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ABSTRACT

STATISTICAL TREATMENT OF GRAVITATIONAL CLUSTERING
ALGORITHM

Yao Zhang, PhD

University of Pittsburgh, 2010

In neuroscience, simultaneously recorded spike trains from multiple neurons are increasingly
common; however, the computational neuroscience problem of how to quantitatively ana-
lyze such data remains a challenge. Gerstein, et al. [5] proposed a gravitational clustering
algorithm (GCA) for multiple spike trains to qualitatively study interactions, in particu-
lar excitation, among multiple neurons. This thesis is mainly focused on a probabilistic
treatment of GCA and a statistical treatment of Gerstein’s interaction mode.

For a formal probabilistic treatment, we adopt homogeneous Poisson processes to gener-
ate the spike trains; define an interaction mode based on Gerstein’s formulation; analyze the
asymptotic properties of its cluster index — GCA distances (GCAD). Under this framework,
we show how the expectation of GCAD is related to a particular interaction mode, i.e.,
we prove that a time-adjusted-GCAD is a reasonable cluster index for large samples. We
also indicate possible stronger results, such as central limit theorems and convergence to a
Gaussian process.

In our statistical work, we construct a generalized mixture model to estimate Gerstein’s
interaction mode. We notice two key features of Gerstein’s proposal: (1) each spike from each
spike train was assumed to be triggered by either one previous spike from one other spike
train or environment; (2) each spike train was transformed into a continuous longitudinal
curve. Inspired by their work, we develop a Bayesian model to quantitatively estimate

excitation effects in the network structure. Our approach generalizes the mixture model to
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accommodate the network structure through a matrix Dirichlet distribution. The network
structure in our model could either approximate the directed acyclic graph of a Bayesian
network or be the directed graph in a dynamic Bayesian network. This model can be generally
applied on high-dimensional longitudinal data to model its dynamics. Finally, we assess the

sampling properties of this model and its application to multiple spike trains by simulation.

Keywords: Poisson process, generalized mixture model, matrix Dirichlet distribution, Bayes

network, high-dimensional longitudinal data, multiple spike trains.
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1.0 INTRODUCTION

In computational neuroscience, analyzing simultaneously recorded multiple spike trains is a
relatively new problem. A spike is one firing of a neuron and is usually considered to be a
point event. A spike train is the sequence of spikes over time from one neuron and reflects
the time-course of that neuron’s activity. Since neurons interact with neighboring neurons,
studying the nature of their interactions is of particular interest. A typical interaction is
thought to be that firings of one neuron may be excited or inhibited by firings of other
neurons. Simultaneously recorded multiple spike trains from multiple neurons reflect the
time-course of the activity of a neuronal group which can be used to study the interactions
among neurons.

For one neuron, statistical inference is well established by modeling a single spike train
as a one-dimensional point process [3]. However, for multiple neurons, statistical inference
becomes difficult if modeling multiple spike trains as a high-dimensional point process. Major
difficulties are due to that the richness of interaction patterns among neurons, and the curse
of dimensionality, or the typical paucity of data in the high-dimensional spaces involved.

Several simplifications for the interaction pattern have been proposed. Gerstein, et al.
[5] used an interaction pattern similar to a directed acyclic graph (DAG) in a Bayesian
belief network by only considering excitation effects. They applied a modified gravitational
clustering algorithm on multiple spike trains. Using their method, neurons directly or indi-
rectly connected by excitation were visually clumped into a single cluster. Rigat, et al. [10]
used dynamic Bayesian network (DBN) on binned spike trains. Their method treated the
neuronal interaction as a directed graph and could estimate the effect of excitation and/or
inhibition.

In our probabilistic approach, to analyze GCA mathematically, we modeled spike trains



and their interactions using Poisson processes, and obtained large sample properties of GCA.
And in our statistical approach, we adopted the interaction pattern from Gerstein, et al. [5]
by creating a hidden neuron (we called it an environment) which accounts for all other
factors beyond the excitation between recorded neurons. The DAG (directed cyclic graph)
network like Bayesian belief network was difficult to model, so we proposed a semi-DAG net-
work structure by enforcing an upper bound on the probability of forming (directed) rings.
The excitation effect among neurons is parametrized by a copy matrix (p;;)xxx: pij is the
probability that neuron ¢ is triggered by (or copied with random disturbance from) neuron j.
Thus, for each row of (p;;) kxx, @ mixture model is applied. In order to link all these mixture
models together and enforce a semi-DAG structure for the excitation effect, we generalized
Dirichlet distribution to a matrix Dirichlet distribution. This generalization and further
consideration of model identifiability led to several difficulties in implementing MCMC sam-
pling. Thus, instead of the Metropolis-Hastings method, we designed a weighted sampler
which controlled the sampling precision in a given finite number of steps for distributions
with bounded support.

The remainder of this thesis is organized as follows. Chapter 2 reviews the literature on
multiple spike train analysis, with a focus on GCA and DBN. Chapter 3 contains a theoretical
study of GCA. Chapter 4 gives details of how to apply generalized mixture models to multiple

spike trains. Chapter 5 discusses sampling problems and summarizes a simulation study.



2.0 LITERATURE REVIEW

The nervous system is very complex. Scientists are studying it from different angles. The
quantitative analysis of the nervous system’s (firing) activity is an important aspect of com-
putational neuroscience. These studies are done at many levels of resolution. For the study
of the dynamics of a single spike, see Koch [9] and Hodgkin, et al. [6]. For a single spike
train, see Brown [3], for a review of one-dimensional point process models, for example, inho-
mogeneous Poisson and Gamma processes, and the inverse Gaussian process. For the study
of two spike trains, Kass, et al. [12] used BARS (Bayesian Adaptive Regression Splines) to
construct a test for the difference between their firing intensities. Kass, et al. [8] also con-
sidered the interaction between 2 spike trains by BARS. These methods focused on studying
the firing intensities of neurons.

Brillinger [1] studied a multiple point process approach for a small group of neurons.
Utikal [11] used empirical process to analyze the dependence between one spike train and
other spike trains. Czanner et al. [4] developed a probabilistic model for the snowflake plot
which is a powerful tool for depicting the joint activity of three neurons. Figure 15 shows
snowflake plots on three of the neurons we used in our simulation studies. Most of these
methods are intended to test the independentce between one spike train and other spike
trains.

As pointed out in Iyengar [7] and Brown, et al. [2], one problem in analyzing multiple
spike trains was how to define an interaction pattern among neurons. Following this line,
Rigat, et al. [10] proposed a dynamic Bayesian network (DBN) model to analyze interactions
among multiple spike trains. There are two difficulties in applying this method: the process
of binning spike trains into binary sequences can introduce noise; and identifiability of model

parameters was not considered. However, the idea of applying Bayesian belief networks to



describe the interaction among neurons remains a very attractive approach.

Gerstein et al. [5] proposed an interaction pattern which only takes into account excita-
tion effects, and applied a gravitational clustering algorithm (GCA) to qualitatively analyze
this pattern. GCA is a numerical algorithm in pattern recognition whose aim in this context
is to identify distinct independent neuronal sub-groups in a larger collection of simultane-
ously recorded neurons. This method requires the transformation of multiple spike trains
into multiple longitudinal curves. Although our simulation studies show some oscillations of
this method in the long run (i.e., there may be unstable clusterings), the tranformed longi-
tudinal curves do give more flexibility in statistical modeling. For example, it allows for the

use of mixture models.

2.1 DYNAMIC BAYESIAN BELIEF NETWORK

We start with definitions related to the source data: a spike train is conveniently modeled as
a point process for many purposes, but not for DBN or GCA, so we consider transformations

by binning and by charge processes.

Data Type 1 (Spike Train'). S = {t; > 0,t;41 > t;}icnr is said to be a spike train with
it spike time t;. It is a point process on RT. We let {ny(t) }ier+ to be its corresponding

counting process.

Generally there are many probabilistic models for S; in this thesis, the basis of our

simulations is the Poisson process with intensity 7, PP = {s = {t; }ienr, {ns(t) bier+, 7}

Data Type 2 (Binned Spike Train). A binary sequence Ay = {1,092, ,0p} is a binned
spike train of a spike train Sy = {t1,t2, - ,tn} on [0,T) if it is determined thus:

1. there is a finite partition 0 = %T < %T <. < %T =T of [0,T): each time interval
18 considered to be a discrete time point;

2. 0; is defined as SN | [[%T%’T)(ti)-' §; = 1 means a spike at j™ discrete time point

and 0; = 0 means no spikes at j' discrete time point.

1 Figure 10 is a raster plot for 5 simulated spike trains.



To guarantee §; < 2, usually % is set to be 1 or 2 ms due to the typical neuron’s refractory

period. When there are several neurons, {d0x;}; denotes k' neuron’s binned spike train.

Definition 1 (DBN interaction pattern). This interaction can be fully described by the

following three components:

1. an interaction matriz B = (Br)kxx, where By is the effect from ™" neuron to k'™ neuron,
with By the self-refractory effect;

2. Baseline (or Spontaneous) activity vector © = (01,0, ,0x)T: here 0y describes the
spontaneous activity of neuron k if it were isolated from the current neuron group and
ignoring the self-refractory effect;

3. Linkage function: let my; = Pr{dx; = 1|history before time j} and 1,; = max{l < j|0 =
1}: my; is k™ neuron’s firing probability at time j conditioned on all neurons’ histories

before time j; Ti; is the last firing time of the k'™ neuron before time j.

] ' 5hw
log(l_ )—9k+Zﬁkh< i > (2.1)

This definition is not yet a complete description of the interaction. To complete it, Rigat,

et al. [10] assumed the independence of all such conditional probabilities to get

Pr(A|©, B) HH”k (1 — ;) 0k, (2.2)

k=1 j=1

Model Fitting Method 1 (DBN). Bayesian method: Prior(©,B) sempling Posterior(©,B ).

This DBN model estimates all pairwise interactions by B, but it is different from the
classic probabilistic network (Bayesian belief network, BBN) in an important way: if a di-
rected graph is used to show interactions among neurons, rings are permitted in DBN but
prohibited in BBN. Although Rigat, et al. [10] did not deal with the problem of parame-
ter identifiability, they did recommend the use of interpretable parameters in terms of the

biological mechanisms of neuronal firing and validated their model by simulation.



2.2 GRAVITATIONAL CLUSTERING ALGORITHM

In contrast to the DBN approach, GCA is not a network model. Rather, it is a clustering al-
gorithm with an embedded dynamic system. A cluster is thought to be a neuronal sub-group
with (direct or indirect) excitatory connections; thus, two clusters mean two unconnected

sub-graphs. We now give the formal definitions.
Data Type 3 (Charge Processt). A charge process qs(t) of a spike train Sy is

ns(t) .

05(t) = qol im0y D€ 7 —qlt), (2.3)
=1

where qo is a positive constant, T is the time constant which describes the exponential decay

of a spike’s excitation effect, and q(t) is a normalization function which makes Eqs(t) = 0.

The normalizing function ¢(t) is usually constant, especially under stationary conditions.
This charge process is a transformation of spike train: ¢s(t) is the active effect at time t¢.
The sign of ¢s(t) in this context has the following interpretation: a neuron with spike train

s excites other neurons if ¢5(t) > 0 and is excited by other neurons if ¢,(t) < 0.
Definition 2 (GCA interaction mode). This interaction mode also has three components:

1. a copy matrit' P = (pu)xxx, Pu = Pr(spikes in k'™ spike train are copied from the [
spike train); this copying is done after a certain latency, €, with a certain distribution,
for example, a beta distribution on an interval [a,b];

2. spontaneous spike trains S* = {s},s5,--- , 8%}, each of whose spike trains model the
activity if the corresponding neuron is isolated from its network;

3. a link which for neuron k, combine spikes copied from other neurons with the k'™ neuron’s
spontaneous spike train, sy = sort{sy, random copied spikes from s; with probability py

and time lag €}

In this mode, we need some trigger neurons, for which p; = 0 or s; = s;. When we
generate data, we first generate spikes for trigger neurons, then delete the trigger neurons

and find new trigger neurons within remaining neuron subgroup; and repeat until no neurons

I Figure 11 is an illustration of a charge process.
1 Bottom table in Figure 9 is an example of copy matrix.



available. Note also that this interaction mode does not require charge processes, for it is
about the firing rate or spikes. That is why we say that GCA is only a tool to analyze the

interaction mode. The following GCA procedure is from Gerstein; it consists of three steps.

Model Fitting Method 2 (GCA). 1. Trace calculation, which describes the neuron’s tra-

jectory in an embedded space:

azb g — b > ¢
A(a,b) = { ot =l > co (2.4)
0, la — b < ¢

Fe®) = @) Ala(t), z(1)) (2.5)

14k

dt

= 0qi(t) fi(t) (2.6)

Here, xy(t) is the location of the representaion of neuron k in RY at time t, fi(t) is the
force field at the k'™ neuron’s position at time t, and A(-,-) is an attenuation function. In
fact, these equations define a dynamical system, the traces x; of which are irreqular, and
the speed of those traces provide information about excitatory effects within a cluster.

2. Distance measure’ (Euclidean): the shorter of the distance between xi(t) and z;(t), the

larger probability that k™ neuron and I neuron are within the same cluster.

di(t) = |zx(t) — za(t)] (2.7)

3. Cluster recognition: The basic approach to the construction of distinct clusters is to view
the traces in K-dim Fuclidean space: if some traces get closer with time, we say that they
are in one cluster; if they remain far apart, we say that they are in different clusters.
Usually it is carried out by monitoring the collection of pairwise distances dy; because of

the difficulties of visualization in high dimensions.

1 Figure 12 is a plot of Distances by Time.



Gerstein showed that this procedure is powerful for detecting networks when individual
firing rates are equal, but for networks with unequal firing rates, some undesirable oscillations
occured in their simulations. Our research on GCA is mainly focused on how to improve its

sensitivity and how to visualize the traces.

2.3 COMPARISON OF DBN AND GCA

Strictly speaking, methods other than DBN and GCA mentioned in Chapter 2 are essentially
designed for a small group of neurons. Currently only DBN and GCA can be applied
to analyze multiple spike trains at the scale of tens or larger. However, they are very
different in many aspects: their interaction mode, mathematical tools, and simulation results.
However, both of them share the same limitations: they both require transformation of the
original data, and their theoretical foundations are still not well studied. In this section we

qualitatively study their differences.

2.3.1 Interaction Modes

GCA’s interaction mode is suggested by Gerstein based on his experience in neuroscience.
It can be viewed as a natural generalization of a widely-accepted method (crosscorrelogram,
or its dynamic version, the joint peristimulus time histogram (JPSTH)) which are standard
tools for analyzing two neurons; in contrast, DBN’s interaction mode originates from BBN,

which is more flexible than GCA. Other contrasts are the following:

1. Graph in DBN is Directed Cyclic Graph (DCG), in GCA is DAG;

2. In DBN, interaction includes excitation and inhibition; in Gerstein’s implementation of

GCA, only excitation is modeled;

3. In DBN, interaction takes effect by increasing or decreasing the temporal firing rate
of triggered nodes; in GCA, interaction takes effect by directly copying a spike with a

random time lag, so we can tell which spikes are from others, which are self generated;



4. In DBN, interactions between different pairs have different effective time ranges; in GCA,

all interactions have the same latency distribution;

5. DBN’s interaction mode is not as straightforward as GCA’s interaction mode.

2.3.2 Mathematical aspects

Since GCA originated from pattern recognition and DBN originated from Bayesian methods

(BBN originated from machine learning), they differ considerably in their mathematical

aspects.

DBN

GCA

a.

uses the Bernoulli distribution to construct likelihood function;

. uses Bayesian methods to estimated parameters;
. uses MCMC to obtain predictions;

. uses proportion of fitting (and prediction) residuals that cross a threshold to evaluate

the goodness-of-fit; and

uses artificial spike sorting errors to test the robustnes of this model;

uses concepts from physics to construct a dynamic system in high-dimensional Eu-

clidean space;

. uses numerical integration to obtain traces of this dynamic system;

. uses a geometrical properties of those traces (Euclidean distances among them) to

obtain clusters;
it makes no predictions because it does not try to fit data;
there areno goodness-of-fit tests because, once again, it does not try to fit data; and

there is no evaluation of robustness.

2.3.3 Results

1. GCA reads in data as time evolves; DBN reads in all data at the start;

2. GCA starts with a graph, and ends with clusters; DBN starts from graph, and ends with

a graph;



3. GCA is not robust for networks with non unequal rates, according to my simulation; DBN
is more robust, but has different performance for different rates, according to Rigat, et
al. [10];

4. GCA’s behavior is not well understand in theory, so much work left to be done; DBN
has considerable theoretical support from Bayesian statistics; and

5. usually, GCA only requires record within one minute, DBN requires at least 10 minutes’

record.

10



3.0 THEORETICAL ASPECTS OF GCA

GCA clusters spike trains using the following method: each neuron is represented by a
virtual point in K-dimensional space (K is the number of neurons); initially, all pairs of
points are equidistant; the products of paired charge processes will generate an uneven force
field in this space; these virtual points’ speeds are proportional to the force field; the final
geometrical configuration of these points, along with cluster index determine the clustering.
Mathematically, the traces of these virtual points are a K-dimensional non-autonomous
dynamical system with random coefficients, so in general it is hard to draw a flow plot.

In this section, we mainly study E(zx(t) —xx(0)): if K = 2, this is equivalent to dj5(t); if
K > 2, this will give us a draft picture of the geometrical pattern. There are two key aspects
of this work: the first concerns the properties about charge processes and their products
(in section 3.0.4 and 3.0.5); the second deals with how to calculate the integration of those

products (in section 3.0.6 and 3.0.7).

3.0.4 Preliminaries

In this part, we expand on definition 2 and list some simple properties of related processes.
Definition 3 (Copy probability). PPy = {s1 = {tii}ien, {n1(t) her+,m1} is said to be

copied to MPs with probability ™ and latency €, if and only if

(i) there exists a Poisson process PPy = {s5 = {t5;}ien, {n3(t) }rer+, 75} which is indepen-

dent of PPq;

(i1) there exists an i.i.d. sequence e; with distribution U|0, go], independent of all others; there

exists another i.i.d. sequence (; with distribution Bin(1, ), independent of all others;

11



(i1i) define a local copied process from PPy (t > €g) thus:

n1 t EQ)
ng(t) = IN ni t—€0 Z CZ
ni (1)

ni(t)

() = (m(t =20)) D> Gloy(t+e) (3.1)

1=ni (t7€0)+1

(& J/

ns2()
§(t) = SOI‘t{tl,i + €z|<z =1, tlﬂ' +e& <t,i € N} (32)
LCP = {57 {n§(t)}te72+7 Tsy U[O, 50}} (33)

here {nz(t)}1er+ is the counting process of point process §, and the intensity rs is no

longer a constant;

(iv) MPy is the combination of PP5 and LCP:

So(t) = sort{s5(t),5(t)}
na(t) = ni(t) + ns(t)
To = 1o(15, T, €0)

MPy = {82 = {t2,i}i€/\/a {n2(t)}t€R+a 7“2} (3-4)

Lemma 1 (some properties of Poisson process). For a standard Poisson process PPy, we

have the following properties

(i) t1,--- ,t,|N(t) = n have the same distribution as order statistics of n iid U(0,t) variates;

(ii) Poisson process has stationary independent increments;
Lemma 2 (Properties of LCP). The process in formula (3.1) has the following properties:

(1) nsy is independent of nga;
(11) ns1 is a Poisson process starting at time €9 and with intensity mry;

(i4) nsz has distribution Poisson(3rieo).

Note that LCP is not a Poisson process because it has dependent increments for ns,

withr, = r¢(t) in this case.

12



Lemma 3 (Charge process of LCP). First, the charge process of the point process in formula
(3.1) to be (fort > gg) is the sum of the two components:

( t (t JFE) £ —&
Gns (1) = I (na (t — £0)) Z S e P r(l— e ) (35)

ni (t)

Qi) = Iv(mi(t) —=mi(t—20)) > Glop(ti+e)e 7

i=n1 (t7€0)+1

_& €
—mrieo( S - (1- )
€0 T
Ai(eo) ~ ~ eo—(t1,44E;) T e <
= Iy (M1 (e0)) ; Ciljoe)(trs +E)e” ™~ - 7T7“150(;)2(6770 —(1— 70))
In that case, we have
(i) Bgsa(t) = 0, Eg? () = SR (1—e” ) (1 —e 7 %);
Finally, we introduce the following notation:
Q£C7D(t) = qn§,1(t) + Qns o (t)
n3() t—t5 ;
awr(t) = qeep(t) + Ly(ni(t Z e —rit(l—e7) (3.6)

N J/

a3 (t)

3.0.5 Moment properties of charge processes

This part is used to list moments of charge processes, which will be used in calculate GCAD.

Lemma 4 (Moments of charge process). Let s = {t;};>1 be a Poisson process with intensity
r and {ns(t) }1=0 be its counting process, qs(t) its charge process as defined in Datatype 2.3:

ns(t)

( ) = QOI{nS (t)>0} Z

for convenience, we set go =1 and G(t) = rr(1 —e~7), for t,6 > 0. Then we have

(i) Eqy(t) = 0.
(1) qs(t+5) =e TQs(t) + Gs(6), where Gs(t) is an i.i.d. copy of qs(t).

13



(i) B?(t) = 5 (1 —e™7), e(t,0) = Cov(gs(t), gs(t + ) = € TEq(t).
Lemma 5 (Moments of product of charge processes). Let qi(t), g2(t) be two charge processes

defined as in formula 2.3, and define g12(t) = q1(t)q2(t),

(i) if 1(t) and go(t) are independent and as defined in Lemma 4, then BEqi 5(t) = 0,Eqi,(t) =
Eqi (t)Eq3(t);

(it) if 1(t) and g2(t) are charge processes of PPy and MPs as in Definition 3, then Eq 5(t) =

2

nrt (1 — e 7)1 —e”

2e0

2t—¢q

=0,

3.0.6 Main results about GCAD (K=2)

In Theorem 1, we study the integration of charge process product; Theorem 2 is a simple
application of Theorem 1. They state precisely the following facts for K = 2: if two processes
are independent, the expectation of GCAD’s deduction will be 0, but the variance of GCAD’s
deduction will increase over time; if two processes are dependent, the expectation of GCAD’s

deduction will increase with time. Proofs are in the Appendix.

Theorem 1 (2-dimension). Let ¢1(t) and qa(t) be two charge processes defined as in formula

2.3, now define

t
—t —t
Q1,2N th QQ N N

(1) if q1(t) and qo(t) are defined as in Lemma 4 and independent (with intensity 1 and r3),

then
Jim BQY, ()= 4@ —25) (3.8)

(11) if q1(t) is copied to qo(t) with probability ™ and latency distribution U0, &) (as defined
in Lemma 5-(ii)), then

2
T _<0 T _c=
1-— )t — — —e T .
(- )t — g ) (39)

]&i_ffloo EQi2n(t) =

Theorem 2 (GCAD (K=2)). For 2-dimensional GCA model defined by (2.3) and (2.4)-
(2.6), let hy = sup{t > 0|d12(t) > co}, we have

14



(1) if n1(t) and no(t) are two independent Poisson process with intensity r1 and ra, di2(0) >
o, then fort < hy
Edy5(t) = di12(0)

Vardlg(t) = 7’1T273t, Zf t>T

(11) if n1(t) and ny(t) as defined in Definition (3), hy >t > 7 > ¢, then
Edio(t) L o (tT 1)

From these theorems, we arrive at the following conclusions: the GCAD’s expectation
will be unchanged if two spike trains are independent; GCAD’s expectation will decrease
to c¢o if two spike trains are dependent. However, GCAD will become unreliable for large
times because the variance of the distance increase with time; hence, the GCAD should be

adjusted with time.

3.0.7 Main results about GCAD (K>2)

We now turn to the analogous results for the case (K>2). In order to do so, we need to

introduce the notion of the depth of a copy matrix.

Definition 4 (Depth of copy matrix P).
D(P) = min{n > 1|P" = 0}

In order to use previous conclusions in section 3.0.5, we restrict our discussion to that
each process is either a Poisson process or a mixture of Poisson process and several LCPs,
that is, D(P) < 2. In fact, in Theorem 2-(i), D(P) = 1; in Theorem 2-(ii), D(P) = 2. Next,

we introduce addtional notation and assumptions:
(i) henceforth, assume that |gx(-)] < M < 400, 1 <k < K

(ii) fix t,p,7 >0,V & € (0,1), and set dy = MPT, N(dg,t) = 4

do pr?

(iii) let ¢;(t) (i =1,2,---, K) be the charge process defined in (2.3), and let
Fi=o0{q(s)|[1 <i< K, 0<s<t};

15



(iv) define the unit vector (1 < i # j < K), 1_1;(1%) = ul)-mll) .

REZIOROIk

(v) define a sum for 1 <m < N (f;; ¥(0) = 0), a generalization of Q1 2 n()

m - n—1 —n-1
fun () NZMQJ( v Nalx)
(vi) for now, we focus only on z;(-), which is a sum of finitely many (N = ) terms:

(vii) next, let

G (5t) — Gi(§t)

N N7/,
—
[z (t)|

kit
(viii) finally, define a series for n € N* and 0 < u < 1, pg = 0, ppy1 = u(l + py,).

With above notations, we list several simple facts:

H
FL fi (1), 1(Ft), 2i(§t) € Fmony, 435(F1), Cil 1), Dij(Ft) € T

12t 1

F2. if ¢;(-) is independent from ¢;(-), then E qij(%t)|3"mT_1t] = e~ 7 N g ()
i)

N
F3. if ¢;(-) and g;(-) are defined as in Lemma 5-(ii), further assume gy = %, then

F4. for n € N*, p, = “4=v) Yoropi == [n +1 - =

1—u 1—u 1—u
F5. - . .
iy - OO+ D
1 ("5t) + § Dy (P51
~(1)(m —1 1

F6. assuming that |z;7;(-)| > d for all following content, then we have

\Dz’j(')%l < 6y, OV ()] < (3.11)

1—460
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Theorems 3-4 are the counterpart of Theorems 1-2, for higher dimensions. Theorem 4 is

a simple application of Theorem 3. They show the link between clusters and gravitational

traces: within each cluster, corresponding traces move toward each other; between clusters,

cluster centers don’t move. Compared to section 3.0.6, we have stronger assumptions but

weaker conclusions.

Theorem 3 (E (fl]’N(t)‘gj%t)) [f |QT£C;<O)’ > do, let hw(do) = Sup{t > O‘dlj(t) > do} and

12t
u = e ~~, then we have

(1) if ni(t) and n;(t) are two independent Poisson process with intensities r; and r;, respec-

tively, then fort < hjj and 0 <m < N —1

B (fiun (O1Fge) = Fin(5p0) + (50T (DA + pv-1-m)

+E {i OV () + 0@)(%15)} |:%ﬁt}

;f n . — n ~ n
OW(h) = g (T (L) prrn OV (2t
t on £D,(3)

O () = i (1) py-1-n=
N NTEN 115 (%t) + % Dij (1)

(it) if ni(t) and n;(t) as defined in F.3, then fort < h;; and0 <m < N —1

m t m .— m
E (fijn(t)|Fm,) = Fign (Gpt) + 54 () Lis (1) (L + pv—1-m)
N—-1

o @ " .

+E{n:m OV (1) +0 (Nt)] \?t}
¢ e m N—-1—-m N—-1 n

Lo m " @ N
w2 pn+E{; (RO + RO(1)] \?t}

n t— . n n 2"

ey Lo AW

R (Nt) N Z](Nt)cl(Z])O (Nt) = pl

LDZ ﬂt N—-1-n
R(Q)(ﬁt) _ NQ(Z]) — N JEN ) oI

L (§t) + ¥ Dij(%0)] =0

OW () and O () are defined as in (3.13) and (3.14).

Finally, note that E ( fij,N(t)\ff%t) —Ef,n(t).
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Theorem 4 (GCAD (K>2), large inter-distance). Let hi(dy) = N hix(do), if t < hi(dp)
k£1
and fix N = piT, we have

(1) if ni(+) is independent from {na(-), - ,ng(-)}, then

lim E[zi(t) — 21(0)] =0 (3.18)

dg—~+o00

(i1) if {n1(-), - ,nk, (1)} are independent from {ng,1(:), - ,nk(:)} and pr = o, further
assume D(P) = 2, then

Jim Blay(t) —x(0)] =Y c1(1k)111,(0) : . ~t (3.19)

An important consequence of this theorem is immediate: if we put initial inter-neuron
distances large enough, then in a particular time period, nodes within one cluster will move
toward their center with steady velocities. However, the centers of each cluster will not
move. However this result is only in the sense of its first moment; we have not yet studied

in detail the 2"d and higher order moments.
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4.0 GENERALIZED MIXTURE MODEL FOR HIGH-DIMENSIONAL
LONGITUDINAL DATA

In this chapter, we use a Bayesian model to quantitatively estimate the semi-DAG network of
excitation pattern inspired by Gerstein, et al. [5]. This model is a generalization of mixture
model from R! to R¥. It is also deeply involved in Bayesian belief network: by decreasing a
control parameter’ (a similar role of smoothing parameter in smoothing spline regression),
this model will approximate a Bayesian belief network. In general, this model can be applied

to study dynamics among high-dimensional longitudinal data.

4.1 THE PROBLEM

Our primary goal is to estimate the excitation pattern among multiple neurons. The pattern
studied in this model is similar to Definition 2, but allow a small probability of forming
rings. A copy matrix (cx) i« is used to describe the excitation pattern as in Definition 2
and illustrated by a graph (see Figure 8). Nodes and (directed) edges correspond to neurons
and excitation effect between neuron pairs. In his context, y; denotes one neuron (or a node
in graph) and yy, is its activity at time ¢. Just as with binned spike trains, all yy;’s are samples
from corresponding charge processes at grid time points ¢t € {1,2,--- ,T'}. Using samples
from the charge process curves gives more flexibility in modeling. A mixture model for y;
is used: with probability py (k # ), y is linearly predicted from y;,_;; with probability
Drk, Yre 1s generated from environment. The semi-DAG network structure is described by

enforcing a preset upper bound for all py X pgs (k # [). Technically, the copy matrix

1 This parameter will be specified in Definition 6.
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(Pe1) Kk xx 1S given a matrix Dirichlet distribution (see Definition 6). Our model assumes

Markov dependence for y = (y1,y2, -+ , Yk )-

4.2 STATEMENT OF GENERALIZED MIXTURE MODEL

In this section, we will give the details of our model. 1y is the activity of neuron k at
time ¢. Iry(-) is the indicator function. Ay = I(# k) means neuron £ is excited by neuron
[ at time t; Ay = k means that neuron k is excited by environment at time t. Now,

)

Ut = 5,“(3555 — ¢) + € is the linear model for predicting vy from y;;—; (in our case,

mff ) — Yit—1). Next, Z}]=1 Ity (dye)eje is our model for the environment® which is a mixture
of three normal distributions. Since the environment is defined to be the combination of
random factors and unrecorded neurons which affect the activity of recorded neurons, it
is assigned this mixture distribution. This model says that yx; comes from two (mutually
exclusive) sources: a simple linear regression (covariates can be added here) based on within-

network excitation, or a component of environment. Let pg; be the probability that v, is

excited by y;, g; be the weight of component in environment, and €; be the observational

error. Thus, {&ki, ck, 02, Pris ¢j, My, 53} is our parameter set?, with the unobservable variables
{ Xty die} €.

This model clearly splits the activity of recorded neurons into two categories: within-
network (recorded neurons) which is the interaction among recorded neurons; between-
network-environment activity which is the interaction between recorded neurons and un-
recorded neurons. By adjusting the complexity of environment, one can emphasize one

category over another. Formally, the complete model is given by the following expressions:

K J
Yt = Z ]{i}(/\kt) [sz(ng) — Ck) + th] + I{kz}(/\kt) Z ]{j} (dkt)ejt (41)
i=1,ik j=1

2 =yioay; k=12 K; teThCT={1,2,---,T}.

§ This expression of environment creates a problem of unidentifiability under permutation.
# For model identifiability problem, &x; > 1 and ¢ > 0 are enforced in section 4.3.2.
¢ Their traces show the realization of random interactions at each time point.
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(ykt—fki(zgf)—ek)>2

Ynt| At = 7 # ki,sz',%(-f)ﬂk,UZ X (02)7% e~ 2 (4.2)
1 —%7@“;%)2

yktl)\kt - ka dkt = j; mj7 S? X (Si) e % (43)

P ()\kt = i|pk17pk2, T 7pkK> = Dki (4~4)

P<dkt:j|Q17"' 7CIJ):QJ' (4-5)

Model 4.1 has K mixture models which share a common observational error distribution
and a common environment distribution. Since the studied excitation pattern is a semi-
DAG, we need to enforce some relationships among those mixture models. This is realized
by using a matrix Dirichlet distribution! for the copy matrix P = (ppi)xxx instead of
K seperate distributions for P’s K rows. This distribution is the key point to model a
semi-DAG network structure by parameters. However, this generalization leads to several
technical difficulties, which we address in the next section. By adjusting the matrix Dirichlet
distribution, one can get a network structure more or less similar to a DAG in Bayesian belief

network.

4.3 BAYESIAN APPROACH TO COMPUTING THE POSTERIOR

In this section, we use the usual Bayesian method to fit our model: first, write out the
likelihood; specify priors on the parameters; obtain all conditional posteriors; run a Markov
chain Monte Carlo (MCMC) to get the posteriors; finally, use posterior mean and standard
deviation to get parameter estimates. We now organize our Bayesian procedure as prepa-
rations, prior distributions, likelihood functions, conditional posteriors and Gibbs sampler

procedure.

1 In Definition 6, it is described as: pr;pix < ¢ if © # k. c¢g is the control parameter which is used to
approximate an ideal case pg;p;r = 0 (if @ # k) by letting ¢y | 0.
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4.3.1 Preparation

We start with notation used in later sections, and the define a matrix Dirichlet distribution.

Notations for the model structure
K={12--- K}, K=K/{k}, J={1,2,---,J}. K is the total number of neurons

in observation, J is the total number of components assumed in environment.
)\kt, ke K,t € ,];g,

/\ztE s AE (Al,"' ,AK)TE ()‘Zt)KXT‘
«(undefined), ke K, t €T\ 7.

Age 18 defined in model 4.1, but some cannot be given a value since we only use part of

observation for faster convergence and fitting stability.
Toi = T = {t € Tel e = 1}, Ting = Tipy = {t € Thlde = j}.
These two sets are time sets partitioned by g, and/or d;.
X, C A= (g AT
x, kel teT\T.
Ve = {ynelt € T}, Y = UpexYa.
Xii = {iUZ(f)!?f €Tuit, Xip=Uex ,, X =UpexXy.
dkt7 kelc7t€77ck7 % *
, Dy = (dklv T vdkT)T7
*, k:EIC,tET\'];k.
D = (Dy,---,Dg)T. Tt is similarly defined as A},.
, die, k€Kt € Trpj; 4 .
dgct ! ] ij = (d?clv T 7d{cT)T‘
x, ke, teT\ T,
O = {&ir e, 0%, my, st € Koy, j € T}, k € K P = (pij)rx, Pe = D1, k)"

*
dkt

Q= (q1," - ,q7)". These parameters are directly used in model 4.1.

Oo = {1ki, 0%, vk, w?, a,b, ,uj,Tz,aj, bili € K_y,j € J}, for k € K; A = (ij)kxk,
Ay = (g1, yarx)?, B=(61,--+,07)". These parameters are used to specify priors
for previous parameters directly used in model 4.1.

O = {100, 02, Mo, g, Vo, Wi, M1, M1, fho, Ta, M, N2, Go1, Aoz, Do1, boz } are initials for priors.

©1 = UrekO1k, ©O2 = UkexOak.

Define matrix Dirichlet distribution’ for (pki) kxx We define the matrix Dirichlet dis-
tribution by three steps: first, do a transformation of Dirichlet distributions; second,

define a bounded Dirichlet distribution; third, define matrix Dirichlet distribution. We
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also list some simple properties for matrix Dirichlet distribution.
Let (p1,- - ,pxk) ~ Dirichlet(ay, -+, ak), ¢1,¢2,+ -+ ,cx—1 € (0,1], cx = 1. Consider the
transformation (k =1,2,--- , K.)

ckpr, ifcp € (0, 1) ko if ¢, € (0, 1)
2K = or pp=14 ° (4.6)
o, ifce=1 Z, ifg =1,

where
K K
1— Z Zk 1-— Z CrDPk
k=1, cp<1 k=1, cx<1
k
= = >
c IR = >1
z
P ONE SR T vy
k=1, cx<1 k=1, cx<1
.. a1—1 ag—1
o, pr) o< pt T p
K ak—l K
Zk 2k a1 8(1)17 7pK)
e < ] . < 1 pry oG, 2x)
k=1, cu<l N F k=1, cp=1 Lty 2K
5
o
1 K 2 k=1, cp=1 F
K - > =
ap—1 k=1, cx<1
o H(Zk> X K
k=1 1-— Z Zk
k=1, cp<1

This transformation will ensure that z; < ¢ (for k£ < K —1). A slight modification leads

to the following:

Definition 5. Bounded Dirichlet distribution

We say (z1,-+- ,2x) ~ BD(ay, -+ ,ak; c1,-+- ,cx; ) iff

K . v
K 1= o
-1 k=1, cp<1 K
flz, - zi) o T (o)™ x| ——=2=—| , herey >0, ¢, ,cx_1 € (0,1], cx = 1.
k=1 1- ¥ 2k
k=1, ¢ <1
Its support is:
) Zl++ZK:1)
e << <1, k=1,--- K,
K
e 0< Y E<I
k=1, cp<1

1 This distribution will give a stronger inter-relationship among submodels, see section 4.2. It can be
viewed as a generalization of Dirichlet distribution.
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The matrix Dirichlet distribution for (p;;) k< i is defined as a series of conditional bounded

Dirichlet distribution.

Definition 6. Matriz Dirichlet distribution
Let P = (pji)kxi, A = (aij)kxk, co € (0,1) (control parameter), I' = (y1, -+ ,7K),
Ve > O, Qij > 0,

we say P ~ MD(A;T;co) iff P is defined by a series of conditional distributions:

1 (p11> s ale)’(A1§71§CO) ~ BD(Oén, e, 01K3C1 = = 0K = 1;’71);
o (pi1, -, pir)|(Ais Yis cos Pris -+, Pim1,i) ~ BD(ua, -+, aigsen = 1A If—lol.y'" yCiim1 =
1/\%7 Cu::CzK:L%); fOT'iIQ,g,"‘ 7K'

The matrix Dirichlet distribution has the following properties:

1. if ¢g = 1, rows of P are independent Dirichlet distributions; the smaller ¢ is, the

tighter the submodels’ interactions;

2. if 7 # j, then p;;p;; < co; these properties can be viewed as semi-DAG: if p;; is
relatively large, then p;; can be forced to be close to 0. If we interpret p;; to be the
strength of excitation effect from neuron j to neuron ¢, we can use this property to
approximate a one-way interaction mode by specifying a small cg;

3. each row sum of P is 1; and

K
4. for a bounded Dirichlet distribution, (zx,cx = 1|zg,cp < 1) ~ (1 — > z) X
k=1, cx<1
Dirichlet(ag, cp = 1).

4.3.2 Specification of prior distributions

This section gives details for all priors. The first-level priors for the parameters are directly
used in model; second-level priors are used in specifying the first-level priors. Most priors are
distributions frequently used in Bayesian approach; only few priors are special, for example,

&k and ¢, are bounded below.
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First level prior distributions

1 (€Z¢—Hki)2

flt;ip\k:t =1 7& k?,,uki,éz X (52)75 e 2 2

gkz‘ =1 5;’22 vV

-1 (ch—vr)?
Ci| At # K, vp, w? o (w2) 2o 0 e

=4 V0

b

2| Ner # k,a,b o (02)7(171 e o2

2
_ L (’"i*“j)

1
- 2 2\~ 3
mj| e =k, die = J, b, T O((T) Ze 2 2
b

_b

s§|/\kt =k, di = j,a;,b; (s?)_aj_l e
k—1 K

FT(A>P760)2<717"' KYK)T, Ve = Z Oékl—irzoékz
=1, co>pix =k

P|A;T(A, P,co); co ~ MD(A; T ¢o)

q1, - 7q.]‘ﬁ17"' 75] ~ DlI'lChlet(ﬁl, 75]) X qllalilu'qgjil

Second level prior distributions

_%(”k_”0)2
vg|vo, Wi ~ N(vo,w]) o< e *o

w2|m17n1 ~ IG(mhnl) X (w2)7m17 6_%
_L (“J’*f‘O)Q
2
1310, 78 ~ N(po, 78) oce 8 2
72|ma, ny ~ IG(ma,np) o< (72) ™ e

a, ajlaor, aps ~ Beta(ag:, ap2) o a® = (U — a)* Lo (a)
b, b;|bo1, boa ~ Gamma(boy, boz) oc b1~ teb02b

Q5 = Qo, ﬁj = 50-

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

4.18

W
—_

9

W
DO

N
)

21
4.

(
(
(
(
(4.22

)
)
0)
)
)

1 We make this requirement for two reasons: model identifiability and we only want to detect one-way

interaction.
1 I' are not independent parameters.
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4.3.3 Likelihood functions

In this section, we derive all conditional likelihood functions using the notation defined in

section 4.3.1.

A, ¢y, B, are the initial values.

Our goal is to calculate the likelihood

f(P,Q,0,]Y, X; A, co, B,0g), A and D. In the distributional assumptions, we have assumed

conditional independence in several places (and are implicit in the expressions below).

fYVIA D, X, 01) = ][ f(YklAw, D, Xi, 1)
ke
= H H [H f(yktp\kt :iafkiaxz(f)ackaaQ)]
ke €L _ Lt€Ty;
X H H I kel e = Ky die = J,my, 3?)
J€T | t€Tkk;
Iy (Ake)
(ykr&ki(zgf)*%)f o
< T T [
kek teT, | iek_x

f(A[P)

f(D|Q, A)

f(01]02)

29 Iy e 15y (die)
(vke—m;)

X H (s?)_%e_?? ’ (4.23)

jeJ
I rwlp) =TT I rowlpe)
ke ke teTy,
[T IIIIPe ™ (4:24)
ke teTy, iek
I1 f(D:l@.0)
kel

Tiey (Aket)

Iy (dit
IT1I LH 7, )] (4.25)
keKteT, Ljeg
[ f(©wnloa)
kel

1 1 (Epi—r)? T2 400) (ki) 1 — g Tr1y (€ki)
IT{ IT { firtesoerr] o s (1)) 1
kek { i€K_ { { 0
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F(PIA; T ¢o)

f(Q|B)
f(©2[6)

% (w2)_%@_ﬁ(ck_2vk)2 I(0,+00)(Ck) |:q) (_%)]I{O}(Ck)
w

(m;— .)2 _ﬁ
x(o?) e x [ [(#)—ée—i]a‘”(s?)—aj—le ] (4.26)
JjeT
K
MD(P|A,I'(A), c) = H f(Pe|Ag; Pr, -+, Peoa; o)
k=1
s c c
HBD(Pk|Ak§Ck1 = 1A e = 1A ——,
Pty Pik Pk—1k
K
== =L = Y akl)
=1, cx=1
K K
H{ [ pif”] x
k=1 =1
k—1 K
k1 L §:> Qi+ = Okl
1= > pges| O
— €0
o R } (4.27)
1 - >, Du
I=1, co<pix
@' ey (4.28)
I 7(©x60)
kek
_ 1 (ui—rop)? 1 (wp—v)?
H H e % 2 xe v ?
kel €L _g
X(52)7m071€7% X (w2)’m1’1e*%
X(TQ)—mg—le—:% % aa‘”_l(U o a)aoz—l % bb01_1€_b02b
_L(Mj*m))Q
H e ° X a‘;‘n_l(U — aj)“”’lb?“l_le’b”bj (4.29)

JjeET

T @(-) is cumulative density function of N(0,1).
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4.3.4

Conditional Posterior distributions

P Dlothers oc  f(A™|P)f(P|A;T(A); o)
x MD(PIA;T(A) o) [ [Loe ™

ke iek
~ MDT(P|A+ A™:T(A+ A™); ¢) (4.30)
AW = (o) iewre, off) = Iy (A
teTy

QU lothers o« f(D™]Q,A™)f(Q|B)

o e

keKteTy Ljed
~ Dirichlet(B + B™) (4.31)

B = (8, 87 =32 3 Ty (e Ty ()

kek teTy,

] Trry (Mket)

0" Wjothers o f(O1"]02) f(2]6y)

_%(#ki—#ooﬁ %(%—vo)Q
o ” ” e % ? xe v

X ((52)_m0_16_%} X (w2)_m1_16_%

X (7_2>7mgfle*% X aja01fl(U _ a)a0271 X bb01*16*b02b

2
1 (MJ #0)
_ 1 mro)” B B 1 —buobs
X ” [e ot xa® U —a;)™ ! ><b?°1 e bm?]

T Sampling of MD will be discussed in next section.
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(n)_ 2 I +oo)(§]m ) "
(n+1) 1 ko) 75%M . Iy (67
/JLkl |Othel"S X (& % X e (n) (1)
O(n)
_%(P‘kz 100)? .
e (), el =1,
~t u00+‘5§£) (433)
0 1
N( % zi) ) % 1 ), lff
% 5( ) % (n)
C(”) v 2 0 +oo)(c)C )
IOthers x e "o x le " o[ —
W(n)
1 (wp—vp)? -
2 Vg n)
¢ < w(n))’ it g7 =0;
~T v (n) 434
’T%er%) 1 (4.34)
N(%_’_Ql 7%+21 ), lka >0
o w(n) wo w(n)
_ng
Ofenylothers oc (%) e
(n) (n)
(€M) (n D)2 11,400y (67 ) 1 1)\ 11 &)
CTLIT [t 8 (s
keK icK_y )
(n)
e 2 TS 1 P VR DG T R SRR C )
oct (52)_"‘0_ 5 1 we kEK €K,

(n+1) IANGR

L — gy
[T |o —5— (1.35)

kekK ick_y,

1 Sampling of this kind of distribution will be discussed in next section.
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w(2n+1) IOthers X (w2)7m1*167%

e\ _y(nt1)y2
on—L Lk k7
X H (w”)"2e w2 2

kel

—mi=1 3 Lo qe0)(c)—1

keK teTy | lek €K

L0400 (") (n1)\ T For (™)
w

nit3 EK(C,@—U}C"“))%(O,M) (Cg“n))}

O(T (wQ) ke X e
) ] orC )
< [[|e(-= (4.36)
kek w
_TL no+i (m(") _ )2}
7'(2n+1)’0th€1"8 x (72)_7”2_%_16 ’ *er
J 1 n n
~ 1G(my+ 5onat 5 (m{” — u{™)?) (4.37)
JjeT
a™V|others o a“Ol_l(U—a)“oz_l(afn))_“](o (4.38)
a"Jrl lothers o a?orl(U—aj)‘m’l(Si(n))’“f’l(o,(])(aj) (4.39)
1) by -1,z Th02)
b+ Dlothers o b1 le T ~ Gamma(bo, —— + bo2) (4.40)
o
(n)
n —bj(z——+bo2) 1
b; ) |0thers x b?-‘“_le " ~ Gamma(bor, —— + bo2) (4.41)
J(n)
ml™)
1o
(n+1) S T 1
pj " lothers  ~  N(F T —) (4.42)
T2 7.2 T2 7.2
0 (n+1) 0 (n+1)
A others o f(A|P"O)f(Y|A, D™, X, 0M)
Iy 1 Tz 7
X H H kglgn+k1t) X H (Un) ze

1 Sampling of this kind of distribution will be discussed in next section.
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1 This distribution will be discussed in next section.
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4.3.5 Gibbs sampling procedure

With preparations above, we give the Gibbs sampling procedure for computing the posterior.

Step 0 Initial step.
PO~ P|A;T; ;
0~ Q|B;
O ~ 0,|0y;
AO) A’p(O);
0 ~ DIQW
o\’ ~ 016y

th

Step 1 Iteration step. Assume n'* sample is finished, we get (n + 1) sample.

PO oc f(AM|P) f(P|A; T(A); co);
Q1) f(D(” Q, A(”) (Q|B);
Ot o £(61710,) f(0,|00):;
Al (Apn+1>) FOY|IA, D™, X 0
DI o f(DIQID, ACHD) (Y |A®D, D, X, 0");
O o f(©:1]05 ) (YA, DI X @),
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5.0 SAMPLING AND SIMULATION STUDY

We now discuss several sampling problems we encountered in implementing the method
from Section 4.3.4 and simulation study of applying Model 4.1 on transformed multiple

spike trains.

5.1 SOME PROBLEMS IN SAMPLING

For some posterior distributions in Section 4.3.4, sampling is not straightforward. In this
section, we discuss sampling problems for the matrix Dirichlet distribution and several com-
plicated one-dimensional distributions. Since the Metropolis-Hastings algorithm did not
work efficiently for matrix Dirichlet distributions and multimodal distributions, we designed
a weighted sampler for our Gibbs iteration. Our weighted sampler is especially useful for a
distribution with (1) bounded support, and (2) available uniform samplings on that support.
In practice, for unbounded support, one can truncate the orginal distrbution into one with
bounded support which covers the bulk of probability mass of the original distribution. If
the support of this distribution is (or can be covered by) a finite rectangular in R", one
can always easily sample from the corresponding uniform distribution. In our case, the
bounded Dirichlet distribution has an irregular bounded support but (of course) is covered
by a rectangle. We also apply our weighted sampler to several complicated one-dimensional

distributions in section 4.3.4.

Weighted sampler A weighted sampler is different from Metropolis-Hastings (MH) sam-

pler in that it does not approximate the target distribution through iterations. Rather,
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given a predetermined sampling precision, the weighted sampler can obtain one sample
in a predetermined number of steps. The sampling precision can be evaluated both theo-
retically and by simulation. The weighted sampler also provides the possibility to control

Bayesian iteration time. Generally, we write out this algorithm as follows.

Let X have pdf f(z) with bounded support S; f(z) can be an arbitrary density function,

and it is our target distribution. The weighted sampler procedure is:

1. get N samples: ¥ = (y1,%2, " ,Yn), Yn @.0.d. ~ U[S] (uniform on S);

f(y1) _ __fN) .
S i UN = )

get one sample I(y), such that P(I = n) = w,; and

calculate w(y) = (wy =

-~ W N

set f(@/) =Yi@®m) € {ylayQa T 7yN}
We now show by example that the empirical cdf F (x) of & can approximate the true cdf
F(z) of f(x) at any precision by increasing N. To evaluate the sampling precision, we

introduce two measures: (1) Dp(M) = , mex |F(Z) — F (&) for the deviation of
F(x) from F(z); (2) let &,,,m =1,--- ;M and F,(z) be M samples and corresponding
empirical cdf, ¢,,,m = 1,---, M and Fy(y)be another M samples and corresponding
empirical cdf, Dg(M) = ze{xm,ygl,?ﬁ}il,---,M} |F(2) — F,(2)| for sampling stability. They
are similar to the standard Kolomogorov-Smirnov statistics.
We now compare MH sampler and weighted sampler for a mixture distribution X: P(X =
N(—=5,1.5)) = 0.3, P(X = N(15,1)) = 0.3 and P(X = Exp(0.8)) = 0.4. Its pdf and
cdf plot are given in Figure 1. In Figure 2 and Table 3, we show the empirical cdfs for
four samplers: MH sampler with normal proposal density, MH sampler with uniform
proposal density, weighted sampler and true sampler (generate samples according to its
true distribution). We can see that the performance of the weighted sampler and true
sampler is almost the same and much better than MH samplers by measure Dr. However,
there is not much difference in Dg, which is expected according to Kolmogorov-Smirnov
theorem.

Sample of P in (4.30) By definition 6 on P.24, we see that P can be sampled through a

sequence of bounded Dirichlet distributions. Thus, we only need to sample a bounded

Dirichlet distribution. This distribution has an irregularly shaped support and is possibly
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multimodal. We do a simple comparison of weighted sampler and Metropolis-Hastings
sampler. In a weighted sampler, the uniform distribution for the bounded Dirichlet
distribution is Dirichlet distribution with all parameters set to 1. We use several val-
ues of N for our weighted sampler. The Metropolis-Hastings sampler to get a vector
(z1, -+ ,2K) ~ BD(ay, -+ ,ak; ¢, ,ck; ) is carried out thus:
e Initial step.
2(® ~ Dirichlet(ay, - - - , ax),
29 = transformation (4.6) of z(©);
e Sampling step. Assume z(™ obtained.
Let 2" ~ Dirichlet(ay, - - - , k), U ~ U(0,1),

2"+ D% — transformation (4.6) of z("*+1),

f1 (Z(n+1)*)f2(z(n)
F1(z() fa (2 ()

and fs is the true density of 2!

a, =1A

g, where f; is the density of BD(ay, -+, ak; 1, ,ck; 7),
nt 1)

e Iteration step. If a, > U, let 2D = 2(»*D* and n + 1 — n; otherwise, make no

change. Then go back to sampling step until convergence.

In pratice, this procedure does not work well for BD because the acceptance rate is very
small. So we do not present sampling results for MH procedure. By applying weighted
sampler, however, we show several traceplots (Figure 4,5,6,7) to demonstrate that the
weighted sampler does work. We sampled P ~ M D(A,cy): co = 0.1; A takes value M,
M %1000, MM and MM % 1000. Here, the matrices M and M M are as:

10 0 0 0 11111
05 05 0 0 O 11111
M=1103 0502 0 0 MM=111111
0 07 0 03 0 11111
0 0 0 0 1 11111

We can see that the weighted sampler successfully draws samples from a matrix Dirichlet
distribution. For A = MM, p;; and pj; alternatively dominate each other; for A = M,

some p;;s always dominate pj;.
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Sample of ;1 in (4.33) and v in (4.34) The only problem is how to sample a density pro-

1 (mpi—ngo)?
portional to: e % P (1—6_(’%) Obviously, we can use Metropolis-Hastings method
again. But these distributions have up to three local modes, Metropolis-Hastings sam-
pling method can hardly visit all modes, especially in some extreme cases, for example,

if those modes are far apart. Therefore, we used a weighted sampler in this case.

Sample of % in (4.35) and w? in (4.36) This is a serious problem, because these distri-
butions are highly irregular and with lots of local modes. It is likely for Metropolis-
Hastings sampling method to be trapped around a local mode. It is not easy to find a
proposal distribution for efficiently implementing Metropolis-Hastings algorithm in this
case due to the complicated form of target distributions. But it is a one-dimensional dis-
tribution and we can easily find an bounded interval which cover most of its probability,

for which we use a weighted sampler.
Sample of a in (4.38) We can use either the MH or weighted sampler for a.

Sample of ¢ in (4.49) and c in (4.50) Strictly speaking, this is not a sampling problem.

Rather, it is a problem of posterior distribution which can be generally posed thus:

P({0 = co}) = o(=512), if 0 = cy;
has pdf qﬁ(%), if 0 > .

x|f ~ gb(x;e).

What is the distribution of #|z? The answer is simple.

P{0=c}) = @(%), if 0 = cy;

0|z )
has pdf ¢(%5), if 6 > cq.
* /‘;—g t ‘% 52 1
po= 31 * T 1T
52 o2 52 o2
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Based on this property, (4.49) and (4.50) can be rewriten as:

(n+1)*

1) 1 1
P = 1)) = ol ) g et
ki others : df 5n+1) /"I(cn+1)* . (n+1) .
Ski Pki i
as pdf ¢( O(n1) ’ Sk
gt 4 Zeery Ly O ) @) =gk
2 o2
(n+1)x 5(n+1) 9(n)
ki - n+1 k n 2
1 ZteTk I{ }()‘( * ))(%(t)*cl(c ))
52 +
(n+1) (n)
2 1
5(n+1)* - (D () (n) 2
1 ZteTk I{z}(>‘ )( >
52 +
(n+1) (n)
(n+1)*
D) 1
n+1 P( n+ = O}) ( w<n+1)*) if Cp, (n+1) _ _ O,
|0thers ~ D) (nk 1) (1) (5.2)
k .
has pdf (b(—w(ml)* ), if ;" > 0.
o Tren Viex kf{}(/\("“))(é("“)) (=) —wne/es ™)
2
D Yin+1) )
k B n+1 n+1
- Sier, Diex_, Iy G T)En )2
w<2”+1) U(Qn)
2 1
w 1 = — -
(TL+ )* . ZteTk ZzE)C i I{ }()\( +1))(§( +1))
o2 +
(n+1) ('n)

5.2 SIMULATION STUDY

In Section 5.1, we studied sampling problems in fitting Model 4.1. In this section, we will
show how Model 4.1 can be used to detect Gerstein’s neuronal network interaction mode. Our
simulation procedure is to start with a copy matrix, generate spike trains, apply gravitational

clustering algorithm and then apply model 4.1 on the corresponding charge process.

Selection of network structure There are two pratical problems in fitting the Bayesian
Model 4.1: (1) the sampling of matrix Dirichlet distribution is not fast; (2) the con-
vergence of MCMC update for Model 4.1 is not fast. Thus, we currently study a small
network with only 5 nodes and 4 edges. This network is graphically represented in Figure
8. Corresponding raster plots, charge process, and gravitational time-distance plot are

shown in Figure 10, 11, 12, respectively.
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Selection of ¢y ¢ (see Definition 6) controls the upper bound of p;; x pj; (i # j). Ideally,
to approximate a directed acyclic graph, we need specify a very small cq; but small ¢
means slower in sampling matrix Dirichlet distribution. As a trade-off between CPU

time and the degree of approximating a DAG, we set ¢y = 0.1.

Choose J in Model 4.1 J reflects the strength of background signal. After studies of
various values, we set J = 1 because much larger values of J tend to erase all edges in

the network.

Detect the convergence of MCMC update We set the minimum iteration in Gibbs
sampling to be 6000 and then check trace plots for posteriors. If there is no visual
deviation from convergence, we take it as convergence. In Figure 13, we give trace plots

for p;; (posterior copy matrix).

Rebuild network structure For a convergence MCMC iteration sequence, the first 4000
iterations are taken as data burn-in and after that take one record for every 20-iteration
until the 9000th iteration. We then will have 250 estimated matrices P which directly
reflect the network structure; however we cannot always get a clear estimation because
all p;;s are positive in theory. According to asymptotic theory, Bayesian posteriors ap-
proximate normal distributions when sample size is large. In our simulation study, we
use data for 100 seconds and take one sample from transformed curve for every 0.002
seconds, so we have 50000 samples for Model 4.1. We can assume the posterior of p;; to

be normal and check its Normal QQ-plot (Figure 14).

Now we can say that if mean(p;;) — 2.576 x sd(p;;) > 0, there is evidence that an edge
exists from j to i. However, we can never obtain original copy matrix M. In Figure 9,
we list mean(p;;), sd(p;;), mean(p;;) — 2.576 x sd(p;;) and original copy matrix M. In
Figure 8, we construct network plots with the same method for both estimated and true

methods.
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5.3 CONCLUSION

In this thesis, we developed a Poisson process based probability model to study the prop-
erties of the gravitational clustering algorithm (GCA) and showed that GCA should be
adjusted by a time factor to balance the oscillation of GCA. The idea of the probability
model can be generalized to study ordinary differential equations (ODE) in other con-
texts. We also developed a detailed mixture model to directly study the dependence
among multiple spike trains. This model can be used to estimate a network structure
by generalizing the Dirichlet distribution and possibly provides an alternative to a tra-

ditional Bayesian network and dynamic Bayesian network.

The future work can be extended in at least two directions: (1) refine the methods
used in the probability model to obtain conclusions under much more general conditions;
(2) propose a general Bayesian framework to make a statistical model with much more
flexibility: statisticians shouldn’t worry about the form of distributions and sampling
techniques and should only focus on how to build and compare models. The second
direction is particularly meaningful today because, for instance, the internet is creating
giant data sets continuously; as a contrast, almost no classic statistical models can be
directly applied on analyzing this kinds of data sets. Only a Bayesian model provides
the possibility to handling such data sets; but current Bayesian methods are heavily
affected by the form of probability distributions and sampling techniques. As I can
see, a Bayesian framework based on discrete distributions can possibly provide a general

solution (definitely with a heavy computational load).

40



Probability density function: f{(x)

Cumulative density function: F(x)
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Figure 1: CDF and PDF plot for X

Density Plot for f(x)

CDF Plot for F(x)=P{X<=x)
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CDF/Empirical CDF
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Figure 2: Empirical CDF's for 4 samplers

CDF/Empirical CDFs: based on 1000 samplings
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Figure 3: Tables for comparing 4 samplers: Dy and Dg

Sampling methods

Compare 4 -
; Weighted
sampling methods | True Sampler MH Sampler MH Sampler
Sampler
proposal proposal
Sample density=N{0,20) | density=U{-20,20)

Sampling settings

precision=100 | may ypdate max update
steps=100 steps=100
- mean | 0.02664462 0.02753975 0.05800412 0.07958733
B sd 0.008270034 0.008488446 0.012601106 0.011547839
mean 0.033469 0.037707 0.038098 0.038851
= sd 0.01133339 0.01146467 0.01199868 0.0113039
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Figure 4: MD sample trace plot: M

Weighted sampler trace plot: M, thin=1, iterations=1:50
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Figure 5: MD sample trace plot: M * 1000

Weighted sampler trace plot: M*1000, thin=1, iterations=1:50
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Figure 6: MD sample trace plot: MM

Weighted sampler trace plot: MM, thin=1, iterations=1:50

i

333

—

O o
{=ia

46




Figure 7: MD sample trace plot: MM % 1000

Weighted sampler trace plot: MM*1000, thin=1, iterations=1:50
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Figure 9: Table for posterior copy matrix

Mean of P_ij

1 2 3 4 5
1 | 0.812604318 | 0.049281099 | 0.046723936 | 0.043537276 | 0.047853371
2 | 0.222523402 | 0.623905711 | 0.025415634 | 0.025264051 | 0.102391202
3 | 0.124536362 | 0.195906056 | 0.576226992 | 0.025515588 | 0.077815003
4 | 0.077663827 | 0.215542538 | 0.105654719 | 0.579861922 | 0.021276934
5 | 0.049632296 | 0.045835723 | 0.056897941 | 0.048850334 | 0.798783706

5D of P_ij

1 2 3 4 =
1 | 0.057521356 | 0.035250833 | 0.0338436534 | 0.036301635 | 0.033660036
2 0.05877459 0.06444056 | 0.019100875 0.0203469 0.046847146
3 | 0.045207719 | 0.054792335 | 0.061752102 | 0.0153281538 0.0360265
4 | 0.040441707 | 0.064619477 | 0.049724749 | 0.067760652 | 0.016276356
5 | 0.041538848 | 0.039638026 | 0.045046029 | 0.040265059 | 0.055240348

Mean{P_ij}-2.576x<5D{P_ij)

1 2 3 4 =
1 | 0.664429306 | -0.045253047 | -0.052288574 | -0.049975892 | -0.054310881
2 | 0.071120058 | 0.45790683 | -0.023738219 | -0.027149563 | -0.017787046
3 | 0.008081278 | 0.054761001 | 0.417076298 | -0.021577655 | -0.014989206
4 | -0.02651401 | 0.049082766 | -0.022436235 | 0.405310483 | -0.020650839
5 |[-0.057371777 | -0.056426393 | -0.059140629 | -0.054872453 | 0.65648457

True copy matrix P

1 2 3 4 5
1 1 0 0 0 0
2 0.5 0.5 0 0 0
3 0.3 0.5 0.2 0 0
4 0.7 0.3 0
5 0 0 1
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Figure 10: Raster plot
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Figure 11: Plot for charge process
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Figure 12: Gravitational clustering plot
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Figure 13: Trace plot for P

Trace plot for P: iteratiohs=seq(4000,9099,20)
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Figure 14: Normal QQ plot for p;;
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Snow flake plots

Figure 15

1.0

1

]

.5

0

0

Snow flake plot: time=10s, L=1 Snow flake plot: time=10s, L=1

-1.0 05 00 05 i0 -1.0 05 0.0 05 10
Meuron 1,4,5 in our simulation (Independent) Meuron 1,23 in our simulation (MOT independent)

95



APPENDIX

PROOFS OF RESULTS IN SECTION 3

Proof of Lemma 2:

(i) since ngz1(t) is measurable of ny(t — ep)and ngo(t) is measurable of ny(t) — ny(t — eo),
noticing the independence of n,(t —eg) and ny(t) —ny(t — &), the independence of n; 1 (%)

and ngo(t) follows;
(i) For t > g9 and § > 0, let W = ng1(t +0) — nz1(t) and V = ng1(t), let Q be an i.i.d.
copy of (;, we only need to show
a. nz1(g0) = 0 (obvious);
b. W is independent of V;
c. W ~ Poisson(mr9);

By definition, we have

n1(t—ep+9)
W o= Iy(m(t—s+0)—mt-=g) Y. G
i=n1(t—eo0)+1
ni(t—eo+0)—n1(t—eo) B
= In(ni(t —eo+6) —ni(t — &) > G
=1

ni (t 60

Vo= Iy(n(t—ep)) Z ¢

o6



so, W is independent of V'; next is to obtain P(W), for w € N'*,

!

w

PW=w) = ZP(nl(t —eo+0) —ny(t —gg) = l)( )ﬂ'w(l — )
l=w

_ S ) ()

— (I —w)! w!

~ Poisson(mrd).

(iii) let PP, and & be the i.i.d. copy of PP, and &;, we have

—~

0)
Cido,c0) (t1,i + €3)

ni(e

Nzo ~ IN(ﬁl(ﬁo))

)

~ [N(ﬁl(e?o)) 51[0,50)(%' + &),

WMA ||M

where u; is an 1.i.d. sequence with distribution U|0, go], so it shares the same form of n;

but with a different (;; a simple calculation shows that
P (Glioey) (Wi +&;) = 1) = /2

so result follows.

Proof of Lemma 3:

m1(¢~o) t—(t1 5+<;)
Elv(m(t—=) S G %
i=1
mé=<o) t—eo—t1,—(ei—c0) tlz (ei—c0)
= ELyv(ni(t — &) Z Ge™

nl(tfso) t—co—ty g
c1—<0 _t—eg—t1

=EGEe 7 Ely(ni(t — o)) Z e

=1

t—eq

)

=7 X 1(1 —e ) xrr(l—e
€0

o7



ma(t- _t=(t Z+s,)
E[N(nl(t — 80)) E
t—
1 (t—€o) 2[(t—ep—t1,0)+(c0—<1)]
= E E Cz T
_e0—€; __€0—¢y _(t c0)— tl,z_(t c0)—t1,
+ E g GGe 7 T e T T
1#£l
_ 2(eg _ 2(t—eg—w)
= mEe (t —eo0)Ee T

£0—¢&; t—eg—u 2

+ (BG)E(ni(t — o) — it — ) (Be™ 7 )*(Be™~

—7T><—[1—6 @} X 7= [1—6 Z(t:EO)}
280 2

+ [7?1(1 — 6_570)’/‘17'(1 —e”
€0

(i)

ni (t)

_t=(t1,ite)
Ely(ni(t) — ni(t — €0)) Z Gl (ti +ei)e v

i=n1(t—eo)+1

n1(g0) co(tr ites)
=7E Z ey (tri +ei)e ™~
i=1

= 7TETL1<50)E (I[O,EO)(U + 61)6_M>

T _ &0 &
= T X 110 X (8—0)2(6 - —(1— ?0))

Proof of Lemma 4:

o8




(i) That Eqs(t) = 0 is an easy verification;

ns(t+9)

Gt +6) = Iv(n,(t+8) S e 7 —rr(l—eF)
=1
nS(t) t+5—t; t )
=Iy(n,(t) Y e 7 —rr(l—e7)er
=1
nS(t—HS) t+5—t; t+34 t
+ In(ns(t +6) — ng(t)) Z e —rr(l—e 7 —(l—e7r)e 7)
i=ns(t)+1
d 5

= e 7qs(t) + Gs(6) (by Lemma 2-(i))

(ii) by Lemma 3-(7), let g9 | 0 and 7 = 1, we have E¢2(t) = (1 —e™ 7 );

(iii)

Proof of Lemma 5:

(i) easy to check;

(ii) by Lemma 4(i7) and Formula 3.6, we have

A8

a(t) =e 7 q(t —eo) + Gi(eo)

@2(t) = ¢5(t) + qnz 1 (t) + s 2(t)

29



so, Eqi»(t) = 6_570EQ1 (t —€0)qns1 + Eqi(g0)Gn. 2-

n1t 60

eg— al _ 2(t—eg)— 61 i TEL,
E]N n1 t — 80 E Qe T
i,l=1

7L1t 80

. 2(’5*50*51,1')
—EI/\/ ny t—&?o E Qe T T

2(t—eg)— €1,i—C1,1

+Ely(n(t—20)) Y Ge e

i#l
€ (t—eq) —€
—rr (1= e )T e ) (L - e )P (- e )
8(] 2 80
T _s0\ T
" qu<t — 80)(]71571 = 7“171'—(1 — e 79)—(1 —e T
€0 2

ni(e _
L(e0) 2e0— (2t ;+8;)

Elx(71(g0)) Z 52‘[[0,50)(7?1,1' +&;)e” T

=1
_ 20— (2ute) (2u+5)
= Enl(go X ECI // dude
0<u+te<eg
O0<u,e<eq
2
T = 1 _25
=riggn— |1l—e 7 —=(1—¢e" "~
e e )
71(eo0)

- ~ ~ o 2e0—(201 +E))
Elx(71(g0)) Z Ciljo,0)(t1, + Ei)e T
i#l

eg—(utéq)

= E(f3(c0) — 71(20)) X BEQ ey (u+&)e™ 7~ xBe 7

2

& €
= (reo)? x sy (=14 e P ) x Z1-e?
50 T EO

60



" Eqi(20)dns2

n1(e -
(&) _ 2e0—(28 348

= Elx(n1(g0)) Z 5@1[0,50)(51,i +&)e T

il=1
0 7—2 €0 €0
—nm7(l—e 7 ) x7rigo— (e‘T —(1— —))
EO T
~ 7'2 _ €0 1 _ 2eg
qu(eo)qns.,g =T1E0T— |:1 —e 7 —(1 —e 7—O>
€ 2
Finally, we have
E (t) _mTlﬂT2(1 _@)(1 _2(i*50))+7’171'7'2<1 _10)2
= e T — e T — e T —e T
2 280 280
2
mnTT _ &0 _2t—eq
= lee ) l—e =
(1 ) - e

Proof of Theorem 1:

(i)

N 2
n n .t
Q%,ZN = [; %(Nt)fh(ﬁt)ﬁl
t2

9, 1 9, 1
%(Nt)(b(ﬁt)m

[
WE

1

(.
Il

Part1
PaﬁtZ
N—1N—i . . ) . A
i i P41 i1t
2 _ - -
+22 2 alghelpie ey

i=1 [=1
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* ¢1(+) and go(-) are bounded
lim EPartl =0

N—oo

2

EPart2 = 2 Jgge_inqf(%ﬂqu(%t)% (by Lemma 5-(i))
SR
-1 2 ,oeTN 1= G_W(N_Z)} 2
_ ZW?T (1 e 23ty [ —
N::; 7"1;4 Nzl:l@;(l | eiON)Qel o ?1 %6_(1\[_")12)
8 £ N 1—efn
_ riroTd Zg(l ! oy 19ie:;VN

Notice limy_ On | 0, we have

N-1

: _—ifN2
A, 2 (L=
a 2t

- / (1= e)2(1 — e~ (2=9)qs
0

2t
=

1
=s5s—25+2(1+s)e*+ 56_28
0

2t
= ——25 (o t>T1)
n

So, Equation (3.8) is obtained when ¢ > 7. This leads us to conjecture that imy_,o Q1.2 n5(t)

may well be a Brownian Motion(for ¢ sufficiently large).
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(ii) by Lemma 5-(ii), we have(for ¢ > ¢y)

N
n t
EQi2n(t) = Z Eqi2(t)~
— N N
N
t rymwr? _ _2Nteo
— JE— 1 — T 1 f— T
> N o, (I—e7)1—e
n=["0]41
i BQux() = T (1) [ (10
11m = — € 7 — € T S
BN 920 A
9 t
= TIQZZ (I—e"7)(s+ Ze%oe_zrs)
€0
2
o ”g; (1—6‘7)(1&—60—%6_7) (o t>7)

Proof of Theorem 2:

Without loss of generality, we can set —x1(0) = 22(0) = dg >> ¢p; then we have

d(x1(t) — (1))
dt

=2q1(t)q2(t) (. dialt) > co = A2, 21) = 1)

which (when ¢ < hy) is the same as

Tox1(t) = —2dy + 2 lim Qi2n(1)

(i) by Theorem 1-(i),

Exozi(t) = —2dy+2E ]\}E{l)o Q12,n(1)
= —2d0 + 2 ]&Hn EQLQ,N(t)
— 24,

" Edy(t) = Blmw )] = di(0)
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Varﬁ(t) = Var(—2d, + 2Nlim Q12.n(1))
= 4Var(]\}im Qr2.n(1))
= 4 lim VarQ,sn(t)

N—oo

Vardlg(t) = 7’17“27'St
(ii) by Theorem 1-(ii)
Ez,zi(t) = —2do+2E A}im Q12,n(1)

= —2dy+ QJ&im EQ12n(t)

2

>~ 9dy+ T (1 e Yt — g — e )
o 2
& 2y + mryTt

S Ediao(t) = Elmzi(t)| Leo (t1 )

Proof of Theorem 3:

(i) for m = N — 1, conclusion holds; assume for 1 < m < N — 1 it holds, we prove it holds

for m — 1(math induction).

B (fun 09 ng1) = B{[B (fun(O|Fg1)] [T,

}
—B{ | fu i) + £ s (ROTI 00 + 1o i

+E{

m
O|F n, | T (51 + py-1-m)

N-1
Oy @ .
+E{ OV ()+0 (Nt)] \fmet}
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now using F.2 and decomposition F.5, we have

t m—1
o o m— LD, (mely)

{hj(—t) [1 + OW( ¥ t)} =N }

155 ("5t) + % Dis ("5 1)

t m—1 — m—1
= N%’j( N £) PN —1—(m—-1) L5 I t)

t m—1 — m—1_~q,m—1
+NqZ‘j(Tt)p]\/_l_(m—l)1ij(Tt)O(l)<Tt)

t o m—1 ~Dii("F)

+ i (PN -1 (m-1) = —
N N 155 ("5) + § Dy (50|

by noticing that

|
3
|

m m—1 t m —
Fign(5t) = fisn (m5=1) + 370 (=) Lis(

and rearranging terms, we see that the result holds for m — 1.

(i) the same method as in (i), just notice that F.3 replaces F.2 in this procedure.

Proof of Theorem 4:

Notice that E [z1(t) — 21(0)] = Sor_, Efixn(t), we only need to estimate E fi, n(t) by The-

orem (3).

(i) by Theorem (3)-(i), we have

B (fun (015 5:) | = () + (0T 001+ pa1)

N N !
=0
N-1 n n
+E {Z [0(1)(Nt) + 0<2><—t>} ys"gt} |
n=0
N-1
< S Lo O _(--F6)
>~ ra N prlfnl _ (50 .
2M?  ut
- FA



notice dy — +00 <= dy — 0, we see

| 2K - 1M ut
— <
Jim E [21(t) — 21(0)] [ < s im ——— 5 1—u

(ii) from above (Theorem 4-(i)), we have

dg—+00 0— 00

lim Bz (t) - 2:(0)] = lim > Efun(t)

by Theorem (3)-(ii), we have (for 2 < k < ky)

0 t 0 0
B (fun(01Tg:) = fu(3p0) + ot TG00+ pv-1o0)
P
N-1 n n
+E {Z [om(ﬁ) + 0(2)(Nt)] \?gt}
n=0
9
t 0 N = n n
_ - Oraad 22
NCl(lk)llk(Nt) 2 pnt+E {n_o [R (Nt) + R (Nt)} ’g}\’]t}
) pe ) ;4

by same method as in (i), we see limg, oo |P1 + P2| = 0; using F.4 and F.6

N 1—u 1—u

U 11—uV
= cl(1k)§(0)1_u [“N 1_u]t

200 { 1—u”]
n_

P3 = Le(ik)Tn0)—2 [N—l_uN}

dg—+00

1—501—u

209 U N-—-1 1 +11—uN
1—601l—uw 2 l—u N (1—-u)?

1—u

N_lt
li P4l < —c (1K
i [P4] < 3 pe(n

= Cl(lk?)

notice in the usual setting N > 1, we have

’ |P3| ’ 1 lim AT 1 N
m —— = l1m —— = 11m —— =
dp—00 |P4| do—oo OgN  60—0 t &g
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so finally, we obtain

lim E[z;(t) — 21(0)]

dg—+o00
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INDEX

LCP, 12,13 equal firing rates network, 8
MP, 12 Euclidean space, 9

excitation, 8
active effect, 6

attenuation function, 7 firing activity, 3
firing intensity, 3

BARS firing rate, 7
Bayesian Adaptive Regression Splines, 3 flow plot, 11

Bayesian belief network, 3, 19 force field, 7

BBN, 5, 8,9

DBN, 3-5, 8,9 GCA, 4, 6-8

DBN interaction mode, 5 GCA Distance, 7

dynamic Bayesian network, 1 GCA interaction mode, 6

semi-Bayesian belief network, 19 gravitational clustering algorithm, 1, 4, 6
Bernoulli distribution, 9 GCA procedure, 7
beta distribution, 6 GCA'’s distances, iii

GCAD, iii, 13-15

generalized mixture model, 2, 20
Gibbs sampling procedure, 33
goodness-of-fit, 9

charge process, 6, 7, 14

cluster algorithm, 6

cluster recognition, 7
computational neuroscience, 1, 3

control parameter, 19, 21, 24 indicator function, 20
copy matrix, 6 inhibition, 8
copy probability, 11 intensity, 4
crosscorrelogram, 8 interaction, 3, 4
interaction mode, 7, 8
DAG, 1, 8
DCG, 8 joint peristimulus time histogram, 8
directed cyclic graph, 8 JPSTH, 8
depth of copy matrix, 15
directed acyclic graph, 1 latency distribution, 6, 9
Dirichlet distribution, 2, 23 likelihood function, 9
Bounded Dirichlet distribution, 23, 24, 35
Matrix Dirichlet distribution, 24 machine learning, 9
distance, 7 mathematical tool, 8

dynamic system, 6, 9, 11 matrix, 2, 21, 24

dynamical system, 7 MCMC, 2, 9
mixture model, 2, 4, 21
effective time range, 9 model identifiability, 25
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moment, 13, 14

nervous system, 3
network model, 6
normalization function, 6
numerical integration, 9

oscillation, 8

partition, 4
pattern recognition, 4, 9
physics, 9
Poisson process, iii, 11, 12
probabilistic network, 5
process
empirical process, 3
Gamma, process, 3
inverse Gaussian process, 3
point process, 1, 3, 4
Poisson process, 3, 4
product, 14

random time lag, 8

Sampler
Metropolis-Hastings sampler, 2
weighted sampler, 2
sampler
Metropolis-Hastings sampler, 36
self-refractory effect, 5
sensitivity, 8
snowflake plot, 3
probabilistic model for snowflake plot, 3
spike, 1, 3
multiple spike trains, 1, 2, 4, 8
spike train, 1, 3, 4
spontaneous spike train, 6
spike sorting, 9
stationary independent increment, 12

temporal firing rate, 8
time decaying constant, 6
trigger neuron, 6

unequal firing rates network, 8
uneuqal rates network, 10
unidentifiability, 20

unit vector, 16
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