting to also compare those results to movement signals deconvolved across the entire experiment including trials with reinforcement. Interestingly, the results are qualitatively similar, although not identical. The discrepancies may indicate mechanistic differences in basal ganglia function depending on whether they are controlling movements based on cues or based on reward predictions. (A-B) Axial and sagittal views showing right-hand movement signals in the left putamen. C-D Coronal and sagittal views (axial view inset) showing anterior-dorsal extent of a putamen region involved in saccadic eye movements. E-F Axial and coronal views of caudate and putamen regions involved in the control of covert attention shifts.
	3.20. Deconvolved Impulse Response Functions. This figure plots the computed shapes of the BOLD responses for movements and positive reward-prediction errors for the voxels in the ROIs that correlated with the signal of interest. X-axis is time (0 marks the onset of movement or reinforcement). Y-axis units are beta, i.e., percent change from baseline for one movement event, or for one cent ($0.01) in the case of reward-prediction error. See text on page 89.
	3.21. Striatal Regions Correlating with Positive Reward-Prediction Error for Reinforced Right-Hand Movements. (A-B)The left putamen was correlated with the unpredicted positive reinforcement of right hand movements. (C). Some negative correlation was also observed in ventral putamen. (D) Activation in anterior caudate. This activation suggests that some aspect of attention was reinforced when hand movements were reinforced, i.e., maintaining covert attention at the center of fixation. Data tabulated in Table 3.6 on page 104.
	3.22. Striatal Regions Correlating with Positive Reward-Prediction Error for Saccadic Eye Movements. (A-B, D) Axial, left, and right saggittal views showing dorsal caudate activation when saccadic eye movements were reinforced. (C) Axial view showing anterior caudate activation. See Table 3.6 on page 104.
	3.23. Positive Reward-Prediction Error for Covert Attention Shifts. Anterior caudate was positively correlated with both positive and negative reward-prediction errors when covert attention shifts were reinforced. See Table 3.6 on page 104.
	3.24. Comparing Peak Activations for Positive Reward-Prediction Error of Covert Attention versus Saccadic Eye Movements which are in Anterior versus Dorsal Caudate, Respectively. Peak voxels are indicated by grey arrows. See text for further discussion (page 112).
	3.25. Striatal Regions Correlating with Negative Reward-Prediction Error Signals for Right-Hand Movements. (A-D) Axial, Saggittal, Axial and Coronal views showing regions that were correlated with negative reward-prediction error signals when right-hand movements were reinforced. Note that the putamen regions are very close to, and appear to overlap with the globus pallidus (particularly on the right/ipsilateral side). A small region was located in the anterior caudate. For numerical details, see Table 3.7 on page 106.
	3.26. Striatal Regions Correlating with Negative Reward-Prediction Error for Saccadic Eye Movements. A diffuse set of regions were correlated with negative reward-prediction error signals when eye movements were reinforced. These regions were located in the anterior caudate, nucleus accumbens, and dorsal caudate. See Table 3.7 on page 106.
	3.27. Striatal Region Correlating with Negative Reward-Prediction Error for Reinforced Covert Attention Shifts. A single region in the head of the caudate was correlated strongly with negative reward-prediction error signals. See Table 3.7 on page 106.
	3.28. MT Activation Correlating with Movement during Right-Hand Movement Trials. The data in this figure confirm the hypothesis that the scrolling of the stimulus during hand-movement trials would result in visual motion signals in putative human area MT in the middle temporal cortex. (A) Axial view showing a distinct region in right middle temporal gyrus (arrow) correlating with hand movement regressors. This region contained 67 voxels (peak at 45mm, -31mm, 0mm, t-value=3.47). There was also a smaller region on the contralateral side containing 20 voxels (peak at -52mm, -46mm, 13mm, t-value=3.40). Smaller hand movement-related activations corresponding to right-hand movements can still be seen at this conservative threshold in the left putamen and thalamus. There was also extensive activation in visual cortex generally. (B) Coronal view showing putative area MT. Left primary motor cortex activation can also be seen at the top of the brain. (C) Saggittal view. (See text on page 107.) [Voxelwise p < 0.025.]
	3.29. Whole-Brain ANOVA with Quarter of Learning Task as a Factor. Activation shows regions active when new contingencies are being learned compared to after performance reached asymptote. (A-B) Activation in medial front gyrus may reflect increased memory demands or uncertainty. (C-D) Activation in anterior cingulate cortex may reflect increased response conflict. (E-F) Activation in right fusiform gyrus which may reflect increased attention to the spatial arrangement of the stimuli. See text on page 107 for details. [Voxelwise p < 0.001; all regions corrected at p < 0.0001.]
	A1. Comparison of results from AFNI's affine transformation (top) to the ANTS nonlinear warping algorithm, default settings (bottom). The top row shows the same axial slice from four experiment participants. The image in the center is the slice at the same level from the target brain, TT-N27 (Colin). The bottom row is the result of the automated warping algorithm provided by ANTS. The improvement in the coregistration is very apparent in this particular slice, especially for the caudate nucleus, as well as the grey matter in the frontal and occipital cortices.
	B1. Echo Cancellation Technique for Oral Reports of Participants during an fMRI scan. During an EPI (echo-planar imaging) scan, the scanner noise repeats with a period of 2 seconds. Superimposed on this repetitive scanner noise are the much quieter oral responses of the experiment participants. The microphone thus detects the combination of the scanner noise and the oral responses. Echo cancellation involves digitally manipulating the real-time audio captured by the microphone. A delay loop is created whereby the previous 2 seconds (the period of the TR scanner) of sound are phase-inverted, and then added to the live audio being detected by the microphone. The result is that the scanner noise is cancelled out, except for at the beginning of the scan (i.e., the first TR is ineffectively canceled out by the silence that precedes the scan.) A consequence of this cancelation technique is that the participants' oral reports are heard twice: the first time is in real time when they vocalize their response, and the second time is the phase-inverted delayed copy of the vocalization. This is illustrated in the bottom-most panel, where a copy of the oral report occurs 2 seconds after this first report. Depending on the experiment design, this could be an advantage because it provides the experimenter with a second opportunity to confirm what the participant reported. 
	C1. Illustration of Deconvolution Analysis. (1) Sequence of Events. The blue bars represent binary movement events. The red bars represent continuously-valued scalar reward. The rewards are provided at a fixed delay after movements. (2) A simulated hemodynamic response function that will be convolved with the events shown in (1) to generate a simulated BOLD time-course for an imaginary voxel. (3) The results of convolving the events with the hemodynamic response function. Note that the original shape of the hemodynamic response function is not discernable in this signal. (4-5) The recovered hemodynamic response function shapes for the movement and reward events, thanks to deconvolution analysis.
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