
STATISTICAL TREATMENT OF GRAVITATIONAL

CLUSTERING ALGORITHM

by

Yao Zhang

B.S. in Statistics, USTC, 1999

M.S in Mathematical Statistics, USTC, 2002

Submitted to the Graduate Faculty of

the Department of Statistics in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2010

UNIVERSITY OF PITTSBURGH

DEPARTMENT OF STATISTICS

This dissertation was presented

by

Yao Zhang

It was defended on

April 19, 2010

and approved by

Professor Satish Iyengar

Professor Henry Block

Assistant Professor Yu Cheng

Associate Professor Marek Druzdzel

Dissertation Director: Professor Satish Iyengar

ii

ABSTRACT

STATISTICAL TREATMENT OF GRAVITATIONAL CLUSTERING

ALGORITHM

Yao Zhang, PhD

University of Pittsburgh, 2010

In neuroscience, simultaneously recorded spike trains from multiple neurons are increasingly

common; however, the computational neuroscience problem of how to quantitatively ana-

lyze such data remains a challenge. Gerstein, et al. [5] proposed a gravitational clustering

algorithm (GCA) for multiple spike trains to qualitatively study interactions, in particu-

lar excitation, among multiple neurons. This thesis is mainly focused on a probabilistic

treatment of GCA and a statistical treatment of Gerstein’s interaction mode.

For a formal probabilistic treatment, we adopt homogeneous Poisson processes to gener-

ate the spike trains; define an interaction mode based on Gerstein’s formulation; analyze the

asymptotic properties of its cluster index – GCA distances (GCAD). Under this framework,

we show how the expectation of GCAD is related to a particular interaction mode, i.e.,

we prove that a time-adjusted-GCAD is a reasonable cluster index for large samples. We

also indicate possible stronger results, such as central limit theorems and convergence to a

Gaussian process.

In our statistical work, we construct a generalized mixture model to estimate Gerstein’s

interaction mode. We notice two key features of Gerstein’s proposal: (1) each spike from each

spike train was assumed to be triggered by either one previous spike from one other spike

train or environment; (2) each spike train was transformed into a continuous longitudinal

curve. Inspired by their work, we develop a Bayesian model to quantitatively estimate

excitation effects in the network structure. Our approach generalizes the mixture model to

iii

accommodate the network structure through a matrix Dirichlet distribution. The network

structure in our model could either approximate the directed acyclic graph of a Bayesian

network or be the directed graph in a dynamic Bayesian network. This model can be generally

applied on high-dimensional longitudinal data to model its dynamics. Finally, we assess the

sampling properties of this model and its application to multiple spike trains by simulation.

Keywords: Poisson process, generalized mixture model, matrix Dirichlet distribution, Bayes

network, high-dimensional longitudinal data, multiple spike trains.

iv

TABLE OF CONTENTS

1.0 INTRODUCTION . 1

2.0 LITERATURE REVIEW . 3

2.1 Dynamic Bayesian belief network . 4

2.2 Gravitational Clustering Algorithm . 6

2.3 Comparison of DBN and GCA . 8

2.3.1 Interaction Modes . 8

2.3.2 Mathematical aspects . 9

2.3.3 Results . 9

3.0 THEORETICAL ASPECTS OF GCA . 11

3.0.4 Preliminaries . 11

3.0.5 Moment properties of charge processes 13

3.0.6 Main results about GCAD (K=2) . 14

3.0.7 Main results about GCAD (K>2) . 15

4.0 GENERALIZED MIXTURE MODEL FOR HIGH-DIMENSIONAL

LONGITUDINAL DATA . 19

4.1 The problem . 19

4.2 Statement of Generalized Mixture Model . 20

4.3 Bayesian approach to computing the posterior 21

4.3.1 Preparation . 22

4.3.2 Specification of prior distributions . 24

4.3.3 Likelihood functions . 26

4.3.4 Conditional Posterior distributions . 28

v

4.3.5 Gibbs sampling procedure . 33

5.0 SAMPLING AND SIMULATION STUDY 34

5.1 Some problems in sampling . 34

5.2 Simulation study . 38

5.3 Conclusion . 40

APPENDIX. PROOFS OF RESULTS IN SECTION 3 56

INDEX . 68

BIBLIOGRAPHY . 70

vi

LIST OF FIGURES

1 Compare samplers - CDF and PDF plots . 41

2 Compare samplers - Empirical CDFs . 42

3 Compare samplers - Tables for DT and DS 43

4 MD sample trace plot - MD sample trace plot for M 44

5 MD sample trace plot - MD sample trace plot for M ∗ 1000 45

6 MD sample trace plot - MD sample trace plot for MM 46

7 MD sample trace plot - MD sample trace plot for MM ∗ 1000 47

8 Simulation - Graph representation of copy matrix 48

9 Simulation - Posterior copy matrix table . 49

10 Simulation - Raster plot for spike trains . 50

11 Simulation - Plot for charge process . 51

12 Simulation - Gravitational clustering plot . 52

13 Simulation - Trace plot for posterior copy matrix 53

14 Simulation - QQ plot for pij . 54

15 Simulation - Snow flake plots . 55

vii

1.0 INTRODUCTION

In computational neuroscience, analyzing simultaneously recorded multiple spike trains is a

relatively new problem. A spike is one firing of a neuron and is usually considered to be a

point event. A spike train is the sequence of spikes over time from one neuron and reflects

the time-course of that neuron’s activity. Since neurons interact with neighboring neurons,

studying the nature of their interactions is of particular interest. A typical interaction is

thought to be that firings of one neuron may be excited or inhibited by firings of other

neurons. Simultaneously recorded multiple spike trains from multiple neurons reflect the

time-course of the activity of a neuronal group which can be used to study the interactions

among neurons.

For one neuron, statistical inference is well established by modeling a single spike train

as a one-dimensional point process [3]. However, for multiple neurons, statistical inference

becomes difficult if modeling multiple spike trains as a high-dimensional point process. Major

difficulties are due to that the richness of interaction patterns among neurons, and the curse

of dimensionality, or the typical paucity of data in the high-dimensional spaces involved.

Several simplifications for the interaction pattern have been proposed. Gerstein, et al.

[5] used an interaction pattern similar to a directed acyclic graph (DAG) in a Bayesian

belief network by only considering excitation effects. They applied a modified gravitational

clustering algorithm on multiple spike trains. Using their method, neurons directly or indi-

rectly connected by excitation were visually clumped into a single cluster. Rigat, et al. [10]

used dynamic Bayesian network (DBN) on binned spike trains. Their method treated the

neuronal interaction as a directed graph and could estimate the effect of excitation and/or

inhibition.

In our probabilistic approach, to analyze GCA mathematically, we modeled spike trains

1

and their interactions using Poisson processes, and obtained large sample properties of GCA.

And in our statistical approach, we adopted the interaction pattern from Gerstein, et al. [5]

by creating a hidden neuron (we called it an environment) which accounts for all other

factors beyond the excitation between recorded neurons. The DAG (directed cyclic graph)

network like Bayesian belief network was difficult to model, so we proposed a semi-DAG net-

work structure by enforcing an upper bound on the probability of forming (directed) rings.

The excitation effect among neurons is parametrized by a copy matrix (pij)K×K : pij is the

probability that neuron i is triggered by (or copied with random disturbance from) neuron j.

Thus, for each row of (pij)K×K , a mixture model is applied. In order to link all these mixture

models together and enforce a semi-DAG structure for the excitation effect, we generalized

Dirichlet distribution to a matrix Dirichlet distribution. This generalization and further

consideration of model identifiability led to several difficulties in implementing MCMC sam-

pling. Thus, instead of the Metropolis-Hastings method, we designed a weighted sampler

which controlled the sampling precision in a given finite number of steps for distributions

with bounded support.

The remainder of this thesis is organized as follows. Chapter 2 reviews the literature on

multiple spike train analysis, with a focus on GCA and DBN. Chapter 3 contains a theoretical

study of GCA. Chapter 4 gives details of how to apply generalized mixture models to multiple

spike trains. Chapter 5 discusses sampling problems and summarizes a simulation study.

2

2.0 LITERATURE REVIEW

The nervous system is very complex. Scientists are studying it from different angles. The

quantitative analysis of the nervous system’s (firing) activity is an important aspect of com-

putational neuroscience. These studies are done at many levels of resolution. For the study

of the dynamics of a single spike, see Koch [9] and Hodgkin, et al. [6]. For a single spike

train, see Brown [3], for a review of one-dimensional point process models, for example, inho-

mogeneous Poisson and Gamma processes, and the inverse Gaussian process. For the study

of two spike trains, Kass, et al. [12] used BARS (Bayesian Adaptive Regression Splines) to

construct a test for the difference between their firing intensities. Kass, et al. [8] also con-

sidered the interaction between 2 spike trains by BARS. These methods focused on studying

the firing intensities of neurons.

Brillinger [1] studied a multiple point process approach for a small group of neurons.

Utikal [11] used empirical process to analyze the dependence between one spike train and

other spike trains. Czanner et al. [4] developed a probabilistic model for the snowflake plot

which is a powerful tool for depicting the joint activity of three neurons. Figure 15 shows

snowflake plots on three of the neurons we used in our simulation studies. Most of these

methods are intended to test the independentce between one spike train and other spike

trains.

As pointed out in Iyengar [7] and Brown, et al. [2], one problem in analyzing multiple

spike trains was how to define an interaction pattern among neurons. Following this line,

Rigat, et al. [10] proposed a dynamic Bayesian network (DBN) model to analyze interactions

among multiple spike trains. There are two difficulties in applying this method: the process

of binning spike trains into binary sequences can introduce noise; and identifiability of model

parameters was not considered. However, the idea of applying Bayesian belief networks to

3

describe the interaction among neurons remains a very attractive approach.

Gerstein et al. [5] proposed an interaction pattern which only takes into account excita-

tion effects, and applied a gravitational clustering algorithm (GCA) to qualitatively analyze

this pattern. GCA is a numerical algorithm in pattern recognition whose aim in this context

is to identify distinct independent neuronal sub-groups in a larger collection of simultane-

ously recorded neurons. This method requires the transformation of multiple spike trains

into multiple longitudinal curves. Although our simulation studies show some oscillations of

this method in the long run (i.e., there may be unstable clusterings), the tranformed longi-

tudinal curves do give more flexibility in statistical modeling. For example, it allows for the

use of mixture models.

2.1 DYNAMIC BAYESIAN BELIEF NETWORK

We start with definitions related to the source data: a spike train is conveniently modeled as

a point process for many purposes, but not for DBN or GCA, so we consider transformations

by binning and by charge processes.

Data Type 1 (Spike Train†). S = {ti > 0, ti+1 > ti}i∈N is said to be a spike train with

ith spike time ti. It is a point process on R+. We let {ns(t)}t∈R+ to be its corresponding

counting process.

Generally there are many probabilistic models for S; in this thesis, the basis of our

simulations is the Poisson process with intensity r, PP ≡ {s = {ti}i∈N , {ns(t)}t∈R+ , r}.

Data Type 2 (Binned Spike Train). A binary sequence ∆s = {δ1, δ2, · · · , δM} is a binned

spike train of a spike train S[0,T) = {t1, t2, · · · , tN} on [0, T) if it is determined thus:

1. there is a finite partition 0 = 0
J
T < 1

J
T < · · · < J

J
T = T of [0, T): each time interval

is considered to be a discrete time point;

2. δj is defined as
∑N

i=1 I[j−1
J
T, j
J
T)(ti): δj = 1 means a spike at jth discrete time point

and δj = 0 means no spikes at jth discrete time point.

† Figure 10 is a raster plot for 5 simulated spike trains.

4

To guarantee δj < 2, usually T
J

is set to be 1 or 2 ms due to the typical neuron’s refractory

period. When there are several neurons, {δkj}j denotes kth neuron’s binned spike train.

Definition 1 (DBN interaction pattern). This interaction can be fully described by the

following three components:

1. an interaction matrix B = (βkl)K×K, where βkl is the effect from lth neuron to kth neuron,

with βkk the self-refractory effect;

2. Baseline (or Spontaneous) activity vector Θ = (θ1, θ2, · · · , θK)T : here θk describes the

spontaneous activity of neuron k if it were isolated from the current neuron group and

ignoring the self-refractory effect;

3. Linkage function: let πkj = Pr{δkj = 1|history before time j} and τkj = max{l < j|δkl =

1}: πkj is kth neuron’s firing probability at time j conditioned on all neurons’ histories

before time j; τkj is the last firing time of the kth neuron before time j.

log

(
πkj

1− πkj

)
= θk +

K∑
h=1

βkh

(∑j−1
w=τkj

δhw

j − τkj

)
. (2.1)

This definition is not yet a complete description of the interaction. To complete it, Rigat,

et al. [10] assumed the independence of all such conditional probabilities to get

Pr(∆|Θ, B) =
K∏
k=1

M∏
j=1

π
δkj
kj (1− πkj)1−δkj . (2.2)

Model Fitting Method 1 (DBN). Bayesian method: Prior(Θ,B)
sampling−→ Posterior(Θ,B).

This DBN model estimates all pairwise interactions by B, but it is different from the

classic probabilistic network (Bayesian belief network, BBN) in an important way: if a di-

rected graph is used to show interactions among neurons, rings are permitted in DBN but

prohibited in BBN. Although Rigat, et al. [10] did not deal with the problem of parame-

ter identifiability, they did recommend the use of interpretable parameters in terms of the

biological mechanisms of neuronal firing and validated their model by simulation.

5

2.2 GRAVITATIONAL CLUSTERING ALGORITHM

In contrast to the DBN approach, GCA is not a network model. Rather, it is a clustering al-

gorithm with an embedded dynamic system. A cluster is thought to be a neuronal sub-group

with (direct or indirect) excitatory connections; thus, two clusters mean two unconnected

sub-graphs. We now give the formal definitions.

Data Type 3 (Charge Process‡). A charge process qs(t) of a spike train S[0,T) is

qs(t) = q0I{ns(t)>0}

ns(t)∑
i=1

e−
t−ti
τ − q̄(t), (2.3)

where q0 is a positive constant, τ is the time constant which describes the exponential decay

of a spike’s excitation effect, and q̄(t) is a normalization function which makes Eqs(t) = 0.

The normalizing function q̄(t) is usually constant, especially under stationary conditions.

This charge process is a transformation of spike train: qs(t) is the active effect at time t.

The sign of qs(t) in this context has the following interpretation: a neuron with spike train

s excites other neurons if qs(t) > 0 and is excited by other neurons if qs(t) < 0.

Definition 2 (GCA interaction mode). This interaction mode also has three components:

1. a copy matrix† P = (pkl)K×K, pkl = Pr(spikes in kth spike train are copied from the lth

spike train); this copying is done after a certain latency, ε, with a certain distribution,

for example, a beta distribution on an interval [a, b];

2. spontaneous spike trains S∗ = {s∗1, s∗2, · · · , s∗K}, each of whose spike trains model the

activity if the corresponding neuron is isolated from its network;

3. a link which for neuron k, combine spikes copied from other neurons with the kth neuron’s

spontaneous spike train, sk = sort{s∗k, random copied spikes from sl with probability pkl

and time lag ε}

In this mode, we need some trigger neurons, for which p·k = 0 or s∗k = sk. When we

generate data, we first generate spikes for trigger neurons, then delete the trigger neurons

and find new trigger neurons within remaining neuron subgroup; and repeat until no neurons

‡ Figure 11 is an illustration of a charge process.
† Bottom table in Figure 9 is an example of copy matrix.

6

available. Note also that this interaction mode does not require charge processes, for it is

about the firing rate or spikes. That is why we say that GCA is only a tool to analyze the

interaction mode. The following GCA procedure is from Gerstein; it consists of three steps.

Model Fitting Method 2 (GCA). 1. Trace calculation, which describes the neuron’s tra-

jectory in an embedded space:

A(a, b) =

 a−b
|a−b| , |a− b| > c0

0, |a− b| ≤ c0

(2.4)

fk(t) =
∑
l 6=k

ql(t)A(xl(t), xk(t)) (2.5)

dxk(t)

dt
= σqk(t)fk(t) (2.6)

Here, xk(t) is the location of the representaion of neuron k in RK at time t, fk(t) is the

force field at the kth neuron’s position at time t, and A(·, ·) is an attenuation function. In

fact, these equations define a dynamical system, the traces xk of which are irregular, and

the speed of those traces provide information about excitatory effects within a cluster.

2. Distance measure† (Euclidean): the shorter of the distance between xk(t) and xl(t), the

larger probability that kth neuron and lth neuron are within the same cluster.

dkl(t) = |xk(t)− xl(t)| (2.7)

3. Cluster recognition: The basic approach to the construction of distinct clusters is to view

the traces in K-dim Euclidean space: if some traces get closer with time, we say that they

are in one cluster; if they remain far apart, we say that they are in different clusters.

Usually it is carried out by monitoring the collection of pairwise distances dkl because of

the difficulties of visualization in high dimensions.

† Figure 12 is a plot of Distances by Time.

7

Gerstein showed that this procedure is powerful for detecting networks when individual

firing rates are equal, but for networks with unequal firing rates, some undesirable oscillations

occured in their simulations. Our research on GCA is mainly focused on how to improve its

sensitivity and how to visualize the traces.

2.3 COMPARISON OF DBN AND GCA

Strictly speaking, methods other than DBN and GCA mentioned in Chapter 2 are essentially

designed for a small group of neurons. Currently only DBN and GCA can be applied

to analyze multiple spike trains at the scale of tens or larger. However, they are very

different in many aspects: their interaction mode, mathematical tools, and simulation results.

However, both of them share the same limitations: they both require transformation of the

original data, and their theoretical foundations are still not well studied. In this section we

qualitatively study their differences.

2.3.1 Interaction Modes

GCA’s interaction mode is suggested by Gerstein based on his experience in neuroscience.

It can be viewed as a natural generalization of a widely-accepted method (crosscorrelogram,

or its dynamic version, the joint peristimulus time histogram (JPSTH)) which are standard

tools for analyzing two neurons; in contrast, DBN’s interaction mode originates from BBN,

which is more flexible than GCA. Other contrasts are the following:

1. Graph in DBN is Directed Cyclic Graph (DCG), in GCA is DAG;

2. In DBN, interaction includes excitation and inhibition; in Gerstein’s implementation of

GCA, only excitation is modeled;

3. In DBN, interaction takes effect by increasing or decreasing the temporal firing rate

of triggered nodes; in GCA, interaction takes effect by directly copying a spike with a

random time lag, so we can tell which spikes are from others, which are self generated;

8

4. In DBN, interactions between different pairs have different effective time ranges; in GCA,

all interactions have the same latency distribution;

5. DBN’s interaction mode is not as straightforward as GCA’s interaction mode.

2.3.2 Mathematical aspects

Since GCA originated from pattern recognition and DBN originated from Bayesian methods

(BBN originated from machine learning), they differ considerably in their mathematical

aspects.

DBN a. uses the Bernoulli distribution to construct likelihood function;

b. uses Bayesian methods to estimated parameters;

c. uses MCMC to obtain predictions;

d. uses proportion of fitting (and prediction) residuals that cross a threshold to evaluate

the goodness-of-fit; and

e. uses artificial spike sorting errors to test the robustnes of this model;

GCA a. uses concepts from physics to construct a dynamic system in high-dimensional Eu-

clidean space;

b. uses numerical integration to obtain traces of this dynamic system;

c. uses a geometrical properties of those traces (Euclidean distances among them) to

obtain clusters;

d. it makes no predictions because it does not try to fit data;

e. there areno goodness-of-fit tests because, once again, it does not try to fit data; and

f. there is no evaluation of robustness.

2.3.3 Results

1. GCA reads in data as time evolves; DBN reads in all data at the start;

2. GCA starts with a graph, and ends with clusters; DBN starts from graph, and ends with

a graph;

9

3. GCA is not robust for networks with non unequal rates, according to my simulation; DBN

is more robust, but has different performance for different rates, according to Rigat, et

al. [10];

4. GCA’s behavior is not well understand in theory, so much work left to be done; DBN

has considerable theoretical support from Bayesian statistics; and

5. usually, GCA only requires record within one minute, DBN requires at least 10 minutes’

record.

10

3.0 THEORETICAL ASPECTS OF GCA

GCA clusters spike trains using the following method: each neuron is represented by a

virtual point in K-dimensional space (K is the number of neurons); initially, all pairs of

points are equidistant; the products of paired charge processes will generate an uneven force

field in this space; these virtual points’ speeds are proportional to the force field; the final

geometrical configuration of these points, along with cluster index determine the clustering.

Mathematically, the traces of these virtual points are a K-dimensional non-autonomous

dynamical system with random coefficients, so in general it is hard to draw a flow plot.

In this section, we mainly study E(xk(t)−xk(0)): if K = 2, this is equivalent to d12(t); if

K > 2, this will give us a draft picture of the geometrical pattern. There are two key aspects

of this work: the first concerns the properties about charge processes and their products

(in section 3.0.4 and 3.0.5); the second deals with how to calculate the integration of those

products (in section 3.0.6 and 3.0.7).

3.0.4 Preliminaries

In this part, we expand on definition 2 and list some simple properties of related processes.

Definition 3 (Copy probability). PP1 = {s1 = {t1,i}i∈N , {n1(t)}t∈R+ , r1} is said to be

copied to MP2 with probability π and latency ε, if and only if

(i) there exists a Poisson process PP∗2 = {s∗2 = {t∗2,i}i∈N , {n∗2(t)}t∈R+ , r∗2} which is indepen-

dent of PP1;

(ii) there exists an i.i.d. sequence εi with distribution U [0, ε0], independent of all others; there

exists another i.i.d. sequence ζi with distribution Bin(1, π), independent of all others;

11

(iii) define a local copied process from PP1 (t > ε0) thus:

ns̃(t) ≡ IN (n1(t− ε0))

n1(t−ε0)∑
i=1

ζi︸ ︷︷ ︸
ns̃,1(t)

+ IN ((n1(t))− (n1(t− ε0)))

n1(t)∑
i=n1(t−ε0)+1

ζiI[0,t)(t1,i + εi)︸ ︷︷ ︸
ns̃,2(t)

(3.1)

s̃(t) ≡ sort{t1,i + εi|ζi = 1, t1,i + εi < t, i ∈ N} (3.2)

LCP = {s̃, {ns̃(t)}t∈R+ , rs, U [0, ε0]} (3.3)

here {ns̃(t)}t∈R+ is the counting process of point process s̃, and the intensity rs is no

longer a constant;

(iv) MP2 is the combination of PP∗2 and LCP:

s2(t) ≡ sort{s∗2(t), s̃(t)}

n2(t) ≡ n∗2(t) + ns̃(t)

r2 ≡ r2(r∗2, rs, ε0)

MP2 = {s2 = {t2,i}i∈N , {n2(t)}t∈R+ , r2} (3.4)

Lemma 1 (some properties of Poisson process). For a standard Poisson process PP1, we

have the following properties

(i) t1, · · · , tn|N(t) = n have the same distribution as order statistics of n iid U(0, t) variates;

(ii) Poisson process has stationary independent increments;

Lemma 2 (Properties of LCP). The process in formula (3.1) has the following properties:

(i) ns̃,1 is independent of ns̃,2;

(ii) ns̃,1 is a Poisson process starting at time ε0 and with intensity πr1;

(iii) ns̃,2 has distribution Poisson(π
2
r1ε0).

Note that LCP is not a Poisson process because it has dependent increments for ns̃,

withrs = rs(t) in this case.

12

Lemma 3 (Charge process of LCP). First, the charge process of the point process in formula

(3.1) to be (for t > ε0) is the sum of the two components:

qns̃,1(t) ≡ IN (n1(t− ε0))

n1(t−ε0)∑
i=1

ζie
−
t−(t1,i+εi)

τ − π τ
ε0

(1− e−
ε0
τ)r1τ(1− e−

t−ε0
τ) (3.5)

qns̃,2(t) ≡ IN (n1(t)− n1(t− ε0))

n1(t)∑
i=n1(t−ε0)+1

ζiI[0,t)(t1,i + εi)e
−
t−(t1,i+εi)

τ

− πr1ε0(
τ

ε0

)2(e−
ε0
τ − (1− ε0

τ
))

d
= IN (ñ1(ε0))

ñ1(ε0)∑
i=1

ζ̃iI[0,ε0)(t̃1,i + ε̃i)e
−
ε0−(t̃1,i+ε̃i)

τ − πr1ε0(
τ

ε0

)2(e−
ε0
τ − (1− ε0

τ
)).

In that case, we have

(i) Eqs̃,1(t) = 0, Eq2
s̃,1(t) = πr1τ2

4ε0
(1− e−

2ε0
τ)(1− e−

2(t−ε0)
τ);

(ii) Eqs̃,2(t) = 0.

Finally, we introduce the following notation:

qLCP(t) = qns̃,1(t) + qns̃,2(t)

qMP(t) = qLCP(t) + IN (n∗2(t))

n∗2(t)∑
i=1

e−
t−t∗2,i
τ − r∗2τ(1− e−

t
τ)︸ ︷︷ ︸

q∗2(t)

(3.6)

3.0.5 Moment properties of charge processes

This part is used to list moments of charge processes, which will be used in calculate GCAD.

Lemma 4 (Moments of charge process). Let s = {ti}i≥1 be a Poisson process with intensity

r and {ns(t)}t>0 be its counting process, qs(t) its charge process as defined in Datatype 2.3:

qs(t) = q0I{ns(t)>0}

ns(t)∑
i=1

e−
t−ti
τ − q̄(t);

for convenience, we set q0 = 1 and q̄(t) = rτ(1− e− t
τ), for t, δ > 0. Then we have

(i) Eqs(t) = 0.

(ii) qs(t+ δ)
d
= e−

δ
τ qs(t) + q̃s(δ), where q̃s(t) is an i.i.d. copy of qs(t).

13

(iii) Eq2
s(t) = rτ

2
(1− e− 2t

τ), c(t, δ) ≡ Cov(qs(t), qs(t+ δ)) = e−
δ
τ Eq2

s(t).

Lemma 5 (Moments of product of charge processes). Let q1(t), q2(t) be two charge processes

defined as in formula 2.3, and define q1,2(t) ≡ q1(t)q2(t),

(i) if q1(t) and q2(t) are independent and as defined in Lemma 4, then Eq1,2(t) = 0,Eq2
1,2(t) =

Eq2
1(t)Eq2

2(t);

(ii) if q1(t) and q2(t) are charge processes of PP1 andMP2 as in Definition 3, then Eq1,2(t) =

r1πτ2

2ε0
(1− e−

ε0
τ)(1− e−

2t−ε0
τ).

3.0.6 Main results about GCAD (K=2)

In Theorem 1, we study the integration of charge process product; Theorem 2 is a simple

application of Theorem 1. They state precisely the following facts for K = 2: if two processes

are independent, the expectation of GCAD’s deduction will be 0, but the variance of GCAD’s

deduction will increase over time; if two processes are dependent, the expectation of GCAD’s

deduction will increase with time. Proofs are in the Appendix.

Theorem 1 (2-dimension). Let q1(t) and q2(t) be two charge processes defined as in formula

2.3, now define

Q1,2,N(t) ≡
N∑
n=1

q1(
n

N
t)q2(

n

N
t)
t

N

(i) if q1(t) and q2(t) are defined as in Lemma 4 and independent (with intensity r1 and r2),

then

EQ1,2,N(t) = 0 (3.7)

lim
N→∞

EQ2
1,2,N(t) ∼=

r1r2

8
τ 4(

2t

τ
− 2.5) (3.8)

(ii) if q1(t) is copied to q2(t) with probability π and latency distribution U [0, ε0] (as defined

in Lemma 5-(ii)), then

lim
N→∞

EQ1,2,N(t) ∼=
πr1τ

2

2ε0

(1− e−
ε0
τ)(t− ε0 −

τ

2
e−

ε0
τ) (3.9)

Theorem 2 (GCAD (K=2)). For 2-dimensional GCA model defined by (2.3) and (2.4)-

(2.6), let h1 ≡ sup{t ≥ 0|d12(t) > c0}, we have

14

(i) if n1(t) and n2(t) are two independent Poisson process with intensity r1 and r2, d12(0)�

c0, then for t < h1

Ed12(t) = d12(0)

Vard12(t) ∼= r1r2τ
3t, if t� τ

(ii) if n1(t) and n2(t) as defined in Definition (3), h1 > t� τ � ε0, then

Ed12(t) ↓ c0 (t ↑ h1)

From these theorems, we arrive at the following conclusions: the GCAD’s expectation

will be unchanged if two spike trains are independent; GCAD’s expectation will decrease

to c0 if two spike trains are dependent. However, GCAD will become unreliable for large

times because the variance of the distance increase with time; hence, the GCAD should be

adjusted with time.

3.0.7 Main results about GCAD (K>2)

We now turn to the analogous results for the case (K>2). In order to do so, we need to

introduce the notion of the depth of a copy matrix.

Definition 4 (Depth of copy matrix P).

D(P) ≡ min{n ≥ 1|P n = 0}

In order to use previous conclusions in section 3.0.5, we restrict our discussion to that

each process is either a Poisson process or a mixture of Poisson process and several LCPs,

that is, D(P) ≤ 2. In fact, in Theorem 2-(i), D(P) = 1; in Theorem 2-(ii), D(P) = 2. Next,

we introduce addtional notation and assumptions:

(i) henceforth, assume that |qk(·)| < M < +∞, 1 ≤ k ≤ K;

(ii) fix t, ρ, τ > 0, ∀ δ0 ∈ (0, 1), and set d0 = 2(K−1)M2

δ0
ρτ, N(δ0, t) = t

ρτ
;

(iii) let qi(t) (i = 1, 2, · · · , K) be the charge process defined in (2.3), and let

Ft ≡ σ{qi(s)|1 ≤ i ≤ K, 0 ≤ s ≤ t};

15

(iv) define the unit vector (1 ≤ i 6= j ≤ K),
−→
1ij(t) ≡ xj(t)−xi(t)

|xj(t)−xi(t)| ;

(v) define a sum for 1 ≤ m ≤ N (fij,N(0) = 0), a generalization of Q1,2,N(t)

fij,N(
m

N
t) ≡ t

N

m∑
n=1

qij(
n− 1

N
t)
−→
1ij(

n− 1

N
t);

(vi) for now, we focus only on xi(·), which is a sum of finitely many (N = t
ρτ

) terms:

xi(
m

N
t) ≡ xi(0) +

t

N

m∑
n=1

∑
k 6=i

qik(
n− 1

N
t)
−→
1ik(

n− 1

N
t), 1 ≤ i ≤ K (3.10)

(vii) next, let

Ci(
m

N
t) ≡

∑
k 6=i

qik(
m

N
t)
−→
1ik(

m

N
t), Dij(

m

N
t) ≡

Cj(
m
N
t)− Ci(mN t)
|−−→xixj(mN t)|

;

(viii) finally, define a series for n ∈ N ∗ and 0 < u < 1, ρ0 = 0, ρn+1 = u(1 + ρn).

With above notations, we list several simple facts:

F1. fij(
m
N
t),
−→
1ij(

m
N
t), xi(

m
N
t) ∈ Fm−1

N
t, qij(

m
N
t), Ci(

m
N
t), Dij(

m
N
t) ∈ Fm

N
t;

F2. if qi(·) is independent from qj(·), then E
[
qij(

m
N
t)|Fm−1

N
t

]
= e−

1
τ

2t
N qij(

m−1
N
t);

F3. if qi(·) and qj(·) are defined as in Lemma 5-(ii), further assume ε0 = t
N

, then

E
[
qij(

m

N
t)|Fm−1

N
t

]
= e−

1
τ

2t
N

qij(m− 1

N
t) +

c1(ij)︷ ︸︸ ︷
e

1
τ

2t
N
r1πτ

2

2ε0

(1− e−
ε0
τ)2

 ;

F4. for n ∈ N ∗, ρn = u(1−un)
1−u ,

∑n
i=0 ρi = u

1−u

[
n+ 1− 1−un+1

1−u

]
;

F5.
−→
1ij(

m

N
t) =

−→
1ij(

m−1
N
t) + t

N
Dij(

m−1
N
t)

|−→1ij(m−1
N
t) + t

N
Dij(

m−1
N
t)|
,

Õ(1)(
m− 1

N
t) ≡ 1

|−→1ij(m−1
N
t) + t

N
Dij(

m−1
N
t)|
− 1;

F6. assuming that |−−→xixj(·)| ≥ d0 for all following content, then we have

|Dij(·)
t

N
| ≤ δ0, |Õ(1)(·)| ≤ δ0

1− δ0

. (3.11)

16

Theorems 3-4 are the counterpart of Theorems 1-2, for higher dimensions. Theorem 4 is

a simple application of Theorem 3. They show the link between clusters and gravitational

traces: within each cluster, corresponding traces move toward each other; between clusters,

cluster centers don’t move. Compared to section 3.0.6, we have stronger assumptions but

weaker conclusions.

Theorem 3 (E
(
fij,N(t)|Fm

N
t

)
). If |−−→xixj(0)| > d0, let hij(d0) = sup{t ≥ 0|dij(t) > d0} and

u = e−
1
τ

2t
N , then we have

(i) if ni(t) and nj(t) are two independent Poisson process with intensities ri and rj, respec-

tively, then for t < hij and 0 ≤ m ≤ N − 1

E
(
fij,N(t)|Fm

N
t

)
= fij,N(

m

N
t) +

t

N
qij(

m

N
t)
−→
1ij(

m

N
t)(1 + ρN−1−m)

+E

{
N−1∑
n=m

[
O(1)(

n

N
t) +O(2)(

n

N
t)
]
|Fm

N
t

}
(3.12)

O(1)(
n

N
t) =

t

N
qij(

n

N
t)
−→
1ij(

n

N
t)ρN−1−nÕ

(1)(
n

N
t) (3.13)

O(2)(
n

N
t) =

t

N
qij(

n

N
t)ρN−1−n

t
N
Dij(

n
N
t)

|−→1ij(nN t) + t
N
Dij(

n
N
t)|

(3.14)

(ii) if ni(t) and nj(t) as defined in F.3, then for t < hij and 0 ≤ m ≤ N − 1

E
(
fij,N(t)|Fm

N
t

)
= fij,N(

m

N
t) +

t

N
qij(

m

N
t)
−→
1ij(

m

N
t)(1 + ρN−1−m)

+E

{
N−1∑
n=m

[
O(1)(

n

N
t) +O(2)(

n

N
t)
]
|Fm

N
t

}
t

N
c1(ij)

−→
1ij(

m

N
t)
N−1−m∑
n=0

ρn + E

{
N−1∑
n=m

[
R(1)(

n

N
t) +R(2)(

n

N
t)
]
|Fm

N
t

}
(3.15)

R(1)(
n

N
t) =

t

N

−→
1ij(

n

N
t)c1(ij)Õ(1)(

n

N
t)
N−1−n∑
l=0

ρl (3.16)

R(2)(
n

N
t) =

t

N
c1(ij)

t
N
Dij(

n
N
t)

|−→1ij(nN t) + t
N
Dij(

n
N
t)|

N−1−n∑
l=0

ρl (3.17)

O(1)(·) and O(2)(·) are defined as in (3.13) and (3.14).

Finally, note that E
(
fij,N(t)|F 0

N
t

)
= Efij,N(t).

17

Theorem 4 (GCAD (K>2), large inter-distance). Let h1(d0) ≡
∧
k 6=1

h1k(d0), if t < h1(d0)

and fix N = t
ρτ

, we have

(i) if n1(·) is independent from {n2(·), · · · , nK(·)}, then

lim
d0→+∞

E [x1(t)− x1(0)] = 0 (3.18)

(ii) if {n1(·), · · · , nk1(·)} are independent from {nk1+1(·), · · · , nK(·)} and ρτ = ε0, further

assume D(P) = 2, then

lim
d0→+∞

E [x1(t)− x1(0)] =

k1∑
k=2

c1(1k)
−→
11k(0)

u

1− u
t (3.19)

An important consequence of this theorem is immediate: if we put initial inter-neuron

distances large enough, then in a particular time period, nodes within one cluster will move

toward their center with steady velocities. However, the centers of each cluster will not

move. However this result is only in the sense of its first moment; we have not yet studied

in detail the 2nd and higher order moments.

18

4.0 GENERALIZED MIXTURE MODEL FOR HIGH-DIMENSIONAL

LONGITUDINAL DATA

In this chapter, we use a Bayesian model to quantitatively estimate the semi-DAG network of

excitation pattern inspired by Gerstein, et al. [5]. This model is a generalization of mixture

model from R1 to RK . It is also deeply involved in Bayesian belief network: by decreasing a

control parameter† (a similar role of smoothing parameter in smoothing spline regression),

this model will approximate a Bayesian belief network. In general, this model can be applied

to study dynamics among high-dimensional longitudinal data.

4.1 THE PROBLEM

Our primary goal is to estimate the excitation pattern among multiple neurons. The pattern

studied in this model is similar to Definition 2, but allow a small probability of forming

rings. A copy matrix (ckl)K×K is used to describe the excitation pattern as in Definition 2

and illustrated by a graph (see Figure 8). Nodes and (directed) edges correspond to neurons

and excitation effect between neuron pairs. In his context, yk denotes one neuron (or a node

in graph) and ykt is its activity at time t. Just as with binned spike trains, all ykt’s are samples

from corresponding charge processes at grid time points t ∈ {1, 2, · · · , T}. Using samples

from the charge process curves gives more flexibility in modeling. A mixture model for yk

is used: with probability pkl (k 6= l), ykt is linearly predicted from yl,t−1; with probability

pkk, ykt is generated from environment. The semi-DAG network structure is described by

enforcing a preset upper bound for all pkl × plks (k 6= l). Technically, the copy matrix

† This parameter will be specified in Definition 6.

19

(pkl)K×K is given a matrix Dirichlet distribution (see Definition 6). Our model assumes

Markov dependence for y = (y1, y2, · · · , yK).

4.2 STATEMENT OF GENERALIZED MIXTURE MODEL

In this section, we will give the details of our model. ykt is the activity of neuron k at

time t. I{·}(·) is the indicator function. λkt = l(6= k) means neuron k is excited by neuron

l at time t; λkt = k means that neuron k is excited by environment at time t. Now,

ŷkt = ξki(x
(k)
it − ck) + εkt is the linear model for predicting ykt from yi,t−1 (in our case,

x
(k)
it = yi,t−1). Next,

∑J
j=1 I{j}(dkt)ejt is our model for the environment§ which is a mixture

of three normal distributions. Since the environment is defined to be the combination of

random factors and unrecorded neurons which affect the activity of recorded neurons, it

is assigned this mixture distribution. This model says that ykt comes from two (mutually

exclusive) sources: a simple linear regression (covariates can be added here) based on within-

network excitation, or a component of environment. Let pki be the probability that yk is

excited by yi, qj be the weight of component in environment, and εkt be the observational

error. Thus, {ξki, ck, σ2, pki, qj,mj, s
2
j} is our parameter set], with the unobservable variables

{λkt, dkt} ♦.

This model clearly splits the activity of recorded neurons into two categories: within-

network (recorded neurons) which is the interaction among recorded neurons; between-

network-environment activity which is the interaction between recorded neurons and un-

recorded neurons. By adjusting the complexity of environment, one can emphasize one

category over another. Formally, the complete model is given by the following expressions:

ykt =
K∑

i=1,i 6=k

I{i}(λkt)
[
ξki(x

(k)
it − ck) + εkt

]
+ I{k}(λkt)

J∑
j=1

I{j}(dkt)ejt (4.1)

x
(k)
it ≡ yi(t−1); k = 1, 2, · · · , K; t ∈ Tk ⊆ T = {1, 2, · · · , T}.

§ This expression of environment creates a problem of unidentifiability under permutation.
] For model identifiability problem, ξki ≥ 1 and ck ≥ 0 are enforced in section 4.3.2.
♦ Their traces show the realization of random interactions at each time point.

20

ykt|λkt = i 6= k, ξki, x
(k)
it , ck, σ

2 ∝
(
σ2
)− 1

2 e−
1
σ2

(ykt−ξki(x(k)it
−ck))

2

2 (4.2)

ykt|λkt = k, dkt = j,mj, s
2
j ∝

(
s2
j

)− 1
2 e
− 1

s2
j

(ykt−mj)
2

2
(4.3)

P (λkt = i|pk1, pk2, · · · , pkK) = pki (4.4)

P (dkt = j|q1, · · · , qJ) = qj (4.5)

Model 4.1 has K mixture models which share a common observational error distribution

and a common environment distribution. Since the studied excitation pattern is a semi-

DAG, we need to enforce some relationships among those mixture models. This is realized

by using a matrix Dirichlet distribution† for the copy matrix P = (pki)K×K instead of

K seperate distributions for P ’s K rows. This distribution is the key point to model a

semi-DAG network structure by parameters. However, this generalization leads to several

technical difficulties, which we address in the next section. By adjusting the matrix Dirichlet

distribution, one can get a network structure more or less similar to a DAG in Bayesian belief

network.

4.3 BAYESIAN APPROACH TO COMPUTING THE POSTERIOR

In this section, we use the usual Bayesian method to fit our model: first, write out the

likelihood; specify priors on the parameters; obtain all conditional posteriors; run a Markov

chain Monte Carlo (MCMC) to get the posteriors; finally, use posterior mean and standard

deviation to get parameter estimates. We now organize our Bayesian procedure as prepa-

rations, prior distributions, likelihood functions, conditional posteriors and Gibbs sampler

procedure.

† In Definition 6, it is described as: pkipik < c0 if i 6= k. c0 is the control parameter which is used to
approximate an ideal case pkipik = 0 (if i 6= k) by letting c0 ↓ 0.

21

4.3.1 Preparation

We start with notation used in later sections, and the define a matrix Dirichlet distribution.

Notations for the model structure

K = {1, 2, · · · , K}, K−k = K/{k}, J = {1, 2, · · · , J}. K is the total number of neurons

in observation, J is the total number of components assumed in environment.

λ∗kt ≡

 λkt, k ∈ K, t ∈ Tk;

∗(undefined), k ∈ K, t ∈ T \ Tk.
, Λ ≡ (Λ1, · · · ,ΛK)T ≡ (λ∗kt)K×T .

λkt is defined in model 4.1, but some cannot be given a value since we only use part of

observation for faster convergence and fitting stability.

Tki = T Λ
ki = {t ∈ Tk|λkt = i}, Tkkj = T Λ

kkj = {t ∈ T Λ
kk|dkt = j}.

These two sets are time sets partitioned by λkt and/or dkt.

λikt ≡

 λkt, k ∈ K, t ∈ Tki;

∗, k ∈ K, t ∈ T \ Tki.
, Λki = (λik1, · · · , λikT)T .

Yk = {ykt|t ∈ Tk}, Y = ∪k∈KYk.

Xki = {x(k)
it |t ∈ Tki}, Xk = ∪i∈K−k , X = ∪k∈KXk.

d∗kt ≡

 dkt, k ∈ K, t ∈ Tkk;

∗, k ∈ K, t ∈ T \ Tkk.
, Dk = (d∗k1, · · · , d∗kT)T ,

D = (D1, · · · , DK)T . It is similarly defined as λ∗kt.

djkt ≡

 dkt, k ∈ K, t ∈ Tkkj;

∗, k ∈ K, t ∈ T \ Tkkj.
, Dkj = (djk1, · · · , d

j
kT)T .

Θ1k = {ξki, ck, σ2,mj, s
2
j |i ∈ K−k, j ∈ J }, k ∈ K; P = (pij)K×K , Pk = (pk1, · · · , pkK)T ;

Q = (q1, · · · , qJ)T . These parameters are directly used in model 4.1.

Θ2k = {µki, δ2, vk, w
2, a, b, µj, τ

2, aj, bj|i ∈ K−k, j ∈ J }, for k ∈ K; A = (αij)K×K ,

Ak = (αk1, · · · , αkK)T , B = (β1, · · · , βJ)T . These parameters are used to specify priors

for previous parameters directly used in model 4.1.

Θ0 = {µ00, δ
2
0,m0, n0, v0, w

2
0,m1, n1, µ0, τ

2
0 ,m2, n2, a01, a02, b01, b02} are initials for priors.

Θ1 = ∪k∈KΘ1k, Θ2 = ∪k∈KΘ2k.

Define matrix Dirichlet distribution† for (pki)K×K We define the matrix Dirichlet dis-

tribution by three steps: first, do a transformation of Dirichlet distributions; second,

define a bounded Dirichlet distribution; third, define matrix Dirichlet distribution. We

22

also list some simple properties for matrix Dirichlet distribution.

Let (p1, · · · , pK) ∼ Dirichlet(α1, · · · , αK), c1, c2, · · · , cK−1 ∈ (0, 1], cK = 1. Consider the

transformation (k = 1, 2, · · · , K.)

zk =

 ckpk, if ck ∈ (0, 1)

c∗pk, if ck = 1
or pk =

zk
ck
, if ck ∈ (0, 1)

zk
c∗
, if ck = 1,

(4.6)

where

c∗ ≡
1−

K∑
k=1, ck<1

zk

1−
K∑

k=1, ck<1

zk
ck

=

1−
K∑

k=1, ck<1

ckpk

1−
K∑

k=1, ck<1

pk

≥ 1

∵ f(p1, · · · , pK) ∝ pα1−1
1 · · · pαK−1

K

∴ f(z1, · · · , zK) ∝
K∏

k=1, ck<1

(
zk
ck

)αk−1

×
K∏

k=1, ck=1

(zk
c∗

)αk−1

×
∣∣∣∣∂(p1, · · · , pK)

∂(z1, · · · , zK)

∣∣∣∣

∝
K∏
k=1

(zk)
αk−1 ×

1−

K∑
k=1, ck<1

zk
ck

1−
K∑

k=1, ck<1

zk

K∑

k=1, ck=1

αk

This transformation will ensure that zk ≤ ck (for k ≤ K−1). A slight modification leads

to the following:

Definition 5. Bounded Dirichlet distribution

We say (z1, · · · , zK) ∼ BD(α1, · · · , αK ; c1, · · · , cK ; γ) iff

f(z1, · · · , zK) ∝
K∏
k=1

(zk)
αk−1×

1−
K∑

k=1, ck<1

zk
ck

1−
K∑

k=1, ck<1
zk

γ

, here γ > 0, c1, · · · , cK−1 ∈ (0, 1], cK = 1.

Its support is:

• z1 + · · ·+ zK = 1;

• 0 < zk < ck ≤ 1, k = 1, · · · , K;

• 0 <
K∑

k=1, ck<1

zk
ck
< 1.

† This distribution will give a stronger inter-relationship among submodels, see section 4.2. It can be
viewed as a generalization of Dirichlet distribution.

23

The matrix Dirichlet distribution for (pij)K×K is defined as a series of conditional bounded

Dirichlet distribution.

Definition 6. Matrix Dirichlet distribution

Let P = (pji)K×K, A = (aij)K×K, c0 ∈ (0, 1) (control parameter), Γ = (γ1, · · · , γK),

γk > 0, αij > 0,

we say P ∼ MD(A; Γ; c0) iff P is defined by a series of conditional distributions:

• (p11, · · · , p1K)|(A1; γ1; c0) ∼ BD(α11, · · · , α1K ; c11 = · · · = c1K = 1; γ1);

• (pi1, · · · , piK)|(Ai; γi; c0; p1i, · · · , pi−1,i) ∼ BD(αi1, · · · , αiK ; ci1 = 1 ∧ c0
p1i
, · · · , ci,i−1 =

1 ∧ c0
pi−1,i

, cii = · · · = ciK = 1; γi), for i = 2, 3, · · · , K.

The matrix Dirichlet distribution has the following properties:

1. if c0 = 1, rows of P are independent Dirichlet distributions; the smaller c0 is, the

tighter the submodels’ interactions;

2. if i 6= j, then pijpji < c0; these properties can be viewed as semi-DAG: if pij is

relatively large, then pji can be forced to be close to 0. If we interpret pij to be the

strength of excitation effect from neuron j to neuron i, we can use this property to

approximate a one-way interaction mode by specifying a small c0;

3. each row sum of P is 1; and

4. for a bounded Dirichlet distribution, (zk, ck = 1|zk, ck < 1) ∼ (1 −
K∑

k=1, ck<1

zk) ×

Dirichlet(αk, ck = 1).

4.3.2 Specification of prior distributions

This section gives details for all priors. The first-level priors for the parameters are directly

used in model; second-level priors are used in specifying the first-level priors. Most priors are

distributions frequently used in Bayesian approach; only few priors are special, for example,

ξki and ck are bounded below.

24

First level prior distributions

ξ∗ki|λkt = i 6= k, µki, δ
2 ∝

(
δ2
)− 1

2 e−
1
δ2

(ξ∗ki−µki)
2

2

ξki =‡ ξ∗ki ∨ 1 (4.7)

c∗k|λkt 6= k, vk, w
2 ∝

(
w2
)− 1

2 e−
1
w2

(c∗k−vk)2

2

ck =‡ c∗k ∨ 0 (4.8)

σ2|λkt 6= k, a, b ∝
(
σ2
)−a−1

e−
b
σ2 (4.9)

mj|λkt = k, dkt = j, µj, τ
2 ∝

(
τ 2
)− 1

2 e−
1
τ2

(mj−µj)
2

2 (4.10)

s2
j |λkt = k, dkt = j, aj, bj ∝

(
s2
j

)−aj−1
e
−
bj

s2
j (4.11)

Γ†(A,P, c0) = (γ1, · · · , γK)T , γk ≡
k−1∑

l=1, c0≥plk

αkl +
K∑
l=k

αkl

P |A; Γ(A,P, c0); c0 ∼ MD(A; Γ; c0) (4.12)

q1, · · · , qJ |β1, · · · , βJ ∼ Dirichlet(β1, · · · , βJ) ∝ qβ1−1
1 · · · qβJ−1

J (4.13)

Second level prior distributions

µki|µ00, δ
2
0 ∼ N(µ00, δ

2
0) ∝ e

− 1

δ20

(µki−µ00)2

2 (4.14)

δ2|m0, n0 ∼ IG(m0, n0) ∝
(
δ2
)−m0−1

e−
n0
δ2 (4.15)

vk|v0, w
2
0 ∼ N(v0, w

2
0) ∝ e

− 1

w2
0

(vk−v0)2

2 (4.16)

w2|m1, n1 ∼ IG(m1, n1) ∝
(
w2
)−m1−1

e−
n1
w2 (4.17)

µj|µ0, τ
2
0 ∼ N(µ0, τ

2
0) ∝ e

− 1

τ20

(µj−µ0)
2

2 (4.18)

τ 2|m2, n2 ∼ IG(m2, n2) ∝
(
τ 2
)−m2−1

e−
n2
τ2 (4.19)

a, aj|a01, a02 ∼ Beta(a01, a02) ∝ aa01−1(U − a)a02−1I(0,U)(a) (4.20)

b, bj|b01, b02 ∼ Gamma(b01, b02) ∝ bb01−1e−b02b (4.21)

αij = α00, βj = β0. (4.22)

‡ We make this requirement for two reasons: model identifiability and we only want to detect one-way
interaction.
† Γ are not independent parameters.

25

4.3.3 Likelihood functions

In this section, we derive all conditional likelihood functions using the notation defined in

section 4.3.1. A, c0, B,Θ0 are the initial values. Our goal is to calculate the likelihood

f(P,Q,Θ2|Y,X;A, c0, B,Θ0), Λ and D. In the distributional assumptions, we have assumed

conditional independence in several places (and are implicit in the expressions below).

f(Y |Λ, D,X,Θ1) =
∏
k∈K

f(Yk|Λk, Dk, Xk,Θ1k)

=
∏
k∈K

 ∏
i∈K−k

[∏
t∈Tki

f(ykt|λkt = i, ξki, x
(k)
it , ck, σ

2)

]

×
∏
j∈J

 ∏
t∈Tkkj

f(ykt|λkt = k, dkt = j,mj, s
2
j)

∝

∏
k∈K

∏
t∈Tk

 ∏
i∈K−k

[
(σ2)−

1
2 e−

1
σ2

(ykt−ξki(x(k)it
−ck))

2

2

]I{i}(λkt)

×
∏
j∈J

(s2
j)
− 1

2 e
− 1

s2
j

(ykt−mj)
2

2

I{k}(λkt)I{j}(dkt)
 (4.23)

f(Λ|P) =
∏
k∈K

f(Λk|Pk) =
∏
k∈K

∏
t∈Tk

f(λkt|Pk)

=
∏
k∈K

∏
t∈Tk

∏
i∈K

p
I{i}(λkt)

ki (4.24)

f(D|Q,Λ) =
∏
k∈K

f(Dk|Q,Λ)

=
∏
k∈K

∏
t∈Tk

[∏
j∈J

q
I{j}(dkt)

j

]I{k}(λkt)
(4.25)

f(Θ1|Θ2) =
∏
k∈K

f(Θ1k|Θ2k)

∝
∏
k∈K

{ ∏
i∈K−k

{[
(δ2)−

1
2 e−

1
δ2

(ξki−µki)
2

2

]I(1,+∞)(ξki)
[
Φ†
(

1− µki
δ

)]I{1}(ξki)}

26

×
[
(w2)−

1
2 e−

1
w2

(ck−vk)2

2

]I(0,+∞)(ck) [
Φ
(
−vk
w

)]I{0}(ck)
}

×(σ2)−a−1e−
b
σ2 ×

∏
j∈J

[
(τ 2)−

1
2 e−

1
τ2

(mj−µj)
2

2 (s2
j)
−aj−1e

−
bj

s2
j

]
(4.26)

f(P |A; Γ; c0) = MD(P |A,Γ(A), c0) =
K∏
k=1

f(Pk|Ak;P1, · · · , Pk−1; c0)

=
K∏
k=1

BD

(
Pk|Ak; ck1 = 1 ∧ c0

p1k

, · · · , ck,k−1 = 1 ∧ c0

pk−1,k

,

ckk = · · · = ckK = 1; γk =
K∑

l=1, ckl=1

αkl

)

∝
K∏
k=1

{[
K∏
i=1

pαki−1
ki

]
×

1−

k−1∑
l=1, c0<plk

pkl plk
c0

1−
k−1∑

l=1, c0<plk

pkl

k−1∑

l=1, c0≥plk
αkl+

∑K
l=k αkl }

(4.27)

f(Q|B) ∝ qβ1−1
1 qβ2−1

2 · · · qβJ−1
J (4.28)

f(Θ2|Θ0) =
∏
k∈K

f(Θ2k|Θ0)

∝
∏
k∈K

 ∏
i∈K−k

e
− 1

δ20

(µki−µ00)2

2

× e− 1

w2
0

(vk−v0)2

2

×(δ2)−m0−1e−

n0
δ2 × (w2)−m1−1e−

n1
w2

×(τ 2)−m2−1e−
n2
τ2 × aa01−1(U − a)a02−1 × bb01−1e−b02b

×
∏
j∈J

[
e
− 1

τ20

(µj−µ0)2

2 × aa01−1
j (U − aj)a02−1bb01−1

j e−b02bj

]
(4.29)

† Φ(·) is cumulative density function of N(0,1).

27

4.3.4 Conditional Posterior distributions

P (n+1)|others ∝ f(Λ(n)|P)f(P |A; Γ(A); c0)

∝ MD(P |A; Γ(A); c0)
∏
k∈K

∏
i∈K

p
∑
t∈Tk

I{i}(λ
(n)
kt)

ki

∼ MD†(P |A+ A(n); Γ(A+ A(n)); c0) (4.30)

A(n) = (α
(n)
ki)K×K , α

(n)
ki =

∑
t∈Tk

I{i}(λ
(n)
kt)

Q(n+1)|others ∝ f(D(n)|Q,Λ(n))f(Q|B)

∝ qβ1−1
1 qβ2−1

2 · · · qβJ−1
J

∏
k∈K

∏
t∈Tk

[∏
j∈J

q
I{j}(dkt)

j

]I{k}(λkt)
∼ Dirichlet(B +B(n)) (4.31)

B(n) = (β
(n)
j)J×1, β

(n)
j =

∑
k∈K

∑
t∈Tk

I{j}(dkt)I{k}(λkt)

Θ
(n+1)
2 |others ∝ f(Θ

(n)
1 |Θ2)f(Θ2|Θ0)

∝
∏
k∈K

 ∏
i∈K−k

e
− 1

δ20

(µki−µ00)2

2

× e− 1

w2
0

(vk−v0)2

2

× (δ2)−m0−1e−

n0
δ2 × (w2)−m1−1e−

n1
w2

× (τ 2)−m2−1e−
n2
τ2 × aa01−1(U − a)a02−1 × bb01−1e−b02b

×
∏
j∈J

[
e
− 1

τ20

(µj−µ0)2

2 × aa01−1
j (U − aj)a02−1 × bb01−1

j e−b02bj

]

×
∏
k∈K

{ ∏
i∈K−k

{[
(δ2)−

1
2 e−

1
δ2

(ξ
(n)
ki
−µki)

2

2

]I(1,+∞)(ξ
(n)
ki) [

Φ

(
1− µki
δ

)]I{1}(ξ(n)
ki)}

×

[
(w2)−

1
2 e−

1
w2

(c
(n)
k
−vk)2

2

]I(0,+∞)(c
(n)
k) [

Φ
(
−vk
w

)]I{0}(c(n)
k)
}

× (σ2
(n))
−a−1e

− b

σ2
(n) ×

∏
j∈J

[
(τ 2)−

1
2 e−

1
τ2

(m
(n)
j
−µj)

2

2 (s2
j,(n))

−aj−1e
−

bj

s2
j,(n)

]
(4.32)

† Sampling of MD will be discussed in next section.

28

µ
(n+1)
ki |others ∝ e

− 1

δ20

(µki−µ00)2

2 ×

e− 1

δ2
(n)

(ξ
(n)
ki
−µki)

2

2

I(1,+∞)(ξ
(n)
ki) [

Φ

(
1− µki
δ(n)

)]I{1}(ξ(n)
ki)

∼†

e
− 1

δ20

(µki−µ00)2

2 Φ
(

1−µki
δ(n)

)
, if ξ

(n)
ki = 1;

N(

µ00
δ20

+
ξ
(n)
ki
δ2
(n)

1

δ20
+ 1

δ2
(n)

, 1
1

δ20
+ 1

δ2
(n)

), if ξ
(n)
ki > 1.

(4.33)

v
(n+1)
k |others ∝ e

− 1

w2
0

(vk−v0)2

2 ×

e− 1

w2
(n)

(c
(n)
k
−vk)2

2

I(0,+∞)(c
(n)
k) [

Φ

(
− vk
w(n)

)]I{0}(c(n)
k)

∼†

e
− 1

w2
0

(vk−v0)2

2 Φ
(
− vk
w(n)

)
, if c

(n)
k = 0;

N(

v0
w2

0
+
c
(n)
k
w2

(n)
1

w2
0

+ 1

w2
(n)

, 1
1

w2
0

+ 1

w2
(n)

), if c
(n)
k > 0.

(4.34)

δ2
(n+1)|others ∝ (δ2)−m0−1e−

n0
δ2

×
∏
k∈K

∏
i∈K−k

[
(δ2)−

1
2 e−

1
δ2

(ξ
(n)
ki
−µ(n+1)

ki
)2

2

]I(1,+∞)(ξ
(n)
ki) [

Φ

(
1− µ(n+1)

ki

δ

)]I{1}(ξ(n)
ki)

∝† (δ2)−m0−

∑
k∈K

∑
i∈K−k

I(1,+∞)(ξ
(n)
ki

)

2
−1 × e

− 1
δ2

n0+ 1
2

 ∑
k∈K

∑
i∈K−k

(ξ
(n)
ki −µ

(n+1)
ki)2I(1,+∞)(ξ

(n)
ki)

×
∏
k∈K

∏
i∈K−k

[
Φ

(
1− µ(n+1)

ki

δ

)]I{1}(ξ(n)
ki)

(4.35)

† Sampling of this kind of distribution will be discussed in next section.

29

w2
(n+1)|others ∝ (w2)−m1−1e−

n1
w2

×
∏
k∈K

{[
(w2)−

1
2 e−

1
w2

(c
(n)
k
−v(n+1)
k

)2

2

]I(0,+∞)(c
(n)
k) [

Φ

(
−v

(n+1)
k

w

)]I{0}(c(n)
k)}

∝† (w2)
−m1− 1

2

∑
k∈K

I(0,+∞)(c
(n)
k)−1

× e
− 1
w2

[
n1+ 1

2

∑
k∈K

(c
(n)
k −v

(n+1)
k)2I(0,+∞)(c

(n)
k)

]

×
∏
k∈K

[
Φ

(
−v

(n+1)
k

w

)]I{0}(c(n)
k)

(4.36)

τ 2
(n+1)|others ∝ (τ 2)−m2−J2−1e

− 1
τ2

[
n2+ 1

2

∑
j∈J

(m
(n)
j −µ

(n)
j)2

]

∼ IG(m2 +
J

2
, n2 +

1

2

∑
j∈J

(m
(n)
j − µ

(n)
j)2) (4.37)

a(n+1)|others ∝ aa01−1(U − a)a02−1(σ2
(n))
−aI(0,U)(a) (4.38)

a
(n+1)
j |others ∝ aa01−1

j (U − aj)a02−1(s2
j,(n))

−ajI(0,U)(aj) (4.39)

b(n+1)|others ∝ bb01−1e
−b(1

σ2
(n)

+b02)

∼ Gamma(b01,
1

σ2
(n)

+ b02) (4.40)

b
(n+1)
j |others ∝ bb01−1

j e
−bj(1

s2
j,(n)

+b02)

∼ Gamma(b01,
1

s2
j,(n)

+ b02) (4.41)

µ
(n+1)
j |others ∼ N(

µ0

τ2
0

+
m

(n)
j

τ2
(n+1)

1
τ2
0

+ 1
τ2
(n+1)

,
1

1
τ2
0

+ 1
τ2
(n+1)

) (4.42)

Λ(n+1)|others ∝ f(Λ|P (n+1))f(Y |Λ, D(n), X,Θ
(n)
1)

∝
∏
k∈K

∏
t∈Tk

∏
l∈K

p
I{l}(λkt)

kl,(n+1) ×
∏
i∈K−k

(σ2
(n))
− 1

2 e
− 1

σ2
(n)

(ykt−ξ(n)
ki

(x
(k)
it
−c(n)
k

))
2

2

I{i}(λkt)

† Sampling of this kind of distribution will be discussed in next section.

30

×
∏
j∈J

(s2
j,(n))

− 1
2 e
− 1

s2
j,(n)

(ykt−m(n)
j)

2

2

I{k}(λkt)I{j}(d

(n)
kt)
 (4.43)

P(λ
(n+1)
kt = l 6= k|others) ∝ p∗kl,(n+1) ≡ pkl,(n+1)(σ

2
(n))
− 1

2 e
− 1

σ2
(n)

(ykt−ξ(n)
kl

(x
(k)
lt
−c(n)
k

))
2

2

P(λ
(n+1)
kt = k|others) ∝ p∗kk,(n+1) ≡ pkk,(n+1)

∏
j∈J

(s2
j,(n))

− 1
2 e
− 1

s2
j,(n)

(ykt−m(n)
j)

2

2

I{j}(d

(n)
kt)

P(λ
(n+1)
kt = i|others) =

p∗ki,(n+1)∑K
l=1 p

∗
kl,(n+1)

, i ∈ K (4.44)

D(n+1)|others ∝ f(D|Q(n+1),Λ(n+1))f(Y |Λ(n+1), D,X,Θ
(n)
1)

∝
∏
k∈K

∏
t∈Tk

[∏
j∈J

q
I{j}(dkt)

j,(n+1)

]I{k}(λ(n+1)
kt)

×
∏
k∈K

∏
t∈Tk

∏
j∈J

(s2
j,(n))

− 1
2 e
− 1

s2
j,(n)

(ykt−mj,(n))
2

2

I{k}(λ
(n+1)
kt)I{j}(dkt)

∝
∏
k∈K

∏
t∈Tk

∏
j∈J

qj,(n+1)(s
2
j,(n))

− 1
2 e
− 1

s2
j,(n)

(ykt−mj,(n))
2

2

I{j}(dkt)

I{k}(λ

(n+1)
kt)

(4.45)

q∗j,(n+1) ≡ qj,(n+1)(s
2
j,(n))

− 1
2 e
− 1

s2
j,(n)

(ykt−mj,(n))
2

2

P(d
(n+1)
kt = j|λ(n+1)

kt 6= k) =
1

J
(4.46)

P(d
(n+1)
kt = j|others, λ

(n+1)
kt = k) =

q∗j,(n+1)

J∑
l=1

q∗l,(n+1)

, j ∈ J (4.47)

Θ
(n+1)
1 |others ∝ f(Θ1|Θ(n+1)

2)f(Y |Λ(n+1), D(n+1), X,Θ1)

∝
∏
k∈K

{ ∏
i∈K−k

{(δ2
(n+1))

− 1
2 e
−

(ξki−µ
(n+1)
ki

)2

2δ2
(n+1)

I(1,+∞)(ξki) [
Φ

(
1− µ(n+1)

ki

δ(n+1)

)]I{1}(ξki)}

×

(w2
(n+1))

− 1
2 e
− 1

w2
(n+1)

(ck−v
(n+1)
k

)2

2

I(0,+∞)(ck) [
Φ

(
− v

(n+1)
k

w(n+1)

)]I{0}(ck)}

31

×(σ2)−a
(n+1)−1e−

b(n+1)

σ2 ×
∏
j∈J

(τ 2
(n+1))

− 1
2 e
− 1

τ2
(n+1)

(mj−µ
(n+1)
j

)2

2

(s2
j)
−a(n+1)

j −1e
−
b
(n+1)
j

s2
j

×
∏
k∈K

∏
t∈Tk

∏
i∈K−k

[
(σ2)−

1
2 e−

1
σ2

(ykt−ξki(x(k)it
−ck))

2

2

]I{i}(λ(n+1)
kt)

×
∏
j∈J

(s2
j)
− 1

2 e
− 1

s2
j

(ykt−mj)
2

2

I{k}(λ
(n+1)
kt)I{j}(d

(n+1)
kt)

 (4.48)

ξ
(n+1)
ki |others ∝†

(δ2
(n+1))

− 1
2 e
−

(ξki−µ
(n+1)
ki

)2

2δ2
(n+1)

I(1,+∞)(ξki) [
Φ

(
1− µ(n+1)

ki

δ(n+1)

)]I{1}(ξki)

×
∏
t∈Tk

(σ2
(n))
− 1

2 e
− 1

σ2
(n)

(ykt−ξki(x(k)it
−c(n)
k

))
2

2

I{i}(λ

(n+1)
kt)

(4.49)

c
(n+1)
k |others ∝†

(w2
(n+1))

− 1
2 e
− 1

w2
(n+1)

(ck−v
(n+1)
k

)2

2

I(0,+∞)(ck) [
Φ

(
− v

(n+1)
k

w(n+1)

)]I{0}(ck)

×
∏
t∈Tk

∏
i∈K−k

e− 1

σ2
(n)

(ykt−ξki(n+1) (x
(k)
it
−ck))

2

2

I{i}(λ

(n+1)
kt)

(4.50)

σ2
(n+1)|others ∝ (σ2)−a

(n+1)−1e−
b(n+1)

σ2 × (4.51)

∏
k∈K

∏
t∈Tk

∏
i∈K−k

[
(σ2)−

1
2 e−

1
σ2

(ykt−ξ(n+1)
ki

(x
(k)
it
−c(n+1)
k

))
2

2

]I{i}(λ(n+1)
kt)

∼ IG(a(n+1) + a(n+1)∗, b(n+1) + b(n+1)∗) (4.52)

a(n+1)∗ =
1

2

∑
k∈K

∑
t∈Tk

∑
i∈K−k

I{i}(λ
(n+1)
kt)

b(n+1)∗ =
1

2

∑
k∈K

∑
t∈Tk

∑
i∈K−k

(
ykt − ξ(n+1)

ki (x
(k)
it − c

(n+1)
k)

)2

I{i}(λ
(n+1)
kt)

† This distribution will be discussed in next section.

32

m
(n+1)
j |others ∝ e

− 1

τ2
(n+1)

(mj−µ
(n+1)
j

)2

2 ×
∏
k∈K

∏
t∈Tk

e
− 1

s2
j

(ykt−mj)
2

2
I{j}(d

(n+1)
kt)I{k}(λ

(n+1)
kt)

∼ N(

µ
(n+1)
j

τ2
(n+1)

+

∑
k∈K,t∈Tkkj

ykt

s2
j,(n)

1
τ2
(n+1)

+ 1
s2
j,(n)

/
∑
k∈K,t∈Tkkj

1

,
1

1
τ2
(n+1)

+ 1
s2
j,(n)

/
∑
k∈K,t∈Tkkj

1

) (4.53)

s2
j,(n+1)|others ∝ (s2

j)
−a(n+1)

j −1e
−
b
(n+1)
j

s2
j

∏
k∈K

∏
t∈Tk

(s2
j)
− 1

2 e
− 1

s2
j

(ykt−mj)
2

2

I{k}(λ
(n+1)
kt)I{j}(d

(n+1)
kt)

∼ IG(a
(n+1)
j + a

(n+1)∗
j , b

(n+1)
j + b

(n+1)∗
j) (4.54)

a
(n+1)∗
j =

1

2

∑
k∈K

∑
t∈Tk

I{j}(d
(n+1)
kt)I{k}(λ

(n+1)
kt)

b
(n+1)∗
j =

1

2

∑
k∈K

∑
t∈Tk

(
ykt −m(n+1)

j

)2

I{j}(d
(n+1)
kt)I{k}(λ

(n+1)
kt)

4.3.5 Gibbs sampling procedure

With preparations above, we give the Gibbs sampling procedure for computing the posterior.

Step 0 Initial step.

P (0) ∼ P |A; Γ; c0;

Q(0) ∼ Q|B;

Θ
(0)
2 ∼ Θ2|Θ0;

Λ(0) ∼ Λ|P (0);

D(0) ∼ D|Q(0);

Θ
(0)
1 ∼ Θ1|Θ(0)

2 .

Step 1 Iteration step. Assume nth sample is finished, we get (n+ 1)th sample.

P (n+1) ∝ f(Λ(n)|P)f(P |A; Γ(A); c0);

Q(n+1) ∝ f(D(n)|Q,Λ(n))f(Q|B);

Θ
(n+1)
2 ∝ f(Θ

(n)
1 |Θ2)f(Θ2|Θ0);

Λ(n+1) ∝ f(Λ|P (n+1))f(Y |Λ, D(n), X,Θ
(n)
1);

D(n+1) ∝ f(D|Q(n+1),Λ(n+1))f(Y |Λ(n+1), D,X,Θ
(n)
1);

Θ
(n+1)
1 ∝ f(Θ1|Θ(n+1)

2)f(Y |Λ(n+1), D(n+1), X,Θ1).

33

5.0 SAMPLING AND SIMULATION STUDY

We now discuss several sampling problems we encountered in implementing the method

from Section 4.3.4 and simulation study of applying Model 4.1 on transformed multiple

spike trains.

5.1 SOME PROBLEMS IN SAMPLING

For some posterior distributions in Section 4.3.4, sampling is not straightforward. In this

section, we discuss sampling problems for the matrix Dirichlet distribution and several com-

plicated one-dimensional distributions. Since the Metropolis-Hastings algorithm did not

work efficiently for matrix Dirichlet distributions and multimodal distributions, we designed

a weighted sampler for our Gibbs iteration. Our weighted sampler is especially useful for a

distribution with (1) bounded support, and (2) available uniform samplings on that support.

In practice, for unbounded support, one can truncate the orginal distrbution into one with

bounded support which covers the bulk of probability mass of the original distribution. If

the support of this distribution is (or can be covered by) a finite rectangular in Rn, one

can always easily sample from the corresponding uniform distribution. In our case, the

bounded Dirichlet distribution has an irregular bounded support but (of course) is covered

by a rectangle. We also apply our weighted sampler to several complicated one-dimensional

distributions in section 4.3.4.

Weighted sampler A weighted sampler is different from Metropolis-Hastings (MH) sam-

pler in that it does not approximate the target distribution through iterations. Rather,

34

given a predetermined sampling precision, the weighted sampler can obtain one sample

in a predetermined number of steps. The sampling precision can be evaluated both theo-

retically and by simulation. The weighted sampler also provides the possibility to control

Bayesian iteration time. Generally, we write out this algorithm as follows.

Let X have pdf f(x) with bounded support S; f(x) can be an arbitrary density function,

and it is our target distribution. The weighted sampler procedure is:

1. get N samples: ỹ = (y1, y2, · · · , yN), yn i.i.d. ∼ U [S] (uniform on S);

2. calculate w̃(ỹ) = (w1 = f(y1)∑N
n=1 f(yn)

, · · · , wN = f(yN)∑N
n=1 f(yn)

);

3. get one sample I(ỹ), such that P(I = n) = wn; and

4. set x̄(ỹ) = yI(ỹ) ∈ {y1, y2, · · · , yN}.

We now show by example that the empirical cdf F̂ (x) of x̂ can approximate the true cdf

F (x) of f(x) at any precision by increasing N . To evaluate the sampling precision, we

introduce two measures: (1) DT (M) = max
x̂m,m=1,··· ,M

|F̂ (x̄m)− F (x̂m)| for the deviation of

F̂ (x) from F (x); (2) let x̂m,m = 1, · · · ,M and F̂x(x) be M samples and corresponding

empirical cdf, ŷm,m = 1, · · · ,M and F̂y(y)be another M samples and corresponding

empirical cdf, DS(M) = max
z∈{xm,ym,m=1,··· ,M}

|F̂x(z) − F̂y(z)| for sampling stability. They

are similar to the standard Kolomogorov-Smirnov statistics.

We now compare MH sampler and weighted sampler for a mixture distributionX: P (X =

N(−5, 1.5)) = 0.3, P (X = N(15, 1)) = 0.3 and P (X = Exp(0.8)) = 0.4. Its pdf and

cdf plot are given in Figure 1. In Figure 2 and Table 3, we show the empirical cdfs for

four samplers: MH sampler with normal proposal density, MH sampler with uniform

proposal density, weighted sampler and true sampler (generate samples according to its

true distribution). We can see that the performance of the weighted sampler and true

sampler is almost the same and much better than MH samplers by measure DT . However,

there is not much difference in DS, which is expected according to Kolmogorov-Smirnov

theorem.

Sample of P in (4.30) By definition 6 on P.24, we see that P can be sampled through a

sequence of bounded Dirichlet distributions. Thus, we only need to sample a bounded

Dirichlet distribution. This distribution has an irregularly shaped support and is possibly

35

multimodal. We do a simple comparison of weighted sampler and Metropolis-Hastings

sampler. In a weighted sampler, the uniform distribution for the bounded Dirichlet

distribution is Dirichlet distribution with all parameters set to 1. We use several val-

ues of N for our weighted sampler. The Metropolis-Hastings sampler to get a vector

(z1, · · · , zK) ∼ BD(α1, · · · , αK ; c1, · · · , cK ; γ) is carried out thus:

• Initial step.

x(0) ∼ Dirichlet(α1, · · · , αK),

z(0) = transformation (4.6) of x(0);

• Sampling step. Assume z(n) obtained.

Let x(n+1) ∼ Dirichlet(α1, · · · , αK), U ∼ U(0, 1),

z(n+1)∗ = transformation (4.6) of x(n+1),

az = 1 ∧ f1(z(n+1)∗)f2(z(n))

f1(z(n))f2(z(n+1)∗)
, where f1 is the density of BD(α1, · · · , αK ; c1, · · · , cK ; γ),

and f2 is the true density of z(n+1)∗;

• Iteration step. If az > U , let z(n+1) = z(n+1)∗ and n + 1 → n; otherwise, make no

change. Then go back to sampling step until convergence.

In pratice, this procedure does not work well for BD because the acceptance rate is very

small. So we do not present sampling results for MH procedure. By applying weighted

sampler, however, we show several traceplots (Figure 4,5,6,7) to demonstrate that the

weighted sampler does work. We sampled P ∼ MD(A, c0): c0 = 0.1; A takes value M ,

M ∗ 1000, MM and MM ∗ 1000. Here, the matrices M and MM are as:

M =

1 0 0 0 0

0.5 0.5 0 0 0

0.3 0.5 0.2 0 0

0 0.7 0 0.3 0

0 0 0 0 1

MM =

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

We can see that the weighted sampler successfully draws samples from a matrix Dirichlet

distribution. For A = MM , pij and pji alternatively dominate each other; for A = M ,

some pijs always dominate pji.

36

Sample of µ in (4.33) and v in (4.34) The only problem is how to sample a density pro-

portional to: e
− 1

δ20

(µki−µ00)2

2 Φ
(

1−µki
δ(n)

)
. Obviously, we can use Metropolis-Hastings method

again. But these distributions have up to three local modes, Metropolis-Hastings sam-

pling method can hardly visit all modes, especially in some extreme cases, for example,

if those modes are far apart. Therefore, we used a weighted sampler in this case.

Sample of δ2 in (4.35) and w2 in (4.36) This is a serious problem, because these distri-

butions are highly irregular and with lots of local modes. It is likely for Metropolis-

Hastings sampling method to be trapped around a local mode. It is not easy to find a

proposal distribution for efficiently implementing Metropolis-Hastings algorithm in this

case due to the complicated form of target distributions. But it is a one-dimensional dis-

tribution and we can easily find an bounded interval which cover most of its probability,

for which we use a weighted sampler.

Sample of a in (4.38) We can use either the MH or weighted sampler for a.

Sample of ξ in (4.49) and c in (4.50) Strictly speaking, this is not a sampling problem.

Rather, it is a problem of posterior distribution which can be generally posed thus:

θ ∼

 P({θ = c0}) = Φ(c0−µ0

δ0
), if θ = c0;

has pdf φ(θ−µ0

δ0
), if θ > c0.

x|θ ∼ φ

(
x− θ
σ

)
.

What is the distribution of θ|x? The answer is simple.

θ|x ∼

 P({θ = c0}) = Φ(c0−µ
∗

δ∗
), if θ = c0;

has pdf φ(θ−µ
∗

δ∗
), if θ > c0.

µ∗ =

µ0

δ20
+ x

σ2

1
δ20

+ 1
σ2

, δ2
∗ =

1
1
δ20

+ 1
σ2

37

Based on this property, (4.49) and (4.50) can be rewriten as:

ξ
(n+1)
ki |others ∼

 P({ξ(n+1)
ki = 1}) = Φ(

1−µ(n+1)∗
ki

δ(n+1)∗
), if ξ

(n+1)
ki = 1;

has pdf φ(
ξ
(n+1)
ki −µ(n+1)∗

ki

δ(n+1)∗
), if ξ

(n+1)
ki > 1.

(5.1)

µ
(n+1)∗
ki =

µ
(n+1)
ki

δ2
(n+1)

+
∑
t∈Tk

I{i}(λ
(n+1)
kt)(x

(k)
it −c

(n)
k)ykt

σ2
(n)

1
δ2
(n+1)

+
∑
t∈Tk

I{i}(λ
(n+1)
kt)

(
x
(k)
it −c

(n)
k

)2

σ2
(n)

δ2
(n+1)∗ =

1

1
δ2
(n+1)

+
∑
t∈Tk

I{i}(λ
(n+1)
kt)

(
x
(k)
it −c

(n)
k

)2

σ2
(n)

c
(n+1)
k |others ∼

 P({c(n+1)
k = 0}) = Φ(− v

(n+1)∗
k

w(n+1)∗
), if c

(n+1)
k = 0;

has pdf φ(
c
(n+1)
k −v(n+1)∗

k

w(n+1)∗
), if c

(n+1)
k > 0.

(5.2)

v
(n+1)∗
k =

v
(n+1)
k

w2
(n+1)

+

∑
t∈Tk

∑
i∈K−k

I{i}(λ
(n+1)
kt)(ξ

(n+1)
ki)2

(
x
(k)
it −ykt/ξ

(n+1)
ki

)
σ2
(n)

1
w2

(n+1)

+

∑
t∈Tk

∑
i∈K−k

I{i}(λ
(n+1)
kt)(ξ

(n+1)
ki)2

σ2
(n)

w2
(n+1)∗ =

1

1
w2

(n+1)

+

∑
t∈Tk

∑
i∈K−k

I{i}(λ
(n+1)
kt)(ξ

(n+1)
ki)2

σ2
(n)

5.2 SIMULATION STUDY

In Section 5.1, we studied sampling problems in fitting Model 4.1. In this section, we will

show how Model 4.1 can be used to detect Gerstein’s neuronal network interaction mode. Our

simulation procedure is to start with a copy matrix, generate spike trains, apply gravitational

clustering algorithm and then apply model 4.1 on the corresponding charge process.

Selection of network structure There are two pratical problems in fitting the Bayesian

Model 4.1: (1) the sampling of matrix Dirichlet distribution is not fast; (2) the con-

vergence of MCMC update for Model 4.1 is not fast. Thus, we currently study a small

network with only 5 nodes and 4 edges. This network is graphically represented in Figure

8. Corresponding raster plots, charge process, and gravitational time-distance plot are

shown in Figure 10, 11, 12, respectively.

38

Selection of c0 c0 (see Definition 6) controls the upper bound of pij × pji (i 6= j). Ideally,

to approximate a directed acyclic graph, we need specify a very small c0; but small c0

means slower in sampling matrix Dirichlet distribution. As a trade-off between CPU

time and the degree of approximating a DAG, we set c0 = 0.1.

Choose J in Model 4.1 J reflects the strength of background signal. After studies of

various values, we set J = 1 because much larger values of J tend to erase all edges in

the network.

Detect the convergence of MCMC update We set the minimum iteration in Gibbs

sampling to be 6000 and then check trace plots for posteriors. If there is no visual

deviation from convergence, we take it as convergence. In Figure 13, we give trace plots

for pij (posterior copy matrix).

Rebuild network structure For a convergence MCMC iteration sequence, the first 4000

iterations are taken as data burn-in and after that take one record for every 20-iteration

until the 9000th iteration. We then will have 250 estimated matrices P which directly

reflect the network structure; however we cannot always get a clear estimation because

all pijs are positive in theory. According to asymptotic theory, Bayesian posteriors ap-

proximate normal distributions when sample size is large. In our simulation study, we

use data for 100 seconds and take one sample from transformed curve for every 0.002

seconds, so we have 50000 samples for Model 4.1. We can assume the posterior of pij to

be normal and check its Normal QQ-plot (Figure 14).

Now we can say that if mean(pij) − 2.576 × sd(pij) > 0, there is evidence that an edge

exists from j to i. However, we can never obtain original copy matrix M . In Figure 9,

we list mean(pij), sd(pij), mean(pij) − 2.576 × sd(pij) and original copy matrix M . In

Figure 8, we construct network plots with the same method for both estimated and true

methods.

39

5.3 CONCLUSION

In this thesis, we developed a Poisson process based probability model to study the prop-

erties of the gravitational clustering algorithm (GCA) and showed that GCA should be

adjusted by a time factor to balance the oscillation of GCA. The idea of the probability

model can be generalized to study ordinary differential equations (ODE) in other con-

texts. We also developed a detailed mixture model to directly study the dependence

among multiple spike trains. This model can be used to estimate a network structure

by generalizing the Dirichlet distribution and possibly provides an alternative to a tra-

ditional Bayesian network and dynamic Bayesian network.

The future work can be extended in at least two directions: (1) refine the methods

used in the probability model to obtain conclusions under much more general conditions;

(2) propose a general Bayesian framework to make a statistical model with much more

flexibility: statisticians shouldn’t worry about the form of distributions and sampling

techniques and should only focus on how to build and compare models. The second

direction is particularly meaningful today because, for instance, the internet is creating

giant data sets continuously; as a contrast, almost no classic statistical models can be

directly applied on analyzing this kinds of data sets. Only a Bayesian model provides

the possibility to handling such data sets; but current Bayesian methods are heavily

affected by the form of probability distributions and sampling techniques. As I can

see, a Bayesian framework based on discrete distributions can possibly provide a general

solution (definitely with a heavy computational load).

40

Figure 1: CDF and PDF plot for X

41

Figure 2: Empirical CDFs for 4 samplers

42

Figure 3: Tables for comparing 4 samplers: DT and DS

43

Figure 4: MD sample trace plot: M

44

Figure 5: MD sample trace plot: M ∗ 1000

45

Figure 6: MD sample trace plot: MM

46

Figure 7: MD sample trace plot: MM ∗ 1000

47

Figure 8: Graph for copy matrix

48

Figure 9: Table for posterior copy matrix

49

Figure 10: Raster plot

50

Figure 11: Plot for charge process

51

Figure 12: Gravitational clustering plot

52

Figure 13: Trace plot for P

53

Figure 14: Normal QQ plot for pij

54

Figure 15: Snow flake plots

55

APPENDIX

PROOFS OF RESULTS IN SECTION 3

Proof of Lemma 2:

(i) since ns̃,1(t) is measurable of n1(t − ε0)and ns̃,2(t) is measurable of n1(t) − n1(t − ε0),

noticing the independence of n1(t−ε0) and n1(t)−n1(t−ε0), the independence of ns̃,1(t)

and ns̃,2(t) follows;

(ii) For t > ε0 and δ > 0, let W ≡ ns̃,1(t + δ) − ns̃,1(t) and V ≡ ns̃,1(t), let ζ̃i be an i.i.d.

copy of ζi, we only need to show

a. ns̃,1(ε0) = 0 (obvious);

b. W is independent of V ;

c. W ∼ Poisson(πr1δ);

By definition, we have

W = IN (n1(t− ε0 + δ)− n1(t− ε0))

n1(t−ε0+δ)∑
i=n1(t−ε0)+1

ζi

= IN (n1(t− ε0 + δ)− n1(t− ε0))

n1(t−ε0+δ)−n1(t−ε0)∑
i=1

ζ̃i

V = IN (n1(t− ε0))

n1(t−ε0)∑
i=1

ζi

56

so, W is independent of V ; next is to obtain P(W), for w ∈ N ∗,

P(W = w) =
∞∑
l=w

P(n1(t− ε0 + δ)− n1(t− ε0) = l)

(
l

w

)
πw(1− π)l−w

=
∞∑
l=w

(r1δ(1− π))l−w

(l − w)!
× (πr1δ)

w

w!
e−r1δ

∼ Poisson(πr1δ).

(iii) let P̃P1 and ε̃i be the i.i.d. copy of PP1 and εi, we have

ns̃,2 ∼ IN (ñ1(ε0))

ñ1(ε0)∑
i=1

ζ̃iI[0,ε0)(t̃1,i + ε̃i)

∼ IN (ñ1(ε0))

ñ1(ε0)∑
i=1

ζ̃iI[0,ε0)(ui + ε̃i),

where ui is an i.i.d. sequence with distribution U [0, ε0], so it shares the same form of ns̃,1

but with a different ζi; a simple calculation shows that

P(ζ̃iI[0,ε0)(ui + ε̃i) = 1) = π/2

so result follows.

�

Proof of Lemma 3:

(i)

EIN (n1(t− ε0))

n1(t−ε0)∑
i=1

ζie
−
t−(t1,i+εi)

τ

= EIN (n1(t− ε0))

n1(t−ε0)∑
i=1

ζie
−
t−ε0−t1,i−(εi−ε0)

τ

= Eζ1Ee
ε1−ε0
τ EIN (n1(t− ε0))

n1(t−ε0)∑
i=1

e−
t−ε0−t1,i

τ

= π × τ

ε0

(1− e−
ε0
τ)× r1τ(1− e−

t−ε0
τ)

57

EIN (n1(t− ε0))

n1(t−ε0)∑
i=1

ζie
−
t−(t1,i+εi)

τ

2

= E

n1(t−ε0)∑
i=1

ζie
−

2[(t−ε0−t1,i)+(ε0−εi)]
τ

+ E
∑
i 6=l

ζiζle
− ε0−εi

τ
− ε0−εl

τ e−
(t−ε0)−t1,i

τ
−

(t−ε0)−t1,l
τ

= πEe−
2(ε0−ε1)

τ En1(t− ε0)Ee−
2(t−ε0−u)

τ

+ (Eζ1)2E(n2
1(t− ε0)− n1(t− ε0))(Ee−

ε0−εi
τ)2(Ee−

t−ε0−u
τ)2

= π × τ

2ε0

[
1− e−

2ε0
τ

]
× r1

τ

2

[
1− e−

2(t−ε0)
τ

]
+

[
π
τ

ε0

(1− e−
ε0
τ)r1τ(1− e−

t−ε0
τ)

]2

(ii)

EIN (n1(t)− n1(t− ε0))

n1(t)∑
i=n1(t−ε0)+1

ζiI[0,t)(t1,i + εi)e
−
t−(t1,i+εi)

τ

= πE

n1(ε0)∑
i=1

I[0,ε0)(t1,i + εi)e
−
ε0−(t1,i+εi)

τ

= πEn1(ε0)E
(
I[0,ε0)(u+ ε1)e−

ε0−(u+ε1)
τ

)
= π × r1ε0 × (

τ

ε0

)2(e−
ε0
τ − (1− ε0

τ
))

�

Proof of Lemma 4:

58

(i) That Eqs(t) = 0 is an easy verification;

qs(t+ δ) = IN (ns(t+ δ))

ns(t+δ)∑
i=1

e−
t+δ−ti

τ − rτ(1− e−
t+δ
τ)

= IN (ns(t))

ns(t)∑
i=1

e−
t+δ−ti

τ − rτ(1− e−
t
τ)e−

δ
τ

+ IN (ns(t+ δ)− ns(t))
ns(t+δ)∑
i=ns(t)+1

e−
t+δ−ti

τ − rτ(1− e−
t+δ
τ − (1− e−

t
τ)e−

δ
τ)

d
= e−

δ
τ qs(t) + q̃s(δ) (by Lemma 2-(i))

(ii) by Lemma 3-(i), let ε0 ↓ 0 and π = 1, we have Eq2
s(t) = rτ

2
(1− e− 2t

τ);

by (ii), we have c(t, δ) ≡ Cov(qs(t), qs(t+ δ)) = e−
δ
τ Eq2

s(t).

(iii)

�

Proof of Lemma 5:

(i) easy to check;

(ii) by Lemma 4(ii) and Formula 3.6, we have

q1(t)
d
= e−

ε0
τ q1(t− ε0) + q̃1(ε0)

q2(t) = q∗2(t) + qns̃,1(t) + qns̃,2(t)

59

so, Eq1,2(t) = e−
ε0
τ Eq1(t− ε0)qns̃,1 + Eq̃1(ε0)qns̃,2.

∵ EIN (n1(t− ε0))

n1(t−ε0)∑
i,l=1

ζle
− ε0−εl

τ e−
2(t−ε0)−ε1,i−ε1,l

τ

= EIN (n1(t− ε0))

n1(t−ε0)∑
i=1

ζle
− ε0−εi

τ e−
2(t−ε0−ε1,i)

τ

+ EIN (n1(t− ε0))
∑
i 6=l

ζle
− ε0−εl

τ e−
2(t−ε0)−ε1,i−ε1,l

τ

= r1π
τ

ε0

(1− e−
ε0
τ)
τ

2
(1− e−

2(t−ε0)
τ) + (r1τ(1− e−

t−ε0
τ))2π

τ

ε0

(1− e−
ε0
τ)

∴ Eq1(t− ε0)qns̃,1 = r1π
τ

ε0

(1− e−
ε0
τ)
τ

2
(1− e−

2(t−ε0)
τ)

EIN (ñ1(ε0))

ñ1(ε0)∑
i=1

ζ̃iI[0,ε0)(t̃1,i + ε̃i)e
−

2ε0−(2t̃1,i+ε̃i)

τ

= Eñ1(ε0)× Eζ̃1 ×
∫∫

0<u+ε<ε0
0<u,ε<ε0

1

ε2
0

e−
2ε0−(2u+ε)

τ dudε

= r1ε0π
τ 2

ε2
0

[
1− e−

ε0
τ − 1

2
(1− e−

2ε0
τ)

]

EIN (ñ1(ε0))

ñ1(ε0)∑
i 6=l

ζ̃iI[0,ε0)(t̃1,i + ε̃i)e
−

2ε0−(2t̃1,i+ε̃l)

τ

= E(ñ2
1(ε0)− ñ1(ε0))× Eζ̃1I[0,ε0)(u+ ε̃1)e−

ε0−(u+ε̃1)
τ × Ee−

ε0−u
τ

= (r1ε0)2 × πτ
2

ε2
0

(ε0

τ
− 1 + e−

ε0
τ

)
× τ

ε0

[
1− e−

ε0
τ

]

60

∵ Eq̃1(ε0)qns̃,2

= EIN (ñ1(ε0))

ñ1(ε0)∑
i,l=1

ζ̃iI[0,ε0)(t̃1,i + ε̃i)e
−

2ε0−(2t̃1,i+ε̃l)

τ

− r1τ(1− e−
ε0
τ)× πr1ε0

τ 2

ε2
0

(
e−

ε0
τ − (1− ε0

τ
)
)

∴ Eq̃1(ε0)qns̃,2 = r1ε0π
τ 2

ε2
0

[
1− e−

ε0
τ − 1

2
(1− e−

2ε0
τ)

]

Finally, we have

Eq1,2(t) = e−
ε0
τ
r1πτ

2

2ε0

(1− e−
ε0
τ)(1− e−

2(t−ε0)
τ) +

r1πτ
2

2ε0

(1− e−
ε0
τ)2

=
r1πτ

2

2ε0

(1− e−
ε0
τ)(1− e−

2t−ε0
τ)

�

Proof of Theorem 1:

(i)

Q2
1,2,N =

[
N∑
n=1

q1(
n

N
t)q2(

n

N
t)
t

N

]2

=
N∑
i=1

q2
1(
i

N
t)q2

2(
i

N
t)
t2

N2︸ ︷︷ ︸
Part1

+

Part2︷ ︸︸ ︷
2
N−1∑
i=1

N−i∑
l=1

q1(
i

N
t)q2(

i

N
t)q1(

i+ l

N
t)q2(

i+ l

N
t)
t2

N2

61

∵ q1(·) and q2(·) are bounded

∴ lim
N→∞

EPart1 = 0

EPart2 = 2
N−1∑
i=1

N−i∑
l=1

e−
2
τ
l
N
tEq2

1(
i

N
t)Eq2

2(
i

N
t)
t2

N2
(by Lemma 5-(i))

= 2
N−1∑
i=1

r1r2τ
2

4
(1− e−

2
τ
i
N
t)2

N−i∑
l=1

e−
2lt
τN

t2

N2

= 2
N−1∑
i=1

r1r2τ
2

4
(1− e−

2
τ
i
N
t)2
e−

2t
τN

[
1− e− 2t

τN
(N−i)

]
1− e− 2t

τN

t2

N2

NθN≡ 2t
τ====
r1r2τ

4

8

N−1∑
i=1

θ2
N(1− e−iθN)2 e

−θN (1− e−(N−i)θN)

1− e−θN

=
r1r2τ

4

8

N−1∑
i=1

(1− e−iθN)2(1− e−(N−i)θN)θN ×
θNe

−θN

1− e−θN

Notice limN→∞ θN ↓ 0, we have

lim
N→∞

θNe
−θN

1− e−θN
= 1

lim
N→∞

N−1∑
i=1

(1− e−iθN)2(1− e−(N−i)θN)θN

=

∫ 2t
τ

0

(1− e−s)2(1− e−(2t
τ
−s))ds

= s− 2.5 + 2(1 + s)e−s +
1

2
e−2s

∣∣∣∣∣
2t
τ

0

∼=
2t

τ
− 2.5 (∵ t� τ)

So, Equation (3.8) is obtained when t� τ . This leads us to conjecture that limN→∞Q1,2,N(t)

may well be a Brownian Motion(for t sufficiently large).

62

(ii) by Lemma 5-(ii), we have(for t > ε0)

EQ1,2,N(t) =
N∑
n=1

Eq1,2(
n

N
t)
t

N

=
N∑

n=[
Nε0
t

]+1

t

N

r1πτ
2

2ε0

(1− e−
ε0
τ)(1− e−

2 n
N
t−ε0
τ)

∴ lim
N→∞

EQ1,2,N(t) =
r1πτ

2

2ε0

(1− e−
ε0
τ)

∫ t

ε0

(1− e−
2s−ε0
τ)ds

=
r1πτ

2

2ε0

(1− e−
ε0
τ)(s+

τ

2
e
ε0
τ e−

2s
τ)

∣∣∣∣∣
t

ε0

∼=
πr1τ

2

2ε0

(1− e−
ε0
τ)(t− ε0 −

τ

2
e−

ε0
τ) (∵ t� τ)

�

Proof of Theorem 2:

Without loss of generality, we can set −x1(0) = x2(0) = d0 � c0; then we have

d(x1(t)− x2(t))

dt
= 2q1(t)q2(t) (∵ d12(t) > c0 ⇒ A(x2, x1) = 1)

which (when t < h1) is the same as

−−→x2x1(t) = −−→x2x1(0) + 2

∫ t

0

q1,2(s)ds

∴ −−→x2x1(t) = −2d0 + 2 lim
N→∞

Q1,2,N(t)

(i) by Theorem 1-(i),

E−−→x2x1(t) = −2d0 + 2E lim
N→∞

Q1,2,N(t)

= −2d0 + 2 lim
N→∞

EQ1,2,N(t)

= −2d0

∴ Ed12(t) = E|−−→x2x1(t)| = d12(0)

63

Var−−→x2x1(t) = Var(−2d0 + 2 lim
N→∞

Q1,2,N(t))

= 4Var(lim
N→∞

Q1,2,N(t))

= 4 lim
N→∞

VarQ1,2,N(t)

∴ Vard12(t) ∼= r1r2τ
3t

(ii) by Theorem 1-(ii)

E−−→x2x1(t) = −2d0 + 2E lim
N→∞

Q1,2,N(t)

= −2d0 + 2 lim
N→∞

EQ1,2,N(t)

∼= −2d0 +
πr1τ

2

ε0

(1− e−
ε0
τ)(t− ε0 −

τ

2
e−

ε0
τ)

∼= −2d0 + πr1τt

∴ Ed12(t) = E|−−→x2x1(t)| ↓ c0 (t ↑ h1)

�

Proof of Theorem 3:

(i) for m = N − 1, conclusion holds; assume for 1 ≤ m ≤ N − 1 it holds, we prove it holds

for m− 1(math induction).

E
(
fij,N(t)|Fm−1

N
t

)
= E

{[
E
(
fij,N(t)|Fm

N
t

)]
|Fm−1

N
t

}
= E

{[
fij,N(

m

N
t) +

t

N
qij(

m

N
t)
−→
1ij(

m

N
t)(1 + ρN−1−m)

]
|Fm−1

N
t

}
+E

{[
E

{
N−1∑
n=m

[
O(1)(

n

N
t) +O(2)(

n

N
t)
]
|Fm

N
t

}]
|Fm−1

N
t

}

using F.1, rewrite the expectation above

= fij,N(
m

N
t) +

t

N
E
[
qij(

m

N
t)|Fm−1

N
t

]−→
1ij(

m

N
t)(1 + ρN−1−m)

+E

{
N−1∑
n=m

[
O(1)(

n

N
t) +O(2)(

n

N
t)
]
|Fm−1

N
t

}

64

now using F.2 and decomposition F.5, we have

t

N
E
[
qij(

m

N
t)|Fm−1

N
t

]−→
1ij(

m

N
t)(1 + ρN−1−m)

=
t

N
e−

1
τ

2t
N qij(

m− 1

N
t)(1 + ρN−1−m)×{

−→
1ij(

m− 1

N
t)

[
1 + Õ(1)(

m− 1

N
t)

]
+

t
N
Dij(

m−1
N
t)

|−→1ij(m−1
N
t) + t

N
Dij(

m−1
N
t)|

}
=

t

N
qij(

m− 1

N
t)ρN−1−(m−1)

−→
1ij(

m− 1

N
t)

+
t

N
qij(

m− 1

N
t)ρN−1−(m−1)

−→
1ij(

m− 1

N
t)Õ(1)(

m− 1

N
t)

+
t

N
qij(

m− 1

N
t)ρN−1−(m−1)

t
N
Dij(

m−1
N
t)

|−→1ij(m−1
N
t) + t

N
Dij(

m−1
N
t)|

by noticing that

fij,N(
m

N
t) = fij,N(

m− 1

N
t) +

t

N
qij(

m− 1

N
t)
−→
1ij(

m− 1

N
t)

and rearranging terms, we see that the result holds for m− 1.

(ii) the same method as in (i), just notice that F.3 replaces F.2 in this procedure.

�

Proof of Theorem 4:

Notice that E [x1(t)− x1(0)] =
∑K

k=2 Ef1k,N(t), we only need to estimate Ef1k,N(t) by The-

orem (3).

(i) by Theorem (3)-(i), we have

|E
(
f1k,N(t)|F 0

N
t

)
| = | f1k,N(

0

N
t) +

t

N
q1k(

0

N
t)
−→
11k(

0

N
t)(1 + ρN−1−0)︸ ︷︷ ︸

=0

+E

{
N−1∑
n=0

[
O(1)(

n

N
t) +O(2)(

n

N
t)
]
|F 0

N
t

}
|

≤
N−1∑
n=0

t

N
2M2ρN−1−n

δ0

1− δ0

(∵ F.6)

≤ 2M2

1− δ0

ut

1− u
δ0 (∵ F.4)

65

notice d0 → +∞⇐⇒ δ0 → 0, we see

lim
d0→+∞

|E [x1(t)− x1(0)] | ≤ lim
δ0→+∞

2(K − 1)M2

1− δ0

ut

1− u
δ0 = 0

(ii) from above (Theorem 4-(i)), we have

lim
d0→+∞

E [x1(t)− x1(0)] = lim
d0→∞

k1∑
k=2

Ef1k,N(t)

by Theorem (3)-(ii), we have (for 2 ≤ k ≤ k1)

E
(
f1k,N(t)|F 0

N
t

)
= f1k,N(

0

N
t) +

t

N
q1k(

0

N
t)
−→
11k(

0

N
t)(1 + ρN−1−0)︸ ︷︷ ︸

P1

+ E

{
N−1∑
n=0

[
O(1)(

n

N
t) +O(2)(

n

N
t)
]
|F 0

N
t

}
︸ ︷︷ ︸

P2

t

N
c1(1k)

−→
11k(

0

N
t)
N−1−0∑
n=0

ρn︸ ︷︷ ︸
P3

+ E

{
N−1∑
n=0

[
R(1)(

n

N
t) +R(2)(

n

N
t)
]
|F 0

N
t

}
︸ ︷︷ ︸

P4

by same method as in (i), we see limd0→+∞ |P1 + P2| = 0; using F.4 and F.6

P3 =
t

N
c1(1k)

−→
11k(0)

u

1− u

[
N − 1− uN

1− u

]
= c1(1k)

−→
11k(0)

u

1− u

[
1− 1

N

1− uN

1− u

]
t

lim
d0→+∞

|P4| ≤
N−1∑
n=0

t

N
c1(1k)

2δ0

1− δ0

u

1− u

[
n− 1− un

1− u

]
= c1(1k)

2δ0

1− δ0

u

1− u

[
N − 1

2
− 1

1− u
+

1

N

1− uN

(1− u)2

]
t

notice in the usual setting N � 1, we have

lim
d0→∞

|P3|
|P4|

∼= lim
d0→∞

1

δ0N
= lim

δ0→0

ρτ

t

1

δ0

= +∞

66

so finally, we obtain

lim
d0→+∞

E [x1(t)− x1(0)] = lim
d0→∞

k1∑
k=2

Ef1k,N(t)

= lim
d0→∞

k1∑
k=2

c1(1k)
−→
11k(0)

u

1− u
t(1 +O(δ0

t

ρτ
))

=

k1∑
k=2

c1(1k)
−→
11k(0)

u

1− u
t

67

INDEX

LCP, 12, 13
MP, 12

active effect, 6
attenuation function, 7

BARS
Bayesian Adaptive Regression Splines, 3

Bayesian belief network, 3, 19
BBN, 5, 8, 9
DBN, 3–5, 8, 9
DBN interaction mode, 5
dynamic Bayesian network, 1
semi-Bayesian belief network, 19

Bernoulli distribution, 9
beta distribution, 6

charge process, 6, 7, 14
cluster algorithm, 6
cluster recognition, 7
computational neuroscience, 1, 3
control parameter, 19, 21, 24
copy matrix, 6
copy probability, 11
crosscorrelogram, 8

DAG, 1, 8
DCG, 8

directed cyclic graph, 8
depth of copy matrix, 15
directed acyclic graph, 1
Dirichlet distribution, 2, 23

Bounded Dirichlet distribution, 23, 24, 35
Matrix Dirichlet distribution, 24

distance, 7
dynamic system, 6, 9, 11
dynamical system, 7

effective time range, 9

equal firing rates network, 8
Euclidean space, 9
excitation, 8

firing activity, 3
firing intensity, 3
firing rate, 7
flow plot, 11
force field, 7

GCA, 4, 6–8
GCA Distance, 7
GCA interaction mode, 6
gravitational clustering algorithm, 1, 4, 6

GCA procedure, 7
GCA’s distances, iii
GCAD, iii, 13–15
generalized mixture model, 2, 20
Gibbs sampling procedure, 33
goodness-of-fit, 9

indicator function, 20
inhibition, 8
intensity, 4
interaction, 3, 4
interaction mode, 7, 8

joint peristimulus time histogram, 8
JPSTH, 8

latency distribution, 6, 9
likelihood function, 9

machine learning, 9
mathematical tool, 8
matrix, 2, 21, 24
MCMC, 2, 9
mixture model, 2, 4, 21
model identifiability, 25

68

moment, 13, 14

nervous system, 3
network model, 6
normalization function, 6
numerical integration, 9

oscillation, 8

partition, 4
pattern recognition, 4, 9
physics, 9
Poisson process, iii, 11, 12
probabilistic network, 5
process

empirical process, 3
Gamma process, 3
inverse Gaussian process, 3
point process, 1, 3, 4
Poisson process, 3, 4

product, 14

random time lag, 8

Sampler
Metropolis-Hastings sampler, 2
weighted sampler, 2

sampler
Metropolis-Hastings sampler, 36

self-refractory effect, 5
sensitivity, 8
snowflake plot, 3

probabilistic model for snowflake plot, 3
spike, 1, 3

multiple spike trains, 1, 2, 4, 8
spike train, 1, 3, 4
spontaneous spike train, 6

spike sorting, 9
stationary independent increment, 12

temporal firing rate, 8
time decaying constant, 6
trigger neuron, 6

unequal firing rates network, 8
uneuqal rates network, 10
unidentifiability, 20
unit vector, 16

69

BIBLIOGRAPHY

[1] D. R. Brillinger.
Nerve cell spike train data analysis: A

progression of technique.
Journal of American Statistical Associa-

tion, pages 260–271, 1992.

[2] E. Brown, R. Kass, and P. Mitra.
Multiple neural spike train data analysis:

state-of-the-art and future challenges.
Nature: Neuroscience, 7:456–461, 2004.

[3] E. N. Brown.
Theory of point process for neural sys-

tems.
In C.C.Chow, B.Gutkin, D.Hansel,

C.Meunier, and J.Dalibard, editors,
Methods and Models in Neurophysics,
chapter 14, pages 691–726. Paris,
Elsever, 2005.

[4] G. Czanner, S. Grun, and S. Iyengar.
Theory of the snowflake plot and its re-

lations to higher-order analysis meth-
ods.

Neural Computation, 17(7):1456–1479,
2005.

[5] G. L. Gerstein and A. M. H. J. Aertsen.
Representation of cooperative firing ac-

tivity among simultaneously recorded
neurons.

Journal of Neurophysiology, 54(6):1513–
1528, 1985.

[6] A. L. Hodgkin and A. F. Huxley.

A quantitative description of memberane
potential on sodium conductance in
the giant axon of loligo.

Journal of Physiology, 117(4):500–544,
1952.

[7] S. Iyengar.
The analysis of multiple neural spike train

analysis.
In N. Bolakrishnan, editor, Advances in

Methodological and Applied Aspects of
Probability and Statistics, pages 507–
524. Gordon and Breack, 2001.

[8] R. E. Kass, V. Ventura, and C. Cai.
Statistical smoothing of neuronal data.
Network: Computation in Neural Sys-

tems, 14:5–15, 2003.

[9] C. Koch.
Biophysiscs of Computation: Information

Processing in Single Neurons.
Oxford University Press, 1999.

[10] F. Rigat, M. d. Gunst, and J. v. Pelt.
Bayesian modeling and analysis of spatio-

temporal neuronal networks.
Bayesian Analysis, in press.

[11] K. J. Utikal.
Nonparametric inference for markovian

interval processes.
Stochastic processes and their applica-

tions, pages 1–23, 1997.

[12] V. Ventura, R. Carta, R. E. Kass, S. N.
Gettner, and C. R. Olson.

Statistical analysis of temporal evolution
in single-neuron firing rates.

Biostatistics, 1:1–20, 2002.

70

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	1. Compare samplers - CDF and PDF plots
	2. Compare samplers - Empirical CDFs
	3. Compare samplers - Tables for DT and DS
	4. MD sample trace plot - MD sample trace plot for M
	5. MD sample trace plot - MD sample trace plot for M*1000
	6. MD sample trace plot - MD sample trace plot for MM
	7. MD sample trace plot - MD sample trace plot for MM*1000
	8. Simulation - Graph representation of copy matrix
	9. Simulation - Posterior copy matrix table
	10. Simulation - Raster plot for spike trains
	11. Simulation - Plot for charge process
	12. Simulation - Gravitational clustering plot
	13. Simulation - Trace plot for posterior copy matrix
	14. Simulation - QQ plot for pij
	15. Simulation - Snow flake plots

	1.0 INTRODUCTION
	2.0 LITERATURE REVIEW
	2.1 Dynamic Bayesian belief network
	2.2 Gravitational Clustering Algorithm
	2.3 Comparison of DBN and GCA
	2.3.1 Interaction Modes
	2.3.2 Mathematical aspects
	2.3.3 Results

	3.0 THEORETICAL ASPECTS OF GCA
	3.0.4 Preliminaries
	3.0.5 Moment properties of charge processes
	3.0.6 Main results about GCAD (K=2)
	3.0.7 Main results about GCAD (K>2)

	4.0 GENERALIZED MIXTURE MODEL FOR HIGH-DIMENSIONAL LONGITUDINAL DATA
	4.1 The problem
	4.2 Statement of Generalized Mixture Model
	4.3 Bayesian approach to computing the posterior
	4.3.1 Preparation
	4.3.2 Specification of prior distributions
	4.3.3 Likelihood functions
	4.3.4 Conditional Posterior distributions
	4.3.5 Gibbs sampling procedure

	5.0 SAMPLING AND SIMULATION STUDY
	5.1 Some problems in sampling
	5.2 Simulation study
	5.3 Conclusion

	APPENDIX. PROOFS OF RESULTS IN SECTION 3
	INDEX
	BIBLIOGRAPHY

