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MULTISCALE METHODS FOR STOCHASTIC COLLOCATION OF MIXED

FINITE ELEMENTS FOR FLOW IN POROUS MEDIA

Benjamin Ganis, PhD

University of Pittsburgh, 2010

This thesis contains methods for uncertainty quantification of flow in porous media through

stochastic modeling. New parallel algorithms are described for both deterministic and

stochastic model problems, and are shown to be computationally more efficient than ex-

isting approaches in many cases.

First, we present a method that combines a mixed finite element spatial discretization

with collocation in stochastic dimensions on a tensor product grid. The governing equations

are based on Darcy’s Law with stochastic permeability. A known covariance function is used

to approximate the log permeability as a truncated Karhunen-Loève expansion. A priori

error analysis is performed and numerically verified.

Second, we present a new implementation of a multiscale mortar mixed finite element

method. The original algorithm uses non-overlapping domain decomposition to reformulate

a fine scale problem as a coarse scale mortar interface problem. This system is then solved

in parallel with an iterative method, requiring the solution to local subdomain problems

on every interface iteration. Our modified implementation instead forms a Multiscale Flux

Basis consisting of mortar functions that represent individual flux responses for each mortar

degree of freedom, on each subdomain independently. We show this approach yields the same

solution as the original method, and compare the computational workload with a balancing

preconditioner.

Third, we extend and combine the previous works as follows. Multiple rock types are

modeled as nonstationary media with a sum of Karhunen-Loève expansions. Very hetero-
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geneous noise is handled via collocation on a sparse grid in high dimensions. Uncertainty

quantification is parallelized by coupling a multiscale mortar mixed finite element discretiza-

tion with stochastic collocation. We give three new algorithms to solve the resulting system.

They use the original implementation, a deterministic Multiscale Flux Basis, and a stochas-

tic Multiscale Flux Basis. Multiscale a priori error analysis is performed and numerically

verified for single-phase flow.

Fourth, we present a concurrent approach that uses the Multiscale Flux Basis as an

interface preconditioner. We show the preconditioner significantly reduces the number of

interface iterations, and describe how it can be used for stochastic collocation as well as

two-phase flow simulations in both fully-implicit and IMPES models.

Keywords: Porous Media Flow, Mixed Finite Element, Mortar Finite Element, Multiscale

Basis, Uncertainty Quantification, Stochastic Collocation.
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1.0 INTRODUCTION

A porous medium is a solid matrix with a large amount of microscopic pores and throats, in

which there are narrow tubes that fluid can pass through. Example solids include sand, soil,

and rock, and example fluids include oil, water, and gas. Darcy’s Law refers to the basic

constitutive relationship for the conservation of momentum of fluids in porous media. It is a

potential theory discovered in 1856 that states fluids flow from areas of high pressure to areas

of low pressure [28]. Today’s modern mathematical models and numerical methods for porous

media flow exist in increasingly more complex varieties, designed to handle multiple phases,

multiple components, solute transport, and coupling with other physical processes [84, 21].

Applications involving flow through porous media include hydrologists studying underground

aquifers for such purposes as groundwater remediation, and petroleum engineers simulating

reservoirs for petroleum production. As we progress through the 21st century, matters of

energy and the environment are of great importance to humanity.

The work in this thesis has twofold motivation related to the difficulties in the numerical

simulation of these physical processes. First, both the difficulty in describing the media itself

and the phenomena describing the fluids occupying the void spaces lead to the continuum

approach for modeling flow through porous media [13]. Inherent to this approach are un-

certainties associated with both natural randomness and incomplete knowledge of physical

properties in model input. As computational power increases, there is great interest in the

forward propagation of stochastic noise to model output, via techniques known as Uncer-

tainty Quantification (UQ) methods. Second, for large reservoir simulation, about 80-90%

of total runtime is spent on the solution of linear systems [21]. Specific emphasis needs to be

placed on the parallel solvers to make them as efficient as possible. Realistic deterministic

simulations are computationally intensive, and adding stochastic parameters exponentially

1



increases these demands.

1.1 MODEL PROBLEMS FOR FLOW IN POROUS MEDIA

We consider two deterministic mathematical models involving Darcy’s Law for the conserva-

tion of momentum coupled with a conservation of mass. These models will also be extended

to allow the possibility of stochastic permeability. Let D ⊂ Rd be a bounded domain in

d = 2 or 3 spatial dimensions, with Lipschitz boundary and outer unit normal n.

In the following, C denotes a generic positive constant independent of the discretization

parameters. For a subspace G ⊆ D, the L2(G) inner product and norm are denoted (·, ·)G
and ‖ · ‖G, respectively. Let ‖ · ‖m,p,G denote the norm of the Sobolev space Wm,p(G), and

in the case of Hilbert space Hm(G) = Wm,2(G) the norm is denoted by ‖ · ‖m,G. Define the

space H(div;G) = {v ∈ (L2(G))d | ∇ · v ∈ L2(G)}. We may omit G in any subscript if

G = D. For a section of the domain or element boundary S ⊂ Rd−1 we write 〈·, ·〉S and

‖ · ‖S for the L2(S) inner product (or duality pairing) and norm, respectively. Dual spaces

are denoted by (·)∗.

The first model is for single-phase, incompressible, non-gravitational flow. It is a lin-

ear, steady-state, second-order, elliptic equation written in mixed form. We consider both

Dirichlet and Neumann boundary conditions with ∂D = ΓD ∪ΓN , ΓD ∩ΓN = ∅. The system

is:

u = −K∇p, in D, (1.1)

∇ · u = f, in D, (1.2)

p = gD, on ΓD, (1.3)

u · n = gN , on ΓN . (1.4)

The two unknowns are the fluid pressure p(x) (hydraulic head), and the Darcy velocity u(x).

Here K(x) represents the absolute permeability (hydraulic conductivity) divided by the fluid

viscosity, and can either be a positive scalar-valued function, or a uniformly symmetric
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positive definite 2-tensor with components in L∞(D). Our typical regularity assumptions

are that f(x) ∈ L2(D), gD(x) ∈ H1/2(ΓD), and gN(x) ∈ L2(ΓN).

The second model is for unsteady, two-phase, immiscible, incompressible or slightly-

compressible flow. It is a highly nonlinear, transient system which can be reformulated as a

coupled system of a hyperbolic equation and a degenerate parabolic equation. Denote fluid

phases by α = o (oil) and α = w (water), assume Dirichlet boundary conditions, and denote

the time interval J = [0, T ]. For each phase, the system is:

uα =
−K kα(Sα)

µα
(∇pα − ραg∇z) , in D × J, (1.5)

φ
∂(Sαρα)

∂t
+∇ · (ραuα) = ραqα, in D × J, (1.6)

pα = gα,D, on ∂D × J, (1.7)

pα = gα,0, on D × {t = 0}. (1.8)

The unknowns are the phase pressures pα(x, t), the Darcy velocities uα(x, t), and the phase

saturations Sα(x, t). Known data includes the absolute permeability K(x), the phase rel-

ative permeabilities kα(Sα), the porosity φ(x), the phase densities ρα, the phase viscosities

µα, and the gravitational constant g and depth z. The source functions qα(x, t) represent

well injection and production rates, defined using the Peaceman model [68] extended to

multiphase flow. In immiscible flow, the presence of one fluid (its saturation) will displace

the other and inhibit its ability to flow. Moreover, a known capillary pressure measures the

surface tensions between the two fluids when they occupy the same pore space. Therefore

this system of four equations in six unknowns is closed with constitutive constraints for the

balance of volume and the capillary pressure relation

So + Sw = 1, (1.9)

pc(Sw) = po − pw. (1.10)

In the case of two-phase, slightly compressible flow, the densities are modeled by the

equations of state for α = o, w

ρα = ρrefα exp
[
cα(pα − prefα )

]
, (1.11)
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where the ρrefα are reference densities, the prefα are reference pressures, and cα are compress-

ibility coefficients. In the case of single-phase, slightly compressible flow, the oil saturation

So = 0, so that equations (1.5)-(1.8) reduce to

u =
−K
µ

(∇p− ρwg∇z) , in D × J, (1.12)

φ
∂(ρw)

∂t
+∇ · (ρwuα) = ρwq, in D × J, (1.13)

p = gD, on ∂D × J, (1.14)

p = g0, on D × {t = 0}. (1.15)

We retain the subscript w on water density to prevent conflict with future notation on

probability density functions. In this model we assume that there exists some positive

constant α such that φ ∈ L∞(D) and 1/α ≤ φ(x) ≤ α. Furthermore, we assume ρw(x) ∈

W 2,∞(R) and 1/α ≤ ρw, ρ
′
w, ρ

′′
w ≤ α. Note that if we neglect the gravity term and assume

incompressibility, we return to the structure of the first model.

1.2 THE KARHUNEN-LOÈVE EXPANSION

In general, random noise may be added to any type of input in a deterministic model, such

as boundary conditions, geometry, parameters, or functions. When more than one random

input exists, they may even be mutually correlated. In this work however, we merely allow

the permeability coefficient K to be the sole stochastic input in both models.

More specifically, let (Ω,F , P ) be a complete probability space, where Ω is a set of

outcomes, F ⊂ 2Ω is a σ-algebra of events, and P : F → [0, 1] is a probability measure. In

our stochastic models, the permeability K : D×Ω→ R is a spatially correlated random field.

It is scalar-valued, as opposed to our deterministic models when it can be a full 2-tensor.

A stochastic input will lead to a stochastic output, so the goal is called Uncertainty

Quantification. This refers to the computation of the stochastic solution’s statistical mo-

ments such as its expectation and variance. A random variable ξ : Ω → R is defined as an
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F -measurable function with a Probability Distribution Function (PDF) ρ(y). It’s expecta-

tion and variance are defined by

E[ξ] =

∫
Ω

ξ(ω)dP (ω) =

∫
R
yρ(y)dy, (1.16)

Var[ξ] = E[ξ2]− E[ξ]2. (1.17)

The calculation of variance gives an important measure of confidence in the expectation,

and identifies the specific areas of the solution that are most sensitive to the stochastic input

parameters. To ensure the positive definiteness of the permeability coefficient almost surely,

we give random expressions for its mean-removed logarithm Y ′ satisfying the relations

Y ′ = Y − E[Y ], Y = ln(K), K = exp(Y ). (1.18)

The main tool that we use to represent the stochastic permeability is a spectral series

known as a Karhunen-Loève (KL) expansion [57]. It has the form

Y ′(x, ω) =
∞∑
j=1

ξj(ω)
√
λjfj(x), (1.19)

where {ξj} is a set of independent identically distributed (iid) random variables, {λj} is a set

of eigenvalues, and {fj} is an orthonormal set of deterministic eigenfunctions. This expansion

can be thought of as the stochastic equivalent of a Fourier series, where the coefficients are

the random variables, and the orthogonal basis functions are determined by the covariance

of the random process. It is our choice to use this expression, and it should be noted that

there exist other possibilities such as the Polynomial Chaos expansion [41, 90]. A useful

comparison is made between both types of representations in [32].

Our stochastic models will assume that we are given one (or more) known covariance

functions

CY (x, x̄) = E[Y ′(x, ω)Y ′(x̄, ω)], (1.20)

which are by definition bounded, symmetric, and positive definite. When this function is

regarded as the resolvent kernel of the Fredholm integral equation∫
D

CY (x, x̄)f(x)dx = λf(x̄), (1.21)
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it can be decomposed into the series expansion

CY (x, x̄) =
∞∑
j=1

λjfj(x)fj(x̄). (1.22)

Indeed, as a consequence of Mercer’s Theorem [73, p.245], there exists a set of orthonormal-

ized eigenfunctions such that
∫
D
fi(x)fj(x)dx = δij, they form a complete spanning set, and

the convergence is uniform and absolute. (See, also [25]). Using this fact, one can verify the

expression for (1.19) is correct by substituting it into expression (1.20) to obtain (1.22).

It is known that the eigenvalues in this type of series typically decay quite rapidly, which

motivates one to truncate the KL series after a finite number of terms. This is a modeling

error, and the goal of this work is not to answer the question of how many terms one will

need in the series a priori. This question has been addressed in the adaptive methods of

such works as [35, 64, 63, 61]. Instead, we focus on the discretization error in stochastic and

physical space, as well as an optimized parallel implementation of such an approach. We

have found that increasing the number of terms will increase the permeability’s heterogeneity.

The images of the remaining random variables form a finite-dimensional vector space, so that

the stochastic system is transformed into a higher-dimensional deterministic system, with

the extra dimensions coming from the number of terms in the KL series.

This work also explores the possibility of statistically nonstationary random porous me-

dia. By stationary random porous media, we mean that there is a single global probability

space and a single global KL expansion. By nonstationary random porous media, we mean

that there are several independent probability spaces, each of which has its own indepen-

dent KL expansion. We refer to these statistically independent regions as KL Regions. The

eigenfunctions in each KL expansion are extended by zero in the other KL Regions, so that a

global KL expansion may be written as a sum of the other series. This approach is motivated

by modeling porous media with multiple rock types.
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1.3 UNCERTAINTY QUANTIFICATION

UQ methods can be classified in three major groups: (1) sampling methods [33, 55], (2)

moment/perturbation methods [52, 59, 95, 50, 74] and, (3) non-perturbative methods, either

based on polynomial chaos expansions [41, 40, 90, 91, 92, 45] or stochastic finite element

methods [41, 29, 12]. A brief survey of these methods can be found in [80], where an extensive

reference list is given. In such order, we can say that these methods range from being non-

intrusive to very intrusive in terms of modification to the deterministic simulation model. In

certain situations these techniques may even be combined together to form hybrid approaches

[24]. The best known sampling method is Monte Carlo simulation (MCS) [33], which involves

repeated generation of random samplings (realizations) of input parameters followed by the

application of the simulation model in a “black box” fashion to generate the corresponding

set of stochastic responses. These responses are further analyzed to yield statistical moments

or distributions. The major drawback of MCS is the high computational cost due to the

need to generate valid representative statistics from a large number of realizations at a high

resolution level.

Moment/perturbation and finite element stochastic methods fall into the category of non-

sampling methods. These methods are suitable for systems with relatively small dimensions

of random inputs. However, despite the apparent accuracy and mild cost with respect

to MCS, these methods also present some limitations that have prevented them from being

widely used. The problem is that their semi-intrusive or fully intrusive character may greatly

complicate the formulation, discretization and solution of the model equations, even in the

case of linear and stationary input distributions. There is also a high computational cost

associated with these methods since the number of terms needed to accurately represent the

propagation of uncertainties grows significantly with respect to the degree of variability of

the system. It is still not clear how these methods may be formulated in the event of high

nonlinearities due to complex flow and chemical reactions over arbitrary geometries.

On the other hand, stochastic finite elements exhibit fast convergence through the use

of generalized polynomial chaos representations of random processes. These generalizations

of the Wiener-Hermite polynomial chaos expansion can include a wider class of random
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processes by means of global polynomial expansions, piecewise polynomial expansions and

wavelet basis expansions, see e.g. [12, 81]. However, besides their very intrusive feature,

the dimensionality of the discretized stochastic finite element equations can be dramatically

larger than the dimensionality of the base case deterministic model.

This thesis utilizes a UQ technique called the stochastic collocation method [11, 89, 88],

which is a very promising approach for improving the efficiency of non-sampling methods. It

combines a finite element discretization in physical space with a collocation at specially cho-

sen points in probability space. As a result a sequence of uncoupled deterministic problems

need to be solved, just like in MCS. However, the stochastic collocation method shares the

approximation properties of the stochastic finite element method, making it more efficient

than MCS. Choices of collocation points include tensor product of zeros of orthogonal poly-

nomials [11, 89], sparse grid approximations [35, 61, 64, 76, 89], and probabilistic collocation

[56]. The last two provide approaches to reduce the number of collocation points needed

to obtain a given level of approximation, leading to very efficient algorithms. This thesis

considers collocation on both tensor product and sparse grids.

1.4 MULTISCALE MORTAR MIXED FINITE ELEMENT METHOD

The use of Mixed Finite Element (MFE) methods is advantageous for its simultaneous high-

order approximation of both the primary variable and a second variable of physical interest.

Since the 1970’s, a robust theory has been developed to produce stable schemes for subsurface

flow, as well as applications in surface flow, electromagnetism, and elasticity [14]. Moreover

these methods provide physical fidelity via the element-wise conservation of mass, a property

that standard Galerkin finite element methods do not possess. However, difficulties arise in

porous media flow applications, where the domain is quite large and the permeability tensor

varies on a fine scale. Resolving the solution on the fine scale is often computationally

infeasible, necessitating the use of multiscale approximations.

The Multiscale Mortar Mixed Finite Element Method (MMMFEM) was proposed in [9]

as an alternative to existing multiscale methods, such as the variational multiscale method

8



[48, 49, 6, 1, 7, 4] and multiscale finite elements [46, 47, 31, 20, 51, 3]. The latter two

approaches are closely related [7]. In all three methods the domain is decomposed into a series

of small subdomains (coarse grid), and the solution is resolved globally on the coarse grid and

locally (on each coarse element) on a fine grid. Non-overlapping domain decomposition has a

long history that predates digital computers, when in 1870 Schwarz proved the convergence

of his alternating method for elliptic equations [77]. All three multiscale methods are based

on a divide and conquer approach: solving relatively small fine scale subdomain problems

that are only coupled together through a reduced number (coarse scale) degrees of freedom.

The variational multiscale method and multiscale finite elements both compute a mul-

tiscale basis by solving local fine scale problems with boundary conditions or a source term

corresponding to the coarse scale degrees of freedom. This basis is then used to solve the

coarse scale problem. The MMMFEM uses a non-overlapping domain decomposition algo-

rithm which introduces a Lagrange multiplier space on the subdomain interfaces to weakly

impose certain continuity conditions. By eliminating the subdomain unknowns the global fine

scale problem is reduced to an interface problem, which is solved using an iterative method.

The domain decomposition algorithm was originally developed for the case of matching grids

[42] and then extended to the case of non-matching grids using mortar finite elements [93, 8].

This generalization allows for extremely flexible finite element partitions, as both the fine

scale elements across subdomain interfaces and the subdomains themselves (i.e., the coarse

grid) may be spatially non-conforming. Moreover, one has the ability to vary the interface

degrees of freedom [86, 70, 9]. If only a single mortar grid element is used per interface, the

resulting approximation is comparable to the one in the variational multiscale method or

multiscale finite elements. In the MMMFEM framework, a posteriori error estimators [87]

can be employed to adaptively refine the mortar grids where necessary to improve the global

accuracy. Furthermore, higher order mortar approximation can be used to compensate for

the coarseness of the mortar grid and obtain fine scale convergence of the error [9]. Thus,

the MMMFEM is more flexible than the variational multiscale method and multiscale finite

elements. Another observation is that the MMMFEM resolves the flux through the coarse

interfaces on the fine scale, which is not the case for the other two approaches.

Both the variational multiscale method and multiscale finite elements have recently been
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applied to Uncertainty Quantification in such works as [10, 10, 35] and [30, 2], respectively.

Much of the work done for this thesis [36, 39] marks the first time that the Multiscale Mortar

Mixed Finite Element Method has been extended to UQ in an analogous way.

1.5 THESIS OUTLINE

The rest of this thesis is organized as follows: In Chapter 2 we formulate a method for

problems with stationary stochastic permeability, which couples a MFE spatial discretization

with stochastic collocation on a tensor product grid. In Chapter 3 we develop an algorithm

called the Multiscale Flux Basis implementation to solve the interface system associated

with the MMMFEM, in a deterministic setting. In Chapter 4 we both extend and combine

the previous works by coupling the MMMFEM with stochastic collocation on both tensor

product and sparse grids, allowing nonstationary stochastic permeability, and developing

algorithms to solve the resulting system using Multiscale Flux Basis ideas. In Chapter

5 we present a concurrent approach that uses the Multiscale Flux Basis as an interface

preconditioner, and describe its application to stochastic collocation as well as two-phase

flow simulations in both fully-implicit and IMPES models.
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2.0 STOCHASTIC COLLOCATION WITH MIXED FINITE ELEMENTS

This chapter contains material that was published in [36], in which methods were formu-

lated to combine Mixed Finite Element discretizations in physical space with the stochastic

collocation method. We consider both the incompressible single-phase model (1.1)–(1.4)

and the slightly compressible single (1.12)–(1.15) and two-phase model (1.5)–(1.8), coupled

with stochastic collocation on tensor product grids. Convergence analysis for the pressure

and the velocity is presented, which follows the approach in [11] where standard Galerkin

discretizations are studied. We show that the total error can be decomposed into the sum of

deterministic and stochastic errors. Optimal convergence rates and superconvergence for the

pressure are established for the deterministic error. The stochastic error converges exponen-

tially with respect to the number of the collocation points. Numerical experiments confirm

theoretical convergence rates, and demonstrate the efficiency to our approach compared to

MCS. A model for statistically stationary random porous media is discussed in Section 2.1,

the MFE stochastic collocation method is formulated in Section 2.2, it is analyzed in Section

2.3, and some numerical experiments are presented in Sections 2.4 and 2.5.

2.1 STATISTICALLY STATIONARY RANDOM POROUS MEDIA

Assume that the KL expansion for Y ′ is determined by the following covariance function,

given in d = 2 or 3 spatial dimensions by

CY (x, x̄) = σ2
Y

d∏
i=1

exp

[
−|xi − x̄i|

ηi

]
. (2.1)
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Here σY is a variance, and ηi are correlation lengths for the physical dimensions. This

covariance has been considered in such works as [96]. This type of random porous media is

statistically stationary, meaning that the covariance between any two points in the domain

depends on their distance only, rather than the actual locations of these two points. We

also assume that Y ′ is a Gaussian process, so that the {ξj} are Normal N(0, 1) iid random

variables, meaning E[ξj] = 0, E[ξiξj] = δij, and each has the PDF

ρj(y) =
1√
2π

exp

[
−y

2

2

]
. (2.2)

In this chapter, we require the Lipschitz domain D to be a product of intervals. This fact,

along with the separability of the covariance function, allows one-dimensional eigenvalues and

eigenfunctions to be obtained in each spatial dimension i = 1, . . . , d separately. They are

computed by solving the Fredholm integral equations (1.21) on intervals [0, Li]. We employ

the procedure that solves for these analytically as presented in Appendix A of [96], in which

they are found to be

λ
(i)
j =

2ηiσ
2
Y

η2
iw

2
j + 1

and f
(i)
j (xi) =

ηiwj cos(wjx) + sin(wjx)√
(η2
iw

2
j + 1)Li/2 + ηi

, (2.3)

where wj are the positive roots of the characteristic equation

(η2
iw

2 − 1) sin(wLi) = 2ηiw cos(wLi). (2.4)

The one-dimensional eigenvalues and eigenfunctions are then multiplied across all spatial

dimensions, and then sorted in such a way to form a nonincreasing series in λj. We note

that not all types of covariance functions give closed-form expressions, and that efficient

methods for numerically computing the KL expansion are reported in [76].

As is typically done at this point, we commit a modeling error that replaces the stochastic

problem by a higher dimensional deterministic approximation.

Assumption 2.1.1. (Finite Dimensional Noise Assumption). The KL Expansion for Y ′ is

truncated after Nterm terms, which allows us to approximate (1.19) by

Y ′(x, ω) ≈
Nterm∑
j=1

ξj(ω)
√
λjfj(x). (2.5)
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This is feasible to do as the eigenvalues λj in (2.3) decay at a rate which is asymptotic to

O(1/j2) [96]. This allows us to write Y (x, ω) ≈ Y (x, ξ1(ω), . . . , ξNterm(ω)). The images of

the random variables Sj = ξj(Ω) make up the finite dimensional vector space

S =
Nterm∏
i=1

Sj ⊆ RNterm . (2.6)

If ρj corresponds to the PDF of each ξj, then the joint PDF for the random vector (ξ1, . . . , ξNterm)

is defined to be ρ =
∏Nterm

j=1 ρj. Finally, we may write Y (x, ω) ≈ Y (x,y), where y =

(y1, . . . , yNterm) and yi = ξi(ω).

2.2 FORMULATION OF THE STOCHASTIC MIXED METHOD

Consider the single-phase model (1.1)-(1.4) with stochastic permeability K = K(x, ω) de-

fined by covariance (2.1). The stochastic problem is to find u and p that satisfy this system

for P -almost every (a.e.) ω ∈ Ω

u = −K(x, ω)∇p, in D, (2.7)

∇ · u = f, in D, (2.8)

p = gD, on ΓD, (2.9)

v · n = gN , on ΓN . (2.10)

By the Doob-Dynkin Lemma [65, Lemma 2.1.2], the solution (u, p) is F -measurable,

so we can write u = u(x, ω) and p = p(x, ω). Next, admit Assumption 2.1.1 so that

K(x, ω) ≈ K(x,y). It follows that we can describe the solution using the same random

approximation, i.e.

u(x, ω) ≈ u(x, ξ1(ω), . . . , ξNterm(ω)) = u(x, y1, . . . , yNterm) and

p(x, ω) ≈ p(x, ξ1(ω), . . . , ξNterm(ω)) = p(x, y1, . . . , yNterm).
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In a mixed method, the Neumann boundary condition (1.4) is imposed essentially into

the velocity space. We define the deterministic pressure and velocity spaces as

W (D) = L2(D) and Vγ(D) = {v ∈ H(div;D) | v · n = γ on ∂D ∩ ΓN}, (2.11)

where γ ∈ L2(ΓN). Note that the condition v ·n = γ requires slightly higher regularity than

the usual normal traces of functions in H(div;D). Since our goal is to compute stochastic

solutions with finite second moment, we define the space

L2
ρ(S) =

{
v : S→ Rd |

(∫
S
‖v(y)‖2ρ(y)dy

)1/2

<∞

}
, (2.12)

and take its vector product with the aforementioned deterministic spaces to form the stochas-

tic Sobolev spaces

W (D, S) = W (D)⊗ L2
ρ(S) and Vγ(D, S) = Vγ(D)⊗ L2

ρ(S).

Whenever the explicit dependence in parentheses is omitted, it is implied that we mean the

stochastic spaces, e.g. W = W (D, S). We equip the stochastic pressure and velocity spaces

with norms

‖v‖2
V =

∫
S

(∫
D

(
|v|2 + |∇ · v|2

)
dx

)
ρ(y)dy = E

[
‖v‖2

H(div;D)

]
and (2.13)

‖w‖2
W =

∫
S

(∫
D

w2dx

)
ρ(y)dy = E

[
‖w‖2

L2(D)

]
. (2.14)

Multiplication by test functions and application of Green’s Identity leads to the stochastic

equivalent of a standard dual mixed weak formulation.1 That is to find u ∈ VgN and p ∈ W

such that∫
S
(K(x,y)−1u,v)ρ(y)dy =

∫
S

[
(p,∇ · v)− 〈gD,v · n〉ΓD

]
ρ(y)dy, ∀v ∈ V0, (2.15)∫

S
(∇ · u, w)ρ(y)dy =

∫
S
(f, w)ρ(y)dy, ∀w ∈ W. (2.16)

Next we employ a mixed finite element discretization in physical dimensions to pose a

semidiscrete stochastic formulation. Let Th be a shape-regular affine finite element partition

1Here, “dual” refers to the duality (grad)∗ = (div), as opposed to a primal H1-mixed form. We say this,
because recently “dual” may also refer to three variable mixed methods with two-fold saddle point problems.
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of the spatial domain D [23]. A mixed finite element discretization Vh(D) × Wh(D) ⊂

H(div,D) × L2(D) is chosen to satisfy a discrete inf-sup condition [18]. The semidiscrete

formulation of (2.15)-(2.16) will be to find uh : S → Vh(D) and ph : S → Wh(D) such that

for a.e. y ∈ S,

(K(x,y)−1uh,vh) = (ph,∇ · vh)− 〈gD,vh · n〉ΓD
, ∀vh ∈ Vh(D), (2.17)

(∇ · uh, wh) = (f, wh), ∀wh ∈ Wh(D). (2.18)

By the general saddle point problem theory [18], a solution to the mixed problem exists and

it is unique for a.e. y ∈ S. This can be extended to the stochastic problem by the argument

in [75], which analogously uses the Lax-Milgram Lemma for the non-mixed elliptic problem.

Remark 2.2.1. In this work, we may consider any of the usual mixed finite element spaces,

such as the RTN spaces [72, 62], BDM spaces [17], BDFM spaces [16], BDDF spaces [15],

CD spaces [19], or those listed in [14]. Let the space of polynomials of total degree k be

denoted Pk = {p ∈ P | p =
∑

0≤i1+...+id≤k αi1,...,idx
i1
i · · ·x

id
d }. On each element E ∈ Th,

the velocity space contains vector polynomials of total degree r ≥ 0, (Pr(E))d ⊂ Vh(E).

Velocity normal components on each edge (face) contain scalar polynomials of total degree

r, Pr(γ) ⊂ Vh(E) · n. The pressure space contains scalar polynomials of total degree s,

Ps(E) ⊂ Wh(E). In all of the above mixed spaces, s = r, or s = r − 1 when r ≥ 1. Our

numerical experiments use lowest order RTN space on logically rectangular grids.

Similarly, we also consider the two-phase model problem (1.5)-(1.8) with the same

stochastic permeability. Define the time-dependent Stochastic Sobolev spaces

VJ(D, S) = H(div;D)⊗ Lp(J)⊗ L2
ρ(S),

WJ(D, S) = L2(D)⊗ Lp(J)⊗ L2
ρ(S).

with norms

‖v‖2
VJ

=

∫
S

(∫
J

(∫
D

(
|v|2 + |∇ · v|2

)
dx

)p
dt

)1/p

ρ(y)dy and

‖w‖2
WJ

=

∫
S

(∫
J

(∫
D

w2dx

)p
dt

)1/p

ρ(y)dy.
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The stochastic variational formulation is to find u ∈ VJ and p ∈ WJ such that

∫
S

((
K(x,y)ki(Sw)

µi

)−1

ui,v

)
ρ(y)dy =

∫
S

[
(pi,∇ · v)− (ρig∇z,v)

−〈gi,D,v · n〉∂D

]
ρ(y)dy, ∀v ∈ VJ , (2.19)

∫
S

[(
φi
∂(Siρi)

∂t
, w

)
+ (∇ · (ρiui), w)

]
ρ(y)dy =

∫
S
(fi, w)ρ(y)dy, ∀w ∈ WJ . (2.20)

In the single-phase, slightly compressible case, this once again reduces to finding u ∈ VJ

and p ∈ WJ such that

∫
S

((
K(x,y)

µ

)−1

u,v

)
ρ(y)dy =

∫
S

[
(p,∇ · v)− (ρwg∇z,v)

−〈gD,v · n〉∂D

]
ρ(y)dy, ∀v ∈ VJ , (2.21)

∫
S

[(
φ
∂ρw
∂t

, w

)
+ (∇ · (ρwu), w)

]
ρ(y)dy =

∫
S
(f, w)ρ(y)dy, ∀w ∈ WJ . (2.22)

The semi-discrete formulations for the slightly compressible single and two-phase models are

given by restriction to a finite dimensional MFE subspace in the spatial dimensions, along

with the use of an appropriate time stepping scheme in the temporal dimension.

2.2.1 Tensor Product Grid Collocation

Next we employ the stochastic collocation method, using a tensor product Gauss-Hermite

quadrature rule in stochastic dimensions, to form the fully discrete solution. The reason

for this choice is that Hermite polynomals are the orthogonal family of polynomials that

is associated with Normal random variables in the Wiener-Askey scheme of hypergeometric

polynomials [32]. If other types of random variables are used instead, then other orthogonal

polynomials can be substituted. As described in Section 1.3 this non-intrusive approach

decouples the (d+Nterm)-dimensional stochastic problem into a sequence of independent d-

dimensional deterministic problems, which are realizations in stochastic space and function

evaluations in the quadrature rule.
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Let m (or m) be a scalar (or multi-index) indicating the desired polynomial degree of

accuracy in the stochastic dimensions. The stochastic collocation method approximates the

semidiscrete solution by an interpolant Im in the stochastic dimensions. It is uniquely formed

on a set of Nreal stochastic points {yk} that form a Haar set in S, where Nreal is a function

of m. More precisely the fully discrete solution is

uh,m(x,y) = Imuh(x,y), ph,m(x,y) = Imph(x,y).

Let {L{k}m (y)} be the Lagrange basis satifying {L{k}m (yj)} = δkj. Then the fully discrete

solution has the Lagrange representation

(uh,m, ph,m)(x,y) =

Nreal∑
k=1

(u
{k}
h , p

{k}
h )(x)L{k}m (y),

where (u
{k}
h , p

{k}
h ) is the evaluation of semidiscrete solution (uh, ph) with the permeability

realization

K{k}(x) = K(x,yk).

In practice, the Lagrange representation of the interpolant is plugged into the expectation

integral (1.16) to form a numerical quadrature rule. For example, the pressure expectation

computed by

E[ph,m](x) =

∫
S
ph,m(x,y)ρ(y)dy ≈

∫
S
Imph(x,y)ρ(y)dy

=

∫
S

Nreal∑
k=1

p
{k}
h (x)L{k}m (y)ρ(y)dy =

Nreal∑
k=1

w{k}m p
{k}
h (x), (2.23)

where the weights are given by

w{k}m =

∫
S
L{k}m (y)ρ(y)dy. (2.24)

The choice of collocation points {yk}, i.e. the type of quadrature rule, produces different

types of stochastic collocation methods. Tensor product grids are described in this chapter,

and sparse grids will be described in Chapter 4. Both types of grids are constructed from one-

dimensional rules, where the points in each stochastic dimension are the zeros of orthogonal
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polynomials with respect to the L2
ρ(Sj)-inner-product. Since we are using Gaussian random

variables, we choose the zeros of the “probabilist” N(0, 1) Hermite polynomials

Hm(y) = m!

[m/2]∑
k=0

(−1)k
(2y)m−2k

k!(m− 2k)!
. (2.25)

Denote the sets of one-dimensional weights and abscissae for Hm(y) by

W(m) = {w1
m, . . . , w

m
m} and H(m) = {h1

m, . . . , h
m
m}, (2.26)

and notice that when m = 2k − 1 is odd, the point hkm is the origin. These weights and

abscissae can easily be computed with a symbolic manipulation software package. Alterna-

tively, one may convert a table of rules for the “physicist” N(0, 1/2) Hermite polynomials

listed in [5] by dividing the weights by factor of
√
π and multiplying the abscissae by a factor

of
√

2.

In tensor product collocation, the polynomial accuracy is prescribed in terms of compo-

nent degree, i.e. independently in each stochastic dimension. This allows for very easy con-

struction of anisotropic rules, accurate to different polynomial degrees in different stochastic

dimensions. Unfortunately, the number of points in tensor product rules grow exponentially

with both the polynomial accuracy and the number of dimensions. This is commonly re-

ferred to as the “curse of dimensionality”. Therefore, this inherently limits their usage to

problems with a relatively low number of stochastic dimensions, i.e. about a dozen or less.

If we choose Ncoll(j) collocation points in stochastic dimension j, then m = (Ncoll(j))j is

the Nterm-dimensional multi-index indicating the desired component degree of the interpolant

in the stochastic space S. The corresponding anisotropic tensor product Gauss-Hermite

interpolant in Nterm-dimensions is defined by

ITG
m f(y) = (Im(1) ⊗ · · · ⊗ Im(Nterm))f(y)

=

m(1)∑
k1=1

· · ·
m(Nterm)∑
kNterm=1

f(hk1

m(1), . . . , h
kNterm

m(Nterm))L
k1

m(1)(y1) · · ·LkNterm

m(Nterm)(yNterm). (2.27)

The set of abscissae for this rule is

T (m) =
Nterm⊗
k=1

H(m(k)), (2.28)
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which interpolates the semi-discrete solution into the polynomial space Pm =
∏

k Pm(k)

in the stochastic dimensions. By formula (2.24), the tensor product weight for the point

(hk1

m(1), . . . , h
kNterm

m(Nterm)) is given by

w(k) =
Nterm∏
i=1

wki

m(i).

In a fixed stochastic dimension, the one dimensional Gauss-Hermite quadrature rules are

accurate to degree 2m− 1.

2.3 ERROR ANALYSIS

The error between the true stochastic velocity u and the approximate fully discrete velocity

uh,m may be decomposed by adding and subtracting the semidiscrete velocity uh

‖u− uh,m‖V ≤ ‖u− uh‖V + ‖uh − uh,m‖V = ‖u− uh‖V + ‖uh − Imuh‖V .

A similar decomposition holds for ‖p− ph,m‖W . An a priori bound on the first term follows,

assuming enough smoothness of the solution, from standard deterministic mixed FEM error

analysis [18]

‖u− uh‖2
V + ‖p− ph‖2

W

=

∫
S

(
‖u− uh‖2

H(div;D) + ‖p− ph‖2
L2(D)

)
ρ(y)dy

≤ C

∫
S

(
h2r+2‖u‖2

Hr+1(D) + h2s+2‖∇ · u‖2
Hs+1(D) + h2s+2‖p‖2

Hs+1(D)

)
ρ(y)dy

= C
(
h2r+2‖u‖2

Hr+1(D)⊗L2(S) + h2s+2‖∇ · u‖2
Hs+1(D)⊗L2(S)

+h2s+2‖p‖2
Hs+1(D)⊗L2(S)

)
.

For the second term, an interpolation bound on S has recently been found in [11] to be

‖uh − Imuh‖V + ‖ph − Imph‖W ≤ C
Nterm∑
i=1

e−ci
√
mi ,
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where ci > 0 are defined in [11, Theorem 4.1]. In particular, if K is smooth enough in S, then

the solution admits an analytic extension in a region of the complex plane containing Si for

i = 1, . . . , Nterm, and that ci depends on the distance between Si and the nearest singularity

in the complex plane. The KL expansion (1.19) satisfies the smoothness assumption in [11].

As a result we have the following theorem.

Theorem 2.3.1. Assume that u ∈ Hr+1(D) ⊗ L2
ρ(S), ∇ · u ∈ Hs+1(D) ⊗ L2

ρ(S), and p ∈

Hs+1(D)⊗ L2
ρ(S). Then there exists a constant C independent of h and M such that

‖u− uh,m‖V + ‖p− ph,m‖W ≤ C

(
hr+1 + hs+1 +

Nterm∑
i=1

e−ci
√
mi

)
.

We next establish a superconvergence bound for the pressure. For ϕ ∈ L2(D), denote

with ϕ̂ its L2-projection in Wh satisfying

(ϕ− ϕ̂, wh)L2(D) = 0 ∀wh ∈ Wh, (2.29)

‖ϕ− ϕ̂‖L2(D) ≤ Chl‖ϕ‖Hl(D), 0 ≤ l ≤ s+ 1. (2.30)

Let Π : (H1(D))d → Vh(D) be the mixed finite element projection operator satisfying

(∇ · (u− Πu), wh)L2(D) = 0 ∀wh ∈ Wh, (2.31)

‖u− Πu‖(L2(D))d ≤ Chl‖u‖(Hl(D))d , 1 ≤ l ≤ r + 1. (2.32)

Theorem 2.3.2. Assume that problem (2.7)–(2.9) is H2-elliptic regular. Under the assump-

tions of Theorem 2.3.1, there exists a constant C independent of h and M such that

‖p̂− ph,m‖W ≤ C(h‖u− uh‖V + ‖ph − Imph‖W ).
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Proof. The proof is based on a duality argument. Taking v = vh and w = wh in the weak

formulation (2.15)-(2.16) and subtracting the semidiscrete formulation (2.17)-(2.18) gives

the error equations for a.e. y ∈ S

(K−1(u− uh),vh)L2(D) = (p̂− ph,∇ · vh)L2(D), ∀vh ∈ Vh(D), (2.33)

(∇ · (u− uh), wh)L2(D) = 0, ∀wh ∈ Wh(D). (2.34)

Now consider the following auxiliary problem in mixed form:

ψ(·,y) = −K(·,y)∇ϕ(·,y) in D,

∇ ·ψ(·,y) = p̂− ph,m in D,

ϕ(·,y) = 0 on ∂D.

The elliptic regularity implies

‖ϕ(·,y)‖H2(D) ≤ C‖p̂− ph,m‖L2(D). (2.35)

Therefore,

‖p̂− ph,m‖2
W =

∫
S
(p̂− ph,m, p̂− ph,m)L2(D)ρ(y)dy

=

∫
S
(∇ ·ψ, p̂− ph,m)L2(D)ρ(y)dy

=

∫
S

(
(∇ ·ψ, p̂− ph)L2(D) + (∇ ·ψ, ph − Imph)L2(D)

)
ρ(y)dy

= I + II.

Applying the Cauchy-Schwarz inequality, we have

|II| ≤
(∫

S
‖∇ ·ψ‖2

L2(D)ρ(y)dy

)1/2(∫
S
‖ph − Imph‖2

L2(D)ρ(y)dy

)1/2

=

(∫
S
‖p̂− ph,m‖2

L2(D)ρ(y)dy

)1/2

‖ph − Imph‖W

= ‖p̂− ph,m‖W‖ph − Imph‖W .
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Using (2.31) and (2.33) with vh = Πψ,

I =

∫
S
(K−1(u− uh),Πψ)L2(D)ρ(y)dy

=

∫
S

(
(K−1(u− uh),Πψ −ψ)L2(D) − (u− uh,∇ϕ)L2(D)

)
ρ(y)dy

= I1 + I2.

The Cauchy-Schwarz inequality, (2.32), and (4.39) imply

|I1| ≤ C

(∫
S
‖u− uh‖2

L2(D)ρ(y)dy

)1/2(∫
S
‖Πψ −ψ‖2

L2(D)ρ(y)dy

)1/2

≤ C‖u− uh‖V h

(∫
S
‖ψ‖2

(H1(D))dρ(y)dy

)1/2

≤ Ch‖u− uh‖V ‖p̂− ph,m‖W .

Using (2.34), (2.30), and (4.39), we have

|I2| =

∣∣∣∣∫
S
(∇ · (u− uh), ϕ− wh)L2(D)ρ(y)dy

∣∣∣∣
≤ C‖u− uh‖V h‖p̂− ph,m‖W .

A combination of the above estimates completes the proof of the theorem.

Corollary 2.3.1. Under the assumptions of Theorem 2.3.2, there exists a constant C inde-

pendent of h and M such that

‖p̂− ph,m‖W ≤ C

(
hr+2 + hs+2 +

Nterm∑
i=1

e−ci
√
mi

)
.

Next, we describe the extension of these theoretical results to slightly compressible flows.

We do not give theoretical results for two-phase flow, as few a priori estimates are known.

As before, we add and subtract the semidiscrete velocity, splitting the error into

‖u− uh,m‖VJ
= ‖u− uh‖VJ

+ ‖u− Imuh‖VJ
,

which represents a deterministic discretization error and a stochastic error. Similar decom-

position holds for ‖p− ph,m‖WJ
. Using the deterministic error bounds [53, 54, 67]

‖u− uh‖H(div;D)⊗Lp(J) + ‖p− ph‖L2(D)⊗Lp(J) ≤ C(hr+1‖u‖Hr+1(D)⊗Lp(J)

+ hs+1‖∇ · u‖Hs+1(D)⊗Lp(J) + hs+1‖p‖Hs+1(D)⊗Lp(J)),

and the argument for the proof of Theorem 2.3.1, we obtain the following result.
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Theorem 2.3.3. Assume that u ∈ Hr+1(D)⊗Lp(J)⊗L2
ρ(S), ∇·u ∈ Hs+1(D)⊗Lp(J)⊗L2

ρ(S),

and p ∈ Hs+1(D)⊗Lp(J)⊗L2
ρ(S). Then there exists a constant C independent of h and M

such that

‖u− uh,m‖VJ
+ ‖p− ph,m‖WJ

≤ C

(
hr+1 + hs+1 +

Nterm∑
i=1

e−ci
√
mi

)
.

2.4 NUMERICAL EXAMPLES FOR INCOMPRESSIBLE FLOW

To perform the numerical experiments for Single-Phase Incompressible Flow, the framework

to support uncertainty quantification methods and stochastic permeability representation

with KL expansion was coded and integrated into the PARCEL simulator. This is a parallel

mixed finite element research code [27], which is written in FORTRAN and parallelized

using the MPI Library. It divides the problem into four non-overlapping subdomains and

reformulates the problem in terms of interfaces variables, using the original implementation

of the MMMFEM that will be described in Chapter 3. In a matching grid configuration,

this is equivalent to a standard MFE discretization, and with lowest order Raviart-Thomas

RT0 space on a uniform mesh of rectangular 2-D elements, this is also equivalent to a finite

difference scheme.

The covariance function (2.1) was used to generate the KL expansion of an isotropic per-

meability field by the procedure described in Section 2.1. Implementation of the stochastic

collocation method was achieved by adding a loop around the deterministic solver and sup-

plying it with permeability realizations at each stochastic collocation point. The solutions

for both stochastic pressure and velocity are then averaged together using the collocation

weights in order to compute their expectation and variance.

The numerical experiments are solved on the square domain D = (0, 1)2. Each test

assumes the same KL expansion for mean removed log permeability Y ′ with variance σY = 1,

and correlation lengths η1 = 0.20, η2 = 0.125. The series is truncated after Nterm = 6 terms.

Reported pressure errors are computed with a discrete L2 norm at the cell centers,

velocity errors at the midpoints of the edges, and flux errors at the midpoints of the edges.
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The stochastic convergence is computed on a fixed 80 × 80 spatial mesh. The expected

solutions on stochastic tensor product grids made up of Ncoll = 2, 3, 4 collocation points

in Nterm = 6 stochastic dimensions are compared to the mean solution using Ncoll = 5

collocation points. The deterministic convergence is computed using a fixed stochastic tensor

product grid of with Ncoll = 4 collocation points in Nterm = 6 stochastic dimensions. The

spatial mesh is refined from a 10× 10 grid to an 80× 80 grid, and error is computed against

the numerical solution on a 160× 160 grid.

We consider three examples: 2.4.1 tests flow induced from left-to-right, 2.4.2 tests a

quarter five-spot well distribution, and 2.4.3 tests a discontinuous permeability field.

2.4.1 Left-To-Right Example

Let Dirichlet boundary conditions p = 1 on {x1 = 0}, p = 0 on {x1 = 1} and Neumann

boundary conditions u · n = 0 specified on both {x2 = 0}, {x2 = 1}. The source function is

f = 0. The log permeability Y has zero mean.

Figure 2.1 shows a typical Monte-Carlo realization of the isotropic permeability field,

and its corresponding solution. Figures 2.2 and 2.3 show the expectation and variance of the

stochastic solution. The pressure variance is largest in a vertical strip in the middle of the

domain, away from the Dirichlet boundary edges. The velocity variance is smallest along the

Neumann edges and it is affected by the direction of the flow. Table 2.1 shows the stochastic

convergence. We note that exponential convergence is observed for the stochastic error.

Table 2.2 shows the deterministic convergence. The numbers in parenthesis are the ratios

between the errors on successive levels of refinement. Superconvergence of the deterministic

error is observed for both the pressure and the velocity, confirming the theory.

2.4.2 Quarter Five-Spot Example

Assume no-flow boundary conditions u·n = 0 on ∂D. The spatial mesh is made up of 80×80

elements. The source function has a source f = 100 in the upper left element and a sink

f = −100 in the lower right element, and is everywhere else f = 0. The log permeability Y

has zero mean.
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Figure 2.1: A Monte-Carlo realization of the permeability field (left) and its corresponding

solution (right) for Example 2.4.1 with 6 KL terms.
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Figure 2.2: Expectation of solution (left), and variance of the pressure (right) for Example

2.4.1 with 46 collocation points.
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Figure 2.3: Variance of the x-velocity component (left), and variance of the y-velocity com-

ponent (right) for Example 2.4.1 with 46 collocation points.
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Table 2.1: Stochastic convergence results for Example 2.4.1. Absolute errors reported against

56 collocation points; convergence ratios given in parentheses.

Coll. Points Flux L2 Error Pressure L2 Error Velocity L2 Error

26 = 64 2.3472E-03 1.8826E-05 1.6338E-03

36 = 729 5.6240E-05 (41.74) 1.2013E-06 (15.67) 3.8667E-05 (42.25)

46 = 4096 3.8503E-06 (14.61) 1.0064E-07 (11.94) 2.6241E-06 (14.74)

Table 2.2: Deterministic convergence results for Example 2.4.1. Absolute errors reported

against 160× 160 grid; convergence ratios given in parentheses.

Grid Flux L2 Error Pressure L2 Error Velocity L2 Error

10× 10 9.2214E-04 1.1149E-04 9.2673E-04

20× 20 2.3358E-04 (3.95) 2.7343E-05 (4.08) 2.4653E-04 (3.76)

40× 40 5.5987E-05 (4.17) 6.5060E-06 (4.20) 5.9988E-05 (4.11)

80× 80 1.1776E-05 (4.75) 1.3030E-06 (4.99) 1.2159E-05 (4.93)
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Figure 2.4: Expectation of solution (left), and variance of the pressure (right) for Example

2.4.2 with 56 collocation points.
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Figure 2.5: Variance of the x-velocity component (left), and variance of the y-velocity com-

ponent (right) for Example 2.4.2 with 56 collocation points.
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Table 2.3: Stochastic convergence results for Example 2.4.2. Absolute errors reported against

56 collocation points; convergence ratios given in parentheses.

Coll. Points Flux L2 Error Pressure L2 Error Velocity L2 Error

26 = 64 6.3070E-05 6.4144E-05 3.1526E-05

36 = 729 2.3975E-06 (26.31) 4.7729E-07 (134.3) 1.1400E-06 (27.65)

46 = 4096 1.3597E-07 (17.63) 3.4527E-08 (13.82) 6.4159E-08 (17.77)

Figures 2.4 and 2.5 show the expectation and variance of the stochastic solution for

Example 2.4.2. The pressure variance is is largest at the wells and so is the velocity variance.

However, the velocity variance is also affected by the no flow boundary conditions. Table

2.3 shows the stochastic convergence. We again observe exponential convergence.

2.4.3 Discontinuous Permeability Example

Take the same boundary conditions and source function as Example 2.4.1. The log per-

meability Y has a mean of 4.6 in lower-left and upper-right subdomains, and zero mean in

upper-left and lower-right subdomains.

Figures 2.6 and 2.7 show the expectation and variance of the stochastic solution to

example 2.4.3. The pressure variance is largest in the regions where the pressure changes

the most. The velocity variance is largest at the cross-point, where the solution is singular

and the true velocity is infinite. Table 2.4 shows the stochastic convergence. Despite the

singularity in physical space, the solution preserves it smoothness in stochastic space, and

exponential convergence is observed. Table 2.5 shows the deterministic convergence. Due to

the singularity at the cross-point, the convergence rates have deteriorated, but appear to be

approaching first order for both the pressure and velocity.
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Figure 2.6: Expectation of solution (left), and variance of the pressure (right) for Example

2.4.3 with 56 collocation points.
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Figure 2.7: Variance of the x-velocity component (left), and variance of the y-velocity com-

ponent (right) for Example 2.4.3 with 56 collocation points.
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Table 2.4: Stochastic convergence results for Example 2.4.3. Absolute errors reported against

56 collocation points; convergence ratios given in parentheses.

Coll. Points Flux L2 Error Pressure L2 Error Velocity L2 Error

26 = 64 4.1409E-02 1.6391E-05 1.6094E-02

36 = 729 5.0458E-04 (82.06) 9.5194E-07 (17.22) 2.5807E-04 (62.36)

46 = 4096 1.9238E-05 (26.23) 1.2567E-08 (75.75) 6.8610E-06 (37.61)

Table 2.5: Deterministic Convergence results for Example 2.4.3. Absolute errors reported

against 160× 160 grid; convergence ratios given in parentheses.

Grid Flux L2 Error Pressure L2 Error Velocity L2 Error

10× 10 12.2307 1.1630E-02 5.5089

20× 20 12.7644 (0.95) 8.7942E-03 (1.32) 4.3481 (1.26)

40× 40 11.9079 (1.07) 5.7352E-03 (1.53) 2.9959 (1.45)

80× 80 8.2836 (1.43) 2.7497E-03 (2.08) 1.5245 (1.96)
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2.5 NUMERICAL EXAMPLES FOR SLIGHTLY COMPRESSIBLE FLOW

The numerical experiments for slightly compressible single and two-phase flow were pro-

grammed using a reservoir simulator known as IPARS [70, 82, 66]. This code also uses

lowest order Raviart-Thomas elements on rectangles in 2-D. We consider a two dimensional

reservoir 1280×1280 [ft2] with a mean permeability field with upscaled data from the Tenth

SPE Comparative Solution Project [22], as shown in Figure 2.8.

Figure 2.8: Upscaled SPE10 mean log-permeability field.

We consider two examples for slightly compressible flow: 2.5.1 tests single-phase flow,

and 2.5.2 tests two-phase flow. They have the following parameters: The initial pressure is

set at 3550 [psi]. Injection wells are placed in each corner with a pressure of 3600 [psi], and

a production well is placed in the center with a pressure of 3000 [psi]. The numerical grid

is 64 × 64 and the simulations run for T=50 days with variable time stepping. We assume

σY = 1, correlation lengths η1 = η2 = 0.78, and truncate the KL expansion after four terms.

2.5.1 Single-Phase Example

In Figure 2.9 we plot the mean pressure fields at t = 50 for the Monte Carlo and stochastic

collocation simulations respectively. We include streamlines to indicate the direction of the

flow. In Figure 2.10 we plot the standard deviation of the pressure fields at t = 50 for the

Monte Carlo and stochastic collocation simulations, respectively. In each case, we see that the
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stochastic collocation provides results comparable to the Monte Carlo while requiring fewer

simulations. We note that the scale of the standard deviation of the pressure is significantly

less than that of the mean.

Figure 2.9: Mean pressure field and streamlines for Example 2.5.1 using the mean permeabil-

ity (top-left), 100 Monte Carlo simulations (top-right), 24 collocation points (bottom-left),

and 34 collocation points (bottom-right).

2.5.2 Two-Phase Example

Next, we compare some numerical results for two phase (oil and water) slightly compressible

flow to the numerical results for single phase slightly compressible flow computed above.

The mean permeability, the porosity, and the well models are same as the previous example.

We also use the same KL expansion and collocation points. The initial oil pressure is set at

3550 [psi] and the initial water saturation is 0.2763.

In Figures 2.11, 2.12 and 2.13, we plot the mean and the standard deviation of the

oil pressure, the water saturation, and the cumulative oil production respectively using 100
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Figure 2.10: Standard deviation of pressure field for Example 2.5.1 using 100 Monte Carlo

simulations (left), and 34 collocation points (right).

Monte Carlo simulations and 24 collocation points. The statistics computed using collocation

are comparable to the Monte Carlo simulations while requiring less computational effort.

Comparing Figures 2.9 and 2.11, we see that the mean and the standard deviation of the

pressure fields have similar structure. This indicates that we may be able to use the single

phase solver, which is less expensive, to determine the appropriate number of terms in the KL

expansion, to select the number of collocation points, or to design effective preconditioners.

To investigate the effect that changing σY in (2.1) has on the output statistics, we repeat

the above simulations for two phase flow with σY = 0.25 and with σY = 3. In each case

we apply the collocation method with 34 points. In Figure 2.14 we plot the mean and the

standard deviation of the oil pressure. Comparing with Figure 2.11, we see that varying the

standard deviation of the permeability field affects the scale of the uncertainty but not the

overall structure of the pressure field.

Finally, we compare the mean pressure field in Figure 2.11 (b) with the mean pressure

computed using different correlation lengths in the covariance function (2.1). In Figure 2.15,

we plot the mean pressure using η1 = 0.16 and η2 = 0.23 as well as the mean pressure

using η1 = η2 = 0.08. We notice that the mean pressure differs only slightly in each case,

despite using different correlation lengths. Theoretically, more terms in the KL expansion

are required to accurately represent the output statistics for shorter correlation lengths.
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Figure 2.11: Mean oil pressure and streamlines for Example 2.5.2 using 100 Monte Carlo

simulations (top-left) and 24 collocation points (top-right). Standard deviation of oil pressure

using 100 Monte Carlo simulations (bottom-left) and 24 collocation points (bottom-right).
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Figure 2.12: Mean water saturation for Example 2.5.2 using 100 Monte Carlo simulations

(top-left) and 24 collocation points (top-right). Standard deviation of water saturation using

100 Monte Carlo simulations (bottom-left) and 24 collocation points (bottom-right).

Figure 2.13: The mean (left) and standard deviation (right) for cumulative oil production

of Example 2.5.2 using 100 Monte Carlo simulations and 24 collocation points.
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Figure 2.14: Mean pressure field and streamlines of Example 2.5.2 with 34 collocation points

using σY = 0.25 (top-left) and σY = 3 (top-right). Standard deviation of pressure field using

σY = 0.25 (bottom-left) and σY = 3 (bottom-right).

Figure 2.15: Mean pressure field and streamlines of Example 2.5.2 using 34 collocation points

with correlation lengths η1 = 0.16, η2 = 0.23 (left), and η1 = η2 = 0.08 (right).
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3.0 IMPLEMENTATION OF A MORTAR MIXED FINITE ELEMENT

METHOD USING A MULTISCALE FLUX BASIS

This chapter contains material which was published in [38], in which a new implementation

is described for the Multicale Mortar Mixed Finite Element Method in a purely deterministic

setting. The original implementation of the MMMFEM in [9] requires solving one Dirichlet

fine scale subdomain problem per interface iteration. As a result the number of subdo-

main solves increases with the dimension of the coarse space, making it difficult to compare

the computational efficiency of the method to other existing multiscale methods. We alter

this implementation by forming what we call a Multiscale Flux Basis, before the interface

iteration begins.

This basis consists of mortar functions representing the individual flux responses from

each mortar degree of freedom, on each subdomain independently. The basis functions may

also be described as traces of the discrete Green’s functions corresponding to the mortar

degrees of freedom along the subdomain interfaces. The computation of these basis functions

requires solving a fixed number of Dirichlet subdomain problems. Taking linear combinations

of the Multiscale Flux Basis functions replaces the need to solve any Dirichlet subdomain

problems during the interface iteration. This new implementation yields the same solution

as the original implementation and makes the MMMFEM comparable to the variational

multiscale method and multiscale finite elements in terms of computational efficiency.

In our numerical experiments we compare the computational cost of the new implemen-

tation to the one for the original implementation with and without preconditioning of the

interface problem. If no preconditioning is used, the Multiscale Flux Basis implementation

is computationally more efficient in cases where the number of mortar degrees of freedom

per subdomain is less than the number of interface iterations. If balancing preconditioning is
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used [26, 69], the number of iterations is reduced, but each interface iteration requires three

subdomain solves. In this case the Multiscale Flux Basis implementation is more efficient if

the number of mortar degrees of freedom per subdomain is less than three times the number

of interface iterations.

The format of this chapter is as follows: Section 3.1 introduces the MMMFEM and its

original implementation, Section 3.2 describes the new implementation using a Multiscale

Flux Basis, and Section 3.3 provides several numerical examples that illustrate its computa-

tional efficiency.

3.1 FORMULATION OF THE MORTAR MIXED FINITE ELEMENT

METHOD

Consider the deterministic incompressible single-phase model (1.1)-(1.4). Recall the weak

pressure and velocity spaces for the global dual mixed problem from definition (2.11), and

denote them in this chapter by W̃ = W (D) and Ṽγ = Vγ(D). The corresponding variational

formulation is the deterministic analog of system (2.15)-(2.16). That is to find u ∈ ṼgN and

p ∈ W̃ such that

(K−1u,v)− (p,∇ · v) = −〈v · n, gD〉ΓD
∀v ∈ Ṽ0, (3.1)

(∇ · u, w) = (f, w) ∀w ∈ W̃ . (3.2)

The first step in formulating the MMMFEM is to use the substructuring approach de-

scribed in [42] to restrict the model problem into subdomains. Let the domain D be divided

into ND non-overlapping subdomains Di, i = 1, . . . , ND. They are allowed to be spatially

non-conforming, so we have D =
⋃ND

i=1Di and Di ∩ Dj = ∅ for i 6= j. Denote the single

interface between subdomains Di and Dj by Γi,j = ∂Di ∩ ∂Dj, all interfaces that touch

subdomain Di by Γi = ∂Di \ ∂D, and the union of all interfaces by Γ =
⋃
i 6=j Γi,j. The

domain decomposition can be viewed as a coarse grid on D.
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The original system (1.1)-(1.4) holds within each subdomain Di. The pressure and the

normal components of the velocity must be continuous across the interfaces. Equivalently,

we seek (ui, pi) such that for i = 1, . . . , ND,

∇ · ui = f, in Di, (3.3)

ui = −K∇pi, in Di, (3.4)

pi = gD, on ∂Di ∩ ΓD, (3.5)

ui · n = gN , on ∂Di ∩ ΓN , (3.6)

pi = pj, on Γi,j i 6= j, (3.7)

ui · ni + uj · nj = 0, on Γi,j, i 6= j, (3.8)

Define the weak spaces for each subdomain Di by

Wi = L2(Di), Vi = H(div;Di), Vγ
i = {v ∈ Vi | v · n = γ on ∂Di ∩ ΓN}. (3.9)

The weak spaces for the domain decomposition problem (3.3)-(3.8) are

W =

ND⊕
i=1

Wi, Vγ =

ND⊕
i=1

Vγ
i . (3.10)

Note that no continuity is imposed across the interfaces. On Γ we introduce a Lagrange

multiplier space that has a physical meaning of pressure and is used to weakly impose

continuity of the normal velocities:

M = {µ ∈ H1/2(Γ) | µ|Γi
∈ (Vi · ni)∗, i = 1, . . . , ND}. (3.11)

The corresponding domain decomposition variational formulation is to find u ∈ VgN ,

p ∈ W , and λ ∈M such that for i = 1, . . . , ND,

(K−1u,v)Di
− (p,∇ · v)Di

= −〈v · ni, λ〉∂Di∩Γ − 〈v · ni, gD〉∂Di∩ΓD
∀v ∈ V0

i , (3.12)

(∇ · u, w)Di
= (f, w)Di

∀w ∈ Wi, (3.13)
ND∑
i=1

〈ui · ni, µ〉Γi
= 0 ∀µ ∈M. (3.14)

Since Vγ 6= Ṽγ, the extra condition (3.14) is needed to weakly enforce the flux continuity

lost across the interfaces in the domain decomposition. The following equivalence result has

been shown in [71].
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Lemma 3.1.1. If the solution (u, p) to (3.1)–(3.2) satisfies (1.1)–(1.4) in a distributional

sense, then (u, p, p|Γ) solves (3.12)–(3.14). Conversely, if (u, p, λ) solves (3.12)–(3.14), then

(u, p) solves (3.1)–(3.2).

The multiscale approach to the mortar mixed finite element method combines a local fine

scale discretization within each subdomain with a global coarse scale discretization across

subdomain interfaces. [9]

First, independently partition each subdomain Di into its own local d-dimensional quasi-

uniform affine mesh Th,i. The faces (or edges) of these meshes are spatially conforming

within each subdomain, but are allowed to be non-conforming along subdomain interfaces.

Let the maximal element diameter of this fine mesh be hi, and let the global characteristic

fine scale diameter be h = maxND
i=1 hi. Denote the global fine mesh by Th =

⋃ND

i=1 Th,i. Let

Vh,i × Wh,i ⊂ Vi × Wi be a mixed finite element space (cf. Remark 2.2.1) on the mesh

Th,i such that Vh,i contains piecewise polynomials of degree k and Wh,i contains piecewise

polynomials of degree l. Globally, the discrete pressure and velocity spaces for this method

are Wh =
⊕ND

i=1 Wh,i and Vh =
⊕ND

i=1 Vh,i.

Second, we partition each subdomain interface Γi,j with a (d − 1)-dimensional quasi-

uniform affine mesh denoted TH,i,j. This mesh will be the mortar space that weakly enforces

continuity of normal fluxes for the discrete velocities across the non-matching grids. Let

the maximal element diameter of this coarse mesh be Hi,j, and let the global character-

istic coarse scale diameter be H = max1≤i<j≤ND
Hi,j. Denote the global coarse mesh by

TH =
⋃

1≤i<j≤ND
TH,i,j. Let MH,i,j ⊂ L2(Γi,j) be the mortar space containing continuous

or discontinuous piecewise polynomials of degree m where m ≥ k + 1. Globally, the mor-

tar space for this method is MH =
⊕

1≤i<j≤ND
MH,i,j. Notice that this is a nonconforming

approximation, as MH * M .

With these finite dimensional subspaces, the multiscale mortar mixed finite element

approximation of (3.12)–(3.14) is to find uh ∈ VgN

h , ph ∈ Wh, and λH ∈ MH such that for
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i = 1, . . . , ND,

(K−1uh,v)Di
− (ph,∇ · v)Di

= −〈v · ni, λH〉∂Di∩Γ − 〈v · ni, gD〉∂Di∩ΓD
∀v ∈ V0

h,i, (3.15)

(∇ · uh, w)Di
= (f, w)Di

∀w ∈ Wh,i, (3.16)
ND∑
i=1

〈uh,i · ni, µ〉Γi
= 0 ∀µ ∈MH . (3.17)

In this formulation the pressure continuity (3.7) is modeled via the mortar pressure function

λH , while the flux continuity (3.8) is imposed weakly on the coarse scale via (3.17). For the

above method to be well posed, the two scales must be chosen such that the mortar space is

not too rich compared to the normal traces of the subdomain velocity spaces.

Assumption 3.1.1. Assume there exists a constant C independent of h and H such that

‖µ‖Γi,j ≤ C(‖Qh,iµ‖Γi,j + ‖Qh,jµ‖Γi,j), ∀µ ∈MH , 1 ≤ i < j ≤ ND,

where Qh,i : L2(Γi) → Vh,i · ni|Γi
is the L2-projection operator from the mortar space onto

the normal trace of the velocity space on subdomain i, i.e. for any φ ∈ L2(Γi),

〈φ−Qh,iφ,v · ni〉Γi
= 0, ∀v ∈ Vh,i. (3.18)

This condition can be easily satisfied in practice by restricting the size of H from below,

see for example [93, 8, 69]. Under the above assumption, method (3.15)-(3.17) is solvable,

stable, and accurate [9]. The following result has been shown in [9].

Theorem 3.1.1. If Assumption 3.1.1 holds, then method (3.15)-(3.17) has a unique solution

and there exists a positive constant C, independent of h and H, such that

‖∇ · (u− uh)‖ ≤ C

ND∑
i=1

‖∇ · u‖r,Di
hr, 0 ≤ r ≤ l + 1, (3.19)

‖u− uh‖ ≤ C

ND∑
i=1

(
‖p‖s+1/2,Di

Hs−1/2 + ‖u‖r,Di
hr (3.20)

+ ‖u‖r+1/2,Di
hrH1/2

)
, 1 ≤ r ≤ k + 1, 0 < s ≤ m+ 1.
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Furthermore, if the problem on D is H2-regular, then

‖p̂− ph‖ ≤ C

ND∑
i=1

(
‖p‖s+1/2,Di

Hs+1/2 + ‖∇ · u‖t,Di
htH (3.21)

+ ‖u‖r,Di
hrH + ‖u‖r+1/2,Di

hrH3/2
)
,

‖p− ph‖ ≤ C

ND∑
i=1

‖p‖t,Di
ht + ‖p̂− ph‖, (3.22)

where 1 ≤ r ≤ k + 1, 0 < s ≤ m+ 1, and 0 ≤ t ≤ l + 1 and p̂ is the L2-projection of p onto

Wh.

3.1.1 Interface Formulation and Iteration

Following [42], we formulate (3.15)-(3.17) as an interface problem for the mortar pressure.

We decompose the solution to (3.15)-(3.17) into two parts: uh = u∗h(λH) + uh and ph =

p∗h(λH) + ph. The first component (u∗h, p
∗
h) ∈ V0

h×Wh solves subdomain problems with zero

source and boundary conditions, and has λH as a Dirichlet boundary condition along Γ, i.e.

for i = 1, . . . , ND

(
K−1u∗h,v

)
Di
− (p∗h,∇ · v)Di

= −〈v · ni, λH〉∂Di∩Γ ∀v ∈ V0
h,i, (3.23)

(∇ · u∗h, w)Di
= 0 ∀w ∈ Wh,i. (3.24)

The second component (uh, ph) ∈ VgN

h × Wh solves subdomain problems with source f ,

boundary conditions gD and gN on ∂D, and zero Dirichlet boundary conditions along Γ, i.e.

for i = 1, . . . , ND

(K−1uh,v)Di
− (ph,∇ · v)Di

= −〈v · ni, gD〉∂Di∩ΓD
∀v ∈ V0

h,i, (3.25)

(∇ · uh, w)Di
= (f, w)Di

∀w ∈ Wh,i. (3.26)

Since the sum of (3.23)–(3.24) and (3.25)–(3.26) gives (3.15)–(3.16), all that remains to do

is enforce equation (3.17). Thus, the variational interface problem is to find λH ∈ MH such

that
ND∑
i=1

〈−u∗h,i(λH) · ni, µ〉Γi
=

ND∑
i=1

〈uh,i · ni, µ〉Γi
, ∀µ ∈MH . (3.27)
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Equivalently, we define bilinear forms bH,i : L2(Γi)×L2(Γi)→ R and bH : L2(Γ)×L2(Γ)→ R

and a linear functional gH : L2(Γ)→ R by

bH,i(λH,i, µ) = 〈−u∗h,i(λH,i) · ni, µ〉Γi
, (3.28)

bH(λH , µ) =

ND∑
i=1

bH,i(λH,i, µ), (3.29)

gH(µ) =

ND∑
i=1

〈uh,i · ni, µ〉Γi
. (3.30)

With these definitions, (3.27) is equivalent to finding λH ∈ MH such that bH(λH , µ) =

gH(µ), for all µ ∈ MH . The distinction is made between bilinear forms (3.28) and (3.29)

because the former measures the total flux across interface Γi and requires no interprocessor

communication, while the latter measures the total jump in flux across the set of all interfaces

Γ and hence does require interprocessor communication.

It is easy to check that bH is symmetric and positive semi-definite on L2(Γ). Moreover,

it is positive definite on MH if Assumption 3.1.1 holds and ΓD 6= ∅ [8, 9]. Therefore we

solve the resulting discrete system with a Conjugate Gradient (CG) algorithm. Define linear

operators BH,i : MH,i →MH,i and BH : MH →MH and a vector gH ∈MH corresponding to

equations (3.28), (3.29), and (3.30) by

〈BH,iλH,i, µ〉Γi
= −〈u∗h,i(λH,i) · ni, µ〉Γi

∀µ ∈MH,i, (3.31)

BHλH =

ND∑
i=1

BH,iλH,i, (3.32)

〈gH , µ〉Γ =

ND∑
i=1

〈uh,i · ni, µ〉Γi
∀µ ∈MH . (3.33)

Let QTh,i : Vh,i · ni|Γi
→ MH,i be the L2-orthogonal projection from the normal trace of the

velocity space onto the mortar space. Note that (3.31) and (3.33) imply, respectively,

BH,i = −QTh,iu∗h,i(λH,i) · ni, gH =

ND∑
i=1

QTh,iuh,i · ni. (3.34)

Using this notation, the interface formulation is to find λH ∈MH such that

BHλH = gH . (3.35)

43



The operator BH is known as the Steklov-Poincaré operator [71].

Starting from an initial guess, we iterate on the value of λH using the CG algorithm. On

each CG iteration, we must evaluate the action of BH on λH . This is process is summarized

in Algorithm 3.1. Lines 3-5 evaluate the action of the flux operator BH,i as in (3.34) and can

be done by every subdomain in parallel (thus, eliminating the for-loop). Line 7 evaluates

the action of the jump operator BH as in (3.32) and requires interprocessor communication

across every subdomain interface.

Algorithm 3.1 Original MMMFEM Interface Iteration.

1: while (CG resid < TOL) do

2: for i = 1, . . . , ND do

3: Project mortar data onto subdomain boundaries: λH,i
Qh,i→ γi.

4: Solve the set of subdomain problems (3.23)–(3.24) with Dirichlet boundary data γi.

5: Project the resulting fluxes back onto the mortar space:

−u∗h(γi) · ni
QT

h,i→ −QTh,iu∗h(γi) · ni.

6: end for

7: Compute flux jumps across all subdomain interfaces Γi,j:

BHλH = −
ND∑
i=1

QTh,iu∗h(γi) · ni.

8: end while

3.2 THE MULTISCALE FLUX BASIS IMPLEMENTATION

The dominant computational cost in each CG iteration is in the evaluation of the flux op-

erator BH,i, which requires solving one Dirichlet subdomain problem per subdomain. One

way to potentially reduce this computational cost is with the following approach:
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Before the CG algorithm begins, compute and store the flux responses associated with each

mortar degree of freedom, on each subdomain independently.

Figure 3.1: Illustration of the Multiscale Flux Basis approach.
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This is what we call the Multiscale Flux Basis. Its assembly requires solving only a

fixed number of Dirichlet subdomain problems (3.23)–(3.24), shown in Figure 3.1. After

these solves are completed, the action of BH,i is reduced to taking a linear combination

of Multiscale Flux Basis functions. Therefore, if the number of CG iterations exceeds the

maximum number of mortar degrees of freedom on any subdomain, then the computational

cost will be reduced by requiring fewer subdomain solves, and should yield faster runtime.

Let there be Ndof(i) mortar degrees of freedom on subdomain Di and define {φ(k)
H,i}

Ndof(i)
k=1

to be the mortar basis functions for MH,i. Then for λH,i ∈MH,i we may express

λH,i =

Ndof(i)∑
k=1

λ
(k)
H,iφ

(k)
H,i.

The Multiscale Flux Basis {ψ(k)
H,i}

Ndof(i)
k=1 is formed by applying Steps 3-5 from Algorithm 3.1

to evaluate the action of the operator BH,i on each mortar basis function φ
(k)
H,i, on each

subdomain independently. The formation of the Multiscale Flux Basis is summarized in

Algorithm 3.2.

There are several remarks to be made about this procedure. Note that each mortar basis

function φ
(k)
H,i on interface Γi,j corresponds to exactly two different Multiscale Flux Basis
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Algorithm 3.2 Formation of a Multiscale Flux Basis.

1: for i = 1, . . . , ND do

2: for k = 1, . . . , Ndof(i) do

3: Project mortar basis function onto subdomain boundary: Qh,iφ(k)
H,i = γ

(k)
i .

4: Solve subdomain problem (3.23)–(3.24) with Dirichlet data γ
(k)
i , i.e. find u∗h =

u∗h(γ
(k)
i ) and p∗h = p∗h(γ

(k)
i ) such that

(K−1u∗h,v)Di
− (p∗h,∇ · v)Di

= −〈v · ni, γ(k)
i 〉∂Di∩Γ ∀v ∈ V0

h,i,

(∇ · u∗h, w)Di
= 0 ∀w ∈ Wh,i.

5: Project the resulting boundary flux back onto the mortar space:

ψ
(k)
H,i = −QTh,iu∗h(γ

(k)
i ) · ni.

6: end for

7: end for

functions, one for Di and one for Dj. Whereas the original MMMFEM implementation

requires each processor to perform the exact same number of subdomain solves during the

interface iteration process, our implementation may have each processor perform a different

number of subdomain solves in assembling its Multiscale Flux Basis. This is because there

may be a varying number of degrees of freedom in each mortar MH,i,j and subdomains may

share portions of their boundaries with ΓD and ΓN . The Multiscale Flux Basis in this method

consists of coarse interface fluxes, as opposed to fine scale subdomain data. The extra storage

cost associated with saving this basis is equal to the square of the size of the mortar space on

each subdomain, Ndof(i)
2. More specifically, each multiscale flux basis function belongs to

the mortar space MH,i of dimension Ndof(i), and there are exactly Ndof(i) basis functions to

be computed. Therefore the storage cost for the Multiscale Flux Basis is significantly lower

than the storage cost in the variational multiscale method and multiscale finite elements,

where the basis functions are defined on the entire local fine grid.

To use the Multiscale Flux Basis in the interface iteration, we need only observe that
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the flux operator BH,i is linear. Therefore,

BH,i (λH,i) = BH,i

Ndof(i)∑
k=1

λ
(k)
H,iφ

(k)
H,i

 =

Ndof(i)∑
k=1

λ
(k)
H,iBH,i

(
φ

(k)
H,i

)
=

Ndof(i)∑
k=1

λ
(k)
H,iψ

(k)
H,i. (3.37)

In other words, to compute the resulting flux on subdomain Di from Dirichlet data λH,i, we

simply take a linear combination of the Multiscale Flux Basis functions ψ
(k)
H,i using the same

scalars which express λH,i in terms of its mortar basis functions φ
(k)
H,i. This demonstrates

the equivalence of the original MMMFEM implementation to our new Multiscale Flux Basis

implementation. The process is summarized in Algorithm 3.3.

Algorithm 3.3 Interface Iteration with Multiscale Flux Basis.

1: Form Multiscale Flux Basis {ψ(k)
H,i}

Ndof(i)
k=1 with Algorithm 3.2.

2: while (CG resid < TOL) do

3: for i = 1, . . . , ND do

4: Perform linear combination to evaluate subdomain flux

BH,i (λH,i) =

Ndof(i)∑
k=1

λ
(k)
H,iψ

(k)
H,i.

5: end for

6: Compute flux jumps across all subdomain interfaces Γi,j

BHλH =

ND∑
i=1

BH,i (λH,i) .

7: end while

8: Perform additional subdomain problem (3.23)–(3.24) to recover fine scale variables.

In practice, one may store the Multiscale Flux Basis in a matrix and compute Step

4 with an optimized matrix-vector product, e.g. the one available in the popular BLAS

library. In the original MMMFEM implementation, fine scale pressure and velocity variables

may also be updated iteratively in the interface iteration. In the new Multiscale Flux Basis

implementation, this convention should be dropped, because storing arrays of these fine scale

variables for each mortar degree of freedom would be an unnecessary burden on memory.

Instead, in Step 8 we perform one additional Dirichlet subdomain solve after the CG iteration

has converged in order to recover the fine scale pressure and velocity.
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3.3 NUMERICAL EXAMPLES

To perform the numerical experiments in this chapter, the Multiscale Flux Basis implemen-

tation was coded into the PARCEL simulator, and the simulations were run in parallel with

one subdomain per processor. On the subdomain interfaces, the coarse grid is comprised of

continuous or discontinuous, linear or quadratic mortar spaces. Unless otherwise noted, the

tolerance for the relative residual in the CG algorithm is taken to be 1E − 06.

We compare the computational efficiency of the new Multiscale Flux Basis implementa-

tion to the original implementation. Since the number of interface iterations in the original

implementation is directly related to the number of subdomain solves, we compare to both

non-preconditioned and preconditioned methods. On the other hand, the Multiscale Flux

Basis implementation shifts the workload from the number of interface iterations to the the

number of interface degrees of freedom per subdomain; hence we do not employ a precondi-

tioner in this method. More precisely, the following three numerical methods are compared:

• Method D1. Original MMMFEM implementation, no interface preconditioner.

• Method D2. Original MMMFEM implementation, balancing preconditioner.

• Method D3. New Multiscale Flux Basis implementation, no preconditioner.

The balancing preconditioner used in the tests has been described in [26, 69, 9]. It involves

solving Neumann subdomain problems and a course problem which provides global exchange

of information across subdomains. This causes the condition number of the interface problem

to grow more modestly versus non-preconditioned CG as the grids are refined or the number

of subdomains increases. The cost for one preconditioned iteration is three subdomain solves

and two coarse solves.

Four example problems are considered: a 2-D problem with smooth permeability, a 2-D

problem with a rough permeability, a 3-D problem with smooth permeability, and a 2-D

problem with adaptive mesh refinement. In the first three examples we solve each problem

using a fixed fine grid several times. Each time we increase the number of subdomains, i.e.,

refine the coarse grid. It should be noted that under a fixed fine grid, as the number of

subdomains is increased, the size of the local subdomain problems becomes smaller. This
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causes the interface problem to become larger and more ill-conditioned, hence increasing

the number of CG iterations. Tables are provided which compare both the number of CG

iterations and maximum number of subdomain solves required by the three methods. In this

way, the new multiscale flux basis implementation can be directly compared to the original

MMMFEM implementation. No error norms are reported in these tests, because all three

methods produce the same solution within roundoff error. For the first two examples we

also provide tests comparing the accuracy and the cost of the MMMFEM solution to a fine

scale solution. The fourth example involves adaptive mesh refinement and illustrates the

greater flexibility of the MMMFEM compared to existing multiscale methods. It also shows

that the gain in efficiency from the new implementation is increased when grid adaptivity is

employed.

3.3.1 2-D Smooth Solution Example

This example is a 2-D problem on the domain D = (0, 1)2 with a fixed global fine grid of

120 × 120 elements. The solution is given by p(x, y) = x3y4 + x2 + sin(xy) cos(y), and the

coefficient K is a smooth, full tensor defined by

K =

 (x+ 1)2 + y2 sin(xy)

sin(xy) (x+ 1)2

 .

Boundaries {y = 0} and {y = 1} are Dirichlet type and boundaries {x = 0} and {x = 1}

are Neumann type.

Table 3.1 shows results for Example 3.3.1 using continuous linear mortars with 3 elements

per edge. Observe that the number of CG iterations increases with the number of subdo-

mains, since the dimension of the interface problem grows. Recall that for all methods the

dominant computational cost is measured by the number of subdomain solves. In Method

D3 the number of subdomain solves does not depend on the number of interface iterations,

only on the number of coarse scale mortar degrees of freedom per subdomain. As a result

the number of subdomain solves does not change with increasing the number of subdomains

(except for the 2×2 case where only two out of four edges of each subdomain have mortars).

This is in contrast to the original implementation, Methods D1 and D2, where the number
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Table 3.1: Computational cost of Example 3.3.1 using continuous linear mortars with 3

elements per interface.

Method D1 Method D2 Method D3

Subdomains CGIter Solves CGIter Solves CGIter Solves

2× 2 = 4 14 17* 11 41 14 19

3× 3 = 9 29 32* 19 67 29 35

4× 4 = 16 42 45 24 82 42 35*

5× 5 = 25 54 57 26 88 54 35*

6× 6 = 36 65 68 27 91 64 35*

7× 7 = 49 75 78 26 88 77 35*

8× 8 = 64 86 89 26 88 86 35*

* - denotes fewest number of solves

of subdomain solves is directly related to the number of CG interface iterations. Method D1

requires one subdomain solve per iteration plus three additional subdomain solves. Method

D2 requires three subdomain solves per iteration plus ten additional subdomain solves. The

balancing preconditioner used in Method D2 causes the number of CG iterations to grow

more modestly with the number of subdomains, but this method is still more costly in terms

of subdomain solves. Method D1 performs the best of all three methods until we reach the

4 × 4 subdomain case. After this point Method D3 becomes the most efficient in terms of

subdomain solves. This table demonstrates that as the number of subdomains is increased,

there is a point after which Method D3 performs best. We found this to be the case for most

tests we ran.

The Balancing preconditioner involves two additional coarse grid solves per CG iteration.

Thus even in cases where Method D2 required fewer subdomain solves, Method D3 was more

efficient in terms of CPU time, as the time for the coarse solves was not negligible. We do not

report CPU times in this chapter, and note they depend on the particular implementation

of the coarse solve in the Balancing preconditioner.
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There is also a cost in runtime associated with the interprocessor communication for

each interface iteration. The Multiscale Flux Basis implementation does not reduce the

number of interface iterations necessary for flux matching, hence it does not have an effect

on the communication overhead. This cost can be reduced by using the Multiscale Flux

Basis implementation in conjunction with an efficient preconditioner.

Table 3.2: Computational cost of Example 3.3.1 using continuous quadratic mortars with 2

elements per interface.

Method D1 Method D2 Method D3

Subdomains CGIter Solves CGIter Solves CGIter Solves

2× 2 = 4 16 19* 12 44 16 53

3× 3 = 9 35 38* 17 61 34 63

4× 4 = 16 51 54* 20 70 51 63

5× 5 = 25 65 68 21 73 65 63*

6× 6 = 36 78 81 22 76 78 63*

7× 7 = 49 91 94 21 73 91 63*

8× 8 = 64 103 107 21 73 103 63*

* - denotes fewest number of solves

In Table 3.2 we report results for Example 3.3.1 with continuous quadratic mortars with

2 elements per edge. This slightly increases the required work for Method D1 and slightly

decreases the work for Method D2. However, for Method D3 this change nearly doubles

the amount of subdomain solves required due to the increase in mortar degrees of freedom

per subdomain. This means that initially our method solves more subdomain problems

than the other two, and the computational efficiency of Method D3 is not observed until

the 5 × 5 case. This difference versus the previous table shows that the number of mortar

degrees of freedom per subdomain is an important parameter which determines the relative

computationally efficiency of the Multiscale Flux Basis implementation.

To illustrate the accuracy of the MMMFEM and the efficiency of the proposed new

implementation, we compare the quality and cost of the multiscale solution to these of the
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Table 3.3: Relative errors and computational cost for the fine scale solution in Example

3.3.1.

Subdomains pres-L2-err vel-L2-err CGIter Solves

2× 2 = 4 7.1657E-05 7.1848E-05 58 123

3× 3 = 9 7.1955E-05 7.9269E-05 72 163

4× 4 = 16 7.1968E-05 8.7311E-05 85 123

5× 5 = 25 7.2211E-05 9.5265E-05 96 99

6× 6 = 36 7.2260E-05 1.0281E-04 107 83

fine scale solution. The latter is computed using the same domain decomposition algorithm

with Method D3, but with fine scale Lagrange multipliers. In Table 3.3 we report the relative

errors in pressure and velocity, and the cost of the interface iteration. This type of test is

comparable to a standard mixed finite element algorithm without domain decomposition.

Indeed, the recorded error norms remain nearly constant as the number of subdomains is

increased.

In comparison, Table 3.4 shows results for the MMMFEM using Method D3 with linear

mortars and a single element per interface. This subdomain configuration is very much

akin to the variational multiscale methods and multiscale finite element methods mentioned

in the introduction. We note that the MMMFEM requires significantly smaller number of

subdomain solves, while at the same time resolves the flow very well, as seen in Figure 3.2

where a comparison of the plots of the computed fine scale and multiscale solutions with

5× 5 subdomains is shown. The relative error norms reported in Table 3.4 indicate that the

error is larger for the multiscale solution, but does decrease as the number of subdomain is

increased. Figure 3.3 shows that the locations with greatest error in the multiscale solution

are along the subdomain interfaces.
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Table 3.4: Relative error and computational cost for the multiscale solution using Method

D3 with a single linear mortar per interface in Example 3.3.1.

Subdomains pres-L2-err vel-L2-err CGIter Solves

2× 2 = 4 1.2966E-02 4.4386E-02 8 11

3× 3 = 9 7.1036E-03 3.6534E-02 22 19

4× 4 = 16 4.2496E-03 3.0038E-02 33 19

5× 5 = 25 2.7673E-03 2.5191E-02 42 19

6× 6 = 36 1.9159E-03 2.1527E-02 51 19

Figure 3.2: Computed pressure (color) and velocity (arrows) in Example 3.3.1: fine scale

solution (left) and multiscale solution with a single linear mortar per interface (right).
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Figure 3.3: Pressure error (left) and magnitude of velocity error (right) for the multiscale

solution with a single linear mortar per interface for Example 3.3.1.
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3.3.2 2-D Rough Heterogeneous Permeability Example

This problem uses a 2-D heterogeneous permeability field, obtained from the Society of

Petroleum Engineers (SPE) Comparative Solution Project [22]. The domain is D = (0, 60)×

(0, 220) with a fixed global fine grid of 60 × 220 elements. Pressure values of one and zero

are specified on the left and right boundaries, respectively. No flow is specified on the top

and bottom boundaries. A plot of the permeability field is shown on the left in Figure 3.4.

Table 3.5 shows the results for Example 3.3.2 using continuous linear mortars with 2

elements per edge. Method D3 requires at most 26 solves per subdomain and is computa-

tionally more efficient than Methods D1 and D2 for all subdomain configurations. As the

number of subdomains is increased, the improvement of Method D3 over Methods D1 and

D2 becomes greater.

A comparison between the fine scale solution and the multiscale solution with 3 × 5

subdomains is presented in Figure 3.4. We observe a very good match between the two

solutions. We note that the number of subdomain solves required by Method D3 for the

multiscale solution, 26, is significantly less than Methods D1–D3 used for computing the fine
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Figure 3.4: Permeability field (left), fine scale solution (middle), and multiscale solution with

3× 5 subdomains and a single linear mortar per interface (right) for Example 3.3.2.
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Table 3.5: Computational cost of Example 3.3.2 using continuous linear mortars with 2

elements per interface.

Method D1 Method D2 Method D3

Subdomains CGIter Solves CGIter Solves CGIter Solves

2× 2 = 4 13 15 8 31 13 14*

3× 2 = 6 19 21 15 53 19 20*

2× 4 = 8 25 27 18 62 23 20*

2× 5 = 10 37 39 29 95 35 20*

3× 4 = 12 37 39 28 93 36 26*

3× 5 = 15 51 53 37 120 51 26*

* - denotes fewest number of solves

scale solution, which require 388, 84, and 130 subdomain solves, respectively.

Table 3.6: Computational cost of Example 3.3.2 using continuous quadratic mortars with 2

elements per interface.

Method D1 Method D2 Method D3

Subdomains CGIter Solves CGIter Solves CGIter Solves

2× 2 = 4 17 19* 15 52 16 32

3× 2 = 6 30 32* 23 77 31 47

2× 4 = 8 39 41* 25 83 38 47

2× 5 = 10 56 58 39 125 56 47*

3× 4 = 12 53 55 33 108 52 62*

3× 5 = 15 92 94 46 147 92 62*

* - denotes fewest number of solves

Table 3.6 shows the results for Example 3.3.2 using continuous quadratic mortars with

2 elements per interface. Compared to the previous table, the increased number of mortar
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degrees of freedom per interface leads to more subdomain solves for Method D3, the maxi-

mum number being 62. Nevertheless, Method D3 is still more computationally efficient than

Methods D1 and D2 for 10 and more subdomains.

3.3.3 3-D Smooth Solution Example

This example is a 3-D problem on the domain D = (0, 1)3 with a fixed global fine grid of

48×48×48 elements. The solution is given by p(x, y, z) = x+y+z−1.5, and the coefficient

K is a smooth full tensor defined by

K =


x2 + y2 + 1 0 0

0 z2 + 1 sin(xy)

0 sin(xy) x2y2 + 1

 .

Boundaries {y = 0} and {y = 1} are Dirichlet type and the rest of the boundary is Neumann

type.

Figure 3.5 shows the computed multiscale solution and its error for Example 3.3.3 with 4×

4×4 subdomains and a single linear mortar per interface. Table 3.7 shows the computational

cost for Methods D1–D3 with various coarse grids. Method D3 requires at most 27 solves

per subdomain and outperforms Methods D1 and D2 for all subdomain configurations.

Table 3.8 shows the results for Example 3.3.3 using quadratic mortars with one element

per interface with the usual relative residual CG tolerance of 1E−06. Method D3 requires at

most 57 solves per subdomain. It is the fastest method on coarser domain decompositions,

but Method D2 outperforms it slightly on 27 or more subdomains.

When a tighter tolerance is imposed on the CG on the interface, all three methods

perform more CG iterations. Under Methods D1 and D2, this also requires performing more

subdomain solves. For Method D3, however, the maximum number of solves per subdomain

is unaffected by this change in tolerance. This is illustrated in Table 3.9, which shows the

results for relative residual CG tolerance of 1E − 09. In this case Method D3 is the most

computationally efficient for all subdomain configurations.
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Figure 3.5: Computed multiscale solution (left) and its error (right) on 4×4×4 subdomains

with a single linear mortar per interface for Example 3.3.3.

Table 3.7: Computational cost of Example 3.3.3 using linear mortars with one element per

interface.

Method D1 Method D2 Method D3

Subdomains CGIter Solves CGIter Solves CGIter Solves

2× 2× 2 = 8 28 31 11 42 28 15*

2× 2× 3 = 12 33 36 12 46 33 19*

2× 3× 3 = 18 37 40 13 50 37 23*

3× 3× 3 = 27 46 49 13 51 46 27*

3× 3× 4 = 36 50 53 13 51 50 27*

3× 4× 4 = 48 55 58 13 51 55 27*

4× 4× 4 = 64 60 63 13 51 60 27*

* - denotes fewest number of solves
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Table 3.8: Computational cost of Example 3.3.3 using quadratic mortars with one element

per interface. Relative residual CG tolerance = 1E − 06.

Method D1 Method D2 Method D3

Subdomains CGIter Solves CGIter Solves CGIter Solves

2× 2× 2 = 8 36 39 13 48 36 30*

2× 2× 3 = 12 41 44 13 49 41 39*

2× 3× 3 = 18 47 50 14 53 47 48*

3× 3× 3 = 27 56 59 14 54* 56 57

3× 3× 4 = 36 60 63 14 54* 60 57

3× 4× 4 = 48 64 67 14 54* 64 57

4× 4× 4 = 64 69 72 14 54* 69 57

* - denotes fewest number of solves

Table 3.9: Computational cost of Example 3.3.3 using quadratic mortars with one element

per interface. Relative residual CG tolerance = 1E − 09.

Method D1 Method D2 Method D3

Subdomains CGIter Solves CGIter Solves CGIter Solves

2× 2× 2 = 8 48 51 19 66 48 30*

2× 2× 3 = 12 56 59 19 67 56 39*

2× 3× 3 = 18 62 65 21 74 62 48*

3× 3× 3 = 27 74 77 20 72 74 57*

3× 3× 4 = 36 79 82 21 75 79 57*

3× 4× 4 = 48 84 87 21 75 85 57*

4× 4× 4 = 64 92 95 21 75 92 57*

* - denotes fewest number of solves
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3.3.4 Mesh Adaptivity Example

The final example illustrates an increased computational benefit from the MMMFEM when

adaptive mesh refinement is utilized. By using the multiscale flux basis implementation on

each refinement level, the overall computational savings are compounded. In this example,

residual based a posteriori error indicators are used to refine only those subdomains where

the error is highest. Mortars that touch refined subdomains are also refined in order to

maintain accuracy. This approach has been shown to be both efficient and reliable, see

[87, 9] for details.

The permeability K is a single Monte Carlo realization of a stochastic permeability

field on the domain D = (0, 1)2. A Karhunen-Loève expansion for the log permeability

Y = ln(K) is computed from the covariance function (2.1). The parameters used for this

test are correlation lengths η1 = 0.25, η2 = 0.125, and variance σY = 2.1. The series was

truncated after Nterm = 400 terms. We specifically chose to generate the permeability in this

example as a realization of a KL expansion, so that no upscaling or homogenization would

be needed. On each level of mesh refinement, we are able to analytically evaluate a very

heterogeneous permeability on an arbitrarily fine grid using the analytic procedure described

in Section 2.1.

This test was performed on 5×5 = 25 subdomains, initially starting with 2×2 fine grids

and continuous linear mortars with one element per edge. The permeability field and its

corresponding solution on the fourth level of mesh refinement are shown in Figure 3.6. Note

that this adaptive procedure leads to different scales being resolved on different subdomains,

providing a truly multiscale approximation. After refinement, one can see the subdomains

now have 4× 4, 8× 8, and 16× 16 fine grids.

Using Method D1, each subdomain performed 283 subdomain solves, roughly one for

each CG iteration on each of the 4 grid levels. Using Method D3, the number of subdomain

solves after 4 levels of mesh refinement is shown in the figure on top of the permeability plot.

The maximum number of subdomain solves is 160 and the minimum number is 56.

We can draw two conclusions from Example 3.3.4. First, since the computational savings

of the multiscale flux basis implementation occurs on each level of adaptive mesh refinement,
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Figure 3.6: Permeability field for Example 3.3.4 on mesh refinement level 4 (left) and its

corresponding solution (right). Numbers indicate the total number of subdomain solves using

the Multiscale Flux Basis implementation.
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the overall savings after all levels are complete is amplified by the number of refinement

levels. Second, the workload for each processor may become increasingly unbalanced due to

a large variation in the number of mortar degrees of freedom per subdomain. Nevertheless,

even if the algorithm is only as fast as its slowest processor, the Multiscale Flux Basis

implementation is still faster than the original implementation. One can take full advantage

of the computational efficiency of the new method in adaptive mesh refinement setting by

implementing load balancing.
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4.0 STOCHASTIC COLLOCATION WITH MORTAR FINITE ELEMENTS

USING MULTISCALE FLUX BASIS

This chapter contains material that is to be published in [39], which both extends and

combines the two previous chapters. We consider the single-phase incompressible model with

stochastic permeability. We employ the Multiscale Mortar Mixed Finite Element Method

coupled with the Stochastic Collocation Method on both tensor product and sparse grids.

It is implemented in three possible ways using the Multiscale Flux Basis approach.

Additionally, we follow [60] in extending the random porous media from Section 2.1 to be

statistically non-stationary, in which we are given several stationary covariance functions of

type (2.1), each influencing different parts of the domain. We shall refer to these statistically

independent zones as KL Regions, which are used to represent multiple rock types motivated

by geologic features. In this framework, the covariance between any two points within a single

KL region still depends on their distance only, but the covariance between any two points

which lie in different KL regions is zero, i.e. they are uncorrelated.

The physical domain has two decompositions: KL regions for the statistical represen-

tation of the nonstationary random permeability, and subdomains for the domain decom-

position of the MMMFEM. The former is a physical decomposition depending on geologic

structure, and the latter is a computational decomposition depending on available comput-

ing resources. It is our choice in implementation that the subdomains conform to the KL

regions, meaning that each subdomain belongs to a single KL region. Therefore the number

of KL regions NΩ is less than or equal to the number of subdomains ND, and each KL region

can be expressed as a union of one or more disjoint subdomains. This approach allows for

utilizing more processors than the physically dependent number of KL regions.

We propose and analyze three algorithms that combine stochastic collocation and the
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MMMFEM with varying degrees of the Multiscale Flux Basis Implementation. The first

collocation algorithm uses the MMMFEM with its traditional implementation, requiring

solving one subdomain problem per interface iteration, on every stochastic realization. The

second collocation algorithm is a naive (but more efficient) approach which forms a deter-

ministic multiscale basis to solve the MMMFEM on each stochastic realization. These bases

are then discarded and then re-computed with new permeability data for each subsequent

realization. The third collocation algorithm is a smarter approach that forms a stochastic

multiscale basis across all realizations, containing all the necessary information to perform

the collocation before it begins. With extra “book-keeping” in the nonstationary case, we

can take advantage of the repeated local structure of the permeability realizations in both

tensor and sparse grids.

The resulting collocation algorithms are more computationally efficient than the tradi-

tional implementation by orders of magnitude. By limiting the number of linear systems

we have to solve via the computation of deterministic or stochastic multiscale bases, we

demonstrate that we can lessen the burden of the curse of dimensionality in the stochas-

tic collocation method. Some of the examples show how a posteriori error estimation and

adaptivity for the MMMFEM can be employed in stochastic multiscale simulations. We also

present numerical convergence studies that confirm the theoretical a priori error estimates.

4.1 STATISTICALLY NON-STATIONARY RANDOM POROUS MEDIA

Consider the single-phase incompressible model with stochastic permeability K = exp(Y )

as given in system (2.7)-(2.10). Following [60], let D be a union of disjoint KL regions,

D = ∪NΩ
i=1D

(i)

KL. Strictly within each KL region, the porous medium is statistically stationary,

meaning covariance between any two points depends only on their distance and not on their

location. The covariance between any two points from different regions is zero. Therefore

the medium is globally nonstationary. As a result the probability space Ω is a product of
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NΩ spaces Ω(i). For each event ω ∈ Ω,

ω = (ω(1), . . . , ω(NΩ)) and Y ′(x, ω) =

NΩ∑
i=1

Y (i)(x, ω(i)), (4.1)

where Y (i)(x, ω(i)) has physical support in D
(i)
KL.

Each Y (i) in (4.1) is assumed have a separate covariance function CY (i) of type (2.1)

for its KL region D
(i)
KL. Following the method discussed in Section 2.1, the eigenvalues and

eigenfunctions can be computed for its KL expansion, with a slight modification: Each

covariance function is first restricted to a (rectangular) subdomain in the KL region, and

after computation of the eigenfunctions on that sumdomain, they joined with neighboring

subdomains in the KL Region. In this way, Fredholm equations of type (1.21) are always

solved analytically on one rectangular region at a time. The KL expansion for the log

permeability can now be written as the sum

Y ′(x, ω) =

NΩ∑
i=1

∞∑
j=1

ξ
(i)
j (ω(i))

√
λ

(i)
j f

(i)
j (x). (4.2)

At this point we admit the Finite Dimensional Noise Assumption 2.1.1 so that each KL

expansion Y (i) is truncated after Nterm(i) terms. In this way (4.2) becomes

Y ′(x, ω) ≈
NΩ∑
i=1

Nterm(i)∑
j=1

ξ
(i)
j (ω(i))

√
λ

(i)
j f

(i)
j (x). (4.3)

Globally, this means that we have Nterm =
∑
Nterm(i) terms in Y ′. A low number of

terms leads to a smooth permeability in a KL region. Therefore to model very heterogeneous

noise in a KL region, Nterm(i) should be increased. The images of the random variables

S(i)
j = ξ

(i)
j (Ω(i)) make up the finite dimensional vector spaces

S(i) =

Nterm(i)∏
j=1

S(i)
j ⊆ RNterm(i) and S =

NΩ∏
i=1

S(i) ⊆ RNterm ,

which are local to each KL region and globally, respectively.
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To simplify notation, we shall introduce a function κ that provides a natural ordering

for the global number of stochastic dimensions. Let the j-th stochastic parameter of the i-th

KL region have a global index in {1, . . . , Nterm} by the function

κ(i, j) =


j, if i = 1

j +
i−1∑
k=1

Nterm(k), if i > 1.

For example, the random vector ξ =
(
ξ

(i)
j

)
1≤κ(i,j)≤Nterm

=
(
ξ

(i)
j

)
κ

is by definition equal to

ξ(1)
1 , . . . , ξ

(1)
Nterm(1)︸ ︷︷ ︸

KL region 1

, ξ
(2)
1 , . . . , ξ

(2)
Nterm(2)︸ ︷︷ ︸

KL region 2

, . . . , ξ
(i)
j , . . . , ξ

(NΩ)
1 , . . . , ξ

(NΩ)
Nterm(NΩ)︸ ︷︷ ︸

KL region NΩ

 .

If ρ
(i)
j is the PDF of each ξ

(i)
j , then joint PDF for ξ is defined to be ρ =

∏
i

∏
j ρ

(i)
j . Then we

can write Y (x, ω) ≈ Y (x,y), where y =
(
ξ

(i)
j (ω(i))

)
κ
.

As was done in Chapter 2, we once again abuse notation by replacing K(x, ω) with

its finite dimensional spectral approximation K(x,y) given by equation (4.3). Furthermore

we also identify each KL region Ω(i) with its parameterization S(i). Therefore the mod-

eling error between the true stochastic solution and its finite dimensional approximation

‖u(x, ω)− u(x,y)‖ is neglected.

4.2 FORMULATION OF STOCHATIC MORTAR MIXED METHOD

Recall the domain decomposition notation from Section 3.1 with subdomains Di and in-

terfaces Γi,j. We make the extra restriction that the subdomains must conform to the KL

regions, meaning each KL region is simply a union of subdomains. In domain decomposi-

tion variational formulation for the stochastic single-phase model, system (3.3)-(3.8) holds

for ρ-a.e. y ∈ S. Recall the deterministic Sobolev spaces for subdomains i = 1, . . . , ND

from definition (3.9) and globally from definition (3.10). We denote them in this chapter

by Wi(Di) = Wi, Vγ
i (D) = Vγ

i , W (D) = W, and Vγ(D) = Vγ. Since are reusing the
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notation from Chapters 2 and 3, we must stress that the global velocity space Vγ(D) is not

the same as (2.11) because normal velocities are not continuous across subdomain interfaces

Γ. Therefore we must also recall the deterministic mortar space (3.11) and denote this by

M(Γ) = M .

Since our goal once again is to compute statistical moments, recall the definition of

the space L2
ρ(S) from (2.12) and take its tensor product with the deterministic domain

decomposition spaces to form the stochastic spaces

W (D, S) = W (D)× L2
ρ(S), Vγ(D, S) = Vγ(D)× L2

ρ(S), M(Γ,S) = M(Γ)× L2
ρ(S).

Once again, when the explicit dependence in parentheses is omitted, it is implied that we

mean the stochastic spaces, e.g. W = W (D, S). These spaces are equipped with the same

norms as given in (2.13)-(2.14).

The stochastic domain decomposition variational formulation is to find u ∈ VgN , p ∈ W ,

and λ ∈M such that for i = 1, . . . , ND,

∫
S
(K−1u,v)Di

ρ(y)dy =

∫
S

[
(p,∇ · v)Di

− 〈v · ni, λ〉Γi

− 〈v · ni, gD〉∂Di∩ΓD

]
ρ(y)dy ∀v ∈ V0

i , (4.4)∫
S
(∇ · u, w)Di

ρ(y)dy =

∫
S
(f, w)Di

ρ(y)dy ∀w ∈ Wi, (4.5)∫
S

ND∑
i=1

〈ui · ni, µ〉Γi
ρ(y)dy = 0 ∀µ ∈M. (4.6)

The discretization of this system is first performed in the spatial dimensions. Each subdo-

main and interface are independently partitioned into mixed finite element and mortar finite

element spaces, as described in Section 3.1. The coarseness of the mortar space is carefully

chosen to satisfy Assumption 3.1.1. This gives us the semidiscrete stochastic multiscale
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mortar mixed finite element approximation: find uh : S → VgN

h (D), ph : S → Wh(D), and

λH : S→MH(Γ) such that for i = 1, . . . , ND and ρ-a.e. y ∈ S,

(K−1uh,v)Di
= (ph,∇ · v)Di

− 〈v · ni, λH〉Γi

− 〈v · ni, gD〉∂Di∩ΓD
∀v ∈ V0

h,i(D), (4.7)

(∇ · uh, w)Di
= (f, w)Di

∀w ∈ Wh,i(D), (4.8)

ND∑
i=1

〈uh,i · ni, µ〉Γi
= 0 ∀µ ∈MH(D). (4.9)

4.2.1 Tensor Product and Sparse Grid Collocation

Recall the material on tensor product grid collocation in Section 2.2.1. We choose Ncoll(i, j)

collocation points in stochastic dimension j of KL Region i, so that m = (Ncoll(i, j))κ is the

Nterm-dimensional multi-index indicating the desired component degree of the interpolant

in the stochastic space S. The formula for the corresponding anisotropic tensor product

Gauss-Hermite interpolant (2.27) is the same. We make the following two remarks about

how things change in the case of non-stationary random porous media with KL regions,

which will be important to our collocation algorithms in Section 4.4.

First, with multiple KL Regions, the set of abscissae for a tensor product grid (2.28)

becomes

T (m) =

NΩ⊗
i=1

Nterm(i)⊗
j=1

H(Ncoll(i, j))

 (4.10)

In other words, the global Nterm-dimensional tensor grid is the tensor product of NΩ smaller

tensor product grids of dimension Nterm(i). Therefore, the number of permeability realiza-

tions local to the KL region i and global to the entire domain are:

Nreal(i) =

Nterm(i)∏
j=1

Ncoll(i, j) and Nreal =

NΩ∏
i=1

Nreal(i), respectively. (4.11)

Moreover, in the case of isotropic tensor product collocation where each stochastic dimension

S(i)
j has the same polynomial accuracy m = (m,m, . . . ,m), the tensor grid points are

T (m) =
Nterm⊗
k=1

H(m).
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and the number of realizations reduces to Nreal(i) = mNterm(i) and Nreal = mNterm .

Second, we choose to index the tensor product collocation points with a natural ordering.

For the tensor grid point (hk1

m(1), . . . , h
kNterm

m(Nterm)), its global collocation index k ∈ {1, . . . , Nreal}

is given by

k = k1 +
Nterm∑
i=2

ki

i−1∏
j=1

m(k). (4.12)

Next we introduce the idea of a sparse grid. They were first used for high dimensional

quadrature by Smolyak in 1963 [79] and have been applied to stochastic collocation in such

works as [83, 30, 61]. In sparse grid collocation, the polynomial accuracy is prescribed in

terms of total degree. We only consider isotropic sparse grids, meaning for polynomials up to

total degree m, we exclude monomials such as yα1
1 yα2

2 where α1 + α2 > m. Sparse grids rules

are known to have the same asymptotic accuracy as tensor product rules, while requiring far

fewer points as the dimension increases. This property is essential for coping with the curse

of dimensionality. Therefore sparse grids are applicable for problems with higher dimensional

noise, i.e. up to several hundred stochastic dimensions. A picture of comparable sparse grid

and tensor grid rules is shown in Figure 4.1.

Figure 4.1: A Gauss-Hermite sparse grid (left) versus a Gauss-Hermite tensor grid (right)

with a comparable number of points on each axis.
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Sparse grid rules are linear combinations of tensor products on a family of nested one

dimensional rules. They are constructed hierarchically to have the property that the total

68



polynomial degree is a constant independent of dimension. They are described in terms of a

level `max, where the Nterm-dimensional sparse grid quadrature rule of level `max is accurate

to degree (2 · `max + 1). We consider isotropic sparse grids but note they may be generalized

to anisotropic accuracy, cf. [63].

Each level between `max and `min = max{0, `max − Nterm + 1} is an integer partitioned

into Nterm non-negative parts. These partitions form multi-indices p = (p1, . . . , pNterm),

|p| =
∑
pi, denoting the levels of one dimensional rules to use for each stochastic dimen-

sion. In this work, the one dimensional abscissae of level pi are the Gauss-Hermite points

H(2pi+1 − 1). Level 0 starts with a single point, and the number of points doubles plus one

on each subsequent level.

Let the multi-index m = 2p+1−1 denote degree for each partition p. The corresponding

isotropic sparse grid Gauss-Hermite interpolant in Nterm-dimensions is defined by

ISG
`max

f(y) =
∑

`min≤|p|≤`max

(−1)`max−|p| ·
(
Nterm − 1

`max − |p|

)
· ITG

m f(y). (4.13)

The set of abscissae for this rule is

S(`min, `max, Nterm) =
⋃

`min≤|p|≤`max

Nterm⊗
i=1

H(2pi+1 − 1). (4.14)

We remark that the number of local permeability realizations on a sparse grid for a

particular KL region is given by the relationship

S(`min, `max, Nterm) ( S(0, `max, Nterm(1))︸ ︷︷ ︸
Projection into S(1)

⊗ · · · ⊗ S(0, `max, Nterm(NΩ))︸ ︷︷ ︸
Projection into S(NΩ)

. (4.15)

Note that `min = 0 for all the local sparse grids, unlike the global sparse grid.

The points in (4.14) are weakly nested because the origin is the sole value which is

repeated in each one dimensional rule. Taking tensor products of one dimensional rules

produces many repeated points that contain the origin in one or more of its components.

There are both pros and cons to skipping these repeated abscissae. On the one hand, fewer

function evaluations in the quadrature rule means fewer realizations to solve. On the other

hand, extra book-keeping is necessary for indexing the points and calculating their collocation
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weights. In Algorithm 4.1, we give an efficient method that provides a natural ordering for

the points in a Gauss-Hermite sparse grid, which skips repeated points.

Algorithm 4.1 A natural ordering for sparse grid points.

1: input: Global Index g

2: j ← 0

3: for ` = `min, . . . , `max do {Loop over levels}

4: for i = 1, . . . ,
(`+Nterm − 1)!

`!(Nterm − 1)!
do {Loop over partitions}

5: part← (p1, . . . , pNterm), m← 2part+1 − 1 {The i-th multi-index}

6: if ` = `min then add part to PartList

7: for k = 1, . . . ,
∏

α m(α) do {Loop over points}

8: point← (hk1

m(1), . . . , h
kNterm

m(Nterm)) {The j-th point using (4.12)}

9: ˜part← (p̃1, . . . , p̃Nterm) where p̃i =

pi, if hki

m(i) 6= 0

0, if hki

m(i) = 0

10: if (` = `min and ˜part ∈ PartList) then {Repeated point; skip it}

11: else if (` > `min and ˜part 6= part) then {Repeated point; skip it}

12: else j = j + 1 {Unique point; count it}

13: if (j = g) then return point, part

14: end for

15: end for

16: end for

Suppose that a sparse grid point (hk1

m(1), . . . , h
kNterm

m(Nterm)) occurs in a set of partitions P . If

it is used in a single function evaluation with subsequent occurrences skipped by Algorithm

4.1, then its quadrature weight must be calculated by the formula

∑
p∈P

(−1)`max−|p| ·
(
Nterm − 1

`max − |p|

)Nterm∏
i=1

wki

m(i).

Note that in a sparse grid rule, quadrature weights may become negative.
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4.3 ERROR ANALYSIS

In this section we present a priori error estimates for the solution to the stochastic MMM-

FEM. As in previous stochastic collocation works, see e.g. [11, 89, 64, 36], the error is

decomposed into deterministic and stochastic errors, see Theorem 4.3.1. Furthermore, we

employ a duality argument to show superconvergence for the pressure, see Theorem 4.3.2.

Note that throughout this entire section, we tacitly assume that Assumption 3.1.1 holds.

To avoid technical details for the approximation of the Neumann boundary condition, we

further assume that gN ∈ Vh(D) · n.

We start with some definitions. We define the space of weakly continuous velocities by

Vγ
h,0(D) =

{
v ∈ Vγ

h(D) |
ND∑
i=1

〈v|Di
· ni, µ〉Γi

= 0 ∀µ ∈MH(D) for ρ-a.e. in S

}
.

Recall that for any of the standard mixed spaces, ∇·Vh,i(D) = Wh,i(D). Let, for any ε > 0,

Πi : (Hε(Di))
d ∩ Vγ

i → Vγ
h,i, Πq|Di

= Πiq be the standard MFE projection operators. A

projection operator Π0 : (H1/2+ε(D))d ∩V(D)→ Vh,0(D) is defined in [8, 9], satisfying

(∇ · (Π0q− q), w)Di
= 0, ∀w ∈ Wh,i(Di),

‖Π0q− Πq‖ ≤ C

ND∑
i=1

‖q‖r+1/2,Di
hrH1/2, 0 ≤ r ≤ k + 1 (4.16)

‖Π0q− q‖ ≤ C

ND∑
i=1

‖q‖r,Di
hr−1/2H1/2, 1 ≤ r ≤ k + 1 . (4.17)

(
ND∑
i=1

‖Π0q‖2
H(div,Di)

)1/2

≤ C

ND∑
i=1

‖q‖1,Di
. (4.18)

Note that (4.18) is not explicitly stated in [8, 9], but follows easily from the results there.

For any ϕ ∈ L2(D), define its L2(D)-projection ϕ̂ onto Wh(D) by

(ϕ− ϕ̂, w) = 0, ∀w ∈ Wh(D).

Similarly, let PH denote the L2(Γ)-projection onto MH(Γ). Let IcH be the nodal interpolant

operator into the space M c
H(Γ) which is the subset of continuous functions in MH(Γ), where
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we use the Scott-Zhang operator [78] to define the nodal values of ψ if it doesn’t have poinwise

values. We will make use of the following inequalities:

‖ψ − IcHψ‖t,Γi
≤ C‖ψ‖s,Γi

Hs−t, 0 ≤ s ≤ r + 1, 0 ≤ t ≤ 1, (4.19)

‖ψ − PHψ‖−t,Γi
≤ C‖ψ‖s,Γi

Hs+t, 0 ≤ s ≤ r + 1, 0 ≤ t ≤ 1, (4.20)

‖ϕ− ϕ̂‖ ≤ C‖ϕ‖tht, 0 ≤ t ≤ l + 1, (4.21)

‖q‖t,Γi
≤ C‖q‖t+1/2,Di

, 0 < t, (4.22)

‖v · n‖Γi
≤ Ch−1/2‖v‖Di

∀v ∈ Vh,i(Di), (4.23)

〈ψ,q · n〉Γi
≤ C‖ψ‖1/2,Γi

‖q‖H(div;Di), (4.24)

‖(q− Πiq) · ni‖−t,Γi
≤ C‖q‖s,Γi

hs+t, 0 ≤ s ≤ k + 1, 0 ≤ t ≤ k + 1, (4.25)

where ‖ · ‖−t is the norm of H−t, the dual of H t (not H t
0). Bound (4.19) is found in [78], the

L2-projection approximations (4.20), (4.21), and (4.25) are found in [23], the nonstandard

trace theorem (4.22) is found in [43], the trace inequality (4.23) is found in [8], and the

bound (4.24) follows from the normal trace inequality for H(div;Di)-functions.

We eliminate λH from the semi-discrete formulation by restricting VgN

h (D) to VgN

h,0(D).

In other words, (4.7)–(4.9) is equivalent to finding uh : S→ VgN

h,0 and ph : S→ Wh such that

for ρ-a.e. y ∈ S,

ND∑
i=1

(K−1uh,v)Di
=

ND∑
i=1

(ph,∇ · v)Di
− 〈v · ni, gD〉ΓD

∀v ∈ V0
h,0(D), (4.26)

ND∑
i=1

(∇ · uh, w)Di
=

ND∑
i=1

(f, w)Di
∀w ∈ Wh(D). (4.27)

We form error equations by integrating system (4.26) in S against the PDF, and subtracting

it from system (4.4)–(4.6).

∫
S

ND∑
i=1

(K−1(u− uh),v)Di
ρ(y)dy =

∫
S

[ ND∑
i=1

(p̂− ph,∇ · v)Di

− 〈p,v · ni〉Γi

]
ρ(y)dy ∀v ∈ V0

h,0, (4.28)∫
S

ND∑
i=1

(∇ · (u− uh), w)Di
ρ(y)dy = 0 ∀w ∈ Wh. (4.29)
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Recall that k, l, r,m denote the polynomial degrees of approximation for the velocity

space, pressure space, mortar space, and collocation interpolant, respectively. In all mixed

methods, l = k or l = k−1. The first results follows from the deterministic multiscale bound

on velocity, which is proved in Theorem 4.1 in [9].

Lemma 4.3.1. There exists a positive constant C independent of h and H such that for all

0 ≤ q ≤ l + 1, 1 ≤ t ≤ k + 1, and 0 < s ≤ r + 1,

‖u− uh‖L2(D)⊗L2(S) ≤ C(‖p‖Hs+1/2(D)⊗L2(S)H
s−1/2 + ‖u‖Ht(D)⊗L2(S)h

t

+‖u‖Ht+1/2(D)⊗L2(S)h
tH1/2),

‖∇ · (u− uh)‖L2(Di)⊗L2(S) ≤ C‖∇ · u‖Hq(Di)⊗L2(S)h
q, 1 ≤ i ≤ ND.

For the pressure bound we need the following inf-sup condition.

Lemma 4.3.2. There exists a positive constant γ independent of h and H such that for all

w : S→ Wh(D),

sup
v:S→V0

h,0(D)

∫
S
∑ND

i=1(∇ · v, w)Di
ρ(y)dy

‖v‖V
≥ γ‖w‖W .

Proof. Let w : S→ Wh(D). Consider the auxiliary problem, for ρ-almost every y ∈ S

∇ ·ψ(·,y) = w(·,y) in D, ψ(·,y) = g(·,y) on ∂D,

where g ∈ (H1/2(∂D))d is constructed to satisfy
∫
∂D

g ·n =
∫
D
w and g ·n = 0 on ΓN . More

precisely, we take g =
(∫

D
w
)
ϕn, where ϕ ∈ C0(∂D) is such that

∫
∂D
ϕ = 1 and ϕ = 0

on ΓN . Clearly ‖g‖1/2,∂D ≤ C‖w‖. It is known [34] that the above problem has a solution

satisfying

‖ψ‖1 ≤ C(‖w‖+ ‖g‖1/2,∂D) ≤ C‖w‖. (4.30)

Then

sup
v:S→V0

h,0(D)

∫
S
∑ND

i=1(∇ · v, w)Di
ρ(y)dy

‖v‖V
≥
∫

S
∑ND

i=1(∇ · Π0ψ, w)Di
ρ(y)dy

‖Π0ψ‖V
≥ γ‖w‖W ,

where we have used (4.3), (4.18), and (4.30) for the last inequality.

From Lemma 4.3.2, we can derive a multiscale bound on the semi-discrete pressure.
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Lemma 4.3.3. There exists a positive constant C independent of h and H such that for

1 ≤ t ≤ k + 1, and 0 < s ≤ r + 1,

‖p− ph‖W ≤ C(‖p‖Hs+1/2(D)⊗L2(S)H
s−1/2 + ‖u‖Ht(D)⊗L2(S)h

t + ‖u‖Ht+1/2(D)⊗L2(S)h
tH1/2).

Proof. Taking w = p̂− ph in Lemma 4.3.2 and using (4.28) gives

‖p̂− ph‖W ≤
1

γ
sup

v:S→V0
h,0(D)

∫
S
∑ND

i=1(∇ · v, p̂− ph)Di
ρ(y)dy

‖v‖V

=
1

γ
sup

v:S→V0
h,0(D)

∫
S
∑ND

i=1 [(K−1(u− uh),v)Di
+ 〈p− IcHp,v · ni〉Γi

] ρ(y)dy

‖v‖V

≤ C

(
‖u− uh‖L2(D)⊗L2(S) +

ND∑
i=1

Hs−1/2‖p‖Hs(Γi)⊗L2(S)

)
≤ C(‖p‖Hs+1/2(D)⊗L2(S)H

s−1/2 + ‖u‖Ht(D)⊗L2(S)h
t + ‖u‖Ht+1/2(D)⊗L2(S)h

tH1/2),

where we have used (4.19), (4.22), and Lemma 4.3.1 in the last two inequalities. The proof

is completed using the triangle inequality and (4.21).

Theorem 4.3.1. Assume that the solution (u, p) to (2.7)–(2.10) is sufficiently smooth, so

that the norms that appear in Lemma 4.3.1 are well defined. Then there exists a positive

constant C independent of h and H such that for 0 ≤ q ≤ l + 1, 1 ≤ t ≤ k + 1, and

0 < s ≤ r + 1,

‖u− uh,m‖V + ‖p− ph,m‖W ≤ C(Hs−1/2 + hq + ht + htH1/2) + η. (4.31)

For tensor product grid collocation,

η ≤ C

NΩ∑
i=1

exp (−ci
√
mi) , (4.32)

For sparse grid collocation,

η ≤ C(σ)

 exp(−σNterm2`max/Nterm), for large `max

exp(−σe log2(`max)), for large Nterm .
(4.33)

In the above ci and σ are positive constants that depend on the smoothness of K in S.
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Proof. The left hand side of (4.31) is decomposed into deterministic and stochastic errors

with the triangle inequality by adding and subtracting the semidiscrete solution

‖u− uh,m‖V + ‖p− ph,m‖W

≤ (‖u− uh‖V + ‖p− ph‖W ) + (‖uh − Imuh‖V + ‖ph − Imph‖W )

= (‖u− uh‖V + ‖p− ph‖W ) + η.

Assuming K is smooth enough in S, which is true for the KL expansion, the estimate of the

stochastic error η in the case of tensor product grid collocation (4.32) can be found in [11,

Theorem 4.1], and in the case of sparse grid collocation (4.33) can be found in [64, Theorem

3.18].

The remaining estimate of the deterministic error follows by integrating the equations in

Lemmas 4.3.1 and 4.3.3 against the PDF ρ(y) in S.

‖u− uh‖2
V + ‖p− ph‖2

W =

∫
S

(
‖u− uh‖2

H(div;D) + ‖p− ph‖2
)
ρ(y)dy

≤ C

∫
S

[(
ND∑
i=1

(
‖p‖s+1/2,Di

Hs−1/2 + ‖u‖t,Di
ht + ‖u‖t+1/2,Di

htH1/2
))2

+

(
ND∑
i=1

‖∇ · u‖q,Di
hq

)2 ]
ρ(y)dy

≤ C

∫
S

[(
ND∑
i=1

‖p‖s+1/2,Di

)2

H2s−1 +

(
ND∑
i=1

‖u‖t,Di

)2

h2t

+

(
ND∑
i=1

‖u‖t+1/2,Di

)2

h2tH +

(
ND∑
i=1

‖∇ · u‖q,Di

)2

h2q

]
ρ(y)dy

In the next theorem we establish superconvergence for the pressure.

Theorem 4.3.2. Assume that the problem (2.7)–(2.10) is H2-elliptic regular. Under the

assumptions of Theorem 4.3.1, there exists a positive constant C independent of h and H

such that for 0 ≤ q ≤ l + 1, 1 ≤ t ≤ k + 1, and 0 < s ≤ r + 1,

‖p̂− ph,m‖W ≤ C(Hs+1/2 + hqH + htH + htH3/2) + η, (4.34)

where η is defined in Theorem 4.3.1.
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Proof. Consider the following auxiliary problem in mixed form. For ρ-a.e. y ∈ S,

ψ(·,y) = −K(·,y)∇ϕ(·,y) in D, (4.35)

∇ ·ψ(·,y) = p̂− ph,m in D, (4.36)

ϕ(·,y) = 0 on ΓD (4.37)

ψ(·,y) · n = 0 on ΓN . (4.38)

The H2-elliptic regularity implies

‖ϕ(·,y)‖2 ≤ C‖p̂− ph,m‖. (4.39)

Therefore,

‖p̂− ph,m‖2
W =

∫
S
(p̂− ph,m, p̂− ph,m)ρ(y)dy

=

∫
S

[(∇ ·ψ, p̂− ph) + (p̂− ph,m, ph − Imph)] ρ(y)dy

= I + II.

Applying the Cauchy-Schwarz inequality,

|II| ≤
(∫

S
‖p̂− ph,m‖2ρ(y)dy

)1/2(∫
S
‖ph − Imph‖2ρ(y)dy

)1/2

= ‖p̂− ph,m‖W‖ph − Imph‖W = ‖p̂− ph,m‖W η.

Taking v = Π0ψ ∈ V0
h,0(D) in (4.28), we have

I =

∫
S

ND∑
i=1

(∇ · Π0ψ, p̂− ph)Di
ρ(y)dy

=

∫
S

ND∑
i=1

[
(K−1(u− uh),Π0ψ)Di

+ 〈p− PHp,Π0ψ · ni〉Γi

]
ρ(y)dy by (4.29)

= I1 + I2.
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We can break up I1 into three terms by

I1 =

∫
S

ND∑
i=1

[
(K−1(u− uh),Π0ψ −ψ)Di

− (u− uh,∇ϕ)Di

]
ρ(y)dy

=

∫
S

ND∑
i=1

[
(K−1(u− uh),Π0ψ −ψ)Di

+ (∇ · (u− uh), ϕ− ϕ̂)Di

−〈(u− uh) · ni, ϕ− IcHϕ〉Γi

]
ρ(y)dy

= I11 + I12 − I13.

Upper bounds for I11, I12, I13 can be obtained using the Cauchy-Schwarz inequality

I11 =

∫
S

[
ND∑
i=1

(K−1(u− uh),Π0ψ −ψ)Di

]
ρ(y)dy

≤ C

ND∑
i=1

(∫
S
‖u− uh‖2

Di
ρ(y)dy

)1/2(∫
S
‖Π0ψ −ψ‖2

Di
ρ(y)dy

)1/2

≤ C

(∫
S

ND∑
i=1

‖u− uh‖2
Di
ρ(y)dy

)1/2(∫
S

ND∑
i=1

‖Π0ψ −ψ‖2
Di
ρ(y)dy

)1/2

≤ C‖u− uh‖V
(∫

S
‖Π0ψ −ψ‖2ρ(y)dy

)1/2

≤ C
√
hH ‖u− uh‖V

(∫
S
‖ψ‖2

1ρ(y)dy

)1/2

by (4.17)

≤ C
√
hH ‖u− uh‖V ‖p̂− ph,m‖W by (4.39), (4.35).

I12 =

∫
S

[
ND∑
i=1

(∇ · (u− uh), ϕ− ϕ̂)Di

]
ρ(y)dy

≤ C

(∫
S

ND∑
i=1

‖∇ · (u− uh)‖2
Di
ρ(y)dy

)1/2(∫
S
‖ϕ− ϕ̂‖2ρ(y)dy

)1/2

≤ Ch‖u− uh‖V
(∫

S
‖ϕ‖2

1ρ(y)dy

)1/2

by (4.21)

≤ Ch‖u− uh‖V ‖p̂− ph,m‖W by (4.39).
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I13 =

∫
S

[
ND∑
i=1

〈(u− uh) · ni, ϕ− IcHϕ〉Γi

]
ρ(y)dy

≤ C

(∫
S

ND∑
i=1

‖u− uh‖2
H(div,Di)

ρ(y)dy

)1/2(∫
S

ND∑
i=1

‖ϕ− IcHϕ‖2
1/2,Γi

ρ(y)dy

)1/2

by (4.24)

≤ CH‖u− uh‖V

(∫
S

ND∑
i=1

‖ϕ‖2
3/2,Γi

ρ(y)dy

)1/2

by (4.19)

≤ CH‖u− uh‖V

(∫
S

ND∑
i=1

‖ϕ‖2
2,Di

ρ(y)dy

)1/2

by (4.22)

≤ CH‖u− uh‖V ‖p̂− ph,m‖W by (4.39).

Since h ≤ H, it follows that |I1| ≤ CH‖u− uh‖V ‖p̂− ph,m‖W . We bound I2 as follows:

I2 =

∫
S

[
ND∑
i=1

〈p− PHp,Π0ψ · ni〉Γi

]
ρ(y)dy

=

∫
S

ND∑
i=1

[
〈p− PHp, (Π0ψ − Πiψ) · ni + (Πiψ −ψ) · ni +ψ · ni〉Γi

]
ρ(y)dy

≤
∫

S

ND∑
i=1

[
‖p− PHp‖Γi

(
‖(Π0ψ − Πiψ) · ni‖Γi

+ ‖(Πiψ −ψ) · ni‖Γi

)
+ ‖p− PHp‖−1/2,Γi

‖ψ · ni‖1/2,Γi

]
ρ(y)dy by (4.24)

≤ C

∫
S

ND∑
i=1

[
‖p‖s,Γi

Hs
(
‖Π0ψ − Πiψ‖Di

h−1/2 + ‖ψ‖1/2,Γi
h1/2

)
+ ‖p‖s,Γi

Hs+1/2‖ψ‖1/2,Γi

]
ρ(y)dy by (4.20), (4.23), (4.25)

≤ C

∫
S

ND∑
i=1

[
‖p‖s+1/2,Di

Hs
(
‖ψ‖1,Di

H1/2 + ‖ψ‖1,Di
h1/2

)
+ ‖p‖s+1/2,Di

Hs+1/2‖ψ‖1,Di

]
ρ(y)dy by (4.22), (4.16)

≤ CHs+1/2

∫
S

ND∑
i=1

[
‖p‖s+1/2,Di

‖p̂− ph,m‖Di

]
ρ(y)dy

≤ CHs+1/2

(∫
S

ND∑
i=1

‖p‖2
s+1/2,Di

ρ(y)dy

)1/2

‖p̂− ph,m‖W .

The proof is completed using Theorem 4.3.1 together with these estimates.
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4.4 THREE COLLOCATION-MMMFEM ALGORITHMS

To form the fully discrete stochastic solution to (4.7)–(4.9), we employ the parallel substruc-

turing algorithm of Section 3.1.1 for each permeability realization K{k} = K(x,yk), k =

1, . . . , Nreal. Therefore we have the following sequence of linear interface problems to solve:

find λ
{k}
H ∈MH(Γ) such that for k = 1, . . . , Nreal,

B
{k}
H λ

{k}
H = g

{k}
H , (4.40)

where the linear operators B
{k}
H :MH(Γ) → MH(Γ), B

{k}
H,i :MH,i(Γi) → MH,i(Γi), and the

vector g
{k}
H ∈MH(Γ) are defined by

B
{k}
H λ =

ND∑
i=1

B
{k}
H,iλ, 〈B{k}H,iλ, µ〉Γi

= b
{k}
H,i(λ, µ) ∀µ ∈MH,i, 〈g{k}H , µ〉Γ = g

{k}
H (µ) ∀µ ∈MH .

In this section we describe three Collocation-MMMFEM algorithms. We will measure

their computational effort in terms of the number of these subdomain solves, as they are

dominant computational cost of the MMMFEM.

4.4.1 Collocation with Traditional MMMFEM

First we apply the traditional implementation of the MMMFEM, given by Algorithm 3.1,

to each global realization of the stochastic collocation method. Recall that this algorithm

requires solving one Dirichlet-to-Neumann subdomain solve per interface CG iteration, and

this number grows with the condition number of the problem. When this method is coupled

with the stochastic collocation method, this cost is multiplied by the number of realizations.

We call this Method S1 and it is summarized in Algorithm 4.2.

Theorem 4.4.1. The computational cost for each subdomain Di for Method S1 is given by

Number of Solves for

Method S1

 =

Nreal∑
k=1

(Niter(k) + 2). (4.41)
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Algorithm 4.2 (Method S1) - Collocation without a Multiscale Flux Basis.

1: for k = 1, . . . , Nreal do {Collocation Loop}

2: Generate permeability realization K{k} corresponding to global index k

3: Solve interface problem (4.40) using Algorithm 3.1

4: Multiply solution by collocation weight and sum to statistical moments

5: end for

4.4.2 Collocation with a Deterministic Multiscale Flux Basis

The second method uses the Multiscale Flux Basis implementation, given in Algorithm 3.3,

to solve each global realization of the stochastic collocation method.

A subdomain problem is solved for each mortar degree of freedom before the interface

iteration begins, forming a basis of coarse scale flux responses containing all the necessary

information to solve one deterministic problem. No interprocess communication is required

in the formation of the basis. Linear combinations of the basis are used to evaluate the flux

operators during the interface iteration so that no additional subdomain solves are necessary,

except one or more additional solves at the conclusion of the iteration to recover the fine

scale solution. The computational cost is a fixed and controllable quantity, and therefore

does not worsen with the condition number of the problem. Indeed, it was shown to be more

efficient than the traditional implementation in most cases for deterministic problems. This

gain in computational efficiency increases with the number of subdomains, and also in cases

where a basis can be computed once and then reused many times.

This approach can be coupled to stochastic collocation method in a straightforward way

by forming a new deterministic multiscale basis for each realization. We call this Method

S2, which is summarized by Algorithm 4.3.

Theorem 4.4.2. The computational cost for each subdomain Di for Method S2 is given byNumber of Solves for

Method S2

 = (Ndof(i) + 2) ∗ (Nreal). (4.42)

Note that each subdomain performs a different number of solves because they may have a

different number of mortar degrees of freedom.
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Algorithm 4.3 (Method S2) - Collocation with a Deterministic Multiscale Flux Basis.

1: for k = 1, . . . , Nreal do {Collocation Loop}

2: Generate permeability realization K{k} corresponding to global index k

3: Compute Multiscale Flux Basis for global index k with Algorithm 3.2

4: Solve interface problem (4.40) with Algorithm 3.3 using the basis from line 3

5: Multiply solution by collocation weight and sum to statistical moments

6: end for

On line 3, we emphasize that the formation of a Deterministic Multiscale Flux Basis

{ψ(j),{k}
H,i }Ndof(i)

j=1 is for a single global permeability realization k, on each subdomain Di. For

each subdomain Di, i = 1, . . . , ND, let {φ(j)
H,i}

Ndof(i)
j=1 denote a mortar basis for MH,i(Γi).

Individual flux responses for realization k are computed by evaluating the action of the

operator B
{k}
H,i on these functions. On line 4, each CG iteration of the interface iteration

uses a linear combination of Multiscale Flux Basis functions to replace the need to solve

additional subdomain problems. They are discarded and recalculated for realization k + 1.

4.4.3 Collocation with a Stochastic Multiscale Flux Basis

The main idea behind the Multiscale Flux Basis Implementation is to form a basis containing

all the necessary information to solve the interface problem by solving as few linear systems

as possible. In Method S2, if each realization saves just a few solves, then when perform-

ing several thousand realizations the overall savings will be great compared to Method S1.

Moreover, in certain situations it is even possible to perform even fewer solves than Method

S2.

In the setting of nonstationary random porous media with localized KL Regions through-

out the domain, it is possible to get even greater computational savings with the formation

of a Stochastic Multiscale Flux Basis. Recalling equations (4.11) and (4.15), both tensor

product and sparse grids have a repeated local structure in the KL Regions. A Stochastic

Multiscale Flux Basis can be formed by looping over all local realizations of a subdomain’s

KL Region in a precomputation loop before the stochastic collocation begins. We call this
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Method S3, and is summarized by Algorithm 4.4.

Theorem 4.4.3. The computational cost for each subdomain Di for Method S3 is given byNumber of Solves for

Method S3

 = (Ndof(i) ∗Nreal(j)) + (2 ∗Nreal). (4.43)

Each subdomain performs a different number of solves because they may have a different

number of mortar degrees of freedom and may belong to different KL regions with different

numbers of local realizations.

Algorithm 4.4 (Method S3) - Collocation with a Stochastic Multiscale Flux Basis.

1: for k′ = 1, . . . , Nreal(j) do {Precomputation Loop}

2: Generate permeability realization corresponding to local index k′

3: Compute and store Multiscale Flux Basis for local index k′

4: end for

5: for k = 1, . . . , Nreal do {Collocation Loop}

6: Generate permeability realization corresponding to global index k

7: Convert global index k to local index k′ {Using Algorithm 4.5 or 4.6}

8: Solve interface problem (4.40) with MMMFEM using the basis with local index k′ from

Precomputation Loop

9: Multiply solution by collocation weight and sum to statistical moments

10: end for

On line 7, the global to local collocation index conversion is the critical step in being

able to perform Method S3. Any algorithms developed for this purpose will be dependent

on the ordering of the points that was used. For a tensor product grid, recall from (4.12)

that we chose to follow the natural ordering by 1-D point first, local dimension next, and

KL Region last. In Algorithm 4.5, we give a global to local index conversion algorithm for

this ordering. It is very similar to the algorithm one uses to convert an integer from one

base into another, with the modification that each digit has a different base.

For a sparse grid, the indexing of the points is far more complicated than a tensor product

grid due to its hierarchical construction and skipping of repeated points. Nevertheless, it is
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still possible to formulate a global to local index conversion that is more efficient than a brute

force approach. Recall from Algorithm 4.1 that we chose to follow the natural ordering by

level first, followed by a partition of that level intoNΩ parts, followed by 1-D point, and global

dimension last. In Algorithm 4.6, we give the global to local index conversion algorithm for

this ordering. It uses formula (4.12), where the global point and partition are truncated,

and the indexing scheme is applied to the local dimensions.

Algorithm 4.5 Global to Local Index Conversion for a Tensor Product Grid.

1: input: Global Index g, KL Region r

2: remainder ← g

3: for i = 1, . . . , NΩ do

4: modulus← 1

5: for j = 1, . . . , NΩ − i− 1 do

6: modulus← modulus ∗Nreal(j)

7: end for

8: if (NΩ − i+ 1 = r) then return remainder/modulus {Return Local Index}

9: remainder ←mod(remainder,modulus)

10: end for

4.5 NUMERICAL EXAMPLES

The following numerical examples compare the relative computational efficiency of Methods

S1, S2, and S3, by presenting tables showing the maximum number of required linear systems

and the maximum total runtime per processor. As shown in Figure 4.2, there are four

examples, and in each case we test both tensor product and sparse grid collocations. Example

4.5.1 is a 2-D “L-shape” with two KL regions and is a relatively small problem that is fast to

compute. Example 4.5.2 is a 2-D “checkerboard” with four KL regions that demonstrates a

procedure for adaptive mesh refinement in the spatial grid. Example 4.5.3 is a 3-D “SPE10

benchmark” test with either two or twenty KL regions, and is a much more computationally

intensive problem to solve than Examples 4.5.1 and 4.5.2. Finally, Example 4.5.4 is a 2-D
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Algorithm 4.6 Global to Local Index Conversion for a Sparse Grid.

1: input: Global Index g, KL Region r

2: point← (h1, . . . , hNterm)

3: part← (p1, . . . , pNterm) {Using Algorithm 1 with index g}

4: subpoint← (hκ(r,1), . . . , hκ(r,Nterm(r))

5: subpart← (pκ(r,1), . . . , pκ(r,Nterm(r)) {Truncate to local dimensions}

6: l← 1

7: if (subpoint = 0) then return l {Special case for 0 partition}

8: for ` = 1, . . . , `max do {Loop over sub-levels}

9: for i = 1, . . . ,
(`+Nterm(r)− 1)!

`!(Nterm(r)− 1)!
do {Loop over sub-partitions}

10: newpart← (q1, . . . , qNterm(r)) {The i-th multi-index}

11: m = 2newpart+1 − 1

12: for j = 1, . . . ,
∏

α m(α) do {Loop over sub-points}

13: newpoint← (kj1m(1), . . . , k
jNterm(r)

m(Nterm)) {The j-th point using (4.12)}

14: ˜newpart← (p̃1, . . . , p̃Nterm(r)) where p̃i =

 pκ(r,i), if kjim(i) 6= 0

0, if kjim(i) = 0

15: if ( ˜newpart = newpart) then

16: l← l + 1

17: if (newpoint = subpoint) then return l {Return Local Index}

18: else

19: {Repeated point; skip it}

20: end if

21: end for

22: end for

23: end for
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“convergence test” with two equally sized KL regions, meant to empirically test convergence

rates in both stochastic and physical space.

Figure 4.2: Subdomain and KL region layouts for Examples 4.5.1–4.5.4. Dashed lines rep-

resent subdomain boundaries and shading distinguishes between KL regions.
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To perform these tests, Methods S1, S2, and S3 were coded into the PARCEL simulator.

The runtimes were recorded by compiling the code without optimization using Intel’s ifort

compiler and MKL library, and run with MVAPICH2 on a parallel cluster of Intel Xeon

E5430 2.66GHz processors.

4.5.1 L-Shape Example

Description. This example has NΩ = 2 KL Regions on the domain [0, 1]2. We test a low

number of terms with an isotropic tensor product grid and a large number of terms with

a level `max = 1 sparse grid. KL Region S1 is an L-shaped inclusion with a mean value of

E[Y ] = 3.0, Nterm(1) = 3 × 3 = 9 (with tensor grid) and 14 × 14 = 196 terms (with sparse

grid), η = 0.01 correlation lengths, and σ2 = 1.0 variance. KL Region S2 is the remainder of

the domain with a mean value of E[Y ] = 0.0, Nterm(2) = 2 × 1 = 2 (with tensor grid) and

Nterm(2) = 2 × 2 = 4 (with sparse grid) terms, η = 0.10 correlation lengths, and σ2 = 1.0

variance. Flow is induced from left-to-right with Dirichlet boundary conditions gD = 1

on face {x = 0}, gD = 0 on face {x = 1}, and no-flow homogeneous Neumann boundary

conditions on the other two edges.

The domain for Example 4.5.1 is divided into ND = 4 × 4 = 16 subdomains. Tensor

product collocation will use a uniform spatial grid, with all subdomains containing 25 ×

25 elements. The interfaces use continuous linear mortars with 10 elements. Sparse grid

85



collocation will use a non-uniform spatial grid such that subdomains in KL Region S1 have

20× 20 elements, and subdomains in KL Region S2 have 4× 4 elements. The interfaces use

continuous linear mortars, with the number of elements on S1 − S1, S1 − S2, and S2 − S2

interfaces being 10, 4, and 2 elements, respectively.

Discussion. First we try isotropic tensor product collocation with a low number of terms.

Using Ncoll = 2 collocation points in Nterm = 9 + 2 = 11 stochastic dimensions requires a

total of Nreal = 211 = 2048 global realizations and a maximum number of Nreal(i) = 29 = 512

local realizations, giving a global to local ratio of 4.0. Table 4.1 shows that the number

of linear systems was reduced by 61% with a deterministic multiscale basis and by 90%

with a stochastic multiscale basis. However, in practice the runtime was only reduced by

33% and 45% respectively. This is because the use of a multiscale basis in Methods S2 and

S3 does nothing to reduce the interprocess communication necessary to converge the CG

iterations during each realization of the stochastic collocation loop. Notice that Method S3

took only 11.5 seconds to complete nearly all of the linear systems necessary to complete the

problem, because these systems are relatively small and easy to solve. One way to reduce

the time spent on communication would be to use a preconditioner to improve the condition

number of the interface problem, which could be done in conjunction with the multiscale

basis implementation. Plots are shown of the calculated statistics in Figure 4.3 with Ncoll = 2

collocation points.

Next we try sparse grid collocation with a large number of terms. Using a level `max = 1

sparse grid in Nterm = 196 + 4 = 200 stochastic dimensions requires a total of Nreal = 401

global realizations and a maximum number of Nreal(i) = 393 local realizations, giving the

much smaller global to local ratio of 1.02. This time the number of linear systems was reduced

by 25% with a deterministic multiscale basis and by 26% with a stochastic multiscale basis.

The runtimes, however, remained nearly constant, giving evidence that in practice there is

not much benefit to using multiscale basis techniques with sparse grid collocation on small

problems. Plots are shown of the calculated statistics in Figure 4.4 with a level `max = 1

sparse grid. Notice that third order accuracy with a tensor grid on 10 stochastic dimensions

required 2048 realizations, while third order accuracy with a sparse grid on 200 stochastic
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dimensions only required 401 realizations. It would not be possible to perform tensor product

collocation in 200 dimensions because it would require over 1.6E60 realizations.

Table 4.1: Comparison of runtime and linear systems with the three collocation algorithms

for Example 4.5.1 with Nterm = 11 and Nterm = 200. Parenthesis denotes precomputation

loop.

Nterm = 11, Tensor Product Collocation, Ncoll = 2 (2048 realizations)

Method S1 Method S2 Method S3

Max. Linear Systems 542,498 208,896 55,296 (51,200)

Runtime in Seconds 301.8 202.5 166.6 (11.5)

Nterm = 200, Sparse Grid Collocation, `max = 1 (401 realizations)

Method S1 Method S2 Method S3

Max. Linear Systems 35,082 26,466 25,954 (25,152)

Runtime in Seconds 34.7 33.4 32.5 (5.5)

4.5.2 Checkerboard Example

Description. This example is meant to demonstrate an adaptive procedure which is used

to refine the spatial grid. There are NΩ = 4 KL Regions on the domain [0, 1]2. The

bottom-left and upper-right KL Regions S(i), i = 1, 4 each have a mean value of E[Y ] = 4.6,

Nterm(i) = 2 × 1 = 2 terms, η = 0.1 correlation lengths, and σ2 = 1.0 variance. The

top-left and bottom-right KL Regions S(i), i = 2, 3 each have a mean value of E[Y ] = 0.0,

Nterm(i) = 2 × 2 = 4 terms, η = 0.01 correlation lengths, and σ2 = 100.0 variance. Tensor

product collocation withNcoll = 2 and sparse grid collocation with level `max = 2 is performed

in Nterm = 2+4+4+2 = 12 stochastic dimensions, requiring 4096 and 361 global realizations,

16 and 57 maximum local realizations, giving global to local ratios of 256.0 and 6.33, per

mesh adaptation respectively. Flow is induced from left-to-right with the same boundary

conditions as Example 4.5.1.
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Figure 4.3: Realization of permeability (top-left), mean pressure (top-middle), mean veloc-

ity magnitude (top-right), variance of pressure (bottom-left), variance of horizontal velocity

(bottom-middle), and variance of vertical velocity (bottom-right) for tensor product collo-

cation in Example 4.5.1 with Nterm = 11.

permX

20.4
20.0
19.7
19.3
11.3
6.4
3.6
2.0
1.1
1.0
0.9
0.8

pres
0.94
0.85
0.75
0.65
0.55
0.45
0.35
0.25
0.15
0.06

Vmag
6.52
5.84
5.16
4.47
3.79
3.11
2.43
1.74
1.06
0.38

varP
2.49E-03
2.19E-03
1.89E-03
1.59E-03
1.29E-03
9.95E-04
6.96E-04
3.98E-04
9.97E-05

varU

1.12E-01
9.85E-02
8.54E-02
7.23E-02
5.92E-02
4.60E-02
3.29E-02
1.98E-02
6.74E-03

varV

5.41E-02
4.83E-02
4.25E-02
3.67E-02
3.09E-02
2.51E-02
1.93E-02
1.35E-02
7.73E-03
1.93E-03

88



Figure 4.4: Realization of permeability (top-left), mean pressure (top-middle), mean velocity

magnitude (top-right), variance of pressure (bottom-left), variance of horizontal velocity

(bottom-middle), and variance of vertical velocity (bottom-right) for level `max = 1 sparse

grid collocation in Example 4.5.1 with Nterm = 200.
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The adaptive procedure can be described as follows: The domain is divided into ND =

8 × 8 = 64 subdomains, and all interfaces use continuous linear mortars. Each subdomain

begins with a 2× 2 local grid, and each mortar begins with a single element. The stochastic

collocation method is performed with Methods S1, S2, or S3 using this spatial grid. Upon

completion of the collocaiton, a residual-based a posteriori error indicator is computed using

the expectation of the pressure together with the mean permeability, which can be found in

[87, 9]. The spatial grids of subdomains that contain errors beyond a given tolerance are

refined, as well as the mortars that touch those refined subdomains. At this point, the entire

collocation is performed again using the new spatial grid, and the procedure stops when no

new subdomains need refinement. Note that this is merely a heuristic procedure, and is

given for illustrative purposes only. In the future we anticipate the formulation of a rigorous,

residual-based a posteriori error indicator using the same norm as given in Section 4.3.

Discussion. Since the number of random dimensions was kept low, Table 4.2 shows the

amount of work necessary for both tensor product and sparse grid collocation on the same

test. Method S2 showed an 82-83% decrease and Method S3 showed a 93-99% decrease in

the number of linear systems required to solve the collocation on refinement levels 1-4 when

compared to Method S1. Once again, the runtimes remained constant, because the small

size of the linear systems keep the problems communication bound.

Figure 4.5 shows how the adaptive procedure refined the spatial grid, in a similar way

as one expects for a deterministic problem with the given mean permeability. On each

subsequent refinement, an entire new stochastic collocation was performed. Figures 4.6 and

4.7 demonstrate how both expectation and variance of pressure and velocity magnitude are

improved on progressively finer spatial grids. They are presented for the level 2 sparse grid

collocation, which is estimated to be accurate to total degree 5.

4.5.3 SPE10 Benchmark Example

Description. The mean permeability in the third example is a 3-dimensional scalar field of

actual geological measurements, obtained from the x-component of the Society of Petroleum

Engineers’ (SPE) Comparative Solution Project [22]. It is a challenging benchmark problem
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Table 4.2: Comparison of runtime and linear systems across refinement levels 1-4 with the

three collocation algorithms for Example 4.5.2. Parenthesis denotes precomputation loop.

Nterm = 12, Tensor Product Collocation, Ncoll = 2 (4096 realizations)

Method S1 Method S2 Method S3

Max. Linear Systems 3,722,250 655,360 35,200 (1,152)

Runtime in Seconds 5,353 5,409 5,280 (0.2)

Nterm = 12, Sparse Grid Collocation, `max = 2 (361 realizations)

Method S1 Method S2 Method S3

Max. Linear Systems 341,836 57,760 11,552 (4,104)

Runtime in Seconds 493.7 493.4 487.0 (0.5)

Figure 4.5: Spatial grids for refinement levels 1-4 with `max = 2 sparse grid on Example

4.5.2.

91



Figure 4.6: Mean pressure (top) and pressure variance (bottom) for refinement levels 1-4

with `max = 2 sparse grid on Example 4.5.2.
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refinement levels 1-4 with `max = 2 sparse grid on Example 4.5.2.
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with a cartesian grid of 60 × 220 × 85, giving a total of 1, 122, 000 finite elements. This

dataset is part of a Brent sequence, with the lower 35 layers representing a prograding

Tarbert formation, and the top 50 layers representing a fluvial Upper Ness formation. A

flow is induced from front-to-back with Dirichlet boundary conditions gD = 1 on face {y = 0},

gD = 0 on face {y = 220}, and no-flow homogeneous Neumann boundary conditions on the

other four faces.

For the discretization, the fine scale grid is broken up into ND = 2 × 5 × 2 = 20

subdomains of nearly equal size. On the interfaces, the mortar space is comprised of faces

with discontinuous linear mortars with a single 1 × 1 element. Unlike the previous two

examples, the size of these subdomains is sufficiently large so that the time spent solving a

typical linear system dominates the time needed to perform both interprocess communication

and a multiscale basis linear combination.

In Example 4.5.3(a), we perform tensor product collocation with noise being added to

NΩ = 2 statistically independent KL Regions, roughly coinciding with the two geologic

formations of the deterministic data. The first region is the lower 10 subdomains and is

described by the parameters: Nterm(1) = 1 × 4 = 4 terms, η = 6.0 correlation lengths,

σ2 = 1.7 variance. The second region is the upper 10 subdomains and is described by the

parameters: Nterm(2) = 1× 6 = 6 terms, η = 10.0 correlation lengths, σ2 = 1.2 variance. In

Example 4.5.3(b) we switch to sparse grid collocation, and increase the number of terms in

the bottom and top KL Regions to Nterm(1) = 4×4×4 = 64 and Nterm(2) = 5×5×5 = 125

respectively. In Example 4.5.3(c) we increase the number of KL Regions to NΩ = 20, one in

each subdomain with Nterm(i) = 2× 3× 2 = 12 terms.

Discussion. In this 3-D benchmark problem, the size of the subdomain problems is suf-

ficiently large so that the time spent solving a linear system dominates the time needed

to perform the interprocess communication in the CG iteration of each realization. Tensor

product collocation with Ncoll = 2 in Nterm = 4 + 6 = 10 stochastic dimensions requires a

total of Nreal = 210 = 1024 global realizations, Nreal(i) = 64 maximum local realizations,

giving a global to local ratio of 16.0. Table 4.3 shows the linear systems was reduced by 92%

with a deterministic multiscale basis and 99% with a stochastic multiscale basis. Due to the
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sheer size of the subdomain problems, the runtime was also dramatically reduced by 85%

and 89%, respectively. Figures 4.8–4.12 show the results of the computations.

In Example 4.5.3(b), sparse grid collocation with `max = 1 in Nterm = 64 + 125 =

189 stochastic dimensions requires a total of Nreal = 379 global realizations, Nreal(i) =

251 maximum local realizations, giving a global to local ratio of 1.51. The number of

linear systems was reduced by 91% and 94%, and the runtime was reduced by 83% with

deterministic multiscale basis, but was slightly worse with a stochastic multiscale basis with

a reduction of only 80%. This still makes Method S3 unquestionably superior to Method S1,

but only better than Method S2 in some cases. The reason Method S3 is faster than Method

S2 in the tensor grid case but not in the sparse grid case is due to the global to local ratio.

When this ratio is smaller, more runtime is spent forming the stochastic multiscale basis.

For instance, in Example 4.5.3(b) the precomputation loop is over 45% of the total runtime,

while in Example 4.5.3(a) it is only 7%. The structure of a tensor product grid causes this

ratio to remain very large, even when the difference between global and local dimension is

small.

Recall that the main benefit to using a sparse grid is that the number of points grows

more modestly than a tensor grid as dimension increases. Unfortunately this means the

global to local ratio are smaller, so in practice Method S3 will only be faster than Method S2

when the difference between global and local dimension is large. Indeed, in Example 4.5.3(c)

we constuct a third SPE10 test to show this effect, using NΩ = 20 KL regions each having

Nterm(i) = 12 dimensions. Sparse grid collocation with `max = 1 in Nterm = 12 ∗ 20 = 240

stochastic dimensions requires a total of Nreal = 481 global realizations, nreal(i) = 41

maximum local realizations, giving a global to local ratio of 19.0. The results are given in

Table 4.4, and as one can see in this case Method S3 shows an improvement in runtime over

Method S2. Both multiscale methods are still far superior to the traditional implementation.

4.5.4 Convergence Example

Description. This example empirically tests convergence rates in both stochastic and phys-

ical space. There are NΩ = 2 KL Regions on the domain [0, 1]2 with ND = 4 × 4 = 16

subdomains. Throughout the domain, a mean value of E[Y ] = 5000(1 − sin(20x) sin(20y))
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Table 4.3: Comparison of runtime and linear systems with the three collocation algorithms

for Example 4.5.3 with NΩ = 2 KL Regions. Parenthesis denotes precomputation loop.

Nterm = 10, Tensor Product Collocation, Ncoll = 2 (1024 realizations)

Method S1 Method S2 Method S3

Max. Linear Systems 236,964 18,432 3,072 (1,024)

Runtime in Hours 110.34 16.95 11.72 (0.82)

Nterm = 189, Sparse Grid Collocation, `max = 1 (379 Realizations)

Method S1 Method S2 Method S3

Max. Linear Systems 79,047 6,822 4,774 (4,016)

Runtime in Hours 37.16 6.27 7.33 (3.32)

Table 4.4: Comparison of runtime and linear systems with the three collocation algorithms

for Example 4.5.3(c) with NΩ = 20 KL Regions. Parenthesis denotes precomputation loop.

Nterm = 240, Sparse Grid Collocation, `max = 1 (481 realizations)

Method S1 Method S2 Method S3

Max. Linear Systems 101,826 8,658 1,362 (400)

Runtime in Hours 47.8 7.97 5.50 (0.38)

95



Figure 4.8: Realization of permeability (left) and its corresponding solution (right) for Ex-

ample 4.5.3 with Nterm = 10 terms and NΩ = 2 KL Regions.

Figure 4.9: Mean solution (left) and Pressure Variance (right) for Example 4.5.3 with Nterm =

10 terms and NΩ = 2 KL Regions.

Figure 4.10: X-Velocity variance (left) with several cross-sections (right) for Example 4.5.3

with Nterm = 10 terms and NΩ = 2 KL Regions.
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Figure 4.11: Y-velocity variance (left) with several cross-sections (right) for Example 4.5.3

with Nterm = 10 terms and NΩ = 2 KL Regions.

Figure 4.12: Z-velocity variance (left) with several cross-sections (right) for Example 4.5.3

with Nterm = 10 terms and NΩ = 2 KL Regions.
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is used throughout. KL Region S(1) is the left half of the domain with Nterm = 2 × 1 = 2

terms, correlation length η = 0.13, and variance σ = 1.0. KL Region S(2) is the right half of

the domain with Nterm = 2× 2 = 4 terms, correlation length η = 0.09, and variance σ = 1.1.

Table 4.5: Table of convergence in physical space for Example 4.5.4. Relative errors reported

against finest grid level; convergence ratios given in parentheses.

S(1) Grid Mort. S(2) Grid ‖E[p−ptrue]‖
‖E[ptrue]‖

‖E[u−utrue]‖
‖E[utrue]‖

‖E[∇·(u−utrue)]‖
‖E[∇·utrue]‖

4× 5 2 3× 7 1.04E-02 1.76E-01 2.56E-01

8× 10 4 6× 14 3.93E-03 (2.64) 6.35E-02 (2.77) 1.02E-01 (2.51)

16× 20 8 12× 28 1.39E-03 (2.82) 1.71E-02 (3.71) 3.30E-02 (3.09)

32× 40 16 24× 56 3.74E-04 (3.72) 3.80E-03 (4.50) 1.14E-02 (2.89)

64× 80 32 48× 112 – – –

Discussion. Figures 4.13 and 4.14 show convergence rates in stochastic space, wherein all

tests have a fixed spatial grid. Subdomains have 20 × 20 grids in the first region, 17 × 15

grids in the second region, and continuous linear mortars with 10 elements are used on all

interfaces. The true stochastic solution is estimated by a level 6 sparse grid, and the lines

represent different types of sampling methods with increasingly more realizations. Due to

the use of a CG iteration in the interface problem, the slopes can be seen tapering off as the

error reaches a threshold with a tolerance of 1E − 6. The tests were rerun with a tolerance

of 1E − 15 to mitigate this effect, but this can be contrasted with the steeper slopes as seen

in a single domain solver in such works as [83].

Table 4.5 shows convergence rates in physical space. A level `max = 3 sparse grid rule

was used in stochastic dimensions, but we also note that these deterministic results were

within round-off for an isotropic tensor grid rule with Ncoll = 3. The first three columns

indicate how different spatial grids were used in each KL region, and how they were refined

on each subsequent row. The convergence ratios appear to confirm the theory.

98



Figure 4.13: Log-log plot of convergence in stochastic space for Example 4.5.4. Different

types of sampling methods are shown in absolute L2-error for pressure with 1E−6 tolerance

(left) and 1E − 15 tolerance (right).
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Figure 4.14: Log-log plot of convergence in stochastic space for Example 4.5.4. Different

types of sampling methods are shown in absolute H(div)-error for velocity with 1E − 6

tolerance (left) and 1E − 15 tolerance (right).
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5.0 MULTISCALE PRECONDITIONER AND TWO-PHASE FLOWS

This chapter describes and demonstrates the use of the Multiscale Flux Basis implementa-

tion (briefly, multiscale basis) as a preconditioner for interface problems, following the work

of Wheeler, Wildey, and Yotov [85]. This previous work applied the preconditioner to uncer-

tainty quantification for the linear interface problem in the single-phase model. The author

of this thesis has helped contribute to the implementation of the multiscale basis approach

and preconditioner into the IPARS simulator [70, 82, 66]. In this chapter, we summarize the

forthcoming work that explores the use of the multiscale basis preconditioner in deterministic

two-phase flows with non-linear interface problems [37].

Recall that in Chapter 3, the multiscale basis was introduced for a deterministic single-

phase flow, which is an elliptic problem with a single linear interface problem (3.35). Con-

trast this with the stochastic single-phase problem in Chapter 4, which involved solving a

sequence of linear interface problems (4.40). We described solving these problems with both

deterministic (Method S2) and stochastic (Method S3) multiscale basis algorithms. Both of

these methods required the calculation and re-calculation of many multiscale bases for each

subdomain across multiple realizations.

In the original implementation of the MMMFEM, the coarse scale interface problems are

solved in parallel via an iterative Krylov method such as CG or GMRES, and each iteration

requires the solution to fine scale subdomain problems. The multiscale basis implementation

shifts the computational burden to the formation of such a basis. One it is formed, its

usage is very cheap. However, if it must be re-computed many times, this can be costly.

Nevertheless, in Chapter 4 this approach still succeeded in reducing both theoretical cost

and actual runtime for uncertainty quantification, especially in non-stationary media.

To avoid the re-calculation of a multiscale basis in a sequence of linear interface problems,
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it can be computed once for a single permeability that captures the main characteristics of

the porous media, called a training permeability. For uncertainty quantification, the obvious

choice is the mean permeability. As described in [85], the single multiscale basis for the

training permeability can be used as an efficient physics-based preconditioner. The cost of

applying the preconditioner is the need to solve another interface problem.

Numerical methods for deterministic two-phase flow simulations in the MMMFEM frame-

work involve non-linear interface problems. When an Inexact Newton’s method is used with

a finite difference approximation of the Jacobian, it can be reduced to a sequence of linear

problems to solve on each time step [94]. The training permeability for the multiscale basis

preconditioner may be taken as the initial permeability, and used throughout the simula-

tion. As expected, its effectiveness as a preconditioner will degrade in time. Alternatively,

the multiscale basis preconditioner may be re-computed sparingly at regular time intervals,

or until some tolerance is reached. In these ways, the multiscale basis implementation for a

steady-state model with linear interface problem is extended to handle the unsteady model

with non-linear interface problem. We will consider two modern schemes for two-phase re-

servior simulation: Fully-Implicit [20, 58] and IMPES (IMplicit Pressure Explicit Saturation)

[58, 44] models.

The Multiscale Preconditioner idea is described in Section 5.1, it is applied to the Fully-

Implicit Model in Section 5.2, it is applied to the IMPES Model in Section 5.3, and numerical

examples are given in Section 5.4.

5.1 MULTISCALE PRECONDITIONER

Denote by Ndof(i) the number of mortar degrees of freedom associated with the mortar space

MH,i on subdomain Di, and by Ndof the number of global mortar degrees of freedom in MH .

For m = 1, . . . ,M , consider a sequence of variational interface problems with permeabilities

K{m} to be solved with the MMMFEM framework

b
{m}
H (λH , µ) = g

{m}
H (µ), ∀µ ∈MH . (5.1)
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For example, take those associated with stochastic realizations in an uncertainty quantifi-

cation problem, or those associated with an Inexact Newton-Krylov iteration in an explicit

or implicit time stepping scheme in a deterministic two-phase flow problem. Note that the

former sequence can be solved in an arbitrary order, while the latter cannot.

For m = 1, . . . ,M , define a real Ndof ×Ndof matrix B
{m}
H satisfying[

B
{m}
H λ,µ

]
= b

{m}
H (λH , µ), ∀λ, µ ∈MH , (5.2)

where [·, ·] is the Euclidean scalar product in RNdof , and µ denotes a vector of values for

each λH ∈ MH at Ndof degrees of freedom. Recall that B
{m}
H =

∑ND

i=1 B
{m}
H,i . When the

permeabilities are uniformly positive definite, there exist positive constants ĉ{m}, Ĉ{m}, αi

such that

ĉ{m}αiξ
T ξ ≤ ξTK{m}(x)ξ ≤ Ĉ{m}αiξ

T ξ, ∀ξ ∈ Rd, x ∈ D. (5.3)

Moreover as shown in [93, 26, 69], there exist positive constants c{m} and C{m} such that

c{m}
ND∑
i=1

αi|I∂DiQh,iµ|1/2,∂Di
≤
[
B
{m}
H µ,µ

]
≤ C{m}

ND∑
i=1

αi|I∂DiQh,iµ|1/2,∂Di
, (5.4)

for all µ ∈MH , where I∂Di is a continuous piecewise linear interpolant. The constants c{m}

and C{m} do not depend on h or H, and depend only mildly on K{m}.

Let K denote a uniformly positive definite training permeability that captures the main

characteristics of the media. Recall Algorithm 3.2 for the generation of a multiscale basis

and Algorithm 3.3 for the action of operators BH,i as linear combinations of multiscale basis

functions. To avoid recomputing a new multiscale basis for every m, each subdomain Di

constructs a single multiscale basis {ψ{k}H,i}
Ndof(i)
k=1 for the training operator BH,i. Then for

m = 1, . . . ,M , we solve the preconditioned system

B
−1

H B
{m}
H λ

{m}
H = B

−1

H g
{m}
H (5.5)

using CG in the symmetric case or GMRES in the non-symmetric case. In this approach,

the action of B
{m}
H is computed by solving subdomain problems with permeability K{m},

while the action of B
−1

H is computed using the multiscale basis.

The following result has been shown in [85], which shows that the condition number of

(5.5) is independent of h, H, and ND. However, it does depend on how close the training

operator is to each permeability.
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Theorem 5.1.1. Assume that Assumption 3.1.1 holds and that BH satisfies a bound similar

to (5.4) with constants c and C. Then BH and B
{m}
H are uniformly spectrally equivalent, i.e.

for m = 1, . . . ,M ,

cond(B
−1

H B
{m}
H ) ≤ CC{m}

cc{m}
.

The preconditioner B
−1

H is not explicitly constructed. The cost of applying the precon-

ditioner is the need to solve secondary interface problem. Another iterative algorithm is

used, so that the action of the training operator is a linear combination on every subdo-

main. We note that although this preconditioner bounds the number of subdomain solves

for each permeability, the cost of applying the preconditioner itself may grow as the number

of subdomains increases.

5.2 FULLY-IMPLICIT MODEL

In the Fully-Implicit Model (see [20], the Simultaneous Solution method), the coupled non-

linear two-phase system (1.5)–(1.8) is solved for all variables simultaneously with an implicit

time-stepping scheme. Two of the unknowns are immediately eliminated using (1.9) and

(1.10). A common practice is to choose the primary variables oil pressure P = po and water

saturation S = Sw. Using these constraints, the system can be rewritten as

∇ ·
(
ρwKkw
µw

(
∇po −

dpc
dSw
∇Sw − ρwg∇z

))
= φ

∂(ρwSw)

∂t
− qw (5.6)

∇ ·
(
ρoKko
µw

(∇po − ρog∇z)

)
= φ

∂(ρo(1− Sw))

∂t
− qo. (5.7)

Next carry out time differentiation, divide (5.6) by ρw, divide (5.7) by ρo, and add the

equations to obtain

1

ρw
∇ ·
(
ρwKkw
µw

(
∇po −

dpc
dSw
∇Sw − ρwg∇z

))
+

1

ρo
∇ ·
(
ρoKko
µw

(∇po − ρog∇z)

)
=
Sw
ρw
φ
∂ρw
∂t

+
1− Sw
ρo

φ
∂ρo
∂t
− qw
ρw
− qw
ρo
. (5.8)
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Let 0 = t0 < t1 < . . . < tN = T be a partition of time interval J = [0, T ]. Following [94],

the Backward Euler multiblock expanded mixed finite element method is: for subdomains

1 ≤ i < j ≤ ND and time steps n = 1, . . . , N , we seek Vn
h,α|Di

∈ Vhi
, Ṽn

h,α|Di
∈ Ṽhi

,

P n
h,α|Di

∈ Whi
, Snh,α|Di

∈ Whi
, and PM,n

h,α |Γij
∈MH,i,j such that, for α = o and w,

∫
Di

(φρh,αSh,α)n − (φρh,αSh,α)n−1

∆tn
w dx+

∫
Di

∇ ·Vn
h,αw dx =

∫
Di

qαw dx, w ∈ Whi
,(5.9)∫

Di

Ṽn
h,α · v dx =

∫
Di

P n
h,α∇ · v dx−

∫
∂Di\∂D

PM,n
h,α v · νi dσ, v ∈ Vhi

, (5.10)∫
Di

Vn
h,α · ṽ dx =

∫
Di

knh,αK

µh,α
ρnh,α(Ṽn

h,α + ρnh,αg∇D) · ṽ dx, ṽ ∈ Ṽhi
, (5.11)∫

Γij

[Vn
h,α · ν]ij µ dσ = 0, µ ∈MH,i,j. (5.12)

Here knh,α and ρnh,α ∈ Wh,i are given functions of the primary subdomain variables P n
h and

Snh . The mortar functions PM,n
H,α can be computed using (1.9) and (1.10), given the primary

mortar variables PM,n
H and SM,n

H .

Using the substructuring domain decomposition algorithm, the discrete system (5.9)–

(5.12) is reduced to an interface problem in the coarse mortar space. Let MH = MH ×MH

be the product space of mortar primary variables. We define the non-linear interface bivariate

form bn : MH ×MH → R at time t = tn as follows. For ψ = (PM,n
H , SM,n

H ) ∈ MH and

µ = (µw, µn) ∈MH , define

bn(ψ, µ) =
∑

1≤i<j≤ND

∫
Γi,j

(
[Vn

h,w · n]µw + [Vn
h,n · n]µn

)
dσ, (5.13)

where (Snh (ψ),Vn
h,α(ψ)) are solutions to the time series of subdomain problems (5.9)–(5.12)

with Dirichlet boundary data PM,n
H,α . Using this definition, also define the non-linear interface

operator Bn :MH →MH by

〈Bnψ, µ〉MH
= bn(ψ, µ), ∀µ ∈MH .

It can be shown that (ψ, SnH(ψ),VN
h,α(ψ)) is the solution to (5.9)–(5.12), where ψ ∈ MH

solves

Bn(ψ) = 0. (5.14)
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The system of nonlinear interface equations in (5.14) is solved with an Inexact Newton

method, in which each Newton step

(Bn)′(ψ)s = −Bn(ψ) (5.15)

is computed by a forward difference GMRES iteration. The action of the Jacobian is ap-

proximated by the forward difference for some δ > 0,

Dδ b
n(ψ, µ) =


0, µ = 0

‖µ‖B(ψ+δµ/‖µ‖)−B(ψ)
δ‖ψ‖ , µ 6= 0, ψ 6= 0

‖µ‖B(δµ/‖µ‖)−B(ψ)
δ

, µ 6= 0, ψ = 0

(5.16)

requiring one evaluation of Bn on each Interface-GMRES iteration. This, in turn, requires

the solution of block (subdomain) problems in parallel, which are also non-linear and are

solved with an Inexact Newton-GMRES method.

Let {êj} be the standard basis for the product space of primary mortar variables MH .

This space has dimension N2
dof. In order to form a multiscale basis for the Interface Newton-

GMRES problem (5.15), one should compute subdomain problems with µ = êj, for j =

1, . . . , N2
dof in (5.16).

5.3 IMPES MODEL

In the IMPES scheme [20, 58], the coupled two-phase system with constraints (1.5)–(1.10) is

split into a pressure equation that will be solved implicitly, and a saturation equation that

will be solved explicitly, with respect to time discretization. The primary variables will be

oil pressure p = po and water saturation S = Sw. First we make the following definitions:

the phase mobility functions are

λα(x, Sα) =
kα
µα
, α = o, w, (5.17)

the total mobility is

λtotal(x, S) = λw + λo, (5.18)
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the fractional flow functions are

fα(x, S) =
λα
λtotal

, α = o, w. (5.19)

and the total velocity is

utotal = uw + uo. (5.20)

For simplicity in the presentation, we assume incompressibility for both fluids, although

the results will be slightly compressible. First add equations (1.6) for α = o and α = w, and

use (5.20) and (1.9) to obtain

∇ · utotal = q(p, S) ≡ qw(p, S) + qo(p, S). (5.21)

Next add equation (1.5) for α = o with α = w, and use (1.10) and (5.20) to obtain

utotal = −K
(
λtotal(s)∇p− λw(S)∇pc − (λwρw + λoρo)g∇z

)
. (5.22)

The pressure equation is derived by substituting (5.22) into (5.21), which gives

−∇ · (Kλtotal∇p) = q −∇ ·
(
K(λw∇pc + (λwρw + λoρo)g∇z

)
. (5.23)

The saturation equation is derived by applying (1.10), (5.20), and (5.22) to equations (1.5)

and (1.6) with α = w, which gives

φ
∂S

∂t
= qw(p, S)−∇ ·

[
Kfw(S)λo(S)

(dpc
dS
∇S + (ρo − ρw)g∇z

)
+ fw(S)utotal

]
. (5.24)

In the standard IMPES method, the saturation S is known, and the pressure equation

(5.23) is solved implicitly for p. This means for time steps n = 0, 1, . . . , N the pressure p

satisfies the elliptic problem

−∇ · (Kλtotal(Sn)∇pn) = F (pn, Sn), (5.25)

where F (p, S) is the RHS of (5.23) and Sn is given. (We note in the slightly compressible

case, this will be a degenerate parabolic equation). The saturation equation (5.24) is solved
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explicitly for S. This means for n = 0, 1, . . . , N−1 the saturation Sn+1 satisfies the parabolic

problem

φ
∂Sn+1

∂t
= G(pn,un, Sn), (5.26)

where G(p,u, S) is the RHS of (5.24).

The multiblock formulation and interface iteration for the IMPES model are performed

similarly to the derivation in Section 5.2. The difference here is that a mortar space MH

is constructed only for the implicit pressure solve. Therefore this model has a non-linear

interface bivariate form bn : MH ×MH , which is defined by

bn(ψ, µ) =
∑

1≤i<j≤ND

∫
Γi,j

[Vn
h,w · n]µdσ. (5.27)

The interface operator and Inexact Newton-GMRES iteration are formulated using this

definition.

Let {êj} be the standard basis for the mortar space MH . This space has dimension

Ndof. In order to form a multiscale basis for the Interface Newton-GMRES problem with the

IMPES model, one should compute subdomain problems with µ = êj, for j = 1, . . . , Ndof in

(5.16).

5.4 NUMERICAL EXAMPLES

We seek to make a comparison of both the number of Interface-GMRES iterations per time

step and the total simulation runtime for the following three methods:

• METHOD P1 - No Preconditioner.

• METHOD P2 - A Single Multiscale Basis Preconditioner, computed at t = 0.

• METHOD P3 - Multiscale Basis Preconditioner with re-calculation, triggered after 15

Interface-GMRES iterations are reached on a single time step.
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To show the steps that each of these methods require, flow charts are given for the Fully-

Implicit Model in Figure 5.1. These methods will be tested for a deterministic, slightly

compressible, two-phase flow problem, with both the Fully-Implicit and IMPES numerical

models.

Figure 5.1: Flow charts for Methods P1, P2, and P3 in the Fully-Implicit Model. Right

columns include steps that may be parallelized.

Time Step

Interface-
Newton Step

Interface-
GMRES Step

Method P1

Block-
Newton Step

Block-
GMRES Step

Preconditioner- 
GMRES Step

MS Basis 
Linear Combo

Compute
MS Basis

Time Step

Interface-
Newton Step

Interface-
GMRES Step

Method P2

Block-
Newton Step

Block-
GMRES Step

Preconditioner- 
GMRES Step

MS Basis 
Linear Combo

Compute
MS BasisTime Step

Interface-
Newton Step

Interface-
GMRES Step

Method P3

Block-
Newton Step

Block-
GMRES Step

To perform these tests, the multiscale basis implementation and preconditioner were

programmed into the IPARS reservoir simulator, in both Fully-Implicit and IMPES models.

The runtimes were recorded by compiling the code with optimization using Intel’s ifort

compiler and MKL library, and run in serial on an Intel Core 2 Quad CPU Q9650 3.0GHz

system.

5.4.1 Fully-Implicit Example, SPE6 Permeability

The numerical example consists of a simulation of oil-water immiscible displacement in a

3-D slice of a highly heterogeneous reservoir. Permeability data from the SPE Comparative

Solution Project [22] was used for the diagonal tensor K, shown in Figure 5.2. Note in this

simulation, the x-coordinate represents the depth. The domain D = (0, 25) × (0, 420) ×

(0, 420) [ft] is divided into 1 × 2 × 2 equal blocks (subdomains), each having fine grids of

6× 8× 8 finite elements. The four block interfaces are made up of continuous linear mortars

with 3 × 4 elements. All boundary conditions are no-flow. Both fluids are assumed to be
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Figure 5.2: X-component of SPE6 Permeability data in millidarcies for Example 5.4.1.
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Figure 5.3: Oil relative permeability (left), water relative permeability (middle), and capil-

lary pressure (right) versus water saturation for Example 5.4.1.
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Figure 5.4: Plots for Example 5.4.1: Water Pres. at t = 100 (top-left), Oil Conc. at t = 100

(top-right), Water Pres. at t = 200 (bottom-left), Oil Conc. at t = 200 (bottom-right).
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slightly compressible, with exponential coefficients co = 4.0E-5 and cw = 3.3E-6 [1/psi] in

the equations of state (1.11). Initial oil pressure is set at po,0 = 500 [psi], and initial water

saturation is Sw,0 = 0.22. Water viscocity is µw = 0.5 [cp] and oil viscocity is µo = 2.0 [cp].

Relative permeabilities and capillary pressure are shown in Figure 5.3.

From an aerial perspective, water is injected at a well in upper-left corner, and oil is

produced at a well in the lower-right corner, for a quarter five spot test. The length of the

simulation is T = 200 [days], with a constant time step ∆t = 0.1. Water injection bottom

hole pressure (BHP) starts 505 [psi] and increases linearly until it reaches 1000 [psi] at the

final time. Oil production BHP starts at 480 [psi] and decreases linearly until it reaches 350

[psi] at the final time.

The Fully-Implicit model was first used to test Methods P1, P2, and P3. Figure 5.4

shows the results of the computation at times t = 100 and t = 200. As water pressure

increases in the injection well, water pressure continually increases in the domain and mass

enters the domain at an increasing rate. This causes the water saturation front to sweep
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across the domain, and oil concentration decreases accordingly as this phase is displaced.

The model tolerances for the convergences of each step are: 1E-4 for Interface-GMRES,

1E-5 for Interface-Newton, 1E-6 for Jacobian Forward Difference, 1E-7 for Block-Newton,

1E-14 for Block-GMRES, and 1E-3 for Preconditioner-GMRES.

The computational cost for Methods P1, P2, and P3 are shown in Table 5.1. The time

averaged number of Interface-GMRES iterations was successfully decreased by 63% with a

single preconditioner, and decreased by 88% when the multiscale basis was recomputed after

a tolerance of 15 Interface-GMRES iterations was reached on a single time step. Figure 5.5

shows how the interface iteration becomes more difficult in time, and how the use of the

multiscale preconditioner with recomputation can help to bound the condition number.

Note that there is an overhead cost of Block-Interface problems to solve each time a

multiscale basis is recomputed, which is not reflected in these numbers. However this cost

is indeed reflected in the overall runtime, which was decreased from approximately 5 1/2

hours with Method P1 to just over 1 hour with Method P3. This makes a very compelling

argument for the utility of the multiscale basis approach at increasing tractability for two-

phase nonlinear MMMFEM interface problems with the fully-implicit model.
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Table 5.1: Computational cost of Example 5.4.1 with Methods P1, P2, and P3 in the Fully-

Implicit Model.

METHOD P1 METHOD P2 METHOD P3

Avg. Iter. / Time Step 82.8 30.2 9.7

Runtime in Minutes 322.2 184.2 67.3

Figure 5.5: Interface-GMRES iterations versus time for Example 5.4.1 with Methods P1,

P2, and P3 in the Fully-Implicit Model.
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5.4.2 IMPES Example, Constant Permeability

The second numerical example uses the IMPES model for oil-water immiscible displacement.

The domain and discretization are the same as the previous test. Instead of the heterogeneous

diagonal tensor, the permeability in this test is a constant K = 100 [md]. All other physical

quantities remain the same as the previous test, including well data.

The implicit pressure time step is halved from the previous test at a constant ∆t = 0.05.

For further stability, the explicit saturation step is further partitioned, taking 5 saturation

steps for each pressure step. The model tolerances for the convergences of each step are:

1E-10 for Interface-GMRES, 1E-4 for Interface-Newton, 1E-5 for Pressure Jacobian Forward

Difference, 1E-6 for Saturation Jacobian Forward Difference, 1E-7 for Block-Newton, 1E-14

for Block-GMRES, and 1E-14 for Preconditioner-GMRES.

Currently, the multiscale preconditioner is not as effective at reducing the computational

cost of the IMPES model, as it was in the Fully-Implicit model. In Table 5.2, the average

number of Interface-GMRES iterations per time step was indeed reduced by 25% by Method

P2. However, since the Block-Interface problem is much easier to solve than in the previous

test, the runtime actually became worse by 63%. We believe the effectiveness of the precon-

ditioner will improve as the Block-Problems become more difficult. Figure 5.6 shows how the

difficulty of interface iteration is relatively flat in time for the IMPES model. We attribute

this to the total mobility (5.18) changing relatively slowly in time. As such, Method P3 is

not shown because there would be little benefit to periodic recomputation of a multiscale

basis.
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Table 5.2: Computational cost of Example 5.4.2 with Methods P1 and P2 in the IMPES

Model.

METHOD P1 METHOD P2

Avg. Iter. / Time Step 115.6 86.7

Runtime in Minutes 116.2 189.1

Figure 5.6: Interface-GMRES iterations versus time for Example 5.4.2 with Methods P1 and

P2 in the IMPES Model.
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