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The Nyman-Beurling Criterion paraphrases the Riemann Hypothesis as a closure problem in a Hilbert 

space. The simplest version of this, due to Baez-Duarte, states that RH is equivalent to one particular 

element in a Hilbert space being in the closure of a span of countably many other elements. We 

investigate this numerically and analytically.  In particular, we establish new formulas for the inner 

products of the vectors involved. 
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PRELIMINARIES 

In 1859, Bernhard Riemann posited a theory regarding the distribution of prime 

numbers.  To this day, his proposal remains what many consider to be the most important 

open problem in the whole of pure mathematics.  It is one of the Clay Mathematics 

Institute’s Millennium Prize Problems - the unsolved remnants of the twenty-three 

problems proffered in 1900 by David Hilbert.  Hilbert believed these problems to be the 

most impacting and influential problems in mathematics, and that they should occupy the 

attention of mathematicians throughout the following century. 

There have been several different reformulations of Riemann’s conjecture cultivated 

throughout that 20th century, and even some reformation as late as 2006.   We will 

investigate the hypothesis in the vein of some of the most recent developments that have 

been made.  Let us begin with some general definitions, as well as pertinent functions and 

theorems.  First and foremost, we define the function and conjecture that constitute the 

crux of this paper: 

Definition:  (Riemann Zeta Function) 

The Reimann Zeta function is defined on the half-plane 𝑠 ∈ ℂ with ℜ𝔢 𝑠 > 1 by 

ζ 𝑠 ≔  
1

𝑛𝑠

∞

𝑛=1

 . 

The Zeta function has long been a subject of great interest due to its many 

interesting qualities.  Chief among these qualities is its relation to the distribution of prime 

numbers.  Using the formula for a geometric series, and the convergence of ζ 𝑠  as a 

Dirichlet series, we can obtain the identity 

 
1

𝑛𝑠

∞

𝑛=1

 =   
1

1 − 𝑝−𝑠

𝑝

 , for ℜ𝔢 𝑠 > 1                                        1  
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over all primes, 𝑝.  This identity yields another noteworthy property of ζ in its relation to 

the following function: 

Definition:  (Möbius Function) 

For any  𝑛 ∈ ℕwith prime factorization𝑛 =  𝑝1
𝑎1𝑝2

𝑎2 … 𝑝𝑘
𝑎𝑘 , then 

𝜇 𝑛 ≔  
 −1 𝑘 , if  𝑎1 =  𝑎2 = ⋯ =  𝑎𝑘 = 1

0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  

From (1), we have 
1

ζ 𝑠 
=   1 −

1

𝑝𝑠 𝑝 =  1 −
1

2𝑠  1 −
1

3𝑠  1 −
1

5𝑠 … =  1 −
1

2𝑠 −
1

3𝑠 +

1

6𝑠  1 −
1

5𝑠 … .  From this it becomes clear that we can derive the identity  

1

ζ 𝑠 
=   

𝜇(𝑛)

𝑛𝑠

∞

𝑛=1

 , for ℜ𝔢 𝑠 > 1                                                   2  

Conjecture:  (Riemann Hypothesis) 

All non-trivial zeros of ζ s  have real part equal to 
1

2
.                                 (RH)                                        

It is important to note that zeros of the zeta function are not limited to those of the 

function as it is defined above.  Here, we are referring to the zeros of the zeta function as 

depicted by its analytic continuation.  This is a technique used to extend the domain of an 

analytic function defined on an open subset of the complex plane to a larger open subset.  

When the analytic continuation, 𝐹, of a function, 𝑓, is defined over connected subset, Ω ⊆ ℂ, 

then 𝐹 is unique to 𝑓on Ω.  Let us define a few key functions involved in the analytic 

continuation of ζ.  

Definition:  (Mellin Transform) 

For any𝑓:  0, ∞  →   ℝ, the Mellin transform of  𝑓is given by 

 ℳ𝑓  𝑠 ≔  𝜑 𝑠 =   
𝑡𝑠𝑓 𝑡 

𝑡

∞

0

𝑑𝑡 

The inverse transform is then given by 

 ℳ−1𝜑  𝑥 ≔  𝑓 𝑥 =  
1

2𝜋𝑖
 

𝜑 𝑠 

𝑥𝑠

𝑎+𝑖∞

𝑎−𝑖∞

𝑑𝑠 

Definition:  (Gamma Function) 

The Gamma function is defined on 𝑠 ∈ ℂ with ℜ𝔢 𝑠 > 0 by 
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Γ 𝑠 ≔  
𝑒−𝑡𝑡𝑠

𝑡
𝑑𝑡

∞

0

. 

The Gamma function has several interesting properties that are pertinent to our 

investigation.  It satisfies the functional equations: 

Γ 𝑠 + 1 = 𝑠Γ 𝑠  ,                                                                      3  

and 

Γ 𝑠  Γ 1 − 𝑠  =  
𝜋

sin 𝜋𝑠 
.                                                                 4  

It is well-known that the function 𝛧 𝑠 ≔ 𝜋
−𝑠

𝑡 Γ  
𝑠

2
 ζ 𝑠 is the analytic continuation of 

ζ onto the whole complex plane, except at 1 where ζ has a simple pole.  One method 

Riemann used to show this was via the Mellin transform of the Jacobi theta function 𝜃 𝑧 ≔

 𝑒𝑖𝜋𝑛2𝑧∞
−∞ , defined on the upper half of the complex plane.  Using the Poussin summation 

formula, it is straightforward to show that 𝜃 satisfies the functional equation 𝜃  −
1

𝑧
 =

 𝜃 𝑧  𝑖𝑧.  Then, we can employ the change of variables 𝑡 →  𝑛2𝜋𝑡 in the gamma function, 

yielding 𝑛−2𝑠𝜋−𝑠Γ 𝑠 =   𝑒−𝑛2𝜋𝑡 𝑡𝑠

𝑡
𝑑𝑡

∞

0
.  Summing both sides over ℕ, we can switch the 

summand with the integral, since both sides converge uniformly, and we achieve 

Γ 𝑠 

𝜋𝑠
 

1

𝑛2𝑠

∞

𝑛=1

=   𝑡𝑠  𝑒−𝑛2𝜋𝑡

∞

𝑛=1

𝑑𝑡

𝑡

∞

0

. 

Since 𝜃 𝑖𝑧 =   𝑒𝑖𝜋𝑛2𝑧−1
𝑛=−∞ + 1 +   𝑒𝑖𝜋𝑛2𝑧∞

𝑛=1 , then we have 

𝜋−𝑠Γ  𝑠  ζ 2𝑠 =   
1

2
 𝜃 𝑖𝑡 − 1 𝑡𝑠

𝑑𝑡

𝑡

∞

0

 

=   
1

2
 𝜃 𝑖𝑡 − 1 𝑡𝑠

𝑑𝑡

𝑡

1

0

+   
1

2
 𝜃 𝑖𝑡 − 1 𝑡𝑠

𝑑𝑡

𝑡

∞

1

 

From another change of variables 𝑡 →  
1

𝑡
 in the portion of the integral from 0 to 1, we have 

=  
1

2
 𝜃  −

1

𝑖𝑡
 − 1 𝑡−𝑠

𝑑𝑡

𝑡

∞

1

+  
1

2
 𝜃 𝑖𝑡 − 1 𝑡𝑠

𝑑𝑡

𝑡

∞

1

 

Since 𝜃  −
1

𝑧
 =  𝜃 𝑧  𝑖𝑧 , then 
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=  
1

2
  𝑡𝜃 𝑖𝑡 − 1 𝑡−𝑠

𝑑𝑡

𝑡

∞

1

+  
1

2
 𝜃 𝑖𝑡 − 1 𝑡𝑠

𝑑𝑡

𝑡

∞

1

 

=  
1

2
 𝜃 𝑖𝑡 − 1  𝑡

1

2
−𝑠 + 𝑡𝑠 

𝑑𝑡

𝑡

∞

1

+  
1

2
 −𝑡

1

2
−𝑠 − 𝑡−𝑠 

𝑑𝑡

𝑡

∞

1

 

=  −
1

1 − 2𝑠
−

1

2𝑠
−  

1

2
 𝜃 𝑖𝑡 − 1  𝑡

1

2
−𝑠 + 𝑡𝑠 

𝑑𝑡

𝑡

∞

1

 

It is clear now that the right hand side is analytic and defined on the whole complex 

plane except at the simple poles 𝑠 = 0 and 𝑠 =
1

2
.   However, this function is symmetric 

about the change of variables 𝑠 →  
1

2
− 𝑠.  So, changing from 2𝑠 to 𝑠, we have that 

𝜋−
𝑠

2Γ  
𝑠

2
 ζ 𝑠  is the analytic continuation onto ℂ ∖  1  . 

Now, we concern ourselves with the zeros of the zeta function as defined by its 

analytic continuation, 𝛧 𝑠 ; i.e. ζ 𝑠 =  
𝛧 𝑠 𝜋

𝑠
2

Γ 
𝑠

2
 

.  From (3) and (4), we can derive 

that Γ −𝑧  =  −
𝜋

𝑧Γ 𝑧  sin  𝜋𝑧  
.  Given this identity, it becomes clear that 

1

Γ 
𝑠

2
 

=  0 for 

all 𝑠 ∈  −2, −4, …  .  This set is commonly referred to as the trivial zeros of the Riemann 

zeta function.  

Let us define a few more number-theoretical functions, and then we will rigorously 

prove a very important theorem.   

Definition: (Prime Counting Function) 

The prime counting function  𝜋 ∶  1, ∞ →  ℕ is given explicitly by 

𝜋 𝑥 ≔ 𝑡𝑕𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑖𝑚𝑒𝑠 𝑙𝑒𝑠𝑠 𝑡𝑕𝑎𝑛 𝑜𝑟 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑥  

Definition: (Mangoldt Function) 

For any integer  𝑛 ≥ 1, then Λ ∶  ℕ →  ℝ by  

𝛬 𝑛 ≔  
𝑙𝑛 𝑝 , 𝑖𝑓 𝑛 =  𝑝𝑚  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑝𝑟𝑖𝑚𝑒 𝑝 𝑎𝑛𝑑 𝑠𝑜𝑚𝑒 𝑚 ≥ 1 

 0,          𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒                                                                 
  

Definition: (Chebychev 𝜓-function) 

The Chebychev function 𝜓 ∶  1, ∞ →  ℕ is given by 

𝜓 𝑥 ≔  Λ 𝑛 

𝑛≤𝑥
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Theorem:  (Prime Number Theorem) 

𝑙𝑖𝑚
𝑥→∞

𝑥 𝜋 𝑥 

ln 𝑥 
 =   1                                                                PNT  

Proof:  Taking the logarithm of (1), we have ln ζ 𝑠  =  ln    1 −
1

𝑝𝑠 
−1

𝑝  = − ln  1 −𝑝

1

𝑝𝑠 ; 

⇒       
𝑑

𝑑𝑠
ln ζ 𝑠  = −  

𝑑

𝑑𝑠
ln  1 −

1

𝑝𝑠
 

𝑝

=   
ln 𝑝 

𝑝𝑠 − 1
𝑝

 

Next, fix a prime, 𝑝.  Then 

 
Λ  𝑝𝑠 𝑘 

 𝑝𝑠 𝑘

∞

𝑘=1

=  
ln 𝑝 

 𝑝𝑠 𝑘

∞

𝑘=1

 = ln(𝑝)  
1

 𝑝𝑠 𝑘

∞

𝑘=1

=  ln(𝑝)
𝑝𝑠

1 − 𝑝𝑠
 

⇒   
Λ 𝑛 

𝑛𝑠

∞

𝑛=1

=  
1

𝑝𝑠
ln(𝑝)

𝑝𝑠

1 − 𝑝𝑠

𝑝

=  −
𝑑

𝑑𝑠
ln ζ 𝑠  =  −

ζ′ 𝑠 

ζ 𝑠 
 

Since Λ 𝑛  is arithmetic, then Perron’s formula, which employs the Mellin transform, yields 

 
Λ 𝑛 

𝑛𝑠

∞

𝑛=1

 =  −
ζ′  𝑠 

ζ 𝑠 
     ⇒   Λ 𝑛 

𝑛≤𝑥

=  
1

2𝜋𝑖
  −

ζ′ 𝑠 

ζ 𝑠 
 

𝑥𝑠

𝑠
 𝑑𝑠

𝑎+𝑖∞

𝑎−𝑖∞

 

So, we have 

𝜓 𝑥 =  
1

2𝜋𝑖
  −

ζ′ 𝑠 

ζ 𝑠 
 

𝑥𝑠

𝑠
 𝑑𝑠

𝑎+𝑖∞

𝑎−𝑖∞

 

We know that at any 𝑥, the integral of this contour is evaluated as a sum of the opposites of 

the residues of each singularity of the integrand.  We know that ζ , as defined by its analytic 

continuation over the complex plane, has a simple pole at  𝑠 = 1 , a set of trivial zeros at all 

even negative integers, and a set of nontrivial zeros.  Combining these singularities of ζ with 

the singularity 𝑠 = 0 of the integrand, we achieve 

𝜓 𝑥 =  𝑥 −  
𝑥−2𝑛

2𝑛

∞

𝑛=1

−  
𝑥𝜌

𝜌
𝜌

− 
ζ′ 0 

ζ 0 
 

Since the convergence of both series is uniform for 𝑥 > 1, then we have 

 𝜓 𝑡 𝑑𝑡

𝑥

0

=  
𝑥2

2
 −  

𝑥−2𝑛+1

2𝑛 2𝑛 − 1 

∞

𝑛=1

−  
𝑥𝜌+1

𝜌 𝜌 + 1 
𝜌

− 
ζ′ 0 

ζ 0 
𝑥 + 𝐶 
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⇒   
 𝜓 𝑡 𝑑𝑡

𝑥

0

𝑥2

2

=  1 − 
1

𝑥
  

𝑥−2𝑛

𝑛 2𝑛 − 1 

∞

𝑛=1

−  2  
𝑥𝜌

𝜌 𝜌 + 1 
𝜌

− 
ζ′ 0 

ζ 0 
+

1

𝑥
𝐶  

⇒  
 𝜓 𝑡 𝑑𝑡

𝑥

0

𝑥2

2

→  1  as  𝑥 → ∞ 

So we have 𝜓 𝑡 𝑑𝑡
𝑥

0
 ~ 

𝑥2

2
.  Fix 𝜆 > 1.  Then for 𝜀 > 0, ∃ 𝑋 such that ∀ 𝑥 ≥ 𝑋 

 1 − 𝜀 
𝑥2

2
<  𝜓 𝑡 𝑑𝑡

𝑥

0

<  1 + 𝜀 
𝑥2

2
 and   1 − 𝜀 

 𝜆𝑥 2

2
<  𝜓 𝑡 𝑑𝑡

𝜆𝑥

0

<  1 + 𝜀 
 𝜆𝑥 2

2
 

⇒     1 − 𝜀 
 𝜆𝑥 2 − 𝑥2

2
− 2𝜀𝑥2 <  𝜓 𝑡 𝑑𝑡

𝜆𝑥

0

−  𝜓 𝑡 𝑑𝑡

𝑥

0

<  1 + 𝜀 
 𝜆𝑥 2 − 𝑥2

2
+ 2𝜀𝑥2     (5)  

Since 𝜓 is increasing, we have 

 𝜆𝑥 − 𝑥 𝜓 𝑥  ≤  𝜓 𝑡 𝑑𝑡

𝜆𝑥

𝑥

≤  𝜆𝑥 − 𝑥 𝜓 𝜆𝑥                                                   (6)  

Combining (5) and (6) yields inequalities independent of the integral: 

𝜓 𝑥 

𝑥
≤    1 + 𝜀 

𝜆 + 1

2
+  

𝜀

𝜆 − 1
 , and 

 1 − 𝜀 
𝜆 + 1

2𝜆
− 

𝜀

𝜆 𝜆 − 1 
 ≤  

𝜓 𝜆𝑥 

𝜆𝑥
  . 

We can choose  𝜆 close enough to 1 and 𝜀 close enough to zero that for sufficiently 

large 𝑋 we have 
𝜓 𝑥 

𝑥
 is within any arbitrarily small neighborhood of 1 for all 𝑥 ≥ 𝑋; 

i.e. 𝜓 𝑥  ~ 𝑥.   

Finally, we have 

𝜓 𝑥 =   Λ 𝑛 

𝑛≤𝑥

=   ln 𝑝  
ln 𝑥 

ln 𝑝 
 

𝑝≤𝑥

≤   ln 𝑥 

𝑝≤𝑥

=  𝜋 𝑥 ln 𝑥  . 

Also, for 1< 𝑦 < 𝑥 ,  

𝜋 𝑥 =  𝜋 𝑦 +  1

𝑦<𝑝≤𝑥

 ≤  𝜋 𝑦 +  
ln 𝑝 

ln 𝑦 
𝑦<𝑝≤𝑥

< 𝑦 +
1

ln 𝑦 
 ln 𝑝 

𝑦<𝑝≤𝑥

 ≤ 𝑦 +
1

ln 𝑦 
𝜓 𝑥  

Then, for 𝑦 =
𝑥

 ln 𝑥  
2 , we have  
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𝜋 𝑥 ≤
𝑥

 ln 𝑥  
2 +

1

ln 𝑥 − 2 ln ln 𝑥  
𝜓 𝑥  

⇒  
𝜋 𝑥 ln 𝑥 

𝑥
≤

1

ln 𝑥 
+

ln 𝑥 

ln 𝑥 − 2 ln ln 𝑥  

𝜓 𝑥 

𝑥
 

Thus 

𝜓 𝑥 

𝑥
≤

𝜋 𝑥 ln 𝑥 

𝑥
≤

1

ln 𝑥 
+  

1

1 −
2 ln ln 𝑥  

𝑥

 
𝜓 𝑥 

𝑥
 

So, since 
𝜓 𝑥 

𝑥
→ 1 as 𝑥 → ∞ , then these estimates reveal that 

𝜋 𝑥 ln 𝑥 

𝑥
→ 1 as 𝑥 → ∞ as well. 

∎ 

Currently, the Prime Number Theorem is the best estimate of the distribution of 

primes that we have.  And while it is an impressive postulate that sheds light on the 

behavior of prime numbers, it is still not that great an estimation.  This brings us to the 

main consequence of the Riemann Hypothesis. If RH is true, this would provide a stronger 

estimate of the prime counting function: 

𝜋 𝑥 =   
𝑑𝑡

log 𝑡

𝑥

0

 + 𝑂  𝑥 log 𝑥 . 

In his 1950 thesis, Bertil Nyman made an astounding breakthrough.  He proved that 

RH is equivalent to a problem concerning closure in a Hilbert space.  Let us define the space 

of functionals 𝐿𝑝 0,1 ≔  𝑓:  0,1 → ℂ     𝑓 𝑥  𝑝
1

0
𝑑𝑥

𝑝

<  ∞ .  Subsequently, we define a 

subspace 

of 𝐿2 0,1  as 𝑁 0,1 ≔  𝑔 ∊  𝐿2 0,1   𝑔 𝑥 =  𝑐𝑘  
𝜃𝑘

𝑥
 𝑛

𝑘=1  , 0 < 𝜃𝑘 ≤ 1 and  𝑐𝑘𝜃𝑘
𝑛
𝑘=1 = 0  , 

where, for all 𝑥 ∈ ℝ , the fractional part of 𝑥 is given by  𝑥  , and  𝑥  denotes the integer 

part of 𝑥  (i.e. 𝑥 =  𝑥 +  𝑥 ).   

Theorem:  (Nyman): 

RH is true if and only if 𝑁 0,1 is dense in 𝐿2 0,1 . 

Five years later, Arne Beurling formulated a generalization of Nyman’s theorem. 

Today, it is generally referred to as the Nyman-Beurling Criterion for the Riemann 

Hypothesis. 

Theorem:  (Beurling): 
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For 1 < 𝑝 < ∞, the following are equivalent:                                                                   (NB) 

i. ζ 𝑠 has no zeros in the half-plane ℜ𝔢 𝑠 >
1

𝑝
 

ii. 𝑁 0,1 is dense in 𝐿𝑝 0,1  

iii. 𝜒 0,1  ∈  𝑁 0,1        , where 𝜒 0,1  is the characteristic function on  0,1 . 

 

In 2002, Luis Báez -Duarte modified NB into a problem regarding a countable set.  

Let us define 𝜚𝑎 𝑥 ∶=   
1

𝑎𝑥
 , and 𝔅 be the space of all linear combinations of the 

set  𝜚𝑎  𝑎 ∈ ℕ .  Then we have 

Theorem:  (Báez-Duarte) 

RH is true if and only if 𝜒 0,1 ∈  𝔅 .                                                              (BD) 
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RESULTS AND DISCUSSION 

Let 𝒱 denote the ℓ2-space of sequences 𝒙 =   𝑥𝑖 𝑖=1
∞  such that 𝒙 ∈

ℝ and  
 𝑥𝑖 

2

𝑖 𝑖+1 
∞
𝑖=1  converges.  For any 𝒙, 𝒚 ∈ 𝒱, we define the inner-product  𝒙, 𝒚 =

  
𝑥𝑖𝑦𝑖

𝑖 𝑖+1 
∞
𝑖=1 .  (Note: Generally, this space is defined for sequences over the complex field 

with the inner-product  
𝑥𝑖𝑦𝑖 

𝑖 𝑖+1 
∞
𝑖=1 , but we restricted our investigation to the real numbers.)  

We then can define 𝒰, an orthogonal basis for 𝒱, as 𝒰 ≔  𝒖𝟏, 𝒖𝟐, …  , where 𝒖𝒊 =

  0, . . ,0,1,0, . .  , the 1 in the 𝑖𝑡𝑕position.  Then, for each 𝑗 ∈ ℕ, we define the element 𝒗(𝒋) ∈

𝒱 as 𝒗(𝒋) ≔  𝑖(𝑚𝑜𝑑  𝑗 )𝒖𝒏
∞
𝑖=1 , and a constant vector 𝒗 ∈ 𝒱 as 𝒗 ≔  𝒖𝒊

∞
𝑖=1 .  Finally, let 𝒱(𝑛) be 

the span of the set  𝒗(1), … , 𝒗(𝑛) .  Under the framework of this particular notation, we can 

rephrase Báez-Duarte’s criterion: 

The Riemann Hypothesis is true if and only if 𝒗is in the closure of   𝒱(𝑛)∞
𝑛=1 .         (7)               

It is evident that the constant vector  𝒗 cannot lie in any 𝒱(𝑛).  However, since 𝒱 is an inner-

product space, then at each 𝑛, there is a non-negative minimal distance from 𝒗 to 𝒱(𝑛).  In 

other words, at each 𝑛, there is an “error” vector 𝒆(𝒏) that is orthogonal to 𝒱(𝑛)and that the 

difference 𝒆(𝒏) −  𝒗 is in 𝒱(𝑛). 
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Figure 1.  

Subsequently, at each 𝑛, there is a unique set of 𝑛 scalars 𝒜(𝑛) =  𝛼1
(𝑛)

, … , 𝛼𝑛
(𝑛)

  that serve 

as coefficients to the spanning set  𝒗(1), … , 𝒗(𝑛)  for which 𝒆(𝒏) −  𝒗 is a linear combination.  

Hence  𝒆(𝒏), 𝒗(𝒋) = 0 for each 𝒗(𝒋) ∈  𝒗(1), … , 𝒗(𝑛) , and this yields the 𝑛-dimensional 

system  𝒗, 𝒗 𝑗   =   𝛼𝑘
 𝑛 

 𝒗(𝒌), 𝒗 𝑗   𝑛
𝑘=1 .  Assuming the norm,  .  , induced from the inner-

product, we can once again restate BD: 

The Riemann Hypothesis is true if and only if  𝒆(𝑛)  → 0 as 𝑛 → ∞.                    (8) 

We can now rely on some basic linear manipulation to solve for the set of scalars 𝒜(𝑛).  

Let’s call 𝐶(𝑛)the 𝑛 × 𝑛 matrix given by 𝐶(𝑛) =   𝑐𝑗 ,𝑘 , where 𝑐𝑗 ,𝑘 =   𝒗(𝒋), 𝒗 𝑘  .  It is evident 

that 𝐶(𝑛) is both real and symmetric.  Then  𝒗, 𝒗 𝑗   =  𝛼𝑘
 𝑛 

𝑐𝑗 ,𝑘
𝑛
𝑘=1 .  Also, let 𝐵(𝑛) be the 

𝑛 ×  𝑛  inverse of 𝐶(𝑛), with entries 𝑏𝑘,𝑗
 𝑛 

 (Note: The superscript  𝑛  is necessary in 𝑏𝑘,𝑗
 𝑛 

, 

since the 𝑘, 𝑗𝑡𝑕entry of the inverse is dependent on 𝑛 , as opposed to 𝑐𝑗 ,𝑘).  Then we have    

𝛼𝑘
 𝑛 

=   𝑏𝑘,𝑗
 𝑛  𝒗(𝑗 ), 𝒗 𝑘  .  

𝑛

𝑗 =1

 

Now, we will employ a function that will let us express  𝒗, 𝒗 𝑗    and  𝒗(𝑗 ), 𝒗 𝑘   as 

finite sums. 

Definition:  (Digamma Function) 

The Digamma function is defined on  ℂ\ −𝑛  𝑛 ∈ ℕ by   

𝒔 𝑛  

𝒆 𝑛  
 

𝒱 𝑛  

𝒗 

𝒆 𝑛  

𝒆 𝑛  
 



 11 

Ψ 𝑥  ≔
𝑑

𝑑𝑥
ln Γ 𝑥  =  

Γ′ 𝑥 

Γ 𝑥 
 

Note:  Though the notation for this function, Ψ, is similar to the Chebychev function,𝜓, 

besides the subtleties of italics and lower-case, understand that these signify two separate 

functions; this is the common nomenclature.  With this function, we can show the 

following: 

Lemma1:      𝒗, 𝒗 𝑗   = 𝑙𝑛 𝑗  

Proof:  We have the identity Ψ 𝑧 + 1 =  − 𝛾 +   
𝑧

𝑛 𝑛+𝑧 
∞
𝑛=1 , where Ψ 1 =  𝛾  is the Euler 

constant.  Through some manipulation, we achieve the following: 

 
1

(𝑛𝑟 + 𝑑 + 1)(𝑛𝑟 + 𝑑)

∞

n=0

=   
Ψ  

𝑑+1

𝑟
 − Ψ  

𝑑

𝑟
 

𝑟
                                9  

Then, since  𝒗, 𝒗 𝑗   =  
1∙𝑖(𝑚𝑜𝑑  𝑗 )

𝑖 𝑖+1 
∞
𝑖=1  , and since  𝑛𝑟 + 𝑑 (𝑚𝑜𝑑  𝑟) = 𝑑(𝑚𝑜𝑑  𝑟) , ∀ 𝑛 (i.e. the 

numerators have period 𝑗), then, by rearranging terms, this sum can be expressed as 

 𝑡  
1

(𝑛𝑗 + 𝑡 + 1)(𝑛𝑗 + 𝑡)

∞

𝑛=0

𝑗−1

𝑡=1

 

By (9), we have 

 𝒗, 𝒗 𝑗   =   𝑡  
Ψ  

𝑡+1

𝑗
 − Ψ  

𝑡

𝑗
 

𝑗
 

𝑗−1

𝑡=1

 

               =
−1

𝑗
 Ψ 

1

𝑗
 − Ψ  

2

𝑗
 +  2Ψ  

2

𝑗
 − 2Ψ  

3

𝑗
 +  … +   𝑗 − 1 Ψ 

𝑗 − 1

𝑗
 −  𝑗 − 1 Ψ  

𝑗

𝑗
   

             =
−1

𝑗
 Ψ 

1

𝑗
 +  Ψ  

2

𝑗
  … +  Ψ  

𝑗 − 1

𝑗
 + Ψ  

𝑗

𝑗
 − Ψ  

𝑗

𝑗
 −  𝑗 − 1 Ψ 1   

            =
−1

𝑗
  Ψ  

𝑡

𝑗
 

𝑗

𝑡=1

 + Ψ 1  

It is well-known that  Ψ  
𝑡

𝑗
 

𝑗
𝑡=1 =  −𝑗 𝛾 + ln 𝑗  , and Ψ 1 =  −𝛾.  Hence 

 𝒗, 𝒗 𝑗    =   
−1

𝑗
 −𝑗(𝛾 + ln 𝑗  − 𝛾 =   ln 𝑗  

            ∎ 
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Now at each 𝑘,   𝛼𝑘
 𝑛 

=   𝑏𝑘,𝑗
 𝑛 

 ln 𝑗 𝑛
𝑗 =1 .  Next, we 

examine  𝒗 𝑘 , 𝒗 𝑗   =   
𝑖(𝑚𝑜𝑑  𝑗 )𝑖(𝑚𝑜𝑑  𝑘)

𝑖(𝑖+1)

∞
𝑖=1 .  Here, the period of the numerators is 𝑗𝑘.  So, 

again, by rearranging terms, and by (9), we have    

 𝒗 𝑘 , 𝒗 𝑗   =  
1

𝑗𝑘
 𝑡(𝑚𝑜𝑑  𝑗 ) ∙ 𝑡(𝑚𝑜𝑑  𝑘) ∙  Ψ  

𝑡 + 1

𝑗𝑘
 − Ψ  

𝑡

𝑗𝑘
  

𝑗𝑘 −1

𝑡=1

 

⇒   𝑐𝑗𝑘 =     
𝑡

𝑗
 ∙  

𝑡

𝑘
 ∙  Ψ  

𝑡 + 1

𝑗𝑘
 − Ψ 

𝑡

𝑗𝑘
  

𝑗𝑘 −1

𝑡=1

 

Let us now refer to 𝒗 − 𝒆(𝒏), the orthogonal projection of 𝒗 onto 𝒱(𝑛), as 𝒔(𝒏).  

Since 𝒔(𝒏) =   𝛼𝑘
(𝑛)

𝒗 𝑘 𝑛
𝑘=1 , then the 𝑖𝑡𝑕  component 

of 𝒔(𝒏) is 𝑠𝑖
(𝑛)

=   𝑖(𝑚𝑜𝑑  𝑘)𝑛
𝑘=1 𝛼𝑘

(𝑛)
;  that is 𝑠𝑖

(𝑛)
= 1 − 𝑒𝑖

(𝑛)
.  By Lemma1, we also have for 

each 𝑘, 𝛼𝑘
(𝑛)

=   𝑏𝑘𝑗
(𝑛)

 ln(𝑗)𝑛
𝑗=1 .  Since RH is equivalent to 𝒆(𝒏) tending to zero, then clearly if 

there is any 𝑖 such that 𝑠𝑖
(𝑛)

does not converge to 1 as 𝑛 → ∞, then RH does not hold.  It is 

natural, then, to look for a limit 𝛼𝑘  to which each 𝛼𝑘
(𝑛)

converges, so that 𝑠𝑖
(𝑛)

→ 1 at each 𝑖.  

Lemma2: 𝑙𝑖𝑚𝑛→∞ 𝒔(𝒏) = 𝒗 if and only if  𝑙𝑖𝑚𝑛→∞ 𝛼𝑘
(𝑛)

= −
𝜇 𝑘 

𝑘
  , ∀ 𝑘. 

Proof:   Assume 𝛼𝑘
(𝑛)

 →  −
𝜇 𝑘 

𝑘
as 𝑛 →  ∞.  Then at each 𝑖 , we have 

𝑠𝑖
(𝑛)

=   𝛼𝑘
(𝑛)

∙ 𝑖 𝑚𝑜𝑑  𝑘 

𝑛

𝑘=1

=  𝛼𝑘
(𝑛)

∙ 𝑘  
𝑖

𝑘
 

𝑛

𝑘=2

 

        =   𝛼𝑘
(𝑛)

∙ 𝑘  
𝑖

𝑘
 

𝑖

𝑘=2

+   𝛼𝑘
(𝑛)

∙ 𝑘  
𝑖

𝑘
 

𝑛

𝑘=𝑖+1

=   𝛼𝑘
(𝑛)

∙ 𝑘  
𝑖

𝑘
 

𝑖

𝑘=2

+   𝛼𝑘
(𝑛)

∙ 𝑖

𝑛

𝑘=𝑖+1

 

        = −  𝛼𝑘
(𝑛)

∙ 𝑘  
𝑖

𝑘
 

𝑖

𝑘=2

+   𝛼𝑘
(𝑛)

∙ 𝑘  
𝑖

𝑘
 

𝑖

𝑘=2

 𝛼𝑘
(𝑛)

∙ 𝑖

𝑛

𝑘=𝑖+1

 

         = −  𝛼𝑘
(𝑛)

∙ 𝑘  
𝑖

𝑘
 

𝑖

𝑘=2

+   𝛼𝑘
(𝑛)

∙ 𝑖

𝑛

𝑘=2

 

⇒  lim
𝑛→∞

𝑠𝑖
(𝑛)

=  −  lim
𝑛→∞

𝛼𝑘
(𝑛)

∙ 𝑘  
𝑖

𝑘
 

𝑖

𝑘=2

+  lim
𝑛→∞

 𝛼𝑘
(𝑛)

∙ 𝑖

𝑛

𝑘=2
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⇒              𝑠𝑖 =    
𝜇 𝑘 

𝑘
∙ 𝑘  

𝑖

𝑘
 

𝑖

𝑘=2

+  𝑖 lim
𝑛→∞

 𝛼𝑘
(𝑛)

𝑛

𝑘=2

 

Since  
𝜇 𝑘 

𝑘
∙ 𝑘  

𝑖

𝑘
 𝑖

𝑘=1 = 1 , ∀ 𝑖 ≥ 1 , we have  

𝑠𝑖 =  1 + (𝑠1 − 1) 𝑖 

If 𝑠1 ≠ 1 , then 𝑠𝑖  diverges.  Hence𝑠1 = 1 , and, subsequently 𝑠𝑖 = 1 , ∀ 𝑖  ; 

i.e. limn→∞ 𝒔 𝒏 = 𝒗.    

Conversely, assume lim𝑛→∞ 𝒔 𝒏 = 𝒗; i.e. lim𝑛→∞ 𝑠𝑖
(𝑛)

 → 1 , ∀ 𝑖 .  We have 

𝑠1
(𝑛)

=  𝛼1
(𝑛)

1 𝑚𝑜𝑑  1 + 𝛼2
(𝑛)

1 𝑚𝑜𝑑  2 + … + 𝛼𝑛
(𝑛)

1 𝑚𝑜𝑑  𝑛  =   𝛼2
(𝑛)

 +  … + 𝛼𝑛
(𝑛)

, and 

𝑠2
(𝑛)

=  𝛼1
(𝑛)

2 𝑚𝑜𝑑  1 + 𝛼2
(𝑛)

2 𝑚𝑜𝑑  2 + … + 𝛼𝑛
 𝑛 

2 𝑚𝑜𝑑  𝑛  =  2  𝛼3
(𝑛)

+  … + 𝛼𝑛
 𝑛 

  

⇒    2𝑠1
(𝑛)

− 𝑠2
 𝑛 

=   𝛼2
(𝑛)

 

⇒    2𝑠1 − 𝑠2 =   2 − 1 =  2𝛼2  ⇒    𝛼2 =  
1

2
=  −

𝜇(2)

2
 

Now we employ strong induction on 𝑘; assume 𝛼𝑘
(𝑛)

→ 𝛼𝑘 = −
𝜇(𝑘)

𝑘
, for 𝑘 ∈ {1, … , 𝑖 − 1}.  

Then 

𝑠𝑖
(𝑛)

=  𝛼1
(𝑛)

𝑖 𝑚𝑜𝑑  1 + 𝛼2
(𝑛)

𝑖 𝑚𝑜𝑑  2 +  … + 𝛼𝑛
(𝑛)

𝑖 𝑚𝑜𝑑  𝑛  

=   𝛼𝑘
(𝑛)

𝑖 𝑚𝑜𝑑  𝑘 

𝑖−1

𝑘=2

+  𝛼𝑘
(𝑛)

𝑖

𝑖−1

𝑘=2

 

⇒    1 =  lim
𝑛→∞

 𝛼𝑘
(𝑛)

𝑖 𝑚𝑜𝑑  𝑘 

𝑖−1

𝑘=2

+  lim
𝑛→∞

 𝛼𝑘
(𝑛)

𝑖

𝑛

𝑘=𝑖+1

 , and   

       1 =  lim
𝑛→∞

 𝛼𝑘
(𝑛)

1 𝑚𝑜𝑑  𝑘 

𝑛

𝑘=2

=  lim
𝑛→∞

 𝛼𝑘
(𝑛)

𝑛

𝑘=2

 

⇒    𝑖 =  lim
𝑛→∞

 𝛼𝑘
(𝑛)

𝑖

𝑛

𝑘=2

 

 𝑖 − 1  =  lim
𝑛→∞

 𝛼𝑘
(𝑛)

𝑖

𝑛

𝑘=2

− lim
𝑛→∞

 𝛼𝑘
 𝑛 

𝑖 𝑚𝑜𝑑  𝑘 

𝑖−1

𝑘=2

− lim
𝑛→∞

 𝛼𝑘
 𝑛 

𝑖

𝑛

𝑘=𝑖+1

 

               =  lim
𝑛→∞

 𝛼𝑘
(𝑛)

 𝑖 − 𝑖 𝑚𝑜𝑑  𝑘  

𝑖−1

𝑘=2

− lim
𝑛→∞

 𝛼𝑘
 𝑛 

𝑖

𝑖−1

𝑘=2

+ 𝛼𝑖
 𝑛 

𝑖 
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              = − lim
𝑛→∞

 
𝜇 𝑘 

𝑘
 
𝑖

𝑘
 

𝑖−1

𝑘=2

+ 𝑖 lim
𝑛→∞

𝛼𝑖
 𝑛 

 = − 1 − 𝑖 − 𝜇 𝑖  + 𝑖 lim
𝑛→∞

𝛼𝑖
 𝑛 

 

⇒       𝛼𝑖
 𝑛 

→  
𝜇 𝑖 

𝑖
 as  𝑛 → ∞. 

∎ 

 

Thus, our final rephrasing of BD: 

For  𝛼𝑘
(𝑛)

=  𝑏𝑘𝑗
(𝑛)

 𝑙𝑛(𝑗)𝑛
𝑗 =1 , then RH is true if and only if 𝛼𝑘

(𝑛)
 →  −

𝜇 𝑘 

𝑘
 , ∀ 𝑘 ∈ ℕ. 

Conjecture: 

RH is true if and only if   𝑐𝑗𝑘 ∙  −
𝜇 𝑘 

𝑘
 ∞

𝑘=1 = ln 𝑗                                  (10) 

The following is a graph of 𝑛  vs.   𝑐5𝑘 ∙  −
𝜇 𝑘 

𝑘
 𝑛

𝑘=1 − ln 5 . 

 

Figure 2. 
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