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THEORETICAL AND EMPIRICAL ANALYSIS

OF COMMON FACTORS IN A TERM STRUCTURE MODEL

Ting Ting Huang, M.S.

University of Pittsburgh, 2008

This paper studies dynamical and cross-sectional structures of bonds, typically used as risk-

free assets in mathematical finance. After reviewing a mathematical theory on common

factors, also known as principal components, we compute empirical common factors for 10

US government bonds (3month, 6month, 1year, 2year, 3year, 5year, 7year, 10year, 20year,

and 30year) from the daily data for the period 1993–2006 (data for earlier period is not

complete) obtained from the official web site www.treas.gov. We find that the principal

common factor contains 91% of total variance and the first two common-factors contain 99.4%

of total variance. Regarding the first three common factors as stochastic processes, we find

that the simple AR(1) models produce sample paths that look almost indistinguishable (in

characteristic) from the empirical ones, although the AR(1) models do not seem to pass the

normality based Portmanteau statistical test. Slightly more complicated ARMA(1,1) models

pass the test. To see the independence of the first two common factors, we calculate the

empirical copula (the joint distribution of transformed random variables by their marginal

distribution functions) of the first two common-factors. Among many commonly used copulas

(Gaussian, Frank, Clayton, FGM, Gumbel), the copula that corresponds to independent

random variables is found to fit the best to our empirical copula. Loading coefficients (that of

the linear combinations of common factors for various individual bonds) are briefly discussed.

We conclude from our empirical analysis that yield-to-maturity curves of US government

bonds from 1993 to 2006 can be simply modelled by two independent common factors which,

in turn, can be modelled by ARMA(1,1) processes.
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1.0 INTRODUCTION

Term structure models deal with dynamical and cross sectional behavior of bonds of various

maturities. In many classical and modern theories of finance, bonds are regarded as risk

free assets used for hedging and pricing financial security derivatives. Thus, term structure

models are the foundations of many modern theories and have been attracted tremendous

amount of attention in the last two decades.

Since the pioneer work of Vasicek [27] in 1977, there has been significant amount of

progress towards term structure models; see, for instance, Cox, Ingersoll, and Ross [10]

(1985), Ho and Lee [17] (1986), Black, Derman, and Troy [5] (1990), Heath, Jarrow and

Morton [16](1992). In a typical term structure model, yields or prices of zero coupon bond

are modelled by state variables which can be either observable or unobservable.

In 1996, Duffie and Kan [14] systematically studied a special class of term structures, the

Affine Term Structure Model (ATSM); here the term “affine” mainly refers to the assumption

that yields are liner combinations of state variables. An affine model gives a full description

of the cross sectional and dynamical behavior of interest rates. At any point of time, the

simple linear span (with deterministic loading coefficients) by the state variables determines

the cross-section of interest rates. The dynamic properties of yields are inherited from

the dynamics of the state process. For any set of maturities, the model guarantees the

corresponding family of bond price processes satisfies the arbitrage–free conditions. Recently

Junker, Szimayer, and Wagner [19] (2006) proposed a nonlinear cross-sectional dependence

in the term structure of US treasury bonds by certain copula functions, and pointed out risk

management implications.

Quite often the stable variables are modelled by common factors, also known as principal

components. With the help of common factors, one can, with as little loss of information
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as possible, reduce large-dimensional data to a limited number of factors. In this direction,

Litterman and Scheinkman [21] in 1991 used a principal component analysis on a covariance

matrix of three US treasury bonds of 1986 to estimate the common factors. Pagan, Hall,

and Martin [22] (1995) used a set of stylized factors that pertain to the nature for the term

structure modelling. Baum and Bekdache [4] (1996) also applied stylized facts as common

factor to the dynamics of short-, medium-, and long-term interest rates, and explained

the factors by incorporating asymmetric GARCH representations. Connor [9] (1995) and

Campbell, Lo, and MacKinlay [7] (1997) summarized that there are three types of factor

models available for examining the stochastic behavior of multiple assets and returns. The

first one is the known-factor model which uses observable factors by linear regression to

describe the common behavior of multiple returns. The second type is the fundamental

factor model which use some micro-attributes of assets to construct common factors and

explain assets returns. The third one is the statistical factor model which treats the factors

as the latent variables or the unobservables which could be estimated from historical returns,

and can capture the stochastic behavior of the multiple returns. The statistical factors,

as discussed by Alexander [1] (2001) and Zivot and Wang [28] (2003), can be modelled

by principal components which are linear combinations of returns; these factors accurately

reflect the structure of the covariance of multivariate time series and the sources of variations

of multiple asset returns. Cochrane [8] (2001) demonstrated that pricing kernels can be linear

in the factors both in the economic time series and in the pricing models.

The aim of this paper is to perform empirical examination for a common factor model

and report our new findings. Our work is similar to that of Piazzesi [23], but we focused on

the empirical part, instead of the almost impossible data fitting about the cross sectional

behavior (loading coefficients) of actual yields to that derived from consistent (arbitrage–

free) term structure models such as ATSM. We shall use principal components, which here

we also call common factors, as state variables to construct a general affine term structure

model. We compute empirical common factors for 10 US government bonds (the 3month,

6month, 1year, 2year, 3year, 5year, 7year, 10year, 20year, and 30year) from the daily data

from 1993 to 2007, the only period from which we can obtain a complete official data set

from the web site www.treas.gov. We find that the principal common factor contains 91% of

2



total variance and the first two common-factors contains 99.4% of total variance. Regard-

ing the first three common factors as stochastic processes, we find that the simple AR(1)

models produce sample paths that look almost indistinguishable (in characteristic) from the

empirical ones, although the AR(1) models do not seem to pass certain normality based

statistical tests. A slightly more complicated ARMA(1,1) model passes the test. Also we

verify the independency of the first two common factors by copulas. Among many com-

monly used copulas (Gaussian, Frank, Clayton) we found that the copula that corresponds

to independent random variables fits the best to our empirical copula. Factors loading (the

coefficients of the linear combinations of common factors for various individual bonds) are

briefly discussed. We conclude from our empirical analysis that yield-to-maturity curve of

US government bond from 1993 to 2006 can be simply modelled by two independent common

factors, which in turn, can be modelled by ARMA(1,1) processes.

The rest of the paper is organized as follows. Section 2 is devoted to a review on theory

of common factors of random variables. The theory is then applied in Section 3 to a set of

several times series. In Section 4, we present an empirical formula that describes yields of

US government bonds by a two-factor model, and demonstrate how the empirical common

factors can be modelled by AR(1) and ARMA(1,1) processes. In Section 5 we demonstrate

our new discovery: the two empirical factors can be considered as independent in the sense

that their joint distribution is very close to the product of the two marginal distributions.

The conclusion is confirmed with the help of a theory of copulas. Section 6 concludes the

paper.
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2.0 COMMON FACTORS OF RANDOM VARIABLES

We begin with a review of the theoretical analysis on the common factors, also known as

principal components [26].

Let (Ω,F , P ) be a probability space. For an L2 random variable f , we denote

E[f ] :=

∫

Ω

f(x) P (dx), Var[f ] :=

∫

Ω

(
f(x)− E[f ]

)2

P (dx).

For L2 random variables f and g, their covariance are denoted by

Cov[f, g] := E
[
(f − E[f ])(g − E[g])

]
=

∫

Ω

(f − E[f ])(g − E[g])P (dx).

Also, for random variables g1, · · · , gk we denote

span{g1, · · · , gk} =
{ k∑

i=1

cigi | (c1, · · · , ck) ∈ Rk
}

.

Given random variables ξ, g1, · · · , gk, the best linear indicator of ξ by g1, · · · , gk is the

projection of ξ on span{1, g1, · · · , gk} where 1 is the constant function: 1(x) = 1 ∀x ∈ Ω.

That is, the best linear indicator is a linear combination c01 +
∑k

i=1 cigi such that

∥∥∥ξ − (c0 +
k∑

i=1

cigi)
∥∥∥

2

L2
= min

g∈span{g1,··· ,gk}
Var[ξ, g].

We call ε := ξ − (c0 +
∑k

i=1 cigi) the remainder. Roughly speaking, common factors of

a given set of random variables are those spacial normalized random variables {g1, · · · , gk}
such that the sum of the variances of all remainders is the smallest possible. Mathematically,

we formulate them as follows.

Let ξ1, · · · , ξm be L2 random variables on a probability space (Ω,F , P ).
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1. A random variable f is called a principal common factor of ξ1, · · · , ξm if

E[f ] = 0, Var[f ] = 1,

min
f1,··· ,fm∈span{f}

m∑
j=1

Var[ξj − fj] min
g1,··· ,gm∈span{g}

m∑
j=1

Var[ξj − gj] ∀ g ∈ L2.

2. An ordered set {f1, · · · , fk} is called a set of common factors of ξ1, · · · , ξm if for each

i, l = 1, · · · , k,

E[fi] = 0, Cov[fi, fl] = δil,

min
η1,··· ,ηi∈span{f1,··· ,fi}

m∑
j=1

Var
[
ξj − ηj

]
min

η1,··· ,ηi∈span{g1,··· ,gi}

m∑
j=1

Var
[
ξj − ηj

]

∀ g1, · · · , gi ∈ L2.

Note that if {f1, · · · , fk} is a set common factors of ξ1, · · · , ξm (km), then f1 is a principal

common factor. In the sequel, we shall derive an algorithm that computes common factors.

First we study the best linear indicator.

(i) For any L2 random variables ξ, g1, · · · , gi,

min
η∈span{g1,··· ,gi}

Var[ξ − η] = min
b1,··· ,bi∈R

Var[ξ − (b1g1 + · · ·+ bigi)].

(ii) Suppose {f1, · · · , fk} is a set of random variables so normalized that E[fi] = 0, E[fi, fl] =

δil for i, l = 1, · · · , k. Then for every random variables ξ,

min
η∈span{f1,··· ,fi}

Var[ξ − η] = Var[ξ − (β1f1 + · · ·+ βifi)] ∀ i = 1, · · · , k

where

βi = Cov[ξ, fi] ∀ i = 1, · · · , k.

5



Proof. The first assertion (i) follows from the definition of span{g1, · · · , gk}. The second

assertion follows from the fact that {1, f1, · · · , fk} is an orthonormal set of L2 and the best

linear indicator is the orthogonal projection of ξ onto span{1, f1, · · · , fk}.
Note that if {f1, · · · , fk} is a set of common factors, then we can write

ξj = β0
j 1 + β1

j f1 + · · ·+ βk
j fk + εj ∀ j = 1, · · · ,m

where β0
j = E[fj], β

i
j = Cov[ξj, f

i] (i = 1, · · · , k) and εj is a random variable that is not

correlated to any of f1, · · · , fk: Cov[εj, fi] = 0 for i = 1, · · · , k, j = 1, · · · ,m.

To find common factors, we recall a well-known result from linear algebra.

Assume that A is a semi-positive definite non-trivial matrix and let λ be the maximum

eigenvalue of A. Then

max
w∈Rn

w A AwT

w AwT
= λ .

In addition, the maximum is obtained at and only at eigenvectors of A associated with λ.

The following theorem characterizes principal common factors.

Assume that ξ1, · · · , ξm are random variables, not all of them are constants. Then a

random variable is a principal common factor if and only if it is a linear combination

of {ξj − E[ξj]}m
j=1 with a weight being an eigenvector of the covariance matrix A :=

(Cov[ξi, ξj])m×m associated the maximum eigenvalue; more precisely, f is a principal common

factor of ξ1, · · · , ξm if and only if

f(x) =
m∑

j=1

ej

√
λ

(
ξj(x)− E[ξj]

)
∀x ∈ Ω, (2.1)

where λ is the maximum eigenvalue of A and e = (e1, · · · , em) satisfies e A = λe, |e|2 = 1.

Moreover, if f given by (2.1) is a principal common factor of ξ1, · · · , ξm, then

min
η∈span{f}

Var[ξj − η] = Var[ξj − βjf ], βj =
√

λej ∀ j = 1, · · · ,m, (2.2)

m∑
j=1

min
η∈span{f}

Var[ξj − η] =
m∑

j=1

{
Var[ξj]− β2

j

}
=

m∑
j=1

Var[ξj]− λ. (2.3)

Proof. Let λ be the maximum eigenvalue of the covariance matrix A = (Cov[ξi, ξj])m×m.

6



First, we show that

min
g∈L2(Ω)

m∑
j=1

min
η∈span{g}

Var[ξj − η] =
m∑

j=1

Var[ξj]− λ.

For this, let g be an arbitrary non-constant random variable. Then,

m∑
j=1

min
η∈span{g}

Var[ξj − η] =
m∑

j=1

min
b∈R

Var[ξj − bg]

=
m∑

j=1

Var[ξj − bjg]2
∣∣∣
bj=

Cov[ξj ,g]

Var[g]

=
m∑

j=1

Var[ξj]−
m∑

j=1

Cov2[ξj, g]

Var2[g]
.

Now decompose g by

g =
m∑

l=1

wl(ξl − E[ξl]) + ζ, ζ ⊥ ξj − E[ξj] ∀ j = 1, · · · ,m.

Then Cov[ξj, g] =
∑m

l=1 Cov[ξl, ξj]w
l, so that

m∑
j=1

Cov2[ξj, g]

Var2[g]
=

∑m
j=1

( ∑m
l=1 wlCov[ξl, ξj]

)( ∑m
s=1 Cov[ξj, ξs]w

s
)

∑m
l=1

∑m
s=1 wlCov[ξl, ξs]ws + ‖ζ‖2

L2(Ω)

=
w A AwT

wAwT + ‖ζ‖2
L2(Ω)

λ.

Here the equal sign holds if and only if ζ = 0 and w is an eigenvector, associated with λ, of

A. Hence, (1.4) holds.

Now suppose f is a principal common factor. Then f =
∑m

j=1 wj(ξj − E[ξj]) + ζ where

ζ ≡ 0 and w = (w1, · · · , wm) is an eigenvector of A. Using Var[f ] = 1 one can derive that

λ|w|2 = 1. Hence, the vector e =
√

λ w = (e1, · · · , em) is a unit eigenvector of A associated

with λ and f =
∑m

j=1 ej(ξj − E[ξj])/
√

λ.

7



Now let e = (e1, · · · , em) be an arbitrary unit eigenvector of A associated with the

eigenvalue λ. Set f =
∑m

j=1 ej(ξj − E[ξj])/
√

λ. We show that f is a principal common

factor. First, we can calculate

E[f ] =
m∑

j=1

ej

√
λ

E[ξj − E[ξj]] = 0,

Var[f ] =
m∑

s,j=1

esej

λ
Cov[ξs, ξj] =

e AeT

λ
= |e|2 = 1.

Also, for each j,

min
η∈span{f}

Var[ξj − η] = Var[ξj − βjf ] = Var[ξj]− β2
j

where

βj = Cov[ξj, f ] =
m∑

s=1

es

√
λ

Cov[ξs, ξj] =
√

λej

since e A = λe. Thus, (β1, · · · , βm) =
√

λ e. It then follows that

m∑
j=1

min
ηj∈span{f}

Var[ξj − ηj] =
m∑

j=1

Var[ξj]−
m∑

j=1

β2
j

=
m∑

j=1

Var[ξj]− λ = min
g∈L2

m∑
j=1

min
ηj∈span{g}

Var[ξj − ηj].

Thus, by definition, f is a principal common factor. This completes the proof.

Let K be the dimension of the space span{ξ1 − E[ξ1], · · · , ξm − E[ξm]} and {λi}m
i=1 be

the complete set of eigenvalues of the covariance matrix A = (Cov[ξi, ξj])m×m, arranged in

the order λ1λ2 · · ·λm0.

Then for each k ∈ {1, · · · , K}, a set {f1, · · · , fk} of random variables is a set of common

factors of ξ1, · · · , ξm if and only if there exist vectors e1, · · · , ek in Rm, ei = (e1
i , · · · , em

i ),

such that

ei A = λiei, ei · el = δil ∀ i, l = 1, · · · , k,

fi =
m∑

j=1

ej
i√
λi

(
ξj − E[ξj]

)
∀ i = 1, · · · , k.

8



Moreover, if {f1, · · · , fk} is a set of common factors, then for each i = 1, · · · , k,

m∑
j=1

min
η∈span{f1,··· ,fi}

Var
[
ξj − η

]
=

m∑
j=1

Var
[
ξj − (β1

j f1 + · · ·+ βi
jfi)

]
=

m∑
j=i+1

λj,

where

(βi
1, · · · , βi

m) =
√

λiei ∀ i = 1, · · · , K.

In particular,

(ξ1, · · · , ξm) = (E[ξ1], · · · , E[ξm]) +
√

λ1 e1f1 +
√

λ2 e2f2 + · · ·+
√

λK eKfK .

The proof is analogous to the k = 1 case and is omitted.

Note that ξi ∈ span{f1, · · · , fK} for each i = 1, · · · ,m so that

ξi = β0
j +

K∑
i=1

βi
jfi, (β0

j := E[ξj]) ∀ j = 1, · · · ,m,

m∑
j=1

Var[ξj] =
m∑

j=1

K∑
i=1

βi
j
2 =

K∑
i=1

λi =
m∑

j=1

λj.

Hence, if we use a set {f1, · · · , fk} of k common factors to describe all random variables

{ξj}m
j=1, the percentage of the total variances of remainders over total variances is

∑m
j=1 Var[ξj −

∑k
i=0 βi

jfi]∑m
j=1 Var[ξj]

= 1−
∑m

i=k+1 λi∑m
i=1 λi

. (2.4)

9



3.0 COMMON FACTORS OF STOCHASTIC PROCESSES

In this section we describe our way of specifying the cross sectional behavior of a term

structure model by common factors. Let T be a set of time moments (trading time) and

{Y 1
t }t∈T, · · · , {Y m

t }t∈T be stochastic processes believed to be strongly correlated. An exam-

ple in our mind is the case where Y j
t is the yield at time t of the zero-coupon bond with fixed

maturity of τj, i.e., the yield of the zero-coupon bond bought at time t and to be matured

at time t + τj. In a generic affine term structure model [14] with k factors, these yields are

described by

Y j
t = β0

j + β1
j X

1
t + · · ·+ βk

j Xk
t + εj

t ∀ t ∈ T, j = 1, · · · ,m. (3.1)

Here β0
j , β

1
j , · · · , βk

j are constants, and {X1
t }t∈T, · · · , {Xk

t }t∈T are stochastic processes. In

the terminology of finance, {Y j
t } are called observable variables and {X i

t} are called state

variables, typically modelled as latent or unobservable variables. The term {εj
t} are called

individual (non-system) errors. Our purpose is to model {X i
t} by common factors of {Y j

t }.
If we regard Yt = (Y 1

t , · · · , Y m
t ) as a vector random variable, then since historical data

are correlated, a standard sample covariance matrix may not accurately reflect the true

covariance matrix, and therefore, complicated procedures are needed; see, for example, Tsay

[26] and Stoffer [24]. Here, we shall pay attention on the cross sectional behavior of the yields

and focus on the fitting of historical data by (3.1). We shall use the sample covariance matrix

in our calculation and also provide our new point of view in performing such a calculation.

10



3.0.1 The Setting

Let Th = {ti}n
i=1 be historical trading dates. We use the following probability space:

Ω = T, F = 2Ω, P ({t}) =
1

|Th| ∀ t ∈ Th. (3.2)

Here 2Ω is the collection of all subsets of Ω and |Th| is the number of dates in the set Th.

For each t ∈ Th, let yj
t be the historical data of the yield of type j bond at time t. We

define Y j : Ω → R by

Y j(t) = yj
t ∀ t ∈ Th. (3.3)

Then each Y j, j = 1, · · · ,m, is a random variable on (Ω,F , P ).

Under the above setting, we see that

µj := E[Y j] =

∫

Ω

Y j(t)P (dt) =
1

|Th|
∑
t∈Th

yj
t , (3.4)

σij := Cov[Y i, Y j] =

∫

Ω

[Y i(t)− µi][Y j(t)− µj]P (dt)

=
1

|Th|
∑
t∈Th

(yi
t − µi)(yj

t − µj). (3.5)

3.0.2 The Principal Components

According to the theory of principal component presented in the previous section, we seek

random variables X1, · · · , Xm on (Ω,F , P ) such that the following holds:

1. 1, X1, · · · , Xm form an orthonormal set in L2(Ω);

2. For each k = 1, · · · ,m, when we decompose Y j as

Y j = Ŷ j + εj, Ŷ j := µj1 +
k∑

i=1

βj
i X

i + εj in Ω, βj
i := (Y j, X i)L2(Ω),

we have

m∑
j=1

‖εj‖2
L2(Ω) = min

dim{1,Ỹ 1,··· ,Ỹ m}=k+1

m∑
j=1

‖Y j − Ỹ j‖2
L2(Ω).

Here dim{1, Ỹ 1, · · · , Ỹ m} denotes the linear dimension of the space span{1, f̃ , · · · , Ỹ m}.
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3.0.3 The Numerical Procedure

According to Theorem 2, we can find the principal components as follows:

1. Let A = (σij)m×m where σij is as (3.4). Find a complete eigen set {λi, ei}m
i=1 of A:

λ1λ2 · · ·λm, ei A = λiei, ei · ej = δij i, j = 1, · · · ,m.

2. For each i, write ei = (e1
i , · · · , em

i ). Set

X i(t) =
1√
λi

m∑
j=1

ej
i (Y

j(t)− µj) ∀ t ∈ Th, i = 1, 2, · · · ,m, (3.6)

e0 = (β1
0 , · · · , βm

0 ) := (µ1, · · · , µm),

βj
i =

√
λiej

i , i, j = 1, · · · ,m. (3.7)

We then obtain

(Y 1, · · · , Y m) = e0 +
√

λ1 e1 X1 +
√

λ2 e2 X2 + · · ·+
√

λm em Xm on Ω. (3.8)

3. Now as far as historical data are concerned, we can write

(Y 1, · · · , Y m) = e0 +
√

λ1e1X
1 + · · ·+

√
λk ek Xk + (ε1, · · · , εm) on Th. (3.9)

where

(ε1, · · · , εm) =
m∑

i=k+1

√
λi eiX

i.

4. Under the probability space (Ω,F , P ) defined as in (3.3), we have, since E[X i] = 0,

Cov[Xj, X l] :=

∫

Ω

X i(t)Xj(t)P (dt) =
1

|Th|
∑
t∈Th

X iXj = δij.

Also, we find the total variances of the “negligible” term ε := (ε1, · · · , εm) to be

m∑
i=1

Var[εi] =
m∑

j=1

1

|Th|
∑
t∈Th

(ε(t)j)2 =
m∑

j=k+1

λj. (3.10)

The relative variance contributed by all the “negligible” terms is

δk =

∑m
j=1 Var[εi

t]∑m
i=1 Var[Y i

t ]
=

∑m
i=1

1
|Th|

∑
t∈Th

(εi(t))2

∑m
i=1

1
|Th|

∑
t∈Th

(Y i(t)− µi)2
=

∑m
i=k+1 λi∑m

i=1 λi

× 100%. (3.11)
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3.0.4 Using Empirical Formula as the Theoretical One

Once we obtained the empirical formula (3.9), we can regarded it as an assumption of a term

structure model. More precisely, write Y j(t), X i(t), εj(t) as Y j
t , X i

t , and εj
t respectively, we

can assume in our model that

Y j
t = µj +

k∑
i=1

βj
i X

i
t + εj

t ∀ j = 1, · · · ,m, t ∈ T. (3.12)

In this expression, we regard each {Y j
t }t∈T, {X i

t}, {εj
t} as a stochastic process.
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4.0 MODELLING THE US TREASURY BONDS

Based on the above theoretical framework, in this section we use historical data of US

Government bonds of various maturities to model its term structure by common factors. We

focus on the following questions:

1. What is the “optimal” number of factors that balances simplicity and accuracy ?

2. Regarding the common factors as state variables, can we model them by simple stochastic

processes ?

3. Regarding {βj
i } as loading coefficients, how much can we say about them ?

4.0.5 Data

On the official web site www.trea.gov, various information on US government debt is published

by the requirement of the law. The Daily Treasury Yield Curve Rates is downloaded from

www.treas.gov/offices/domestic-finance/debt-management/interest-rate/

yield.shtml. Maximizing the number of bonds whose historical data are available, we found a

complete set of data from 10/1/1993 to 12/29/2006 (the date that this research starts with)

for 10 different (zero-coupon) bonds with maturity 3month, 6month, 1year, 2year, 3year,

5year, 7year, 10year, 20year, and 30year, respectively. We denote these times to maturity

by τj, j = 1, · · · ,m := 10 and the yields of the bonds by Y j
t . We pick the time window

10/1/1993–12/29/2006 since data on certain bonds are missing for earlier periods and at the

current stage we do not want to use any theoretical interpolations to enter our empirical

study.

The dynamical (in time) behavior of the 10 yields of different maturities is plotted in

Figure 1. The surface describing the dynamical and cross sectional (in time-to-maturity)

14



behavior of the 10 yields are plotted in Figure 2. The yields on every first trading day of

October are listed in Table 1, along with their statistics.

Figure 1: Historical Plots for US Treasury Bond Rates During 10/1/1993–12/29/2006
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Each curve represents y = yj
t where yj

t is the yield at time t of the bond with
maturity τj .

From Figure 1, we see the time trends of the bond yields. More precisely, in Figure 2,

we can see that the short-term rates decreases as time approach to 2003, partly due to the

depression at that time, and bounces back quickly in 2005. The long-term rates follow more

or less the same fashion but in a smaller magnitude. In Table 1, the yields are reported

in percentages. The statistics are calculated from a total of 3313 observations. From the

statistics, we can see that yields do not seem to be normally distributed. In particular,

the kurtosis of all yields are all well below 3 (the kurtosis of normal distribution). Since we

have 3133 data, these statistics is significant enough to exclude the hypothesis that yields are

normally distributed or have fat tails (i.e. kurtosis 3). Also, benchmark normal distributions

are symmetric around the mean, so that the skewness is 0. The distribution of short-term
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Figure 2: Surface of 10 Treasury Bond Yield Rates
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The surface y = yj
t , 1j10, 0t3313 of the yields of 10 US Government Bonds on 3313

trading days from 1993 to 2006. Units of time in figure is week.

and medium-term yields show negative skewness, which means the distribution of yields is

skewed to the left, so, intuitively, the distribution has a long left tail. But The distribution

of long-term yields show positive skewness, which means the distribution of yields is skewed

to the right, so, intuitively, the distribution has a long right tail. The smaller than normal

kurtosis shows that its tails are thinner compared to the normal distribution.

4.0.6 The Common Factor Model

Now we let T ={1, 2, ..., 3313} be trading times and {Y 1
t }t∈T, · · · , {Y m

t }t∈T be daily yield

rate where m=10. Thus, each column in the matrix {Yt}3313
t=1 = {(Y 1

t , Y 2
t , ..., Y 10

t )}3313
t=1

corresponds to the yield of 3 month, 6 month, 1 year, 2 year, 3 year, 5 year, 7 year, 10 year,

20 year, and 30 year bond, respectively. The sample mean vector, {βj
0}m

j=1, is shown in the

row with heading “Mean” in Table 1.
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According to the formulas (3.6)–(3.8), we obtain the following term structure model:




Y 3m
t

Y 6m
t

Y 1y
t

Y 2y
t

Y 3y
t

Y 5y
t

Y 7y
t

Y 10y
t

Y 20y
t

Y 30y
t




=




3.96

4.13

4.28

4.60

4.78

5.07

5.30

5.42

5.92

5.81




+ 4.15




0.38

0.39

0.40

0.38

0.36

0.30

0.26

0.23

0.18

0.16




X1
t + 1.25




-0.40

-0.36

-0.23

-0.05

0.07

0.23

0.30

0.36

0.43

0.45




X2
t + εt. (4.1)

Here we have replaced j in Y j
t by the true time to maturity for easy reading. Here the column

vector coefficients of X1
t and X2

t are unit vectors (sum of the square of entries equal to 1),

being the eigenvectors of the sample covariance matrix of {Y j
t }10

j=1. The scalar multiples are

the square root of eigenvalues. The empirical mean and variance of each X i
t are zero and

one respectively.

The accuracy of the two factor model can be seen from Figure 3. In each plot in Figure 3,

the dots are the actual yield and the curve is the fitted yield-to-maturity curve obtained by

right-hand side of (4.1) with the εt term dropped. The first two plots are the best and worst

fit respectively; the time t of the rest 14 plots is randomly picked from our historical date

set. Here the vertical axis has unit of percentage 1, and the horizontal axis is the index j of

the maturity τj. One can see that for historical data, the two term factor model, represented

by the curve, fits the actual data, represented by the dots, very well.

The accuracy of the model can also be seen from Table 2 where the proportion of total

variance explained by the ith factor and the cumulative proportion of total variance explained

by the first ith factors are calculated by formula (3.11) and displayed. From Table 2, we can

see that the principal common factor explains about 91 percent of the total variance of the

US treasury bonds from 1993 to 2006. Combined with the second common factor, the linear

1Notice that the scale is different for each plot, for the yield rates are changing over time.
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regression could explain more than 99.4 percent of the total variance of all the bonds. Thus,

using the common factor model (4.1), the remainder term εi
t contains only about 0.6% of

the total variance.

It is quite clear from Table 2 that it is reasonable to use two common factors to balance

simplicity and accuracy. The two factor model (4.1) explains quite well the performance of

all the US government bonds from 1993 to 2006. We point out that the original data contains

only two decimal points, so except the first three common factors, all the rest factors do not

have much actual meaning. Thus, a maximum of only three common factors could be used

for any model that based on the empirical data that we gathered.

4.0.7 The Empirical Error in Using (4.1)

In Table 3, we examine the empirical error terms εj
t in the formula (4.1). By our derivation,

the sample mean of each εj
t is zero. For all ten bonds, the maximum size of the error term

is about 0.5 (percent). The variances of the error terms are very small, ranging from 0.004

to 0.02. The most important quantities, listed in the last column, are the proportion of the

variance of the error with respect to the variance of data. We can see that the variances of

error terms range from 0.17 to 2.68 percent of the variances of the corresponding original data.

The minimum 0.17% is attained at the 6 month bond and the maximum 2.68% is attained

at the 30-year bond. Although the residuals coming from the cross-sectional estimation

capture little explanation for the data, the relative large 0.95% residual of 3-month bond

and the 2.68% residual of the 30-year bond may be explained by the relative independency

of short-term and long term bond rates.

In conclusion, the factor model (4.1) with or without the εt term is a sound model for

US government bond for the period 1993–2006.

4.0.8 Modeling The Common Factors

Now we investigate the common factor, or “state variable”, {X1
t } and {X2

t }. Empirical data

are obtained from linear combinations of Y i
t − µj1 by (3.6) and plotted in Figure 4. We

regard {X1
t }t∈T and {X2

t }t∈T as stochastic process and would like to see if we can use simple
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models to describe them.

4.0.8.1 The AR(1) Model An AR(1) model for a stochastic process {xt}∞t=−∞ is de-

scribed by the auto-regression

xt = φxt−1 + σ ut ∀ t = 0,±1,±2, · · · (4.2)

where φ ∈ (−1, 1) and σ0 are constants estimated and · · · , u−1, u0, u1, · · · are i.i.d N(0,1)

distributed random variables. Using maximum likelihood for our empirical data displayed

in Figure 4, we find that

X1
t = 0.9992 X1

t−1 + 0.0348 u1
t , (4.3)

X2
t = 0.9980 X2

t−1 + 0.0665 u2
t , (4.4)

X3
t = 0.9917 X3

t−1 + 0.1269 u3
t . (4.5)

Note that all the coefficients 0.9992, 0.9980, 0.9917 are very close to 1, so X i
t−1 and X i

t are

strongly correlated. This is expected since out unit of time is one trading day.

When ∆t = 1 refers to as one day, we can rewrite (4.2) as

xt − xt−∆t = −1− φ

∆t
xt−∆t∆t +

σ√
∆t

√
∆t ut .

This equation can be considered as a time discretization of the stochastic differential equa-

tion:

dxt = −kxt dt + ν dBt

where {Bt} is the standard Brownian motion process and

k =
1− φ

∆t
, ν =

σ√
∆t

.

Using annual units, ∆t(= 1(day)) = 1/250 (year), we see that (4.3)–(4.5) can be considered

as the time discretization of the stochastic differential equations, in annual units,

dX1
t = −0.20 X1

t dt + 0.55 dB1
t

dX2
t = −0.50 X2

t dt + 1.05 dB2
t

dX3
t = −2.08 X3

t dt + 2.01 dB3
t
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where {B1
t , B

2
t , B

3
t } are standard Brownian motions. Here coefficients 0.55, 1.05, 2.01 are

sizes of innovations related directly to the different sizes of “local wiggles” of the three paths

in Figure 4.

The validity of (4.3)–(4.5) relies on the independency of {ut}. For this we calculate

Q(d) := T

d∑

l=1

ρ2
l ,

where 1d < T − 1 and

ρl :=

∑T
t=l+1(ut − ut)(ut−l − ut−l)∑T

t=1(ut − ut)2
, ut−l :=

1

T − l

T∑

t=l+1

ut−l.

Taking a standard d = ln(T ) = 8 we find, for the first three common factors, that Q(8) =

17.4, 25.4, and 43, respectively. Under the assumption that {ut} are i.i.d and normally

distributed, these large Q values correspond to tail probabilities of 2.6%, 0.13% and 0.00%

respectively, from which we conclude that the AR(1) processes could not pass the Portman-

teau test if we assume that {ut} are i.i.d and normally distributed.

4.0.8.2 The ARMA(1,1) Model Next we use ARMA(1,1) to model the common fac-

tors. The equation for an ARMA(1,1) process reads

xt = φxt−1 + σ (ut + θut−1)

where φ ∈ (−1, 1), σ > 0, θ ∈ R are constants, · · · , u−1, u0, u1, · · · are i.i.d. N(0,1) dis-

tributed random variables. Using maximum likelihood and a standard package (Stata) we

find that

X1
t = 0.9991 X1

t−1 + 0.0347 (u1
t + 0.0572 u1

t−1),

X2
t = 0.9978 X2

t−1 + 0.0664 (u2
t + 0.0579 u2

t−1),

X3
t = 0.9910 X3

t−1 + 0.1268 (u3
t + 0.0386 u3

t−1).

Here again, the validity of the model relied on the independency of · · · , u−1, u0, u1, · · · .
Applying the Q statistics for the Portmanteau test described in the previous subsubsection,

we find that for the first two common factors, Q(8) = 8.7 and Q(8) = 15.7 which corresponds
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to tail probability of 37% and 5% respectively. This indicate a clear pass for the principal

factor and a marginal pass for the second factor. For the third common factor, its Q(8) value

is 37, indicating a clear fail of the test.

4.0.8.3 Simulations Here we simulate the first three common factors by the model

equation (4.3)–(4.5) respectively where {ui
t} are assumed to be i.i.d N(0,1) distributed. For

each equation, we simulated 15 sample paths. Together with the empirical one, the total 16

paths are plotted in Figures 5, 6, and 7, respectively. From these figures, we can see that

AR(1) models (4.3)–(4.5) are indeed excellent models in the sense that they produce sample

paths that are almost indistinguishable in characteristics from the empirical ones.

4.0.8.4 Normality Issue In a generic AR(1) model (4.2), the innovation term {ut} are

only required to be independent. In standard packages normal distributions are used. Here

we find that the empirical innovation ui
t defined in (4.3)–(4.5) are not normally distributed;

see the empirical evidence in Table 4. For example, the empirical set {u1
t}3313

t=2 has a kurtosis

7.5, which is above the acceptance level of normality. Hence, the Q test discussed earlier may

not be used as a rejection of AR(1) model for the first two factors. We feel pretty content

from Figures 5–7 that either AR(1) or ARMA(1,1) are legitimate models for the first two

common factors.

4.0.9 Loading Coefficients

The vector (βi
1, · · · , βi

m) is commonly referred to as loadings of the common factor X i
t . In

Figure 8, we plot the loading coefficients for i = 0, 1, 2, 3 (i = 0 corresponding to the mean).

Here the index j has been replaced by

log
(
1 +

τ

month

)

where τ is time to maturity.

The loadings of the first common factor are all positive. This means that changes in

the principal common factor produce an overall uplift or an overall down-push of the yield-

to-maturity curve. This common factor is therefore referred in the literature as the level
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factor. The loadings of the second common factor is negative for short term bonds and

positive for long term bonds; they monotonically increase as time to maturity increases.

Changes in the second common factor thus rotate the yield curve. In the literature, the

second factor is referred to as a slope factor. The curve of loading coefficients of the third

common factor is convex in the log(1 + τ/month) scale, negative in the middle and positive

on both ends. The third common factor (if we include it in our model) therefore affects the

curvature of the yield curve, and therefore it is called the curvature factor [23].

In an affine term structure model, the yields are assumed to be linear combinations

of state variables (in our case common factors). If the model is complete (arbitrage free),

the loadings are uniquely determined by specifications of the dynamical behavior of state

variables, typically by the Itó lemma based stochastic differential equations. As mentioned

by Piazzessi [23], currently studied affine term structure models do not seem to provide

satisfactory loadings that match empirical ones. We shall leave this study in our future

research.
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Table 1: Historical Data for US Daily Treasury Yield Curve Rates (10/01/1993-12/26/2006)

Date 3mo 6mo 1yr 2yr 3yr 5yr 7yr 10yr 20yr 30yr

10/1/1993 2.98 3.11 3.35 3.84 4.18 4.72 5.03 5.34 6.12 5.98
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.

.

.
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.
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.

.
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

10/3/1994 5.05 5.61 6.06 6.69 7.01 7.35 7.52 7.66 8.02 7.86

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

10/2/1995 5.53 5.64 5.65 5.82 5.89 5.98 6.10 6.15 6.61 6.48

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

10/1/1996 5.10 5.35 5.65 6.03 6.22 6.39 6.54 6.65 6.99 6.88

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

10/1/1997 5.10 5.27 5.44 5.75 5.83 5.93 6.05 6.04 6.38 6.33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

10/1/1998 4.23 4.36 4.28 4.17 4.10 4.10 4.26 4.33 5.09 4.90

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

10/1/1999 5.16 5.32 5.47 5.83 5.93 6.00 6.23 6.06 6.55 6.19

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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10/2/2000 6.27 6.33 6.06 5.98 5.92 5.86 5.95 5.83 6.18 5.93

.

.

.

.

.

.

.

.
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

10/1/2001 2.37 2.37 2.47 2.82 3.18 3.90 4.33 4.55 5.39 5.38

.

.

.

.

.

.

.

.

.
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.

.

.

.

.

.

.

.

.
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.

.
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.

10/1/2002 1.59 1.54 1.56 1.80 2.11 2.75 3.34 3.72 4.81 4.93

.

.

.

.

.

.

.

.

.
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.

.
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.

.

.

.
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.
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10/3/2003 0.95 1.00 1.13 1.47 1.93 2.84 3.40 3.96 4.92 5.00

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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.

.

.

.
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.

.

.

.

.

.

10/3/2004 1.71 2.00 2.21 2.63 2.92 3.44 3.85 4.21 4.95 5.06

.

.

.

.

.

.

.

.

.

.
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.

.

.

.

.

.

.

.

.
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.

.

.

.

.

10/3/2005 3.61 4.02 4.09 4.21 4.23 4.25 4.31 4.39 4.67 4.58

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

12/29/2006 5.02 5.09 5.00 4.82 4.74 4.70 4.70 4.71 4.91 4.81

Mean 3.9608 4.1262 4.2823 4.6017 4.7826 5.0683 5.2958 5.4197 5.9159 5.8126

Variance 1.6682 1.7003 1.6668 1.5957 1.4810 1.2754 1.1619 1.0495 0.9245 0.8838

Skewness −0.6212 −0.6341 −0.5938 −0.4993 −0.3850 −0.1179 0.0301 0.2847 0.3690 0.4946

Kurtosis 1.9471 1.9949 2.0410 2.1662 2.1925 2.1665 2.0982 2.2449 2.3388 2.5164

Last four rows are statistics of daily data of the Treasury (zero-coupon) bond yields.
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Figure 3: The actual yields and the fitted curves
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Table 2: Common Factor Analysis for US Treasury Bond Yield (10/01/1993-12/26/2006)

Eigen Value 17.2217 1.5741 0.0858 0.0133 0.0050 0.0029 0.0011 0.0009 0.0005 0.0003

Proportion 0.9109 0.0833 0.0045 0.0007 0.0003 0.0002 0.0001 0.0000 0.0000 0.0000

Cumulative 0.9109 0.9942 0.9987 0.9994 0.9997 0.9998 0.9999 1.0000 1.0000 1.0000

Eigenvector 0.3811 −0.4023 0.5167 0.4735 −0.0126 0.3917 −0.1712 0.1328 0.0338 0.0032

0.3947 −0.3588 0.1996 −0.1514 0.1288 −0.5104 0.5809 −0.1623 −0.1089 −0.0044

0.3954 −0.2261 −0.0734 −0.5362 0.0643 −0.1468 −0.6801 −0.0642 0.0243 −0.0812

0.3832 −0.0455 −0.3898 −0.1234 −0.3747 0.2227 0.2358 0.2087 0.4369 0.4516

0.3551 0.0704 −0.3922 0.0303 −0.1560 0.2831 0.1733 0.1106 −0.4330 −0.6164

0.2990 0.2256 −0.2463 0.2510 0.3741 0.0753 −0.1010 −0.3293 −0.4392 0.5281

0.2649 0.2955 −0.0962 0.4264 −0.0864 −0.2862 −0.1194 −0.4492 0.5015 −0.3074

0.2277 0.3620 0.0432 0.0172 0.5832 −0.1273 0.0343 0.6361 0.2131 −0.0861

0.1798 0.4265 0.3265 0.0455 −0.5694 −0.3626 −0.1396 0.2588 −0.3292 0.1627

0.1608 0.4474 0.4512 −0.4495 0.0505 0.4466 0.1999 −0.3381 0.0994 −0.0474
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Table 3: Analysis of εj
t in (4.1) for US Treasury Bond (10/01/1993-12/26/2006)

τj min max Variance Var[ε
τj
t ]/Var[y

τj
t ]

3 month −0.5066 0.5163 0.0264 0.95%

6 month −0.2178 0.2146 0.0050 0.17%

1 year −0.2495 0.3121 0.0049 0.18%

2 year −0.3301 0.3381 0.0143 0.56%

3 year −0.2858 0.4443 0.0138 0.63%

5 year −0.2357 0.2249 0.0070 0.43%

7 year −0.1376 0.2085 0.0038 0.28%

10 year −0.1582 0.1014 0.0023 0.21%

20 year −0.2604 0.3033 0.0113 1.32%

30 year −0.4531 0.3556 0.0209 2.68%

Figure 4: Empirical Common Factors
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Figure 5: Sample paths of {X1
t } modelled by (4.3)
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Figure 6: Sample paths of {X2
t } modelled by (4.4)
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Figure 7: Sample paths of {X3
t } modelled by (4.5)
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Table 4: Moments of Common Factors and the Corresponding AR(1) Residuals

X1
t X2

t X3
t u1

t u2
t u3

t

Variance 1.000 1.000 1.000 0.001 0.004 0.016
Skewness −0.411 −0.027 −0.061 −0.008 0.509 0.314
Kurtosis 2.014 2.271 2.587 7.486 5.170 8.063
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Figure 8: The Mean and the Loading Coefficients
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The first three loading coefficients of each of the principal common factors are plotted
as a function of the logarithm of the maturity of the yields. Here β0, represents the
mean of yields, has unit of 1% and is deducted by 3 for fitting in. Notice that (i)
β1 is positive, (ii) β2 is increasing and changes sign at the middle, and (iii) the β3

curve is convex, positive on both ends and negative in the middle.
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5.0 THE INDEPENDENCY OF THE FIRST TWO COMMON FACTORS

In this section, we shall use copula theory to demonstrate empirically that the two common

factors in (4.1) are independent.

5.0.10 Correlation

The most commonly used measure of dependence of random variables X and Y is the

correlation coefficient

ρ(X, Y ) =
Cov[X,Y ]√
Var[X]Var[Y ]

.

We use ρ̄ to denote the sample correlation coefficient. By our derivation of the formula (4.1),

we see that ρ̄(X1
t , X2

t ) = 0. Hence, if (X1
t , X2

t ) are Gaussian distributed, we see that X1
t and

X2
t are independent.

Our empirical data shows that (X1
t , X2

t ) are not Gaussian, since the hypothesis that

their marginal distributions are normal can be simply rejected. Hence, the single equation

ρ̄(X1
t , X2

t ) = 0 alone is far from sufficient to say that X1
t and X2

t are independent.

5.0.11 The Kendall’s τ

For empirical observation {Xt}T
t=1 and {Yt}T

t=1 of time series {xt} and {yt}, the Kendall’s τ

is defined as

τ =
2

T (T − 1)

∑
0t<τT

sign[(Xt −Xτ )(Yt − Yτ )].

It is an indicator to measure the difference between the probabilities of discordance and

concordance. When X and Y are independent, the theoretical expectation of τ is zero.

The empirical value of τ is 0.07. This can be statistically regarded as zero.
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5.0.12 Copula

To study independency of random variables, a very powerful tool is the theory of copula.

In the sequel, we turn our attention to the copula approach for the dependence analysis of

the common factors {X1
t } and {X2

t }. The earliest paper explicitly relating copulas to the

study of dependence among random variables appeared in Schweizer and Wolff (1981) [25].

Copulas allow us to separate the effect of the dependence from the effects of the marginal

distributions.

In studying dependency of random variables, say X and Y with marginal cdf F (·) and

G(·) respectively, one first normalized X and Y by the non-linear transformation

U = F (X), V = G(Y ).

Then U and V are uniformly distributed on [0, 1]. In addition, X and Y are independent

if and only if U and V are independent. Let C(·, ·) be the joint cumulative distribution

function of (U, V ): for every (u, v) ∈ [0, 1]2,

C(u, v) = Probability(Uu, V v) = Probability(F (X)u,G(Y )v).

Then C is called the copula of U and V . In general, a copula is defined as follows.

A 2-D copula is a function C defined on [0, 1]2 that satisfies the following:

1. For every u, v in [0, 1], C(u, 0) = 0 = C(0, v) and C(u, 1) = u,C(1, v) = v;

2. For every u1, u2, v1, v2 in [0, 1] such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

We list a few commonly used copulas.

1. The produce copula models independent random variables and is given by

CI(u, v) = u v.

2. The Frechet-Hoeffding upper bound copula

CU(u, v) = min(u, v).
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3. The Frechet-Hoeffding lower bound copula

CL(u, v) = max(u + v − 1, 0)

For any copula C, there holds

CL(u, v) ≤ C(u, v) ≤ CU(u, v).

4. The Gaussian copula

CGaussian(u, v; θ) = ΦG(Φ−1(u), Φ−1(v); θ)

where θ ∈ [−1, 1], Φ(·) is the cdf of an N(0,1) random variable and ΦG is the cdf of a

2-D Normal variable with zero mean and covariance matrix [1, θ; θ, 1].

5. The Clayton copula: CClayton(u, v; θ) = (u−θ + v−θ − 1)−
1
θ , θ > 0.

6. The Frank copula: CFrank(u, v; θ) = −1
θ
log(1 + (e−θu−1)(e−θv−1)

e−θ−1
), θ ∈ R.

7. The Gumbel copula: CGumbel(u, v; θ) = exp(−((− log u)θ + (− log v)θ))
1
θ , θ1.

8. The FGM copula: CFGM(u, v; θ) = uv(1 + θ(1− u)(1− v)), |θ|1.

The development of copula is based on the following Sklar Theorem.

[Sklar’s Theorem] Let H be a joint distribution function with margins F and G. Then

there exists a copula C such that for all x,y in R, H(x, y) = C(F (x), G(y)).

If F and G are continuous, then C is unique; otherwise, C is uniquely determined on

Range(F)×Range(G). Conversely, if C is a copula and F and G are distribution functions,

then H defined above is a joint distribution function with margins F and G.

Sklar’s Theorem tells us that for any two random variables with joint and marginal

distribution known, the copula function will be determined if the marginal distributions are

continuous. On the other hand, if we know the marginal distributions, different copulas can

applied to approximate the joint distributions. This will give us an elastic framework to do

the analysis of dependence relation between two random variables.
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5.0.13 The Empirical Copula

To demonstrate that the common factors we obtained in (4.1) are independent, we measure

the distance between the empirical copula derived from the common factors {X1
t } and {X2

t }
and the copulas describes in the examples above. We shall show that empirical copula is

close to the product copula, i.e. {X1
t } and {X2

t } can be statistically regarded as independent.

Given observations {Xt}T
t=1 and {Yt}T

t=1 of random variables, a commonly used empirical

distribution of X and Y are defined by

F̄ (x) =
1

T

T∑
t=1

1(xXt}, Ḡ(y) =
1

T

T∑
t=1

1(yYt},

where 1 is the indicator function that takes value 1 when its logical argument is true and

zero when its logical argument is false.

Now let U = F (X) and V = G(Y ). The empirical copula for U and V is first defined on

the lattice

Σ =

{(t1
T

,
t2
T

)
: t1, t2 = 0, 1...T

}

by

CEmpirical(u, v) =
1

T

T∑
t=1

1
(
F̄ (Xt)u

)
1
(
Ḡ(Yt)v

)
∀ u, v ∈ Σ,

and then extended over [0, 1]2 by a linear interpolation.

We will use the following norms to measure the difference between the empirical copula

and the target copulas:

1. The L1 distance ‖·‖L1
:

‖f − g‖L1
=

∫ 1

0

∫ 1

0

|f(u, v)− g(u, v)|dudv.

2. The L2 distance:

‖f − g‖L2
=

( ∫ 1

0

∫ 1

0

[f(u, v)− g(u, v)]2dudv
) 1

2
.

3. The L∞ distance:

‖f − g‖∞ = sup
0u,v1

|f(u, v)− g(u, v)| .
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Based on these measures, we calculate the difference between the empirical copula and

several standard copulas. Figure 9 shows the difference between the empirical copula and

several parametric copulas. From these figures, we see that the minimum distance between

empirical distance and the parametric copulas are attained near those values (θ = 0 for

Gaussian, Clayton, and FGM, and θ = 1 for for Gumbel) that the parametric copula becomes

the produce copula

In Figure 9, we also list ratios of these distances to that from the product copula being

0.024, 0.031, and 0.064 for the L1, L2 and L∞ distances, respectively. It shows that the

empirical copula for our common factors {X1
t } and {X2

t } has the minimum distance to the

product copula in L1, L2 and L∞ norms. And in Figure 10, we plot the 3-D difference be-

tween empirical copula and the produce copula. From the smallness of the distance between

empirical copula and the produce copula, we can reasonably conclude that the two common

factors in (4.1) are independent.
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Figure 9: The choice of optimal dependence parameters
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The top four plots are the L1, L2 and L∞ distances between the empirical copula and
several parametric copulas. The four plots in last row are ratios of these distances
to that from the product copula being 0.024, 0.031, and 0.064 for the L1, L2 and
L∞ distances, respectively.
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Figure 10: The difference between the empirical Copula and the product copula
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6.0 CONCLUSIONS

By utilizing common factors, we have been able to show that all US Government bonds from

1993 to 2006 can be described by a two factor model (4.1), where the remainder term εt is

composed of about 0.4% of the total variance of the yields. Also, we have shown empirically

that the two factors X1
t and X2

t can be regarded as independent. The model (4.1) with

remain term εt deleted thus provides a simple yet effective model for term structure.

In the near future, we shall study the following:

1. the marginal distribution of common factors;

2. the dynamics of the state variable {X i
t}, i = 1, 2, based on simple AR(1) and ARMA(1,1)

models; our philosophy is the simple the better;

3. the structure of the load coefficients;

4. in a framework similar to Black–Scholes no arbitrage argument, establish a complete

theoretical description of the term model based on (4.1) and our findings on empirical

experiments.
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