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Extrasynaptic GABA Type A Receptors in the Mechanism of Action of Ethanol 
  

Dev Chandra, Ph.D. 

University of Pittsburgh, 2008

 

The γ-aminobutyric acid (GABA) Type A receptor (GABAA-R) mediates the majority of 

rapid inhibition in the central nervous system and is the site of action for many clinically used 

drugs. GABAA-R mediated inhibition can occur via the conventional mechanism - the transient 

activation of synaptic receptors i.e. phasic inhibition, or via continuous activation of 

extrasynaptic, high affinity receptors by low concentrations of ambient GABA, leading to 

“tonic” inhibition.  The GABAA-R α4 subunit is expressed at high levels in the dentate gyrus and 

thalamus and when partnered with the δ subunit, it is suspected to contribute to tonic inhibition.  

In vitro studies have found that GABAA-Rs containing α4 and δ are highly sensitive to ethanol 

and to competitive GABAA-R agonists such as gaboxadol and muscimol.  In light of these 

findings, the central hypothesis tested in this thesis was that extrasynaptic GABAA-Rs mediate 

the depressant effects of these drugs.  To provide a model for understanding the precise role of 

α4 containing GABAA-Rs in drug action, mice were engineered to lack the α4 subunit by 

targeted disruption of the Gabra4 gene.  α4 Subunit knockout mice were viable and superficially 

indistinguishable from wild-type mice.  In electrophysiological recordings, α4 knockout mice 

showed a lack of tonic inhibition in dentate granule cells and thalamic relay neurons. α4 

knockout mice were also less sensitive to the behavioral effects of gaboxadol and muscimol.   

However, α4 knockout mice did not differ in ethanol-induced changes in anxiety, locomotion, 
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ataxia, coordination, analgesia, or thermoregulation.  These data demonstrate that tonic inhibition 

in dentate granule cells and thalamic relay neurons is mediated by extrasynaptic GABAA-Rs 

containing the α4 subunit and that gaboxadol and muscimol likely achieve their effects via the 

activation of this GABAA-R subtype.  These data also suggest that GABAA-Rs containing the α4 

subunit are not necessary for many acute behavioral responses to ethanol.    
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1.0  INTRODUCTION 

1.1  MOLECULAR MECHANISMS OF ETHANOL 

Ethanol is the most frequently used and abused drug in our society.  Ethanol-related 

accidents and other problems caused by alcohol abuse cause tremendous human suffering.  

Alcohol abuse has many long-term effects than can result in increased propensity for serious 

illness and premature death [1]. The abuse of this substance places an enormous financial burden 

on society; it has been estimated that the total cost of medical care and loss of productivity due to 

alcohol abuse is over 180 billion dollars per year in the United States, alone [2].  However, there 

is increasing evidence that controlled low to moderate ethanol consumption has a number of 

long-term positive health implications.  These potential beneficial ethanol effects include lower 

rates of heart attack, reduced heart failure rate, and lower risk for dementia [3].  In light of these 

important implications for humanity, a large effort of biomedical research is dedicated to 

ethanol-related topics.  

 

Ethanol is a central nervous system (CNS) depressant.  At low blood ethanol 

concentrations, there is a feeling of euphoria, disinhibition, and decreased anxiety.  At slightly 

higher concentrations, motor function is impaired and speech becomes slurred.  Still higher 

concentrations can produce stupor and hypnosis.  While it is evident that ethanol affects the 
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CNS, our understanding of the precise molecular mechanisms by which ethanol achieves these 

effects remain unclear [4].  One reason for this gap in knowledge is that our understanding of the 

cellular and molecular events in the brain circuits that underlie these behaviors are still largely 

unknown.    It is widely accepted that brain function can be ultimately explained by current flow 

across neuronal cell membranes.  How this movement of charged particles results in awareness, 

sensation, motor control, cognitive functions and emotions has been the subject of decades of 

research.  It is likely the outcome of a complex “puzzle” including electrochemical signal-

transduction between neurons, spatial and temporal summation of currents and precise control of 

the neuronal network.  It is unclear which parts of this puzzle ethanol disrupts to produce its 

effects on behavior.  Many theories have been put forth but there is little consensus about 

specific mechanisms.  For many years it was believed that ethanol produced its CNS effects 

through the non-specific disruption of neuronal lipid bilayers thereby preventing signal 

transduction between neurons.  However, it is now generally accepted that instead, ethanol alters 

the function of specific proteins.   Some of these protein targets include ion channels e.g., [5-8]; 

G-protein coupled receptors [9-12]; and a number of second messenger proteins, e.g. [13]. 

Ligand-gated ion channels (LGICs) appear to be an important class of proteins affected 

by ethanol.  LGICs are membrane bound neurotransmitter receptors that are widely distributed in 

the mammalian CNS.  These receptors are responsible for rapid neuronal transmission through 

synaptic transmission and for regulation of neuronal excitability.  Different LGICs transmit 

either excitatory or inhibitory signals between neurons.  Ethanol directly affects the activity of 

several LGICs including the inhibitory γ-aminobutyric acid type A (GABAA) and glycine 

receptors as well as the excitatory, N-methyl-D-aspartate (NMDA), neuronal nicotinic 

acetylcholine and 5-hydroxytryptamine (serotonin) type 3 (5-HT3) receptors [12, 14-18]. Ethanol 
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does not affect LGICs in a random fashion.  Rather, the depressant effect of ethanol is consistent 

with its observed effects on LGICs. Ethanol inhibits excitatory neurotransmission mediated by 

NMDA receptors [18] and enhances inhibitory neurotransmission at GABAA receptors [16].   

Ethanol clearly interacts with and modifies the function of a number of LGICs and other 

proteins.  However, it is likely that some proteins play more important roles than others in 

mediating the effects of ethanol in the CNS [5].  There is a large body of evidence showing that 

ethanol enhances the effects of GABA, the major inhibitory neurotransmitter in the CNS.  To 

date, more than 4000 published studies describe a link between ethanol and GABA.  GABA 

Type A receptors (GABAA-Rs), the primary target of GABA, are one particular class of LGICs 

that may play a role in both the short and long term effects of ethanol in the CNS.  The primary 

goal of this thesis is to further understand the contribution of specific GABAA-R combinations to 

the molecular mechanisms of ethanol-induced behaviors. 

1.2  THE GABA SYSTEM 

1.2.1 Synthesis 

GABA is the primary inhibitory neurotransmitter in the mammalian central nervous 

system.  GABA is essential to neural activity, balancing the action of the predominantly 

excitatory neurotransmitter glutamate, which interestingly is a precursor of GABA.  Through a 

process termed the GABA shunt, α-ketoglutarate is diverted from the Kreb’s cycle and is 

converted to glutamate using GABA transaminase (GABA-T).  Glutamate is converted to GABA 

by glutamate decarboxylase (GAD) of which two isozymes exist, GAD65 and GAD67. 
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Biosynthesis of GABA differs from that of most other neurotransmitters in that GABA 

precursors are part of the cellular intermediary metabolism of glucose rather than dedicated only 

to a neurotransmitter synthetic pool.  In fact, 8-10% of overall brain glucose metabolism is 

funneled through the GABA shunt [19].  GABA is actively transported to the synaptic vesicles, 

where it is stored [20].   

 

1.2.2 GABA release, reuptake and degradation 

The vesicular release of GABA into the synaptic cleft occurs in a Ca+2-dependent manner 

following depolarization of a GABAergic neuron.   GABA release may be regulated by 1) 

autoreceptors for GABA located presynaptically; activation of these autoreceptors results in 

negative feedback and reduction of transmitter release or 2) hyperpolarization of the GABAergic 

neuron by another impinging GABAergic neuron.  Reuptake is the primary mode of cessation of 

GABAergic transmission.  GABA uptake by neurons and by glial cells takes place via one of at 

least four GABA transporters (GAT) [21].  The uptake is never complete, since 0.1 – 0.4 uM 

GABA can be detected in the extracellular space depending on the brain region [22, 23].  

Degradation of GABA is carried out by GABA-T, the same enzyme involved in GABA 

synthesis.  The products of GABA degradation are glutamate and succinic semialdehyde.  While 

the latter feeds back into the Kreb’s cycle, glutamate may be converted back to glutamine in glial 

cells and transported to neurons for subsequent use.   
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1.2.3 GABAergic neurons 

It has been estimated that, depending on the brain region, up to 40% of brain synapses 

use GABA as their neurotransmitter [24].  Immunohistochemical detection of GAD and GABA 

receptors made it possible to map GABAergic neurons and their pathways in the brain.  From 

extensive work using this method, it is obvious that GABAergic cells are found throughout the 

brain, and innervation is especially rich in the cerebral cortex, hippocampus, thalamus, substantia 

nigra, striatum and cerebellum [25]. GABA acts upon supraspinal interneurons and spinal 

interneurons involved in presynaptic inhibition.  GABAergic neurons form hierarchical pathways 

comprised of projection or relay neurons and local circuits involving interneurons.   

1.3 GABA RECEPTORS 

1.3.1 Role of GABA receptors in disease and treatment 

GABA plays an important role in many different behavioral and physiological 

mechanisms including locomotor activity, feeding behavior, aggression, sexual behavior, mood, 

regulation of pain sensitivity, cardiovascular regulation and thermoregulation [26].    

Abnormalities in GABAergic signaling play a role in several disorders including anxiety 

disorders [27], sleep disorders [28], epilepsy [29], tremor [30], alcoholism [31], and 

schizophrenia [32].  For this reason, the GABA system has been targeted for development of 

drugs that treat these disorders.  Most of the pharmacological manipulation of the GABA system 

has focused on agonizing the effects of GABA, in particular by enhancing the effects of GABA 
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at GABA receptors.  GABA receptor agonists have a wide range of clinical uses such as anti-

convulsants, anesthetics, anxiolytics, muscle relaxants, sedative/hypnotics and depressants.  

However, many GABAergic drugs have untoward side effects or high abuse potential that results 

in psychological and physical dependence.  Therefore, the development of more selective drugs 

that produce the desired effect without unwanted side effects is under pursuit.  

1.3.2 GABA Receptor Types 

Early pharmacological data suggested that at least two different types of receptors for 

GABA exist [33].   The fast component of inhibitory postsynaptic potentials was selectively 

blocked by bicuculline but the slow component was selectively blocked by phaclofen [34].  

Molecular cloning and heterologous expression of recombinant receptors established the current 

view of two basic types of GABA receptors.  Receptors mediating the fast inhibitory component 

are type A (GABAA) and the slow component are type B (GABAB) receptors. 

GABAA receptors are members of the “cys-loop” superfamily of LGICs [reviewed in 

[35]].  Other members of this group are neuronal nicotinic acetylcholine, glycine and 5-

hydroxytryptamine Type 3 receptors.  Cys-loop LGICs are heteropentameric structures where the 

five subunits are arranged around a central pore that is permeable to ions.  Agonist binding 

causes a conformational change in the receptor complex and opening of the ion channel. 

GABAA-Rs are permeable to the negatively charged chloride and bicarbonate ions and therefore 

upon channel opening, fast neuronal hyperpolarization (and in some instances depolarization) 

results. GABAA-Rs are the main targets for most GABAergic drugs and the central topic of this 

thesis.  Their properties and significance will be discussed below.   
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GABAB receptors are activated by baclofen and belong to the family of G-protein 

coupled receptors that have seven transmembrane domains.  They are composed of a single 

polypeptide chain, but functionally they are coupled in dimeric units [reviewed in [36]].  GABA 

binding activates inhibitory G-proteins that cause inhibition of adenylyl cyclase and agonist-

induced inositol triphosphate synthesis, inhibition of Ca2+ channels and activation of inwardly 

rectifying K+ channels.  GABAB receptors may be located either pre- or post-synaptically, the 

former causing inhibition of neurotransmitter release and the latter causing hyperpolarization of 

the postsynaptic membrane.  Activation of GABAB receptors has long-lasting inhibitory effects, 

and it has been shown to contribute to several important phenomena, such as regulation of LTP 

[37] and rhythmic activity in the hippocampus [37]. Alterations in GABAB receptor mediated 

function have been detected in animal models of depression, epilepsy and addiction [reviewed in 

[36]].  Despite the widespread distribution in the brain and the possibilities to affect behavior, the 

only FDA approved pharmacotherapy targeted specifically to GABAB receptors consists of 

baclofen treatment of spasticity associated with multiple sclerosis and spinal cord injury [38].   

GABA Type C (GABAC) receptors, like GABAA receptors, function as pentameric 

ligand-gated chloride ion channels.  It has been suggested that GABAC receptors should be 

considered as a subgroup of GABAA receptors due to these similar structural features even 

though GABAC receptors are insensitive to the global GABAA receptor antagonist, bicucullline 

[39]. To date, three different subunits (ρ1-3) that comprise GABAC receptors have been cloned, 

and they can form homo- or hetero-oligomeric complexes. Additionally, these receptors are 

restricted mainly to the retina [reviewed in [40]] but may also be found in other brain regions 

[41].  
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1.4 GABAA RECEPTORS  

1.4.1 Receptor subunits 

All the members of Cys-loop superfamily are thought to possess a conserved tertiary and 

quaternary structure [42].  All of these receptors are comprised of five subunits arranged around 

a central pore. The subunits are 450-550 residue polypeptides in length.  They all have a very 

large, extracellular N-terminal region containing agonist binding sites and the characteristic 

cysteine loop.  All subunits contain four hydrophobic, putative membrane-spanning domains, 

where the second transmembrane (TM) domain forms the lining of the pore.  A large 

intracellular domain between TM3 and TM4 is thought to contain phosphorylation sites and 

other regulatory domains.  The C-terminus of each subunit protein is extracellular and very small 

compared to the N-terminal region.  

A large number of subunits can comprise GABAA-Rs; a total of nineteen distinct subunits 

have been cloned [43].  Subunits are grouped into seven classes based on homology.  All classes 

are named by a Greek letter and some of the classes contain several isoforms.  Thus far, α1-6, 

β1-3, γ1-3, δ, ε, π, θ, and ρ1-3 have been identified [43-47].  Separate genes encode the different 

subunits, with some of the genes arranged in clusters on a particular chromosome.  

Subunits typically display 70-90% sequence identity within a subunit class and 30-40% 

identity between classes [48].  In addition to numerous subunits, heterogeneity is increased by 

alternative exon splicing of the pre-mRNA.  For example, there are two known splice variants of 

α6 [49] and β3, [50] and three of γ2 [51].  
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1.4.2 Spatial and temporal distribution of subunits 

GABAA-R subunits assemble into an undefined heterogeneous population of receptors 

that are unevenly distributed throughout the adult brain and vary throughout development [52, 

53].  Distribution of subunits varies at both the cellular and subcellular level.  For example, α1-

containing receptors are localized primarily to interneurons and Purkinje cells, whereas α2 

subunit-containing receptors are found on motor neurons and pyramidal cells [54].  α6 Subunit-

containing receptors are found only in the cerebellum whereas α1 subunit-containing receptors 

are expressed throughout the brain [55].  Immunoctochemical studies have also revealed a 

distinct subcellular localization.  For example, γ2 containing receptors are found at synaptic 

locations [56] while δ containing receptors are found almost exclusively extrasynaptically [57]. 

GABAA-Rs are also expressed outside the CNS in the pituitary, adrenal medulla, pancreas and 

gut where they modulate the release of hormones and catecholamines and also regulate motility 

[58, 59]. 

There is also temporal control over subunit expression. GABAA-R subunits can be plastic 

in expression.  The expression of the α4 and α1 are dynamic and can be up or down regulated in 

a variety of pathophysiological situations [60-63].  Temporal and regional specific subunit 

expression patterns are observed throughout the developing brain [52, 64].  Αlpha subunits have 

a temporal expression pattern in which α3, α5 and α2 and then α4 expression precede the 

predominant expression of α1 in the adult cerebral cortex [52].   
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1.4.3 Receptor subtypes in the brain 

If there were no rules for receptor assembly, a theoretical maximum of the number of 

pentameric structures that could be made up from 19 different subunits would be 195 (~ 1 

million).  This number would be still further increased if alternative splicing of subunits were 

accounted for.  However, there are strict, yet mostly unknown, rules that govern receptor 

assembly and therefore the number of subunit combinations is far less than the theoretical 

maximum. The exact number of GABAA receptor subtypes is unknown, however, more than 

twenty have positively been identified [65]. 

Several methods may be used to deduce receptor subunit composition.  In situ 

hybridization can be used to localize different subunit mRNAs, and co-localization reveals the 

possibility of co-assembly [53]. Immunocytochemical studies have also revealed co-localization 

of multiple subunits in a single neuron, confirming the existence of a large variety of GABAA-R 

subtypes in the brain [66, 67].  Still another technique utilizes antibodies to immunoprecipitate 

receptors containing a specific subunit from solubilized brain preparations.  These can then be 

quantified using radioligand binding.  This technique measures the abundance of each subunit 

even when present in several different receptor subtypes.  By employing combinations of 

antisera it is possible to determine which subunits are co-assembled in the same receptor.  

Several limitations exist with all of these techniques and will not be comprehensively explained 

here.  However, one of the primary obstacles has been the lack of high-affinity and high-

specificity antibodies to many receptor subunits. As better subunit-specific antibodies become 

widely available, many more GABAA-R subtypes will likely be discovered.   

In vitro pharmacological studies using recombinant GABAA-Rs have also contributed 

enormously to our knowledge, not only to the GABAA-R subtypes that exist in the brain, but also 
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to the sensitivity and efficacy that different drugs have on various receptor subtypes.  Different 

GABAA-R subtypes can be artificially created and studied in cells that do not normally express 

GABAA-Rs.  For example, Xenopus laevis oocytes can be individually injected with subunit 

RNA purified from the brain [68], with synthetic subunit cRNAs [69] or with subunit cDNAs 

[70].  Another possibility for transient expression of GABAA-Rs is to transfect cell lines (e.g., 

human embryonic kidney cells, mouse fibroblasts, or Chinese hamster ovary cells) with cDNA 

cocktails of different subunits [71].  These methods allow the study of a particular receptor 

population using electrophysiological recordings or binding studies.  From recombinant receptor 

studies, it is possible to extrapolate those that are likely to exist in the brain based on their 

pharmacologic similarities.  Drawbacks of this approach include poor expression of particular 

subunits in vitro [72] which may lead to large discrepancies in data acquired from different 

laboratories [73, 74].  Another major drawback to all recombinant receptor studies is that 

receptors are studied in a non-native environment.   All of the cell types that are used lack 

neuron-specific intracellular proteins that interact with and perhaps, change the properties of 

GABAA-Rs.   

Despite these technical limitations, results from different techniques can be combined to 

identify some of the major subtypes present in the CNS (See Table 1).  Most native receptors 

have a stoichiometry of two α subunits, two β subunits and one γ or δ subunit  [75, 76]. It has 

been determined that the α1β2γ2 containing receptors is the one most commonly assembled [77] 

and has been estimated to comprise 43% of all GABAA-Rs in the brain with the α2β3γ2 and 

α3β3γ2 subtypes accounting for another 35% of receptors [75].  Other subtypes include α6βδ (~ 

2 %, [57]) and α4βδ ( ~ 1 %, [78]), which are less common, but highly important (discussed 

below). 

 11 



Table 1. Major GABA(A) receptor subtypes in the brain. 

 

1.5 GABAA RECEPTOR FUNCTION 

Our knowledge of GABAA-R activation is partially derived from our knowledge of 

another cys-loop LGIC, the nicotinic acetylcholine receptors.  Binding of an agonist to nAChR 
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causes a small rotation of extracellular domains of subunits, which opens the channel formed by 

TM2 regions of adjacent subunits [79].  It has been demonstrated that GABAA-Rs may function 

similarly; in recombinant receptors the α and β subunits rotate asymmetrically after GABA 

binding, which causes the channel to open [80].  When the GABAA-R-associated channel is 

opened, various negatively charged ions may pass through it in both directions [81].  The 

primary anion passing through the channel is chloride, however, channels are permeable to many 

other anions including bicarbonate [82]. 

The overwhelming majority of GABAA-R channel openings result in chloride influx into 

the cell.  This is due to a favorable electrochemical gradient; in most CNS neurons, the chloride 

ion concentration is far greater in the extracellular environment than the intracellular.  The influx 

of negatively charged ions results in hyperpolarization of the already negative cell membrane 

potential.  For this reason, GABAA-R activity results in neuronal inhibition.  However, in some 

cells, GABAA-R activation may cause depolarization due to increased intracellular chloride 

concentrations.  This has been observed in the developing brain [83] and in primary afferent 

neurons [84]. 

Two main types of inhibitory neurotransmission are mediated via GABAA-Rs [85, 86].  

Synaptic (“phasic”) inhibition results from the activation of receptors at the synapse by 

intermittent release of high concentrations of GABA from presynaptic terminals.   In contrast, 

extrasynaptic (“tonic”) inhibition is mediated by the continuous activation of receptors located 

outside the synaptic cleft by low concentrations of ambient GABA.   
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1.5.1 Phasic inhibition 

The vast majority of GABAA-Rs mediate inhibition via synapses in the brain.  Phasic 

inhibition follows the classical model of neurotransmission and is crucial for normal brain 

function as it mediates the majority of cell to cell inhibition.  An action potential in the pre-

synaptic neuron causes vesicular release of GABA into the synaptic cleft, which activates 

GABAA-Rs on the post-synaptic membrane.   Many synaptic receptors are activated 

simultaneously, which causes a rapidly activating inhibitory postsynaptic current (IPSC) and 

hyperolarization of the postsynaptic cell.    The IPSC is terminated within milliseconds when 

GABA is eliminated from the synapse by diffusion and uptake by transporters into neurons and 

glia [87].  Another factor contributing to the short duration of IPSCs is the rapid receptor 

desensitization caused by high agonist concentrations [88].  During desensitization, the agonist is 

still bound to the receptor, but the channel enters a closed state.  Desensitization of synaptic 

GABAA-Rs is necessary due to the high GABA concentration achieved in synapses [89].  GABA 

concentration in the synapse may rise to 300 uM or 3mM [90], whereas the concentration 

producing a half maximal effect (EC50) for the GABAA receptor subyptes is usually below 

50uM [91].    

1.5.2 GABAA-R subtypes in phasic inhibition 

IPSCs are made possible by the extremely high density of GABAA-Rs in the post-

synaptic membrane.  How receptors are enriched in synaptic membranes is not fully known.  

Gephyrin is a 93 kD protein that anchors glycine receptors to synapses through its interaction 

with the cytoskeleton [92].  Substantial evidence suggests that gephyrin is also critical for 
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GABAA-R clustering.  While direct molecular interaction between gephyrin and GABAA-R 

subunits has not been shown, gephyrin-deficient mice show decreased clustering of major 

GABAA-R subtypes [93].  Gephyrin can be found co-localized with the γ2 subunit of the 

GABAA-R as well as other receptor subunits that form functional receptors with γ2 such as α1, 

α2 and α3 [94].  The γ2 subunit is clearly important for synaptic anchoring; in γ2 knockout mice, 

postsynaptic GABAA-R clusters are dramatically decreased and gephyrin clusters are also 

abolished [56].  However, overexpression of γ3 in γ2 knockout mice is sufficient to restore 

synaptic receptor clustering [95], which suggests that other γ subunits are also capable of 

interacting with anchoring proteins.  GABA-RAP is another protein possibly involved in 

GABAA-R clustering, and it has been shown to interact directly with the γ2 subunit [96].  It 

should be noted, however, that some γ2 subunit containing receptors are found in non-synaptic 

sites (e.g. α5βγ2 [97]. Nevertheless, it is clear that GABAA-Rs containing the γ2 subunit (e.g. 

α1β2γ2, α2β3γ2 and α3β3γ2) play an important role in mediating synaptic inhibition [94]. 

 

 

1.5.3 Tonic inhibition 

In addition to classical synaptic transmission, GABAA-Rs also exert their actions by tonic 

inhibition, which is a phenomenon common to other neurotransmitter receptors (reviewed in 

[98]).  Tonic inhibition is mediated by the continuous activation of GABAA-Rs located outside 

the synaptic cleft by low concentrations of ambient GABA. Tonic inhibition results from the 

inability of GABA transporters to lower extracellular GABA concentration below 0.1 – 0.4 μM, 
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thereby keeping GABA receptors in permanent agonist bath of > 0.1 μM [23].  Extracellular 

GABA may originally have been spilled-over from neighboring synapses [23, 99].  Non-

vesicular release of GABA from astrocytes or neurons is also possible [100, 101], which might 

be due to reversal of the GABA transporters [102].  Thus, the functional state of the transporters 

seems to be important in regulating tonic inhibition [23, 103].  Regardless, the presence of 

permanent agonist stimulation results in continuous receptor activation causing tonic inhibition.   

Birnir and colleagues first identified GABAA-R mediated tonic inhibition in the rat 

dentate gyrus in 1994 [104].  Thereafter it was found and characterized in the cerebellar granule 

layer [105, 106], the hippocampus CA1 region,  [107, 108], dentate gyrus [109, 110], the 

cerebral cortex [109] and the thalamus [111].  The contribution of tonic conductance to the total 

inhibitory charge transfer varies depending on the brain region, but in the cerebellar granule cell 

layer, the vast majority of the inhibition is tonic in nature [106].  The exact functional roles of the 

tonic inhibition are unknown, but it is suggested to set a background level for overall neuronal 

excitability (reviewed in [112]).  Tonic inhibition also has been suggested to control the synaptic 

responses by regulating general membrane properties [113].  In the cerebellar granule cells, tonic 

inhibition is shown to decrease the number of excited cells, which is suggested to improve 

information storage capacity [114].  In the hippocampus, tonic inhibition may affect learning and 

memory processes [115].   

1.5.4 Receptor subunits involved in tonic inhibition 

A clear distinction between the receptor subtypes responsible for phasic and tonic 

conductances is difficult to make, but some general points can be drawn.  Tonic conductance 

may be derived from receptors located on both synaptic and extrasynaptic membranes, but owing 
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to receptor properties, extrasynaptic receptors are primarily activated.  Since ambient GABA 

concentrations are maximally in a low micromolar range, the receptor subtypes responsible for 

tonic inhibition need to have a high GABA affinity.  In addition, despite the persistent presence 

of an agonist, the receptors must not desensitize, otherwise they would be nonconducting.  

Taking these considerations into account, as well as results from genetically engineered animals, 

the roles that specific GABAA-R subtypes play in tonic inhibition may be addressed.   

Most convincing evidence indicates that δ subunit-containing receptors are responsible 

for tonic conductance in many brain regions.  The δ subunit is almost exclusively extrasynaptic 

in its expression [57] and does not co-localize with gephyrin, the GABAA-R synaptic clustering 

protein [94].  δ Subunit-containing receptors have an extremely high affinity for GABA (EC50 ~ 

0.2-0.5 uM) [116-118] and desensitize poorly [119].  In addition, tonic conductance is greatly 

reduced in dentate gyrus granule cells of  δ subunit knockout mice [109].   While δ containing 

GABAA-Rs certainly contribute heavily to the tonic inhibitory current found in the brain, 

receptors devoid of δ might also play a role.  For example, tonic inhibition in hippocampal CA1 

pyramidal cells is greatly reduced in α5 knockout mice but these receptors are likely to be 

α5β3γ2 [97].   Additionally, functional receptors comprised of only α and β subunits exist [78].  

Receptors comprised of α and β subunits have higher affinity for GABA [120, 121] and are 

located extrasynaptically, presumably due to a lack of γ2-gephyrin association [57].   

In cerebellar granule cells, the α6 subunit protein is found on both synaptic and 

extrasynaptic membranes [57].  α6 containing receptors have high affinity to GABA [118], and 

they desensitize poorly [119].  Tonic current in cerebellar granule cells is detected after 

developmental induction of α6 subunit expression [106], and is blocked by the α6-specific 

antagonist furosemide [114].  In addition, tonic inhibition is abolished in the α6 knockout mice 
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[122]. As α6 is preferentially assembled with δ [123], most of the tonic conductance in cerebellar 

granule cells is probably mediated by α6β3δ receptors.  However, given the pharmacological 

properties of α6β3γ2 receptors (e.g., ten-fold higher affinity for GABA than α1β3γ2 receptors; 

[118]), these receptors could also contribute to the tonic current.  

The α4 subunit is expressed in the forebrain with particularly high expression in the 

thalamus and dentate gyrus.  A recent study by Jia and colleagues observed a tonic inhibitory 

current on thalamic ventrobasal (VB) neurons using slice electrophysiology [111].  

Immunohistochemical studies on VB neurons demonstrated co-localization of α4 and δ at 

extrasynaptic sites [111].  Like α6 in the cerebellum, α4 forms functional receptors with δ in the 

thalamus and dentate gyrus [78, 124].  Additionally,  α4β3δ receptors, like their α6 containing 

counterparts have high affinity for GABA [116].  Therefore, it is likely that GABAA-Rs 

containing the α4 subunit mediate tonic inhibition in the thalamus and dentate gyrus.  This could 

be determined unequivocally by examining α4 knockout mice for the absence of a tonic 

inhibitory current.  

1.6 GABAA RECEPTOR PHARMACOLOGY 

1.6.1 General considerations 

Several endogenous or exogenous agents act on GABAA-Rs via several drug recognition 

sites.  Agents that directly activate GABAA-Rs by binding to the GABA site include endogenous 

GABA, as well as the exogenous ligands muscimol, and gaboxadol (these agents will be further 

discussed in later sections).   None of these direct activating GABAmimetic drugs are currently 

 18 



used in a therapeutic setting, however, the potential of  gaboxadol as a sleep aid was explored 

[65].    Several agents enhance the effects of GABA without directly activating GABAA-Rs; 

these include benzodiazepines, barbiturates and certain neuroactive steroids such as alphaxalone, 

pregnanalone and THDOC [125-127].  Of these, benzodiazepines are the most commonly 

prescribed class of GABAergic drugs and are useful in treating anxiety, insomnia, seizures, 

muscle spasms and alcohol withdrawal.  Ethanol and general anesthetics are also GABAergic 

[128, 129] producing their effects through unknown mechanisms. 

Bicuculline and SR 95531 are competitive GABA antagonists- they bind to GABA sites 

on GABAA receptors but produce no activation [130].  Non-competitive antagonists include 

picrotoxin, t-butylbicyclophosphorothionate (TBPS) and pentylenetetrazole (PTZ); these agents 

block the chloride channel and prevent ion flux [131].  GABAA-R antagonists have no clinical 

usage thus far; administration of these agents can lead to hyperexcitability, seizures and 

eventually, death.  Other negative modulators of GABAA-Rs include β-carbolines, Ro15-4513 

and the neurosteroid, pregnenolone [130] and are considered inverse agonists.  Inverse agonists 

possess intrinsic activity but act in a manner directly opposite to agonists by attenuating the 

effects of GABA. 

1.6.2 Benzodiazepines and GABAA-R subtype specific interactions  

In recent years it has been discovered that various GABA modulators do not affect all 

GABAA-R subtypes equally.  Studies investigating subtype selectivity of benzodiazepines 

provide a clear example. For example, only GABAA-Rs containing either α1, α2, α3 or α5 in 

conjunction with the γ2 subunit are sensitive to the classical benzodiazepine, diazepam [132].  

Interestingly, α1, α2, α3, and α5 subunits differ from α4 and α6 with respect to a single residue in 
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a highly conserved region of the extracellular domain (around the 100th amino acid) where the 

former contain a histidine residue and the latter an arginine residue.  A histidine to arginine 

mutation in α1 makes receptors diazepam-insensitive, and conversely, an arginine to glutamine 

mutation in α6 makes these receptors diazepam sensitive [133].    

Recent studies demonstrate that different GABAA-R subtypes mediate the various 

behavioral effects of benzodiazepines.   Genetically engineered mice with the aforementioned 

missense histidine to arginine mutation  were created in either the α1 [134], α2 [135] or α3 [135] 

subunits rendering these GABAA-R subtypes insensitive to diazepam.  Phenotypic analyses of 

these point mutant mouse lines demonstrated that α1 containing GABAA-Rs mediate sedation, 

anterograde amnesia, and seizure protection [134, 136], whereas α2-GABAA
 receptors, mediate 

anxiolysis [135].  These data provided a strong rationale for drug targeting to specific receptor 

subtypes and recently, it was reported that an α2 selective agonist produced anxiolysis without 

sedation in preclinical models [137]. 

These studies clearly demonstrate that GABAA-R subtypes, through their specific 

regional, cellular and subcellular localization, are linked to distinct neuronal circuits and 

consequently serve distinct behavioral functions. Continued dissection of GABAA-R subtypes 

using both recombinant receptor systems as well as genetically engineered mice will allow us to 

understand the function underlying other subypes with respect to other GABAergic drugs such as 

alcohol and other sedative hypnotic drugs. The elucidation of such mechanisms may provide the 

pharmacological basis for more effective treatments for alcoholism or for antagonists that can 

attenuate ethanol’s adverse effects.  
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1.6.3 Pharmacology – Direct GABA  receptor agonists A

The success of GABAergic drugs like benzodiazepines and barbiturates spurred 

development of new agents that activate GABAA-Rs.  One obvious strategy was to create drugs 

that mimicked the action of GABA itself.  Muscimol, a constituent of the mushroom Amanita 

muscaria and structurally similar to GABA, primarily activates GABAA-Rs [138].   The use of 

muscimol had been investigated for the treatment of chronic pain, anxiety, epilepsy, 

schizophrenia, and movement disorders, but its low bioavailability and strong side effects 

prevented clinical usage [138].  However, muscimol has been used extensively as a lead 

compound for the design of several other GABA analogs.  Thiomuscimol, dihydromuscimol, and 

gaboxadol [4,5,6,7-tetrahydroisozazolo[5,4-c]pyridin-3-ol (THIP)] are all structural analogs of 

muscimol [65].  While some of these agents have better bioavailability than muscimol 

(gaboxadol crosses the blood-brain barrier more easily) [138], all cause side effects such as 

dizziness, vomiting, and strong sedation that precluded its use in treating pain, anxiety, epilepsy, 

etc [139].   

Recently, it has been suggested that direct acting GABAmimetic drugs, especially 

gaboxadol, could potentially treat sleep disorders [65, 139].  GABAergic compounds acting at 

benzodiazepine sites such as zolpidem reduce latency to sleep, and are widely prescribed for the 

treatment of insomnia [140].  However, several side effects of these drugs include tolerance and 

dependence with long term use as well as “grogginess” and hang-over effects possibly due to 

disruptions in slow-wave sleep [65, 140].  Drugs like gaboxadol and muscimol may not only 

shorten the onset of sleep, but also prolong the duration of slow-wave sleep thereby increasing 

the duration and quality of sleep [141-143].  Differences between the two classes of sleep drugs 

may lie in their mechanisms of action.  While both benzodiazepine site ligands and direct acting 
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GABAA-R agonists are GABAergic, the two classes of drugs likely act on different targets.  

Benzodiazepine site ligands produce their hypnotic effects through synaptic α1βγ2 receptors 

[134, 136] whereas gaboxadol is likely to act through extrasynaptic receptors (e.g. those 

containing the δ subunit).    

1.6.3.1 Extrasynaptic receptors and direct GABAA-R agonists 

Extrasynaptic GABAA receptors mediate tonic inhibition, which is the continuous 

activation of receptors located outside the synaptic cleft by low steady-state concentrations of 

GABA.  Examples of extrasynaptic receptor subtypes include α4βδ in thalamic relay neurons 

[111] and dentate granule cells [109], α5β3γ2 in hippocampal CA1 pyramidal cells [97] and 

α6βδ in cerebellar granule cells [57].In recombinant receptors, GABA has a greater affinity for 

receptors containing α6 and α5 than those containing α1, α2 and α3 [144].  Using 

electrophysiological methods, recombinant receptor subtypes found extrasynaptically have 

greater GABA sensitivity relative to synaptic GABAA-Rs;  α6β3δ receptors have a 5-10 fold 

lower EC50 than α6β3γ2 receptors [117, 118] and a forty-fold lower EC50 than α1β2γ2 

receptors [118].   Similarly, GABA was 5-fold more potent on α4β3δ than α4β3γ2 receptors 

[116].   

Extrasynaptic GABAA-Rs are also more sensitive to the direct GABAmimetic agents, 

gaboxadol and muscimol compared to synaptic receptors.    Both muscimol and gaboxadol are 10 

fold more potent for α6β3δ than α6β3γ2 receptors [72, 144] and gaboxadol is 15 fold more 

potent on α4β3δ compared to α4β3γ2 [116].  Perhaps the most interesting pharmacological 

finding with muscimol and gaboxadol is their efficacies on various receptor subtypes.  Compared 

to potentiation by GABA, muscimol is 40% and 80% more efficacious toward α4β3δ and 
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α6β3δ, respectively, while gaboxadol is two-fold and three-fold more efficacious on 

extrasynaptic receptors [116, 144].  Therefore, muscimol and gaboxadol are “super-agonists” 

toward δ containing receptors, and  GABA, the endogenous ligand is a partial agonist on these 

receptors.  In contrast, gaboxadol is 25% and 50% less efficacious than GABA on α1β2γ2 and 

α3β3γ2 receptors respectively indicating that gaboxadol is only a partial agonist on the majority 

of synaptic GABAA-Rs [144].  Furthermore, binding studies using [3H]-muscimol demonstrated 

that recombinant receptors containing the δ subunit had 5-fold higher affinity [145] compared to 

those containing γ2 and that mice lacking GABAA-R α6 [146] and δ [147] subunits have reduced 

muscimol binding using in situ autoradiography. 

1.6.4 Extrasynaptic GABAA receptors in the pharmacology of ethanol 

The effects of ethanol on human behavior are well documented [148].  At low blood 

ethanol concentrations (< 25 mM), there is a feeling of euphoria, disinhibition, and decreased 

anxiety.  As the concentration of ethanol in the blood increases, motor function is impaired and 

speech becomes slurred.  With blood alcohol concentrations greater than 45 mM, vomiting can 

occur and the subject can fall into a stupor.  Blood concentrations higher than 100 mM can 

produce respiratory failure and death.  Note that, although ethanol has dramatic effects on the 

CNS, ethanol is not a potent drug.  Ethanol produces behavioral effects at low millimolar 

concentrations- in fact, the legal driving limit in most states is 0.08 % or approximately 17.4 

mM.  Ethanol’s CNS depressant effects are similar to behavioral effects produced by other 

GABAA-R agonists like benzodiazepines and barbiturates.  
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Many studies have implicated GABAA-Rs in the mechanism of action of ethanol at the 

cellular level (for review see [149]).  Pharmacologically relevant concentrations of ethanol can 

potentiate GABA activated ion current in isolated neurons  [150-152].  On the other hand, other 

studies have found that ethanol inhibits [153] or does not affect [154, 155] these currents.  One 

explanation for this inconsistency is that like benzodiazepines (see Section 1.6.2), ethanol may 

only potentiate GABAA-Rs of a particular subunit composition.  Therefore, extensive 

investigation of the subunit requirements has been undertaken, mostly via heterologous 

expression systems.   

Many studies have found that that a variety of GABAA-R subunit combinations,  are 

sensitive to ethanol [73, 74, 156-161].  Interestingly, the majority of these studies have found 

that the concentration required to potentiate these receptors is often greater than 60mM, a 

concentration much higher than those achieved during social drinking.  If GABAA-Rs are 

essential for mediating the behavioral effects of ethanol, one might expect that they would 

respond to much lower concentrations that cause mild behavioral effects (for example, the legal 

limit for driving in many states 0.08% or ~17 mM).  Recently, some studies have indeed 

suggested that there may be a subpopulation of GABAA-Rs that are sensitive to low 

concentrations of ethanol.  GABAA-Rs found extrasynaptically (those containing the δ subunit) 

were potentiated by concentrations of ethanol that approximate those achieved by social drinking 

(<30 mM) [73, 159, 162, 163].  Recombinant GABAA-Rs containing either α4 or α6 and δ were 

potentiated by 1-3 mM ethanol, a concentration achieved by less than half a glass of wine [73, 

159].  In contrast, synaptic GABAA-Rs (those containing γ2) were potentiated by much higher 

concentrations of ethanol [73, 159] which were in accord with other studies [156-158].  

Additionally, the ethanol behavioral antagonist Ro15-4513 was found to inhibit ethanol action at 
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α4/δ receptors [164] and ethanol was found to block binding of tritiated Ro15-4513 to α4β3δ 

receptors [165].  It is important to note, however, that other laboratories  did not corroborate 

these findings [74, 166]).  Borghese et al. reported that neither α4/δ nor α6/δ receptors were more 

sensitive to ethanol than γ2-containing receptors [74].  Also, Yamashita et al. reported that 

ethanol had either no effect, or an inhibitory effect on GABA gated current of GABAA-Rs 

containing α4/δ or α6/δ [166]. 

Experiments utilizing rats with a naturally occurring allelic variation of the α6 subunit 

also suggest that extrasynaptic GABAA-Rs mediate behavioral effects of ethanol.  Rats with the 

Q100 allelic variation of the α6 subunit of the GABAA-Rs were more sensitive to the motor-

incoordinating effects of ethanol [162].  The same study found that 1) potentiation of tonic 

current by ethanol was significantly greater in the α6 expressing cerebellar granule cells of 

α6(Q100) rats than α6(R100) rats and 2) ethanol more robustly potentiated in vitro receptors 

containing α6(Q100)β3δ than α6(R100)β3δ [162].  These findings, however, were directly 

contradicted by another laboratory [167, 168].   The laboratory of C.F. Valenzuela found no 

difference in the ethanol sensitivity of recombinant α6(Q100)β3δ compared to α6(R100)β3δ 

[168] and no difference in ethanol potentiation of GABAergic currents in (Q100) rats versus 

(R100) rats [167]. 

Other behavioral studies linking extrasynaptic GABAA-Rs to ethanol action are evident in 

other rodent models.  Progesterone-withdrawn rats that exhibit increased α4/δ expression were 

more sensitive to low concentrations of ethanol both at the cellular and the behavioral levels 

[159].  Finally, mice lacking the δ subunit of the GABAA-R had reduced ethanol potentiation of 

tonic inhibition [163] and were found to have multiple defects with respect to alcohol-related 

behaviors. δ knockouts consumed less alcohol, had reduced convulsions following ethanol 
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withdrawal, and were less sensitive to the seizure-protecting effects of ethanol [169]. 

 

1.7 ANIMAL MODELS TO STUDY GABAA-R PHARMACOLOGY 

 Recombinantly expressed GABAA-Rs have served to identify structure- function 

relationships, but do not provide a model truly resembling that found in vivo.  The exact 

relationship between subunit composition and receptor function has yet to be established due to 

the inability of many in vitro and in vivo studies to reach the same conclusion.  For example, 

several in vitro studies suggested that inclusion of the long splice variant of the γ2 subunit 

conferred ethanol sensitivity to GABAA-Rs [160, 161, 170] though this finding was not observed 

in other studies [155].  However, studies in γ2L knockout mice found no selective role of γ2L 

subunits in the acute behavioral effects of ethanol [171].  Conversely, in the late 1990s, a study 

using recombinant receptors reported no evidence for a role of the δ subunit in neurosteroid 

sensitivity [172], but δ subunit knockout mice exhibited a significant reduction in neurosteroid 

sensitivity [147].  However, it should be noted that  subsequent in vitro studies have found that 

GABAA-Rs containing δ subunits are potentiated by neurosteroids [116, 173][174]. 

These contradictory results demonstrate 1) the importance of conducting both in vitro and 

in vivo studies and 2) that attention must be given to the limitations of each method.  Studies in 

vitro occur in non-neuronal cell lines in which an isolated receptor subtype is examined outside 

of its natural environment, however, the primary benefit of studying in vitro receptors is that it 

allows for the rapid study of several user-defined receptor subtypes.  In contrast, in vivo studies 

are limited to the study of a diverse population of receptor subtypes making it difficult to 
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correlate function and receptor subunit composition.    This problem is partially circumvented by 

using GABAA-R subunit gene knockout animals.  While production, care and expense of making 

such mouse strains presents a significant barrier, studies using these reagents are clearly essential 

to understanding, within the context of the whole animal, the contributions of particular receptor 

subunits in the mechanism of action of ethanol. 

1.8 THE α4 SUBUNIT OF THE GABAA-R 

GABAA-Rs containing the α4 subunit are highly expressed in the thalamus and dentate 

gyrus, with lower expression levels in cortex, striatum and other brain areas [53, 66, 175]  

GABAA-Rs containing α4 subunits are often found with the δ subunit extrasynaptically and are 

proposed to play a role in tonic inhibition [110, 111, 176-178], which is the continuous activation 

of receptors located outside the synaptic cleft by low concentrations of GABA.  In vitro, α4 

subunit-containing receptors are insensitive to diazepam, but show high sensitivity to other 

sedative-hypnotic drugs, including ethanol [73, 163], neurosteroids [109, 116, 173], etomidate 

[179], muscimol [72] and the novel hypnotic drug, gaboxadol (formerly known as THIP) [111, 

116, 180].     

In addition to the unique pharmacology of α4-containing GABAA-Rs, there is substantial 

plasticity in the expression of the GABAA-R α4 subunit. This phenomenon has been observed in 

a variety of experimental and pathophysiological conditions related to behavioral 

hyperexcitability.  For example, α4 expression is markedly elevated following electroshock 

[181], alcohol exposure/withdrawal [60, 61, 178, 182], steroid withdrawal [183, 184], social 
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isolation [185], and epilepsy [62, 63]. The magnitude of alterations to α4 subunit levels is 

remarkable relative to those of other GABAA-R subunits [60]. 

1.9 GAPS IN OUR KNOWLEDGE ABOUT α4  

α4 containing GABAA-Rs have interesting properties that differ from other subtypes.  

However, a direct cause and effect relationship between receptor structure and function has not 

been established.  For example, while α4 subtypes are implicated in mediating tonic inhibition in 

the thalamus and dentate gyrus, this has not been determined unequivocally.  In a similar vein, 

even though electrophysiological studies in vitro indicate that α4-containing GABAA-Rs are 

highly sensitive to ethanol [73, 163], neurosteroids [109, 116, 173], etomidate [179] and 

gaboxadol [111, 116, 180], it is unclear whether these receptors mediate the behavioral effects of 

these drugs. Also, it is not clear, whether the plasticity of α4 expression is a cause of, or a 

consequence of, the neuronal hyperexcitability associated with each model syndrome. However, 

important clues suggesting the former have been provided using antisense α4 mRNA [183].  One 

approach to answer these questions would be use a selective inhibitor of α4 containing GABAA-

Rs, but unfortunately, such an agent is not currently available. 

 An alternative approach is to use genetic engineering technology. Genetically engineered 

animals are defined as those animals that have had their genome altered as a result of direct, 

investigator intervention. The two most widely used types of genetically modified animals are 

transgenic animals and gene-targeted mice, the latter including knockout and knockin mice. 

Transgenic animals are those genetically engineered animals that have an additional gene 

randomly added to their genome.  Gene-targeted mice are those genetically engineered animals 
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in which an endogenous gene has been precisely modified. Gene targeted animals are created by 

homologous recombination in embryonic stem cell lines that are subsequently introduced into 

developing embryos. Knockout (or null) mice are the most commonly used gene-targeted 

animals.  As the name suggests, knockout mice are genetically mutated such that a single gene 

can no longer produce functional protein.  Gene knockout mice are used as reagents to discover 

or characterize the role of a single gene within a complex physiological context.  For example, 

nullification of the α4 gene in a mouse could provide an effective model to understand the role of 

α4 in mediating the behavioral effects of alcohol and other sedative-hypnotic drugs.  One could 

hypothesize that if a behavioral response to these drugs is mediated by α4-containing GABAA-

Rs, it would be diminished/ablated in α4 KO mice.  However, α4 knockout mice are not 

available; therefore, one of the primary undertakings of this dissertation was to create and 

characterize such a strain (Chapter 3). 

1.10 CREATING GENE KNOCKOUT MICE 

Creating knockout mice is a lengthy and technically demanding process.  The simplest 

approach to making a global knockout mouse is to replace a portion of an exon with a selectable 

marker (e.g. neomycin resistance) that will disrupt the coding sequence of the gene of interest 

(see Fig. 1A). Because the process of creating a global gene knockout has many steps and is time 

consuming, it is important to consider some of the pitfalls and limitations of such models before 

starting.  For example, knockout of a particular gene can be neonatally or perinatally lethal.  

Unfortunately, mice that do not survive are not useful for whole animal behavioral studies (that 

are most interesting in studying α4).  A second limitation is often observed in knockouts that do 
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survive: compensatory changes of other genes. For example, it has been found that knockout of 

specific GABAA-R subunits can result in changes in expression of other subunits [186-190]. 

Furthermore, compensation can also occur in completely unrelated genes. For example, knockout 

of the α6 subunit of the GABAA-R resulted in the upregulation of the TASK-1 potassium 

channel [122]. Such compensatory changes may confound the interpretation of resultant 

phenotypes.  Finally, because global knockouts eliminate expression of the gene from every cell 

in the organism, it can be nearly impossible to determine which cell types are responsible for any 

observed phenotype.  

To overcome many of the limitations of global knockouts, techniques have been 

developed for knocking genes out in specific tissues and/or at specific times in development. 

“Conditional knockout” technology relies on the use of gene targeting in embryonic stem cells 

and also relies on CRE-loxP system. CRE-loxP technology is a site-specific recombination 

system that was initially isolated from bacteriophage P1 [191]. LoxP sites are small (34 bp) 

sequences of DNA. CRE is an enzyme that catalyzes recombination between loxP sites. To use 

this system for creating conditional gene knockouts, one first has to genetically modify the gene 

of interest as illustrated in (Fig. 1B). Here, loxP sites flank an important exon of the gene of 

interest. Such a locus is termed a “floxed” locus. Because the loxP sites by themselves are 

generally innocuous when placed into intronic DNA, they should have no adverse effect on the 

gene of interest. A floxed gene will continue to be expressed and function normally. However, if 

CRE is introduced into a cell that has a floxed locus, the recombinase will recognize the loxP 

sites and induce site-specific recombination. CRE is routinely introduced by crossing a floxed 

mouse to a transgenic mouse that expresses CRE in a tissue specific pattern. The net result of 

CRE recombination is deletion of the intervening sequence, thereby inactivating the gene of  
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Figure 1. Traditional gene knockout approach versus conditional approach using Cre/Lox system.  

With the traditional approach, (A), a portion of coding exon is replaced with selection cassette to create a null 

allele.  In contrast, using Cre/lox, (B), a critical exon is flanked by loxP sites.  Subsequent introduction of Cre 

recombinase deletes DNA in between loxP sites and creates null allele.  Cre recombinase can be introduced in 

all cells to create a global knockout or in some cells to create a conditional knockout.  Exons (numbered 

orange boxes) ,  loxP sites (red triangles). 

 

interest. By controlling which cells in the animal express CRE, one can knockout the gene of 

interest only in those cells thereby creating a conditional knockout.  In cells that do not express 

CRE, the floxed gene of interest will continue to function normally.  Alternatively, global 

knockout mice can be created from a floxed allele by mating the floxed mouse to a global deleter 

Cre transgenic mouse.  

Conditional knockout mice circumvent many of the problems associated with global 

knockouts. For example, if compensation occurs during development or a gene is neonatally 
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lethal when globally knocked out, then a conditional knockout mouse line may be used to 

produce a postnatal knockout. The second major advantage of conditional knockouts is that by 

knocking out the gene of interest in a restricted cell population, one is able to assign a phenotype 

to a particular cell type. The only major downside to creating conditional knockout mice is that 

they are even more technically complex to construct and produce. 
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2.0  SPECIFIC AIMS 

Despite ethanol’s wide use over the duration of human history, the precise molecular 

targets through which ethanol produces its intoxicating effects are not well understood.  

Modulation of many different brain proteins by ethanol is likely to cause the altered behaviors 

[5].  One possible target is the primary inhibitory neurotransmitter receptor in the mammalian 

brain, the GABAA receptor.   

GABAA-Rs containing the α4 subunit are highly expressed in the thalamus and dentate 

gyrus, with lower expression in cortex, striatum and other brain areas [53, 66, 175].  GABAA-Rs 

containing α4 subunits are often co-localized with the δ subunit extrasynaptically and are though 

to play a role in mediating tonic inhibition in the forebrain [110, 111, 176-178]. Studies using 

recombinant receptors show that α4 subunit-containing receptors have an interesting 

pharmacological profile with respect to GABAergic agents: these subtypes are insensitive to 

benzodiazepines, but highly sensitivite to ethanol [73, 163], muscimol (Ebert 2006) and the 

novel hypnotic drug, gaboxadol [111, 116, 180].   In light of these in vitro studies, the central 

hypothesis of this dissertation is that α4 subunit-containing GABAA-Rs mediate the behavioral 

effects of ethanol, gaboxadol and muscimol.   The use of gene knockout mouse models allows 

this hypothesis to be tested at the level of the whole organism.  Specifically, the aims are to: 
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1.  Genetically engineer mice that lack the α4 subunit of the GABA-A receptor 

(Chapter 3).     To create these mice, animals with a floxed α4 gene (i.e. a critical exon flanked 

by loxP sites) will be created.  Subsequently, the floxed α4 mouse will be mated to a general 

deleter, Cre recombinase expressing strain to create animals that globally lack α4.  Inactivation 

of the Gabra4 gene will be confirmed by RNA and protein analysis. In the event that global KO 

mice do not provide an effective model for testing in vivo contributions of α4 containing 

GABAA-Rs (i.e., if α4 KO mice are neonatally lethal), conditional knockout mice can be created 

from mice with the α4 floxed allele. 

 

2.   Analyze α4 KO and δ KO mice with a battery of behavioral tests to assess 

phenotypic alterations in behaviors induced by muscimol and gaboxadol (Chapter 4) as 

well as ethanol (Chapter 5) 

Included will be behavioral tests for ataxia, analgesia, anxiolysis, sedation, hypnosis, 

hypothermia, and metabolism and clearance. 
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3.0  CREATION OF GABAA-R α4 SUBUNIT MUTANT MICE 

3.1 INTRODUCTION 

γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian 

central nervous system.  Its primary target, GABA type A receptors (GABAA-Rs), are 

pentameric complexes that function as ligand-gated chloride ion channels.   There are a variety 

of subunit families that make up GABAA-Rs; a total of nineteen distinct subunits have been 

cloned, α1-6, β1-3, γ1-3, δ, ε, π, θ, and ρ1-3 [43].  This diversity in subunit composition results 

in substantial anatomical, functional and pharmacological heterogeneity.  

GABAA-Rs containing the α4 subunit are highly expressed in the thalamus and dentate 

gyrus, with lower levels in cortex, striatum and other brain areas [53, 66, 175]  GABAA-Rs 

containing α4 subunits are often found with the δ subunit outside of synapses and are proposed 

to play a role in tonic inhibition [110, 111, 176-178] which is the continuous activation of 

receptors located outside the synaptic cleft by low concentrations of ambient GABA. In vitro, α4 

subunit-containing receptors are insensitive to diazepam, but show high sensitivity to other 

sedative-hypnotic drugs, including ethanol [73, 192], neurosteroids [109, 116, 173], etomidate 

[179] as well as the GABAmimetic drugs muscimol [72] and the novel hypnotic drug, gaboxadol 

(formerly known as THIP) [111, 116, 180].    In addition to the unique pharmacology of α4-

containing GABAA-Rs, there is substantial plasticity in the expression of the GABAA-R α4 
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subunit that has been observed in a variety of experimental and pathophysiological conditions 

related to behavioral [60-63, 178, 181-185].  

Clearly, α4 containing GABAA-R subtypes have interesting properties that differ from 

other subtypes.  The purpose of the following experiments is to create a model by which the 

contribution of α4 containing GABAA-R subtypes can be assessed in the context of the intact 

organism.  Mice that lack α4 will be genetically engineered. Despite the limitations of global 

knockout mice (See section 1.10), a global α4 knockout mouse strain will be invaluable in 

answering many scientific questions (and will be extensively used in the experiments in Chapter 

4 and 5).  However, it will be wise to create mice that provide the maximum versatility.  

Therefore, Cre/Lox technology will be used to create a mouse line with a “floxed” α4 locus.  

Floxed α4 mice will allow creation of not only a global α4 knockout but also, conditional α4 

knockout mice, if needed.   

3.2 METHODS 

3.2.1  Overview of creating Gabra4 mutant mice   

 A gene targeting construct was designed such that loxP sites flanked the third 

exon of the Gabra4 gene (Fig. 2).  Theoretically, deletion of this 68 base pair exon would 

introduce a frameshift mutation in the transcribed mRNA ultimately leading to a truncated 

peptide.  A thymidine kinase (TK) cassette was inserted to produce negative selection and a 

neomycin resistance cassette (NEO) flanked by frt sites was inserted to produce positive 

selection.  Due to cryptic splice sequences, the NEO cassette can impair normal gene 
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Figure 2. Targeted disruption of the Gabra4 gene.  (A) Targeting strategy used to produce α4 KO 

mice.  Relevant region of endogenous wild type gene (+), targeting vector, and correctly targeted allele (Fneo).  

Relative locations of relevant restriction sites, B-BglI, R-EcoRI, K-KpnI, H-BamHI, V-EcoRV, P-SpeI, exons 

(numbered orange boxes), loxP sites (red triangles), frt sites (blue triangles), plasmid backbone (wavy line), 

probes (yellow boxes), and positive (NEO) and negative (TK) selection cassettes are shown.  (B) Southern Blot 

analysis of parental R1 embryonic stem cells and 146J6 correctly targeted ES cells.  For the 146J6 cells, the 5’ 

probe hybridized to a 3.7 kb (endogenous) and 5.9 kB (targeted) BamHI digested fragment and a 7.3 kB 

(endogenous) and 3.5 kB (targeted) EcoRI fragment.  The 3’ probe hybridized to a 13.5 kB (endogenous) and 

11.5 kB (targeted) BglI/KpnI doubly digested ES cell DNA.   

 

transcription, even when inserted into intronic DNA [192-204]. Removal of NEO would be 

essential in creating a normally functioning floxed α4 allele for conditional knockout studies.  

This was accomplished using the FLPe/frt system [205, 206], a distinct site-specific recombinase 

system that is analogous to the Cre/lox system.  FLPe deleted the NEO cassette flanked by frt 

sites while leaving exon 3 and the loxP sites intact. 
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Figure 3.  Schematic for creating gene targeted mice. 
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After creating the targeting vector, several steps were required to create gene targeted 

mice (Fig. 3).  The targeting construct was electroporated into R1 cells [207].  This ES cell line 

is derived from a hybrid of two mouse strains: Strain 129 S1 and Strain 129 X1 mice.  This cell 

line was chosen over cell lines from a pure Strain 129 X1 background [e.g. Go Germline ES 

Cells (Genome Systems, Inc., St. Louis, MO)] only because of the high success rate the 

Homanics Lab has in producing germ line competent chimeras from targeted R1 ES cells [171, 

208-212].  Correctly targeted ES cells were then be microinjected into blastocysts (3.5 days post 

coitum) from C57BL/6J mice and the manipulated blastocysts were implanted into the uterus of 

pseudopregnant females.  The mice that developed from the manipulated blastocysts were called 

chimeras because they possessed a mixture of two genetically distinct cell types; one derived 

from endogenous cells of the microinjected blastocyst, the other derived from the ES cells.  Coat 

color was used to easily identify a chimera derived mostly from the targeted ES cells versus 

chimeras derived mostly from endogenous blastocyst ES cells.  Chimeras had a mixture of black 

and brown coat color.  Brown fur would be derived from injected, gene targeted ES cells (Strain 

129) and black fur would be derived from endogenous ES cells of the injected blastocyst 

(C57BL/6J).   Therefore, chimeras that were mostly brown are more likely to be derived from 

targeted ES cells.  Because some of the gonadal tissue was derived from the altered ES cells, the 

chimeras were able to pass the targeted allele to its offspring.  The targeted allele (Fneo) was 

converted to the global knockout allele (f) or to the floxed allele (F) that could later be used to 

generate conditional knockouts. 
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Figure 4. Strategy for creating gene targeting construct. Relevant restriction sites, exons (numbered orange 

boxes), loxP sites (red triangles), frt sites (blue triangles), plasmid backbone (wavy line), and positive (NEO) 

and negative (TK) selection cassettes are shown. 
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3.2.2 Design of α4 subunit gene targeting vector 

The Gabra4 gene targeting vector was created using standard recombinant DNA 

techniques (see Fig. 4 for schematic).  The targeting vector containing the Gabra4 gene was 

constructed from a Strain 129 X1 mouse genomic DNA clone housed in a BAC vector (provided 

by Neil Harrison, Weill Medical College at Cornell University).  Briefly, a 9.2 kB SpeI fragment 

containing Exons 3-6 was subcloned into Bluescript KS with destroyed BamHI and EcoRV sites.  

An oligonucleotide containing a loxP site and an EcoRI site was inserted into a BamHI site 625 

base pairs 5’ to Exon 3.  This cloning step destroyed the BamHI site.  A blunted fragment 

containing frt sites 5’ and 3’ of a neomycin resistance gene (NEO) and a loxP site 3’ of NEO 

[204] was cloned into an EcoRV site 118 bp 3’ to Exon 3.  A NotI-KpnI fragment containing 

exons 3-6, loxP sites, NEO, etc. was then cloned into pPNT [213] such that a PGK driven 

thymidine kinase expression cassette was inserted 5’ to α4 genomic DNA. The targeting 

construct was linearized with PvuI for targeting in ES cells. 

3.2.3 Targeting of α4 in Embryonic Stem Cells  

The linearized targeting construct was electroporated into R1 embryonic stem cells [207] 

following previously described procedures [209]. Briefly, G418 (270 ug/mL; Life Technologies, 

Gaithersburg, MD) and gancyclovir (2 µM; Sigma) resistant cells were screened for gene 

targeting by Southern blot analysis of BamHI digested genomic DNA using previously described 

procedures [209].  Fragments were hybridized with a 5’ probe that was external to the targeting 

construct (Fig. 2).  Proper targeting of the α4 locus was confirmed by Southern blot analysis of 

EcoRI digested DNA hybridized to the 5’ probe and of BglI/KpnI digested digested DNA 
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hybridized to a 3’ probe external to the targeting construct (Fig. 2).  Please see Appendix A for 

information on how DNA probes were made. 

 

Figure 5. Gabra4 allelic variants created. (A) Relevant region of endogenous wild type gene (+), correctly 

targeted allele (Fneo), FLPe recombined allele (F) and Cre-recombined (knockout) allele (f). S, Relative 

location of SstI restriction sites, (B) Southern Blot analysis of SstI digested tail DNAs.  Probe E hybridized to 

a 4.6 kB (endogenous), 5.4 kB (targeted), 3.5 kB (FLPe recombined) and 3.8 kB (Cre-recombined) SstI 

digested fragment.  
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3.2.4 Production of Mice from Targeted ES Cells 

Three correctly targeted embryonic stem cell clones (145E1, 146J6 and 146L3) were 

microinjected into C57BL/6J blastocysts to produce chimeric mice. All of the results from the 

mice presented in this thesis are derived from the 146J6 ES cell clone.  Chimeras were bred to 

EIIa-Cre transgenic mice (C57BL/6J genetic background) [214]. F1 agouti offspring were either 

wild-type (+/+), heterozygous for the targeted allele with NEO (+/Fneo) or heterozygous for the 

Cre-recombined (knockout) allele +/f (Fig. 5).  Heterozygous knockout mice (+/f) were interbred 

to produce wild-type, heterozygous, or homozygous (f/f) knockout mice.  +/Fneo mice were bred 

to actin-FLPe transgenic mice [215] (C57BL/6J genetic background) to remove NEO and create 

the floxed allele (F).  Mice were genotyped using Southern blot analysis of SstI digested 

genomic DNA hybridized to a probe containing Exon 4 and 5 (Fig. 5).  It should be noted that 

FLPe and Cre transgenes were “bred out” of the subsequent mouse lines.  All mice were of F2-

F6 generations and were of a Strain 129X1/S1 X C57BL/6J genetic background. All mice were 

housed under conditions of lights on at 7:00 and lights off at 19:00. 

3.2.5 Reverse Transcriptase- Polymerase Chain Reaction (RT-PCR) 

Total RNA was isolated from hippocampus of WT and KO mice using TRIzol 

(Invitrogen, Carlsbad, CA).  Approximately 200 ng of total RNA was used for RT-PCR 

(SuperScript One Step RT-PCR kit; Invitrogen) with primers specific for the Gabra4 gene. Exon 

2 (TCCCCAGGACAGAACTCAAAGG) and exon 5 (CATCCATAGGAAAATCCACCAGTC) 

primers correspond to nucleotides 224-245 and 674-651 of the α4 cDNA (GenBank accession 

number BC094603), respectively, and amplify a 453-bp fragment of WT mouse cDNA. RT-PCR 
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products were separated on a 1% agarose/TAE/EtBr gel and subsequently purified by using 

Zymoclean (Zymo Research, Orange, CA) and sequenced (DNA Sequencing Core Facilities, 

University of Pittsburgh, Pittsburgh, PA).  

3.2.6 Western Blot Analysis 

Following decapitation, thalamus, hippocampus and cerebellum were rapidly dissected, 

frozen on dry ice and stored at -70°C.  P2 Membrane fractions were prepared by homogenization 

in PBS and subsequent centrifugation at 1,000g for 10 min followed by centrifugation of the 

supernatant at 10,000g for 25 min.  Resultant pellets were resuspended and quantified using a 

bicinchonic acid method.  Proteins (30 ug/lane) were electrophoresed on an SDS- 10% 

polyacrylamide gel.  Proteins were transferred onto a poly-vinylidene difluoride membrane 

(BioRad, Hercules, CA).  Blots were first probed with anti-GABAA-R α4 subunit specific 

antibody [(1:1,000 dilution) raised against the C-terminus of the α4 protein ([78], Novus 

Biologicals, NB 300-193, Littleton, CO) and then with HRP-conjugated goat anti-rabbit 

secondary antibody (Novus Biologicals).  Specific peptide labeling was detected by enhanced 

chemiluminescence (Western Lightning; Perkin Elmer, Boston, MA).  Blots were later stripped 

using Re-blot (Chemicon International) and reprobed with β-actin polyclonal antibody (1: 10000 

dilution, ab8227-50, Abcam) to verify equal loading of protein. 

3.2.7 Elevated Plus-Maze Test   

Basal anxiety-like behavior was tested using the elevated plus-maze. All mice were between 7 

and 9 weeks of age and were tested between 13:00 and 16:00.  Each mouse was placed on the 
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central platform of the maze, facing an open arm and allowed to freely explore the maze for 5 

min under ambient room light.  Open-arm and closed-arm entries and the cumulative time spent 

on the open and closed arms was recorded.  A mouse was considered to be on the central 

platform or on an arm when all four paws were within its perimeter.  The percent open-arm 

entries, total number of entries, and percent time in open-arms was determined.  Data were 

analyzed using one-way ANOVA. 

 

3.2.8 Open Field Activity   

Basal motor activity of mice was determined using the open field assay.  8-10 week old 

mice were placed into a walled arena (43.2 cm  x 43.2 cm  x 30.5 cm) for 5 min.  Distance 

traveled (cm) was measured automatically using an Activity Monitor (Med Associates, St. 

Albans, VT).  All tests were performed between 12:00 and 16:00.  Effect of genotype on basal 

motor activity was compared using Student’s t-test.   

3.3 RESULTS 

3.3.1 Creation of Vector and ES Cell Targeting:   

 The DNA targeting vector was created as described (Fig. 4).  Restriction digests 

and DNA sequencing confirmed the presence of all relevant restriction enzyme sites, the 

integrity of all exons, and the proper orientation of loxP and frt sites. 
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3.3.2 ES Cell Targeting  

Over 1300 G418 and gancyclovir resistant colonies were isolated.  Of these, 773 colonies 

were analyzed by Southern Blot.  Six out of 773 ES cell clones displayed the predicted 

restriction fragment length polymorphisms indicative of the targeting event (Fig. 2A). Results 

from one clone (146J6) are depicted (Fig. 2B). In this analysis, the 5' probe hybridized to a 3.7-

kb BamH1 and a 7.3-kb EcoRI-digested fragment from the WT α4 allele (+) and a 5.9-kb 

BamHI and a 3.5-kB EcoRI-digested fragment from the targeted, Neo containing, allele (Fneo).  

These results indicated correct targeting of the Gabra4 gene and also presence of the 5’ lox P 

site.  The 3’ probe hybridized to a 11.5 kb BglI/KpnI double digested fragment from the + allele 

and to a 13.5 kb fragment from the targeted allele. 

3.3.3 Production of α4 mutant mice from targeted ES Cells 

Two correctly targeted cell lines, 146J6 and 146L3, yielded germ-line competent 

chimeric males. Chimeras were bred to EIIa-Cre transgenic mice [214] to selectively delete the 

DNA sequences located between the loxP sites, including exon 3 of the Gabra4 gene and the 

Neo cassette.  From this breeding, two separate lines of mice were created 1) Mice that were +/f 

were interbred to produce +/+ (WT), +/f, and f/f (KO) mice and 2) +/Fneo mice were bred to 

actin-FLPe transgenic mice [215] (C57BL/6J genetic background) to remove NEO and create 

mice heterozygous for the floxed allele +/F.  All mice were genotyped at weaning using Southern 

blot analysis (Fig. 5B). In this analysis, Probe E hybridized to a 4.6-kB SstI fragment from the + 

allele, a 5.4-kb SstI fragment from the Fneo allele, a 3.5-kB SstI fragment from the F allele, and 

a 3.8-kb SstI fragment from the f allele.    Mice of all genotypes were viable and overtly 
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indistinguishable from each other. 

3.3.4 Gross Characterization of f/f (KO) mice 

Mice that were +/f were interbred to produce +/+ (WT), +/f, and f/f (KO) mice.  Of the 

first 1512 offspring genotyped, 383 (25.3%) were +/+, 745 (49.3%) were +/f, and 384 (25.4%) 

were f/f.  These values are in accord with the 1:2:1 genotype frequency as expected by 

Mendelian genetics (ϕ2 = 0.22, df = 2, p = 0.9).  When offspring are divided by genotype and 

gender, ratios are also in accord with expected Mendelian genetics (ϕ2 = 3.01, df = 5, p = 0.7, See 

Table 2)  Thus, homozygous KO mice have normal viability.  KO mice are normal in size. Body 

weights (g ± SEM) of 7- to 8-week-old male mice were 24 ± 1 for WT (n = 7) and 24 ± 1 for KO 

(n = 10).  Body weights of 7- to 8-week-old female mice were 23 ±2 for WT (n = 6) and 21 ± 1 

for KO (n = 6).  Brain weights also were similar between genotypes (525 ± 8 for WT, 527 ± 10 

for KO; weight in mg ± SEM; n = 3 per genotype).  Additionally, histological analysis of brain 

found no gross differences between genotypes (Carolyn Houser, University of California- Los 

Angeles). 
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Table 2.  Distribution by gender and genotype from +/f by +/f mating 

 

3.3.5 RNA Analysis 

RT-PCR analysis using α4 specific primers was performed to characterize the gene 

transcripts derived from the mutant allele. The predicted 453-bp fragment was amplified from 

WT RNA by using primers specific for exon 2 and exon 5 (Fig. 6B). Sequencing of the PCR 

product confirmed the presence of exons 2-5 (data not shown). The predicted 453-bp fragment 

could not be amplified from KO RNA. Instead, ~375 nt and ~150 nt products were amplified. 

Sequencing of these products showed that the ~375 nt fragment was identical to the WT 

fragment except that nucleotides corresponding to exon 3 were absent. The ~150-nt fragment 

also was identical to wild type, except that nucleotides corresponding to exons 3 and 4 were 

absent (data not shown). 

 48 



 

Figure 6.  RNA analysis of α4 KO mice.   (A) Schematic diagram of α4 cDNA.  (B) RT-PCR products of WT 

(n = 1) and KO (n = 1) hippocampal RNA.  WT cDNA amplifies a 453 bp fragment while KO cDNA amplifies 

a ~375 and ~150 bp fragment.  Orange boxes represent exons.  Arrows represent primer locations. 

 

3.3.6 Protein Analysis 

Western blot was used to examine whether deletion of exon 3 of the Gabra4 gene 

eliminated α4 protein. In membrane preparations of hippocampus and thalamus from WT mice, 

an α4-specific antibody [78] specifically recognized a ~67-kDa protein (Fig. 7). This protein 

band was absent in membranes from KO mice.  As an additional negative control, protein from 

cerebellum, a brain region that lacks α4, was analyzed.  As expected, α4 protein was absent in 

both WT and KO samples (Fig. 7).  
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Figure 7.  Western Blot analysis of thalamic, hippocampal and cerebellar membranes from α4 WT and KO 

mice.  The ~67 kDa immunoreactive α4 protein present in hippocampal and thalamic WT samples is 

completely absent from KO samples, and as expected, is also absent from cerebellar preparations of WT and 

KO mice.  

 

3.3.7 Behavioral Characterization 

KO mice were overtly indistinguishable from WT mice.  KO mice did not display any 

obvious behavioral abnormalities such as spontaneous seizures, hypoactivity, hyperactivity, or 

aggression toward cagemates.   

Differences in anxiety and total activity of α4 KO mice were examined using the elevated 

plus maze.  The elevated plus maze is widely used to assess anxiety-like behavior in response to 

the aversive stimulus of an elevated exposed space.  On this test apparatus, knockout mice did 

not significantly differ from WT in open arm entries (Fig. 8A) or in time on open arms (Fig. 8B) 

suggesting that there is no change in anxiety-like behavior. KO mice had the same number of  
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Figure 8.  Behavioral characterization of α4 KO mice.  (A-C) Elevated plus maze (n = 16 WT, 14 KO).  α4 

knockout mice did not differ from WT mice in (A) open arm entries, (B) time in open arms, or (C) in total 

number of entries. (D) Alpha4 KO (n = 14) mice were equally active in an open field as WT mice (n = 13). 

 

total arm entries as wild types (Fig. 8C) reducing the likelihood that an alteration in locomotion 

masks a difference in anxiety-like behavioral measures on this assay.   
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KO mice were also tested for behavioral response to an aversive, brightly lit open field 

test apparatus using the open field assay.  KO mice had equal locomotor activity compared to 

wild type mice when placed into a test arena (Fig. 8D) indicating that overall activity levels were 

similar for KO and WT animals. 

3.4 SUMMARY, DISCUSSION AND FUTURE DIRECTIONS 

3.4.1  Summary  

GABAA-Rs containing the α4 subunit have attracted a great deal of attention despite their 

limited abundance in the brain, partly because of its 1) specific localization in the thalamus, 

dentate gyrus and striatum, 2) proposed role in mediating tonic inhibition, 3) unique in vitro 

pharmacological properties with respect to endogenous and exogenous ligands, and 4) plasticity 

of expression in a number of pathophysiological and experimental conditions.  Mice with 

targeted mutations in the Gabra4 gene were created to provide a model for understanding the 

physiological role of α4-containing GABAA-Rs.  α4 mutant mice were genetically engineered 

using Cre/lox, standard gene targeting and embryonic stem cell technologies.  Both a global α4 

KO strain and a floxed α4 strain were created, the latter for use in conditional α4 KO studies.  

 

3.4.2 Creation and Characterization of α4 KO mice 

Global α4 subunit knockout mice were homozygous for the Cre-recombined allele 

 52 



lacking exon 3 of the Gabra4 subunit gene (f/f).   RT-PCR demonstrated that mRNA coded by 

exon 3 was eliminated in f/f (KO) mice thereby confirming that Gabra4 is a single copy gene.  

Western blot analysis of KO mice demonstrated that α4 protein truly is absent in this strain. 

Laboratories of Richard Olsen and of Carolyn Houser, both at the University of California, Los 

Angeles, confirmed elimination of α4 through western blot and immunohistochemistry, 

respectively (See Appendix B). Together, these results prove that deletion of exon 3 of the 

Gabra4 gene prevented production of α4 protein, i.e., resulted in a true knockout allele.  

 α4 KO mice were overtly normal and indistinguishable from wild-type 

littermates. KO mice had normal viability as well as similar body and brain weights as WT mice.   

This demonstrates that the Gabra4 gene is not essential for life even though it is expressed as 

early as E17 [216].  The normality of α4 KO mice is similar to that of other GABAA receptor 

subunit knockout models including α2 [217], α3 [218], α5 [219], α6 [220], β2 [221]and δ [147]. 

In contrast, mice lacking the β3 or γ2 subunits had severe developmental abnormalities.  Most γ2 

KO [222] or β3 KO [208] mice died within 48 hours of birth and over 90% did not live past 21 

days of age.  Those γ2 or β3 knockout mice that did survive had a much shorter life span and had 

multiple defects that were clearly detected by visual inspection such as hyperactive behavior, 

sensorimotor deficits and impaired coordination. Mice lacking the α1 subunit were impaired but 

less so. α1 KO mice had essential tremor [221, 223, 224] and less than 60% survived past 21 

days [221].  The results from γ2 and β3 KO mice confirm that GABAA-Rs are essential.  The 

relative normality of α1 KO mice shows the extraordinary plasticity demonstrated by the CNS 

following deletion of a subunit that is incorporated into nearly half of all GABAA-Rs.  Similar 

compensatory plasticity in α4 KO mice may also account for the overt normality in this strain. 

Thus far, it has been found that there is an upregulation in γ2 in the dentate gyrus [225], as well 
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as an increase in α1 and α2 and a decrease in δ in the thalamus of α4 KO mice [226].  These 

compensatory changes do not make α4 KO mice useless, however, they are important to 

consider when drawing conclusions about the impact of deletion of the Gabra4 gene. 

Performance on the elevated plus maze and open field assays are used to assess more 

subtle changes in behavior.  α4 KO mice performed similarly to WT in both assays indicating 

that KO mice had similar anxiety and locomotor activity levels.  Other GABAA-R subunit 

mutant strains have been tested using similar measures.  Mice with reductions in γ2 had greatly 

reduced anxiety and reduced locomotor activity as measured by these same assays [212, 227].  

α3 KO mice were more active in an open field [218] while α2 KO mice were less active [217].  

Clearly, the presence or absence of certain GABAA-R subtypes affect performance in these 

behavioral assays, however, the α4 containing GABAA-R subtypes are not essential.  A possible 

explanation for this is that the brain regions containing α4 (e.g., thalamus, striatum, 

hippocampus, etc.) are not important in these behaviors. 

3.4.3 Future uses of α4 subunit KO mice 

Qualitative behavioral assessment, elevated plus maze and open field data suggest that α4 

KO mice behave normally.  However, many subtle behaviors could be altered in α4 KO mice.  

For example, α4 is highly expressed in the thalamus, a brain region that relays sensory input to 

the cerebral cortex.   Therefore, vision, hearing, taste or touch could be affected in α4 KO mice.   

The thalamus also plays a role in regulating sleep and wakefulness; suggesting these behaviors 

should also be examined.  α4 is expressed in the dentate gyrus and CA1 region of the 

hippocampus, a region known to function in learning in memory.  A number of rodent learning 
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and memory paradigms such as the Morris water maze, the Barnes maze, passive avoidance, fear 

conditioning and motor learning tasks could be used to assess learning and memory deficits (or 

enhancements) in α4 KO mice.  Thus far, preliminary studies have found that α4 KO mice show 

enhanced trace and contextual fear conditioning [228].  Certainly, there is much more to be 

learned about the role of α4 containing GABAA-Rs in learning and memory as well as behavior 

in general.  GABAA-R α4 KO mice will continue to be very useful in this regard. 

There is substantial plasticity in the expression of the GABAA-R α4 subunit which is 

especially intriguing because it manifests in a variety of experimental and pathophysiological 

situations leading to hyperexcitability.  α4 expression is markedly increased by electroshock 

[181], alcohol exposure/withdrawal [60, 61, 178, 182], steroid withdrawal [183, 184], social 

isolation [185], and epilepsy [62, 63].   α4 KO mice could help understand whether there is a 

cause and effect relationship between increased α4 expression and behavioral hyperexcitability.  

For example, KO and WT littermate mice could be subjected to withdrawal from chronic alcohol 

administration and then examined for convulsions, a common effect of alcohol withdrawal.  If α4 

KO mice have fewer convulsions after alcohol withdrawal, this may suggest an important role 

for GABAA-R α4 containing subtypes.  Studies such as these are underway in the Homanics Lab. 

Using in vitro expression systems, α4 subunit-containing GABAA-R receptors have a 

unique pharmacology with respect to GABAergic ligands.  α4 subtypes have high sensitivity to 

ethanol [73, 163], neurosteroids [109, 116, 173], etomidate [179] as well as GABAmimetic drugs 

such as muscimol [72] and gaboxadol [111, 116, 180].  This dissertation will use α4 subunit 

knockout mice to study the role of α4 containing GABAA-R subtypes in mediating the behavioral 

effects of muscimol, gaboxadol (see Chapter 4) and ethanol (see Chapter 5).   For these purposes, 

full viability and overt normality of α4 KO mice is very fortunate, unlike γ2 KO mice in which 
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neonatal lethality rendered them nearly useless for studying the mechanisms of ethanol and 

sedative-hypnotic drugs.  

3.4.4 Conditional α4 Knockout mice 

Another goal, in addition to creating global α4 KO mice, was to create mice with a floxed 

α4 locus (F) for conditional α4 knockout studies.  The floxed locus created contained two loxP 

sites that flanked exon 3 and one frt site.  It was predicted that the short length of these three 

recombination recognition sites, and their placement in intronic DNA, would allow the floxed 

gene to function normally.  Normal gene expression in homozygous floxed (F/F) mice was 

studied by immunohistochemical analysis (Carolyn Houser, UCLA) where it was found that F/F 

mice had α4 subunit immunostaining patterns identical to wild-type mice, +/+  (data not shown).  

The floxed α4 mice created here add to the growing number of floxed GABAA-R subunit alleles 

which already includes α1 [229], β3 [230] and γ2 [231]. 

In general, floxed mice can be used for a multitude of experiments.  They can be mated to 

a transgenic mouse that expresses Cre recombinase in a tissue-specific or temporally regulated 

manner to make conditional knockouts.  Floxed mice can also be mated to transgenic mice that 

express Cre in a ligand-inducible manner, therefore placing the timing of the knockout under 

investigator control.  Finally, Cre recombinase packaged in a viral vector can be stereotactically 

injected to specific locations in the floxed mouse line to create models where the location and 

timing of the gene knockout is controlled [232]. 

Conditional knockouts using the floxed α4 allele can answer questions that global α4 KO 

mice cannot.  For example, the α4 subunit is expressed in a number of tissues including the 

thalamus, hippocampus, striatum and cortex.  Therefore, any phenotype observed in α4 global 
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knockouts cannot be ascribed to a particular region. In contrast, floxed α4 mice can be bred to 

αCamKII-promoter driven Cre transgenic mice [233] to create hippocampal-restricted 

knockouts.  Floxed mice can also be bred to potassium channel, Kv3.2-promoter driven Cre mice 

[234] to create thalamus specific knockout of α4.  Also, because α4 begins expression at stage 

E17 [216], there could be developmental compensations in global α4 KO mice that could mask 

the true contributions of α4.  This problem could be circumvented by breeding floxed α4 mice to 

an inducible Cre transgenic line [235, 236] or locally injected with the Cre gene to control the 

precise timing of the knockout [232].  
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4.0  THE EXTRASYNAPTIC GABAA-R IN THE MOLECULAR MECHANISMS  OF 

GABOXADOL AND MUSCIMOL 

4.1 INTRODUCTION 

4.1.1 Tonic inhibition and α4 containing GABAA-Rs 

GABA is the major inhibitory neurotransmitter in the mammalian central nervous system.  

Its primary target, GABAA-Rs, are pentameric complexes that function as ligand-gated chloride 

ion channels. Two types of inhibitory neurotransmission are mediated via GABAA-Rs [85, 86].  

Phasic inhibition results from the activation of receptors at the synapse by intermittent release of 

high concentrations of GABA from presynaptic terminals.  Tonic inhibition, in contrast, is 

mediated by the continuous activation of receptors located outside the synaptic cleft by low 

concentrations of GABA.  

Anatomical and pharmacological evidence has long suggested that GABAA-Rs 

containing the α4 subunit play a role in tonic inhibition [110, 111, 176-178].  In thalamic relay 

neurons and dentate gyrus granule cells, α4 containing GABAA-Rs co-localize extrasynaptically 

with the δ subunit  [111, 176, 178], which has been found to play a critical role in mediating 

tonic inhibition [109].  Pharmacological properties of recombinantly expressed GABAA-Rs 

containing α4/δ suggest an important role in tonic inhibition; these GABAA-Rs have a higher 
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affinity for GABA [72, 116] and slower rates of desensitization [116] [85, 86], relative to the 

classical synaptic GABAA-Rs.   

Recently, tonic inhibition in α4 knockout mice was studied using slice electrophysiology 

[237].  Dentate gyrus granule cells of α4 KO mice were highly deficient in tonic inhibition 

where picrotoxin-sensitive tonic currents were reduced by about 80%.  Even more striking, 

however, was a complete loss of tonic current in thalamic relay neurons of the ventrobasal 

complex in α4 KO mice (Appendix C).  These studies clearly demonstrate that GABAA-Rs 

containing α4 subunits mediate tonic inhibition in the thalamus and dentate gyrus.  Results from 

α4 KO mice nearly mirror those observed in the dentate gyrus [109] and more recently, in 

thalamic relay neurons [238] in mice lacking the δ subunit. Taken together, these findings imply 

that extrasynaptic α4/δ containing GABAA-Rs are functionally significant. 

4.1.2 Gaboxadol and α4/δ GABAA-R pharmacology 

Extrasynaptic GABAA-Rs containing α4/δ subunits are insensitive to benzodiazepines, 

but show high sensitivity to other sedative-hypnotic drugs, including ethanol [73, 163], 

neurosteroids [109, 116, 173], etomidate [179], muscimol [72] and gaboxadol (formerly known 

as THIP) [111, 116, 180].  Among these, gaboxadol recently gained much attention due to its 

promise as a novel hypnotic agent [65].  Gaboxadol is a direct GABAA-R agonist as it acts at the 

same site as GABA.  Like GABA, gaboxadol has a higher affinity for α4/δ than for synaptic 

GABAA-Rs [116].  Gaboxadol also has two to three fold greater efficacy than GABA on α4/δ 

GABAA-Rs essentially making it a “superagonist” for these receptors [72, 116]. In contrast, 

gaboxadol has either a partial or full agonist at the most common synaptic GABAA-Rs, such as 

α1β2γ2, α2β3γ2 and α3β3γ2 [70, 144].   
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The preference of gaboxadol toward α4/δ containing GABAA-Rs is illustrated in cellular 

studies.  Thalamic relay neurons from the VB complex contain both α4/δ and α1/γ2 GABAA-Rs 

[111].  Electrophysiological recordings from these cells found that low concentrations of 

gaboxadol, 100-300 nM, enhanced tonic inhibitory currents but had no effect on synaptic 

currents [111].  The importance of α4-containing GABAA-Rs to gaboxadol action was 

demonstrated unequivocally using α4 KO mice ([237], Appendix D).  Recordings from wild-type 

thalamic relay neurons showed that 100-300 nM gaboxadol elicited a reproducible and 

concentration-dependent current response.  However, this response was completely absent in the 

neurons from α4 KO mice.  It should be noted that higher concentrations of gaboxadol (1 µM) 

produced inward currents in both the WT and KO mice.  Nevertheless, these results underline the 

selectivity of gaboxadol for GABAA-Rs that contain the α4 and δ subunits over GABAA-Rs that 

contain the α1 and γ2 subunits [111].  

Gaboxadol has analgesic, sedative-hypnotic, anti-convulsive, anxiolytic and ataxic effects 

[138].  While selectivity of gaboxadol for α4/δ receptors has been clearly established at the 

molecular and cellular level, it is unknown whether these receptors mediate gaboxadol’s 

behavioral effects.  Synaptic GABAA-Rs, such as α1β2γ2, are present in far greater numbers than 

extrasynaptic receptors [77, 78].   Therefore, synaptic GABAA-Rs could mediate gaboxadol’s 

behavioral effects even though they are less sensitive to the drug than extrasynaptic GABAA-Rs.  

Still, the importance of α4/δ is highly likely; animals where extrasynaptic GABAA-Rs are 

upregulated are more sensitive to the behavioral effects gaboxadol [239, 240].  
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4.1.3 Aims of this study 

The primary purpose of the following experiments was to understand how gaboxadol 

achieves behavioral endpoints such as ataxia, sedation and analgesia.  I hypothesized that the 

behavioral effects of gaboxadol would be diminished in mice lacking either α4 or δ subunits.  In 

addition to gaboxadol, the behavioral effects of muscimol will also be tested.  Muscimol is also a 

direct GABAmimetic drug that has been used extensively as a lead for the design of several other 

GABA analogs, including gaboxadol [138].  Similar to GABA and to gaboxadol, muscimol has a 

lower EC50 for  extrasynaptic GABAA-Rs than synaptic receptors [72].  Muscimol has a greater 

maximal effect on extrasynaptic receptors than GABA but much less so than gaboxadol [70, 72, 

144].  Behaviorally, muscimol produces similar effects as gaboxadol [241] [242] [243, 244].  In 

light of some important similarities between gaboxadol and muscimol, I hypothesize that the 

behavioral effects of muscimol may also be diminished in α4 KO or δ KO but not α1 KO mice. 

4.2 MATERIALS AND METHODS 

4.2.1 Mice 

Three different GABAA-R subunit knockout mouse strains were used to examine the 

behavioral mechanism of action of gaboxadol and muscimol.  α4 KO and WT littermate controls 

were created by interbreeding mice heterozygous for the KO allele. α4 KO mice were of a mixed 

genetic background C57BL/6J and Strain 129S1/X1, F2-F6 generations.  δ KO/WT (mixed 

C57BL/6J and Strain 129S1/X1 genetic background from > F20 generations, [147]) and α1 
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KO/WT mice (mixed C57BL/6J, FvB, and Strain 129S1/X1 genetic background from > F15 

generations [211]) were created in a similar fashion.   At weaning, mice were genotyped using 

Southern Blot analysis of tail DNA as previously described for α4 KO[237], δ KO [147]  and α1 

[211] KO mice.  Mice were group housed, given free access to standard rodent chow and water, 

and maintained on a 12 h alternating light/dark schedule with lights on at 07:00.  For all 

experiments, both male and female mice were used.  Gender differences were observed in some 

cases (noted below).   Wherever no gender differences were observed, data were pooled across 

gender.  Gaboxadol (THIP Hydrochloride, Sigma) and muscimol (Sigma) were diluted in normal 

saline, and flunitrazepam (Sigma) was diluted in a 22.5% (wt/vol) solution of 2-hydroxypropyl-

β-cyclodextrin (Sigma).  All drugs were administered into the intraperitoneal cavity in a volume 

of 0.01 mL per gram of body weight.   

4.2.2 Fixed Speed Rotarod  

The Ugo Basile 7650 (Varese, Italy) apparatus with a rod diameter of 6 cm that was 

rotating at a fixed speed of 6 rpm was used for all experiments measuring drug-induced ataxia.  

For description of mice used in ataxia studies, please see Table 3.  Mice were acclimated to the 

apparatus by pre-training them on the rotarod 1-3 times on the day before each drug-induced 

ataxia experiment.  Mice capable of walking on the rotarod for 180 seconds were used for drug-

ataxia experiments.  Mice were evaluated once again prior to drug injection.  Mice were injected 

with drug and then placed on the rotarod every 15 minutes (gaboxadol and flunitrazepam) or 

every 30 minutes (muscimol) post-injection.  The time a mouse was able to stay on the rotarod 

was recorded. Data were analyzed by repeated measures ANOVA. 
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Table 3.  Description of mice used for drug-induced ataxia experiments 

 

4.2.3 Radiant Tail Flick Assay  

A radiant tail-flick assay was used as described [245].  Briefly, drug naïve mice (age 8-14 

weeks) were lightly restrained by placing them in a soft cloth pouch with the tail extended from 

one end. Focused light from a tail-flick analgesia meter (IITC Life Sciences, Woodland Hills, 

CA) was applied directly to a spot ~1 cm  from the tip of the tail.   Tail-flick latency was 

measured using a digital timer contained within the experimental apparatus. Baseline 

measurements were made using a moderate light intensity that yielded ~ 8 s basal response in 

prior experiments.  The possibility of tissue damage was avoided by automatic shutoff of the 

light after 30 s if the mouse did not respond. On the first day, mice were weighed and tested for 

basal nociception.  One day later, mice were injected with 10 mg/kg gaboxadol and tested for 

 63 



latency to tail flick 30 min after injection.   At least two measurements were taken and the mean 

value calculated for each mouse.  Data were analyzed using a paired Student’s t-test. 

4.2.4 Open Field Assay  

The open field assay was used to measure baseline activity and gaboxadol-induced and 

sedation.  Drug naïve mice (8-10 weeks of age) were weighed and transported to the mouse 

behavioral room at least three hours prior to testing.  All testing occurred between 12:00 and 

17:00.   Mice were injected with normal saline or 10 mg/kg gaboxadol.  Twenty minutes after 

injection, mice were placed into a walled arena (43.2 cm x 43.2 cm x 30.5 cm) that was located 

in a sound attenuating cubicle  (Med Associates, St. Albans, VT) and allowed to freely explore 

the activity chamber for 6 minutes.  Distance traveled (cm) was measured automatically using an 

activity monitor. Data were analyzed using two way ANOVA with genotype and dose as the 

between-subject factors and Fisher’s post-hoc test where appropriate.  

 

4.3 RESULTS 

4.3.1 Ataxic effects of gaboxadol in α4 KO mice 

Recovery from ataxia induced by 10 or 15 mg/kg gaboxadol was measured using a fixed speed 

rotarod.  KO mice were virtually insensitive to 10 mg/kg gaboxadol when compared to WT mice 

(Fig. 9A; repeated measures ANOVA by genotype; F(1,31) = 55, p<0.0001). Ataxic response to 15 
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mg/kg gaboxadol was also greatly reduced in KO compared to WT mice (Fig. 9B; F(1,28) = 14, 

p<0.001).  Responses to flunitrazepam was tested as a negative control.  This benzodiazepine is 

thought to exert its effects via synaptic GABAA-Rs.  We observed that KO mice did not differ 

significantly from WT littermates in recovery from ataxia following injection with 2 mg/kg 

flunitrazepam (Fig. 9C).  These data have been published [237]. 

 

 

Figure 9.  α4 KO mice have greatly reduced sensitivity to the ataxic effects of gaboxadol. The fixed speed 

rotarod measured gaboxadol’s ataxic effects at (A) 10 mg/kg (n=19 KO, 14 WT) , (B) 15 mg/kg (n=18 KO, 12 

WT). Ataxic effects of gaboxadol are dramatically reduced in alpha4 KO mice (black circles) compared to 

WT mice (white circles) at both 10 (p < 0.0001) and 15 mg/kg (p < 0.001). There were no differences between 

genotypes in ataxia induced by (C) flunitrazepam (n = 13 KO, 11 WT).  

 

4.3.2 Ataxic effects of gaboxadol in δ KO mice 

Recovery from ataxia induced by three different doses of gaboxadol (10, 15 or 30 mg/kg) 

was measured using a fixed speed rotarod (Figs. 10A-C).  δ KO mice were completely 

insensitive to the ataxic effect of gaboxadol at 10 mg/kg [Fig. 10A; repeated measures ANOVA 

by genotype; (F(1,45) = 13.3; p < 0.01)] and 15 mg/kg (Fig. 10B; F(1,45) = 6.7; p < 0.05].  30 mg/kg  
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impaired performance in δ KO mice on the rotarod, however, impairment was far less than wild-

type mice [Fig. 10C; (F(1,152) = 15.1; p < 0.005].   These data demonstrate that δ KO mice have 

drastically reduced sensitivity to the ataxic effects of gaboxadol. 

 

 

Figure 10. δ KO mice are largely insensitive to the ataxic effects of gaboxadol. Fixed speed rotarod measured 

the ataxic effects of gaboxadol at (A) 10 mg/kg (n = 6 KO, 5 WT), (B) 15 mg/kg (n = 6 KO and 5 WT) and (C) 

30 mg/kg (n = 11 KO and 10 WT).  Ataxic effects were either eliminated or greatly reduced in δ KO mice 

(black circles) compared to WT controls (white circles) at 10 mg/kg (p < 0.01), 15 mg/kg  (p < 0.05) and at 30 

mg/kg (p < 0.005). 

4.3.3 Analgesic effects of gaboxadol in α4 KO mice 

The radiant tail flick assay was used to measure thermal pain sensitivity and to study the 

analgesic effect of 10 mg/kg gaboxadol.  WT and α4 KO mice did not differ in their basal 

thermal pain sensitivity, as measured by their latency to tail flick in the absence of drug (Fig. 11).  

In α4 KO mice, gaboxadol produced only a slight but significant (p=0.05) increase in tail flick 

latency compared to baseline.  In contrast, gaboxadol markedly prolonged the latency to tail flick 

compared to basal responses in WT mice (p<0.005). These data indicate that α4 KO mice are 
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largely insensitive to the analgesic effect of gaboxadol as determined by the radiant tail flick 

assay.  These data have been published [237].  

 

Figure 11.  α4 KO mice are insensitive to the analgesic effect of gaboxadol.  The radiant tail flick assay was 

used to measure the analgesic properties of 10 mg/kg gaboxadol (n=15 KO, 17 WT).  Baseline latency to flick 

tail (BSL) or latency following gaboxadol injection (GBX) is displayed. Gaboxadol produced a marked 

analgesic effect in WT mice by increasing latency to flick tail (*, p<0.005) but only had a small but marginally 

significant (†, p=0.05) effect in KO mice.   

 

4.3.4 Sedative effects of gaboxadol in α4 KO mice 

To measure the sedative effects of gaboxadol, total locomotor activity was recorded in an 

open field assay in WT and α4 KO mice 20 min after treatment with either saline or 10 mg/kg 

gaboxadol (Fig. 12).  Two way ANOVA revealed an effect of treatment (F1,28 = 6, p<0.05), a 
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genotype by treatment interaction (F1,28; p<0.05), but no effect of genotype.  Post hoc analysis 

revealed no difference in total activity between WT and α4 KO mice treated with saline.  

Treatment of WT mice with gaboxadol markedly decreased locomotor activity (p<0.02).  In 

contrast, treatment of α4 KO mice with gaboxadol had no significant effect on activity.  Thus, 

deletion of the α4 subunit of the GABAA-R eliminated the sedative effects of gaboxadol as 

determ hese data have been published [237]. 

 

ined in the open field assay.  T

 

Figure 12. α4 KO mice are insensitive to the sedative effect of gaboxadol.  The open field assay was used to 

measure the sedative effect of 10 mg/kg gaboxadol (n=7-10 mice / genotype / treatment).  Total locomotor 

activity after injection with saline (SAL) or gaboxadol (GBX) is displayed.  Gaboxadol depressed locomotor 

activity in WT mice (*, p<0.02), but had no effect in KO mice.  No genotypic differences were observed 

between saline treated groups. 

 

 68 



4.3.5 Ataxic effect of muscimol in α4 KO mice 

Recovery from ataxia induced by 1.5, 2.0 and 3.0 mg/kg muscimol was measured by 

fixed speed rotarod (Fig. 13).  α4 KO mice were significantly less sensitive to 1.5 mg/kg [Fig. 

13A; repeated measures ANOVA (F(1,64) = 4.6 , p < 0.05)], 2.0 mg/kg [Fig. 13B; F(1,100) = 8.3; p 

< 0.05], and 3.0 mg/kg [Fig. 13C; F(1,100) = 6.1; p < 0.05].  There were no significant effects of 

gender (p > 0.05) at any of the three doses and therefore data from males and females were 

collapsed in the analysis.  However, at 2.0 mg/kg, there was a trend toward an effect of gender 

[F(1,100) = 2.8, 0.05 < p < 0.10] with females possibly more sensitive to muscimol than males.  

These data demonstrate the reduced sensitivity of α4 KO mice to the ataxic effect of muscimol. 

 

 

Figure 13.  α4 KO mice are less sensitive to the ataxic effects of muscimol.  The fixed speed rotarod measured 

muscimol’s ataxic effects at 1.5 mg/kg (n = 7 KO and 11 WT) (A), 2.0 mg/kg (n = 12 KO and 15 WT) (B), and 

3.0 mg/kg (n = 12 KO and 15 WT) (C).  Ataxic effects of muscimol are reduced in alpha4 KO mice (black 

circles) compared with WT mice (white circles) at 1.5  (p < 0.05), 2.0 (p < 0.05), and 3.0 mg/kg (p < 0.05). 

 69 



 

Figure 14.  δ KO mice are less sensitive to the ataxic effects of muscimol. The fixed speed rotarod measured 

muscimol’s ataxic effects in δ KO mice (black circles) and WT mice (white circles).  At 1.5 mg/kg, there was a 

significant effect of gender (p < 0.05) and therefore, data were split between (A) females and (B) males.  

Ataxic effects of 1.5 mg/kg in female delta KO mice were greatly reduced (p < 0.01) compared to female WT 

mice (n = 5 KO and 5 WT).  Male mice were not affected by muscimol at this dose (n = 3 KO and 4 WT).  δ 

KO mice were less sensitive to the ataxic effects of muscimol at (C) 2.0 mg/kg (p < 0.001; n = 16 KO and 12 

WT) and (D) 3.0 mg/kg muscimol (p < 0.0001; n = 16 KO and 12 WT). 

 

4.3.6 Ataxic effects of muscimol in δ KO mice   

Recovery from ataxia induced by 1.5, 2.0 and 3.0 mg/kg muscimol was measured by 

fixed speed rotarod (Fig. 14). There was a significant effect of gender at 1.5 mg/kg (F(1,45) = 4.9, 

p < 0.05).  Analysis of data split between genders, revealed a significant effect of genotype in 
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female mice (Fig. 14A; p < 0.01) but not male mice (Fig. 14B).  Neither δ WT or KO males 

were affected by 1.5 mg/kg muscimol.  At 2.0 and 3.0 mg/kg, no effect of gender was observed.  

δ KO mice recovered faster than WT following 2.0 mg/kg (Fig. 14C; F(1,104) = 17.8, p < 0.001), 

and  3.0 mg/kg (Fig. 14D; F(1,104) = 21.5, p < 0.0001). These data demonstrate that δ KO mice 

were less sensitive to the ataxic effects of muscimol. 

 

4.3.7 Ataxic effects of muscimol in α1 KO mice   

Recovery from muscimol induced ataxia was assessed in α1 KO mice and their WT 

littermate controls. Recovery from ataxia induced by 2.0 (Fig. 15A) and 3.0 mg/kg (Fig. 15B) 

muscimol was not different between α1 KO and WT mice. 

 

 

Figure 15. α1 knockout mice are equally sensitive as WT mice to the ataxic effects of muscimol.   No 

differences in muscimol induced ataxia between α1 knockout mice (black circles) and WT littermate controls 

(white circles) at 2.0 mg/kg (A; n = 10 KO and 12 WT) and  3.0 mg/kg (B; n = 10 KO and 12 WT). 
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4.4 DISCUSSION  

4.4.1 Extrasynaptic GABAA-Rs in the behavioral effects of gaboxadol 

Previous studies in GABAA-R α4 KO mice ([237], Appendix C and D)  demonstrated: 1) 

a reduction/elimination of tonic inhibition in the dentate gyrus and thalamus, and 2) insensitivity 

to gaboxadol at doses that enhance tonic currents in thalamic relay neurons of the VB.  Here, we 

studied the role of extrasynaptic GABAA-Rs in the behavioral effects of gaboxadol. We tested 

α4 KO and δ KO mice in their ataxic, analgesic, and sedative responses to gaboxadol.  These 

studies found that both α4 KO and δ KO mice were largely insensitive to the behavioral effects 

of gaboxadol.  

The ataxic effect of gaboxadol was measured using the rotarod assay.  Under our 

experimental parameters, the performance of α4 WT mice on the rotarod was highly impaired by 

both 10 mg/kg and 15 mg/kg gaboxadol.   In contrast, α4 KO mice were nearly insensitive to this 

effect, although a modest inhibitory effect remained at 15 mg/kg.  The ataxic effects of 

gaboxadol in δ KO mice were also muted.  δ KO mice were completely insensitive to both 10 

mg/kg and 15 mg/kg gaboxadol.  At 30 mg/kg, KO mice were affected but recovered far more 

quickly than δ WT mice.   

Clearly, both α4 KO and δ KO mice were largely insensitive to the ataxic effects of 

gaboxadol.  Though it is difficult to compare results across strains, our results indicate that δ KO 

mice are even more resistant to gaboxadol than α4 KO mice. δ KO mice were completely 

insensitive to gaboxadol’s ataxic effects at both 10 and 15 mg/kg, while respectively, α4 KO 

mice were either barely or moderately effected by these same doses.  The seemingly greater 

insensitivity in δ KO is not surprising given that gaboxadol is known to act as a potent agonist of 
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GABAA-Rs that contain α4/δ or α6/δ [70].  Therefore α4/δ GABAA-Rs are only a subset of δ 

containing GABAA-Rs.  In one sense, the observation that α4 KO mice were largely insensitive 

to gaboxadol-induced ataxia might seem surprising because performance on the rotarod is very 

sensitive to drugs that influence cerebellar activity.  Of the GABAA-Rs containing the δ subunit, 

the α6 subunit is highly expressed in the cerebellum but α4 is not [66].  One explanation could 

involve neurons that project from the cerebellum to thalamus; it is possible that  potentiation of 

tonic current by gaboxadol reduces the activity of cerebello-thalamic-cortical networks crucial 

for balance and coordination.  It is also possible that ataxia produced by gaboxadol is mediated 

outside of the cerebellum;  α4/δ GABAA-R populations in the striatum, thalamus and motor 

cortex would be the most obvious possibilities.  Future studies using tissue-specific α4 KO may 

be informative in this regard.    

Gaboxadol is also known to possess analgesic activity [138, 246], and this effect was also 

seen in our experiments using the radiant tail flick assay. Once again, the analgesic effect of a 10 

mg/kg dose was significantly reduced/eliminated in the KO mice. These experiments indicate 

that the analgesic properties of gaboxadol are also mediated by GABAA-Rs containing α4 

subunits. The location of the α4 containing GABAA-Rs responsible for this effect is unknown, 

although the receptor population in the thalamus is one possibility. It should be pointed out that 

the tail flick assay could be potentially confounded by motor effects of gaboxadol, so this 

phenomenon will have to be studied further in these mice using additional tests.  It may be 

necessary to test α4 KO mice for analgesic properties either with non-sedative doses of 

gaboxadol or with other measures of analgesia such as the hot plate, Hargreaves test or von Frey 

assay.    

α4 KO mice were tested for the sedative/ motor impairing effects of gaboxadol by 
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measuring locomotor activity in an open field.  α4 WT mice showed a decrease in locomotor 

activity following i.p. treatment with 10 mg/kg gaboxadol.   α4 KO mice, in contrast, were not 

impaired by gaboxadol; they had similar activity levels as WT and KO mice that were treated 

with saline.   Recently, similar experiments in δ KO showed that δ KO mice are also insensitive 

to gaboxadol’s effects in an open field [238].  Together, these results suggest a critical role for 

extrasynaptic α4/δ receptors in mediating the sedative/motor impairing effects of gaboxadol. 

Thus far, studies of α4 knockout mice have found that: 1) tonic inhibitory currents are 

reduced/eliminated in dentate gyrus and thalamus; 2) thalamic VB neurons were completely 

insensitive to 100-300 nM gaboxadol, a dose that in WT mice produces robust potentiation of 

tonic currents but no effect on synaptic currents; and now, 3) that behavioral effects of gaboxadol 

are largely absent.  These cellular and behavioral findings are mirrored in studies using δ KO 

mice [109, 238, 240, 247].  The combined results from these two mouse strains suggest that α4/δ 

GABAA-Rs mediate a tonic current that is highly sensitive to potentiation by gaboxadol, and that  

potentiation of this tonic current by gaboxadol is responsible for the behavioral effects of this 

drug.  

GBX is known to shorten the latency to sleep and to enhance the quality of sleep in man 

[159, 248, 249] and to produce sedation, analgesia, loss of motor co-ordination and loss of 

righting reflex in rodents [250, 251], but the mechanism by which this occurs is unknown.  Relay 

neurons within the thalamus are known to show alterations in firing patterns during the 

transitions between the awake and the sleeping states [252, 253].  In collaboration with Neil 

Harrison’s laboratory, we have shown the ability of gaboxadol to hyperpolarize these neurons in 

α4 WT neurons but not α4 KO. Therefore, there is a strong association between the sedative and 

motor effects of gaboxadol and the ability of the drug to hyperpolarize thalamic relay neurons. 
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One possibility is that gaboxadol is able to hyperpolarize these neurons sufficiently to induce the 

transition between silent or tonic firing modes and burst firing mode that is implicated in the 

onset of slow-wave sleep [254].  One way to test this is by behavioral analysis following local 

injection of gaboxadol into the thalamus. 

4.4.2 Extrasynaptic GABAA-Rs in behavioral responses to muscimol 

The insensitivity of α4 and δ KO mice to gaboxadol provided the impetus to study the behavioral 

effects of muscimol, another direct GABAA-R agonist structurally similar to  gaboxadol.  Ataxic 

responses to muscimol were measured using the rotarod.  We observed that α4 or δ KO but not 

α1 KO mice were less sensitive to muscimol-induced ataxia. 

α4 KO mice were significantly less sensitive to muscimol than WT mice at three doses 

ranging from 1.5 - 3.0 mg/kg.  At the same doses, δ KO mice were also significantly less 

sensitive to muscimol than WT littermates.   Reduced sensitivity to muscimol in α4 and δ KO 

mice is consistent with in vitro studies of GABAA-Rs and molecular pharmacological studies 

using these knockout lines.  Muscimol has a 40% greater maximal effect on extrasynaptic 

GABAA-Rs than synaptic GABAA-Rs [72, 144], although this difference in magnitude is much 

greater with gaboxadol (200%-300%) [72].  The fact that gaboxadol has greater specificity to 

extrasynaptic GABAA-Rs than muscimol may explain why α4 KO and δ KO mice were nearly 

insensitive to gaboxadol but still displayed modest impairment by muscimol. Additionally, 

binding studies have found that δ KO mice have a greatly reduced number of high-affinity [3H]-

muscimol sites as measured by in situ autoradiography [147].   A similar reduction has also been 

observed in α4 KO mice (D. Chandra and E.R. Korpi, unpublished observations).  Therefore, 

reduced behavioral sensitivity of α4 KO and δ KO mice may be due to loss of high affinity 
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binding sites. 

Mice lacking the GABAA-R α1 subunit were equally impaired by muscimol as their WT 

littermate controls.  These results are interesting in light of previous molecular characterization 

of α1 KO mice showing that they have: 1) a 55% reduction in total GABAA-Rs, 2) 35% reduced 

muscimol stimulated chloride uptake in cortical neurosynaptosomes, and 3) 55% reduced [3H]-

muscimol binding in cerebellar homogenates [187].   Unchanged behavioral sensitivity to 

muscimol in α1 KO mice is also interesting given that muscimol is a full agonist at α1β2γ2, 

whereas gaboxadol is only a partial agonist [70, 72, 144], and that α1 containing receptors are 

widely expressed throughout the brain, in far greater number than GABAA-Rs contiaing α4 or δ 

[77, 78, 255].  It should be noted, however, that in situ autoradiography showed no differences in 

high affinity [3H] muscimol binding in a conditional α1 knockout mouse model [229] unlike δ 

KO mice, which showed a large reduction [147].  Therefore, it may be possible that 1.5 – 3.0 

mg/kg muscimol exerts its behavioral effects at these high affinity agonist binding sites.  Another 

possibility could be that muscimol-induced ataxia is mediated by non-α1 synaptic GABAA-Rs.   

We have observed that α4 and δ KO mice have reduced sensitivity to muscimol 

suggesting that extrasynaptic GABAA-Rs are important for the behavioral effects of this drug.  

The reduction in muscimol-induced ataxia is similar, but less dramatic, compared to the virtual 

elimination of gaboxadol-induced ataxia in these knockout lines.  Similarly, it might be possible 

that α4 KO mice are less sensitive to the analgesic and sedative properties of muscimol like they 

were with respect to gaboxadol.  It is also possible that the cellular mechanisms of these two 

drugs may be similar, e.g. via potentiation of tonic inhibitor current.  Therefore, it would be 

worthwhile to study effects of muscimol in tonic and phasic inhibition in thalamic relay neurons 

of the VB.  I hypothesize that tonic current in VB neurons would be enhanced by low 
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concentrations of muscimol that do not enhance synaptic currents.  Finally, the similarities in 

responses to muscimol and gaboxadol indicate that the ataxic effects of other direct GABAA-R 

agonists such as, thiomuscimol and isoguavicine [72, 144] may also be reduced in α4 and δ KO 

mice. 

4.4.3 Summary    

In summary, extrasynaptic GABAA-Rs mediate tonic inhibition in the thalamus and 

dentate gyrus and mediate the ataxic, analgesic, and sedative effects of gaboxadol as well as the 

ataxic effects of muscimol.  Potentiation of GABAA-R tonic currents in various brain regions 

appear to be a mechanism of action that is shared with clinically used drugs including the 

anesthetics isoflurane [115] and etomidate [176, 179].  While neither gaboxadol nor muscimol 

has been approved clinically, these findings suggest that direct GABAA-R agonists that 

preferentially act on high affinity extrasynaptic GABAA-Rs may someday be exploited for use as 

sedative or analgesic agents.  
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5.0   RESPONSES TO ACUTE ETHANOL IN  GABAA-R α4 KO MICE  

5.1 INTRODUCTION 

Despite the use of EtOH throughout human history for its anxiolytic and intoxicating 

effects, the precise molecular targets through which EtOH exerts these effects are not well 

understood.  Many different brain circuits and signaling systems have been implicated in the 

behavioral actions of EtOH in rodents [5].  One likely set of targets is the family of γ-

aminobutyric acid type A receptors (GABAA-R), which mediate inhibition throughout the 

mammalian brain.  

GABAA-Rs are pentameric complexes that function as ligand-gated chloride ion 

channels. There are a variety of subunit families that make up GABAA-Rs; a total of nineteen 

distinct subunits have been cloned, α1-6, β1-3, γ1-3, δ, ε, π, θ, and ρ1-3 [43].  This diversity in 

GABAA-R subunit composition results in substantial anatomical, functional and pharmacological 

heterogeneity. For example, GABAA-Rs containing α1, α 2, or α 3, with β2/3 and γ2 are typically 

found at sub-synaptic sites, where they mediate fast synaptic inhibition.  In contrast, GABAA-Rs 

containing α4 or α6, with β2/3 and δ are typically found at extrasynaptic locations, where they 

mediate a tonic form of inhibition by virtue of their ability to respond to low concentrations of 

GABA.  Recent studies suggest that these extrasynaptic GABAA-R populations may be targets 

for the behavioral effects of EtOH.   
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 A large number of studies have shown that GABAA-Rs are sensitive to EtOH [e.g.,156, 

158], but in most studies the concentration required to potentiate those receptors was often 

greater than 60 mM, a concentration much higher than that achieved during social drinking.  In 

contrast, in vitro studies of recombinant GABAA-Rs of the extrasynaptic subtypes showed that 

these receptors were potentiated by concentrations of EtOH that approximate those achieved by 

social drinking (<30 mM) [162].  In another set of studies, recombinant GABAA-Rs containing 

α4 and δ were potentiated by 1-3 [159] or 3-10 [73] mM EtOH, concentrations achieved by 

about half a glass to one glass of wine, although different results have been reported by other 

groups working with the same subunits [74].  Finally, the EtOH behavioral antagonist Ro15-

4513 inhibited EtOH action at α4/δ receptors [164] and EtOH blocked binding of [3H]Ro15-4513 

to α4β3δ receptors [165], although other groups have been unable to observe similar effects 

[256, 257].  

In vivo behavioral experiments also suggest that α6/δ and α4/δ extrasynaptic GABAA-Rs 

mediate behavioral effects of EtOH.  Rats with the Q100 allelic variation of the α6 subunit of the 

GABAA-R were more sensitive to the motor-incoordinating effects of EtOH compared to rats 

with α6 (R100) [162].  The same study found that 1) potentiation of tonic current by EtOH was 

significantly greater in the α6 expressing cerebellar granule cells of α6(Q100) rats than α6(R100) 

rats and 2) EtOH more robustly potentiated in vitro receptors containing α6(Q100)β3δ than 

α6(R100)β3δ [162].  In another study, progesterone-withdrawn rats that exhibited increased α4δ 

expression were more sensitive to low concentrations of EtOH both at the cellular and behavioral 

levels [159]. Finally, mice lacking the δ subunit of the GABAA-R showed reduced potentiation 

of tonic inhibition by EtOH [163, 178] and exhibited multiple defects in behavioral responses to 

EtOH [169]. 
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GABAA-Rs containing α4 and δ subunits mediate tonic inhibition in the dentate gyrus 

and in thalamic relay neurons [110, 111, 176, 177, 237].  The α4 subunit is also expressed in the 

cortex, striatum and other brain areas [53, 66, 175].  Thus, there is reason to suspect that these 

receptors might be involved in a variety of behaviors that are influenced by alcohol.  

In the present study, we investigated the behavioral effects of EtOH in a recently created 

strain of α4 subunit knockout (KO) mice.  These mice were largely insensitive to some 

behavioral effects of the GABAA-R agonist, gaboxadol, also known as THIP [237], previously 

shown to be relatively selective for extrasynaptic α4/δ GABAAR’s [116, 180]. The α4 KO mice 

also showed a substantial deficit in tonic inhibition in dentate gyrus and thalamus [237], and the 

enhancement of tonic current by EtOH was greatly reduced in dentate gyrus granule cells in 

these mice [225, 258].  We therefore hypothesized that those behavioral responses to EtOH that 

are mediated by α4-containing GABAA-Rs would be diminished in α4 KO mice. 

 

5.2 METHODS AND MATERIALS 

5.2.1 Mice 

Breeding pairs of α4 heterozygous mice [237] were used to produce α4 KO and WT 

littermate controls.  All mice were of a mixed C57BL/6J and Strain 129S1/X1 genetic 

background from the F2-F6 generations. Mice were genotyped at weaning using Southern Blot 

analysis of tail DNA as previously described [237].  Mice were group housed, given free access 

to standard rodent chow and water, and maintained on a 12 h alternating light/dark schedule with 
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lights on at 7:30 AM. For all experiments, both male and female mice were used, but no gender 

differences were observed and data was pooled across gender, except as noted in the results.  

Each mouse was used for only a single behavioral assay, except as noted below.  EtOH was 

purchased from Pharmco (Brookfield, CT) and was administered into the peritoneal cavity (i.p.).  

The Institutional Animal Care and Use Committees at the University of Pittsburgh and the 

University of California, Los Angeles approved all protocols. 

5.2.2 Elevated Plus-Maze 

The elevated plus maze was used to test baseline anxiety and activity, as well as the 

anxiolytic and locomotor stimulatory effect of EtOH, using previously described methods [259].  

Briefly, 8-10 week old mice were weighed and transported to the mouse behavioral room one 

day prior to testing.  All testing occurred between 10:00 and 13:00 under ambient room light.  

Mice were injected with normal saline or 1.0 g/kg EtOH ten minutes prior to testing.  Each 

mouse was placed on the central platform of the maze, facing an open arm and allowed to freely 

explore the maze for 5 min.  Open-arm and closed-arm entries and the cumulative time spent on 

the open and closed arms were recorded.  A mouse was considered to be on the central platform 

or on an arm when all four paws were within its perimeter.  The percent open-arm entries, total 

number of entries and percent time in open-arms were determined.  Data were analyzed using 

two-way ANOVA, with genotype and dose as the between-subject factors.   
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5.2.3 Open Field Assay 

The open field assay was used to measure baseline activity and EtOH -induced locomotor 

stimulation and sedation.  Mice (8-11 weeks of age) were weighed and transported to the mouse 

behavioral room one day prior to testing.  All testing occurred between 12:00 and 17:00.  Mice 

were injected with normal saline, 1.0 g/kg EtOH, or 2.0 g/kg EtOH ten minutes prior to testing.  

Each mouse was placed in the center of a walled arena (43.2 cm X 43.2 cm X 30.5 cm) that was 

located in a sound attenuating cubicle (Med Associates, St. Albans, VT) and allowed to freely 

explore the activity chamber for 10 min.  Distance traveled and the number of rearings were 

automatically recorded using an activity monitor.  The number of rearings was defined as the 

number of breaks of a photobeam 8 cm above the floor of the arena.  Data were analyzed using 

two-way ANOVA with genotype and dose as the between-subject factors and Fisher’s post-hoc 

test where appropriate.   

5.2.4 Fixed Speed Rotarod 

 Mice were trained on a fixed speed rotarod (Ugo Basile, Model 7650 with rod 

diameter of 6 cm, Stoelting Co., Wood Dale, IL) and training was considered complete when 

mice were able to remain on the rotarod for 180 seconds.  After EtOH administration, each 

mouse was placed back on the rotarod and time spent on the rotarod was measured for up to 180 

s at intervals listed below for 60 min post-injection.  Three independent experiments were 

conducted at three different dosages of EtOH, 1.5 g/kg, 2.0 g/kg, and 2.5 g/kg.  In one 

experiment, 8-11 week old drug naïve mice were trained on the rotarod spinning at 14 rpm, and 

then injected with 1.5 g/kg EtOH.  Performance on the rotarod was measured every 15 minutes.  
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In another experiment, 8-12 week old EtOH naïve mice were trained on the rotarod spinning at 6 

rpm and then injected with 2.0 g/kg EtOH.  Performance on the rotarod was measured every 10 

minutes.  In the final experiment, the same mice that were injected with 2.0 g/kg were re-trained 

two weeks later on the rotarod spinning at 6 rpm and injected with 2.5 g/kg EtOH.  Performance 

was measured every 15 minutes.  Data were analyzed within each experiment using repeated 

measures ANOVA. 

5.2.5 Loss of Righting Reflex Assay 

Mice were tested for the sedative/hypnotic response induced by EtOH using the loss of 

righting reflex (LORR) assay.  Mice (10-15 weeks of age) were injected with 3.5 g/kg EtOH and 

then monitored for LORR.  Once this occurred, mice were placed on their backs in v-shaped 

troughs.  Mice were monitored until they were able to right themselves three times in 30 s.  The 

duration of LORR was the time elapsed between when they were placed in a supine position and 

when they were able to right themselves three times.  A heat lamp and monitoring of rectal 

temperatures were used to ensure normothermia.  Data were analyzed using an unpaired 

Student’s t test. 

5.2.6 Radiant Tail Flick Assay 

The analgesic properties of ethanol are well documented [260, 261].  A radiant tail-flick 

assay was used to measure this effect [245].  Mice that had been tested in the open field assay 

more than two weeks prior were used for this assay.  Briefly, mice (age 10-14 weeks) were 

lightly restrained by placing them in a soft cloth pouch with the tail extended from one end. 
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Focused light from a tail-flick analgesia meter (IITC Life Sciences, Woodland Hills, CA) was 

applied directly to a spot ~1 cm from the tip of the tail.   Tail-flick latency was measured using a 

digital timer contained within the experimental apparatus. Baseline measurements were made 

using a moderate light intensity that would yield ~10 s basal response based on prior 

experiments.  The possibility of tissue damage was avoided by automatic shutoff of the light 

after 30 s if the mouse did not respond. On the first day, mice were weighed and tested for basal 

nociception.  One day later, mice were injected with 2 g/kg EtOH and tested for latency to tail 

flick 20 minutes after injection.   At least two measurements were taken and the mean value 

calculated for each mouse.  Data were analyzed using repeated measures ANOVA. 

5.2.7 Screen Test and Hypothermia Test 

The screen test and EtOH-induced hypothermia were assayed together on the same mice.  

Mice (age 10-16 weeks) that were tested on the open field assay two weeks prior were used for 

these studies.  The screen test was carried out using an apparatus that was constructed similar to 

that described previously [262].  The screen test apparatus was a 5 mm2 grid mounted in a plastic 

frame and positioned 60 cm above a padded table.  The grid was supported by two vertical arms 

in such a manner that allowed the grid to rotate around an axis perpendicular to the supporting 

arms.  Mice were weighed, injected with saline, and then placed on the screen while the screen 

was horizontal.  The screen was then rotated 90 degrees over 3 s.  Mice were given two trials to 

pass the criterion latency of remaining on the screen for 240 s.  Three days later, the rectal 

temperature of each mouse was measured.  Five minutes after temperature measurement, each 

mouse was injected with either 1.5 or 2.0 g/kg EtOH.  Twenty-five minutes after EtOH injection, 

each mouse was assayed on the screen test apparatus for latency to fall.  Animals that did not fall 
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after 240 s were given a latency score of 240.  Thirty minutes after injection, rectal temperature 

was again measured.   For both the screen and hypothermia tests, data were analyzed using 

ANOVA and Fisher’s post hoc test. 

5.2.8 EtOH Metabolism and Clearance 

Mice (13-16 weeks of age) were injected with EtOH (3.5 g/kg) and blood samples were 

collected from the retro-orbital sinus at 30, 60, 90, and 120 min following injection.  Blood 

Ethanol concentration (BEC) was determined as described previously [263]. Briefly, blood was 

collected in heparinized capillary tubes, then mixed with 3% perchloric acid, and centrifuged for 

10 min at 10,000g at 4 °C.  The EtOH concentration in supernatants was measured using 

spectrophotometry via an alcohol dehydrogenase assay.  Clearance was calculated as the average 

slope of a linear regression of BEC versus time.  An unpaired Student’s t-test was used to make 

comparisons between genotypes.   
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5.3 RESULTS 

5.3.1 Elevated Plus Maze   

The elevated plus maze test was administered to examine baseline anxiety-like behavior 

and the anxiolytic and locomotor stimulatory effects of EtOH.  There were no differences 

between WT and KO mice in basal performance (i.e., following saline injection) on the elevated 

plus maze.  Saline treated WT and KO mice did not differ in total arm entries, percentage of  

 

 

Figure 16.  Evaluation of anxiety-like behavior and locomotor activity using the elevated plus maze.  

Total arm entries (A), percentage of open arm entries (B), and percentage of total time spent on open arms 

(C) are displayed.  Saline or 1.0 g/kg EtOH was injected 10 min prior to testing.  EtOH increased total arm 

entries (p<0.005), percentage of open arm entries (p<0.005), and percentage of time on open arms (p<0.001).  

However, there was no effect of genotype or interaction of genotype with treatment.  Data represent mean ± 

SEM. n = 12-16 mice / genotype / treatment. 

 

entries onto open arms, or percentage of time spent on open arms (Fig. 16).  The locomotor 

stimulatory effect of EtOH was assessed by comparing the total number of arm entries in mice 

treated with saline versus those treated with EtOH (Fig. 16A).  Although a 1.0 g/kg dose of 
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EtOH produced a significant increase in total entries [ANOVA: F(1,52) = 10.3, p < 0.005], there 

were no significant differences between KO and WT mice.  The anxiolytic response to EtOH 

was assessed by comparing the percentage of open arm entries (Fig. 16B) and percentage of time 

spent on open arms (Fig. 16C) between mice treated with saline versus EtOH.  A 1.0 g/kg dose 

of EtOH produced significant anxiolytic responses; EtOH treated mice showed an increase in 

open arm entries [F(1,52) = 12.1, p < 0.005] and time spent on open arms [F(1,52) = 12.7, p < 

0.001].  However, KO mice did not differ from WT mice in their sensitivity to the anxiolytic 

effects of EtOH. 

5.3.2 Open Field Assay   

The open field assay was used to measure baseline activity as well as the locomotor 

stimulatory and sedative effects of EtOH.  Analysis of total distance traveled revealed a 

significant main effect of EtOH treatment [F(2,98) = 17.4, p < 0.0001] but there were no 

significant effects of genotype or the interaction of genotype and treatment (Fig. 17A).   Distance 

traveled was increased by ~55% by 1.0 g/kg EtOH compared to mice treated with saline (p 

<0.0001).  Mice treated with 2.0 g/kg EtOH did not differ in distance traveled compared to saline 

controls. 

Analysis of the number of rearings observed in the open field revealed a significant effect 

of gender [F(1,102) = 5.2, p < 0.05], and so the data from male (Fig. 17B) and female mice (Fig. 

17C) were analyzed separately.  For both genders, there were significant main effects of EtOH 

treatment with respect to number of rearings observed [ANOVA: male, F(2, 48) = 19.6, p < 

0.0001; female, F(2,44) = 11, p < 0.0001].  In males, 1.0 g/kg (p < 0.05) and 2.0 g/kg (p < 0.0001) 

doses reduced the number of rearings compared to saline-treated mice.  In females, only 2.0 g/kg 
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EtOH reduced the number of rearings (p < 0.0001). There was no significant effect of genotype 

or interaction of genotype with dose on the number of rearings for either gender. 

 

 

Figure 17.  Evaluation of locomotor activity and rearing using the open field assay.  Mice were 

injected with saline or EtOH 10 min prior to testing.  (A) Total distance traveled by mice treated with 1.0 g/kg 

EtOH was greater than saline treated mice (p<0.0001), but there was no effect of genotype or interaction of 

genotype with treatment. Sample size was 16-18 mice / genotype / treatment.  Analysis of the number of 

rearings revealed a significant effect of gender (p < 0.05) that warranted analysis of males and females 

separately.  (B) The number of rearings in male mice was influenced by treatment (p<0.0001) but not by 

genotype.  Both 1.0 g/kg (p<0.05) and 2.0 g/kg (p<0.0001) reduced the number of rearings compared to saline 

treatment.  (C) The number of rearings in female mice was influenced by treatment (p<0.0001) but not by 

genotype. The 2.0 g/kg (p<0.0001) reduced the number of rearings compared to saline treatment. For panels 

B and C, n = 7-10 mice / genotype / treatment. Data represent mean ± SEM. 

 

5.3.3 Fixed Speed Rotarod 

Recovery from ataxia induced by three different doses of EtOH (1.5, 2.0 or 2.5 g/kg) was 

measured using a fixed speed rotarod in three separate experiments (Fig. 18).  In all experiments, 

there was a significant effect of time [1.5 g/kg, F(3, 48) = 21.2, p < 0.0001; 2.0 g/kg, F(4, 96) = 

20.2, p < 0.0001; 2.5 g/kg, F(3,54) = 40.6, p < 0.0001].  However, there were no significant 

effects of genotype or interaction of genotype with time for any of the doses tested. 
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Figure 18. Fixed speed rotarod measured EtOH’s ataxic effects at  (A) 14 RPM, 1.5 g/kg (n = 9 KO and 9 

WT), (B) 6 RPM, 2.0 g/kg (n = 15 KO and 11 WT), and (C) 6 RPM, 2.5 g/kg (n = 12 KO and 8 WT).  Black 

circles represent KO mice and white circles represent WT mice.  Data points are mean ± SEM. There was a 

significant effect of time at all doses tested (p<0.0001) but no genotypic effects were observed in EtOH-

induced ataxia at any dose.  Genotypes did not differ in the rate of learning the task during training sessions 

(data not shown). 

 

5.3.4 Loss of Righting Reflex (LORR) Assay  

The sedative/hypnotic effect of a 3.5g/kg dose of EtOH was determined using the LORR 

assay (Fig. 19A).  WT and KO mice did not differ in the duration of LORR.   

 

5.3.5 Radiant Tail Flick Assay   

The radiant tail flick assay was used to measure thermal pain sensitivity and to study the 

analgesic effect of 2.0 g/kg EtOH (Fig. 19B).  WT and KO mice did not differ in their basal 

thermal pain sensitivity, as measured by their latency to tail flick in the absence of drug.  There 

was a significant main effect of EtOH treatment on the latency to tail flick [ANOVA: F(1,21) = 
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196, p < 0.0001]. However, there was no significant effect of genotype or interaction of genotype 

with EtOH.  EtOH significantly prolonged the latency to tail flick compared with basal responses 

in both WT (p < 0.0001) and KO (p < 0.0001) mice. 

 

Figure 19.  EtOH-induced sedative/hypnotic and analgesic effects.  (A) EtOH-induced (3.5 g/kg) 

sedative/hypnotic effects measured by the duration of the LORR (n= 13 WT and 11 KO) was not different 

between genotypes.  (B) EtOH-induced (2.0 g/kg) analgesia measured by a radiant tail flick assay (n = 13 WT 

and 10 KO).  EtOH increased latency to tail flick over baseline (BSL) for both WT and KO mice. However, 

no significant effect of genotype was observed.  All data represent mean ± SEM.  *, p < 0.0001 

 

5.3.6 Screen test 

Results for the screen test are shown in Fig. 20A.  Prior to being tested with EtOH, all 

mice were trained until they were able to remain on the screen for 240 s.  There was a significant 

main effect of EtOH treatment on latency to fall [F(1, 76) = 10.6, p < 0.005]. In contrast, there 

were no significant effects of genotype or interaction of genotype with EtOH on latency to fall 

from the screen.  This demonstrated that both 1.5 and 2.0 g/kg EtOH impaired the ability to stay 
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on the vertical screen equally in both genotypes.  This effect was dose-dependent as mice treated 

with 2.0 g/kg were more impaired than those treated with 1.5 g/kg (p<0.005).   

 

 

Figure 20.  Screen test and EtOH-induced hypothermia. (A) All animals used achieved a baseline 

performance criterion of 240 sec.  Injection of EtOH reduced latency to fall from screen (p < 0.005); this 

effect was dose dependent as 2.0 g/kg had a greater effect than 1.5 g/kg (p < 0.005). No effect of genotype was 

observed.  (B) EtOH reduced body temperature (p < 0.0001), but no difference between genotype was 

observed. All data represent mean ± SEM.  n = 20 / genotype / treatment. 

 

5.3.7 Hypothermia test 

EtOH -induced reductions in body temperature are displayed in Figure 20B.  There were 

no differences in baseline body temperature between WT and KO mice (data not shown).  There 

was a significant main effect of EtOH treatment on change in body temperature [F(1,76) = 34.0, p 

< 0.0001] indicating that EtOH injection induced a hypothermic response. However, there was 

no significant main effect of genotype or interaction of genotype with dose in the hypothermic 
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effect of EtOH. The effect of EtOH was dose-dependent as 2.0 g/kg EtOH had a greater 

hypothermic effect than 1.5 g/kg (p<0.0001). 

5.3.8 EtOH Metabolism and Clearance 

To determine if KO mice differed from their WT littermates with respect to EtOH 

pharmacokinetics, BEC was measured every 30 min following 3.5 g/kg injection of EtOH.  

BECs did not differ significantly between genotypes at any timepoint measured. For example, at 

90 min postinjection, BEC was 317  ± 27 mg/dl (n = 5) in WT animals compared to 333 ± 43 

mg/dl (n = 5) in α4 KO animals. The rate of clearance of EtOH from the blood also did not differ 

between genotypes (WT, 2.5  ± 0.5 mg/dl/min, n = 5; KO, 2.4 ± 0.2, mg/dl/min, n = 5).  

Therefore, valid comparisons can be made between genotypes for acute behavioral responses to 

EtOH administration. 

 

5.4 DISCUSSION 

This study examined the effects of targeted inactivation of the gene encoding the α4 

subunit of the GABAA-R on the acute behavioral effects of moderate/high dose EtOH. α4 KO 

and WT littermate mice were tested on a wide-ranging battery of behavioral assays.   Deletion of 

the α4 subunit of the GABAA-R did not influence the behavioral responses to acute 

administration of EtOH in the elevated plus maze, open field, fixed speed rotarod, LORR, radiant 

tail flick, screen test, or hypothermia assays.   
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The lack of an EtOH-induced behavioral phenotype in the α4 KO mice is surprising 

given the following.  Recombinant GABAA-Rs containing α4 and δ subunits are reported to be 

sensitive to low concentrations (<30 mM) of EtOH associated with social intoxication [73, 159]; 

however see: [74].  In vivo, these receptors are located extrasynaptically where they mediate 

tonic inhibition that is also sensitive to moderate concentrations of EtOH [163, 178].  This tonic 

current is reduced in α4 KO mice and is not potentiated by EtOH [225, 258].  Mutation of the 

closely related α4/δ containing GABAA-Rs leads to EtOH-induced behavioral changes [162].  

The EtOH antagonist, Ro15-4513, binds to α4/δ containing receptors and reverses the effects of 

EtOH [164, 165]; however see: [256, 257].  Lastly, α4 KO mice are largely insensitive to 

gaboxadol, a GABAergic drug whose effects are mediated by α4/δ containing GABAA-Rs [237].  

Despite these previous studies that strongly implicate α4 in EtOH action, our current results 

argue against a key role for α4 subunit-containing GABAA-Rs in mediating EtOH-induced 

behavioral effects.   

There are a number of possible explanations for the lack of an EtOH-induced acute 

behavioral phenotype in the α4 KO mice that must be considered.  As with all knockout studies, 

compensatory mechanisms may mask the normal endogenous effect of a gene that has been 

knocked out.  As mentioned above, α4 KO mice were less sensitive to EtOH at the cellular level; 

two independent studies demonstrated that EtOH potentiation of tonic inhibition was reduced in 

dentate gyrus granule cells of α4 KO mice [225, 258].  However, Liang et al. also unexpectedly 

observed a compensatory increase in synaptic sensitivity to EtOH contrasting equal synaptic 

enhancement of gaboxadol between KO and WT mice.  This increase in synaptic potentiation by 

EtOH in α4 KO mice may mask the true contribution of the α4 subunit in mediating EtOH-

induced behaviors.  Compensation is not unprecedented in GABAA-R subunit KO mice as 
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numerous compensatory changes have been observed in other GABAA-R subunit mutants.  

Compensatory mechanisms have included alterations in other GABAA-R subunits [186-190], 

organization of GABAergic circuits [264], neuronal architecture [265], and genes and proteins 

outside the GABAA-R system [122, 266].  The molecular compensation in α4 KO mice is only 

beginning to be understood.  For example, brain-region selective compensatory increases in γ2 

subunit protein in α4 KO mice have been discovered [225].  

 It is also conceivable that no genotypic differences in EtOH -induced behaviors between 

α4 WT and KO mice were observed because the EtOH doses used were too high.  The α4/δ-

containing receptors may be selective targets for only very low dose effects of EtOH.  In this 

study, we gave doses of EtOH of 1.0 – 3.5 g/kg that likely produce peak blood EtOH levels 

between 15-100 mM [267].  In contrast, recombinant receptors containing α4 and δ subunits can 

be potentiated in vitro by EtOH concentrations as low as 1–3 mM [73, 159]. To achieve low 

millimolar EtOH concentrations in mice might require injection of no more than 0.25 g/kg EtOH.  

Unfortunately, no behavioral tests in mice have been developed where there is a measurable 

response to such a low dose of EtOH.  Therefore, understanding the role of α4 containing 

GABAA-Rs in EtOH action may be dependent on the development of new EtOH -induced 

behavioral paradigms in rodents that are sensitive to BEC in the low millimolar range.  

A third possible explanation is that α4 mediates the effects of EtOH on behaviors that 

were not assessed by our study.  The behavioral effects of EtOH reported here involved anxiety, 

locomotor activity, motor coordination, thermal pain sensitivity, and hypothermia.  It is possible 

that α4 may be involved in other effects of EtOH such as impairment of cognition (e.g., 

executive decision making, or learning and memory), habit formation, control of EtOH drinking 

behavior, development of tolerance or dependence, or seizure protection.  These behavioral 
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endpoints will be examined in future studies in the α4 KO mice as some of these EtOH effects 

were altered by knockout of the δ subunit [169]. Examination of the role of α4 in mediating 

alcohol tolerance and dependence will be particularly interesting as α4 expression is robustly 

increased following chronic exposure to EtOH [e.g., 60, 61, 182, 268].  Studies using α4 KO 

mice may therefore lead to an understanding of the cause and effect relationships between 

increased α4 expression and EtOH tolerance and dependence. 

We conclude that in contrast to an obligatory role of α4-containing GABAA-Rs in 

gaboxadol action [237], these receptors are not essential for the behavioral effects of acutely 

administered moderate/high dose EtOH that were tested in this study.  However, further study is 

required to completely understand the true contribution of α4 containing GABAA-Rs to the entire 

spectrum of EtOH -induced behaviors. 
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6.0   SUMMARY, CONCLUSIONS AND FUTURE DIRECTIONS 

 

GABAA-Rs containing the α4 subunit have attracted a great deal of attention because of 

its: 1) specific localization in the thalamus, dentate gyrus, cortex and striatum, 2) possible role in 

mediating tonic inhibition, 3) plasticity of expression in a number of pathophysiological and 

experimental conditions and 4) possible role in mediating the behavioral effects of several drugs 

including gaboxadol and ethanol.  The last of the four, the behavioral mechanism of action of 

gaboxadol and ethanol, was the main focus of this thesis.    

In order to study the physiological role of α4 containing GABAA-Rs, mice with targeted 

mutations in the α4 gene were created (Chapter 3).   Cre/lox, gene targeting and embryonic stem 

cell technologies were used to create both a global α4 knockout mouse strain as well as a floxed 

α4 strain for later use in conditional knockout models.  The global α4 KO mice created here were 

overtly normal and indistinguishable from their WT littermate mice.  To date, this is the only 

knockout strain of α4 that is available to the scientific community.  This knockout line already 

has, and will continue to be a valuable tool for investigators studying α4 containing GABAA-Rs. 

 From studying global α4 KO mice, it was found that 1) tonic inhibitory currents 

were reduced/eliminated in dentate gyrus and thalamus; 2) thalamic relay neurons of the 

ventrobasal complex were completely insensitive to 100-300 nM gaboxadol, a dose that in WT 

mice produced robust potentiation of tonic currents but no effect on synaptic currents; and 3) that 
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behavioral effects of gaboxadol were largely absent (Chapter 4).  These cellular and behavioral 

findings are mirrored in studies using δ KO mice [109, 238, 240, 247].  The combined results 

from these two mouse strains suggest that α4/δ GABAA-Rs mediate a tonic current that is highly 

sensitive to potentiation by gaboxadol, and that potentiation of this tonic current by gaboxadol is 

responsible for the behavioral effects of this drug.  Potentiation of GABAA-R tonic currents in 

various brain regions appear to be a mechanism of action that is shared with other sedative-

hypnotic drugs including the anesthetics isoflurane [115] and etomidate [176, 179]. 

Arguably, the most intriguing hypothesis about α4/δ GABAA-Rs is that they mediate the 

behavioral effects of ethanol.  Several studies have suggested that, like gaboxadol, ethanol may 

produce its behavioral effects through potentiation of tonic inhibition [162] (see section 1.6.4).   

This idea is derived, in large part, from in vitro studies showing that recombinant α4/δ GABAA-

Rs are potentiated by concentrations of EtOH that approximate those achieved by social drinking 

(<30 mM) [162] [73].    In contrast, GABAA-Rs that are found synaptically are also sensitive to 

EtOH, but at concentrations greater than 60 mM [e.g.,156, 158], a concentration that is perhaps 

not physiologically relevant.  It was therefore hypothesized that whichever behavioral responses 

to ethanol are mediated by α4-containing GABAA-Rs would be diminished in α4 KO mice.    As 

it turned out, α4 KO mice did not differ from WT littermates with respect to ethanol-induced 

changes in anxiety, locomotion, motor coordination, sedation, hypnosis, analgesia and 

thermoregulation (Chapter 5).   

The lack of any difference in α4 KO mice in ethanol-induced behaviors starkly contrasts 

with their near insensitivity to gaboxadol.  This dichotomy could lead to the conclusion that the 

ethanol-induced behaviors that were studied were not mediated by GABAA-Rs containing α4 

subunits.  On one hand, this may not be surprising.  After all, gaboxadol is a GABA-mimetic 
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drug that acts predominantly on extrasynaptic GABAA-Rs with no reported action outside the 

GABA system.  In contrast, ethanol is likely to have multiple protein targets outside of GABAA-

Rs [5].  Even though studies have found that extrasynaptic receptors are unique among GABAA-

Rs because they are potentiated by physiologically relevant concentrations of ethanol, it should 

be noted that other receptors outside the GABA system are also modulated by low doses of 

ethanol.  Kainite receptors [269], corticotropin-releasing factor type 1 receptors [270], BK [271] 

and GIRK [261, 272] potassium ion channels are also sensitive to physiologically relevant 

ethanol concentrations (< 40 mM).  Therefore, it might be possible that the selective loss of α4/δ 

mediated extrasynaptic inhibition did not disrupt the majority of important ethanol targets and 

therefore did not result in any changes in ethanol induced behaviors. 

 Despite the normal sensitivity to ethanol in α4 KO mice, it cannot be concluded 

that GABAA-R α4 subtypes are not important for the behavioral effects of ethanol (see section 

5.4).  This is primarily due to molecular compensation that was observed in α4 KO mice.   In 

physiological recordings from dentate granule cells, Liang et al. [225] found, as expected, that 

neurons from the α4 KO animals showed less overall tonic GABAA-R mediated current and no 

significant potentiation of this current at concentrations of ethanol that reliably enhanced currents 

in WT mice.  Unexpectedly, however, ethanol enhanced synaptic GABAA-Rs function in α4 KO 

mice by ethanol concentrations that had no effect on neurons from WT mice.  These increases in 

the synaptic sensitivity may be caused by a marked increase in expression of the γ2 subunit in 

both thalamus and hippocampus of α4 KO mice [225].  The synaptic supersensitivy to ethanol in 

α4 KO mice could have masked any changes in behavior that might have resulted from the lack 

of ethanol potentiation of tonic currents.  Therefore, the only conclusion that can be drawn is that 

the GABAA-R α4 subunit is not essential for the ethanol-induced behavioral endpoints that were 
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measured. 

This compensatory change in α4 KO mice underscores a general limitation of global 

knockout mice in studying complex biological functions.  Several other mouse strains lacking a 

particular GABAA-R subunit have numerous compensatory changes in other GABAA-R subunits 

[186-190], in organization of GABAergic circuits [264] and in proteins outside the GABAA-R 

system [122].  Therefore, the compensatory effects resulting from a knockout of α4 needs to be 

better understood in order to make valid conclusions. Thus far, in addition to the upregulation in 

γ2 [225], there is an increase in α1 and α2 and a decrease in δ in the thalamus of α4 KO mice 

[226].   Other studies measuring changes in expression of other GABAA-R subunits are 

underway.  Additionally, gene array studies could be employed to quickly identify a multitude of 

genes that may be down or upregulated in α4 KO mice. 

The possibility of compensatory effects following global knockout of α4 had been 

anticipated prior to commencing these studies.  For this reason, Cre/lox technology was 

employed to create both a global knockout allele and also a “floxed” allele for conditional 

knockout studies.  Theoretically, one way to reduce compensatory effects is to utilize an 

inducible knockout instead of a global knockout.   Here, we studied ethanol-induced behaviors in 

α4 KO mice when they were at least eight weeks of age.   Therefore, KO mice would have had 

plenty of time during its pre-natal, post-natal, youth, adolescence and early adulthood for their 

brains to compensate for the loss of extrasynaptic inhibition caused by the deletion of α4.   In 

contrast, if floxed α4 mice were bred to an inducible Cre-recombinase expressing transgenic 

strain, knockout of α4 could be induced just a few days prior to behavioral testing.  Induced α4 

KO mice would have less time to compensate and perhaps the true contribution of α4 subunits in 

ethanol-induced behaviors could be assessed. 
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Another way to circumvent many the confounding compensatory changes in GABAA-R 

α4 subunit knockout mice could be to create mice with a point mutation (knockin) in the α4 gene 

that makes them less (or more) sensitive to ethanol.  The ideal knockin mouse would express α4 

normally and α4 containing GABAA-Rs would function normally in the absence of ethanol.  

Recently mice were created that had mutations in the transmemembrane region of the GABAA-R 

α1 subunit that made them insensitive to ethanol with normal sensitivity to GABA [273].  

Selective alterations in behavioral responses to ethanol were observed in this mouse strain [274].  

Knockin of GABAA-R subunits also have been successfully employed to study molecular 

mechanisms of anesthetics [275, 276] and benzodiazepines [134, 135, 277].  Studying α4 and 

ethanol using the knockin strategy is, of course, predicated on the identification of point 

mutations in α4 that produce either supersensitivity or insensitivty to ethanol.  As yet, such a 

mutation in the α4 subunit has not been reported.  However, a naturally occuring R100Q 

mutation in the closely related α6 subunit makes these GABAA-Rs more sensitive to ethanol 

[162]. It could be possible that an analogous mutation in α4 may also result in receptors that are 

supersensitive to ethanol.  Another possibility may be to mutate a transmembrane residue in α4 

similar to that created in α1 that resulted in ethanol insensitive GABAA-Rs [273].  Considerable 

effort (and some luck) is required to identify a specific residue in a GABAA-R subunit that can 

substantially alter ethanol sensitivity without affecting overall function.  However, the 

investement in time may be worthwhile; an α4 knockin mouse would likely have little (or no) 

compensation and therefore would be a more effective model in studying the role of α4 in the 

behavioral effects of ethanol. 

Physiologic processes such as ethanol-induced behaviors may involve multiple gene 

products and therefore, knockout studies must take into account possible genetic background 
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variation.  Several studies have found that different inbred mouse strains vary considerably in 

their responses to ethanol [262, 278].  The genetic background of α4 KO and their WT littermate 

controls was a random mixture of C57BL/6J and Strain 129 S1/X1.    Therefore, with respect to 

ethanol sensitivity, there may be animal to animal variability that is independent of the α4 allele.  

This variability could have masked small differences in ethanol sensitivity between WT and KO.  

Ideally, α4 KO mice should have been backcrossed for at least 10 generations in order to 

determine the unique contribution of the α4 gene.  Another confounding factor between WT and 

α4 KO mice is differences in the genes linked to the α4 locus.  In KO (or f/f, See Fig. 5A) mice, 

the genes surrounding the α4 locus are Strain 129 derived whereas in WT (+/+) mice, they are 

C57BL/6J derived.  Potential allelic differences in genes around the α4 locus may confound our 

observations. In this sense, control mice in α4 KO studies should have included both the 

homozygous floxed mice (F/F) in addition to WT mice (+/+) in order to control for the effects of 

linked genes.  It is important to note, however, that while it would have been ideal to control for 

genetic background and linked gene effects in the studies presented in this dissertation, it would 

have required far more time and effort to do so.       

At the outset of these experiments, a pharmacological approach for examining the 

significance of extrasynaptic GABAA-Rs in ethanol action was not possible because specific 

inhibitors were not available.  The studies presented here clearly demonstrate that the direct 

GABA agonists, gaboxadol and muscimol, preferentially activate extrasynaptic GABAA-Rs 

partly because extrasynaptic GABAA-Rs have a higher affinity for GABA.  It is plausible that 

competitive GABAA-R antagonists such as bicuculline or SR95531 may block extrasynaptic 

receptors at low doses but block all GABAA-Rs at higher doses.  In fact, SR95531 (20 µM) 

induced a depolarization in α4 WT but not in α4 KO thalamic relay neurons.  Hypothetically, if 
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20 µM SR95531 were to have no effect on synaptic currents, then it could be used as a selective 

extrasynaptic GABAA-R inhibitor.  In this scenario, low concentrations of SR95531 could be 

coadministered with ethanol to understand the contribution of extrasynaptic receptors to ethanol 

induced behaviors. 

In conclusion, the experiments presented here have unambiguously demonstrated the 

obligatory role of extrasynaptic GABAA-Rs in the mechanism of action of gaboxadol.  However, 

studies far beyond the scope of this dissertation are required to understand the true contributions 

of extrasynaptic GABAA-Rs in ethanol induced behaviors.  Defining the molecular targets that 

mediate the behavioral effects of ethanol has proven difficult and it might be unrealistic to think 

that one single target/receptor is highly important.   However, if an “ethanol receptor” were ever 

identified, it would be an enormous discovery with broad clinical applications.  Synthetic 

agonists of the “ethanol receptor” could mimic the positive effects of ethanol such as anxiolysis 

and cardioprotection.  Such agonists could be used to treat alcohol withdrawal in a manner 

similar to which methadone treats symptoms of heroin withdrawal.  Antagonists of an “ethanol 

receptor” could be used to reverse not only the motor and judgement impairing effects that lead 

to accidents, but also other systemic effects of alcohol poisoning that lead to coma and death.  

An antagonist could also be used to aid in the treatment of alcohol tolerance and dependence.  

For these reason, defining the molecular targets that mediate ethanol action is, and will continue 

to be, an extremely important undertaking.  
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APPENDIX A 

SOUTHERN BLOT PROBE INFORMATION 

5’ (see Fig. 2)- probe is external to targeting construct of a4 CKO and a4R100Q Knockin 

construct.  This probe was used for stem cell screening.  See  a4B-254 for instructions on how to 

make.  Briefly, digest pa4Intron2 plasmid with KpnI and EcoR1.  Probe is 747 bp. 

 

3’ (Fig. 2) aka  Exon 7 is external to targeting construct of a4 CKO and a4R100Q 

knockin construct-used for stem cell screening.  See a4B-88 for instructions on how to make.  

Briefly, need to double digest pa4-78 with NheI and ClaI.  Probe is  ~500 bp 

 

 

 

E (Fig. 5) probe is known as a4KO probe.  This probe genotypes a4KO mice.  This 

probe was created by amplifying a4cDNA plasmid (a4-17)  with two primers detailed on page 

a4B-231. Probe is ~220 bp 
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APPENDIX B 

GABA(A) -R α4 PROTEIN IS ABSENT IN KO MICE 
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APPENDIX C 

LOSS OF TONIC INHIBITION IN GABRA4 KO MICE 
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APPENDIX D 

CELLULAR INSENSITIVITY OF GABRA4 KO MICE TO GABOXADOL 
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