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ALTERED MARKERS OF TONIC INHIBITION IN THE DORSOLATERAL  
 

PREFRONTAL CORTEX OF SUBJECTS WITH SCHIZOPHRENIA 
 

Jaime Gerardo Maldonado-Avilés, PhD 
University of Pittsburgh, 2008

 

Alterations in the inhibitory circuitry of the dorsolateral prefrontal cortex (DLPFC) appear to 

contribute to the impairments in working memory observed in individuals with schizophrenia.  

Consistent with this idea, a microarray study indicated that the mRNA levels of GABAA receptor 

α4 and δ subunits were lower in the DLPFC of subjects with schizophrenia.  However, although 

α4 and δ subunits co-assemble to form functional receptors, the differences in α4 and δ mRNA 

expression in schizophrenia were not correlated. We assessed the mRNA levels of α4 and δ in 

the DLPFC of 23 subjects with schizophrenia matched to control subjects by in situ 

hybridization. The level of α4 mRNA was lower only in subjects with schizophrenia receiving 

medications at the time of death, whereas the level of δ mRNA was significantly lower in 

schizophrenia, regardless of the medications used at the time of death.  We also found that across 

postnatal development of monkey DLPFC the level of α4 mRNA decreased with age, whereas 

that of δ mRNA increased in a manner similar to that previously observed for the α1 subunit. 

Given that α1 mRNA levels are lower in schizophrenia and α1 subunits can co-assemble with δ 

subunits, lower δ mRNA in schizophrenia could represent lower GABAA α1βxδ rather than 

α4βxδ receptors.  

Studies suggest that reduced signaling through excitatory synapses, as hypothesized to be 

present in schizophrenia, give rise to decreased expression of δ subunit mRNA.  To test this 

hypothesis, we measured the levels of δ subunit mRNA in the prefrontal cortex of four rodent 
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models of reduced cortical excitatory drive: 1) NMDAR NR1 hypomorphic mice, 2) rats with 

adult mediodorsal thalamic nuclei lesions, 3) rats with neonatal ventral hippocampal lesions and 

4) TrkB hypomorphic mice reported to have decreased dendritic arborization. However, the 

mRNA levels of δ subunit were unchanged in the PFC of any of the animal models analyzed.  

Thus, although reduced signaling through excitatory synapses might be a pathogenetic 

mechanism for other abnormalities in schizophrenia, the convergence of the findings from this 

study do not support the hypothesis that it accounts for the lower expression of GABAA receptor 

δ subunit mRNA.   
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1.0  GENERAL INTRODUCTION 

Schizophrenia is a substantial public health problem with great personal and economic costs 

worldwide.  It is estimated that schizophrenia affects just under 1% of the world’s population, 

affecting individuals in all societies and geographical areas (Bromet and Fennig, 1999). 

Characterized by a variety of symptoms, schizophrenia affects many domains of mental function, 

such as language, emotion, reasoning and perception.  In males, schizophrenia most frequently 

develops in the late second to third decade of life, between ages 17 to 27; whereas, in females 

typical onset occurs over five years later (Carpenter, Jr. and Buchanan, 1994). Schizophrenia 

produces a lifetime of disability and emotional distress for affected individuals as well as family 

members. Furthermore, the illness causes significant long-lasting impairments, requiring ongoing 

clinical care.  In 2002, the overall monetary cost associated with schizophrenia in the US was 

estimated at $62.7 billion (Wu et al., 2005). 

1.1 CLINICAL SYNDROME: COGNITIVE DEFICITS AS A CORE FEATURE 

The diagnosis of schizophrenia is based on identification of the clinical syndrome 

(American Psychiatric Association, 1994), which includes symptoms that are usually classified 

into three groups: positive symptoms, negative symptoms and cognitive deficits.  Positive 

symptoms, which represent the presence of behavioral deficits, include hallucinations, delusions 
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and thought disorder (Flaum and Schultz, 1996).  Negative symptoms reflect the absence of 

normal behaviors and include flat affect, among others (Flaum and Schultz, 1996).  Cognitive 

deficits include impairments in attention, memory and executive function, such as the ability to 

initiate or persist in goal-directed behaviors (Elvevag and Goldberg, 2000). 

Symptoms recognized collectively as “cognitive deficits” are among the most prominent 

and debilitating characteristics of the disease.   In particular, subjects with schizophrenia show 

deficits in tasks that involve working memory, a system involved in cognitive operations that 

uses short-term storage of information in order to guide behavior (Baddeley, 1992).  While other 

symptoms, such as psychosis, are usually the most striking clinical features of schizophrenia, 

several lines of evidence suggest that cognitive deficits represent the core feature of the illness.  

Cognitive deficits are present throughout the course of the illness (Davidson et al., 1999; Saykin 

et al., 1994; Breier et al., 1991; Heaton et al., 1994) and are often observed in a milder form in 

unaffected relatives (Sitskoorn et al., 2004).  Furthermore, cognitive deficits have been found to 

have a greater impact on daily activities than psychotic symptoms (Green, 1996).  In addition, 

deficits in cognition are thought to be the best predictors of long-term outcomes (Green, 1996; 

Harvey et al., 1998).  Given that current antipsychotic medications have limited benefits for 

cognitive deficits (Medalia et al., 1988; Gold and Hurt, 1990; Goldberg et al., 1993), a deeper 

understanding of the disease process underlying these deficits is critical to developing more 

effective treatments. 
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1.2 DORSOLATERAL PREFRONTAL CORTEX: DEFICITS IN INHIBITORY 

CIRCUITRY 

At least some of the cognitive deficits associated with schizophrenia appear to be linked to 

dysfunction of the dorsolateral prefrontal cortex (DLPFC), on which certain cognitive processes 

such as working memory depend (Carter et al., 1999; Botvinick et al., 2001; Cohen et al., 2002). 

For instance, subjects with schizophrenia often perform poorly on tasks involving working 

memory, and exhibit reduced DLPFC activation as reflected by lower blood flow, during those 

tasks (Weinberger et al., 1986; Perlstein et al., 2001).  These deficits do not seem to be a 

consequence of chronic exposure to antipsychotic medication, as both medicated and 

unmedicated subjects with schizophrenia show altered activation of the DLPFC when 

performing a working memory task (Daban et al., 2005).   

The abnormal activation of the DLPFC might be due in part to deficits in GABA 

neurotransmission.  Working memory depends on the synchronized firing of pyramidal cells in 

the DLPFC between the temporary presentation of a stimulus cue and the later initiation of a 

behavioral response (Goldman-Rakic, 1995; Lewis et al., 2005).  The activity of GABA-

containing interneurons appears to play a central role in the synchronization of pyramidal cells 

during working memory (Lewis et al., 2005).  For instance, interneurons, such as fast-spiking 

neurons, are active during the delay period of working memory tasks (Wilson et al., 1994) and 

are necessary for task-related neuronal firing and for the spatial tuning of neuronal responses 

during working memory (Rao et al., 2000; Lewis et al., 2005). Furthermore, injection of the 

GABA antagonist bicuculline into the DLPFC of monkeys disrupts the performance of a 

working memory task (Sawaguchi et al., 1989).  Human postmortem studies are consistent with 

the idea that altered activity of GABA-containing cells contributes to deficits in the circuitry of 
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the DLPFC.  In particular, the mRNA for the 67 kDa isoform of glutamate decarboxylase 

(GAD67), the principal enzyme responsible for the synthesis of GABA, is significantly reduced 

in the DLPFC of subjects with schizophrenia (Akbarian et al., 1995; Volk et al., 2000; Guidotti 

et al., 2000; Straub et al., 2007; Hashimoto et al., 2008a; Hashimoto et al., 2005).   

1.3 DECREASED GAD67 MRNA: CAUSE OR COMPENSATION? 

In addition to the lower expression of GAD67, the mRNA levels of the GABA membrane 

transporter 1 (GAT-1) are significantly reduced in the DLPFC of subjects with schizophrenia 

(Volk et al., 2001).  These deficits seem to represent the disease process, as no change in the 

mRNA levels of GAD67 or GAT-1 were observed in the DLPFC of monkeys chronically exposed 

to antipsychotic medications (Volk et al., 2000; Volk et al., 2001).  Instead, these findings 

suggest that synthesis and re-uptake of GABA are significantly lower in subjects with 

schizophrenia.  However, determining how a reduction in both the synthesis and re-uptake of 

GABA contributes to the altered circuitry of the DLPFC, and therefore cognitive deficits, 

depends in part on the potential cause-and-effect relationship between changes in GAD67 and 

GAT-1.  For instance, the reduction in GAD67 mRNA could represent a primary insult, resulting 

in reduced presynaptic release of GABA.  As a secondary compensatory response to the 

decreased extracellular levels of GABA, the expression of GAT-1 is decreased, reducing the re-

uptake machinery in the nerve terminal.  Alternatively, the more primary deficit may be a 

reduction in GABA uptake, represented by lower GAT-1 mRNA levels, resulting in higher 

extracellular levels of GABA (Pierri et al., 1999).  The resulting excessive inhibition could give 
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rise to a compensatory reduction in the synthesis of GABA, reflected in the lower levels of 

GAD67 mRNA. 

The potential relationship between altered expression of GAD67 and GAT-1 has been 

illustrated, in part, by the study of a subset of interneurons known as chandelier cells.  

Chandelier cells are among the subset of interneurons that express the calcium binding protein 

parvalbumin (PV) (Howard et al., 2005).  These cells provide a linear array of axon terminals 

(named cartridges) that synapse along the axon initial segment of pyramidal cells (Freund et al., 

1983; Lewis and Lund, 1990; Somogyi, 1977).  Postmortem studies have shown that the mRNA 

expression levels of PV are significantly reduced in subjects with schizophrenia (Hashimoto et 

al., 2003). In addition, simultaneous detection of PV and GAD67 mRNAs revealed that in 

subjects with schizophrenia, 45% of PV mRNA-positive neurons did not have detectable levels 

of GAD67 mRNA (Hashimoto et al., 2003).  Thus, the synthesis of GABA in chandelier cells 

might be lower in the DLFPC of subjects with schizophrenia.  Furthermore, analysis of the 

density of the chandelier cell cartridges by immunereactivity for GAT-1 revealed that, consistent 

with the mRNA data, the density of GAT-1 labeled terminals was significantly reduced in 

schizophrenia.  Therefore, the levels of GABA reuptake also appear to be reduced in the 

presynaptic terminals of chandelier cells.  Interestingly, the majority of the postsynaptic GABAA 

receptors located in the axon initial segment of pyramidal neurons contain the α2 subunit (Loup 

et al., 1998; Nusser et al., 1996; Nyíri et al., 2001).  Postmortem studies have found that the 

density of α2 immunoreactive axon initial segments of pyramidal cells is significantly increased 

in the DLPFC of subjects with schizophrenia (Volk et al., 2002).   

These findings suggest a model of the altered inhibitory signaling of chandelier cells in 

which the reduction in GAD67 represents a primary insult, resulting in lower synthesis of GABA 
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and decreasing synaptic input at the axon initial segment of pyramidal cells.  As a consequence, 

two compensatory changes take place: a down-regulation of presynaptic GABA re-uptake (lower 

GAT-1 mRNA) and an upregulation of postsynaptic GABAA receptors (increased density of α2-

immunolabeled axon initial segments) (Volk et al., 2002).   

If the deficits in inhibitory control provided by chandelier cells represent a general 

abnormality of GABA neurotransmission present in other inhibitory synapses in the DLPFC of 

subjects with schizophrenia, it could be hypothesized that the expression of postsynaptic GABAA 

receptors is up-regulated in response to a reduction in presynaptic inhibitory inputs.  Consistent 

with this hypothesis, recent studies suggest that the expression of GAD67 is also reduced in other 

subsets of interneurons, including those expressing the neuropeptide cholecystokinin (Hashimoto 

et al., 2008a), which primarily innervate the soma and proximal dendrites of pyramidal cells 

(Kawaguchi and Kondo, 2002), and those that express the neuropeptide somatostatin (Morris et 

al., 2008; Hashimoto et al., 2008a), which provide inhibitory inputs into dendrites of pyramidal 

cells (Kawaguchi and Kondo, 2002). In addition, consistent with the upregulation of α2 subunits, 

previous radiolabeled ligand binding studies of prefrontal GABAA receptors have reported 

increased muscimol binding (Benes et al., 1996; Dean et al., 1999; Hanada et al., 1987).  

Together, these findings suggest a working model for the disease process of schizophrenia that 

implicates a decrease in the synthesis and release of GABA and a compensatory upregulation of 

postsynaptic GABAA receptors. 
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1.4 ALTERED EXPRESSION OF δ-CONTAINING GABAA RECEPTORS 

GABAA receptors are members of a family of ligand-gated chloride-selective ion channels 

formed by five subunits (Tretter et al., 1997), each consisting of an N-terminal extracellular 

domain, four transmembrane (TM) domains, and a large intracellular loop between TM3 and 

TM4 (Schofield et al., 1987).  GABAA receptors are assembled by combinations of different 

subunits, α1-6, β1-4, γ1-3, δ, ε, μ, θ, and ρ1-3 (Farrant and Nusser, 2005).  However, most 

receptors are composed of 2 α, 2 β and 1 γ or 1 δ subunits (Chang et al., 1996; Farrar et al., 

1999).  Depending on the subunit composition, these receptors exhibit distinct pharmacological 

and electrophysiological properties.  For example, in receptors that contain α, β and γ subunits, 

receptors containing α1 subunit have faster deactivation kinetics than those containing α2 

subunits (Farrant and Nusser, 2005).   

The physiological actions of GABA can be mediated in two forms of inhibition, termed 

phasic and tonic inhibition.  Phasic inhibition is defined by the fast and synchronous opening of 

GABAA receptors clustered at the postsynaptic membrane, that result from the fusion of synaptic 

vesicles from the presynaptic membrane at the release site (Mody and Pearce, 2004; Farrant and 

Nusser, 2005).  This form of inhibition is mediated predominantly by synaptic γ2-containing 

GABAA receptors, as this subunit has been shown to be necessary for clustering of the receptors 

(Essrich et al., 1998).  

In contrast, tonic inhibition is characterized by the unsynchronized activation of receptors 

that are located at peri- or extrasynaptic sites (Nusser et al., 1998; Wei et al., 2003).  This form of 

inhibition is primarily mediated by GABAA receptors that contain δ subunits (Nusser et al., 

1998; Farrant and Nusser, 2005); although α5-containing GABAA receptors, thought to co-
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assemble with γ subunits, also mediate tonic inhibition (Zhang et al., 2007; Herd et al., 2007). 

Tonic inhibition affects the magnitude and duration of the voltage response by increasing the 

cell’s input conductance.  As a consequence, the size and duration of an excitatory postsynaptic 

potential are reduced, making it less likely that an action potential will be generated (Mody and 

Pearce, 2004; Farrant and Nusser, 2005).  For instance, applications of the neuroactive steroid 

3α,21-dihydroxy-5a-pregnan-20-one (THDOC), which preferentially potentiate δ-containing 

receptors (Brown et al., 2002; Wohlfarth et al., 2002), gradually decreased evoked excitatory 

field potentials recorded from dentate gyrus cells (Stell et al., 2003).  In contrast to the 

increased density of α2 subunits in the DLPFC of subjects with schizophrenia, we recently found 

by microarray that the expression levels of the δ GABAA subunit is significantly reduced by 25% 

in the DLPFC of 14 pairs of schizophrenia and control subjects (Hashimoto et al., 2008a), 

consistent with a previous study (Vawter et al., 2002).    These findings suggest that some 

GABAA receptors, like those containing δ subunit, are not up-regulated, but rather decreased in 

the DLPFC of subjects with schizophrenia.  

Except in the cerebellum (Jechlinger et al., 1998), GABAA receptors containing δ 

subunits are thought to preferentially co-assemble with α4 subunits in vivo, as the protein and 

mRNA expression patterns for both subunits are similar across the rodent thalamic, hippocampal, 

and cortical regions (Wisden et al., 1992; Pirker et al., 2001; Sur et al., 1999; Sperk et al., 1997).  

Thus, a reduction in δ mRNA in subjects with schizophrenia would be expected to be paralleled 

by lower mRNA levels of the α4 subunit.  Consistent with this idea, mRNA levels of α4 were 

also found by microarray analysis to be significantly lower in the DLPFC of subjects with 

schizophrenia (Hashimoto et al., 2008a). However, although the mRNA levels of both δ and α4 

subunits were lower, the change in α4 subunit did not correlate with that of δ (r = 0.35, p = 0.22)   

 8 



(Hashimoto et al., 2008a).  Thus, it is not clear whether lower expression of both δ and α4 

subunits represent a reduction in α4βxδ GABAA receptors.   

1.5 REDUCED ACTIVITY OF EXCITATORY SYNAPSES AS POTENTIAL 

PATHOGENETIC MECHANISMS 

While the pathogenetic mechanisms that give rise to dysfunction of the inhibitory circuitry of the 

DLPFC in subjects with schizophrenia are not clearly understood, some studies suggest that a 

reduction in the signaling through excitatory synapses could give rise to lower expression levels 

of GABA-related markers in schizophrenia.  For instance, low doses of ketamine, a non-

competitive antagonist at N-methyl-D-aspartate receptors (NMDARs), resulted in significantly 

lower levels of both GAD67 and PV immunoreactivity in cultured cortical interneurons (Kinney 

et al., 2006).  Furthermore, in vivo administration of the NMDAR antagonist phencyclidine 

(PCP) resulted in significantly lower levels of PV mRNA in the prefrontal cortex (PFC) of rats 

(Cochran et al., 2003).    

Interestingly, studies show that changes in signaling through excitatory synapses appear 

to regulate the expression levels of δ subunit.  For instance, the mRNA levels of δ subunit in 

cultured cerebellar granule cells increased significantly when grown in depolarizing medium, 

and decreased when the neurons were switched into a non-depolarizing medium (Gault and 

Siegel, 1997).  Similarly, addition of NMDA to cultured cerebellar granule neurons initiated the 

transcript expression of δ subunit (Gault and Siegel, 1998), an effect that was abolished after 

addition of MK-801, a non-competitive NMDAR antagonist.  Consistent with these in vitro 
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studies, the expression levels of δ subunit decreased in the rat forebrain after a week of MK-801 

infusions (Kim et al., 2000).  These findings are of interest as convergent lines of evidence 

suggest that reduced signaling through excitatory synapses represents a pathogenetic mechanism 

underlying some features of the clinical syndrome of schizophrenia (Coyle et al., 2003; 

Moghaddam, 2003).  Together, these findings suggest that decreased activity of excitatory 

syapses might represent a pathogenetic mechanism giving rise to lower levels of δ-containing 

receptors.   However, no experimental evidence exists to provide proof-of-concept support that a 

chronic reduction in excitatory levels, which is more likely to mimic the deficit in schizophrenia, 

results in decreased expression of δ-containing receptors, potentially α4βxδ receptors.   

1.5.1 NMDAR hypofunction 

Convergent lines of evidence suggest that chronic reduction in the signaling through excitatory 

synapses in subjects with schizophrenia could be a consequence of hypoactivity of NMDARs.  

For instance, normal volunteers receiving subanesthetic doses of ketamine exhibited negative 

symptoms and some cognitive impairments similar to those observed in subjects with 

schizophrenia (Krystal et al., 1994; Malhotra et al., 1996).  Furthermore, subjects with 

schizophrenia administered NMDAR antagonists such as PCP or ketamine exhibited exacerbated 

positive and negative symptoms (Coyle, 2004).   

NMDA receptors are tetramer proteins formed by two subunits, NR1 (required for 

functional receptors) and NR2A-2D (Dingledine et al., 1999).  These receptors are voltage-

dependent blocked by Mg  at resting membrane potentials and require binding of both 

glutamate and glycine/D-serine in order to open the channel (Dingledine et al., 1999).  It has 

been proposed that hypoactivation of NMDARs in schizophrenia might arise from abnormal 

2+
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activity of a number of genes (and their cognate proteins) known to regulate the activity of 

NMDARs (Kristiansen et al., 2007).  For instance, genetic studies have shown an association of 

G72 with the risk of schizophrenia (Coyle, 2007).  G72 encodes the protein D-Amino acid 

oxidase (DAAO), which catabolizes D-serine (Chumakov et al., 2002).  Thus, reduced levels of 

D-serine, as a consequence of a G72-induced increased activity of DAAO, would lead to 

hypofunction of NMDARs in schizophrenia (Stevens et al., 2003).  Another gene that might 

contribute to altered modulation of NMDARs is glutamate carboxy peptidase (GCP II).  GCP II 

degrades N-acetylaspartylglutamate (NAAG), hypothesized to be an antagonist of NMDARs 

(Coyle, 2004).  Postmortem studies have reported decreased activity and expression levels of 

GCP II in subjects with schizophrenia (Tsai et al., 1995; Hakak et al., 2001).  The decreased 

activity of GCP II would result in higher levels of NAAG, thereby inducing hypoactivation of 

NMDARs.    This evidence suggests that altered modulation of NMDARs contributes to reduced 

excitatory activity of DLPFC circuits, potentially resulting in lower levels of δ-containing 

receptors. 

1.5.2 Reduced excitatory synaptic terminals 

In addition to hypofunction of NMDARs, reduced chronic signaling through excitatory synapses 

might also be a consequence of reduced excitatory synaptic terminals in the DLPFC.  For 

instance, the protein levels of synaptophysin, a marker of axon terminals, are reportedly 

significantly reduced in the DLPFC of subjects with schizophrenia (Glantz and Lewis, 1997; 

Karson et al., 1999; Perrone-Bizzozero et al., 1996).  Studies suggest that reduced excitatory 

projections from the mediodorsal nucleus of the thalamus (MDTN), which are the main source of 

thalamic input to the DLPFC (Giguere and Goldman-Rakic, 1988), might represent a source of 
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reduced inputs.  Consistent with this idea, several imaging studies have reported reduced volume 

of the thalamus, as well as its decreased activity in subjects with schizophrenia (Manoach et al., 

1999).  Furthermore, thalamic volumes were directly correlated with the volumes of prefrontal 

white matter in subjects with schizophrenia (Portas et al., 1998).  These findings suggest that a 

reduction in the volume of the thalamus is associated with fewer axonal projections to the 

prefrontal cortex.  In addition, lower MDTN axonal projections appear to originate from a loss of 

MDTN neurons, as several studies reported a reduction in the total number of neurons in this 

nucleus in schizophrenia (Broadbelt et al., 2002; Pakkenberg, 1990; Popken et al., 2000; Young 

et al., 2000), although more recent studies have failed to replicate these findings (Cullen et al., 

2003; Dorph-Petersen et al., 2004; Kreczmanski et al., 2007; Young et al., 2004).  

Given that MDTN axons innervate DLPFC neurons located in deep layers 3 and 4 

(Erickson and Lewis, 2004), neurons located in these layers might particularly reflect a reduction 

in excitatory inputs.  Consistent with this interpretation, DLPFC deep layer 3 pyramidal cells 

show a significant reduction in spine density (Glantz and Lewis, 2000; Garey et al., 1998; Kalus 

et al., 2000) (although the decrease in dendritic spine density cannot be completely accounted for 

by a reduction in MDTN inputs, see section 1.5.3 Reduced Postsynaptic Targets of Excitatory 

Inputs). These findings suggest that decreased excitatory synaptic inputs into the DLPFC might 

also represent a source of reduced signaling through excitatory synapses in subjects with 

schizophrenia.  

Clinical evidence suggests that function of the hippocampal formation is altered in 

subjects with schizophrenia (Weinberger and Lipska, 1995).  For instance, rats with neonatal 

lesions of the ventral hippocampus, which project to the PFC (Jay et al., 1989; Carr and Sesack, 

1996), exhibit a post-pubertal appearance of a number of alterations, such as impairments in 
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working memory, hyperlocomotion, stress, and reduced social contacts, similar to those observed 

in schizophrenia (Lipska and Weinberger, 2000; Lipska et al., 2003).  Thus, reduced excitatory 

synaptic terminals from the hippocampus might also contribute to reduced excitatory synaptic 

terminals in the DLPFC.  Together, these findings suggest that lower excitatory inputs from the 

MDTN or hippocampus might result in lower expression of δ-containing receptors. 

1.5.3 Reduced postsynaptic targets of excitatory inputs 

Some, but not all, imaging studies have reported reductions in DLPFC gray matter 

volume in subjects with schizophrenia (McCarley et al., 1999).  Consistent with these data, 

postmortem studies have reported decreased cortical thickness and volume and increased cell-

packing density in the DLPFC of individuals with schizophrenia (Pakkenberg, 1993; Rajkowska 

et al., 1998; Selemon et al., 1995; Selemon et al., 1998; Selemon et al., 2002). In addition, the 

mean somal volume of Nissl-stained pyramidal cells in layer 3 of the DLPFC, which correlates 

with the size of the neuron’s dendritic arbor (Jacobs et al., 1997), is reportedly significantly 

reduced (Pierri et al., 2001; Rajkowska et al., 1998).  These findings have been interpreted as a 

reduction in the neocortical neuropil (Selemon and Goldman-Rakic, 1999).  Indeed, multiple 

studies have shown reduced pyramidal cell spine density and dendritic arborization in the 

DLPFC of subjects with schizophrenia (Glantz and Lewis, 2000; Garey et al., 1998; Kalus et al., 

2000; Black et al., 2004).   

The reduction in excitatory postsynaptic targets, such as spine density, in DLPFC 

pyramidal cells in schizophrenia appear to be due, in part, to an intrinsic abnormality in these 

neurons that render them unable to support the normal complement of excitatory inputs (Lewis 

and Gonzalez-Burgos, 2007).  While reduced presynaptic inputs from the MDTN might 
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contribute to a reduction in the spine density of DLPFC layer 3 pyramidal cells, thalamocortical 

terminals only appear to comprise a small proportion of the total excitatory inputs to cortical 

neurons in animals (Guillery and Sherman, 2002).  Thus, if a similar proportion of 

thalamocortical inputs innervate the human DLPFC, a reduction in MDTN inputs would not be 

sufficient to account for the magnitude of the reduction in deep layer 3 spine density (Lewis and 

Gonzalez-Burgos, 2007).  Furthermore, even though NMDARs have been shown to play a 

significant role across development in processes such as cell migration, cell death, survival and 

formation of neural circuits (Contestabile, 2000), chronic blockade of NMDARs during postnatal 

development did not change the density of pyramidal cells visualized by Golgi in the rat 

prefrontal cortex (Wedzony et al., 2005).  Furthermore, rats chronically exposed to PCP, a 

commonly used animal model of NMDAR hypoactivation (Morris et al., 2005), actually showed 

increases in the spine density of prefrontal pyramidal cells (Flores et al., 2007).  Thus, 

hypoactivation of NMDARs might not account for a reduction in postsynaptic targets (but see 

Akerman and Cline (2007)).    

In contrast, one potential intrinsic mechanism contributing to a loss of spines in DLPFC 

pyramidal cells might be reduced signaling through the tyrosine kinase B (TrkB) receptor, which 

mediates the actions of the secreted neurotrophin brain-derived neurotrophic factor (BDNF).  

BDNF-TrkB signaling has been shown to enhance somatodendritic development (Horch and 

Katz, 2002; McAllister et al., 1995; Xu et al., 2000b).  For instance, pyramidal cells of forebrain-

restricted BDNF mutant mice exhibited a significant reduction in cortical thickness and somal 

size, and dendritic arbor complexity (Gorski et al., 2003).  It should be noted, that mice 

genetically engineered to express low levels of BDNF do not exhibit a reduction in the 

morphology of basilar dendrites from prefrontal pyramidal cells (Hill et al., 2005).  However, the 
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lack of an effect could be due to compensatory mechanisms, given that, at least in mice in which 

the reduction of BDNF was induced prenatally, the levels of TrkB receptor are up-regulated by 

20% (Hashimoto et al., 2005).   

In contrast, a reduction of TrkB receptors in populations of neocortical pyramidal cells 

results in a number of morphological abnormalities in neuropil such as thinner dendrites and 

fewer and/or shorter dendritic branches (Xu et al., 2000b).  Consistent with these findings, mice 

genetically engineered to express low levels of TrkB receptors (trk hypomorphic mice, (Xu et al., 

2000a)) exhibit significant reductions in the number of dendritic branches of retinal ganglionic 

cells (Liu et al., 2007). These findings suggest that lower signaling through TrkB receptors 

contributes to the reduction in postsynaptic targets of excitatory inputs in subjects with 

schizophrenia.  

Thus, in addition to hypoactivation of NMDARs and reduced excitatory synaptic 

terminals, a reduction in postsynaptic excitatory targets of pyramidal cells in the DLPFC might 

represent another source contributing to a chronic reduction in the signaling through excitatory 

synapses in schizophrenia that could underlie lower expression of δ-containing GABAA 

receptors.   

1.6 GOALS OF THE DISSERTATION RESEARCH 

The evidence outlined in the preceding sections suggests that the expression levels of δ and α4 

GABAA subunits are significantly reduced in the DLPFC of subjects with schizophrenia.  

Furthermore, lower expression of δ-containing receptors might represent a consequence of 

reduced signaling through excitatory synapses.  As a consequence, the inhibitory signaling 
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through δ-receptors might be reduced, contributing to the altered inhibitory circuit in subjects 

with schizophrenia. 

This dissertation was designed to test the following hypotheses: 1) that the expression 

levels of both α4 and δ mRNAs are significantly lower across cortical layers of the DLPFC of 

subjects with schizophrenia, 2) that lower levels of both α4 and δ subunits represent the disease 

process of the illness, and 3) that the expression levels of δ subunit are significantly reduced in 

the PFC of animal models that recapitulate deficits in the activity of excitatory synapses 

observed in schizophrenia.  

In the studies described in Chapter 2, 1) postmortem brain human tissue and in situ 

hybridization were utilized to assess the mRNA expression levels of α4 and δ subunits in the 

DLPFC of subjects with schizophrenia, 2) the effect of potential confounding factors on the 

mRNA levels of α4 and δ subunits were assessed in both the human subject cohort and in a 

model of chronic exposure to antipsychotic medications, and 3) the relationship between α4 and 

δ subunit mRNA expression levels was assessed in several animal models. 

In order to provide proof-of-concept for the role of chronic reduction in the signaling 

through excitatory synapses as a pathogenetic mechanism for lower levels of δ subunit mRNA, 

in Chapter 3 we assessed the mRNA levels of δ subunit in the PFC of several animals that model 

chronic reductions in the signaling through excitatory synapses in the form of 1) reduced 

signaling through NMDARs, 2) reduced excitatory synaptic terminals from the thalamus or 

hippocampus, and 3) reduced postsynaptic targets of excitatory inputs. 
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2.0  CHAPTER 2:  ALTERED EXPRESSION OF α4 AND δ SUBUNITS ACROSS 

THE DLPFC OF SUBJECTS WITH SCHIZOPRHENIA 

2.1 ABSTRACT 

In a recent microarray study, the mRNA levels of GABAA receptor α4 and δ subunits were found 

to be lower in the dorsolateral prefrontal cortex (DLPFC) of subjects with schizophrenia.  

Although α4 and δ subunits co-assemble to form functional receptors mediating tonic inhibition 

in the forebrain, the differences in α4 and δ mRNA expression were not correlated in subjects 

with schizophrenia. In order to understand the functional significance of these findings, we 

assessed the mRNA levels of α4 and δ in the DLPFC of a larger cohort of subjects with 

schizophrenia and matched control subjects by in situ hybridization. The level of α4 mRNA was 

lower only in subjects with schizophrenia receiving benzodiazepines, mood stabilizers and/or 

antidepressants at the time of death.  In contrast, the level of δ mRNA was significantly lower in 

the subjects with schizophrenia, regardless of the medications used at the time of death. In order 

to further examine this apparent dissociation between α4 and δ mRNA expression in 

schizophrenia, we measured α4 and δ mRNAs across postnatal development of monkey DLPFC. 

The level of α4 mRNA decreased with age, whereas that of δ mRNA increased, in a manner 

similar to that previously observed for the α1 subunit. Because α1 mRNA levels are lower in 

schizophrenia and because α1 subunits can co-assemble with δ subunits, lower δ mRNA levels 

could represent a reduced complement of GABAA α1βxδ receptors, rather than of α4βxδ, in 
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schizophrenia. Consistent with this hypothesis, δ mRNA levels were significantly reduced in the 

PFC of α1 knockout mice. Thus, deficits in tonic inhibition, due to a reduced number of α1βxδ 

receptors, could contribute to the DLPFC dysfunction characteristic of schizophrenia. 
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2.2 INTRODUCTION 

Convergent lines of evidence suggest that deficits in certain cognitive functions, such as working 

memory, are the core features of schizophrenia (Weinberger et al., 1986; Perlstein et al., 2001; 

Silver et al., 2003).  Alterations in the inhibitory circuitry of the DLPFC may contribute to 

impairments in working memory, as optimal levels of γ-aminobutyric acid (GABA) 

neurotransmission in this cortical region are essential for normal working memory performance 

(Sawaguchi et al., 1989; Rao et al., 2000; Kojima et al., 2007).  Consistent with this idea, 

postmortem studies have shown that expression of the mRNA for the 67 kDa isoform of 

glutamate decarboxylase (GAD67), the principal enzyme responsible for the synthesis of GABA, 

and of the GABA membrane transporter 1 (GAT-1), are significantly lower in the DLPFC of 

subjects with schizophrenia (Akbarian et al., 1995; Volk et al., 2001; Guidotti et al., 2000; Straub 

et al., 2007; Hashimoto et al., 2008a; Hashimoto et al., 2005) 

Understanding the functional significance of the presynaptic alterations in GAD67 and 

GAT-1 requires knowledge of the expression levels of postsynaptic GABAA receptors.  GABAA 

receptors are pentameric ligand-gated chloride ion channels, assembled from different subunit 

classes that most commonly include 2α, 2β and 1γ or 1δ subunits (Mehta and Ticku, 1999). 

Different combinations of subunits form GABAA receptors with unique properties.  For instance, 

GABAA receptors containing a γ2 subunit predominantly mediate phasic inhibition, defined as 

the rapid and synchronous opening of synaptic receptors that result in an inhibitory postsynaptic 

potential (Mody and Pearce, 2004; Farrant and Nusser, 2005).  In contrast, δ-containing GABAA 

receptors mediate tonic inhibition, defined as the constant activation of extrasynaptic receptors 
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that, by increasing input conductance, reduce the probability of generating an action potential 

(Mody and Pearce, 2004; Farrant and Nusser, 2005). Tonic inhibition mediated by δ-containing 

receptors has been described in many cell types including cerebellar granule cells (Brickley et 

al., 2001), dentate gyrus granule cells (Stell et al., 2003) and neocortical pyramidal cells 

(Drasbek and Jensen, 2006; Drasbek et al., 2007); but see Yamada et al., (2007). 

The mRNA level of the GABAA receptor δ subunit was significantly lower in the DLPFC 

of subjects with schizophrenia in two microarray studies (Vawter et al., 2002; Hashimoto et al., 

2008a).  Because δ subunits are thought to preferentially co-assemble with α4 subunits in 

forebrain GABAA receptors (Peng et al., 2002; Jensen et al., 2007), lower δ mRNA levels in 

subjects with schizophrenia could represent a reduced complement of α4βxδ GABAA receptors 

in the illness. However, although the mRNA levels of α4 subunit were lower by microarray in 

the DLPFC of the same subjects with schizophrenia, the difference was not correlated with that 

of the δ subunit (Hashimoto et al., 2008a).  

Thus, in order to understand the functional significance of altered expression of α4 and δ 

subunits in the DLPFC of subjects with schizophrenia, we 1) examined the expression patterns of 

α4 and δ mRNAs in the DLPFC of a larger cohort of subjects with schizophrenia, and 2) 

determined the relationship between α4 and δ subunit mRNA expression in several animal 

models. 
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2.3 MATERIALS AND METHODS 

2.3.1 Human subjects 

With the consent of the surviving next-of-kin, brain tissue specimens were obtained from the 

Allegheny County Medical Examiner’s Office (Pittsburgh, PA) at the time of routine autopsy. 

Twenty-three subjects with schizophrenia (Table 1) were each matched with one control subject 

for sex, and as closely as possible for age and postmortem interval (PMI). Two-tailed paired t-

tests revealed that the subjects with schizophrenia did not differ from the control subjects in age 

(t22 = 0.16, p = 0.878), PMI (t22 = 0.20, p = 0.837), RNA integrity number (RIN; t22 = 1.84, p = 

0.078) or tissue storage time at -80° (t22 = -0.96, p = 0.349). Furthermore, the mean (±SD) pH in 

subjects with schizophrenia (6.8 ± 0.3) was not different (t22 = 0.62, p = 0.541) from control 

subjects (6.9 ± 0.2).  An independent panel of experienced research clinicians made consensus 

DSM-IV diagnoses for each subject using medical records and structured interviews conducted 

with one or more surviving family members (Glantz and Lewis, 1997).  All procedures were 

approved by the University of Pittsburgh’s Institutional Review Board for Biomedical Research. 
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Table 1. Characteristics of human subjects used in this study. 

 22 



 

2.3.2 Tissue processing 

The right hemisphere of each human brain was blocked coronally, frozen and stored at -80ºC.  

Serial sections (20 μm) containing the superior frontal gyrus were cut at the anteroposterior level 

corresponding to the middle portion of the superior frontal sulcus, thaw mounted onto glass 

slides, and stored at -80ºC until processed. Sections containing area 9 were identified in Nissl-

stained sections as previously described (Volk et al., 2000).  

2.3.3 Riboprobes 

Templates for the synthesis of α4 and δ subunit riboprobes were obtained by polymerase chain 

reaction (PCR) with specific primer sets.  A 516 bp fragment for the α4 subunit corresponding to 

bases 1231-1746 of the human GABAA α4 gene (GenBank NM_000809) and a 607 base pair 

(bp) DNA fragment for the δ subunit corresponding to bases 419-1025 of the human gene 

(GenBank BC033801) were amplified.  Nucleotide sequencing revealed 100% homologies for 

the amplified fragments to the previously reported sequences.  DNA fragments were sub-cloned 

into the plasmid pSTBlue-1 (Novagen, Madison, WI). Sense and antisense riboprobes were 

transcribed in vitro in the presence of 35S-CTP (Amersham Biosciences, Piscataway, NJ), using 

T7 or SP6 RNA polymerase, and were then digested with DNase I and purified by centrifugation 

through RNeasy mini spin columns (Qiagen, Valencia, CA).  
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2.3.4 In situ hybridization 

For each transcript, we used three tissue sections per subject, spaced at approximately 560 μm. 

Sections from a given pair were always processed together; six runs were performed for each 

transcript. For each run, slide-mounted tissue sections were immersed in 4% paraformaldehyde 

in phosphate buffered saline (PBS), acetylated, dehydrated through a graded ethanol series, and 

de-fatted in chloroform for 10 min.  The sections were then incubated with 35S-labeled riboprobe 

in hybridization buffer containing 50% formamide, 0.75 M NaCl, 20 mM 1,4-piperazine 

diethane sulfonic acid, pH 6.8, 10 mM EDTA, 10% dextran sulfate, 5X Denhardt’s solution, 

50mM  dithiothreitol, 0.2% SDS and 100 mg/ml yeast tRNA at 56°C for 16 hrs.  After washing 

in a solution containing 0.3 M NaCl, 20 mM Tris-HCl, pH 8.0, 1 mM EDTA, pH 8.0, and 50% 

formamide at 63°C, the sections were treated with RNase A (20 µg/ml) at 37°C, and washed in 

0.1 SSC (150 mM NaCl and 15 mM sodium citrate) at 66.8°C. Sections were then dehydrated 

through a graded series of ethanol concentrations, air dried, and exposed to BioMax MR Film 

(Kodak, Rochester, NY).  After exposure to film, sections were coated with NTB emulsion 

(Kodak; diluted 2:1 with water).  

2.3.5 Quantification 

Analyses were performed by one investigator (JGMA) without knowledge of diagnosis or 

subject number due to random coding of the sections. Trans-illuminated autoradiographic film 

images were captured by a video camera under controlled conditions, digitized, and analyzed 

with a Microcomputer Imaging Device (MCID) system (Imaging Research Inc, London, Ontario, 

Canada). Images of the corresponding hybridized sections were captured and superimposed on 
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the autoradiographic images to draw contours and delineate the border between gray matter and 

white matter. Optical density was measured within the contours and expressed as nanocuries per 

gram of tissue, determined by reference to 14C standards (ARC Inc., St. Louis, MO) exposed on 

the same film.   

To assess mRNA levels across layers of the human DLPFC, three cortical traverses, 1.5 

mm in width, were sampled from each section (nine traverses per subject).  Each cortical traverse 

was located in portions of the tissue section cut perpendicular to the pial surface, as determined 

by the presence of pyramidal neurons with vertically oriented apical dendrites on adjacent Nissl-

stained sections. The average mRNA level within each layer was determined by measuring 

optical density in zones located 10–20% (layer 2), 20-50% (layer 3), 50-60% (layer 4), 60-80% 

(layer 5) and 80–100% (layer 6) from the pial surface to the white matter border (Pierri et al., 

1999).  All cortical optical density measures were corrected by subtracting optical density 

measures in the white matter.  

2.3.6 Antipsychotic-treated monkeys 

Eighteen experimentally naïve, male, long-tailed macaque monkeys (Macaca fascicularis), 4.5–

5.3 years of age, were arbitrarily divided into three groups and trained to orally ingest pellets 

containing either haloperidol, olanzapine or sham, twice a day (Dorph-Petersen et al., 2005).  At 

steady state, the total daily dose of drug per animal ranged from 28 to 32 mg for haloperidol and 

11.0 to 13.2 mg for olanzapine. These doses produced trough serum levels of ~1.5 ng/ml for 

haloperidol and ~15 ng/ml for olanzapine (Dorph-Petersen et al., 2005), which are within the 

therapeutic range for the treatment of schizophrenia in humans (Kapur et al., 1998; Kapur et al., 

1997). After 17–27 months of drug exposure, animals (grouped into triads by body weight) were 
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deeply anesthetized, the brains were removed, and the right hemisphere was blocked, frozen and 

stored at -80°C. All procedures were carried out in accordance with the NIH Guide for the Care 

and Use of Laboratory Animals and were approved by the University of Pittsburgh Institutional 

Animal Care and Use Committee. 

Serial cryostat sections (16 µm) were cut from fresh frozen tissue blocks containing the 

middle one-third of the principal sulcus.   Two adjacent sections from each animal, spaced at 224 

μm, were used to analyze δ mRNA expression in areas 9 and 46, identified according to 

cytoarchitectonic criteria in Nissl sections (Barbas and Pandya, 1989).  Sections from each triad 

were processed together in a single in situ hybridization run; two runs were performed.  The in 

situ hybridization procedures were performed as described above, except that the sections were 

not de-fatted in chloroform.  Analyses of film autoradiograms were performed as described 

above. 

2.3.7 Postnatal developmental monkeys 

Thirty-one, experimentally naïve, female, rhesus macaque monkeys (Macaca mulatta) in seven 

age groups from 1 week of age to adult were used to study the postnatal development of δ and α4 

mRNAs in area 46 of the DLPFC (Table 2). All procedures were carried out in accordance with 

the NIH Guide for the Care and Use of Laboratory Animals and were approved by the University 

of Pittsburgh’s Institutional Animal Care and Use Committee. Some animals were perfused 

transcardially with ice-cold modified artificial cerebrospinal fluid (aCSF) at the time of 

euthanasia (Gonzalez-Burgos et al., 2007). Furthermore, in some animals, a small block of tissue 

was surgically excised from the rostral third of the principal sulcus in the left hemisphere 2-4 

weeks prior to perfusion with aCSF, for electrophysiology studies (Gonzalez-Burgos et al., 
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2007).   

In order to control for the possible effects of neurosteroids on the expression of δ-

containing receptors (Maguire et al., 2005), menstrual status was determined for the post-

pubertal 42-month and adult animals by assessing serum levels of estradiol and progesterone 

obtained immediately prior to euthanasia in 8 of 9 animals.  For the remaining adult animal, 

records of observed menstruation indicated that she had very stable cycles which predicted that 

she was in the luteal phase at the time of euthanasia (Table 2).    

Serial coronal sections (16 μm) were cut from the caudal third of the principal sulcus in 

the right hemisphere of each monkey. Monkeys were divided into two groups, each containing 

an equivalent number of animals of each age. Two adjacent sections from each animal, spaced at 

224 μm, were used to analyze the mRNA expression levels of δ and α4 mRNAs in area 46, 

identified according to cytoarchitectonic criteria in Nissl sections (Barbas and Pandya, 1989).    

Sections from each group were processed together in a single in situ hybridization run; a total of 

four runs were performed.  In addition, a section from a control animal was included in each in 

situ hybridization run to normalize any experimental variability between runs. Analyses of α4 

and δ mRNAs during postnatal development of the monkey DLPFC were performed by one 

investigator (AAC) without knowledge of age group, using the same procedures described 

above. 
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Table 2. Macaque monkeys used in the developmental study. 
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2.3.8 GABAA receptor α1 subunit knockout mice 

Because the α1 subunit has been reported to assemble with δ subunits (Glykys et al., 2007), we 

utilized tissue from mice with a targeted deletion of the GABAA α1 subunit (generously provided 

by Dr. A. Leslie Morrow, Chapel Hill, NC) (Vicini et al., 2001).  Briefly, the exon encoding 

nucleotides 1307 to 1509 of the α1 subunit was flanked by loxP sites and the knockout α1 allele 

was generated after cre-mediated recombination.  Two groups of mice, wild-type and α1 

knockout, were euthanized at 8 weeks of age (n = 8 for each group).  Brains were frozen 

immediately and stored at -80°C. Serial coronal sections (12 µm) were cut from +1.98 to +1.54 

bregma (Paxinos and Franklin, 2001).  Three sections, spaced at 144 µm, were selected from 

each animal and processed for in situ hybridization, using riboprobes generated from a 598 bp 

cDNA fragment of the δ subunit corresponding to bases 235-832 of the mouse δ mRNA 

(GenBank NM_008070); and a 537 bp cDNA fragment of the α4 subunit corresponding to bases 

655-1191 of the mouse α4 mRNA (GenBank NM_010251). For the δ subunit, two in situ 

hybridization runs, each containing sections from four wild-type and four α1 knockout mice, 

were performed.  For α4 analysis, one in situ hybridization run containing sections from all 16 

animals was performed.  Quantification of mRNA levels was done in the prefrontal cortex 

(PFC), including the cingulate and prelimbic cortices (Paxinos and Franklin, 2001).  Western 

blot studies confirmed a >95% reduction in α1 protein levels in the α1 knockout mice (data not 

shown). 
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2.3.9 Statistical analyses 

Analysis of covariance (ANCOVA) models were performed to examine the expression 

differences in α4 and δ mRNAs between the control subjects and subjects with schizophrenia.  

The film optical density measures from three sections per subject can be considered to be 

exchangeable and correlated, and thus treated as repeated measures with a compound, 

symmetric, covariance structure (Neter et al., 1996). The corresponding ANCOVA models 

required averaging across the three sections for each dependent variable before the statistical 

analyses were conducted. The first ANCOVA model, used for both dependent variables, had 

diagnostic group as a main effect and pair as a blocking effect. The inclusion of pair reflects the 

matching of individual subject pairs for sex, age, and PMI.  Furthermore, freezer storage time 

and RIN were included as covariates to control for their potential effect on mRNA quality (Stan 

et al., 2006).   

Subject pairing may be considered an attempt to balance the two diagnostic groups with 

regard to the experimental factors instead of a true statistical paired design. Thus, to validate the 

first model, a second ANCOVA model was performed with diagnostic group as main effect and 

sex, age, PMI, RIN and storage time as covariates.  Both models produced similar results for 

diagnostic group effect.  However, because the effect of age on δ and α4 mRNAs expression was 

significant, the results of the second unpaired model are reported. 

We used two-sample t-tests to assess the influence of sex, diagnosis of schizoaffective 

disorder, suicide, history of alcohol abuse and/or dependency and presence of benzodiazepines, 

mood stabilizers and/or antidepressants at the time of death on the within-subject pair differences 

in gene expression levels.   
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For the antipsychotic-treated monkeys, a single-factor ANOVA model was used, with 

triad as the blocking factor and treatment group as the main effect. 

The change in levels of δ and α4 mRNAs across postnatal development were assessed by 

ANCOVA models, with age group as the main effect and both perfusion and prior biopsy as 

blocking factors. A Duncan’s post hoc test was used to assess the differences between age groups 

for significant ANCOVAs. The mean normalized optical density levels of each animal were used 

as the dependent variable.  

The expression of δ mRNA in the prefrontal cortex of α1 knockout mice was analyzed 

with an ANCOVA model using genotype as main effect, and in situ hybridization run as a 

covariate since two in situ hybridization runs were performed.  The mRNA levels of the α4 

subunit were analyzed with a two-sample t-test because only one in situ hybridization run was 

performed.  All statistical tests were conducted with an α-level = 0.05.  

2.4 RESULTS 

2.4.1 Specificity of human riboprobes 

The specificity of the riboprobes for the α4 and δ subunits was confirmed by several findings. 

First, clusters of silver grains were present over neurons, characterized by their faint Nissl-stain 

and large nuclei, in emulsion-dipped slides (Figure 1, panels A, C).  In contrast, silver grains 

were not clustered over glia cells, characterized by their intensely Nissl-stained, small nuclei, 

which are known not to express these transcripts. Second, signal above background was not 

detected in tissue processed with sense riboprobes for α4 or δ subunits (Figure 1, panels B, D). 
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Third, consistent with previous reports in the rodent, primate and human cortex (Wisden et al., 

1992; Huntsman et al., 1995; Petri et al., 2003), the mRNA expression levels of α4 were uniform 

across layers 2-5, lower in layer 6 and absent in layer 1 (Figure 2A).  Similarly, the laminar 

distribution of δ mRNA was consistent with that previously described in the rodent and human 

cortex (Wisden et al., 1992; Petri et al., 2003):  high and uniform across layer 2 to layer 4, low in 

layer 5, moderate in layer 6, and absent in layer 1 (Figure 2C).  

2.4.2 mRNA expression levels of α4 and δ subunits in subjects with schizophrenia 

Analysis of film autoradiograms revealed that the mean (±SD) α4 mRNA expression level 

(Figure 3A) in DLPFC area 9 was only 9% lower in the subjects with schizophrenia (31.2 ± 7.0 

nCi/g) than in the matched control subjects (34.6 ± 8.5 nCi/g), and this difference did not achieve 

statistical significance (F1,39 = 3.69, p = 0.062).  In contrast, the mean expression level of δ 

mRNA (Figure 3B) was significantly (F1,39 = 17.30, p < 0.0001) 19% lower in the subjects with 

schizophrenia (238.15 ± 63.29 nCi/g) than in the matched control subjects (295.13 ± 52.96 

nCi/g).   

Our analysis revealed significant negative correlations between α4 mRNA expression 

levels and age for both control subjects (r = -0.46, p < 0.001) and subjects with schizophrenia (r 

= -0.35, p = 0.003; Figure 3C).  Similarly, we detected significant negative correlations between 

δ mRNA expression levels and age in control subjects (r = -0.48, p < 0.001) and subjects with 

schizophrenia (r = -0.30, p = 0.007; Figure 3D). The regression line for δ mRNA expression 

levels in subjects with schizophrenia was parallel to and shifted downward from that of control 

subjects, suggesting that the disease-related reduction in δ mRNA levels is similar in magnitude  

across      adult      life   (Figure 3D).   In   addition,   our    analysis    revealed    that    RIN    was  
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Figure 1. Photomicrographs illustrating the expression of α4 and δ mRNAs in Nissl-

stained, emulsion-dipped sections. 

Sections processed with antisense riboprobes for α4 (A) and δ (C) mRNAs revealed 

specific clustering of silver grains over neurons (solid arrows) but not over glia cells 

(open arrows).  In addition, silver grain clustering over neurons was not observed in 

sections treated with α4 (B) or δ (D) sense riboprobes. Scale bars = 10 μm. 
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Figure 2. Representative autoradiograms of  α4 and δ mRNAs across the DLPFC. 

The mRNA expression levels of α4 (A, B) and δ (C, D) subunits in DLPFC area 9 of a control 

subject (A, C) and an age-, sex- and PMI-matched subject with schizophrenia (B, D) are 

illustrated.  The intensity of hybridization signals is presented in a pseudocolor manner according 

to the calibration scales (nCi/g) for each mRNA.  Solid lines represent the pial surface and dotted 

lines represent the gray-white matter border. The six cortical layers are identified. Scale bars = 

500 μm. 
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Figure 3. Film autoradiogram optical density measures for α4 and δ mRNAs in DLPFC 

area 9.   

The mRNA expression levels for α4 (A) and δ (B) subunits in control (c) and schizophrenia 

subjects (s).  The mean values for each subject group are represented by horizontal bars, and 

values for individual subject pairs are connected by lines. The mRNA expression levels of both 

α4 (C) and δ (D) were negatively correlated with age. The regression lines for δ mRNA in 

subjects with schizophrenia are parallel to and shifted downward from those for control subjects, 

suggesting that the decreased expression of δ mRNA in schizophrenia is similar in magnitude 

across adult life. 
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Figure 4. Effect of confounding factors on the within-subject pair percent 

differences in levels of α4 and δ mRNAs. 
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significantly correlated with α4 (r = 0.24, p = 0.032) and δ (r = 0.50, p = 0.012) mRNA levels in 

subjects with schizophrenia.  However, no correlation was found between RIN and α4 (r = 0.24, 

p = 0.267) or δ (r = 0.24, p = 0.273) mRNA levels in control subjects. 

2.4.3 Influence of confounding factors on the expression of α4 and δ subunit mRNAs 

As shown in Figure 4A, the within-subject pair differences in α4 mRNA expression were not 

influenced by sex, diagnosis of schizoaffective disorder, cause of death or history of alcohol 

abuse and/or dependency.  However, the levels of α4 mRNA were decreased only in subjects 

with schizophrenia receiving benzodiazepines, mood stabilizers and/or antidepressants at the 

time of death.  In these subjects, the levels of α4 subunit mRNA were 16% lower relative to their 

matched controls. This within-subject pair difference was significantly different (t21 = -2.93, p = 

0.008) from the 4% increase in α4 mRNA levels in the subjects with schizophrenia not receiving 

these medications at the time of death (Figure 4A).  These findings suggest that the lower α4 

mRNA levels in some subjects with schizophrenia represent a medication effect and not the 

disease process.  In contrast, the mean within-subject pair difference in δ mRNA expression was 

not influenced by sex, diagnosis of schizoaffective disorder, cause of death, alcohol abuse and/or 

dependency, or use of benzodiazepines, mood stabilizers and/or antidepressants (Figure 4B).    

__________________________________________________________________ 

Figure 4. Whereas the mean within-subject pair percent differences in α4 mRNA were 

not affected by sex, diagnosis of schizoaffective disorder, cause of death or a history of 

alcohol abuse and/or dependency, we found a significant effect of benzodiazepines, mood 

stabilizers and/or antidepressants at time of death (A). In contrast, subjects with 

schizophrenia showed a similar decrease in δ mRNA levels, relative to their matched 

control subjects, independent of the presence or absence of each factor analyzed (B).   
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2.4.4 δ subunit mRNA expression in the DLPFC of monkeys chronically exposed to 

antipsychotic medications 

We further assessed whether the lower levels of δ mRNA observed in schizophrenia might 

reflect the effects of treatment with antipsychotic medications by analyzing the DLPFC of 

monkeys chronically exposed to haloperidol, olanzapine or sham (Dorph-Petersen et al., 2005).  

As shown in Figure 5, δ mRNA expression levels did not differ across these three groups (F1,10 = 

0.82, p = 0.468).  These findings, together with the absence of effects due to other potential 

confounding factors described above, suggest that the reduction in δ mRNA expression in 

subjects with schizophrenia reflects the underlying disease process. 

2.4.5 Laminar analysis of δ mRNA expression levels in subjects with schizophrenia 

Because the lower levels of δ mRNA in subjects with schizophrenia did not seem to be a 

consequence of confounding factors, we further assessed the levels of δ mRNA across cortical 

layers of the DLPFC. The mean expression levels of δ mRNA were significantly lower in layers 

3 (F1,39 = 9.92, p = 0.003), 4 (F1,39 = 10.782, p = 0.002), 5 (F1,39 = 24.63, p < 0.00001) and 6 

(F1,39 = 11.11, p = 0.002), but not layer 2 (F1,39 = 2.40, p = 0.130), of subjects with schizophrenia 

(Figure 6). 
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Figure 5. Representative autoradiograms illustrating the expression of δ mRNA in 

the DLPFC of monkeys chronically exposed to antipsychotic medications. 

Monkeys exposed to sham (A), haloperidol (B) or olanzapine (C). Solid lines represent 

the pial surface and dotted lines represent the border between gray matter and white 

matter. The mean levels of δ mRNA did not differ across subject groups (D).  The mean 

levels of δ mRNA did not differ across sham (s), haloperidol (h) or olanzapine (o) treated 

monkeys (D).  Scale bar = 1 mm.   
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Figure 6. Mean film autoradiogram optical density measures for δ mRNA across cortical 

layers of the DLPFC.  

The mean expression levels of δ mRNA were significantly reduced in layers 3 (16%), 4 (18%), 5 

(23%) and 6 (18%) in subjects with schizophrenia (closed bars) compared to control subjects 

(open bars).  * p < 0.01, ** p < 0.0001 
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2.4.6 Postnatal development of α4 and δ mRNAs in monkey DLPFC 

In order to understand the dissociation between changes in expression levels of α4 and δ mRNAs 

in subjects with schizophrenia, we compared the postnatal developmental trajectories of these 

two subunits in the monkey DLPFC.  The expression of δ mRNA increased during postnatal 

development (Figure 7A, B), with the mean overall cortical levels of δ mRNA 56% greater in the 

adult animals than those one week of age.  However, the effect of age did not quite achieve 

statistical significance (F6,21 = 2.45, p = 0.059, Figure 7C), perhaps because δ mRNA levels 

appeared to increase only in the deep layers (Figures 7A and B).  Consistent with this 

interpretation, δ mRNA levels did not change with age in layer 3, but significantly (F6,20 = 7.32, 

p < 0.001) increased by 116% between one week of age and adulthood in deep layer 5 (Figure 

7D).   

In contrast, the mRNA expression levels of α4 decreased during postnatal development 

across all cortical layers (Figure 7E, F).  Between one week of age and adulthood, the mRNA 

levels of α4 decreased significantly (F6,21 = 5.64, p = 0.0012) by 36% (Figure 7G).  The opposing 

trajectories of α4 and δ mRNAs resulted in a marked change in the ratio of δ to α4 mRNA levels 

across development.  Between one week of age and adulthood, the ratio of δ to α4 mRNA levels 

increased significantly (F6,21 = 4.80, p = 0.003) by 199% (Figure 7H).   

It should be noted that the observed mRNA expression levels of δ and α4 subunits in the 

sexually mature monkeys did not seem to be affected by levels of gonadal steroids and stage of 

menstrual cycle, since among the 42-month old monkeys, the two animals in luteal phase at the 

time of euthanasia had mean (± SD) normalized optical density measures of δ (0.68 ± 0.03) and 
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Figure 7. Expression patterns of δ and α4 mRNAs across postnatal development in 

monkey DLPFC. 
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α4 (0.83 ± 0.19) that were similar to those in the four animals in the follicular phase (δ: 0.69 ± 

0.10; α4: 0.89 ± 0.08).   

 

 

 

 

 

 

 

 

 

 

 

___________________________________________________________________ 

Figure 7. The overall gray matter levels of δ mRNA increased from 1 week of age (A) to 

adulthood (B), although these changes did not quite reach statistical significance (C).  

However, the levels significantly increased with age in layer 5, but did not change in layer 

3 (D).  In contrast, the expression levels of α4 decreased significantly with age (E,F,G).  

The opposing developmental trajectories of δ and α4 mRNAs resulted in a significant 

increase in the δ to α4 ratio with age (H). The density of hybridization signals are presented 

in a pseudocolor manner according to the calibration scales (nCi/g).  Solid white lines 

represent the pial surface and dotted lines represent the border between gray matter and 

white matter (A,B,E,F).  The mean values for each subject group are represented by 

horizontal bars (C,G). Within each panel, age groups not sharing the same letter are 

significantly different at p < 0.05. Scale bars = 1 mm. 
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2.4.7 Lower expression of δ subunit mRNA are associated with altered expression of 

GABAA α1 subunit 

The dissociation between δ and α4 mRNA levels in subjects with schizophrenia, in laminar 

distributions and across postnatal development suggested that the δ-containing GABAA receptors 

altered in schizophrenia might contain another class of α subunit.  Consistent with this idea, a 

recent study found that δ subunits assemble with α1, but not α4 subunits, in hippocampal 

interneurons (Glykys et al., 2007).  Interestingly, the change in δ mRNA expression in 

schizophrenia was strongly correlated with that of α1 mRNA (r = 0.81, p < 0.001) as measured 

by microarray in a previous study (Hashimoto et al., 2008a). Thus, the lower expression of δ 

subunit mRNA in schizophrenia could represent lower levels of α1βxδ receptors. 

As a proof-of-concept test of this hypothesis, we asked whether δ subunit mRNA levels 

were significantly reduced in the prefrontal cortex of GABAA α1 knockout mice.   The mean 

(±SD) expression of δ mRNA (Figure 8E) was significantly (F1,13 = 10.50, p = 0.006) decreased 

by 21% in the prefrontal cortex of α1 knockout mice (104.79 ± 19.85 nCi/g ) compared to wild-

type mice (131.92 ± 16.75 nCi/g).  In contrast, mean α4 mRNA expression (Figure 8F) was not 

changed (t14 = 1.03, p = 0.321) in knockout mice (155.50 ± 21.10 nCi/g) compared to wild-type 

mice (166.45 ± 21.46 nCi/g).  These findings are consistent with the hypothesis that reduced 

expression of δ subunit mRNA in schizophrenia represents lower levels of α1βxδ GABAA 

receptors. 

 44 



 

 

 

Figure 8. Expression levels of δ and α4 mRNA across the PFC of wild-type and GABAA α1 

knockout (KO) mice.   

The mRNA levels of δ subunit appear to be decreased in the PFC of α1KO mice (C) compared to 

wild-type mice (A). PFC is represented in the autoradiograms by solid lines. Consistent with 

these observations, mean δ mRNA levels were significantly (E) reduced by 21% in the PFC of α1 

KO mice.  In contrast, the mRNA expression levels of α4 subunit were not changed (F) in the 

PFC of α1 KO mice (D) compared to wild-type mice (B).  The mean values for each subject 

group are represented by horizontal bars. Scale bars = 500 μm. 
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2.5 DISCUSSION 

The findings of this study indicate that the expression level of δ mRNA, but not of α4 mRNA, is 

significantly lower in the DLPFC of subjects with schizophrenia.  To the extent that α4 mRNA is 

lower in schizophrenia (Hashimoto et al., 2008a), the reduction appears to be due to an effect of 

benzodiazepines, mood stabilizers and/or antidepressants at the time of death; however, we 

cannot exclude the possibility that lower levels of α4 mRNA reflect a particular disease process 

in a subtype of schizophrenia with clinical features that require the prescription of these 

medications.  In contrast, the lower level of δ mRNA in subjects with schizophrenia, which is 

consistent with two previous microarray studies in smaller subject cohorts (Vawter et al., 2002; 

Hashimoto et al., 2008a), appears to reflect the disease process of schizophrenia, and is not 

attributable to potential confounding factors such as sex, diagnosis of schizoaffective disorder, 

cause of death, alcohol abuse and/or dependency, or treatment with benzodiazepines, mood 

stabilizers and/or antidepressants at time of death.   In addition, the lower level of δ mRNA does 

not appear to be a consequence of exposure to antipsychotic medication, as the levels of δ 

mRNA were unchanged in the DLPFC of monkeys chronically exposed to typical or atypical 

antipsychotics.  Consistent with this interpretation, the mean percent difference in δ mRNA 

levels in the four subjects with schizophrenia who were off medications at the time of death (-

23%) did not differ (t21 = -0.51, p = 0.616) from those who were receiving antipsychotic 

medications (-18%).   

Previous studies suggest that δ subunit mRNA levels in the human cortex are higher than 

those of α4 subunit (Petri et al., 2003), whereas rodent neocortex levels of δ mRNA are slightly 

lower than those of α4 mRNA (Wisden et al., 1992).  Although the probes used to assess the 

expression of α4 and δ in our in situ hybridization study do not permit a direct quantitative 
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comparison between α4 and δ mRNA levels, our findings are consistent with previous 

observations and suggest that the expression levels of the δ subunit are higher than those of α4 in 

the human DLPFC.  For instance, in the DLPFC of normal control subjects, mean levels of δ 

subunit mRNA measured using probes directed at different portions of the transcript by in situ 

hybridization or microarray (Hashimoto et al., 2008) were 4-9 times higher those of α4 mRNA.  

These findings, along with the differential disease and developmental effects on δ versus α4 

subunits are surprising, as δ subunits are thought to co-assemble preferentially with α4 subunits 

in forebrain GABAA receptors (Peng et al., 2002; Drasbek et al., 2007). Thus, our findings 

suggest that the altered δ-containing GABAA receptors in schizophrenia are not α4βxδ receptors.   

Lower levels of δ subunit mRNA in subjects with schizophrenia could represent a 

reduced complement of cortical α1βxδ GABAA receptors.  First, the magnitude of the disease-

related differences in δ and α1 mRNA levels were significantly correlated (r = 0.81, p < 0.001), 

as measured by microarray in a previous study involving a subset of the subjects studied here, 

whereas the within-subject pair differences in δ and α4 mRNA levels were not correlated 

(Hashimoto et al., 2008a).  Second, δ mRNA expression increased across postnatal development 

of the monkey DLPFC, paralleling the previously reported increase in α1 mRNA in the same 

animals (Nguyen et al., 2006), whereas levels of α4 mRNA decreased across postnatal 

development.  Third, our findings suggest that changes in the expression levels of the δ subunit 

are associated with that of the α1 subunit, as δ mRNA levels were significantly reduced in the 

PFC of α1 knockout mice.  Consistent with this hypothesis, the δ subunit has been shown to co-

assemble with α1 subunits to produce functional α1β1δ, α1β1γ2Lδ and α1β3δ recombinant 

receptors (Saxena and Macdonald, 1994; Wohlfarth et al., 2002; Bianchi and Macdonald, 2003).  

In addition, immunoprecipitation studies in rat brain extracts revealed that δ subunits associate 
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with α1 subunits (Mertens et al., 1993).  GABAA α1 subunits have also been found 

extrasynaptically (Baude et al., 2007; Sun et al., 2004), consistent with the typical localization of 

δ-containing receptors (Nusser et al., 1998; Farrant and Nusser, 2005), and interneurons in the 

dentate gyrus exhibit immunoreactivity for α1 and δ subunits along the cell body surface and 

proximal dendrites (Glykys et al., 2007). Furthermore, δ and α1 immunoreactivity levels and the 

ethanol-induced enhancement of tonic conductance were unchanged in interneurons of the α4 

subunit knockout mice (Glykys et al., 2007).   

The associated reductions in δ and α1 mRNA levels might also reveal the pathogenetic 

mechanism underlying the lower levels of δ-containing GABAA receptors in schizophrenia. For 

example, variants in the GABAA receptor α1 subunit gene have been associated with 

schizophrenia and with altered expression levels of GABAA receptor subunits (Petryshen et al., 

2005).  These findings raise the possibility that lower expression of δ mRNA is a consequence of 

a reduction in α1 mRNA levels.  This hypothesis is supported by our findings of reduced δ 

mRNA in the prefrontal cortex of α1 knockout mice. However, it should be noted that the 

mRNA levels of the δ subunit were reported to be unchanged across the cerebellum (Ogris et al., 

2006) and cerebral cortex (Ponomarev et al., 2006) of α1 knockout mice.  Thus, the potential 

effect of lower α1 subunit on the mRNA expression levels of δ might be limited to certain 

cortical regions.  Alternatively, lower δ mRNA levels might also be an event downstream to 

reduced activity of excitatory synapses (Lewis and Moghaddam, 2006).  For example, infusions 

of MK-801, a non-competitive NMDA receptor antagonist, result in decreased mRNA levels of δ 

in the rat forebrain (Kim et al., 2000); however, whether these deficits are present after chronic 

reductions in the activity of excitatory synapses has not been determined.  Under either scenario, 
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lower levels of δ-containing receptors, and the resulting reduction in tonic inhibition, could 

contribute to DLPFC dysfunction in schizophrenia.   

Alternatively, lower levels of δ subunit (and potentially of tonic inhibition) might 

represent a compensatory response to presynaptic reductions in GABA neurotransmission. 

Release of GABA provides inhibitory control over postsynaptic cells via both synaptic and 

extrasynaptic GABAA receptors.  An important functional role of synaptic receptors, which 

mediate phasic inhibition, is the generation of rhythmic activities in neuronal networks (Farrant 

and Nusser, 2005). The resulting synchronized activity gives rise to network oscillations which 

are thought to contribute to cognitive processes, such as working memory.  For instance, the 

synchronized firing of neuronal networks at 30–80 Hz, known as gamma band oscillations, are 

induced and sustained in the human DLPFC during working memory tasks (Tallon-Baudry et al., 

1998; Howard et al., 2003).  Thus, lower levels of prefrontal GAD67 mRNA, leading to a deficit 

in GABA synthesis and impaired phasic inhibition, have been proposed to be a substrate for 

reduced frontal lobe gamma band power and working memory deficits in schizophrenia (Cho et 

al., 2006).  Although the role of extrasynaptic receptors and tonic inhibition in the generation 

and/or maintenance of oscillations is less clear, a decrease in tonic inhibition could represent a 

compensatory response. Consistent with this idea, mutant mice with a complete loss of tonic 

inhibition in the hippocampus exhibit an increase in the power of gamma band oscillations 

(Glykys et al., 2008).  Thus, the findings of this study provide additional insight into the nature 

of altered cortical GABA neurotransmission in schizophrenia and suggest potential molecular 

targets for novel therapeutic interventions. However, further studies are needed to determine how 

alterations in δ subunit-containing GABAA receptors are related to putative mechanisms of 

impaired GABA neurotransmission in schizophrenia (Huang et al., 2007; Behrens et al., 2007). 
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3.0  CHAPTER 3: REDUCED SIGNALING THROUGH EXCITATORY SYNAPSES 

AS A PATHOGENETIC MECHANISM: EFFECTS ON δ SUBUNIT EXPRESSION 

LEVELS 

3.1 ABSTRACT 

Postmortem studies indicate that expression of the GABAA receptor δ subunit mRNA is 

significantly reduced in the PFC of subjects with schizophrenia, potentially contributing to the 

altered inhibitory circuitry seen in the illness.  Although the pathogenetic mechanisms upstream 

to lower levels of δ in schizophrenia remain unknown, some studies suggest that reduced 

signaling through excitatory synapses, as hypothesized to be present in schizophrenia, give rise 

to decreased expression of δ subunit mRNA.  In order to test this hypothesis, we used in situ 

hybridization to measure the levels of δ subunit mRNA in the PFC of four rodent models of 

reduced cortical excitatory drive: 1) reduced signaling through NMDA receptors (NMDAR NR1 

hypomorphic mice), 2) reduced excitatory synaptic terminals from the thalamus (adult 

mediodorsal thalamic nuclei lesioned (MDTNL) rats), 3) reduced excitatory synaptic terminals 

from the hippocampus (neonatal ventral hippocampal lesioned (NVHL) rats); and 4) reduced 

postsynaptic targets of excitatory inputs (TrkB hypomorphic mice with decreased dendritic 

arborization). Compared to appropriate control animals, the mRNA levels of δ subunit were not 

significantly different in the PFC of 1) homozygote NR1 hypomorphic mice, in which the 
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mRNA levels of NR1 subunit were decreased by 45%; 2) MDTNL rats with lesions ranging in 

size from 47 to 91% of MDTN volume; 3) NHVL rats, or 4) TrkB hypomorphic mice, in which 

TrkB mRNA levels were reduced by 35% and 74% in heterozygotes and homozygotes, 

respectively. Thus, although reduced signaling through excitatory synapses might be a 

pathogenetic mechanism for other abnormalities in schizophrenia, the convergence of findings 

from this study do not support the hypothesis that it accounts for the lower expression of GABAA 

receptor δ subunit mRNA. 
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3.2 INTRODUCTION 

Several lines of evidence support the idea that abnormalities in the inhibitory circuitry of the 

DLPFC might underlie some of the cognitive deficits observed in subjects with schizophrenia 

(Lewis et al., 2005).  For example, the mRNA expression levels of the GAD67 is significantly 

reduced in the DLPFC of subjects with schizophrenia (Akbarian et al., 1995; Volk et al., 2000; 

Guidotti et al., 2000; Straub et al., 2007; Hashimoto et al., 2008a; Hashimoto et al., 2005), 

suggesting that the release and extracellular levels of GABA are significantly reduced.  We 

recently found that the mRNA expression levels of the GABAA receptor δ subunit were 

significantly reduced in the PFC of subjects with schizophrenia, potentially contributing to 

reduced inhibitory neurotransmission in the illness (See Chapter 2).   

Previous studies suggest that expression of δ subunit mRNA is modulated by the levels of 

excitatory activity. For instance, δ subunit mRNA expression increases significantly in cultured 

cerebellar granule cells exposed to NMDA (Gault and Siegel, 1998), an effect that is abolished 

after addition of MK-801, a non-competitive NMDAR antagonist.  In addition, δ subunit 

expression decreased in the rat forebrain after a week of MK-801 infusions (Kim et al., 2000).   

These findings are of interest as convergent lines of evidence suggest that the disease process of 

schizophrenia may involve a reduction in neurotransmission through NMDARs (Moghaddam, 

2003; Coyle et al., 2003).  Furthermore, acute reduction in signaling via NMDARs lowers 

expression of GAD67 (Kinney et al., 2006).  Thus, alterations in markers of GABA 

neurotransmission including lower levels of δ mRNA, in schizophrenia could be a consequence 

of reduced excitatory activity.  However, no experimental evidence exists to provide proof-of-
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concept support that a chronic reduction in excitatory neurotransmission, which is more likely to 

mimic the nature of the hypothesized deficit in NMDA function in schizophrenia, results in 

decreased expression of the δ subunit of GABAA receptors. 

A chronic reduction in the activity of excitatory cortical inputs in schizophrenia might be 

a consequence of one of the following factors.  First, hypoactivation of NMDARs has been 

proposed to play a significant role in the pathogenesis of schizophrenia.  Clinical studies have 

shown that subanesthetic doses of ketamine (an NMDAR antagonist) induce symptoms 

characteristic of schizophrenia, including the types of cognitive deficits that are dependent on the 

circuitry of the DLPFC (Krystal et al., 1994; Malhotra et al., 1996).  Furthermore, gene variants 

that confer risk for schizophrenia might do so by modulating the activity of NMDARs (Coyle, 

2007).   

Second, reduced signaling through excitatory synapses might be a consequence of a 

lower number of excitatory synaptic terminals in the DLPFC. In particular, studies have shown 

that the volume and activity of the MDTN, the major source of excitatory thalamic input to the 

prefrontal cortex, are reduced in subjects with schizophrenia (Manoach et al., 1999; Byne et al., 

2001; Gilbert et al., 2001), although postmortem studies reporting a reduced number of MDTN 

neurons in schizophrenia have not been consistently replicated (see Dorph-Petersen et al. (2004) 

for review).  Interestingly, the mRNA levels of the δ subunit are significantly reduced in layers 3 

and 4 (see sections 2.4.5, Chapter 2) of the DLPFC, the principal cortical layers innervated by 

thalamic projections (Erickson and Lewis, 2004).  Thus, reduction in the number of, or activity 

in, excitatory projections from the MDTN might represent a pathogenetic mechanism giving rise 

to lower δ mRNA in subjects with schizophrenia. In addition, neonatal lesions of the ventral 

hippocampus in rats have replicated the post-pubertal appearance of a number of alterations in 
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the PFC reminiscent of those observed in schizophrenia (Lipska and Weinberger, 2000;Lipska et 

al., 2003). Thus, the hippocampus might also serve as a critical source of excitatory inputs to the 

DLPFC that could regulate δ subunit mRNA expression.   

Finally, chronic reduction in the signaling through excitatory synapses can be a 

consequence of a reduction in the number of postsynaptic targets of excitatory inputs.  

Postmortem studies revealed that the density of spines and the extent of dendritic arbors of 

cortical pyramidal cells are reduced in subjects with schizophrenia (Glantz and Lewis, 2000; 

Garey et al., 1998; Kalus et al., 2000; Black et al., 2004).   For instance, a lower number of 

spines in DLPFC pyramidal cells might reflect reduced signaling through the tyrosine kinase B 

(TrkB) receptor, which mediates the actions of the secreted neurotrophin brain-derived 

neurotrophic factor (BDNF).  BDNF-TrkB signaling has been shown to enhance somatodendritic 

development (Gorski et al., 2003; Horch and Katz, 2002; McAllister et al., 1995; Xu et al., 

2000b) and spine formation (Horch et al., 1999) of pyramidal neurons.  Interestingly, mice 

genetically engineered to express low levels of TrkB receptors (TrkB hypomorphic mice; (Xu et 

al., 2000a)) exhibit significant reductions in the number of dendritic branches of retinal 

gangionic cells (Liu et al., 2007).  Given that the mRNA levels of both BDNF and TrkB are 

significantly reduced in the DLPFC of subjects with schizophrenia (Hashimoto et al., 2005; 

Weickert et al., 2003), these findings suggest that lower signaling through TrkB receptors might 

contribute to the reduction in postsynaptic targets of excitatory inputs in subjects with 

schizophrenia.  

In order to provide experimental tests of the hypothesis that a chronic reduction in the 

signaling through excitatory synapses gives rise to lower levels of δ subunit mRNA, we assessed 

the mRNA levels of this GABAA receptor subunit in the PFC of several animals that model 

 54 



chronic reductions in signaling through excitatory synapses in the form of 1) reduced signaling 

through NMDARs, 2) reduced excitatory synaptic terminals from the thalamus or hippocampus, 

and 3) reduced postsynaptic targets of excitatory inputs.   

3.3 METHODS 

3.3.1 NR1 hypomorphic mice 

We utilized tissue from mice genetically engineered to express low levels of the NMDA receptor 

NR1 subunit (NR1 hypomorphic mice), generously provided by Dr. Mark Caron (Duke 

University, Durham, NC) (Mohn et al., 1999).  Briefly, NR1 hypomorphic mice were generated 

using homologous recombination in embryonic stem (ES) cells, utilizing a targeting vector to 

insert a neomycin resistance gene into intron 20 of the Nr1 locus.  ES cells carrying the targeted 

mutation were used to generate mice with an altered Nr1 allele (Nr1neo/+).  Three groups of mice, 

wild-type (Nr1+/+), heterozygous (Nr1neo/+) and homozygous (Nr1neo/neo), were euthanized at 8 

weeks of age (n = 4 for each group). Brains were frozen immediately and stored at -80°C.  Serial 

coronal sections (12 µm) containing the PFC were cut (from +1.98 to +1.54 bregma (Paxinos 

and Franklin, 2001). Three sections (spaced at 144 µm) were selected from each animal and 

processed for in situ hybridization for each transcript, NMDA NR1 and δ, as described below.  

One in situ hybridization run containing sections from all 12 animals was performed for each 

transcript. 
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3.3.2 MDTN rats 

Adult rats with lesions of the MDTN, were kindly provided by Dr. David W. Volk (University of 

Pittsburgh, Pittsburgh, PA) (Volk and Lewis, 2003). As previously shown, two injections of 0.10 

- 0.12 μl ibotenic acid (5 μg/μl) were made into each hemisphere (anteroposterior: -2.3 mm; 

lateral: +0.6 mm: dorsoventral: -5.5 mm) of peripubertal Sprague–Dawley rats (n = 8) (Volk and 

Lewis, 2003).  In sham rats (n = 8), the needle was lowered into the hippocampus, but did not 

penetrate the thalamus, and no injections were made. After a 4-week survival period, the animals 

were sacrificed by decapitation. The proportion of MDTN lesioned was previously determined 

(Volk and Lewis, 2003), using Nissl-stained coronal sections through the entire extent of MDTN 

and the Cavalieri estimator of volume (Howard and Reed, 1998).  Briefly, the ibotenic acid 

injections resulted in neuron loss and gliosis in the MDTN (Volk and Lewis, 2003).  

Furthermore, minimal damage to other adjacent thalamic regions were observed, such as zones 

of neuron loss in the paraventricular, intermediothalamic and centromedial nuclei (Volk and 

Lewis, 2003). Serial coronal sections (12 µm) containing the PFC were used (from +3.7 to +2.2 

mm bregma (Paxinos and Watson, 1986)).  For the δ subunit, four sections (spaced at 240 µm) 

were selected from each animal and processed for in situ hybridization as described below. Two 

in situ hybridization runs, each containing sections from all 16 animals, were performed.  

3.3.3 NVHL rats 

Tissue from NVHL rats was generously provided by Dr. Patricio O’Donnell (University of 

Maryland, Baltimore, MD) (O'Donnell et al., 2002).  At postnatal days 6-7, male Sprague–

Dawley pups were anesthetized with hypothermia by placing them in wet ice for 10-15 min, 
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placed on a stereotaxic frame and administered bilateral injections of sham (n = 11) or 0.3 μL of 

ibotenic acid (10 μg/μL, n = 13) into the ventral hippocampus (anteroposterior: −3.0 mm; lateral: 

+3.5 mm; dorso-ventral: −5.0 mm).  All rats were maintained on a 12-hour light/dark cycle with 

food and tap water available ad libitum until the time of the experiment.  Qualitative assessments 

of lesion size were made for all animals with Nissl stained sections spanning the entire 

rostrocaudal extent of the lesion (O'Donnell et al., 2002).  Out of the thirteen animals with 

ibotenic acid lesions, one animal exhibited an asymmetric lesion, with a very small lesion in the 

right hemisphere, and a second animal exhibited some damage to adjacent thalamic nuclei.  

Brains were frozen immediately and stored at -80°C.    Serial coronal sections (12 µm) 

containing the PFC were cut (from +3.7 to +2.2 mm bregma (Paxinos and Watson, 1986)).  

Three sections (spaced at 180 µm) were selected from each animal and processed for in situ 

hybridization.  One in situ hybridization run containing sections from all 24 animals was 

performed.   

3.3.4 TrkB hypomorphic mice 

In order to determine if a reduced number of postsynaptic targets of excitatory inputs could be an 

upstream factor resulting in decreased mRNA expression of δ subunits, we used tissue from TrkB 

hypomorphic mice which have a decrease in the dendritic arbor of neurons (Liu et al., 2007). In 

these animals, the first coding exon of the TrkB gene was replaced with a TrkB cDNA unit 

flanked by two loxP sites (fBZ locus) (Xu et al., 2000a). These mice were generated with 129 

strain mice-derived embryonic stem cells and C57BL/6 mice-derived blastocytes (Xu et al., 

2000a) and back-crossed into C57BL/6 mice for at least five generations. Wild-type C57BL/6 

mice (Jackson Laboratory, Bar Harbor, ME) were used as control. Homozygous (fBZ/fBZ) and 
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heterozygous (fBZ/+) animals were reported to express ~25% and ~62%, respectively, of the 

TrkB protein levels present in the wild-type animals (Xu et al., 2000a;Rohrer, 2001;Rico et al., 

2002).  Animals were euthanized at 8 weeks of age (n = 8 for each group). Brains were frozen 

immediately and stored at -80°C.  Serial coronal sections (12 µm) containing the PFC were cut 

(from +1.98 to +1.54 bregma (Paxinos and Franklin, 2001)). Three sections (spaced at 144 µm) 

were selected from each animal and processed for in situ hybridization for each transcript, TrkB 

and δ, as described below.  Two in situ hybridization runs, each containing sections from a given 

triad (wild-type, fBZ/+ and fBZ/fBZ) were performed for each transcript.   

3.3.5 In situ hybridization 

Templates for the synthesis of δ subunit, NMDA NR1 and TrkB riboprobes were obtained by 

PCR with specific primer sets.  A 517 bp cDNA fragment for NMDA NR1 corresponding to 

bases 1902-2418 of mouse NMDA Nr1 mRNA (Grin1, GenBank NM_008169); a 345 bp cDNA 

fragment for TrkB corresponding to bases 2567-2911 of mouse TrkB mRNA (GenBank X17647) 

and a 598 bp cDNA fragment corresponding to bases 235-832 of mouse δ mRNA (GenBank 

NM_008070) were amplified. Nucleotide sequencing revealed 100% homologies for the 

amplified fragments to the previously reported sequences.  The mouse δ riboprobe was utilized 

to analyze the mRNA levels of δ in the rat brain, since the 598 bp mouse cDNA amplified had 

94% homology with the rat δ subunit (GenBank NM_017289); in addition, the mRNA 

expression pattern of δ across the rat PFC was similar to that observed in mice.  DNA fragments 

were sub-cloned into the plasmid pSTBlue-1 (Novagen, Madison, WI). Antisense riboprobes 

were transcribed in vitro in the presence of 35S-CTP (Amersham Biosciences, Piscataway, NJ), 
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using T7 or SP6 RNA polymerase, which were then digested with DNase I and purified by 

centrifugation through RNeasy mini spin columns (Qiagen, Valencia, CA). 

Slide-mounted tissue sections were immersed in 4% paraformaldehyde in phosphate 

buffered saline (PBS), acetylated, dehydrated through a graded ethanol series, and then incubated 

with 35S-labeled riboprobes in hybridization buffer containing 50% formamide, 0.75 M NaCl, 20 

mM 1,4-piperazine diethane sulfonic acid, pH 6.8, 10 mM EDTA, 10% dextran sulfate, 5X 

Denhardt’s solution, 50 mM dithiothreitol, 0.2% SDS and 100 mg/ml yeast tRNA at 56°C for 16 

hours.  After washing in a solution containing 0.3 M NaCl, 20 mM Tris-HCl, pH 8.0, 1 mM 

EDTA, pH 8.0, and 50% formamide at 63°C, the sections were treated with RNase A (20 µg/ml) 

at 37°C, and washed in 0.1 SSC (150 mM NaCl and 15 mM sodium citrate) at 66.8°C. Sections 

were then dehydrated through a graded series of ethanol concentrations, air dried, and exposed to 

BioMax MR Film (Kodak, Rochester, NY).   

3.3.6 Quantification 

Analyses were performed by one investigator (JGMA) without knowledge of genotype or 

experimental treatment group. Trans-illuminated autoradiographic film images were captured by 

a video camera under controlled conditions, digitized, and analyzed with a Microcomputer 

Imaging Device (MCID) system (Imaging Research Inc, London). Images of the corresponding 

hybridized sections were captured and superimposed on the autoradiographic images to draw 

contours and to delineate the border between gray matter and white matter. Optical density was 

measured within contours of the PFC (including the cingulate and prelimbic cortices (Paxinos 

and Watson, 1986; Paxinos and Franklin, 2001)) and expressed as nanocuries per gram of tissue, 
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as determined by reference to 14C standards (ARC Inc., St. Louis, MO) exposed on the same 

film.   

3.3.7 Statistical analyses 

To examine the expression levels of δ subunit mRNA in the NR1 and TrkB hypomorphic mice, 

we performed an analysis of variance (ANOVA) model, using genotype as the main effect. We 

used two-sample t-tests to examine the expression levels of δ subunit mRNA between sham and 

MDTNL animals, and between sham and NVHL animals. All statistical tests were conducted 

with an α-level = 0.05.  

3.4 RESULTS 

3.4.1 NR1 hypomorphic mice 

NR1 Hypomorphic Mice. In order to test the hypothesis that decreased excitatory signaling 

through NMDARs gives rise to lower levels of δ mRNA levels, we measured the expression of δ 

in NR1 hypomorphic mice.  Quantitative analysis of film autoradiograms revealed a significant 

(F2,11 = 13.44, p = 0.002) effect of genotype on the levels of NMDA NR1 mRNA in the PFC 

(Figure 9A-C, G).  The mean (± SD) expression levels of the NMDA NR1 subunit were 

significantly (p < 0.05) 45% lower in the PFC of mice with a Nr1neo/neo genotype (569.36 ± 50.92 

nCi/g) compared to wild-type (1,043.06 ± 197.82 nCi/g) (Figure 9G).  Consistent with previous 

data (Mohn et al., 1999), the mRNA levels of the NR1 subunit were significantly decreased in 
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the PFC of mice with a Nr1neo/+ genotype (897.66 ± 105.99 nCi/g).   NR1 genotype had no effect 

(F2,11 = 0.87, p = 0.45) on the mRNA expression levels of δ mRNA (Figure 9D-F, G).  The mean 

(± SD) levels of δ subunit were only 4% lower in the PFC of mice with a  Nr1neo/neo genotype 

(208.60 ± 37.74 nCi/g) compared to wild-type (216.73 ± 20.71 nCi/g).  Furthermore, there was 

no significant correlation between the mRNA levels of δ and of NMDA NR1 across all animals 

(r = 0.19, p = 0.54). 

3.4.2 MDTNL rats 

To assess whether a reduction in excitatory synaptic inputs can give rise to lower expression 

levels of δ subunit, we measured the mRNA levels of δ subunit in the PFC of rats with bilateral 

lesions of the MDTN (Volk and Lewis, 2003), the major source of excitatory thalamic input to 

the PFC.  Analysis of the film autoradiograms revealed that the mean (± SD) mRNA levels of δ 

subunit in the PFC of MDTNL rats (right PFC: 76.30 ± 11.85 nCi/g; left PFC: 75.07 ± 12.88 

nCi/g) did not differ (right PFC: t14 = -0.34, p = 0.59; left PFC: t14 = -0.27, p = 0.79) from those 

in animals with a sham lesion (right PFC: 73.84 ± 13.05 nCi/g PFC: left PFC: 72.57 ± 13.53 

nCi/g) (Figure 10C).  Furthermore, δ mRNA expression levels were not correlated (right PFC: r 

= 0.34, p = 0.428; left PFC: r = 0.19, p = 0.650) with the proportion of MDTN lesioned (Figure 

11).  Thus, reduced MDTN excitatory inputs into the PFC do not seem to give rise to lower 

mRNA levels of δ subunit. 
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Figure 9.  Representative autoradiograms and expression levels of α4 and δ mRNAs in 

NMDA NR1 hypomorphic mice. 

Expression levels of NMDA NR1 (A-C) and GABAA δ (D-F) mRNAs in the frontal cortex of a 

wild-type mouse (A,D), a mouse heterozygous for the Nr1 neo locus (Nr1 neo/+; B,E) and a mouse 

homozygous for the Nr1 neo locus (Nr1neo/neo; C, F). The densities of hybridization signals are 

presented in a pseudocolor manner according to the calibration scales (right) for each transcript. 

Note the progressive decrease in mRNA expression of NMDA NR1 subunit as a function of 

genotype.  In contrast, the mRNA levels of δ subunit do not appear to differ across genotypes (D-

F). PFC is represented in the autoradiograms as the area between the solid lines. Scale bar = 500 

μm.  Consistent with these qualitative observations, mean NMDA NR1 subunit mRNA levels (G) 

were significantly reduced by 45% in the PFC of Nr1neo/neo mice compared to wild-type mice, and 

the levels in the Nr1neo/+ mice were intermediate.  In contrast, mean mRNA levels of δ subunit (H) 

did not differ as a function of genotype. Groups not sharing the same letter are statistically 

different at p<0.05 (Duncan’s post hoc test). 
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Figure 10. Representative autoradiograms and expression levels of δ mRNA in 

MDTNL rats. 

As illustrated in panel (C), the expression levels of δ mRNA were similar between in the 

prefrontal cortex of sham and MDTNL rats. The densities of hybridization signals are 

presented in a pseudocolor manner according to the calibration scales (below). PFC is 

represented in the autoradiograms as the area between the solid lines. Scale bar = 500 

μm. The mean mRNA levels of δ subunit did not differ between sham and MDTNL rats, 

in either PFC hemisphere (C).   
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Figure 11. Scatterplots comparing mean mRNA expression levels of δ subunit in the 

PFC of MDTNL rats with the percent of the MDTN lesioned in each rat.   

Note that the mRNA levels of δ subunit did not differ according to the extent of MDTN 

lesioned in either right (open circles) or left PFC (closed circles). 
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3.4.3 NVHL rats 

In order to further assess whether a decrease in excitatory synaptic terminals in the PFC can 

result in lower δ subunit, we analyzed δ mRNA levels in rats with a neonatal lesion of the ventral 

hippocampus, which directly projects to the PFC (Jay et al., 1989; Carr and Sesack, 1996).  The 

mean (± SD) mRNA levels of the δ subunit in the PFC of NVHL animals (right PFC: 38.59 ± 

6.79 nCi/g; left PFC: 42.33 ± 8.43 nCi/g) did not differ (right PFC: t22 = 0.73, p = 0.47; left PFC: 

t22 = 0.001, p = 0.99) from that of animals with a sham lesion (right PFC: 40.46 ± 5.57 nCi/g 

PFC: left PFC: 42.34 ± 6.63 nCi/g) (Figure 12). 

In addition, the levels of δ mRNA did not appear to correlate with the extent of the 

lesions.  For instance, in the NVHL animals, the mean (± SD) mRNA levels of δ subunit in the 

PFC of the two animals with the smallest lesions (right PFC: 41.42 ± 4.22; left PFC: 44.03 ±0.87 

nCi/g) were similar to that of five animals with the largest lesions (right PFC: 37.75 ± 6.47; left 

PFC:  39.36 ± 5.07 nCi/g). 
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Figure 12. Representative autoradiograms and expression levels of δ mRNA in 

NVHL rats. 

As illustrated in panel (C), the expression levels of δ mRNA levels were similar between 

in the prefrontal cortex of sham and NVHL rats.  The densities of hybridization signals 

are presented in a pseudocolor manner according to the calibration scales (below). PFC is 

represented in the autoradiograms as the area between the solid lines. Scale bar = 500 

μm. The mean mRNA levels of δ subunit did not differ between sham and NVHL rats, in 

either PFC hemisphere (C).   
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3.4.4 TrkB hypomorphic mice 

As a final test of our hypothesis, we determined whether the levels of δ subunit mRNA were 

decreased in the PFC of TrkB hypomorphic mice, since reduced signaling through TrkB 

receptors results in decreased dendritic complexity due to fewer branches (Xu et al., 2000b; Liu 

et al., 2007).  A single-factor ANOVA revealed a significant effect of genotype on the expression 

levels of TrkB mRNA (F2,21 = 127.02, p < 1 x 10-11).  In particular, the mRNA levels of TrkB 

were significantly decreased by 35% and 74% in mice with fBZ/+ and fBZ/fBZ genotypes, 

respectively, compared to wild-type mice (Figure 13G).  In contrast, we did not find a significant 

(F2,21 = 2.06, p = 0.152) effect of genotype on the expression levels of δ mRNA.  The mean 

mRNA levels of the δ subunit were lower by 15% in fBZ/+, but only by 9% in fBZ/fBZ mice 

(Figure 13H).  Finally, we did not observe a significant correlation between δ and TrkB mRNA 

levels (r = 0.25, p = 0.24) across all animals. 
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Figure 13. Representative autoradiograms and expression levels of α4 and δ mRNAs in 

TrkB hypomorphic mice. 

Expression levels of TrkB (A-C) and GABAa δ (D-F) mRNAs in the frontal cortex of a wild-type 

(A,D), a mouse heterozygous for the fBZ locus (fBZ/+; B,E) and a mouse homozygous for the fBZ 

locus (fBZ/fBZ; C,F). The densities of hybridization signals are presented in a pseudocolor 

manner according to the calibration scales (right) for each transcript. The mRNA expression 

levels of TrkB receptor appear to decrease in proportion to the gene dose (A-C).  In contrast, the 

mRNA levels of δ subunit do not appear to be changed significantly across genotypes (D-F). PFC 

is represented in the autoradiograms by the area between the solid lines. Scale bar = 500 μm.  The 

mean TrkB mRNA levels in the PFC were significantly decreased by 34% and 75% in fBZ/+ and 

fBZ/fBZ mice, respectively (G).  No difference was observed in the mRNA expression levels of δ 

subunit in fBZ/+ or fBZ/fBZ mice compared to wild-type mice (H).  Mouse groups not sharing the 

same alphabetical letter are statistically different at p<0.05 (Duncan’s post hoc test). 
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3.5 DISCUSSION 

Based on observations that the acute disruption of signaling through NMDARs results in 

alterations in presynaptic markers of GABA neurotransmission similar to those seen in 

schizophrenia, we hypothesized that the lower expression of postsynaptic GABAA receptor δ 

subunit mRNA in subjects with schizophrenia was a downstream consequence of a chronic 

decrease in the signaling through excitatory synapses.  To test this hypothesis we measured the 

mRNA levels of the δ subunit in the PFC of four animal models with different forms of reduced 

excitatory drive in the PFC: 1) reduced signaling through NMDARs (NMDA NR1 hypomorphic 

mice), 2) reduced excitatory synaptic terminals from the thalamus (MDTNL rats), 3) reduced 

excitatory synaptic terminals from the hippocampus (NVHL rats), and 4) reduced postsynaptic 

targets of excitatory inputs (TrkB hypomorphic). Contrary to our hypothesis, the mRNA levels 

of the δ subunit were not altered in any of these animal models.  Furthermore, we did not find 

any association between the expression of δ and measures of the extent of reduced levels of 

markers of excitatory inputs as modeled in each animal.   

Together, these findings do not support the hypothesis that chronic reduction in the 

signaling through excitatory synapses represents a pathogenetic mechanism resulting in lower 

expression of δ subunit mRNA in subjects with schizophrenia.  However, this interpretation 

depends, in part, on the adequacy of each of the animal models utilized to replicate the type of 

deficits in excitatory neurotransmission observed in subjects with schizophrenia.  For instance, in 

order to test whether hypoactivation of NMDARs could give rise to lower expression of δ 

subunit, we utilized tissue from NMDA NR1 hyormorphic mice, genetically engineered to 

express low levels of NMDARs.  However, the evidence supporting the idea that the protein or 

mRNA expression levels of NMDARs are decreased in schizophrenia is limited and not always 
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replicated (Moghaddam, 2003; Lewis and Gonzalez-Burgos, 2007).  Instead, it has been 

hypothesized that other components known to modulate the activity of NMDARs signaling are 

altered in schizophrenia (Kristiansen et al., 2007; Lewis and Gonzalez-Burgos, 2006).   

One potential mechanism involves increased levels of N-acetylaspartylglutamate 

(NAAG) (Coyle, 2004).  Postmortem studies suggest that the levels and activity of the enzyme 

glutamate carboxy peptidase (GCP II), which degrades N-acetylaspartylglutamate (NAAG), are 

reduced in schizophrenia (Tsai et al., 1995; Hakak et al., 2001).  Because NAAG has been 

hypothesized to be an antagonist of NMDAR (Coyle, 2004), lower levels of GCP II could result 

in higher levels of NAAG, contributing to hypoactivity of NMDARs (Coyle, 2004), although 

recent findings indicate that inhibition of GCP II in mice reduced schizophrenia-like symptoms 

elicited by MK-801 or PCP, suggesting that NAAG might actually act as an agonist at NMDARs 

(Olszewski et al., 2008).  Furthermore, it has been hypothesized that in schizophrenia, signaling 

through NMDA receptors might be particularly lower in GABA-containing interneurons (Coyle, 

2004).  Consistent with this idea, a recent study showed that in rats systemically injected with 

MK-801, GABA-containing interneurons exhibited a decreased firing rate, whereas pyramidal 

cells exhibited an increase in firing rate (Homayoun and Moghaddam, 2007; Chen et al., 2006).  

Together, these findings suggest that the pharmacological blockade of NMDARs may better 

recapitulate the pathophysiology of schizophrenia than a genetically engineered reduction in 

NMDARs. However, hypoactivity of NMDARs, as modeled in NMDA NR1 hypomorphic mice, 

results in behavioral deficits, such as hyperlocomotion, stereotypy and abnormal social 

interactions, which resemble the pathophysiology of schizophrenia (Chen et al., 2006). 

Furthermore, NMDA NR1 hypomorphic mice exhibit reduced relative C-2-deoxyglucose uptake 

in the PFC, suggesting reduced frontal cortical metabolic activity, similar to the reports of altered 
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brain metabolism in subjects with schizophrenia (Duncan et al., 2002).   In addition, most, 

although not all, studies suggest that the behavioral and physiological consequences observed in 

NR1 hypomorphic mice are similar to those  reported after pharmacological blockade of 

NMDARs (Mohn et al., 1999; Duncan et al., 2004; Miyamoto et al., 2000).  Thus, both 

manipulations, a pharmacological blockade and a genetically-induced reduction in NMDARs, 

appear to have face validity for schizophrenia.   

The question addressed in this study was whether a chronic reduction in signaling 

through NMDARs, which is more likely to mimic the deficit in schizophrenia than an acute 

reduction in signaling, gives rise to lower levels of the δ subunit.  Although a previous study 

reported reduced mRNA levels of δ in the rodent PFC after pharmacological blockade of 

NMDARs (Kim et al., 2000), these changes appear to be transient.  For instance, a single 

injection of MK-801 was shown to significantly reduce the mRNA levels of δ in the rat 

hippocampus; however, the expression of δ returned to normal levels 24 hours later (Sinkkonen 

et al., 2004). The NMDA NR1 hypomorphic mice provide a useful model to study the 

consequence of chronic and developmental reduction in the activity of NMDARs (Duncan et al., 

2002).  Thus, although further studies are needed to determine the effect of chronic 

pharmacological blockade of NMDARs on δ subunit, our findings suggest that a chronic 

reduction in the signaling of NMDARs, as modeled in NMDA NR1 hypomorphic mice, does not 

reduce the expression of δ subunit.   

Furthermore, our findings suggest that reduced signaling through excitatory synapses, as 

a consequence of reduced presynaptic inputs to the PFC, does not contribute to lower expression 

of the δ subunit.  In particular, we did not observe a change in the levels of δ mRNA in the PFC 

of adult rats peripubertal lesions of the MDTN or with neonatal lesions of the ventral 
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hippocampus.  The latter finding is of particular interest as the neonatal lesions disrupt the 

development of excitatory inputs into the PFC and thus provide evidence against the idea that in 

the MDTNL rats we failed to observed a change in δ mRNA levels because the lesions were 

made after the thalamocortical projections into the PFC had already been formed (Van Eden, 

1986). 

Interestingly, it has been shown that pyramidal cells in the PFC of NVHL rats exhibit a 

significant reduction in the density of dendritic spines of prefrontal cortical neurons (Flores et al., 

2005).  Thus, the lack of a difference in δ mRNA in the PFC of NVHL also suggests that a 

reduction in postsynaptic excitatory targets does not affect the expression of δ.  Consistent with 

this idea, we did not observe a change in δ mRNA levels in the PFC of mice with lower levels of 

TrkB receptors, which play a significant role in the dendritic development of pyramidal cells.  

However, it should be noted that no study has yet determined whether prefrontal cortical 

pyramidal cells of TrkB hypomorphic mice exhibit a reduction in spine density or dendritic 

length.  Thus, further studies are needed in order to rule out the possibility that normal δ mRNA 

levels in TrkB hypomorphic mice reflect a lack of change in postsynaptic excitatory targets. 

Although each of the experiments in this study produced negative results, it seems 

unlikely that these are false negatives due to a lack of sensitivity of the methods employed since 

we previously found reduced levels of δ mRNA in another rodent model using the same 

techniques (see section 2.4.7, Chapter 1).   

Thus, in this study, findings from several animal models that address different aspects of 

reduced signaling through excitatory synapses: hypoactivation of NMDARs, reduced excitatory 

synaptic terminals and reduced postsynaptic excitatory targets, converge on the idea that a lower 

expression of δ mRNA in the DLPFC of subjects with schizophrenia is not a consequence of 
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reduced excitatory activity.  As such, these negative findings provide indirect support for the 

hypothesis presented in Chapter 2 that the reduction in the δ subunit in schizophrenia is a 

corollary of the impaired expression of α1 subunit mRNA. 
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4.0  GENERAL DISCUSSION 

4.1 LOWER MRNA LEVELS OF THE α4 SUBUNIT IN SCHIZOPHRENIA: 

POTENTIAL EFFECT OF CONFOUNDING FACTORS 

Our findings indicate that the mRNA levels of α4 subunit are lower only in subjects with 

schizophrenia receiving benzodiazepines, mood stabilizers and/or antidepressants at the time of 

death.  These findings suggest that lower α4 mRNA is an effect of medications and does not 

represent the disease process.   

However, several (Raol et al., 2005; Holt et al., 1997; Holt et al., 1996) but not all (Wu et 

al., 1994) previous studies indicate that rats exposed to benzodiazepines, such as diazepam and 

zolpidem, exhibit an increase in the mRNA levels of the α4 subunit, an effect that is not 

attributable to direct interactions between the drug and the receptors, given that α4-containing 

GABAA receptors are benzodiazepine-insensitive (Holt et al., 1997).  Thus these studies do not 

support the interpretation that lower α4 mRNA levels in schizophrenia are an effect of these 

medications.  The independent effects of mood stabilizers and antidepressants on α4 mRNA 

levels in experimental systems remain to be determined.  Therefore, similar to our studies 

addressing the potential effects of exposure to antipsychotic medications, future studies should 

assess the effect that chronic exposure to each of these medications (benzodiazpines, mood 

stabilizers and antidepressants) have on α4 expression in the DLPFC of non-human primates.   
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However, as an alternative hypothesis, lower levels of α4 mRNA might reflect a 

particular disease process in a subtype of schizophrenia with clinical features that require the 

prescription of these medications.  Of note, our findings indicate that a diagnosis of 

schizoaffective disorder (a diagnosis given to individuals who have had an uninterrupted period 

of illness during which there was a major depressive episode or manic episode concurrent with 

symptoms of schizophrenia (American Psychiatric Association, 1994)) does not have a 

significant effect on α4 mRNA levels. Thus, clinical features such as depression associated with 

a diagnosis of schizoaffective disorder might not be related to lower levels of α4.  Further studies 

are needed to determine what other clinical features, if any, are common among patients with 

schizophrenia receiving benzodiazepines, mood stabilizers and/or antidepressants and potentially 

associated with lower α4 mRNA levels.   

4.2 LOWER MRNA LEVELS OF THE δ SUBUNIT IN SCHIZOPHRENIA: DISEASE 

PROCESS OF THE ILLNESS 

In contrast to α4, lower levels of δ do not appear to represent an effect of potential confounding 

factors.  First, the mean percent difference in δ mRNA levels was not affected by sex, diagnosis 

of schizoaffective disorder, cause of death, alcohol abuse and/or dependency, or treatment with 

benzodiazepines, mood stabilizers and/or antidepressants at time of death. Second, levels of δ 

mRNA were unchanged in the DLPFC of monkeys chronically exposed to typical or atypical 

antipsychotics. Third, the mean percent difference in δ mRNA levels in the four subjects with 

schizophrenia who were off antipsychotic medications at time of death did not differ from those 

who were receiving medications. 
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Fourth, although the mRNA levels of δ were correlated with RIN values in subjects with 

schizophrenia, the observed lower level of δ mRNA expression in schizophrenia does not appear 

to reflect a general decline in RNA integrity in these subjects because the RIN values were in the 

range known to be associated with sudden death and good RNA preservation (Harrison et al., 

1995). Similar studies using most of the subjects with schizophrenia used in our study 

demonstrated no differences between subject groups in the expression levels of a number of 

other mRNAs (Hashimoto et al., 2005; Hashimoto et al., 2003).   

Finally, the reduction in δ mRNA is not likely to reflect a loss of neurons, given that 

several studies have reported either no change or an increase in neuron density (Selemon et al., 

1998; Selemon et al., 1995; Glantz et al., 2000) and no change in total neuron number (Thune et 

al., 1998) in the DLPFC of subjects with schizophrenia.  In contrast, the lower levels of δ subunit 

in subjects with schizophrenia appear to represent the disease process in the illness.   

4.3 ALTERED EXPRESSION OF δ-CONTAINING GABAA RECEPTORS: A 

CONSERVED DEFICIT ACROSS NEOCORTICAL REGIONS 

Similar to the reports of reduced volume and activity of the DLPFC, studies suggest that the  

volume of other brain regions such as the temporal lobe and medial temporal structures are 

reduced in subjects with schizophrenia (Lawrie and Abukmeil, 1998).  Similarly, deficits in 

GABA-related markers also appear to be altered in brain regions outside the DLPFC (Konopaske 

et al., 2004).  These findings raise the question of whether the observed lower levels of δ in the 

DLPFC of subjects with schizophrenia are present in other brain regions.  Indeed, a recent study 

provides evidence supporting the idea that the altered expression of δ represents a conserved 
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deficit across neocortical regions in subjects with schizophrenia (Hashimoto et al., 2008b).  

Using real-time quantitative polymerase chain reaction, the expression levels of δ and other 

GABA-related markers were assessed in four cortical areas: DLPFC, anterior cingulate, primary 

motor and primary visual cortices.  A cohort of 12 pairs of subjects with schizophrenia and 

matched controls was analyzed.  Findings showed the mean mRNA expression levels of the δ 

subunit across cortical areas to be significantly lower by 25% across all four areas in subjects 

with schizophrenia (Hashimoto et al., 2008b), suggesting that a deficit in the expression of δ-

containing receptors is not restricted to the DLPFC in these subjects.  Such findings indicate that 

signaling through δ-containing receptors might be altered across multiple brain regions.  

Furthermore, it is possible that lower levels of δ mRNA represent a common pathological entity 

across cortical regions and might contribute to the pathophysiology of different domains of 

cortical dysfunction in schizophrenia.  

In addition, it could be hypothesized that the pathogenetic mechanisms underlying 

deficits in δ mRNA expression might be common across the neocortical mantle in schizophrenia.  

Of note, the mRNA levels of the α1 subunit were also significantly lower across all four 

neocortical regions.  This is of interest, as the findings outlined in Chapter 2 suggest that lower 

expression of δ mRNA in the DLPFC of subjects with schizophrenia is associated with lower 

levels of α1, rather than α4 (See 4.4.1, General Discussion), and that reduced expression of α1 

might also represent an upstream pathogenetic mechanism (See 4.5.2, General Discussion).    
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4.4 LOWER δ MRNA LEVELS: REDUCED COMPLEMENT OF α4βxδ GABAA 

RECEPTORS 

4.4.1 Co-assembly of δ and α1 subunits  

Previous studies suggest that, in addition to α4, δ subunit can also co-assemble with the α1.  For 

instance, combinations of α, β, γ2 and δ subunits have been shown to produce functional α1β1δ, 

α1β1γ2Lδ and α1β3δ recombinant receptors (Saxena and Macdonald, 1994; Wohlfarth et al., 

2002; Bianchi and Macdonald, 2003).  Consistent with these findings, the α1 subunit has been 

found to localized extrasynaptically (Baude et al., 2007; Sun et al., 2004), consistent with the 

ultrastructural localization of δ-containing receptors (Nusser et al., 1998; Farrant and Nusser, 

2005).  Furthermore, immunoprecipitation studies with δ-antiserum from total rat brain extracts 

revealed that the δ subunit associates with α1 subunits (Mertens et al., 1993).  Thus, α1 and δ 

subunits also appear to be associated in vivo.  

Consistent with this idea, it has recently been suggested that δ subunits form functional 

GABAA receptors with α1 subunits in mouse hippocampal interneurons (Glykys et al., 2007).  

For example, interneurons in the dentate molecular layer exhibited immunoreactivity for both α1 

and δ along the cell body surface and in proximal dendrites.  In addition, in GABAA α4 subunit 

knockout mice, the immunoreactivity levels of δ decrease significantly in dentate gyrus granule 

cells, consistent with the strong partnership of α4 and δ in these neurons.  In contrast, the 

immunoreactivity levels of δ were unchanged and remained colocalized with α1 

immunoreactivity in interneurons (Glykys et al., 2007).  Furthermore, levels of tonic inhibition 
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mediated by δ-containing receptors are augmented by low concentrations of ethanol (Wallner et 

al., 2003; Wei et al., 2004; Hanchar et al., 2005).  Interestingly, in α4 subunit knockout mice, 

tonic currents were potentiated by ethanol in hippocampal interneurons, whereas no potentiation 

was observed in dentate granule cells (Glykys et al., 2007).  Together, these findings converge 

on the idea that α1 and δ subunits form functional α1βxδ receptors in vivo in at least some 

neurons.    

4.4.2 Co-regulated expression of α1 and δ subunits in schizophrenia 

The dissociation between δ and α4 mRNA levels in subjects with schizophrenia (See Chapter 2) 

raised the question of whether lower mRNA levels of the δ subunit in the DLPFC represent a 

decreased expression of δ-containing GABAA receptors co-assembled with α1 subunits. 

While our studies do not provide direct evidence for the presence or altered expression of 

α1βxδ receptors in the DLPFC of subjects with schizophrenia, the following lines of evidence 

are consistent with the idea that lower expression of δ subunit mRNA is associated with lower 

levels of α1 subunit.   First, across postnatal development of the non-human primate DLPFC, the 

levels of δ mRNA increased significantly (See 2.4.6, Chapter 2), paralleling the previously 

observed increase in the α1 subunit (Nguyen et al., 2006).  In contrast, the levels of α4 decreased 

with development. Second, in subjects with schizophrenia, the mRNA levels of δ and α1 subunit 

mRNAs were reported to be significantly reduced in the DLPFC by microarray, and the 

magnitude of the disease-related differences in both transcripts were significantly correlated 

(Hashimoto et al., 2008a).  In contrast, no correlation was observed between δ and α4 mRNAs.  

Interestingly, the mRNA levels of δ and α4 subunits were correlated in control subjects (r = 0.94, 

p < 1.0 x 10-9) and subjects with schizophrenia (r = 0.78, p < 1 x 10-4).  However, the larger 
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regression coefficient in control subjects suggests that the correlation between δ and α4 mRNAs 

in these subjects is stronger than in subjects with schizophrenia.  In fact, in control subjects the 

mean (± SD) values for the regression residuals between δ and α4 mRNAs in control subjects 

(14.7 ± 12.5) was significantly smaller (t44 = -2.96, p < 0.01) than in subjects with schizophrenia 

(31.2 ± 23.5).    The weaker correlation between δ and α4 subunit in subjects with schizophrenia 

is consistent with the idea that, in schizophrenia lower levels of the δ subunit are not associated 

with lower levels of α4 subunit.   

Third, a recent in situ hybridization study using the same 23 subject pairs used in our 

study, found a significant reduction in α1 mRNA levels across DLPFC layers 2-6, where the 

levels of δ mRNA were significantly lower (See 2.4.5, Chapter 2).  Furthermore, the mean 

percent of difference for α1 in subjects with schizophrenia was significantly correlated (r = 0.74, 

p < 0.0001) with that of the δ subunit (Dr. Mónica Beneyto, personal communication). Finally, 

as previously illustrated (see 4.3, Discussion), the levels of both α1 and δ mRNAs are 

consistently lower across neocortical areas in subjects with schizophrenia (Hashimoto et al., 

2008b).  Together, these findings are consistent with the idea that lower mRNA levels of δ are 

associated with lower levels of α1 subunit in subjects with schizophrenia.  Interestingly, the 

expression of the β3 subunit was found to be significantly lower in the DLPFC of subjects with 

schizophrenia, as measured by microarray (Hashimoto et al., 2008a).  While which β subunit 

assembles with δ-containing receptors in vivo remains unclear, δ-containing receptors might also 

contain β3 (Wallner et al., 2003).  Together, these findings suggest that lower levels of δ, α1 and 

β3 subunits in schizophrenia might represent a lower complement of α1β3δ GABAA receptors. 

However, our findings require verification at the protein level, since the interpretation 

that schizophrenia might be associated with a lower complement of α1βxδ receptors - but not 
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α4βxδ - is based, in part, on the assumption that the protein levels of δ and α1 subunits are lower 

in schizophrenia, whereas those of α4 are not.  For instance, we cannot rule out the possibility 

that as a result of lower δ mRNA levels, the protein levels of both δ and α4 subunits (potentially 

α4βxδ) are decreased significantly in schizophrenia; even though no changes in α4 mRNA levels 

are observed (See 2.4.2 & 2.4.3, Chapter 2).  A similar dissociation between mRNA and protein 

levels for GABAA subunits have been described in α6 knockout mice (Jones et al., 1997).  

Unfortunately, in our experimental conditions, the antibodies against the δ subunit (generously 

provided by Dr. Werner Sieghart) did not detect δ subunits in the human DLPFC (unpublished 

work). 

4.5 FUNCTIONAL SIGNIFICANCE OF LOWER δ-CONTAINING RECEPTORS 

4.5.1 Lower expression of δ mRNA as a compensatory change 

Lower levels of δ subunit might represent a compensatory response to presynaptic reductions in 

GABA neurotransmission.  It has been shown that normal working memory requires the activity 

of GABAergic interneurons in the DLPFC (Sawaguchi et al., 1989; Rao et al., 2000), which 

synchronizes the activity of a local population of neurons (Klausberger et al., 2003).  Networks 

of GABAergic inernerons, such as parvalbumin-positive cells give rise to oscillatory activity in 

the gamma range (30–80 Hz) (Whittington and Traub, 2003).  It has been shown that gamma 

band oscillations in the human DLPFC increase in proportion to working memory load (Howard 

et al., 2003).  Because synaptic GABAA receptors play a significant role in the generation and 

maintenance of network oscillations, as they provide postsynaptic conductance with a rapid time 
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course (Farrant and Nusser, 2005), the reports of decreased GAD67 and upregulated α2 subunits 

in the DLPFC of subjects with schizophrenia suggest that synaptic-phasic inhibition onto 

pyramidal cells is decreased and might result in altered oscillatory activity in the gamma range.  

Consistent with this hypothesis, the power of gamma band oscillations has been shown to be 

reduced in subjects with schizophrenia during a working memory task (Cho et al., 2006).   

 The role that δ-containing GABAA receptors play in the generation and/or maintenance of 

gamma oscillations is unclear.  However, insight into the potential role that tonic inhibition plays 

in oscillations is provided by the study of α5-containing receptors, which mediate tonic 

inhibitory conductance in hippocampal pyramidal cells (Caraiscos et al., 2004).  Using 

hippocampal slices of wild-type and α5 knockout mice, a previous study assessed the role of α5 

subunits expressed by CA3 pyramidal cells in the generation of kainate-induced gamma 

oscillations (Towers et al., 2004).  The study reports that the mean peak power of kainate-

induced gamma oscillations in α5 knockout mice was higher than in wild-type mice.  The 

authors proposed that tonic inhibition decreases the power of gamma oscillations because the 

tonic conductance reduces the influence of inhibitory postsynaptic potentials on pyramidal cells, 

which are essential for synchronization (Towers et al., 2004).  If tonic inhibitory conductance 

mediated by δ-containing receptors plays a similar role in cortical pyramidal cells, lower 

expression of δ subunit mRNA and, consequently, a decrease in tonic inhibitory conductance 

would be expected to result in increased power of gamma oscillations.  Consistent with this 

interpretation a recent study reported that mice with a genetic deletion of both δ and α5 subunit 

exhibit an increase in the power of gamma oscillations (Glykys et al., 2008).  While the effect 

that a deletion of δ subunit alone might have on the generation and/or maintenance of gamma 

oscillations remains unclear, these findings suggest that lower levels of δ mRNA in DLPFC 
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pyramidal cells in subjects with schizophrenia would result in lower tonic conductance and as a 

consequence, increase power of gamma oscillations.  Thus, the altered expression of the δ 

subunit might represent a compensatory response to the decreased inhibitory input associated 

with lower GAD67 mRNA.  

It has been hypothesized that deficits in inhibitory neurotransmission in the DLPFC of 

subjects with schizophrenia are due to a reduction in the synthesis of GABA (lower GAD67 

mRNA) that is partially compensated by an upregulation of postsynaptic α2-containing GABAA 

receptors (Volk et al., 2002).  Interestingly, the protein levels of the α2 subunit appear to be 

significantly increased in the forebrain membranes of α1 knockout mice (Kralic et al., 2002) and 

in α1 knockout mice in which the expression of α1 subunit is reduced (Borghese et al., 2006).  

These findings suggest that increased levels of α2 subunits in schizophrenia might be a 

consequence of reduced α1 expression.  As outlined in the above, lower levels of δ-containing 

receptors could also serve to compensate for altered inhibitory control in subjects with 

schizophrenia.  These findings suggest that the reduction of GAD67 mRNA in schizophrenia, 

which is thought to contribute to altered oscillatory activity in the gamma range, is compensated 

by both: an upregulation of α2-containing receptors and a decrease in δ-containing receptors.  

These compensatory changes in the levels of α2- and δ-containing receptors might be mediated 

by a reduction in the expression levels of the α1 subunit.   Further proof-of-concept studies are 

needed to determine whether reduced expression of GAD67 mRNA results in lower levels of α1, 

lower levels of δ and higher levels of α2, and what cellular mechanisms are involved.  

 Two main assumptions have been made in these interpretations that require further 

validation.  First, the lower expression levels of δ in subjects with schizophrenia reflect lower 

expression levels of δ mRNA in DLPFC pyramidal cells.  This is based on a previous human 
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postmortem study reporting that δ mRNA silver grains clustered predominantly over pyramidal 

cells in the motor cortex (Petri et al., 2003).  However, given that lower mRNA levels of δ in 

schizophrenia might be associated with lower expression of α1 and that functional α1βxδ 

receptors have been identified in hippocampal interneurons (Glykys et al., 2007), further studies 

are needed to determine the type of neocortical cells that express lower levels of δ subunit in 

schizophrenia.  Second, it has been assumed that lower mRNA levels of δ are paralleled by 

reductions in its cognate protein, resulting in lower δ-containing GABAA receptors.  While our 

studies do not address whether the protein levels of δ are lower in the DLPFC of subjects with 

schizophrenia, previous analyses of other GABA-markers in the DLPFC of subjects with 

schizophrenia suggest that changes at the mRNA levels are paralleled by similar changes in their 

cognate proteins.  For instance, both mRNA and protein levels of GAT-1 (Volk et al., 2001; 

Volk et al., 2002) and of the endocannabinoid receptor CB1 (Eggan et al., 2007) are reduced in 

schizophrenia, whereas the mRNA and protein levels of the α2 subunit appear to be increased in 

subjects with schizophrenia (Volk et al., 2002; Beneyto et al., 2007).  However, further studies 

are needed to determine the protein levels of δ across the DLPFC of subjects with schizophrenia.   

4.5.2 Lower expression of δ mRNA represents a consequence of lower α1 expression 

Lower mRNA levels of the δ subunit in the DLPFC of subjects with schizophrenia may be a 

consequence of lower α1 subunit expression.  Significant associations between two GABAA α1 

subunit haplotypes and risk for schizophrenia in a Portuguese and German family have been 

described, suggesting that genetic liability in the α1 subunit might contribute to the pathogenesis 

of schizophrenia (Petryshen et al., 2005).  In our findings, the mRNA levels of δ were 

significantly reduced in the PFC of α1 knockout mice (See 2.4.7, Chapter 1).  Although 
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speculative, these findings suggest that, in schizophrenia a potential genetic risk in the α1 subunit 

could result in lower α1 expression.  As a consequence, the mRNA levels of the δ subunit would 

be reduced, which might result in lower expression of α1βxδ receptors.  However, it should be 

noted that in the study by Petryshen et al, no correlation was found between the α1 risk 

haplotypes and α1 mRNA levels.  Thus, it is unclear whether the suggested genetic susceptibility 

leads to lower expression of α1.  Furthermore, a second genetic study failed to replicate the 

associations between α1 haplotypes and risk for schizophrenia (Ikeda et al., 2005).   

 85 



5.0  CONCLUSIONS 

In summary, the studies described in this dissertation indicate that in schizophrenia, the mRNA 

levels of the GABAA receptor δ subunit are significantly lower, whereas those of α4 are not.  

Given that α1 mRNA levels are lower in schizophrenia and that α1 subunits can co-assemble 

with δ subunits, lower δ mRNA levels could represent a reduced complement of GABAA α1βxδ 

receptors, rather than α4βxδ.  Thus, altered inhibitory neurotransmission in schizophrenia may be 

associated with deficits in tonic inhibition, due to a reduced number of α1βxδ receptors.   

Furthermore, reduced signaling through excitatory synapses does not appear to represent 

the pathogenetic mechanism underlying the altered expression of δ-containing GABAA receptors 

in schizophrenia, since the mRNA levels of δ were unchanged in four rodent models of reduced 

cortical excitatory drive: 1) reduced signaling through NMDA receptors, 2) reduced excitatory 

synaptic terminals from the thalamus, 3) reduced excitatory synaptic terminals from the 

hippocampus, and 4) reduced postsynaptic targets of excitatory inputs.  In contrast, lower levels 

of δ may be a consequence of reduced expression of the α1 subunit, since δ mRNA levels were 

significantly reduced in the prefrontal cortex of α1 knockout mice.  Alternatively, given the role 

that reduced levels of tonic inhibition appear to play in increasing network oscillations, lower 

levels of α1βxδ GABAA receptors may represent a compensatory response to a reduced power of 

gamma oscillations in subjects with schizophrenia.  
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